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ABSTRACT 

The thesis considers two topics in the automation of cytogenetics and 

cytology: the automated allocation of human chromosomes to the twenty-four 

classes which humans possess; and the detection of abnormal cervical smear 

specimens. 

For chromosome allocation, the following work is presented and evaluated 

on a number of data sets derived from chromosome preparations of different 

quality: 

Three new procedures for modelling between-cell variation. 

Six ways of combining class information on variability in multivariate 

Normal discrimination. 

Covariance selection models for individual chromosome classes and an 

assumed common covariance structure for a number of classes. 

Some two-stage procedures for the calculation of discriminant scores in 

multivariate Normal discrimination. 

The application of some non-parametric and semi-parametric methods. 

The modelling of band-transition sequence probabilities. 

For the detection of abnormal cervical smear specimens, the use of a 

consensus probability of a specimen being abnormal, derived from a number of 

cytologists' assessments, is considered. The sequential use of multiple 

regression equations to try to predict the logit transformations of these 

consensus probabilities is described. 

Finally, the sequential use of features in multivariate discrimination is 

considered mainly for the case of two known multivariate Normal populations 

with equal covariance matrices. 
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Chapter 1 
Introduction. 

In this chapter a brief background to the topics in cytogenetics and 

cytology considered in the thesis is given. The layout of the thesis is also 

outlined. 

The topics in cytogenetics and cytology considered in the thesis are the 

allocation of human chromosomes to the twenty-four classes that humans 

possess and the detection of abnormal cervical smear specimens. 

Chromosome analysis, the examination of the chromosome complement of 

a number of cells from an individual for abnormalities in number or structure is 

widely used in ante-natal screening, the diagnosis of haematological tumours 

and biological research. To examine the chromosome complement of an 

individual the chromosomes in a cell are each routinely allocated to one of the 

twenty-two autosomal and two sex classes. This can be done more quickly and 

more economically by the use of automation. The current state of automation 

is described in chapter 2 and is the result of more than twenty-five years of 

research (Piper et al, 1980). 

The manual screening of cervical smear specimens is another time 

consuming procedure for the detection of clinical abnormalities. So far the 

procedure has not been routinely automated but there is considerable interest 

in the speed and accuracy which may be obtained by automation. 

-. 	In chapter 2 automation in human cytogenetics and in the detection of 

abnormal cervical smear specimens is described. The application of statistical 

discrimination methods in these two areas is also reviewed. 

Chapter 3 contains brief descriptions of the ten chromosome data sets and 

one cervical smear data set used in the thesis. The numbers of chromosomes 

and cervical smear specimens are also given along with brief descriptions of 

the features (variables) for which values were obtained. 

In chapter 4 three new procedures for the modelling of between-cell 

variation are outlined. Such modelling is important in trying to remove this 

source of variation before statistical discrimination methods are used to 

allocate chromosomes to the twenty-four classes. 

1 



Chapter 5 considers six ways of combining class information on variability 

in multivariate Normal discrimination for chromosome allocation. The purposes 

of these methods of combining information are reduction in the computational 

time required to allocate the chromosomes in a cell and reduction in the 

number of parameters compared with the use of unrelated covariance matrices. 

In chapter 6 the idea of parameter reduction in multivariate Normal 

discrimination for chromosome allocation is explored further with the use of 

covariance selection models. These may be used to model the covariance 

structure of individual classes or an assumed common covariance structure for 

a number of classes. Computational time is reduced compared with that 

obtained under the assumption of unrelated covariance matrices if sufficient 

elements of each estimated inverse covariance matrix are set equal to zero. 

Another way of attempting to reduce computational time for chromosome 

allocation is to consider a sequential approach to the calculation of the 

discriminant scores. In chapter 7 some two-stage procedures are examined for 

multivariate Normal discrimination. 

Non-parametric and semi-parametric methods of statistical discrimination 

make no or fewer assumptions about the forms of the individual class 

distributions than parametric methods. In chapter 8 four of these methods are 

considered for application to chromosome allocation. 

In chapter 9 some models for the probabilities of band-transition sequences 

derived from the sequence of dark and light bands along a chromosome are 

outlined and applied to the allocation problem. 

In chapter 10 attention is switched to the detection of abnormal cervical 

smear specimens. The use of a consensus probability of a cervical smear 

specimen being abnormal derived from a number of cytologists' opinions is 

considered in this chapter. The sequential use of multiple regression equations 

to try to predict the logit transformations of these consensus probabilities is 

described. 

In chapter 11 the topic of sequential use of features in multivariate 

discrimination is considered. The motivation for this is the interest in saving 

feature measurement time for the allocation of objects from a cervical smear 

specimen to various classes. The computation required by Fu's dynamic 

2 



programming approach to obtaining an optimal varying order of feature 

measurement is briefly reviewed. This approach assumes that the only costs 

are for feature measurement and misallocation which are commensurable and 

that the class distributions are known. An alternative approach to obtaining an 

optimal varying order of feature measurement, when the feature order is free 

to vary, is to find an optimal fixed order of feature measurement. This approach 

may require less computation to obtain a solution. Results are obtained for 

two known multivariate Normal populations with equal covariance matrices for 

Fu's criterion and a new criterion, for early allocation when the feature order is 

fixed. Both criteria assume. that the only costs are feature measurement costs 

and misallocation costs. The new criterion assumes that feature measurement 

costs and misallocation costs are not commensurable. Even the evaluation of 

an optimal fixed order of feature measurement may be computationally too 

demanding so sub-optimal approaches to obtaining a fixed order of feature 

measurement are also proposed for the two criteria. The evaluation of an 

optimal fixed order of feature measurement is also considered for the case 

when the cost of the calculation of the discriminant scores after a feature has 

been measured is included in the measurement cost of a feature. In this case 

the two criteria for early allocation need to be re-defined and it may not be 

optimal to calculate the discriminant scores after every feature measurement. 

It may also be true that a one-stage discriminant procedure 1gives a lower cost 

procedure than a sequential procedure. Finally, an empirical approach for the 

use of the new criterion for early allocation of an object is advocated and 

illustrated on the cervical smear data. 

In chapter 12 the results obtained in the thesis are reviewed and 

suggestions for further work are made. 
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Chapter 2 
Automation in cytogenetics and cytology. 

2.1 Introduction. 

In this chapter the current state of automation in human ctogenetics and 

in the detection of abnormal cervical smears is described. The work done on 

statistical discrimination in these areas is also reviewed. 

2.2 Automation in human cvtogenetics. 

2.2.1 Automated systems. 

The most automated systems at present mostly proceed along similar lines 

for routine karyotyping (the determination of a person's chromosome 

complement). Firstly, good quality metaphase (metaphase being the stage of 

cell division at which chromosomes are most suitable for analysis) cells are 

found by machine scanning of a stained specimen on a slide (good is taken to 

mean well separated chromosomes). The specimen is usually a sample from 

peripheral blood or amniotic fluid. The cells are then digitised at high 

resolution and the chromosomes separated from the background. At this stage 

touching and overlapping chromosomes are separated by an operator using a 

light pen. Finally, chromosomes are allocated to the twenty-two autosomal or 

two sex classes with operator correction of errors. 

For aberration scoring, the counting of structural chromosome aberrations 

in metaphase cells, this level of operator interaction is too much for 

automation to be economic. For the detection of dicentric chromosomes, 

chromosomes which have two centromeres, only chromosomes finally allocated 

to an abnormal class are presented to the operator (Piper et al, 1988 and Llkch 

et al, 1989). 

The features used for routine karyotyping differ from system to system. 

Measures of size and centromeric index (how far along the chromosome the 

join between the chromatids, Figure 2.1 , which make up a metaphase 

chromosome is) are common across systems. Other important features are 

those based on the bands perpendicular to the longitudinal axis of a 

chromosome which result from staining of the cells (Figure 2.1). Taking the 

average density of staining across the longitudinal axis of a chromosome for a 



Figure 2.1 

Sketch of a chromosome showing 
the banding pattern produced 

by staining. 

Chromatids 
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series of points along the axis gives a profile of density of staining along the. 

length of a chromosome, Figure 2.2 . Using a number of weight functions then 

gives summaries of these density profiles (Figure 2.3). The weight functions are 

used by multiplying the average density of staining at points along a 

chromosome by the corresponding values of a weight function, summing the 

values obtained and dividing by the total average density of staining. 

Information from the bands may alternatively be used by considering the 

sequence of dark and light bands. One approach has been to divide each 

chromosome into 13 segments and the location of each peak, its density and 

the difference in density from the next light band working from the end of the 

short arm of a chromosome to the long arm is recorded defining a so-called 

band-transition sequence (Lundsteen and Granum, 1979). Another approach has 

been to use just the relative position along a chromosome of certain bands 

(van Vliet et al, 1989). 

Similarly to the definition of a density profile along a chromsome a profile 

of shape may be defined. This is done by summing the squared distance from 

the longitudinal axis of the chromosome times the density of staining and 

dividing by the sum of the density of staining, at a series of points along the 

axis (Piper and Granum, 1989). As for the density profiles a number of weight 

functions are then used to give summaries of the shape profiles. 

Because of between-cell variation which results from cells being stopped at 

different stages of metaphase (and hence at different stages of contraction) 

and from different cell preparation some feature values are normalised. For size 

features a multiplicative transformation is usually performed by dividing by the 

value for the median-sized chromosome in the same cell (Piper and Granum, 

1989) or transforming to natural logs, subtracting a cell average and dividing 

through by the within-cell standard deviation (Lundsteen et al, 1981). Other 

features may or may not be transformed by subtracting a cell average and 

dividing by the within-cell standard deviation (Piper and Granum, 1989 and 

Lundsteen, Gerdes and Maahr, 1986). 

For the detection of dicentric chromosomes, the features used are different 

because allocation of the chromosomes to classes is not required (Piper et al, 

1988 and Larch et al, 1989). These features are not described here because 

aberration scoring is not considered in the main part of the thesis. 

1.1 



Figure 2.2 

Density profile along a 
chromosome. 

(C indicates centromere position.) 

density of 
staining 

[1 

position along the chromosome 
starting at short arm 



Figure 2.3 

Weight functions used by 
Lundsteen, Gerdes and Maahr (1986) 
to obtain weighted sums of density 

profile. 
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2.2.2 Statistical methods for automated karyotyping. 

Metaphase finding. 

Human chromsomes are most visible at the stage of cell division referred to 

as metaphase. Only some cells in a specimen will be at this stage of cell 

division so a first stage in chromosome analysis is to find these cells 

(Figure 2.4). 

Because there are many cells on a slide and a specimen may have few 

good metaphase cells, the discrimination techniques used have been very quick 

and simple. Often no more than a "box" discrimination procedure is used. That 

is to say upper and lower limits are set separately or jointly for values of all 

the features by ad-hoc methods. Cells which have feature values inside all of 

the feature limits are accepted as "good" quality metaphase cells. This solution 

is sometimes done in stages with progressively more costly (in time) feature 

values obtained at each stage. van den Berg et al (1981) have considered a 

regression approach based on the assignment of a quality index for 

metaphases in a training sample. The quality index is regressed on features 

which are useful for predicting the quality of a metaphase. 

Normalisation. 

As described above, values of size features are usually normalised by 

multiplicative transformations based on the median-sized chromosome or the 

average for the chromosomes in a cell. Hilditch and Rutovitz (1972) considered 

multiplicative normalisation of size features by total cell size (the total size of 

all the chromosomes in a cell), the median of approximately equal-sized 

chromosomes, the size of an easily identified, chromosome or chromosomes 

and a weighted average based on all chromosomes identified with the weight 

for a chromosome from the ith class equal to 

i.t 2 o 2(Zl.t 2 cJ 2) 1 
	

(2.1) 

where Ii i  and ci i  are the mean and standard deviation for normalised values for 

class i and the summation is over all chromosomes in a cell. The last method 

requires iteration between allocation and calculation of the normalising factor 



Figure 2.4 

Chromosomes in a cell at the 
metaph.se  stage of cell 

division. 

' .- 	•_ 

Lio 66 '  
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starting with an initial allocation. Hilditch and Rutovitz (1972) found that judged 

by the inter-cell variance of ten groups of classes the weighted average gave a 

slightly worse result than total cell size, which was best, for unknown prior 

allocation for complete normal cells. However, the weighted average gave the 

best result for incomplete normal cells. When abnormalities were introduced 

the weighted average also performed best for unknown allocation of the 

chromosomes. In practice a multiplicative normalisation based on the 

median-sized chromosome in a cell or the average size of the chromosomes in 

a cell has been used. This is because these approaches have been found to 

give acceptable results without requiring the iteration needed by the weighted 

average considered by Hilditch and Rutovitz (1972). 

Isolated allocation of human chromsomes. 

Often a first step in the allocation of the chromosomes in a cell is to 

consider the allocation of each chromosome without regard to the allocation of 

the others. The method of statistical discrimination adopted has depended on 

the features used. When size, centromeric index, sums of weighted density 

profiles and sums of weighted shape profiles have been obtained (type a. 

features) discrimination based on the assumption of multivariate Normal 

distributions (Piper, 1987) or classification trees (Shepherd, Piper and Rutovitz, 

1987) has been used. For band-transition sequences and the relative location of 

particular bands, non-parametric methods which assume all features to be 

independent have been used (Lundsteen et al, 1981 and van Vliet et al, 1989). 

Band-transition sequences have also been represented as differing length 

strings which are used to build a Markov network for each class (Thomason 

and Granum, 1986). Allocation of the chromosomes proceeds by matching a 

new string to a network using a cost function based on observed transition 

probabilities. Prior probabilities of the 24 chromosome classes have not been 

used for the classification trees or the Markov network for strings representing 

band-transition sequences but have been used for the other methods. For all 

the methods the cost of allocating a class i chromosome to class i ( iii i) has 

been assumed the same for all i and i . This assumption is continued 

throughout the thesis. 

For 	the 	type 	a. features 	referred to 	above, 	both equal and 	unrelated 

covariance matrices have been assumed for multivariate Normal discrimination 

(Granum, 1982 and Piper, 	1987). 	This has been done using the 	so-called 
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Estimative approach which substitutes estimates for parameter values in the 

probability density functions. Error rates estimated by the use of the test-set 

method (described in chapter 5) have shown that the asumption of unrelated 

class covariance matrices gives lower estimated error-rates than the 

assumption of equal class covariance matrices for two data sets (Granum, 1982 

and Piper, 1987). Piper (1987) has shown, however, for a particular data set 

that assuming zero correlations between features for estimated unrelated 

covariance matrices gives a smaller estimated error-rate than not making this 

assumption and results in a large reduction in computational time and the 

number of parameters to be estimated. The time taken for computation is 

important because the operator has to wait for the allocations given by the 

statistical discrimination procedure. 

A so-called tree classifier has also been used for the type a. features 

described above (Shepherd, Piper and Rutovitz, 1987). This tree classifier is 

called the Analogue Concept Learning System (Paterson and Niblett, 1982). 

This is a tree of binary splits. All the training data starts at the root of the tree 

and for each feature x , assumed to be quantitative, in turn the best split is 

determined. The splits are the divisions 

X 	C q  {q = 1,...,n 	(n 

for c q  defined as mid-way between consecutive distinct values for all n ordered 

values of the feature. The best split over all features is then used to split the 

training data into two. Best was defined by Shepherd, Piper and Rutovitz (1987) 

as the maximal entropy gain. Splitting of descendant nodes is continued until 

a stopping rule is satisfied. The stopping rule used by Shepherd, Piper and 

Rutovitz (1987) is to stop splitting if the estimated error-rate of a test set is 

worsened. Nodes which could not be split further were given class labels 

according to which class was in the majority in the training set. A new object 

is allocated to a class by sending it to the appropriate descendant node of 

each node according to the value of the feature used in the split for that node. 

This continues until the object reaches a node without descendant nodes and it 

is then allocated to the class corresponding to the class label of this node. 

The results for ACLS were found to be much worse than for Estimative 

12 



multivariate Normal discrimination with equal covariance matrices. The reason 

for this was conjectured by Shepherd, Piper and Rutovitz (1987) to be the 

inadequacy of division rules based on lines perpendicular to each feature axis. 

For the band-transition sequence data, a non-parametric method has been 

used to estimate frequencies of peak density values (values of 0-6) and density 

difference values (values of 0-4) for each of 14 segments (the 13 segments 

described earlier plus an artificial segment) for each of the 24 chromosome 

classes (Lundsteen et al, 1981). Values of these 28 band transition features 

have then been regarded as independent. This has been combined with the 

assumptions of independence and Normality for normalised area, area 

centromeric index and density centromeric index by multiplying the values of 

their estimated probability density functions by the estimated probabilities for 

the band-transition sequences. Weighting the values of the estimated 

probability density functions more heavily than the estimated probability for the 

band-transition sequence has been found to give lower estimated error-rates 

than the use of equal weights (Lundsteen et al, 1981). 

For the measurement of the relative location of particular chromosome 

bands, independence of features has again been assumed. Because of the large 

number of possible values for these features, histograms with particular bin 

widths have been constructed for allocation of chromosomes (van Vliet et al, 

1989). The number of bin widths used by them is derived from assuming the 
1 

features to be Normally distributed and that therefore n 1 2  , where n 1  is the 

number of class i chromosomes in a training set, is approximately the correct 

number of bins for a feature for each class. 

Allocation of chromosomes to satisfy a normal karyotype. 

Because most cells looked at in automated chromosome analysis are 

expected to be normal it is helpful if the final allocations of the chromsomes in 

a cell conform to a normal karyotype. It can also be expected that an allocation 

which satisfies the normal class sizes will contain fewer errors on average. For 

a cell from a male a normal karyotype corresponds to 22 autosomal pairs, an X 

chromosome and a V chromoosome whilst for a female there is a second X 

chromosome instead of the V chromosome. Until recently this requirement 

was achieved by various sub-optimal procedures (Piper, 1986). There is now 

available, however, a fast algorithm which gives the allocation of the 
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chromosomes in a cell which maximises the product of the estimated posterior 

probabilities subject to the constraint that the allocations satisfy a normal 

karyotype (Kleinschmidt, Lee and Schannath, 1987). This algorithm works by 

solving the so-called transportation problem (Tso and Graham, 1983). In this 

context there are 24 chromosome classes which have 'a 'demand' for a certain 

number of chromosomes which must be satisfied by the 'supply' of 

chromosomes in a cell. The algorithm can cope with missing or additional 

chromosomes. The sub-optimal procedures and transportation algorithm both 

have been found to give slightly lower estimated error-rates than the isolated 

allocation of chromsomes (Piper, 1986 and Tso, 1989) and the latter has been 

found to outperform the former methods (Tso, 1989). 

Whole-cell approaches. 

Habbema has identified three models for the allocation of chromosomes 

(1979). These approaches are the isolated allocation of individual chromosomes, 

the individual allocation of the chromsomes in a cell to satisfy a normal 

karyotype and the simultaneous allocation of all the chromosomes in a cell. 

This last approach based on vectors of length n'r , where n is the number of 

chromosomes in the cell and p is the number of features, has not been tried in 

practice. 

Multiple cell karyotyping. 

A multiple-cell approach which recognises that allocation errors are likely in 

each cell has been proposed for detecting cell lines with an additional or a 

missing chromosome in a particular class (Carothers, Rutovitz and Granum, 

1983). This uses the theory of hypothesis testing to distinguish between 

normal cell lines and those with a missing or extra chromosome. 

2.2.3 Statistical methods for aberration scoring. 

The automated detection of dicentric chromosomes has been attempted 

using statistical discrimination (Piper et al, 1988 and L&ch et al, 1989). The 

methods used have been: a sequential approach with a "box" discrimination 

procedure followed by four stages of linear discriminant functions (Larch et al, 

1989); and a within-cell "box" discrimination procedure (Piper et al, 1988). The 

"box" discrimination procedure used by Ll$rch et al (1989) is to eliminate 

objects with a small probability of being dicentric. The second stage tries to 

recognise non-chromosome objects. The third stage again eliminates objects 
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With a low probability of being dicentrics. The fourth stage allocates objects 

with a large probability of being dicentrics. Finally, the fifth stage separates the 

remaining objects. The within-cell "box" discrimination procedure described by 

Piper et al (1988) is a "box" discrimination procedure for which the limits are 

changed from cell to cell in order to adjust for between-cell variation. 

2.3 Automated detection of abnormal cervical smear specimens. 

2.3.1 Automated system. 

The system designed at the MRC Human Genetics Unit, Edinburgh currently 

proceeds as follows (Carothers, 1987 and Carothers, 1988). As each object in a 

specimen stained with a DNA-specific absorption stain is scanned its integrated 

optical density (IOD) relative to the modal value for all the objects is used to 

allocate the object as worthy of further study or not. The 100 is used because 

it gives a measure of DNA content which is approximately constant in normal 

cells. Malignant and premalignant cells frequently contain much larger and 

more variable amounts of DNA (Tucker, 1979). The modal value is initially 

obtained from a small number of objects which are never allocated and is then 

updated as further objects are scanned. Because many 'abnormals' at this 

stage are artefacts, other features are measured to try to reduce the number of 

artefacts left (Tucker, 1979). These features are used sequentially in a "box" 

discrimination procedure as described earlier for metaphase finding. Once this 

has been done Estimative multivariate Normal discrimination based on an 

assumption of common covariance matrices is used to calculate linear 

discriminant functions for discrimination between abnormal and normal cells 

and for discrimination between abnormal cells and all non-cell material. 

Bivariate Normal distributions for these scores are estimated for normal cells, 

abnormal cells and artefacts. The 16 most likely abnormal objects are then 

measured to provide features at the level of the specimen. Most likely is 

defined as having a high rank for a ranking system monotonically related to the 

posterior probability of an object being an artefact (Carothers, 1987). 

Estimative multivariate Normal discrimination, with the assumption of common 

covariance matrices, is then used to allocate the specimen to one of the 

classes, normal, requiring attention by a cytologist or requiring interactive 

analysis. The classifications in the training set are given by reference diagnoses 

derived from a number of cytologists (Carothers, 1988). For interactive analysis 

the 16 objects most likely to be abnormals are allocated by the operator to one 
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of the classes, artefact, normal, inflammatory or abnormal. New features based 

on the operator allocations are then derived and again Estimative multivariate 

Normal discrimination with the assumption of common covariance matrices is 

used to declare the specimen as normal or requiring attention by a cytologist. 

It should be noted from this that the allocation of any object from the 16 most 

likely abnormals to the abnormal class by the operator is not considered 

sufficient to declare the whole specimen as abnormal. 

2.3.2 Statistical discrimination. 

The statistical methods used in the Edinburgh system are therefore 

sequential 	"box" 	discrimination 	and 	Estimative 	multivariate 	Normal 

discrimination. Other approaches described by Timmers (1987) include 

allocation of specimens to one of three specimen classes (normal, atypical or 

carcinoma) according to which cell class is in the majority. He also describes 

the use of nearest neighbour analysis and correspondence analysis based on 

the counts of cell types for each specimen for allocation of specimens to one 

of these classes. 
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Chapter 3 
Chromosome and cervical smear data sets. 

31 Introduction. 

In this chapter a description is given of the chromosome and cervical smear 

data sets used in the thesis. Ten chromosome data sets and one cervical 

smear data set were used. The Edinburgh and Philadelphia chromosome data 

described below are from routine study and the other chromosome data were 

specially collected. The specially collected data sets are referred to as special 

except for the Copenhagen data for which this adjective is not used. This is for 

consistency with reference made to the data elsewhere, e.g., Piper and Granum 

(1989). The chromosome data sets were supplied by the MRC Human Genetics 

Unit, Edinburgh and the Rigshospitalet, Copenhagen. All the chromosome data 

sets have previously been used in allocation experiments, e.g., Granum (1982), 

Lundsteen, Gerdes and Maahr (1986) and Piper and Granum (1989). The cervical 

smear data were specially collected and supplied by the MRC Human Genetics 

Unit, Edinburgh. 

3.2 Chromosome data sets. 

3.2.1 Version a. of Edinburgh data set (normalised for between-cell variation). 

These data consist of 28 feature values for each of 5548 chromosomes 

from 125 normal human male peripheral-blood cells. The features are given in 

Table 3.1 . Touching chromosomes were given special codes in this data set 

and so were omitted from the allocation results presented later. This leaves 

4270 chromosomes. The division of the data set into two parts used in the 

thesis was the same as that used by Piper and Granum (1989), with the 

exclusion of the touching chromosomes, obtained by random allocation of cells 

to two groups. This division and the division of the other data sets into two 

parts was done for the test-set method of error rate estimation described in 

chapter 5. The division gives a first part of 2228 chromosomes from 66 cells 

and a second part of 2042 chromosomes from 59 cells. 

3.2.2 Version b. of Edinburgh data set (normalised for between-cell variation). 

A version of this data set was used which was not normalised for 

between-cell variation; this had slightly different features from the above data 
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Table •4 

Feature values obtained for chromosomes in Edinburgh data set, 
versions a. and c. of Copenhagen data set and Philadelphia data set. 

Features 

area 
area + length 
density = (sum of pixel values)/(number of pixels) 
area centromeric index 
density centromeric index * 
coefficient of variation of density profile 
normalised root of sum of squared density differences (n.s.s.d.) 
length * 

9.-14. six weighted sums of density profile 
15.-20. six weighted sums of shape profile 
21.-26. six weighted sums of profile of absolute differences of 

density profile 
length centromeric index 
convex hull perimeter (c.h.p.) 

* feature 5 replaced by ratio of mass centromeric index 
to area centromeric index and feature 8 replaced by 
m.d.r.a. (difference in mass between top and bottom half 
of density profile divided by area under profile) 
in version a. of Edinburgh data set 
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set and did not exclude touching chromosomes so a second comparable 

normalised version of the data set was used. For this version, length replaced 

m.d.r.a. (defined in Table 3.1) and density centromeric index replaced the ratio 

of centromeric indices. This data set contains 5548 chromosomes. The random 

split into two parts described above gives 2931 chromosomes in the first part 

and 2617 chromosomes in the second part. 

3.2.3 Version c. of Edinburgh data set (not normalised for between-cell 
variation). 

This data set contains the same chromosomes and has the same features 

as version b. of the normalised data above. 

3.2.4 Version a. of Copenhagen data set (normalised for between-cell variation). 

These data consist of 28 feature values for each of 8106 chromosomes 

from 180 normal male and female peripheral-blood cells. The features were the 

same as for version b. of the normalised Edinburgh data set. The random split 

of the data by cell into two groups used by Piper and Granum (1989) was used. 

This gives a first part of 3416 chromosomes from 76 cells and a second part of 

4690 chromosomes from 104 cells. 

3.2.5 Version b. of Copenhagen data set (normalised for between-cell variation). 

These data consist of 39 feature values for each of 6989 of the 

chromosomes in the above data set. The features are given in Table 3.2 . The 

division of the cells into two parts was the same as for version a. above except 

that one cell was missing from the data set to give a second part of only 103 

cells. There are 2941 chromosomes in the first part of the data set and 4048 

chromosomes in the second part. To avoid confusion with version a. of this 

data set this version is referred to in later chapters as the reduced Copenhagen 

data set. 

3.2.6 Version c. of Copenhagen data set (not normalised for between-cell 
variation). 

The chromosomes and features were the same as for version a. of this data 

set. 

3.2.7 Version a. of Philadelphia data set (normalised for between-cell variation). 

These data consist of 28 feature values for each of 5817 chromosomes 

from 130 normal male and female chorionic-villus cells. The features were the 

same as for version b. of the Edinburgh data set. The random split by cell into 
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Table •4 

Feature values obtained for chromosomes in version b. of Copenhagen 
data set and two special Copenhagen data sets. 

Features 

area 
area centromeric index 
density centromeric index 

4.-11. eight weighted sums of density profiles 
12.-39. density and density difference values for fourteen 

segments of chromosome 
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two parts by Piper and Granum (1989) gives a first part of 2899 chromosomes 

from 64 cells and a second part of 2918 chromsomes from 66 cells. 

3.2.8 Version b. of Philadelphia data set (not normalised for between-cell 

variation). 

The chromosomes and features are the same as for version a. of this data 

set. 

3.2.9 Copenhagen special amniotic-fluid data set (normalised for between-cell 
variation). 

These data consist of 39 feature values for each of 9396 chromosomes 

from 217 male and female cells from amniotic fluid. The features are the same 

as for version b. of the Copenhagen data set given in Table 3.2 . The data set 

was split into two parts by random allocation of cells to two groups. This gave 

a first part of 4695 chromosomes from 114 cells and a second part of 4701 

chromosomes from 113 cells. 

3.2.10 Copenhagen special peripheral-blood data set (normalised for 
between-cell varaiation). 

These data consist of 39 feature values for each of 10075 chromosomes 

from 230 male and female cells from peripheral blood. The data were split into 

two parts by random allocation of cells to two groups. This gives a first part of 

5170 chromosomes from 118 cells and a second part of 4905 chromosomes 

from 112 cells. The features are given in Table 3.2 

3.3 Numbers of chromosomes in chromosome data sets. 

Overlapped chromosomes had previously been excluded from all versions of 

the Edinburgh, Copenhagen and Philadelphia data sets (Piper and uranum, 

1989). The reduced Copenhagen data set excluded severely bent chromosomes 

as well as overlapped ones. Severely bent and overlapped chromosomes were 

also previously excluded from the special Copenhagen data sets (Lundsteen, 

Gerdes and Maahr, 1986). In a small number of instances chromosomes had 

been missing from the original data because they had not been included in the 

image of the cell. 
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34 Further description of features in chromosome data sets. 

A fuller description of the Edinburgh data set, of versions a. and c. of the 

Copenhagen data set and of the Philadelphia data set is given in Piper and 

Granum (1989). Further description of the features in version b. of the 

Copenhagen data set and the two special Copenhagen data sets is given in 

Lundsteen et al (1981) and Lundsteen, Gerdes and Maahr (1986). Features 1-11 

in Table 3.2 for these three data sets are those used in the WDD classifier 

described by Lundsteen, Gerdes and Maahr (1986) and referred to in chapters 5, 

6, 8 and 9. 

Examination of the features described shows that in versions b. and c. of 

the Edinburgh data set, versions a. and c. of the Copenhagen data set and the 

Philadelphia data set one feature is a linear combination of two others (feature 

2 = feature 1 + feature 8). Hence a maximum of two of these three features 

was used in the allocation experiments described later in the thesis. 

3.5 Normalisation of chromosome data for between -cell variation. 

The features in versions a. and b. of the Edinburgh data set, version a. of 

the Copenhagen data set and version a. of the Philadelphia data set were 

normalised in one of two ways or else left unchanged (Piper and Granum, 

1989). Values of size features were divided through by the value of the 

median-sized chromosome in the same cell. All other features except the 

measures of centromeric index were normalised by subtracting the cell mean, 

dividing through by the within-cell standard deviation and multiplying by 100. 

The other normalised data sets were obtained by subtracting the cell mean 

of logged area from the logged value of area for each chromosome and 

dividing through by the within-cell standard deviation of logged area 

(Lundsteen et al, 1981). 

3.6 Cervical smear data set. 

3.6.1 Object data. 

For the first 100 objects scanned on each of 92 of the 489 slides described 

below, values of 18 features were obtained and a visual assessment of the 

class of the object was made. The object was classified by a cytologist as 
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belonging to one of the six classes given in Table 3.3 . The features are given 

in Table 3.4 . 	 - 

3.6.2 Specimen data 

For each of 489 slides, independent assessments were made by four 

cytologists. Each specimen was allocated by each cytologist to one of the nine 

classes given in Table 3.5 or else described as too poor a specimen to be 

allocated. For each of 408 of these slides 25 feature values were obtained. 

