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ABSTRACT 

The need is explained for a new type of computer 

for solving partial differential equations, the 

Digital Field Computer. The operation of such a machine 

for solving Laplace's and Poisson's equations is 
explained and circuits for its realisation, using 

incremental switching of magnetic ferrite cores, are 

given. Its operation is predicted by simulation on a 

Pegasus digital computer, which shows that it solves 

Laplace's equation correctly. 
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1 THE CONCEPT OF A DIGITAL FIELD COMPUTER 

1.1 The Need for a Rapid and Accurate Method for 
Solving Laplace's Equation. In many engineering problems 

it is necessary to solve Laplace's Equation at some 

stage. This is true in fields other than electrical 
engineering, such as in problems involving conduction 

of heat, but the present work was stimulated mainly by 

problems encountered in devising methods of design for 
electron guns and in studies of the behaviour of dense 

electron beams. 

It may seem that the solution of Laplace's 

Equation is mathematically straightforward and that 

therefore no problem really exists. But this is not so, 

as almost invariably, in engineering problems, the 

boundary values of potential and/or electric field 
strength cannot be given in a convenient analytic form 

but are numerical values. The shape of the boundaries 

themselves may also only be expressible numerically. 

One type of problem involving solution of 

Laplace's Equation under such conditions is that of 

designing a suitable electrode structure for an electron 

gun which is to produce a dense beam of electrons. The 

electrodes must produce at the surface of the beam the 

correct normal field and potential at all points as 

determined by the conditions in the particular beam. In 

certain particular cases these beam boundary conditions 

can be expressed analytically, and also Laplace's 
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Equation outside the beam can be solved using the beam 

edge boundary values in a Cauchy type problem. These are 

quite simple cases, such as a 2-dimensional straight or 

curved beam, where complex variable methods may be used, 

or the cylindrically symmetrical straight beam as solved 
9 

by Radley. These cases are, however, exceptional and in 
more complex electron flow patterns, as discovered by 

Kirstein, numerical methods are needed to solve the electron 

flow problem, with the result that beam surface potentials 
are given numerically. Numerical solution of Laplace's 

Equation under Cauchy boundary conditions is notoriously 

unstable. This instability may not be insuperable, but in 
most cases it is likely that Pierce's.2 

method of design, 

or some variation of it, will be used. This method has the 

advantage that it can take account of the effect of 

modifications necessary to the electrodes for engineering 

reasons, such as avoidance of sharp corners because of 

high voltage operation. It turns the Cauchy type problem 

into one with closed boundaries having boundary values of 

Dirichlet (V specified at the surface) and Neumann type 

(normal field specified at the surface). The solution is 
then determined either by trial and error or by a systematic 

method, but in either case Laplace's Equation will have to 

be solved a large number of times to obtain a satisfactory 

solution. 
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Another class of problem requiring a large 

number of solutions to Laplace's Equation is that of 

electron flow in which electron trajectories depend on 

the potential field of the electrons themselves and 

the flow is non- steady state. Such a problem is that of 

investigating the type of transverse electron beam 

instability described by Kyhl and Webster This comes 

about when a thin-walled hollow beam or a ribbon beam 

is focused by a longitudinal magnetic field. The 

electric field produced by the charge in the beam is 
perpendicular to bhe magnetic field. Hence transverse 

motion of the electrons occurs, with consequent beam 

break-up into a number of vortices. Analysis for 
small perturbations is possible assuming a sinusoidal 

disturbance of the beam, but for large perturbations 

as observed in practice there seems no alternative 

to numerical analysis. As each step in such a process 

would require the solution of Laplace's Equation 

throughout the region of interest, the computation 

is likely to be slow unless a rapid means of solving 

Laplace's Equation is available. 

In both of these examples it would be a very 

considerable advantage if the field solving system 

could be coupled directly to a general purpose digital 
computer. In the focusing electrode problem the computer 

would decide on the electrode shapes to be used, either 
by a system analogous to the human trial-and-error 
method or, better, by a systematic method. In the 
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second case the computer would at each step find the 

motion of all electrons in a short period, feed the 

new positions to the field solving system and use the 

new values of the field found by it to compute the 

next step of the electron trajectories. 
1.2 Methods at Present Available. Perhaps the most 

obvious way of solving such problems, particularly in 
view of the requcent that any system should be 

capable of direct coupling to a digital computer, is 
to use a digital computer actually for solving 

Laplace's Equation. Of course, this is perfectly 
feasible provided throblem is small enough, but 

for many interesting problems, particularly three- 

dimensional ones, the time taken and storage space 

needed can be prohibitive, especially in cases where 

Laplace's Equation must be completely solved at each 

step in a problem's solution. 

It is true that certain problems do lend 

themselves to solution on a general purpose digital 
computer. The method of solution in Appendix 2 for 
Pierce electrodes for a 2-dimensional electron gun 

system in which electrons reach relativistic speeds 

is one such case. Although the potentials at the beam 

edge cannot be expressed in a closed analytic form, 

it was possible to use numerical integration of a 

differential equation over the complex plane to 

determine the potential field outside the beam. 
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Hence instability of the So'lutdon appears to have 

been avoided. Each point is treated only once and so 

the method avoids the usual disadvantage of solving 

numerically a field problem, which is that all points 

have to be scanned a great number of times before 

the final solution is obtained. This is, however, a 

relatively simple problem, the corresponding non- 

relativistic one is the simplest possible case and 

so is not typical of what is met in practice. This method 

is, in addition, inapplicable to the case of a 

cylindrically symmetrical relativistic beam. 

Probably the most commonly used method is 
the use of some sort of analogue, the electrolytic tank 

or its solid equivalent, or the resistance network 

analogue. These devices can be refined to give very 

accurate results but their accuracy cannot be increased 

indefinitely. While they have been used in direct 

conjunction with digital computers for electron 

trajectory tracing, there is bound to be some difficulty 
As w.+l, 

in the analogue-digital link. Llke most analogue 

computers, setting up boundary values tends to be a 

long process as opposed to feeding data into a digital 
computer. For this reason, control of boundary shapes 

and potentials in the analogue system by the digital 
computer is likely to be difficult. These analogue 

methods have the great advantage, however, that once 

the boundary values have been set up the solution 
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takes place almost instantaneously. The problem then 

arises, of course, of reading out the solutions, so 

that the majority of the time taken for solving a 

problem is in setting up and reading out. 

1.3 The Digital Field Computer: 1This -pepese4 computer, ?roPos as 

is an attempt to combine the desirable features of 
7r. t1e-F3e 

S 

analogue and digital computers. It will have the speed 

of the analogue combined with the accuracy and ease 

of problem changing of the digital computer. As it 
is a digital device its accuracy can be increased 

almost indefinitely. It must rely on the use of finite 
difference methods, as the potential can only be found 

at a finite number of points. To achieve the speed of 

an analogue it must work in very much the same way as one, 

computation proceeding simultaneously at all points in 
the network. At each mesh point there must therefore 

be some sort of arithmetic unit in addition to a 

means of storing the potential at that -point. 

For maximum simplicity of the machine, the 

first-order difference equivalent of Laplace's Equation h z ck1w%.hS S 

will be used. Referring to the square mesh of fig. 1.3.1, 
this is 

4V0=V1+V2+V3+V4 000000(1.361) 

So that every mesh-point must continuously adjust its 
potential to the mean of the potentials of the four 

adjacent points. Thus, if point 4 happens to rise by 

v volts, point 0 will rise by v/4 volts. This rise 

in Vo will then affect V1,V2,V3 and also V4 and 
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and so the process will continue until an equilibrium 

is reached. 

1.4 The Mesh-point Units. The unit at each mesh-point 

must must receive information on potential changes of 

the neighbouring units, adjust its own potential, and 

send information on its change of potential to the 

adjacent points. As it is only the change in potential 

that need be transmitted between units, and as the 

interconnexions between units should be as simple as 

possible, it is advantageous to use a system in which 

a potential is represented by a series of pulses, the 

number of which is directly proportional to the 

potential. For instance, if 1 pulse represents 1 volt, 

then 100 pulses is 100 volts and so on. This needs 

only one line between units and it also makes the 

design of the mesh-point units easier, as will be 

shown later. 

The requirements for the mesh-point unit are, 

then, that for every four input pulses the unit should 

emit one pulse to each of the four neighbouring points. 

Ithdoes not matter from which of the adjoining points 

the four pulses come from or when they came, they 

could for instance all be from point 4, or one from 

each of the neighbouring points. Of course, if point '0' 

receives a number of pulses during the whole of a 

compttation which is not exactly divisible by four, 

a certain error is bound to occur. This will not be 

serious as the total number of pulses will be large, 
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and there is a technique which is described later for 
minimizing this effect. 

There mast also be a store at each point, to 

which one pulse is added every time the unit emits a 

pulse, in order to have a record of the total potential 
at the point. This could be a series of cascaded 

counter stages capable of storing the number of pulses 

which are needed for the degree of accuracy required 

in the solution. The storage units must be capable 

of reasonably rapid readout, as setting up and readout 

are likely to be much more time-consuming than the 

actual computing process. It is worth noting that, 

in view of this fact, it appears to be. unlikely that 

the basic units be capable of the maximum speeds that 

are at present feasible unless the accuracy required 

is much greater than that at present envisaged (max. 

number of pulses at any point about 145 , computing 

time about 5 secs. ). 

1.5 Boundary Values. Considering only the solution 

of Laplace's Equation under Diriehlet boundary 

conditions, the insertion of boundary values is quite 

straightforward. The potential is specified at every 

point on the boundary, and so the appropriate number 

of pulses is fed in at each point. An interesting and 

useful point is that these pulses need nit necessarily 

be fed in simultaneously. By the principle of 

superposition, as long as each point is brought finally 
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to the correct potential, it does not matter in what manner 

it got there. This means that one pulse generator can be 

used to feed a number of boundary points in turn until 
all are at the desired value. Also it is easy to change 

boundary potentials and see what effect this has on 

the solution. 

The boundary points of the mesh emit pulses only 

when their potential is being set. Pulses which arrive 

at the boundary from the inside of the mesh system 

are ignored. If these incoming pulses were acted onin 

the normal way and the boundary unit emitted one pulse 

for every four incoming pulses, then its potential 
would rise in an unpredictable way and it would be 

difficult to bring the unit to its required potential 
by feeding in an appropriate number of pulses from 

outside the mesh. 

1.6 Extension to Poisson's Equation. The finite- 
difference oform of Poisson's Equation is: 

Vo= 4 ( Vl + V2 + V3 + V4 + h2(p/4 ) ... (l. 6.1) 

where h is the mesh dimension and e the charge density 

in the region of point '0'. The term h2/4 means 

that an extra number of pulses corresponding to this 
value must be fed in from outside the mesh. However, 

the unit must still take account of the potentials of 

the adjacent points and these will be affected by the 

charge density pulses which are fed in. These charge 

density pulses can, of course, be fed in at any time 

in the computation. 
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2 LOGICAL DESIGN OF BASIC SUB-UNIT 

2.1 First Type of Basic Unit. Brown6 suggested that 
the computer could be built up from a basic unit 

having two input channels on which pulses may arrive 

simultaneously on the two input lines or sequentia<.lly. 

