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Abstract
Multiagent systems offer a design paradigm used to conceptualise and implement sys-

tems composed of autonomous agents. Autonomy facilitates proactive independent

behaviour yet in practice agents are constrained in order to ensure the system satisfies

a desired social objective. Explicit constraints on agent behaviour, in the form of social

norms, encourage this desirable system behaviour, yet research has largely focused on

norm representation languages and protocols for norm proposal and adoption. The fun-

damental problem of how to automate the process of norm synthesis has largely been

overlooked with norms assumed provided by the designer. Previous work has shown

that automating the design of social norms is intractable in the worst case. Existing

approaches, relying on state space enumerations, are effective for small systems but

impractical for larger ones. Furthermore, they do not produce a set of succinct, general

norms but rather a large number of state-specific restrictions.

This work presents conflict-rooted synthesis, an automated norm synthesis ap-

proach that utilises a planning-based action schemata to overcome these limitations.

These action schemata facilitate localised searches around specifications of undesirable

states, using representations of sets of system states to avoid a full state enumeration.

The proposed technique produces concise, generalised social norms that are applicable

in multiple system states while also providing guarantees that agents are still able to

achieve their original goals in the constrained system. To improve efficiency a set of

theoretically sound, domain-independent optimisations are presented that reduce the

state space searched without compromising the quality of the norms synthesised.

A comparison with an alternative model checking based technique illustrates the

advantages and disadvantages of our approach, while an empirical evaluation high-

lights the improved efficiency and quality of norms it produces at the cost of a less

expressive specification of undesirable states. We empirically investigate the effective-

ness of each of the proposed optimisations using a set of benchmark domains, quanti-

fying how successful each of them is at reducing search complexity in practice. The

results show that, with all optimisations enabled, conflict-rooted synthesis produces

more generally applicable and succinct norms and consumes fewer system resources.

Additionally, we show that this approach synthesises norms in systems where the com-

peting approach is intractable. We provide a discussion of our approach, highlighting

the impact our abstract search approach has on the fields of multiagent systems and

automated planning, and discuss the limitations and assumptions we have made. We

conclude with a presentation of future work.
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Chapter 1

Introduction

The complexity involved in the design and implementation of modern software sys-

tems continues to grow, partly due to a continued increase in computational ubiquity

and distributed computation. Computer systems no longer solely adopt a centralised

approach to computation but are increasingly composed of interconnected, indepen-

dent computational agents (Milner, 2006). These intelligent agents cooperate to solve

problems, communicate to share knowledge and expertise, and are often independently

implemented and managed. A key challenge for designers of these distributed systems

is how to shape the global computation of the system so that the system achieves a

preferred objective.

Multiagent systems have been proposed as a system paradigm to conceptualise and

tackle this new class of problems (Weiß, 1999). Systems are composed of intelligent

agents that operate independently of their designer. They may be self-interested en-

tities, capable of selecting which goals they aim to achieve and the actions required

to bring about these goals. The system is no longer constructed by merging the un-

derlying implementations of these agents into a single executable, but is characterised

through the interactions that occur between these agents.

The most widely accepted property of intelligent agents is autonomy: agents act

independently of any external entity, thereby exhibiting control over their own internal

state (Wooldridge and Jennings, 1995). This control allows them to deliberate on their

own private goal selection and achievement and to independently decide when and

how to interact with other agents, while simultaneously allowing the system to adapt

and change in ways that the agent designer may not have considered. The result is a

systems design paradigm that is distributed, flexible and adaptive.

1
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From a designer’s perspective agent autonomy leads to a set of new challenges.

Multiagent systems encourage agent autonomy and independence, yet a designer may

wish to ensure some control over the system, thereby designing the system to meet

their objectives even if these are not in line with the goals of the agents. These social

objectives might encourage system efficiency, stability, social welfare or may simply

introduce predictability. The key challenge is in designing a system that encourages

predictable system behaviour while ensuring that agents are sufficiently autonomous

to achieve their goals, cooperate efficiently and resolve any unforeseen conflicts.

Social norms have been proposed as a means of coordinating agents by specifying

rules that govern their behaviour (Shoham and Tennenholtz, 1995). These rules are

placed on all members of a society to encourage desirable actions and outcomes. A

level of global predictability is introduced, since behaviour is restricted, and coordina-

tion results as agents incorporate the expected behaviour of others in their reasoning.

Research in the field has been extensive: there are many norm representation lan-

guages, approaches to building agents capable of reasoning with norms and dialogue

protocols for agents to propose new norms. In agent-based institutional models agents

may even alter the system to propose new norms, or may choose to accept or reject

proposed norms (Dignum, 1999), and it has been argued that an explicit representation

of norms is essential to defining truly autonomous agents (Boella et al., 2006).

Algorithmic processes used to design social norms have largely been overlooked

with norms typically assumed to be provided by the designer. In practice, hand coding

social norms for large systems is not feasible, particularly in systems where agents are

required to propose and adopt norms (Shoham and Tennenholtz, 1995), or in adaptive

systems that change over time. An algorithmic process that automates the design of

social norms is therefore a key tool for system designers and a fundamental compo-

nent of autonomous agents. This thesis details an approach to synthesising norms in

environments where agents utilise succinct action descriptions to construct plans to

achieve their goals. Our technique utilises state and action abstractions to produce

general norms that apply in many different system states, while preserving goal reach-

ability and agent autonomy, and without requiring any additional knowledge of the

goals of the agents.

