
Nonlinear Guided Waves 
In Fibre Optics 

Elaine Ryder 

Thesis presented for the degree of 
Doctor of Philosophy 

University of Edinburgh 

WIN 



Abstract 

Optical fibres are widely used in optical communication systems because they 

can transmit signals in the form of extremely short pulses of quasi-monochromatic 

light over large distances with high intensities and negligible attenuation. A fibre 

that is monomode and axisymmetric can support both left- and right-handed 

circularly polarised modes having the same dispersion relation. The evolution 

equations are coupled nonlinear Schrödinger equations, the cubic terms being 

introduced by the nonlinear response of the dielectric material at the high optical 

intensities required. 

In this thesis we analyse signal propagation in axisymmetric fibres both for a 

fibre with dielectric properties which vary gradually, but significantly, along the 

fibre and for a fibre which is curved and twisted but with material properties 

assumed not to vary along the fibre. 

For fibres with axial inhomogeneities, we identify two regimes. When the axial 

variations occur on length scales comparable with nonlinear evolution effects, the 

governing equations are found to be coupled nonlinear Schrödinger equations 

with variable coefficients. Whereas for more rapid axial variations it is found 

that the evolution equations have constant coefficients, defined as appropriate 

averages of those associated with each cross-section. The results of numerical 

experiments show that a sech-envelope pulse and a more general initial pulse 

lose little amplitude even after propagating through many periods of an axial 

inhomogeneity of significant amplitude. 

For a curved and twisted fibre, it is found that the pulse evolution is governed 



by a coupled pair of cubic Schrödinger equations with linear cross coupling terms 

having coefficients related to the local curvature and torsion of the fibre. These 

coefficients are not, in general, constant. However for the case of constant 

torsion and constant radius of curvature which is comparable to the nonlinear 

evolution length, numerical evidence is presented which shows that a nominally 

non-distorting pulse is unstable but the onset of instability is delayed for larger 

values of torsion. 

The integrability of partial differential equations can be determined by 

identifying whether, or not, the equations have the Painlevé property. Using 

Painlevé analysis we show that the integrability of the coupled constant coefficient 

nonlinear Schrödnger equations depends on the value of the coupling coefficient 

and we identify values for this constant in order that the equations have the 

Painlevé property. The values we obtain agree with previously known results 

about the integrability of this system of equations. For the cases that the 

equations are not integrable, we use Painlevé analysis to find possible solutions 

to the equations, by considering a truncated Painlevé series. We show that 

Painlevé analysis can suggest general forms of solution for the coupled nonlinear 

Schrodinger equations, however the only, solutions that are identified are ones 

that are already known. 
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Chapter 1 

Introduction 

1.1 Communication systems 

Communication systems which allow information to be broadcast over long 

distances have been in use since ancient times. The early communication systems 

mainly involved optical or acoustical signals such as beacons, smoke signals or 

drums, for example, the Greeks were known to have used signal fires as warning 

alarms. These simple communication systems had several drawbacks. The 

amount of information that could be conveyed was limited because the meaning 

of the signal had to be prearranged between the sender and the receiver, and it 

was not possible to add to the message or change its meaning. To overcome this 

problem, systems were introduced which allowed the message to be encoded in 

some way, for example semaphore or signal flags. Factors which also affect the 

signal transmission are weather conditions, such as rain or fog, and obstacles 

in the signal path, these reduce the distance over which the signal can be 

transmitted. An increase in the length of the transmission path was obtained by 

the use of relay stations. However the transmission rates of these systems were 

low, and runners, riders or carrier pigeons were often the preferred method for 

sending information. All of these methods of communication were unreliable, and 

there has been a constant desire to eliminate chance interruptions to messages. 

The invention of the telegraph by Morse in 1838 marked the beginning of a 
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series of developments in electrical communication systems which increased the 

data transmission rate. The telegraph consisted of a wire cable along which 

electrical signals could be sent at rates which were much faster than any of 

the previous communication systems. With the discovery of electromagnetic 

radiation by Hertz in 1887 and the first demonstration of radio eight years later by 

Marconi, the communication rates increased as higher frequency electromagnetic 

waves were used as the carrier waves. Since the amount of information that can 

be transmitted using electromagnetic radiation is directly related to the frequency 

range of the carrier wave, research into new communication systems has mainly 

been concerned with using higher frequency carrier waves, such as radar and 

microwaves. Although optical frequencies can offer much higher communication 

rates than frequencies used in electrical communication systems, development of 

optical communication systems was prevented by technical problems described 

below which have only been overcome since the laser was invented. As well as 

increasing the communication rates, these communication systems have increased 

the reliability as special receiving equipment is required to decode the messages. 

1.2 Development of optical communication 
systems 

Towards the end of the nineteenth century Alexander Graham Bell gave 

the first demonstration of his 'photophone' (Bell, 1880), which operated on the 

same basic principle that is used in optical communication systems today. This 

instrument transmitted sound over a distance of 200 metres, using a beam of light 

of varying intensity as the carrier wave. However, it was not until Hondros and 

Debye (1910) suggested that light could be transmitted through dielectric rods 

or waveguides that light was considered as a possible signal carrier wave. 

The first unclad glass fibres were manufactured during the 1920's, but were 
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impractical for transmission of light over long distances due to high losses caused 

by impurities in the glass and discontinuities which occurred at the glass-air 

interface where the fibre was supported. In the 1950's it was proposed that the 

signal power could be better confined within the fibre if it was coated with a 

layer of material of a slightly lower refractive index (van Heel, 1954). The first 

cladding layers were plastic and although the transmission loss was lower than 

that which occurred in unclad fibres, these fibres still exhibited a high level of 

light loss because of imperfections in the fibre. Losses were further reduced by 

coating the dielectric fibre with a glass of a lower refractive index (Kapany, 1959). 

The interest in optical communications was revived with the invention of 

the laser in 1960. The laser provided a coherent light source which could be 

modulated sufficiently rapidly at the high frequencies required for a carrier wave 

in an optical communication system. Despite this most of the work on dielectric 

waveguides remained theoretical until 1966 because the only glass fibres which 

were available exhibited transmission losses of approximately 1000dB/km, which 

were too large for communication systems. Then in a theoretical study, Kao 

and Hockham (1966) suggested that these high loss levels were mainly due 

to impurities in the glass and that if a low-loss dielectric material could be 

manufactured, with a loss of around 20dB/km, optical waveguides could be used 

as a communication medium. 

During the next decade, glass refining processes were improved and the losses 

in silica fibres were reduced to the 20dB/km threshold (Kapron et al., 1970), 

which had been suggested by Kao and Hockham. Further improvements in the 

fabrication process and the use of high purity starting materials has allowed this 

loss to be further reduced to 0.2dB/km near the 1.55pm wavelength (Miya et 

al., 1979). There is a lower limit on the fibre loss caused by Rayleigh scattering, 

an intrinsic property of the glass, which for pure silica occurs near the 1.55pm 

wavelength. The lowest attenuation which has been reported at this wavelength 

is 0.154dB/km (Kanamori et al., 1986), although for practical purposes a loss of 
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0.2dB/km is acceptable. 

Optical waveguides are made of dielectric materials whose refractive index 

varies with the intensity of the light source. For weak light sources this 

dependence is approximately linear but for stronger sources, such as lasers, the 

dependence becomes nonlinear. Hasegawa and Tappert (1973) proposed that 

the dispersion which causes the broadening of the signal could be balanced 

by the nonlinear effects of the material which cause a sharpening of the pulse 

and that this balancing could, in theory, allow a stable pulse to propagate over 

the transmission lengths required for long distance telecommunications systems. 

They were able to demonstrate this balancing effect both theoretically and 

numerically for a medium which has a cubic nonlinearity. It was not until low-loss 

fibres were manufactured that Mollenauer, Stolen and Gordon (1980) were able 

to make the first experimental observations of non-distorting pulses in optical 

fibres. 

There has been much work undertaken to show mathematically how the 

two phenomena affect the propagation of waves in a fibre. Much of this work 

(Anderson and Lisak, 1983, Zakharov and Shabat, 1972, Potasek et al., 1986) 

has shown that the governing equation for the amplitude modulation of the 

signal is the cubic Schrödinger equation. However, the fundamental mode of an 

ideal cylindrically symmetric, isotropic, monomode fibre consists of two equivalent 

modes (Snyder and Love, 1983) which are orthogonally polarised, these modes are 

degenerate, that is, they have the same dispersion relation. In practice a fibre is 

never ideal, the core may be slightly elliptic, the material anisotropic, or the fibreS 

bent, these perturbations from the ideal cause the polarisation to change along 

the fibre, the degeneracy between the two modes is destroyed and birefringence is 

introduced. Menyuk (1987) and Blow et al. (1987) have shown that in birefringent 

fibres there is an interaction between two orthogonal linearly polarised modes 

which have slightly differing phase speeds and have shown that the evolution of 

the pulse amplitudes is governed by a pair of coupled equations. However, even 
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in an ideal single-mode fibre the existence of two equivalent modes means that 

signals. with different polarisation interact nonlinearly and that two independent 

complex amplitudes are required to describe the signal. Parker and Newboult 

(1989) have shown that the equations which describe the signal amplitudes are a 

coupled pair of cubic Schrödinger equations. Unlike the single cubic Schrödinger 

equation, this system of equations is not completely integrable (Zakharov and 

Schulman, 1982), but it does possess a large family of non-distorting pulselike 

solutions and other families of generalised similarity solution (Parker, 1988). 

Numerical study of both the nonlinear Schrödinger equation and the coupled 

nonlinear Schrödinger equations has been carried out. Desem and Chu (1987) 

have investigated the interaction of two closely separated solitons using the exact 

two soliton solution to the single nonlinear Schrödinger equation, while Parker and 

Newboult (1989) have investigated the interaction of two initially well separated 

solitons which individually are solutions to the coupled nonlinear Schrödinger 

equations. Blow et al. (1987) have investigated the stability of single solitons in 

birefringent fibres. 

Although solitons may propagate in perfectly lossless fibres, in practice there 

will always be attenuation and broadening of a pulse, which will reduce the length 

over which the soliton will propagate. Communication systems require that the 

pulse be transmitted over long distances and some means of compensating for 

these effects is required. One method is to amplify and reshape the solitons 

periodically. This can be achieved either, by injecting a weak pump beam 

into the fibre in the direction opposite to that of the soliton propagation to 

induce the Raman effect or, by splicing short lengths of erbium doped fibre into 

existing optical fibres. By inducing the Raman effect in a fibre, pulses have been 

transmitted experimentally over distances greater than 4000km (Mollenauer and 

Smith, 1988), while propagation lengths of 12000km at a bit rate of 24Gbits/s 

have been achieved using erbium.doped fibres (Mollenauer et al., 1990). Tajima 

(1987) suggested that instead of periodically amplifying the solitons, invariant 
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solitons could be obtained by tapering the fibre core. A more rigorous treatment 

was presented by Kuehl (1988) who showed that Tajima's work was a special 

case of his theory. Both Tajima and Kuehl considered only the single nonlinear 

Schrödinger equation, and did not take into account the nonlinear interaction 

between the orthogonal polarisations of the fundamental mode. 

1.3 Modern optical fibres 

In its simplest form an optical fibre consists of a cylindrical, dielectric 

rod. Although this type of fibre will function as an optical waveguide, the 

electromagnetic fields are not wholly contained inside the dielectric region and 

will decay exponentially outside of the waveguide. This will cause high losses at 

any discontinuities in the silica-air interface, such as where the fibre is supported. 

To prevent this optical fibres usually consist of a central core region surrounded 

by a cladding layer, so that the electromagnetic field is confined substantially to 

the core. The refractive index in the cladding is chosen to be slightly lower than 

that in the core and it is this change in the refractive index that allows guided 

modes to propagate in the fibre. The core and the cladding are both made of 

silica with dopants added to the silica to obtain the refractive index variation 

across the fibre, CeO 2  and P 2 05  are used to increase the refractive index, while 

fluorine decreases it. The simplest type of fibre is the step-index fibre which has a 

constant refractive index in the core, n,0 , and in the cladding, nj, with nc0  > mci 

and a discontinuity at the boundary between the core and cladding. A second 

type is the graded-index fibre, in this type of waveguide the refractive index varies 

across the radius r, and may not have a well defined interface between the core 

and the cladding. 

An optical fibre is capable of supporting a finite number of guided modes and 

an infinite number of unguided radiation modes at any given frequency. The 



number of guided modes which can propagate along a fibre depends mainly on 

the radius of the core. If the diameter of the core is very much greater than the 

wavelength of the guided radiation, a large number of guided modes can exist and 

the fibre is referred to as a multimode fibre, and has core radii of between 25pm 

and 30pm. The number of modes that can propagate can be increased by using 

a larger core diameter. However, each of the guided modes travels at a different 

speed, causing the pulse to spread out as it travels along the fibre, this effect 

is called intermodal dispersion. Hence, for long distance optical communications 

systems it is desirable to allow only a small number of guided modes to propagate. 

In order that a fibre is single-mode, so only two orthogonally polarised guided 

modes propagate, the radius must be chosen to be very small ( 0.5pm), this 

causes problems when manufacturing the fibre or when connecting the fibre to 

other fibres or components of the communication system. However, by a careful 

choice of the values of the refractive indices of the core, n ° , and the cladding, 

so that the ratio n 0 /ns is very close to unity, the radius of the core can be 

increased ( 2jim-4jzm) without increasing the number of guided modes, and the 

fibre is said to be weakly guiding (Gloge, 1971). For a fibre with a graded-index 

profile it-is not always possible to distinguish between- the tore and the cladding, 

but this type of fibre will be weakly-guiding if the change in the refractive index 

is small. The radius of the cladding is chosen so that the field strengths at the 

outer edge of the cladding are so small that they can be assumed to be zero, for 

both single-mode and multimode fibres the cladding radius is normally between 

50pm - 60pm. In this thesis we shall be considering single-mode, weakly-guiding, 

graded-index fibres. 
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1.4 Maxwell's equations 

Light propagating in an optical fibre is an electromagnetic wave whose electric 

and magnetic field intensities, E and H, are governed by Maxwell's equations. 

For a medium having no free currents and no free charges, these equations can 

be written as 

VAE=— 
	
, 

at 
(1.1) 

VAH=, (1.2) 

V.D=O, (1.3) 

V•B=O. (1.4) 

For a non-magnetic material, the magnetic induction B is related to the magnetic 

field intensity H by 

B=p0H, 	 (1.5) 

where P0  is the magnetic permeability of free space. In dielectric materials the 

electric displacement D is given by 

D=e0E+P, 	 (1.6) 

where eo  is the dielectric permittivity of free space and P is the electric 

polarisation which is caused by the interaction between the electric field and 

the molecules of the material. 

For weak electric fields the induced polarisation is proportional to the 

magnitude of the applied field and, in particular, for an isotropic medium which 

responds instantaneously to the electric field, the polarisation is given by 

P = 	 (1.7) 

where x  is called the electric susceptibility and is a scalar (for anisotropic 

materials x  will be a tensor), this type of material is said to be linear. The light 

source used in optical communication systems is a laser, which emits light at very 



high intensities so that the polarisation will no longer be linearly proportional to 

the electric field. The polarisation can be expressed more generally as the series 

where pU)  represents all terms of'degree j in the electric field. p (1)  is the linear 

polarisation which is given in (1.7), and for isotropic materials which possess 

inversion symmetry, such as silica glass, p(2) = 0. If it is assumed that the 

response of the medium is instantaneous and that 

p(3) = NIEI 2E 

(Bendow et al., 1980), where N is the nonlinear coefficient which does not depend 

on the frequency, and any nonlinear effects due to higher order terms are negligible 

compared with the first and third order terms, then the electric displacement can 

be written as 

D = sE + NIEI 2 E. 	 (1.8) 

where e = eo(1 + x) is the dielectric permittivity, and both e and N depend on 

the position within the fibre. A material which exhibits this type of nonlinear 

effect is called a Kerr medium and the fibres ionsidered in this thesis are of this 

type. 

1.5 Summary 

In Chapter 2 we consider the effect of axial inhomogeneities on pulse evolution 

in a cylindrical single-mode lossless fibre. Corrections to the electromagnetic fields 

are obtained and it is shown that these corrections depend on the length scale 

of the inhomogeneity. The amplitude modulation equations which govern the 

pulse evolution are then derived for two different length scales of the longitudinal 

inhomogeneity. We then consider a pair of coupled variable-coefficient cubic 



Schrödinger equations and find conditions on the coefficients such that the 

equations can be transformed to the constant coefficient cubic Schrodinger 

equations. In the final section, numerical calculations are presented for the 

variable-coefficient evolution equations for both an initial sech-envelope pulse 

and more general initial pulses. 

A curved and twisted axially homogeneous fibre is considered in Chapter 3. 

Correction terms to the fields which are caused by the curvature of the fibre are 

found. The evolution equations are then derived and are shown to be a coupled 

pair of nonlinear Schrödinger equations with linear terms due to torsion effects 

and linear cross-coupling terms due to curvature effects. In the final section 

of this chapter we show that in some special cases these nonlinear evolution 

equations reduce to the single cubic Schrödinger equation. Numerical results for 

the evolution of more general non-distorting initial pulses are also presented for 

different values of curvature and torsion. 

In Chapter 4 we consider the integrability of the coupled pair of constant 

coefficient cubic Schrodinger equations using Painlevé analysis. An introduction 

to the Painlevé property is given. The Painlevé partial differential equation test is 

then applied to the coupled nonlinear evolution equations to determine values of 

the coupling constant for which the coupled equations have the Painlevé property. 

In Chapter 5 Painlevé analysis is used to obtain solutions of coupled pairs of 

constant coefficient cubic Schrödinger equations which do not have the Painlevé 

property, by considering solutions which are of the form of truncated Painlevé 

series. 

In Chapter 6 we present a summary of the results obtained in the preceding 

chapters. 

In Appendix A we derive an expression which relates the wavenumber of a 

guided mode to it's frequency and also obtain an expression for the group slowness 

of a guided mode. 

Appendix B contains a description of the method of multiple scales with 
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particular reference to its application in this thesis. 

The equations relating the correction fields which arise in the study of a curved 

axially homogeneous fibre are given in Appendix C. 

The coupled constant coefficient nonlinear Schrödinger equations can be 

reduced to a pair of coupled nonlinear ordinary differential equations by seeking 

non-distorting pulse solutions and in Appendix D we derive a series solution to 

these ordinary differential equations. 
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Chapter 2 

Fibres with axial inhomogeneity 

2.1 Preamble 

On a perfect, lossless fibre, solitons governed by a single cubic Schrödinger 

equation can retain their shape and amplitude due to a balance between 

nonlinearity and dispersion. However on a real fibre there will be losses which 

produce attenuation and pulse broadening. To compensate for this, both 

Hasegawa (1984) and Mollenauer et al. (1986) have proposed that the solitons 

could be amplified periodically by installing amplifiers at certain points along 

the fibre. Another method is to use a fibre which is axially nonuniform, this 

was proposed by Tajima (1987), who suggested that invariant solitons could be 

obtained by tapering the fibre core by an amount which is directly proportional 

to the soliton attenuation and inversely proportional to the square of the effective 

core radius. Kuehl (1988) presented a more rigorous treatment of these ideas and 

showed that Tajima's work was a special case of his theory. 

Both Tajima and Kuehl considered only the single cubic Schrödinger equation. 

However, a cylindrically symmetric, isotropic monomode fibre has two equivalent 

modes (Snyder and Love, 1983) so two independent complex amplitudes are 

required to describe the signal since signals with different polarisations interact 

nonlinearly. Parker and Newboult (1989) have shown that the evolution equations 

of the signal amplitudes in an axially homogeneous fibre are a coupled pair of 
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cubic Schrödinger equations. In this chapter the effect of axial inhomogeneities 

in a cylindrical, single-mode lossless fibre are considered. It is shown that the 

pulse evolution is again governed by a coupled pair of cubic Schrödinger equations. 

If the axial inhomogeneities have a length scale much shorter than that associated 

with nonlinear effects, only average properties of these nonuniformities enter the 

nonlinear evolution equations and for the special case of periodic nonuniformities 

the equations reduce to those of an equivalent uniform fibre. If the scale of 

the axial inhomogeneities is comparable with the nonlinear evolution length, 

the evolution equations for the pulse amplitudes are a coupled pair of cubic 

Schrödinger equations with variable coefficients. 

For the variable-coefficient equations, conditions are found for the existence 

of a transformation which reduces the equations to constant coefficient equations. 

The transformations which are found are natural generalisations of those obtained 

by Grimshaw (1979) for a single cubic Schrödinger equation with variable 

coefficients. For such cases, suitable sech-envelope pulses will propagate without 

radiation, although over the long lengths required for optical communication 

systems most of the cases correspond to non-physical behaviour of either the 

dispersive or nonlinear effects. Numerical calculations are performed to show 

that a sech-envelope pulse, or a more general initial pulse loses little amplitude 

even after propagating through 40 periods of an axial inhomogeneity of significant 

amplitude. 

2.2 Field corrections due to the axial 
inhomogeneity 

The electromagnetic fields in an axially-symmetric, non-magnetic, isotropic, 

dielectric waveguide are governed by Maxwell's equations (1.l)-(1.4)  in cylindrical 

polar coordinates (r, 0, z). For a material whose properties depend on the radial 

13 



coordinate r and slowly on the distance z along the fibre, the electric displacement 

is given, assuming Kerr-law nonlinearity (see Section 1.4), by 

D = (e (r, 7z) + N (r, 7z) I El 2 ) 
E. 	 (2.1) 

Here, the permittivity e and Kerr coefficient N are functions of radius and the 

distance along the fibre, and -y  is a small parameter which characterises the fibre 

inhomogeneities and represents the reciprocal of a typical length over which the 

slow variations occur. The fields which occur in the guided modes decay rapidly 

in the cladding, so the equations are analysed in the region (0 < r < oo) and a 

good approximation to the boundary conditions is E, H, D -, 0 as r -, oc. The 

fields are also required to be finite at r = 0. 

To solve the set of nonlinear differential equations (1.1)-(1.4), a second small 

parameter ii is introduced. This is an amplitude parameter which characterises 

the signal strength and is chosen so that effects due to cubic nonlinearity are 

comparable in magnitude with the modulation effects. The fields were expressed 

as leading order approximations and correction terms, as 

E = vE(1) + 0(v 2 ), 

H = vH' +• 0(v 2 ), 	 (2.2) 

D = vD(1) + 0(v 2 ), 

where D' = eE 1 . The nonlinear term IEI 2 E will be 0(v 3 ) and so will not enter 

the analysis at this stage. The relationship between the two small parameters -y 

and v is assumed to be 7/v = 0(1) or 7/v = o(1). Later in this section it will 

be shown that there are two possible order of magnitude comparisons, -y = 0(v 2 ) 

and 'y = 0(v), which give rise to different equations for the pulse evolution. 

If the expressions for the fields (2.2) are substituted into equations (1.1)-(1.4), 

the fields E' and H 1  will satisfy at least to 0(1) the linearized equations 
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VA E(') = /10--  , 	 (2.3) 

VA H 1  = 	, 	 (2.4) at 
eV 	= 0, 	 (2.5) 

1t0V 	= 0, 	 . 	(2.6) 

with the fields 	H 1  vanishing as r -* cc and finite at r = 0. 

The linearized Maxwell's equations have travelling wave solutions, which for 

a cylindrical waveguide will propagate in the axial direction, and must be single-

valued functions of position and hence must be 27r-periodic in 0. Using separation 

of variables we seek solutions in the form of circularly polarised modes 

E'(r,O,z,t) = E±(r,O)e lO+kzwt) + 

H 1 (r, 8, z, t) = H(r, O)& t0+kz_wt) + 
	

(2.7) 

where 1 is the azimuthal mode number (1 = 0,1,2 .... ), the + and - represent 

the left- and right- handed circularly polarised modes, c.c. denotes the complex 

conjugate and 0 is a phase variable having —O'/Dt = w the radian frequency 

and O'/Dz = k(u., 'yz) the local wavenumber. 

The modal fields Et  and H±  are resolved along the basis vectors (e,. , , e,) 

of cylindrical polar coordinates and represented as 

= it, e, ± Leo + E3e 	
(2.8) 

= ±H1 e,. + iH2eg ± iH3e 

with components k i ,fl i  being real functions independent of 0 and satisfying the 

system of equations 
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1E3  - krE2  - wp orHi  = 0, 	1113  - krH2  + werE 1  = 0, 

+ IcE1  —wpoL = 0, 
Or 	 Or - kft —weE 2  = 0, (2.9) 

+ 1E1  + wiorH3  = 0, 	(rH2 ) - lH1  + werE3  = 0 1  

arising from equations (2.3) and (2.4). Additionally , they satisfy the equations 

Or 
-(erEi ) + 6iE2  + erkE3  = 0, 	- r  -(rfti) - "12 - rIft 3  = 0, 	(2.10) 

O 

which result from equations (2.5) and (2.6) correct to 0(1) and which are linear 

combinations of the six equations (2.9). Consequently equations (2.10) may be 

omitted. Since no derivatives with respect to 7Z occur, equations (2.9) may be 

solved by treating 'yz as a parameter and, to leading order, the fields E±  and 

11± are governed by the same equations as for an equivalent axially-symmetric 

and axially-uniform waveguide with permittivity e(r). Thus, equations (2.9) are 

treated as an eigenvalue problem which is to be solved under the conditions that 

E1 , ft i  are finite at r = 0 and decay to zero at r = cc. Hence, for specified 

co, e(r, yz) and integer mode number 1, the allowable values of I emerge as the 

eigenvalues. For a fibre which has a step-index profile at each-yz, equations (2.9) 

can be solved in terms of Bessel functions (Marcuse 1974). However, for general 

e(r, -yz) approximate or numerical methods have to be used to find solutions. The 

resulting relation between the wavenumber I and the frequency w for each mode 

number 1 such that the system of equations (2.9) has non-trivial solutions is called 

the dispersion relation, which is discussed in Appendix A. For weakly-guiding 

fibres, only the ±1 modes propagate (1 = 1) and, since e depends on -yz, the field 

components E1 , 11, and the local wavenumber I for each choice of w and I will 

depend on -yz and the corresponding dispersion relation can be written as 

I = Ic(w,7z), 
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and the phase tf'  as 

= -1 J k(w, 7z)d(7z) - wt. 

Since a single-mode fibre allows two orthogonally polarised modes to propagate, 

a solution to equations (2.3)—(2.6) can be written as 

	

= A+E+&(o?) + AEe' 	+ c.c., 

(2.11) 

H' = A+H+61(o+1fl + 	 + c.c., 

where A± are independent complex amplitudes. 