The features are given in Table 3.6 

3.7 Further description of features in cervical smear data set. 

The object and specimen features listed in Tables 3.4 and 3.6 are more fully 

described in Carothers (1987) and Tucker (1979). 
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Table 3.3 

Classification of objects from cervical smear specimens. 

Classes 

artefact 
normal cell without cytoplasmic staining 
inflammatory cell 
abnormal cell 
normal cell with cytoplasmic staining 
other suspicious object 
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Table 3.4 

Feature values obtained for objects from cervical smear specimens. 

Features 

area 
integrated optical density (i.o.d.) 
mean i.o.d. of pixels in 'skirt' (see Tucker, 1979) 
number of limbs possessed by object 
position of peak of histogram of i.o.d. of 'normal' 
variance of i.o.d. of pixels in centre of object 
variance of i.o.d. of pixels at edge of object 

B. mean of i.o.d. of pixels in centre of object 
mean of i.o.d. of pixels at edge of object 
number of pixels in centre of object 
mean density 
chord measurement (see Tucker, 1979) 
box measurement (see Tucker, 1979) 

14.-17. perimeter tests (see Tucker, 1979) 
18. ellipse (see Tucker, 1979) 

round object 

cells (pk) 
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Table 3.5 

Classification of cervical smear specimens. 

Classes 

 Normal 
 II 
 hR 
 CIN 1 
 CIN 1/2 
 CIN 2 
 CIN 2/3 

B. CIN 3 
9. Invasive carcinoma 

Severity of disease increases with class number. 

26 



Table  3.6 

Feature values obtained for cervical smear specimens. 

Features 

mean of (i.o.d./pk) for 16 objects ranked as 
most likely to be abnormal. 
mean area of 16 objects in 1. 
mean of feature 6. in Table 3.4 for 16 objects in 1. 
mean of ranking for abnormality for 16 objects in 1. 
minimum ranking for abnormality for 16 objects in 1. 
number of normal cells amongst 16 objects in 1. 	* 
number of inflammatory cells amongst 16 objects in 1. 
number of abnormal cells amongst 16 objects in 1. 
sum of (100 * i.o.d./pk) over all cells amongst 

16 objects in 1. 
minimum of ranking for abnormality over all cells amongst 16 

objects in 1. 
max. of (100 * i.o.d./pk) over all cells amongst 

16 objects in  1. 

mean of (100 * i.o.d./pk) over 7 most abnormal cells amongst 

16 objects in l.* 
mean area of 7 most abnormal cells amongst 
16 objects in 1. 
mean of feature 6. in Table 3.4 for 7 cells ranked as most 
likely to be abnormal amongst 16 objects in  1. 

mean of ranking for abnormality for 7 cells ranked as most 
likely to be abnormal amongst 16 objects in l.* 
number of objects with i.o.d./pk 	2 passed through 

"box" discrimination procedure. 
number of objects with i.o.d./pk 	2 and passed 
through stage 1 of "box" discrimination procedure. 
number of objects with i.o.d./pk 	2 and rejected 
at stage 1 of "box" discrimination procedure. 
number of objects with area ~ 50 and 0.5 	i.o.d./pk < 2 

number of objects with area < 50 and 0.5 5 i.o.d./pk < 2 

number of objects with i.o.d./pk < 0.5 
number of objects with 3 	i.o.d./pk < 5 

divided by number of objects with 2 	i.o.d./pk < 5 
number of feature 17. and feature 18. with 120 	area < 220 

divided by number of feature 17. + feature 18. with 

60 ;5 area < 220 
number of feature 16. with 3 	i.o.d./pk < 5 
divided by number of feature 16. with 2 	i.o.d./pk < 5 

number of feature 16. with 120 15 area < 220 
divided by number of feature 16. with 60 ~5 area < 220 

*features provided by intervention of operator 
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Chapter 4 
Modelling between-cell variation for the automated 

allocation of human chromosomes. 

4.1 Introduction. 

As noted in chapter 2, the precise stage of metaphase at which a cell's 

development is arrested varies from cell to cell. This means that the 

chromosomes in different cells exhibit different amounts of contraction. 

Consequently, it has become standard practice to normalise at least the values 

of the size features for each chromosome. Current practice for two widely 

used systems is to subtract the cell average of logged chromosome size from 

the logged value for each chromosome in a cell and to divide by the 

within-cell standard deviation of the logged values (Lundsteen et al, 1981) or to 

divide through the size value for each chromosome by the size of the 

median-sized chromosome in the same cell (Piper and Granum, 1989). 

In this chapter three new possible approaches are considered. These are: 

The transformation of each feature to marginal Normality when cell and 

class effects are allowed for in a linear model on the transformed scale. 

This is followed by removal of the cell effect on the transformed scale 

and a discrimination method based on multivariate Normality. 

The regression of size-related features on an index of size for the cell, 

within each chromosome class. 

The division of cells into classes according to the degree of contraction 

of the chromosomes with different sets of discriminant functions for each 

type of cell. 

The performance of these different approaches is assessed by estimating 

percentage error-rates for three data sets. 

4.2 Transformations to marginal Normality. 

For each chromosome we may consider that a feature value, X1k1 , for the Ith 

chromosome from the ith class in the kth cell is given by the model 

XjkI = .t + C + Cek + fliki 
	 (4.1) 



Where .i is the overall mean value for the feature, C i  represents the fixed effect 

of the ith chromosome class, Cek represents the fixed effect of the kth cell and 

ikI is the residual error. 

A transformation to marginal Normality may be sought by finding the power 

transformation defined by 

(x 1 ' - 1)X 1 	(m-  0) 

x1J 	
= 	 (4.2) 

ln(x 1 ) 	 ( X=O) 

which maximises 

+(X - 1)Eln(x 1 )} 	 (4.3) 

where x 1j  is the value of a feature for the jth chromosome from class i , In(x) 

is the natural log transformation of x 1  , n 1  is the number of chromosomes for 

class i , the summation for j is from 1 to n 1  and each is given by 

= 	- E(x1 ))} 2 
	

(4.4) 

where E(x 1 ) is the expected value from model (4.1) on the transformed scale. 

The estimate obtained from maximising expression (4.3) is the 

maximum-likelihood estimate of A. Expression (4.3) is derived from noting that 

the likelihood of all the data on a given feature assuming a Normal distribution 

for each class is 

f[(21TY' a1 	 - E(x jj ) )} 2(2a j )_ 2 ]JTI Idx/dxI 	(4.5) 
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Where a i  is the feature variance for chromosomes from class i . To normalise 

the data a cell effect may then be removed on the appropriate scale. This 

approach assumes that division by the within-cell standard deviation, currently 

done for some features in some systems, is not necessary. 

Marginal Normality does not ensure multivariate Normality of the features 

but in many cases the presence of nonnormality is often reflected in the 

marginal distributions (Gnanadesikan, 1877, page 163). It is also not certain that 

a necessary transformation will be one of the power family, but again it may be 

considered that this family encompasses a reasonably wide range of 

possibilities. 

4.3 A regression model for the features related to size. 

The model given by (4.1) assumes that the cell effect is the same across all 

classes on the transformed or the original scale. A different approach is to 

define an index of size for the cell and suppose that within a cell there is a 

regression relationship between the size-related features of each chromosome 

and the size index, for each chromosome class. For a simple linear relationship 

we have the model 

X 1 k1 = Oti + ai Z k + fltkl' 	
(4.6) 

where Zk  is the size index and Tjkl  has variance a 2  . This model allows a 

differential adjustment for cell size to be made for every class by the use of an 

adjusted class mean vector for each cell. Model (4.6) may be contrasted with 

the multiplicative one of Piper and Granum (1989) used for size features. 

Model (4.6) gives XIkI expectation c + B 1 zk and variance a, 2  whereas the 

multiplicative adjustment XikI/Zk has expectation and variance i, and Y i  and XjkI 

has expectation 11zk and variance Zk2Y12 . The differences, hence, lie in the 

non-zero intercept in (4.6) and the dependence of the variance on the size 

index. Figure 4.1 suggests that a non-zero intercept is appropriate for some 

classes and that the increase in variance is not as big as Zk2 . This model has 

previously been used with average cell size as the size index by Gerdes (1979). 

Here, we consider the use of the median of a number of similarly sized 
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chromosomes. This index rather than average cell size might be expected to be 

more robust to chromosomes missing from the image taken of the cell. The 

overall median is not considered because for a normal cell it is close to the big 

drop in size between chromosome classes 12 and 13 (Figures 4.7 , 4.8 and 4.9). 

4.4 Division of cells into classes according to the degree of 
contraction of the chromosomes. 

A different proposal, also recently considered by others (Gerdes, Maahr and 

Lundsteen, 1989), is to state that the differences in the values of size features 

between chromosomes of very different states of contraction cannot be 

explained by the simple models proposed in the previous two sections. Instead 

it is assumed that different sets of discriminant functions are needed for 

chromosomes of different states of contraction. A simple approach is to define 

a number of categories. Here the division into 3 classes of 'small', 'medium' and 

'large' chromosomes is considered. The adjectives 'small', 'medium' and 'large' 

are used to describe the size of a chromosome of a particular class relative to 

other chromosomes in the same class. 

4.5 Application to Edinburgh, Copenhagen and Philadelphia data sets. 

To anticipate the results obtained in chapter 5, Estimative multivariate 

Normal discrimination with common covariance matrices per Denver group was 

used to estimate percentage error-rates for all three normalisation procedures. 

For the transformations to marginal Normality, complete cells from the first 

part of each data set were used to estimate the required power 

transformations and the second part of each data set was used to estimate the 

percentage error-rate. The splits into two parts were those used by Piper and 

Granum (1989) with the number of chromosomes in each part given in chapter 

3. For the other two normalisation procedures, leave-one-cell-out 

cross-validation, as later described in chapter 5, was used to estimate 

percentage error-rates. 

Prior probabilities of 2/46 for chromosome classes 1-22 and 1/46 for 

chromosome classes 23 and 24 were used for the all-male Edinburgh data set. 

The prior probabilities for classes 23 and 24 were changed to 3/92 and 1/92 for 

the other two data sets which had cells from both sexes. 
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The overall estimated percentage error-rate was taken as the weighted 

Average of the individual class percentage error-rates using the specified prior 

probabilities as the weights. 

No re-allocation of chromosomes to satisfy a normal karyotype as 

described in chapter 2 was performed. 

4.5.1 Transformations to marginal Normality. 

The model given by equation 4.1 is 'balanced' for the Edinburgh data set for 

which all cells are from males but not for the other two data sets. Balanced is 

here defined as meaning that the cell and chromosome effects are orthogonal. 

The lack of balance for the other two data sets is not expected to be severe 

because the difference between male and female cells is just the classes of the 

two sex chromosomes. The procedure foUowed here has been to ignore the 

lack of balance and to define the estimated cell and class effects for these two 

data sets as given by 

(k - k) 	(k= 1,...,K) 	 (4.7) 

and 

EJOW - (.k. - 	- 	}( n 1 	(i=1,...,24) 	 (4.8) 

where K is the number of cells and a dot with a bar indicates summation over 

the particular index followed by division through by the number in the 

summation. This approach may be justified on the grounds that the current 

normalisation procedures make no use of the knowledge of the sex of a cell 

and therefore it is comparable with them. In some instances, also, the sex of 

the person from whom the cell has come will be unknown. 

The values of A considered for each feature were restricted to the range -5 

to 5 at intervals of 0.5 . If the 95% confidence interval for A , based on the 

asymptotic distribution of the maximum likelihood estimator, contained the 

value A = 1 this value was assumed. 
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The omission of the division through by the within-cell standard deviation 

for each cell for the current normalisation is also examined. 

4.5.2 A regression model for the features related to size. 

Four of the twenty-seven available features which contain no exact linear 

dependence can be seen to be related to size when the values for the 

chromosomes in a cell are plotted against a size index for a cell. Three of 

these four features, area, length and c.h.p. are measures of chromosome size. 

Figures 4.1-4.6 show plots for the Edinburgh data set of: 

Area versus the average area of the 25th and 26th smallest chromosomes 

in the same cell. 

N.s.s.d. versus the average area of the 25th and 26th smallest 

chromosomes in the same cell. 

N.s.s.d. versus the average length of the 25th and 26th smallest 

chromosomes in the same cell. 

N.s.s.d. versus the average c.h.p. of the 25th and 26th smallest 

chromosomes in the same cell. 

Length versus the average length of the 25th and 26th smallest 

chromosomes in the same cell. 

C.h.p. versus the average c.h.p. of the 25th and 26th smallest 

chromosomes in the same cell. 

The average of the 25th and 26th smallest chromosomes was chosen because 

it is the middle of a range of four similarly sized chromosomes for area, length 

and c.h.p. for complete male cells (Figures 4.7, 4.8 and 4.9) and the middle of a 

range of five similarly sized chromosomes for complete female cells. 

Because the true chromosome class of a chromosome to be allocated is 

unknown, the regression equations were used to adjust the size-related 

elements of the mean feature vectors for every class for each new cell for 

which chromosomes are to be allocated. This contrasts with the current 

approach of normalising the feature vector for every chromosome. The simple 

linear regression model (4.1) was used for area, length and c.h.p. and an 

additional squared term was included for n.s.s.d. . This additional squared term 

was included because of the curvature evident in Figures 4.2, 4.3 and 4.4 . The 

explanatory feature or features were the average area, length and c.h.p. of the 

25th and 26th smallest chromosomes in the same cell for area, length and 

c.h.p. respectively and the average area, length or c.h.p. (and the same feature 

33 



Figure 4.1 
Edinburgh data 

y axis - area of' chromosomes in close 
x axis - average area of' 251h and 261h smallest 

chromosomes in corresponding cell 
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Figure 4.2 
Edinburgh data 

y axis - n.e.s.d. of' chromosomes in close 
x axis - average area of' 25th and 26th smallest  

chromosomes in corresponding cell 
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Figure 4.3 
Edinburgh data 

y axis - n.s.e.d. oP chromosomes in class 
x axis - average length oF 251-h and 261-h smallest 

chromosomes in corresponding cell 
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Figure 4.4 
Edinburgh data 

y axis - n.s.e.d. of' chromosomes in close 
x axle - overage o.h.p. of' 251-h and 261-h smallest 

chromosomes in corresponding cell 
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Figure 4.5 
Edinburgh data 

y axis - length of' chromosomes in close 
x axis - average length of' 25th and 26th smallest 

chromosomes in corresponding cell 
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Figure 4.6 
Edinburgh data 

y axis - c.h.p. oP chromosomes in class 
x axis - average c.h.p. oP 25th and 26th smallest 

chromosomes in corresponding cell 

	

1600.00 	Class •. 1600.00 	Class 2 1600.00 	Class 3 1600.00 	Class 4 
"Oil 

	

0.00 	0.001 	 0.001 	 0.001 

	

AA 	A AA 	 I AAA AA 	A AA I AAA flA 	A flA 1A A  AA 

	

0.00 	1000. uu 	U.ww 	 Vww. VW 	V.wV .. 

	

1600.00 	Class 5 1600.00 	Class 6 isoo.00 	Class 7 i000.00 	Class B.  

	

0.00 1 	0.00 1 	0.00 1 	0.00 1 

	

0.00 	1000.00 	0.00 	1000.00 	0.00 	1000.00 	0.00 	1000.00 

	

1600.00 	Class 9 i000.00 	Class 10 100 	 1000.00 

	

0.00 	Class 11 	 Class 12 

	

0.00 1 	0.001 	 .00 I 	I 

	

0.00 	1000.00 	0.00 	1000.00 	0.00 	1000.00 	0.00 	1000.00 

	

1000.00 	Class 13 1000.00 	Class 14 800.00 	Close .1,5 800.00 	Class 16 

	

0.001 	0.001 	0.001 	0.001 

	

0.00 	1000.00 	0.00 	1000.00 	0.00 	1000.00 	0.00 	1000.00 

	

800.00 	Class 17 800.00 	Class 18 800.00 Class  19 80o.00 	Class 20 

Or  

	

0.001 	 0.001 	 0.001 	 0.001 

	

0.00 	1000.00 	0.00 	1000.00 	0.00 	1000.00 	0.00 	1000.00 

	

800.00 	Class 21 800.00 	Class 22 1600.00 Class  23 800.00 	Class 24 

	

0.001 	 0.001 	 0.001 	 , 	0.001 I 	I 

	

0.00 	1000.00 	0.00 	1000.00 	0.00 	1000.00 	0.00 	1000.00 

39 



LUIIIUUIjII UUIU 

Complele cells 

100.00 

0.00 

1060.00 

(/) - 900.00 

1) 
x 

0 
740.00 

0 

L 
(1) 

_Q 580.00 

E 

C 

420.00 

() 
L 
0 

260.00 

0 
ci)  

) 

4.00 	8.00 	12.00 	16.00 	20.00 	24.00 

Chromosome class 

EEO 



70.00 

C') 

C 60.00 

O) 
C 

(•) 
50.00 

a 
0 
(I) 

40.00 

x 
0 

30.00 

-c 

C 
20.00 

Ei9une 4. 8 
Edinbun9h doio 
Complele cells 

C 
0 
U) 

10.00 

0.00 

) 

4.00 	8.00 	12.00 	16.00 	20.00 	24.00 

Chromosome class 

41 



Figure 4. 9 
Edinburgh dora 
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squared) of the 25th and 26th smallest values for n.s.s.d. . For the other 

features the current normalisation was used. Individual covariance matrices 

were calculated using 

- j)(ij - 
	

( ni  - 1) 	, 	 (4.9) 

where x ii  is the feature vector for the jth chromosome from class i and the 

elements of xi  are the adjusted means for size features and the means of 

normalised features using the current normalisation for other features; the 

summation is over all chromsomes except the ones in the cell currently being 

allocated. The chromosomes in the cell being allocated were also excluded 

from the parameter estimates for the regression equations. 

4.5.3 Division of cells into classes according to the degree of contraction of the 
chromosomes. 

For each unnormalised data set the complete cells were divided into three 

approximately equal parts according to the mean length of all the 

chromosomes (Edinburgh data set) or the mean length of the autosomal 

chromosomes (Copenhagen and Philadelphia data sets). The number of 

complete cells was 50, 112 and 77 in the Edinburgh, Copenhagen and 

Philadelphia data sets respectively. For comparison, complete cells in the three 

data sets were also each randomly divided into 3 parts containing 

approximately equal numbers of cells with 'small', 'medium' and 'large' 

- chromosomes. This random division was done to check that any effect on 

error rate was not due to the result of a reduction in sample size. The 

normalised values of the chromosomes using the current normalisation 

procedure were then used in the discrimination in both cases. 

4.6 Results. 

4.6.1 Transformations to marginal Normality. 

Table 4.1 gives the transformations estimated by maximising expression 

(4.3). Table 4.2 gives the estimated percentage allocation error-rates using 

these combinations of transformations and removing a cell effect along with 

the estimated percentage error-rates for the usual normalisation procedure. 
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Table j 

Estimated power transformation for each feature. 
(A 0 indicates natural log transformation.) 

Data sets 

Edinburgh Copenhagen Philadelphia 

Feature 
1 0 0 0 
3 1 0 0.5 
4 1 1.5 2 
5 1 1 1.5 
6 -0.5 0.5 -1 
7 0 0 0 
8 0 0 0 
9 1 0.5 1.5 

10 1 1 1 
11 1 2 1.5 
12 1 1 1 
13 1 1.5 1 
14 1 1 1 
15 1 1 1.5 
16 1 1 1 
17 1 1 2 
18 1 1 1 
19 1 1 1 
20 1 1 1.5 
21 1 1 1.5 
22 1 1.5 1 
23 1 1.5 1.5 
24 1 1 1 
25 1 1 1 
26 1 1 1 
27 1.5 1.5 2 
28 0 0 0 
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Table 4.2 

Estimated percentage error-rates for transformations 
given in Table 4.1 using test-set method. 

(Estimated percentage error-rates for usual normalisation 
in brackets.) 

Edinburgh data set 

15.8(14.6) 

Copenhagen data set 

4.8( 4.9) 

Philadelphia data set 

14.9(16.1) 
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Table 4.3 gives the estimated percentage error-rates for transforming just the 

size-related features and removing a cell effect. Finally, Table 4.4 gives the 

estimated percentage error-rates for the current normalisation procedure 

without the division through by the within-cell standard deviation. 

4.6.2 A regression model for the features related to size. 

The estimated percentage error-rates are given in Table 4.5 for this 

normalisation procedure for all four size-related features, using each of area, 

length or c.h.p. (and the same feature squared) as the explanatory features for 

n.s.s.d. , along with the current normalisation. The estimated percentage 

error-rates for this procedure excluding n.s.s.d. , which is not a size feature and 

for which the current normalisation was used, are given in Table 4.6 

4.6.3 Division of cells into classes according to the degree of contraction of the 
chromosomes. 

Table 4.7 gives the estimated percentage error-rates for the split into 

'small', 'medium' and 'large' chromosomes and the random splits into three 

parts containing approximately equal numbers of cells with 'small', 'medium' 

and 'large' chromosomes. 

4.7 Discussion. 

The only agreement on transformations in Table 4.1 across the three data 

sets is for the four size-related features where a log transformation is 

indicated. This agrees with the multiplicative transformation currently done for 

area, length and c.h.p. . Table 4.2 shows that only for the Philadelphia data set 

does the use of all the transformations produce an interesting reduction in 

estimated percentage error-rate. Table 4.3 shows that use of just the 

transformations for the size-related features gives similar results to the use of 

all the transformations. 

Table 4.4 indicates that the division through of features which are not 

measures of size or centromeric index by the within-cell standard deviation is 

unlikely to be important other than for numerical convenience. Indeed, this 

gives bigger estimated percentage error-rates for the Edinburgh and 

Philadelphia data sets. 

Tables 4.5 and 4.6 show that the regression approach for all four or just 

three of the size-related features does not give smaller estimated percentage 
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Table 4.3 

Estimated percentage error-rates for transformations given in 
Table 4.1 for size-related features only using test-set method. 
(Estimated percentage error-rates for usual normalisation 

in brackets.) 

Edinburgh data set 

16.0(14.6) 

Copenhagen data set 

5.0( 4.9) 

Philadelphia data set 

14.8(16.1) 
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Table 4:i 

Estimated percentage error-rates for current normalisation without 
the division by the within-cell standard deviation using the 

leave-one-out method. 
(Estimated percentage error-rates for usual normalisation 

in brackets.) 

Edinburgh data set 

11.1(13.2) 

Copenhagen data set 

5.1( 4.4) 

Philadelphia data set 

16.8(17.6) 
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Table ,4 

Estimated percentage error-rates for regression relationships for all 
size-related features and current normalisation for other features 

using leave-one-out method. 
(Estimated percentage error-rates in order are for area, length 
and 2.h.2. and the same feature squared as explanatory features 
for n.s.s.d. with estimated percentage error-rate for usual 

normalisation in brackets.) 

Edinburgh data set 

15.2,15.3,15.3(13.2) 

Copenhagen data set 

5.0, 5.4, 5.0( 4.4) 

Philadelphia data set 

17.9,18.7,17.8(17.6) 
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Table 4.6 

Estimated percentage error-rates for regression relationships for all 
size-related features except n.s.s.d. and current normalisation 

for other features using leave-one-out method. 
(Estimated percentage error-rates for usual normalisation 

in brackets.) 

Edinburgh data set 

15.0(13.2) 

Copenhagen data set 

4.6( 4.4) 

Philadelphia data set 

18.0(17.6) 
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Table 4.7 

Estimated percentage error-rates for 'small', 	'medium' 	and 	'large' 
chromosomes using leave-one-out method. 

(Percentage error-rates for random splits into three given 
beneath.) 

Data sets 

Edinburgh Copenhagen Philadelphia 

Small 24.3 4.1 26.8 
Medium 22.0 5.9 21.8 
Large 20.1 6.2 25.1 

Average 22.1 5.4 24.6 

Random 26.5 5.3 24.2 
splits 27.3 6.4 21.4 

18.3 5.4 25.1 

Average 24.0 5.7 23.6 

Figures for 	13.2 	4.4 	17.6 
unsplit data 

V- 
 0

cm 
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error-rates than the current normalisation procedure for any of the data sets. 

This may be because its assumptions about error variances are incorrect rather 

than because its assumptions about expectations are incorrect. 

Finally, Table 4.7 shows some evidence for the Edinburgh and Copenhagen 

data sets of a reduction in average percentage error-rate for chromosomes 

divided into 'small', 'medium' or 'large' groups compared with random splits 

containing approximately equal numbers of 'small', 'medium' and 'large' 

chromosomes. Against this result must be set the increase in percentage 

error-rate due to reduced training set size as shown by comparison with the 

results for the total data sets also given in this table. 
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Chapter 5 
Combining class information on variability in 

multivariate Normal discrimination for the automated 
allocation of human chromosomes. 

.5.1 Introduction. 

As described in chapter 2, the time taken to calculate the discriminant 

scores is an important consideration for the automated allocation of human 

chromosomes as well as the error rate. The use of unequal covariance 

matrices in Estimative multivariate Normal discrimination has been found to 

give lower estimated error-rates than the use of a common covariance matrix 

using the test-set method of error rate estimation (Granum, 1982 and Piper, 

1987) but the former is a computationally expensive procedure (Piper, 1987). 

One approach to reducing computation is to replace the estimated unrelated 

covariance matrices by just their main diagonal elements. For the features 

used by the Edinburgh system this has been found to produce a smaller 

estimated error-rate for the test-set method of error rate estimation for a 

typical data set (Piper, 1987). An alternative approach is to assume that the 

covariance matrices are related in ways which can reduce the computation 

required to evaluate the associated discriminant functions. Such assumptions 

also reduce the number of parameters. The statistical validity of the assumed 

relationships may be formally tested but in practice the estimated error-rates 

and computational time for typical data sets are more appropriate criteria. This 

is because the bias in the predicted distributions may be outweighed by the 

reduction in sampling variation due to the smaller number of parameters. Flury 

(1988, page 164) in particular has noted that estimates of constrained 

covariance matrices which are biased may give lower error rates in 

discrimination than unbiased estimates. 

In this chapter six possible assumptions about relationships between 

covariance matrices are outlined. All of these may be easily incorporated into 

the Estimative approach to discrimination and for two of them a Bayesian or 

approximate Bayesian predictive approach to discrimination is also available 

(Aitchison, Habbema and Kay, 1977, Moran and Murphy, 1979 and Hawkins and 

Raath, 1982). The number of parameters in the predicted densities is given for 

the resulting eight procedures. For comparison, the number of parameters in 
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the predicted densities is also given for the Estimative approach with a 

common covariance matrix and unrelated diagonal and non-diagonal covariance 

matrices and for the Bayesian predictive approach with a common and 

unrelated covariance matrices. For all thirteen procedures, the number of 

calculations required to allocate a new object, when discriminant scores are 

calculated using formulae described later, is given. Figures of estimated 

percentage error-rate versus the square-root of average computational time for 

46 chromosomes in a cell are given for all of these procedures for five human 

chromosome data sets. 

5.2 Six assumed relationships between covariance matrices. 

In the following we assume that the vectors of features for each class i are 

distributed as N(j.i,E) where the E 1  satisfy the assumed relationships between 

the class covariance matrices. 

5.2.1 A common covariance matrix for the classes in a group. 

We assume that, in general, we have c classes which can be put into a 

smaller number, g , of disjoint groups of classes, and then suppose that the 

covariance matrices E 1  are the same for all the classes in a group. 

For automated human karyotyping, the 24 chromosome classes may be 

allocated to seven so-called Denver groups (Book et al, 1960) on the basis of 

size and centromeric index. These groups are chromosome classes, 1-3, 4-5, 

6-12 plus X, 13-15, 16-18, 19-20, 21-22 plus Y. 

This assumption might be expected to be reasonable if the differences 

between the chromosome class covariance matrices are mainly due to the 

differences in variation of size or centromeric index. 

5.2.2 Proportional covariance matrices. 

We assume that the covariance matrix for class i is given by cQ (e.g., Manly 

and Rayner, 1987). 

The assumption of proportionality between the chromosome class 

covariance matrices might be expected to be reasonable for size-related 

features. 
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5.2.3 Proportional covariance matrices within each of g groups. 

The previous two assumptions may be combined so that proportionality of 

the covariance matrices is only assumed within each of g groups. 

Again this combination of the previous two assumptions might be expected 

to be reasonable for size-related features. 

5.2.4 Proportional common covariance matrices. 

A different combination of the assumed relationships in 5.2.1 and 5.2.2 is to 

assume proportionality between the common covariance matrices for the g 

groups. 

As before this assumption might be expected to be reasonable for 

size-related features. 

5.2.5 Proportional diagonal covariance matrices. 

We assume that the covariance matrix for class i is given by d 1 8 where 0 is 

diagonal. 

This assumption might be expected to be reasonable for the size-related 

features if the correlations between the features are small. 

5.2.6 Common principal components. 

It is assumed that the covariance matrix for class i can be expressed as 

-. 	BABT 
	

(5.1) 

where A 1  is diagonal and B is an orthogonal matrix (Flury, 1984). This 

assumption will be reasonable if there are common orthogonal linear 

combinations of the features which explain the variation in the feature values. 

This assumption does not seem likely to be true but the method reduces the 

computational time required to allocate a chromosome for the number of 

features considered later and also reduces the number of parameters. 
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5.3 Estimators for Estimative discrimination. 

In the following, n 1  denotes the number of observations for the ith class and 

S i is the usual unbiased estimate of the covariance matrix for class i given by 

- i)(,j 
- 	- 1)_i 	 (5.2) 

where the summation is from j = 1 to j = n 1  , x ij  is a vector of observed values 

and X,  is the mean of the observed vectors for class i 

5.3.1 A common covariance matrix for the classes in a group (CC). 

The common covariance matrix for the classes in a group may be estimated 

from the training data set by the usual unbiased estimate 

= Vk 1  EI(nkl - l)kI' 	 (5.3) 

where kI refers to the Ith class within the kth group and Vk  is the number of 

degrees of freedom given by EI(nkl - 1). 

5.3.2 Proportional covariance matrices (P). 

Eriksen (1987) has proved that unique maximum-likelihood estimates of 

proportional covariance matrices may be obtained by iterating till convergence 

between the following two equations with all the &j initially set equal to one 

and c 1  constrained equal to one 

= E(n 1  - 1)S 1 ((n0 - c)} 1 
	

(5.4) 

and 

IS = tr( 1 S,) (p)1 	 (i=2.....24) , 	 (5.5) 
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Where 

n o  = Z i n i  

tr represents the trace of a matrix and p is the number of features. 

5.3.3 Proportional covariance matrices within each of g groups (GP). 

The estimator defined in 5.3.2 may be used within each of the g groups. 

5.3.4 Proportional common covariance matrices (PG). 

(n 1  - 1), S j  and c i  in (5.4) and (5.5) are replaced by Vk, qk and C k 

respectively. 

5.3.5 Proportional diagonal covariance matrices (PD). 

The log likelihood for the S i  , excluding constant terms, is given by 

-4Z 1(n - 1)( Inidel + tr(SjO)d1} . 	 (5.6) 

Differentiating this with respect to d 1  gives 

- 1)(pdi1 - tr(S 1 0 1 )d 1 2) 
	 (5.7) 

and equating to zero gives 

d i  = tr(S,e) p1 . 	 ( 5.8) 

Differentiating (5.6) with respect to 0m  the mth diagonal element of e , gives 

-(n0 - C)0 m 1 + EiEj(Xijm - im)2 (()M2 -1 . 	 ( 5.9) 
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Equating to zero gives 

eM = E1Ej(Xijm - im ) 2  ((n 0  - c)d1Y1 . 	 (5.10) 

Hence, 

= 	(n - 1)diag(S)((n0 - c)d1}1 . 	 (5.11) 

As for the estimation of proportional non-diagonal covariance matrices, the 

equations may be solved iteratively with all the d i  , (i=2 .....c), initially set equal 

to one and d1 constrained equal to one. 