To our knowledge, this work represents the first viable approach to synthesising

useful norms in the absence of goal knowledge, and the first scalable approach that

synthesises concise, generally applicable norms.
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1.1 The Problem of Social Norm Synthesis

When agents operate in a shared environment it is possible that the actions of one agent

have a direct impact on the actions of others, resulting in undesirable conflict situations

(Malone and Croston, 1994). Social norms are templates for socially acceptable be-

haviour that, if adhered to, enable agents to coordinate their actions based purely on

how they expect others to act in the system. The knowledge that other agents will obey

the social norms allows the agent to behave in a way that avoids conflict.

Consider the real-world example of a human traffic network. By adhering to the

norm to keep on one side of the road humans travel between destinations quickly, even

in the presence of other vehicles. The social objective is one of travel efficiency and the

avoidance of collisions. There is no guarantee that drivers will keep to their side, yet

the incentive for shorter travel times coupled with the ramifications of a fine encourage

norm-abiding behaviour.

The problem of social norm synthesis is concerned with how social norms can be

designed to bring about a social objective. Consider a system designer who wishes to

avoid a specific type of conflict situation in the system. The social objective here is

clear, yet the rules that each agent should follow to bring about the social objective are

not. A design process is followed to create the set of rules that ensure the objective is

met. This forms the first challenge of the problem of norm synthesis.

If a variety of social norms bring about the social objective then norms can be

ranked by the negative impact they have on the autonomy of the agents within the

system. A social norm which avoids collision states but results in a large portion of de-

sirable states being no longer reachable is less desirable than one which simply avoids

the collision states. Revisiting our example, the norm to keep to one side is preferred

over the norm to simply not drive, even though both avoid collisions. Designing norms

that preserve goal reachability is the second challenge of norm synthesis. We now

provide a summarised definition of the problem:

Given a social objective, the problem of automated norm synthesis is to

algorithmically design a set of social norms in a multiagent system that

guarantee:

1. to bring about the social objective, and

2. to have no impact on the achievability of agent goals.
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This problem description assumes no specific knowledge of agent goals. This allows

the resulting algorithm to be applicable in adaptive, open systems, where agent goals

may vary and change with time. Ensuring the achievability of agent goals results in

the strictest form of the problem definition. In reality the problem may be relaxed to

provide an enumeration of the goals that are no longer achievable, or to allow some

reachability compromise. This relaxation is particularly useful in situations where syn-

thesised norms conflict with an agent’s internal goals.

The problem of norm synthesis was formalised by Shoham and Tennenholtz (1992a).

A number of approaches have subsequently been presented yet are limited as follows:

• Domain Specific: Approaches to norm synthesis are tailored to specific do-

mains reducing their general applicability (Onn and Tennenholtz, 1997).

• Complexity: A complete joint state enumeration of the system is often re-

quired, consuming significant resources for even small systems (Shoham and

Tennenholtz, 1995; van der Hoek et al., 2007).

• Lack of Generality: The norms are not abstracted from the underlying systems,

resulting in many state-specific norms (van der Hoek et al., 2007).

• Goal Knowledge: Knowledge of agent goals is required and enumerating these

goals is computationally expensive or impractical (Fitoussi and Tennenholtz,

2000; Koeppen and López-Sánchez, 2010).

Abstraction is a key tool in the design and implementation of multiagent systems, of-

ten utilising high level specifications to define the individual capabilities of the agents

(Vázquez-Salceda and Dignum, 2003). Abstractions over agent actions and system

states simplify the design process, allowing designers to capture complex system be-

haviour through concise, intuitive behavioural specifications. Our approach to norm

synthesis preserves these abstractions to synthesise improved social norms.

1.2 A Planning-Based Solution

In order to develop a solution to the problem of norm synthesis we require a declar-

ative language for the specification of a multiagent system. Our approach, called

conflict-rooted synthesis, utilises planning-based domain representations, where agent

behaviour is encapsulated as operator schemata specifying what must hold for an ac-
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tion to be applicable, and what the effects of applying the action are. These schemata

describe in what ways the world can change through the actions of agents in the system.

Utilising a planning-based approach to norm synthesis is appealing, as both are

concerned with scalable search-based procedures that operate on abstract domain rep-

resentations. In both fields, the approaches developed are not only theoretically shown

to be sound, but are empirically shown to be useful in practice (Nau et al., 2004a).

Additionally, automated planning is a mature, well respected field, providing not only

a clear specification language for our domains but one that is generally accepted within

the community, and one for which a host of benchmark domains exist.

1.2.1 Research Statement

The core objective of this research is to utilise declarative specifications of agent be-

haviour to synthesise social norms that meet a social objective. We now provide some

simple state-based system semantics in order to ground our research statement. Let a

social objective in such a system be the avoidance of a set of undesirable system states,

perhaps those where agent actions conflict. The hypothesis of this work follows:

We can devise an algorithmic process that automates the synthesis of so-

cial norms given a declarative description of a planning domain and a

specification of undesirable conflict states so that:

1. the process is more scalable than state enumeration approaches, since

a complete joint state enumeration is not always necessary,

2. the social norms produced are of a higher quality since they are ab-

stract and generally applicable, and

3. it ensures that the social norms do not prevent agents from achieving

their goals.