To obtain approximations at higher orders of ii, a multiple-scales method (see 

Appendix B) is applied to equations (1.1) and (1.2) by introducing two scaled 

variables 

x=v7 117-1   s9d(7z)_t], 

where s9  Ok/& is the group slowness, and by allowing any fluctuations in the 

amplitudes A to depend on the two slow scales x  and Z so that 

= A(x, Z). The fields are treated as functions of the variables r, 0, 0, x, Z 

and are 2K—periodic in 0 and &. The z and t derivatives are replaced by 

49 	a 	a 	a 
- 	+ VS g 	+ 	

(2.12) 
aa 	a 

= —w—v—, 

and the fields are written as leading order terms and a correction of the order v 2 , 

E = 

H = 	+ v2 fi, 	 (2.13) 

D = uD( 1 )+ v2 D ,  

where D = eE + 0(v). By substituting (2.12) and (2.13) into equations (1.1) 

and (1.2) the correction fields, E and ft, are found to be governed by 
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V'A E - 	= [At(SYE+A e 	+ poH) + 1(AE + 4E)A ez] 6j(6 

+[A;(sgEm e + jioW) + 1 (AE + AE)A ez ] fr° 

	

+c.c. + o(1), 	 (2.14) 

V'A E + we 
aE 
 = [At(S2H+A e — eE) + 1(AH + 4H )A e z ] e °"' 

+[A;(s9 Hme — eE) + 2 (AH + AHiAez] e'N° 

+c.c. + 0(1), (2.15) 

where 

	

8 	1 
ff+k(w,Z)ez 

 a 
(2.16) V' e,. — + —e6 

Or r 

The terms in (2.14) and (2.15) which involve At  are due to amplitude modulation 

of the signal envelope and occur in the case of an axially homogeneous fibre 

(Parker and Newboult, 1989). The remaining terms are due to the fibre 

nonuniformities. 

Equations (2.14) and (2.15) can be written in the form 

all 
VAE—wpo - 

F, 	 (2.18) 

where G and F are 27r—periodic in 9 and 0, bounded at r = 0 and decay 

exponentially as r —* oo. If E and H are also to obey these conditions, then 

they must satisfy the compatibility condition 

(2.19) 

where B 	[O,00) x [0,2r] x [0, 27r], dV = rdrd9d' and P, Q are the most 

general solution of the linear equations 

V'AQ=—we 
or , 	(2.20) 

!KJ 



which are 27r—periodic in 9 and b with similar conditions on r = 0 and as r —* oo. 

These equations govern periodic, linearized fields travelling at the phase speed 

w/k in an equivalent uniform fibre. The general solution of these equations is a 

linear combination of fields having wavenumber an integer multiple of k. Since 

the fibre under consideration is assumed to be weakly-guiding only the modes 

1 = 1 propagate. So assuming that no integer harmonics of the 1 = 1 mode have 

the phase speed w/k, the most general solution for P and Q is 

P = aiE+&(O+tl') + a2E_eI(_O+?) + e.c., 
(2.21) 

q = a1H+ei4O + a2H&+ + tie., 

where a  and 02 are arbitrary complex constants. Substituting for F, G, P 

and Q into the compatibility condition (2.19) and recalling that E and H are 

21r—periodic in 9 and ', we find that the only terms which give a non-zero 

contribution to the integral are those in which the exponential factor is e' 0 . Since 

the equation must hold for arbitrary a j  and a2 , the coefficients of a  and 02 (or 

c4 and a) must vanish separately. The equation obtained from the coefficient of 

ais 

3 L ['PVA H + AE+*A H).e + (AEA H+ + AEA H).ezI dV 

= J [s9 (Et H + EA H).e - (eEtE" + p oHtH)] dV + o(1). 

(2.22) 

From the expression for the group slowness s (A.15), equation (2.22) is 

automatically satisfied to leading order if 'y/v = o(1). If y/v = 0(1), the 71v 

terms must be retained in (2.14) and (2.15) and equation (2.22) becomes 

A 1  LE+*A H +EA H+*).ez  dV+ LE+*A H +EAH.eZ  dV = o(1). 

(2.23) 

This has the form 

3A P=o(l), 	 (2.24) 
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where 

JR (EA HE + EA H) .e dV 
	

(2.25) 

is proportional to the power in either of the modes described by Ee'° 	± c.c. 

or Ee' 0 	+ c.c.. If the solutions to equations (2.9) are normalized so that 

P = 41r 2  for all Z and w, then equation (2.24) reduces to 

= 
	 (2.26) 

indicating that the leading order approximation for A may be taken as 

independently of Z. Performing a similar analysis for the coefficients of c4 gives 

a leading order expression A(x)  for ATh Equations (2.14) and (2.15) can then 

be replaced by the equations 

aft 
V'A E - 	= [A(s9 VA e 2  + poH) + 1AEA ez] e'(°" 

+ [A;(SYETh e + poH) + 1AEAe ] 

+c.c. + o(1), 
	 (2.27) 

V'A H +  
aE 

 = [A(SgH+ A e - &E) + AHAe ] e'° 

+ [A;(s9Hmez - eE) + 2AHAe ]e'4 

+c.c. + o(1). (2.28) 

The terms in A also occur for an axially homogeneous fibre and give rise to 

fields proportional to El  and H (Parker and Newboult 1989). This can be seen 

by substituting the fields E± e1 °4M and HC' °  into the linearized form of 

equations (1.1) and (1.2), with V replaced by V' and a/at replaced by —wO/80, 

which gives 

V'A (Ee ° ) = wp 
a 

o 	(He1° ) 

V'A (He' ° ) = —w a e 	(E± ei°M). 
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If these equations are differentiated with respect to w, we obtain the equations 

V'A (Ee°"') - pow 
a 

(Hc ° ) = i (s9Ee2  + poHt ) 

VA (He 10 	
a 	

e ) + ew 	(Ee' ° ) = i (s9 Ht.. e - eEt )  

and by comparing these equations to (2.27) and (2.28) we observe that a solution 

for the fields E and ft can be written as 

E = (—iAC + 2A+E+) e110  + (_ iA;E; + 2AE) 6 (- ' )  + c.c., 

(2.29) 

ft = (—iAH + 2A+ 	+ (_iA;H + 2 A - H) eI°M + c.., 

where E± ,  Ht satisfy the equations 

a 
VA (Ete"°) - wpo 	(fi±ei(±9+1P)) = EAe 

(2.30) 
a 

VA(fite) +wE (E" ) ) = HAe 

with Et , ft ±  - 0 as r - oc and bounded at r = 0. As in the case for the modal 

fields Et , Ht,  the fields Et, H± may be represented as 

iEt  = iEier ± E 2 e8 + E3e 

= ±11 1 e,. +iE2ee +iIi3e 

where E1  = E 1 (r;w, Z) and f1 i  = ft 1 (r;w, Z) are real functions which satisfy the 

inhomogeneous ordinary differential equations 

0E2  
- krE2  - wp or .111 = az 

aE 1  
—+kE 1  Q/O 
Or 

(rE2)+Ej  +wpo rfts = 0, 
Or  

aft 2  
123—krH2+wcrEi=r az 

OH3 	-. 	 aft 1  
Or 

—kH1—WEE2=—  az 

ii i  + werE =0. 

In principle, E 1  and H1  may be constructed from E 1  and H 1  using variation 

of parameters, or direct numerical integration. However, we shall not require 

explicit formulae in the subsequent analysis. 
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2.3 Evolution equations 

As observed in Section 2.2, there are two distinct cases for the order of 

magnitude comparison between the parameters -y and v, either my/v = o(1) or 

-y/v = 0(1). The first case describes a fibre whose longitudinal inhomogeneities 

arise on the same length scale as nonlinear effects. In the second case we consider 

a fibre whose longitudinal inhomogeneities occur on a scale comparable with a 

pulse width. 

2.3.1 Case 1: = 0(v2 ) 

For the case my = 0(v 2 ), it is possible to write, without loss of generality, 

V  = -y 1 / 2  and to seek solutions for the fields E, H, D of the form 

E = I 	 A- 

H = my4H' + yH 2  + -yfl, 	 (2.31) 

D = #Y2EEW+myEE() +my2D, 

where E, ft and U are correction terms to the series solution. To 0(1), the 

correction to the electric displacement B is 

B = e(r, Z)E + N(r, Z) E' 2 	 (2.32) 

For this case the terms in E and H are omitted from (2.29), and the fields 

E 2  and H 2  are given by 

= - iA;E:e' ° 	+ c.c., 

H 2  = —iAHe'° - iA;H:e °  + c.c.. 

Since E 2  and H 2  do not involve the terms in (2.14) and (2.15) which 

are O('y/v) = 0( -t ' 12), the compatibility condition analogous to (2.19) is 

automatically satisfied and therefore the reasoning which led to equation (2.26) 
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is inappropriate. The amplitudes A and A should, in this case, be allowed to 

depend on both x and Z. The derivative expansions (2.12) become 

aa 	i a 	a
49v) 	

X = 

a 	a 	1 09 
= 

and the equations governing the correction fields E and Ii are obtained by 

substituting for E, H, D, O/Oz and a/at into equations (1.1) and (1.2) and 

are found to be 

V'A E - 	= [AEA e +4EA e —iA(s9EA e +poH)] e1°  

+[AEA e +AETh e —iA(sgEA e+oH)] e°M 

+c-c- + O(), 

(2.33) 

V'A F1 -- + WC aE = [AHA e+AHA e —iA(s9HA e  —cE)I e'(°4M 

+ [AHA e2  +AHTh e —iA(sgHA e —eE)] e'E° 

a 
+c.c. - w(NIE 1 I 2 E °) + O(my) 

090 

(2.34) 

Explicit solutions to these equations cannot be easily found, but F and O are 

27r—periodic in 9 and 0, bounded at r = 0 and decay exponentially as r - x. 

This situation is analogous to that of equations (2.17) and (2.18), so allowing the 

compatibility condition (2.19) to be used with (2.21) to obtain equations which 

govern the evolution of the amplitudes A and ATh Applying the same reasoning 

as before, we consider only those terms which give a non-zero contribution to the 

equation and compare coefficients of a to obtain the equation 

A L14* H + EA HF*).ez  dV + A 
L' 

H + EA H+*).ez  dV 

= iAXXJ [s9 (PAH + EA H).e - (eE.E + ,zoH.H)] dV 

+w 
 J

E+*.(NIE(l)I 2 E( 1 )) e (0  dV + O('y). (2.35) 
 490 
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The nonlinear term can be simplified (Parker and Newboult, 1989) as 

J E+* .& (NIE"l2E(1) € -' ° '1 dV = 

i47r2jAl2A I11E+.E+12+21t14]Nrdr 

+i8r2 IAI 2 A 1 1 E.E 2  + IE+.E_*1 2  + IEH 2 jEi2 ] Nrdr. (2.36) 
Jo I 

The first term in (2.35) vanishes when the normalisation P = 47r 2  is used, where 

P is given in (2.25). Equation (2.35), to leading order approximation, can then 

be written in the form 

iA = gAi + (f2IAI 2  + f3IA-12)At 	 (2.37) 
XX 

where the coefficients 

12 = — co I [IE+.E+1 2 +21E+14}Nrdr 
Jo 

13 = —2w I' [IVrI 2  + IEtEI 2  + ItI 2 IEi 2] Nrdr fa (w, Z), 

(2.38) 

- (eE.E + I1o H+*.H)I rdr 

1 49S9  g(w, Z), 

are related to the field distributions E, H+  of circularly polarised modes as for 

an axially uniform fibre (Parker and Newboult, 1989). The dependence on the 

inhomogeneity is included through the Z—dependence of 6, E, W and k. 

By equating to zero the coefficients of c4, an equation similar in form to (2.37) 

is obtained and the pair of equations can be written as 

i4 = gA + (12IAI 2  + f3IAfl 2 )A XX 
(2.39) 

The coefficients of a 1  and a2  give the complex conjugate of this pair of equations, 

so imposing no further constraints. Equations (2.39) are the same as the coupled 

cubic Schrödinger equations which are obtained for axially uniform fibres except 

that the coefficients g, 12, 13 given by (2.38) depend on the axial coordinate 

= u2 z 	Z, with the length scale of the axial iiihomogeneities comparable 

with those over which the nonlinearity acts. 

= - 1 [s9 (ETh H + EA H).e2  
Jo  
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2.3.2 Case 2: = 0(u) 

For this case we take -y = 0(v) and without loss of generality, write t' = 

We then seek solutions for the fields in the form 

E = 	+ 	+ 

H = H 1  + 2 H' 2  + '?H, 

D = 	+ 	+ 

where E, R, D are the correction terms, and E 2  and H 2  are as given in (2.29) 

= (—iAE + AE)€ °  + (-1AE + 

H 2  = (— iAH + Afi)e' °  + (—iAH + 

with . El  and W normalized so that F, given by (2.25), satisfies P = 4ir 2 . The 

inhomogeneities occur on the scale Z = 7z, so that the fields 	H" and 

H 2  depend also on Z. However, we have shown in equation (2.26) the relation 

8A/oZ = 0(7). This suggests introducing a further scaled variable 

and allowing for 0(-y) fluctuations in A on the Z scale by writing 

A :' = B(x,2)+'ya(x,Z, 2). 	 (2.40) 

The nonlinear effects occur on the length scale associated with 2, and the 

correction term for the electric displacement is given, correct to 0(1) by 

D = EE + N(r, 2)IE 12E 1  

With the introduction of the new scaled variable the derivative expansions become 

a 	a 	a 	a
az = 

a 	a 	a = 



The equations relating the correction fields E and H are again found by 

substituting the field and derivative expansions into (1.1) and (1.2), which to 

leading order are 

V'A E - w o ={a4 EA e +4EA e +4(s9 E 1 A e +j1oH) 

+BEA e +BEA e +B (s9EA e2  +fLo uit_iE±z A e2) 

—iB(sgEA e2  + ,ioH)} 

+ {aEA e+aEA e+a(s9EA e+poH) 

+BETh e+BE7 A e 2  +B (s9EA e +o H —iE zA e2) 

— iB;(s9E:A e + poH)} 6F°M  + cc. 

(2.41) 

V'A U + we={aHA e +4HA e +4(s9H t\ e2  —eE) 

+BHA e+B HA e +Bfls9  UA e2  —eE--iHA e)Wz 

— iB(s9HA e - eEJ} °4M 

+ {aHA e +aHTh e 2  +a(s9 HTh e —eE) 

+BHTh e+B HZA e+B(s9  11Th e sEThiH:7A e) 

— iB(s9HA e2  - 	 + c.c. 

(A9E 2E') 

P. 	 (2.42) 

As for case 1, explicit solutions cannot easily be found, but these are not necessary 

in order to deduce the evolution equations for B±.  Using the fact that P and G 

are 2w-periodic in B and 0, decay exponentially as r —* oo and are bounded at 

r = 0, the compatibility condition (2.19) can again be used to find the condition 

for the existence of 2w-periodic fields E and U. 

Considering the terms multiplying c4 we obtain the equation 
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a J (E+*A H + EA H+*)  .edV + J 	H + EA H+* ) .e2dV 

+4 J [s (EAH + EAH)  e. — (EE.E + ioHhHj] dV 

+Bt 
 j 

(E+*A H + EA H) .edV + B J (tA fl + EA H) .edV 

+B J [s (EP A E+  + 	. e2 — (eE.E + poH+*.H+) 

—i (E+*A 	+ Q Z A H+*) .ez dV 

=iBJ 8, (EAH +E + AH+*) .e— (EE.0 +poH.Ht)I dV 

+iwIBI2B JR (IE.t 12 + 21E 12 ) N dV 

	

+2iwIB12B L (IEtE- 1 2  + E.E 2 + IEi2 IE 12)  N dV. 	(2.43) 

The expression for the group slowness s (A.15), shows that the third term in 

(2.43) vanishes and the normalisation P = 47r  means that the first term vanishes, 

so equation (2.43) can be written in the form 

4 + Bt + ifB +ifsB + igB + i(f2IB 1 I 2  + f3lBH2)B = 0, 	(2.44)XX  
where 12, 13 and g are as given in Case 1 and 

.1'4 = -;j:i JR (*A H + EA iffs)  .e2dV, 

= th JR [s9 (tA h + EA H+*). ez _ (EE+*.E+ + poH.H) 

—i(EAH z  + E zAH+*).e4 dv. 

By differentiating the governing equations for 	and H (2.30) with respect to 

w, we obtain the equations 

V'A 	e1°M) —'°1'o (flei9) = (ikwEtA e +iu H+ELA e) 6(°+O, 

V'A (fiei01M)+weL (Ee10'64M ) = (ikwftA e iet'tlHA ez) e19 , 

with E±,  11± —+ 0 as r - 	. Since this situation is analogous to that of equations 

(2.17) and (2.18), the compatibility condition (2.19) with (2.21) can be used 

27 



to show that the coefficient f5  vanishes. In equation (2.44), the coefficients of 

12, fa, 14 and g depend on the intermediate axial scale Z but the amplitudes B 

do not. Consequently a+  must be chosen to absorb all the fluctuations on the Z 

scale without accumulating 0(f 1 ) deviations as Z varies over ranges of 0(f 1 ). 

This is achieved by making the mean values of both sides of (2.44) vanish over 

large ranges of Z. The simplest statement of this requirement occurs when the 

fibre inhomogeneities are periodic in Z, of some period 4,. Then equation (2.44) 

can be written in the form 

iB 1  = F4 B'1' + GB X  + (F2 IB 2  + F3IB"I 2 )B, 	(2.45) 

where the real coefficients F2 , F3 , F4 , G are averages of 12, Ia, 14, g over each 

period of length 4, and are given by 

1 rzo +Zv  
y = 
	

f1 dZ 	j=2,3,4; 
Lip ZO 

•1 ro+Zp 
G 

= 	
gdZ. 

As in the previous case a similar equation is obtained from the terms with 

coefficient c4, so that the pair of constant coefficient equations 

iBf  = F4B + GBtX  + (F2IBI2  + F3 IBT I 2  )B ± 	(2.46) 

is obtained. The term with coefficient F4  may be absorbed by the substitution 

= C± e _ 1 P'42 , 

which shows that -1 2 F4  corresponds to an averaged perturbation in the group 

slowness s. Using this substitution and rescaling the independent variables by 

defining 

= F2 Z, x = 
 FLF~2  X) 

 

shows that equations (2.46) can be written as 

iC = C + (ICi 2  + hICI2)C, 	 (2.47) 



where ii = F31F2 . These are identical in form to the equations for a fibre without 

longitudinal inhomogenei ties, so demonstrating that when longitudinal variations 

are periodic and take place on a scale intermediate between the wavelength 

and the nonlinear evolution length, evolution is the same as in an "equivalent" 

longitudinally homogeneous fibre. The relevant coefficients are averaged over a 

period of the longitudinal variation. This implies that for relatively weak signals, 

with nonlinear evolution length much longer than the scale of the longitudinal 

inhomogeneities, non-distorting pulses should be able to propagate, provided that 

the launching conditions are those appropriate to the "equivalent" homogeneous 

fibre. Equations (2.46) govern the dominant part of the solution for the amplitude 

modulations A± ,  the small periodic correction terms a±  will introduce small 

ripples to A over long distances of fibre. This is similar to the concept 

of a 'guiding centre soliton' introduced by Hasegawa and Kodama (1990) for 

long distance transmission systems involving many periodically spaced amplifiers 

designed to compensate for small losses in the intervening cable. The system 

(2.47) is not completely integrable (Zakharov and Schulman, 1982) but it possess a 

large family of non-distorting pulse-like solutions and other families of generalised 

similarity solutions (Parker, 1988). - - 

2.4 Fibres allowing exact soliton solutions 

Grimshaw (1979) discussed possibilities for determining closed form solutions 

of the variable-coefficient cubic Schrödinger equation 

IU1 + gzzzx  + fIu2u = 0, 	 (2.48) 

with real-valued coefficients g = g(i), f = f(t). He showed that equation (2.48) 

can be reduced to the constant coefficient nonlinear Schrödinger equation 

WU +pC +sgn(gf)p 2p= 0, 
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by the transformation 
2 

= ill 	_)_MLLIX 2  
U 	 C4 Ig 

Igi 

	

_if 	if 
g 	 g 	M lt=o l 

provided that g and f are related by the constraint 

(~
) 

= —gM, 	M = constant. 

Consequently, this reduction to the constant coefficient equation is possible for 

arbitrary smooth, one-signed g(t) provided that f(i) has the form 

f(t) = —g(t) IM It g(s) ds} 

or, equivalently for arbitrary one-signed f(t) with 

g(t) = +f(t)exp{_MJ f(s) ds}. 	 (2.49) 

To investigate whether transformations exist which allow the coupled cubic 

Schrödinger equations (2.39) with variable coefficients to be reduced similarly to 

constant coefficient equations, we investigate substitutions of the form 

A(x, Z) = znC(e, a)e 
171± 

(2.50) 

cr=G(x,Z), 

where F, C, m±  and n±  are real functions of x and Z. These functions are chosen 

such that C satisfy the equations 

iC = 	+ (ic12  + hICI2) c, 	 (2.51) 

where h is a constant. 

Substitution of equations (2.50) into (2.39) yields equations (2.51) only if the 

following conditions are satisfied: 
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Gx  = 0, 	 (2.52) 

2, ± 3 rnGz = rngF = f2t.m ) , 	 (2.53) 

Fxx  = 0, 	 (2.54) 

f3(m ) = hf2(M:1)2, 	 (2.55) 

= gntn, 	 (2.56) 

±±2 nz  = g(n) , 	 (2.57) 

Fz = 2gF4. 	 (2.58) 

Equations (2.52) and (2.53) require G, m +  and m to be independent of x and 

equation (2.54) requires F to be linear in x The cases in which the system 

(2.52)—(2.58) is compatible may be reduced, without loss of generality, to 

± 	2 	 ± 	I 	 a f2(Z)  
=xn(Z), 	M=an2 , 

with 

af2X 	a2f2  

uig 	 4g' 
	

El 

provided that 

n'(Z) = 4g(Z)n2 (Z). 

Here a and ui are constants. Setting fi = a2  = 4M 1 , gives the transformations 

A = (L2)4c±(e,u)exp{tMx2}, 	 (2.59) 

with 

12 	 12 
g 	 4g 

which reduce the special case 

iA = g(Z)At + f2(Z){IAI 2  + hIAI2}A 	 (2.60) 

of equations (2.39) to the form (2.51) whenever g(Z) and f2 (Z) are related by 

g(Z) = f2(Z)exp {—Mjz  12(8) ds} 	 (2.61) 
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which is analogous to (2.49). 

Thus, Grimshaw's reduction extends to the coupled system (2.39) whenever 

f3(Z)/f 2 (Z) is constant (= h) and when g(Z) is related to f2 (Z) in the manner 

required for the single equation. Consequently, when (2.61) is satisfied, exact 

solutions for the system (2.60) may be found corresponding to all the similarity 

solutions catalogued in Parker (1988) and especially to the uniform wavetrains 

and linearly and circularly polarised solitons. Moreover, the pulse collisions 

investigated in Parker and Newboult (1989) will correspond to collisions with 

negligible scattering when (2.61) is satisfied. 

The condition (2.61) which relates g and 12  includes the possibility 

g(Z) 
=constant 	(M = 0). 

f2 (Z) - 

Presuming that 12  does not change sign along the fibre, then the argument of the 

exponential in (2.61) tends to ±oc as Z -* cc. If the argument tends to —cc, 

the fibre becomes effectively dispersionless as Z - cc, and since f2/g -* cc a 

solution of the constant constant coefficient nonlinear Schrödinger equations will 

become compressed in width and amplified in height. However if the argument 

tends to cc, the fibre becomes infinitely dispersive as Z -* cc, which does not 

correspond to physical behaviour over the long fibre lengths which are required for 

optical communications systems. In the following section the effect of sinusoidal 

fluctuations on a linearly polarised pulse and a more general 'non-distorting' pulse 

are studied numerically. 

2.5 Numerical Results 

For an axisymmetric fibre whose longitudinal inhomogeneities act over the 

same length scale as nonlinear effects, the equations which describe the pulse 

evolution are a pair of coupled cubic Schrödinger equations with varying 

coefficients (2.39). To investigate the effect of slow variations in the material 
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properties the following change of variable 

r = JZii 	
with 	g > 0 

was made in equations (2.39), and the resulting equations written in the form 

iA = A:' + (hi(r)IAI 2  + h2(r)AI2  I 	 )A, 	 (2.62) 

where hi(r) = 12/9 and h2 (7- ) = fa/g. 
For circularly polarised solitons (A -  = 0), equation (2.62) reduces to a single 

cubic Schrödinger equation which has only one variable coefficient h 1 . It is known 

that when h 1  is constant this equation allows solutions of the form 

A(r,x) = 	Fe_1# sechF(x - 2V7 - ), 	where 	= V - (V 2  - F2 )r. 
hi  

Here F is the pulse amplitude and V is a frequency shift which determines the 

speed of the pulse envelope. For h (r) 34 0, the evolution of a pulse which has 

this initial condition may be analysed numerically. 

It is also seen that for initial conditions which are of the form 

A(0, x) = e_2A+(0, x) there exist solutions A(r, x) = e_2iaA+(7-, x), for 

which equation (2.62) becomes 

iAt = + [hl (r) + h2(r)]AI2A. 
	 (2.63) 

This will allow solutions of a form similar to those of a circularly polarised pulse, 

but which will have h replaced by (h 1  + h 2 ). Again solutions can be computed 

numerically for h + h'2 $ 0. 

This shows that both circularly or linearly polarised sech pulses evolve 

according to a single variable-coefficient nonlinear Schrödinger equation, although 

the coefficient of the nonlinear term will differ in the two cases. 

To illustrate the evolution for a linearly polarised signal, and also for more 

general non-distorting pulse-like solutions which are discussed later in this section, 

was taken to be a constant and h2  was taken to have a sinusoidal variation 
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about a fixed value h0 , 

= h0  + a sin br. 

For the numerical results given in this paper, values for these parameters were 

taken to be h0  = 2, h 1  = 1, a = 0.2 and b = 2.75. 

Numerical integration of equations (2.62) was performed using a split-step 

spectral method, with a damping scheme applied at the edges of the integration 

region as described by Menyuk (1988). The edge damping is required because 

the periodic boundary conditions assumed by the Fast Fourier Transform could 

cause any radiation which has left the computational region to return to the 

region and cause effects which are due to the numerical scheme rather than the 

physical system. The values for the step lengths for the numerical discretization 

were AX = 0.1 and zr = 5 x 10 3  for the results shown in this section. 

For a linearly polarised pulse, the initial conditions, at r = 0, were chosen to 

agree with 

A 
= + V' i 2 Fsech[1'(x—xo)], 

h2  

/2 _
2
_  

h Fsech[1'(x - xo)]e 2ia 

where a is the polarisation angle and the soliton is centred initially at x = xo. 

The parameters were taken to be F = 1, a = 0 and Xo = 25.6 as reported in 

Ryder and Parker (1992). 

From Figure 2.1, which is a graph of IAI2 plotted against x and r, it is not 

possible to detect radiation away from the pulse. However if the maximum values 

of IA42  are plotted against i- , see Figure 2.2, it can be seen from the decrease in 

the value of A 1 2  that there is some radiation of energy away from the pulse. It 

can also be seen that the peak values of IA+1 2  are no longer constant, as in the 

case of a constant coefficient nonlinear Schrödinger equation, but fluctuate almost 

periodically with a period similar to that of the material fluctuations. However, 

the loss of peak amplitude of the pulse is only 3% after 40 cycles of fluctuations 
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Figure 2.1: Evolution of a linearly polarised pulse governed by equation (2.63). 

r 

Figure 2.2: Peak values of IAI and the material property h2 (r) plotted against r. 
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of h 2  having 10% variation, either side of its mean value. Figures (2.1) and (2.2) 

could alternatively show a circularly polarised pulse with h 1  varying. 

