
IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 18, NO. 5, MAY 2010 831

Transactions Briefs

Interframe Bus Encoding Technique and Architecture for
MPEG-4 AVC/H.264 Video Compression

Asral Bahari, Tughrul Arslan, and Ahmet T. Erdogan

Abstract—In this paper, we propose an implementation of a data encoder
to reduce the switched capacitance on a system bus. Our technique focuses
on transferring raw video data for multiple reference frames between off-
and on-chip memories in an MPEG-4 AVC/H.264 encoder. This technique
is based on entropy coding to minimize bus transition. Existing techniques
exploit the correlation between neighboring pixels. In our proposed tech-
nique, we exploit pixel correlation between two consecutive frames. Our
method achieves a 58% power saving compared to an unencoded bus when
transferring pixels on a 32-b off-chip bus with a 15-pF capacitance per wire.

Index Terms—Data buses, encoding, integrated circuit design, video
coding.

I. INTRODUCTION

Video application has become increasingly popular in today’s wire-
less communications. However, video processing is computing inten-
sive and dissipates a significant amount of power. For MPEG-4 video
compression, raw video data (pixels) dominate data transfer [1]. During
the compression of 5 min of video (CIF@15 fps), at least 4500 frames
are transferred from the memory to the video compressor. These values
increase for higher frame rates and frame resolutions.

This high data transfer translates into high power dissipation on the
memory-processor busses. This is severe for systems with off-chip
memory where the bus load is several orders of magnitude higher than
the on-chip bus with a typical value of around 15 pF on each bus wire
[2]. It has been reported that the off-chip bus consumes 10%–80% of
overall power [3].

In this paper, we present a data encoding technique to mini-
mize power dissipation during multiple-frame transfer between the
MPEG-4 AVC/H.264 video compressor and the external reference
frame memory using an off-chip system bus, as shown in Fig. 1. Power
reduction is achieved by utilizing bus encoding to reduce switching
activity on the bus. Bus encoding transforms the original data such
that two consecutive encoded data have lower switching activity than
the unencoded one.

References [4]–[6] address the implementation of the bus encoding
on address busses. The proposed methods exploit highly correlated bus
addresses to reduce switching activity. Compared with address busses,
data busses show more random characteristics. Bus invert [7], code-
book [8], and exact algorithm [9] were proposed for this type of data.

Existing techniques exploit the correlation between neighboring
pixels for video data. However, pixel correlation between frames
has not been fully exploited to reduce bus transition in the literature.
In [10], we have proposed an interframe bus encoding technique
where we utilized the pixel correlation between two consecutive

Manuscript received June 23, 2008; revised November 19, 2008. First pub-
lished May 19, 2009; current version published April 23, 2010.

A. Bahari is with the School of Microelectronic Engineering, University
Malaysia Perlis, Arau 02600, Perlis, Malaysia (e-mail: asral@unimap.edu.my).

T. Arslan and A. T. Erdogan are with the School of Engineering and Elec-
tronics, University of Edinburgh, EH9 3JL Edinburgh, U.K. (e-mail: tughrul.ar-
slan@ed.ac.uk; ahmet.erdogan@ed.ac.uk).

Digital Object Identifier 10.1109/TVLSI.2009.2015324

Fig. 1. Typical video communication system.

Fig. 2. Pixel decorrelation using (a) adjacent pixel. (b) Interframe versus in-
traframe decorrelation.

frames without full system consideration. In this paper, we extend the
technique to a complete H.264 system.

The rest of this paper is organized as follows. Section II reviews
the existing intraframe techniques for bus encoding. Section III dis-
cusses our approach to reducing the transition activity during memory
data transfer. Section IV discusses the proposed implementation of the
interframe bus encoding technique for the H.264 system. This is fol-
lowed by the results and performance benchmarking of our method in
Section V. Finally, Section VI concludes the paper.