The term scalable refers to computational efficiency, not in the execution time of a sin-

gle problem, but in how the execution time changes when the domain size is increased,

allowing for an efficiency argument that is independent of any specific implementation.

Abstract social norms that can be applied to sets of systems states are termed gen-

erally applicable, and in this work are deemed to be of higher quality than norms that

are specific to individual system states. These higher quality norms are more expres-

sive: a single abstract norm governs behaviour in groups of system states. A result of
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this expressivity is that fewer norms are required to bring about the social objective.

Presented with two sets of norms that ensure identical behavioural in a system, we

determine the smaller set to be of higher quality.

Compare our approach to the limitations of competing methods presented above.

Firstly, our approach is domain independent since it is applicable in any domain that

can be specified using the adopted planning formalism. It is less complex than state

enumeration based approaches since it performs a localised, abstract search of a por-

tion of the state space. The resulting norms produced are generally applicable as they

abstract from the underlying system, while the approach is goal independent as it en-

sures that all goals are achievable in the norm governed system.

1.2.2 Research Contributions

This thesis on the synthesis of social norms makes the following core contributions to

the field of multiagent systems:

• Norm Synthesis without Goal Knowledge: The problem of synthesising

norms in domains where the goals of the agents are unknown is a key contri-

bution of this work. Typically, alternative norm synthesis approaches utilise a

specification of the goals of the agents to check whether these goals are achiev-

able in the restricted system. Our approach to norm synthesis allows for system

designers to design norms that guarantee the reachability of agent goals without

knowing these goals at design time.

• Conflict-Rooted Synthesis: The next contribution is the conflict-rooted synthe-

sis algorithm, showing that it is possible to synthesise norms in domains without

goal knowledge and to still provide guarantees over goal reachability. The pre-

sented technique is shown to be theoretically sound, and designed to act as the

formal base upon which future work can be developed.

• Optimisations: A key contribution of this work is a set of theoretically sound

and accurate algorithm optimisations, that increase the range of challenging do-

mains in which the conflict-rooted synthesis approach can be applied.

• CRS Implementation: CRS is the main software contribution of this work. It

is a default implementation of the conflict-rooted synthesis algorithm that can be

adopted into future agent-based tooling, and provides a standard implementation

against which competing approaches to norm synthesis can be evaluated.
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More generally, this work contributes to Automated Planning and Artificial Intelli-

gence, by illustrating a problem in which an approach based on abstract search is

favourable those that enumerate and search domains at a lower level. We provide

essential theory that can act as inspiration in applying ungrounded search-based tech-

niques to new problems.

1.3 Conflict-Rooted Synthesis

This introductory overview of conflict-rooted synthesis avoids many of the finer tech-

nical details yet is sufficient to communicate the essence of our approach. Figure

1.1 illustrates two ways in which conflict-rooted synthesis is used in practice. Sys-

tem designers use conflict-rooted synthesis offline to synthesise social norms that con-

strain the behaviour of agents within a multiagent system, or autonomous agents utilise

conflict-rooted synthesis to design new norm proposals for systems they operate within.

System Designers Autonomous Agents

Agent Based System

Social Norms

Conflict-Rooted Synthesis

to synthesise
useuse

Offline
Design

Online
Design

Figure 1.1: Two typical conflict-rooted synthesis use cases: offline norm design by

system designers and online norm design by autonomous agents.

Consider a designer responsible for managing a shared system. This shared system

is populated by a set of agents which act independently of the designer to achieve

their goals by executing actions that change the state of the system. Assume now that

the designer has additional knowledge which allows them to classify the states of the

system as being either desirable or undesirable, and that they wish to alter the system

in such a way that the undesirable states are avoided. Altering the system to avoid

undesirable states may have implications on what goals each of the agents within the
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system can bring about. It may be the case that modifying the systems no longer allows

a subset of the agents to achieve their goals and objectives.

Conflict-rooted synthesis is an approach to designing rules that can be used to avoid

undesirable states. These rules guarantee that the modified system cannot enter any un-

desirable states, while ensuring that agents are still able to achieve their goals despite

the alterations. Given the set of undesirable states, our approach creates rules that

prevent agents from executing any actions that lead from a desirable state, to an unde-

sirable state. These rules are social norms that, if abided by, ensure that undesirable

states are avoided.

A key consideration to the system designer is what impact the synthesised rules

will have on the society of agents. To quantify this our approach conducts a search that

identifies all sequences of actions that traverse the space of undesirable states, simu-

lating undesirable agent behaviour in order to identify what outcomes can be achieved

if the system is allowed to enter these undesirable states. For each of these outcomes,

an alternative sequence of actions is searched for in the modified, restricted system,

in order to show that the agents are able to achieve their goals in the constrained sys-

tem. If each of the agents is guaranteed to achieve their goals the process completes

successfully and the designer knows that the rules can safely be incorporated into the

multiagent system.