More generally solutions will have to be computed numerically. To consider 

pulse propagation of a more general type, observe that the constant coefficient 

case has solutions of the form 

= e_ 1 t+'1't7)F(a) ,  

(2.64) 

A =  

leading to the ordinary differential equations 

F" = ($ 1- V 2  - h 1F2  - h 2 C2  )F, 
(2.65) 

C" = ($2 —V 2  - h2F2  - h 1 G2 )G. 

Here /3 and /2  are real adjustable parameters, while F and C are real functions 

of a = x - 2Vr. To obtain initial conditions at r = 0 for equations (2.62), in the 

form of pulses with profiles F(a), G(a) satisfying equations (2.65), it is necessary 

to choose suitable values for the parameters flu - V 2  and 02 - V 2 , which are 

compatible with the conditions 

F(0) = cos a, 	G(0) = sin a, 

F'(0) = 

F, C, F', C' -+ 0 as a -* ±oo, 

at r = 0. The frequency shift V was chosen to be zero without loss of generality. 

To find an approximation for #I  and /2  for a given value of a, a perturbation 

solution to the coupled ordinary differential equations (2.65) was sought (see 

Appendix D). The approximation obtained was found to give a pulse-like 

solution to equations (2.65) but was not sufficiently accurate as an initial pulse 

for equations (2.62). However McCabe (1990) has found values for 01  and /32 
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Figure 2.3: Initial pulse. 

which give a pulse-like solution to equations (2.65) for some values of a. For the 

numerical results given in Figure 2.4-Figure 2.6, a = 0.67627220178, which gives 

0 = 0.67845594593 and $2 = 0.83116876487. The values of a, $, $2 have to be 

calculated to this degree of accuracy in order that the expressions for A±  given 

in (2.64) can be used as initial conditions for the partial differential equations 

(2.62). Equations (2.65) were solved using a Runge-Kutta fourth order method 

and Figure 2.3 is a graph of the initial pulse. 

As for the case of a linearly polarised pulse, it is not possible to detect 

radiation away from the pulse from the graphs of IAI plotted against x and r 

(Figures 2.4). However Figure 2.5, a graph of the maximum values of IA! plotted 

against r, shows that there is some radiation of energy away from the pulse and 

again the peak values of IAI fluctuate almost periodically with period similar 

to that of the material fluctuations. Figure 2.6-Figure 2.8 show the numerical 

results for the parameter values a = 0.51683348354, $1 = 0.59608140892 and 

$2 = 0.95840572633, These results exhibit the same trends as the previous non-

distorting pulse. 

These numerical experiments suggest that 'non-distorting pulses' are 

remarkably resilient to small fluctuations in the values of the 'coefficients' f2/g 
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and f31g, which arise on length scales slow compared to those of the nonlinear 

evolution. It also suggests that these more general cases are as well behaved as 

the circularly or linearly polarised solitons. 

z!J
ro 
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RVI 

Figure 2.4: Evolution of a 'non-distorting' pulse. 
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Figure 2.5: Peak values of IAI and 1A1 and the material property h2(r) plotted 
against r. 
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Figure 2.6: Initial pulse. 
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Figure 2.7: Evolution of a 'non-distorting' pulse. 
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Figure 2.8: Peak values of IAI and 1A1 and the material property h2 (r) plotted 
against T. 
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Chapter 3 

Curved and twisted fibres 

3.1 Preamble 

Although a light wave is guided by a curved single-mode fibre, some of the 

power is lost as radiation. A curved optical waveguide deforms the modal fields 

in such a way that they shift away from the plane of the bend and also become 

narrower (Gambling et al., 1976). There have been many studies concerned with 

the calculation of the radiation losses in optical waveguides. Marcuse (1976c) 

calculated the rate of energy loss for a fibre bent into a circular helix, and showed 

that the curvature loss formula that he obtained was equivalent to the curvature 

loss formula for a circularly deformed fibre (Chang and" Küester, 1976) if the 

radius of curvature of the circle is replaced by the radius of curvature of the 

helix. In several earlier papers, formulae were derived for the curvature loss of 

step-index fibres (for example Marcuse, 1976a, Snyder et al., 1975). However, 

in these derivations the field deformation which is caused by the fibre curvature 

has not been included. Marcuse (1976b) included this field deformation in his 

analysis, and found that for modes of low mode number the radiation losses may 

be much lower than that predicted by the more simple loss formulae, whereas the 

losses of modes with high mode numbers are increased. 

The above derivations depended on knowing exact solutions for the fields, 

which can only be found for fibres which have a step-index profile and then only 
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for a limited number of curvature geometries. Kath and Kriegsmann (1988) 

calculated the loss for arbitrary local curvature and torsion where the radiation 

loss was determined by the local curvature of the bend and not by the macroscopic 

shape of the bent fibre. They derived these formulae for a weakly-guiding fibre by 

approximating Maxwell's equations by the scalar wave equation. Loss formulae 

which are valid for arbitrary geometries and for different ranges of curvature size 

have been derived using the full set of Maxwell's equations (Hobbs and Kath, 

1990). 

Single-mode fibres allow two orthogonally polarised modes to propagate, in 

an ideal fibre these two modes propagate with identical phase velocity. However 

when a fibre is bent, linear birefringence is induced, while twisting of the 

fibre induces circular birefringence (Ulrich and Simon, 1979). Bend-induced 

birefringence is caused by core ellipticity, elastic strain and waveguide geometry, 

although the birefringence caused by the first two effects is too small to make 

any significant contribution to the overall bend-induced birefringence (Smith, 

1980). However it has been shown that the field shift of the modal fields creates a 

geometrical or waveguide birefringence of the order (tca) 2  where ic is the curvature 

and a is the core radius (Fang and Lin, 1985, Garth, 1988). 

Effects of curvature and twisting have been included in a number of treatments 

of nonlinear fibre optics. Typically these studies consider a pair of coupled 

nonlinear Schrödinger equations, with linear terms describing birefringence and 

coupling between the basis modes, of the form 

iA + 	+ AA' + ICA + ( IAI 2  + hIA2) A = 0, 	(3.1) 

where A+,  A are the complex amplitudes in the circularly polarised basis and á, 

tc, h are real constants. For the case when twist induced birefringence is neglected 

= 0), Trillo et al. (1989) performed numerical calculations and showed that 

for a circularly polarised input soliton (A 0), switching behaviour between 

A+ and A -  occurred. Also for the case A = 0, analytic solutions for equations 
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(3.1) have been found in terms of Jacobian elliptic functions (Florjanczyk and 

Tremblay, 1989, Kostov and Uzunov, 1992). If A = 0 and h = 0, equations 

(3.1) describe the amplitude modulation of pulses in directional couplers. For 

this special case Trillo et al. (1988) have considered the numerical solution of 

equations (3.1) and predicted soliton switching. Kivshar and Malomed (1989) 

have found analytical solutions for this case. 

In this chapter coupled nonlinear Schrödinger equations describing the effects 

of curvature and torsion on an otherwise axisymmetric, single-mode, axially 

homogeneous fibre are derived from Maxwell's equations. An orthogonal 

coordinate system which follows the fibre as it bends is derived in the following 

section. Field corrections which are due to the curvature are then found and 

the pulse evolution equations are derived. The pulse evolution is governed by 

a coupled pair of cubic Schrödinger equations with linear cross coupling terms 

having coefficients related to the local curvature and torsion of the fibre. In 

general, these need not be constant. For constant radius of curvature which is 

comparable to the nonlinear evolution length and for constant torsion, numerical 

calculations are performed to show how the stability of a non-distorting pulse-like 

initial condition depends on the values of the curvalure and Lorsiun. 

3.2 A coordinate system for curved fibres 

Before studying the propagation of waves in a bent optical fibre, it is 

convenient to choose a coordinate systeth which follows the fibre as it bends 

(Hobbs and Kath, 1990). If the position of the centreline of the fibre is defined 

by r(z), a function of the arc length z, then the position of a point in the fibre 

can be written as 

x = r(z) + x i fi(z) + x 2 (z), 	 (3.2) 
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Figure 3.1: The Frenet-Serret coordinate system. 

where x 1 , x2  are distances perpendicular to the centreline along the direction of 

the unit normal 11 and the unit binormal b, respectively. The unit tangent vector 

t, and the unit normal and binormal vectors are defined by the Frenet-Serret 

formulae (Hildebrand, 1976) (see Figure 3.1) 

dr - 	 di d n- 	-. 	db 
—=,tcn, —=z~sb—sct,  

dz 	dz 	dz 	 dz 

where ic is the curvature and A is the torsion of the centreline r. Since 

dxcix = d4 + dx + [(1 - ,cx i ) 2  + (x + 4)&]dz2  + 2(xi  dx2  - x2 dx i )dz, 

the coordinate system (x i , x2 , z) is not orthogonal. This coordinate system can be 

transformed into an orthogonal curvilinear system by rotating the above system 

through an angle 0 , where 

M  Ph 	

(3.3) 

The position of a point on a fibre can be written as 

x = r(z) + y1 ei (z) + y2e2 (z), 

where 

el  = cos4' ñ - sin4' b, 	and 	e2  = sino 11 + coØ b. 

The coordinate system (yr, Y2, z) is orthogonal since 

2 	2 	 2 	2 
dx•dx = dy1  + dy2  +(1 - tc(y i  COS + y2  s in )) dz 

and was proposed by Tang (1970) as an alternative to the Frenet-Serret system 

for analysis of curved waveguides and antennae. 



194 

Figure 3.2: Relationship between the unit vectors (b,n) and (e l  ,e2 ) 

The curved fibres that will be studied in this chapter are assumed to be 

axisymmetric and cylindrical which suggests using the orthogonal coordinate 

system (r,O,z), where yi = rcosO and y2 = rsinO and (e r ,eg,ez ) are an 

orthogonal triad of vectors. For the orthogonal coordinate system (r, 0, z) 

described above 

dxdx = dr2  + r2  d02  + (1 - icr cos(O - ))2 dz2, 

thus giving the scale factors 

hr  = 1, 	he  = r, 	= 1— Kr cos(O — ) = h 2 (r,O,z). 	(3.4) 

These scale factors are analogous to those of a cylindrical coordinate system 

except that the scale factor h is a function of the curvature of the fibre and of 

the polar angle relative to the direction of the principal normal. It may be noted 

that at points lying on the local binormal b, so that 0 = 0 ± 7r/2, the scale factor 

is h2  = 1, as for the cylindrical coordinate system in a straight fibre. 

3.3 Field corrections due to the curvature 

As in Chapter 2, the optical properties of the fibre are assumed to be the 

same as for an axially symmetric, isotropic, non-magnetic and weakly-guiding 

fibre. This implies that effects due to straining of the fibre as it is bent or coiled 
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are neglected. The material properties are also assumed not to vary along the 

fibre. The electromagnetic fields are governed by Maxwell's equations (1.1)-(1.4). 

When written in terms of the coordinate system (r, 0, z) derived in Section 3.2, 

with h given by (3.4), they become 

- 	h-1liE 	Vh 	 li 
VAE+ 	—Ae2  + -  —AeEe = -po 

-ii  
-, 	(3.5) 

h Z 	liz 

h-1liu1 	 3D 

	

VAH+
h 

—
liz

Ae  +-j---Ae2He =-j- 	 (3.6) 

V D- 
h2-lliD 
 —•e =0, 	 (3.7) 

liz 

V H- h-1liuI 
 —•e =0, 	 (3.8) 

h 	liz 

where 
o 	18 	0 

Ver -  + e9 --li O 
+ e 

Or 	r  

has the same form as the standard operator 'V' for a cylindrical coordinate 

system. Assuming that the fibre has a Kerr type nonlinearity (see Section 1.4) 

and is axially homogeneous, the electric displacement can be written as 

D = (e(r) + N(r)1E1 2) E. 

As for the case of a straight axially inhomogeneous fibre, solutions to equations 

(3.5) and (3.6) can be found by writing the fields as leading order terms and 

corrections in a small parameter ii, as described in Section 2.2. If the curvature 

Ic 1S also assumed to be small, then substitution of (2.2) into equations (3.5) and 

(3.6), gives to leading order, the linearized equations 

VA E 1  = , 	 (3.9) 

VA H 1  = 	, 	 (3.10) 

V•E 1 =0, 	 (3.11) 

ti . 	= 0. 	 (3.12) 
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These equations are similar to the linearized equations (2.3)-(2.6) which were 

obtained in the leading order analysis of an axially inhomogeneous fibre except 

that e is now a function of r only. The method of solution of equations (3.9)-

(3.12) is analogous to that for equations (2.3)-(2.6). The travelling wave solutions 

to (3.9)-(3.12), for a weakly-guiding, single-mode fibre can therefore be written 

as 

= 	 + A_E_dFO+  + c.c., 

(3.13) 

H1 = A+H+eO+fl + AHeEO  + c.c., 

where A+  and A are complex amplitudes, t' = lcz - wt, where k is the local 

wavenumber and w is the radian frequency. P and H±  are the modal fields 

which if resolved along the basis vectors (e,. ,eo, e 2 ) can be represented as 

= iE1 e,. ± E2e9 + E3e 2  

(3.14) 

H±  = +H1e,. + i02 e9 ± ift 3e2  

where E 1  = E1 (r;w) and H1 = H1(r;w) are real functions of r which satisfy the 

system of equations (2.9). 

Using the method of multiple scales (Appendix B), with ii identified as a 

parameter characterising times for pulse modulation, to obtain approximations 

to the fields at higher orders of t', two scaled variables must be introduced 

x=v(s9 z—t), 	Z=u2 z, 

where s9  = dk/dw is the group-slowness. Any fluctuations in the amplitudes A 

are allowed to depend on both of the slow scales x  and Z, so that A = A(x, Z). 

The fields are treated as functions of the variables r, 0, ?P, x, Z and are 27r-periodic 

in both 9 and 7P. The z and t derivatives are replaced by 

a U 
- k—+vs 9 _+v 

; — 	
(3.15) 

i 	at 
8 	8 	8 51  = —WV. 
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By writing the fields as leading order terms and corrections of the order v 2  

E = 1/E 1 + v2 E, 

H = uH 1  + V 2 ft  , (3.16) 

D = ueE'+ v 2 D, 

where D = cE, and substituting (3.15) and (3.16) into equations (3.5) and (3.6) 

the correction fields, E and U, are found to be governed by 

OH 
V1  E - 	= e' (°  {A(sg EA e2  +poH) +A[ikr cos(O—)EA e.alp 

—(ersin(O—) + e9 cos(9—Ete I} 
+e °) {A; (s9r A e +poH) +A [i/cr cos(O-4')E A 

- (e7 sin(9-4') + e 9  cos(O-0))E.e 

+c.c. + o(1), 	 (3.17) 

V'A U + Lue 

	

	 = e ') {A(s D HA e2  —eEj +A [i/cr cos(9-4')HA e. 

—(ersin(O--0) + e9 cos(O-0 )) H.e2 ]} 

+e"-°+ {A; (SS HA e 	 A - [ikr cos(O—O)H- Ae. —4')HTh 

- (esin(O-4') + e g  cos(O-4')) H.e2  

+c.c. + 0(1), 	 (3.18) 

where 
a 	ia 	a 

V 

If sin(O - 4') and cos(9 - 0) are expressed in terms of exponentials and the 

representation for E and H, given in (3.14), is used equations (3.17) and (3.18) 

can be written as 
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on 
VA E - 	= e' °  A(s9tA e+ poH) alp

,cA +— {d(2) [i(/crE2  + E3)er+ (krE i  — E3 ) ee] 
-V 2  

[i(krE 2  - E3)e7+ (krE i  — E3)eeI } 

+e' ° ' A;(s 9 ETh e2 + jioH) 

,cA [—i(krE2  + E3)e+ (krE i  — E3 )eo ] 
u2 

E3)e+ (krE j 
 — E3)eeI } 

+c.c. + o(1), 
	 (3.19) 

OE 
V'A H +wE = 	 eE) 

ICA 

+__ {e°+' 	
[_(krfl 2  + fta)er— i(krft i  +fta)eoj 

+e ' 0  [—(krJi 2  — ñ3)er— i(kr hi + .Ua)eeI } 

— eE) 

+ç {e_264M [—(krEi+ H3)e+ i(krH i  + L)ee] 

+e1>  [—(krii 2  — H3)e+ i(krft i  + .U3)eeI } 

+c.c. + o(l). (3.20) 

The terms in (3.19) and (3.20) involving A are due to amplitude modulation of 

the signal envelope and occur in the absence of any curvature or torsion in the 

fibre and give rise to the fields E, H (Parker and Newboult, 1989), while the 

remaining terms are due to the curvature of the fibre. A solution to equations 

(3.19) and (3.20) can be written as 

E = _iAE e'(°M + 	[E+eI(2O4t_ + EeiM] 
II 

+ 	[ETh1 2O+' + 

+ c.c., 	 (3.21) 



h H = 	 + 	[+ i(29+ib_Ø) +H e  
1/ 

iAHeN! +  + A [E_c2O4) + 
1' 

	

+ c.c., 	 (3.22) 

where E± ,  H± satisfy the equations 

	

V'A ( ±W e  26+fl) 	 a) — wpo (U±e26)) 

— [±i(krE2  + E3 )e7  +(krEi  — E3)ee 3 
(3.23) 

V'A (U±ei 29FP)) + we 	(E±e±29#)) 

1 - — [_(krnr2 + H3 )e7  T i(krHi  + H3)eo 3 2 

v± vi 
and E , H satisfy the set of equations 

a 
V'A (Ee') —wp o  (H e) 

= [+i(krE2  — Ea)e,.+ (krEi  — E3)eo 3 
(3.24) 

a 

	

V'A (ñe) + we 	(E e') 

	

= 	[_(kri12 — 03)e,. T i(kr i  + .Ua)eo 3 
±-± vi vi 

with the fields satisfying the conditions E , H , E , H —* 0 as r —+ :z and 

bounded at r = 0. Comparison with the modal fields Ei  and  Hi  given in (3.14), 
±- 	- 	 v 

suggests that the fields E , H
i 
 and E

vi i 
, H , may be resolved along the basis 

vectors (e7  ,ee, e) and represented as 

= iE1 e,. ± E 2 e8 + E3e 
(3.25) 

hi = ± ftje,. + ift2e g  ± ift3e 

52 



and 

V 	 V ± 
E = iEjer ± E2e9  + E3e. 

(3.26) 
V V± 

H = ±k 1 e,. + i1f2 e9 + iH3e 

where E 1  = E1 (r;c'..'), f1 i  = ft 1 (r;w), J j  = L(r;w) and Hv i = A(r;w) are real 

functions which satisfy the inhomogeneous ordinary differential equations 

2E3 —krE 2 —wp orHi  = (krE2 +E3), 

+ 2E1  + wpo r ft3  = 0, 
dr 

and 

+ wpo hHi  = —(krE2  -  

2H3 —krH 2 +werEi  = 

= 
dr 	

- 2ft 1  + werE3  = 0, 

kit 2  - weE 1  = —( kr 112 - H3), 

V 	 V 

	

dE3 	V 	 V 	 I  
+kEi — wpoH2 = — j(krEi—E3) 	dHa 

	

dr 	
_kitl_WE2 = 

dr 
d 	v 	v 	 d 	v 

+ wji0rH3  = 0, 	 + werE3  = 0.
dr 

For detailed evaluation of the coefficients which will arise in the evolution 

equations developed in the next section the above equations must be solved 

together with decay conditions as r -* oo and boundedness conditions at r = 0. 

However, for qualitative analysis of the evolution equations, we find it unnecessary 

to determine E, Ev i , ft, A  explicitly. 

3.4 The evolution equations 

We now seek solutions for the fields E, H, D, which are of the form 

E = 	+ u2E(2)  + v3 E, 

(1) 1' 2 H 2  + 113R, H=uH + 

D = 	+ v2eE 2  + v 3 D, 
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where E 2  = E and H 2  = H are given in (3.21) and (3.22), and E, Iii and 15 

are the total correction terms to the first two terms in a series solution, in which 

the electric displacement is related to E by 

15 = e(r) + N(r)I0120)  + 0(v). 

It will be observed that the scaling choices involving v have the familiar structure 

in which cubic nonlinearity has an effect on the long evolution scale associated 

with Z and will allow interaction with group dispersion effects. The equations, 

which govern the correction. fields FE and R, are obtained by substituting for E, 

H, D, a/az and ö/ôt into equations (3.5) and (3.6) and are found to be 

	

V'AE— wpo 	= C, 	 (3.27) 

aE 

	

V'Afl+we 	= F', 	 (3.28) 

where C, F' are 27r —periodicin 0 and 0, decay exponentially as r -* :: and are 

bounded at r = 0, (expressions for C and P are given in Appendix C). Explicit 

solutions to these equations are unlikely to be tractable even for step index fibres. 

However, the form of (3.27) and (3.28) is analogous to that of equations (2.17) 

and (2.18), so that the compatibility condition given by (2.19) with (2.21) can 

be used to obtain equations which govern the evolution of the amplitudes A 

and Am Applying the same reasoning as before requires consideration of only 

the terms which give a non-zero contribution to the equation. By comparing the 

coefficients of c4 in the expression analogous to (2.19), the equation 

	

if,4 = gA + (f2IAI 2  + f3IAI2) 	A + 	(f4 A + e2f5A) 
	

(3.29) 

is obtained, where the coefficients are given by 

11 = j°°(EAH +E+*AH+)  e rdr, 

12 = -wJ [Ir . E 2 +2jE+I 4]Nr dr, 
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f3 = _2toj [it WI 2  + It W1 2  + EI 2 IEI 2 ] Nrdr, 

= f Ir2 r H + EA H) e + rk(EA U + EA H+*) 

+rk(tA H+ EA H) e+ ir [(Ht e)eo . t_ (E e2)eo H+*] 

- [(Hi  e)E - (E •e2 )HJ (e 7  —iee ) 

r 

+[(H
V4. 

 •e)E — (E •e)H J •(e +ieo)}rdr 

= f Irk(E+*AH + 	H+*) e + (t*A W + WA H+*) 

+ 	e4E" - 	 * (e,. + 

± [(ñ .e)E - 	e4H] (e 7  +ieo)}rdr 

• 00 

g = - I {sg(E+*AH + EAH+*). e - ( + E +iioH H)}rdr 
Jo 

- 2 d 

By inspection of expressions (3.14), (3.25) and (3.26), it is readily found that all 

of fl,, 12, Ia, 14, .Ts and g are real quantities, independent of the curvature and 

torsion of the fibre. Equating the coefficients of a gives an equation similar to 

(3.29) so yielding the pair of equations 

ifi4 = 	+ (f2lAI 2  + IS IATI 2 ) g + 4 (f4A + 	( 3.30) 

The results that have been obtained are for small curvature but no relationship 

between the magnitude of the curvature and the magnitude of the amplitude 

parameter has been assumed. However, assuming that it = uX(Z), and using the 

change of variables 

A± = B±ee_uj S dZ 
I' 

ft 	 vg 

it is found that equations (3.30) can be written as 
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iB = 	- zS.B +w + (IBl 2 +hIwI2)B, 
(3.32) 

iB = Bjj 	+B + (hIBi2 +wI2)B, 

where 

2 
12 	 f2 

are real functions of Z and h = f3/f2 is a real constant. It should be noted 

that 12/fl  is the usual nonlinearity parameter for a straight optical fibre, while 

f5  involves the perturbation fields due to fibre bending. The coefficients 

and R are thus proportional to the torsion and square of curvature of the fibre 

respectively. Moreover, the relationship between the arguments of the left- and 

right-handed modal amplitudes B± and A involve integrals of the torsion and 

squared curvature through (3.6) and (3.31). 

Both numerical and analytical solutions to equations (3.32) have been 

presented previously when a and t are constants. For the case when the 

birefringence induced by twisting of the fibre is neglected, LI = 0, Trillo et 

al. (1989) have presented numerical solutions and predict that switching occurs 

between the two pulses, while Florjanczyk and Tremblay (1989) and Kostov and 

Uzunov (1992) have found analytic solutions which can be expressed in terms 

of Jacobian elliptic functions. For the special case a = 0, h = 0 numerical 

calculations have been performed by Trillo et al. (1988) and analytical solutions 

have been found (Kivshar and Malomed, 1989). 

3.5 Solutions of the evolution equations 

In the previous section equations were derived which describe the evolution 

of the amplitude modulation of a pulse propagating along a curved and twisted 

fibre. In this section we consider both analytical solutions of (3.32) which arise 
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for special cases of curvature and torsion, and more general numerical solutions 

of equations (3.32) when the coefficients Es and R are constants. 

For a straight, twisted, fibre (K = 0, Es $ 0), the linear cross-coupling terms 

disappear and by making the substitution 

B±(e,r) ±i#1 ± = e f2C (jr), 	 (3.33) 

equations (3.32) are reduced to the constant coefficient cubic Schrödinger 

equations 

iC = 	+ (ici 2  + h1cF1 2) C. 	 (3.34)  cc 

These are the pulse evolution equations for a straight, axially-homogeneous fibre, 

showing that for a straight fibre the effects of torsion can be removed by a rotation 

of the principal axes, since for zero curvature, the torsion is a consequence of 

the coordinate system that was chosen in Section 3.2. Equations (3.34) are 

known to have a number of analytical solutions (Parker and Newboult, 1989). 

For circularly polarised solitons, C = 0, equations (3.34) reduce to the single 

constant coefficient cubic Schrödinger equation which has solutions of the form 

C+(4, T) = Fe'sechF( - 2V7 -), (3.35) 

where 0 = V - (V2 - e2 ) ,r, IF is the pulse amplitude and V is a frequency shift. 

Equations (3.34) also allow linearly polarised solitons, C = CC 2°', which again 

reduce the coupled pair of equations to a single nonlinear Schrödinger equation, 

but this time with pulse (soliton) solutions 

r) = /__2_ 	sech F( - 2Vr). 	 (3.36) 
V1+h 

If the fibre is curved but not twisted, ,c $ 0 and A = 0, equations (3.32) 

reduce to 

	

iB =+ kB + (IBI2  + hIBI2) B. 	(3.37) 

Equations (3.37) allow solutions generalising the linearly polarised solutions 

(Parker and Newboult, 1989) of straight fibres. However they must have the 
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form B = 

B(e,r) = 

where C+(e,r) satisfies 

iC = C + (1 + h)ICI2 C 

The conditions W = +B show that these solutions are linearly polarised either 

in the principal plane of the fibre, or orthogonal to it. Allowable solutions include 

the soliton solutions of a form similar to 

/ 
C( 	

2 
r) 

= Vi + h 	
sech F( - 2Vr). 

