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Abstract 

This thesis is concerned with the problem of generating gauge configurations 

for use with Monte Carlo lattice QCD calculations that include the effect of 

dynamical fermions. Although such effects have been included in calculations 

for a long time, historically it has been difficult to include the effect of the 

strange quark because of the square root of the Dirac operator that appears in 

the action. 

The lattice formulation of QCD is discussed, and the various fermion formu-

lations are highlighted. Current popular algorithms used to generate gauge 

configurations are described, in particular the advantages and disadvantages of 

each are discussed. 

The Rational Hybrid Monte Carlo algorithm (RHMC) is introduced, this uses 

rational functions to approximate the matrix square root and is an exact algo-

rithm. RHMC is compared with the Polynomial Hybrid Monte Carlo algorithm 

and the inexact R algorithm for two flavour staggered fermion calculations. The 

algorithm is found to reproduce published data and to be more efficient than the 

Polynomial Hybrid Monte Carlo algorithm. With the introduction of multiple 

time scales for the gauge and fermion parts of the action the efficiency further 

increases. 

As a means to accelerate the Monte Carlo acceptance rate of lattice QCD cal-

culations, the splitting of the fermion determinant into root contributions 

is described. This is shown to improve the conservation of the Hamiltonian. 

As the quark mass is decreased this is found to decrease the overall cost of 

calculation by allowing an increase in the integrating stepsize. 

An efficient formulation for applying RHMC to ASQTAD calculations is de- 

scribed, and it is found to be no more expensive than using the conventional R 



algorithm formulation. 

Full 2+1 quark flavour QCD calculations are undertaken using the domain wall 

fermion formulation. Results are generated using both RHMC and the R al-

gorithm and comparisons are made on the basis of algorithm efficiency and 

hadronic observables. With the exception of the stepsize errors present in the 

R algorithm data, consistency is found between the two algorithms. RHMC is 

found to allow a much greater integrating stepsize than the R algorithm. 
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Chapter 1 

Introduction 

The verification of quantum chromodynamics (QCD) as the correct theory de-

scribing the strong force has been a long and drawn out affair. Due to the 

non-perturbative nature of the theory, lattice QCD has been seen as the prin-

ciple tool to achieve this aim. The subject has existed as an ever-evolving field 

for the past thirty years, and throughout this time there have been many ad-

vances in the subject, and as QCD has been explored through such studies, the 

verification of QCD has become tantalisingly close. 

Lattice QCD is characterised in some sense by the immense computational 

cost required to make predictions about the strong force, whether those pre-

dictions be related to particle masses, matrix elements or the prediction of yet 

unknown particles. For all lattice QCD calculations a statistical mechanics 

approach is used: namely an ensemble of possible snapshots (so called gauge 

field configurations) of the QCD vacuum is generated, upon each of these snap-

shots measurements of the required observable are made, and the mean value 

of these measurements is a statistical measure of the desired observable. The 

Q CD vacuum consists of a sea of gluons (the force mediating particles) and of 
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2 	 CHAPTER 1. INTRODUCTION 

quarks (the particles which are the constituents of baryons and mesons) that 

are spontaneously created and destroyed according to Heisenberg's energy-time 

uncertainty principle. There are six quarks present in nature, in increasing mass 

order they are: the up and down (referred to in this work as the light pair), 

strange, charm, bottom and top. Since the mass of the quark is inversely pro-

portional to the time it is present before annihilation, the heavier three quarks 

have a negligible effect on the vacuum compared to the lighter three, and so 

only these latter three need to be included when generating the ensembles. Lat-

tice QCD calculations which include the effect of these three light quarks are 

known as 2+1 quark flavour calculations (from the light pair and the single 

strange). It is the inclusion of the quarks to the QCD vacuum that accounts 

for the prohibitive cost of QCD calculations. 

For years this computational cost of calculation proved to be an insurmount-

able barrier to precise QCD prediction. As a result, various approximations 

were necessary: the quenched approximation where the effect of quarks upon 

the vacuum are ignored resulting in an uncontrolled 10% systematic error, in 

more recent work the quark effects have been included but using unrealistically 

massive quarks (the computational cost increases with decreasing quark mass), 

also popular has been the use of approximate fermion formulations which do not 

respect all of the symmetries present in nature but do result in a much reduced 

computational cost. 

Since lattice QCD's inception, computers have grown increasingly more powerful 

allowing more realistic calculations. The work presented here has in part been 

motivated by the QCDOC supercomputer, which at the time of writing allows a 

previously unprecedented amount of computer power to be channelled solely at 

lattice QCD calculations. It is hoped that the results produced using QCDOC 

shall come closer than ever before to verifying that QCD is the correct theory 

describing the strong force. 



Of equal importance has been the development of algorithms which deal with 

the generation of the vacuum ensembles. As computers have doubled in perfor-

mance every couple of years, increasingly more efficient algorithms have been 

developed which reduce the computational cost requirements for a given calcu-

lation. The Hybrid Monte Carlo algorithm (and the various refinements applied 

to it has been the standard algorithm from which most calculations have been 

performed. Unfortunately, this algorithm cannot efficiently generate ensembles 

of configurations with only a single quark flavour present, and so various other 

algorithms must be used which are either not as efficient (i.e., Polynomial Hybrid 

Monte Carlo), or have inherent systematic errors present (the R algorithm). 

The Rational Hybrid Monte Carlo (RHMC) algorithm presented in this work 

rectifies this problem, in that it allows an arbitrary number of quark flavours 

to be included in the background vacuum, has the efficiency of Hybrid Monte 

Carlo, and is exact, i.e., is free of any systematic errors. This is an extremely 

general algorithm that can be applied to all fermion formulations currently used 

in lattice QCD studies. 

This work is presented as follows: in chapter 2 the background theory concerning 

this work is presented, namely an overview of lattice QCD with emphasis on 

the fermion formulations that are used and how physical calculations are made. 

The following chapter describes the current algorithms that are used to generate 

the vacuum ensembles, specifically discussing the advantages and disadvantages 

of each of these. RHMC is introduced in chapter 4, the method of implementing 

this algorithm is given and the algorithm is compared against published data. 

Following this chapter there is a slight diversion off topic looking if it is possible 

to speed up the matrix inversion calculations applied in RHMC. Chapters 7 

and 8 are devoted to applying RHMC to the ASQTAD and domain wall fermion 

formulations respectively. The conclusions of each of these chapters are summed 

up in chapter 9 and future avenues of exploration are also discussed. 
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Chapter 2 

Background Theory 

2.1 Lattice quantum chromodynamics 

The starting point for QCD calculations is the path integral describing an ob-

servable 0 where the vacuum effects of the up, down and strange quarks have 

been included 

(000) = I f 	 o iSg+iSu+iSd+1Ss 	(2.1) 

where S. = tr f d4xF,F is the pure gauge action with field strength tensor 

F,A v = A,1 ], with go  the bare coupling. The fermion actions 

are S1  = j' d4 xb 1 (ijb — m 1)b1  with mass m 1  and V5 is the product of the 'y spin 

matrices and the covariant derivative which ensures a local SU(3) symmetry. 

The fields 0 are Grassman valued because these represent fermionic variables. 

A Wick rotation is performed on the time coordinate x 0  —+ —ix 4 , and the path 

integral thus becomes 

( 0 1 0 1 0  )= 	f 	 0 	 (2.2) 

where all metrics are measured in Euclidean space. With this formulation, the 
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CHAPTER 2. BACKGROUND THEORY 

action is real and the exponential factor e_S  can be thought of a statistical 

weight in direct analogy to statistical mechanics. 

The path integral is only formally defined, and there is no direct means of 

evaluating it. The integral has an infinite number of degrees of freedom and is 

only meaningful once it is defined on a discrete space-time lattice. 

The Grassman valued fermion fields can be integrated Out using Gaussian inte-

gration, 

OOIO) = I f VAdet( 	 det( lo 	(2.3) 

Since m u  md rn this can be rewritten as 

(OOO) = f VA det( + rn)2  det(j + rn) 0e-S9. 	(2.4) 

It is from this formulation of 2+1 quark flavour QCD that all of the proceeding 

work shall follow. 

2.2 Fermions on the lattice 

Historically, placing fermions on the lattice has been fraught with challenges 

with regards to both formulation and computational cost. The formulaic dif-

ficulty with placing fermions on the lattice is due to the so called "fermion 

doubling problem". There are many approaches to circumvent this problem, 

each with their own inherent drawbacks. 
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2.2.1 Naïve Fermions on the Lattice 

In free field theory (and Euclidean space) the one flavour fermion contribution 

to the action is given by 

S1 = f dx 4 	+ 	 ( 2.5) 

When formulating on the lattice, the fermionic fields are discretised and placed 

in a finite box with periodic boundary conditions. The derivative operator is 

replaced by a symmetric lattice derivative (a symmetric lattice derivative is 

required for a renormalisable theory, otherwise the forward difference derivative 

could have been used [1]) and the integral over all space-time is replaced by a 

summation over the lattice sites. Proceeding naïvely as just described, then the 

free field lattice fermion action is written 

Sn = 	 (2.6) 
ij 

where 

Mj ;j  = 	 - () a öj,i] + 	 (2.7) 

and a and 0 represent the spinor indices. The derivative has been replaced by 

the central difference approximation. The fermion fields J' now live on the lattice 

sites i, separated by a distance a which is the lattice spacing. The presence of a 

lattice spacing acts as an ultra-violet cutoff in momentum space, and the finite 

size of the box provides a natural infra-red cutoff. Hence, through discretisation 

and placing the fields within a box the divergences present in continuum QCD 

are removed. 

For this prescription to be correct, it must reproduce the correct continuum field 

theory in the limit that the lattice spacing goes to zero and the box size is taken 

to infinity. The obvious candidate for testing whether this action describes a 

single Dirac fermion species is the fermion propagator which can be found using 
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Fourier analysis. It is found that there is a pole in the propagator at each 

corner of the Brillioun zone. Since each pole in the propagator corresponds to 

a fermion flavour, this corresponds to a doubling of the number of fermions 

for each dimension of the lattice theory. Hence in four dimensions, where it 

was thought there was a single fermion species, there are in fact in fact sixteen 

degenerate flavours. The cause of the fermion doubling is due to the nature of 

the lattice derivative used, the central difference derivative has two eigenvectors, 

one corresponding to the expected solution, and another oscillatory solution 

which gives rise to the doublers [1]. 

2.2.2 Wilson Fermions 

The naïve discretisation of the Dirac operator is merely the simplest one that 

can be constructed. Any discretisation can be chosen, so long as it has the 

correct continuum limit. Specifically, terms can be added to the discretised 

operator which vanish as the continuum limit is approached. 

The Wilson fermion prescription is to subtract a second derivative term from 

the naïve discretised operator [2]. Hence the Wilson action is given by 

sfw  = 	 ( 2.8) 
ij 

where 

= - 	+ (r + 	 + (m + 4r)8,6. (2.9) 

The parameter r is known as the Wilson parameter, and is typically set equal 

to unity. 

The addition of this second derivative term to the action does not alter the 

naïve continuum limit since it vanishes linearly with the lattice spacing, hence 
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the Wilson fermion formulation has 0(a) leading errors. However, it explicitly 

breaks the chiral symmetry of the formulation rendering it useless for studying 

physics upon which chiral symmetry is important, e.g. the restoration of chiral 

symmetry in finite temperature QCD [1]. Indeed it was shown in [3] that it is 

not possible to construct a lattice fermion theory which possesses all three of 

chirality, locality and lack of doublers. This is known as the lattice fermion "no 

go" theorem. 

The propagator corresponding to this operator now has a momentum dependent 

additive mass renormalisation 

m(p) = m+ 
2r
— 
	

sin 2 (p,1 a/2). 	 (2.10) 
a 

At the corners of the Brillouin zone, where there were poles in the propagator 

previously, there is a divergence as the lattice spacing is brought to zero. This 

removes the unwanted poles, and the correct continuum limit describing a single 

Dirac fermion species is recovered. 

When using the Wilson formulation, it convenient to rescale the action in terms 

of the ic parameter, where it = 1/(2m + 8). Hence the Wilson matrix kernel is 

written 

MIZ,jo = 	- k>[(r - 	af38j,i+fi + (r + 	ji] 	(2.11) 
Ii,i 

The Wilson kernel is not bounded from below by zero, and can have eigenvalues 

with magnitude equal to zero. 

2.2.3 Staggered Fermions 

The staggered fermion approach to reducing the number of fermion flavours is 

much more subtle than the explicit Wilson term applied in the case of Wilson 

fermions. The actual reason for the fermion doubling is because the lattice 
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derivative that is applied uses a lattice spacing that is twice the fundamental 

lattice spacing, which leads to the oscillatory eigenvector solution. If it were 

somehow possible to double the lattice spacing used for the fermionic degrees 

of freedom, but keep the spacing the same for the lattice derivative, then the 

fermion doubling problem would be overcome. This is essentially what the stag-

gered fermion formulation does, double the fermion lattice spacing by spreading 

the spin degrees of freedom over adjacent lattice sites. This is allowed if the 

fermion action is diagonalised in spin space, decoupling the spin degrees of free-

dom [4]. This diagonalisation is done through a local change of variables of 

the fermion fields which reduces the spin matrices to simple phase factors [1]. 

In four dimensions this reduces the number of fermion flavours from sixteen to 

four. 

The staggered fermion action is given by 

SS = 	j MS cbj, 	 (2.12) 

where 

= -  	 - j,j] + mSj,. 	 (2,13) 
2a E 

The staggered kernel is bounded from below by the mass parameter, and the 

momentum dependent mass renormalisation of the Wilson formulation is not 

present. The staggered formulation does not preserve the chiral symmetry since 

the concept of left and right handedness is removed with the removal of the spin 

matrices. However, a remnant U(1) symmetry remains which can be related to 

with the original chiral symmetry [1]. 

The spreading out of the fermion degrees of freedom does have a large draw-

back. The formulation gives rise to flavour symmetry breaking, an 0(a2 ) effect, 

which gives rise to unphysical interactions. It is this failing and the fact that 

staggered fermions describe four fermion flavours, not a single flavour, which 

are the most objectionable aspects of the formulation. This latter problem can 



2.3. GAUGE FIELDS ON THE LATTICE 	 11 

be circumvented if it is believed that taking the fourth root of the staggered 

determinant leads to theory of a single fermion flavour. While such an opera-

tion is permissable in the continuum limit, on the lattice this might lead to a 

non-local theory which has no continuum limit [5, 6]. Despite these objections, 

staggered ferrnions and improvements thereof (see § 2.4.1) are a very popular 

fermion choice mainly because of the reduced computational cost compared to 

other formulations. 

2.3 Gauge fields on the lattice 

Compared to fermion fields, the process of discretising gauge fields is a straight-

forward process free of problems. On the lattice the gauge field is described by 

link variables which are SU(3) matrices that live between the sites on which 

fermion fields are located. The relationship between the gauge link field Uj,,. 

and the continuum gauge field field A is given by 

= exp(iago A,(x)). 	 (2.14) 

The only gauge invariant quantities that can be constructed on the lattice are 

closed loops of ordered link products. Hence all lattice gauge actions are built 

from such quantities. The action which was introduced by Wilson [7] is 

I3 
Sg''[U] = - 	P[U]j , ,,, 	 (2.15) 

i4i<U 

where P[U], is the real part of the trace of the path ordered product of links 

around the 1 x 1 plaquette in the a, ii plane at point i and 3 '- 1/g. This 

is the most basic gauge action that can be constructed, and has leading errors 

0(a2 ). The lattice average of the plaquette is a very useful quantity when 

determining whether two ensembles of data correspond to the same the physics, 

e.g., comparing the ensembles produced by two different algorithms. 
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The next class of gauge action to consider are those constructed from using the 

plaquette plus 1 x 2 rectangle. Such actions can be written in the form 

- - ((1 - 8c 1 ) 	P[U], + c 1 	R[U] 1 ) 	(2.16) Sw2[U} 
- 3 

ijl~ L' 

where 	is the real part of the trace of the ordered product of link matrices 

along 1 x 2 rectangles in the p,  v plane. The parameter c 1  can be calculated in 

a number of ways, though of relevance in this work is the DBW2 [8, 9] gauge 

action, c 1  = —1.4069, where the coefficient is calculated non-perturbatively 

using Swendsen's blocking and the Schwinger-Dyson method. 

The Symanzik one loop improved gauge action [10] is the most complicated 

gauge action covered in this work and is given by 

- 	

( 	

P[U], + c 1 	R[U], + c2  SYmOL{U] 
- 3 

(2.17) 

where C[U] denotes the real part of the trace of the ordered product of link 

matrices along the ji, va, —,u, —v, —a path. The coefficients c0 , c 1  and c2  are 

computed in tadpole improved one loop perturbation theory, and result in a 

cancellation of the leading 0(a2 ) errors. Of the three gauge actions discussed 

here, it is the Symanzik gauge action which approaches the continuum limit 

fastest. 

With the addition of the gauge field onto the lattice, the chosen fermion for-

mulation must be promoted from the free field theory to the fully interacting 

case. This is done through replacing the central difference derivative used in 

equations (2.7), (2.9) and (2.13) with the lattice covariant derivative, i.e., 

- 	 -p 	 - 	 (2.18) 
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2.4 Improved Fermion Formulations 

2.4.1 ASQTAD Fermions 

Although the leading errors of the staggered formulation are 0(a2 ), the break-

ing of flavour symmetry is a large effect [11]. Such symmetry breaking results 

in flavour changing strong interactions which are completely absent from QCD. 

The dominant flavour changing interaction is due to a one-gluon exchange be-

tween quarks, which is an 0(a2 ) lattice artifact. The primary process where this 

flavour changing takes place is when a low energy quark emits a gluon with mo-

mentum q it/a. This artifact can be vastly reduced through the suppression 

of gluons with such momenta, and through a redefinition of the link variables 

that connect lattice sites this supression can be achieved. The single link matrix 

is replaced by a weighted average over some set of link matrix products which 

connect the points, e.g. a three link path (staple). This can vastly improve the 

flavour symmetry at a given lattice spacing for suitably chosen weightings. 

ASQ (A SQuared) fermions correspond to a staggered type operator, where 

the parallel transport is defined by a sum over one, three, five and seven link 

products [11]. There is an additional five link term required to cancel errors of 

0(a2p2 ) introduced by this fattening, the Lepage term. With this addition, the 

operator has no tree level 0(a2 ) corrections, hence the name. The Naik term 

[12] is also included, which is a three link derivative correction. The effect of 

this extra term is to improve the Lorentz symmetry, however, it has little effect 

on the flavour breaking [13]. 

When the ASQ operator is used in conjuction with tadpole improvement (a 

process whereby some of the 0(g 71 ) discretisation errors are reduced [14]) the 
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ASQTAD operator is obtained [11], whose covariant derivative is written 

D = CKSDKS + CNDN + c3D3 + c5D5 + c7D7 + CLDL, 	(2.19) 

where the coefficients and Dirac operators correspond to the Kogut-Susskind, 

Naik, 3 staple, 5 staple, 7 staple and Lepage terms respectively. These coeffi-

cients are given by 

CKS = 
131 

(2.20) 

C3  
11 
82 	0  

(2.21) 

= 11 
88 	0  

(2.22) 

C7 
848 0  

(2.23) 

CL 	= 
16 	0  

(2.24) 

CN = 
24 

(2.25)  

where the factor Uçj is the inverse fourth root of the average plaquette that 

arises from the tadpole improvement. The ASQTAD fermion action is exactly 

as written in equation (2.12), but with the derivative operator replaced by 

the matrix operator which results from equation (2.19). Hence, like the naïve 

staggered fermion formulation, the ASQTAD matrix is bounded from below by 

the mass parameter. Although the ASQTAD formulation has vastly improved 

flavour symmetry, it is still far from perfect, and retains the problem of naïve 

staggered fermions that the theory describes four fermion flavours not one. 

The gauge action used when simulating ASQTAD fermions is generally the one 

loop improved Symanzik gauge action. 
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2.4.2 Ginsparg-Wilson Fermions 

It was shown by Ginsparg and Wilson [15] that chiral symmetry on the lattice 

together with locality and a lack of doublers is possible, if instead a lattice 

definition of chiral symmetry is made. The Ginsparg-Wilson relation defines 

this symmetry, it is 

75 D + D'y5  = aDRy5 D, 	 (2.26) 

where a is the lattice spacing, and D is the lattice Dirac operator which cor-

responds to a solution of the Ginsparg-Wilson relation. The Ginsparg-Wilson 

relation approaches the continuum definition of chiral symmetry as this limit is 

taken. The relation implies the exact chiral symmetry of the action under the 

transformation 

60 = 75 (1 - aRD)b 	 (2.27) 

(2.28) 

Narayanan and Neuberger [16] derived the gauge covariant solution of the 

Ginsparg-Wilson relation, the so called "overlap operator", where it is defined 

in terms of the hermitian Wilson operator H"' = -y5 D" with a negative mass 

parameter p, 

= 	(i + 	(Hiw 	 (2.29) 

1 / 	H"'. (p) '\ 
= 	I 1 + 5 	 I. 	 (2.30) 

2a 	V/(H ;j, ) 2 (p)) 

All solutions of the Ginsparg-Wilson relation can be shown to be equivalent 

to Neuberger's solution because of unitarity and hermiticity. The evaluation 

of the overlap operator applied to a source requires the application of the 

sgn(H'(p)) operator, this is generally approximated using polynomial or ra-

tional approximations. It is the presence of the sgn function (or more exactly, 

the non-commutivity of the _Y5  operator and Hw)  that accounts for the extreme 

computational expense of overlap fermions. 
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2.4.3 Domain-Wall Fermions 

The domain wall fermion prescription is a five dimensional lattice fermion for-

mulation which has a degree of chiral symmetry [17]. A domain wall fermion 

is essentially a set of L 5-flavour Wilson fermions with a certain flavour-mixing 

mass matrix, where L S  is the extent of the fifth dimension. One of these Wil-

son fermions corresponds to a light fermion whose left and right handed modes 

exist on opposite ends of the fifth dimension. The degree of chiral symmetry 

this fermion possesses is controlled by the overlap between these modes. Since 

these modes exponentially decay into the fifth dimension, at finite L S  there is 

a finite overlap between the modes and the fermion theory will not be fully 

chiral. At infinite L 8  there is no overlap between the modes and full lattice 

chiral symmetry is recovered. 

The one flavour fermion action is defined by 

	

S 1 (U) = - 	 (2.31) 

where i, j run over the sites of the four dimensional volume, and s and s'  run 

over the fifth dimension. The fermionic matrix is defined by 

	

IVtI S = 	+ 5,D -5 1, 	 (2.32)  
DW 

where 

= ((1 + 	 + (1 - 	 + (m5  - 4).33) 
2 	 Z'

{ PR82,s' - rnIPL6Lc,SI - 	 S = 1 

DIII = 	Rs+1,s' ± PiAs_i,s' - 	1 < < L 	 ( 2 . 34 )sl) 

— mfPR81, 8' + PL531,8' - 5L5,s, 	= L.9 , 

with 0 < m5 < 2 the so called domain wall height, m is the fermion mass 

parameter and PR,L = (1 ± 'yb) are chiral projection operators. 
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The remaining L - 1 fermions are massive and must be cancelled out to avoid 

bulk type infinities in the infinite L s  limit [17]. To perform this cancellation 

explicit bosonic fields are introduced, the so called Pauli-Villars fields. There 

is some flexibility in how the Pauli-Villars fields are defined, for this work the 

definition used is that given in [18]. The resultant 2+1 flavour QCD path 

integral originally written in equation (2.4) is now 

1 	det(M) 2 det(MZ) 
(00I0) = f vu 	det(MDW 3 	Q Sg 	 (2.35) 

mpv/ 

where nip, = 1. 