The unit must give one output pulse for every two input 

pulses. This unit by itself would comprise, together 

with a potential register of some sort, a complete 

mesh-point unit for one node of a one-dimensional 

system. Three could be combined to make a two-dimensional 

unit and six for a three-dimensional one. Such a unit, 

using thermionic valves, is described by Brown but he 

decided that the computer was not at that time feasible, 

due mainly to the high power consumption and cost and 

the lack of reliability of the circuits. 
It was decided that, as a first step, Browns, 

system should be re-examined to see if by the use of 

different components, such as transistors and ferrite 

cores, the computer could be realig6ble. The first thing 

done was to make a logical analysis of the requirments 

for the basic unit so that minimization of the logical 

elements needed could be achieved. 

2.2 Logical Design and Minimization. The 'truth-table' 

for the unit must first be constructed. The two inputs 

are labelled x and y. The presence of a pulse on a 

channel is denoted by the letter,thus: y , the absence 

of a pulse by the letter primed : y'. A third factor is 
the state of a memory device, z , which is necessary 
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because there must be an output pulse for every two 

input pulses even when they arrive at different times. 

The truth table is: 

Present state Next state of z for Output for input 
of z input of: of: 

00 01 11 10 00 01 11 10 

0 0 1 0 1 0 0 1 0 

1 1 0 1 0 0 1 1 1 

'00' indicates x'y', '01' indicates x'y , etc. 

From this table can be deduced the condition for the 

two-state memory device z tobe set to zero: 

fo(z) = x'y'z' + x'yz + xy'z +xyz' ... (2.2.1) 
where + indicates 'or' (union) and multiplication 

indicates 'and' (intersection). Also, for z to be set 

to one : 

fl(z) = x'y'z + x'yz' + xyz + xy'z' ... (2.2.2) 
From these two equations it is eYident that Xi changes 

state ( from 0 to 1 , or vice-versa ) only when 

x'y + xy' occurs, i.e. an input on one line only, 

which fact could be deduced readily without the aid 

of logic theory. 

The unit produces an output for the conditions: 

fl(o/p) =x'yz +xy+xy'z .....(2.293) 
This can be reduced, by inspecting the output column 

of the truth table and treating it as a Karnaugh Map, 

to: 

fl(op)=xy+xz+yz ......(2.2.4) 
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A diagram of the logical devices needed to 

achieve the desired result is shown in fig. 2.2.1 

If it is assumed that the state of z changes 

for every input to it, and that a pulse is available 

whenever z changes from 0 to 1, so that o/p(z) = zxy'+zx'y, 

then the simplified circuit of fig. 2.2.2 can be used. 

An alternative circuit, incorporating a 'not' 

element, is shown in fig. 2.2.3 and uses the identity 

xy?+x'y 
= (x+Y)(X,+Yt) = (x+Y)(XY)t ... (2.2.5) 

2.3 Results of Minimization. None of these circuits 
is, in fact, any simpler than Brown's one, and so no 

progress has been made. However, before giving up 

this system it was decided to try other circuit 

components in the same logical system. 

It was considered that ferrite core logic 

offered some advantages over valve and transistor 

circuits. These are mainly that they are not expensive, 

have a memory as well as logic capability, and are 

highly reliable. They are certainly rather slow, but 

this should not be a great disadvantage, provided the 

above advantages are realised in practice. 

2.4 Core Logic Unit. In ferrite core logic systems, 

information is continuously moved from one core to the 

next by a system of clock pulses. The system considered 

uses two clock phases. On phase 'A', information is 

driven from cores in phase 'A' to cores in phase 'B'. 
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At clock phase 'B', information is driven forward 

again to cores in phase 'A' and so on. The system 

is therefore based on the core shift register. 

Quite complex logic functions can be realised 

by applying inputs to windings having appropriate 

numbers of turns wound on a toroidal core. Owing to 

the 'square-loop' characteristics of the ferrites 

used in making the cores, the state of magnetization 

changes, or the core 'switches', only when a certain 

m.m.f. is exceeded. Therefore an 'and' gate can be 

realised by applying m.m..f:s which separately would 

not switch the core but when applied simultaneously 

will switch it. In an 'or' gate, more turns are used 

on each input winding so that the core switches even 

if only one input is energised. In the figures, the 

weight given to each input is denoted by a number 

beside it, +l, +2 etc. A total of > l'j will switch the 

core and so produce an output from it at the next 

clock phase. 

The schematic circuit for the basic unit is 

shown in fig. 2.4.1 . The 'carry-digit', z, is driven, 

under no-input conditions, alternately between B3 and A3. 

The output from A3 to B2 has no effect as there is no 

other input to B2 to bring the m.m.f. above the 

threshold value. If z is present and x or y singly 

occurs, then there is an output and z becomes zero. 

This is because the 'or' gate A2, axld also A3 pass 
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pulses to the 'and' gate B2 and hence cause an o/p. 

z is erased by the -2 pulse from B2 to A3 . If z is 
zero to start with, then 1 is written into B3 and 

hence z, and there is no output. z is not erased since 

there is no output. 

If x and y occur simultaneously, an output is 
produced via A1, but the 'or' gate A2 is also actuated. 

This is not wanted and so the effect is nullified by the 

(-1)'s to B2 and B3.B1 is provided to give an output at 

the correct phase. 

The unit therefore obeys the logic reauirmen is 
for a laasic unit. It uses 6 cores and 6 diodes besides 

winding and connecting wires. 

2.5 Potential Register Using Cores. A possible 

arrangement for a binary counter and store, to record 

the total number of pulses emitted by a unit, is shown 

in fig. 2.5.1 

A2 and B1 form a dynamic store, a pulse passing 

continuously from one to the other if there is a '1' 
in this stage of the register. The output from the 

mesh-point unit is passed to Al and A2 simultaneously. 

If there is '1' in this stage already, then Al switches 

and passes a -2 pulse to B1 hence erasing the '1' in 
the dynamic store of this stage. If the store is 
zero to start with and a pulse arrives, then there 

is no output from A1, but a pulse is put into A2 and 

so the store becomes 'I'. 
This register uses 3 cores and 3 diodes 

per stage. 
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Figure 2.5.1 
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2.6 Simplification of the Computer System. The 

system described above is still quite complicated, so 

it is worth considering fundamental changes in the 

mode of operation. 

First of all, it is evident that provision for 

the units to deal with simultaneous arrival of pulses 

adds components which would not be needed if it were 

known that pulses would always arrive sequentially 

and never simultaneously. This implies that the units 

adjacent to any particular unit must always emit 
plase.5 

pulses to that unit at differentnin the clock cycle. 

It will be essential to have a clocked system in this 

case, of course. If the above condition can be satisfied 

then the basic unit simply becomes a scaler which 

counts to 2,4 or 6 depending on whether the problem 

has one, two or three dimensions. A slight complication 

is added by the fact that the output must be stored 

till the appropriate clock phase for that unit to 

emit a pulse to its neighbours. However, the final 

unit is considerably simplified. 

An important advantage of using a scaler as 

the basic unit is that similar scalers can be used 

for the potential register of the unit. The circuitry 

proposed would need the same number of components for 
a count of ten scaler as for a count of two one, so 

that fewer stages need be used in the potential register 

than if binary stages had to be used. 
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2.7 Arrangement and Phasing of Units. The phasing 

of the system must be so chosen that a unit receives 

a pulse from only one of its neighbours at a time. 

This involves the use of several phases per clock 

cycle, 3 for a one-dimensional system, 5 for two 

dimensions and 7 for three dimensions. This can be 

seen by examination of fig. 2.7.1 . 

Referring to the two-dimensional case of 

fig. 2.7.1(b)., the operation is as follows. A unit 
emits a pulse, provided it has received enough pulses 

in the last clock cycle, to all asjacent points at its 
clock phases. The numbers in the mesh indicate the 

appropriate phases for each point. All input pulses 

to a unit go into a scaler which, when it has received 

4 pulses, resets itself to zero and sets the output 

store so that this unit is ready to emit a pulse at 

its clock phase. If the scaler does not reach 4, it 
simply atays in the same state until it receives more 

pulses, however many clock cycles later, and there is 
no output from the unit so long as 4 is not exceeded. 

There is always enough storage space in the unit, even 

if it enters a cycle with 3 in the sealer and receives 

a pulse from each neighbouring unit. At the end of the 

cycle there will be 3 in the scaler again and the 

output store store will be set. 
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Figure 2.7.1 (a) 
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3 PRINCIPLES OF USE AND OPERATION OF FERRITE CORES 

3.1 Magnetic Properties of Ferrite Cores. The applications 

of toroidal ferrite cores only will he dealt with. They 

will, in general, be wound with more than one winding, 

usually all having a multiple number of turns. The 

important properties of such components depend on theib 

ability to store iformation indefinitely, without 

donsuming any power, and on their rectangular B-H loops. 

The latter property gives the core a 'threshold' 

property. This means that when the sum of the m.m.f:s 

caused by the currents flowing in the core windings 

exceeds a certain threshold value, then the core 

starts 'switching' or, in other words, the magnetic 

flux in the core starts to change. If the m.m.f. 

remains large enough for long enough, then the core 

will end up sarurated in the opposite sense from 

that in which it started.( The applied m.m. f. is 
presumed to be applied in the opposite direction to 

a previous 'setting' m.m.f.). This is the way in which 

such cores are most commonly used, in memory matrices, 

shift registers and logical 'and' and 'or' elements. 

The core always ends up saturate, one way or the other, 

these states being designated '0' and '1' usually. 

3.2 Sif plifying Assumptions? It is usual to make 

some simplifging assumptions about core behaviour, 

in order to facilitate calculations. These are generally, 

that the rate of change of flux,dql/dt, is constant 
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during switching and that the switching time is 

inversely proportional to the excess of applied m.m.f. 

over some critical value, which can be taken as the 

threshold switching value for most purposes. 

By Faraday's Law, the e.m.f. across a winding, 

V = Nd%d/dt or, with our simplifying assumptions, 

V = N d, T' , where 1 is the time for switching from 

one fully saturated state to the other, and a# is the 

resultant flux change. Now f Vdt = 1Nd, so that for a 

given flux change, A , the ' volt-seconds' integral 
is independent of the actual speed of switching. 

Therefore, in fig. 3.2.1(b) the area under the 'assumed' 

rectangular pulse is made equal to that under the 

'actual' pulse. This 'volt-seconds area' is an important 

parameter of the core. 

The switching time, T= sw/(I - Ic) 000 (3.2.1) 
where Ic is approximately the 'threshold' m.m.f. and 

I is the sum of the m.m.f:s produced by the currents in 

all the windings. Sw, the 'Switching Constant', depends 

on the core material and dimensions and on the amount 

of flux which is switched. Equation 3.2.1 is obtained 

experimentally and it is found that most cores obey 

it reasonably well. 

3.3 Partial Switching. The core can be used to store 

analogue rather than digital information by only partly 

switching it. Referring to fig. 3.3.1, suppose we start 
with the core at A and supply sufficient m.m.f. to 
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bring the core to B , at which point it starts switching. 

If the input is now removed before itching has been 

completed, at point C for instance, then the final 

state of the core is at point D. The quantity of flux 

switched is directly proportional to the 'volt-seconds' 

appearing across a winding on the core. For this reason 

it is apperently possible to make a reliable digital 

scaler using such a core , if the input is provided 

from another identical core which always switches 

completely and so always provide pulses of constant 

volt-time area whatever its switching speed.Temperature 

variations will affect both cores equally and so the 

count should not be affected. The scaling core must be 

reset as soon as it is saturated. 

3.4 Cores in Circuits. In almost all machines using 

cores as computing elements, the arrangement is basically 

as shown in fig. 3.4.1, where information flows from 

A to B when the drive winding on A is energised. 