5.3.6 Common principal components (E). 

Flury '(1984) suggests that maximum-likelihood estimates of B and the A i  

may be obtained by solving 

mT{Z i hl(X im  - Xjr)(XjmXjr)_1Sj}Br = 0 	(m,r = 1 .....p ; m r) 	(5.12) 

where B M  is the mth column of B and ?tim  is the mth diagonal element of A 

subject to the orthonormality conditions 

BTB = 
	

(5.13) 

and also to the conditions 

Xim = B mTS i B m  (i=1,...24, m=1 .....p) . 	 (5.14) 
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Algorithms to solve these equations are available (Flury and Constantine, 1985 

and Clarkson, 1988a and Clarkson, 1988b). 

5.4 Bayesian predictive densities. 

The Bayesian predictive approach to discrimination uses predictive densities 

derived from a prior distribution for the parameters and the data (Aitchison, 

Habbema and Kay, 1977). The predictive density for a class c i  is given by 

Ic1 , 8) p(OIz) dO 
	

(5.15) 

where p(xc , 8) is the probability density function of x for class i with 

parameter vector 0 and z is given data. The p(Ojz) is a posterior density 

function for 0 based on a prior distribution for the parameters and the data. In 

the following sub-sections we only consider the procedures resulting from the 

use of vague prior information about 0 for the conjugate prior distribution. 

5.4.1 A common covariance matrix for the classes in a group (BGC). 

Assuming a vague Normal-Wishart prior distribution for (kI,Ek)  (Aitchison 

and Dunsmore, 1975, page 21), the mean for the Ith class in the kth group and 

the covariance matrix for the kth group, the predictive density for the Ith class 

in the kth group is given by 

1 	 1 

CkpIRkI 2 { 1  + (X- - 	 - kl)} 2( 	 (5.16) 

where 

and 

1 
Ckp = r{(vk + 1)}.(2Pr{(vk - 	+ 1)] (5.17) 



NI = Vk(l + kI) 
	

(5.18) 

(Aitchison, Habbema and Kay, 1977). 

5.4.2 Proportional covariance matrices (BP). 

We re—define the proportional covariance matrix assumption so that the 

covariance matrix for class i is given by a j A , where E 1 a, = 1 . The predictive 

density obtained by Hawkins and Raath (1982) for the ith class using a vague 

Normal—Wishart prior distribution for (j)  is 

C[n,/{a(n + 1)}][(1 + (x - )TTl(x - 	 + 1))] 	, 	(5.19) 

where C is a constant, a i  is an estimate of the proportionality factor for the ith 

class, I is 

E (n 1  - 1)S 1 
  a j - 
	

(5.20) 

and r = n o  - c + 1. Here, a, appears as a parameter to be estimated because 

-. 	for the exchangeable Dirichlet prior distribution with parameter a for the set 

{a} used by Hawkins and Raath (1982) , i.e., 

Za=1 
f(a1,a2.....ak) ° 
	

(5.21) 
0, otherwise 

it may not in general be integrated out. 



5.5 The number of calculations required to allocate one new object 
and the number of parameters in the predicted density, for each 

procedure. 

The number of calculations required to allocate one new object, when the 

discriminant scores are calculated as described in sub-sections 5.5.1 and 5.5.2 

is given to indicate the likely c.p.u. time required compared with the use of an 

estimated common covariance matrix (C), estimated unrelated non-diagonal (U) 

and diagonal (LID) covariance matrices and a common (BC) and unrelated 

covariance matrices (BU) in the Bayesian predictive approach. As mentioned in 

chapter 2, it is assumed that the cost of misallocating a class i chromosome to 

class i (i i) is the same for all i and i 

5.5.1 Estimative procedures. 

For the Estimative procedures, except C, the discriminant score to be 

calculated for each class is taken to be 

- In 	- ( - )T_1(x - ) + 21n(P) 	 (5.22) 

where E 1  represents any of the estimators of the covariance matrix for class i 

discussed above and P i  is the prior probability for class i . For procedure C the 

discriminant score to be calculated for each class is taken to be 

xT1 - 	 + In(P) 	 (5.23) 
j 	 Xi 

where 2 is the usual unbiased estimate of a common covariance matrix for all 

classes given by 

	

= E(n - 1)S 1 (n 0  - c1 . 	 ( 5.24) 

These discriminant functions are derived from the formulae for the estimated 

posterior probabilities for each class by taking natural logs and omitting terms 
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which are constant for all classes. 

For procedures U, GC, P. GP and PG each discriminant score can be 

calculated more quickly if •' is expressed in terms of its Cholesky 

decomposition. Expansion of the quadratic form for procedures GC, P. GP, PG, 

PD and E also results in quicker computation of the set of discriminant scores 

for the chromosome data for the numbers of features considered in section 

5.6 . This is because of the equivalence of some of the resulting quadratic 

forms and also because parts of the expansion do not depend on the data for 

the new object and may therefore be stored. The first term in the expansion of 

the quadratic form for procedure E is calculated by working out 

w  = x  

and storing this vector with each element squared. 

5.5.2 Bayesian predictive procedures 

The Bayesian predictive formulae for BC and BU are similar to that for BGC 

with 
'1
k k andreplaced by v = E(n - 1) , and or v = (n, - 1) , S i and 

x. respectively and nkl replaced by n 1  . For procedures BU and BGC a 

discriminant score for each class can be calculated by multiplying the 

predictive density by P 1  . For procedures BC and BP a score may be calculated 

for each object by multiplying the predictive density by P 1  and taking the 

21(n 0  - c + 1) power. Again, the number of calculations for the set of 

discriminant scores for each procedure may be reduced by use of the Cholesky 

decomposition and, for the chromosome data for the number of features 

considered below, by expansion of the quadratic form for procedures BC, BGC 

and BP. 

5.5.3 Summary of number of calculations required to allocate one new object 
and the number of parameters in the predicted density, for each procedure. 

Table 5.1 summarises the number of multiplications, power operations, 

divisions and additions and subtractions required to allocate one new object for 

each of the thirteen procedures described above when the sets of discriminant 

scores are calculated as described in the previous sub-sections. It is assumed 

in Table 5.1 that the number of additions required to evaluate 

62 



Table 5.1 

Numbers of calculations to allocate one object when the sets of 
discriminant scores are calculated as described in sub-sections 

5.5.1 and 5.5.2 
( groups, C classes and 2  features) 

Multiplications, power operations and divisions. 

Procedure Multiplications 	Power operations 	Divisions 

C cp 	 - 	 - 

BC p(p+3+2c)+c 	 - 	 C 

U cp(p+3) 	 - 	 - 

BU cp(p+3)+c 	 c 	 - 

UD 2cp 	 - 	 - 

GC p(gp+(3g+2c)) 	 - 	 - 

BGC p[gp-I-(3g+2c)}+2c 	C 	 - 

P p(p+3+2C)+C-1 	 - 	 - 

BP p(p+3+2C)+c 	 - 	 c 

GP p(gp+(3g+2c))+C-g 	- 	 - 

PG p(p+3+2c)+g-1 	 - 	 - 

PD (c4-2)p+c-1 	 - 	 - 

E p(p+c+1) 	 - 	 cp 

[*] 



Table 5.1 (continued) 

Number of calculations to allocate one object when the sets of 
discriminant scores are calculated as described in sub-sections 

5.5.1 and 5.5.2 
( groups, c classes and 2  features) 

Procedure 	Additions and subtractions 

	

C 	 cp+c 

	

BC 	 p(p+3+2c)+2c 

	

U 	 cp(p+3)+cp+c 

	

BU 	 cp(p+3)+c+cp 

UD 2cp+c 

GC p(gp+(3g+2c)}+2c 

BGC p[gp+(3g+2c)}+2c 

P 4p(p+3+2c)+2c 

BP p(p+3+2c)+2c 

GP pCgp+(3g+2c)1+2c 

PG p(p+3+2c)+2c 

	

PD 	 (c+l)p+2c 

	

E 	 p(p+2c)+2c 



ZTLLT Z  

where L is a lower-triangular matrix, is equal to the number of multiplications. 

Table 5.2 summarises the number of parameters in the predicted density for 

each of the thirteen procedures. 

5.6 Application of the thirteen procedures to five human 

chromosome data sets. 

5.6.1 Five data sets 

The thirteen procedures described above were applied to the Edinburgh, 

Copenhagen , Philadelphia and two special Copenhagen data sets described in 

chapter 3. For all the data sets the normalisation of features for between-cell 

variation was that currently used and described in chapter 3. 

5.6.2 Estimation of percentage error-rates. 

Two methods of estimating percentage error-rates were used (McLachlan, 

1986). The first, subsequently referred to as the leave-one-out method, leaves 

out all the chromosomes in a cell when they are allocated from the parameter 

estimates or the data used to derive the predictive densities. The 

leave-one-out method provides an almost unbiased estimate of the percentage 

error-rate. The second, subsequently referred to as the test-set method, splits 

the data into two sets and uses one set to estimate parameters or derive 

predictive densities and the other set to estimate percentage error-rates. 

The leave-one-out method was chosen instead of the bootstrap method 

despite the fact that it may have a larger variance (Efron, 1979) because of the 

heavy computational burden of the latter method for such large data sets. The 

bootstrap method operates by taking random samples of the same size as the 

original training data from the training data with replacement. For each sample, 

all the observations in a class are allocated using the discriminant functions 

derived from all the observations in the sample. This gives the so-called 

apparent error rate for the class for the sample. The bootstrap estimate of the 

bias in this estimate of error for the sample is then given by 
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Table 5.2 

Summary of number of parameters in predicted densities for 
each procedure. 

( groups, c classes and p features) 

PROCEDURE PARAMETERS 

C cp+p(p+1) 

BC cp+p(p+l) 

U cp+cp(p+l) 

BU cp+cp(p+l) 

UD 2cp 

GC cp+gp(p+l) 

BGC cp+gp(p+l) 

P cp-Fp(p+l)+C-1 

BP cp+p(p+l)+C-1 

GP cp+gp(p+1)+c-g 

PG cp+p(p1)+g-1 

PD cp+p+c-1 

E 	 cp+p2+cp 

M. 



ei - App 1 	 (5.25) 

Where e i  is the error rate estimate for the original data for class i 	using the 

discriminant functions 	derived 	from 	the 	bootstrap 	sample and 	App 1 	is the 

apparent error 	rate for 	class 	i 	. Averaging the 	estimated bias 	over 	all the 

bootstrap samples 	then 	gives the 	bootstrap 	estimate 	of the 	bias 	for the 

apparent error 	rate for the 	original 	data. 	It 	is thought that the 	number of 

bootstrap samples for a satisfactory estimate of bias should be at least 100 

(Jam, Dubes and Chen, 1987). 

5.6.3 Leave-one-out formulae 

Leaving out object j from the ith class the estimate of the covariance matrix 

becomes 

(n1 - 2) -1  •n - 1)S1 - 	- 	
- )T( 	- 1)i} 	 (5.26) 

and has inverse 

(n, - 2) (A 1  + A11- 	- ))TAl ((n - 1 )n 1 1  - d 2  1(n1 - 1)-')-'1(5.27) 

where A 1  = (n 1  - 1)S i  and d 2ji is the estimated Mahalanobis distance between xij  

and Xi . The determinant becomes 

(n 1  - 2)(n1 - 1)PISI{1 - d21n1(n, _1)_2} . 	 ( 5.28) 

The corresponding results for grouped classes when the ith class is in the kth 

group are 

(Vk - 1)(vk - 	- 	
- )T( - 1) 1 } 	 ( 5.29) 
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(Vk - 1)(Ak 1  + Ak (x1 - j)( 	- )TAk_ l {(n. - 1)n11 - d21vk1Y1] 	(5.30)-Xi 

where 

= EI(nkl - l)kI 

and the estimated Mahalanobis distance, d 2 , now uses Si 	instead of the S -1  

above and 

(Vk - 1)3vk'iSkj(1 - d21n1(n1 - 1)1vk1} 	 (5.31) 

These formulae were repeatedly used to update Si, 
	

, S1 , S, k and ISikl 

as the chromosomes in a cell were sequentially omitted. 

For LID, the determinant and inverse of diag(S) excluding the jth object 

were simply obtained by calculating the diagonal elements of (5.26) and then 

multiplying the elements and inverting each element respectively. 

5.6.4 Estimation of proportionality factor for procedure BP. 

Maximum-likelihood estimates of the "plug-in" parameters a 1  were used. 

The method suggested by Hawkins and Raath (1982) for estimating the a1 using 

the mode of the marginal posterior distribution of the a1 was tried for various 

values of a for their Dirichlet prior but convergence could not be achieved. 

5.6.5 Convergence criterion for procedures P. BP, GP, PG and PD. 

The convergence criterion for estimating the proportionality factors for 

these procedures was that the absolute sum of the differences for two 

iterations was less than 0.0001 times the number of parameters + 1 being. 

estimated. 

And 



5.6.6 Feature subset selection. 

For the Edinburgh, Copenhagen and Philadelphia data sets subsets of size 3, 

6, 9, 12, 16, 20 and 24 were chosen from the full number of 28 or 27 available 

features containing no exact linear dependencies. For the Edinburgh data set, 

these subsets were chosen by the forward-selection procedure MSEPCOR 

described in (Piper, 1987) and a forward selection version of a method 

described by Fatti and Hawkins (1986) whilst for the Philadelphia and 

Copenhagen data sets only the former method was used because of its 

generally superior performance. The version of the method described by Fatti 

and Hawkins (1986) adopted was that which uses Fisher's approach to 

combining independent test statistics for the three test statistics derived by 

them for each feature. Features were selected using the complete data sets. 

The orders in which the features were chosen are given in Table 5.3 . The 

different orders in which the features were chosen reflects the different 

sources of the three data sets (Piper and Granum, 1989). 

All of the 11 features used in the WDD classifier described by Lundsteen, 

Gerdes and Maahr (1986) and specified in chapter 3 were used for the two 

special Copenhagen data sets. 

5.6.7 Prior probabilities and overall percentage error-rate. 

Prior probabilities of 2/46 for chromosome classes 1-22 and 1/46 for 

chromosome classes 23 and 24 were used for the Edinburgh data set which 

contains only cells from males. The prior probabilities for classes 23 and 24 

were changed to 3/92 and 1/92 for all the other data sets which had cells from 

both sexes. -. 

The overall estimated percentage error-rate was taken as the weighted 

average of the individual class percentage error-rates using the specified prior 

probabilities as the weights. No re-allocation of chromosomes to satisfy a 

normal karyotype as described in chapter 2 was performed. 

5.7 Results. 

To show the trade-off between the computational time to allocate 46 

chromosomes in a cell and percentage error-rate, estimated percentage 

error-rate was plotted against the square-root of the average of ten computer 

c.p.u. times obtained using the same operands (Figures 5.1-5.12). The 



Table 5.3 

Orders in which features were selected 	feature-selection 
procedures. 

(Fatti-Hawkins procedure in brackets) 

Data sets 

Edinburgh Copenhagen Philadelphia 

Order 
1 2( 	2) 2 7 

2 12(27) 14 12 

3 22( 	4) 5 11 

4 11( 	7) 22 18 

5 14(12) 13 5 

6 4(22) 11 14 

7 101 	1) 12 10 

8 13(25) 18 20 

9 7(14) 20 8 

10 18(10) 26 22 

11 20(13) 25 25 

12 23(26) 24 21 

13 21( 	8) 21 23 

14 24( 	6) 7 3 

15 26(11) 16 24 

16 25(23) 23 26 

17 6(21) 6 17 

18 19( 	5) 10 13 

19 5(15) 17 6 

20 17(19) 19 16 

21 16( 	9) 3 9 

22 3(24) 9 19 

23 9(17) 15 15 

24 8( 	3) 27 27 

25 15(20) 4 28 

26 27(18) 8 4 

27 28(16) 28 2 

28 1(28) - - 
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Figure 5. 3 
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Figure 5. 4 
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Figure 5. 7 
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Figure 5. 8 
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Figure 5D10 
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discriminant scores were calculated as described in sub-sections 5.5.1 and 

5.5.2 . The programs were written in Fortran 77 using double-precision 

arithmetic and executed on Edinburgh University's NAS computer. This 

computer is considerably more powerful than those commonly used for 

automated karyotyping but it shows the likely proportional savings in time. The 

square-root of average c.p.u. time was used because the number of 

calculations is approximately proportional to the square of the number of 

features except for procedures C, UD and PD. The results for the Estimative 

and Bayesian predictive procedures were in general so similar, except for 

procedures P and BP, for the leave-one-out method that they are not plotted 

on the figures but are instead given in Tables 5.4-5.7 

The figures for the leave-one-out results show that procedures C, U, GC 

and GP are candidate procedures in the trade-off of estimated percentage 

error-rate against computational time for the Copenhagen data set. A candidate 

procedure is defined as one for which no other procedure which has the same 

or a quicker allocation time has a smaller estimated percentage error-rate. 

Procedures C, GC and GP are candidates for the Edinburgh and Philadelphia 

data sets and procedures C, U, LID, GC and GP are candidates for the special 

Copenhagen data sets. The figures also show that the estimated percentage 

error-rates for procedure C are considerably better than those reported earlier 

for the test set method for the Edinburgh and Copenhagen data sets (Granum, 

1982 and Piper, 1987). Tables 5.4-5.7 show that there is, in general, very little 

difference between the estimated percentage error-rates for the Estimative and 

Bayesian procedures, excluding P and BP, for the sample sizes considered here. 

The figures for the test-set method show that procedures C, BC, U, UD, GC, 

BGC, P. GP, PG and E are all candidates in the trade-off of estimated 

percentage error-rate against computational time for at least one of the five 

data sets. 

Also of interest is the comparison between test-set and leave-one-out 

results. The leave-one-out percentage error-rates are in general lower and it 

may be conjectured that this is because of the more adequate size of the data 

sets for the estimation of parameters or derivation of predictive densities. It is 

also apparent that procedures C and PD give markedly lower percentage 

error-rates for the leave-one-out method. The reason for this is not clear but 

it is possible that the test set results for these procedures are more influenced 
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Table 5.4 

Comparison of Bayesian and Estimative leave-one-out percentage 

error-rates for the Edinburgh data set. 

(Percentage error-rate for MSEPCOR feature selection followed 
by percentage error-rate for Fatti-Hawkins feature selection.) 

Number Procedure 

of 
features 

c BC 	 cc p_c_c 

3 36.3,41.9 36.3,41.9 	34.8,39.6 34.8,39.6 

6 24.5,28.7 24.5,28.8 	21.8,25.7 21.8,25.7 

9 18.2,23.7 18.2,23.7 	16.1,20,4 16.1,20.4 

12 16.7,19.8 16.7,19.8 	14.7,16.9 14.6,16.9 

16 16.2,16.5 16.2,16.4 	14.2,14.0 14.1,14.0 

20 15.2,15.7 15.2,15.7 	13.2,13.4 13.2,13.3 

24 14.6,14.9 14.6,14.9 	13.0,13.1 13.0,13.2 

28 14.5 14.4 	 12.8 12.8 

Number Procedure 

of 
features 

u  BU 

3 33.3,40.7 33.4,40.6 

6 20.4,24.0 20.4,23.8 

9 15.4,19.6 15.4,19.6 

12 14.8,16.8 15.0,16.6 

16 14.2,14.4 14.2,14.4 

20 13.8,14.5 13.4,14.3 

24 13.7,14.1 13.4,13.5 

28 14.4 13.7 
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Table 5.5 

Comparison of Bayesian and Estimative leave-one-out percentage 
error-rates for the Copenhagen data set. 

Number 	 Procedure 

of 
features 

c  BC GC BGC 

3 25.7 25.7 23.8 23.8 

6 11.2 11.2 9.9 9.9 

9 8.3 8.3 7.0 7.0 

12 7.0 7.0 5.9 5.9 

16 6.3 6.3 5.0 5.0 

20 5.9 5.9 4.8 4.8 

24 5.5 5.5 4.4 4.4 

27 5.4 5.4 4.4 4.4 

Number Procedure 

of 
features 

U BU 

3 24.1 24.0 

6 9.7- 9.7 

9 6.7 6.7 

12 5.1 5.1 

16 4.7 4.7 

20 4.5 4.5 

24 4.0 4.0 

27 3.9 4.0 



Table 5.6 

Comparison of Bayesian and Estimative leave--!ut percentage 
error-rates for the Philadelphia data set. 

Number 	 Procedure 

of 
features 

C 

3 	53.3 

6 	34.7 

9 	31.0 

12 	27.7 

16 	23.2 

20 	20.7 

24 	20.2 

27 	19.5 

Number 
of 
features 

BC GC 

53.4 52.7 

34.7 33.3 

31.0 28.3 

27.7 25.9 

21.7 20.9 

20.0 18.9 

19.8 18.8 

19.2 17.6 

Procedure  

BGC 

52.7 

33.3 

28.4 

20.9 

18.9 

18.7 

17.5 

U 
	 BU 

3 
	

51.6 
	

51.5 

6 	-32.0 
	

32.0 

9 
	

28.2 
	

28.1 

12 
	

25.2 
	

25.3 

16 
	

21.8 
	

21.7 

20 
	

20.3 
	

20.0 

24 
	

19.8 
	

19.8 

27 
	

19.4 
	

19.2 



Table 5.7 

Comparison of Bayesian and Estimative leave -one-23a percentage 

error-rates for the Copenhagen special data sets. 

Data 	 Procedure 

set 

Pc 	 GC 	 P_c_c 

Amniotic 	8.9 	9.1 	 7.8 	7.8 

fluid 

Peripheral 11.2 	11.2 	 7.9 	7.9 

blood 

Data 	 Procedure 

set 

U 	BU 

Amniotic 	6.1 	6.1 
fluid 

Peripheral 7.1 	6.7 
blood 
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by extreme observations than for the other procedures. 

5.8 Discussion. 

The results in this chapter show that some of the methods of combining 

class information on variability considered in this chapter give possible choices 

in the trade-off of estimated percentage error-rate versus allocation time for 

46 chromosomes in a cell. It is noticeable that on some occasions these 

methods even give lower estimated percentage error-rates than the use of 

unrelated covariance matrices for each class. It is conjectured that this is due 

to the bias in the predicted densities being outweighed by the reduction in 

sampling variation. This advantage may be expected to disappear as the 

training set size increases unless any of the assumptions about the 

relationships between the covariance matrices are actually true. 

A subset of the results given here is presented in Kirby et al (accepted for 

publication). 



Chapter 6 
Covariance selection models for the 

automated allocation of human chromosomes. 

6.1 Introduction. 

In the previous chapter six methods of combining class information on 

variability in multivariate Normal discrimination were proposed for the 

automated allocation of human chromosomes. These reduced the 

computational time required to allocate one chromosome for the numbers of 

features considered and also reduced the number of parameters, compared 

with the assumption of unrelated covariance matrices for each class. Another 

way the number of computations required to allocate one chromosome may be 

reduced and the number of parameters will be reduced for multivariate Normal 

data is to model the covariance structure for each class using covariance 

selection models. These approaches may also be used together by combining 

class information on variability and then modelling the resulting covariance 

structure. This method of modelling the covariance structure for each class or 

group may reduce the number of calculations required for the quadratic form in 

the discriminant score (5.22). The idea of using covariance selection models to 

reduce the number of parameters to be estimated has previously been 

considered for the analysis of repeated measurements by Kenward (1987) who 

considers a restricted class of covariance selection models. 

In this chapter a brief outline of these covariance selection models is given. 

This is followed by a consideration of the number of calculations required to 

allocate one object and the number of parameters to be estimated. The method 

is first used to model the covariance structure for each class for the five data 

sets used in chapter 5. It is then used to model the covariance structure for 

the seven Denver groups for each data set. 

6.2 Covariance selection models 

Covariance selection models were introduced by Dempster (1972) as a 

method of giving a more parsimonious description of the covariance structure 

of a multivariate Normal population than the usual unbiased or 

maximum-likelihood estimates of a covariance matrix. 
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Dempster (1972) proposed that the number of parameters to be estimated 

for a positive definite covariance matrix, 2 p(p + 1) where p is the number of 

features, could be reduced by setting certain elements of the inverse of the 

covariance matrix equal to zero. This can be done on the basis of a priori 

information or data-based tests. The interpretation of setting a particular 

element of the inverse, & , referred to as a concentration equal to zero is that 

features r and s are conditionally independent given fixed values of the 

remaining features. This is because setting 
Cyrs equal to zero is equivalent to 

setting Prs , the corresponding element of the inverse of the correlation matrix, 

equal to zero and pS  is a multiple of the partial correlation between features r 

and s. Dempster (1972) showed the existence of a unique estimate 2 CS 
 of E for 

any set of index pairs (r,$) (1 r < s p) for which 
rs = 0 . He further 

showed that this estimate is maximum likelihood. 

In the absence of a priori information, the elements 
ars to be set equal to 

zero can be determined by the stepwise selection procedures analogous to 

those used for the selection of regressors in multiple regression. The change 

in twice the log likelihood for the addition or deletion of a concentration 

parameter is approximately a x2 variable on one degree of freedom under the 

null hypothesis that the concentration is equal to zero. Improved likelihood 

ratio statistics have been derived by Porteous (1985). 

Two algorithms to obtain the estimates .L given a set of concentrations 

to be set equal to zero, have been derived by Speed and Kiiveri (1986). A 

special case of the first algorithm has been programmed by Wermuth and 

Scheidt (1977) whilst the second algorithm is analogous to iterative 

proportional scaling for contingency tables. 

A fitted model may be conveniently and uniquely represented by an 

interaction graph. This is an undirected graph whose vertices correspond to 

features and whose edges represent conditional dependencies. Thus no edge is 

drawn between two vertices if the corresponding features are conditionally 

independent. An example is given in Figure 6.1 which shows the interaction 

graph corresponding to the model fitted for chromosome class 1 in Table 6.7 

obtained by setting concentrations equal to zero if the significance level 

exceeds 0.0001 in the likelihood ratio test of zero concentration versus the 

saturated model. The features listed as numbers 1 to 11 in chapter 3 have been 

coded as letters A to K in this graph. 
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Figure 6. 1. 

Interaction graph for covariance selection 

model for chromosome class I in Table 6.7 

obtained by setting concentrations equal to 

zero if significance level exceeds 0.0001 

in test of zero concentration versus 

saturated model 

Mwla 
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.6.3 Number of calculations required to allocate one new object and 
the number of parameters to be estimated. 

6.3.1 An unrelated covariance matrix for each class. 

Defining v 1  as the number of concentrations to be set equal to zero for 

class i then we must have v 1  ;5 16p(p - 1). The number of multiplications 

required to allocate one new object using the discriminant scores defined by 

(5.22), with 2 i  representing the estimator of the covariance selection model for 

class i , is 

+ 1) - v) . 	 (6.1) 

The number of additions and subtractions is 

E 1 (p(p + 1) - v} + cp + c 	 (6.2) 

for c classes. These formulae assume that only the the non-zero elements of 

the lower or upper triangle of.each estimated inverse covariance matrix, with 

off-diagonal elements multiplied by 2 , are stored and used in the computation. 

For the number of multiplications to be less than for the calculation of 

discriminant scores for procedure U as defined in chapter 5 we require that 

E i2{ 12 	+ 1) - v 1 } < cp(p + 3) 	 (6.3) 

and for the number of additions and subtractions to be less we require 

E1(p(p + 1) - v 1) + cp + c <cp(p + 3) + cp + c . 	 (6.4) 

The reduction in the number of multiplications obtained by using the Cholesky 

decomposition of the inverse of the estimated covariance matrix for procedure 

U may not in general be used here. This means that the number of 

multiplications may be greater than for procedure U. 
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The total number of parameters to be estimated for c classes is 

cp + E,{p(p + 1) - v 1 } 

6.3.2 A common covariance matrix for the classes in each of g groups. 

The numbers of multiplications and additions and subtractions to allocate 

one object using the discriminant scores defined by (5.22), with 2 i  representing 

the estimator of the covariance selection model for the group containing the 

ith class, become 

Ek2(P(P + 1) - Vk} + cp 	 (6.5) 

and 

Ek(2P(P + 1) - Vk) + cp + 2c 	 (6.6) 

respectively. Here, '1k  is the number of concentrations to be set equal to zero 

from group k. These formulae again assume that only the non-zero elements 

of the lower or upper triangle of each estimated estimated inverse, with 

off-diagonal elements multiplied by 2, are stored and used in the computation. 

They also assume that the quadratic form in the discriminant score (5.22) is 

expanded. 

The total number of parameters to be estimated for c classes in g groups is 

cp + EkC2P(P + 1) - Vk} 

6.4 Application to the five data sets used in chapter 5. 

6.4.1 Features used. 

For the Edinburgh, Copenhagen and Philadelphia data sets the first 24 

features given by the MSEPCOR feature selection procedure shown in Table 5.3 

were used. Only 24 features were used and not the full 28 or 27 containing no 

exact linear dependence because this was the maximum allowed by the 

program MIM used to fit the models and described further below. As seen in 
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chapter 5 the use of 24 features gives percentage error-rates close to those 

obtained with all 28 or 27 available features containing no exact linear 

dependence. The 11 features used in the WDD classifier described in chapter 3 

were used for the special Copenhagen data sets. The normalisation of features 

for between-cell variation was that currently used and described in chapter 3. 

6.4.2 Selection of concentrations to be set equal to zero. 

Initially the algorithm given by Wermuth and Scheidt (1977) for setting one 

concentration to zero was used iteratively to set a number of concentrations to 

zero in a backwards elimination procedure. However it was found on a number 

of occasions that this approach led to divergence of the parameter estimates 

before the convergence criterion was met. Consequently, to make use of 

existing software the interactive computer program MIM (Edwards, 1987) was 

used to fit the covariance selection models for each class or group. This 

program fits the broader class of hierarchical interaction models using an 

iterative proportional scaling algorithm (Frydenberg and Edwards, 1989). 

Significance tests are based on the asymptotic likelihood ratio test or deviance. 

Because of the length of time taken to fit the models using this program 

concentrations were set to zero whenever the null hypothesis of zero 

concentration relative to the saturated model gave a significance level greater 

than a . This is a cruder procedure than the usual stepwise backwards 

elimination procedure but the results still illustrate the possible value of 

covariance selection models. 

6.4.3 Fitted models. 

Models were fitted to the first part of each data set, using the same 

random split by cell as described in chapter 3, so that the percentage 

error-rates could be estimated using the second part of each data set. 

6.4.4 Estimated percentage error-rates. 

Estimated percentage error-rates were obtained by weighting the estimated 

percentage error-rates for each class by the prior probabilities for each class. 

For the Edinburgh data set, the prior probabilities were those for all cells from 

males whilst for the remaining data sets the prior probabilities were those for 

equal numbers of male and female cells. As in chapters 4 and 5 no 

re-arrangement of allocations to achieve a normal karyotype was done. 
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6.5 Results. 