To quantify the degree of chiral symmetry breaking, a measure of the overlap 

between the left and right handed fermion states is required. This is measured 

by the residual mass m res , found through the Ward-Takahashi identity [17], and 

is given by [19] 
1 x,y (J5q (Y, t)7r(x, 0)) 

m re. = - 	 , 	 ( 2.36) 
2 >I(7(y,t)7r(x,0)) 

- T 

where (J5q 7t) is the correlator between the pseudoscalar density at the midpoint 

of the fifth dimension and that of the pion (i.e., pseudoscalar density at the 

boundaries of the fifth dimension), and (7r7r) is the pion-pion correlator. 

Like the Wilson case, the finite breaking of chiral symmetry leads to an additive 

quark mass renormalisation m q  = mf+mres , where mq  is the true fermion mass, 

and m 1  is the mass parameter that appears in equation (2.33) [20]. However, 

the essential difference is now that the magnitude of renormalisation is under 

full control by the extent of the fifth dimension. 

Since the Ginsparg-Wilson relation is the known to be the unique solution to the 

fermion doubling problem which also respects chirality and locality, the domain 

wall prescription must be a variant of this. Indeed, the domain wall formulation 

corresponds to a solution of the Ginsparg-Wilson relation using an inverse tanh 

approximation to the sgn function which is only exact in the limit L 5  —+ oc 
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where the tanh approximation is exactly the sgn function [21]. 

When performing quenched analysis using valence domain wall fermions it has 

been found that the choice of gauge action has a large effect on the residual 

mass at constant L 5  [19]. In particular. the DBW2 gauge action exhibits the 

least chiral symmetry breaking compared to using Wilson or Symanzik actions. 

This analysis has motivated the use of the DBW2 gauge action for dynamical 

fermion simulations using domain wall fermions. 

2.5 Hadron Spectroscopy 

In order to confirm that QCD is the correct theory of the strong force, observ-

ables must be measured that can be compared to their physical values. The 

hadron mass spectrum is one of the simplest tests that can be performed. 

2.5.1 Correlation Functions 

The masses of hadrons are extracted from Euclidean correlation functions (cor-

relators), which are defined in terms of vacuum expectation values of quantum 

field operators [22]. Specifically, masses are determined from examining corre-

lators known as two-point functions, 

O(x, t) = (OT{O( x )Ot(0)}jO). 	 (2.37) 

The operator Ot(0)  creates some state at the origin, which is then annihilated 

at some other point by the sink operator 0(x). If one is interested in measuring 

some specific state, the operator 0 is chosen such that it has the same quantum 

numbers as the desired state. The source operator will create an state of the 

Hamiltonian that contains linear combinations of all states with these quantum 
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numbers. This operator's ground state should match the desired state and also 

have a minimum overlap with any excited states, so that at large Euclidean 

times the only state present is the desired state. 

The functional dependence of the correlator on the mass of the state can be 

obtained by taking the discrete Fourier transform of the correlator, 

	

C(p, t) = 	O(x, t) 	 (2.38) 
X 

1 

	

= 
	

(010(x) In, q)(n, q 01(0)0) e_1X 	(2.39) 
x q 2E (q)  

= 2E(p) 
(010(0)In,p) 2 e_ En t  (2.40) 

where in the second line a complete set of states has been inserted (with ap-

propriate normalisation). A mass relation can now be obtained if zero three 

momentum is considered, p = 0. Thus in the limit of large Euclidean time, 

equation (2.40) is dominated by the ground state, and takes the form 

urn C(0, t) = A0 e _mot , 	 ( 2.41) 
t—*oo 

where A 0  = (0O(0)0, 0)12/2m0. When measuring observables, the lattice must 

be sufficiently large enough to accomodate the observable being studied. In par-

ticular the temporal extent of the lattice should be as large as possible to obtain 

a signal for the desired state, and not be contaminated by other higher excited 

states. As the temporal extent increases, eventually the ground state's signal 

will have decayed sufficiently such that its signal will not be measurable. The 

aim therefore is to locate the window where the ground state is not contami-

nated by higher excited states, and it is not contaminated by noise from the 

vacuum. 

The above analysis assumes that the temporal length of the lattice T is infinite, 

which is obviously not the case in real simulations. At the boundaries of the box 

the fermion fields have periodic boundary conditions in the spatial extent, and 
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anti-periodic boundary conditions in the temporal extent [1]. As a result, any 

state created at a source can also propagate to the sink backwards in time. This 

backwards propagating state will affect the functional form that the correlator 

will take, and the general form is now 

C(O, t) = 	(A n e_mhlt + r/Bne_mT_t)) , 	 (2.42) 
Ii 

where the second term is due to backward propagating states with mass m. 

The parameter 77 = ±1 depending on how the operator 0 transforms under 

the time reversal operator T = -y4 -y5 . For the special case of mesons, the for-

wards and backwards propagating states have the same mass, and in the limit 

of infinite statistics the correlator is symmetric about the mid-point in the tem-

poral extent. Assuming that enough statistics have been generated, the meson 

correlator is folded about the midpoint on top of itself. This increases the in-

formation available for mass extraction. The meson ground state correlator is 

thus given by 

CM(O, t) = A0 (emol  + e _mT_t)) 	 (2.43) 

= 2A0e 2 cosh [mo ( - t)]. 	(2.44) 

Suitable operators for mesons using Wilson-type fermions (Wilson, Domain 

Wall, Overlap) are given by 

Om (x,t) = 
	(Tn) 
	

(2.45) 
X 

The coefficient F is chosen to ensure colour neutrality, and carry the quantum 

numbers match that of the observable of interest. 

For example the desired operator for the pion when using Wilson fermions is 

given by 
= 	 (2.46) 
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When a degenerate light pair for the up and down quarks is assumed, 

= O the meson propagator is given by 

C,r =(tr Y5K'O);(ytYY5Kt).(XO)) 	 (2.47) 
(X I

x,y 

where K' is the quark propagtor, and the trace is over colour and spin. To 

form the quark propagator, twelve columns of the inverse of the Dirac matrix 

must be calculated. The explicit matrix inverse is not formed, but rather each 

required element is calculated by using a point source right hand side and solving 

the resulting systems of equations (see §3.8 for more details). 

2.5.2 Extracting the Mass 

With the correlation function calculated for the desired state, all now that 

is required is to extract the mass. To minimise the systematic errors in the 

correlation function, it is important to ensure that the correlation function 

only contains the desired state, and not other excited states. When examining 

correlation functions, it useful to define the effective mass, for the pion this is 

given by 

meson(t\ - 	h' 
C(t - 1) + C(t + 1) 

meff 	 I\)C05 	
2C 

As the time increases the effective mass will level off, this plateau region rep-

resents the time interval which corresponds to pure ground state information. 

The plateau region is then used as the fit range from which the ground state 

mass can be extracted. 

The method by which the mass is extracted is through minimisation of the x2  

function [23, which is given by 

—1 	 - 

X
2 

= 	[f (a, t1) - 0(t)] Cov(t, t3 )[f(a, y3 ) - C(t3 )], 	 (2.49) 
t ,tJ 
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where the covariance matrix is defined by 

1 	N 
Co(t1,t3 ) = 	 [Ck(t) - (t)}[Ck(t) - 0(t 3 )], 	(2.50) 

N(N - 1) k=1 

with N the number of configurations in the ensemble, Ck(t)  is the ktz  sample 

from the ensemble, C(t) is the mean of the correlator over the ensemble and 

f(a, t) is the function to which the fit is being performed with parameters a. 

The covariance matrix takes into account any correlations within the correlator, 

if the data is uncorrelated, then the covariance matrix is set to the identity. 

When performing correlated fits, a good fit is that which leads to x2  per degree 

of freedom of around unity, this signifies that the variance of the data has been 

correctly taken into account. Further details on x2  minimisation can be found 

in [23]. 

2.5.3 Chiral Extrapolations 

Currently all quantities measured on the lattice are extrapolated to the chiral 

limit with respect to the light quark pair. Such an extrapolation is necessary 

since current calculations are performed at much heavier quark masses than the 

physical value, and to a first approximation the chiral limit is the physical value 

of the light quark masses. 

The quark mass dependence with the pion mass is found from lowest order chiral 

perturbation theory, and is given by [1] 

M = A(m 1  + m res ), 	 (2.51) 

and equivalently for the rho meson 

m = B+ C(m 1  + mres ), 	 (2.52) 

where A, B and C are coefficients to be determined through x2  minimisation. 

When performing a chiral extrapolation using a fermion formulation which has 
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additive quark mass renormalisation, then this must be taken into account when 

performing the chiral extrapolation, e.g., when using Wilson fermions ,c must 

be found, which is the point on the ic axis which corresponds to zero pion mass. 

For the case of domain wall fermions the chiral limit is set at m q  = — mres , where 

m re, is found from equation (2.36). For consistency, the residual mass at the 

chiral limit must be found. This is slightly less trivial than extrapolating, say, 

either the pion or the rho, because m r es appears in both the x and y axis of 

the plot, and so is a self-consistency requirment. A linear extrapolation of the 

quark mass is used, hence 

M 	
B 

chiral -  
res - 1 + C' 	

(2.53) 

where B is the intercept of the linear extrapolation with the y-axis and C is the 

gradient. 

In the case of dynamical simulations, for a unitary theory to be maintained, all 

spectroscopy must be calculated using mva t = md Yfl . This requires that multiple 

gauge field ensembles be generated each with different quark masses. Partial-

quenching is where different valence masses are used for spectroscopy calcula-

tions, but a single gauge field ensemble is used. This breaks unitarity, but can 

be useful to obtain first order behaviour. 

2.5.4 Dimensionful Quantities 

The variables on the lattice are dimensionless, and so any observahies measured 

on the lattice are also dimensionless. To convert the dimensionless quantities to 

dimensioriful the lattice spacing a must be put back in, however, this of course 

needs to be measured first. The general technique for doing so is to compare the 

ratio of a dimensionless quantity to a known physical value. The ratio between 
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these quantities will be the lattice spacing, e.g., 

TTlI&t 

a= 	p 	 (2.54) 
7flCOflt 

In principle any observable can be chosen to set the lattice spacing, and if the 

correct theory is being simulated, with a sufficient volume to avoid finite size 

effects, with a weak enough bare coupling strength to keep the discretisation 

errors under control and the correct quark masses are used, then such lattice 

spacings should all be equivalent. Usually this is two out of four at best, hence 

lattice spacings calculated using difference observables are not all equivalent. As 

a result, different dimensionful quantities for observables are obtained depending 

on what observable was used to set the lattice spacing. There is not much that 

can be done to improve this situation, other than to more fully include the 

effects of QCD in simulations. For the calculations performed in chapter 8 the 

mass of the rho meson was used to set the lattice spacing. 

2.6 Topological Charge 

In the continuum theory, the Atiyah-Singer theorem holds, 

Qt0p = index(D), 	 (2.55) 

where 

Qto 	327r f 2 
d4 xc vp tr(Fw F') 	 (2.56) 

is the topological charge of the gauge field and index(D) is the difference between 

the total number of eigenmodes with negative and postive chiralities [24]. Hence 

this latter quantity is an integer, and therefore so must Q0 

On the lattice this equality does not hold exactly, and there is an ambiguity as 

to how the topological charge is defined. In this work the topological charge was 
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measured through first smearing the lattice using HYP smearing [25] and then 

using an 0(a2 ) lattice definition of equation (2.56) to construct the quantity 

[26]. Since this definition has inherent lattice artifacts present it is not expected 

to result in an integer measurement. However, it is useful when studying an al-

gorithm's performance, because the autocorrelation of the measured topological 

charge reveals how quickly the algorithm is tunneling between different topo-

logical sectors, i.e., how quickly are the long distance physics of the ensembles 

evolving with simulation time. 

2.7 Autocorrelation Length 

When using a Monte Carlo evolution to produce ensembles of gauge configu-

rations there will be a degree of correlation between ensembles which are close 

with respect to Monte Carlo time. When calculating observables based on such 

ensembles, it is crucial that uncorrelated measurements are used, else the errors 

of these observables shall be incorrectly estimated. 

The autocorrelation function p(t) is a measure of how correlated two measure-

ments of the observable 0 are, when separated in Monte Carlo time by a distance 

t. It is given by 

p(t) = 	(0(t') - 	 (0 (t ,  + t) - O), 	(2.57) 
t, =1 

where N is the number of samples in the data set, and 0 is the mean of the 

observable. 

The integrated autocorrelation length, 

Tint = 	+ 	
ö5 	

p(t), 	 (2.58) 

where p(t) is the measured autocorrelation at a distance in t in Monte Carlo 

time, is the measure which is used to ensure that such data is decorrelated. Plots 
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of r, against t should reveal a plateau, the onset of this plateau corresponds 

to the Monte Carlo time required to ensure uncorrelated measurements. The 

autocorrelation length varies for different observables, since certain features of 

the gauge field evolve faster than others using, e.g., the short distance physics 

tends to evolve faster than long distance when using Hybrid algorithms. 



Chapter 3 

Algorithms 

Since the dominant cost in performing lattice QCD calculations lies in the gener-

ation of the gauge field configurations, the choice of algorithm is very important. 

In this section the various popular algorithms presently used for lattice QCD 

are discussed. 

3.1 Generation of gauge configurations 

The path integral given in equation (2.4) has a finite number of degrees of 

freedom since space-time has been discretised, but its direct evaluation is com-

putationally prohibitive, thus a stochastic method must be used. Observe that 

an integral can be rewritten as 

1 N 

f O(x)dx= urn —O,+O 	 (3.1) 
N- N. 	 ( 1  ) 

where 0, is a randomly chosen sample from the distribution of 0(x) and C2  is 

the variance of 0. Hence, the evaluation of the path integral becomes a problem 

of obtaining enough statistics. 

27 
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The probability distribution for gauge fields U, where a single quadratic fermion 

contribution has been integrated out is given by 

P(U) = e detM(U) . 	 ( 3.2) 

Thus to perform the path integral calculation stochastically, a large ensemble of 

gauge field configurations, each of which randomly chosen from this distribution, 

must be used to calculate desired observables. 

The extreme cost in generating gauge configurations lies in the inclusion of the 

fermion determinant, to evaluate this directly while technically possible, would 

be computationally prohibitive due to the dimensions of the matrix. In the early 

days of lattice studies the determinant was simply set equal to unity, a process 

known as quenching. This corresponds to making the dynamical fermion mass 

infinite, the physical effect of this is suppress the fermion loops that appear 

in the vacuum, and leads to a non-unitary theory. There is however, some 

experimental justification to this proceedure, e.g., the OZI rule [27, 28, 291. 

When performing quenched calculations the algorithm of choice is generally 

thought to he the overrelaxation algorithm, which is a local update algorithm 

[30]. 

With the advent of more powerful computers, the stochastic inclusion of dynam-

ical quark effects has increasingly become a realistic possibility. This stochastic 

inclusion could in principle be done using the Grassman valued lattice fermion 

actions described in § 2.2, but doing so would lead to poor importance sampling 

since the action would not be positive definite [31]. However, a simple manip-

ulation allows the fermionic determinant to be weighted stochastically using 

bosonic fields [32]. For a bosonic action, with positive operator D, the field can 

be integrated out to leave a determinant factor 

(3.3) I DtVexp(_tD) 
= 1 
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This suggests that the fermionic determinant can be represented by 

detM(U) = 	
1 	

(3.4) 
det PvI' 

= f DOIDO exp(- 01 M` - ' 0 ), 
	 (3.5) 

where 0 , 	are bosonic-valued fields. This representation is done at the expense 

of including the inverse of the Dirac matrix in the action. As the fermion mass is 

decreased, the condition number of the matrix increases, the resulting increase in 

computational cost of inverting the matrix is what makes lattice QCD extremely 

computationally challenging. It is actually the matrix kernel M = MtM which 

is used in such a bosonic fermion representation because it allows the use of 

heatbath refreshment of the pseudofermion field. It is this requirement that M 

is used, and not M, that causes the failing of HMC with one fermion flavour 

(Mdescribes two degenerate fermions). 

With both the fermions and gauge field represented as bosonic valued functions 

in the action, Monte Carlo techniques can now be used to build an ensemble 

of gauge configurations with the correct distribution and upon which measure 

observables as if it were any other statistical mechanical system. 

3.2 Hybrid Monte Carlo 

Since its inception, the algorithm of choice for generating dynamical gauge con-

figurations has been the Hybrid Monte Carlo (HMC) algorithm [33]. This algo-

rithm combines many of the techniques used prior to its introduction, momen-

tum and fermion heatbath refreshment, and molecular dynamics (MD) evolution 

of the gauge fields [34]. The unique difference about HMC was the introduc-

tion of a global Metropolis acceptance test at the end of each trajectory which 

stochastically corrects the systematic error introduced through the finite inte-

grating stepsize used in the MD. 
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3.2.1 Molecular Dynamics 

The MD evolution of the gauge field must be done through the introduction of 

a canonical momentum ir field which allows the definition of a Hamiltonian. 

The 7r,,., field is a traceless hermitian matrix and resides in the Lie algebra of 

SU(3), i.e. it is a member of su(3). The Hamiltonian is hence defined as 

H= 
I 
 7r 2 +Sr +Sg1 	 (3.6) 

where 7r  
= 	tr ir and the pure gauge and fermionic actions take the role 

of the potential. 

To perform the MD integration of the gauge field and its conjugate momentum, 

expressions are required for U and * the derivatives of these variables with re-

spect to the MD time r. Both of these results are derived in [35], the former of 

these is simply given by Uj,,. = Since the result of the latter is impor-

tant for chapter 7, the hand-waving argument described in [36] is reproduced 

here. 

To find an expression for *, the constraint of conservation of the Hamiltonian 

is used, H 0. In the following derivation, the Wilson gauge action shall be 

used and a generic pseudofermion action S f  = f,(MtM)'cb is assumed. 

H = 	trirj,,*+Sg +Sr 
	 (3.7) 

= 	 + V• Ut ) - ( MtM)_1(MtM)(MtMQa. 
J,/2 34L d 

F dM 
= 	tr j,i + 	 + H.c.) - 	I 	Al + Mt1 X (3.9) 

L d 	d'r j 

= 	tr 7rj,,ir + 	 + H.c.) 
	

(3.10) 
J4L 

dMt 
- 	tr 	 + H.c.] 	(3.11) 

IP 

where in the second line %/, is the remaining staple of the plaquette, in the 
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third line the vector X = (MtM)q has been defined and in the last line the 

identity A.B = trB ® At, with A and B column matrices, has been used. In 

this form, the common irj  term can factored out, and the resulting equation 

can be written 

H = 	tr {7r,,L [*j JZ  + i(F, - FJ)]}, 	 (3.12) 

where Fj ,, is given by 

 
Fj,A = 	- U,XXtMt dM + U,MXX dMt 	(3.13) 

dUj , 4E, 	 dUd,,. 

Since 	must remain traceless, equation (3.12) will be satisfied if the quantity 

in the square brackets is a multiple of the identity matrix, i.e., 

*,2 + i(F3, - FJ,) = ci, 	 (3.14) 

where the constant c is determined from the requirement that *,,. = 0 for 

to always be traceless, hence c = tr 	- Fj). Thus the derivative of the 

canonical momentum with respect to the MD time is written 

= [1i,],, 	 (3.15) 

= Uj,,AdU 
dS 	

(3.16) 
3l TA 

where the subscript indicates the traceless anti-hermitian part of the matrix, 

and in analogy with classical mechanics is described as the force acting on 

the system. 

The evolution of the gauge field hence requires that the inverse of the fermion 

matrix applied to a vector be calculated, i.e., the evaluation of the vector X, 

and that the derivative of the fermion matrix with respect to the gauge field 

is calculated. The latter of these calculations is trivial for all of the fermion 

formulations discussed in § 2.2 with the notable exception of ASQTAD fermions, 

where the derivative must be calculated explicitly for every link variable which 
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appears in the operator, an operation which incurs a considerable computational 

expense (see § 7.1.2). 

With the equations of motion of the gauge field, and its associated momentum 

determined, the gauge field can be evolved using a numerical integration scheme. 

3.2.2 The 1 Algorithm 

The 1 algorithm [37, 38, 361 is a Hybrid Molecular Dynamics (HMD) algorithm 

for an integer multiple of the number of flavours described by the fermion kernel 

MtM. It iterates a composite Markov step, which is ergodic and has a fixed 

point distribution close to the desired one. 

The gauge fields U are evolved for a time r by integrating Hamilton's equations, 

using a Molecular Dynamics (MD) integration scheme. Each trajectory of the 

c1 algorithm consists of: 

. A momentum refreshment heatbath using Gaussian noise (P(ir) (x e_12/2). 

. A pseudofermion heatbath using Gaussian noise 0 cx Mt(U)q, where 

P(i7) cx 

An MD trajectory consisting of 15r steps. 

The momentum and fermion heatbaths ensure that their respective variables 

are Gaussian distributed according to respective actions. 

The numerical integration of the MD trajectory requires the introduction of a 

finite integrating stepsize Sr and an integration scheme (see § 3.6). Typically 

a leapfrog integrator is used, that is one where the canonical coordinates and 

momenta are updated in steps of size Sr but are kept 6712 out of sync through 
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out the trajectory. For lattice QCD it has been shown that the U Q pQ  integrator 

leads to a marginally better acceptance rate than the UPQP  integrator [39], the 

difference being between whether the coordinate or the momentum is updated 

first. Numerical integration schemes do not conserve energy, the leapfrog in-

tegrator having 6H = 0(6r2 ) for any trajectory length, even for trajectories 

where r >> 1. Although using a naïve scheme such as the leapfrog integrator 

can work perfectly adequately, it is not always the optimum solution [40]. 

For 6T > 0, the fixed point distribution of the MD step and that of the mo-

mentum refreshment heatbath do not coincide. To find the actual equilibrium 

distribution the fixed point of the full Markov step is required. Let U(r) rep-

resent the evolution operator for the MD step U(r) : (U, it) '-+ (U", it" ) and 

denote the fixed point distribution of the full composite Markov step, 

where .S measures the deviation from the desired distribution. This must 

satisfy the fixed point condition that 

= f 
dU d7r e- H(U,-7r)-AS(U)6(Ul - U") 

= f dU" dir" e_(HS)o'6(U - U") 

= f dU"dit"e 	e— 6(H+AS)6(ul - U") 

f dit"e 	 (3.17) 

with 6 : 	-4 2 o [U(r) - 1] measuring the lack of energy conservation, and 

assuming reversibility U 	= F o U o F where F (U, it) i-+ (U, -it). The 

resulting condition is 

= 1. 	 (3.18) 

Performing an asymptotic expansion on this condition in powers of 6r, knowing 

that 6H = 0(6r2 ) for any trajectory length r, it is deduced that 6AS 0(6T 2). 

Thus AS 0(6-r 2), hence the 1 algorithm is accurate to this order when used 

in combination with a leapfrog integrator. More generally the algorithm has 
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a finite step size error of O(6-r'), where n is given by the error in the integrator 

used. 

3.2.3 The x Algorithm 

This is very similar to the 	algorithm, except the pseudofermion heatbath 

is performed before every single MD step as opposed to only before each MD 

trajectory. 

This leads to the expection that, as for the c1 algorithm, the leading error term 

is 0(5i2).  The proof of this follows from that of the R algorithm given in § 3.4. 

The fermionic force is given by  

dS1  -- 	__ -(*M1dM_1)1 	 (3.19) 

where the average over the pseudofermion 0 is introduced because the heatbath 

is performed every MD step. 

3.2.4 Hybrid Monte Carlo 

The 	algorithm illustrated in §3.2.2 has one major drawback, and that is 

the finite stepsize errors present due to the leapfrog integrator used in the MD 

evolution resulting in the fixed point of algorithm not matching the desired fixed 

point. The HMC algorithm stochastically corrects for these errors through the 

inclusion of a global Metropolis accept/reject step at the end of each trajectory, 

Pacc = min(1, e- 6H), 	 (3.20) 

where 6H = Hf  - H,. 

For the Metropolis accept/reject step to be valid the MD integrator must be 
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reversible 

U 1 =FoUoF 	 (3.21) 

where F corresponds to a flip of the momenta, and be area preserving, 

I 	1 d(U', ' 
detU = det L d(U,ir) = 1. 