Core B may switch completely, partly, or not at all, 

depending oft the turns ratio N2/N3, the resistance of 

the coupling windings R, and the magnitude of the 

drive current or voltage. The e.m.f. across N2, 

V2 = N2W/dt)A 
, and across N3, V3 = N3(di/dt)B, 

so that, 

N2 (d)6/dt )A = N3 (did/dt) B + i2R .... (3.4.1) 

If B is to switch completely, then (did/dt)B 
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must be greater than or equal to (0/dt)A, so that 

B completes switching while V2 is still present. A 

ratio N3/N2 greater than unity must therefore be 

provided if complete switching is wanted. However, 

partial switching will occur if, at any stage, i2N3 

is greater than the threshold m*'m. f. (Ic) for core B. 

If the value of R is big enough, then for a given 

drive voltage ( assuming constant voltage drive), 

and hence constant (dO/dt)A , core B will not switch 

at all. We have: 

N2(dj6/dt)A = (IB/N3)R + N3(d'/dt)B (3.4.2) 

IB is the m. m. f. on B. For no switching, (dO'/dt )B= 0 

and so, 

I N2( N d )A ... (3.4.3) 

or, R > N- 2 (dO) 
``/A ..,. (3.4.4) c 

Where (d#dt)A is the maximum value attained, so that 

switching would start once a critical value of it is 

reached. 

3.5 Necessity for Isolation Between Stages. When 

toroidal cores are used as logic or counting elements 

it is generally necessay to provide some form of 

isolation between stages, for two main reasons:- 

a) So that flow of flux in the forward 

direction switches only the required cores, and to 
the correct extent. 

b) To avoid backward flow of information. 

The most important ways of achieving this are 

by the use of semiconductor diodes or transistors or 
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by using additional cores in the coupling loops. The 

last method will not be discussed, as considerable 

complication seems to be needed and this was not 

considered worth while with the limited facilities, 
for core winding available. 

Consider three cores connected as in fig. 3.5.1, 

wich is two of the stages of fig. 3.4.1 cascaded 

When core A switches, 

= (il+i)R+Nlld4 ...(3.5.1) N2 (k- 
J A dt B 

It is assumed that C does not switch at all, as will 
be required generally. i2 is the current in the second 

loop referred to the first loop. Now, i 2 = (dp /dt) B. N2/'R 

as there is no back e.m. f. due to (N1)0 , so 

2 
N2 rd .l , hence : 

1 
_ 

N1 l dt)B R 

N2taf 
J/1A 

= i1R + (N22 + N1 ... (3.5.2) 
N dt B 1 

However, (d,c/dt)B = (il - io)/s, or i1 = s(dgd/dt)B+ io 
where s is a constant for the core (from eq. 3.2.1 ). 

So, 
N2 

(MA 
d =iR+ (dfl 1+N2 +s ...(3.5.3) 

o dB 
N1 

and, 
_ (0/dt )A - i0R/N2 

dt B 
(N1/N2 + N2/N1) + s/N2 

000 (3.5.4) 

(N1/N2 + N2/N1) cannot be less than 2 and so, even if 
R = 0, (dfif/dt)B is less than J(d/dt)A, so core B 

would be less than half switched. The system would 
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Figure 3.8.2 
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Figure 3. 5. 3 
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Figure 3.7.2 
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therefore not be regenerative as a shift register 
should be, but would attenuate input pulses. It is 
therefore essential that core C should beisolated 

from B while flux is being transferred from A to B. 

The simplest and most commonly used method is to 

place a diode in each coupling loop, as in 
fig. 3.5.2 . This is effective in preventing current 

from flowing in the secondary loop and so complete 

flux transfer is possible provided that a sufficient 
turns ratio, N2/'N1, is provided to o°ercome winding 

resistances and diode losses. 

Unfortunately, such a diode is not effective 

in preventing backward transfer. If a drive pulse is 
applied to core B, for example, while it is in the '1' 

state, then not only is there a current in the forward 

direction in the loop to the right of the core, but 

there is also, a current induced in the loop to the 
direction 

left. This current is in the fo rwar4/ of the diode, 

but if the ratio N2/X1 is large enough this does 

not result in reverse flux transfer because the 

threshold of the previous core is not exceeded. 

However, in some cases, it has been found advisable 

to include another diode to short out this current, 

as in fig. 3.5.3 . This is not altogether satisfactory, 
since quite large currents can flow in this extra diode 

and the losses involved have to be supplied by the 

clock pulse and so the power consumption may rise 
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very considerably. 

3.6 Isolation in Counting Circuits. In the counting 

circuits employed in this computer, the conditions 

imposed are more stringent than for shift registers. 

For the scaler to count to a base greater than 2, the 

ratio N2/N1 must be less than unity, considerably 

less for a count of 10 staler, so that backward 

propagation becomes an important problem. Power 

consumption also must be kept to an absolute minimum, 

so the two diode system is not satisfactory. It was 

found that only by using a transistor in the coupling 

loop was it possible to achieve acceptable performance. 

Consider the arrangement of fig1' 3.5.2, in 
which each stage is identical. The condition for 
forward switching to start is:- 

N2kd 
!Af = 

R 

1 

.... (3.6.1) 

i.e. there must be enough voltage to exceed the threshold 

for any switcing at all to occur. 

Similarly, for backward switching to start, 

N1 kd 9 B> 

x 

N2 

R .... (3.6.2) 

Now, (d)d/dt )B = (did/dt )A, as the conditions are the 

same for the cores in the two cases. Therefore, both 

the above equations are identical and if the counter 

works at all, i.e. eq. 3.6.1 is obeyed, then eq. 3.6.2 

is also obeyed and there is bound to be backward flux 
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transfer unless proper isolation is provided. 

3.7 Counter Circuits Using-Cores! The simplest 

possible basic element which could be used in the 

machine is a count of two scaler. Such a sealer could 

be used directly as the mesh-point unit in a one- 

dimensional system, or several may be connected 

together suitably to form a unit for two and three 

dimensional systems. 

Such a scaler can be made using one magnetic 

ferrite core as the counting element. A simplified 

diagram is shown in fig. 3.7.1 . The pulse generator 

provides unidirectional pulses of closely controlled 

volt-time area, as in fig. 3.7.2 . The first pulse 

reverses the core completely. In so doing a certain 

current must pass and so the capacitor C is charged 

to some voltage. When the pulse stops, this charge 

flows back through the pulse generator and the core 

winding. The values of C and the total series resistance 

must be so chosen that this reverse current is below 

the threshold current for the core, so that no 

reswitching can occur. 

The second pulse is now fed in. As the core 

is saturated, no back e.m.f. will appear across Ni 

and so a relatively large current will flow, thus 

charging up C to a considerably higher potential 

than for the first pulse. This time, therefore, there 

will be a larger reverse current when the pulse stops 
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and if the circuit parameters are correctly chosen, 

it will completely reset the core. The counter is now 

ready for the next input pulse and the core is in its 
original state. 

During the first pulse, 

ft 
eM = L R9 ICJ i, + Nib ...(3.7.1) 

o d# 
The switching time is related approximately to the 

m.m.f. by the relation 

T S ,,,,r S ... (3.7.2) I -- 10 t - L o 

where s = Sw/ITl . This switching time is for complete 

switching of the core, the flux change being Oc. So 

we can write 

VN i 

hence, from eq. 3.7.1 , 

e;r 

Putting 

(L - L 

+N, LI +Lt s s o 

A = C.e + L0 

... (3.7.3) 

.. (3.7.4) 

B = (R + N 1 ..(3.7.5) 
S JJ 

the solution to eq. 3.7.4 is 

8 
e .. (3.7.6) 

The potential across the capacitor at the end 

of the first pulse must not be large enough to cause 

the reverse current to exceed the threshold value for 
the core. So, 
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TA et/8c L d 18 ... (3.7.7) 

T , the core switching time being equal to the input 

pulse length. Therefore the circuit parameters must 

be so chosen that: 

AeT/8c Lo 
... (3.7.8) 

A more approximate expression can be deduced 

if it can be assumed that during the pulse the current 
does not change very much. Then the capacitor charges 

to imean TIC , and so the condition for no reswitching 

is 

RC > ... (3.7.9) 

which is useful as a guide in designing such a circuit. 

At the end of the second pulse, 

the solution of which is 

= e .. a 
-t/ac 

R 

... (3.7.10) 

... (3.7.11.) 

and r T'/R c 1 

I d,{ = RC l - 2 ) 2;r 
o 

R 

So that the capacitor has a potential difference 

e; ( i - -Or/2c 
) across it when the pulse is removed. 

Calling this Vo, we have, if reswitching now starta:- 

Vo. i(R+N -)_0N 
S 
=1 + 1Ls.* ... (3.7.13 ) 

where is is the maximum possible flux change in the core. 
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Putting 

cl 1 1 = (v0 + ld s 
J 

{ 
rz 

+ sc 
J 

.. (3.7.14) 

the solution to eq. 3.7.13 is 

D _t /Qc 
= 

8 
e ... (3.7.15) 

Re-switching will cease when i drops below io , so the 

time for which the core is switching is given by:- 

, _ - g e T2L ... (3.7.16) 

or, ... ( 3.7.17 ) 

Therefore the flux change is:- 
?l4_4 

( L - Lo) ...(3.7.18) 
v S 

(T1 --t1sc J 8 L 

or, 

CA 

[tc --LG Ec(i+ D. 

Ego 

C (V,- LoR) _ c.o Ta 

L S 

I 

... (3.7.19) 

and values must be chosen so that this ratio is 
greater than one. 

3.8 Effect of Winding and Diode Losses. The degradation 

of performance of the core used as a counter, due to 
the presence of resistance and semiconductor diode or 

transistor in the coupling loop, will now be considered. 
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The diode can be more easily treated analytically 

if its characteristic is divided into two straight-line 

portions , as in fig. 3.8.1 . It can then be treated as 

a resistance, Rd, in series with a constant voltage 

drop, Vd. 

Referring to fig. 3.8.2, we have:- 

"1( N3(j ) + Vd \JB 
... (3.8.1) 

R includes winding, diode and any additional resistance. 

Putting in the usual approximations, this becomes 

N.,a A N3 + R. L- +Vd ...(3.8.2) 
T,a T8 

hence, L, 2. 
= .2 4A Vd - 4 g N3 ... (3.8.3) 

(Z TA R R Tp 

But also, L. = L C. + ... (3.8.4) 
T$ 

and as TS is the time required to switch B completely, 
'Ta we have 94*(3.8.5) TA 

The cores are identical, so b'-'e-z8 = dA and so, 

C2 = L 4 + 4t3 S ... (3.8.6) 
l+ TA 

Therefore, 

N3 + s R /o 4,4 

Na -T A (1Z <<V4 
... (3.8.7) 

where n is the base to which the scaler counts. 

As far as performance is concerned, it is 

advantageous to make N3 and N2 large, so that it is 
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their ratio which is the main factor in determining 

to what base the scaler counts, even when TA , R and 

Vd may vary, However, it is desirable that the number 

of turns in the windings should be kept within reasonable 

limits, both as regards the cost of winding the cores 

and the physical impossibility of winding more than a 

certain number of turns on the small cores used. The 

quantity which is most likely to vary in the expression 

for 
gA/0`P13 

is the switching time, Tq . This is due 

mainly to the fact that the pulse generators will be 

supplying a number of units, some of which may switch 

while others may not, so that the loading on the 

generator will vary and so its output is likely to 

vary. Supply voltage variations will also affect it. 
So matters must be arranged that the denominator of 

eq. 3.8.7 should vary little for the variations of T4 

likely to be encountered in practice. For example, 

if N2 = 8 and N3 = 64 and the scaler counts to 12, 

then the variation of the denominator must not be 

enough to affect this count, the limit being ±j a 

count. Then the maximum permissible variation in 

switching time is 

LOA 
RI,IN3 

TA 
+Vd 

zif 
using the FX 1724 core, Ic = 1.23 AT, d JeA = 3.81x10067wb. , 

and with typical values of vd = 0.2 v. , R = 3.C2..) TA = 2 MS, 
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'rA must be less than 0.4/8. This value is not greatly 

affected by what the value of TA is , so it is an 

advantage, again , to make TA small normally in order 

that a larger percentage variation be allowable. 