6.5.1 An unrelated covariance matrix for each class. 

Two sets of covariance selection models were fitted to see if a set of 

models could be found which gave a candidate procedure for the trade-oft of 

estimated percentage error-rate and the c.p.u. time required to allocate 46 

chromosomes in a cell. The discriminant scores were calculated as described 

in sub-sections 6.3.1 and 6.3.2 . As in chapter 5, the c.p.u. times were the 

average of ten times for the same operands using programs written in Fortran 

77 with double-precision arithmetic executed on Edinburgh University's NAS 

computer. The sets of covariance selection models were obtained by using 

significance levels of 0.01 and 0.0001 to decide which concentrations to set 

equal to zero. Such extreme significance levels were chosen because of the 

good performance of procedure UD in chapter 5. Summaries of model fits are 

given in Tables 6.1, 6.3, 6.5, 6.7 and 6.9. Estimated percentage error-rates for 

the two sets of covariance selection models and procedures UD and U are 

given in Tables 6.2, 6.4, 6.6, 6.8 and 6.10. Procedures UD and U may be viewed 

as two extreme covariance selection models corresponding to setting 

concentrations equal to zero if a significance level of 0 or 1 respectively is 

exceeded for the likelihood ratio test of zero concentration versus the saturated 

model. The average number of concentrations set equal to zero out of the 

maximum possible 276 and 55 for the models in Tables 6.1, 6.3, 6.5, 6.7 and 6.9 

which were obtained from using a significance level of 0.01 above which 

concentrations are set equal to zero, is 222, 214, 219, 29 and 31 respectively to 

the nearest integer. The average number of concentrations set equal to zero 

for the second set of models in these tables, which were obtained from using a 

significance level of 0.0001 above which concentrations are set equal to zero, 

is 256, 247, 251, 42 and 39 respectively to the nearest integer. 

6.5.2 A common covariance matrix for the classes in each of g groups. 

Because of the success of procedure GC in chapter 5 a covariance selection 

model was fitted to the common covariance model for the classes in each 

Denver group. The same two significance levels to decide which concentrations 

to set equal to zero as used for modelling the covariance structure for each 

class were used here. Summaries of model fits are given in Tables 6.11, 6.13, 

6.15, 6.17 and 6.19. Estimated percentage error-rates are given in Tables 6.12, 

6.14, 6.16, 6.18 and 6.20. The estimated percentage error-rate for procedure GC 
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Table 

Summaries of covariance selection model fits for each chromosome 
class. 

(Concentrations set equal to zero if significance level exceeds 
0.01 (set 1) or 0.0001 (set 2) in likelihood ratio test of zero 

concentration versus saturated model.) 

Edinburgh data set. 

Set 1  Set 2 

Class deviance df deviance df 

1 606.9 236 900.2 261 

2 621.4 250 795.1 269 

3 543.5 225 959.1 258 

4 525.3 240 751.2 261 

5 551.2 222 940.6 259 

6 573.1 213 979.5 249 

7 640.3 218 1057.8 261 

8 683.0 215 1111.2 249 

9 878.6 230 1258.1 257 

10 733.0 220 1076.8 257 

11 744.9 219 1390.0 255 

12 735.5 203 1298.5 254 

13 791.7 218 1279.5 249 

14 733.3 232 1007.8 253 

15 800.7 216 1311.0 253 

16 682.4 211 1400.4 251 

17 680.3 223 1242.6 252 

18 649.9 211 1164.3 250 

19 865.6 232 1433.8 255 

20 682.1 224 1317.6 259 

21 667.0 213 1692.1 254 

22 691.2 190 1546.2 243 

23 672.3 242 808.8 267 

24 853.3 232 1092.2 260 

M. 



Table 6.2 

Covariance selection models for each chromosome class. 

Edinburgh data set. 

Size of test 	Estimated percentage error-rate 

1 
	

17.1 

0.01 	 15.6 

0.0001 	 15.6 

0 
	

16.5 
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Table 6.3 

Summaries of covariance selection model fits for each chromosome 
class. 

(Concentrations set equal to zero if significance level exceeds 
0.01 (set 1) or 0.0001 (set 2) in likelihood ratio test of zero 

concentration versus saturated model.) 

Copenhagen data set. 

Set 1  Set  2 
Class deviance df deviance df 

1 642.5 219 827.1 247 

2 566.5 231 846.1 256 

3 627.6 233 1001.5 257 
4 535.4 214 917.1 254 

5 581.8 218 1042.7 254 

6 652.0 209 1093.9 247 

7 614.0 220 924.0 249 

8 712.9 215 1281.6 257 

9 625.5 221 1042.8 249 

10 634.8 219 919.3 248 

11 737.7 218 1432.8 248 

12 593.2 207 843.0 232 

13 823.5 200 1477.8 240 

14 763.0 218 1243.2 248 

15 683.7 205 1128.6 240 

16 558.6 213 1028.5 248 

17 1041.7 219 1402.2 246 

18 686.2 196 1189.9 234 

19 848.8 211 1586.0 242 

20 730.3 216 1208.1 239 

21 970.0 199 1234.4 244 

22 985.3 217 1413.9 243 

23 649.5 218 996.6 249 

24 591.4 208 874.3 255 



Table 6.4 

Covariance selection models for each chromosome class. 

Copenhagen data set. 

Size of test 	Estimated percentage error-rate 

1 	 5.3 

0.01 	 5.0 

0.0001 	 5.0 

0 
	

6.2 



Table 6.5 

Summaries of covariance selection model fits for each chromosome 
class. 

(Concentrations set equal to zero if significance level exceeds 
0.01 (set 1) or 0.0001 (set 2) in likelihood ratio test of zero 

concentration versus saturated model.) 

Philadelphia data set. 

Set I  Set  2 

Class deviance df deviance df 

1 559.5 225 722.6 248 

2 685.0 221 967.6 253 

3 520.2 234 796.1 256 

4 664.7 231 990.5 256 

5 674.3 229 1043.7 254 

6 803.9 221 1185.9 255 

7 640.4 225 976.9 252 

8 698.0 210 1225.6 248 

9 697.7 211 1231.0 253 

10 677.6 223 1055.5 255 

11 680.4 202 1029.6 241 

12 998.2 228 1342.6 252 

13 809.9 211 1336.2 248 

14 638.1 206 1426.1 249 

15 720.9 221 1089.0 247 

16 709.1 203 1193.5 246 

17 832.6 224 1282.1 251 

18 800.9 214 1451.0 251 

19 837.7 212 1209.9 247 

20 764.8 223 1552.9 255 

21 812.0 210 1459.6 244 

22 806.1 229 1240.4 252 

23 812.7 228 971.7 250 

24 788.8 220 999.1 260 
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Table 6.6 

Covariance selection models for each chromosome class. 

Philadelphia data set. 

Size of test 	Estimated percentage error-rate 

1 	 21.4 

0.01 	 20.3 

0.0001 	 19.7 

0 
	

21.9 
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Table 6.7 

Summaries of covariance selection model fits for each chromosome 
class. 

(Concentrations set equal to zero if significance level exceeds 
0.01 (set 1) or 0.0001 (set 2) in likelihood ratio test of zero 

concentration versus saturated model.) 

Copenhagen special amniotic-fluid data set. 

Set 1 	 Set  2 

Class 	deviance 	df 	 deviance 	df 

1 178.5 41 292.1 49 

2 117.3 34 221.9 44 

3 116.3 33 404.1 45 

4 128.8 28 392.4 42 

5 56.2 25 425.6 40 

6 72.7 26 365.8 43 

7 76.3 27 178.8 39 

8 47.5 21 245.3 42 

9 225.5 31 473.2 42 

10 65.1 25 378.1 36 

11 206.3 34 502.1 46 

12 91.4 25 373.2 37 

13 141.1 30 306.2 39 

14 175.9 36 285.0 40 

15 140.7 30 332.3 38 

16 65.5 30 650.6 47 

17 46.5 20 324.9 40 

18 64.0 20 235.8 30 

19 89.0 33 349.7 43 

20 121.3 35 313.7 44 

21 89.3 31 374.3 47 

22 81.8 27 438.0 39 

23 62.2 24 291.3 39 

24 126.9 41 185.7 50 
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Table 6.8 

Covariance selection models for each chromosome class. 

Copenhagen special amniotic-fluid data set. 

Size of test 	Estimated percentage error-rate 

1 	 6.4 

0.01 	 6.4 

0.0001 	 7.5 

0 
	

8.1 
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Table 6.9 

Summaries of covariance selection model fits for each chromosome - 
class. 

(Concentrations set equal to zero if significance level exceeds 
0.01 (set 1) or 0.0001 (set 2) in likelihood ratio test of zero 

concentration versus saturated model.) 

Copenhagen special peripheral-blood data set. 

Set 1  Set  2 

Class deviance df deviance df 

1 165.0 40 204.7 47 

2 205.2 32 318.6 40 

3 237.6 34 419.5 44 

4 112.8 31 285.9 37 

5 84.4 26 164.9 33 

6 185.0 30 375.3 36 

7 93.5 28 162.9 35 

8 58.4 25 167.6 34 

9 107.9 30 252.5 36 

10 58.3 31 222.1 38 

11 144.6 27 430.5 34 

12 161.3 30 253.4 36 

13 154.6 29 297.1 36 

14 159.9 31 198.4 36 

15 188.5 31 387.6 38 

16 217.1 34 305.1 40 

17 204.0 30 302.9 35 

18 98.8 25 341.8 36 

19 107.5 30 262.0 43 

20 146.3 36 258.9 44 

21 70.4 24 259.4 35 

22 185.7 28 479.6 38 

23 118.1 33 200.9 44 

24 194.1 43 -. 	307.0 49 
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Table 6.10 

Covariance selection models for each chromosome class. 

Copenhagen special peripheral-blood data set. 

Size of test 	Estimated percentage error-rate 

1 	 7.9 

0.01 	 8.1 

0.0001 	 8.6 

0 	 11.3 
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Table 6. 11 

Summaries of covariance selection model fits for each Denver 
group. 

(Concentrations set equal to zero if significance level exceeds 
0.01 (set 1) or 0.0001 (set 2) in likelihood ratio test of zero 

concentration versus saturated model.) 

Edinburgh data set. 

Set 1  Set  2 

Group deviance df deviance df 

1 524.9 212 940.2 244 

2 625.1 222 886.1 248 

3 610.2 158 1298.7 202 

4 667.0 194 1122.8 227 

5 600.0 175 1315.8 218 

6 771.7 203 1338.1 245 

7 773.7 196 1256.6 232 
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Table 6.12 

Covariance selection models for each Denver group. 

Edinburgh data set. 

Size of test 	Estimated percentage error-rate 

1 
	

14.6 

0.01 	 15.0 

0.0001 	 14.6 
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Table 6.13 

Summaries of covariance selection model fits for each Denver 
group. 

(Concentrations set equal to zero if significance level exceeds 
0.01 (set 1) or 0.0001 (set 2) in likelihood ratio test of zero 

concentration versus saturated model.) 

Copenhagen data set. 

Set 1  Set  2 

Group deviance dE deviance df 

1 700.6 215 973.3 240 

2 649.6 201 995.5 241 

3 624.6 157 1213.4 189 

4 797.4 188 1429.5 221 

5 663.8 181 1118.8 210 

6 742.2 187 1535.7 225 

7 750.8 192 1570.5 238 
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Table 6.14 

Covariance selection models for each Denver group. 

Copenhagen data set. 

Size of test 	Estimated percentage error-rate 

1 
	 5.0 

0.01 	 4.7 

0.0001 	 5.1 
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Table 6.15 

Summaries of covariance selection model fits for each Denver 
group. 

(Concentrations set equal to zero if significance level exceeds 
0.01 (set 1) or 0.0001 (set 2) in likelihood ratio test of zero 

concentration versus saturated model.) 

Philadelphia data set. 

Set 1  Set  2 

Group deviance df deviance df 

1 688.9 203 1042.6 237 

2 829.1 209 1172.2 241 

3 1110.8 152 1753.6 189 

4 816.9 186 1371.3 220 

5 820.0 183 1618.1 220 

6 730.4 191 1355.2 234 

7 1026.2 202 1304.8 228 
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Table 6.16 

Covariance selection models for each Denver group. 

Philadelphia data set. 

Size of test 	Estimated percentage error-rate 

1 
	

17.2 

0.01 	 18.0 

0.0001 	 17.9 
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Table 6.17 

Summaries of covariance selection model fits for each Denver 
group. 

(Concentrations set equal to zero if significance level exceeds 
0.01 (set 1) or 2.0001 (set 2) in likelihood ratio test of zero 

concentration versus saturated model.) 

Copenhagen special amniotic-fluid data set. 

Set 1  Set 2 

Group deviance df deviance df 

1 56.8 27 146.9 38 

2 77.0 22 131.6 27 

3 143.4 16 247.5 24 

4 155.3 26 264.7 34 

5 43.1 18 213.7 29 

6 102.3 27 246.0 36 

7 163.1 23 189.6 29 
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Table 6. 18 

Covariance selection models for each Denver group. 

Copenhagen special amniotic-fluid data set. 

Size of test 	Estimated percentage error-rate 

1 
	

7.9 

0.01 	 8.2 

0.0001 	 8.3 
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Table 6.19 

Summaries of covariance selection model fits for each Denver 
group. 

(Concentrations set equal to zero if significance level exceeds 
0.01 (set 1) or 0.0001 (set 2) in likelihood ratio test of zero 

concentration versus saturated model.) 

Copenhagen special peripheral-blood data set. 

Set 1  Set  2 

Group deviance df deviance df 

1 161.7 27 456.3 35 

2 73.2 26 103.8 30 

3 85.6 17 179.0 28 

4 94.4 22 239.4 30 

5 55.8 25 293.5 33 

6 91.6 30 153.1 34 

7 91.4 18 335.0 28 
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Table 6.20 

Covariance selection models for each Denver group. 

Copenhagen spedial peripheral-blood data set. 

Size of test 	Estimated percentage error-rate 

1 
	

8.5 

0.01 	 11.2 

0.0001 	 10.8 
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is also given in these tables. Procedure GC may be viewed as an extreme 

covariance selection model corresponding to setting concentrations equal to 

zero if a significance level of 1 is exceeded for the likelihood ratio test of zero 

concentration versus the saturated model. The average number of 

concentrations set equal to zero out of the maximum possible 276 and 55 for 

the models in Tables 6.11, 6.13, 6.15, 6.17 and 6.19 , obtained from using a 

significance level of 0.01 above which concentrations are set equal to zero, is 

194, 189, 189, 23 and 24 respectively to the nearest integer. The average 

number of concentrations set equal to zero for the second set of models in 

these tables, obtained from using a significance level of 0.0001 above which 

concentrations are set equal to zero, is 231, 223, 224, 31 and 31 respectively to 

the nearest integer. 

6.6 Discussion. 

The results for a covariance selection model for each class for the 

Edinburgh, Copenhagen and Philadelphia data sets do not give candidate 

procedures in the trade-off of estimated percentage error-rate against c.p.u. 

time. These models are coded as CS1 (concentration set equal to zero when 

null hypothesis of zero concentration relative to the saturated model gives a 

significance level greater than 0.01) and CS2 (concentration set equal to zero 

when null hypothesis of zero concentration relative to the saturated model 

gives a significance level greater than 0.0001) on Figures 6.2 to 6.6. Both 

results for the Copenhagen special amniotic-fluid data set and the result for 

significance level 0.01 for the Copenhagen special peripheral-blood data set do, 

however, give candidate procedures for the trade-off of estimated percentage 

error-rate against c.p.u. time (Figures 6.5 and 6.6). 

For the covariance selection models for each Denver group for the 

Edinburgh and Copenhagen data sets both sets of models give candidate 

procedures for the trade-off of estimated percentage error-rate against C.P.U. 

time. These models are coded as CS3 (concentration set equal to zero when 

null hypothesis of zero concentration relative to the saturated model gives a 

significance level greater than 0.01) and CS4 (concentration set equal to zero 

when null hypothesis of zero concentration relative to the saturated model 

gives a significance level greater than 0.0001). For the Copenhagen special 

data sets only the set of models obtained from using a significance level of 
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Figure 6. 2 
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Figure 6.3 
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Ei9une 6.4 
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Figure 6. 6 
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0.0001 for the peripheral-blood data gives a candidate procedure. 

The comparison with procedures LID and U from chapter 5 shows that for 

the Edinburgh, Copenhagen and Philadelphia data sets the estimated percentage 

error-rates for the sets of covariance selection models CS1 and CS2 are 

smaller than those for these two procedures. For the special Copenhagen data 

sets only the set of covariance selection models CS1 for the amniotic-fluid 

data gives an estimated percentage error-rate as low as procedure U. Both 

sets of models for both these data sets give lower estimated percentage 

error-rates than procedure UD. 

The comparison with procedure GC shows that only for the Copenhagen 

data set does one of the set of covariance selection models give a lower 

estimated percentage error-rate than procedure GC. 
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Chapter 7 
Some two-stage procedures for the calculation of 

discriminant scores in the automated allocation of human 
chromosomes. 

7.1 Introduction 

In chapters 5 and 6 methods of combining class information on variability 

and covariance selection models were proposed as ways of reducing the 

numbers of parameters and the numbers of calculations necessary to allocate a 

chromosome for multivariate Normal discrimination. Another way that the 

numbers of calculations may be reduced is by the adoption of a multi-stage 

prcocedure for the allocation of a chromosome to a class. We may define a 

strictly increasing sequence E1,E2.....E m  of subsets of the p features with E 1  

non-empty and hence m p. Such a sequence is implied by an ordering of the 

features and a strictly increasing sequence defining the number of features 

included in each subset. The calculation of discriminant scores then proceeds 

in up to m stages, the features in E 1  being used at the Ith stage to eliminate 

some classes from further consideration. These are intended to be the least 

probable classes given the features observed and discriminant scores are not 

calculated for them at later stages. For each chromosome the procedure 

continues either until only one class remains or until the mth and final stage at 

which the chromosome is allocated to one of the remaining classes. In practice 

a two-stage procedure is likely to provide computational savings for little 

additional complexity. This can be seen from Figure 7.1 which is a confusion 

matrix for procedure U for the Edinburgh data set for the single feature 

normalised size using the leave-one-cell out error rate estimation method. This 

figure shows that using just this feature only a minority of the 23 other classes 

are likely to be confused with the true class of any particular chromosome. The 

theory of discriminant analysis (Anderson, 1984, page 225) indicates that if the 

distributions in each class are known such a two-stage procedure would be 

likely to be sub-optimal and would, therefore, lead to an increase in error rate. 

However, when the distributions are to be estimated, such a procedure need 

not lead to an increase in error rate and in this application the trade-off 

between error rate and allocation time is important rather than error rate alone. 
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Figure 1•1 

Confusion matrix for procedure U from chapter 5 for 
Edinburgh data set for single feature normalised size. 

(Columns are predicted classes 1-24, rows are actual classes 1-24.) 

(X signifies non-zero entry) 

XXXO 0 OX 000 00000000000000 
xxXXO 00000 00000000000000 
OX XXX X 0000 0 x 0 0 0 0 0 0 0 0 0 0 0 0 
OXXXXXXO 00 0 x 0 0 0 0 0 0 0 0 0 0 0 0 
00 XXXXX 000 0X000000000000 
0OxXXXxxOO 00000000000000 
000 OXXXXXO 0 x 0 0 0 0 0 0 0 0 0 0 0 0 
00000XXxXx 0 XXO 0000000000 
00000 XXXXX 0 XXO 0000000000 
00000 XXXXX 0 XXO 0 X0 0000000 

000000 XXXX 0 XXO 000 X0 00000 
0000000 XXX OXXO OxO 0000000 
0000000000 OX XXXX 00000000 
0000000000 0 XXXXXO X0 00000 
0000000000 00 XXXXXXO 00000 
0000000000 000 XXXXXO X 0000 
0000000000 000XXXXXXX0000 
0000000000 000 XXXXXO X 0000 
0000000000 00000000 XXXX 00 
0000000000 000000X0XX0X00 
0000000000 00000000 XXXX 00 

0000000000 00000000 x  x  00 
0000 XXXXXO 0X00X000000000 
0000000000 0000 X 0 X 0 XXXXO 0 
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7.2 Criteria for elimination of classes at first stage. 

At least two criteria for the elimination of candidate classes at the first 

stage for a given subset of features may be suggested. 

7.2.1 Estimated posterior probability. 

Classes may be eliminated from consideration if their estimated posterior 

probability is less than a given value y at the first stage, i.e., class i is 

eliminated if 

p(cIxk) < •1' 

where p(cjjxk) is the estimated posterior probability of class i given the 

observed vector of k features Xk and y is in (0,1). This criterion is a natural 

choice because the one-stage allocation of a chromosome is based on 

discriminant scores which allocate each chromosome to the class with the 

biggest estimated posterior probability. 

7.2.2 Ratio of estimated posterior probability to maximum estimated posterior 

probability. 

Classes are eliminated at the first stage if 

p(cIxk)Cmaxhp(chIxk)Y1 < 6 

for some value 6 in (0,1). This criterion may be useful if it is apparent from a 

subset of features that one candidate class is many times more probable than 

any of the remaining classes. 

7.3 Obtaining values for the criteria. 

For both criteria for a given set of features at the first stage values of y 

and 6 may be found by considering the estimated error-rate and c.p.u. time for 

allocation for a range of values. 

In theory a 'best' two-stage procedure for a given ordering of the features 
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may be found by searching over values of y  and 6 for different numbers of 

features at the first stage. In practice a search over a limited grid of values 

may be sufficient to give a reasonable combination of criterion value and 

number of features at the first stage. 

It should be noted that the first criterion allows the possibility that all 

classes may be eliminated after the first stage unless y c 1  , where c is the 

number of classes. This outcome may be dealt with by allocating the 

chromosome to a 'reject' class and leaving it to be allocated by the human 

operator or by calculating all the discriminant scores at the second stage to 

allocate the chromosome, or by relaxing the criterion in such cases. 

Re-arrangement of the allocations made by these two-stage procedures to 

achieve a normal complement within a cell is still possible by assigning a 

probability of zero to a class eliminated at the first stage. 

For a given subset of features increasing values of y  and 6 will lead to 

more classes being eliminated and hence to decreased allocation times. 

Generally it should be noted that the two criteria are equivalent for the 

two-class discrimination problem if y 	and 6 equals y(1 - y )_ 1 

7.4 Four procedures. 

As in chapter 5 we may consider combining class information on variability 

at the second stage when all available features are used, to reduce the number 

of parameters, calculation time and possibly the percentage error-rate. Such 

assumptions could also be made at the first stage but for a small number of 

features this might be expected to be unnecessary. Four procedures may be 

defined by using each criterion with procedure U at the first stage and 

procedure U or procedure GC at the second stage. 

7.5 Application to Edinburgh, Copenhagen and Philadelphia data sets. 

Two of the four procedures were applied to each of the three data sets 

using at the first stage features selected by the MSEPCOR method for the full 

data sets displayed in Table 5.3 . For the Edinburgh and Philadelphia data sets 

the two two-stage procedures used were those which estimate a common 

covariance matrix per Denver group at the second stage. For the Copenhagen 
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data set the two two-stage procedures used were those which estimate an 

unrelated covariance matrix for each class at the second stage. These choices 

were made because of the relative performance of procedures CC and U for 

these data sets reported in chapter 5. As in the previous two chapters the 

normalisation of the data to account for between-cell variation was that 

currently used and described in chapter 3. 

For both criteria, 1, 3, 6, 9, 12, 16, 20 and 24 features were used at the first 

stage for the following values of y: 0.01, 0.05, 0.10, 0.20, 0.30, 0.40 and 0.50 

The same values of S were used with the addition of the values 0.60, 0.70 and 

0.80. Values greater than 0.50 for '' correspond to using just the subset of 

features to make an allocation if the estimated posterior probability for one 

class is greater than or equal to y 

For the first criterion, if no candidate classes were left after the first stage 

the chromosome was considered wrongly allocated. 

Percentage error-rates were estimated by the leave-one-out method 

described in chapter 5. The percentage error-rates for each class were 

weighted by the prior probabilities for each class to give an overall estimated 

percentage error-rate. As in chapters 4, 5 and 6 prior probabilities 

corresponding to all cells from males were used for the Edinburgh data set and 

prior probabilities corresponding to equal numbers of male and female cells 

were used for the other two data sets. Also as in chapters 4, 5 and 6 no 

rearrangement of the allocations to satisfy a normal karyotype was done. 

7.6 Results. 

Estimated percentage error-rates were tabulated against the expected c.p.u. 

time required to allocate 46 chromosomes in a normal cell and also an 

empirical upper bound for the c.p.u. time taken to allocate the chromosomes in 

a normal cell. This was done for each of the chosen subsets of features at the 

first stage and criterion value. The expected c.p.u. time was calculated as 
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C.P.U. time to calculate all estimated posterior 

probabilities or ratios of estimated posterior 

probabilities to maximum estimated posterior 

probability for the subset of features for 46 

chromosomes 

+ 

E j  46 * p * average number of classes left 

for a class i chromosome * average c.p.u. time for one 

discriminant score 

Where P 1  is the prior probability of class i . For the Edinburgh data, estimated 

percentage error-rate has been plotted against expected c.p.u. time in Figure 

7.2 as an example. The empirical upper bound for the c.p.u. time was 

calculated as 
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Figure 7.2 
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c.p.u. time to calculate all estimated posterior 

probabilities or ratios of estimated posterior 

probabilities to maximum estimated posterior 

probability for the subset of features for 46 

chromosomes 

+ 

E1222 * maximum number of classes left 

for a class i chromosome * average c.p.u. time for one 

discriminant score 

+ 

max[2 * maximum number of classes left for a 

class 23 chromosome * average c.p.u. time for 

one discriminant score, ((maximum number of classes 

left for a class 23 chromosome + maximum 

number of classes left for a class 24 chromosome) 

* average c.p.u. time for one discriminant score}1 

for the Copenhagen and Philadelphia data sets. For the Edinburgh data set 

which contains only cells from males the possibilty of two class 23 

chromosomes was ignored. The discriminant scores were calculated as 

described in chapter 5 and the estimated posterior probabilities derived from 

these discriminant scores. All c.p.u. timings are the average of ten times 

recorded on the Edinburgh University NAS computer using the same operands 

for programs written in Fortran 77 with double-precision arithmetic. The c.p.u. 

time taken to set a 'flag' showing whether a discriminant score is to be 

calculated for a class at the second stage was assumed to be negligible. Also 

assumed negligible is the time taken to check the value of a 'flag' at the 

second stage. 
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7.6.1 Edinburgh data. 

Tables 7.1 and 7.2 show that marked proportional savings in expected c.p.u. 

time may be achieved for no increase in the final estimated percentage 

error-rate compared with the one-stage procedure, GC, for both criteria. 

Indeed there is some evidence that a lower estimated percentage error-rate is 

achieved for some feature subsets. It may be conjectured that this is 

sometimes because of the estimation of fewer parameters at the first stage 

compared with the one-stage procedure. In some cases where the expected 

c.p.u. time is less than for the one-stage procedure and the percentage 

error-rate is also less than or equal to that of the one-stage procedure the 

empirical upper bound is less than the expected c.p.u. time for the one-stage 

procedure. 

7.6.2 Copenhagen data. 

Tables 7.3 and 7.4 show that an estimated percentage error-rate as low as 

for the one-stage procedure, U, may be achieved along with a reduction in 

expected c.p.u. time for both criteria. In all of these cases the corresponding 

result for the empirical upper bound is less than the expected C.P.0 time for the 

one-stage procedure, U. 

7.6.3 Philadelphia data. 

Table 7.6 shows that an estimated percentage error-rate as low as or lower 

than the one-stage procedure, CC, may be achieved with marked proportional 

savings in expected c.p.u. time. However, none of the corresponding values for 

the empirical upper bound is less than the expected c.p.u. time for the 

one-stage procedure, GC. -• 

7.7 Discussion 

The results for the three data sets show that it is possible to get estimated 

percentage error-rates as low as or lower than that for the one-stage 

procedures used for a considerable reduction in expected allocation time. The 

maximum proportional savings in expected allocation time for estimated 

percentage error-rates as low as the one-stage procedures are 0.75, 0.39 and 

0.43 for the Edinburgh, Copenhagen and Philadelphia data sets respectively. 

These results are achieved for 3, 20 and 1 feature at the first stage for the 

value 0.01 for the first criterion, 0.01 for the second criterion and 0.01 for the 

second criterion. The corresponding empirical upper bounds are less than the 
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Table 

Estimated percentage error-rates, expected c.p.u. times 
and empirical upper bounds for c.p.u. time for estimated 
posterior probability criterion for Edinburgh data set. 

Unrelated covariance matrices estimated at first stage, common 
covariance matrix per Denver group estimated at second stage. 
(Estimated percentage error-rate, followed 	expected 
c.p.u. time and empirical upper bound for c.p.u. time.) 

Estimated posterior probability 

Number of 
	

0.01 
	

0.05 
	

0.10 

features 
at first 
stage 

1 
3 
6 
9 

12 
16 
20 
24 

13.1,0.20,0.47 
13.0,0.19,0.41 
12.7,0.24,0.45 
12.3,0.37,0. 57 
12 .4 , 0. 55,0 .73 
12.5,0.83,0.99 
12.3,1.28,1.43 
12.3,1.75,1.89 

14.4,0.16,0.38 
13.7,0.16,0.34 
13.0,0.22,0.39 
12.6,0.35,0.51 
12.6,0.54,0.68 
12.6,0.82,0.96 
12.2,1.27,1.39 
12 .4,1.74,1.86 

16.7,0.15,0.31 
15.2,0.14,0.31 
13.0,0.21,0.35 
12.7,0.35,0.49 
12.7,0.53,0.66 
12.5,0.82,0.93 
12.3,1.26,1.38 
12.5,1.74,1.84 

Estimated posterior probability 

Number of 
	

0.20 
	

0.30 
	

0.40 

features 
at first 
stage 

1 
3 
6 
9 

12 
16 
20 
24 

28.7,0.11,0.23 
19.3,0.12,0.24 
14.0,0.19,0.32 
13.1,0.34,0.46 
13.3,0.52,0.63 
12.7,0.81,0.92 
12.5,1.26,1.36 
12.6,1.73,1.82 

51.7,0.06,0.15 
25.5,0.10,0.20 
16.5,0.19,0.29 
13.6,0.33,0.42 
13.7,0.52,0.60 
13.1,0.81,0.88 
13.0,1.26,1.33 
12.9,1.73,1.81 

79.1,0.04,0.05 
33.6,0.08,0.17 
19.5,0.18,0.26 
14.7,0.33,0.40 
14.4,0.51,0.58 
13.6,0.80,0.87 
13.4,1.26,1.32 
13.5,1.73,1.78 
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Table 7.1 (continued) 

Estimated percentage error-rates, expected c.p.u. times 
and empirical upper bounds for c.p.u. time for estimated 
posterior probability criterion for Edinburgh data set. 

Unrelated covariance matrices estimated at first stage, common 
covariance matrix per Denver group estimated at second stage. 
(Estimated percentage error-rate, followed y  expected 
c.p.u. time and empirical upper bound for c.p.u. time.) 

Estimated posterior probability 

Number of 	0.50 
features 
at first 
stage 

1 87.7,0.04,0.04 
3 43.0,0.08,0.08 
6 23.1,0.18,0.18 
9 16.6,0.33,0.33 

12 15.8,0.51,0.51 
16 14.5,0.80,0.80 
20 14.1,1.25,1.25 
24 13.9,1.73,1.73 

Result for one-stage procedure, GC 

13.2,0.77,0.77 

133 



Table 22 

Estimated percentage error-rates, expected c.p.u. times 
and empirical upper bounds for . c-2-1- time for ratio of 
estimated posterior probability to maximum estimated 

posterior probability criterion for Edinburgh data set. 

Unrelated covariance matrices estimated at first stage, common 
covariance matrix per Denver group estimated at second stage. 
(Estimated percentage error-rate, followed 	expected 
c.p.u. time and empirical upper bound for c.p.u. time.) 