	 (3.22) 

The simplest integrator which satisfies this requirement is the leapfrog integra-

tor. 

A single Hybrid Monte Carlo (HMC) update thus consists of 

. Momentum refreshment heatbath using Gausssian noise (P(ir) oc e_2/2). 

. Fermion refreshment (ç = ( 0 + m)tr1, where P(i1) OC e_h12/2). 

MD trajectory consisting of r/r steps. 

• Metropolis accept/reject 

Although HMC has been tremendously successful, it does have a number of 

shortcomings in its basic form. 

The Hamiltonian is extensive in the volume, i.e., as the volume grows, so does 

the Hamiltonian. As a result oH is extensive in the volume, and to maintain a 

constant acceptance rate the integrating stepsize must be reduced as the volume 

increases. 

The cost of the algorithm blows up considerably as the quark mass parameter 

is reduced, this process is known as "critical slowing down". This reasons for 

this are two fold. Firstly, the condition number of the fermion matrix increases 

as 1/my  which results in an increase in cost to invert the matrix. Secondly, 

the magnitude of the force originating from the fermionic piece of the action 
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increases, necessitating a decrease in the stepsize to maintain a constant accep-

tance rate. The latter of these problems shall be addressed in chapter 6. 

HMC also fails when it comes to including a number of fermions that is a non-

integer multiple of the fermion multiplet of the formulation. Since the operator 

MM must be included in the action, instead of just M, this corresponds to a 

two flavour theory for Wilson fermions. Historically this has not been a problem 

since the up and down quarks are treated as being degenerate, and generally 

any calculations have been performed using mass parameters much heavier than 

the strange quark, meaning there has been little point in performing 2±1 quark 

flavour simulations. For staggered fermions, the kernel AV  only connects sites 

of the same parity, this means that through only defining the pseudofermion 

fields on even (or odd) sites, an extra doubling of the number of flavours can be 

avoided. The resolution to this problem has traditionally been to use either the 

inexact R algorithm [36], or more recently a Polynomial Monte Carlo algorithm 

[41, 42, 431. 

3.3 The R 0  algorithm 

The R0  algorithm [36] does not utilise the pseudofermion approach, however, 

the resulting fermionic force term is very similar to that obtained in § 3.2.1. 

First note that the fermionic determinant can he rewritten 

detM = exp(atrinM) 	 (3.23) 

= exp(—Sí ), 	 (3.24) 

where a parameterises the number of fermions of the theory. To obtain a theory 

describing less flavours than that of the fermion multiplet, it is tempting to do 

so through use of a Z. For Wilson type fermions where M describes two 
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flavours of fermions it is a valid approach to set a = 1 , since M is the square 

of a local operator. For staggered fermions this is not the case, nevertheless 

through setting a = , the result is potentially a 2+1 quark flavour theory 

[44, 5, 6]. 

The resulting force from this fermioriic action is given by 

dS1 - 	 dlnM 
—atr 	 (3.25) 

- 

= atr 
1 M-1 dU 

d~M] 
] 	 (3.26) 

however, such a fermionic force would require the explicit inverse of the matrix to 

calculate the trace exactly. The fermionic force is replaced by a noisy estimator 

for the trace, resulting in a force 

dS1  -  

- —atr (M1)_1 dM M_ 1 ] 	 (3.27) 
I dU3 , 

dM _i)
71 

= _a(*Mt 	,M 	 (3.28)77 	 dU  
= —a (3.29) 

where 77 is a complex noise vector sampled from a Gaussian heatbath with 

variance 1. (By using this noisy estimator, the conserved Hamiltonian H' is 

now written H' = H + I - S + terms specific to integration scheme.) Defining 

an auxilliary field x Mt 17, the fermionic force becomes 

dS 1 =   
dM 	_ i 	 . 	 (3.30) Kx * M_ 1  duM \ 

/=M 
—a 

Using such a fermionic force in place of the one used by the 1 algorithm, the 

resulting algorithm is the inexact R0  algorithm which describes an arbitrary 

number of fermions per field. 

The leading error of the R0  algorithm can be found by again looking at the 

equilibrium distribution. To calculate the error in 611 the effect of using a noisy 
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estimator for the fermionic force must be included. For a single noisy MD step 

using a UQQ  integrator we have 

	

= (1 - 6H + 6H  + O(SH3 )) 	 (3.31) 

= 1 -  ((E I - S') 2)(1 - 	+ O( 3 ), 	(3.32) 

where in moving from the first to the second line, the relation 5H = 5/.H has 

been used. The coefficient of (1 - 7r  2 
)6T  2   is proportional to the variance of the 

estimated force and will only vanish if the force is computed exactly. Since the 

momentum average is not Gaussian after many leapfrog steps, the leading order 

term is not cancelled as it would be if only one MD step per trajectory were 

used. The analogue of equation (3.18) now becomes 

(e ) 	= ((e1) ... (e_N) e_os) = 1. 	(3.33) 
1 11 ... 11N 	 111 	 'iN 	ir 

where SH = 6H1  +..• + 6HN. Thus the leading error of the R 0  algorithm is 

AS -  O(S - ). 

It is in principle possible to make the R0  algorithm exact by including an ac-

ceptance test after each MD step [43]. The acceptance test must he done after 

each MD step, because a new Gaussian noise vector is used at each, rendering 

the integration scheme irreversible after more than one step. This will greatly 

increase the autocorrelation of the algorithm. In addition, the action given in 

equation (3.23) cannot be directly computed, and must instead be estimated 

using stochastic summation. 

3.4 The R algorithm 

As can be seen from examination of Equations 3.19 and 3.30, the x and R0  

algorithms have very similar fermionic force terms, despite a different derivation. 
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The difference is that in the former the pseudofermion field is calculated at the 

beginning of every MD step, and in the latter the auxilliary field is calculated 

in the middle of each MD step. The x algorithm has 0(6r2 ) errors for a = 1 

multiplets, whereas R0  has errors 0(8T). However for a = 0 multiplets (i.e., 

no fermions) both algorithms are the same and have errors of 0(6,r 2).  If it 

is assumed that the leading error has a linear dependence on the time the 

(effective) pseudofermions are evaluated and on the number of multiplets, then 

by drawing a straight line in MD time between the a = 0 R0  algorithm and 

a = 1 X algorithm points, i.e., 

(3.34) 

and evaluating the pseudofermions at this point during the trajectory, an 0(6'r 2 ) 

algorithm valid for at least 0 < a < 1 fermion multiplets should be obtained. 

Indeed, this algorithm is known as the R algorithm [36]. For example, for 

a theory with two flavours of staggered fermions, this means evaluating the 

pseudofermion field a quarter way through each MD update. Note that this 

leads to an algorithm that is neither reversible nor area preserving. 

To prove that the R algorithm does indeed have an 0(8 2 ) leading order error 

term, again the resulting equilibrium distribution of the algorithm must be 

found. 

= f dU d7r 	 - U") 

= fdU"d7" det(6r* )_ 1 e _ 	0U'6(U - U") 

= f dU" dir" e_(II+AS)e_+ 	S)—trin U.(Ul - U") 

= e —[S(U')+S(U')] f dir"e"2 e_(6+ 	S)_tr in U. (3.35) 

thus the condition is now 

U. 	1, 	 (3.36) 
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where 8 measures lack of energy conservation 6 : Q 	o F o [U(r) - 1] o F, 8 

measures lack of reversibility 8: 	o [U(r)1 - F o U oF] and trin U 

In det 0')  measures lack of area preservation. Considering a single step of the 

R algorithm, where the auxilliary field x  is computed at a time r = (1 - 'y)6-r/2 

where 'y is some parameter to be determined, and expanding Equation 3.36 in 

67 it is found that 

/77 - 1 - A 67  + O(6T 3 ), 	 (3.37) 
- 

where 
1 

A = a(a - )(1 - 2) tr [M-' 	M ' ddU.
M 

 j. 	(3.38) 

If y = a the leading term cancels, and thus the leading error is 0(6,r 2) for the 

entire trajectory. Therefore, as claimed the R algorithm is an 0(6 2 ) algorithm, 

and thus so is the x  algorithm (i.e., which is the R algorithm with 'y = 1). 

Unfortunately since this non-reversible and non-area preserving integrator has 

been used, a Metropolis accept/reject cannot be included at the end of the MD 

trajectory. As a result the R algorithm is an inexact algorithm with errors 

O(6y2 ) .  

3.5 Polynomial Hybrid Monte Carlo 

The failing of HMC at an odd number of flavours, and the stepsize errors present 

in the R algorithm at finite stepsize motivates another algorithm choice. One 

such algorithm is the Polynomial Hybrid Monte Carlo algorithm [41, 42, 431 

(PHMC). In this algorithm the function of the fermion matrix is replaced by a 

polynomial approximation of degree n over the spectral interval of the matrix. 

Polynomial approximations (and rational approximations) are cheap to evaluate 

since they do not require explicit diagonalisation of the matrix argument [45]. 
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The approximation which minimises the infinity norm of the magnitude of the 

difference between the function and the approximation is called the minimax 

approximation (the name minimax stems from the fact that the maximum error 

of the approximation is minimised), 

Hp - 	= min max w(x)p(x) - f(x), 	(3.39) 
A -  <x<A+ 

where f is function which is being approximated and A and 	represent the 

bounds of the approximation interval. The weighting factor w(x) that appears 

in the error equation is a positive weighting factor, and defines how the error 

is measured. It is generally chosen to be w(x) 11If(x),  i.e., relative norm, 

since relative errors are the forin of errors one has when performing floating 

point calculations. For a given degree ii, the optimal approximation is that 

which satisfies Chebyshev's criterion that the error in the approximation, e(x) 

w(x)[p(x) - f(x)], attains its maximum value at at least n + 2 points in the 

interval, and the sign of the error alternates betweens successive extrema [45]. 

Chebyshev proved that the polynomial that satisfies this criterion is uniquely 

defined. 

When using a valid polynomial approximation, the fermionic determinant is 

given by 

det Ma = f DtV q exp(_ c tp(M) q ) det[Map(M)], 	(3.40) 

where the polynomial p(M) 	over the spectral range of M and the extra 

determinant weighting factor in the right hand side corrects for errors arising 

in the approximation. With this substitution for fermionic formulation, PHMC 

is basically the HMC algorithm as described in § 3.2. 

When approximating polynomials are of even degree n, the roots are non- 

degenerate and come in complex conjugate pairs. Thus the product repre- 
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sentation 

P(X) = co IT (x - Zk) 	 (3.41) 

can be written 

	

P(X) = P,  WAX) 	 (3.42) 

Hence the heatbath is given by 

	

= (t(M)) — ', 	 (3.43) 

where ij is a Gaussian noise vector. As the degree of the approximation becomes 

large, the cost of the heatbath becomes a significant cost of the algorithm, since 

15t(M) —1  must be evaluated. 

When simulating a theory with an integer multiple of the number of flavours 

described by M, then the force is analytic, e.g., when a = 1 the force is given 

by 

dS --  

	

_tM—1 dM 	 (3.44) 

= _tp(M) dM p(M). (3.45) 

However, when a is non-integer the derivative of the fermion matrix is non-

analytic, e.g., for a = 1/2 the force is given by 

dSf  

	

tM_1/2dMM_h/2. 	 (3.46) 
- 

Since there is no analytic expression for 	for non-integer &, the function 

must be approximated and the derivative taken of the approximation, as op-

posed to approximating the exact derivative. The force is thus written 

dS 	n/k -i 	 \dM / 

dU = - 
	

( u (M - a)) 
dU ( fl (M - ai)) . 	( 3.47) 

iI 	 k=1 \i=1 	 / 	i,12  \j=k+1 

	

'Actually there is a formal definition given by ft- = j' 	d3M' 1  ---M 	how- dli,,. 

ever, this clearly is of no use here. 
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With such a force calculation there is an impracticality due to the memory 

storage requirements, n/2 vectors must be simultaneously stored to avoid un-

necessary and expensive fermion matrix multiplication. 

To ensure that the resulting equilibrium distribution is free from any bias due 

to errors in the approximation, the determinant factor in equation (3.40) must 

be included either as a weighting factor when any measurements are made or, 

more commonly, when calculating the acceptance probability, i.e., 

exP(_H) 	(3.48) ). Pacc - mm 
(i det[Jvt'(U')p(Jv1(U'))] 

- 	
' det[M(U)p(M(U))] 

Since the determinant ratio cannot be included exactly, a noisy estimator of the 

ratio must be used [43]. This requires a noisy Metropolis test to accept/reject 

the trial configuration, e.g., Kennedy-Kuti acceptance test [46]. Unfortunately 

noisy acceptance tests generally scale worse with volume than the conventional 

Metropolis accept/reject, though this depends on the quality of the approxima-

tion to the determinant ratio. 

P11MG has been shown to be a competitive algorithm when compared to the 

R algorithm for staggered fermions on medium sized volumes [47], but has 

not been used on large volume calculations most probably because of its poor 

volume scaling. The increased volume of five dimension fermion formulations, 

e.g., domain wall, will further increase the cost of the algorithm compared to 

those with the conventional Metropolis test. 

Another disadvantage compared to some hybrid algorithms which use Krylov 

solvers is that there is no gain to be had from from previous solution vectors, 

i.e. a chronological solver has no meaning. A related problem is that evaluation 

of the polynomial is potentially sensitive to rounding errors because a large 

degree is required. When using a Krylov method this problem can be alleviated 

through a restart of the inversion process, there is no equivalent when evaluating 

a polynomial expression. Polynomial approximations are similar to using a 
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Jacobi solver, which are in general much less efficient than Krylov methods. If 

it is possible to use a Krylov method instead of a polynomial method, e.g. when 

evaluating M', then it is nearly always beneficial to do so. 

The evaluation of the coefficients that appear in the polynomial approximation 

is a complicated calculation, and it would not seem to be possible to evaluate the 

required coefficents for approximations n > 1000 within a reasonable amount of 

compute time [47]. 

If the naïve method for calculating the derivative of the ASQTAD operator as 

used in [48] was used for PHMC (see § 7.1.2), this would lead to a force term 

calculation that is 0(n) more expensive than HMC where n is the order of the 

polynomial and is expected to be 0(100) - 0(1000). It is for this reason that 

no exact 2 or 1 flavour algorithm has been used for ASQTAD fermions. 

3.6 Integration Scheme 

A general class of integrators that satisfy both reversibility and area preservation 

are the symmetric symplectic integrators. These are derived as follows [49]. 

The exact evolution operator for a trajectory of length r is given by 

d 	(apI a Oqa\ 
exp('r-) 	exPrt_±J) 	

(3.49) 

/ ( aa 
= 	 (3.50) 

= 	 (3.51) 
09P 	aq 

= exp(r{P + Q}) 	 (3.52) 

= exp('rH), 	 (3.53) 

where the Hamiltonian H = T + S, q and p represent the canoncial coordinates 
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and momenta, Q and P represent the evolution operators corresponding to these 

coordinates, i.e., 

eöTQ : f(q,p) -* f(q+8T'(p),p) 	 (3.54) 

e 67 
: f(q,p) -* f(q,p—öTS'(q)) 	 (3.55) 

That the evolution operator is given by the left hand side can be easily found 

through Taylor expansion. In the second step the derivatives with respect to 

time have been replaced using Hamilton's equations of motion. 

Since the operator exp(r{Q + P}) cannot be applied directly, the best that can 

be done is to discretise the time, and apply successive applications of exp(SrQ) 

and exp(8rP), e.g., the symmetric symplectic UQPQ  integrator is given by 

UQPQ(Y) = 	 (3.56) 

This scheme, and the equivalent (JPQ P scheme are known as leapfrog integrators 

because the coordinates q and p are always half a stepsize apart. These are the 

most commonly used integrators when doing an HMC calculation. By alternat-

ing the application of the operators Q and P an error is introduced because of 

non-commutivity. The error in any given integrator is found by considering the 

Baker-Campbell-Hausdorff formula 

exp A exp B = exp C, 	 (3.57) 

where C = A + B + 1  [A, B] + [A, [A, B]] + [B, [B, A]]+ higher order terms. 

Using this formula, it can seen that the 	integrator corresponds to 

UQPQ(T) 	(eeoTPe)n/öT 	 (3.58) 

	

 24 	

1 T/67-

= (exp [(Q + P)ö - 	([Q, [Q, ph + 2[P, [Q, P]])6T3 + O(65)].59) 

	

= exp [-r ((Q+ P) - 	([Q, [Q,P]] + 2[P,[Q,P]])öT2  +O(ör4 )).6O) 

eTpQ. 	 (3.61) 
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It can therefore be seen that the U QPQ  integrator conserves the Hamiltonian 

H pQ  where 

	

H PQ  = H + 	{_p2S1F + 2S,2167-2+0   (6r4 ). 	(3.62)
24  

Equivalently for the UPQP  integrator 

	

H Qp  = H + 	I2p2S11 - s121 62 + O( 4 ). 	(3.63) 
24 

Following Campostrini's wiggle method [50] is is possible to construct integra-

tors that are accurate to any given order in 6 T 2n  (6T  n  if non-symmetric sym-

plectic integrators are considered). 

3.7 Sexton-Weingarten Integration 

Since there is freedom to define any integration scheme that satisfies reversibility 

and area perservation (and has the correct continuum limit), the integration 

scheme can be tailored to the problem at hand. When the action can be split 

into two parts, then the Hamiltonian is written as 

H = T(7r) + S, (U) + S2 (U). 	 (3.64) 

If the following two integrators are constructed 

U'(Si-) = eP1 e5T Qe )1 	 (3.65) 

= eST2 , 	 (3.66) 

where the operators P1  and P2  represent the updates to the momenta from the 

S1  and S2  parts of the action, and Q is the update to the gauge field (see § 3.6 

for more details). Using the Baker- Campbell- Hausdorff formula, it can be seen 

that a reversible integrator for the full Hamiltonian is given by 

	

(T(y) 	U2() [1 

(T)j0

2 ii) 	 (3.67) 
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with fn E N. This compound integrator has effectively introduced two evolution 

time scales, r and 8/in. This proceedure can be continued recursively, as 

many time scales can be introduced as desired, so long as the action can be 

split accordingly. This multiple time scale leapfrog integrator is known as the 

Sexton-Weingarten integrator [51]. 

If S is much larger than S2 , then it will have a dominant contribution to the 

force: the Sexton-Weingarten integration scheme is ideal for specifically such 

an action. Clearly such an integration scheme will only be useful when the 

computational cost of including S2  is much less than that of S 1  for in > 1. 

Ideally the fermionic action would take the take the role of S 2 , and the pure 

gauge contribution to be S 1  since the cost of pure gauge force is much less 

than that of the fermionic. Unfortunately as the fermion mass is reduced, the 

fermionic high frequency fluctuations become dominant, rendering the Sexton-

Weingarten scheme less beneficial without some modification of the action [52]. 

3.8 Krylov Solvers 

In both the generation of gauge configurations incorporating the effect of dy-

namical fermions and in propagator calculations, it is required that the inverse 

of the Dirac operator applied to a source vector is calculated, i.e., solving equa-

tions of the form 

Ax = b, 	 (3.68) 

where A = MtM for dynamical fermion simulations or A = Al for propagator 

calculations respectively. Due the sparsity and dimensions of the discretised 

Dirac operator, it is most efficient to use an iterative method rather than an 

explicit matrix inversion. 

When solving a system of equations where the matrix operator is hermitian, 
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e.g. as in the case of dynamical fermion simulations, generally the conjugate 

gradient method is used [53]. For non-hermitian operators either the system 

AAx = Atb can be solved, the so called conjugate gradient normal equation 

method (CG-NE), at the expense of squaring the condition number, or use 

another method such as BiCGstab [54]. 

3.8.1 Conjugate Gradients 

Consider the functional 

= x tA x  - x tb. 	 (3.69) 

If A is a hermitian matrix, it can immediately be seen that the minimum of this 

functional corresponds to the solution of equation 3.68. The residual vector is 

the negative gradient of the functional at coordinate x and is given by 

r=b — Ax. 	 (3.70) 

In the method steepest descents, an initial guess is made to the system x 0 , 

and then iterated upon by proceeding down the gradients of the functional, 

i.e., r. Eventually, the global minimum of the functional shall be reached, this 

corresponding to the required solution. The updates take the form of 

r+1 = r1  - cAr 1 , 	 ( 3.71) 

= x + Ckiri, 	 (3.72) 

with r0  = b - Ax 0  and where a, = is chosen so as to minimise the 

value of the functional, in the direction r. 

The problem with this simple minded method is that the gradients are not 

guaranteed to be orthogonal to each other. Since at each iteration a dimension 

is removed, any subsequent search directions should ignore any components in 

that direction. This is the basis for the Conjugate Gradient (CG) algorithm. 
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When each new residual vector is calculated, the previous search directions are 

subtracted, and this reduced vector p is used for the new search direction. 

The CG algorithm is given as follows [53]. 

• Xo = initial guess, r0 = Po = b 

• while Iri  I > tol, for i = 0, 1,2... 

_J 
p3 Ap 

- 	= x + ajpj  

- rj1  = ri  - cAp 

- 	rill 

- Pi+i = T1 + /3p 

The choice of the coefficient 13  ensures that the direction vectors are A conjugate 

to each other (or equivalently that the residual vectors are orthogonal to each 

other). 

The CG algorithm is guaranteed to converge in N iterations where N is the 

dimension of the matrix being inverted, however in practice it will reach a 

desired tolerance much faster than this. The convergence rate of Krylov solvers 

is to a first approximation given by the condition number of the matrix, this 

is defined to the be ratio of the greatest to smallest eigenvalue of the matrix. 

As the fermion mass is reduced, the condition number increases, which in turn 

increases the number of iterations required for a Krylov method to converge to 

a given accuracy. 

The CG algorithm (and the like) are known as Krylov solvers because they 

build up a Krylov subspace K E span{Atr,i = 0...n - i}, from which a so- 

lution is constructed. 	Thus the solution can be thought of as a polynomial 
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in A. The polynomial constucted through a Krylov method will require fewer 

matrix-vector products than that constructed through an explicit polynomial 

approximation, this is because the Krylov polynomial is specific to the cur-

rent matrix, and in some sense is more optimal than the general polynomial 

approximation. 

3.8.2 Multi-shift Solvers 

Take the following two equations 

Ax=b 
	

(3.73) 

and 

(A + ) a = b, 	 (374) 

where A is some matrix, or is proportional to the identity, b is the source vector 

and x and are the solution vectors for two equations respectively. These two 

equations can he solved separately using a Krylov method, but note that when 

a zero initial guess is made, then the resulting Krylov subspaces constructed 

are identical for both, i.e., 1C, (A + a) = span {(A + a)1r,i = 0...n - 11 = 

span {Aro , i ... n - 11 = 1C, (A) if r0  = r. The zero initial guess condition is the 

only one which will give trivially coincident Krylov subspaces. 

Multi-shift (also known as multi-mass) solvers use this coincident Krylov space 

to calculate matrix inversions simultaneously, without the need for any addi-

tional matrix-vector products [55]. The inversion of the lightest system follows 

that of a regular Krylov method, e.g., the CG method given in §3.8.1. Through-

out the inversion, the residual vectors of the shifted and unshifted systems are 

parallel, and related through the real scalar (, where 

= 	rj . 	 (3.75) 
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In addition, all direction vectors are "A-parallel", i.e., 

(A + a)p = çAp. 	 (3.76) 

The values of (, a and Oil arise from coupled two term recurrence relations 

[55], their updates are given by 

i+1 = ajj(1 - ç)+(1a_1(1 - aa) 	
(3.77) 

1 

	

= a—- 	 (3.78) 

pa a 
pa = 3 	 (3.79) 

From these relations, the updates to the shifted solution and direction vectors, 

Xa and p°,  can be found without any additional matrix-vector products. 

The multi-shift conjugate gradient algorithm is given as follows [55]. 

	

• xg = 0, To = pc' = b, a_1 = 	= = 1, ag = 0 

• while I ri I > tol, for i = 0,1,2... 