However, the effect of combined curvature and torsion can be described by 

considering solutions of the coupled pair of equations of the form 

= —i(fJr+Va) j;, 
e 

which describe non-distorting pulses. Here ,3 is a real adjustable parameter, while 

F+ and F_ are real functions of a = - 2Vr which satisfy the coupled ordinary 

differential equations 

F' + (V2 - P T 	- hF)F± + kFf  = 0, 	(3.38) 

for constant R and A. These solutions thus relate to fibres in the form of a circular 

helix which is wound with constant curvature and torsion. By defining the new 

variables 

F(a) = 

/ = cr/$ - V 2 , 

equations (3.38) can be written as the pair of equations 

	

= 0, 	(3.39) 

	

= 0, 	(3.40) 

I.J 
'It 



	

where A = A/()3 - V 2  ) and 2 = 	- V 2 ). Since (3.39), (3.40) allow solutions 

in which both F+,  F_ are even functions of q,  values for F±(0), A and 2 are 

sought which allow solutions satisfying the conditions 

P(o) = fr.(o) =0, 

as 

For solutions which decay as 77 -* ±, the linear terms in equations (3.39) 

and (3.40) will dominate, since F, F_ << 1. Thus, as 77 -' +, equations (3.39) 

and (3.40) can be approximated by the linear equations 

= (1+A)F+ - 2F., 
(3.41) 

21 = ( i—&)P_--2F+ . 

These equations have solutions of the form F. oc 6A',  where the squared 

eigenvalues A 2  are given by the real quantities 

A2  = 1 ± 	+ 22 = Al. 

Since we require solutions which decay exponentially, the eigenvalues must not be 

pure imaginary. The constraint A 2  + 22 < 1 then allows purely real eigenvaliies. 

With A +, A_ > 0, a solution to equations (3.41) can be written as 

2+ = rne' + rn_e, 

= rn+v+e 	+ rn_v_c -A_fl 

Here rn+, rn_ are arbitrary constants, and v± are given by 

	

—2 	- 
2 

For solutions which decay as 77 -* +, the quantities 

	

(P + 	- 	+ 
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and 

v.(Y + + A +P+)— (Pt+A +)t), 

must vanish. To find suitable pairs of values of P+ ( 0), P_(o) which give a 

decaying solution for fixed values of A and R , we seek to minimise either 

[( - 
	+ k2) (P + 	- ( + A--P-)] 

+ [(a + Va2 + ) (P + 	- R (P + 	( 3.42) 

or, equivalently, 

+ P+) + (a + VA2 + k2) ( + A-P-)] 

+ [R V+ + 	+ (a - VA 2  + 2) 	
+ 	

( 343) 

for q—'±oo. 

To obtain a first approximation for P+(o), fr-(o), we consider equations (3.39) 

and (3.40), and use the transformation fr( q) = af(fj), where i7 = ai. These 

equations can then be written as 

fZ+f+ (f+ht_ 1 )+4f=0, 	
(0 AA\ 

f-I'M + f- (hf+2  + f-2 	
K 

For the ordinary differential equations 

f'+f+(f+hf1-4) =0, 

t+f(hf+P — p) =0, 

for which f+ (0) = cosa and f_(0) = sin a, with f, f_ decaying exponentially 

as q -* ±oo, McCabe (1990) has obtained some sets of values for a, p and p. 

By choosing RE = (1 ±,&)/a 2,   we find that McCabe's boundary value problem is 

equivalent to ours for (3.44) when R = 0, with 

a 2 	2  

11  Jff 



	

/2 	
cos a, 

= \/ p_+p_ 

/ 	2 P_(o) =sin a. 

Using McCabe's values for a, p+  and p...., we can find initial conditions which 

satisfy (3.39) and (3.40) for a known value of A, when 2 = 0. To obtain initial 

conditions using this value of A, for values of 2 other than zero, we can increase 

2 in small steps from 2 = 0 until the required value is reached and for each new 

value of 2 find values of P+  ( 0) and F_(0) which minimise either (3.42) or (3.43) 

as 17 -* ±oo. Bounded solutions have 

(i 	 (+)+ 	—)++ =0 (3.45) 

at ff = 0, where .P(o) = 0. Therefore, when .P+ (o) is chosen, P_(0) may be 

found from (3.45) using a Newton-Raphson iterative scheme. Hence we need 

only to perform a one-variable search procedure to find the values of F+ (0) and 

P_(o) which minimise (3.42) or (3.43) at suitable large tj, for given values of 

A and R. Although we require that either (3.42) or (3.43) are minimised as 

17 -* ±oo, it is sufficient to minimise these expressions at some value of tj = 

where qp is chosen to be suitably large. For each value of 2 > 0, we first find 

values of P+  ( 0) and F_(0) which minimise the appropriate expression for ,j = 

using the values of P+ (o) and .P_(o) obtained for the previous value of 2 as a 

first approximation for the search. Having obtained values for P(o) and P_(0) 

which minimise either (3.42) or (3.43), we increased 77 by a small amount and 

repeated the search procedure. This was repeated until q = 777. For the pairs 

of values (A, 2) considered in this section a value of t)T = 10 was sufficient for 

the resulting solutions to describe non-distorting pulses. It should be noted that 

the values obtained for P+(0) and P_(0) will not be so accurate as to define an 

isolated pulse if equations (3.39) and (3.40) are numerically integrated for values 

of ,j  substantially greater than q.. 

For the numerical results presented in this section the curvature was taken to 
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be 2 = 0.2, while different values for the torsion were used. Figure 3.3—Figure 3.6 

show the non-distorting pulses that were generated, using the method described 

above, for values of & = —0.10115946, —0.23308266, —0.30203382, —0.40127186. 

These show that for large a, the amplitudes of the left- and right-handed 

polarisation constituents become significantly unequal, though the pulse profile 

remains close to a sech-envelope. 

Numerical integration of equations (3.32) was performed using a split-step 

spectral method, with the same step lengths for the numerical discretization 

as were used in Section 2.5. The coupling coefficient was taken to he Ii = 2. 

The non-distorting pulses shown in Figure 3.3—Figure 3.6 were used as the initial 

conditions. Figure 3.7—Figure 3.10 are graphs of the peak values of IBI and 1B1 

plotted against r for the input pulses Figure 3.3—Figure 3.6 respectively. From 

these graphs it can be seen that the pulse, although nominally a non-distorting 

pulse, is unstable but for larger values of the torsion the pulse evolution becomes 

more stable. The pulse is able to follow the curvature of the fibre for some distance 

before instabilities arise and the onset of instability is delayed by increasing iai for 

fixed R. It is noted that if the same values of A are used but 2 is decreased to 0.05 

there does not appear to be any significant trend in the stability for decreasing 2. 

Figure 3.11—Figure 3.14 are plots of the real and imaginary parts and the modulus 

of the pulse amplitudes at four positions along the fibre for the values 2 = 0.2 and 

= —0.10115946. The radiation tails can be seen in Figure 3.12—Figure 3.14, 

while for increasing values of r, the pulses become asymmetric. This can be seen 

more clearly in Figure 3.15 and Figure 3.16 which show the phase of the B 

and B pulses at the same values of i-  as Figure 3.12 and Figure 3.14, where 

it should be noted that numerical accuracy in determining the phase diminishes 

rapidly in the tails on either side of the pulse. The pulses in Figure 3.13 and 

Figure 3.14 appear to show a pulse shape similar to that of the N = 2 soliton 

(Mollenauer, 1985), however in this case the pulse tail is caused by radiation due 

to the instability of the pulse. 
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Figure 3.3: Initial pulses for R = 0.2, & = —0.10115946 
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Figure 3.4: Initial pulses for R = 0.2, A = —0.23308266 
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Figure 3.5: Initial pulses for R = 0.2, & = —0.30203382 

1 

0.8 

DIV 

x 

Figure 3.6: Initial pulses for 2 = 0.2,. & = —0.40127186 
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Figure 3.7: Peak values of IBI and B1 plotted against i-  for 2 = 0.2, 
A = —0.10115946 
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Figure 3.8: Peak values of IBI and B1 plotted against r for 2 = 0.2, 
A = —0.23308266 
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Figure 3.9: Peak values of IBI and B1 plotted against r for R = 0.2, 
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Figure 3.10: Peak values of B1  and  1B1  plotted against r for 2 = 0.2, 
= —0.40127186 
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Figure 3.13: B and IBI at r = 70 
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Figure 3.15: Phase of B and B at r = 48.15 
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Figure 3.16: Phase of B and B at r = 72 
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Chapter 4 

Painlevé analysis of the coupled 
nonlinear Schrödinger equations 

4.1 Preamble 

The equations which govern the evolution of the two complex amplitudes of a 

pulse of light transmitted through an ideal, axisymmetric optical fibre with cubic 

nonlinearity are a coupled pair of nonlinear Schrödinger equations 

iAt  = 	+ ( IA:: 12 + hIAI2)A, 	 (4.1) 

where A+  and A are the complex amplitudes and h is the coupling parameter 

which is constant for an homogeneous waveguide (Parker and Newboult, 1989). 

For circular polarisation, A - = 0, equations (4.1) reduce to 

iA = 	+ AI2A, 	 (4.2) 

and for linearly polarised signals, A = A+&2 , equations (4.1) become 

iAt  = 	+ ( 1 + h)IAI2A. 	 (4.3) 

Equations (4.2) and (4.3) are the single nonlinear Schrodinger equation which is 

known to be completely integrable by the inverse scattering method (Zakharov 

and Shabat, 1972). One consequence is that the solutions have no chaotic 

behaviour whatsoever, so the solutions are insensitive to the choice of initial 

conditions and do not display irregular behaviour over large scales of evolution. 
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Completely integrable partial differential equations typically possess many special 

properties, such as an inverse scattering transform, an infinite number of 

conservation laws, an auto-Bäcklund transform, a solution in terms of Hirota 

bilinear forms and soliton solutions. Also their similarity reductions give rise 

to ordinary differential equations of Painlevé type. For descriptions of these 

properties see, for example, Ablowitz and Segur (1981), Calogero and Degasperis 

(1982). 

The inverse scattering method for solutions of partial differential equations of 

the type 

(4.4) 

where F is a nonlinear differential operator in x, was discovered by Gardner, 

Green, Kruskal and Miura (1967), who showed that it was possible to reduce the 

Korteweg-de Vries equation to a linear integral equation. 

Many nonlinear partial differential equations have been found to be solvable 

by the inverse scattering transform and hence are considered to be completely 

integrable. Ablowitz and Segur (1977) observed that all the similarity reductions 

obtained from partial differential equations that were known to be completely 

integrable led to ordinary differential equations of Painlevé type. The Painlevé 

conjecture, which provides a necessary condition for determining whether a partial 

differential equation is completely integrable, was first formulated by Ablowitz, 

Ramani and Segur (1978, 1980a,b). Weiss, Tabor and Carnevale (1983) then 

introduced the Painlevé property for partial differential equations, this replaced 

the Painlevé conjecture by a test that could be applied directly to partial 

differential equations or systems of partial differential equations, without the need 

to find all the similarity reductions leading to ordinary differential equations. 

The Painlevé partial differential equation test was used by Steeb et al. (1984) 

to demonstrate that the single nonlinear Schrodinger equation (4.2), (4.3) was 

integrable by showing that the equation passed the Painlevé partial differential 
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equation test. They also used the Painlevé approach to construct a Bäcklund 

transformation and solutions for the nonlinear Schrödinger equation. Painlevé 

analysis has also been applied to modified nonlinear Schrödinger equations to 

determine conditions for these equations to be completely integrable. For the 

generalised derivative nonlinear Schrödinger equation 

lUt = tLrr + iaUU U 	
2 

+ ibu u,* 
 + CU3 

*2  
U , 	 (4.5) 

where a, b, c are real constants and u denotes the complex conjugate of u, 

Clarkson and Cosgrove (1987) found that this equation had the Painlevé property 

only if c = b(2b - a)/4. They also found that, if this condition on the coefficients 

was satisfied, then equation (4.5) could be transformed to the derivative nonlinear 

Schrödinger equation. Clarkson (1988) has also determined constraints on the 

coefficients of the damped, driven nonlinear Schrödinger equation 

iu+u-2IuI2U = d(x,t)u + e(x,t), 	 (4.6) 

in order that it has the Painlevé property. These constraints are 

x2(1d$ 	

2\ 

e(x,t) = 0, 

where oo(t), al(t) and fl(t) are arbitrary real functions of t. The variable 

coefficient nonlinear Schrödinger equation 

Iii + g(i)u + f(t)IuI2u = 0 	 (4.7) 

has the Painlevé property if the condition 

g 	= 1(t) [al It g(s)ds + b 1 ] 	 (4.8) 

is satisfied, where a 1 , b1  are constants (Joshi, 1988). This constraint for 

the integrability of the variable coefficient nonlinear Schrödinger equation had 

previously been shown (Grimshaw, 1979) to be equivalent to the condition (2.49) 
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on the coefficients of equation (4.7) (i.e. (2.48)) in order that this equation could 

be reduced to the constant coefficient nonlinear Schrödinger equation. Likewise, 

the special cases of (4.6) and (4.7) which are completely integrable are those 

allowing transformations of the equations to the constant coefficient nonlinear 

Schrödinger equation. 

The coupled constant coefficient nonlinear Schrödinger equations have been 

considered by Sahadevan, Tamizhmani and Lakshmanan (1986), who studied 

both a coupled pair of equations and a coupled system of N equations. For both 

of these cases they showed that the equations possessed the Painlevé property 

only for certain choices of the constant parameters. For the coupled pair this 

choice was identical to the restriction found by Zakharov and Schulman (1982). 

In the following section we present a brief review of the developments which 

led to the definition of the Painlevé property. In the subsequent sections we apply 

the Painlevé test for partial differential equations to the coupled pair of constant 

coefficient cubic Schrödinger equations (4.1) to determine values for the coupling 

constant in order that the equations have the Painlevé property. 

4.2 The Painlevé Property 

At the beginning of this century, Painlevé and his colleagues sought to 

determine which nonlinear ordinary differential equations had only movable 

singularities which were poles. A review of their work is given in Ince (1944). A 

movable singularity is one in which the location of the singularity depends on the 

constant of integration, for example, consider the nonlinear ordinary differential 

equation 
dw 
—+w 

 

dz 
2 =0, 

which has the general solution 

W(Z) = 1 
Z - zo 
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with pole at z = z0 , where z0  is an arbitrary constant. The other type of 

singularity, which is termed fixed, does not depend on the constants of integration, 

for example, the linear ordinary differential equation 

d 2 	dw 

has the general solution 

w(z) = Aw l  (z) + Bw 2 (z), 

where A and B are arbitrary constants. In this case the location of any 

singularities will depend only on the particular form of the coefficients a(z) 

and b(z). Linear ordinary differential equations can have only fixed singularities 

whereas nonlinear ordinary differential equations can have both fixed and movable 

singularities. 

For first order nonlinear ordinary differential equations the only equation 

which has no movable singularities except poles is the generalised Riccati equation 

	

dw ' 	2 
-a-z- = fo (z) + fi (z)w + f2 (z)w 

where f, (i = 0,1,2) are analytic in z. For second order nonlinear ordinary 

differential equations of the form 

	

d2w 	/ dw \ 

	

dz2 	\ 	dz j 

where F is rational in w and dw/ dz and analytic in z, Painlevé et al. found that 

there were fifty canonical equations whose only movable singularities were poles. 

Of these fifty, forty-four are integrable in terms of previously known functions. 

The remaining six, called the Painlevé transcendents, defined new transcendental 

functions. 

In the 1970's Ablowitz and Segur (1977) demonstrated that all the similarity 

reductions obtained from several partial differential equations which were known 

to be completely integrable led to ordinary differential equations of Painlevé type, 
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that is the only movable singularities of the solutions of the ordinary differential 

equations were poles. This observation led Ablowitz, Ramani and Segur (1980a,b) 

and McLeod and Olver (1983) to propose the following conjecture: 'every ordinary 

differential equation obtained by an exact reduction of a completely integrable 

partial differential equation is of Painlevé type', although a transformation of 

variables may be necessary. There has not been a full proof of this conjecture, 

although proofs have been given under certain conditions (Ablowitz et al., 

1980a,b, McLeod and diver, 1983). 

For the Painlevé conjecture to be applied to a partial differential equation, all 

possible similarity reductions of the equation must be obtained and each of these 

reductions must be checked to see whether it is of Painlevé type. Weiss, Tabor and 

Carnevale (1983) defined the Painlevé property for partial differential equations. 

This allows the Painlevé conjecture to be applied directly to a partial differential 

equation and removes the need to find the similarity reductions. They proposed 

that a partial differential equation would possess the Painlevé property if the 

solutions of the partial differential equation are single-valued about a movable 

singularity manifold. Ward (1984) has shown that the singularity manifold must 

not be a characteristic. As in the case of the Painlevé conjecture, there have 

been no full proofs of the Painlevé property, although no failing cases have been 

identified so far. 

For a partial differential equation with independent variables z 1 , z2 , 	,z,, it 

is assumed that in the vicinity of a singularity manifold 

(4.9) 

a solution u(z j , 	,Zn) may be expressed as a Laurent expansion 

00 

,Zn) =UjqV 	 (4.10) 
j=o 

where 	= (z 1 , z 2 , . , z) and uj = u(z 1 , 	 . , z) are analytic functions of 

z 1 , z 2 ,. . . ,z, in the neighbourhood of the singularity manifold (4.9). The partial 
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differential equation is then said to possess the Painlevd property if a is a negative 

integer and the expansion (4.10) has as many arbitrary functions as are required 

by the Cauchy- Kowalevski theorem. The values of j in the series expansion (4.10) 

at which arbitrary funétions arise are called resonances, and for each positive 

resonance one or more compatibility conditions are obtained. Satisfying these 

compatibility conditions may impose restrictions on the arbitrary functions and 

thereby reduce the number of these functions, if (4.10) is to be a solution of the 

partial differential equation. In such cases, the equation is said to fail the Painlevé 

test. 

There are three main stages to be implemented when applying Painlevé 

analysis to a nonlinear partial differential equation: determining leading order 

behaviour, identifying the resonances, and verifying that the compatibility 

conditions which arise at the positive resonance values are identically satisfied so 

that the number of arbitrary functions is that required by the Cauchy- Kowalevski 

theorem. 

4.3 Painlevé Analysis 

In order that the Painlevé partial differential equation test can be applied to 

the coupled nonlinear Schrödinger equations 

iA = 	+ (1Al 2  + hICI 2 )A, 
(4.11) 

iCt  = C, + (liIAI 2  + 

where h is the coupling constant, all the variables must be complexified so that 

equations (4.11) can be written as the system of coupled equations 
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iA t  = A+(AB+hCD)A, 

—iB t  = B + (AB + hCD)B, 
(4.12) 

iCt  = C+(hAB+CD)C, 

—iD1  = D+(hAB+CD)D, 

where B = K, D = Cs,  and A, B, C, D are treated as independent complex 

functions of the complex variables x, t. 

The Painlevé test of Weiss, Tabor and Carnevale ( 1983) defines the singularity 

manifold as 

4'(x, t) = 0. 	 (4.13) 

Due to a simplification proposed by Kruskal the singularity manifold can be 

defined in the form 

4'(x, t) = x - '(i) = 0, 	 (4.14) 

where (t) is an arbitrary analytic function oft (since 4' = 0 is not a characteristic 

(Ward, 1984), Ox  34 0 and so, without loss of generality, it can be assumed that 

4' has the form (4.14)). A solution of the form 

A(x,t) = 
	 B(x,t) = 

(4.15) 

C(x,t) = 	 D(x,t) = 

is then sought. For equations ( 4.12) to pass the Painlevé test p, q, r and s 

are required to be negative integers and the recursion relations which occur at 

the resonance values of j must be consistent so that the series (4.15) contain 

the correct number of arbitrary functions as required by the Cauchy-Kowalevski 

theorem. For the complexified nonlinear Schrödinger equations (4.12) the 

required number of arbitrary functions is eight. 
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Substituting (4.14) and (4.15) into the system of coupled equations (4.12) and 

comparing leading order terms gives the values p = q = r = .s = —1 and 

A0(A0B0+hC0D0+2) = 0, 

B0 (A 0B0 +hC0D0+2) = 0, 
(4.16) 

C0 (hA 0B0 +C0D0+2) = 0, 

D0 (hA 0B0 -j-00 D0 +2) = 0. 

From equations (4.16), it can be deduced that either A 0 =B0 =0 with C0D0  = —2, 

CO  =Do = 0 with A 0B0  = —2, or 

A 0 B0 +hC0D0 = —2, 
(4.17) 

hA 0B0 +C0D0 = —2. 

For the case A 0  = B0  = 0, analysis of equations (4.12) at subsequent orders of 

4) gives A = B, = 0 for j ~! 1 and hence A = B = 0, reducing the system of 

equations (4.11) to the single cubic Schrödinger equation which was shown to 

satisfy the Painlevé property by Steeb et al. (1984). A similar result is obtained 

for CO  = D0  = 0. For the third case equations (4.17) can be solved to give 

A 0B0  = C0D0  = 
—2 	

(4.18) 
1 +h' 

if h 0 ±1. For it = —1, equations (4.17) are inconsistent, while for it = 1 

A 0B0  + C0D0  = —2. 	 (4.19) 

By equating the coefficients of powers of 4))_3,  the general recursion relation 

3j + A0B0  A 2 hA 0D0  hA 0C0  A 
B02 	j2 

- 3j + A0B0  hB0D0  hB0 C0  B, -  6, 

hB0 C0  hA 0C0 	j2 - 3j + C0D0  CO2  C -  Cj 

hB0D0  hA0D0 j2 - 3j + C0 D0  D, 

(4.20) 
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is obtained, where 

j-1 	j-1 Ic 	 j-1 	j-1 k 
a3 = — RoE A,A1., -E E A,Ak.,Bk - hD0E A,C_, - hE E AICk..,D5k 

1=1 	 k=1 1=0 	 1=1 	 k=1 1=0 

- i(j - 2)A_ 1 t,b, 

i—i 	j-1 k 	 j-1 	 j-1 Ic 
bj = — AoL B1B.1 -E E B,Bk.,Ak - hCoE B,D.1 - hE L BIDklCj-k 

1=1 	 k=1 1=0 	 1=1 	 k=i 1=0 

—iE 1 _2  + i(j - 2)B_ 1 Ø, 

j-1 	j-1 Ic 	 i—i 	j-1 Ic 

cj= — DoE c1G1. -E E ClCklDk - hB0E CIA,-, - hE E C,Ak:Bjk 
1=1 	 k=i 1=0 	 1=1 	 k=1 1=0 

+iO_2 - i(j - 2)C_ 1 , 

j—i 	j-1 Ic 	 j-1 	 j-1 k 

dj = — CoE D,D1, -L E DIDk,Cjk - hA0E D,B, - hE E D,BkIAJ.k 
1=1 	 k=1 1=0 	 1=1 	 k=i 1=0 

—iD_ 2  + i(j - 2)D_1 , 

for j > 1, and A. = B, = C, = D, = 0, for j c 0. Equations (4.20) uniquely 

define A, B, C, 11), unless 

j2 - 3j + A0B0 
	A 
	

hA 0D0 
	 hA 0C0  

B 02 
	

j2 - 3j + A0B0 
	hB0 D0 
	

hB0C0  

hB0 C0 
	 hA 0C0 
	

j2  —3j +C0D0 
	CO2  

hB0D0 
	 hA 0D0 
	 j2 _3j + C0D0  

Expanding out this determinant gives an equation for the resonance values of j, 

i2(i - 3)2 Ri2 _3j)2 + 2(A 0 B0  + CoDo )(j 2  - 3j) + 4(1 - h2)AØB0C0DO] = 0, 

(4.21) 

which applies for any value of Ii. 

If h = 1, then equation (4.21) gives the resonance values 

i = —1,0,0,0,3,3,3,4. 

For h $ 1, we find that by using equations (4.18) in equation (4.21) the resonance 

values are given by 

(i+1)i 2 (i_3) 2(j_4)(i 2 _3i_4 + ) 	, 
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and hence 
3 	1 /25-7/i 

for resonance. It can be seen that two of the resonance values of j will 

depend on the value of the coupling parameter h. For equations (4.12) to be 

integrable by the Painlevé property, j is required to be an integer, this means 

that (25 - 7h)/(1 + h) must be an odd integer. The  values of h which give a 

positive integer for j are h = 0 (an uncoupled system of nonlinear Schrödinger 

equations), which have resonance values j = — 1,0,3,4 for each equation), and 

h = 3with resonance values j = — 1,0,0,1,2,3,3,4. Values of h < 0 are not 

considered as they have no physical relevance. If h takes a value other than 

these outlined abo\ then the final two resonance values are not integers so that 

the coupled nonlinear Schrödinger system will not, in general, be integrable as 

there are not enough arbitrary functions to satisfy the Painlevé partial differential 

equation test. Thus there are three cases to consider 

fi = 1 with resonances at j = — 1,0,0,0,3,3,3,4, 

h = 3 with resonances at j = — 1,0,0,1,2,3,3,4, 

h $ 1,3 and h >0 with resonances at j = -- 1,0,0,3,3,4. 

The resonance at j = —1 corresponds to the arbitrary function '(t) and 

for this system of equations to have the Painlevé property all other resonance 

values must be non-negative integers. This means that case (iii), which has only 

six integer resonance values, cannot generate more than six arbitrary functions 

and therefore does not pass the Painlevé test and so equations (4.11) are not, 

in general, integrable. In the following section the first two cases are studied to 

identify whether or not they have the Painlevé property. 



4.4 Arbitrary functions 

To determine if the correct number of arbitrary functions exist for the Painlevé 

property to be satisfied, equations (4.20) are solved for values of j which are not 

resonance values. For values of j which are resonance values, conditions on a1, b1, 

c1 and d, are found so that equations (4.20) are consistent, these compatibility 

conditions may impose constraints on some of the arbitrary functions. 

4.4.1 Case (1): Coupling coefficient h = 1 

The resonance values corresponding to h = 1 are j = — 1,0,0,0,3,3,3,4. 

Leading order analysis gives a single equation relating the functions A 0 , B0 , Co 

and D0 , 

A 0 B0  + C0D0  = —2, 

so three of these functions B0 , Co  and D0 , say, will be arbitrary. 

For j = 1 or j = 2, equations (4.20) become 

A 0B0 -2 	A 2 	A 0D0 	A 0C0  A 3  a, 

B02 	A 0 B0 -2 	B0D0 	B0C0  B, 	- bj 

B0C0 	A 0C0 	C0D0  —2 	CO2 C. 	-  cj 
B0D0 	A 0 D0 C0D0-2 Di dj 

For j = 1 

a1  = iA0t,b, 	 bi  = 

ci = iC0t,b, 	 di  = —iD&,b, 

then solving equations (4.23) gives 

A 1 	B, 	C, 	191 	i. 

A 0 	Bo  Co 	Do 	2 '  

For j = 2 

(4.22) 

(4.23) 

1 2 a2  = 	A 0t,b +iAo, 

= C0,2+ 'CO , 

b2 = B02 - iE0 , 

= 
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then equations (4.23) give 

A2 = 
	1 2 iA0 

- 1 b 

B2 
To 

12+iEo 
i-2= 2E_j(BoAo_AoEo+DoOoCoDo) 

C2  1 	2 	CO 
=—j 	_..-._(B0A0—A0E0+D0C0—00D0), 12 0 

12 + ibo 
= TO 

(B0A 0 —A0 E0 +Doco CoDo). 