Ratio of estimated posterior probability 
to maximum estimated posterior probability 

Number 2. 	0.01 
	

0.05 
	

0.10 
features 
at first 
stage 

1 
3 
6 
9 

12 
16 
20 
24 

13.0,0.23,0.50 
13.0,0.21,0.44 
12.8,0.25,0.48 
12.3,0.38,0.60 
12.4,0. 57,0.76 
12 .6,0.83,1.00 
12.2,1.33,1.49 
12.3,1.79,1.94 

13.3,0.19,0.43 
13.4,0.17,0.38 
12.9,0.23,0.41 
12 .4,0.37,0.54 
12 .6,0.56,0.72 
12.6,0.82,0.97 
12.1,1.32,1.45 
12.4,1.78,1.91 

14.1,0.18,0.40 
14.1,0.16,0.35 
13.0,0.22,0.40 
12 .5,0. 36, 0. 51 
12.6,0.55,0.70 
12.5,0.82,0.95 
12 .3 , 1. 31,1 . 43 
12.5,1.78,1.89 

Ratio of estimated posterior probability 
to maximum estimated posterior probability 

Number of 
	

0.20 
	

0.30 
	

0.40 
features 
at first 
stage 

1 
3 
6 
9 

12 
16 
20 
24 

15.6,0.16,0.36 
16.0,0.14,0.31 
13.5,0.21,0.36 
12.9,0.35,0.50 
12.9,0. 54,0.67 
12 .6,0.82,0.94 
12.5,1.31,1.42 
12 .6,1. 78,1.88 

17.8,0.14,0.32 
18.1,0.13,0.30 
14.2,0.21,0.34 
13.0,0.35,0.48 
ii. , U • 	U • 00 

12.8,0.81,0.92 
12.5,1.31,1.41 
12.8,1.78,1.86 

21.2,0.13,0.30 
20.3,0.12,0.27 
15.3,0.20,0.33 
13.4,0.35,0.47 
''%  	

CA C1. 64 
 

1.) .6, ^   U •  

12.8,0.81,0.91 
12.8,1.31,1.40 
12.9,1.77,1.86 
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Table 24 (continued) 

Estimated percentage error-rates, expected c.p.u. times 
and empirical upper bounds for c.p.u. time for ratio of 
estimated posterior probability to maximum estimated 
posterior probability criterion for Edinburgh data set. 

Unrelated covariance matrices estimated at first stage, common 
covariance matrix per Denver group estimated at second stage. 
(Estimated percentage error-rate, followed y expected 
c.p.u. time and empirical upper bound for c.p.u. time.) 

Ratio of estimated posterior probability 
to maximum estimated posterior probability 

Number of 
	

0.50 
	

0.60 
	

0.70 

features 
at first 
stage 

1 
3 
6 
9 

12 
16 
20 
24 

24.5,0.12,0.29 
23.0,0.11,0.25 
16.3,0.20,0.31 
13.5,0.34,0.45 
13.6,0.54,0.64 
12.9,0.81,0.90 
13.0,1.31,1.39 
13.1,1.77,1.85 

28.4,0.11,0.27 
25.2,0.10,0.23 
17.3,0.20,0.31 
14.1,0.34,0.43 
13 .8,0. 54,0 .62 
13.1,0.81,0.89 
13.2,1.31,1.38 
13.4,1.77,1.84 

32.9,0.10,0.25 
27.2,0.10,0.21 
18.5,0.19,0.29 
14.4,0.34,0.42 
14.2,0.53,0.60 
13 . 3,0 . 81, 0 . 88 
13 .4, 1. 31, 1. 37 
13.5,1.77,1.83 

Ratio of estimated posterior probability 
to maximum estimated posterior probability 

Number 
	0.80 

of features 
at first 
stage 

1 
	

40. 3,0. 08,0 .23 
3 
	

29.3,0.09,0.19 
6 
	

19.1,0.19,0.28 
9 
	

14.7,0.34,0.40 
12 
	

14.5,0.53,0.59 
16 
	

13.6,0.81,0.86 
20 
	

13.4,1.30,1.36 
24 
	

13.6,1.77,1.82 

Result for one-stage procedure, CC 

13.2,0.77,0.77 
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Table 24 

Estimated percentage error-rates, expected c.p.u. times 
and empirical upper bounds for c.p.u. time for estimated 
posterior probability criterion for Copenhagen data set. 

Unrelated covariance matrices estimated at each stage. 
(Estimated percentage error-rate, followed expected 
c.p.u. time and empirical upper bound for c.p.u. time.) 

Estimated posterior probability 

Number of 
	

0.01 
	

0.05 
	

0.10 

features 
at first 
stage 

1 
3 
6 
9 

12 
16 
20 
24 

4.8,0.59,1.55 
4.9,0.35,1.14 
4.4,0.26,0.86 
4.4,0.38,0.88 
4.0,0.54,1.03 
4.0,0.82,1.26 
4.0,1.27,1.65 
3.9,1.74,2.11 

6.8,0.46,1.13 
5.9,0.27,0.85 
5.2,0.22,0.72 
4.7,0.35,0.75 
4.2,0.53,0.90 
4.2,0.81,1.14 
4.0,1.26,1.57 
3.9,1.73,2.02 

11.3,0.37,0.97 
7.0,0.22,0.70 
5.7,0.21,0.62 
4.9,0.34,0.68 
4.4,0.52,0.84 
4.2,0.81,1.07 
4.1,1.26,1.53 
4.0,1.73,1.99 

Estimated posterior probability 

Number of 
	

0.20 
	

0.30 
	

0.40 
features 
at first 
stage 

1 
3 
6 
9 

12 
16 
20 
24 

33.7,0.21,0.57 
11.1,0.17,0.55 
6.7,0.19,0.52 
5.4,0.34,0.63 
4.5,0.52,0.75 
4.3,0.81,0.99 
4.4,1.26,1.47 
3.9,1.73,1.93 

61.5,0.08,0.33 
16.4,0.12,0.41 
7.7,0.19,0.45 
5.8,0.33,0.56 
4.8,0.52 ,0.70 
4.5,0.81,0.97 
4.4,1.26,1.45 
3.9,1.73,1.89 

87.0,0.04,0.10 
24.2,0.09,0.31 
8.9,0.18,0.36 
6.2,0.33,0.51 
5.0,0.51,0.70 
4.5,0.80,0.96 
4.5,1.26,1.40 
3.9,1.73,1.86 
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Table 7.3 (continued) 

F.stimated percentage error-rates, expected c.p.u. times 
and empirical upper bounds for c.p.u. time for estimated 
posterior probability criterion for Copenhagen data set. 

Unrelated covariance matrices estimated at each stage. 
(Estimated percentage error, followed 	expected 
c.p.u. time and empirical upper bound for c.p.u. time.) 

Estimated posterior probability 

Number of 	0.50 
features 
at first 
stage 

1 90.9,0.04,0.04 
3 33.5,0.08,0.08 
6 10.2,0.18,0.18 
9 6.9,0.33,0.33 

12 5.2,0.51,0.51 
16 4.7,0.80,0.80 
20 4.5,1.25,1.25 
24 4.0,1.73,1.73 

Result for one-stage procedure, U 

3.9,2.18,2.18 
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Table 7.4 

Estimated percentage error-rates, expected C.P.U. times 
and empirical upper bounds for c.p.u. time for ratio of 
estimated posterior probability to maximum estimated 
posterior probability criterion for Copenhagen data set. 

Unrelated covariance matrices estimated at each stage. 
(Estimated percentage error-rate, followed y expected 
c.p.u. time and empirical upper bound for c.p.u. time.) 

Ratio of estimated posterior probability 
to maximum estimated posterior probability 

Number Q 
	

0.01 
	

0.05 
	

0.10 

features 
at first 
stage 

1 
3 
6 
9 

12 
16 
20 
24 

4.6,0.67,1.73 
4.7,0.37,1.26 
4.4,0.27,0.91 
4.3,0.39,0.92 
4.0,0.56,1.06 
4.0,0.83,1.27 
3.9,1.32,1.72 
3.9,1.78,2 .17 

5.1,0.56,1.45 
5.6,0.29,0.98 
5.1,0.24,0.77 
4.6,0.37,0.80 
4.2,0.55,0.95 
4.1,0.82 ,1.18 
4.0,1.31,1.63 
3.9,1.78,2.08 

5.9,0.50,1.28 
6.1,0.26,0.87 
5.5,0.22,0.68 
4.8,0.36,0.74 
4.3,0.54,0.90 
4.2 ,0.82,1.10 
4.1,1.31,1.61 
4.0,1.78,2.05 

Ratio of estimated posterior probability 
to maximum estimated posterior probability 

Number 2. 	0.20 
	

0.30 
	

0.40 

features 
at first 
stage 

1 
3 
6 
9 

12 
16 
20 
24 

7.9,0.43,1.11 
7.6,0.22,0.74 
6.3,0.21,0.61 
5.2,0.35,0.69 
4.4,0.54,0.84 
4.3,0.81,1.05 
4.3,1.31,1.56 
3.9,1.77,2.02 

10.6,0.39,1.03 
9.3,0.19,0.68 
6.7,0.20,0.57 
5.4,0.35,0.65 
4.5,0.54,0.79 
4.3,0.81,1.01 
4.3,1.31,1.53 
3 .9,1.77,1.97 

13.4,0.35,0.98 
11. 3,0 . 17 , 0. 63 
7.1,0 .20,0.52 
5.6,0.35,0.61 
4.7,0.54,0.75 
4.4,0.81,0.99 
4.4,1.31,1.51 
3.9,1.77,1.97 
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Table 7.4 (continued) 

Estimated percentage error-rates, expected c.p.u. times 
and empirical upper bounds for c.p.u. time for ratio of 
estimated posterior probability to maximum estimated 

posterior probability criterion for Copenhagen data set. 

Unrelated covariance matrices estimated at each stage. 
(Estimated percentage error-rate, followed expected 
c.p.u. time and empirical upper bound for c.p.u. time.) 

Ratio of estimated posterior probability 
to maximum estimated posterior probability 

Number Q• 	0.50 
	

0.60 
	

0.70 
features 
at first 
stage 

1 
3 
6 
9 

12 
16 
20 
24 

17.6,0.31,0.86 
13.4,0.15,0.55 
7.5,0.20,0.50 
5.8,0.34,0.59 
4.8,0.53,0.73 
4.5,0.81,0.98 
4.4,1.31,1.50 
3.9,1.77,1.93 

23.0,0.27,0.75 
15.3,0.13,0.51 
8.1,0.19,0.44 
6.0,0.34,0.56 
4.9,0.53,0.72 
4.5,0.81,0.97 
4.5,1.30,1.50 
3.9,1.77,1.93 

29.3, 0. 23,0 .72 
17.4,0.12,0.47 
8.6,0.19,0.40 
6.1,0.34,0.54 
5.0,0.53,0.72 
4.5,0.81,0.97 
4.5,1.30,1.47 
3.9,1.77,1.91 

Ratio of estimated posterior probability 
to maximum estimated posterior probability 

0.80 

36.6,0.19,0.70 
19.7,0.10,0.42 
9.1,0.19,0.37 
6.3,0.34,0.51 
5.1,0.53,0.69 
4.6,0.81,0.95 
4.5,1.31,1.42 
3.9,1.77,1.88 

Result for one-stage procedure, U 

3.9,2.18,2.18 

1sJiimhc r 

ot teatures 
at first 
stage 

1 
3 
6 
9 

12 
16 
20 
24 
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Table 24 

Estimated perôentage error-rates, expected c.p.u. times 
and empirical upper bounds for c.p.u. time for estimated 
posterior probability criterion for Philadelphia data set. 

Unrelated covariance matrices estimated at first stage, common 
covariance matrix per Denver group estimated at second stage. 
(Estimated percentage error-rate, followed 	expected 

time and empirical upper bound for c.p.u. time.) 

Estimated posterior probability 

Number of 
	

0.01 
	

0.05 
	

0.10 

features 
at first 
stage 

1 
3 
6 
9 

12 
16 
20 
24 

17.8,0.33,0.79 
17.7,0.28,0.73 
17.8,0.29,0.66 
17.7,0. 42,0.73 
17.7,0.59,0.89 
17.6,0.86,1.11 
17.5,1.29,1.53 
17.5,1.76,1.98 

21.9,0.23,0.56 
20.2,0.20,0.49 
18.6,0.25,0.49 
18 .2 ,0.38,0.61 
18.4,0.56,0.77 
17.9,0.83,1.02 
17.8,1.28,1.46 
17.4,1.75,1.92 

34.6,0.16,0.41 
25.3,0.16,0.36 
19.9,0.23,0.40 
18.7,0.37,0.54 
19.0,0.54,0.71 
18.5,0.83,0.97 
18.0,1.27,1.43 
17.8,1.74,1.90 

Estimated posterior probability 

Number of 
	

0.20 
	

0.30 
	

0.40 

features 
at first 
stage 

1 
3 
6 
9 

12 
16 
20 
24 

75.2,0.06,0.16 
39.4,0.11,0.24 
23.4,0.20,0.33 
21.2,0.35,0.48 
20.4,0.53,0.65 
19.1,0.82,0.93 
18.6,1.26,1.38 
18.3,1.74,1.85 

91.1,0.04,0.06 
53.8,0.09,0.17 
28.7,0.19,0.28 
24.5,0.34,0.43 
22.6,0.52,0.61 
19.8,0.81,0.91 
19.0,1.26,1.35 
18.6,1.73,1.83 

93.4,0.04,0.05 
67.6,0.08,0.13 
35.0,0.18,0.24 
28.9,0.33,0.40 
25.4,0.51,0.58 
21.2,0.81,0.87 
19.8,1.26,1.32 
19.4,1.73,1.80 
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Table 7.5 (continued) 

Estimated percentage error-rates, expected c.p.u. times 
and empirical upper bound for c.E.u.  time for estimated 
posterior probability criterion for Philadelphia data set. 

Unrelated covariance matrices estimated at first stage, common 
covariance matrix per Denver group estimated at second stage. 
(Estimated percentage error-rate, followed Ily expected 
2.2.u. time and empirical upper bound for c.2.u.  time.) 

Estimated posterior probability 

Number of 	0.50 
features 
at first 
stage 

1 96.4,0.04,0.04 
3 77.4,0.08,0.08 
6 42.9,0.18,0.18 
9 35.3,0.33,0.33 

12 29.5,0.51,0.51 
16 23.2,0.80,0.80 
20 21.3,1.25,1.25 
24 20.7,1.73,1.73 

Result for one-stage procedure, GC 

17.6,0.70,0.70 
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Table 7.6 

Estimated percentage error-rates, expected c.p.u. times 
and empirical upper bounds for c.p.u. time for ratio of 
estimated posterior probability to maximum estimated 

posterior probability criterion for Philadelphia data set. 

Unrelated covariance matrices estimated at first stage, common 
covariance matrix per Denver group estimated at second stage. 
(Estimated percentage error-rate, followed y expected 
c.p.u. time and empirical upper bound for c.p.u. time.) 

Ratio of estimated posterior probability 
to maximum estimated posterior probability 

Number of 
	

0.01 
	

0.05 
	

0.10 
features 
at first 
stage 

1 
3 
6 
9 

12 
16 
20 
24 

17.5,0.40,0.99 
17.7,0.34,0.86 
17.7,0.32,0.73 
17.6,0.44,0.80 
17.7,0.61,0.95 
17.6,0.86,1.15 
17.5,1.35,1.60 
17.5,1.81,2.05 

17.9,0.33,0.80 
18.1,0.26,0.71 
18.3,0.27,0.60 
17.8,0.41,0.68 
18.2,0.58,0.85 
17.8,0.84,1.06 
17.6,1.33,1.53 
17.3,1.79,1.99 

18.3,0.29,0.75 
19.0,0.22,0.63 
18.8,0.25,0.54 
18.3,0.39,0.64 
18.6,0.57,0.81 
18.2 ,0.83,1.02 
17.9,1.32,1.51 
17.8,1.79,1.96 

Ratio of estimated posterior probability 
to maximum estimated posterior probability 

Number of 
	

0.20 
	

0.30 
	

0.40 
features 
at first 
stage 

1 
3 
6 
9 

12 
16 
20 
24 

20. 7,0. 25,0. 64 
21.7,0.19,0.52 
20.1,0.23,0.47 
19.0,0.37,0.58 
19.3,0.56,0.75 
18.7,0.83,0.98 
18.3,1.32,1.48 
17.9,1 .78,1.94 

23.0,0.22,0.59 
25.2,0.17,0.44 
21.2,0.22,0.42 
20.2,0.37,0.54 
20.1,0.55,0.72 
19.0,0.82,0.96 
18.4,1.31,1.45 
18.4,1.78,1.91 

26.8,0.20,0.52 
29.1,0.15,0.40 
22.8,0.21,0.39 
21.5,0.36,0.51 
20.9,0.55,0.70 
19.2,0.82,0.94 
18.6,1.31,1.43 
18.6,1.78,1.89 
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Table 7.6 (continued) 

Estimated percentage error-rates, expected c.p.u. times 
and empirical upper bounds for c.p.u. time for ratio of 
estimated posterior probability to maximum estimated 

posterior probability criterion for Philadelphia data set. 

Unrelated covariance matrices estimated at first stage, common 
covariance matrix per Denver group estimated at second stage. 
(Estimated percentage error-rate, followed ty expected 
c.p.u. time and empirical upper bound for c.p.u. time.) 

Ratio of estimated posterior probability 
to maximum estimated posterior probability 

Number Q•• 	0.50 
	

0.60 
	

0.70 

features 
at first 
stage 

1 
3 
6 
9 

12 
16 
20 
24 

31.1,0.18,0.45 
32.9,0.14,0.35 
24.6,0.21,0.37 
22.6,0.35,0.50 
21.7,0.54,0.68 
19.8,0.82,0.93 
18.8,1.31, 1.42 
18.7,1.78,1.88 

36.2,0.16,0.40 
36.9,0.12,0.30 
26.2,0.20,0.35 
23.8,0.35,0.47 
22.7,0.54,0.66 
20.2,0.81,0.92 
19.2,1.31,1.41 
19.0,1.78,1.87 

43.0,0.14,0.38 
40.9,0.11,0.26 
27 .6,0.20,0.32 
24.7,0.35,0.46 
23.5,0.54,0.64 
20.5,0.81,0.90 
19.4,1.31,1.39 
19.0,1.77,1.86 

Ratio of estimated posterior probability 
to maximum estimated posterior probability 

Number 
	

0.80 
of features 
at first 
stage 

1 
	

49.4,0.12,0.31 
3 
	

45.0,0.10,0.24 
6 
	

29.0,0.19,0.30 
9 
	

26.0,0.34,0.44 
12 
	

23.7,0.54,0.63 
16 
	

20.9,0.81,0.89 
20 
	

19.7,1.31,1.37 
24 
	

19.2,1.77,1.84 

Result for one-stage procedure, GC 

17.6,0.70,0.70 
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expected allocation time for the one-stage procedures for the Edinburgh and 

Copenhagen data sets but not for the Philadelphia data set. It is conjectured 

that this reflects the quality of the data which was much worse for the 

Philadelphia data set. 

The Edinburgh and Philadelphia data sets both show that the use of one 

feature at the first stage can give large savings in the expected allocation time 

for 46 chromosomes in a normal cell and an estimated percentage error-rate 

lower than or as low as the one-stage procedure used. For each of these data 

sets the first feature chosen by the MSEPCOR feature selection procedure is 

either a measure of chromosome size or is related to chromosome size. The 

first feature for the Copenhagen data set is also a measure of chromosome 

size. To see if this one feature could give an expected allocation time and 

estimated percentage error-rate less than the one-stage procedure, U, results 
-- 	..' 

for the following further values of the two criteria were obtained: 1 , là , 10 , 

167'10 and 161 These further results are given in Tables 7.7 and 7.8 . The 

results show that an estimated percetage error-rate as low as the one-stage 

procedure, U, is not obtainable for any of these values. However, on occasions, 

the estimated percentage error-rate is very close to that of the one-stage 

procedure and the expected allocation time is less than that of the one-stage 

procedure. This indicates that the use of a single size feature in the first stage 

of these two-stage procedures may be generally useful. 
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Table Z•2 

Estimated percentage error-rates, expected c.p.u. times 
and empirical upper bounds for c.p.u. time for estimated 
posterior probability criterion for Copenhagen data set. 

Unrelated covariance matrices estimated at each stage. 
(Estimated percentage error-rate, followed y expected 
2•2• time and empirical upper bound for c.p.u. time.) 

Estimated posterior probability 

Number of lO 	 1D 

features 
at first 
stage 

1 4.3,0.73,1.85 4.1,0.86,2.04 	4.0,0 .98,2.32 

Estimated posterior probability 

Number of 10 
C' 

10 	 JO 

features 
at first 
stage 

1 4.0,1.07,2.57 4.0,1.15,2.70 	4.0,1.22,2.90 

Result for one-stage procedure, U 

3.9,2 .18,2.18 
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Table 2.! 

Estimated percentage error-rates, expected c.2.u. times 
and empirical upper bounds for c.2.u.  time for ratio of 
estimated posterior probability to maximum estimated 
posterior probability criterion for Copenhagen data set. 

Unrelated covariance matrices estimated at each stage. 
(Estimated percentage error-rates, followed ty expected 
c.2.u. time and empirical upper bound for c.2.u.  time.) 

Ratio of estimated posterior probability 
to maximum estimated posterior probability 

Number Q• 
features 
at first 
stage 

1 

Number of  
features 
at first 
stage 

10-5 
 

4.2,0.81,1.98 
	

4.1,0.93,2.25 
	

4.0,1.03,2.50 

Ratio of estimated posterior probability 
to maximum estimated posterior probability 

•10 
	 io•_ 
	

10 -1  

1 
	

4.0,1.11,2.65 
	

4.0,1.18,2.76 
	

4.0,1.25,2.93 

Result for one-stage procedure, U 

3.9,2.18,2 .18 

146 



Chapter 8 
The application of three non-parametric methods 

and a semi-parametric method to the automated allocation 
of human chromosomes. 

8.1 Introduction. 

In this chapter the automated allocation of human chromosomes by 

versions of three non-parametric methods and a semi-parametric method is 

described. These four methods are: 

Classification trees. 

Nearest neighbour discrimination. 

Kernel density discrimination. 

Logistic discrimination. 

The methods are first described and then versions of three of them are applied 

to the five data sets used in chapters 5 and 6. 

8.2 Classification trees. 

A discrimination method described by Breiman et al (1984) is to use a 

so-called binary tree classifier. This is constructed by repeated splits of 

subsets of training data into two descendant subsets, beginning with all the 

training data. The two descendant subsets of each subset are disjoint and their 

union is equal to the subset. The classifier is called a tree classifier because it 

may be pictured as in Figure 8.1 . This figure shows an inverted tree with the 

root at the top. All the training data starts at the root. The training data is then 

repeatedly split by conditions on the elements of the feature vector x . In the 

figure, X refers to all the training data and Xl to X6 to subsets of the training 

data. The subsets of the training data are referred to as nodes and these are 

joined by branches. If a node has no further nodes beneath it (descendant 

nodes) it is referred to as a terminal node. In the figure, nodes X3 , X4 , X5 and 

X6 are terminal nodes. Each terminal node is given a class label. The tree 

classifier allocates a new object to a class, given a feature vector x , as 

follows: from the definition of the split at the root node it is determined 

whether the object goes to the left or right descendant node of the root node. 

The definition of the split at the next node is then used to send the object to 

the appropriate descendant node of this next node. The process continues 
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Figure 8.1 

Classification tree 
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until the object reaches a terminal node and it is then allocated to the class 

corresponding to the class label of the terminal node. 

The construction of such a tree using a training set of data requires: 

A set of questions at each node (usually defined such that a split depends 

on the value of a single feature). 

A 'goodness of split' criterion. 

A rule to stop splitting nodes. 

A class allocation for each terminal node. 

For a quantitative feature, x , the set of questions is 

X 	C q? 	q=1 ..... n 	(n - 1) 
	

(8.1) 

where C q  is defined as mid-way between consecutive distinct values for all n 

ordered values of the feature. For a categorical feature, x , the set of questions 

is 

x € S? 
	

(8.2) 

where S ranges over all subsets of the possible values for the feature. This 

gives 21)  possible splits for a categorical feature which may take one of I 

values. 

Breiman et al (1984) consider a number of so-ca!!ed impurity measures for 

measuring 'goodness of split', at each node, which satisfy the following criteria: 

The measure has a maximum value if the resubstitution estimates of the 

probability of a class at a node are equal for all classes. 

The measure has a minimum value when the resubstitution estimate of 

the probability of a class at a node equals one. 

The measure is a symmetric function of the resubstitution estimates of 

the probability of a class at a node. 

The measure is a strictly concave function of the resubstitution estimates 
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of the probability of a class at a node. 

The resubstitution estimate of the probability of a class i at a node t is given 

by 

p(ilt) = Pn(t)n 1 1  p(t) 1 	 (8.3) 

where P i  is the prior probability of class i , n 1 (t) is the number of class i objects 

in t in the training set, n i  is the number of class i objects in the training set 

and 

p(t) = Z 1 P 1 n 1 (t)n 1  

Breiman et al (1984) found that the choice of measure did not appear to be 

crucial to the results obtained if the splitting rule satisfied these criteria. Given 

a measure of node impurity at a node t , imp(t) , the 'goodness of split' of a 

split, s, sending proportions PL and  PR  to left and right descendant nodes tL 

and tR  is given by 

A(s,t) = imp(t) - pLimp(tL) - pRimp(tR) . 	 (8.4) 

Breiman et al (1984) suggest maximising 	(s,t), over all questions for all 

features at a node, for the Gini index of node impurity given by 

imp(t) = EEir m  p(it)p(mt) 
	

(8.5) 

or, when there are more than two classes, maximising, over all questions for all 

features at a node, the Twoing criterion 
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PLPR(4 ) [E  CpOItL)-p(iltR)}]2 . 	 (8.6) 

The latter criterion is derived from amalgamating classes so that considered as 

a two-class problem the biggest decrease in node impurity is obtained 

(Breiman et al, 1984, pages 104-108). 

For a rule to stop splitting nodes Breiman et al (1984) propose growing a 

tree with too many nodes which will give a bigger estimated error rate, using 

the test set or cross-validation method, than a tree with fewer nodes. This 

tree is then pruned back using a minimal cost-complexity pruning algorithm. 

This algorithm obtains a nested finite sequence of subtrees with progressively 

fewer terminal nodes. This sequence is obtained by minimising 

R(T) = R(T) + ctITI 	 (8.7) 

for each oL as ot is increased from zero, where R(T) is the resubstitution error 

rate estimate obtained by allocating the objects in the training set. ITI is the 

number of nodes in the tree and a is positive. The test set or cross-validation 

method is then used to pick among the decreasing subsequence of trees that 

with the minimum estimated error-rate (within certain bounds of variability of 

the estimate). 

The class allocation rule for each terminal node used by Breiman et al 

(1984), when the cost of misallocating a class m object as a class i object is 

Mmi , is to select the class i to minimise 

EmMmiP(mlt) . 	 (8.8) 

The classification tree method is usually used only for splits based on 

single features, but Breiman et al (1984) also consider the inclusion of linear 

combinations of quantitative features and Boolean combinations of discrete 

features (Breiman et al, 1984, chapter 5). The increased complexity of the 
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pptimisation process, however, means that optimal splits cannot be guaranteed. 

8.3 Nearest neighbour discrimination. 

The nearest neighbour discrimination method proceeds by allocating a new 

object to the class which maximises (Hand, 1981b, page 32) 

P 1 k1 n 1 1  

where P 1  is the prior probability of class i, k 1  is the number of objects from 

class i amongst the k nearest neighbours in a training data set using some 

measure of distance between objects and n 1  is the number of objects from 

class i in a training data set. This rule is obtained from taking as an estimate 

of f 1 (x) , the probability density function for class i 

kn 1 1 (A(k,x)) -1 	 (8.10) 

where A(k,x) is the volume of a hypersphere which just encloses the k nearest 

points in the training set to a vector, x , of feature values. 

8.4 Kernel density discrimination. 

The kernel density estimator of a class probability density function may 

basically be considered to be a sum of bumps placed at the observations. The 

krnei function determines the shape of the bumps and a window width 

determines their width. The multivariate kernel density estimator for the ith 

class with kernel function K and window width h 1  is defined by 

= fl1 h1'EK{h(x - 
	 (8.11) 

for p dimensions where x is a vector of feature values, n 1  is the number of 
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observations for class i and x ii  is the vector of feature values for the jth object 

in class i . The kernel function for p-dimensional x satisfies 

5 K(x) dx = 1 

RP 

For discriminant analysis each f(x) is used in the usual discriminant rules 

(Silverman, 1986, pages 121-122). 

8.5 Logistic discrimination. 

Logistic discrimination may be considered to be a semi-parametric 

approach to discrimination in that it makes a parametric assumption about the 

likelihood ratios but not about the probability distribution for each class. 

For c classes the likelihood ratios are assumed to satisfy 

L1(x) = exp(a01 + aTx) 	(i=1 .....c-1) 
	

(8.12) 

where a 01  and a i  are parameters to be estimated and x is a vector of feature 

values for an object from one of the c populations. This form is implied by an 

assumption of multivariate Normal distributions with equal covariance matrices 

and a number of other commonly occurring models (Anderson, 1972). 

Allocation of an object is then to the class maximising the set of linear logistic 

discrimination functions 

1 1 (x) = a0i+ ln(P1P1) + 	Tx 	(i=1 .....c) , 	 (8.13) 

where (i oc  and the elements of ct, are zero and P i  is the prior probability of 

class i . If cz' denotes a 0 , + ln(P1P 1 ) and xij  is the vector of feature values for 

the jth object in the ith class then Anderson (1972) has shown that 

maximum-likelihood estimates of ctoI*  and a i  are obtained by 
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maximising, with respect to the parameters, 

IIII exp(x0j ' + ot  Tx,)[E exp(cLos* + otTx.)]_1 . 	 (8.14) 

For separate sampling of the c populations the intercepts require the additional 

adjustment (Albert and Lesaffre, 1986) 

(10i = &Oi* + ln(nn1) 	 (8.15) 

where n 1  is the number of objects in class i in a training set. The maximisation 

of (8.14) may be done by the standard Newton-Raphson optimisation 

procedure. 

8.6 Application to five human chromosome data sets. 

All of the available features containing no exact linear dependencies were 

used for the Edinburgh, Copenhagen and Philadelphia data sets except for the 

classification tree results for the Copenhagen data. Only the first 16 features 

given by the MSEPCOR feature selection method as described in chapter 5 

were used with this method for this data set. This was because of the limited 

memory capability of the program CART. For the special Copenhagen data 

sets, the eleven features used were those included in the WDD classifier 

described by Lundsteen, Gerdes and Maahr (1986) and specified in chapter 3. 

The test-set method of error rate estimation was used for all the methods 

because of the computational time that would be required to use the 

leave-one-out method. The division of the data sets into two was that 

described in chapter 3. 

For all the data sets the normalisation of measurements for between-cell 

variation was that currently used and described in chapter 3. 

Prior probabilities of 2/46 for chromosome classes 1-22 and 1/46 for 

chromosome classes 23 and 24 were used for the Edinburgh data set which 
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has cells only from males. The prior probabilities for classes 23 and 24 were 

changed to 3/92 and 1/92 for all the other data sets which have cells from 

both sexes. 

The overall estimated percentage error-rate was taken as the weighted 

average of the individual class percentage error-rates using the specified prior 

probabilities as the weights. 

No re-allocation of chromosomes to satisfy a normal karyotype as 

described in chapter 2 was performed. 