 —a ---- 
- pi Ap 

- calculate a, ( 	according to equations (3.78) and (3.77) respec- 

tively 

- xT+1  = xT + a 7p T  

- Tj+l = T - aAp 

- p - ri+2 
- 

— calculate 0,17+1according to equation (3.79) 

— Pj
a -

1 - ( 7 i+1 + /3'pT 

The number of Dirac applications needed is the same as for the zero shift system, 

since the shifted systems will converge quicker since they are better conditioned. 
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Multi-shift solvers can be used when performing a partially quenched analysis 

when the mass parameter is a multiple of the identity matrix. In this case, many 

propagators can be obtained for approximately the same cost as the lightest 

mass propagator. 

3.9 Chronological Inversion 

When evolving an MD trajectory, from each step to the next, the gauge field is 

only changing O(8) which for small ST is only a small amount. At each one of 

these MD steps, the inverse of the Dirac operator applied to a constant right 

hand side must be evaluated. Hence the function M( -r ) -1 0 is a smooth function 

in time, and it would seem sensible to contruct an initial guess for a Krylov 

method using previous solution information [36]. This indeed proves to be the 

case, and the optimal method for doing this is to perform a CG minimisation on 

the history of previous solution vectors, to construct the best initial guess [56]. 

Since the past solution vectors will have a large overlap, this minimisation is 

best done by first orthonormalising this vector space. The chronological inverter 

is thus given by 

Orthonormalise past solution vectors Vk. 

Solve the system E'k = l ckv/Avk = vib using a direct method. 

Constuct initial guess x0 = 	ckAvk. 

Perform CG inversion, with initial guess x 0 . 

Typically, it is found that it is best to use up to the last ten solution vectors, 

presumably, older solution vectors have little relevance to the current problem. 

If the tolerance on the residual is not small enough there will be an observable 
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violation of reversibility arising from using a non-zero initial guess. As a result, 

the residual must be made smaller than one would otherwise expect to maintain 

an exact algorithm. This reduces the improvement that can be gained from 

using a chronological solver, but it still generally gains a factor of two [571• 

Note that such acceleration cannot be used with the .R algorithm, since at every 

MD step the right hand side changes, which means no improvement can be 

gained by using previous inversion information. 
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Chapter 4 

Rational Hybrid Monte Carlo 

In chapter 3 the current popular algorithms for lattice QCD were outlined. 

There is clearly a need for another choice of algorithm for non-integer a theories 

since the R algorithm is inexact with respect to the integrating stepsize, and 

PHMC is more expensive than HMC (especially for ASQTAD fermions and/or 

large volumes). 

If one is to proceed using a conventional Metropolis acceptance test at the end 

of a trajectory, the measure of the action at the beginning and at the end of the 

MD trajectory must be performed without any systematic error, otherwise a 

weighting factor must be included (equation (3.40)) for the resulting ensembles 

to have the desired probability distribution. Optimal rational approximations 

are in general orders of magnitude better than polynomial approximations and, 

for correctly chosen parameters, allow a computation of the desired function to 

arbitrary precision with far greater ease than with polynomial approximation. 

Hence, an algorithm can he constructed which does not require any determinant 

reweighting. This is the basis for the Rational Hybrid Monte Carlo algorithm 

(RHMC). 

55 



56 	 CHAPTER 4. RATIONAL HYBRID MONTE CARLO 

In this section RHMC shall he derived, and the particular implementation used 

for this work shall be explained. The algorithm shall then be compared to pub-

lished data, produced using the R algorithm and PHMC using naïve staggered 

fermions to check the algorithm's correctness and efficiency. 

4.1 Rational Approximations 

Optimal rational approximations are similar to equivalent polynomial approxi-

mations, with the obvious difference that a ratio of polynomial functions is used 

as the approximating function. Chehyshev's criterion states that the error e(x) 

takes its maximum absolute value A at at least n + d + 2 points, where ii and 

d are the degrees of the numerator and denominator polynomials respectively. 

and that the sign of error alternates between successive extrema. 

le.06 

le-l2 

' 

le-18 

- . Rational Extrapolation 

le-24 
	- Polynomial Extrapolation 

- Rational 
- Polynomial 

le-30 	
0 	 lOU 

	
1000 

Degree of approximation 

Figure 4. 1: A plot comparing the maximuni error of the polynomial and rational 

approximations to the square root function, where the spectral range has been 

set, appropriate for staggered mass in = 0.01. The extrapolation at high degree 

is required due to the cost of evaluating such approximations. 
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The optimal rational approximation satisfies 

(— 1)A = w(xZ)(r(x1) - f(x)), 	 (4.1) 

where f(x) is the function being approximated, r(x) = p(x)/q(x) and x2  are 

the locations of the extremal errors. For this work the weighting factor was set 

w(x) = 1 /11(x), i.e., relative error measure. 

The advantage of rational approximations is that they converge to the desired 

function much faster than polynomial approximations as a function of the ap-

proximation degree (figure 4.1). All of the work presented here shall assume that 

the degree of the numerator polynomial, and that of the denominator polyno-

mial are equal'. As the quark mass is reduced, the spectral interval increases 

because the lower bound of the Dirac operator will decrease, while the upper 

bound remains approximately constant. As a result, the degree of approxima-

tion must be increased to maintain a constant maximum error. 

Optimal rational approximations to x are calculated using the Remez algo-

rithm [58]. It turns out that the roots of these polynomials are real and non-

degenerate. When a < 1 these are always positive, however, when a > 1 they 

are negative. This has important consequences that shall be touched upon later 

(§8.3). Figure 4.2 is a plot showing the maximum error as a function of a. 

There are discontinuities in the plot at integer multiples of a = 1, this merely 

reflects the fact that the optimal rational approximation to x (1/x) is x (1/x) 

etc.. Obviously the rational approximation to x is equal to that approxima-

tion generated by but with the numerator and denominator polynomials 

exchanged. 

1 When odd functions are considered, e.g., the sgn function, the degree of these polynomials 

must differ by an odd number, and by an even number for even functions. Since only positive 

arguments are considered here, this restriction does not apply. 
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Figure 4.2: Maximum relative error in rational approximation as a function 

of the approximating power c, n = 8, hounds appropriate for staggered mass 

M = 0.01. 

4.2 Remez Algorithm 

The Remez algorithm [58] is the algorithm that is used to generate the coef-

ficients for an optimal rational approximation to a given function over some 

finite range. This algorithm follows an iterative procedure to form the solution. 

For the special case of the (inverse) square root function with minimum relative 

errors, the rational coefficients can be calculated analytically [59]. 

A coordinate set Xis defined fxi E [A,)],i = 1,...,n+d+2} which are the 

locations of the maxima of the error function. The Remez algorithm essentially 

consists of alternating two steps 

Hold X fixed, find the new r(x). 

Hold r(x) fixed, find the new X. 
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In doing 1., the rational approximation which satisfies 

e(x) 	w(x)[f(x2) - r(x)} = (— 1)'A (4.2) 

must be found. This equation can be written in linear form with repsect to the 

rational coefficients by multiplying both sides of the equation by the polynomial 

denominator, and writing the two polynomials as p(x) = x3 p3  and q(x) 

=o x3 q3 . Hence the following matrix equation must be solved 

d 	 n 
xq[f(x) - (_1)t/w(xj)] - 	= 0 	(4.3) 

jO 	 j=O 

	

MV = 0, 	(4.4) 

where the vector v = (p0,... ,pn,qo,• ,q). This is a set ofn+d+2 equations 

with n + d + 2 degrees of freedom. There are only n + d + 1 degrees of freedom 

in the vector v since a rational function is fully described by its roots, poles 

and an overall scale factor. Thus one of the elements of v can be set equal 

to unity without loss of generality. The additional degree of freedom is Z, 

which appears in the matrix, hence the system of equations cannot be solved 

directly using matrix inversion. In principle L can be found directly from the 

condition that det M = 0, which must be true if a solution to equation (4.4) 

exists. However, finding the unique real solution can be problematic. The most 

reliable method for solving this matrix problem is to calculate an approximate 

using the previous iterations rational coefficients, and then solve the matrix 

equation [58]. Since this shall not be an exact solution, it may be required 

that this procedure is performed iteratively, until self consistency between the 

input and output A has been achieved. The initial approximation to use on 

the first iteration does not strongly affect whether the algorithm convegerges or 

not. The algorithm as implemented for this work uses a direct solve to perform 

the matrix inversion to obtain the rational coefficients, but an iterative Krylov 

method may be preferable since the previous iteration's solution would form a 

good initial guess. 
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The calculation performed in 2. requires that the global maxima of the error 

function are found. This is generally done through a simple searching method. 

When approximating a function that has a lot of high frequency information, 

this process can breakdown and/or require very small steps to he made when 

doing this searching. Due to this potential instability, the Remez algorithm 

requires high precision floating point arithmetic, greater than standard double 

precision, generally 30-50 digit precision is needed, depending on the accuracy 

and interval required. High precision arithmetic is easily implemented on a com-

puter through the use of the GNU Multiple Precision library [60]. The Remez 

algorithm can have poor convergence for exceptional functions, this is especially 

true when a rapidly oscillating function is being approximated. Fortunately for 

the functions considered here, e.g., f(x) = x, this is not the case. 

Once the rational approximation has been found, all that remains is to find 

the roots and poles of the rational function, to allow representation in either 

product form or partial fraction form. The method chosen in this work was the 

Newton-Raphson root finding method with deflation 2 , where the roots of each 

of the numerator and denominator polynomials are found separately. 

4.3 Partial fraction expansions and multishift 

solvers 

A rational function with the Dirac operator M as an argument, when written 

in product representation applied to a source vector, is written 

n.  fl 1 (M + 'Yk) 
= Con(M + 13k) 	

(4.5) 

2 Deflation is where the previous solution is projected out of the function when searching 

for the next root - this ensures that all roots are found. 
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In this notation these shifts are always positive, so the condition number is a!-

ways improved compared to the unshifted case. To evaluate this function would 

still be very expensive since each denominator monomial has to be evaluated, 

corresponding to d Krylov subspace inversion operations. 

Any rational function can be written as a polynomial quotient plus the sum of 

a series of partial fractions. Since it is always assumed that the degree of the 

numerator and denominator polynomials are equal n = d, in which case the 

quotient is just a constant. Hence equation (4.5) can be rewritten 

r(M)= (ac) 
	

a 

M+fik) 	
(4.6) 

k=1 

To evaluate this function still requires d inversion operations, but the crucial 

difference here is that all of the denominator monomials are now acting on a 

common vector. This allows the use of a multi-shift solver to perform the matrix 

inversions simultaneously [55]. 

4.4 Rational Hybrid Monte Carlo 

In a similar vein to PHMC the fermion determinant is written 

det A411 = f V q tDq 	 det[Mar(M)], 	(4.7) 

where T mc (X) is an approximation to x 12  over the spectral range of the fermion 

matrix (the reason for the subscript shall become clear in the following. The 

reason that r 2, approximates the desired function, and not just r,,,,, is to allow 

a pseudofermion heatbath to be used (see §4.4.1). The approximation rmc  is 

chosen such that the maximum relative error is small enough such that the ap-

proximation does not induce a systematic bias. In other words the determinant 

in equation (4.7) can be set equal to unity without fear of bias. This means 

the convential Metropolis acceptance test can be used. The question of course 
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then arises, what is considered a small enough maximum error such that no 

bias is introduced? Since all calculations are performed using double precision 

arithmetic, using the unit of lowest precision of double precision arithmetic (1 

ulp 10_15)  would seem like a sensible maximum error to require of the ap-

proximation. However, since all evaluations of the rational approximation are 

done using a Krylov solver, the error on the approximation will also be governed 

by the tolerance of the solver. In most HMC calculations the tolerance of the 

solver is generally set to 10_8 - 10- 10 when evaluations of the action are required 

[41, 571. With this is mind, the maximum error of the approximation A ., is 

always set to be smaller than the tolerance of solver. 

Each RHMC trajectory thus consists of repeated applications of the folowing 

procedure. 

. Momentum refreshment heatbath using Gausssian noise (P(ir) x e2/2). 

. Fermion refreshment (0 = r(M)i, where P(i) oc e-77 2/2). 
MC 

. MD trajectory consisting of T16T steps. 

• Metropolis accept/reject with probability Pacc = min(1, e - JH) 

4.4.1 Pseudofermion Heatbath 

As stated in § 4.1, the roots and poles of rational approximations are always 

real and non-degenerate. Therefore, a simple decomposition of the rational 

approximation as can be done for the polynomial case (equation (3.42)) cannot 

be performed. However, if the rational function approximates the square root 

of the desired function, then the heatbath is trivially given by inverting the 

rational function, 

r"" (M)= ii. 	 (4.8) 
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where 71 is again a Gaussian noise vector. The inverse of the rational function 

is expanded in partial fractions and evaluated using a multi-shift solver, the 

resulting solutions are then summed together with the constant term to give the 

required pseudofermion vector. When evaluating the sum of partial fractions, 

the order of the summation is always from smallest to largest contributions (i.e., 

from largest shift to smallest shift), since this will minimise the rounding errors 

incurred. It is empirically found that the summation is extremely stable, and 

any rounding errors seem extremely mild (all of this work was conducted using 

double precision arithmetic). 

4.4.2 Computation of the Force 

When implementing the force, the naïve prescription would be to use the ap-

proxirnation r(M)  which appears in the action. However, doing so would lead 

to a force term of the form 

= - 	
(M + 0

k=1 
[(M + k) 

dU
'M' + M'(M + A)_']  

(4.9) 

This results in a force term which requires 2 Krylov inversions per evaluation 

because of the presence of the double poles, which is double that of both the R 

and HMC algorithms. 

Instead note that it is not required to use r(M)  in the pseudofermionic action 

when calculating the force, in fact any functional form can be used. However, 

to obtain a non-negligible acceptance rate this functional form must be a good 

approximation to the above force. Motivated by this, the action can be approx-

imated as 

St = q t r2(M) cI 	 (4.10) 

qrmd (M), 	 (4.11) 
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where T md (M) is a rational approximation to M°. Regardless of the error 

bound Lmd on rm d, the correct distribution is obtained, any errors being stochas-

tically corrected for by the acceptance test in the same manner that the finite 

stepsize errors are corrected. This is similar to the algorithm presented in [411, 

where a looser stopping condition is used for the MD Krylov solves, with a tight 

one used for MC acceptance evaluation. 

For RHMC, the strategy therefore is to use an "exact" approximation Tmc (M) for 

the heatbath and Metropolis test, but evolve the gauge fields using a lower order 

approximation rmd(M) in the MD. Although the number of Dirac applications 

is solely dependent on the smallest polar shift in the rational approximation, 

using a lower degree function is potentially beneficial because the smallest shift 

increases with decreasing degree, effectively giving a better conditioned matrix 

to be inverted. There is also a reduction in the amount of linear algebra per-

formed, which is beneficial since linear algebra is the bottleneck with inverter 

performance (see appendix D). The force is now given by 

dSf 
 = 	r(M)b 	 (4.12) 

dU .  

= - 	a(M + k ) 1 	(M + 	 (4.13) 

	

As when performing the heatbath, the vectors Xk = (M ± 	are obtained 

in one step using a multi-shift solver. For each k 1  contribution to the force, the 

matrix M' applied to the k 1 solution vector must be calculated. For simple 

fermion kernels (e.g., naïve staggered, Wilson) this is a trivial calculation, and 

so is of neglible cost. For the case of ASQTAD fermions the situation is similar 

to that as described for the PHMC algorithm (3.5), where the resulting force 

calculation cost would render the algorithm infeasible. The resolution to this 

force calculation cost for ASQTAD fermions is described in chapter 7. 

The evaluation of the force requires storage of 2n + 3 vectors. However, unlike 
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the polynomial case, this does not mean any limitation in practice since rational 

approximations require a much lower degree approximation than polynomials 

to obtain the same quality of approximation. 

4.4.3 Energy measurement 

The energy measurement is required in the calculation of the e 811  factor for the 

Metropolis acceptance test. For the pseudofermionic contribution to the action, 

this requires the evaluation of the action at the beginning and at the end of the 

trajectory. The contribution at the start of each trajectory can be evaluated 

trivially for the cost of a scalar product: observe from equation (4.8) 

S fi 	 (4.14) 

= 71tr(M(0))rmc (M(0))r mc (M(0))r jc'(M(0))ri 	(4.15) 

= lit 71. 	 (4.16) 

The evaluation of the contribution at the end of the trajectory requires the eval- 

uation of the norm of the rational approximation applied to the pseudofermion, 

ç'final = 	t r2 (M( y )) cb 	 (4.17) Li 

This costs an additional inversion operation and a scalar product. 

4.4.4 Integration Scheme 

For the case of conventional HMC, /S + 1 inversions per trajectory are eval-

uated regardless if a UQPQ or UPQ p integrator is used. For RHMC the situation 

is complicated slightly by the extra inversions required for the heatbath and 

the end of trajectory fermion action evaluation. For HMC using the UPQP  inte-

grator, the final MD inversion is the same inversion as is required for the MC 
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(modulo solver tolerance), but with RHMC they are different since different ap-

proximations are used for MD and MC. Thus if a UPQP  integrator is used, then 

'r16-r +3 inversions per trajectory will be required. On the other hand, 'r/ör + 2 

inversions are required for a UQPQ  scheme. With this in mind, and the better 

acceptance rate obtained from such an integrator [39], the optimum choice is a 

UQPQ  scheme. 

In addition a Sexton-Weingarten integration scheme [51] was implemented. For 

a UQPQ  integrator, the Sexton-Weingarten integration scheme is given by 

rfl 	 / 	\ lrn 
cr \ I 

Usw (1 = [
(Ji (2fn)l 

U2(S) 
 [ 	- 	

(4.18) 
QPQ 

I 

where 

0 1  (6-r) = eQe TP1 e 2 	 (4.19) 

C12(6 T) = eP2 
	

(4.20) 

The conserved Hamiltonian H' is found from considering the error in the inte-

grator to occur only in the non-commutivity between P1  and Q, and from P2  

and Q (trivially P1  and P2  must commute) to be 

(4.21) 

As to how the action is split between into two pieces is left open depending on 

the fermion formulation. 

4.5 Algorithm Testing 

All of the initial testing and verification of the RHMC algorithm was done us-

ing naïve staggered fermions. The reasoning behind this being that this fermion 

formulation is the simplest to apply RHMC to, and is the least computation-

ally demanding. The fermion matrix is explicitly bounded from below by the 
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mass parameter, which means that the required rational approximations can 

be constructed without complication. In addition, the derivative of the fermion 

matrix is extremely simple and cheap to calculate. As a result of this, the force 

written in equation (4.13) comprises a negligible fraction of the algorithm cost, 

given that the partial fractions have been evaluated, so the algorithm can be 

used as just described. 

Parameters from published data were chosen to perform this comparison [47], 

the physics parameters being those given in table 4.1. This publication con-

cerned a comparison between the R algorithm and PHMC using two flavours of 

staggered fermions so is ideal for these purposes. 

V Gauge Action 0 Fermion action Nf  m 1  

16 4  Wilson 5.70 Staggered 2 0.02 

Table 4.1: The physics parameters chosen from [47] for comparison against 

RHMC 

Hence the required action to be used in the calculation is 

S = S + 	 (4.22) 

The possible range of eigenvalues of the staggered kernel is [4m2 , 64 + 4m2 ] ( the 

normalisation was a factor of 4 greater than that given in equation (2.13)), 

hence the rational approximations were set valid over this range. During this 

testing, the multiple time scale implementation was also verified, this was done 

through placing the pure gauge contribution on the short time scale (Sr' = S 1 ) 

and the fermion contribution on the long time scale (S = S 2 ). 

To define a more meaningful measure of algorithmic efficiency to compare these 

algorithms, the following measure was used 

(A) 
Efficiency = 	, 	 ( 4.23) p-  
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where (A) is the expectation value of the acceptance rate, and Nmv  is the num-

ber of matrix-vector products per trajectory. This measure assumes that the 

dominant cost of hybrid algorithms lies purely in the matrix-vector multiplica-

tion. This is not necessarily true, e.g., the force calculation for PHMC may be 

significant, but as a direct comparison it is suitable for this work. 

Algorithm PHMC PHMC PHMC R 

n 300 400 500 

1 1 1 1 

0.02 0.02 0.02 0.02 

Ntr&j  1700 1050 800 1000 

61291(183) 73176(296) 87955(350) 77880(807) 

(P) 0.577099(46) 0.577130(46) 0.577023(43) 0.57726149 

(8H) 0,1112(126) 0.1359(147) 0.1497(187)  

(A) 0.6329(122) 0.7657(168) 0.7675(191)  

(E) x 10 1.0326(231) 1.0463(274) 0.8726(252)  

Table 4.2: The algorithm parameters and results published in [47]. ii is the 

degree of the polynomial approximation, Nt r j  is the number of trajectories ob-

tained, (P) is the average plaquette and (E) is the average efficiency. The errors 

were found using a jackknife analysis. 

The results published from [47] are shown in table 4.2 and results generated 

using RHMC are shown in table 4.3. The immediate conclusion that can be 

drawn is that the plaquette distributions between the RHMC and PHMC results 

are, within errors, consistent with each other, suggesting that RHMC has the 

correct fixed point. The plaquettes produced by RHMC at the two different 

stepsizes are compatible with each other, as they must be given the Metropolis 

test correcting for stepsize errors. 
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At these parameters RHMC is at least 50% more efficient than the optimal 

PHMC run (n = 400), this efficiency is not due to an increased acceptance 

rate, the acceptance rate of RHMC being 70% compared to the PHMC's 74%, 

but rather because of the decreased number of matrix-vector products. This 

reflects the fact that Krylov methods can obtain a given precision using less 

matrix-vector multiplication than polynomial methods. What is interesting to 

note is that ii = 400 and n = 500 PHMC results have a higher acceptance rate 

than that of RHMC. 

Algorithm RHMC RHMC 

71md 10 10 

md 4.21 x iO 4.21 x iO 

mc 15 15 

mc 1.34 x 10-10 1.34 >< 10_b 

resmd 10_6  10_ 6  

res 1  10 9  io 

T 1 1 

0.02 0.04 

Ntraj 2000 2000 

N. 42549(10) 22317(4) 

(P) 0.577110(53) 0.577164(122) 

0.2974(377) 4.325(230) 

(A) 0.6989(93) 0.1387(104) 

(E) 1.6153(434) x 10 6.106(553)x 10- 6  

Table 4.3: The RHMC algorithmic parameters and some observables measured 

from the resulting gauge fields. The parameters res md and res represent the 

tolerances used in the multi-shift solver for the MD and heat bath /acceptance 

solves respectively. The errors were found using a jackknife analysis. 
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The results shown in table 4.3 were high statistics runs intended to show that 

RHMC does indeed tend towards to the correct fixed point. In an attempt to 

ascertain the scaling behaviour of RHMC many shorter runs were carried out. 

For tabulated details of these results refer to appendix A. 

It was deemed important to investigate the scaling behaviour of RHMC with the 

degree of the MD approximation nn, since tuning this parameter could severely 

affect the efficiency of the algorithm. Figure 4.3 is a plot of the maximum error 

rnd as a function of nmd.  The exponential reduction of error with increasing 

degree can clearly be seen. 
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Figure 4.3: A plot showing the dependence of the MD approximation error 

(defined in equation (4.2)) with degree n md. Also included in the plot is the 

error of r. The parameters and results are given in tables 4.1 and A.I. 