In order to develop a sound solution to this problem we make the following as-

sumptions in our work which may limit its applicability in certain scenarios:

• Conflict situations are defined as sets of undesirable system states, which are

less expressive than logic-based approaches which allow for temporal relations

between states and action-based representations.

• We focus on prohibitionary social norms and state-based obligatory norms at the

agent’s action level. We do not synthesise norms that influence which goals an

agent chooses to achieve, but rather only govern how these goals are achieved.

• Our work assumes that norms will be adhered to and is independent of incentive

or sanction mechanisms used to enforce the norms in practice.

In systems where these assumptions are acceptable our approach requires fewer re-

sources to synthesise norms of higher quality.

We conclude the overview of conflict-rooted synthesis by commenting on our use of

social norms rather than social laws. Social laws, as presented by Shoham and Ten-
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nenholtz (1995), are rules defining how a system should be changed to meet a social

objective and are designed in an offline fashion. We distinguish our work from this

approach in two key ways:

1. Our rules are explicitly represented, allowing not only for offline synthesis by

system designers but also for online synthesis by agents in the system. Related

considerations, such as the quantity of rules produced, play a factor in the eval-

uation of this work.

2. Our approach not only synthesises rules, but also evaluates them with respect

to agent autonomy and goal reachability. Agents can utilise this work to reason

about whether to adopt rules proposed by other agents.

While we adopt the term social norms, we emphasise that this work does not consider

many additional properties typically associated with social norms research. In partic-

ular, we do not consider any form of agent violation, nor do we present appropriate

enforcement mechanisms that can be used to encourage agents to abide. These addi-

tional considerations must be satisfied when designing and implementing normative

systems and agents.

1.4 Parcel Delivery Domain

We use a simple running example to illustrate the core concepts of this thesis derived

from a mobilisation domain initially presented by Shoham and Tennenholtz (1995).

The multiagent Parcel Delivery problem involves a set of agents whose goal it is to

navigate a world in order to retrieve and deliver parcels. The world is defined as a graph

structure, with nodes depicting locations in the world and edges representing paths that

agents can follow to traverse between locations. Parcels appear at random locations in

the world, and it is the goal of each of the agents to retrieve a parcel from its source

location and to deliver it to a target location. We do not preclude the existence of any

other goals. Agents have three core capabilities: move between connected locations,

pickup parcels from their current location and drop parcels into their current location.

We use the following notation throughout this thesis. We write ai to represent Agent

i, nodej to represent Location j and parcelk to represent Parcel k.

We commonly wish agents within the Parcel Delivery domain to not concurrently

occupy the same location. This thesis is concerned with the follow key questions:

1. How do we represent this social objective?
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2. Can we automatically design rules to enforce this objective?

3. What effects do these rules have on the agents in the system?

1.5 Thesis Overview

Our approach to the problem of norm synthesis is heavily influenced by research in

multiagent systems and automated planning. We devote the next two chapters to pre-

senting the relevant required background literature in each of these fields. Chapter 2

focuses on social norms, beginning with an overview of social norms as a coordination

mechanism before detailing approaches to norm synthesis. Of the alternative methods

introduced, an approach based on model checking is presented in detail. Chapter 3

follows with required background knowledge from automated planning. Specifically,

we detail two planning domain formalisms of varying expressiveness and the associ-

ated language used to express these input domains. We conclude our background on

automated planning with a discussion of related work in the field.

The background overview is followed by two theoretical chapters. Chapter 4 the-

oretically details the core norm synthesis approach, providing a high level intuitive

introduction before delving into the formalism-specific details. Chapter 5 outlines a

set of optimisations that improve the performance of the core synthesis approach with-

out jeopardising the results produced.

With the theoretical details complete, we next present details of the empirical eval-

uation performed. We separate details of the implementation in Chapter 6 from the ac-

tual empirical results generated in Chapter 7. Our discussion of the results with respect

to the research statement of this work is presented in Chapter 8 before concluding.



Chapter 2

Background: Coordination using

Social Norms

A multiagent system is comprised of a set of agents acting within a shared environment

in order to achieve some private or shared goals. The actions of agents are interdepen-

dent since the actions of one agent may have a positive, or negative effect, on the out-

comes of another. Coordinating agent action is a fundamental concern when designing

agent-based systems, as it allows the community to behave in a coherent manner that

avoids undesirable interactions. A range of solutions to the coordination problem exist,

with the following extremes (Moses and Tennenholtz, 1995):

• Coordination is imposed through centralised control where the actions of all the

agents are dictated by a central entity. Such approaches suffer from a single

point of failure, and are inhibited by the complexity of managing the actions of

all agents. Furthermore, fully prescribing agent behaviour may be contrary to the

objectives of the multiagent system, particularly where agents are self-interested

as centralised control severely limits agent autonomy.

• Coordination is decentralised, where agents are responsible for identifying con-

flict situations and managing these as they arise. This places additional onus

on the agents requiring specific machinery to identify conflicts and to negotiate

solutions to these conflicts. While such approaches are robust and adaptive, they

require agents to communicate to resolve conflicts.