8.6.1 Classification trees. 

The program CART (California Statistical Software Inc., 1985) was used to 

obtain results for the five data sets in two ways. One way excluded the linear 

combination algorithm and the other used this algorithm with different 

minimum node sizes for its use. Full details of the linear combination 

algorithm for quantitative features are given in the appendix to chapter 5 of 

Breiman et al (1984). A constant for the linear combination algorithm is 

specified so that not necessarily all features are used in a linear combination. 

Specifically, for the coefficients for a best linear split found by the algorithm 

using all the features, each feature is omitted in turn to find the most 

important (i.e., leading to the smallest decrease in impurity ) and least 

important (i.e., leading to the biggest decrease in impurity ) features. This is 

done by finding the best split of the form 

c i , 	 (8.16) 

where j' is the excluded feature, the a are the coefficielits for the best linear 

split using all the features, x is the value for the jth feature and c' is a 

threshold which is optimised. Defining as the reduction in impurity for 

using all the features in the linear combination, A m i n  as the reduction in 

impurity for the linear combination leaving out the most important feature and 

A max  as the reduction in impurity for the linear combination leaving out the 

least important feature then if 
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- max 
< B(t. - min) 	 (8.17) 

Where B is a pre-specified constant, the least important feature is deleted. If 

the least important feature is deleted the most important and least important 

features are then found again in the same way using the coefficients of the 

linear combination for all features and excluding the deleted feature. Test (8.17) 

is then applied again. The process is repeated until no more features are 

deleted. Finally, the search algorithm is used again to find the best linear split 

for the features not deleted. The splitting criterion and parameter settings are 

reproduced in Table 8.1 . The value of 0.2 used for B is the default value in 

CART (California State Software Inc., 1985). The subsampling option refers to 

taking a subsample at a node instead of all the data to find the best split for 

that node. This is done to avoid excessive storage requirements. The tree 

chosen by the test-set method when 'pruning' was that with the minimum 

estimated error-rate. 

8.6.2 Nearest neighbour discrimination. 

Four versions of the estimated Mahalanobis' distance between the feature 

vector for a new object, x , and the feature vector for the jth object from class 

i, x ii  

( 
- x )T1 

( - 	, 	 (8.18) 

were used. The four versions were obtained by letting 2 i  be: 

Unrelated diagonal. 

Common for all cIasss. 

Common within Denver groups. 

Unrelated non-diagonal for each class. 

The estimators defined in chapter 5 were used. To examine the effect of 

altering the number of nearest neighbours, results were obtained for 1, 5 and 

10 nearest neighbours. 
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Table 

Parameter settings for CART program. 

Gini splitting rule 
minimum size of node to continue splitting = 5 
maximum size of node without subsamplirig = 1000 
minimum size of node for linear combination option = 20, 50 or 100 
constant for deletion of features for linear combination option = 0.2 
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8.6.3 Kernel density discrimination. 

Because of the importance of areas of low density in multivariate density 

estimation, the adaptive kernel method was used (Silverman, 1986, pages 

100-110). This procedure allows the window width to vary so that in areas of 

low density a broader kernel is used. The initial estimate of I(x) was obtained 

using the Normal kernel in the density estimate 

= det(1)2n11hj_PEk[(h1_2( - x)T1(x - 	, 	 (8.19) 

where h, is the smoothing parameter which, using a Normal kernel, minimises 

the mean integrated square error for a standard Normal distribution (Silverman, 

1986, page 87), i.e., 

{(2p+1)n 1/4} 114 	 (8.20) 

and k(xTx) = K(x) . The multivariate Normal kernel is defined as 

K(x) = (2)-12PlEr2exp(_4T.) . 	 (8.21) 

The same four estimators of 2 i  were used as for the nearest neighbour 

analysis described above. The density estimate at the second stage was as 

above with h i  replaced by h 1 X , where 

xii = i(1)g_1) _01 	 (8.22) 

and 

In(g) = n, 1  Eln( (')} . 	 (8.23) 
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A is a sensitivity parameter. Following Abramson (1982) this parameter was set 

equal to 1 
2 -  

The use of the smoothing parameter for a standard multivariate Normal 

distribution at the first stage may be justified on the grounds that adaptive 

kernel density estimates have been found not to be sensitive to fine detail of 

the initial estimate (Breiman, Meisel and Purcell, 1977) and also multivariate 

Normal methods have been found to give good results for these data sets. 

8.6.4 Logistic discrimination 

The computer program of Albert and Harris (1987) was used to obtain 

results. This program was used in case partial separation (Lesaffre and Albert, 

1989), geometrically defined as complete separation of clusters of classes 

where not all clusters contain one class, was detected in the training data set. 

If partial separation occurs maximum-likelihood estimates of the parameters in 

(8.12) do not exist. However, defining (8.12) to hold within each cluster 

containing more than one class then maximum likelihood estimates do exist for 

each cluster. The parameter estimates for each of these clusters can be derived 

from the, estimates of the parameters when (8.12) is assumed to hold across all 

classes. The computer program of Albert and Harris (1987) detects the 

divergence in parameter estimates caused by partial separation, stops the 

iterative solution and prints out the allocation matrix for objects in the training 

set. This allocation matrix can be used to identify the precise form of the 

partial separation. 

8.7 Results. 

8.7.1 Classification trees. 

The estimated percentage error-rates for the classification trees for the five 

data sets are given in Table 8.2 

8.7.2 Nearest neighbour discrimination. 

The results for nearest neighbour discrimination using the four measures of 

distance and three numbers of nearest neighbours for the five data sets are 

given in Table 8.3 
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Table 8.2 

Estimated percentage error-rates for classification trees. 
(Result for classification tree without linear combination 
Option followed by result for classification tree with linear 
combination option for minimum node sizes of 20, 50 and 100 .) 

Edinburgh data set 

28.6,23.1,23.1,23.7 

Copenhagen data set 

12.5,10.8,10.9,10.8 

Philadelphia data set 

31.7,26.2,26.0,25.9 

Copenhagen special amniotic-fluid data set 

13.6,10.8,11.0,11.0 

Copenhagen special peripheral-blood data set 

17.8,14.3,14. 5,14.6 
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Table !4 

Estimated percentage error-rates for nearest neighbour 
discrimination procedures. 

(Results in order are for 1, 5 and 10 nearest neighbours.) 

Edinburgh data set 

Estimate of covariance matrix 	Estimated percentage error-rate 

unrelated diagonal 26.5, 28.7, 28.7 

common 32.1, 36.8, 36.9 

unrelated 21.4, 22.1, 22.2 

common within Denver groups 19.3, 21.3, 21.4 

Copenhagen data set 

Estimate of covariance matrix 	Estimated percentage error-rate 

unrelated diagonal 5.7, 6.2, 6.2 

common 10.7, 11.3, 11.3 

unrelated 6.6, 7.0, 6.7 
common within Denver groups 5.2, 6.4, 6.4 

Philadelphia data set 

Estimate of covariance matrix 	Estimated percentage error-rate 

unrelated diagonal 	 27.0, 30.6, 30.6 
common 	 38.7, 43.7, 43.8 

unrelated 	 27.4, 28.2, 28.2 
common within Denver groups 	 24.4, 28.3, 28.4 

Copenhagen special amniotic-fluid data set 

Estimate of covariance matrix 	Estimated percentage error-rate 

unrelated diagonal 	 8.1, 10.4, 10.4 

common 	 16.1, 21.2, 21.2 

unrelated 	 9.5, 12.3, 12.3 
common within Denver groups 	 8.9, 12.0, 12.0 

Copenhagen special peripheral-blood data set 

Estimate of covariance matrix 	Estimated percentage error-rate 

unrelated diagonal 16.2, 18.2, 18.3 

common 25.5, 30.3, 30.4 

unrelated 12.3, 13.4, 14.2 

common within Denver groups 11.4, 14.3, 14.3 
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8.7.3 Kernel density discrimination. 

The results for kernel density discrimination using the four density 

estimates given by (8.19) (with h 1  replaced by h j X ;j) and the different estimates 

of $, for the five data sets are given in Table 8.4 

8.7.4 Logistic discrimination. 

The program of Albert and Harris (1987) was used to obtain results using 

just the first 3 and 6 features chosen by the MSEPCOR feature selection 

procedure for the Edinburgh data set. A greater number of features was not 

tried because of the extremely large amount of computer c.p.u. time required to 

estimate parameters for even these small numbers of features. Partial 

separation was not detected in the training data set for these features. The 

estimated percentage error-rates and c.p.u. time required on the Edinburgh 

University Castle main-frame computer are given in Table 8.5 . Also given in 

Table 8.5 are the corresponding results for the procedures which assume 

multivariate Normality and are described in chapter 5. 

8.8 Discussion. 

The results for the classification trees are worse than those for the 

procedures which assume multivariate Normality, confirming the result of 

Shepherd, Piper and Rutovitz (1987). The classification trees used here differ 

from that used by Shepherd, Piper and Rutovitz (1987) in that: 

A different measure of impurity is used. 

An additional linear combination algorithm is optionally used. 

The minimal cost-complexity algorithm is used to prune too large a tree 

rather than growing a tree until the estimated error-rate of a test data set 

increases. 

Prior probabilities for the twenty-four classes are used. 

Allocation time for the chromosomes in a normal cell is not considered here 

because the estimated percentage error-rates are much worse than the 

procedures described in chapter 5. It should also be noted that the test data 

sets were used to 'prune' back the trees as well as to estimate the error rates. 

This means that these test data sets were not truly independent of the data 

used to 'grow' the trees. 

The results for the nearest neighbour and kernel density discrimination 
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Table 

Estimated percentage error-rates for kernel density 
discrimination procedures. 

Edinburgh data set 

Estimate of covariance matrix 	Estimated percentage error-rate 

unrelated diagonal 	 16.9 

common 	 17.5 
unrelated 	 20.2 
common within Denver groups 	 18.2 

Copenhagen data set 

Estimate of covariance matrix 	Estimated percentage error-rate 

unrelated diagonal 	 9.2 

common 	 4.8 

unrelated 	 9.6 
common within Denver groups 	 7.7 

Philadelphia data set 

Estimate of covariance matrix 	Estimated percentage error-rate 

unrelated diagonal 	 27.7 

common 	 22.7 

unrelated 	 27.6 
common within Denver groups 	 23.4 

Copenhagen special amniotic-fluid data set 

Estimate of covariance matrix 	Estimated percentage error-rate 

unrelated diagonal 	 10.7 

common 	 8.0 

unrelated 	 8.1 
common within Denver groups 	 8.6 

Copenhagen special peripheral-blood data set 

Estimate of covariance matrix 	Estimated percentage error-rate 

unrelated diagonal 	 11.7 

common 	 9.3 

unrelated 	 11.6 
common within Denver groups 	 10.9 
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Table 8.5 

Estimated percentage error-rates and c.2.u.  time on Edinburgh 
University main-frame Castle computer for logistic discrimination. 

Edinburgh data set 

Number of Estimated percentage 	c.p.u. time 
features 	error-rate 	 seconds 

3 	 36.3 	 9490 

6 	 24.8 	 21014 

Corresponding results for procedures based on multivariate 
Normality described in chapter 5. 

(Estimated percentage error-rate for 3 features followed 
estimated percentage error-rate for 6 features.) 

	

Procedure 	Percentage error-rates 

	

C 	 38.5, 27.7 

	

BC 	 38 .2, 26.1 

	

U 	 34.8, 22.3 

	

BU 	 30.5, 22.3 

	

UD 	 35.7, 23.3 

	

GC 	 36.9, 23.3 

	

BGC 	 43.5, 26.3 

	

P 	 37.8, 24.8 

	

BP 	 37.3, 25.4 

	

GP 	 36.4, 23.9 

	

PG 	 37.8, 25.6 

	

PD 	 43.3, 35.4 

	

E 	 35.7, 23.2 
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procedures are no better than the results for the methods which assume 

multivariate Normality. Because of this no attempt has been made here to 

consider allocation time. If practical application were to be attempted the data 

sets would have to be condensed (Hand, 1981b, pages 30-31) and/or fast 

algorithms (Friedman, Bentley and Finkel, 1977) used to find the nearest 

neighbours of a new feature vector or all the neighbours within a certain 

distance (for a kernel of finite support). Consideration of the results given here 

together with those of chapter 5 suggest that it is unlikely that these 

non-parametric procedures will provide candidate combinations of estimated 

percentage error-rate and allocation time for the number of features used here. 

This is because (except for procedure C and the result for one data set for 

procedure UD) the Estimative multivariate Normal procedures which use 

corresponding definitions of Mahalanobis distance to the four procedures 

defined above for nearest neighbour and kernel density discrimination give 

lower estimated percentage error-rates than these non-parametric procedures. 

This means that the non-parametric procedures with the same definitions of 

Mahalanobis distance as procedures UD, U and GC would in general require 

less computation than each of these corresponding procedures to provide 

possible candidate combinations of estimated percentage error-rate and 

allocation time. The kernel density procedure which uses the estimate of a 

common covariance matrix for all classes gives results no better than 

procedure GC. Therefore, this procedure would require less computation than 

procedure GC to give possible candidate combinations of estimated percentage 

error-rate and allocation time. For all the nearest neighbour and kernel density 

procedures, this means that only a small proportion of the training sets 

considered here could be used to allocate a new object if a possible candidate 

combination of estimated percentage error-rate and allocation time were to 

result. The same conclusion would apply if a kernel of finite support had been 

used and given similar resuits. 

The large amount of computer c.p.u. time required to estimate the 

parameters in (8.12) for even a very small number of features appears to rule 

the logistic discrimination method out of practical consideration. Whilst the 

time taken to estimate parameters for a training data set is not usually a 

consideration in the automated allocation of human chromosomes, such an 

excessive amount of computer time seems undesirable. For the small number 

of features used here there is no evidence of better performance than some of 
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the procedures which assume multivariate Normality. 
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Chapter 9 
Modelling the probabilities of band-transition 

sequences for the automated allocation of human chromosomes. 

9.1 Introduction. 

As outlined in chapter 2, so-called band-transition sequences have been 

proposed as an alternative to the use of weighted sums of density profiles for 

use in the automated allocation of human chromosomes (Lundsteen et al, 

1981). In this chapter the former method is briefly outlined and some 

non-parametric and parametric models proposed for describing dependence 

between values of the same feature measured on successive chromosome 

segments starting from one end of the chromosome and between the values of 

two features measured for each segment. These models are applied to three 

human chromosome data sets. 

9.2 Band-transition sequences. 

As described in chapter 2, Lundsteen and Granum (1979) have suggested 

the division of a chromosome into 13 segments (5 12  for the short arm of a 

chromosome and 7 12  for the long arm). For each of these segments, if there is 

a peak density of staining in the segment then its density is recorded together 

with the difference in density of staining between the peak and its adjacent 

valley (light band) proceeding from the short arm of the chromosome to the 

long arm. Peak density is measured on an integer scale of 0-6 and density 

difference on an integer scale of 0-4 with a 0 being recorded for both features 

if there is no peak density of staining in a segment. This gives 26 feature 

values for each chromosome. In addition, a pair of features is used to describe 

the starting point which is taken as the beginning of the short arm. These 

features give the value of the first peak and the average value of the "valley" 

preceding it because there is no true preceding valley. A similar artificial 

"valley" is considered to follow the final peak. All 28 feature values may be 

referred to as a band-transition sequence. 

9.3 Non-parametric models for the probabilities of band-transition 

sequences. 

Lundsteen et al (1981) have considered the following complete 
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independence model for the probabilities of the band-transition sequences 

p(c1Ix) oc hTkfTIP1'1 	
(9.1) 

where p(c1Ix) is the posterior probability of class i given the band transition 

values, XkI  is the value for the Ith feature measured on the kth segment, p(xkIIcI) 

is the class-conditional probability for class i and P 1  is the prior probability of 

class i . The outer product is from k = 1 to k = 14 and the inner product is 

from I = 1 to I = 2. This model takes no account of the orderings of the 

segments, of dependence between the values of features measured on 

successive segments or of dependence between the values for the two 

features measured for each segment. 

A model which takes into account the dependence between the value of a 

feature for a segment and the value for the same feature measured on the 

previous segment, if there is a previous segment, is 

p(c1Ix) oc  J]Ip(x1IIc).flkp(xk+1ljcj , x1).P1 . 	 (9.2) 

The outer product is from I = 1 to I = 2 and the inner product is from k = 1 to 

k = 13. A model which takes account of the bivariate distribution for the values 

for each segment but ignores dependence between values of the same or 

different features measured on successive segments is 

p(c1Ix) c  fl kp(kIcI).PI , 	 (9.3) 

where Xk is a 2 vector of feature values for the kth segment and the product is 

from k = 1 to k = 14. These two models may be combined to give one which 

takes account of the bivariate distribution for each segment and the 

dependence between values of the same feature measured on immediately 

successive segments, 
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p(c1Ix) °c  p(11ci).fTkp(k+1Ici ' 	, 	 (9.4) 

where the product is from k = 1 to k = 13. Further models which take into 

account dependence between the value of a feature for a segment and the 

values for the same feature for the rk  previous segements may be defined in a 

similar manner, where rk = min(k -1, r) and 1 < r < p. However, even with the 

size of the data sets considered here, sparsity of data rapidly becomes a 

problem in estimating some of the class-conditional probabilities. The only 

other model which is considered further below is that which assumes the 

probability of observing a value for a feature on a segment is dependent on the 

values for the same feature for the r k  preceeding segments with r = 2 but takes 

the values for the two features measured for a segment or different features 

measured on different segments to be independent, i.e., 

p(c1Ix) '< TJ 1 p(xiiIc).p(x211c1 , xlI).fI kp(xk+2Il c j ,  Xk+1, , xkl).P . 	 (9.5) 

Here the outer product is from I = 1 to I = 2 and the inner product is from 

k = ito k = 12 

Estimates of the class-conditional probabilities in equations (9.1), (9.2), (9.3), 

(9.4) and (9.5) can be obtained by using the proportion of observations on 

chromosomes of class i with the particular values in a training set of data. 

9.4 Multivariate Normal models for band -transition sequences. 

Given the reductions in percentage error-rates obtained in chapter 5 by 

combining class information on variability for the features considered there, the 

same procedures may be considered here for use with the band-transition 

sequence data. All of the assumptions about the covariance matrices for the 

24 classes made in chapter 5 can be tried for the band-transition sequence 

data. Additionally, the dependence between the values for the features 

measured in successive segments may be modelled by using so-called 
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ante-dependence models (Kenward, 1987). These models form a subset of the 

class of covariance selection models considered in chapter 6 . As in chapters 5 

and 6 , these models are considered for application because of the reduction in 

the number of parameters and hence the sampling variability of the predicted 

distribution. 

An ante-dependence model of order r is one where the kth feature (k > r) 

of a set of p ordered features, given the preceding r, is independent of all 

further preceding features. For this structure the inverse of the covariance 

matrix has zeroes everywhere except on the leading diagonal and the r 

diagonals above and below. The probability density function can be expressed 

as the product of p components, i.e., as 

fI k klxk_r .....xk_1) 	 (9.6) 

where the product is from k = 1 to k = p and rk = mm ( k - 1, r) (Kenward, 

1987). Consequently, a discriminant score may be calculated as the sum of p 

components when logs are taken, prior probabilities are ignored and all 

misallocation costs are equal. 

For the band-transition sequence data we consider, as above for the 

non-parametric models, that the sequence of pairs of features 'starts' at the 

end of the short arm of the chromosome and that we have a bivariate 

distribution for each-segment; thus, under an ante-dependence model of order 

r , we have the product of the 14 bivariate components for each class 

(dependence on i is suppressed for the remainder of this section) 

fI k kIk_r .....Xk...1) 
	

(9.7) 

For each of these 14 components the conditional mean vector of xk  given 

Xk..1 is given by 

170 



1k + Ekr .rrL 	Pr,.) 	
(9.8) 

where Ekr  is a 2 by 2rk matrix of covariances between Xk and 

is a 2rk by 2rk covariance matrix for the Xk_ r ,...,Xk_1,!Sr is a 2rk vector of 

observed feature values and R r is a 2rk vector of means (Morrison, 1976, page 

92). The conditional covariance matrix is given by 

krrr.krt,. 
' 	 (9.9) 

where Ekk  is the covariance matrix for Xk  (Morrison, 1976, page 92). A 

discriminant score using just the band-transition data for a given class i may 

therefore be calculated as 

Ek(-  In lSkI - (k - 	 c)Tkc_l(k 
- JCC)} + 21n(P 1 ) , 	 (9.10)  ~Sk 

where the kc and Skc  are estimates of the conditional mean vector and 

covariance matrix given above for the kth pair of features obtained by using 

the usual unbiased estimates of .kk and 

The number of parameters to be estimated for each covariance matrix for 

an ante-dependence structure of order r is, for p bivariate features, 

3p + 3(p - 1) + ... + 3(p - r). The number of calculations to calculate one 

discriminant score using (9.10) is 5p + k4 rk multiplications and 

5p + Ek2rk + Ek4rk + 3p + 2(p - 1) + 1 additions and subtractions. As in chapter 

5, the Cholesky decomposition of the estimated inverse of each conditional 

covariance matrix is used and it is assumed that the number of additions 

required to evaluate 

ZT  ILL  TZ  

where L is a lower-triangular matrix, is equal to the number of multiplications 
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required. 	These numbers of calculations compare with p(p + 1) + 2p 

multiplications and p(p + 1) + 4p + 1 additions and subtractions for procedure U 

(the estimation of unrelated covariance matrices for each chromosome class) in 

chapter 5. 

9.5 Application to reduced Copenhagen and special Copenhagen 
data sets. 

The reduced Copenhagen data set and special Copenhagen data sets 

described in chapter 3 were used to obtain results for the models described 

above. 

Percentage error-rates were estimated by the test-set and leave-one-out 

methods described in chapter 5 except for procedure E (the estimation of 

common principal components) from chapter 5 for which the leave-one-out 

method was found to require an excessive amount of computational time. The 

overall estimated percentage error-rate was calculated as the weighted sum of 

the individual class percentage error-rates with the weights given by the prior 

probabilities for each class. The prior probabilities used were those 

corresponding to equal numbers of cells from males and females. No 

re-arrangement of the allocations within a cell to satisfy a normal karyotype 

was performed. The splits of the data into two were those described in 

chapter 3. The normalisation of the one size feature used in conjunction with 

the band-transition features was that described in chapter 3 

9.5.1 Non-parametric models for the probabilities of band-transition sequences. -. 

All five of the non-parametric models for the band-transition sequences 

described above were used for these data sets. Following Lundsteen et al 

(1981), in order to avoid zero estimated class-conditional probabilities and to 

stop underilow on the computer the ciass -uonditionã probabWtes were 

multiplied by 100, rounded to the nearest integer and any zeroes replaced by 

ones. The replacement of zeroes by ones gives lower error-rates. Again 

following Lundsteen et al (1981), area, area centromeric index and density 

centromeric index were included in the model by assuming them to be 

independent with Normal distributions. The posterior probability (except for a 

proportionality factor) for a band-transition sequence was multiplied by the 

values for the univariate Normal probability density functions (except for 

proportionality factors). The univariate Normal p.d.f.s were weighted more 
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heavily by raising the values for them to the powers 3, 2 and 2 for area, area 

centromeric index and density centromeric index respectively because this was 

found by Lundsteen et al (1981) to give smaller estimated error-rates. 

9.5.2 Ante-dependence models. 

Ante-dependence models of orders 0 to 5 were fitted to the data for each 

chromosome class. The ante-dependence model of order 0 corresponds to 

independent bivariate Normal distributions for the features for each segment. 

Area, area centromeric index and density centromeric index were included in 

the discrimination procedure by assuming them independent of the 

band-transition sequences and having independent univariate Normal 

distributions for comparability with the results for the non-parametric models. 

9.5.3 Chapter 5 procedures. 

All of the assumptions about class covariance matrices proposed in chapter 

5 were also tried for the band-transition sequences together with area, area 

ceritromeric index and density centromeric index. 

9.5.4 Ante-dependence models and chapter 5 procedures. 

Exact linear dependence between features for some classes occurs in the 

data sets. This is because for some classes no peak density of staining is 

observed in some segments. Consequently, only zeroes are recorded for the 

two features in these segments. Because of this exact linear dependence 

between features for some classes a common small constant was added to the 

diagonal of the covariance matrix of the band-transition features for each class 

for the ante-dependence models and the related covariance matrix models of 

chapter 5. This was done so that the covariance matrix was invertible. The 

common small constant to be added was determined by a grid search with 

three internal points using the reduced size Copenhagen data set and test-set 

error-rate estimation. All inItIall grid scorch eva!uated estimated percentage 

error-rate at a number of values for the constant in order to determine an 

interval containing a local minimiser. The value of the constant chosen was 

that which corresponded to the middle point when three points of the grid 

search agreed to one decimal place for the estimated percentage error-rate 

(the other two points giving bigger estimated percentage error-rates). This 

process assumes that only a global minimum exists or that any local minima 

are close to the global minimum, and that agreement to one decimal place of 

three points of the grid search is a reasonable stopping criterion. The constant 
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estimated for each procedure was then used in the leave-one-out method for 

the reduced Copenhagen data set and for both methods for the two special 

Copenhagen data sets. 

9.6 Results 

9.6.1 Non-parametric models for the probabilities of band-transition sequences. 

Test-set and leave-one-out results for the non-parametric models using 

the band-transition sequences with zero estimated class-conditional 

probabilities (when rounded to 2 decimal places) replaced by the value 0.01 are 

given in Table 9.1 . For comparison, results are given in Table 9.2 for the same 

models when zero estimated class-conditional probabilities (when rounded to 2 

decimal places) were not replaced by the value 0.01 If all the discriminant 

scores calculated for a chromosome were equal to zero the chromosome was 

allocated to a class at random. 

9.6.2 Ante-dependence models for band-transition sequences. 

Table 9.3 contains the estimated percentage error-rates using the test-set 

method for the reduced Copenhagen data set; an initial coarse grid of values 

was used for the constant added to the diagonal of the covariance matrix for 

each class. The blanks correspond to values which give non-invertible 

covariance matrices in the procedures when NAG routine F01ACF (Numerical 

Algorithms Group Limited, 1988) for matrix inversion was used. Table 9.4 gives 

the values of the constant found by the grid search described in sub-section 

9.5.4 and the estimated percentage error-rate for the use of the constant with 

the leave-one-out method. Table 9.4 also gives the estimated percentage 

error-rates for the use of these constants for the special Copenhagen data 

sets. Again blanks occur in this table when covariance matrices were not 

invertibIe for some procedures 

9.6.3 Chapter 5 procedures. 

Table 9.4 gives the estimated percentage error-rates for the three data sets 

for the values of the constants added to the diagonal of each covariance 

matrix. 

9.6.4 Chapter 5 procedures applied to WOO features. 

For comparison, the results for the chapter 5 procedures applied to the 

WDO classifier features (defined in chapter 3) are given for the reduced 
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Table !i 

Estimated percentage error-rates for the non-parametric models for 
probabilities of band-transition sequences. 

(Zero estimated probabilities for class-conditional probabilities 
in models when estimated probabilities rounded to 2 decimal places 
replaced y the value 0.01 . Estimated posterior probabilities for 
band-transition sequences multiplied ty values for univariate Normal 
.d.f.s for area, area centromeric index and density centromeric 

index raised to powers given in text. Result for leave-one-out  

method followed 	result for test-set method.) 

Data set 

Equation in Reduced Copenhagen Copenhagen 

text for Copenhagen special special 

model amniotic 
fluid blood 

(9.1) 5.2,5.6 10.4,11.0 12.8,13.5 

(9.2) 4.5,4.9 10.0,10.4 12.9,13.6 

(9.3) 5.7,6.8 11.2,11.5 13.3,13.6 

(9.4) 5.3,6.0 10.0,10.8 12.2,12.4 

(9.5) 5.3,5.6 10.7,11.0 13.6,14.1 
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Table 9.2 

Estimated percentage error-rates for the non-parametric models for 
probabilities of band-transition sequences. 

(Zero estimated probabilities for class-conditional probabilities 
in models when estimated probabilities rounded to 2 decimal places 

not replaced 12y the value 0.01 . Estimated posterior probabilities 
for band-transition sequences multiplied 	values for univariate 
Normal 2.d.f.s for area, area centromeric index and density 
centromeric index raised to powers given in text. Result for 
leave-one-out method followed 	result for test-set method.) 

Data set 

Equation in Reduced Copenhagen Copenhagen 

text for Copenhagen special special 

model amniotic peripheral 
fluid blood 

(9.1) 9.7,11.1 13.8,15.7 16.4,19.1 

(9.2) 21.5,24.9 24.8,27.8 25.8,30.9 

(9.3) 15.9,18.5 19.0,21.1 20.6,24.7 

(9.4) 35.3,37.2 33.8,36.6 33.8,39.5 

(9.5) 36.4,39.0 39.0,41.9 41.3,47.1 
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Table !4 

Estimated percentage error-rates for differing values of constant 
added to the diagonal of the covariance matrix for each 

chromosome class for the reduced Copenhagen data set 
and the test-set method. 

procedure 	 Value of constant 

10 	5 	2 	1 0.1 0.01 	lo- 	t' 

C 13.4 13.0 12.1 11.8 11.6 11.7 11.7 11.7 

BC 10.2 9.8 8.8 8.5 8.2 8.3 8.4 8.4 

U 7.7 6.6 5.4 5.3 6.8 8.8 12.3 17.5 

BU 9.1 7.6 6.0 5.8 6.9 8.9 13.6 21.4 

UD 9.9 9.7 9.8 9.8 12.2 15.0 18.5 29.3 

GC 9.3 8.0 649 6.6 7.1 8,3 9.2 9.9 

BGC 9.3 7.9 7.0 6.6 7.0 8.2 9.0 10.0 

P 11.1 10.5 9.9 9.9 10.0 - - - 

BP 14.1 13.4 12.4 12.1 - - - - 

GP 9.6 8.5 7.6 7.5 - - - - 

PG 10.2 9.8 8.8 8.7 - - - - 

PD 11.4 13.3 14.6 16.3 16.4 18.7 19.5 19.7 

E 9.9 9.2 9.3 9.5 11.7 14.8 18.0 32.2 

ADO *  9.6 8.5 8.3 7.9 9.7 11.5 16.6 25.3 
AD1* 8.8 7.1 6.4 6.1 7.6 8.9 13.0 22.2 
AD2* 8.9 7.0 6.0 5.8 7.5 8.6 12.7 21.2 

8.8 7.1 6.0 5.9 7.2 8.9 12.9 19.0 
AD4* 8.7 7.1 5.9 5.8 7.2 9.2 12.9 19.0 
AD5* 8.7 7.1 6.0 5.7 7.3 9.2 12.9 18.9 

* ADr denotes ante-dependence model of order r 
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Table 9.4 

Estimated percentage error-rates for constant found y grid search 
for the reduced Copenhagen data set and the test-set method added to 

diagonal of covariance matrix for each chromosome class. 
(Result for leave-one-out method followed 	result 

for test-set method.) 