II. INTRAFRAME DECORRELATION

The technique discussed in this paper is based on the combination
of difference-base-mapped and value-base-mapped (dbm–vbm) tech-
niques, as discussed in [11]. We adopt this method because it allows us
to exploit the pixel correlations widely available in video data.

Fig. 2(a) shows the distribution of two adjacent pixels’ difference.
Four different quarter common intermediate format (QCIF) video se-
quences (Akiyo, Foreman, Table Tennis, and Grasses), which repre-
sent various motion types fromlow to high, are evaluated. Five frames
from each sequence are evaluated, which consists of 190 080 pixels.
The graph shows that, for highly correlated data, the difference between
two consecutive pixels with a smaller magnitude has higher probability
than that of consecutive pixels with a larger magnitude. DBM–VBM
utilizes this characteristic to minimize the bus transition.

Fig. 3 shows the block diagram describing the dbm–vbm operation.
It consists of a decorrelator (dbm) and entropy coder (vbm). The

1063-8210/$26.00 © 2009 IEEE

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Archive

https://core.ac.uk/display/429703413?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

832 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 18, NO. 5, MAY 2010

Fig. 3. DBM–VBM bus encoder and decoder.

dbm–vbm technique is summarized as follows. First, two adjacent
pixels (intraframe) are decorrelated using dbm. DBM calculates the
relative difference between the two pixels. VBM maps the values to
patterns that have different weights (i.e., total number of 1s). To reduce
the overall transition, it maps the low-magnitude value to a pattern
that has the fewest 1s, whereas higher magnitude values are mapped
to patterns that have more 1s. At the output, the XOR translates 1s as
transition and 0s as transitionless.

The average number of transitions for the dbm–vbm method depends
on its source word, i.e., the decorrelator output. The more the graph
is skewed toward zero, the more patterns are assigned with less 1 s.
Thus, one way to improve the transition reduction is by improving the
decorrelator.

III. INTERFRAME DECORRELATION

Video sequences consist of both spatial and temporal redundancy.
The existing bus encoding techniques utilize spatial redundancy within
frames. However, the temporal redundancy is not fully exploited to re-
duce bus transition.

In [10], we have proposed decorrelating the pixels using two consec-
utive frames (interframe). This method is based on the observation that
two consecutive frames are highly correlated. Often, the background
of a scene is stationary. Furthermore, for a moving object, the differ-
ences between successive frames are very small. Fig. 2(b) shows the
pixel decorrelation using the intraframe and interframe methods for
five Foreman sequences. The figure shows that decorrelating the pixels
using interframe improves the graph skewness toward zero. This will
translate to higher transition saving since more patterns will be assigned
with less 1s.

The results in [10] show that the interframe method provides higher
transition reduction compared with both bus invert and intraframe im-
plementations. On average, our method reduces up to 65% of the tran-
sition over an unencoded bus. This is equivalent to 1.5 and 2.6 times
more transition saving over intraframe and clustered bus invert, respec-
tively.

Fig. 4 shows the normalized distribution for the total number of
bits that are switched simultaneously when transferring the pixels. The
higher the number of bits that are switched simultaneously, the higher
the peak power of the bus. As shown in the figure, interframe bus en-
coding results in a much lower number of bits switching simultaneously
compared with the bus invert method. This shows that not only does it
reduce the off-chip average power but the interframe method also re-
duces the peak power of the bus.

IV. INTERFRAME BUS ENCODING IMPLEMENTATION INTO

H.264 SYSTEM

As shown in Fig. 1, the external memory is connected with the
on-chip video compressor through an off-chip bus. In typical imple-
mentations, the same bus is used to send or receive the data from the
external memory. In [10], we assumed that the pixel from the two
frames is transmitted in two different busses. In order to realize the

Fig. 4. Simultaneous bit-switching comparison between different bus encoding
methods: Unencoded bus, bus invert, and the proposed interframe method.

interframe bus encoding into hardware implementation, modification
has to be made to this setup. This is to take into account the limited
availability of the off-chip bus used in the actual system.