Typically coordination approaches in multiagent systems are decentralised and im-

plemented at runtime (Wooldridge, 2002). We discuss some common approaches to

coordination at a very high level before detailing coordination via social norms.

11
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2.1 Coordination Approaches in Multiagent Systems

We begin by discussing how agents might coordinate through the sharing of local plan

information. Partial Global Planning (PGP) (Durfee and Lesser, 1991) and subse-

quently Generalised Partial Global Planning (GPGP) (Decker and Lesser, 1995), are

approaches based on this principle. Agents looking to cooperate construct local plans

in order to achieve their own private goals and communicate details of these plans to

construct a partial view of the global system. Once all agents have agreed to the plan

they may execute their individual components in a coordinated manner.

A number of PGP related approaches have been proposed in the literature (Decker

and Li, 2000; Clement and Barrett, 2003; Wagner et al., 1998), yet all are designed

to work in domains where agents are assumed cooperative. Furthermore, since coor-

dination is communication-based, resources are consumed each time coordination is

required. In systems where agents interact frequently this may be overly expensive.

A second approach to coordinating behaviour in a multiagent system is through the

development of models of mental state. Cohen and Levesque (1991) introduced their

notion of teamwork based on the study of human coordination where team members

have individual intentions to achieve their own persistent goals, but that they also share

a joint intention to bring about a shared goal. Agents commit to the shared goal, and

act responsibly towards other team members when the goal is not achievable. Jennings

(1993) extended this joint intention theory by defining commitments as pledges to other

agents and conventions as a means of monitoring commitments so as to act responsibly

towards others.

Other approaches to coordination, including techniques for opponent modelling

and persuasion techniques based on game theoretic concepts, share limitations with

those presented above. Repeatedly coordinating behaviour is expensive: to coordinate

agent behaviour via PGP requires agents to continually create and refine global plans.

In situations where goals change rapidly, or where the system itself is variable, this

repeated computation is not desirable.

2.2 Coordination using Social Norms

One established coordination theory inspired by social science and legal theory is that

of social norms (Lewis, 1969) where socially responsible behaviour is specified for

each agent to follow. Social norms provide an intermediate approach bridging the

gap between centralised and decentralised coordination mechanisms. Consider that
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prior to interacting within a system agents established a convention that governs their

interactions so as to avoid conflict. The purpose of agreeing on such a convention

beforehand is that it defines what behaviour agents should exhibit in states that might

lead to conflict. Should all agents abide by the convention then conflicts are minimised

and the efficiency of the system increased. Such a convention is an example of a social

norm (Jennings, 1993), allowing agents to act independently while still achieving co-

ordination. Here, coordination hinges on a common expectation of agent behaviour in

the system, allowing agents to coordinate their behaviour without the need for explicit

communication. Social norms are fundamental to the design of multiagent systems,

and key for all activities that require coordinated participation of all agents (López y

López and Luck, 2003).

2.3 Social Norms

Even though norms have been widely discussed in social theory and legal theory, we

mainly focus our presentation on the application of social norms to multiagent systems

research. While earlier discussion of social norms exist, Ullmann-Margalit (1979)

provided the following definition:

A social norm is a prescribed guide for conduct or action that is complied

with by the members of society.

While this statement has been taken from the social sciences, it is clear that there is a

strong relation to the field of multiagent systems. Agents operating within a system are

in a social setting, and it is this prescription of behaviour that results in coordination

within the system. This normative expectation of behaviour regulates the system since

agents are following a common code of conduct. Systems in which social norms regu-

late behaviour of a society of agents are termed normative multiagent systems (Boella

et al., 2006).

In these systems norms commonly define the behaviour that is obligatory and pro-

hibited. Obligatory norms specify actions and states of the world that agents are ex-

pected to bring about, while prohibitory norms prohibit access to states or the execution

of actions. Additional notions such as permissions, rights and power in normative sys-

tems can be included as normative concepts when modelling more complex systems,

such as institutions.

If we supplement the standard notion of a multiagent system with concepts of so-

cial norms, then we should also specify the meaning of autonomy in such a system.
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The most common reference regarding agent autonomy is provided by Wooldridge

and Jennings (1995), where agents must be capable of proactive, independent action,

and control over their internal state. A more subtle definition of agent autonomy is pro-

vided by Verhagen (2000), where the degree of agent autonomy is the independence the

agent shares from any external entity, allowing for a more subtle classification of agents

by their autonomy. Intelligent agents are commonly goal autonomous since they are

able to synthesise their own goals, and to perform the means-end reasoning required

to achieve these goals. However, in normative multiagent systems social norms have

an effect on what is achievable: it might be the case that certain goals are prohibited.

Agents that are unable to reason about the effects of social norms on their practical

reasoning cycle have limited autonomy in such systems. As such, norm autonomous

agents are capable of incorporating norms into their deliberation and means-end rea-

soning cycles, thereby requiring an explicit representation for norms. We now detail

this, and other key properties of social norms:

• Explicit Representation: Social norms are explicitly represented and commu-

nicated (Boella et al., 2006). It has been argued that while implicit constraints

on the behaviour of agents do introduce high reliability, they give the agents

no possibility to reconsider the norms of the system, or to adopt new norms

(Castelfranchi et al., 2000) while unforeseen circumstances might make the im-

plicit hard-wired norms obsolete (Conte et al., 1999a). An explicit representation

of norms allows agents to reason about the normative position of other agents,

particularly in institutions where agents reason about which norms to adopt at

runtime (Cortés, 2004). In sociological terms we are interested in formal social

norms, rather than informal social standards.