Data set 

Procedure Constant Reduced Copenhagen Copenhagen 
Copenhagen special special 
amniotic peripheral 
fluid blood 

C 0.190 8.4,11.6 15.6,17.9 18.3,21.2 

BC 0.275 8.5, 	8.2 15.9,16.1 18.4,19.0 

U 1.760 4.9, 	5.2 11.4,11.7 13.6,14.4 

BU 0.775 4.9, 	5.6 11.4,12.1 13.4,14.6 

UD 3.970 9.3, 	9.6 14.9,15.4 18.1,18.2 

CC 0.540 6.2, 	6.6 13.4,13.6 14.8,15.6 

BGC 0.775 6.1, 	6.6 13.6,13.7 15.0,15.7 

P 1.250 9.3, 	9.9 16.8,16.9 20.0,21.1 

BP 0.550 10.9,11.6  
GP 1.135 6.6, 	7.4  
PG 1.050 8.4, 	8.6 16.8,16.9 19.5,17.9 

PD 9.850 12.0,11.5 18.8,18.6 23.6,23.4 

E 4.300 -, 	9.2 _,14.9 ,18.4 

ADO* 0.890 7.8, 	8.0 14.2,15.1 17.2,17.5 
AD1* 1.390 5.7, 	6.0 13.0,13.6 16.0,16.2 
AD2* 1.380 5.6, 	5.8 12.7,13.2 15.6,15.7 
AD3* 1.325 5.5, 	5.7 12.7,13.3 15.5,15.7 
AD4* 1.380 5.5, 	5.7 12.7,13.5 15.4,15.7 

1.255 5.5, 	5.7 12.6,13.4 15.4,15.7 

* ADr denotes ante-dependence model of order r 
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Copenhagen data set in Table 9.5 . The results for the same procedures for the 

WDD features for the other two data sets appear in Figures 9.3 to 9.6 

9.7 Discussion. 

For two of the three data sets, model (9.2) for the probabilities of the 

band-transition sequences gives the smallest estimated percentage error-rates 

for the band-transition sequences together with area, area centromeric index 

and density centromeric index. The differences from the results for the 

complete independence model for the probabilities of the band-transition 

sequences, model (9.1), however are small. 

The results for the models which assume multivariate Normal distributions 

for the band-transition sequences are not as good as those for the 

non-parametric models. In some instances, however, the differences are small. 

Defining a peak density and valley of staining for each segment with density 

measured as a continuous feature might, however, be expected to give data 

which more closely follows the asumption of multivariate Normality. Such a 

definition would also avoid exact linear dependence amongst the 

band-transition features. 

Table 9.1 when compared with Table 9.5 shows that the results for the use 

of the band-transition features plus area, area centromeric index and density 

centromeric index are not as good as some of the results for the chapter 5 

procedures applied to the WDD features for the reduced Copenhagen data set. 

Comparing Table 9.1 with Figures 9.3 to 9.6 shows that the same is true for the 

special Copenhagen data sets. To see if this is because of the assumption of 

independence for the features area, area centromeric index and density 

centromeric index results were obtained for the assumption that these features 

have a trivariate Normal distribution independent of the band-transition 

sequence features for each class. The results are given in Tables 9.6 and 9.7 

For the non-parametric models for the probabilities of band-transition 

sequences a probability of a band-transition sequence was multiplied by the 

value of the trivariate Normal p.d.f. raised to the power of an estimated weight. 

This weight was found for each model for the band-transition sequence 

probabilities by a grid search for the reduced Copenhagen data set using 

test-set error-rate estimation. For the ante-dependence models a common 

constant to be added to the diagonal of each covariance matrix was also found 
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Table !4 

Istimated percentage error-rates for WDD classifier features for 
reduced Copenhagen data set. 

(Result for leave-one-out method followed 	result 
for test-set method.) 

Procedure 	 Estimated percentage error-rate 

C 4.4, 	8.9 
BC 4.4, 	5.0 

U 2.5, 	3.7 
BU 2.5, 	3.6 
UD 4.9, 	5.5 

GC 2.9, 	3.3 
BGC 2.9, 	3.3 

P 4.8, 	5.6 
BP 5.2, 	6.0 
GP 3.0, 	3.4 
PG 4.9, 	5.5 
PD 6.3,13.8 
E 4.4, 	4.9 
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Table 9.6 

Estimated percentage error-rates for the non-parametric models for 
probabilities of band-transition sequences. 

(Zero estimated probabilities for class-conditional probabilities 
in models when estimated probabilities rounded to 2 decimal places 
replaced 	the value 0.01 . Estimated posterior probabilities for 

band-transition sequences multiplied 	value for trivariate .d.f. 
for area, area centromeric index and density centromeric index 
raised to power given 	value of weight below. Result for 
leave-one-out method followed 	result for test-set method.) 

Data set 

Equation in Weight Reduced Copenhagen Copenhagen 

text for Copenhagen special special 

model amniotic peripheral 
fluid blood 

(9.1) 2.125 4.7,5.3 10.0,10.3 12.6,12.9 

(9.2) 2.750 4.3,4.7 9.5, 	9.9 11.9,12.7 

(9.3) 1.010 5.1,5.6 10.3,11.1 12.5,13.2 

(9.4) 2.015 5.0,5.5 9.8,10.3 11.8,12.4 

(9.5) 3.660 4.8,5.3 9.5, 	9.8 12.0,12.6 
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Table !.7. 

Estimated percentage error-rates for constant found 	grid search 
for the reduced Copenhagen data set and the test-set method added to 

diagonal of covariance matrix for each chromosome class. 
(Result for leave-one-out method followed 	result 

for test-set method.) 

Data set 

Procedure Constant Reduced Copenhagen Copenhagen 
Copenhagen special special 
amniotic peripheral 
fluid blood 

ADO* 1.688 7.3, 	7.8 13.7,14.3 16.5,16.8 
AD1* 1.500 5.5, 	5.7 12.5,12.9 15.4,15.6 
AD2* 1.370 5.2, 	5.5 12.3,12.9 14.9,15.5 

AD3" 1.325 5.2, 	5.6 12.4,12.9 14.8,15.3 
AD4* 1.000 5.1, 	5.5 12.4,13.1 14.7,15.4 
AD5* 0.875 5.0, 	5.5 12.4,13.2 14.8,15.3 

* ADr denotes ante-dependence model of order r 
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in the same way. Each constant and weight used was found by the process 

described in sub-section 9.5.4 . Tables 9.6 and 9.7 show that the results for the 

use of the band-transition features plus area, area centromeric index and 

density centromeric index, although improved, are still not as good as those in 

Table 9.5 and Figures 9.3 to 9.6 

To see if the non-parametric models for the band-transition sequences give 

candidate combinations of estimated percentage error-rate and allocation time 

for 46 chromosomes in a cell the results in Table 9.6 were plotted on the same 

figures as the results for the multivariate Normal procedures applied to the 

WOO features (Figures 9.1 to 9.6). As in chapters 5, 6 and 7 the allocation 

times were the average of ten c.p.u. times for the same operands for programs 

written in Fortran 77 using double-precision arithmetic executed on the 

Edinburgh University NAS computer. A discriminant score for each of the 

models for the band-transition sequences was calculated by taking natural logs 

of the estimates of the right-hand side of each of equations (9.1) to (9.5), 

adding the weight times the discriminant score for the Normal distribution and 

the natural log of the prior probability for the particular class. The discriminant 

score for the Normal distribution was calculated as described in chapter 5 and 

multiplied by a 126 . The figures show that none of the models (9.1) to (9.5) for 

the probabilities of the band-transition sequences multiplied by the value of a 

trivariate Normal p.d.f. for area, area centromeric index and density centromeric 

index raised to the power of an estimated weight (labelled as procedures BTS1 

to BTS5 respectively) give candidate procedures. 
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Figure 9. 3 
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Figure 9D4 

Copenhagen special 
amniohc-Fluid daa 

TesV-seV mehod 

U) 
-I- 

0 
L 10.00 

L 
0 
L 
L 
(i) 

ci) 
0) 
0 

C 
ci) 
0 
L 
a) 

0 

Le 

x * 
+11 

4c7 
0- 

C 
-- BC 

U 
i —  BU 
+— U9 
o - GC 

- BGC 
P 

— BP 
0 -  GP 

.— PS 
- PD 

E 
x - BTS1 
+-BTS2 
o-BTS3 
* - BTS4 
o-BTS5 

0.00 I 	i 	i 

0.00 	0.20 
	

0.40 	0.60 	0.80 	1.00 	1.20 	1.40 	1.60 	1.80 	2.00 

square rool oF cDp.u.. rime (seconds) 

187 



C 

ox -ft  
1- 

x 

U 
+— UD 
0 —  GC 

P 
BP 

0 — 	GP 
PG 
PD 

E 
x-BTS1 
+-BTS2 
o-BTS3 
*-BTS4 
o-BTS5 

Ei9une 905 

Copenhagen special  
peripheral-blood daa 

Leave-one-our mehod 
30.00 

ci) 

a 

L 
0 
L 20.00 

L 
ci) 

ci) 
0) 
0 

C 
a) 
o 
L 

10.00 

CL 

0.00 I 	i 	i 

0.00 	0.20 
	

0.40 	0.60 	0.80 	1.00 	1.20 	1.40 	1.60 	1.80 	2.00 

square rool oF c0p..u0 rime (seconds) 

I-I
ra'r.i  
.I.J 



Figure 9DB 
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Chapter 10 
The automated allocation of cervical smear specimens. 

10.1 Introduction. 

As described in chapter 3 , cervical smears are classified by cytologists on 

an ordinal scale of increasing risk of malignancy. For most of the specimens in 

the data set described in chapter 3 there are also a constant number of feature 

values obtained from the operation of an object discrimination procedure and 

the intervention of an operator. It is apparent from inspection of different 

cytologists' assessments of the same specimens that cytologists may differ in 

their allocations. Consequently, it is preferable to look for a discrimination 

method that explicitly allows for this uncertainty. The approach adopted here is 

to derive a consensus probability of a cervical smear specimen being abnormal 

using the method described by Dawid and Skene (1979). Multiple regression 

equations are then used to try to predict the logit transformations of the 

consensus probabilities for the specimens. A first multiple regression equation, 

which uses as predictors just features measured automatically on a specimen, 

is used if the probability derived from the predicted logit is below or above 

certain threshold values. If the probability derived from the predicted logit from 

this first equation lies between these threshold values a second multiple 

regression equation is used. This second equation makes use of the features 

derived from the intervention of an operator as well as the features obtained 

automatically. Decision rules based on the probabilities derived from the 

predicted logit transformations are used to automatically allocate a specimen 

as normal or abnormal. Previously, linear discriminant functions have been 

calculated for the two classes 'normal' and 'CIN1-3 or invasive' (see Table 3.5) 

derived from reference diagnoses which regard the cytologists' scores as 

continuous features (Carothers, 1988). 

10.2 A consensus probability of a cervical smear specimen being 

abnormal. 

To make use of all four cytologists' allocations a consensus probabilty of a 

cervical smear being abnormal was derived using the method described by 

Dawid and Skene (1979). This method is to attempt to maximise the likelihood 
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ffcE J P J I1:kfJ I (TJI) 	} 	 ( 10.1) 

Where p j  is the probability that a cervical smear drawn at random has true 

category j , iT 	is the probability that cytologist k will allocate a smear to 

category I given j is the true category and n 11 	is one if cytologist k allocates 

the ith specimen to category I and zero otherwise. The product for i is from 

i=ltoi=l, for kis from k=ltokK and for lis from lltolJ.The 

summation for j is from j = 1 to j = J . The likelihood is derived from assuming 

a multinomial distribution for the numbers of allocations to each category for 

each cytologist if the true category takes a particular value. If q is the true 

category for specimen i the likelihood for cytologist k is 

lli(1Tqi)1" . 	 ( 10.2) 

Assuming independent allocations by the cytologists, the likelihood for the 

allocations of the specimen is 

11 k11 
 ( q 1(k)) nI' 
	

(10.3) 

If the assumption that the true category of specimen i is known is dropped 

then the probability of the data for specimen i is 

Pj ll k Ii I (1 jI '')"" 
	 llfl A'. 

The EM algorithm (Dempster, Laird and Rubin, 1977) may be applied to find 

maximum likelihood estimates of the p i  and 7i j , in (10.1). The name of this 

algorithm derives from the two steps in the algorithm, the first of which is an 

Expectation of missing data given current estimates of the parameters, and the 

second of which is a Maximisation of the likelihood given current estimates of 

the missing data. This algorithm can be used because if the true category for 
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each smear were known the likelihood for the full data would be 

	

, 	 (10.5) 

where if q is the true category T ij  = 1 if j = q and 0 otherwise. The steps of the 

EM algorithm are to take initial estimates of the 'missing data', i.e. the T ij  , then 

to use the maximum-likelihood estimators 

	

1Tjj =  E 1Tn 11 (E 1  Z 1Tn 11 ) 1 	(1=1.....J, 1=1 .....J, k= 1 ..... K) 	 (10.6) 

and 

Pj = ET(l) 1  (j=1 ,...,J) 
	

(10.7) 

and finally to calculate 

p(T 1 = 1 Idata) = FI kfT I T j I 	PiC E q llknhI(qI ) 	P q} 	 ( 10.8) 

where p(T=1Idata) is the probability that T ij  = 1 given the data. These steps 

are repeated until convergence is achieved. As pointed out by Dawid and 

Skene (1979), the EM algorithm only guarantees a local maximum. However, 

they found that the initial estimates 

-f ii = EknI(ZkEInI) 
	

(10.9) 

gave good results in practice. Each T ij  for the application considered here 

corresponds to the estimated consensus probability of a cervical smear 
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belonging to category j . Uebersax and Grove (1990) have pointed out that in 

the general case, when there are I objects, K assessors and J categories, a 

necessary condition for identifiability of the parameters is that there are three 

assessors for two classes. For three classes they note that a necessary 

condition is that there are five assessors. For the data here, from four 

cytologists, this means that at most two classes can be assumed for 

identifiability of the parameters to be possible. More generally, Goodman (1974) 

notes that model identifiability requires the rank of the matrix of derivatives of 

pattern probabilities with respect to 'a basic set' of model parameters to be 

equal to the number of columns when each row of the matrix corresponds to 

the derivatives for a particular pattern probability. By pattern probabilities is 

meant the probabilities associated with each possible pattern of assessor 

allocations for an object. By 'basic set' is meant a set of the smallest number 

of parameters from which values of the remaining parameters can be 

calculated. The derivatives of the pattern probabilities with respect to the 

parameters are 

(j= 1 .....J) 	 (10.10) 

for the p j  and 

PjJTkfTITjI) 	(j= 1 .....

J, 1=1_j) 	 (10.11) 

for the iT il 	 where the product excludes the term involving 1T11 	and (10.11) 

goes to zero if the power n 1 	for 	is zero. The 111(k)  are zero or one 

according to the particular pattern probability. 

10.3 A multiple regression model for probabilistic assessments. 

Given probabilistic assessments for each of J possible categories for an 

object, Aitchison and Begg (1976) propose the logit transformation 
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vij  = In 	 (i=1,...,l, j=2,...,J) , 	 (10.12) 

Where p is the probability of the ith object belonging to the jth category, as 

being a useful way of transforming the data to be on the scale - to . They 

then assume a multivariate Normal distribution for the vector (v,x) where V is 

the vector of logit transformations and x is a vector of feature values. Use of 

the vague Normal-Wishart prior (Aitchison and Dunsmore, 1975, page 21) for 

(,E), the mean and covariance matrix of (v,x), then gives the Bayesian 

predictive conditional density function of v given x 

St(n-1, + S ( vx.Ax 	- xj, ((n + 1)n 1 } 

x (n - 1) 1 (S 	- vx.xx 1 xv)C1 + (n - 1Y1Q(x)}] 	 (10.13) 

where St is the generalized Student distribution (Aitchison and Begg, 1976), n is 

the number of observations, 

vv = E(v - )(! - 
	 (10.14) 

Sxx 	 kJT 
	

(10.15) 

= E1(x - xj(v - 
	 (10.16) 

and 

Q(x)=(x - )T{(1 + _1),(n - 1)_ 1 1_ 1 ( - xj . 	 (10.17) 
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Aitchison and Begg (1976) show that the distribution of v given x may be 

reduced to a single value P12  for the case of two classes by using an 

approximation to the integration required to obtain the mean of the 

corresponding distribution of P12 . This approximation is 

1. 
c1[b(2.942 + kc(k - 2)_ 1 )_2] , 	 ( 10.18) 

where 0 is the standard Normal distribution function, for the density function 

St(k, b, c). 

The method derived by Aitchison and Begg (1976) requires, however, 

multivariate Normality of the feature vectors which is not satisfied for the 

cervical smear data because of extreme skewness for some of the features in 

the vector x . A Bayesian predictive approach may still be used, however, for 

the conditional distribution of v given x by fitting a regression model for the 

prediction of v from x. The BaVesian predictive approach is to obtain the 

predictive conditional density p(vlx)  from 

p(d) p(E)Ix , z)dO 
	

(10.19) 

where 0 is a vector of parameters and z is given data. The p(0x, z) is a 

conditional posterior density function for 0 based on a prior distribution for 0 

given data z and a feature vector x . Use of the vague Normal-Wishart prior for 

the conditional mean and covariance matrix of V given x and the multivariate 

Normal p.d.f. for p(v0) gives equation (10.13) with (n - 1) replaced by the 

number of degrees of freedom for the regression model and the full feature 

vector x replaced by the feature vector of the features included as predictors in 

the model. 
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10.4 Sequential use of multiple regression equations for the 
allocation of cervical smear specimens. 	 - 

The explanatory features for specimen allocation become available in two 

stages. The first stage features are those which are available from the 

operation of the object discrimination procedure with no intervention from an 

operator. Those at the second stage are explanatory features that result from 

the operator's intervention. The aim is to achieve a suitable trade-off between 

machine error-rates and the need for operator intervention. Here, this is 

explored by allowing a range of thresholds for the probabilities derived from 

the logit transformations predicted by a multiple regression equation using only 

the first stage features. These thresholds are lower and upper bounds for the 

probability of a specimen being abnormal. Below the lower probability and 

above the upper probability allocation of a specimen is made without the 

intervention of an operator. If the probability is between these thresholds the 

second-stage features are obtained and a second multiple regression equation 

based on both first and second stage features is used to predict the logit 

transformation for a specimen. The trade-off between false-positive and 

false-negative error-rates is studied for a number of decision rules based on 

the probabilities derived from the predicted logit transformations. 

10.5 Multiple regression equations. 

The cervical smear specimens were divided at random into two parts of 

equal size and regression equations for the logit transformation of the 

consensus probability of a smear being abnormal regressed on the feature 

values derived from the first part. For the training data, features resulting from 

operator intervention were available for all specimens. Features were included 

in the regression equations if the estimated residual mean square error was 

reduced. Squared and cross-product terms for such features were then added 

if the residual mean square error was further reduced. The inclusion of terms 

was done by forward selection. Plots of the residuals against the fitted values 

and each explanatory feature showed no obvious departures from the model 

assumptions. 
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10.6 Criterion for allocation of a smear and error rate estimation. 

At the first stage a smear from the second part of the data was allocated to 

the normal class if the probability of its being abnormal derived from the 

predicted logit transformation was below the lower threshold and to the 

abnormal class if this probability lay above the upper threshold. If the 

additional explanatory features were required to allocate a specimen the 

decision rule at the second stage was used to allocate the specimen. 

Each error rate was estimated for each combination of first-stage 

thresholds and second-stage allocation rule using the estimated consensus 

probabilities in expression (10.6) with n replaced by the allocation described 

in the paragraph above. This is the maximum-likelihood estimator when the 

consensus probabilities are known. 

10.7 Results 

10.7.1 The consensus probabilities. 

306 cervical smear specimens for which all four cytologists gave an 

allocation and feature values were available were used. To obtain a 

two-category classification for the cytologists' allocations the normal 

classification was coded as 0 and other classifications were coded as 1 (see 

Table 3.5). The starting values recommended by Dawid and Skene (1979) for 

the consensus probabilities were used. A number of other arbitrary starting 

values were also tried but these gave either the same or a smaller value of the 

likelihood (10.1). The results show that the consensus probability is almost one -. 

for a category agreed on by a majority of the cytologists. Specimens for which 

there were two cytologists recording the verdict 'normal' and two recording 

'abnormal' show a more even split in the consensus probabilities between the 

two classes. Evaluation of the matrix of derivatives of pattern probabilities with 

respect to 'a basic set' of the estimated parameters shows that the rank is 

equal to the number of columns when each row of the matrix corresponds to 

the derivatives for a particular pattern probability. The parameters are, 

therefore, identifiable (Goodman, 1974). Estimated cytologist error-rates 

suggest that some of the cytologists have very high error rates (Table 10.1). 
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Table 10.1 

Estimated cytologist error-rates under the model corresponding 
to the likelihood in (14) 

False-positive 

0.06 

0.06 

0.79 

0.20 

False-negative 

0.35 

0.06 

0.06 

0.08 

Cvtolociist 

1 

2 

3 

4 

iIIi 



10.7.2 Estimated error-rates for the use of the multiple regression equations. 

The estimated error rates for all combinations of the following lower and 

upper probabilities at the first stage are plotted, joined by splines, in Figures 

10.1-10.9: 

lower probabilities 

0.0001 0.001 0.01 0.05 0.1 0.2 

upper probabilities 

0.6 0.7 0.8 0.9 0.95 0.99 

These extreme values of the lower threshold were used because of the 

importance of avoiding false-negative results for the allocation of cervical 

smear specimens. The proportion of specimens allocated at the first stage for 

each pair of thresholds is given in Table 10.2 . At the second stage, specimens 

not already allocated were allocated to the normal class if their probability of 

being abnormal derived from the predicted logit transformation was below a 

certain threshold and to the abnormal class otherwise. The probabilities used 

as thresholds at the second stage were 

0.001, 0.01, 0.05, 0.10, 0.15 

0.20 	, 0.25, 0.30, 0.35, 0.40 

0.50 	, 0.55, 0.60, 0.65, 0.70 

0.75 	, 0.80, 0.85, 0.90, 0.95 

10.8 Discussion. 

Figures 10.1-10.9 show that automated allocation with the possibilty of 

operator intervention can give error-rates similar to the error-rates of the third 

cytologist in Table 10.1 . It would need to be ensured, however, that the level 
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Table 10.2 

Proportion of specimens allocated to either class without operator 
intervention for given lower and upper probabilities 

at the first stage below and above which an allocation is made. 

Proportion 	Lower probability Upper probability 

0.373 0.0001 0.6 
0.268 0.0001 0.7 
0.183 0.0001 0.8 
0.105 0.0001 0.9 
0.065 0.0001 0.95 
0.007 0.0001 0.99 
0.373 0.001 0.6 
0.268 0.001 0.7 
0.183 0.001 0.8 
0.105 0.001 0.9 
0.065 0.001 0.95 
0.007 0.001 0.99 
0.373 0.01 0.6 
0.268 0.01 0.7 
0.183 0.01 0.8 
0.105 0.01 0.9 
0.065 0.01 0.95 
0.007 0.01 0.99 
0.379 0.05 0.6 
0.275 0.05 0.7 
0.190 0.05 0.8 
0.111 0.05 0.9 
0.072 0.05 0.95 
0.013 0.05 0.99 
0.418 0.10 0.6 
0.314 0.10 0.7 
0.229 0.10 0.8 
0.150 0.10 0.9 
0.111 0.10 0.95 
0.052 0.10 0.99 
0.529 0.20 0.6 
0.425 0.20 0.7 
0.340 0.20 0.8 
0.261 0.20 0.9 
0.222 0.20 0.95 
0.163 0.20 0.99 
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Figure 10.2 
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Figure 10.3 
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Figure 10D4 
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Fi9une 10. 5 

Es1 I maled False-pos it -  ye 

and False-ne9at- ive 

error-rat-es 

First-stage lower and 
upper probab iii Pee are 
0.01 and 0.99 

Firel-sage lower and 
upper probabilities are 
0.01 and 0.95  

> 1.00 
0.90 

.L_ 0.80 
0.70 

(s) 0.60 
o 0.50 

0.40 
0.30 

(1) 0.20 
- 0.10 

o 0.00 
Li.... 0.00 0.20 0.40 0.60 0.60 1.00 

False negat-ive 

(I) 
> 1.00 

0.90 - 
-1-. 0.60 

0.70 
Ct) 0.60 
o 0.50 

0.40 
0.30 
0.20 

- 0.10 

	

o 	0.00- iiiuiiii,iiiiii,iiii 

	

Li... 	0.00 0.20 0.40 0.60 0.60 1.00 

False negat- lye 

First-stage lower and 
upper probabi ii r iee are 
0.05 and 0.6 

> 1.00 
0.90 

-.1..... 	0.80 
0.70 

co 0.60 
0 0.50 

0.40 
0.30 
0.20 

- 0.10 

a 0.00  
Li_ 	0.00 0.20 0.40 0.60 0.80 1.00 

False negat-ive 

First-stage lower and 
upper probabilities are 
0.05 and 0.7 

> 1.00: 
0.90 - 

..L_ 0.80 - 
0.70 - 

(J) 0.60 

0- 0.40 

0.20 

rj 0.00 
Li_ 	0.00 0.20 ' O. '40 0. '60'' 0. '80'' 1' . '00 

False negat-ive 

205 



Figure 10. 6 
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Figure 10.8 
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of operator intervention was acceptable in terms of time. The results indicate 

that to achieve the false-negative error rates of the first, second and fourth 

cytologists a bigger false-positive error-rate than that obtained by each of 

these cytologists would need to be acceptable. It should be noted for these 

results that the assumption is made that Dawid and Skene's model is an 

adequate one for modelling cytologists' assessments. 

The division of the specimens into normal or abnormal classes is probably 

not entirely satisfactory for an assessment of automated allocation (with 

operator intervention). It is likely to be of interest to repeat this analysis when 

the parameters for three categories are identifiable in the model corresponding 

to the likelihood (10.1). Then the specimens could be classified as normal, 

slightly malignant and severely malignant. The error rates for severely 

malignant specimens given by this 'automated' allocation, which are likely to be 

extremely important, could then be estimated. 
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Chapter 11 
Sequential use of features for 
multivariate discrimination. 

11.1 Introduction 

When each feature has an associated cost, sequential use of the features in 

two or more stages with allocation rules at each stage may give a lower cost 

discrimination procedure than the use of all features at one time. The cost 

associated with a feature may be made up of a measurement cost and/or the 

cost of calculating discriminant scores if these are calculated immediately after 

a value for the feature is obtained. As described in chapter 2, the allocation of 

individual objects in a cervical smear is an application in which sequential 

discrimination is used to reduce the time taken on feature measurement. In 

this chapter the sequential measurement of features is mainly considered for 

the simplified problem of two known multivariate Normal populations with 

equal covariance matrices when the only cost associated with a feature is 

measurement cost. 

The sequential measurement of features for discrimination has been studied 

by Fu (1968), Zielezny and Dunn (1975) and Hora (1980) when feature 

measurement cost and misallocation cost are commensurable and there is no 

cost in calculating discriminant scores. Fu (1968) looked at the use of a 

modified sequential probability ratio test for a fixed order of feature 

measurement and dynamic programming solutions for fixed and varying orders 

of feature measurement when all parameters are known. Zielezny and Dunn 

(1975) considered a two-stage procedure for two multivariate Normal 

populations with equal covariance matrices in which "cheap" features are 

measured first and the remaining "expensive" features are then measured if the 

cost of collection is less than the reduction in expected misallocation cost. 

They found that for known parameters the two-stage procedure was always at 

least as "cheap" as using just the first subset of features or all the features. For 

unknown parameters the two-stage procedure was also best for a wide range 

of conditions. Hora (1980) has shown that for two known multivariate Normal 

populations with equal covariance matrices Fu's dynamic programming solution 

for a fixed order of feature measurement is computationally reasonable because 

successive posterior probabilities follow a Markov process. 
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In this chapter the computation required for Fu's dynamic programming 

solution for an optimal varying order of feature measurement is briefly 

reviewed. An alternative approach to finding an optimal varying order of feature 

measurement, when the feature order is free to vary, is to have a fixed order of 

feature measurement which has minimum cost amongst all fixed orders. This 

approach may require less computation to obtain a solution. Solutions are 

considered for two known multivariate Normal distributions with equal 

covariance matrices for Fu's criterion and a new criterion for allocation of 

objects, when less than the full number of features have been measured. The 

new criterion is related to the error rate achieveable when all features are used 

to allocate objects. Both criteria assume that the only cost associated with a 

feature is measurement cost. Even this approach can require substantial 

computation to obtain a solution, so a sub-optimal approach to obtaining a 

fixed order of feature measurement for each of these two criteria is examined. 

The evaluation of an optimal fixed order of feature measurement is also 

considered when the cost of the calculation of the discriminant scores after a 

feature has been measured is included in the measurement cost of a feature. 

In this case the two criteria for early allocation need to be re-defined and it 

may not be optimal to calculate the discriminant scores after each feature. It 

may also be true that a one-stage procedure gives a lower cost discrimination 

procedure than a sequential procedure. An empirical approach using density 

estimates of discriminant scores for the new criterion is suggested for 

observations from any two distributions when the parameters of the 

distributions are unknown and the only cost associated with a feature is 

measurement cost. Finally, this empirical approach is used for the sequential 

discrimination between artefacts and cells for cervical smears. 

11.2 An optimal variable order of feature measurement when the 
only cost associated with a feature is measurement cost. 

To write down Fu's solution the following notation is defined: 

xk  is a vector of k feature values. 

p(kIFtk)  is the minimum expected risk having obtained Xk where the 

particular order, Ftk,  of k of the features is used. 

Fk is the set of features remaining to be measured. 

c(xjFk)  is the cost of the next feature, tk+1  when Ftk  is selected. 

F(xk+1; fk+1kk;  Ftk) is the conditional distribution function of xk+1 when tk+1 
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is selected given the measurements Xk for the sequence Ftk 

6. R(xk; djlFtk) is the risk of allocating to class i on the basis of Xk  when Ftk  is 

selected. 

Fu (1968), page 80, shows that the basic functional equation for a maximum of 

p features is 

p(xklFtk), k=1,...,(p - 1) = 

rContinue: Min{ c(xklFtk) + 	p(x .....Xk,Xk+lIFtk,ftk+1) dF(xk+1;fk+11xk;Fk)} 

611 Fk 
Mm  

[Stop: 	Min i  R(xk;dIIFk) , 

This may be solved by working backwards from 

p(x) = Min i  R(x;d1IF) . 	 (11.2) 

If we consider the discrete case with each feature taking one of I possible 

values then this means that the number of risk functions to be evaluated is 

+ (c-i) I-1+ +() I  ) 
	

(11.3) 

unless a simplifying assumption such as independence of the features can be 

made. It can be seen from this that the required computation may be 

excessive, e.g., for 1=20 and p=8 the number of risk functions is approximately 

7 . 6*10 10  
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11.3 Two criteria for the allocation of an object with a fixed order of 
feature measurement when k out of p features have been measured 
and the only cost associated with a feature is measurement cost. 

11.3.1 Fu's criterion 

With Ck+1 defined as the cost of the (k + 1)th measurement, the basic 

functional equation (11.1) simplifies for a fixed order of feature measurement to 

P(k) k=1.....(p - 1) 

	

Continue: ck+1 + 	P(+) dF(xk+l Ixk) 

= Mm 	 J 	 (11.4) 

Stop: Mm R(x k;d ;) , i1,2 

The optimal stopping rule may then be determined by working backwards 

starting from the given risk function at the last stage using dynamic 

programming. 

11.3.2 Obtaining values for Fu's criterion for two known multivariate Normal 
populations with equal covariance matrices. 