For a scaler investigated experimentally, N2 = 7 

and N3 = 40, 
Theoretical 

'TA 16 fop/Af0$ n 

l /s 7.7 9 

2 9.6 11 

3 11.2 13 

Experimentally it was found that a particular 
count was stable for about t 10% changes in Tq, but 

the exact count depended , in addition to the factors 

considered above, on the means used for triggering the 

transistor used for resetting the core when the count 

was completed. The actual count could vary by 1 or 2 

from that predicted. 

Fig. 3.8.3 shows the predicted flux change ratio 
for a turns ratio of 8. The flux ratio approaches the 

limiting vain as the switching time is decreased and the 

total number of turns is increased. 
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4 DESIGN OF MESH-POINT UNITS 

4.1 Requirements for Unit. The unit must count the 

total number of pulses arriving on its inputs and for 
every 2, 4, or 6 input pulses ( depending on the 

number of dimensions in the problem, 1, 2, or3 ), give 

an output pulse at the appropriate clock phase. It 
must therefore be able to store pulses for an indefinite 
period, as it generally will not be the case that 

exactly the right number of pulses will arrive during 

each cycle for an output to be emitted in that cycle 

For the moment, attention will be confined 

to units for the one-dimensional case, so that the 

scaler must count to two. In the design to be considered 

there two parts to the sub-unit, a scaler using a 

magnetic core as described previously, and an output 

circuit which incorporates another core, or cores. 

There may also be a register attached to the unit to 
record the total of pulses emitted, or the potential 
of the point. This unit will be considered separately. 

4.2 Mode of Operation. The output core is 'set' when 

two pulses have passed into the counter, which must 

then be automatically reset. The output core is then 

reset by a clock current at the appropriate phase in 
the cycle, thus inducing ann e.m.f. on the output 

winding which is used as the input to the adjacent 

mesh-point units. 
A circuit which works successfully using this 
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system is shown in fig. 4.2.1 . An output pulse from unit 
n - 1 on clock phase '0' is fed via a diode to the 

input of the scaler section of unit no This scaler is 

of the type which uses a capacitor to reset the core, 

the reset current flowing through the 15_2 resistor 

across the input. When the come resets it induces an 

e.m.f. in the secondary coil which turns on the 

transistor while the counter core resets. This sets the 

output core ready to emit a pulse to units n-1 and n+l 

at clock phase 1. If the counter core was in the '0' 

state before the input pulse arrived on phase to,, 

or if it was in the '1' state and there was no input 

at phase '0', the core would not reset, the output 

core would not be set and there would be no output. 

The counter core can retain a '1' or a 10' indefinitely 

if there is no input. 

These units operate reasonably well, as shown 

by the pulse shapes shown in fig. 4.2.2 . However, the 

drive current requirements are quite high and this is 

not helped by the presence of the 15 ohm resistors 

across the input of each scaler. Also, although such 

scalers using capacitor reset are quite easy to design 

and make for a count of two, they become increasingly 

unsuitable as the count is increased. This is the result 

of the fact that the energy of one pulse must be enough 

to charge the capacitor sufficiently for it to reset 

the core, which has been set with a number of similar 
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Tl and T2: V10/1S or OC 123 

Nl = 40 T. N2 = 80 T. 

N3= 20 T. N4=7T. 

Figure 4.2.3 

Tl and T2: V10/18 or OC 123 

Nl = 40turns N2 = 80 turns 

N3 = 20 N4 = 7 

Figure 4.3.1 
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pulses. Large voltages and hence large numbers of 

turns on the windings are therefore needed. 

A scaler which has been made to work fairly 

reliably up to a count of at, least 10 is shown in 

fig. 4.2.3 . This uses two transistors per stage. 

The first transistor is used in order to completely 

isolate the previous core from the counter.It allows 

positive pulses to pass in the forward direction, 

but prevents negative pulses from going forward and 

both positive and negative ones from coming backwards. 

4.3 Operation of Count of 10 Scaler. Pulses of 

constant volt-time area are fed into N1 until the 

core is set. During this period the voltage induced 
in N2 ensures that the base-emitter voltage of T2 is 

positive, with the result that no current flows through 

the transistor and N3. The first pulse that arrives 

after the core is set will not induce an e.m.f. in N2 

and furthermore a larger current will flow in N1 due 

to the lack of any flux change in the core. This 

causes the base of T2 to go negative and a current 

flows through the reset winding, N , the flux change 
3 

in the core inducing an e.m.f. in N2 which keeps the 

transistor turned on as long as the core is switching. 

The e.m.f. in N1 is prevented from interfering with 

the state of the previous core by the presence of the 

transistor in the coupling loop. The output from N4 

can be used as the input to the next identical staler. 
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As soon as the core has been reset it is ready to 
receive the next input pulse. 

The scaler shown was designed to count to the 

base 10, and it does this for supply voltage variations 

of about ± 10%. However, the count is dependent to a 

considerable extent on the values of the resistors in 
the circuit, and if the transistors are replaced with 

other examples, of the same type elen, the count will 
probably be changed. Also the operation of the circuit 
appears to deteriorate with time, several of these 

scalers refusing to operate correctly after being 

left for three months without being operated or, as 

far as is known, interfered with in any way. The 

critical factor seems to be the triggering of the 

reset transistor, T2. 

A modified circuit that should be more reliable 
is shown in fig. 4.3.1 . The emitter of T1 has been 

earthed and the base circuit of T2 has been modified 

in the hope that it will result in more definite 
turn-on and turn-off of T2- 

4.4 Drive Pulse Requirements. In the practical work 

done so far on the basic units and counters, only a 

few units have been in operation at one time and so 

drive power has been no problem. The pulse generator 

designed for this purpose is described in Appendix 3, 

and has an efficiency of only about 20%. However, in 
the complete computer this question is rather important. 
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In order to give reasonable voltage levels in the 

coupling circuits, so that semiconductor components 

work efficiently, it is necessary to switch cores in 
a time of about 1 or 2 microseconds if the number of 

turns in the core windings is to kept low enough to be 

a practical proposition. This leads to the requirements 

for drive current being quite stringent, currents of 

several amps with rise times of 1 or 2 microseconds 

being usual. 

In development of the circuits so far, the 

drive has been of the constant voltage type. This 

means that a certain voltage is applied to the driven 

core winding during the pulse, and the current is 
limited principally by the back e.m.f. generated as 

the core switches. The current cannot, of course, 

rise to very high values as it is deliberately limited 
by the circuit design, in order to avoid damaging the 

drive output tuans±stors. The object of using constant 

voltage rather than constant current drive is to 

ensure that the secondary voltage from the core is 
constant in voltage amplitude. This must be so in order 

that the inputs connected to this secondary winding 

shall always receive pulses of nearly the same volt- 
time area and shape. If this condition is not 

fulfilled, the counters for which the inputs are 

may not count reliably. Now, if one of the sealer 

cores is saturated, the next input pulse to it will 
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be virtually short-circuited. A large secondary current 

will therefore flow and so a large drive current will 
be taken. This process is clearly wasteful, as this 
large current is doing nothing useful. 

Referring to fig. 4.4.1, assuming that core 1 

switches completely in 2 microseconds, then the e.m.f. 

across N1 is about 0.2 volts/turn, and so if it is 
assumed that the minimum e.m.f. needed for the semi- 

conductor diodes is about 2 volts, then N1 should be 

about 10 turns. The four cores A,B,C,D are each to 

count to 4, as this is a 2-dimensional type basic 

unit, so that N2 needs to be about 40 turns. 

First, we shall see what drive current is 
needed if each of the four scaler cores is unsaturated. 

The amp-turns needed to switch a core in TpS 

is given by 

I = Io + S,/-r ... (4.4.1) 
These scaler cores must switch 3rd as fast as core 1, 

so I = 6 ,u3 

For an FX 1724 core, 

I = 1.23 + 1.6/6 = 1.5 AT ...(4.4.2) 

So, current in each winding = 1.5/40 = 37.5 mA. 

and current in secondary of core 1 = 0.15 A. 

A convenient value for the drive voltage on core 1 is 
10 volts, so there must be 10/0.15 = 67 turns on the 

drive winding. The drive amp turns must overcome the 
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Figure 4.4.1 

Figure 4.5.1 
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threshold amp turns, I. , the secondary AT and Sw/1 

So, 
67 id = 10 x 0.15 + 1.23 + 1.6/2 

id = 3.53/67 = 0.053 A ...(4.4.3) 
where id is the current in the drive winding. This 

current is quite satisfactory, and one 00 23 transistor, 
which can supply a 1 amp pulse with a fast enough rise 

time, can therefore supply 1/0.053 = 19 units. However, 

the situation is entirely different when any of the 

cores A,B,C,D is saturated so that there is no back 

e.m.f. and so the current is limited only by the 

resistance R, which is normally not greater than about 

3 ohms. In this case the current becomes 2/3 = 0.67 A. 

If the worst case is taken in which all the cores are 

saturated, the secondary current becomes 2.67 A. S0, 

for the drive current, 

501 d = 10 x 2. 67 + 1.23 + 1.6/2 

id = 28.7/50 = 0.57 A ...(4.4.4) 

and so only two units could be supplied by one OC 23. 

This is rather few and would mean a rather large 

number of drive transistors, so it is worth trying to 

find a way of reducing the current needed. 

4.5 A Modified Output Circuit. A possible solution 

lies in the use of separate driven cores for each 

output channel in conjunction with constant current 

drive, as shown in fig. 4.5.1 . For any particular 
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driven core there will be two possible conditions 

when it is driven: 

a) The following scaler core is not saturated and so 

is switching and creating a back e.m.f. The amplitude 

>of the drive current must be such that for this 
condition the output core switches at the right speed* 

b) The following scaler core is saturated. Hence a 

large current tends to flow in the coupling loop, 

and with the fixed drive current this means that the 

driven core tends to switch more slowly. The drive 

pulse length must therefore be great enough for the 

core to get completely switched. In addition, the 

winding (and any added) resistance,R, serves to limit 
this current and also prevents noise pulses from 

exceeding the threshold current for switching the scaler 

cores. 

Using the same values of N1, N2 and switching 

times as before, the switching current in the counter 

windings will take the same values. So, in the case of 

an unsaturated scaler core, amp turns due to N 1 = 10 x .0375 

= 0.375 AT. So, primary AT 

Isec + Ic + Sw/-r 

= 0.375 + 1.23 + 1.6/2 = 2.4 AT .. (4.5. 1) 

If the drive is a constant current pulse of 

lA amplitude, then 3 turns are needed for each drive 

winding, Nd. So the back e.m.f. 

3x3.81x10-7 

3 x 4.pS/,T . = 
2 x 10-0 = .556 v. .. (4.5.2 



54 

So that about 2.4 volts per unit is the maximum voltage 

drop. About 10 units could be fed in series from one 

constant current generator, as a total drop of 24 volts 

is reasonable. 