In this section, the operation of the H.264 video compression system
is first described to illustrate the interaction between the video com-
pressor and the off-chip memory. Then, the proposed architecture for
implementing the interframe bus encoding for the H.264 system is dis-
cussed in depth to minimize the off-chip bus power.

A. H.264 System

Fig. 5(a) shows the main functional block of the H.264 encoder and
the interaction among its main modules. The encoder consists of mo-
tion estimation (ME), motion compensation (MC), integer transform
(IT), quantizer (Q), variable length coder (VLC), and deblocking filter
(DFIR). In addition, the system requires search-area (SA) buffers to
store SA pixels temporarily from the reference frame memory and fil-
tered macroblock (MB) buffers to keep the intermediate data during
the encoding process. The main function of the encoder is to encode
the current MB pixels into a compact bitstream so that it can be de-
coded by the decoder.

In H.264, the encoder first loads the SA and the current MB pixels
from the external frame memory through the off-chip bus. Then, the
current MB is predicted using ME. This process is repeated until
all SAs from multiple reference frames are evaluated. The predicted
MB that results in the lowest cost is selected. The residue of the
predicted MB is then calculated by subtracting the current MB and
the predicted MB before it is transformed by the IT. The transform
coefficient and motion vector are coded using the VLC to generate
a compact bitstream. The encoder also reconstructs the current MB
using information from transform coefficients. The reconstructed MB
is filtered by the DFIR before storing the MB in the external reference
frame memory for future frame prediction.

The system requires 2000 clock cycles to process one MB by
dividing the encoder operation into three pipeline stages: ME/MC,
IT/Q/IQ/IT, and DFIR/VLC. For QCIF frame size at 30 frames per
second, the system is set to 6 MHz to achieve real-time operation.
Based on the United Microelectronics Corporation 0.13-�m CMOS
technology, the system requires a total core area of 4.8 mm�.

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 18, NO. 5, MAY 2010 833

Fig. 5. (a) Interaction between the external reference frame memory and H.264
modules. (b) Modified H.264 system that includes an interframe bus coder.

Fig. 6. Reference frame arrangement of external buffer and the type of bus
encoding applied to it.

B. Integration of Interframe Bus Encoding Into H.264

As shown in Fig. 5(a), an interaction between the H.264 modules and
the external reference frame buffer occurs on two occasions: 1) when
the pixel is stored into the external reference frame buffer after filtering
the MB through the DFIR and 2) during the loading of the SA pixels
from the external reference frame buffer into the SA RAM. Thus, the bus
encoder and decoder should be implemented in 1) and 2), respectively.

Fig. 5(b) shows the modified H.264 system to include the proposed
interframe bus encoding method. Since reference frames are accessed in
series between thevideo processorand theexternal framememory, some
modification is made on the interframe bus encoding circuit proposed in
[10]. To allow interframe decorrelation during bus encoding, reference
frames stored in the external memory are arranged in sequence, as shown
in Fig. 6. Since the interframe technique requires other frames, the bus
coding is alternated between intraframe and interframe.

A base frame (BF) refers to the frame that is stored as intraframe
by the bus encoder, since it does not require any other frames. A de-
pendence frame (DF) is a frame that is stored as interframe by the bus

Fig. 7. Interframe–intraframe encoder for H.264 hardware.

encoder, since it requires other frames to decode the pixel values. DF
is always stored after its BF for ease of decoding later on.

In order to allow interframe decorrelation, pixels from the BF have
to exist for the bus encoder. The bus decoder has a similar requirement.
For the bus decoder, since the SA is accessed from a multiple number
of frames, the proposed solution is to load the BF first, followed by the
DF. When the SA from the DF is loaded, the SA pixel from the BF is
accessed as well to perform the interframe decorrelation.