Hora (1980) has shown that it is computationally reasonable to obtain 

values for Fu's criterion in the case of two known multivariate Normal 

populations with equal covariance matrices. If E is non-singular, f(xk) is the 

p.d.f. for class i and ir 1  its prior probability then 

Zk = ln{f1(xk)f2(xk)_ 1 } + In(7T11T2 1 } 	 ( 11.5) 

is a linear function of Xk  so that its distribution is Normal. If Qk denotes 

(k1 - 1!k2) ..k (Mkl - lik2) (11.6) 

then Zk has variance Qk  in each population and expectations 12A + In (1T11T2 1 ) 

and -k + In(1T 1 11 2 1 ) in populations 1 and 2 respectively. Clearly, the values of 
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are unchanged if 	are replaced by the sequence of residuals 

rk = Xk - E(xklxk_1) (k=2 ..... p) 	 (11.7) 

which are linear in Xk and independent of each other and of x 1 ; the 

corresponding covariance matrix is diagonal with kth diagonal element 

Var(x klx k_1) (k=2 ..... p) 
	

(11.8) 

Each difference Zk - Zk_1 is therefore a linear function of rk  and hence they are 

independent. Thus for any I > k we may write 

z 1  = Zk + ek+1  + ... + e1 	 (11.9) 

where ek+1 .....
e1 are independent of each other and of Zk , and e 1  has the 

distributions 

NJ 12(0-1 - Qi-i) Qi - 0- 1 _1} 
	

(11.10) 

and 

- Q1_1), Q i  - Q1 _1) 	 (11.11) 

in populations 1 and 2. It follows that the distribution of Zk+1...ZP given Zk  is 

multivariate Normal with 
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E(zllzk,  pop. 1) = Zk + 4(01 - Qk) 	 (11.12) 

E(zllzk, pop. 2) = Zk - (Q - Qk) 	 (11.13) 

Var(zllzk) = 01 - 	 (11.14) 

Cov(z 1, Z m I Zk) = 1min(I, m) - 	k (l,m > k) . 	 (11.15) 

Thus the distribution of Zk+1 .....z, depends on Xk  only through Zk  and since Zm 

(m=k+1.....p) is a known monotone transformation of the posterior probability for 

class 1 at the mth stage there is Markovian dependence between successive 

posterior probabilities. 

To write down the risk of obtaining measurement Xk+1 the following 

notation is defined: 

g(z) is the p.d.f. of z for the ith class. 

ZIk and Zuk  are the values of Zk  below and above which objects not already 

allocated at the kth stage are allocated to population 2 and population 1 

respectively. 

-00 Lml(ZI,k+1 ,...ZI,m_1 ,Z u,m) ,  m2 = 

LI M 1 =  (zuk+1 .....zum_1 ,W ) ,  ! m2 = (zuk+1 ..... Z u m_i,Zi,m), 

Pik  is the posterior probability of class I after k measurements. 

M 1 , is the cost of misallocating an object from population i as being from 

population i 

1 	 - vIm 
- 	Ik+1CI 

8. R , 1=1,2 is the risk of deciding population i 
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mh 

9. 'him = fg (zl0 i)dz. 

!mh 

'him is the probability of allocating to population h at the mth stage when i is 

the true population. 

The risk of obtaining measurement XkI1 can then be expressed as 

R3 = E 1 Ep1 k{(M12 k+1,m)l21 m 	k+1.m'1 1 m} + 

P2k((M21 +Ck+ 1 ,m)'l 2mk+1,m'22m)} 1 
	

(11.16) 

When d3 is defined as the decision to obtain the value for the next feature an 

explicit expression may be obtained. This is done bV working oacwaras 

defining sets S ij  for i=1,2,3 and j=1,...,(p - 1) such that d i  has the smallest 

expected loss if p ij  £ S 	Since R 3(p 1 ) is a concave function of p1 (De Groot, 

1970, pages 125-127) there exists a y j  and a X j  such that d1 is optimal if P1 1  

y j  and d2 is optimal if 	X and another measurement should be obtained if 

xi <p1j<  y. Values of y,and X are found by setting 

R 1 (y 1 ) = R 3(y 1 ) 	 ( 11.17) 

and 

R 2(X 1) = R3(X) . 	 (11.18) 
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11.3.3 A new criterion. 

We consider that we wish to discriminate between objects from two 

populations with known p.d.f.s given by f 1 (x) with prior probabilities 1T 

The criterion for early allocation of an object assumes that measurement 

costs and misallocation costs are not commensurable and is related to the final 

error rate achieveable using all features in a one-stage procedure. The 

criterion is to allocate an object when one feature has been measured if 

z i ~5  z i , i  

or if 

z 	z u,i 

where z 11  and z satisfy the equations 

CO z  

ffgl(zl ,zp)dzldzp - 

ff
g l(zl , zp)dzldzp = 	 (11.19) 

A - 	
_CO  

and 

A 	 z 11  

ffg 2(Zl ,Zp)dzldzp - ffg2(Zl ,Zp)dzldzp = 	 (11.20) 

-wZ 	 A  -00 

and A denotes the value of z, above which a new object is allocated to 
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population 1. The optimal rule for the one-stage procedure (Krzanowski, 1988, 

page 336) is to allocate to population 1 if 

> M 2 1M.2 1 
	

(11.21) 

At each of the subsequent (p - 2) intermediate stages, when another feature 

has been measured and k < p (k=2.....(p - 1)) features have been measured in 

total, an object is allocated if 

Zk 	Zik 

or if 

Zk 	Z u ,k 

where 21,k  and Zuk  satisfy the equations 

co 	Zik Zu,k_1 ZuJ 

.1 f f ... fgl(Zl ... Zk ,Zp)dzl...dZk , dzp 

A 	-° ZI,k_1 Z1 , 1 

A 	Zu,k_1 2 u,1 -f I f ... fgl(Zl ... Zk,Zp)dzl ... dZk,dzp = 	 (11.22) 

-co z u ,kZI,k_1 Z1 , 1 

and 
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A 	2u,k1 

f $ f ...f 92(Z1 ... Zk,Zp)dzl ... dz k dz p  

CO  
- 	Z u ,kZI,k_1 21,1 

00 	Zik 2uk1  Z u l 

_ f 5 f ... f 92(ZI ... Zk,Zp)dzl ... dZk,dzp = Bk . 	 (11.23) 

A 	ZI,k_1 Z 1 ,1 

Objects are allocated to population 1 if Zk 	z,, L. , to population 2 if 2 k 	zik 

otherwise another feature is measured. The otk and Bk  are the 

additional errors in allocation made at each stage compared with the one-stage 

procedure. These could be allowed to vary with k but to avoid excessive 

complexity we consider here the procedure where we let ak = ct(p - 1)-1 and 

Bk = B( - 1)-i , where ot and B are the total additional errors for each class 

compared with the one-stage procedure. The division of the additional error 

between the k stages to give a minimum cost procedure for a given feature 

ordering is considered further below. 

11.3.4 Obtaining values for the new criterion for two known multivariate Normal 
populations with equal covariance matrices. 

The joint distributions of z 1 ,z 	and 21.....ZkZp (2 	k 	(p - 1)} are 

multivariate Normal for each population as can be seen using the results in 

sub-section 11.3.2 above. Equations (11.19), (11.20), (11.22) and (11.23) thus 

involve integrating over regions of multivariate Normal densities. The Zik and 

2,,k obtained may be simply transformed back to posterior probability ratios 

and thence to posterior probabilities if these are required at each stage. It is 

proposed that the equations may be successively solved by a numerical search 

procedure. 

11.4 An optimal fixed order of feature measurement when the onI 
cost associated with a feature is measurement cost. 

In principle we may define an optimal fixed order of feature measurement 

for either Fu's criterion or the criterion introduced in sub-section 11.3.3 , when 
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the feature order is free to vary with each object. From the derived 21,k  and Zu,k 

for k=1,...,(p - 1) for a given order of feature measurement we may calculate 

the total proportion of observations that may be allocated after each feature, 

except the last, has been measured. Defining P ik , k=1,...,(p - 1) , to be the 

proportion of population i that may be allocated after the kth feature has been 

measured, this is equal to 

00 2 u,k- i  2u,1 	Zik Z u ,k_1 2 u,1 

$ f ... ffi
(~O_& k 

+ S f ... ffi
(-Z k)dZ k . 	 (11.24) 

2 u,k ZI,k_1 211 	- 	 Z1,k_1 Z1 , 1 

Hence for the criterion introduced in sub-section 11.3.3 the total cost of a fixed 

order of feature measurement is proportional to 

EEkirIPjkC1k . 	 (11.25) 

where P., is the proportion of population i still not allocated after the values of 

the (p - 1)th feature have been obtained. For Fu's criterion we must take 

account of misallocation costs as well so the total cost for a given order of 

feature measurement is proportional to 

+ 	6k12 + Ek,fl2ckM21 	 (11.26) 

where 6k  and  Ck  are the errors in allocation for objects from population 1 and 

2 made at the kth stage. The cost of using an optimal fixed order of feature 

measurement can be expected to be greater than that of using an optimal 

varying order. It may, however, be computationally easier to work out the 

optimal fixed order. 
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11.5 Computation of an optimal fixed order of feature measurement 
when the only cost associated with a feature is measurement cost. 

For the criterion introduced in sub-section 11.3.3 we can use the branch 

and bound algorithm to attempt to reduce the required number of calculations 

(Hand, 1981a). We can build an inverted tree with as many roots as there are 

features. For a node at level k in this tree, where level k is the number of 

levels down from the roots including the roots, the first k features are in the 

same order for the nodes below. Given a cost for a particular order we can 

then work down the tree calculating the cost of the discrimination so far for 

the first k features and as soon as total cost exceeds the current minimum 

cost no examination of descendent nodes is necessary. For this criterion the 

values of the 11k  and Zuk  need not be calculated until they are required. The 

branch and bound strategy is not possible for Fu's criterion because the limits 

of integration differ for every order of all the features. Further all the Zik  and 

Z u k must be calculated before the evaluation of an optimal fixed order can 

start. 

11.6 A sub-optimal fixed order of feature measurement when the 
only cost associated with a feature is measurement cost. 

For a large number of features an optimal fixed order of feature 

measurement may be too computationally expensive to calculate. We can 

consider instead stepwise approaches to obtaining a fixed order of feature 

measurement. For the criterion introduced in sub-section 11.3.3 we may take 

the feature to be measured at the kth stage from those not measured so far as 

that which maximises 

Ck 1  EiiPik 
	 (11.27) 

This criterion may be interpreted as choosing as the feature to be measured 

next that which gives maximum additional allocation per unit cost. To take 

account of misallocation costs we may take the next feature to be measured as 

that which minimises expression (11.26) where the kth feature is regarded as 

the last. 
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11.7 Artificial examples 

To illustrate the theory described for two known multivariate Normal 

distributions with equal covariance matrices the following artificial example is 

used. The population location vectors take the values 

Pi  = [0, 0, 0] 

and 

li2T  = [0.25, 0.50, 0.751 

and the common covariance matrix is taken to be 

[1 	0.1 0.51 
E = 10.1 1 	0.91 
- 	[0.5 0.9 1 j. 

The measurement costs of each feature are taken to be c1 = 1 , C2 = 2 and 

C3 = 3. Both misallocation costs are taken as equal to 20 and the prior 

probabilities are assumed equal. It is assumed that there is no cost for the 

calculation of the discriminant scores. For the criterion introduced in 

sub-section 11.3.3 an additional misallocation error of 0.01 for each population 

is regarded as allowable. The stopping rule for Fu's criterion was that both 

sides of (11.17) and (11.18) agreed to 2 decimal places at each stage. All 

integrations were done to 2 decimal place accuracy. Equations (11.19) and 

(11.20) and (11.22) and (11.23) were solved iteratively. This was done by setting 

to zero the right-hand side of each pair of equations to obtain values of z 1  

and zi  and  zik  and 2uk  and then iteratively altering 211 and zi  and 21k  and 

2uk to satisfy the equations. This method converged for this example. 

Convergence was defined to be agreement to 4 decimal places with both 

intended additional errors. All integrations were done to 4 decimal place 
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,accuracy. 

The six possible orders of the three features and their associated costs for 

the two criteria are given in Table 11.1 . The values for the two criteria are not 

comparable because for Fu's criterion measurement and misallocation costs are 

assumed to be commensurable whilst for the criterion given in sub-section 

11.3.3 this is not the case. For both criteria the ordering of the three features 

312 gives the lowest cost discrimination procedure. The 'usual' stepwise 

forward selection procedure referred to in Table 11.1 is that given by choosing 

the feature to be measured next as that which maximises the Mahalanobis 

distance between the mean vectors. The sub-optimal fixed orders obtained are 

given in Table 11.2 . The branch and bound solution for the optimal fixed order 

for the criterion given in sub-section 11.3.3 is shown in Figure 11.1 

The branch and bound solution in Figure 11.1 shows that taking the order of 

the features given by the sub-optimal procedure as a starting point no 

reduction in computation may be achieved. This is because only the nodes at 

level 3 in the tree give discrimination costs greater than the cost of the 

ordering given by the sub-optimal procedure. 

11.8 A minimum cost version of criterion 11.3.3 for a fixed order of 

feature measurement. 

Instead of deciding for ease of computation to divide the additional 

allowable error per class evenly between the (p - 1) intermediate stages for the 

criterion given in sub-section 11.3.3 , we may seek the division of the 

additional error which minimises (11.25) for a particular feature order. This 

means finding the values of ak  and  Bk, k=1 .....(p - 1) which minimise (11.25) 

subject to Ekk = and EkBk = B for each feature order. The lowest cost fixed 

order of feature measurement would then be the lowest cost achieveable for 

the given allowable additional errors for each class. 

11.9 Additional error versus cost of discrimination for an optimal 
fixed order of feature measurement when the only cost associated 
with a feature is measurement cost. 

If it is difficult to specify a maximum additional allowable error for each 

class it may be preferable instead to calculate the cost of discrimination for an 
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Table 11.1 

Cost of sequential discrimination for each order of feature 
measurement for example in section 11.7 

(Cost is proportional to number given in table.) 

Ordering 	Fu's criterion 	 Section 11.3.3 criterion 

123 	 9.70 	 5.62 

132 	 9.71 	 5.56 

213 	 9.58 	 5.57 

231 	 9.64 	 5.58 

312 	 9.53 	 5.43 

321 	 9.55 	 5.47 

Feature order given ty usual forward stepwise selection procedure. 

321 
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Table 11.2 

Orders given 	sub-optimal procedures for example 
given in section 11.7 

's criterion 	Sub-section 11.3.3 criterion 

123 	 312 
132 

Usual forward stepwise selection procedure 

321 

T1 



Figure 11.1 

Branch and bound solution to finding an 

optimal fixed order of feature measurement 

for the example given in section 11.7 and 

the criterion in sub-section 11.3.3 

(Feature measured at kth stage given at level 

k with lines joining features measured so far. 

Discrimination cost so far proportional to 

number in brackets.) 

I 

(1) 

23 

	

(2.94) 	(3.90) 

i 

	

(5.62) 	(5.56) 

2 

(2) 

13 

	

(2.93) 	(4.80) 

3 	1 

	

(5.57) 	(5.58) 

3 

(3) 

12 

	

(3.86) 	(4.73) 

2 	1 

	

(5.43) 	(5.47) 
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optimal fixed order of feature measurement for various specified additional 

errors for each class. A 'best' choice might be then made from amongst these 

alternatives. 

11.10 Including the cost of calculating discriminant scores in the 
cost associated with a feature for an optimal fixed order of feature 
measurement. 

If the cost associated with a feature is to include the cost of calculating the 

discriminant scores (assumed commensurable with feature measurement cost) 

and these are calculated immediately after it has been measured, then it may 

not be optimal to calculate discriminant scores after every feature 

measurement. Consequently, for each fixed order of feature measurement 

there is the choice of calculating or not calculating the discriminant scores 

after each feature is measured. This gives 2 - 1 possibilities for each fixed 

order of feature if discriminant scores are to be calculated at least once. The 

criteria for early allocation of an object described in section 11.3 may be 

re-defined for each of these possibilities so that discriminant scores are 

calculated only after certain features have been measured. If it is assumed that 

at least some objects will still not be allocated when the values of the last but 

one feature have been obtained for the modification of the criterion introduced 

in sub-section 11.3.3 then discriminant scores must be calculated after all 

feature values are obtained for these objects. This reduces the 2 - 1 

possibilities described above to One of these possibilities corresponds to 

the usual one-stage discrimination procedure. For the modification of Fu's 

criterion, p of the 2 - 1 possibilities correspond to one-stage discrimination 

procedures using a subset of the features or all the features. When 

discriminant scores are calculated after a feature is measured the cost is 

included in the cost associated with that feature, otherwise it is omitted from 

the cost associated with a feature. Values of 21,k  and 2u,k  for the case of two 

known multivariate Normal populations with equal covariance matrices can be 

derived in a similar manner to that described in sub-sections 11.3.2 and 11.3.4 

for the sequential procedures with each fixed order of feature measurement. 

The proportion Pik  in expressions (11.25), (11.26) and (11.27) is defined as 

identically equal to zero if discriminant scores are not calculated after the kth 

feature is measured. For the modification of the criterion introduced in 

sub-section 11.3.3 the additional error might be divided equally amongst the 
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number of intermediate stages at which discriminant scores are calculated. 

11.11 An empirical approach for the criterion in sub -section 11.3.3 

A drawback to the above theory is that the distribution parameters are 

assumed to be known. For sample sizes large relative to p this need not 

matter. However, an alternative approach given a training data set and a test 

data set is to estimate the distributions of discriminant scores for those 

objects in the test set which would be correctly allocated and incorrectly 

allocated with all p features when only k < p features are measured, for each 

class. For k = 1 all the objects in the test set that would be correctly or 

incorrectly allocated with p features are used but for k = 2 .....(p - 1) objects in 

the test set that would be allocated with less than k features need to be 

omitted. Numerical integration of the distributions will then provide suitable 

estimates of z 1 , 1  and z, 1  and Zik and Zu,k  in equations (11.19) and (11.20) and 

equations (11.22) and (11.23). Additionally, the distribution of discriminant 

scores using all features of objects still not allocated when the values of the 

last but one feature have been obtained needs to be estimated for each class. 

The estimated cost of a particular feature order may then be obtained by 

integrating over the two distributions obtained at each stage, except the last, to 

estimate the proportion of each population which can be allocated at each 

stage for each class. An optimal or sub-optimal feature order may be 

calculated as described above. 

11.12 Sequential discrimination between artefacts and cells for 
cervical smears. 

To illustrate the empirical approach of estimating directly the distributions 

Of zk for objects that would and would not be correctly allocated using all p 

features not yet allocated at stage k for each class, using training and test data 

sets, the linear discriminant function derived from assumptions of multivariate 

Normality and equal covariance matrices is used sequentially to distinguish 

between artefacts and cells in cervical smear specimens. The error rates 

obtained are worse than for the "box" discrimination method with joint ad-hoc 

setting of upper and lower limits for each feature mentioned in chapter 2. 

However, this example illustrates the control of the additional error introduced 

by sequential discrimination. 
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For the data set used here, described in chapter 3, features were measured 

in a fixed order of 3 groups of features. It is assumed that the cost of 

calculating discriminant scores is unimportant relative to feature measurement 

costs so that the only cost associated with a feature is measurement cost. 

The decision rule used when all features have been measured was to allocate 

an object as an artefact if its estimated posterior probability of being an 

artefact was greater than 0.01 . This gives a reasonable point on the plot of 

artefact errors versus cell errors. The data set of 92 specimens was divided 

into two parts of equal numbers of specimens so that the two distributions of 

discriminant scores at each stage except the last and the distribution of scores 

after all features have been measured for objects not previously allocated could 

be estimated for each class using the second part of the data set. It should be 

noted that each stage corresponds to obtaining the values for a group of 

features rather than for one feature at a time as described in section 11.3 . The 

distributions of discriminant scores were estimated using kernel density 

estimation with a Normal kernel and an adaptive smoothing parameter. The 

calculation of the bandwidth factors was as described in chapter 8 with the 

initial smoothing parameter given by the robust estimate (Silverman, 1986, page 

48) 

h = 0.9*An/'5 
	

(11.28) 

where A = min(standard deviation, interquartile range/1.34) and n is the sample 

size. The iterative method of solution described in section 11.7 for the solution 

of equations (11.19) and (11.20) and (11.22) and (11.23) was also used here for 

their empirical equivalents and again converged. The number of points used in 

each numerical integration was the same and was increased until the results 

gave the intended increase in error compared with the one-stage 

discrimination procedure. 

Table 11.3 shows the proportions of cells and artefacts in the test set that 

may be allocated at the intermediate stages and the final stage for an intended 

additional error of 0.1% for each population when the additional error is divided 

evenly between the two intermediate stages. As discussed above an optimal 

division of the additional error between the two stages could be sought if this 
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Table 11.3 

Proportion of artefacts and cells that may be allocated after 
each group of features has been measured using sequential 

approach described in section 11.12 

Group 	Artefacts 	 Cells 

1 	0.741 	 0.690 

2 	0.208 	 0.235 

3 	0.051 	 0.075 

Error rates for sequential approach. 

Artefacts 	 Cells 

0.267 	 0.690 

Error rates for use of all features at once in linear 
discriminant function. 

Artefacts 	 Cells 

0.266 	 0.689 
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was thought worthwhile. 
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Chapter 12 
Conclusions. 

12.1 Introduction. 

In this chapter the results of the work presented in this thesis are 

summarised and suggestions made for possible future work. 

12.2 Review of results for the automated allocation of human 

chromosomes. 

Three new procedures for modelling between-cell variation were presented 

in chapter 4. These were: 

The transformation of each feature to marginal Normality when cell and 

class effects were allowed for in a linear model on the transformed scale. 

The cell effect was then removed on the transformed scale before the use 

of a discrimination method based on multivariate Normality. 

The regression of size-related features on an index of size for the cell, 

within each chromosome class. 

The division of cells into three classes according to the degree of 

contraction of the chromosomes with different sets of discriminant 

functions for each type of cell. 

The estimated error-rates obtained under these three, new procedures for three 

data sets, using Estimative multivariate Normal discrimination with a common 

covariance matrix per Denver group, showed that there is no consistent 

evidence of better performance than under the current normalisation. There 

was also evidence from two of the data sets that the division through by the 

within-cell standard deviation, currently done for some features, increased the 

error-rate. 

In chapter 5 six methods of combining class information on variability in 

multivariate Normal discrimination were considered for the automated 

allocation of human chromosomes. Compared with the use of unrelated 

covariance matrices, these six methods have the advantages of reducing the 

number of parameters in the predicted densities and the number of calculations 

required to allocate the chromosomes in a cell for the numbers of features 

considered. The results obtained for five human chromosome data sets 
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showed that the trade-off between computational time and estimated 

error-rate can be improved compared with that obtained by the estimation of 

unrelated covariance matrices. For two of the five data sets some of these 

methods of combining class information gave the lowest estimated error-rates. 

It is conjectured that this is because the bias in estimation of the predicted 

distributions is compensated for by the reduction in sampling variation 

compared with methods assuming unrelated covariance matrices. 

The idea of reducing the number of parameters in multivariate Normal 

discrimination was further explored in chapter 6. The covariance structures of 

individual class covariance matrices and assumed common covariance 

structures for groups of classes were modelled using covariance selection 

models. Results for the sets of covariance selection models obtained for the 

five data sets used in chapter 5 show that these sets of models can provide 

candidate procedures for the trade-off of estimated error-rate against 

computational time. 

In chapter 7 some two-stage procedures for the calculation of discriminant 

scores in multivariate Normal discrimination were presented The main 

motivation for this was to attempt to save computational time. At the first 

stage, a subset of features was used to eliminate improbable classes before a 

second stage in which all features were used to make a final allocation. 

Comparison with single-stage procedures using three data sets showed that it 

is possible to greatly reduce the expected computational time required to 

allocate the chromosomes in a normal cell for no increase in the estimated 

error-rate. 

The application of classification trees, nearest neighbour discrimination, 

kernel density discrimination and logistic discrimination to the automated 

allocation of human chromosomes was considered in chapter 8. Results were 

obtained for the five data sets used in chapters 5 and 6 for particular versions 

of the three non-parametric methods. The results obtained for the classification 

trees were much worse than those for the multivariate Normal discrimination 

procedures described in chapter 5. No attempt was made to consider the 

trade-off between computational time and estimated error-rate because the 

estimated error-rates were so much bigger than those for the multivariate 

Normal discrimination procedures. The nearest-neighbour and kernel density 

discrimination procedures also did not give lower estimated error-rates than 
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did the multivariate Normal discrimination procedures. Again, no attempt was 

made to consider explicitly the trade-off between estimated error-rate and 

computational time. This is because it appeared unlikely that a procedure 

competitive with the multivariate Normal procedures would be obtainable. 

Finally, the amount of c.p.u. time required to estimate the parameters in logistic 

discrimination on a powerful computer for even a very small number of 

features seems excessive for its use to be seriously considered at the present 

time. 

In chapter 9 non-parametric and multivariate Normal models were 

considered for the probabilities of band transition sequences derived from the 

sequence of light and dark bands along a chromosome. This is an alternative 

approach to chromosome allocation to that used in chapters 4, 5, 6, 7 and 8 

where mainly 'global' features were used. 'Global' features such as the sums of 

weighted density profiles measure a property obtained from the entire 

chromosome whilst 'local' features such as peak density of staining in a 

segment measure a property from a part of the chromosome. The 

non-parametric models in this case gave lower estimated error-rates than the 

multivariate Normal models. However, a re-definition of peak density of staining 

and the difference in density of staining between a peak and its next "valley" 

would make the multivariate Normal models more plausible. This is because, 

currently, if there is no peak density of staining in one of the fourteen 

segments a zero is recorded for both the peak density and the density 

difference. Defining a peak density and density difference with continuous 

measurement for each segment would give data more appropriate to the use of 

multivariate Normal models. The results for the non-parametric models were 

still worse than those for the multivariate Normal discrimination procedures 

which used mainly 'global' features. 

None of the results of Chapters 4-9 used a re-arrangement procedure for 

revising the isolated allocations in order to achieve a normal karyotype. The 

effects of re-arrangement for the most promising procedures needs to be 

assessed. 

12.3 Possible future work for the automated allocation of human 

chromosomes. 

Because of errors in the pattern recognition process it is apparent that 
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some feature values may have large errors and that this will affect the 

statistical discrimination. For example, the location of the centromere of a 

chromosome may be incorrectly determined. A possible approach would be to 

try to detect when these features are incorrect by reference to values of 

features which are less prone to large errors. If features are detected as 

having incorrect values then the allocation could be done by the operator or 

else these feature values could be excluded from those used in the statistical 

discrimination. 

Related to the above idea of unreliable data is that of looking at only good 

quality metaphases. If segmentation can be made to be completely automatic 

or the operator is required to look at a number of cells anyway, chromosomes 

in several cells could be allocated. The cells could then be presented to the 

operator in descending order of probability that all chromosomes in the cell 

were correctly allocated. This probability might be assessed by multiplying 

together the posterior probabilities of class membership for the individual 

chromosome allocations. 

A different approach would be to attempt to combine statistical and 

knowledge-based approaches. This might be done by using the latter to rule 

out certain classes as impossible for a particular chromosome because of the 

posession of certain local features, then using statistical discrimination to 

decide between the remaining classes. Alternatively, the statistical 

discrimination could be used to rule out classes with a very low estimated 

probability before a knowlege-based approach is used. 

So far allocation .based on weighted density profiles and on band-transition 

sequences has been kept distinct. Lower error-rates might be achieveable by 

using allocation based on both sets of features. 

As noted in the previous section the effects of re-arrangement procedures 

for revising the isolated allocations in order to achieve a normal karyotype 

might be studied for some of the procedures considered in this thesis. 

Finally, information on the similarity of homologues (the pair of 

chromosomes in each of the autosomal classes and the pair of sex 

chromosomes for a female, in a normal cell) might be incorporated into the 

model used for discrimination to try to improve allocation error-rates. 
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12.4 Review of results for the automated allocation of cervical 

smears. 

In chapter 10 the method proposed by Dawid and Skene (1979) to estimate 

observer error-rates for allocations of the same samples by a number of 

observers was used to estimate a consensus probability of a cervical smear 

being abnormal. This method was used because of the evident disagreement 

between four cytologists. The logit transformations of the consensus 

probabilities were then regressed on features available automatically from the 

operation of an object discrimination procedure and also on these features and 

further features derived after the intervention of an operator. These two 

multiple regression equations were used in a sequential approach such that the 

second equation was used to predict the logit of a consensus probability if the 

probability derived from the predicted logit using the first equation lay between 

certain thresholds. Otherwise the probability derived from the predicted logit 

for the first equation was used. The results indicated that machine 

performance with error-rates similar to those of one of the cytologists was 

possible for a given amount of operator intervention. Setting the estimated 

false-negative error-rate to be as low as those of the other three cytologists 

causes estimated false-positive error-rates higher than those of these 

cytologists. 

In chapter 11 the sequential use of linear discriminant functions for 

distinguishing between artefacts and cells in a cervical smear specimen was 

considered. The empirical procedure used demonstrated the control of the 

additional error-rate compared with the use of a linear discriminant function 

based on all the features. However, the result was worse than that obtainable 

by using the "box" discrimination procedure currently implemented in the 

system. 

12.5 Possible future work for the automated allocation of cervical 

smears. 

Given that improvement in the object allocation may be expected to 

improve the specimen allocation it would seem worthwhile exploring the 

former further. In particular, it may be worth trying to find a systematic 

multivariate approach for the elimination of artefacts in stages. The major 

constraint, however, is that such an approach must be computationally very 
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fast. A possible approach would be to obtain kernel density estimates for the 

artefacts and for each type of cell using a computationally quick kernel, to 

reduce drastically the number of objects for the kernel density estimates (Hand, 

1981b, pages 30-31) and to use a fast algorithm for finding the objects with 

feature vectors within a certain distance of that object to be allocated 

(Friedman, Bentley and Finkel, 1977). The empirical sequential approach 

outlined in chapter 11 might then be used to distinguish between artefacts and 

other types of cell in order to save feature measurement time. 

At the specimen level it would seem worthwhile obtaining more data so 

that cytologist and machine error-rates for three rather than two categories of 

abnormality of cervical smear could be estimated. These three categories could 

be normal, moderately abnormal and severely abnormal. 

12.6 Review of theoretical results derived. 

In chapter 11 the computation required by Fu's dynamic programming 

approach to obtaining an optimal varying order of feature measurement was 

briefly reviewed. This approach assumes: 

The only costs are for feature measurement and misallocation. 

These costs are commensurable. 

The class distributions are known. 

An alternative approach to that of obtaining an optimal varying order of feature 

measurement, when the feature order is free to vary, was proposed. This 

approach, which may require less computation to obtain a solution, is to define 

an optimal fixed order of feature measurement. Results were obtained for two 

known multivariate Normal populations with equal covariance matrices for Fu's 

criterion and a new criterion, for early allocation of an object when the feature 

order is fixed. For both criteria the only costs are assumed to be those of 

feature measurement and misallocation. Because the evaluation of an optimal 

fixed order of feature measurement may be computationally too demanding 

sub-optimal approaches to obtaining a fixed order of feature measurement 

were also considered for these two criteria. The evaluation of an optimal fixed 

order of feature measurement was considered when the cost of the calculation 

of the discriminant scores after a feature has been measured is included in the 

measurement cost of a feature. The two criteria for early allocation of an object 

need to be re-defined and it may not be optimal to calculate the discriminant 
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scores after the value for each feature has been obtained. It may also be the 

case that a one-stage procedure gives a lower cost procedure than a 

sequential procedure. Finally, an empirical approach for the use of the new 

criterion for early allocation of an object was advocated and illustrated on the 

cervical smear data. 

12.7 General conclusion. 

The methods used in this thesis could have applications to other real-time 

discrimination problems and to discrimination problems with no real-time 

component. For example, the reduction in number of parameters for 

multivariate Normal discrimination described in chapters 5 and 6 may improve 

the trade-oft between computational time and error-rate in other real-time 

problems. The reduction in number of parameters may also, however, improve 

error rates in discrimination problems where computational time is not an 

important consideration. 
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