The variation in the condition number of the fermion matrix as a function of 

approximation degree is illustrated in figure 4.4. As the degree of approximation 

is increased from iirfld = 1, there is an initial sharp increase in the number of 

matrix-vector products which levels off at around ti m, = 6. This might suggest 

that it could be very advantageous to use a very low degree approximation, 

however, the acceptance rate obtained when using such small nrnd S negligible 
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(Figure 4.5). There is a sharp transistion between hind = 3 and Tlmd = 4 from 

negligible acceptance to non-negligible. After this transition the acceptance rate 

slowly increases, reaching a value of 76% at n., = 13. This in part explains 

why the n = 400 and n = 500 PHMC results had a higher acceptance rate 

than the equivalent RHMC result where n., = 10 was used, i.e., the error in 

the MD approximation was causing a reduction in acceptance rate (a similar 

increase in acceptance rate would be expected if tolerance of the MD solver was 

tightened). When the resulting efficiency is plotted (Figure 4.6) it can be seen 

that the two effects almost cancel each other out completely. The conclusion 

being that when in a regime with a reasonable acceptance rate, there is little 

that can be tuned to significantly improve the efficiency. 
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Figure 4.4: A plot showing hOV Nmv  varies with n, i.e., the plot reveals how the 

increase in n., causes the matrix condition number to increase. The parameters 

and results are given in tables 4.1 and A.1. 

The variation of the plaquette with MD approximation degree is shown in figure 

4.7. This plot was initially worrying, because there appears to be a trend that 

the plaquette decreases with increasing approximation error, suggesting that the 

errors in the approximation are not corrected by the Metropolis accept/reject 
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Figure 4.5: A plot showing the variation of the acceptance with n, The 

parameters and results are given in tables 4.1 and A.I. 

test. This is not the case, the apparent trend in plaquette is merely a reflection 

of poor statistics, the mean plaquette is not properly estimated. To verify this 

is the case a long run with = 2000 using Ti m d = 5 was performed, this point 

is included on the plot verifying that the approximation errors are corrected for. 
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Figure 4.6: A plot showing the variation of the efficiency with md•  The param-

eters and results are given in tables 4.1 and A.I. 
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Figure 4.7: A plot showing the dependence of the RHMC plaquette when vary-

ing nn, When the statistics are low (red line) there is an apparent bias in the 

data which favours a lower plaquette. As the statisitcs increase, this apparent 

bias is removed (black line). The parameters and results are given in tables 4.1 

and A.1. 
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It is obviously also important to check the scaling of observables with stepsize. 

Figure 4.8 is a plot revealing the stepsize independence of the algorithm. Since 

the blue data points are only short runs at 100 trajectories each, the error 

bars are large, however, it can he seen that there is consistency with the ör = 

0.02.0-04, 2000 trajectory runs. The R algorithm 6T scaling results from [47] 

are included on the plot. It is clear that RHMC is able to use an integrating 

stepsize greater than the R algorithm because of the stepsize errors present in 

the latter. For consistency between the exact result of RHMC and PHMC the R 

algorithm stepsize must he set to 6 = 0.005. When compared to the optimum 

RHMC stepsize, this corresponds to at least a factor of two (four if multiple 

time steps are used) increase in matrix-vector products. 
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Figure 4.8: A plot, showing the independence of the RHMC plaquet.te with 

stepsize for the runs with and without multiple length time scales. The stepsize 

scaling of the R algorithm comes from [47]. The parameters and results are 

given in tables 4.1 and A.2. 

The variation of 6H with stepsize is shown in figure 4.9. Included on the plot are 

also results from using the multiple time scale Sexton-Weingarten integrator, 

where the gauge integrating stepsize has been kept constant at 6T 0.01. The 
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advantage of using multiple time scales is very clear in this case, the breakdown 

in the integrator does not occur until a much greater integrating stepsize is 

used. This behaviour of course translates into better acceptance rate scaling 

with stepsize (figure 4.10). Figure 4.11 reveals that the result of using the 

multiple length time scales is to increase the peak efficiency of the algorithm by 

more than a factor of two. The conclusion is that for these parameters chosen, 

the gauge force is still the dominant contribution, and hence the use of multiple 

length time scales is extremely beneficial. 
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Figure 4.9: A plot showing the dependence of the RHMC SH with stepsize, 

with and without multiple length time scales. The parameters and results are 

given in tables 4.1 and A.2. 

This comparison against published data thus proves that RHMC is a valid and 

efficient algorithm with which to perform arbitrary flavour dynamical fermion 

QCD calculations using staggered fermions. At these parameters RHMC has 

been shown to be significantly more efficient than PHMC. When compared 

against the R algorithm, RHMC has been demonstrated to much more efficient 

than the R algorithm because it allows the use of a far greater stepsize. 
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Figure 4.10: A plot showing the dependence of the RHMC acceptance with 

stepsize with and without multiple length time scales. The parameters and 

results are given in tables 4.1 and A.2. 
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Figure 4.11:A plot showing the dependence of the RHMC efficiency with step-

size with and without multiple length time scales. The parameters and results 

are given in tables 4.1 and A.2. 



Chapter 5 

Extensions to the Multi-Shift 

solver 

The multi-shift solver as given by Jegerlehner [55] is restricted compared to 

more conventional solvers in the sense that a zero initial guess must be used 

for the algorithm to work correctly. The reason for this can easily be seen by 

realising that the Krylov subspace of the initial residuals must coincide exactly. 

Consider the case where a multi-shift solver is used to solve the following two 

matrix equations, 

	

Ax = b, 	 (5.1) 

(A ± a)x 	b. 	 (5.2) 

where the shift a is a multiple of the identity. The initial residuals of these 

systems are given by 

r = b—Ax0 , 

	 (5.3) 

= b - (A + a)x 	 (5.4) 

respectively, where x 0  and xg are the respective initial guesses. It can be seen 

instantly that these residuals will coincide if a zero initial guess is used, and 

77 
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hence the regular multi-shift solver can be used. Is it possible to start with 

an initial guess for either/or both of these systems, and still be able to use 

the multi-shift solver? If possible this could open up the use of a chronological 

inverter [56] in RHMC, giving another potential benefit over the R algorithm, 

where an initial guess cannot be used because a new fermion vector is created 

every MD step. Being able to start a multi-shift solve with an initial guess 

would also have important consequences for overlap fermion calculations, where 

a rational approximation to the sgn function is evaluated using a multi-shift 

solver. 

5.1 A Chronological Multi-Shift Solver? 

For the following the analysis, the following parameterisation shall be useful, 

where the initial guess constructed satisfies the matrix equation 

A'x 0  = b, 	 (5.5) 

where 

	

A 
=

ckA(Uk) 	 (5.6) 

= A + SA. 	 (5.7) 

The matrix SA cannot be represented by a Dirac operator with a gauge field 

argument since in general the lattice Dirac operator MtM will not he a linear 

function of the gauge fields. 

From the requirement that the initial residuals be parallel, from equations 5.3 

and 5.4 it is clear that the following condition must be met 

	

Ax 0  = ( A + a)xg, 	 (5.8) 

which can in itself only be directly solved by an explicit matrix inversion. 
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The initial guess must be optimal for the unshifted system, since this will take 

the greatest number of iterations to solve. Using the optimal chronological guess 

will give a residual 

	

r = b—Ax 0 	 (5.9) 

= b - A(A')'b 	 (5.10) 

	

5AA'b, 	 (5.11) 

where it has been assumed that A >> 6A, which must be true else the initial 

guess would not be useful. When doing the shifted guess there are a number of 

possible routes that can be taken. If the same coefficients Ck are used for the 

shifted history vectors, the effective matrix equation that the initial guess will 

satisfy is 

(A' + o)x 	b. 	 (5.12) 

Hence the initial residual will be 

r" = b—(A+a)(A'+a) 1 b 	 (5.13) 

5A(A + o, ) -l b. 	 (5.14) 

An alternative approach for the shifted guess is to use the same initial guess as 

used for the unshifted case. The shifted residual is then given by 

= b—(A+a)xo 	 (5.15) 

= r - a(A + 6A) -l b. 	 (5.16) 

Unfortunately, neither of the shifted residuals in equations (5.14) and (5.16) 

are equal to the unshifted residual in equation (5.11). The conclusion to this 

investigation therefore is that the use of an initial guess cannot currently be used 

to reduce the number of matrix-vector products over the course of an RHMC 

trajectory. 
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5.2 The Generalised Multi-Shift Solver 

Take the following two systems 

Ax = b, 	 (5.17) 

(A + a)x = b°, 	 (5.18) 

where b  is independent of b. Their residuals are given by 

r = b—Ax0 , 	 ( 5.19) 

ra = b - (A + a)xg 	 (5.20) 

respectively. Trivially the vectors r and TU  can be made to coincide by the 

requirement that 

or = xo 	 (5.21) 

and 

	

b = b' - axg. 	 (5.22) 

This suggests that given the systems of equations in equations (5.17) and (5.18) 

then the solutions x and x can be found simultaneously through choosing the 

initial guess such that 

= _(ba - b). 	 (5.23) 
or 

Hence the multi-shift solver can be seen to solve systems of the following general 

form 

	

(A+cr)xg = bU 	 (5.24) 

	

= b + 	ax 0 . 	 ( 5.25) 

If a zero initial guess is used, then the conventional multi-shift solver with the 

same right hand side for all shifts or is obtained. With a non-zero initial guess, 

then a a dependent right hand side is the result. Only two independent right 



5.3. THE R2ALGORITHM 	 81 

hand sides can be chosen, since any further right hand sides are dependent on 

the choice of the initial guess which is determined by the first two right hand 

sides. However, the question is now, is this more generalised form actually any 

use? 

5.3 The R2 Algorithm 

One potential use for this form of the multi-shift solver is for the R algorithm 

when doing 2+1 quark flavours of staggered fermions. At each MD step two 

matrix inverses must he evaluated, one for the light pair and one for the strange 

quark. 

(02  + 4rn)X1  = 0, 	 (5.26) 

and 

	

(2 
+ 47n)X. = 	 ( 5.27) 

	

Using an initial guess of X 0  = ( m 2 - m?)'(. 	the generalised multi-shift 

solver can he used to solve both of these systems simultaneously. In such a 

situtation the strange quark inversion would be completed before the light pair, 

so by using this inversion process the strange quark inversion is obtained for 

free. This is particularly well suited to the R algorithm because there is no 

means of making any intelligent initial guess to the IKrylov solver, so one guess 

is as good as any another. The case when the R algorithm uses this generalised 

multi-shift solver to reduce the number of matrix-vector operations shall from 

now on be referred to as the R2 algorithm. 

Figure 5.1 is a plot of the total number of conjugate gradient iterations per 

trajectory for the R and R2 algorithm using naïve staggered quarks on a 44 

lattice. As can be seen. for these parameters there is a saving of around 30% 

in the number of iterations per trajectory. However, as a more physical pa- 
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Figure .5.1: CG iterations per trajectory for Nf  = 2+1, 44  lattice. Wilson gauge 

action, i3 = 3.6. in1 = 0.0.5, in, = 0.2. T = 1.0, 8T = 0.04. 

rameter regime is approached, i.e., a lighter light fermion pair, this gain would 

be reduced. Figure 5.2 is a plot of the plaquette history for the same evolu-

tion. It can be seen that after around 100 trajectories the plaquettes diverge 

between the algorithms (figure 13). This is to be expected because the solu-

tions produced will be slightly different between the algorithms because of the 

different initial guess. Although the difference will be small per inversion. i.e.. 

of magnitude no greater than the tolerance of the residual to which the inverter 

converges, the difference gradually increases as the lattice is evolved until there 

is no correlation between the two evolved gauge fields. A similar divergence 

can be witnessed when comparing the same code running on different architec-

tures because of the variation in floating point precision. Hence both plaquette 

histories are equally valid, as is suggested by the fact that the mean value of 

the histories are compatible. The loss of correlation can he seen in figure 5.3. 

which is a plot of the difference between the plaquettes obtained using the two 

algorithms. 

This technique is of no use when doing 2+1 flavour staggered fermions simula- 
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Figure 5.2: Plaquette history for N1  = 2 + 1, 44  lattice, Wilson gauge action, 

= 5.6, m 1  = 0.05, m = 0.2, r = 1.0, 6r=0.04. 

tions using RHMC, since here the conventional multi-shift solver is already being 

used for each field's inversion. It is also equally useless for doing 2+1 flavour 

simulations using domain wall ferrnions with the R algorithm, the failing being 

due to the mass term not being a multiple of the identity matrix. 

One possible use that the generalised multi-shift solver might have is with over-

lap calculations. When performing dynamical overlap calculations, it may be 

beneficial to use the Hasenbusch trick [61, 62, 63, 64] to accelerate the fermionic 

dynamics. In such a circumstance it would be required that two inversions per 

MD step would be required (see equation (6.2)). where the right hand sides are 

different, and respective matrices being different by a constant shift, i.e., exactly 

the scenario where the generalised multi-shift solver can he put to use. 
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Figure 5.3: Difference in plaquette PR - PR2, N1  = 2 ± 1, 44  lattice. Wilson 

gauge action, fi = 5.6, in 1  = 0.05, m = 0.2. T = 1.0, 	=0.04. 



Chapter 6 

Monte Carlo Acceleration 

The biggest failing of HMC [33] is the rapid blow up in cost of the algorithm as 

the fermion mass is decreased. This reason for this is twofold: firstly because 

of the increase in condition number of the fermion matrix, Krylov solvers take 

many more iterations to converge within some tolerance. Secondly, in order to 

keep the HMC acceptance rate Pacc  constant the MD integration step size 57 

has to be reduced, and for MD trajectories of length r = 1 (or more precisely 

proportional to the correlation length of the system [65, 661, which is 0(1) for 

present-day computations) this corresponds directly to an increased number of 

MD integration steps and hence cost. This section addresses the latter of these 

problems. 

It took some time for the underlying cause of this dependence of step size on 

fermion mass to be understood: the phenomenon showed itself most clearly in 

the breakdown of reversibility of symmetric symplectic integrators in finite pre-

cision floating-point arithmetic. For pure gauge systems, or systems with heavy 

dynamical fermions, the violation of reversibility was traced to the exponential 

amplification of rounding errors due to the chaotic nature of the underlying 
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equations of motion [67, 68, 69]. For light dynamical fermions another cause of 

such exponential amplification of rounding errors becomes predominant, namely 

the inherent instability of the symplectic integration scheme itself [70]. This in-

stability is also seen to be directly responsible for the exponential decrease of 

HMC acceptance with integration step size above some critical value. 

The instability is easily understood from a simple free field model [681 in which 

the fermionic contribution to the gauge action is replaced by a set of modes 

with highest "effective frequency" w. In this model, when w 5r exceeds some 

critical value the symplectic integrator ceases to even approximately conserve 

energy, and the energy starts to diverge exponentially. In realistic interacting 

quantum field theories, such as QCD, it is most likey that this instability occurs 

for a few isolated light fermion modes, whose frequency is well separated from 

the hulk of the modes. 

6.1 Hasenbusch's Method and Variants 

There has been much progress in recent years in reducing the severity of this 

problem, by reducing the highest "effective frequency" of the fermionic modes, 

or equivalently of decreasing the magnitude of the fermionic contribution to the 

force acting on the gauge fields. The basic idea of Hasenbusch is to split the 

fermionic action into two parts, and to introduce separate pseudofermion fields 

for each part [61, 62, 63, 64] 

det MtM = det (1./i'tM')  det ((M't) - 1(MtM) M l-  ') 	 (6.1) 

= f DotE)ODO'tDo' exp (—M'(M I)1M'c - 

(6.2) 

Now two pseudofermion fields 0, ' are used to approximate the fermionic deter- 

minant. If the mass parameter of the "dummy" Dirac matrix M' is substantially 
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larger than the desired mass, then the algorithmic cost of the second term in 

the action will be small compared to the first. The cost of the first term in the 

action will be unchanged compared to the standard formulation except for an 

additional inverse required for the heatbath evaluation. This reformulation of 

the fermionic determinant improves the acceptance rate significantly, and the 

net effect is an overall reduction in algorithmic cost. 

There are several ways of understanding why introducing multiple pseudo-

fermion fields might reduce the fermionic force. The first is to observe that 

the force due to the fermion kernel M' is dominated by the smallest eigenval-

ues of M. The condition number K(M) is the ratio of the largest eigenvalue to 

the smallest eigenvalue, and to a first approximation controls the rate of conver-

gence of iterative Krylov space solvers [71]. As the largest eigenvalue remains 

approximately constant as the fermion mass m q  is decreased, and the smallest 

eigenvalue is typically of the order m where a is 1 or 2, it is expected that 

K(M) cx m. The condition number can be thought of as a gross measure of 

the magnitude of the fermion force. The reformulation of the fermionic deter-

minant therefore improves the acceptance rate because the condition number of 

the effective matrices that appear in the action, M'M' and M'', are signif-

icantly lower than in the standard formulation with just M'. Unfortunately, 

although the matrix MM - ' is better conditioned than just the matrix M 1 , 

there is no way to directly evaluate this matrix directly using a Krylov method 

to take advantagous of the improved condition number. 

Another way of understanding the need for multiple pseudofermion fields is to 

recall that in conventional HMC the fermion determinant is represented as a 

pseudofermion Gaussian functional integral, det M cx f do dol exp  

and a single equilibrium pseudofermion configuration using a Gaussian heatbath 

is used [32]. It should be expected, therefore, that the variance of this stochastic 

estimate of the fermion determinant will lead to statistical fluctuations in the 
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fermionic force: in other words the pseudofermionic force may be larger than 

the exact fermionic force, which is the functional derivative dtrinM(U)/dU 

with respect to the gauge field U. This means that the pseudofermionic force 

may trigger the instability in the symplectic integrator even when the exact 

fermionic force would not. 

An obvious way of ameliorating this effect is to use n > 1 pseudofermion fields 

to sample the functional integral representing the fermion determinant, which 

is exactly what the Hasenbusch trick is doing'. 

This process can be extended to an arbitrary number of fields, with increasingly 

larger masses for each extra field, leading to potentially larger improvements 

[72]. Unfortunately this requires fine tuning of the mass parameters, and there is 

no a priori method for calculating these. Since each additional field increases the 

parameter space by one dimension, empirically calculating the optimum mass 

parameters becomes a time consuming and (computationally) costly exercise. 

When properly tuned, the use of multiple psuedo-fermions is found to give an 

acceleration of 2-6 over the standard single pseudo-fermion formulation. 

Multiple pseudofermion fields can also accelerate the performance of inexact 

algorithms that do not include a Metropolis acceptance test, however, how one 

quantifies the cost reduction is a non-trivial problem. Multiple-pseudofermion 

fields were used in [44] as a means of algorithm testing, and it clear from these 

results that multiple-pseudofermion fields reduce the stepsize dependence of 

observables. 

'Even in the infinite pseudofermion limit, the pseudofermionic force will not equal the 

exact fermionic force because each pseudofermion is held fixed throughout the trajectory. 
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6.2 Nroots Acceleration 

Another method of introducing multiple pseudofermions is to write 

	

detM = [detM'] 	 (6.3) 

cx H dOi  dOt exp (-M -"), 	 (6.4) 

that is, introducing n pseudofermion fields Oj  each with kernel M". This 

has the obvious advantage over Hasenbusch's trick that there are no parame-

ters to tune. Fortunately the "technology" for dealing with non-local actions 

of the form M'' is exactly what RHMC is designed for. The usual pseudo-

fermion action Ot M(U)'o is thus replaced with a sum over ri pseudofermions 

I_i M(U) 1", which are dealt with using RHMC. 

Extending the previous condition number argument, the force is expected to 

be of order nK(M) 1 / (or very optimistically perhaps V/nIC(A4)'/nJT if the 

different pseudofermion contributions were to add up incoherently), which is 

small compared to .AC(M)6r for large ftC(M). The maximum force must be kept 

fixed so as to avoid the instability in the integrator, so the integration step size 

may be increased to r' such that 

n/C(M) 11 57_' = C(M)6. 	 (6.5) 

The cost of an RHMC trajectory using n pseudofermions is proportional to n, 

thus the cost relative to a single pseudofermion formulation can be estimated 

by the ratio 

	

Cost = n 	 (6.6) 

= n2K(M)k_ 1 	 (6.7) 

The minimum of this function is 

nopt = 
1
-lnC(M), 	 (6.8) 
2 
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and should correspond to the optimum number of pseudofermions 2  

6.3 Results 

The parameters that were used to test RHMC in § 4.5 were again used for this 

analysis (see table 4.1 for a recap). For this investigation, the multiple time 

step integrator was used, and the gauge integrating stepsize was kept constant 

at 8'i- 	0.01. Apart from increasing the overall efficiency of the simulation, this 

also ensures that the acceptance rate behaviour is dominated by the fermion 

stepsize, so a true measure of the effectiveness of nroots can be obtained. 

The staggered formulation is such that the condition number of the fermion 

matrix is analytically known, given the fermion mass. With this information, 

a prediction can be made about the optimal number of pseudofermions that 

should he used. For a staggered mass parameter of m = 0.02, the resulting 

condition number should be 

64 + 4m2  
ftC(M) = 	 (6.9) 

4m 2  

In reality this upper bound is far too large because the upper bound is the 

infinite volume result, and an upper bound of around 20 is actually measured. 

This equates to an n0 , = 4.7 as given by equation (6.8). 

The tabulated results from this section can be seen in appendix B. Figure 6.1 is 

a plot of the variation of 5H with stepsize for n = 1, 2, 3, 4 pseudofermions. The 

benefit of using nroots can clearly be observed. At small 5r there is a decrease 

in 8H when using multiple pseudofermion fields compared to using only a single 

field, however, there appears to be no gain at all in using ii > 2. As 5 is 

increased, the differences between using the different numbers of fields becomes 

2 Strictly speaking n.p, e Z, so it must be either L1nfrC(M)i or 11nK(M)1. 
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Figure 6.1: The variation of 6 H with stepsize for n = 1, 2, 3, 4. in = 0.02 (see 

tables B.1 - B.4). 

more apparent, and there is clear improvement as ii is increased. This improved 

conservation of 8H is of course reflected in improved acceptance rates, as can 

be seen in figure 6.2. What can also be noted is that the improvement factor 

in moving from n = 1 to n = 2 seems to be far greater than the improvement 

in moving n = 2 to n = 3 or n = 3 to n = 4. This is to be expected if the 

magnitude of the force is described by n(M)'8. 

Although the acceptance rates may have improved significantly through the 

use of nroots, this does not necessarily mean that the use of multiple pseudo-

fermions is more efficient. Figure 6.3 is a plot of the efficiency as defined in 

equation (4.23). Although the stepsize can be increased to maintain a constant 

acceptance rate, the increase is not enough to warrant the use of nroots. At 

these parameters, it is therefore concluded that although nroots allows the step-

size to be increased maintaining a constant acceptance rate, the increase does 

not result in a net gain. However, the expection is that nroots will he especially 

beneficial as the conditition number of fermion matrix is increased. 
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Figure 6.2: The variation of acceptance with stepsize for n = 1, 2, 3, 4, m = 0.02 

(see tables B.1 - B.4). 
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As a second of test of nroots acceleration, the same parameters were used again, 

with the exception that now the quark mass was reduced by a factor of two, 

m = 0.01. Figure 6.4 is a plot of 5H for n = 1, 2, 3 pseudofermion fields. The 

n = 1 data is interesting, as it appears to reveal a breakdown in the integrator at 

= 0.09, where 6H blows up by about a factor iO 3 . This is in agreement with 

[70], where the breakdown in the integrator can be explained by an exponential 

amplification of errors. There is no such breakdown, on the scale plotted for 

n = 2, 3. Again at small öT there seems to be little to differentiate n = 2 and 

n = 3, and as 6T is increased, the gain that n = 3 has over ii 2 is small. The 

plot of the resulting acceptance rate behaviour is shown in figure 6.5, where 

the superior scaling of nroots can be seen. Comparing this plot and that of 

figure 6.2, it can be seen that nroots shows more improvement relative to the 

single pseudofermion case for the light mass case. Unfortunately, even with 

this decrease in the quark mass, a single pseudofermion field is still the most 

efficient formulation (see figure 6.6). The ratio now between the most efficient 

= 1 case (r = 0.0303) and the most efficient n = 2 case (6-F= 0.0769) is now 

much closer to unity. This is suggestive that a further decrease in the quark 

mass will result in nroots actually being more efficient that the use of a single 

pseudofermion field. What is interesting to note is that the ii = 1 formulation 

seems to have a much more sharply peaked efficiency distribution, where both 

the n = 2 and n = 3 formulations are much broader. 