Consider now the case of a saturated scaler 

core. The same analysis as in the constant voltage 

driven case cannot now be used, and we want to find 

the length of pulse necessary to ensure complete 

reversal of the driven core. 

The secondary current, 

LSN, R N. a 
dot R T 

Also, T _ 
5",, 

LdNa - c-SN, -1c 
where id is the drive current. Hence, 

S I_r 
T = illd_ N2d _ic 

R T 
... (4.5.3) 

... (4.5.4) 

6 3- X3.$ xIb 0 + 7265...(4.5.5) 3-1.23 
So th aulse length must exceed 7.26 microseconds. 

The power used if a pulse length of 10 /-S is used 

in conjunction with a p.r.f. of 10 kc/s is therefore: 

P = 104 x 10 x 10"6 x 1 x 24 = 2.4 watts ..(4.5.6) 

This is to supply 10 units, so for a small computer 

of 10 x 10 units the drive power required would be 
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24 watts from 10 pulse amplifiers. 

In view of the relatively small number of 

units which can be driven from one drive pulse amplifier, 
it seems logical to split up the computer into 

self-contained modules, say 5 x 5 units in size, 

incorporating the pulse amplifiers needed for these 

units. As shown in fig. 4.5.2, the 5 x 5 or 10 x 10 

arrangements form convenient patterns, as the computer 

can be made up from a number of identical such modules. 

However, the 10 x 10 module would need more powerful 

drive pulse amplifiers in order that each could drive 

the 20 units comprising each phase. 

4.6 Input Pulse Generators. It is not necessary to 

have a separate pulse generator for each boundary 

point. However, the time taken for solution of a 

problem will depend primarily on the time for setting 

and reading out the potential values. Therefore, a 

fair number of generators compared with the number 

of boundary points likely to be needed should be 

provided for the machine. 

The requirements for the input generator 

are that it should deliver to a specified mesh-point 

unit in the machine a specified number of pulses. 

In a large machine it would probably be most convenient 

to list both these quantities on magnetic or punched 

paper tape and arrange that the generators obey 

instructions in this form. 
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As no complete machine has yet been made, no pulse 

generators of this type have been constructed. A 

possible arrangement is, however, outlined in fig. 4.6.1. 
The pulse generator runs in synchronism with the 

central clock pulse generator. The number of pulses 

to be injected is set on the sealer, which may well 

use the scaler units developed for use in the mesh- 

point potential registers. Pulses from the generator 

are fed through the gate and to the scaler. When 

the scaler has counted the correct number of pulses 

the gate is closed, and the mesh-point selector 
is 

switched to the next point and the Drocess repeated. 

Selection of the appropriate point in the 

computer at which to feed in these pulses could be 

done manually in a small machine, or in a large machine 

by using the coincident-current principle as used in 

computer magnetic matrix stores. 

4.7 Input for Poisson's Equation. In this case, 

a mesh-point in a region of charge density 
Q 

will 

need extra pulses injected, the number being directly 

proportional to e , as we have for the finite-difference 

equivalent of Poisson's equation, 

D2V + a:i _ _C' 
-o x 

the equation 

... (4.7.1) 

v = (vkvv3+v4 (4.7.2 ) 

where h is the mesh size. 
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The situation is not as simple as the case 

where a point is to have a certain specified potential, 
because the unit must still operate in the normal way, 

accepting pulses from, adjacent units and raising 

its potential accordingly. The input must therefore 

sense whether the mesh-point unit is to emit a pulse 

at the next appropriate clock phase.If the mesh point 

unit is not going to emit one, them the input unit 

can put in a pulse, but may not do so if the mesh- 

point unit is to emit one. Extra circuitry is therefore 

needed between the selected mesh point and the input 

generator. This need not be complex as all that is 

added to the normal input unit is a gate on the output 

of the pulse generator which is closed when the selected 

mesh point unit is emitting a pulse, as in fig. 4.7.1 

It may be possible, in the interests of economy, to 

use the same conducting path for both feeding in 

pulses and for sensing if the mesh-point unit is 

emitting a pulse, if it is arranged that the input 

pulse is slightly delayed on the mesh-point output 

pulse. 

4.8 Read-out of Stored Potentials. The system of 

read-out proposed for the storage registers at each 

mesh point is that pulses should be fed into the 

input of the register until it is completely filled, 

this being indicated by an output from the final 
stage of the register. The complement of the number 

of pulses fed in is then the potential of that 
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particular point. Selection of the point in the mesh 

may again be done by a coincident current system. 

Sensing the output of the final scaler stage of each 

unit could be done by a sense wire through all the 

units served by the read-out device. Again, only 

one such device for the whole computer is strictly 

necessary, but results would be read more quickly 

if a number of them were used, each for a particular 

region of the mesh. 

A schematic of the read-out device is shown 

in fig. 4.8.1. The pulse generator need not work at 
the machine clock frequency, it should work at the 

maximum speed the mesh-point register is capable 

of accepting reliably. The gate closes as soon as 

the register has filled, and the counter then indicates 

the potential would preferably print out the value. 

The device would then be switched to the next mesh- 

point unit. 

4.9 Stopping the Computation. Some means of telling 

when the computation is finished must be incorporated 

in the machine, so that the read-out process can 

be started. This would:, best be done by sensing whether, 

during a complete clock cycle, no pulses were emitted 

from any of the mesh-point unit output cores. A sense 

wire could be threaded through a number of output 

cores, and then to a system of 'or' gates. The voltage 

pulse produced when a core switches completely is 
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about 20 times the amplitude of the pulse produced 

when the same drive is applied to a saturated core. 

This would limit the number of units that one wire 

could serve, which would depend also on the discrimination 

of the 'or' circuits used. 
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4.10 Cost of Mesh Point Units The following is 

a very approximate estimate of the cost of the mesh 

point units described above:- 

Input Scaler £ s d 

1 wound core 0-8-0 
5 resistors 0 - 2 - 6 

2 transistors 9- 16 - 0 

Output circuit 
4 wound cores 1- 12 - 0 

4 transistors 1- 12 - 0 

4 resistors 0- 2 - 0 

Potential Register 

5 scalers similar to 

Input Scaler 6- 12 - 6 

Printed circuit 0- 5 - 0 

Total £ 11- 10 - 0 

The units could probably be produced rather 

more cheaply if they were made in large quantities, 

but in estimating the cost of a prototype computer 

it would be unwise to rely on the cost dropping very 

much below £ 10 per uhit in view of the modifications 

which will probably be found necessary. 
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5. ANALYSIS OF THE OPERATION OF THE FIELD COMPUTER 

5.1 Propagation of Pulses in a One-Dimensional System. 

To examine the behaviour of the individual 

units when connected together to form a computing 

network, it will be helpful to first consider the 

simplest possible situation. The units to be considered 

are of the one-dimensional type, which emit one output 

pulse for every two input input ones. 

First consider the case where unit no. '0' 

is a boundary, and units numbered 1,2,3,4,..... 

extend infinitely to the right, with no right hand 

boundary. The residues in each unit are set initially 

to zero. Pulses are now fed in from unit' d to unit'1' 

at the rate of one every clock cycle. For simplicity 

a two phase rather than three phase clock cycle will 

be assumed. Precisely the same conclusions are reached 

using a three phase system, the only differehce being 

that the two phase system assumes that the units 

are capable of handling two simultaneous inputs. 

The states of the first few units for the 

first few clock cycles are shown in fig. 5.1.1. The 

numbers in each 'box' show the state of the residue 

of the appropriate unit after each of the two clock 

phases in each cycle. Units 0,2,4 etc. emit pulses on 

phase '0' and units 1,3,5 etc. on phase '1'. 
There is a certain pattern in the way in 

which pulses progress, and examination shows that 
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the time taken for the first pulse to appear in the 

residue of the nth. unit is n(n+l)/2 clock cycles. 

This time is that taken for all units to the left of 

n to revert to having 1 in their residues, as this 

simplifies calculation to some extent. The 2's in the 

residues are seen to propagate to the right at the 

rate of 2 units per clock cycle, but can only propagate 

if there are l's in front of them. The total potential 

of any point at any particular time is found by adding 

the number of times it emits a pulse, i.e. the number 

of times a 2 appears in the residue. 

Fig. 5.1.2 is a simplified form of the previous 

diagram. The triangles enclose regions where propagation 

of 2's is occuring. The valleys between the peaks 

are filled with l's . All the rest of the residues 

are zero. The figure extends to the situation after 

the first pulse has reached unit no. n and all the 

units below that have a residue of 1. The otentlal' 

at any given instant of any point may be'found by 

drawing a vertical line at that point on the diagram. 

The potential is directly proportional to the sum 

of the lengths of line which lie inside the triangles. 

5.2 Potentials in the One-Dimensional S tem. These 

rise in a similar manner to that in which the pulses 

propagate. Consider the instant when a 1 has arrived 

at point n ( and the system has settled down so that 

there are no 2's present) i.e. at time n(n + 1) T/2, 
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where T is the period of one clock cycle. The 

potentials at.each point are :- 
Vn= O 

Vn-1 = 1 

n_2 = 2 +1 

Vn-3= 3 + 2 + 1 

Vn_4=4+3+2+1 
. . . . . . . . . . . . . . 

. . . . . . . . . . . . . . 

Vn-p = P + (p-1) + (p-2) +...+1 = P (P+1)/2 

VO = n + (n-i) + (n-2) +...+1 = n(n+l)/2 
... (5.2.1) 

The potential of unit '0' is confirmed by the 

fact that n(n+l) clock cycles have been completed, 

and unit '0' has emitted one pulse in each cycle. 

In the general case, 

n-p = p (p+l )/2 when t = n(n+l )T/2 ..(5.2.2) 
or, 

V(a,t) _ (n-a)(n-a+1) ... (5.2.3) 
2 

with n = - ± (2t/T + ... (5.2.4) 

where q is the number of the unit and t the time. 

For t much greater than T and n much greater than 1, 

we obtain 

V(q,t) ( 2t t - q)2/2 ... (5.2.5) 

5.3 The Difference Equation Solved by the Computer. 

The important factors in the operation of a unit are 
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the residue at any instant,and whether it emits a 

pulse on any particular clock phase. Let P(n,sT) 

represent the output from unit number n at clock 

cycle number s, and R(n,sT) the residue of the point 

immediately after this unit's clock phase. If these 

expressions have the value 1 when a pulse is present 

and othet+wise 0, then:- 

P(n,sT) = 1, if R(n,s- ) + P(n-l,s- ) + P(n+l,s- ) 

= Q(n,sT) / 2 ... (5.3.1) 

P (n, sT) = 0, if Q (n, sT) <2 ... (5.3.2) 

i.e. an output is obtained if R is 1 initially and a 

pulse is received from either, or both adjacent units 
or if pulses are received from both adjacent units 

and R is 0 initially. Similarly, 

R(n,sT) = 1, if Q(n,sT) = 1 or 3 ... (5.3.3) 

R(n,sT) = 0, if Q(n,sT) = 0 or 2 ... (5. 3.4) 

Theseexpressions can be combined by noting that:.. 