For j = 3, equations (4.20) become 

B0  A0  D0  Co 	A3  ('\ a3/Ao  (][\ 

B0 A0 D0 C0 I  B311b3/B0I (4.24) 
I B0 	A0 	D0  Co 	C3 IcaICo) 
B0  A0  D0  Co 	D3 ) d3/Do  

where 
a3 	b3 	c3  - d3  - 1 - 
A0 

- 
B0 - C0D02 

Equations (4.24) are therefore consistent and the equation 

a31 
B0A 3  + A0B3  + D0C3  + C0D3 

= TO = - 
 (4.25) 

is the only restriction on the functions 4.: R3;  (3 D.Bv.introducing the three 

arbitrary functions a3 , #3  and 7,  a solution to equation (4.25) can be written as 

A3B0  = 

B3A0  = 	+a3—$3, 

C3D0 =+73, 17P—a3 

D3C0  = ——a3 - 3 . 

For j = 4, equations (4.20) become 

(A0B0+4 A0 2  A0D0  

I 	B02  A0B0 +4 B0D0  
A0C0  C0D0 +4 t' 	B0C0  

B0 D0  A0D 0 0 

A0C0  A4  a4  

B0C0  B4 	- 

Ct  C4 	- 

C0D0 +4 D4  

(4.26) 

EP 

U 



where 

= (lA 0  
A 0 	12 	

24+ _)(A0B0+00D0) 

__ 	rf 

R
A 0B0  2\

)  
AOBO 	4 	

2a3_CoDofl3—AoBo73] 

jb2 A 0  lÀ 0  

= 	1O+G2 	fiB0 	•2 	1 

B0 	12 	24 

—  

	 A0B0  
+ 2a + C0D0fl3  + A0B07

_0_

B0 

1 	
- 	

]  
i 2  E0  iE0  

+j+ ,  

C4 - 1 	G2+G(1COi)i(AE+ab) - 

_____ .'C0 D0  2\ 

	

To  Do ft 4 - 	
—2cr— A 0B0/33  - C0D073] 

i'2 00 	1 00  
6 Co  2 Co  

C2 	f1 b0 	i 2'\ 	1 
= 

	

i7J5 1/C0D0 	2 

C0D0 	- 	
+ 2a + A0B0fl3  + C0D0 -13] 

iil'2 bo 	ib0  

with 

G=A0B0 —B 0A 0 +C0 D0—D0C0. 

Equations (4.26) are compatible if 

B0a4  +A0b4+D0c4 +C0d4 = 0. 

Substituting a 4 , b4,  c4  and d4  into the above condition, we find that it is identically 

satisfied. Hence, by introducing the arbitrary function 04, a solution to the system 

(4.26) can be found as 
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A4 = - 1 
b4 

+04,  
4B0  

1 d4  
C4 = ---- +04, 4 D0  

1 a4  
£4 = --+ a 

4A 0  

1 c4  
= 

Hence, in solving the system (4.23), (4.24) and (4.26) it is found that there 

are eight arbitrary functions 0, B, CO , D0 , a3 , $, 3 and 04. Since the system 

(4.12) has order eight, so making (4.21) of degree eight, the coupled nonlinear 

Schrôdinger equations (4.11) possess the Painlevé property for the special case 

h = 1. This agrees with the result of Sahadevan et al. (1986) that (4.11) is 

completely integrable for h = 1 and with the existence of an inverse scattering 

transform (Zakharov and Schulman, 1982) in this special case. 

4.4.2 Case (ii): Coupling coefficient h = 3 

For this case, the resonance values are j = — 1,0,0,1,2,3,3,4. The leading 

order analysis (4.17) gives 

A 0B0 +3C0 D0  = —2, 

- 3A0110+u0110 

which can be solved for the products A 0B0  and C0D0  to give 

A 0B0  = C0D0  = 

This allows two arbitrary functions to be introduced, A 0  and Co  say, which 

correspond to the two resonance values at j = 0. For j = 1,2 equations (4.20) 

become 

/ A 0 B0 -2 A 2  0 3A 0D0  3A 000 	\ A \ ( aj 

B A 0B0 -2 3B0 D0  3B000 	I B 

[ 

(4.27) 
3B000  I 3A 000  C0D0 -2 C C - 
3B0D0  3A 0D0 D2  0 C0D0 -21 D) dj 



and for these equations to be consistent we require 

a 	b 	
'j 	

d 
for j=1,2. To  Bo  Co D0  

Since 

	

a 1 	b, 	Cl 	di  

condition (4.28) is automatically satisfied for j = 1, giving the solution 

(4.28) 

A 1 	i. 

Ao
=  

Cl 	i. - = 
CO 	2 

B1 	i. 

Bo 	2 
= 

I. 

Do  
- = 

2 

where oi(i) is an arbitrary function. Using these expressions we find 

= 	2 + i + i 140  
A 0 	2 	 A 0  

1 2 Ao
.Q1 . = 	- 	+ I, 

B0 	
I 

2 	 no  

C2 - 	?,2++ 1 
.60 

- 	 —, 
CO2 	

CO 

d2 	12 - = 	- iait) + I, 
D0 	2 

so showing that the compatibility condition (4.28) is satisfied for j = 2 only if 

the two free functions A 0  and Co  satisfy 

A 0 60  
A 0  C0  

This implies that 

C0 (t) = kA 0 (t), 

where k is a constant. This restriction reduces the number of arbitrary functions 

which were introduced at j = 0 to one. If we introduce the arbitrary function 

F(t), such that 

— 1F' 
	 = 
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Then we find 
A 0  E0  O0  ho  
A 0 	Woo  ~ —Co 	D0  F' 

and hence solutions to (4.27) can be found in terms of an arbitrary function a 2 (t) 

A2 2 
1 

122 01 6F+ 02  To - 

B2  it 
- 	 12+a1 +Q2 

C2 
C - 	 12+2 01 6F Q2  

D2  
2 itI 

—Do - 	1226F 

Setting j = 3, equations (4.20) become 

A 0B 0 A 2  0 3A 0D0  3A 000 \ 	A 3 \ 	fa3\ 

13 
 0
2 A 0 B0  3B0 D0  3B000  B 

( 
b3  

3BC0  3A 000  C0D0  C C3 1=1 c3 

, 3B0D0  3A0D 0 
n2 

0  C0D0 j 133 
) 

4 
) 

and for these equations to be consistent, the conditions 

a3 	1)3 	 C3 	d3  

(4.29) 

must be satisfied, where 

1.. a3  - 
 - 

	
+iai  - ai +2a+ia4, 

1)31•• 	1 	2 	3 	p 
- = 	-  iài - ai' +2ai+iarF 

C3 	1 	 1 	•2 	3 	. F 
= 	—iài+oi'4' —2a 1 —ia1, 

d3 	1 	1 	2 	3 
= p+iai+rm -2a1-ia1 

Do 

In order that these compatibility conditions are satisfied a restriction on the 

arbitrary function ü  is imposed 

= 0. 



A solution to equations (4.29) can be found by introducing two arbitrary functions 

a3(t) and 73 (t), such that 

A 3 	1 	1 	2 	3 .a1P 

Ao 
=  
-'- r' +a1+1iF+a3 

133 	1.. 	1 	2 	3alF 

Woo 	8 	_4
= —— a1' +a1 +I-7—aa, 

C3 	1.. 	1 	2 	3 .a1E 
= —'+aiø —ai- 1 ---p+73 

D3 1 	1 	2 	3 .al  

Do =  
— +aiØ -al  - ITT _73. 

For j = 4, equations (4.20) become 

A 0 B0 +4 A g  3A 0D0  3A 0 G0 A 4 	a4 

Bo A 0 B0  + 4 3B0D0  3B 000  B 4 	 - 	 b4 	
30 

- 	

' 	
(4.30) 

3B0 00  3A 000  C0D0+4 

3B0 D0  3A 0 D0  D02  C0 D0 +4 D4  

where 

a4 	. 
F - ib(a3 - 3) + 	+ 64a2  + ba1  + b = 102 	 a1  - 2iØa 

- — 

A 0 	F 

ifr 
—ia 1 a2 + 	

(p) 2 
+ ià - 	+ 5 

P.
aj -  20103 + 

- =lCe2T - ib(a3 - 	+ ba2  + 6aa2  + 	- &a1 + 2ia 

ifE\ 2  5fr. 
+'aia2 - 	- 	+ 	- 	bai + 20j03 - 

=- i(73  - 03) - &2a2 - 6aa2 - 	- 	+ 2ita

I (p)2 

— i0102 + 	- i&2- 	- 
p•

aj  + 20103 + 

F 	3.• 	 1•2 	2 	 1 3 

	

= —1&2 - 1fty3 - 03) - 
	

- 60102 - oi + 	01 - 2n4'a1

I (p)2 

+1'UiQ2 - —b + ia + - 	+ 5F 
	

-20103- 

01 



These equations are compatible if and only if 

	

a4 	54 	c4 	•d4  

A 0  B0  Co D0  

which is found to be identically satisfied on substituting for a 4 , 54, c4  and d4  in 

the above condition. By introducing an arbitrary function a4 (t), a solution to 

equations (4.30) can be written as 

A 4 iF 
- - a2 + 	- 	- 	+ 1207k - i(a3 - y)i + 

Ao 	

1 1 	1 	1E /fr\ 2 	F. 
- y) + S 
	

+ 12a + 3aa2 + -- r103 + 	+ 04
2-4 T al 

B4 iF 
- - --02 - 	01+ ba + 0102 - L —i(a3  - 	-

4 	 4Bo 

1 /\ 2 	57. 	. 	 1.. 	1 	iF 

+- T - 	+ 1&2  + 3aa2 + - 0i + -0103 - -- + 04, 
4 	2 	24F 

C4  i F 
- 

13 	I'3 	1 
a + 	ai - 	a1a2 + 

I 	 . 	I. 
- i('ya - a3)b - j-n 

Co 
j-t 

2 

1 (E\ 2  5 F . 	1 	2 	2 	1 	1 
a2_3ala2_a1+r173++a4 

1 F 
-iy) 

iF 
- = -jja2+jtP 

13 	I•3 	I• 
01 - 	a1+a1a2 _ 1 i(73_ aa)+i02  

i... 	.2 	. 	1 

+çj i/frY SF. 	12 	2 	 1 
+L'ai— 	a2 -3ala2—al—a1i'3—+a4. 

iP 

For this case there are only six arbitrary functions u.', F, 02, 03, ^t3  and 04 

corresponding to the eight resonance values and according to the statement of 

the Painlevé property this system of coupled equations will not be completely 

integrable because the Cauchy- Kowalevski theorem requires eight arbitrary 

functions. Equations (4.11) are then said to have the conditional Painlevé 

property, and special solutions may exist. - 

If we seek non-distorting pulse solutions to equations (4.11) with /i = 3, of 

the form 

[ThI 



A=e _i(AIt+Va)F( a) 

C =  

where A 1 , A 2  are real adjustable parameters, V is a frequency shift and F1 , J2 

are real functions of a = x - 2Vt which satisfy the coupled ordinary differential 

equations 

F;'+F+3F:F1 —s1F1 = 0, 	 (4.31) 

F'+F+3Ffr2—P2F2 = 0, 	 (4.32) 

where Pi = A - V 2  for i = 1,2. This is analogous to the situation in (2.64) and 

(2.65) with h 1  = 1 and h2  = 3. A conserved quantity for equations (4.31) and 

(4.32) can be found by adding (4.32) x F2' to (4.31) x F to obtain 

F;'F;+ F'F +F13F+ FF +3(FF1F + F12 F2F2 — #IFIFI  —8 2F2F = 0, 

which can be integrated to give 

(';) + (F: + F:)  + (FF) T 
(01 

 F12  + thFfl = constant. 

Furthermore by adding (4.31) x F2' to (4.32) x F we obtain 

Fl" F2' + F7F + Ffr + FFI  + 3(Ffr1F + Ffr2F) - ,3F1F - I3F2F =0, 

which for Pi = 02 =  can be integrated to give a second conserved quantity 

F;F + Ff F2  + FF1  - ,3F1 F2  = constant. 

Since there are two conserved quantities equations (4.31) and (4.32) are integrable 

for the case 01 = 02. For this case equations (4.31) and (4.32) are separable. By 

writing F1  + F2  = G1  and F1  - F2  = we find that hi = 02  equations (4.31) 

and (4.32) are separable and they uncouple to give 

G7 +G—pG,=0, 	i=l,2. 

EE 



These equations have solutions 

Gj=sech iJ(cr—a1 ), 	i=1,2 

indicating that C1, C 2  are isolated pulses with the equal amplitude, vf27, but 

independent pulse centres. Hence a solution to (4.31) and (4.32), for the case 

01 = $2, is 

P'1  = 

= 	{sech(c_ a l ) +sech(c — c2)} 

F2  = 

rl tsech VIP—(a — a l ) — sech vlo_(a — a2) = 

and non-distorting pulse solutions to equations (4.11), with h = 3 can be written 

as 

A = 	 {sech J(c - ai) + sech /(c - a2 )} 

C = 	 {sech /7i(c - a1 ) - sech ,/7(a - a2 )} 

where A 1  = A2 = A. Other solutions allow one or both of C 1 , C2  to be bounded 

but periodic, and which can be written in terms of elliptic functions whose periods 

depend on amplitude. 



Chapter 5 

Truncated Painlevé expansions 
for the coupled nonlinear 
Schrödinger equations 

5.1 Preamble 

The Painlevé partial differential equation test, has been applied to many 

partial differential equations to determine whether or not they have the Painlevé 

property (Weiss et al., 1983), by seeking solutions to the equations which are in 

the form of Laurent expansions around a singularity manifold (x, t). Although in 

most cases the integrability of these equations had already been determined. For 

equations which are integrable, Bãcklund transformations and Lax pairs for these 

equations can be derived by using a truncated Painlevé expansion (see Weiss et 

al., 1983, Weiss, 1985). Bäcklund transformations for the single cubic Schrödinger 

equation have been presented by Steeb et al. (1984) and Weiss (1985). Sahadevan 

et al. (1986) have found Bäcklund transformations for a coupled pair of nonlinear 

Schrödinger equations which are integrable. 

Equations which do not pass the Painlevé test are not, in general, integrable 

but may possess special solutions which can be identified by truncating the 

Painlevé expansion at the cb° term. For these cases, we find that 0 is constrained 

to satisfy a set of consistency conditions which may suggest possible forms for 0. 

Cariello and Tabor (1989) and Halford and Vlieg-Hulstman (1992) have found 
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solutions to several equations using truncated Painlevé expansions 

In the previous chapter, we have used the Painlevé partial differential equation 

test to determine the integrability of the coupled pair of constant coefficient cubic 

Schrodinger equations. It was found that when the the value of the coupling 

coefficient h was not equal to ±1, the coupled equations were not integrable, 

although for ii = 3 the equations were found to have the conditional Painlevé 

property. In the following sections we seek special solutions to the coupled 

constant coefficient nonlinear Schrödinger equations (4.11) which are of the form 

of a truncated Painlevé expansion, for values of h for which the equations do not 

have the Painlevé property. In Section 5.2 we consider the case h $ +1,3, while 

in Section 5.3 we consider the special case h = 3. 

5.2 The truncation procedure for h +1,3 

In this section Painlevé analysis is used to identify solutions of the constant 

coefficient nonlinear Schrödinger equations (4.11) for the case when the coupling 

constant h does not take the special values, ii = +1,3 (see Section 4.3). Applying 

the Painlevé analysis as described in Chapter 4, we first complexify all the 

variables in equations (4.11) to obtain the system of coupled equations (4.12). 

Solutions of these equations are then sought which are of the form of Painlevé 

series (4.15) truncated at the O(cb° ) term, that is 

c=9+ci 	D = !+D1 , 
(5.1) 

with 0 = (x, t). Substituting the truncated series (5.1) into equations (4.12) 

gives the system of equations 
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  + 
Ao 

 + Au 	 2A ) = 2Ao  - (Ao4, rx  + os4,x ) + __ + A 1  02 	 03 i (-Ao±t- 
 

A 2B0 1 
+ 3  + (AgB + 2A 0B0A 1 ) + (AB O  + 2A 0A 1 B1 ) + AB, 

A 0 C0D0  
+h[4,3 + (A1 C0D0  + A 0 C1 D0  + A 0C0 D1 ) 

	

+ (A1 CD0  + A 1 C0D1  + A 0 C1 D1 ) + A 1 C1 D1 ] , 	( 5.2) 

	

2 	1 	 Boxx 

	

Bot  
—i (_B o  + 	+ Bit) = 2B0 -. (Bo qS, + 2Box 4,r) + , + .Bixz  02 0 	 03 	2

+ 03 	T2+ (BO A + 2A 0B0B1) + (BA O  + 2B0 A iB 1 ) + BA 1  

1 +h [BoCoDo + (B
1 C0D + B0 C1 D0  + B0C0D 1 ) 

	

03 	Ip 

(BI C1 DO  + B1 C0D1  + BO C1 D1 ) + Bi C1 D1 ] 	(5.3) 

(—Co't 
C0+ 7 + c1) = 2614 - (Co4,rx + 2C0 4,) + 61osr 

	___
.+ 

CD0  1 
+ 	+ (CTh + 2C0D0C1) + (C2 Do  + 2C0C1 D1 ) + 03 

+h 	+ (C1 AB 0  + C0A 1 B0  + C0A 0B1 ) 

(C1 A 1 B0  + C1 A 0B1  + C0A 1 B 1 ) + C1 A 1 B1 ] , 	(5.4) 

 Doxx  

	

Ot 	Dot 4,2 _____ 

	

—i (_D 0  + 	+ Dit) = 2D0  - (D0 4, 	) + 4,03 	 + 2D0 4, 	+ Dlrx  

+ (D20 C1  + 2C0 D0D1) + (Dc0  + 2D0C1D1)  + DC1  

[Do A O Bo 	1 
+h 	+(D1 A 0B0  + D0 A 1 B0  + D0A 0B 1 ) 

	

03 	02 

(DA1Bo + D 1 A 0B 1  + D0 A 1 B 1 ) + ThA1Th] . 	(5.5) 
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The strategy for finding the functions 0 , A 0 , B0 , Co , D0 , A ll  B 1 , C1, D is to 

insist that terms of each degree 	 —2  00  are satisfied individually. 

For terms of 0(0-3 ), the equations 

A 0  (A 0B0  + hC0D0  + 2q) = 0, 

02 B0  (A 0B0  + hC0D0  + 2) = o, 

Co (hA oBo +CoDo +2q5) = 0, 

02 D0  (hA 0B0 +c0D0+.2) = o, 

are obtained, from these equations it can be deduced that either, A 0  = B0  = 0 

with C0D0  = —2, Co  = D0  = 0 with A 0B0  = —2, or 

A 0B0 +hC0 D0  = 	
02 

(5.6) 

hA 0B0 +C0D0 = —2. 

For the case A 0  = B0  = 0, analysis of the equations obtained for subsequent 

orders of 0 gives A 1  = B1  = 0, and hence A = B = 0 which reduces the 

coupled equations (4.11) to the single cubic Schrödinger equation. Newell et al. 

(1987) consider truncated Painlevé expansions for this equation. A similar result 

is obtained when Co  = Do = 0. These cases are integrable and will not be 

considered further. Equations (5.6) can be solved to give 

- 

for h+1. A 0B0  = C0D0  = 
20  
1+h 

If h = —1, equations (5.6) require 4 = 0 for consistency, however for Painlevé 

analysis the singularity manifold (x, t) = 0 is not a characteristic and hence 

0 (Ward, 1984) and there is not a solution of the form (5.1) when h = —1. 

The functions A 0, B0 , Co  and D0  can be written in the form 

A0 
= 
 V~+2 

 h Oxe-P, 	 B0 = 	l+h \I_
2 	p 

Co =  V
~2 	

Do 
= V' i : hT6 

	(5.7) 



where P(z,t) and Q(x,t) are arbitrary functions. 

Comparing terms of 0(0-2 ) in equations (5.2)-(5.5) and using the expressions 

given in (5.7), we obtain the equations 

( h+2 1 h h A 1 B0  \ 30.. 

I 	1 h+2 h h J I B1 A 0  - I 	(5.8) 
 h ii h+2 1 C1 D0  - I 3xr2xQx*t I 

h h 1 h+2 D1 C0 ) 

For h 54 3, the coefficient matrix on the left-hand side is non-singular so that 

(5.8) has the solution 

A1 - 	 - 2P3, — i 1 ) 

A 	202  

- 
Bo 	202 - 

(5.9) 
C1 _ 	1 

- 2Q - i4t) 

D1 - 
- 24 

Terms which are of 0(r1)  in (5.2)-(5.5) give the system of equations 

iA ot  = A0  + AB0  + 2A0A 1 B 1  + h [A1 (C1 D0  + D 1 C0) + A 0 C1 D1], 

	

—iB ot 	Bo  ± BA 0  ± 2B0B 1 A 1 th[B1 (C1D0±DiCID) + B0 C1 D1 } 

(5.10) 

	

iCOt 	Co + C12D0  + 2C0C1 D1 + h[C1 (A 1 B0  + B1 A0 ) + C0 A1 B1], 

= Poxx + DC0  + 2D0 D1 C1  + Ii [D1 (A1 B0  + B1 A0) + D0A 1 B1 ]. 

Substitution of (5.7) and (5.9) into these equations gives 

(l+ h) 	xzx 	.rt 	.xxt 	3(4'xr) 	
(Ø)2 

2 	2 

= 2i(Pr + hQ) - 2(P,2 + hQ), 	 (5.11) 
Ox 	

x 

(1+h) I+i 	
3 ()2i (2 ] 

Ox 	 x ' xx2kx 	2 k4, 

= _2if-(F + hQ) - 2(P.2 + hQ), 	 (5.12) 
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2 

(1 + h) 	TXX 	.txt 	•XX t 	3 (rr\ 	1 
(±t  2 

'T'TT - T) -) +iQ+Q_Q] 

= —2i(hP + Q4 - 2(hP + 
Ox 

(5.13) 

'2 

(1+h) 	rxx +1.xt 	
(±t) 2 

+iQt +Q+Qsr] 
2  (t 	Ox 1 

= —2i(hP + Q) - 2(hP + Q). Ox 	 x (5.14) 

The solvability of this set of equations imposes restrictions on the functions 0 , P 

and Q arising in (5.7) and (5.9). 

By subtracting (5.12) from (5.11) and (5.14) from (5.13), we deduce that 

0 	
+Fzr=O 

. 	(\ 	
P=—i-+), 1jjj 	 giving 	 /3@  

(5.15) 
0 

i 	
f\ 

- -) 

+QT,, = 0, 	giving 	QX = -'-- +'y(t). 

Together these imply that 

P — Q = 2a(t)x + 28(t), 

(5.16) 

= —2i5+21'(t) 

where 2a = 0 - y and 21' = 0 + -y, with /3(t), 7(t), 8(t) arbitrary functions. 

With P, Q satisfying (5.15) and (5.16), it is found that the system (5.11)—(5.14) 

reduces to 

(1 + h) 
~J —2i(P + hQ) - 2(P + hQ). 

Ox 	2 	2 0.  
(5.17) 

h) 
O.X. 	(0..  2 

t(1+ I  ( O t 	iQ+Q
I 
= 2i±4P + Q4 - 2(hP ± Q). 

(5.18) 

Subtracting these equations leads to 

Ot 	1+ha' 	1+hS' 	i 

	

4 a 	4 a .c 
(5.19) 
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from which it can be deduced that the loci 0 = constant have the form 

xp(t) + q(t) = constant, 

where 

(1+h)/4 	 , 
 

p(t)=a 	and q(t)= 

This suggests that we can write 0 = (ij) with 77 = xp(t) + q(t). Then, the one 

remaining restriction from (5.11)—(5.14) is found, by adding (5.17) and (5.18), as 

i(P + Q t ) +2 	
() 	( 

	

2 

-8iF5- +6(a2 +F2 )=0. (5.20) 

Comparing terms of O(ch° ) in equations (5.2)—(5.5), we find that A 1 , B1 , Cl , 

D1  must also satisfy the complexified coupled nonlinear Schrodinger equations 

(4.12), 

	

iA lt  = Airx  + (A1 B1  + hC1 D1 )A 1 , 	 (5.21) 

	

= B1 + (A 1 B1  + hC1 D1 )B 1 , 	 (5.22) 

	

iC12  = C + (hA 1 B1  + C1 D1 )C1 , 	 (5.23) 

IJJlt = -'1xé t t"1 -'1 t t_/1L/1)LL1.. 

If new functions u and v are introduced such that 

xx 
U = 

Yr 

Ot 
= 7Th 

Yr 

then we find, from (5.9), that 

A, 
=  
4

~-2 
 (u +h+w26 

= 
 

2 1 : 
h + iv - 27)e, 

1 V 2  = 
- 	 (u—iv+2fl)e" B, 

1+h 

D 	
1/2 

(u—iv+27)e. 
1+h 

If we substitute for A 1 , B 1 , Cl, D1 , in equation (5.21), rewritten in the form 

A lt  Ai rr  
A1 +(A1B1+hC1D1), 
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and write 

—iP - (A1 B1  + hC1D1 ) E 41 , 

we obtain the equation 

1(u+iv-2$) = vt+2iiY+urr_3vvx_4ivx/3 _v2u_ 2ihAt'$+t#32  

-lUt + iv., + ivu + 2ivu - 2u0 - iv  + 4v 20 + 5iv$ 2  - 2$ 

Similarly, from (5.22) we find 

• 

	

4 1 (u—iv+2$) = vt +2'$ 1  +u-3vv-4iv$ 	2  —v u-2iuv$+u/3 2  

+lUt - iv, - iv,,u - 2ivu + 2u/3 + iv  - 4v 2 /3 - 5iv/3 2  + 2/3d . 

Adding and subtracting these equations gives the equivalent system 

	

= Vt + 2i#'+ U - 3vv,, - 4iv43 - v 2 u - 2iuv/3 + ufl 2 , 	(5.25) 

- 2$) = - IUt +ivn  +iVj,U + 2ivu - 2u$ - iv 3 +4v2 i3 + 5iv13 2  -2 '33.  (5.26) 

Similarly, from (5.23) and (5.24), with 

—iQt - (hA 1 B1  + CD 1 ) 

we obtain 

	

• 	 2 	. 	2 

	

tI2u =vt+2i'y
1  +u-3vv _4iv#yv u-21uV-y+wy , 	(5.27) 

'Z2(iv - 2y) = tij + iVx + ivu + 2ivu,, - 2u'y - iv3  +4v
2  -y + Siwi 2  -2-y .  (5.28) 

By subtracting (5.27) from (5.25) we obtain 

- 4'2 )u = 4ia' - 8iva - 4iuva + 4ua1', 

	

and substituting for 	, 02, u and v, we find that this equation reduces to the 

simple statement 

(1— h)cx' = 0. 