Finally the same experiments were carried out but this time using a quark mass 

parameter m = 0.005 in an attempt to ascertain that nroots can he beneficial. 

Figure 6.7 is a plot of the stepsize variation of 8H from this test. Again there 

is a breakdown in the integrator for the n = 1 case, which is not reproduced 

for n = 2, 3. In fact, the breakdown appears not to occur at all when using 

nroots, however, this is most likely because too small a 5 has been used to 

observe this breakdown. From figure 6.9 it is evident that the use of nroots 
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is beneficial. Using 2 pseudoferrnion fields is 13% more efficient than using a 

single field, when comparing optimum efficiency points. 

In all three of the tests conducted here, the optimal number of pseudofermions 

predicted by equation (6.8) (4.7, 5.4, 6.1) has been differed significantly from 

the actual value (1, 1, and 2 respectively). The reason for this is probably due 

to the presumption in equation (6.8) that the fermionic force magnitude can 

be approximated by the condition number K(M). This approximation is likely 

too crude, and the force is better described by taking into account the bulk 

distribution of eigenvalues, riot just the lowest one. For \Vilson fermions, where 

the lowest eigenvalue is unbounded from below, associating the force magnitude 

with the condition number is likely to be a better approximation than for the 

staggered fermion example here. 

This section has demonstrated an alternative method to the Hasenbusch trick 

for accelerating fermionic dynamics. This method is only beneficial when an 

extremely light staggered quark mass is used. 
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Figure 6.7: The variation of SH with stepsize for n = 1. 2. 3, in = 0.005 (see 

tables B.8 - B.10). 

0.8 

0.6 

U 

0.4 

0.2 

- 0 	 0.05 	 0.1 	 0.15 
	

0.2 

Figure 6.8: The variation of acceptance with stepsize for 'n. = 1, 2, 3. in = 0.005 

(see tables B.8 - B.10). 
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Chapter 7 

Exact 2+1 Flavour Asqtad 

Fermions 

Currently, ASQTAD fermions are an extremely popular choice of fermion the-

ory, mainly because of their comparative cheapness compared to chiral fermion 

formulations. All large scale ASQTAD calculations to date have been performed 

using the R algorithm [36, 441, and so a possible question mark lies over this 

data, as it is unclear as to how much the finite stepsize error is affecting these 

results. The method advocated in [48] is to choose the stepsize as 8i - 

with m 1  the light quark mass. The stepsize error of the R algorithm has been 

shown to affect the location of the QCD chiral phase transition, and it has been 

observed that this stepsize error is large when using the "two thirds" rule [73]. 

Indeed, the results in § 4.5 demonstrated that a stepsize of m 1 /4 was required 

to obtain an answer compatible with the exact result. A question mark remains 

over the anonamously long autocorrelation length of the topological charge [26], 

it has been postulated that this behaviour could be due to the finite stepsize 
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error [74]' It is therefore imperative that ASQTAD calculations be performed 

using an exact algorithm to verify that the generated results do not have large 

systematic errors present. RHMC is the obvious candidate to achieve such an 

objective. 

7.1 Algorithm Implementation 

7.1.1 Action Formulation 

The fermionic action is given as follows 

Sf = thtM'/ 2  + 	 ( 7.1) 
1 	m1 

=(7.2) 

Thus two different approximations for the 2 and 1 flavour contributions to the 

action are required. To achieve an equal maximum error in the approximations, 

the degree of the approximation used for the light pair will be greater than that 

of the strange quark because of the difference in condition number. 

Note that it is actually possible to formulate the 2+1 ASQTAD quark flavour 

action using only a single fermion field. Observe 

det(M/)det(M)) = det(M,2M) 	 (7.3) 

= det(M(Mm 1  + 8m 2 ) 114 ) 	 ( 7.4) 
M I  

= 
f VDq exp(_ cbt(M + 6m2 M 1 ) 114 )(7.5) Tn 

= fDtD exp(_t r2 (M mi )), 	 (7.6) 

where the parameter 5m2  = m—  m. Hence, like the R2 algorithm, a 2+1 quark 

flavour ASQTAD calculation can be obtained with the cost of only one matrix 

'Essentially, this is because at a stepsize Sr 	rn the induced stepsize error is predicted 

to be large for the long distance physics, but leave the short distance physics intact. 
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inversion per MD step. Unfortunately, reformulating the action to only a single 

field is expected to increase the fermionic noise, and would be equivalent to an 

"inverse Hasenbusch trick" which would reduce the acceptance rate. Since it 

was found in the chapter 6 that an extremely light mass was required to make 

the use of nroots worthwhile, this single fermion field formulation may prove to 

be beneficial for certain parameters. 

7.1.2 Force Term 

The use of an exact algorithm, e.g., PHMC, for performing 2+1 quark flavour 

ASQTAD simulations has not previously been possible because of the extreme 

expense of the resulting force term. The ASQTAD operator is given by equation 

(2.19), i.e., it is composed by the sum of the ordered product of 1, 3, 5 and 

7 link matrices. As was shown in § 3.2.1, the derivative of the fermion action 

with respect to the gauge field must be found to allow the integration of the 

equations of motion. For ASQTAD fermions, with a rational approximation used 

to represent the fermion kernel, this requires 

dS1 	- 	 ( 7.7) 
dU3,, - 

fl 

= - 	 + k) 1 dM (M + k)' 	 (7.8) 
k=1 

tdM 
= 

— 

>XkITT Xk, 	
(7.9) 

k=1 	3,/2 
11 	/ 	t dMt 	dM 

= - tr (MXkXkdU  + dU,kM) 	(7.10) 
k=1 

where X, = J(M +0k - ) 1 0
. 

The exact derivative of the complicated fermion 

matrix must be calculated explicitly. 

The technique used to evaluate the kernel derivative for the R algorithm is to 

evaluate it applied to the solution vector X and take the outer product. This 
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requires operations of the form U. .. UXXt,  and involves using matrix-vector 

operations as opposed to matrix-matrix. The resulting number of operations 

that must be performed to conduct this calculation scale with the volume V as 

flops'  = 196, 920V (this turns out to be similar in computational cost to the 

conjugate gradient inversion unless a quark mass less than m/3 is used [48]). 

If this method were applied to RHMC the derivative would have to be recal-

culated for each solution vector in the partial fraction expansion, leading to an 

algorithm cost which would be 0(n) times more expensive than the R algorithm. 

The calculation of the force must be therefore be reformulated to remove/reduce 

this expense. 

The solution of course lies in how the derivative is calculated. When there 

are just one or two pseudofermion fields Xk, it is most efficient to use the 

R algorithm method. The alternative method is to calculate the link matrix 

products explicitly, and then perform the matrix-vector product and take the 

outer product. Since the only shift dependence occurs in the solution vector, 

the link matrix multiplication has to be performed only once, and then each 

solution vector is multiplied by the resulting matrix, and the outer product 

taken, i.e., 

(U ... UXk)(X) = U 	(i: XkXk') 	 (7.11) 

The drawback to this approach is that the bulk of the calculation is spent per-

forming the more expensive matrix-matrix operations and not matrix-vector. 

The total cost of using this method to calculate the derivative scales with the vol-

ume V and the approximation degree n as flopsMC = 
( 782,424+720n)V. This 

would imply an approximate fourfold overhead in using RHMC as compared to 

the R algorithm for the force calculation. However, since all calculations are 

only concerned with using 2+1 quark flavours, and the only mass dependence 

in the derivative appears in the vectors, the calculation of the derivative for the 
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light pair and the strange can be done using the same link product multiplica-

tion, reducing the effective overhead by about a factor of two. Also, for the 2+1 

case, the R algorithm requires that the ASQTAD operator be constructed three 

times throughout a single MD step (once for each heatbath, and once for the 

inversion), compared to only once for inversion with RHMC. Taking these extra 

two constuctions of the Dirac opertor into account, and assuming that all other 

costs are equal (gauge force, fermion matrix inversion), it can be seen that the R 

algorithm actually has slightly greater flops count of 828, 288V. The conclusion 

therefore is that RHMC can be used with ASQTAD fermions without any large 

computational detriment. The relative performance of the algorithms thus is 

purely governed by the acceptance rate of RHMC and how much systematic 

error in observables can be deemed acceptable in the results generated using 

the R algorithm. 

The RHMC method of calculating the derivative of the ASQTAD operator could 

also be applied to the PHMC algorithm. With n expected to be 0(1000) for 

the light quark mass, this would lead to a force calculation only about a factor 

of two more expensive than the R algorithm. 

7.2 Algorithm Testing 

It was originally intended that this work include a large scale comparison be-

tween 2+1 quark flavour results obtained using the R and RHMC algorithms, 

in an attempt to address the questions raised at the beginning of this section, 

namely whether the stepsize errors in current R algorithm data is significant of 

or not. This would have comprised a comparison of physics observables includ-

ing hadronic observables and topological charge, comparing not just the mean 

quantities observed, but also comparing the autocorrelation length of these ob- 
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servables. The parameters that were to be chosen for this comparison can be 

seen in table 7.1. Such a large volume, with small mass would also have been 

ideal for testing the performance of nroots acceleration, or conversely whether 

a more efficient formulation would be obtained by using a single pseudofermion 

field to simulate the 2±1 quark flavours. 

V Gauge Action 0 rn. 1  m 

24.64 One loop Symanzik 6.76 0.0078 0.039 

Table 7.1: The physical parameter set chosen for ASQTAD algorithm comparison 

Unfortunately, due to reasons outwith the author's control, the implementation 

of the ASQTAD Dirac operator on the QCDOC was found to have problems, 

resulting in a machine up time of around one hour. Considering that for the 

desired parameters, the ensemble generation would be a process lasting weeks 

(with continuous uptime), it was regrettably decided to abandon this study. 



Chapter 8 

Exact 2+1 Flavour Domain Wall 

Fermions 

With the increasing computer power available currently, all future lattice QCD 

calculations shall without doubt be based on fermion formulations which obey 

the Ginsparg-Wilson relation. The standard domain wall approach is currently 

the most popular of these approaches, and shall be the basis of a large bulk of 

the initial QCDOC calculations. 

Before the commencement of this work, 2+1 quark flavour simulations had not 

been peformed with the domain wall formulation. To date the only large scale 

calculations are those concerning two flavour simulations [57]. 

8.1 Action Formulation 

When simulating two flavours of domain wall fermions, it is known that the 

optimal fermion action is that whereby the kernel is written as the ratio of the 

Pauli-Villars and light pair contributions, and simulated using a single pseudo- 
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fermion field [57], i.e., 

	

Si =Mmpv (Mrtni Mmi Y 1 M t  l 	 (8.1) 
Tflpv  

With this formulation the heavy modes are cancelled out exactly', not stochas-

tically as they would be if the action had been split into pseudofermionic and 

bosonic pieces. Thus the force is less noisy, and a larger integrating stepsize can 

be used than would be otherwise. 

With this in mind, the optimal 2+1 flavour fermion action should then be given 

by 

S f  = 0,1  Mmpv (M ni Mmi )'M ipv Q i  + 01 Mmpv (M 9 Mms )_ 1 M pvs . 	 ( 8.2) 

The Pauli-Villars contributions have been combined directly with their respec-

tive fermionic partners. The first term in the action is the standard two flavour 

contribution to the vacuum and the second term is the strange quark contribu-

tion. The most naïve implementation would be to replace the fermion matrix in 

the second term by a rational approximation to the square root over the bounds 

of this matrix ratio. If this were the case, the strange quark contribution would 

be 

	

ss  = T (Mmp (My Mrn5 )lMt 	 (8.3) mpv 

This formulation would work, but because of the matrix inverse within the ar-

gument of the rational function, whenever the rational function needed to be 

evaluated each iteration of the multi-shift solver would require a matrix inver-

sion. This renders the formulation extremely expensive, and so an alternative 

must be found. 

An alternative is therefore to separate the Pauli-Villars and fermion contribu-

tions into separate fields. The resulting strange quark action is 

	

S. = 0 M" 2  th + M'2 S . 	 ( 8.4) 
PV 	Tflpv P 	8 	MS 

1 0r at least as good as the tolerance used in the solver used to evaluate such an action. 
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This form of the action is of course done at the cost of including an extra field 

in the action, which will require an extra inversion for evaluating the force and 

the action. However, since the Pauli-Villars field is so heavy compared to the 

light fermion pair, this extra cost is expected to be negligible. By separating 

the kernels there is an expected increase in noise in the system because the 

heavy mode cancellation is no longer exact, which would be expected to have a 

detrimental effect on the acceptance rate. 

In this work, the fermionic action that was actually used was 

S1 =  

	

M1 + V MmPVPV  + 	 + 	 ( 8.5) 

For n = 1 this formulation will be inherently more noisy than that given in 

equation (8.1), as n is increased the noise on the light fermionic contribution 

will be reduced giving an improved acceptance rate. The two flavour Pauli-

Villars contribution will still be noisy, and is a large contribution to the action 

so it is expected that this will affect the acceptance rate. This can be addressed 

by splitting the action so that the pure gauge and two flavour Pauli-Villars 

contributions are updated using the short time scale, and the remainder placed 

on the longer one, i.e., 

Si = Sg + v M mpv pv 	 (8.6) 
n 

S2  = 1+ 	 ' tM 2 	+M"2 th 'S. 	(8.7) 

	

pv 	m r., PV 	rns  
k=1 

8.2 Eigenvalue bounds 

An added complication exists when doing domain wall simulations that is not 

present in staggered type formulations, that being what to use as the lower 

spectral bound for the approximation. For the staggered case this was easy 

because the mass is a multiple of the identity matrix, hence acts as a trivial 
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lower bound. The domain wall mass parameter does not act as a lower bound 

in such a transparent manner. In addition, it is the red-black preconditioned 

fermion matrix which is generally used [75], this further complicates what the 

bounds on the matrix should be. For positive m 1  there does, however, exist a 

lower bound in the the infinite L s  limit [17]. The upper bound is essentially 

independent of the fermion mass and so presents no problem. 

Since there is no a priori method for calculating the bounds of the fermion 

matrix, the next best thing that can be done it to perform an empirical study 

to see if such a bound exists. For a range of /3 values, the lower bound behaviour 

as a function of the quark mass was studied in the quenched theory using the 

Wilson gauge action. Apart from being much cheaper computationally, the 

quenched theory does not stochastically supress zero modes as is the case for 

full QCD since the fermionic determinant does not appear, so for a given quark 

mass a better measure of the lower bound can be obtained. 

V Ls Gauge Action /3 

16.32 8 Wilson 5.2 

16.32 8 Wilson 5.8 

16.32 8 Wilson 6.4 

16.32 8 Wilson 7.2 

Table 8.1: The physical parameter sets chosen for quenched eigenvalue study of 

the domain wall matrix. 

Figure 8.1 is a plot from this quenched analysis. Except for the 0 = 5.2 data, 

around the quark mass values mf  = 0.01 - 0.1 there seems to a large degree 

of consistency in the value of the lower bound. This is as expected if lowest 

bound is be governed purely by the mass. As the quark mass is brought lighter, 

there is a plateau in the lowest eigenvalue. This is interpreted as originating 

from the residual mass, giving an additional lower bound in the eigenspectrum. 
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Figure 8.1: Lowest eigenvalue of preconditioned domain wall kernel MtM  as a 

function of valence quark mass Nf  = 0, 16.32.8 lattice. 

The 3 = 5.2 data represents an extremely coarse lattice spacing, and thus has 

a much larger residual mass, giving rise to the plateau effect early on in the 

quark mass decrease. As the mass parameter approaches the Pauli-Villars mass 

there is a change in the behaviour of the lowest bound, it begins to level out. 

This is interpreted as an effect induced by the change in boundary conditions 

at m 1  = 1. 

The method utilising RHMC was therefore to use a speculative bound on the 

approximation, this speculative bound is either taken from the plot shown in 

figure 8.1, or taken from an evolution using the R algorithm, before "switching 

on" RHMC. The appropriate rational approximation can then he constructed, 

and RHMC used to evolve the gauge fields accordingly as described in chapter 4. 

Since the lower bound is taken from a quenched analysis, and from a relatively 

small L 5 , the lower bound can only he taken as a rough estimate. On one 

hand the lower bound could be significantly greater because there should be 

zero mode suppression because of the dynamical fermions and the fact that the 

DB\V2 gauge action is used. However, when Ls is increased time residual mass 
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will decrease reducing the lower bound. \Vlieii using R algorithm generated 

lattices as a guide to what the lower hound should be, because of the finite 

stepsize errors, the lower bound could higher than that obtained using an exact 

algorithm (see [43] for an example). Therefore, the only sensible path that can 

be taken is to track the eigenvalue bounds as the simulation evolves to check if 

there is a crossing of the eigenvalues over the hounds of validity of the rational 

approximations, and to check if a tightening of the bounds is possible to enable 

the reduction of the approximation degree. 

8.3 Algorithm Testing 

As a benchmark calculation. to test the correctness and efficiency of the RHMC 

algorithm formulation, the algorithm was directly compared to the R. algorithm. 

Two different sets of parameters were chosen, with the only difference being the 

mass parameter of the light fermion pair. Upon each ensemble produced a 

variety of physical observables were measured to compare the algorithms, in 

addition both algorithms' ensembles were used to obtain dynamical fermion 

mass extrapolations to the chiral limit. 

The algorithmic parameters for each of the runs are shown in table 8.2. For 

the degenerate three flavour run, one pseudofermion field could in principle 

have been used, using an approximation to the kernel 1 . However, as well as 

being a more noisy formulation, there is an inherent problem when using such 

an approximation kernel. In § 4.1 it was noted that wlieii the parameter a 

is greater than one, the lowest roots are negative. This has the implication 

that when the rational function is evaluated, the number of conjugate gradient 

iterations will blow up, vastly increasing the cost of the algorithm. Indeed, with 

such a large negative shift, the matrix may cease to be postive definite, and an 
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alternative Krylov method such as BiCGstab would be required. The ensemble 

labelled data set 5 was produced to obtain a measure of the stepsize scaling 

of the R algorithm, and no measurements were made on this other than basic 

algorithmic quantities and the average plaquette. 
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Data set 1 2 3 4 5 

Algorithm R RHMC R RHMC R 

M, 0.04 0.04 0.02 0.02 0.02 

T 0.5 0.5 0.5 0.5 0.5 

6T 0.01 0.02 0.01 0.0185 0.005 

Nfer 1 {} ' 	 L 
1 2'_2'_2 2 {1, 1} 3 {., I 	1} 

21 
{1 	1} 

NbOS  1 {} 2 {1, 	
} 

2 {I,!} 2 {1, 	
} 

2 {1, 	
} 

fer 
md  {9, 9, 91  {10, 10, 91  

fer 
md {3.18 x i0- }  {1.59 x i0, 3.18 x i0- } 

bos 
n, d {_' 5} 

Ahos 
'' m d 1.01 x 10_ 6  1.01 x 10 6  

n fer 
MC 

 {14,14,14}  {15,15,14}  

fer 
mc {4.08 x 10_h 1 }  {3.34 X 10_h1,4.08 >< 

bos 
mc  {—,8} 

bos 
me 8.77 x 10_ti 8.77 x 10 -11  

res md  10-6 10_ 6  10_ 6  10_ 6  10_ 6  

res m . 10 0  10_ 10  

fn 1 2 1 2 1 

Ntraj  1565 2395 2500 5000 1650 

Table 8.2: The parameters for the data sets chosen for the domain wall algo-

rithm comparison (V = 16.32, L S  = 8, DBW2 gauge action, 3 = 0.72). The 

parameters N ier  and NbQ$  represent the number of fields used to represent the 

fermionic and bosonic contributions respectively. 
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Figures 8.2 and 8.3 are plots of the lower bounds of the fermion matrix for the 

three relevant masses to these results. It can be seen that in all three cases the 

smallest eigenvalue is well behaved in that it does not fluctuate significantly, 

which allows the use of a constant range for the rational approximation. On 

both figures the associated bound used for the rational approximation is also 

included, it is clear that a sufficient margin has been given, such if the lower 

bound were to fluctuate, the rational approximation would still he valid. In 

fact the bounds used for this test run are probably too conservative, and some 

fine tuning could he done to raise the lower bound on the approximation which 

perhaps would allow the degree of the approximations to be reduced and/or 

lead to a slightly better-conditioned matrix. 
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t M=O 02  data set 4 

• 	 . , ., 	 m =0.04 lower bound 
- 	 • 	 m =0.02 lower bound 
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Trajectory 

Figure 8.2: The lower bound on the eigenvalues with mf 0.02 and mf = 0.04 

(each data set is defined in table 8.2). 

The equivalent plot for the upper eigenvalues is included in figure 8.4. Here there 

is no mass dependence on the eigenvalue. unlike the lower bound. This of course 

is exactly as expected, since the mass dependent parameter which appears in 

the matrix is small compared to the greatest eigenvalue for all masses considered 

here. 
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Figure 8.3: The lower bound on the eigenvalues with m 1  = 1.0 (each data set is 

defined in table 8.2). 

Some of the measurements from the generated lattices are shown in table 8.3. 

From both data sets, it is clear that RHMC has plaquette measurements con-

sistent with the R algorithm to within 0.19:. Figure 8.5 is a plot comparing the 

average plaquettes of the first two data sets as function of jackknife bin size. 

There is strong evidence that RHMC is producing ensembles with the correct 

statistical weight. but given that the averages are separated by around 12o it 

is also apparent that the R algorithm has a significant ST error at this stepsize. 

Figure 8.6 is the same plot, but with the lighter mass data sets. As the step-

size is halved from Sr = 0.01 to Sr = 0.005 there is a clear shift towards the 

RHMC result, however, even at Sr = 0.005 there is still a 40,  deviation. The 

extrapolated stepsize dependence of the plaquette is shown on figure 8.7. For 

consistency between the algorithms. it is estimated that the R algorithm must 

he run using a stepsize Sr < 0.002 

Unexpectedly, the acceptance rate of data set 2 is less than that of data set 4. 

The stepsize in data set 4 had been reduced slightly, because of the expectation 

that the acceptance rate would decrease with the mass. This result here suggests 
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Figure 8.4: The upper bound on the eigenvalues with mf  = 1.0, 0.02 (each data 

set is defined in table 8.2). 

that with this prescription, namely using three pseudofermion fields, the fermion 

force is insensitive to the mass. This of course would be expected to change as 

the mass is further decreased. The relative cost of the algorithms is shown in 

terms of matrix-vector products per trajectory, RHMC at 67 = 0.02 is more 

expensive than R at 6T = 0.01 by 48% and 13% respectively. The degenerate 

three flavour run is significantly more expensive because the R algorithm is 

using 1 pseudofermion field to simulate the fermions, whereas RHMC is using 

three. It may have been more efficient to use two I)seudofermion fields each with 

kernel , presumably with a lower stepsize, but three fields were chosen for a 

direct comparison of the two RHMC data sets. The efficiency measure used in 

previous sections is of no use here because the concept of acceptance cannot be 

applied to the R algorithm data sets. 
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Data set 1 2 3 4 5 

KP 0.608120(15) 0.607788(10) 0.608293(11) 0.608094(8) 0.608168(30) 

(5H  0.3977(170)  0.3107(115)  

0.6550(63)  0.6934(43)  

Nm v 13449(4) 20300(3) 32782(12) 36265(8) 65345(15) 

Table 8.3: Various observables from all data sets (each data set is defined is 

table 8.2). The errors were found using a jackknife analysis. 
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Figure 8.5: Jackknife error of the plaquette for data sets 1 and 2 (each data set 

is defined in table 8.2). 
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Figure 8.6: Jackknife error of the plaquette for data sets 3 and 4 (each data set 

is defined in table 8.2). 
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Figure 8.7: The extrapolated stepsize dependence of the average plaquette using 

the R algorithm, rn 0.02. The quadratic fit uses only the two R algorithm 

points and the cubic fit uses the RHMC result to constrain the fit. 
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Figure 8.8: Integrated autocorrelation length of the plaquette for data sets 1 

and 2 (each data set is defined in table 8.2). 