R(n, sT) + 2P(n,sT) = Q(n, sT ) 

R(n,s-1T) + P(n-l,s- ) 

+P(n+l,s- ) ... (5.3.5) 

The same expression could have been obtained 

by considering-.the fact that pulses are 'conserved', 

i.e. that for every pulse entering a unit, one will 
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eventually be emitted, the difference between the 

numbers of those received and emitted being, at any 

particular time, the residue at that point. Therefore, 

R(n,sT) = R(n,9-1T) + P(n-l,s-1T) + P(n+l,s-1T) 

- 2P(n,sT) ... (5.3.6) 

The term 2P(n,sT) arises because when a unit gives an 

output, it goes to two adjacent points and so counts 

as two pulses. 

The total potential at any point is the sum 

of the pulses emitted from that point; let this be 

V(n,sT). To obtain this quantity, we write down 

eqn. 5.3.5 for all clock cycles and add them together:- 

R(n,sT) - R(n,s-1T) = P(n-l,s-1T) - 2P(n,sT) + P(n+l,s-1T) 

R(n,s-1T)-R(n,s-2T) = P(n-l,9-2T) -2P(n,7-1T-)+P(n+1,s-2T) 

. . . . . . . . 

. . . . . . . . 

R(n,2T) - R(n,T) = P(n-1,T) -2P(n,2T) +P(n+l,T) 

R(n,T) - R(n,O) = P(n-1,4) - 2P(n,T) + P(n+1,0) 

So that; 

R(n,sT) - R(n,O) = V(n-l,s-1T) - 2V(n,sT) + V(n+l,s-1T) 

... (5.3.7) 
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5.4 Possibility of Solving the Diffusion Equation 

If, in equation 5.3.7 , R can be assumed 

small compared with other values, this is the difference 

equation corresponding to the Diffusion Equation; 

aV a2V 
.5L zT h2 

... (5.4.1) 

and so the computer would solve this equation as well 

as Laplace's and Poisson's Equations. 

However, on closer examination it becomes 

evident that ignoring R is not permissible. R can 

only have the values O,l or2, but because of the 

method of operation of the computer, the values of 

V(n,sT) - V(n,s-1T) can only be 0 or 1 and therefore 

(V(n, s-1T) - V(n-l, s-1T )' - {V(n+l, s-lT) - V(n, s-1T )} 
can only have the values 

0, *1 or ±2. Therefore the computer in its present 

form cannot solve the Diffusion Equation , as to do 

this it would be necessary that the differential 
values could take up a wide range of values. However, 

the principle of the field computer could be applied 

to a computer which would solve the Diffusion Equation, 

but the method of operation of the units would need 

to be different. 
5.5 Demonstration that the Computer can Solve Lap_lace's 

Equation. Consider equation 5.2.3 ; 

V(n,sT) - (n-g)(n..g+l) 

2 
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Then the finite-difference form of- is: 

4 = (n-q) (n-q +1) - (n-q -1) (n-q ) 
h 2h 

... (5.5.1) 

z 
and, ford : 

zxL 

h 
= 1/h2 ... (5.5.2) 

So that in the case where equation 5.2.3 

applies, a 2V/ a x2 is not exactly zero and so Laplace's 

Equation is not solved exactly. The error is small 

and may be negligible if the total potential in the 

region is large. It is, however, an appreciable error 

at or near the front of the pulse propagation pattern. 

It is important, therefore, to eliminate this constant 

error. 

The result of equation 5.5.2 is that which 

would be expected if there were a uniform negative 

charge density throughout the region considered. 

Therefore it seems likely that a more accurate 

solution would result if, initially, uniform 

positive charge were imposed everywhere. The amount 

needed would be a residue of +1 at each mesh point. 

From a consideration of fig. 5.1.1 this is a reasonable 

thing to do, as the units seem most likely to settle 

down to this stag at the end of a computation. It 
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is also the mean value of the states of the residue. 

Figure 5.5.1 shows the uniform progress of 

the pulse pattern through a field with the residues 

initially set to 1. Conditions are otherwise as in 
fig. 5.1.1 and 5.1.2. The potential at any point,q, 
where q is less than n, is given by:- 

V(q,sT) = n - q ... (5.5. 3) 

with sT = nT. So; 

(s-q) - (s-q+1) 
h 

-1 ... (5.5.4) 
h 

and, f f{' 1 
Q2V t (s-g-1) - (s-g ) - ll s-q) (s-q+1)1 

h2 h2 

0 ... (5.5.5) 

So that in this particular case Laplace's 

Equation is solved. However, this is not a steady 

state case, as V is rising steadily at each point to 

the left of poin number n. If unit '0' were to cease 

emitting pulses, the pulse pattern would continue 

to move to the right indefinitely, but the potential 

of all points would rise steadily and then stop when 

it had reached the final potential of unit '0'. This 

would then give another trivial solution of Laplace's 

Equation. 
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5.6 A One-Dimensional System with a Boundary at 

Each End. Suppose we take the next simplest case, 

with a boundary dbndition that point no. n shall 
be always at zero potential. This means that unit 
n receives pulses but never emits any. The residues 

are all assumed to be 1 initially. The pattern of 

fig. 5.6.1 is the result, if unit '0' emits pulses 

at the rate of one per clock cycle. The potential is: 

V(n,sT) - sT .2(n-q) 
- 2nT 

= s(1- q/n) ... (5.6.1) 

AV - s(n-q)/n - s(n-ct+l)/n = -s ..(5.6.2) 
h h nh 

42V = s (n-a-l) - s (n-a) = s (n-q) -s(n-a+l ) 
h2 nh2 nh2 

0 ... (5.6.3) 

and so Laplace's Equation is satisfied. Now, 

AV = BU-CA) - (s-1)(1-g/n) 
T T 

= n -q ...(5.6.4) 
nT 

which is constant as long as pulses continue to be 

injected by unit '0'. When these pulses stop, Laplace's 

Equation will be solved exactly if it so happens that 

the instant of stopping coincides with one of the 

minima of the sawtooth pattern of fig. 5.6.1. If it 
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stops at any other point, then a certain amount of 

inaccuracy arises. If it stops at time xT, as in 

fig. 5.6.1, then the shaded area of the last triangle 
has no 2's in it and so the potentials of the points 

concerned will turn out to be low. As it would be 

difficult in general to arrange for the input to stop 

at just the right moment, in fact this would be impossible 

in more complex problems,it is necessary to allow 

a' large number of complete pulse patterns to form. 

In this way, the errors will be insignificant 

compared with the total potentials. The number of 

sawteeth is directly proportional, in this case, to 

s/n and so the larger the computer network the larger 

the number of pulses which must be fed in at the 

boundaries in order to achieve comparable accuracy. 

In the above cases, it has been assumed for 
simplicity that the boundary pulses were sent in 

in a steady stream. The results are not materially 

affected if the boundary pulses are fed in at longer 

intervals, or in a random manner, provided always 

that they are emitted at the rate of not more than 

one per clock cycle. The only difference in such a 

case would be the obvious one that there is then 

no direct relation between time and the number of 

pulses emitted. 
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5.7 Extension to Two-Dimensional Systems. It seems 

to be rather unprofitable to attempt to extend the 

previous method of analysis to systems having two 

dimensions because of the large amount of work 

involved and the likelihood of making mistakes. 

The simplest case, that of the potential distribution 

between two infinite parallel plates, is of little 

interest since it is precisely equivalent to the 

one-dimensional system already considered. All 

that can be concluded from such attempts is that 

the residue at each point should initially be set 

to some value greater than 0 if the same sort of 

results as in the one-dimensional system are to be 

obtained. With an initial residue of 3 in the parallel 

plate case, injection of 1 pulse at a boundary will 

result in propagation of the disturbance to the other 

boundary, the first few steps being shown in fig. 5.7.1. 
If the initial residue is 2, however, fig. 5.7.2 

shows that this sort of propagation does not occur. 

2 is the mean of the possible values of the residue 

and so seems likely to be the mean value of all 

the residues at the end of a computation. Then2Fore, 

at this stage it is rather doubtful which value should 

be used in a general problem . 
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5.8 Simulation of the Field Computer on a Digital 

Computer. In order to discover whethet the machine 

behaves satisfactorily and solves Laplace's Equation, 

it is necessary either to build a fair-sized example 

of the field computer or to simulate it somehow. 

Theoretical methods seem unable to provide the 

information required and so it was decided to 

simulate the operation of the computer on the Pegasus 

digital computer. By causing the computer to print 

out frequently it should be possible to check that 

the field computer would behave as predicted, and 

the final result of the computation should give some 

idea of the accuracy of the field computer. Another 

important result is the time taken for the field 

computer to settle down to the final solution after 

all the boundary condition pulses have been fed in. 

The scheme adopted for the programme for the 

digital computer was to scan all points in the mesh 

in series in a five phase cycle. These phases correspond 

to the five clock phases needed in the two-dimensional 

problem. The nett effect, with the system of phasing 

used, is the same as if the processes in any given 

phase happened simultaneously, as in the field computer, 

rather than sequentially as in the digital computer. 

This is because the pulses emitted by a unit in its 

phase cannot affect another unit having the same 

phase, and neither can two units of the same phase 

simu7ianeously give a pulse to a unit of different phase. 
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At each mesh point, the process is the same 

as in the field computer. The input store, or residue, 

is examined; if it is greater or equal to 4 a pulse is 

emitted to the four adjacent points,i.e. one is added 

to the residue of each. One is also added to the 

total potential store at that point. The programme 

is arranged so that one word in the computer contains 

the total potential and the residue at the point 

together with information as to whether the point is 

on a boundary or is internal. In order to do this, 

the programme had to be written in machine language 

for Pegasus. 

At a boundary point the procedure was somewhat 

different, as the potential of that point was initially 

put into the store there, one subtracted from it 

every clock cycle and one added to the residues of 

the adjacent internal points until the potential 

store was exhausted. At a boundary where the potential 

was specified all incoming pulses were, of course, 

ignored as in the field computer. This situation 

corresponds to that in the field computer in which 

all boundary points are fed at the same time by 

separate pulse generators. It would be quite easy 

to modify the digital computer programme so that 

it could simulate the case where pulses are fed in 

at different times at various boundaries, but this 

has not yet been done as it seems that no very 
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significant problems would be resolved by so doing. 

A print out subroutine was written which 

printed in tabular form the potential and residue at 

each point in the mesh. Initially the programme was 

set to print out once in every cycle of 5 clock phases, 

This could be increased for cases where a large number 

of cycles had to be gone through before the computation 

settled down to give final values of potentials. The 

programme in addition printed out all these values 

at the end of the computation, this stage being sensed 

by checking whether any pulses had flowed in the last 
clock cycle. 

The complete programme is given in Appendix 2. 

5.9 Aplication of Simulation to Specific Cases. 

To test the programme, it was applied first 
to the case of the infinite parallel plate capacitor. 

As the computer 
9v. A 

a cannot properly take 

C I ID account of the edges, 

I 0&Dinfig. 5.9.1, 
s 

Ov. B of t1m section of the 

Figure 5.9.1 capacitor which is 
considered, a uniform potential gradient along these 

two edges was inserted as boundary conditions. 

Figures 5.9.2, 5.9.3 and 5.9.4 show the results 

after 1, 5 and 10 clock cycles for the cases where the 

initial residues were 0, 2 and 3 respectively. In all 
cases the 10th cycle produced the final solution. 
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With residues of 2 and 3, the final states of the 

residues are the same as the initial ones, in this 

particular case, and the solution is exactly correct. 

In a more complex problem it would be most unlikely 

that all the residues would return to their initial 

values, and, as 2 is the mean value of the states of 

the residue, it was decided that this would be used 

in the next computation. However, it can be seen 

from fig. 5.9.4 that with an initial residue of 3 

the solution is approached more quickly at first. 