• Persistent: Norms are designed to be valid for the long term, and are not re-

stricted to the current behaviour of agents within a system, but rather all future

behaviour. Norms differ from contracts or short term agreements in this sense.

• Generality: A social norm is a general rule designed to govern multiple related

undesirable situations within a system (Grossi et al., 2007), thereby regulating

a range of situations. This is most common in human law theory, where laws

are termed “open textured” and abstract over the specifics of each situation that

they govern. Social norms in a multiagent system are no exception: norms must

be general to regulate a wide range of situations over time, and to reduce the

number of norms that govern the system (Grossi and Dignum, 2005).
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• Incentives for Compliance: In systems where compliance is not guaranteed

agents are encouraged to act in accordance with the norms through the use of

incentives or sanctions (Fornara and Colombetti, 2006). These mechanisms play

a central role in an agents reasoning on whether to adopt or comply with a pro-

posed social norm (Tuomela and Bonnevier-Tuomela, 1995).

2.3.1 Ensuring Compliance in Normative Systems

Moses and Tennenholtz (1995) presented the first computational model of normative

multiagent systems called artificial social systems where they observed that through

the imposition of social patterns of behaviour they were able to improve system effi-

ciency by avoiding conflict. In this system social norms are represented as social laws

and are system-wide restrictions on agent behaviour. We provide further details on this

work in Section 2.4.1, but for now we note that these social laws are hard constraints

imposed by the designer on all agents within the system. Systems where agents have

no choice but to perform according to social norms, either through altering the men-

tal states of agents, or through enforced action execution, are said to be regimented

(Grossi and Dignum, 2005).

Regimented systems ensure norm compliance with no room for deviation yet Grossi

et al. (2007) argue that regimented norms are simply details of the implementation of

the system. Since agents have no capacity to identify regimented norms, let alone

deviate from them, social norms are indistinguishable from other properties of the sys-

tem. Furthermore, Castelfranchi et al. (2000) argues that an agent’s ability to deviate

from a norm is essential to the fundamental function of the society, especially in adap-

tive, changing systems where agents may need to violate norms in order to continue

to function. Kollingbaum and Norman (2003) state that regimented systems place a

strong onus on the system designer to ensure correct, conflict-free restrictions since

conflicting norms prescribing contradictory actions for a single state result in agents

not being able to perform any action, for fear of violating one or the other norm. Fi-

nally, Dignum (1999) argues against the practical implications of regimentation by

noting that the system designer must alter the agent implementation whenever the set

of norms changes. Human systems are an example of normative systems where reg-

imentation is not possible. In these systems agents comply with social norms due

to: authority of power (Axelrod, 1986; Jones and Sergot, 1993); rational appeal and

incentive (Savarimuthu and Purvis, 2007); emotions or social pressure (Elster, 1989)

and follow-the-crowd behaviour (Epstein, 2001).
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A number of incentive mechanisms have been proposed in the literature. Ågotnes

et al. (2007) present a game theoretic approach that utilises knowledge of the goals of

agents in order to ensure that norm compliance is the rational choice, while Boella and

van der Torre (2005) present a mechanism to penalise violating agents by adjusting

their utilities. In situations where goal knowledge is not available, or where it is not

possible to interest all agents in the social objective, an alternative means of ensuring

compliance is required.

One option is to introduce sanctions or penalties for deviating behaviour. Axelrod

(1986) argues for this approach based on its existence in human systems, however he

emphasises the difficulty in implementing such systems, requiring advanced violation

detection and penalty mechanisms. Fornara and Colombetti (2006) proposed a mecha-

nism that allows sanctions to be applied by having agents play particular roles to them-

selves impose the sanction. Similar agent-imposed sanction mechanisms have been

proposed where the system designer alters agent utilities through sanctions and reward

(Boella and van der Torre, 2005), and the use of trust and reputation mechanisms to

avoid interaction with norm violators (Grizard et al., 2006; Walker and Wooldridge,

1995). Examples of these strategies include:

• utility sanctions: if norm violation is detected, the offending agent is fined by a

monitoring agent,

• trust reduction: a system policing agent that detects a norm violation might re-

duce the system-wide trust and reputation of the violating agent,

• reciprocation: if a norm is violated by an offending agent, the interaction partner

can reciprocate by violating obligations with the offending agent,

• ostracism/blacklisting: if a norm is violated by an agent during an interaction,

the interaction partner excludes the offending agent from all further interactions.

Since agents are able to violate norms fewer restrictions are placed upon the autonomy

of the agents. These systems are more flexible and dynamic, allowing agents to pursue

unforeseen goals and allowing agent action even in the event of norm conflict. In

practice however, a mixture of regimentation and enforcement is required to ensure that

violation will not go unpunished through further violation (Grossi et al., 2007). The

severity of sanctions forms an integral part of the design of social norms. Excelente-

Toledo et al. (2001) propose a framework to reason about coordination mechanisms. In

this framework, a classification of sanctions is proposed related to the cooperative task
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that must be performed, however no indication is given of a process to automatically

compute which class of sanction is best for which system or situation.