The integrated autocorrelation length of the plaquette for data sets 1 and 2 is 

shown in figure 8.8 (see also table 8.4). From this evidence, RHMC appears to 

have an autocorrelation length that is comparable to the R. algorithm. This is an 

extremely good result in RHMC's favour given that the acceptance rate is only 

65.5%. On the other hand, from figure 8.9, which is the same data obtained from 

data sets 3 and 4. RHMC has an integrated autocorrelation time that is nearly 

three times that of the R. algorithm. Even with the acceptance rate of 69% 

factored in, this is a surprising result, especially so given the similarity observed 

with data sets 1 and 2. The reason for this large difference in autocorrelation 

was found to he due to the differing statistics between the data sets. If the 

number of measurements present in data set 4 are truncated to 2500, i.e., the size 

of data set 3, then the integrated autocorrelation length decreases significantly 

(see table 8.4), such that within error bars it is compatible with the R algorithm 

result. The integrated autocorrelation is therefore underestimated on data set 

3 (and perhaps 1 and 2 also), and more statistics are required to enable a fair 

comparison. 
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Figure 8.9: Integrated autocorrelation length of the plaquette for data sets 3 

and 4 (each data set is defined in table 8.2). 

Figures 8.10 and 8.11 are plots of the integrated autocorrelation lengths from 

data sets 1 and 2 and 3 and 4 respectively taken from the tirneslice of the 

pion correlator. The behaviour that was observed with the plaquette is clearly 

reproduced here, namely that the degenerate 3 flavour data have very similar 

integrated autocorrelation lengths, and the 2+1 data sets have an RHMC inte-

grated autocorrelation time about three times that of the R algorithm. Again 

when data set 4 is truncated, the integrated autocorrelation length decreases, 

approaching a similar value to the result from data set 3. 

On all of the ensembles the time history of the topological charge was measured. 

Figures 8.12 and 8.13 are such plots. These plots appear very similar to the 

topological charge history of 2 flavour domain wall ensembles published in [57], 

this of course would be expected, since the addition of the strange quark should 

not adversely affect the tunnelling rate of the topology. 
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Data set  P 7r 

1 7.43 (1.35) 10.97 (2.18) 

2 8.92 (1.36) 10.81 (1.63) 

3 7.74 (1.17) 9.55 (1.21) 

4 19.87 (1.41) 27.95 (3.31) 

4 (truncated) 9.13 (1.24) 11.23 (2.24) 

Table 8.4: The measured integrated autocorrelation lengths parameters for the 

plaquette and the 13" tirneslice of the pion correlator (each data set is defined 

is table 8.2). The errors were found using a jackknife analysis. 
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Figure 8.10: Integrated autocorrelation time of the pion. timeslice 13 for data 

sets 1 and 2 (each data set is defined in table 8.2). 
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Figure 8.11: Integrated autocorrelation time of the pion, timeslice 13 for data 

sets 3 and 4 (each data set is defined in table 8.2). 
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Figure 8.12: A plot of the topological charge history from data sets 1 and 2 

(each data set is defined in table 8.2). 
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Figure 8.13: A plot of the topological charge history from data sets 3 and 4 

(each data set is defined in table 8.2). 
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The remainder of this section concentrates on the hadronic quantities that have 

been extracted from the generated ensembles. In this section only the graphs 

are included, for a full breakdown of the extracted numbers see appendix C. 

Something that was noticed when looking at the raw data coming from observ-

ahies measured was that the R algorithm data appears to be more noisy than 

that of the RHMC data. An example of this observation is shown in figure 8.14, 

where the time history of the pion from the 13th  timeslice is compared for data 

sets 1 and 2. It may be a subjective statement, but the pion correlator produced 

by the R algorithm appears to be more noisy than that of RHMC. There are 

five clear spikes in the R algorithm data, which do not occur in the RHMC 

data set. Presumably these spikes correspond to configurations that would oth-

erwise be rejected by the RUNIC algorithm (because they would correspond to 

large changes in the Hamiltonian resulting in a negligible acceptance rate), but 

are not suppressed by the R algorithm. This spiky behaviour appears on both 

data sets 1 and 3, on all the timeslices looked at, and it is also present on the 

rho correlator measurements. It would be interesting to see if these spikes are 

surpresssed by reducing the integrating stepsize. 

As an illustrative example of what was described in § 2.5.2, an effective mass 

plot is shown in figure 8.15. This plot is that of the pion correlator, and the 

black line represents the value of the extracted mass using the fitting range 

shown on the x axis. The error bars are included in the plot, but are too small 

to see at this scale. 

Figure 8.16 is a plot of the valence mass extrapolation of rn taken from the 

degenerate 3 flavour data sets. For each of the valence masses there is a general 

agreement in the extracted masses. At the chiral limit, the extracted value of 

rn res deviates between R and RHMC outwith the quoted error bars. However, 

this is probably not statistically significant given that this result comes from 
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Figure 8.14: The time history of the pion correlator, timeslice 13 for data sets 

1 and 2 (each data set is defined in table 8.2). 

the extrapolation of three data points. The equivalent plot from the 2+1 en-

sembles is shown in figure 8.17. Here, at all three mass values the value of m. 

is signifcantly smaller for RHMC than for the R algorithm. This is also true of 

the extracted value of Tfl r , where a 4 - So deviation is observed. 

The valence mass extrapolations of rnre. are shown in figures 8.18 and 8.19. For 

both extracted mass values there is consistency between the algorithms, though 

the trend that RHMC gives a smaller mass value is carried over from the pion 

results. When calculating the chiral value of m res . the consistency requirement 

described in §2.5.3 was used. Exactly the same behaviour can be seen in the 

in valence extrapolations, shown in figures 8.20 and 8.21. The rri values are 

consistent within errors, with the trend of smaller R.HMC masses. The noisy 

nature of the rho compared to the pion can be observed from the larger error 

bars compared to those from the pion and rnres . The extracted values of lattice 

spacing are consistent within errors, where the lattice spacing is measured at 

val = —mres. 
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Figure 8.15: Effective mass plot for m, data set 4, mvai = 0.02 (each data set 

is defined in table 8.2). 
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Figure 8.16: Valence mass extrapolations of m from data sets 1 and 2. (each 

data set is defined in table 8.2. data is tabulated in tables C.1 and C.2). 
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Figure 8.17: Valence mass extrapolations of m from data sets 3 and 4 (each 

data set is defined in table 8.2. data is tabulated in tables C.3 and C.4). 

0.013 

	

._. Rdata set 1,m=0.01226(14) 	I 

.-,. RHMC data set 2.m0.I2j 

0.0125 

0.012 

0.0115 

0.011 	
-0.01 	0 	00! 	U.02 	 U.W 	 U.U4 

	
0,05 

m1 

Figure 8.18: Valence mass extrapolations of m, from data sets 1 and 2 (each 

data set is defined in table 8.2, data is tabulated in tables C.5 and C.6. Ifl res  is 

defined from equation (2.36)). 
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Figure 8.19: Valence mass extrapolations of m res  from data sets 3 and 4 (each 

data set is defined in table 8.2, data is tabulated in tables C.7 and C.8, m re . is 

defined from equation (2.36)). 
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Figure 8.20: Valence mass extrapolations of m from data sets 1 and 2 (each 

data set is defined in table 8.2, data is tabulated in tables C.9 and C.10). 



0.8 

0.75 

0.7 

0.65 

0.6 

0.55 

0.5 

R data set 3.a= 1.33](23) GeV -'  

S- RHMC data set 4. a = 1. 348 18> G eVt - 

-0.02 	 0 	 u.U_I 	 O.U4 
rn 1  
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The ensembles were analysed together to obtain dynamical mass extrapolations 

of the above quantities discussed. This analysis is shown in figures 8.22, 8.23 

and 8.24. In all three plots the above trend that the RHMC algorithm leads 

to smaller masses can be observed. An interesting observation from figure 8.23, 

is that the value of m re, appears to decrease with decreasing quark mass. This 

contrasts directly with the valence extrapolations, figures 8.19 and 8.18, which 

show res  increasing with decreasing quark mass. This is perhaps an example 

of where a unitary extrapolation is required to obtain the correct physics be-

haviour. This change in slope direction is not found for either measurements of 

m- or rnre . 

The observables obtained from these extrapolations may be trusted more than 

the valence extrapolations above from a physics perspective, but because only 

two data points are used, the extrapolations are merely a case of putting a 

straight line through the points, and so have to be taken with a large pinch of 

salt. This is a good example of the difficulty in performing chiral extrapolations. 

The valence analysis may be very cheap to perform, and it is possible to obtain 

data for an arbitrary number of masses, but there is a risk of getting the physics 

wrong, i.e., as was demonstrated with m res . The dynamical analysis, while 

certain to be correct, is extremely expensive to perform if a reasonable number 

of masses are to be included in the extrapolations. 

From the results presented in this section, the implementation of RHMC for 

domain wall fermion simulations appears to he validated. While most quantities 

are, within errors. consistent with the R algorithm results, there is a consistent 

trend that the RHMC masses are smaller. It is tempting to interpret this as 

being a signal for the finite stepsize error of the R algorithm, although how to 

prove this conjecture is beyond the scope of this work 

This chapter can therefore be conluded by saying that RHlC has now been 
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Figure 8.22: Dynamical mass extrapolations of rnR-, (each data set is defined in 

table 8.2. data is tabulated in tables C.13 and C.14). 

shown to work on large lattices, using an improved fermion formulation. Wlieii 

compared against the R algorithm, to obtain a consistent measurement of the 

plaquette, the R algorithm must use an integrating stepsize 10 times less than 

that of RHMC. This behaviour must also be true for more complicated observ-

ables such as the hadronic quantities measured in this chapter. 
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Figure 8.23: Dynamical mass extrapolations of rnr es, (each data set is defined in 

table 8.2, data is tabulated in tables C.15 and C.16). 
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Figure 8.24: Dynamical mass extrapolations of m, (each data set is defined in 

table 8.2, data is tabulated in tables C.17 and C.18). 
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Chapter 9 

Concluding remarks 

9.1 Summary 

The aim of this work has been to introduce the Rational Hybrid IvIonte Carlo 

algorithm, and to apply it to the problem of generating gauge field configurations 

that represent full QCD, i.e., including both the light pair and the strange quarks 

into the vacuum. 

In chapter 4 the algorithm was introduced, the motivation for the algorithm 

being the desire to have an algorithm which has the efficiency of conventional 

HMC but also have the ability to simulate fewer flavours than are described 

by the fermion kernel. This latter property is a requirement for all fermion 

formulations, to enable 2+1 quark flavour calculations to be performed. The 

reason behind the efficiency of RHMC lies in the high accuracy of rational 

approximations, and the fact that rational functions with the Dirac matrix 

as an argument can be evaluated using a multi-shift solver. When compared 

against published data performed by Polynomial Hybrid Monte Carlo and the R 

algorithm, RHMC was shown to be both correct, and significantly more efficient. 

133 
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An investigation was made in chapter 5, to determine whether it is possible to 

use an initial guess based on previous solutions in the multi-shift solver to speed 

up the evaluation of rational functions. Unfortunately, this investigation did not 

reveal a method to do this, but as a by-product of this, a generalisation of the 

multi-shift solver was found which could be applied to the R algorithm to reduce 

the number of conjugate gradient iterations when doing 2+1 calculations. 

A resolution to the critical slowing down in acceptance rate with decreasing 

quark mass was presented in chapter 6. The reason that the Hasenbusch method 

produces better acceptance rates was given: namely that increasing the number 

of pseudofermion fields used to represent the fermion determinant reduces the 

noise on the measure, that manifests an improved acceptance rate. An alterna-

tive method to produce the same effect was introduced, the nroots method. This 

method has an advantage over the Hasenhusch trick because it uses RHMC, so 

can be applied to any number and type of fermions. At the range of param-

eters tested, there was only an overall gain to be had when using the lightest 

quark mass parameter. As the quark mass is reduced and the volume increased, 

the expectation is that the improvement gained by the nroots acceleration will 

increase considerabley. 

RHMC was applied to the ASQTAD fermion formulation in chapter 7. Careful 

consideration was given to the calculation of the kernel derivative, and for the 

case of 2+1 flavour calculations, it was found that there is no overhead in using 

RHMC compared to using the R algorithm for ASQTAD calculations. 

The results in chapter 8 show RHMC can be perfectly well adapted for use with 

chiral fermion formulations. On the statistics used in this study there is evidence 

to suggest that the R algorithm and RHMC have compatible autocorrelation 

lengths. On the parameters explored here, the R algorithm must be run at a 

stepsize around ten times less than that of RHMC to obtain consistency. 
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9.2 Future Work 

From this work there are a lot of unanswered questions that shall be the focus 

of future work. 

The most unsatisfactory aspect of this work is the inability to have been able 

to perform a full comparison of RHMC with the R algorithm using ASQTAD 

fermions. This fermion formulation shall constitute a large fraction of calcula-

tions done by UKQCD, so it is extremely important to validate current data, 

and to check which algorithm is the most efficient. It is expected that RHMC 

will allow increases in the stepsize over the two thirds rule employed for R al-

gorithm calculations, which should lead to a considerable decrease in the cost 

to generate such ensembles. 

After the work presented in this thesis was completed, a comparison between 

the R algorithm and RHMC was performed using naïve staggered fermions 

near the deconfinement transition the author. It was found that the finite 

stepsize errors present in the R algorithm can adversely affect the location of 

the transition point, i.e., the value of i3  the critical value of the coupling. In 

order to obtain consistent results between the two algorithms, the stepsize used 

for the R algorithm must be around twenty times smaller than the RHMC 

stepsize. This is very significant since it demonstrates the danger in using an 

inexact algorithm. This study shall be presented in a future publication. 

The use of a chronological inverter with the multi-shift solver is still obviously 

desirable. Further research in this area shall be performed in an attempt to find 

a resolution. 

It will of course be sensible to perform a full cost comparison of the nroots 

algorithm presented here against the method advocated by Hasenbusch [62] to 

see which method is superior. Although this work demonstrated that nroots 
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seems to be only giving very small benefits, this was for the staggered fermion 

formulation, which suffers much more mildy from critical slowing down in ac-

ceptance rate compared to Wilson fermions, where the Hasenhusch trick has 

been so successful. 

Further refinement of the nroots acceleration shall be investigated as there are 

potentially more gains that can he made. There are two possible avenues for 

refinement. The first of these is to explore whether calculating the ri different 

fermionic contributions to the force at different times in each MD step could be 

beneficial. Take for example, the case where n = 2 pseudofermion fields are used. 

The current nroots procedure would have been to calculate the contribution to 

the force at the mid point of each MD step. It could be argued that if one 

fermion contribution were calculated at the mid-point and half of the other at 

each end of the MD step, a smoother evolution of gauge fields would be obtained. 

This would presumably lead to an improved acceptance rate with no overhead, 

i.e., an integrator of the following form 

6(7-) = ( e 6 
	 2 )h'2 e ÔT Q /'2 e5n1'1  e T  2e87(PQ±P2)12'\ r/dt 

	
(9.1) 

) 

where PG represents the momentum update due to the pure gauge, and P1  

and P2  due to the fermionic contributions. In doing this it would probably be 

required that the P2  contribution is calculated at the end points to ensure it 

can be glued with the P2  updates in adjacent MD steps to remove the extra 

inversion otherwise incurred. 

The second avenue that might be worth exploring is the use of techniques de-

veloped for propagator calculations, where there is a single fermion matrix with 

multiple right hand sides to be solved against. This is effectively the nroots 

problem, where n right hand sides must be solved at some point in MD time. 

Currently this is done through sequential multi-shift solves. One alternative 

may be to use deflation methods, where on the first inversion the eigenvectors 
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of the fermion matrix are projected out, these are then used to accelerate the 

convergence of the subsequent solves [76]. This procedure can be extended to 

shifted systems as well [77], so could be applied to nroots. The alternative to 

deflation methods when solving for multiple right hand sides is to use the block 

algorithm approach [78], where the solution vectors and right hand sides are 

arranged as matrices whose columns are these vectors, and all vector linear al-

gebra becomes matrix algebra. This accelerates the inversion process because 

of off-diagonal terms which occur because of an overlap between the Krylov 

subspaces of the righthand sides. Block algorithms have not been applied to 

the case of shifted systems, it may be worth investigating whether it is possible. 

Another improvement that can be made is in the generation of the rational 

approximations. A method to accelerate its convergence is desired since this 

can be a slow process when undertaken on a QCDOC. For the case of finding 

the flth  root approximation, the analytic form of the function and its derivatives 

are known, so in principle this knowledge can be used to accelerate the search 

process. Since the th  root is a smooth function the Newton-Raphson search 

method should work without difficulty for finding the maxima (and zeros) of 

the error function. The linear equation solving, currently done using a direct 

method, could be accelerated using a Krylov method, and since the previous 

solution vector could be used as an initial guess the method would be expected to 

converge rapidly. With such changes to the Remez algorithm implementation, 

it may be possible to relax the requirement to perform the calculation using 

high precision arithmetic to merely double precision, this step alone would lead 

to a large improvement in the executation time. Since the Remez algorithm can 

also be used to find pure polynomial approximations, such an implementation 

might be very useful for large degree approximations, where it can take days to 

calculate the approximation [47]. 

The autocorrelation length of the RHMC algorithm should be investigated fur- 
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ther. What may be interesting to explore is whether the use of ultra-violet 

preconditioning [79] can be used to further improve the RHMC algorithm. The 

method is to factor out the ultra-violet, i.e., short distance, contributions to 

the fermionic determinant, these factored out pieces correspond to shifts in 

the gauge coupling [80]. This technique has successfully been applied to the 

multi-boson algorithm, and has been shown to significantly reduce the plaque-

tte auto-correlation time [81] as well as allowing a reduction in the degree of 

polynomial approximation. The reason for the former is that the short distance 

physics are now included exactly, and not stochastically through auxillary fields. 

The correlation length of topological charge, and other long distance physics, is 

unchanged by this filtering. 

The difficulties in producing reliable chiral extrapolations was highlighted in § 

8.3. A good improvement to this situation could possibly he obtained through 

including the difference between the fermion determinant with mass parameter 

md Y  and the determinant with mass parameter m vai  into the observable being 

measured, i.e. for the simplest case of staggered fermions, 

	

det(- 2  + m) = det(—j 2  + 	det(1 + L) 	 (9.2) 
va 

	

= det(- 2  + 	exp[trin(1 + s)], 	(9.3) 

where m ai  = 	+ Sm2  and = 	What this is saying is that if one 

requires a measurement of an observable with a mass rn v, then an ensemble 

with dynamical mass mdYfl  can be used if the exp[tr ln(1 +A)] factor is included 

in the observable measured. The exp[tr ln(1 + )] could be calculated through 

stochastic summation on the Taylor expansion of the exponential and logarithm 

functions, the latter of which is valid for JAI < 1. This reweighting method is 

similar to that in [82], however, it has never been applied to the dynamical 

fermion mass in such a way. The method is basically the k expansion, but 

from a finite fermion mass. This method in principle allows unitary chiral 
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extrpolations using only a single ensemble, however, as the parameter 6in 2  is 

increased, the overlap between the vacuum state, and the desired state will 

reduce. This lack of overlap will manifest itself through a large increase in 

statistical noise in any observables measured. In reality this reweighting method 

might be useful to explore +25% of the true ensemble mass, which could prove 

to be very useful when performing dynamical chiral extrapolations when using 

two or three different ensembles with different mass parameters. 
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Appendix A 

Staggered Fermion Results 
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T m d md Nmv (P) (A) E (x10 5 ) 

1 3.87 x10' 12712(2) - 0 0 

2 8.71 x10 2  24795(3) - 0 0 

3 1.89 x10 2  34196(176) - 0 0 

4 4.08 x10 3  38654(14) 0.57685(22) 0.539(29) 1.48(5) 

5 8.84 x10 4  39420(70) 0.57688(14) 0.670(24) 1.73(7) 

6 1.91 x10" 41144(34) 0.57695(16) 0.682(36) 1.73(5) 

7 4.14 x10 5  42023(26) 0.57693(19) 0.692(23) 1.85(6) 

8 8.97 x10 6  42713(36) 0.57700(24) 0.733(40) 1.75(5) 

9 1.94 x10 6  43098(38) 0.57701(22) 0.724(20) 1.70(5) 

10 4.20 x10 7  43053(24) 0.57715(10) 0.728(22) 1.69(7) 

11 9.10 x10 8  43285(69) 0.57697(11) 0.728(34) 1.69(9) 

12 1 1.97 x10 8  43680(5) 0.57698(7) 0.726(27) 1.69(2) 

13 4.26 x10 9  43785(39) 0.57705(13) 0.763(19) 1.55(4) 

5 8.84 x10 4  39234(10) 0.57706(4) 0.678(4) 1.75(2) 

Table A.1: The measurements made when varying the MD approximation de-

gree with staggered fermions. All of these results used an integrating stepsize 

Sr = 0.02 and consisten of 100 trajectories each, apart from the last row which 

is the result of a 2000 trajectory run. The errors were found using a jackknife 

analysis. 
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5yIer 67 
gauge (P)  (A) E (x10 5 ) 

0.01111 0.01111 0.57700(21) 0.0411(150) 0.906(11) 1.76(2) 

0.02 0.02 0.57727(12) 0.181(159) 0.746(49) 2.02(12) 

0.025 0.025 0.57719(13) 0.589(138) 0.631(26) 2.00(26) 

0.03333 0.03333 0.57716(18) 1.85(23) 0.367(47) 1.99(18) 

0.04 0.04 0.57722(10) 3.32(34) 0.231(54) 1.44(32) 

0.05 0.05 - 11.0(3) 0.0140(167) 0.102(8) 

0.0125 0.01 0.57723(19) 0.0327(286) 0.886(14) 1.94(3) 

0.025 0.01 0.57695(26) 0.165(47) 0.786(21) 3.29(9) 

0.03571 0.01 0.57684(26) 0.233(75) 0.728(27) 4.26(16) 

0.05 0.01 0.57727(6) 0.762(140) 0.544(37) 4.31(29) 

0.0625 0.01 0.57694(19) 2.42(24) 0.276(36) 2.63(34) 

0.0833333 0.01 0.57724(14) 8.89(44) 0.0491(183) 0.592(23) 

0.1 0.01 - 24.1(7) 0.000 0.000 

Table A.2: The measurements made when varying the integrating stepsize r 

with staggered fermions using both the standard OQPQ integrator and with mul-

tiple time steps. All of these results used md = 10 and n., = 15 and consist of 

100 trajectories each. The errors were found using a jackknife analysis. 
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Nroots Results 

6T fer 6H (A) (E) x 10 

0.20 448278(10218) 0(0) 0(0) 

0.10 24.08(68) 0(0) 0(0) 

0.083333 8.88(43) 0.0490(183) 0.5919(221) 

0.062500 2.41(23) 0.2762(355) 2.632(338) 

0.05 0.7619(1403) 0.5441(373) 4.313(294) 

0.041667 0.6130(912) 0.5659(319) 3.781(213) 

0.035714 0.2330(74530 0.7284(278) 4.260(162) 

0.025 0.16471(4684) 0.7865(214) 3.288(89) 

0.0125 0.03272(2867) 0.8858(139) 1.937(30) 

Table B.1: The measurements made when varying the integrating stepsize c 

with staggered fermions when investigating nroots (n = 1, V = 16, Wilson 

gauge action, = 5.76, mf  = 0.02, n.d =10, n., = 15, res., = 10 6 ,  res., = 

87- gauge = 0.01). The errors were found using a jackknife analysis. 
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67 fer SH (A) (E) x 10 - ) 

0.20 77.28(127) 0(0) 0(0) 

0.10 2.322(213) 0.2942(360) 1.991(487) 

0.083333 1.094(148) 0.4479(368) 2.633(432) 

0.0625 0.30698(818) 0.6843(280) 3.184(261) 

0.05 0.02929(533) 0.8351(225) 3.222(173) 

0.041667 0.07095(3799) 0.8532(180) 2.817(119) 

0.035714 0.08172(4269) 0.8351(195) 2.404(112) 

0.025 0.05677(3321) 0.8716(164) 1.797(68) 

0.0125 0.01888(3167) 0.8843(145) 0.9425(31) 

Table B.2: The measurements made when varying the integrating stepsize 5r 

with staggered fermions when investigating nroots (n = 2, V = 16, Wilson 

gauge action, 3 = 5.76, m1  = 0.02, n.d 	10, n., = 15, resmd = 106, res., = 

ge = 0.01). The errors were found using a jackknife analysis. 
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6Tfer JH (A) (E) x 10- ) 

0.20 30.54(72) 0(0) 0(0) 

0.10 1.283(142) 0.4224(369) 1.919(503) 

0.083333 0.2032(902) 0.6092(292) 1.623(408) 

0.0625 0.3291(831) 0.6926(302) 2.380(315) 

0.05 0.04727(4049) 0.8516(176) 2.176(135) 

0.041667 -0.002674(45069) 0.8603(175) 2.244(187) 

0.035714 0.05027(3243) 0.8730(149) 1.758(95) 

--  0.025 0.054073(3222) 0.8682(156) 1.812(63) 

Table B.3: The measurements made when varying the integrating stepsize r 

with staggered fermions when investigating nroots (ri = 3, V = 16, Wilson 

gauge action, /3 = 5.76, m c  = 0.02 = 10, Ti = 15, resmd = 10 6 , res., = 

10, 5y1ge = 0.01). The errors were found using a jackknife analysis. 