As we are considering cases for which h 1, this implies that & = & = constant, 

while (5.19) then shows that 0 may be written as = (zj) with q = x + q(t) 

(i.e. p(t) = 1) and 

1+h+i(h3)F 	 (5.29) 

Hence, we can write it and v as 

'I' v 	t), q(  

which are functions of only 77 and t, respectively. The expressions for P and Q 

in (5.15) then become 

= —iq'(t)+lT(t)+&, 

Qx = —iq'(t)+F(t) -a, 

which may be integrated with respect to x to yield 

F = (—iq'(t) + 17(t) + &)x + 6(t) + r, 

Q = (— iq'(t) + 17(t) - &)x - 6(t) + r, 

where r is a constant. 

Subtracting equation (5.28) from (5.26) gives 

(01 -  2)(iv —217) - 2&(01 + 2) = —4u& + 8v2 & + 20iv&1' - 4(3172 + 

which, after substituting for C , 2, u and v, can be written as 

2 	ç. i. II 2W' - W - LIq - F')q = i(t), 	 (5.30) 

with 

' 	 , J(t) = cq + 2ig(iq" - F') + 8iq'F - 6(172 + &2). 

Since 71 and t are independent variables, differentiating equation (5.30) with 

respect to ij gives 

'r'. (2W' - W 2 )'— a(iq —1") = 0. 
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Therefore we deduce that iq" - F' is a constant. Consequently, J cannot depend 

on 1, so that (5.30) has the form 

2iI' - jj2 = 2Lq +J, 	 (5.31) 

where 

L = i(iq - F') = constant, 	 (5.32) 

3q'2  + 2Lq + 8iq'F - 6(F2  + a2) = J. 	 (5.33) 

By considering the sum of equations (5.25) and (5.27) and noting that v = 0 

we obtain 

ODI + 2 )u = 2v1  + 4iF' + 2u - 2v2zz - 4iuvf + 2u (F2 + 

which reduces to 

L = i(iq" - 21F'). 

Comparison with (5.32) shows that we must have F' = 0, from which we can 

write F = f (a constant) and deduce that 

q"(t) = —L. 

Consequently, the most general allowable forms for q(t) and v = q'(t) are 

q=qo + qii_Li 2 , 	v=q1 —Lt, 

where go  and q are constants. Substitution into (5.33) then gives compatibility 

only for L = 0. Thus v = constant and q = vi + go, while J is given by 

J = 3v 2  + 8ivlT - 6(12 + &2). 	 (5.34) 

The sum of equations (5.26) and (5.28) gives 

+ $ 2 )(iv - 21') - 2&(I - 2) = 

—2iu + 4ivu,, - 4uj' - 2iv 3  + 8v2 1' + lOiv(fS2  + &2) - 41'(F2  + 3&2), 
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which reduces to 

(i'2 - 2W' + 3v 2  + 8iv1' - 6(I2 + &2)) (it - 21') = 0. 

Use of (5.31) with (5.34) shows that this equation is identically satisfied. The 

remaining restriction (5.20) obtained from the analysis of 0(0_ 1 ) terms is 

also identically satisfied. This yields all the compatibility conditions for the 

complexified form of equStions (4.11) to have solutions of the form (5.1). 

Equation (5.31) reduces to the separable form 

with solution 

W=-2btanhb(q—rj o), 	J=-4b2 , 

where b, 710  are constants. Consequently, 

4V' cosh b(ij - ij) + 2b4' sinh b(71 - '7o) = 0 

gives 

'I' cosh2  b(ij - çio) = do = constant. 	- •- -- - 

Further integration gives 

 do 
= ttanhb(h/ - 77o)+ o = (x,t), 	 (5.35) 

with 00  a constant. 

An expression for A is obtained by substituting (5.7), (5.9) and (5.35) in the 

truncated series (5.1) for A as 

A =V__2 1b ((40b +do)e'° -( 0b - d0)c"'° \v -

i  + h L 0 0 b + do)eTh)  + ( 0b - do)cb(flflo)) - i + F + 

By writing OD ob - = ( 0 b + do )e2 '°, with x0  a constant, we find that 

A 
= 	h 

[btanh b(x + vi + qo - - xo) - i + + 
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Similar expressions for B, C and D can be found. If we write ( = b(x - + vi) 

with 2 = xo - qo + 'Jo, we then find 

A = 

B = / 2 

V 1+h [—btanh(+U+&]/, 

C =
V~+ 

 h 
[btanh( + U — &] e 

D 
 = V~

2 [—btanh(+U—&]c, 
h 

where U = - iv/2. These are the most general solutions of the complexified 

coupled nonlinear Schrödinger equations (4.12) which have the form of truncated 

Painlevé expansions. They require additionally that q' = v and F = I' appearing 

in F, Q, and U satisfy condition (5.34), with J = —4b 2 . 

To complete the construction of solutions to (4.11), we require that B = A 

and D = C* ,  when x and t are real. We thus write the expressions for A, B, C 

and D as 

A 	
2 [Rc ~ + SCI _

1+h eC+CC
e 

B 	
2 [SeC +R&l 

1+h eC+cC je 
(5.36) 

c -  \I 
2 IRe'+Se d

I
-Q 

 
- 1+h [ eC+c 

 

D = /_2 ~ geC +äe}eQ
V1+h  eC+cC 

with R=U+&+b,S=U+&—b,i=U—&+bandS=U—&—b. The 

conditions B = A* and D = C* then become 

e10+* [se' + 	+ 	+ Re " I = 

+ S*e(_C  + 	+ S*e_(c+(*), 	(5.37) 
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ef' 	+ eC  + ke 	+ .ke"] = 

+ 	+ 	+ ,s—(C+C) 	(5.38) 

We notice that the exponents all involve either P + P* = 2P+, Q + Q* = 2Q+  

C + C = 2( or (- = 2iC, which are linear in x and t, where /3 = /3+ +iP, 

Q = Q + jQ, ( = (+ + i( with P, P, Q + , Q, ( and  ( all real. 

If C $ constant, we then find that 

S = S 
_2P+ 

R=Re 

from which P = 0, with 1? and S both real. Since additionally .11 = 8, we 

deduce that b = 0 with /? = S = U + & real arbitrary. Similarly we find Q = 0, 

leading to = 9 = U - & real and arbitrary so giving 

A = Ae_hott) , 	C = öe"0 1 	(5.39) 

which describe continuous (unmodulated) solutions to equations (4.11), with 

independent and arbitrary real constant amplitudes A and d. Direct substitution 

into (4.11) then requires only that 

P(x,t)=ki x—w i t+8i,. 	Q(x,t)=k2x—w 2 t+52, 

where 

=k 2 - A2  - hC2 , = 	- hA2  - (5.40) 

with Ic 1 , Ic2 , 61,  S, A and O as arbitrary real constants. It should be noted 

that the expressions (5.40) are much less restrictive than those which result from 

= v = constant and J = 0 in (5.34). 

For C = constant, there are two cases to consider, either P+ = constant or 

$ constant. The case 	= constant reduces to a subcase of the possibilities 

for p = 0. For P 	constant, we find that (5.37) has only the trivial solution 

R = 0 = S unless there is duplication between the real exponents on the left- 

and right- hand sides, implying that either S = 0 or R = 0. For the case S = 0 
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equation (5.37) reduces to 

Rc2re_2I + Re  2(+_C4) R' e2P + 

from which we can deduce that P = ( with 

.1? = Re 2" = 

so giving 

ri integer. 

Without loss of generality, this yields just the two possibilities 

A = R 1 e -iP-  - sech(, 	R 1  real; n even, 

or 	 (5.41) 

A=iW 1 e -iP_  cosechC+ , 	W1  real; n odd, 

with R 1  = iWj  = ,/2/(1 + h) R/2. Similarly, for B = 0 we obtain F = 

with 

S = 
5*21C = S* e_ 21c 

leading to just the two possibilities (5.41) with S replacing B. Correspondingly, 

equation (5.38) leads to Q' (, for = 0, with 

C = &e' sech(+, 	B 1  real; ii even, 

or 
	 (5.42) 

C = W 6_r cosech (+ 	W real; n odd, 

with R = i Wi = 2/(1 + h) k/2. Similarly, for = 0 we obtain Q = 

leading to the two possibilities (5.42) with S replacing B. Since we require 

bounded solutions, and cosech is singular, we consider only the sech solutions for 

A and C. If we now try to restrict (, P and Q using the algebraic restrictions 

(5.29) and (5.34), for the case S = 0, it is found that ( = b(x + 2bt - 

= —bx + 81  and Q = — bx + 8, where Li, 35, 81  and fi  are real arbitrary 

constants. Similar results are obtained for B = 0. 
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The solution obtained for A, and C is too restrictive, since more general 

solutions of a similar form have previously been identified. Although seeking 

solutions in the form of truncated Painlevé expansions yields possible solutions, 

the algebraic restrictions emanating from Painlevé matching of the various terms 

appear to be much too restrictive. 

However the Painlevé analysis does suggest that there exist solutions of the 

form 

A = Ae' 1" sech ( 	 C = Oe_102 sech +, 	(5.43) 

with ( = a(x - Vt + ,u), t = k1 x - w j t + öl and 4'2 = k2 x - w2t + 62. Direct 

substitution into equations (4.11) then shows that these assumed forms do indeed 

give exact solutions subject to the conditions 

2 	2  —a, 	V=2k, 

with either A = ö = 2a2 /(1 + h) or A = 2a2  and O = 0. The first case describes 

a linearly polarised pulse while the second describes a circularly polarised pulse 

(Parker and Newboult, 1989). This analysis indicates that Painlevé expansions 

can be used to suggest possible general forms of solution, but that the only 

solutions identified are ones already known. 

5.3 The truncation procedure for h = 3 

In Chapter 4 the constant coefficient nonlinear Schrödinger equations (4.11) 

were shown to have the conditional Painlevé property when the coupling 

coefficient h equals 3. For this case equations (4.11) are not, in general, integrable 

although some special solutions exist (see Section 4.4). In this section we 

seek solutions to equations (4.11), for h = 3, which are of the form of the 

truncated Painlevé series given in (5.1). The analysis differs from that given 

in the previous section, however, since the matrix equivalent to that in (5.8) is 
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singular. Substituting the truncated series (5.1) into the complexified nonlinear 

Schrödinger equations (4.12) gives the system of equations (5.2)-(5.5) with h = 3. 

Again the functions 0, A o , B0 , Co , D0 , A 1 , B1 , C1 , D1  are found by insisting that 

terms of each degree 0 -3
, 0

-2 , are satisfied individually. 

For terms of 0(0-3 ), the analysis is analogous to that given in Section 5.2 

with h = 3 and hence we find 

2 
A 0B0  = C0 D0  = - 

2 

The functions A 0 , B0 , Co , D0  can be written in the form 

1 	-p 
A 0  = 

1  
B0  = 	

p 

(5.44) 

CO 
	1 	-Q 

0 -  Do  = -7e, 

where P(x,t) and Q(x,t) are arbitrary functions. 

Comparing terms of 0(0-2 ) in equations (5.2)-(5.5) and using the expressions 

given in (5.44), we obtain equations analogous to (5.8), although in this case the 

coefficient matrix on the left-hand side is singular. By introducing the arbitrary 

function R(x,i), solutions to the system (5.8) can be written as 

A l 	 - 

p±+R) - 20. k 0. 

B I  1 

(±+2px++R) - (5.45) 
C1 

- 

- 1 () 

CO- 

Di 	
- 
- 1 

(+2Q+i±L_R 
D0  2r\r OX 	) 

Terms which are of 0(0-1 ) 
in (5.2)-(5.5) give a system of equations analogous 

to (5.10). Substitution of (5.44) and (5.45) into these equations gives 

3 -  
2 

  
 -xzx 	

-- -2
.
-

x
--

x 
 — 

t 
2-+2

(OXX) +/ 

3  + Q)+ i(P + 3Q) + 2i;, 2PXX - 2PR - iR, (5.46)
OX 	 TX 
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2 

i 2— +(& —2— Ox' + 2i 000  Ot  
¼ ct'j

2 

 

= 3 (P + 	+ i (P + 3QT ) + 2iP1  + 2Prr  + 2PR + iR, (5.47) K 	 Ox 

2 + ( ±' ) 2 
.2,t + 2i— - 2i 

xx t -- 

= 3 	+ Q) + i (3Pm + Q) + 2iQt - 2Q + 2QXR + iR, (5.48) 

/ 	\2  
3Ik —4' )'

I + k 
 

)
-2-l x —2i

4xt  
+2i

4 n 
— 
qt 

0. 	
-- — 
	— 

 

=  3 (P + Q)+ i (3P + Q) + 2iQt  +2Q - 2QR - iR. (5.49) 

The solvability of this set of equations imposes restrictions on the functions 0, 

F, Q and R arising in (5.44) and (5.45). By adding (5.46) to (5.47) and (5.48) 

to (5.49), we obtain 

() 

	

3 ( r ) 2 	

_2± =3(F+Q) +i(Pz +3Q)+2iPt (5.50) 
40. 

2  
3

Ox 

	(\ 2 	xxx 	1 2 	2\ . .  + T) —2--i--- =.3tF=+Q)tI1varx:rLx)tbUiR. o.a1i 

Subtracting these equations leads to 

F2 —P=Q t —Q, 
0. 

and since 

0. - 	dt # 

it can be deduced that along loci (x, t) = constant we have 

dFdQ 
dt - dt 

Consequently, it can be deduced that P - Q = constant and hence 

P—Q=2M(4), 
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or 

P = -T(x,t) + M, 	Q = -T(x,t) - M, 	(5.52) 

where T(x,t) is an arbitrary function and 0 = 4(M). Adding (5.50) to (5.51) 

leads to the restriction 

(4)"MxMx
X'2 	M 2 	 4)" M,,,

3-+-M_) +(-) 	 M 

= 6 (M+T,)_ 4iTxM - _ 2iTt . 
	 (5.53) 

Further restrictions on the arbitrary functions can be found by subtracting (5.47) 

from (5.46) and (5.49) from (5.48) to give 

M Ms,, 	 i M 
11j7 	=TxxMrx+TxRMxRRjjr- 

M 1  .M2M 	 i M 

Subtracting and adding this pair of equations gives the equivalent system 

2M = 2TZR - 1R-A_ 	 (5.54) 

i- (R-) = 	- MR. 	 (5.55) 

Comparing terms of 0(4 0 ) in equations (5.2)-(5.5) we find that A 1 , B1 , C1  and 

D1  must also satisfy the complexified coupled nonlinear Schrödinger equations 

(5.21)-(5.24) with h = 3. By applying analysis similar to that used in Section 5.2 

we consider the combinations [(5.21) + (5.22) - (5.23) - (5.24)], [(5.21) + (5.22)  + 

(5.23)+(5.24)], [(5.21)-.(5.22)-(5.23)+(5.24)] and [(5.21)-(5.22)+(5.23)-(5.24)] 

to give the equivalent system 

- 2iMrar- 12 (MT + TM) 	- 4iRT 

	

+6R (M + T) - 2iRT - R (Z)2 + 2Rrx  = 0, 	(5.56) 
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\ 4)'!!' 	'I)" 4) 11 	 3 	 4) 11 2 
2M-- - 6M-- + 6MM 3,,,- - + 3M () - 9MSMn () 

+(2M... 
 M2  M2  M 

 IvY 2, 	M. 	 ) T, 	j. 

M.t M 
(Mt  2 

- 2iT2, 2,-- + 
2 MZZXZ  - 6 M2, 2, 3, M2, 2, 

—2 - - M
2,) M2, 	M2, 	M2, 	M M0  

+3 () + 18M 1,M — 2iTt ! r + 	M.  — 4iT + 12T2,T2, = 0, 

(5.57) 

4)" 
4M- — 6M (- ,p

tV ) 2 

 + (2M 2,M2, - 2MZ TTR + iMR) 

 22 
 M

M 	 Mfl   12M   4iMT + 12MT 
Mx 	 M 

MM2,,, 
+iRjçjrjçy- - 2RT2, 1 	- 2M 2,R2  + 2iR - 4R2,T2, — 2T 2, 2,R =0, 

(5.58) 

4)" 1 4)"\ 2  
(2iM2 Mx  - 4M T2,) -- + (6MT2, - 3iMM2,) (7) 

+ (2iM2, — 	
M 
M. 

- 2M2,TZS  — 2MR) 
o il 

- 
M2, 2, 	 . M 	M2, 2, _ + 4i M

2, — 

—i + 67'= (M)2 
M M2, 2, 2, 

— 
2i 	+3i 

 M2, 
+ 3iAi 

M / M2,2, 	2  

(M) + 6iMM,, 

Mt 	A M2,2,2, 	 2 	M2, 2,vx  +2T1 	+ 14iT 	- 4T2, M2, + 67' (.i) — 	- 12MT2, 

+4iTT2, — 4Tnr — 
12T — iR2 	+ 2TR2  + 4M2,2,R + 4M2,R2, = 0. 

Y. 
(5.59) 

The functions OD, M, T, R must satisfy equations (5.53)-(5.55) which were 

obtained from O(cb') terms and equations (5.56)-(5.59) obtained from O(cb° ) 

analysis. It is difficult to determine how to find the most general solution of this 
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overdetermined system. However, there is considerable simplification in choosing 

M and T linear in x and t, so suggesting the choices 

M=a(x+Vt)+p, 	T=cx+dt+r, 
(5.60) 

4 = le9M+ a, 	 R=0, 

where a, V, c, d, p, 'i - , 1, g, a are all complex constants. Then we find that 

equations (5.54), (5.55) and (5.56) are identically satisfied. Equations (5.53), 

(5.57) and (5.58) reduce to the equation 

a g =6(a +C ) 2 2 	2 	2.  —V2 -4iVc-2id, 	 (5.61) 

while equation (5.59) reduces to 

(2c - iV)(a 2g2  - 6(a 2  + c2 ) + V 2  + 4iVc + 2id) = 

which is identically satisfied using (5.61). 

An expression for A is obtained by substituting (5.44), (5.45) and (5.60) in 

the truncated series (5.1) for A as 

1 T_M[aY(1e 9 _a\ .v 
2 

By writing ag = 2G and a = le20, with x 0  a constant, we find that 

A=_LeT_M[Gtanh[G(x_xo+Vt)+gp] +i_c+a] 

Similar expressions for B, C and D can be found. If we write ( = G(x -2 + Vt) 

with G2 = Gx 0  - gji/2, we then find 

A = _L eT_M
1  
[Gtanh(+i_c + a] 

B- 1 [_ctanhc+i—c+a] - 

C = _-_eT+MIGtanh(+iJ_c_a] 
L 

= 1 e_(T+M) [— ctanhc+i 
V 

 c — a] 
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Since M, T and ( are linear in x and t, these expressions are analogous to those 

in (5.36) with the identifications c = —I', V = —v, a = &, G = b, M - T = P and 

—M - T = Q. Consequently we deduce that further analysis to ensure that B = 

A, D = C and that the arbitrary constants satisfy (5.61) will be too restrictive 

despite having to satisfy only one algebraic condition instead of two conditions 

which are required in the more general case given in Section 5.2. Although this 

case produces nothing more general than the solutions (5.43) obtained in Section 

5.2, the only way to obtain a solution was to assume a form for the arbitrary 

functions as (5.60) and it is conceivable that there may be other classes of solution 

than those from the choices (5.60). 
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Chapter 6 

Summary of results 

For a fibre with longitudinal inhomogeneity we have shown that the pulse 

evolution is governed by a coupled pair of cubic Schrodinger equations. The 

exact form of these nonlinear evolution equations is determined by the length 

scale of the inhomogeneity. If these axial inhomogeneities occur on a scale 

comparable with a pulse width, so their length scale is much shorter than 

that associated with nonlinear effects, then only average properties of the 

inhomogeneities occur in the evolution equations. We considered the simplest 

case of periodic nonuniformities and have deduced that the nonlinear evolution 

equations reduce to the coupled pair of constant coefficient cubic Schrödinger 

equations. These equations are identical in form to the evolution equations for an 

axially homogeneous fibre (Parker and Newboult, 1989). However, for a longer 

length scale of the axial inhomogeneity that is comparable with the nonlinear 

evolution length, we found that the evolution equations are a coupled pair of cubic 

Schrödinger equations with coefficients which vary with the axial coordinate. 

Results obtained from numerical experiments for the variable-coefficient evolution 

equations were presented which show that both sech-envelope pulses and more 

general non-distorting pulses lose little amplitude even after propagating through 

many periods of an axial inhomogeneity of significant amplitude. 

For a curved and twisted fibre, we have shown that by seeking a solution 

to Maxwell's equations in the form of a perturbation expansion, the correction 
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fields involve both terms which are due to the amplitude modulation of the signal 

envelope and terms which are proportional to the curvature of the fibre. The 

equations governing the pulse evolution are derived and are shown to be a coupled 

pair of nonlinear Schrödinger equations with linear cross-coupling terms. The 

coefficients of the linear cross-coupling terms are proportional to the square of 

the curvature, whereas the coefficients of the linear terms are proportional to the 

torsion. For special cases of the curvature and torsion, the evolution equations 

have both linearly and circularly polarised pulse solutions. Results of numerical 

experiments when the curvature and torsion are constants indicate that a non-

distorting pulse is unstable, but for larger values of the torsion the pulse evolution 

becomes more stable. Hence by increasing the torsion we can delay the onset of 

instability. 

The Painlevé partial differential equation test of Weiss, Tabor and Carnevale 

was applied to the coupled pair of constant coefficient nonlinear Schrodinger 

equations. Values for the coupling constant h were determined for which these 

equations are integrable by the Painlevé property and we found that there 

were three possible cases that required consideration. For h = 1 we found 

that the correct number of arbitrary functions existed to satisfy the Painlevé 

partial differential equation test. Hence the coupled cubic Schrödinger equations 

satisfy the Painlevé property for the special case h = 1, and are therefore 

completely integrable. This is compatible with the existence of an inverse 

scattering transform for this case. For the case h = 3, we found that the Painlevé 

test allowed only six arbitrary functions, corresponding to eight integer resonance 

values and hence the equations are not completely integrable. For this case the 

coupled nonlinear Schrödinger equations are said to have the conditional Painlevé 

property and we have shown that special solutions exist in the form of isolated 

sech-pulses. For values of h 1,3 we find that there are six integer resonance 

values indicating that at most there can be six arbitrary functions and hence the 

equations are not completely integrable by the Painlevé property. These results 
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are consistent with those obtained by Sahadevan et al. (1986). 

Solutions to the coupled pair of constant coefficient nonlinear Schrödinger 

equations, which did not have the Painlevé property, were sought in the form of 

truncated Painlevé expansions. It was found that, although truncated Painlevé 

expansions do yield possible solutions, the algebraic restrictions imposed by 

the Painlevé matching of the various terms is too restrictive. However, the 

Painlevé analysis does suggest possible forms for solutions of the coupled constant 

coefficient nonlinear Schrödinger equations which describe either unmodulated 

solutions or sech-profile solutions. These solutions are not however of a form for 

which the truncated Painlevé series yields term-by-term agreement. The solutions 

are ones whose existence was previously known, so a major conclusion must be 

that for systems as complicated as the coupled pair of nonlinear Schrödinger 

equations, the truncated Painlevé procedure is unlikely, despite the apparent 

considerable generality of the complexifled solutions, to yield new explicit results. 
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Appendix A 

Dispersion relation and group 
slowness for linearized modes 

: 

R V 

Figure A.1: Coordinate system for a straight fibre 

The electromagnetic fields in a dielectric waveguide are governed by Maxwell's 

equations (1.1)-(1.4). By expressing the solution for the fields as a series in terms 

of a small amplitude parameter, a first approximation to the fields E and H is 

given by the solution of the linearized equations (see Section 2.2) 

VA E = - jz0 
OH

-6-t-  I 	 (A.1) 

VA H = 	
OE , 
	 (A.2) 

V - (e(r)E) = 0, 	 (A.3) 

V•H=O. 	 (A.4) 

For an axially-symmetric fibre, we can seek solutions in the form of circularly 

polarised modes 

E = Et(r, O)e1lO+1h1), 	 H = H±  (r, 9)1t0') 
, 	 ( A.5) 
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where I is the azimuthal mode number, the + and - represent the left- and right-

handed circularly polarised modes, & = kz - wt is a phase variable, /c is the local 

wavenumber and w is the radian frequency. The modal fields E±  and  H±  satisfy 

the equations 

LE 	VA E - 	e 0  - ikEA e = iwp oH, 	(A.6) 

	

LW:  VA H - 1 (+I)tt'A eg - ikHA e 2  = — iweE, 	(A.7) 

with two other equations arising from (A.3) and (A.4) which are omitted from 

the following analysis because they can be shown to be consequences of (A.1) 

and (A.2). Here L is a first order differential operator. The complex conjugate 

equations of (A.6) and (A.7) are also true 

LE = VA E + 1 (+I)EA e9 + ikE±*A e = _icopoH±*, 	(A.8) 

	

= VA H + -(±l)HA e9 + ikHt A e = iweE. 	(A.9) 

The amplitudes of the fields of the guided modes decay rapidly away from 

the core (r fairly small) and it is usual not to impose boundary conditions over 

DDx [0, ,C] but to assume that E and H decay sufficiently rapidly that any 'flux' 

terms through 3D x [0, ,C] may be neglected, where £ is a representative length 

of fibre. The condiii that equations (A.6) and (A.?) have non-trivial solutions 

which satisfy the decay condition as r —+ oc, is called the dispersion relation. 

To obtain an identity relating to and k, consider any two pairs of functions 

(u(r,O),v(r,9)) and (U(r,O),V(r,O)) which satisfy the decay condition, then 

too t 

o 

2,r 

 o 

too 

I I I {U.(Lu—iwpov)+V.(Lv+iweu)}rdrdOdz 
Jo J J 

= joo j2r jtoO 

{uA U + VA V}rdr d9dz 	 (A.10) 

+j j L {u.(LU+iweV)+v.(LV—iwpoU)}rdrdOdz. 

Noting that the fields u, v, U and V depend on only the transverse coordinates 

r, 0, application of the divergence theorem gives 

f
poe p2t poo 

/ / / V•{uAU +vAV}rdrdOdz = 0, 
Jo Jo Jo 
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and (A. 10) shows that the complex operator L is the operator adjoint to L. 

If we choose 

U = 	V = H± ,  

and 

U = H, V =  

then we find that equations (A.6) and (A.7) give 

Lu - iwj ov = 0, 	Lv + iweu = 0, 

and equations (A.8) and (A.9) give 

L*U + iweV = 2iweE±* ,  L* 	i V - wpoU = —2iwp0H 

Then equation (A.10) reduces to 

I0

2r

I
cc, 
 (E .E±* —p0H  H±*)rdrdo = 0, 	(A.11) 

.io 

which is one identity holding when (w, k) satisfy the dispersion relation. From the 

representation of the modal fields (A.6), (A.7), it can be seen that the dispersion 

relation is independent of the sign of 1. Since the modal fields E and H 

implicitly depend on k and w, (A.11) can be written as 

k = k(w) 
	

(A.12) 

for each value of 1. 