This question of inital residues is, of course, 

not at all important when large potentials are involved. 

In all three cases the number of cycles taken 

was the same and the time for settling down after the 

last pulse had been fed in was negligible. The time 

taken on Pegasus was about 3 minutes in each case, 

the majority of this time being taken in punching 

the results, this taking about 15 seconds per cycle 

compared with about 2 seconds computing time. 

A more c anplex problem, that of the electron 

gun in fig. 5.9.5, was next tried. This had been 

solved previously by relaxation and so the 

solution obtained by the computer could be readily 

checked.The relaxation solution is shown in fig. 5.9.6 

an the computer solution in fig. 5.9.7. Good agreement 

between the two is shown, and no residues ( in the 

usual relaxation sense ) of greater than 2 could be 

found in the computer solution. The only discrepancy 
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between the two was that the computer solution 
tended to be slightly lower than the relaxation one. 

This might have been avoided if initial residues 

of 3 had been used, but this has not yet been tried. 
The time taken for this computation was 20 

minutes and although this time is not excessive it 
is probably slower than using more normal digital 
computer methods for solving such a problem. The 

time for settling down at the end of the computation 

was less than 30 clock cycles, and so was small 

compared with the time taken for the reading in of 

pulses. The time taken in the actual field computer 

would be much less, as the time for each cycle would 

be much smaller, and constant however large the machine 

were. This does not mean that the time for solving 

a problem on a large machine will be the same as for 
a small machine. In the large one, in order to take 

advantage of the greater accuracy possible due to 

the greater number of mesh points, larger potentials 

will be used on the boundaries, with a consequent 

increase in computing time. The time for settling 
down at the end of the computation will increase 

in the larger machine, but may stay at a fixed fraction 
of the total computing time because of the increase 

in the latter. 
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6 FURTHER DEVELOPMENT OF THE FIELD COMPUTER 

6.1 Feasibility of the Computer. It has been shown 

that the computer will behave as expected and solve 

Laplacets Equation, and is a practical proposition 
if some further development work is done on the circuits 
needed. It is not suggested that the circuits described 

are the only ones possible, but they show that it is 

economically possible to build such a computer using 

existing circuit components. Whatever circuit is 

finally developed for the basic unit, a large :number 

of identical units will be needed so that quantity 

production will simplify their manufacture and tend 

to reduce their cost. 

Apart from the basic units, there are other 

aspects of the computer which need further consideration, 

principally concerning the imposition of various 

types of boundary conditions. 

6.2 Neumann Boundary Conditions. With such 

conditions, the normal derivative of potential at the 

boundary is specified, rather than the potential 
itself. In fig. 6.2.1, if the normal derivative is 
known at point a on the surface S, then the potential 

difference between a and the next point out, b, can 

be deduced. The computer must then ensure that the 

correct p.d. exists between a and b at all times. 

This will involve special units at points like a 

which will initially have to emit enough pulses to 
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bring its potential to the right amount above that 

of b and thereafter maintain this potential difference 

by emitting one pulse to b for every pulse received 

from b.. These requirements are siWplified, of course, 

if a! = 0 because then the initial emission of 

pulses becomes unnecessary, as a and b will normally 

be at the same potential at the start of a calculation. 

The boundary units needed for Neumann conditions 

are, then, more complicated than for Dirichlet 
conditions but should be realizable in a not too 

complex form. It has not yet been possible to investigate 

designs for such a unit. 
6.3 The Effect of an Electrically Isolated Conductor. 

This case seems likely to be rather troublesome 

in realization. The essential requirement is that 

all points on the conducting surface must be always 

at the same potential. When the potential of the 

whole conductor rises by one unit, each point on 

the surface emits a pulse to its neighbours outside 

the surface. But before this can happen the conductor 

must have received one pulse on every input connected 

to mesh point units on its surface or, as will 
generally be the case, a number of pulses equal to the 

number of inputs (but not necessarily one on each 

input). This requirement is based on the principle 
that pulses are conserved in the system, as many 

pulses leave as enter a point and so as many pulses 

leave an area as enter it (assuming no pulse sources 
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are enclosed). 

What is required, then, is an enlarged version 

of a mesh point unit with a large number of inputs, 

and capable of counting to this number. It may be 

possible to connect the idle units in the interior 
of the conductor to do this, or at least to help 

with it, but this has not been investigated. 
6.4 Special Units Needed at Dielectric Interfaces. 

We shall consider only the simplest case, 

that of a straight boundary between two dielectrics 
with different permittivities, A and M, the boundary 

being along a line of nodes as in fig. 6.4.1. 
'2 Allen has shown that the residue in a relaxation 

calculation at node '0' on the interface is:- 

F = M + 2 + 1-- 2 14-4 +4 Y -- 4.... (6.4.1) 

where 0 
is are potentials on the left of the interface 

and c 
is potentials to the right. Hence i and (3are 

fictitious and have been eliminated in the above 

equation. 

It is therefore necessary to interpose special 

units between units 3 and 0 and between 1 and 0, to 

multiply the number of pulses reaching point 0 from 

3 and 0 by 2 frl/(,p+ M) and 2M/(pA + M) respectively. 

The outgoing pulses from point 0 should be unaffected. 
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Figure 6.4.2 
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Fig. 6.4.2 shows which paths will be affected, plain 

arroWsindicating unaffected paths. 

These units will be quite difficult to design 

because P/(, + M) or M/( + M) will in general 

not be a small integer, but a fraction. As the basic 

unit normally only divides by 2, 4 or 6 , these 

interface units must be considerably more complex 

than normal basic units. However, it is very important 

that al units should be kept as simple and reliable 
as possible. The following is only a suggested 

general scheme of operation. 

The ratio of output to input number of pulses 

will be some number like 2.546, say. This number 

should be stored semi-permanently in the unit, but 

should be capable of being read nondestructively. 

Transfluxor cores might be used for this, with partial 
switching as in the basic units, but with the 

additional facility of nondestructive readout. 

In order to achieve the non-integral multiplication 
of pulses, normally for every one input pulse there 

will be 2 output pulses. However, when there have 

been 10 input pulses, an extra 5 pulses must be 

emitted at the 10th input (for the ratio 2.546). 

Similarly, at every 100th pulse an extra 4 pulses 

must be emitted (a total of 2 + 5 + 4 pulses on every 

100th pulse). At every 1000th pulse an extra 6 are 

emitted, and so on as in fig. 6.4.3. 
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Total no. of 
pulses in 

Actual ratio 
of o/p: i/p 

Total no. of 
pulses out 

No. of o/p pulses 
per i/p pulse 

1 2 2 2 

2 2 4 2 

2 6 2 

9 2 18 2 

10 2.5 25 7(=2+5) 

11 2.46 27 2 

12 2.42 29 2 

0 

19 2.26 43 2 

20 2.50 50 7 

21 2.48 52 2 

0 0 0 0 

. 

Be 

99 

100 

. 

2.5 75 

. 

2.46 243 

2.54 254 

Figure 6.4.3 

7 

2 

11(=2+5+4) 
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Now, as more pulses come out than go in, 

trouble will arise if there is an input on successive 

clock cycles, as there will not be time to get rid 

of the output pulses. Therefore an output store will 

be needed, where the output pulses can wait their 

turn to be put out. An input store is also needed, 

so that the device knows when the 10th, 100th etc* 

pulse has come in. 

Input and output registers could be of the 

same type as the potential registers used at each 

mesh-point. The output register will need to be more 

complex, in fact, as it will need to count both ways, 

backwards when a pulse is emitted to an adjacent 

point. The means of producing 2+5+4 pulses etc. seems 

likely to be the biggest problem, as this must be done 

in between computer clock cycles and so must be done 

rather quickly. This problem might be removed if, in 

the example chosen, 3 pulses were normally emitted 

for every input pulse normally and output suppressed 

at every 10th etc. pulse for the appropriate number 

of pulses. 
6.5 Possibility of Improved Field Computer. 

The existing design of Digital Field 
Computer solves only Laplace's and Poisson's Equations. 

For sucha complex device this seems a rather small 

range and so it is of interest to inquire whether 

it is possible to extend the range of application of 
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the computer, preferably with little extra complication. 

It has been shown that the computer does not solve 

the Diffusion Equation because can only take on 

a few discrete values. However, if the computer did 

its operations on the total potentials at each point, 
things would be rather different, as the required 

derivatives could be available. The total potential 
is in any case stored at each point so this would 

not cause any further complication. However, rather 

more complex arithmetic units would be needed. The 

arithmetical operations are not very complicated, 

division by 2, 4 or 6 and addition, but they involve 

the total potential and so the units would be more 

complex than the existing design. 

Consider the Diffusion Equation; 

azy azv 
A 

116V 

ax- + a2 at 
or, in finite difference form; 

V1 + V2 + V3 + V4 - 4V0 A( Va 

or, 
Ah2 

... (6.5.1) 

600 (6.5.2) 

where Vo is the new value and V0 the present value 

of the potential at the central point of the 5-point 

finite-difference star. If scale factors are arranged 

so that T = Ah2, then the arithmetic is quite simple. 

With more complication it is also possible 

to solve the wave equation; 

-)v+v_ga2y 
x2 a y2 +2. ... (6.5.3) 

h2 T 

Vt = V + 
T(V1+V2+V3+V4-4Vo) 

0 0 
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in finite difference form:- 

Vl + V2 + V3 + V4 - 4Vo B( V+ + Vo - 2Vo ) 

h2 

or, 

T 

V© = 2Vo-V© +B-h (V1+V2+V3+V4-4Vo) 000(6.5.4) 

where V© is the new potential at point 'Ot, V0 the 

existing potential and Vo the previous potential. 
In this case it is necessary to store at each point 
the potential at the previous clock cycle as well as 

the existing potential. 
These cases have not been investigated in 

further detail as even the Laplace computer is not 

yet made, but they show that the principle of the 

Digital Field Computer can be extended to differential 
equations other than Laplace's. 
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APPENDIX 1 

THE SOLUTION OF A PIERCE GUN PROBLEM FOR RELATIVISTIC 

ELECTRON FLOW, USING A DIGITAL COMPUTER 

A1.1 Derivation of the Differential Equation. 

The problem is to design the focusing electrodes 

for a gun producing a planar electron beam with 

relativistic electron velocities. The equations 

governing the electron flow are:- 

Poisson's Equation, 
d2V ... (A1.1.1) 

The kinetic energy equation, 

c2(m - mo) = eV ... (Al.1.2) 

Where m is the mass and mo the rest mass of an electron. 

m = mo 
C 

(1 -v272)7 
... (A1.1.3) 

where v is the velocity of an electron (uniform at 

any given cross-section). 

From Al.1.2 and Al.1.3, 

v2 c2 5 (eV/02 + mo)2 - m2 

(eV/c + mo) 

Putting U = eV/mo;c2 ... (Al.1.4) 

(U2 + 2U) -f' 
v 

U -+ 1 
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therefore, from Al.l.l ; 

d2U eJ U+1 
` 
.UZ E mo(U +2U),f 

Putting eJ/E moc3 = K, where J is the current density 

in the beam, 

d 
= 

K(U2U) ... (Al.l.S) 

A U d V K CU + I) Ct ( or, 
dU dx dx U142 v 

ntegra+V% y 

z (v z 
- K (v ,2 J) 

2 X 
CIO 

dx 2K 
(U: 

+ z U)/+ 

X = )(2+2u)Y4 ... (Al.l.6) 

This equation gives the variation of potential 
along the beam edge, and from this we wish to find 
the necessary electric field outside the beam for this 
to be so. 