5H (A) (E) x 10) 

0.20 18.48(52) 0.000590(563) 0.3225(12) 

0.10 0.8058(1246) 0.534398(354) 1.796(477) 

0.083333 0.3813(833) 0.6909(314) 1.651(396) 

0.0625 0.1492(469) 0.8025(213) 1.904(202) 

0.05 0.08153(3644) 0.8495(177) 1.613(134) 

0.041667 0.07800(3900) 0.8536(185) 1.465(148) 

0.035714 0.02335(2910) 0.8969(148) 1.296(90) 

0.025 0.01430(2648) 0.9035(124) 0.9220(50) 

Table B.4: The measurements made when varying the integrating stepsize 8 

with staggered fermions when investigating nroots (n = 4, V = 16, Wilson 

gauge action, 0 = 5.76, m 1  = 0.02, nmd = 10, = 15, res., = 10 6 , res mc  = 

1o9, 	gig- = 0.01). The errors were found using a jackknife analysis. 
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6T fer 6H (A) (E) x 10 -5 ) 

0.01 0.003961(8168) 0.9680(23) 0.6313(17hs) 

0.02 0.04935(1984) 0.8979(14) 1.184(19) 

0.030303 0.1494(528) 0.7643(168) 1.468(24) 

0.041667 0.8621(1338) 0.5228(271) 1.309(78) 

0.052632 1.592(330) 0.3730(202) 1.186(65) 

0.066667 4.476(327) 0.1541(444) 0.6013(1740) 

0.076923 11.81(83) 0.01058(468) 0.04704(2088) 

0.090909 7842(546) 0(0) 0(0) 

Table B.5: The measurements made when varying the integrating stepsize 8T 

with staggered fermions when investigating nroots (n = 1, V = 16, Wilson 

gauge action, 3 = 5.76, m f  = 0.01, 	md = 11, Tl mc  = 16, res., = 106, res 	= 
6,-gauge = 0.01). The errors were found using a jackknife analysis. 



8H  (E) x io - ) 

0.01 0.002652(5024) 0.9793(41) 0.3347(18) 

0.02 0.002768(10909) 0.9634(29) 0.6186(55) 

0.030303 0.05131(1467) 0.9054(134) 0.8560(127) 

0.041667 0.06595(4889) 0.8580(176) 1.122(21) 

0.052632 0.1294(330) 0.7909(243) 1.300(45) 

0.066667 0.5001(1376) 0.6219(125) 1.267(17) 

0.076923 0.6300(637) 0.5637(194) 1.326(66) 

0.090909 1.589(336) 0.3676(259) 1.091(73) 

0.111110 3.735(150) 0.1724(452) 0.5477(1549) 

0.125 6.848(287) 0.07144(1713) 0.2121(501) 

0.142857 13.27(43) 0.01146(422) 0.03778(1391) 

Table B.6: The measurements made when varying the integrating stepsize 57 

with staggered fermions when investigating nroots (n = 2, V = 16, Wilson 

gauge action, 3 = 5.76, m 1  = 0.01 = 11, Tl mc  = 16, resmd = 10 6 , res mc  = 

iO-, 5a1e = 0.01). The errors were found using a jackknife analysis. 
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Syfer 5H (A) (E) x iO - ) 

0.010 0.000346(47810) 0.9800(36) 0.2221(18) 

0.020 0.003781(8671) 0.9689(46) 0.4453(34) 

0.030303 0.03485(2565) 0.9270(66) 0.5761(18) 

0.041667 0.07571(2453) 0.8712(20) 0.7400(36) 

0.052632 0.05448(1523) 0.8582(58) 0.9358(162) 

0.066667 0.2945(200) 0.7257(214) 0.9624(276) 

0.076923 0.3312(1052) 0.6754(399) 1.065(67) 

0.090909 1.053(190) 0.4522(585) 0.7429(947) 

0.111111 1.803(144) 0.3621(363) 0.6580(678) 

0.125 2.934(74) 0.1817(306) 0.3607(608) 

0.142857 5.480(383) 0.07488(1684) 0.1673(376) 

Table B.7: The measurements made when varying the integrating stepsize 8'r 

with staggered fermions when investigating nroots (n = 3, V = 16, Wilson 

gauge action, 3 = 5.76, mf  = 0.01, n = 11, n, = 16, resmd = 10 6 , res., = 
-' = 0.01). The errors were found using a jackknife analysis. 
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6T fer 6H (A) (E) x 10) 

0.01 0.03011(229) 0.9184(58) 0.4631(69) 

0.02 0.03844(4885) 0.8817(180) 1.006(21) 

0.030303 0.2315(730) 0.7281(452) 0.9727(642) 

0.041667 1.392(227) 0.3946(379) 0.6940(646) 

0.052632 3.546(218) 0.2278(219) 0.4996(474) 

0.066667 13162(961) 0(0) 0(0) 

Table B.8: The measurements made when varying the integrating stepsize ör 

with staggered fermions when investigating nroots (n = 1, V 16, Wilson 

gauge action, 0 = 5.76, m 1  = 0.005, nn,I =11, n mc  = 16, res,d = 10 6 , res mc  = 

10_, 6Tgauge = 0.01). The errors were found using a jackknife analysis. 

(A) (E) x iO) 

0.030303 0.05026(326) 0.8928(144) 0.6279(91) 

0.041667 0.1152(400) 0.8241(212) 0.8994(211) 

0.052632 0.1229(342) 0.7944(118) 1.131(136) 

0.066667 0.6057(1988) 0.5679(285) 0.9711(430) 

0.076823 0.7528(1502) 0.5378(298) 0.9746(568) 

0.090909 1.630(207) 0.3692(422) 0.7143(569) 

0.111111 3.834(109) 0.1664(332) 0.3406(679) 

0.125 7.559(204) 0.04744(2069) 0.1198(51) 

0.142857 14.26(73) 0.000596(222) 0.001795(676) 

Table B.9: The measurements made when varying the integrating stepsize 5T 

with staggered fermions when investigating nroots (n = 2, V = 16, Wilson 

gauge action, 3 = 5.76, m 1  = 0.005, n,d =11, Tl mc  = 16, res., = 10 6 , res., 

5 a- -e  = 0.01). The errors were found using a jackknife analysis. 
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yfer 8H (A) (E) x 10 - ) 

0.04 0.01077(1744) 0.8931(127) 0.5149(122) 

0.05 0.01554(1859) 0.8126(150) 0.6263(147) 

0.0625 0.07606(3229) 0.8077(151) 0.7927(349) 

0.076923 0.4824(1414) 0.6311(663) 0.8523(630) 

0.090909 0.8702(667) 0.5196(327) 0.8697(1243) 

0.111111 1.696(337) 0.3396(358) 0.5628(529) 

0.125 3.424(208) 0.1935(0.029741) 0.3397(472) 

0.142857 5.477(436) 0.09041(3597) 0.1706(476) 

0.166666 12.03(38) 0.03888(17671) 0.08155(2270) 

Table B.10: The measurements made when varying the integrating stepsize 6 

with staggered fermions when investigating nroots (n = 3, V = 16, Wilson 

gauge action, 3 = 5.76, m = 0.005, nmd = 111 nnic  = 16, res., = 10_6, resme 

S - ' = 0.01). The errors were found using a jackknife analysis. 



Appendix C 

Domain Wall Results 

mva i m11  x 2 /dof Fit Range 

0.020000 0+0002832  0.39013 -0.003183 1.7895 7-15 

0.030000 1+0002681  0.44298 -0.002723 2.25062 7-15 

0.040000 
5+0.002372 

0.49093 -0.002462 2.47737 7-15 

430.000681 0.0071 	+ 
0000675 0.311712 

Table C.1: Fitted values of m from data set 1. The errors were found using a 

bootstrap analysis. 

1 vaI  m x 2 /dof Fit Range 

0.020000 
0.387446+0.00 1849 _ 0.001714  2.70949 7-16 

0.030000 0+0001637  0.44174 -0.001560 2.37625 7-16 

0.040000 0.490624+0-00 1481  0.0014g5  2.1108 7-16 

m re . 
-0.006077+ 0.000352 0.000418 0.736242  

Table C.2: Fitted values of rn from data set 2. The errors were found using a 

bootstrap analysis. 
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m 1  m x 2 /dof Fit Range 

0.020000 0.383591+0.002264-0.002116 0.790022 6-16 

0.030000 0.438591±0002169 -0.001890 0.884075 6-16 

0.040000 0.488178 +0.002059 0.001826  1.10037 6-16 

m re , -0.005328+0  .000342  _ o.000404  0.489891 

Table C.3: Fitted values of m from data set 3. The errors were found using a 

bootstrap analysis. 

mva i m x 2 /dof Fit Range 

0.020000 i 0.37347i +0.001635-0.001605 1.06044 8-16 

0.030000 +0001560 0.428783 1.47946 8-16 

0.040000 ±0.001529 
0.47904

.1
0 001458 1.82003 8-16 

mres 
.000222 -0 . 004284+00000231 1.06968 

Table C.4: Fitted values of m T  from data set 4. The errors were found using a 

bootstrap analysis. 

m vai  m re. x 2 /dof Fit Range 

0.020000 0.01 l00101 
ô

+0.0
_ çj  1.29208 714 

0.030000 'fl-v 	+0.000097 1.28611 7-14 

0.040000 0.011500 +0-000095  _0.000104  1.28701 7-14 

-m re. 18  0 . 012258+0-0001-0.000137 0.0193822 

Table C.5: Fitted values of m res  from data set 1. The errors were found using a 

bootstrap analysis. 
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mvai  mre, x 2 /dof Fit Range 

0.020000 0.011742 +0.000080-0.000076 1.46174 7-15 

0.030000 
0.011549+0.000083

-0.000071   1.62917 7-15 

0.040000 0.011389 -  +0.000079 
000070 1.75333 7-15 

-mre. 0+0000098  0.01209 -0.000088 0.0302606 

Table C.6: Fitted values of m re, from data set 2. The errors were found using a 

bootstrap analysis. 

m I  mre, x 2 /dof Fit Range 

0.020000 
7±0.000067 

0.01095 -0.000078 0.949423 8-14 

0.030000 
7+0.000066 

0.01077 .0000073 1.02914 8-14 

0.040000 6+0000063  0.01062 -0.000072 1.0777 8-14 

-m re, 3+0.000083 
0.01128 -0.000090 0.0298768 

Table C.7: Fitted values of m res  from data set 3. The errors were found using a 

bootstrap analysis. 

mvai mres x 2 1dof Fit Range 

0.020000 0± 0.01088 	0000 
000059  0059 1.00306 9-15 

0.030000 0  1+ 000055  0.01070 	0000054 1.08747 9-15 

0.040000 
3+0.000052 

0.01055 -0.000052 1.20074 9-15 

TflreS 
9±0.000070 0.01119 	0000071 0.0498049 

Table C.8: Fitted values of m res  from data set 4. The errors were found using a 

bootstrap analysis. 
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mv ai m Fit Range x 2 /dof 

0.020000 0.679102 +0.025864
-0.024308  9-14 0.948594 

0.030000 36+0 . 018933  0.7088 	-0.018083  9-14 1.00814 

0.040000 0 . 733272+0014230-0.013562 9-14 1,0781 

-m 6+0 . 037500  0.62750 -0.036327 0.0128028 

a +0.044514 1.291533 -0 . 043109  

Table C.9: Fitted values of m from data set 1. The errors were found using a 

bootstrap analysis. 

m va j MP  FitRange x 2 /dof 

0.020000 0.65127 Q+O.Ol6998 	
I oO15754  8-16 1.03006 

0.030000 0.6831_6U +0012081  _0_ 011034 816 0.977714 

0.040000 0.7141 1 -+0 .009428  o_ _ 008771 8-16 0.784661 

-m + 0.5889 2 3 +0.024832 0.00099057 

a +0.029527 
1.3935k '-'-0.027342  

F 

Table C.10: Fitted values of m from data set 2. The errors were found using 

a bootstrap analysis. 

mv ai  m FitRange x 2 /dof 

0.020000 0.660201+0.014139 
-0.0 13475 8-16 1.02566 

0.030000 0.684790+0-0  _0 10323 
010037 8-16 1.22492 

0.040000 __________ 0.711636+0008139 -0.008040 8-16 1.30742 

Fm 	1 0 - 607705+0-011 
9695 0 09522 0.00759155 

a 1.330925+0023070  -0.023 143 

Table Cli: Fitted values of m from data set 3. The errors were found using 

a bootstrap analysis. 
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mv ai  rn,, Fit Range x 2 /dof 

0.020000 0+0-01 
  1103 0.65428 0009716 8-15 1.25851 

0.030000 0.680018+0 .008020  
_ 0007365  8-15 1.81491 

0.040000 01.70701 	+0 006604  1 
 0005764 8-15 2.34282 

—in,, 4+0.0 15382 0.60096 -0.013924 0.00410566 

a 0+0.0 18276 1.34754 -0.016700  

Table C.12: Fitted values of rn,, from data set 4. The errors were found using 

a bootstrap analysis. 

m re. 

.. +0.000862 r 	 -0.001187 

Table C.13: Fitted value of m res from dynamical m, extrapolation using R data 

sets. The errors were found using a bootstrap analysis. 

rnre. 

+0.010359 —0.002054_ 0 . 000399 

Table C.14: Fitted value of m res  from dynamical m, extrapolation using RHMC 

data sets. The errors were found using a bootstrap analysis. 

r ai 
rnre. 

inres 
 +0.000173 0 . 010414 -0.000172 

Table C.15: Fitted value of m re, from the R data sets. The errors were found 

using a bootstrap analysis. 
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M.., Mres  

+0.000146 0.010371 -0.000147 

Table C.16: Fitted value of rn res  from the RHMC data sets. The errors were 

found using a bootstrap analysis. 

mva i 1-np  

—m 31+0031762  0.5871 	-0.032007 

a 1.399778+0114901 
-0.099073 

Table C.17: Fitted value of m from the R. data sets. The errors were found 

using a bootstrap analysis. 

mva , m 

—m 444 +1.023193 
0.594 	-0.022226 

a 1.364793+0-O72267  
o068793  

Table C.18: Fitted value of m from the RHMC data sets. The errors were 

found using a bootstrap analysis. 



Appendix D 

QCDOC Implementation 

QCDOC has been designed specifically to perform lattice QCD simulations very 

efficiently, therefore the implementation of the above algorithms was done with 

the QCDOC hardware in mind. Here the QCDOC implementation of somce of 

the performance critical code is explained. 

D.1 Optimising Matrix Inversion for QCDOC 

The conjugate gradient algorithm, and in general all Krylov inversion methods, 

operate at an efficiency lower than that of the matrix-vector product. This is 

because of the decreased computation to bandwidth ratio of the linear algebra 

compared to the matrix-vector product. This problem can be alleviated by 

calculating the scalar products concurrently with VAXPY operations, but this 

overhead can not be eliminated completely (e.g., for ASQTAD fermions, matrix-

vector product efficiency 40%, conjugate gradient 38%). This may seem like 

a small reduction in operating efficiency, however, for the case of the multi-shift 

solver, the problem is much more severe due to the increased linear algebra per 
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iteration. The double pass formulation [83] of the multi-shift solver removes all 

of the overhead of the linear algebra, but has some severe caveats which render 

it unsuitable for RHMC. The most severe of these is that it will only evaluate 

the summed partial fraction, as opposed to the individual poles. This renders it 

unuseable for the RHMC force calculation. The conventional multi-shift solver 

must therefore be optimised for QCDOC. 

The multi-shift solver has 2n+1 VAXPY operations as well as two scalar products 

per iteration. The VAXPY operations are 

= (krk — ckpk 	 (D.1) 

Tk+1 = Tk - I3kAPk +1 	 (D.2) 

,a ci X k+i 
 

= Xk+/JkPk+1, 	 (D.3) 

and the required scalar products are 

Ck = (rk,rk) 
	

(D.4) 

dk = (V)k,A.bk). 	 (D.5) 

The scalar products can be calculated concurrently with the update to the resid-

ual vector (equation (D.2)), and when the Apk+1 matrix-vector product is taken 

respectively. This leaves just equations D.1 and D.3 upon which improvements 

must be made. 

The QCDOC floating point unit has in addition to standard operations, an 

instruction which allows the evaluation of v = ax + y, this is the multiply-add 

instruction [84]. Notice that individual elements of equations D.2 and D.3 can be 

evaluated using only a single multiply-add floating point instruction, however, 

the same cannot be said of the D.1 since there is an extra scalar multiplication 

involved. This equation could be recast into this form if the equation was 

divided through by c, this factor would have to be restored in the calculation 
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of x 1 . 

ta 

Pk+1 
- 
- — rk — pk 	 (D.6) 

cxk 

x +1  = 	 ( D.7) 

But since only the value of j3 from previous iterations would be known, this 

factor has to be included from all previous iterations. The equations required 

are thus 

k 

= 	(flc) ' rk —  Pk' , 	 ( D.8) 
1=1 

k 

Tk+1 = rk—(Hc1)!3kApk+1, 	 (D.9) 
1=1 

or 	= X
or 

	 (D. 10) 

which are all in the form of multiply-add, and hence optimal for evaluation on 

QCDOC. 

If the j3 update is cycled to the end of the loop, as opposed to the beginning, 

then 

k 

x +1  = x±(flc), kPk+1 	 (D.11) 
1=1 

k+1 

Pk+2 = (+I(Ha+lY1rk+1—'+l. 	 (D.12) 
1=1 

It can now be seen that there is a common input vector to the x and j3 vector 

updates, namely 75k•  This suggests that if these operations were combined, then 

the computation to bandwidth ratio would be increased by a factor of 1 . Of 

course the x update must be calculated before the j3 update to reproduce the 

algorithm correctly. 

This procedure is of course applicable to any architecture, but the QCDOC in 

particular is problematic for such a recasting. When fields are stored in the 

EDRAM, the prefetching EDRAM controller will only simultaneously operate 
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with two input streams, and two output streams. For standard VAXPY oper-

ations this requirement is of course met, but for this proposed scheme this is 

not true. Proceed naïvely then would result with an overall reduction in perfor-

mance because of the neeed to switch input streams continuously. Fortunately, 

it is possible to circumvent this problem entirely. 

The solution is to interleave two of the input streams into a single double-length 

stream, that way it is possible to load three streams of data simultaneously with-

out a bottleneck. Obviously, then all operations which concern the interleaved 

data would have to be re-written to reflect this. For the unshifted shift updates, 

any two of r, j5 or x can be interleaved, however, since the Dirac operator must 

act on the j5 vector it is easiest to interleave the r and x vectors. The shifted 

p' and x are interleaved, but since the Dirac operator is not applied here this 

can be done without complication. 

The only slight consideration that has to be made when using such an inter-

leaving strategy is what courseness of inverleaving to use. The courseness of the 

interleaving must be such that a cache miss does not occur when performing an 

operation using only one vector of the interleaved data stream, e.g., when the r 

vector is updated, the other data stream required is the Ap vector, and not the 

x vector with which the r is interleaved. On QCDOC a cache line has length 

768 bytes [85], this implies that an interleave of 12 doubles should be optimal. 

For the case of the ASQTAD (or staggered) fermion matrix M that is used in 

dynamical simulations, the mass parameter is a multiple of the identity matrix. 

Hence it is just a constant shift, like the shifts applied when using rational 

approximations. Therefore, the mass parameter can be renormalised to include 

the smallest shift that appears in the rational approximation, and the smallest 

shift subtracted from all shifts, i.e, 

M - /4m2 + o , 	 (D.13) 
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/3k - 	 (D.14) 

By renormalising the mass like this, some linear algebra is eliminated in the 

multi-shift solver, i.e., when calculating pj Ap i  as described in §3.8.2. Unfortu-

nately this optimisation cannot be applied to Wilson or domain wall fermion 

because the mass parameter of MtM  is not a simple shift. 

Solver Nmass  Percentage of peak 

naïve 1 30% 

optimised 1 39% 

naïve 10 20% 

optimised 10 35% 

Table D.1: The percentage of peak performance obtained from using the multi-

mass solver on a QCDOC with ASQTAD fermions. The naïve solver uses opti-

mised assembler for the linear algebra, but no other optimisations. 

D.2 Asqtad RHMC Force Implementation 

The RHMC ASQTAD force term has been optimised for use on the QCDOC. 

The calculation involves many SU(3) operations of the form 

X = X+cUV, 	 (D.15) 

X = X+cUVW, 	 (D.16) 

where X, U, V and W are SU(3) matrices, and c is a scalar. These operations 

are the SU(3) equivalents of the VAXPY operations define in appendix D.I. Each 

matrix-matrix multiply involves 198 flops, and a scalar-matrix multiply 18 flops. 

When calculating simple matrix-matrix multiply operations, it is possible to 

obtain around 80% of the peak performance of the floating point unit, however, 
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the inclusion of the summation spoils this performance considerabley because 

of the reduced flops to load ratio. As a result the ASQTAD force calculation has 

an efficiency of around 36% of peak performance. 

As an interesting side note, there is actually a method for cutting down the 

number of floating point operations required to perform SU(3) multiplication. 

The naïve evaluation of SU(3) x SU(3) involves 198 flops, these originate from 

four 3 x 3 matrix multiplies, and two matrix additions, i.e., 

X=AB 
	

(D.17) 

= (Ar +jAi)(Br+jBi) 	 (D.18) 

= ArBr AiBi+j(ArBi+AiBr), 	 (D.19) 

where X, A, B e SU(3). It is possible to rewrite multiplication of complex 

scalars in terms of 3 scalar multiplications and 5 additions, instead of the usual 

4 multiplications and 2 additions [23], and there is no reason why this procedure 

cannot be applied to matrices. Observe equation (D.19) can be rewritten 

X = ArB - AB, + j((A r  + Aj)(B r  + B? ) - ArBr - AB), 	(D.20) 

which only involves three matrix multiplications and five matrix additions. 

Hence, with this reformulation, the SU(3) multiplication only costs 180 flops 

since matrix addition is cheaper than multiplication. If a calculation is being 

performed where the same matrices are being repeatedly reused, e.g., the ASQ-

TAD RHMC force calculation, then it could he beneficial to precalculate the sum 

of real and imaginary components for all matrices. In the limit of infinite data 

reuse, this would lead to the multiplication operation only costing 162 flops, 

representing an 18% reduction over the naïve method. This method could be 

useful in reducing the cost of the ASQTAD force term calculation, but it is hard 

to implement efficiently on a QCDOC because of the reduced register reuse 

compared to the naïve calculation and so has not been exploited in this work. 
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