The field distribution given in (A.5) travels at the phase speed, whereas 

the power or the envelope of an amplitude modulated signal travels at the 

corresponding group speed t), where = s the group slowness and 

dk 
= dw 

where k and w are related by the dispersion relation (A.12). An expression for 

the group slowness can be found by differentiating equations (A.6) and (A.7) with 

respect to w, to give 
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OE:' 	5H 	k L 	iwjio -- = I 	E±Aez +ifLoH, 	 (A.13) — — — 

Ow 	dw 

	

5H 	OE = •- 
	 gE. 	 (A.14) L.a_ +iwe— 	i II ez  — i 

	

w 	Ow 	dw 

The choices 

OE 	 OH U = H±* ,  
Ow 	Ow 

in equation (A.10), combined with use of (A.8), (A.9), (A.13) and (A.14), then 

leads to 

dk 0  2 
JOG 

(E±AH±*+E±*AH±) •erdrdO 

=1
2r 

 0 0 

roo 

i 
(EE±.E±*+P0H±.H±*)rdrdo. 

This gives an expression for the group slowness 

dk f027 fg° (eE EL + poH H) r dr dO 
= 	= 	 (A.15) 

dw ff0°° (E±AH±* + EAH) erdrdO 

in the familiar form of a ratio of the average electromagnetic energy density to 

the average electromagnetic power flux over a fibre cross-section. 
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Appendix B 

The multiple scales method 

Optical pulses are the envelope of the amplitude modulations of the carrier 

wave with a width between '-.' iOns to - lOfs. Since the period of the carrier 

wave is much shorter than that of the pulse, each pulse contains several cycles 

of the carrier wave, and the envelope is said to be slowly varying with respect to 

the carrier wave. 

Using the derivative-expansion version of the multiple scales method (Nayfeh, 

1973), a set of slow space and time variables is introduced 

Zm = 

Tm = 

where m = 	 and ii is a measure of the ratio of the wavelength of the 

carrier wave to the amplitude modulation length, such that ii << 1. Slow variables 

in the radial direction do not need to be introduced, since the field is concentrated 

in the core (r fairly small) and decays rapidly as r —* oo . The amplitudes of the 

fields are allowed to depend on the slow variables, so allowing equations which 

describe the envelope of the carrier wave to be derived. 

The fields are expanded in terms of the small amplitude parameter z' 

E = 	+ V 2  E + V 3  E +." 

H = 	+ v2H(2) + V3 
H +... 

and are assumed to be functions of z, t and the slow variables, such that 
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E(m) = E(m)(z,z1,z2,. ,t,T1,T2, 	
), 

rF H(m) = H(m), z,tj,Z2, 

The z and t derivatives are replaced by 

a 	a 	a 
= 	 8z2 

a - a 	a 	28 

Yt 	
+v —+•• +v— 

UT 	UT2  -it 

By substituting the field expansions and the derivative expansions into 

Maxwell's equations and equating like powers of ii, equations which govern the 

fields and can be determined. These equations will have solutions 

which decay exponentially outside of the core region, E(m) ,  H(m) —* 0 as r —* oo 

and are finite at all points in the fibre if they satisfy the compatibility condition 

(2.19) (see Section 2.2). To 0(v), linearized 'c>ersions of Maxwell's equations 

are obtained which automatically satisfy this condition. However, at 0(v 2 ) the 

compatibility condition is satisfied only if 

UA 	.OA 
+ 	= 0, azl 

where A is the slowly varying amplitude of the pulse and k is the group slowness 

(sg ) (see Appendix A). This equation shows that to first order the envelope A 

moves with the group velocity of the carrier wave and suggests that the new 

scaled variables 

x=v(kz—t), 	Z=v2 z, 

are introduced (see Hasegawa, 1989 and Newell and Moloney, 1992). 
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Appendix C 

Correction fields for a curved 
fibre 

The equations which govern the correction fields E and fi of a curved axially 

homogeneous fibre are derived in Chapter 3, equations (3.27) and (3.28), and are 

found to be of the form 

V'AE— wezo 
OH 
 = 

V'Afl+we 	= 

where the expressions for V. and P are given on the following two pages 
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C = 	[ 4EA e - iA(sgCA e2  + poH) 

+ 
 (

2 

-)
Pi.t {ikr 	e- r(E e)eo+ ikr(E + E )A e 

ez)(ier + e9) + (E ez)(-ier + eo)} 

+ 	
2  A 

-21# { i-WA e- 	e)(—ie+ eg) 1-) 
\YJ 2 

+ikrAez -( E e)(_ie7+eo)}] 

+e °"' AZ E- Aez-Mxx  A(s9EAez+ ,uoH) 

htc" 2 A {12E__r(E_ )eo+u1'€ + EjAez 

-(F e)( — ie+ eg) - 	ez)(ier+ eo)} 

(_) __-e21# ,c\ 2  A+ 
+ 	 {i_E+Aez _ (E .ez)(ier+eo) 

v+ 
	v+ikr EA e- 	e)(ie+ eo) }] 

[krEA e+ rs9EA e 

+i(C e,)( — ier+ eo) + 2s9EAe+ 2po H4j 

+ei(_29H 	[krE:A  e+ rs9 ETh e 

• e)(ie,+ eg) + 2s9FA e+ 2,zoH] 

[krCAez+rs g EAe2 
z2 

+i(E • e2)(ier+ eg) + 2a E A e 2 + 2/t0 H ] 
K Ax- 

2 [krE:A e+ rs 9 ETh e 
z  

vv 
 

+i(E • e,)(—ie r + es) + 2s9  EAe+ 2oH] 

4 
+e 	

ii 

	

36_2 (I ) 2 A+ 	2 [kr EA e. - r(E e,)(—ie r + eo) 

+2ikrEA e, — 2(E • e,)( —ier+ eo)] 
2 

-) - 

[kr2E_A e- r(E • e)(ie7+ ee) 
\v 	4 

+2ikrEAe- 2(E • ez)(ier+ ee)] 

+c.c. + o(1), 
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IF = 61(O+tb) [AH+ A e - iA(sgHA e - eE) 

+ (-'i 2 
A+ 
- {ikr2H+A e- r(H e)eo-i- ikr(Ü + Ü)A e 

\V/ 2 

-(fi ez)(ie r + eg) - (H e z)(—ie r + ee)} 

\

/ç\2 A _2i#{ikTH_Ae 	(H e,)(-ier+ee) 
iiJ 	2 

+ikrThe- ( ñ ez)(-ier+ eo) 

+€1F8  [AHTh e2  - iA(s9HA e - EE: ) 

1!C\ 2 A 
+ (-) - {ik r2 H_A e2  - r(H e)eg+ ikr(H + H)A e 

\l// 	2 

-(11 ez)(-ier + eo) - ( k e)(ie7 + eo)} 

+ 
()2 	

{ 
i-HAe- (H e z)(ier + eo) 

+ikrAe- (Ü .ez)(ier+eg) }] 

{krHAe+ rs9 HAe 
v2 

ez)(-ie r +ee)+2.sg UAez - 2eE] 

Ax- 
+€1(_20 	v2 {krHAez -i- rs9HAe 

ez)(ier  + eg) + 2s HA e - 2eE] 

+e - IkrHAe+ rs9HAe 
zi2 I. 

'+1 
-i(H.e2)(ie+eg)+2s 9 H Ae2-2eE j 

Ax  
[rii:t e+ rs9HAe2  

V 	 v-i 
ez)(-ier + eo) + 2s9  HA e- 2e 

E j 

+e 	
4 

i(30_2 (ic)2 t [kr2H+A e- r(H e z)(-ie r + eg) 
\vi  

+2ikrHAe- 2(H e4(-ie r +eo)] 

+€1(_39t+2 (\ ) 2 A-  
+e  

- 
[icr HThe- r(H e z)(ier ± eg) 

+2ikrHAe- 2(11 e2)(ie+ eo) 

+c.c. - w &; (1vE '1 2E ' ) + o(1). 
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Appendix D 

Perturbation solution for solitary 
pulses of the coupled constant 
coefficient nonlinear Schrödinger 
equations 

The coupled cubic Schrödinger equations 

iA = AT + ( 1 244  1 2  + hIAI 2) A,XX 

iAT = A; + (hIA41 2  + 1Al2) A) 

with constant coupling coefficient, h, arise from the study of pulse propagation 

in an axisymmetric, axially homogeneous optical fibre. Certain special solutions 

for these equations are discussed in (Parker and Newboult, 1989, Parker, 1988). 

More generally, these equations can have solutions of the form 

A+ = e_ t+hb0)F+(c), 

= 

where ,+ and jL. are real adjustable parameters, V is a phase shift and F+, F- 

are real functions of a = x - 2V1, which satisfy the ordinary differential equations 

	

'F = (-y+ —F..—hF.)F+ , 	 ( D.l) 

	

Ff = (-y.—hF.—F.)F, 	 (D.2) 

where '1± = - V 2  
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These equations possess solutions which are even in a. Also they are invariant 

under the scalings Fj(cr) —* kF±(kc), —* k 27. Consequently, to identify 

solutions describing isolated, symmetrical pulses it is sufficient to determine values 

'y+, y_ for which equations (D.1) and (D.2) possess solutions with 

F+ (0)= cos a, 	F_(0)= sin a, 

F.'jO) = 11(0) = 0, 	 (D.3) 

as 	c—*±oo. 

By integrating the combination (D.1) x F4 + (D.2) x Fl, we find one relation 

between 'y, -y_ and a is 

2 	 .2 	 h- 
7 1 cos a+7 	

i
_sln a = + 	5fl12t 

Since, for h = 1, equations (D.1)-(D.3) have solutions 

F+ (c) = cos asech(a/V'), 	F- (or) = sin asech(u/V'); 

we seek expansions for 7±  and F±(u) which reduce to (D.5) as h - i. 

We first write (D.i) and (D.2) as 

F(u) + i + h 
(-27k   

2 

 

 

which suggests introduction of e = (h - i)/(h + 1) as the expansion parameter 

and use of the change of variable a = 711/FT7/2. Then, by writing 

= (i + h)(i + €b±), 

we obtain equations (D.1) and (D.2) as 

F4(71) + [2 (F. + 	ii F = ebF + 26 (F. — F2 ) F, 	(D.6) 

Ff(7) + [2 F. + 	ii F_ = ELF- + 2e (F. — F+2 ) F-. (D.7) 

Then expanding F+, F_, b+ and b_ as power series in the small parameter e as 

F± (q)=e'P, 
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and substituting these expressions into equations (D.6) and (D.7), we find that 

leading order terms give the system of ordinary differential equations 

= 

= 

with 

fr(o)= cos  a, 	P_(0)= sin a, 

frjo) = k(o) = 0, 

as 	—+oo. 

Hence, to 0(60),  an approximation to F, is given by 

0 

= cosasechq, 

(D.8) 
0 

F_ = sinasechq, 

which corresponds to expressions (D.5). 

A closer approximation for F+ and F_ is obtained by comparing, coefficients 

of 6 in equations (D.6) and (D.7), which gives the coupled ordinary differential 

equations for and F- 
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+ [(6 cos 2  a + 2 sin2  a) sech 2  q - i] k+  + 2 sin 2a sech 2  qfr 
= 	 (D.9) 

I
ll + [(2 cos 2  a + 6 sin2  a) sech 2  q - i] F-+ 2 sin 2a sech 2  qk 

=sin a sech ij —2 sin a cos 2a sech 3  q. 	 (D.10) 

By writing 
II 

= 	cos a+ 	sin a, 

B2  =F+ sin a - F cos a, 
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we uncouple equations (D.9) and (D.10) as the linear ordinary differential 

equations 

R + (6sech2q - i) R1 = (L cos 2  a + L sin2a) sechq + 2 cos 2 2asech3 ij 

(D.11) 

R + (2sech2 p7—i) 112 = 	(L - 	sin2asechq + sin 4asech3 q 

= K. 	 (D.12) 

The conditions (D.3) impose the requirements 

as ij—'±oo; 	j=1,2. 

The general solution to the homogeneous form of (D.11) is 

= A1 sechijtanh+A 2 (377sech77tanhi7+cosh77-3sechq) 

= A 1 S1 (77) + A2 S2 (q), 

where A 1  and A 2  are arbitrary constants. Using the method of variation of 

parameters, we can write solutions to (D.11) in the form 

= Vj sech77tanhi7+V2(3qsecht7tanhi7+coshq-3sechq) 

= T/i(ti)Si(tj) + V2(77)82(77), 
	 (D.13) 

in which 91 (7) is odd and bounded while S2() is even but unbounded. We 

impose the usual condition 

vs1  + V'S2  = 0, 	 (D.14) 

which leads to 

11:; = v1 s; +v2s. 

Substitution into (D.11) implies that 

vs+vs=j. 	 (D.15) 
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Equations (D.14) and (D.15) can be solved to give formulae for 1'  and v; as 

V2'=JS1 . ( D.16) 

which are most readily integrated for V2 , then V1 +377142 . Observing that R1  (0) = 0 

imposes the condition 12(0) = 0 we find that 

1° 	2 	.2 	 1 	2 
V2  = (bi cos a + b2sin a + 2cos 2 2a)tanh 2 q - cos 2atanh 4 i, 

so that 142 (q)S2 (q) is even and vanishes at q = 0. Since (D.16) gives 

(V1  +3riV2)' 
= 3V2 - {ç,-,-cos2a+g_sin2a) sechq 

+2 COS 2 2asech3 ij } (cosh q - 3sech77), 

which is an even polynomial in sech q. Since we require that V, + 377142 is odd, we 

find that on integrating the above expression 

V1  + 3i1V2  = Ic, 1  cos2  a+ i2sin2a)(77 + 3tanh77) 

+cos22a(3q + 5tanh 71 + 3tanh 3 77). 

We notice from (D.13) that R1  has the form 

R i =(Vi +3zjV2 )sechvjtanhq+V2 (coshq-3sechq). 

and since we require that 14 -* 0 as 77 -* +, we can deduce that V2  - 0 as 

00  71 - ±oo. This shows that 	and 	are related by 

2 	j_sin2a = COS 2a. 	 (D.17) b+ COS a+ 

It is then found that 14 can be written as 

14 = lCOS 22a71sechtanhq. 

Applying the same argument, a solution to (D.12) is sought of the form 

1?2 = V3sechi7+V4(sinh77+77sechq) 

= V3 S3 (77)+V4 S4 (7) 7  
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with condition 

(D.18) 

which converts (D.12) into 

vs+ V'8 = K. 	 (D.19) 

Equations (D.18) and (D.19) can be solved to give the following formulae for V 

and 1 4  as 

=KS4, 	V4'=KS3, 	 (D.20) 

with S(q) and I<3 (77) even and bounded, while 84 (71) is odd and unbounded. This 

situation is analogous to (D.16) and these equations are most readily integrated 

for V4  and V3  + qV4  as 

V4  = 	- i)sin 2a tanh q + sin 4a(tanh ii - tanh3 77) + c4 , 

1 	 1 
V3 -E 77 V4 = —sin 4a(lnsechq 	2+tanh q)+c477+c3. 

We observe that B2  can be written in the form 

R 2  =(V3 +qV4 )sechrj+V4sinhrj, 

and since we require that B 2  is even and 112(0) = 0, we find that c4  = 0 and 

= 0. We also require that 112 -* 0 as q—* +oo, and hence it can be deduced 

that V4  --+ 0 as q—'  +oo. From this we obtain a second relationship between 1+ 
0 

and b- 

0jg+— _=— cos 2a. 	 (D.21) 

It is then found that 

= -- sin 4crsechilnsechq. 

00 
Equations (D.17) and (D.21) can be solved to give the expressions for 	and 

as 

= 	Cos 2a (3 +2sin2a) 

(D.22) 
= 	cos 2a(3+2  cos  2 a) 
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while the corresponding solutions to equations (D.9) and (D.10) can be written 

as 

	

= 	Cos acos22asechtanh - sin a sin 4asechijlnsechq, 

 

	

= 	sin acos2  2aijsech1tanh77 + Cos a sin 4asechijlnsechij. 

To improve the series approximation to F+  and F_ we consider terms of 

0(62 ) in equations (D.6) and (D.7), which give the coupled ordinary differential 

equations for and 

fr + [(6 cos 2  a + 2 sin a) sech2 - ii k+  + 2 sin 2a sech2  q fr 
= b+F + b+F+  + 	- 4LL - 	2Pfr 

0 	1 	0 	1 	1 	0 	12 
—6FF - 4FF& - 2F+F, 

+ [(2 cos 2  a + 6 sin2  a) sech 2  - i] /1 2
'_ + 2 sin 2a sech2 

 0 2 1  

	

=+ 	+ 6FF - 4frP - 2FF 

 

0 	1 	1 	0 	12 	0 	12 
—4FFF - 6FF - 2F-F+  . 	 (D.25) 

By writing 

R3=P+ 
COS 

 a+fr_ sin  a, 

= 	sin a 	cos a, 

equations (D.24) and (D.25) uncouple to give the ordinary differential equations 

4 +(6sech277 _1)R3 = L, 	 (D.26) 

Rl+(2sech2q_1)R4 = M, 	 (D.27) 

where 

L = (L cos 2 a + L s in2 a) sechij 

- 	 4  2a sech q tanh ij(6 tanh 2  - 5) + 3j 2  sech3  j tanh2   77 1 cos  

sin' 4a [sech ij In sech 77(9 tanh 2  q - 7) - 2 sech3  71 (In sech )2]  
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M = 	(b+ — b_) sin 2asechq — sin 2acos2asechqlnsechij 

— sin 2a cos3  2a [3(9 tanh2 - flq sech q tanh 77 

2 +2sech77lnsech77(6tanh 17-1)— 1277sech 3  qtanhqlnsechij 

Equations (D.26) and (D.27) are of the same form as (Dii) and (D.12), and 

hence can be solved analogously by making the substitutions 

= 

114 = W3 (7))S3 (7))+W4 (q)S4 (i). 

As before, we can obtain expressions for derivatives of these functions in terms 

of L and M as 

W1'=—LS 2 , 	W=LS 1 , 	 ( D.28) 

W=—jMS 4 , 	W=MS 3 . 	 (D.29) 

and solve (D.28) and (D.29) in terms of W2 , respectively, W1  + 3ijW2  and W4 , 

W'3  + 77W4 , as we can write 

B3  = (W1  +3ijW2)sechcitanhtj+ W2 (cosh71-3sech), 

B4  = (W3+7iW4)sech77+W4sinhzi. 

Since we require that B3 , B4  —* 0 as 77 —s ±, we must have W2  —, 0 and W4  — 0 

as 77 —* +, which, as for the 0(e) analysis, leads to two conditions relating b+ 

and After substantial manipulation these are found to be 

b+ cos 2 a+ Lsin2a = 0, 	 (D.30) 

k - _b_=_ cos  2a[cos22a+(5_6ln2)]  , 	(D.31) 

which can be solved to give 

1 	 16 = _ sin2 acos 2 &  [cos22a + (5— 6ln2)} 
27 	

(D.32) 

= tcos2acos2o [cos22a (5— 61n2)] 
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Correspondingly we find 

R3=_ cos4 2a17sech 77 (77 (1_2tanh2 q)_tanh 77 ) 

sin 4a sech 71 [(in sech 7)2 + 2 in sech + tanh 	+ 4Jin sech d77)] 

 

R4 = -  sin 4a COS 22a sech 77(4(ln sech ij)%f-3q  tanh q(1+4 in sechin sech ') 

_ 	sin 4a  sin  2 2a  (3sech77(772 - (In sechij) 2  + 3sinh77(77 - 2ln2tanh77) 
2-7 

+2 cosh qinsechq(4 - t anh2 q )) 

Therefore, the required solution to equations (D.26) and (D.27) is obtained from 

= —R3coscr+R4 Sin cx, 
 

2  

F_ = R3 sina + R4 cosa. 

Hence, correct to 0(62),  the solution of equations (D.1) and (D.2) is found by 

substituting (D.23), (D.33) and (D.34) into 

= COS asechq + EF+  + 	+ 

F_ = sin asechq+eF_-j-62 '_+Q(63 ), 

where 
v'l+h 

or = 772 
 

The corresponding expansions for the parameters 'yj, is 

1+/i' 	0 

= 4 

- 4 
86 2  

+ 
	
(cos  2a1)  (cos  2a+5_6in2)} +0(e). (D.35) 

Recalling that e = ( h - 1)1(h + 1), it is possible to use (D.35) as an approximation 

for the parameters required in (D.1) and (D.2) when seeking solutions to the 
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nonlinear eigenvalue problem with decay conditions (D.3). In principal this gives 

an. approximation to -y± for a range of values of a. However,in practice we are 

interested in values of & 1/3 and except for values of cos a 2r/4, the values 

obtained for -y,,  are insufficiently accurate, indicating that more terms in the 

expansion are required. 
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At 'monomode' frequencies, a uniform axisymmetric optical fibre can support 
left- and right-handed circularly polarized modes having the same dispersion 
relation. Nonlinearity introduces cubic terms into the evolution equations, which 
are coupled nonlinear Schrodinger equations (Newboult, Parker, and Faulkner, 
1989). This paper analyses signal propagation in axisymmetric fibres for which the 
distribution of dielectric properties varies gradually, but significantly, along the 
fibre. At each cross-section, left- and right-handed modal fields are defined, but 
their axial variations introduce changes into the coupled evolution equations. 
Two regimes are identified. When axial variations occur on length scales 
comparable with nonlinear evolution effects, the governing equations are 
determined as coupled nonlinear Schrodinger equations with variable coefficients. 
On the other hand, for more rapid axial variations it is found that the evolution 
equations have constant coefficients, defined as appropriate averages of those 
associated with each cross-section. Situations in which the variable coefficient 
equations may be transformed into constant coefficient equations are investi-
gated. It is found that the only possibilities are natural generalizations of those 
found by Grimshaw (1979) for a single nonlinear Schrodinger equation. In such 
cases, suitable sech-envelope pulses will propagate without radiation. Numerical 
evidence is presented that, in some other cases with periodically varying 
coefficients, a sech-envelope pulse loses little amplitude even after propagating 
through 40 periods of axial inhomogeneity of significant amplitude. 

Introduction 

Optical fibres are thin cylindrical glass waveguides with a core of slightly higher 
refractive index than the cladding. This allows signals at optical frequencies to 
propagate as guided modes, each mode having a 'cut-off frequency', below which 
it does not propagate. At frequencies for which only one mode shape can 
propagate, the fibre is known as a monomode fibre. Such fibres are capable of 
transmitting extremely short pulses of quasi-monochromatic light over large 
distances with high intensity and negligible attenuation. The rate at which data 
can be transmitted is limited by the pulse distortion due to the dispersive effects 
of the medium. Hasegawa & Tappert (1973) suggested that this dispersive effect 
could be balanced against the sharpening phenomenon due to the nonlinearity of 
the material, so allowing pulses of information to travel without distortion. 

There has been much work undertaken to show mathematically how the two 
phenomena affect the propagation of waves in a fibre. Much of this work 
(Anderson & Lisak, 1983; Zakharov & Shabat, 1972; Potasek a al., 1986) has 
shown that the governing equation for the amplitude modulations of the signal is 
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the cubic Schrodinger equation. However, a cylindrically symmetric isotropic 
monomode fibre has two equivalent modes (Snyder & Love, 1983), so signals 
with different polarizations interact nonlinearly and therefore two independent 
complex amplitudes are required to describe the signal. Parker & Newboult 
(1989) have shown that the equations which describe the signal amplitudes are a 
coupled pair of cubic Schrodinger equations. Although, unlike the cubic 
SchrOdinger equation, this system is not completely integrable (Zakharov & 
Schulman, 1982), it possesses a large family of nondistorting pulselike solutions, 
and other families of generalized similarity solutions (Parker, 1988). Numerical 
studies also suggest that these pulselike solutions are stable and have interesting 
collision properties (Parker & Newboult, 1989). 

On a perfect lossless fibre, solitons governed by a single cubic SchrOdinger 
equation retain their shape and amplitude, but on a real fibre there will be losses 
which produce attenuation. One method of compensating for this is to amplify 
the solitons periodically as has been advocated by Hasegawa (1984) and 
Mollenauer et al. (1986). Another method, proposed by Tajima (1987), is to 
make the fibre axially nonuniform. He suggested that, by tapering the fibre core 
by an amount which is directly proportional to the soliton attenuation and 
inversely proportional to the square of the effective core radius, invariant solitons 
could be obtained. Kuehl (1988) presented a more rigorous treatment of these 
ideas and showed that Tajima's work was a special case of his theory. Both 
Tajima and Kuehl considered only the single cubic Schrodinger equation. 

In this paper, we consider more generally the effect of axially symmetric fibre 
inhomogeneities in a lossless fibre. We show that if the axial nonuniformities have 
a length scale much shorter than that associated with nonlinear effects then only 
average properties of these nonuniformities enter the nonlinear evolution 
equations. In particular, if the nonuniformities are periodic, the equations reduce 
to those of an equivalent uniform fibre. Explicit formulae for the appropriate 
fibre coefficients are given. If the scale of the axial inhomogeneities is comparable 
with the nonlinear evolution length the evolution equations for the two 
independent complex amplitudes are a coupled pair of cubic Schrodinger 
equations with variable coefficients. Again, formulae for these coefficients are 
given. 

For the variable coefficient equations, conditions are found for the existence of 
a transformation reducing the equations to constant coefficient equations. This 
transformation is similar to that obtained by Grimshaw (1979) for a single cubic 
Schrödinger equation with variable coefficients. Clearly, under suitable condi-
tions, a pulse corresponding to a nondistorting pulse of the coupled system travels 
with modulation of amplitude and width, but without radiation. However, if these 
conditions apply over an extensive fibre length, they require nonphysical 
behaviour of either the dispersive or nonlinear effects; numerical calculations are 
performed for other cases. 

2. Field corrections due to inhomogeneity 
In an axially symmetric optical fibre having cross-section r R of tylindrical polar 
coordinates (r, 0, z) the electric and magnetic field intensities are governed by 
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4axwell's equations 

VAE= -PO, VAH=, i0V'H=0, V•D=O. (2.1-2.4)
at  

\s is normal, the material is taken to be a nonmagnetic isotropic dielectric, with 
roperties which depend on the radius and slowly on the distance along the fibre. 
Uso the fibre is assumed to be a Kerr medium, thus giving 

D = [e(r, yz) + N(r, yz) IEI 2IE, 	 (2.5) 

where € is the linear permittivity, N is the coefficient of cubic nonlinearity, and 
he small parameter y is the reciprocal of a typical length over which the slow 
'ariations occur. 

Since the fields in the guided modes decay rapidly in the cladding, the 
quations are analysed over all radii 0 r <, with the conditions E,H,D -* 0 as 

being a good approximation to boundary conditions at r = R. It is required 
ilso that the fields are finite at r = 0. 

For each position yz along the fibre, the field distribution across the fibre is, to 
eading order, obtained by linear theory for an axially uniform fibre. An 
tmplitude parameter v was introduced and the fields were expressed in terms of 
eading-order approximations and corrections, as 

E = vE' + 0(v 2), 	H = vH' + 0(v2), 	D = VD(I) + 0(v 2), (2.6) 

where D" = cE0 . This assumes that the small parameter v characterizing the 
;ignal strength and the small parameter y characterizing the fibre inhomogeneities 
;atisfy y/v = 0(1) or y/v = o(1). 