2.3.2 Benefits of Social Norms

We have highlighted how norms are central to achieving pre-planning coordination in

multiagent systems and now present a few key benefits of this coordination approach:

• social norms require less communication since norms govern not only the imme-

diate behaviour of agents, but are persistent and long term,

• social norms provide a balanced approach respecting both agent autonomy and

social conformity,

• social norms are flexible allowing for offline design or online norm creation, and

• social norms can reduce the reasoning requirements of agents by restricting the

behaviour of agents to that which is deemed socially acceptable.

Social norms are central to the implementation of electronic institutions (Vázquez-

Salceda, 2003). We detail formal representations of social norms next and subse-

quently institutional models of normative multiagent systems.

2.3.3 Formally Representing Social Norms

Initial attempts to formally represent social norms were presented in legal theory where

the specification of rules and laws in natural language led to ambiguity in interpreta-

tion. The creation of deontic logic, a branch of symbolic logic used to define notions of

obligation, permission and prohibition, and to specify relationships between them was

developed (von Wright, 1951). In von Wright’s first system, obligations and permis-

sions were treated as features of acts, yet it was subsequently refined and respecified

as a normal modal logic, leading to the generally accepted standard deontic logic.

Standard deontic logic is an extension of propositional logic, with sentences of the

form O(a) representing propositions that a ought to be the case. Here O represents the

modal necessity operator. From this we define the basic deontic logic KD, composed

of propositional logic axioms together with the formulae:

K :
[
O(p)∧O(q)

]
→ O(p∧q)

D : O(p)→¬O(¬p)
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From these axioms we introduce the modal operators P and F representing proposi-

tions that are permitted to hold, or forbidden to hold respectively. Interestingly, stan-

dard deontic logic allows us to rephrase both of these operators in terms of O:

P(p)≡ ¬O(¬p)

F(p)≡ ¬P(p)

Deontic logic allows for an expressive formal characterisation of social norms, pro-

vides a coherent mechanism for identifying inconsistencies between norms and has

been extensively adopted in the multiagent systems community (Dignum, 1999; Boella

et al., 2006). Yet it is devoid of operational semantics and contains little information

to guide the designer toward an implementation of the norms (Cortés, 2004).

Numerous other approaches have been proposed to model norms. Meyer (1988)

reduces deontic logic to a variant of dynamic logic modelling the semantics of obliga-

tion, permissions and prohibitions relative to agent action. Here, the necessity modal

operator is [a], and the expression [a]φ equates to the conditional if action a is per-

formed, φ will hold afterwards. Again, O, F , and P are phrased in terms of the modal

operator. Importantly, this allows for the conditional specification of norms:

[a]O(p)

with the implication that once a is performed it is obligatory to bring about p. As we

will see when we introduce the implementation details of norms it becomes clear that

conditions for norm activation are key in designing a normative system.

2.3.4 Implementing Normative Multiagent Systems

Regulating the behaviour of agents is increasingly problematic in larger systems, es-

pecially in open systems where agents are able to enter and leave the system at will.

Jones and Sergot (1993) argue that regimenting open systems is not practical due to

these concerns. Electronic institutions are structured, open multiagent systems where

heterogenous agents are grouped together based on their capabilities within the system.

These descriptions of capabilities are referred to as roles and allow the specification of

large-scale systems independent of the agents in the system.

Social norms define what behaviour is expected by agents performing a particular

role. Vázquez-Salceda and Dignum (2003) identify two key approaches to implement-

ing norms in multiagent systems:
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1. Agent perspective: The designer is concerned with how social norms affect the

agent’s reasoning cycle.

2. System perspective: The designer is interested in implementing norm mecha-

nisms that result in the system meeting a social objective.

Numerous approaches have been proposed to incorporate norms into agent reasoning

and deliberation cycles, and we mention a subset here. López y López and Arenas Mar-

quez (2004) proposed an architecture for normative BDI agents where agents decide

whether norms should be adopted, choose whether to comply with adopted norms, and

update their internal goals to reflect their choice of adopted norms. Similar work on

incorporating norms into the BDI cycle was detailed by Dignum et al. (2002), where

BDI was extended to incorporate explicit distinct representations for norms, desires

and goals. Here the focus is on capturing the interactions that social norms have on

the internal goals and desires of BDI agents. A second approach to incorporate norms

into the BDI cycle was presented by Meneguzzi and Luck (2009), where the BDI

action language is modified at runtime to incorporate newly adopted norms. A non-

BDI approach, the NoA framework presented by Kollingbaum (2005), simplifies these

approaches by defining obligations as the key motivation for actions as opposed to

goals. Reasoning about norm adoption in this system is akin to deliberation in BDI

approaches resulting in increased emphasis on ensuring norms are consistent and non-

conflicting.

Research on norm implementations from the system perspective occurs largely

in the context of institutions, although some work has been presented independently.