A1.2 Application of Complex Variable Theo=. 

As the system is 2 dimensional, the results 

of complex variable theory can be applied to the 

solution of Laplace's Equation outside the beam. 

Any analytic function of a complex variable is a 

solution of Laplace's Equation. So, if we take 
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equation A1.1.6 and replace 2K by z, = x+jy, and 

the potential function, U, by a "complex potential" 
U, = V + JW, and then integrate with respect to U, 

we shall obtain a description of the required electric 
field. Integrating with W = 0 is equivalent to 

integrating along the beam edge. Integrating along 

lines of constant V in the complex U plane will 
give equipotentials directly as complex numbers in 
the x + jy plane. In other words, the required electrode 

shapes are given directly . 

A1.3 Method of Computation. Tht integral to be 

evaluated is 
V 

-z 

f (UL +-Ztj)'14 
0 

over the complex U plane. 

Although this integral can be expressed in 
terms of elliptic integrals and so can, in principle 
be solved analytically, such a process is extremely 

long and tedious. It was therefore decided to attempt 

a computer solution. 

For purposes of computation, the complex U plane 

was split up into rectangles, n2 in the V direction 

and m2 in the W direction. The potentials were computed 

at each intersection, the paths of integration being 

along W=0 and then along V= ccrost. For the numerical 

integration process, each of these steps was further 
divided into n1 and ml divisions respectively. 
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I 
m I 

C o P l eX U t Plane 

n, 
I,,I,uuI 

n2 V 

Figure A1.3.1 
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A1.4 Computer Programming. The computer used was 

an Engld.sh Electric Deuce and the programme was 

written in Deuce Alphacode. This interpretive scheme 

incorporates instructions for manipulating complex 

numbers and for numerical integration using Simpson's 

Rule, both of which were used in the programme. 

A1.5 Results Obtained. The results for the most 

accurate solution obtained are plotted in fig. A1.5.1. 

From this it is clear that the integration is not 

accurate enough, because the electric flux lines and 

equipotentials do not cross perpendicularly at the 

cathode electrode. There is, however, an improvement 

over an earlier , cruder result shown in fig. A1,5.2 

and further improvement could therefore reasonably 

be expected if more steps of integration were used. 

However, the computation was discontinued at this stage, 

as about 8 hours computer time would be needed to 

get a- significantly more accurate result. It was 

thus not considered worth while to continue in view 

of the expense, or alternitively the re-writing of 

the programme in Deuce machine language. The computation 

should be much more rapid on a larger more modern 

machine. 
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Figure A1.5.1 
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Figure A1.5.2 
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Programme for integrating dU/(U2+ 2U) in the complex 
U plane, using Deuce Alphacode. 

No. r R A B FUNCTION C D Po 
1 23 4 DATA X1 
2 54 3 Q DATA X5 
3 23 1 DATA Ni 
4 23 1 DATA N2 
5 23 1 DATA N3 
6 23 1 DATA N4 
7 1 N13 + 1 
8 49 X703 + X5 PO 
9 1 N10 1 + 1 
10 1 N12 + N10 
11 1 Ti + 0 
12 1 T2 + X4 
13 5 JUMP 81 
14 49 X101 Q + T3 
15 1 X12 + X4 
16 1 X11 + 0 
17 1 1 X12 X12 + X2 
18 49 3 Ti Q + Xii 
19 5 JUMP Si 
20 12 N6 MODIFY 
21 49 X103 Q + T3 
22 10 N6 UP TO N3 R1 
23 1 N7 N3 + 1 
24 1 2 N9 N8 + N8 
25 12 N8 N9 MODIFY 
26 0 X101 X101 MOVED 
27 12 N8 N9 MODIFY 
28 0 X301 X102 MOVED 
29 10 N8 UP TO N7 R2 
30 1 X100 + X2 
31 43 X21 N3 INTEGRAL X100 
32 1 Nil N12 + N10 
33 12 Nil N12 MODIFY 
34 1 X702 X702 + X21 PO 
3 X 0 X2 5 1 0 + 3 
36 43 X22 N3 INTEGRAL X300 
37 12 Nil N12 MODIFY 
38 2 X701 X701 - X22 PO 
39 55 1 Q RESULT X11 1 

40 12 MODIFY Nil 
41 55 1 Q RESULT X701 1 
42 1 N12 N12 + N10 
43 12 N3 MODIFY 
44 0 X101 X101 MOVED 
45 12 N3 MODIFY 
46 0 X102 X301 MOVED 
47 10 N13 UP TO N4 R1 
48 1 N12 N12 + N10 
49 9 N14 > 0 R4 
50 1 N13 + 1 
51 1 N15 N4 + 1 1 

NOTES 
Read Re. Data 
Read Im. Data 
n 
n2 

a2 
m2 

T1 U 

X103=(U2+2U)-4 

N7=m1+1 

X21=SRemW 

X702=Sum of fRe1AW 

X22=)ImIQW 
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No. r R A B FUNCTION C D P NOTES 52 12 N15 MODIFY O 
53 49 X701 + X7 Po 
54 1 N19 + 1 
55 12 N15 MODIFY 
56 49 X703 + X9 PO 
57 1 N12 N12 + N10 
58 1 N14 + 1 
59 49 X11 Q + X3 
60 1 X501 + X3 1 
61 5 JUMP R1 
62 1 4 X11 X11 + X1 
63 1 Ti + X11 
64 1 T2 + 0 
65 5 JUMP Si 
66 12 N23 MODIFY 
67 1 X502 + T3 
68 10 N23 Up TO Ni R4 
69 1 X500 + X1 
70 43 X13 Ni INTEGRAL X500 
71 L N16 N2 + 1 
72 1 N17 N4 + 1 
73 1 N18 N19 * I 
74 3 N20 N17 x N18 
75 3 N17 N19 x N17 
76 1 N18 N20 + N20 P 
77 1 N17 N17 + N17 P 
78 12 N18 N17 MODIFY 
79 1 X701 X701 + X13 
80 24 1 RESULT X11 1 
81 12 MODIFY N18 
82 24 1 RESULT X701 1 
83 12 Ni MODIFY 
84 0 X501 X501 MOVED 

01 X12 + 0 
85 10 N19 UP TO N16 R1 
86 14 STOP 

87 19 Si SUBROUTINE 
88 49 T3 Ti Q + Ti 
89 51 Ti Ti Q x Ti 
90 49 T3 T3 + Ti 
91 56 T3 ROOT T3 
92 56 T3 ROOT T3 

93 52 T3 1 } T3 

94 20 END OF Si 
95 18 FINISH 
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APPENDIX 2 

COMPUTER PROGRAMME FOR SIMULATING THE FIELD COMPUTER 

A2.1 Organization of Data. At each mesh point, 

the total potential and the state of the mesh point 

counter (the 'residue') must be stored. In addition, 

in order to treat the data at a given point correctly 

it must be known whether the point is a boundary one 

or not and also some means of deciding when the end 

of the mesh has been reached must be incorporated. 

All the data for one point were stored in one word 

in the machine. The sign digit('a') was set to 0 

(+) for all points at which computation was required, 

and set to 1 to indicate the end of the mesh. The 

last digit in the word (b) was set to 1 for a boundary 

point, or one outside the boundaries, and to 0 for an 

internal point. The state of the 'residue' was stored 

in binary places 35, 36 and 37 and the total potential 

in the places directly above these. As a two dimensional 

system was being considered, the maximum possible 

state of the residue was 7 (= 3 from the previous 

phase + a possible maximum of 4 in the current phase) 

and so needed 3 bits. 

'a' T R'b 

Figure A2.1.1 

A2.2 Data Input. Boundary values were fed in in the 

form of pseudo orders and an Input Interlude rearranged 

these into the form indicated above. The modifier 
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position contained the potential of the point, and 

1 was put in the counter position and so provided 

the correct value for 'b'. A boundary point at zero 

potential could be more simply represented by a +1, 

and all internal points were set to have the desired 

residue, +0 for a zero residue, +4 for a residue of 

2, and +6 for a residue of 3. The input interlude 

operated only on the number in the modifier position, 

so these latter numbers would be unaffected by it. 
A2.3 The Comput Process. The programme scans through 

the mesh 5 times in a clock cycle. A cycle starts with 

the first point in the mesh, then jumps to the fifth, 
then to the tenth and so on to the end of the mesh. 

This completes the first phase. The next .phase starts 

at the second point in the mesh, and so on for the 5 

phases. At each internal point the residue, R, is 
checked and if it is greater than 4 then 1 is added 

to the residues of the 4 adjacent points and to the 

potential register of the point, the residue being 

reduced by 4 at the same time. 

At a boundary point, a 1 is added to the adjacent 

residues and 1 subtracted from the potential register 

at each cycle until the register contains zero. 

In order to determine when to stop the computation, 

1 is added to a register (Cstop) every time any unit 
emits a pulse. Cstop is reset to zero at the end of 

each cycle unless it is already zero, in which case 
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the computation stops and the final results are 

printed out. 

A2.4 Print Out. Print out can be arranged to occur 

every time a given number of cycles have been gone 

through. The total potential together with the residue 

at each point are printed out in tabular form 

corresponding to the mesh of the Field Computer. 
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FLOW DIAGRAM FOR MESH POINT PROGRAMME 

I 

Read block of data 
containing appropriate word 

from main store 

Xmod`Cph 

is a=1? 

Yes No 
(end of Is b= 1? 
mesh) 

N 

Cphase+l 
Is Cph= 5? 

No Yes 

LI ! 

Is Cstop=0? 
yes 

Jump t o Start 
I 

Print out 
Results & 

STOP 

o Yes(lhound rypt 
r ex 

No Yes 

Tn +1 

Add 1 to Rn+D Z v Rn+m,Rn m 

and Cstop 
I 

Have 0printout cycles 

been completed? 

N + Yes 

Print out 
Results 

Set Cph= 0 

Set Cstop=0 

fYes 

Write block 
back to main store 

Xmod+ 5 

Go on to next point 

et = IsT=0?. 
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APPENDIX 3 

EXPERIMENTAL THREE PHASE PULSE GENERATOR 

A3.1 Timing Circuits. A multivibrator is used as the 

basis of the timing of the pulses. It produces 

a rectangular waveform with a mark/space ratio of 

1:2. The leading edge of this pulse triggers a 

monostable circuit which is ton' for the required 

duration of the output pulse. This pulse is amplified 

multivjlrrs4.nr 

channel 1 

channel 2 0 

delay circuit_ 

channel 3 

n n n 

n n n 

I I I I 

n n It 

for output channel 1. The trailing of the pulse 

triggers another similar monostable circuit which 

is connected to output amplifier 2. This edge also 

triggers a different monostable circuit, the 'delay 

circuit', and the trailing edge of the pulse thereby 

produced is used to trigger a monostable circuit of 

the former type and so give channel 3. 
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A3.2 Pulse Amplifier. This is quite straightforward, 

and the amplitude of the output pulses can be varied 

from about 10 volts to 30 volts by varying the supply 

voltage to the output stage. The 10 ohm resistor in 
the collector circuit of this stage is to limit the 

maximum current through the transistor to avoid 

damaging it, but normally tie output pulses have a 

nearly constant-voltage characteristic. For an output 

pulse of 1 amp the rise time of the pulses is about 

1 microsecond. 

This pulse generator is fairly crude and an 

improved one, with a better timing system and faster 
rise time is needed for a complete computer. The 

efficiency of such a generator could be much greater 

than for this one, about 80% should be easily 

attainable. 
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