Then, by substitution into Maxwell's equations (2.1-2.4), we see that E' and 
may be taken as solutions to the linearized equations 

anu) 
	
3E(l)  

y0V.HW=0, €VE'=0. 
at 	 at 

(2.7-2.10) 

Even though e depends on yz, solutions with azimuthal mode number I may be 
;ought, with errors o(1), using separation of variables in the form 

= (AEe"°  + 	 + c.c.1 
(2.11). 

= (AHe' 18  + AH e "°)e'V' + c.c. J 
where A and A are complex amplitudes, c.c. denotes a complex conjugate, and 

4.' is a phase variable having —6W/at = (o, the radian frequency, and atp/az = 

k(w, yz), the local wavenumber. 
It is found that, as for an axially uniform fibre (Parker & Newboult, 1989), 

when the vectors E and 11±  are resolved along the basis vectors e, e9 , e, of 
cylindrical polar coordinates, they may be represented as 

= iE1 e, ± E2e0  + E3e2, 	H* = ±H1e, + iR2e0  ± iR3e, 	(2.12) 
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where E = E1 (r; w, yz) and fli  = A(r; w, yz) are real functions which satisfy the 
system of equations 

it3  - krE2 - cogi 0rk1  = 0, 

3E3  
ar 

a - 	- 	- 
ar (it

2) + 1E1  - wp0rH3  = 0, 

in3  - krFf2  + (DErE k  = 0, 

- weE2  =0, 	(2.13) 

ar 
- (ri12) - (P1  + werE3  = 0. 

The equations resulting from (2.3) and (2.4) may be shown to be satisfied to 0(1) 
by solutions to the six equations (2.13), and so may be omitted. Since no 
derivatives with respect to yz occur, equations (2.13) may be solved treating yz as 
a parameter, so that the fields E and H of left- and right-handed modes 
respectively are, to leading order, governed by the same equations as for an 
equivalent axially symmetric and axially uniform waveguide having permittivity 
e(r, yz). The condition that this system of equations has nontrivial solutions, 
bounded at r = 0 and satisfying the decay conditions as r-. x is, for each 
modenumber 1, the dispersion relation, relating the wavenumber k to the 
frequency w. Since e depends on yz, so also will the field components E and 13 
and the local wavenuniber k for each choice of w and 1. For 'weakly-guiding' 
fibres only the ±1 modes propagate, so we need consider only I = 1, and we may 
write the corresponding dispersion relation as k = k(w, yz). Consequently, the 
phase 7p may be written as 

= 	k(w, yz) d(yz) - wt. 

We may now apply a multiple-scales method to equations (2.1) and (2.2) and 
introduce the scaled variables 

Xv(Y ' J 5gd(YZ)_t) 	Z=yz, 

where .5g = ak/aw is the group slowness. The amplitude scaling v is chosen, as 
usual, so that effects due to cubic nonlinearity are comparable in magnitude with 
the modulation effects. Any fluctuations in the amplitudes A are allowed to 
depend on both of the scaled variables x  and Z, so that A = A(x, Z). The 
fields will be treated as functions of the variables r, A, V, x, Z which are 
27t-periodic in both U and V. The z and t derivatives are replaced by 

aa 	a 	a 	a 	a 	a 
—=k—+vs 5 --+ y-- 	—=— 	v az 	ap 	 az' 	

w ----- 
at 	aip 	

• 	(2.14) 

Splitting the fields into their leading-order terms and corrections as 

E = vE' + v2E, H = vH + v2ft, 	D = vD 0  + v2b 	(2.15) 

gives h = cE + 0(v), because the nonlinear term IEI 2 E is 0(v 3) and so will not 
enter the analysis at 0(v2). 
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Bearing in mind that E 1  and H 1  satisfy the equations 

SHW 
V' AE=wp0, 	V' A HO )  + we 	=0, 	(2.16)

av  
where 

(2.17) 

substitution of (2.15) into equations (2.1) and (2.2) gives 

A E - WiLo= (A;(s gE A e + pH) + (A PE +AE) A ez)e' alp 

+ (A;(s 8E A e + y (Jr) + 1 (A -E; + AE) A ez)e10+*) 

	

+ c.c. + 0(1), 	 (2.18) 

sE (A;(s 3H+  A e - Et) + 	+ AH) A V' AH+ (iJE- 
Sip 

+ (A;(sgH A e, - cE) + 1 (AH +A;H) A 

	

+ c.c. + 0(1). 	 (2.19) 

The terms in (2.18) and (2.19) involving A are due to amplitude modulation of 
the signal envelope and occur in the absence of axial nonuniformities in the fibre. 
The remaining terms are due to the fibre nonuniformities. 

We observe that equations (2.18) and (2.19) have the form. 

	

VIAE_WPor=G, 	 (2.20) 

	

V'AH+cEF, 	 (2.21) atp 
where F and G are 21-periodic in 6 and ip, bounded at r = 0, and decay 
exponentially as r- . We require that E and H also obey these conditions, 
which gives a compatibility condition 

(2.22) 

where 9t[0,cL) x 0,27t]xt0,2itJ, dVrdrd6dip, and (P, Q) are the most 
general solution of the linear equations 

	

S 	 SP 
WE-0 	 (2.23) V'AP - wt40 -Q— =O, 	V'AQ+  

which are 23t-periodic in 6 and ip with similar conditions on r = 0 and as r-. . 
Since these equations govern periodic linearized fields travelling at the phase 
speed w/k in an equivalent uniform fibre, the general solution is a linear 
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combination of fields having wavenumber an integer multiple of k. We have 
already assumed that modes 1> 1 do not propagate so that, assuming that no 
integer harmonics of the I = 1 mode have the phase speed wik, the most general 
solution for P and Q is 

P = a' 1Ee' ° ' + a'2Ee' ° '' + c.c., 

Q = a'He ° ' + a'2H_eO*11  + cc.,} 	
(2.24) 

where a'1 and a'2 are arbitrary complex constants. 
Substituting for P, Q, F, G into (2.22) and recalling that E and H are 

2t-periodic in U and ip, we find that the only terms which give a nonzero 
contribution to the integral are those in which the exponential factor is e' ° . Since 
the equations obtained must hold for arbitrary complex numbers a'1 and a'2, the 
coefficients of a'1 and a'2 (or equivalently 4 and  4) must vanish separately. The 
equation obtained from the coefficients of 4 is 

= 	[Sg(E+*A Ht  +E+AH+*) 	- ( EE*.E+* + P0H+.H+*)] dv + o(1). 

Now the group slowness may be shown to be 

3k 
S 

3w 
f, (cE .E+*  +p0Ht  .H+*)dV 

AH 4  +E AH+*). e, dv 

(2.25) 

so that, if v ' y = o(i), the above equation is automatically satisfied to leading 
order. If v ' y = 0(1) the v'y terms must be retained in (2.18) and (2.19) and 
the above equation becomes 

A+j(E+* AH+E  AH+*). e dv 

+A4(E+* AH +Et  AH+*). e, dV =o(1). (2.26) 

This has the form 

BA t  

3Z 3Z 
	 (2.27) 

where P f (E±* A  Ht + E A Ht*) e2  di' is proportional to the power in 
either of the modes described by Ete' ° ' + c.c. or Ee'(°+W) + c.c.. 

By normalizing the solutions to equations (2.13) so that P = 43T  for all Z and 
cv, equation (2.27) reduces to 

BA t  

az 
	 (2.28) 
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is showing that the leading-order approximation for A may be taken as 

(x) independently of Z. Similar analysis of the coefficient of $ gives a 
ding-order expression A(x)  for Am With this choice of P, equations (2.18) 
1(2.19) may be replaced by the simpler equations 

all 
A E — 	= (A;(s gE +  A e  + pjf) + XA+E A 

av 

+ (A;(s gr A e +p0H) +XAE A 

+ cc. + 0(1), 

A H + WC 	(A;(s H+ A e. - EE*) + 	A 
37P 

+ (A(sgH A e +. €E) +AHA e)e °  

+ cc. + 0(1). 

(2.29) 

(2.30) 

The terms in A due to amplitude modulation are known to give rise to fields 
, H) (see Parker & Newboult, 1989), so that, neglecting o(1) terms, a 

lution to these equations can be written as 

= (—iiic + X AtE+) eK0*1 + (—M;E + —A_E)e 	+ cc, (2.31) 

(—iii; + —Afr)e'" 	+ (—iA;H ±A 	) eivo + cc., (2.32) 

iere E and H satisfy the equations 

V' A (E±e1 (+ø-I-IP)) — 
(OtLo a— (H e 	U')) = El A ez e ± *) , 

A (ft*e' °+ U' )) + WE 	(Ee'°) = Hzt A ee'°, J 
	

(2.33) 

d appropriate boundary conditions. It may be shown that E and fl± have the 
presentations 

i1t± = iE 1 e ± E2e0 — E3e, 	ill = ±H1 e, + ifl2e9 ± iR3e;, 

ere f, = E,(r; w, Z) and 01  = IZ(r; (v, Z) are real functions satisfying in-
imogeneous ordinary differential equations analogous to (2.13). Consequently 
e fields E and H may be represented explicitly in terms of integrals with 
spect to r involving E and H, though the details for this are omitted. 
Subsequent corrections, which incorporate into the evolution equations effects 
te to the fibre inhomogeneity, are treated in Section 3. 
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3. The evolution equations 

Two distinct cases arise, depending on whether or not y = 0(v 2). 

3.1 Case 1: y=0(v2) 
If longitudinal inhomogeneities are sufficiently weak that they act on the sar 
length scale as nonlinear evolution, then E and H may be omitted from (2.3 
and (2.32), we may take y = 0(v 2), and, without loss of generality, write v = 
and seek solutions for E,H,D, of the form 

E = yE' + yE 2  + 
H= 7H'1 ' + yH 2  + yiH, 

D = ØcE + ycE 2  + 7b. 

Since in this case, the terms in E and fl are omitted from (2.31) and (2.32), 
may take 

= —iA;Ee'9 - 	EeO+*) + C.C. 

H2 = 	 - iAHe(O+*) + C.C. 

We note that, correct to 0(l),  equation (2.5) gives 

13 = eE + N(r, Z) IE°I 2  e" 

Since E 2  and H 2  do not involve the terms in (2.18) and (2.19) which a 
0(7/v) = 0(71), the compatibility condition analogous to (2.22) is automatical 
satisfied and the reasoning leading to equation (2.28) is inappropriate. TI 
amplitudes A and A should, in this case, be allowed to depend on both x at 
Z. The derivative expansions can be obtained by replacing v by y  in expressioi 
(2.14). Then substitution of E, H, D, a/az, a/at into equations (2.1) and (2.: 
gives the equations for E and H: 

SH 
A E - 	[AE Zt A e + AZE A e - ;(sgE ct A e + y(aW )]e ( * )  

• firE; A e + AE A e - iA(s gE; A e + [4oH)Ie 
• C.C. + 0(y) 

= 	 (3.. 
- 	 at 

A H + we— = [AHZ A e + AZH A e - A(s gH A e - eEZ)]e 0 V )  ap 

+ [A-H; A e +A1r A e —A; 1(sgH A e - 

+ C.C. - w --- (N E"1 2  E") + 0(0) 
(3. 

Explicit solutions to these equations cannot be easily found. However, P and 
are 27t-periodic in 0 and 4', bounded at r = 0, and decay exponentially as r— a 
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Comparing the situation with that of equations (2.20) and (2.21), we see that we 
an use the compatibility condition (2.22) with (2.24) to obtain equations which 

govern the evolution of the amplitudes A and A. Then considering the terms in 
as before, gives the equation 

A H + Ez A H+*) er dr +4j (E'* A H +E A H+*) er dr 

- L4Zj sg(E+* A HZ + A H+*) - (EE+* . C + Y0H+*  H)]r dr 

- 	 (N IE"I 2  E)e 8 ' dv = O(y). (3.3) 
4E2 i 

rhis is formally similar to the case of a uniform fibre, all dependence on the 
inhomogeneity being incorporated in the Z dependence of €, E, H, and k. The 
nonlinear term can be simplified (Parker & Newboult, 1989) as 

2- (N IEWI2E )e1(8+*) dV 121 

= i JA I 2  A+J  (IE . E+ 12 + 2 IEi 2)Nr dr 

+ 2i IA_1 2 A +L (IE E 	t + 	. E 2  + IEI 2  E_ 1 2 dr. 

The normalization P = 4E2  of the fields implies that the first term in (3.3) 
vanishes, so that the leading-order approximation to equation (3.3) can be written 
in the form 

iA = gA +(f2 IAI2  +f3IAI 2)A, 	 (3.4) XX 

where the coefficients 

=  -wJ (It - EI2 + 2 IEI 2)Nr dr =f2(w, Z) 1 
0 I 

= —2J (IE . E12 + IE t - E_*1 2  + 	12  IEH 2)Nr dr f3(w, Z) 	I 
0 	 I (3.5) 

9 =_ 	 A HZ + A H+*). e,  - (EE+* . C + #0H+ * - HZ)]r dr I 

	

0 	 I 

=eg((O,Z) 	 J aw 

are related to the field distributions E and H of circularly polarized modes just 
as in an axially uniform fibre (Parker & Newboult, 1989). 

A similar equation arises from the terms in a, so yielding the pair of 
equations 

iAP = gA + (f2 IA I 2  +f3  IAI 2)A. 	 (3.6) XX 
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Thus, when longitudinal inhomogeneities have a length scale comparable to th 
nonlinear evolution length, evolution equations for A t (x, Z) are the same as th 
coupled cubic Schrodinger equations for axially uniform fibres, except that thu 
coefficients depend on Z. The coefficients are related to the material coefficients 
and N exactly as for an equivalent axially homogeneous fibre associated with th 
cross-section at position Z. 

3.2 Case 2: y=0(v) 

If inhomogeneity causes changes on a scale comparable with a pulse width, w 
may, without loss of generality, take y = v and seek solutions E,H,D of the forri 

E = 7E(l) + y2E 2 ' + 73E, 
H= yH" + y2JI 2  + y3H, 
D = ycE" + 72EE 2  + y3D. 

In this case, E 2  and H 2  have a form similar to (2.31) and (2.32): 

= (—iAE,ij + AE)e' O"P )  + (— AE + 
= (—ATH + A+E+)e0  + (—L4;H; + 

with (E t , Ht)  again normalized so that P 4m2 . Although inhomogeneities occu 
on the scale of Z = yz, so that the fields (E", H") and (E 2 , H 2 ) depend oi 
Z, equation (2.28) shows that derivatives aA t /SZ are 0(y), with a similar resul 
for 3A16Z. This suggests introduction of a further stretched variable Z = 
and allowance for 0(y) fluctuations in At  on the Z scale by writing 

At = 	2) + ya t (x, z, 2). 	 (3.7 
Nonlinearity has effect only over scales associated with 2, and arises from thu 
Kerr law (2.5), which gives D = eE + N(r, Z) E'J 2 E', correct to 0(1). Thi 
derivative expansions become 

	

az 	alp 	3X 3Z 	3Z 

	

a 	a 	a 	a 	a 
, 

	

a 	a 	a 

Substitution of the fields and the derivative expansions into equations (2.1) an( 
(2.2) will give equations for E and H which, correct to leading order, are 

aH 
V A E - 	[aE A e, + aE A C, + a(sgE A C, + p0H4 ) 

	

+ BE A C, + 	e, + B;(s gE A C, + p0ir - iE A e,) 

- iB,z(S gEt A e, + 
• [a -E Z  A C, + aE AC, + a;(s gE A C, + pII) 
• BE A C, + BE AC, ± B(s 8E AC, + tt0H th mz  A e,) 

- iB(s 8(E; A C, + p0H)]e( 	+ C.C. 

(3.8 
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A H+ wE= [a 4H A e2  + a 4H A C2  + a(sgH4  A C2  - cE) 
a'P

+ BH4  A e2  + 8 4H A e + B(sgft A C2  - 	- iH A e2 ) 

- iB;(s gHz A e, - 

• [a -HZ A e2  + aH A e2  + 	A e2  EE) 

• BH A C2  + BH A e, + B(sgfr A C2  - cE - iII A e2 ) 

- iB;(sgH AC2 - EH;)]eI(_o**) + c.c. - 	(N IE 1 ) I 2  E°) 

eF. 	 (3.9) 

As for Case 1, it is unnecessary to construct solutions E and H to these 
equations in order to deduce evolution equations for Bt.  Since F and C are 
23t-periodic in B and V , are finite at r = 0, and decay as r- , we may again 
apply- the compatibility condition (2.22) for the existence of 23t-periodic fields F 
and H. By considering the terms multiplying 4 and recalling the identity (2.25) 
for s 8 , the normalization P = 4t2  leading to P = 0, and the definitions of 12. 13, 
and g, we obtain 

4 + E + if4r + if5B + igB + if2  B1 2  B 4  + if, IBI 2  B 4  = 0, 

where 

= 42 J 
(H+* A + H A E+*) e2  dV, 

fs=;•jJESg(H+* A E +H4  AE#*) . e, + ( EE+* 	+ 0H** •E) 

+i(E+* AH z +E z AH+ *). ez IdV. 

However, equations (2.33) which define (E, fl') may be used to show that the 
coefficient f vanishes identically, thus giving 

iaz = — iB +f4 B 4  + gB + (12 1B 4 1 2  +f3  IBI 2)Bt 	(3.10) 

In equation (3.10), the coefficients of f2, f3, 14, and g depend on the 
intermediate axial scale Z but the amplitudes Bt  do not. Consequently a 4  must 
be chosen to absorb all the fluctuations on the Z scale without accumulating 
0(7 1 ) deviations as Z varies over ranges of O(y'). This is achieved by making 
the mean values of both sides of (3.10) vanish over large ranges of Z. The 
simplest statement of this requirement occurs when the fibre inhomogeneities are 
periodic in Z, of some period Z,,. Then equation (3.10) can be written in the form 

iBt = F4 B 4  + GB+ (F2  IBI 2  + F3IBI2)B 	 (3.11)XX  

where the real coefficients F2, F3 , F4 , G are averages of 12, 13, 14, g over each 
period of length Z,, and are given by 

1 S+Y 	 1 1Z0F 

'5=-j 	f dZ (j=2,3,4), 	G=—J
z 	

gdZ. zp  zo 	 zp  , 
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We obtain a similar equation from the terms in 4, so yielding the pair of 
constant coefficient equations 

iB = F4 B + GB+ (P2  18±1 2  + F3  IBI 2)8t 	(3.12) 

The term with coefficient F4  may be absorbed by the substitution 

= Ce" 2, 

which shows that V2  F4 corresponds to an averaged perturbation in the group 
slowness s8 . Resealing the independent variables by defining 

r=F22, 	x(F2/G)fx 

allows equations (3.12) to be written as 

iC = C + (jCl2  + h ICI 2)C, 	 (3.13) 

where h = F3/F2 . 
These are identical in form to the equations for a fibre without longitudinal 

inhomogeneities, so demonstrating that, when longitudinal variations are periodic 
and take place on a scale intermediate between the wavelength and the nonlinear 
evolution length, evolution is the same as in an 'equivalent' longitudinally 
homogeneous fibre. The relevant coefficients are averaged over a period of the 
longitudinal variation. This implies that for relatively weak signals, with nonlinear 
evolution length much longer than the scale of the longitudinal inhomogeneities, 
nondistorting pulses should propagate, provided that the launching conditions are 
those appropriate to the 'equivalent' fibre. This is similar to the concept of a 
'guiding centre soliton' introduced by Hasegawa & Kodama (1990) for long-
distance transmission systems involving many periodically spaced amplifiers 
designed to compensate for small losses in the intervening cable. 

4. Fibres allowing exact soliton solutions 

Grimshaw (1979) discussed possibilities for determining closed form solutions of 
the variable coefficient cubic Schrodinger equation 

iu,+Au+vIul 2 u=0, 	 (4.1) 

with real-valued coefficients A = A(t) and v = v(t). He showed that equation (4.1) 
can be reduced to the constant coefficient nonlinear Schrodinger equation 

ip, +p + (sgn As') IpI2p = 0, 

by the transformation 

U = v/A 2pe_*MIVIA1X2, 

1 IV/Al _! Iv/AI=0, Iv/AIx, 	Cr  M 	M 

provided that A and v are related by the constraint 

(A/v) = —AM (M = const). 
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:onsequently, this reduction to the constant coefficient equation is possible for 
irbitrary smooth one-signed A(t) provided that v has the form 

V(t) = —A(t)(MJ A(s) ds) 

r equivalently for arbitrary one-signed v(t) with 

	

A(t) = ±v(t) exp (—Mlt  v(s) ds). 	 (4.2) 

To investigate whether transformations exist allowing the coupled cubic 
;chrodinger equations (3.6) with variable coefficients to be reduced similarly to 
:onstant coefficient equations, we investigate substitutions of the form 

	

A(x, Z) = 	a)etn ± 
1 	 (4.3) 

	

=F(x,Z), 	C=G (x,Z),f 

where F, G, m±,  and fl±  are real functions of x  and Z. These functions are 
;hosen such that C satisfy the equations 

	

—iC + C + (ICI 2  +h ICI 2)C = 0, 	 (4.4) 

where h is a constant. 
Substitution of equations (4.3) into (3.6) yields equations (4.4) only if G, m, 

md m are independent of x  and, moreover, if 

- 	= 0, 	n —g(n) 2  = 0, 

	

F-2gFn=0, 	gFf2(i)2, 

f3/f2 = h(m/m) 2  = h(nC1m)2. 

The cases in which this system is compatible may be reduced, without loss of 
enerality, to 

a'2f2(Z) 
fl± = x2n(Z), 	m = an', 	n(Z) =----, 

V g(Z) 
with 

	

= a2f2 /vg, 	a = cr2f2I4g, 

provided that n'(Z) = 4g(Z)n2(Z). Here a and v are constants. Setting v = a2  = 
4M 1  gives the transformations 

	

= (f2/g) 1 C(, a) exp [iM(f21g)x, 	 (4.5) 
with 

=(f2/g)x, 	a=f2/4g. 

These reduce the special case 

iA z±  = g(Z)A' +f2(Z)(IAI 2  + h IAI 2)A 	 (4.6) XX 
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of equations (3.6) to the form (4.4) when g(Z) and f2(Z) are related by 

g(Z) =f2(Z) exp (_MJzf2(s) th). 	 (4. 

which is analogous to (4.2). 
Thus, Grimshaw's reduction extends to the coupled system (3.6) wheneve 

f3(Z)/f2(Z) is constant (=h) and when g(Z) is related to f2(Z) in the manne 
required for the single equation. Consequently, when (4.7) is satisfied, exa 
solutions for the system (4.6) may be found corresponding to all the similarit 
solutions catalogued in Parker (1988) and especially to the uniform wavetrain 
and linearly and circularly polarized solitons. Moreover, the pulse collision 
investigated by Parker & Newboult (1989) will correspond to collisions wit 
negligible scattering when (4.7) is satisfied. 

The condition which relates g and f2,  equation (4.7), includes the possibilit 
g(Z)/f(Z) = constant (M =O). Otherwise it does not correspond to physic, 
behaviour over the long fibre lengths which are required for optical commünic2 
tions systems if f2   fluctuates without any change of sign. In this case, as Z—* 
the argument of the exponential in (4.7) will tend to ±, and will model 
dispersionless fibre, g/f2 —> 0, when the argument of the exponential tends to —r 

or a fibre with infinite dispersion, g/j— m , when the argument tends to . In th 
following section the effects of sinusoidal fluctuations on a linearly polarized puls 
are studied numerically. 

5. Numerical results 

To investigate the effect of slow variations in the material properties, 
following change of variable 

=JZg(z!)dzF 
(g>O) 

was made in equations (3.6), and the resulting equations written in the form 

iA =A + [h1 (r) IAI2 + h2(r) AIiA, 	 (5.1 r 

where h 1 (r) —f2/g and h 2(r) =f/g. 
For circularly polarized solitons (A = 0), equation (5.1) reduces to a singl 

cubic Schrodinger equation which has only one variable coefficient h 1 . It is know] 
that when h 1  is constant this equation allows solutions of the form 

A(r, x) = (2/h 1 )11e' sech F(x - 2Vr), where 4' = VX - (V 2  - 

Here 1' is the pulse amplitude and V is a frequency shift which determines th 
speed of the pulse envelope. For h(r) *0, the evolution of a pulse which has thi 
initial condition may be analysed numerically. 

It is also seen that for A(0, x) = e21'A(0, x) there exist solution 
A(r, x) =e2°A(;  x) for which equation (5.1) becomes 

iA =A+  [h 1 (r) + h2(v)] AI 2 At 	 (5.2 
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This will allow solutions of a form similar to those of a circularly polarized pulse, 
but which will have h 1  replaced by h 1  + h 2 . Again solutions can be computed 
numerically for h + h * 0. 

This shows that both circularly or linearly polarized sech pulses evolve 
according to a single variable coefficient nonlinear Schrodinger equation, 
although the coefficient of the nonlinear term will differ in the two cases. More 
general initial conditions could be used which will yield solutions with a stronger 
coupling between the equations. 

To illustrate the evolution for a linearly polarized signal, h 1  was taken to be a 
constant and h2  was taken to have a sinusoidal variation about a fixed value h 0 , 

= h0  + a sin bt 

For the numerical results given in this paper, values for these parameters were 
taken to be h0 = 2, h1  = 1, a = 0. 2, and b = 2.75. 

Numerical integration of equations (5.1) was performed using a split-step 
spectral method, with a damping scheme applied at the edges of the integration 
region as described by Menyuk (1988). The edge damping is required because the 
periodic boundary conditions assumed by the fast Fourier transform could cause 
any radiation which has left the computational region to return to the region and 
cause effects which are due to the numerical scheme rather than the physical 

FIG. 1. Evolution of a linearly polarized pulse through a fibre whose material properties vary 
sinusoidally along the fibre. The propagation range is 40 cycles of the inhomogeneity. 
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Fro. 2. Peak values of IAI2  (—) and the material property h2(r) (- - - -) plotted against t 

system. The initial conditions, at r = 0, were chosen to agree with 

A" = 2 
	 2 

F sech F(x - Xo), 	A-= ( 	F sech F(x — (1+h2) 	 \ 1+h2 1 

where a is the polarization angle and the soliton is centred initially at x = Xo The 
parameters were taken to be F = 1, a' = 0, and Xo = 25.6, and the values for the 
step lengths for the numerical discretization were fix = 0.1 and AT = 5 x 10. 

From Fig. 1, which is a graph of IAI2  plotted against x  and r, it is not possible 
to detect radiation away from the pulse. However, if the maximum values of 
IAI 2  are plotted against r (Fig. 2), it can be seen from the decrease in the value 
of IAj 2  that there is some radiation of energy away from the pulse. It can also be 
seen that the peak values of IAI 2  are no longer constant, as in the case of a 
constant coefficient nonlinear Schrodinger equation, but fluctuate almost peri-
odically with a period similar to that of the material fluctuations. However, the 
loss of peak amplitude of the pulse is only about 3% after 40 cycles of fluctuations 
of h 2  having 10% variation either side of its mean value. 
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