In contrast to the bus decoder, since the fully filtered MB is only
written into the external frame buffer, no BF is available at the bus
encoder. The solution proposed for this is to store the required BF MB
in a buffer. The BF MB can be stored when loading the BF SA into
the SA memory. Since the DFIR operation is located in the third stage
of the pipeline buffer, an additional MB buffer is required to store the
last three MBs of the BF. This buffer will be used during interframe
decorrelation when writing the pixels into the reference frame buffers.
Using this approach, it is possible to perform interframe decorrelation
at the bus encoder.

The detailed hardware implementations for the bus encoder and de-
coder are shown in Figs. 7 and 8, respectively. For this implementation,
four pixels at a time are transferred to/from the external memory on a
32-b bus (8 b per pixel). Thus, four encoders and decoders are used to
encode and decode the bus. Due to space limitations, only one encoder
and one decoder are shown in Figs. 7 and 8. The architectures are able to
perform either interframe or intraframe bus encoding. When intraframe
is selected, the bus encoder calculates the dbm decorrelation using the
filtered pixel and the previous pixel stored in the register (Reg). Similar
input is used to calculate the dbm�� at the bus decoder.

During the interframe bus encoding, the encoder calculates the dbm
using filtered pixels and pixels stored in the buffer MB, as shown in
Fig. 7. Since the buffer MB stores the corresponding BF MB, this is
equivalent to decorrelating a pixel from two frames. To decode the
pixel, the SA from the BF is first loaded into the SA buffer. When the
SA from the DF is loaded, the loaded SA from the BF is read in par-
allel to correlate the SA pixel before storing it in the SA RAM. This is
shown by the dotted line with an arrow in Fig. 8.

V. RESULTS AND DISCUSSION

The design was synthesized using the UMC 0.13-�m CMOS library.
Verilog-XL and Power Compiler were used to perform functional sim-
ulation and power analysis using the extracted layout data, respectively.
Actual video data were used to verify the hardware and to obtain the
estimated power consumption.

Tables I and II illustrate the resources required to implement the pro-
posed interframe bus encoder and decoder in the H.264 system. For
this implementation, four pixels at a time are transferred to/from the
external memory on a 32-b bus. Thus, four encoders and decoders are
used to encode and decode the bus. The tables show that the maximum
delay and total area overhead required to implement the hardware is

834 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 18, NO. 5, MAY 2010

Fig. 8. Interframe–intraframe decoder for H.264 hardware.

TABLE I
BUS ENCODING AREA AND POWER OVERHEAD REQUIRED TO IMPLEMENT THE

INTERFRAME–INTRAFRAME BUS CODING ON A 32-b BUS AT 6 MHz

TABLE II
BUS DECODING AREA AND POWER OVERHEAD REQUIRED TO IMPLEMENT THE

INTERFRAME–INTRAFRAME BUS CODING AT 6 MHz

4.6 ns and 0.16 mm�, respectively. This is equivalent to 3% of the total
area in the conventional H.264 as discussed in Section IV-A.

Tables I and II also show the power evaluation result of the proposed
architectures. From the table, it can be seen that the proposed encoder
and decoder circuits consume 0.568 and 0.470 mW of power, respec-
tively, during interframe bus coding mode with the memory dominating
the circuit power overhead. Since the intraframe decorrelation does not
require any memory access, the total circuit power during intraframe
bus encoding and decoding modes is much lower at 0.176 and 0.060
mW, respectively.

Figs. 9 and 10 show the total power consumption during interframe
bus encoding and decoding, respectively, as compared with an unen-
coded bus, bus coded using cluster bus invert, and intraframe. The total
power consumption �� is calculated as �� � �������� � ���, where
�������� represents the power consumption due to bus encoder or de-
coder circuits. ��� is the total bus power consumption estimated by
��� � ��������

�

		��, where �� is capacitance load, �		 is the
operating voltage, � is the operating frequency, and � is the switching
activity. The slope of the graphs in Figs. 9 and 10 is proportional to �,
which is dependent on the type of bus encoding used.

For a typical off-chip wire capacitance of 15 pF, the total bus encoder
power consumption during interframe mode is 3.39 mW, while it is 4.8
mW during intraframe mode. These are equivalent to 58% and 40%
power savings compared with an unencoded bus. The greater power

Fig. 9. Power consumption of 32-b bus at 6 MHz when transferring pixels into
the external reference frame memory.

Fig. 10. Power consumption of 32-b bus at 6 MHz when loading pixels from
the external reference frame memory.

TABLE III
TOTAL ENERGY CONSUMPTION ON 32-b BUS AT 6 MHz WITH 15 pF PER BUS

WIRE WHEN SENDING ONE FILTERED MB TO EXTERNAL FRAME BUFFER

saving achieved by the interframe mode is due to the much lower tran-
sitions occurring on the busses. A smaller slope, as shown in the graphs
in Figs. 9 and 10, reflects this.

Tables III and IV show the total energy consumed by the 32-b bus
when accessing the external reference frame buffer. Since the loading

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 18, NO. 5, MAY 2010 835

TABLE IV
TOTAL ENERGY CONSUMPTION ON 32-b BUS AT 6 MHz WITH 15 pF PER BUS

WIRE WHEN RECEIVING ONE SA FROM EXTERNAL FRAME BUFFER FOR ONE

REFERENCE FRAME

of one SA transfers more data (512 pixels) than storing one MB data
into the external reference frame buffer (256 pixels), more energy is
consumed during the loading of the SA pixel. In addition, the data
loaded from the external reference frame buffer is propotional to the
number of reference frames used during ME. From the tables, for both
cases, the interframe bus encoding saves 58% of total energy as com-
pared with an unencoded bus.

VI. SUMMARY

We have presented an interframe bus encoding technique for appli-
cations where multiple frames are transferred between off-chip mem-
ories, such as in MPEG-4 AVC/H.264 applications. The proposed in-
terframe bus encoding technique results in a 65% transition reduction
over the unencoded bus. This is equivalent to a 58% power saving com-
pared to an unencoded bus when transmitting four pixels at a time over
a 32-b bus with a 15-pF capacitance per wire.

REFERENCES

[1] C.-H. Lin, C.-M. Chen, and C.-W. Jen, “Low power design for
MPEG-2 video decoder,” IEEE Trans. Consum. Electron., vol. 42, no.
3, pp. 513–521, Aug. 1996.

[2] W.-C. Cheng and M. Pedram, “Chromatic encoding: A low power en-
coding technique for digital visual interface,” IEEE Trans. Consum.
Electron., vol. 50, no. 1, pp. 320–328, Feb. 2004.

[3] T. Givargis and F. Vahid, “Interface exploration for reduced power in
core-based systems,” in Proc. 11th Int. Symp. Syst. Synthesis, 1998, pp.
117–122.

[4] H. Mehta, R. Owens, and M. Irwin, “Some issues in gray code
addressing,” in Proc. 6th Great Lakes Symp. VLSI, 1996, pp.
178–181.

[5] L. Benini, G. De Micheli, E. Macii, D. Sciuto, and C. Silvano,
“Asymptotic zero-transition activity encoding for address busses in
low-power microprocessor-based systems,” in Proc. Great Lakes
Symp. VLSI, 1997, pp. 77–82.

[6] W. Fornaciari, M. Polentarutti, D. Sciuto, and C. Silvano, “Power op-
timization of system-level address buses based on software profiling,”
in Proc. 8th Int. Workshop Hardw./Softw. Codes. (CODES), 2000, pp.
29–33.

[7] M. Stan and W. Burleson, “Bus-invert coding for low-power I/O,” IEEE
Trans. Very Large Scale Integr. (VLSI) Syst., vol. 3, no. 1, pp. 49–58,
Mar. 1995.

[8] S. Komatsu, M. Ikeda, and K. Asada, “Low power chip interface based
on bus data encoding with adaptive code-book method,” in Proc. 9th
Great Lakes Symp. VLSI, 1999, pp. 368–371.

[9] L. Benini, A. Macii, M. Poncino, and R. Scarsi, “Architectures and
synthesis algorithms for power-efficient bus interfaces,” IEEE Trans.
Comput.-Aided Design Integr. Circuits Syst., vol. 19, no. 9, pp.
969–980, Sep. 2000.

[10] A. Bahari, T. Arslan, and A. Erdogan, “Interframe bus encoding tech-
nique for low power video compression,” in Proc. 20th Int. Conf. VLSI
Des., 2007, pp. 691–698.

[11] S. Ramprasad, N. Shanbhag, and I. Hajj, “A coding framework for low-
power address and data busses,” IEEE Trans. Very Large Scale Integr.
(VLSI) Syst., vol. 7, no. 2, pp. 212–221, Jun. 1999.

Power Estimation of Embedded Multiplier Blocks
in FPGAs

Ruzica Jevtic and Carlos Carreras

Abstract—The use of embedded multiplier blocks has become a norm
in DSP applications due to their high performance and low power con-
sumption. However, as their implementation details in commercial field-
programmable gate arrays are not available to users, and the power es-
timates given by the tested low-level tool are not accurate enough to val-
idate high-level models, the work on power estimation of these blocks is
very limited. We present a dynamic power estimation methodology for the
embedded multipliers in Xilinx Virtex-II Pro chips. The methodology is an
adaptation of an existing power estimation method for lookup-table-based
components and uses information about the type of architecture of the em-
bedded block. The power model is characterized and verified by on-board
measurements and is ready for integration with high-level power optimiza-
tion techniques. The experimental results show that the average accuracy
of the model is higher than the average accuracy of the low-level commer-
cial tool.

Index Terms—Embedded multipliers, field-programmable gate array
(FPGA), power estimation.

I. INTRODUCTION

There is an extensive ongoing research work about the underlying
field-programmable gate-array (FPGA) architecture. The number of
lookup tables (LUTs) per cluster, the number of clusters per config-
urable logic block [1], the most efficient routing structures [2], and
many other parameters are being explored in order to find the best
tradeoff between design area, performance, and power consumption.
Modern FPGA architectures also include special-purpose blocks, such
as embedded multipliers and digital signal processing (DSP) blocks,
that are used to accelerate arithmetic-intensive applications. They are
not built from standard programmable FPGA fabric. Instead, their de-
sign corresponds to that of an application-specific integrated circuit
(ASIC), as they are specialized for some chosen arithmetic functions
and optimized to achieve the highest performance. Since only the re-
quired transistors and routing resources are used for the implementation
of the embedded blocks, their power is optimized as well. Still, power
estimation models are needed in order to be integrated into power op-
timization techniques. This is particularly important at higher levels of
abstraction, where reliable information on power increase/decrease in
each optimization step is necessary so as to avoid time-consuming de-
sign implementations.

The power estimation of ASICs has been studied in depth, and nu-
merous techniques have been developed. However, they all need de-
tailed information of the target circuit and/or proprietary technology,
which is not available to the common user when the embedded multi-
pliers in FPGAs are considered. Also, the noncommercial tool VPR that
is often used to study FPGA architectures does not support the power
estimation of these blocks. When a commercial tool, such as XPower
(XPwr), is used for the power estimation of the embedded blocks, large
estimation errors are detected, as it will be shown later.

Manuscript received August 01, 2008; revised December 23, 2008. First
published May 29, 2009; current version published April 23, 2010. This work
was supported in part by the Spanish Ministry of Education and Science under
Project TEC2006-13067-C03-03.

The authors are with the Departamento de Ingenieria Electrónica, ETSI
Telecomunicacion, Universidad Politécnica de Madrid, 28040 Madrid, Spain
(e-mail: ruzica@die.upm.es; carreras@die.upm.es).

Digital Object Identifier 10.1109/TVLSI.2009.2015326

1063-8210/$26.00 © 2009 IEEE