Aldewereld et al. (2007) presented implementation mechanisms to ensure norm com-

pliance and enforcement, where norm abstractions are a key property this work shares

with Vázquez-Salceda (2003). Social norms utilise two distinct representations: declar-

ative level norms are more abstract and generally applicable, and are divorced from

finer implementation details, while operational level norms are mapped into rules and

procedures that are invoked at runtime. Declarative norms do not contain concrete

means for their implementation. This distinction between social norm levels was ini-

tially detailed by Conte et al. (1999b), and is a characteristic of many institution for-

malisms. What is required is a specification of norms that is both abstract and generally

applicable in the system, yet has clear operational semantics for the agents involved.
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2.3.4.1 Models of Electronic Institutions

Our investigation of multiagent institutional models and related research answers the

following questions:

• What are the key properties of norms in institutions?

• How are norms created in these models?

• Are there declarative and operational representations, and an automated means

of mapping between them?

Noriega (1997) proposed a formalisation of electronic institutions, based on the anal-

ysis of a fish market auction house. A range of subsequent models adopt Noriega’s

notion of roles and merge them with social norms to define role-based behaviour lead-

ing to a number of different approaches to institutional modelling.

López y López and Luck (2002, 2003) argue that in order for agents to reason about

norms a general model of norms is required. Their aim was to formulate a specification

that included all the essential components of social norms to help agents decide what

to do at runtime. This work extended the SMART agent framework, specifying norms

in the Z specification language with a key focus being the construction of a compre-

hensive model of social norms. The key properties that describe a norm in this model

are:

• a set of normative goals describing behaviour that must be achieved or avoided,

• agent sets composed of addressees and beneficiaries of the norm,

• state descriptions defining the context under which the norm is active, and the

exceptions in which it is not, and

• social incentives in the form of reward and punishment goals.

Importantly, this work only defines a model of norms: the question of how norms are

synthesised is not investigated. Additionally, norms include no operational semantics,

focusing rather on norms at the declarative level (López y López et al., 2006).

Esteva et al. (2002) also investigated how institutions and norms can be formally

specified and modelled resulting in an operational model of norms, complete with a

means to verify and visualise models. The resulting language, coupled with a devel-

opment tool, was called ISLANDER. The institutional model ISLANDER adopts is

based on modelling dialogues between agents, and allows agents to identify at what
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point a current dialogue is and whether new agents can join the dialogue. ISLANDER

specifications are focused on realising agent-based institutions, and are therefore oper-

ational in nature. Norms are specified as obligations of the form:

Obl(x,ψ,s)

signifying that agent x is obliged to perform illocution ψ in dialogue s. Normative

rules are a set of conditions on the current state of the system and define which obliga-

tions are currently active, and are required when defining norms in the system. Since

ISLANDER specifications of norms contain no abstract representation of expected

behaviour they are procedural in nature. Furthermore, norms are not synthesised auto-

matically in this system, but are specified by the designer. An extension of ISLANDER

by Vázquez-Salceda et al. (2004) approached the issues of norm implementation. In

their extension they include temporal notions into the condition of a norm yet do not

tackle the problem of norm synthesis.

In his work on HARMONIA, Vázquez-Salceda (2003) defines a unifying framework

connecting the declarative, logic-based formalisation of norms to operational seman-

tics. The framework is used to model the highly regulated medical domain of organ

and tissue allocations for transplantations. Norms in this domain are prescribed at an

abstract level that is independent of the implementation of the institution itself. For

example, norms governing organ allocation are common across medical institutions or

authorities. HARMONIA contains rules that govern how abstract norms are translated

into concrete instantiations with operational semantics. While HARMONIA is a rich

institutional model, it is designed to model an existing real-world organisation. Norms

are not automatically synthesised, but simply specified as part of the modelling pro-

cess, and a static mapping is used to translate norms from the declarative to operational

form. We summarise our overview of norms in institutions below:

• Institutional models focus on the specification of social norms, and not on the

synthesis of these norms.

• Institutions specify norms at different levels, from very abstract declarative to

concrete operational representations.

• The mapping between levels is either non-existent, or is statically defined.

• Norms are commonly conditional on the state of the system.
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2.4 Synthesis of Social Norms

Synthesising social norms is concerned with designing norms that achieve a social

objective. Existing norm synthesis approaches can be classified into three categories:

1. Emergent social norms come about through repeated agent interactions.

2. Online social norms are synthesised at runtime, allowing agents to create new

social norms that implement their social objectives, and are a key component of

norm autonomous agents.

3. Offline social norms are created and subsequently incorporated into a multiagent

system, and are suited to systems where agent behaviour is regimented.

Shoham and Tennenholtz (1992a) provided the first formal model of social norm emer-

gence, where agents select a particular action strategy from a predefined set and act

accordingly while monitoring the performance of their actions via a number of met-

rics. The authors identify under which conditions agents switch to a common strategy,

with the common choice of behaviour termed a social convention. Kittock (1993) ex-

tends this preliminary work by identify what impact the structure of the system has

on the emergence of norms, and Walker and Wooldridge (1995) investigated mecha-

nisms to monitor convention evolution. The graph-based system representations were

later extended by Delgado (2002) to include more complex structures. Griffiths and

Luck (2010) study norm emergence with self-interested agents in tag-based cooper-

ation systems. The authors analyse the effect that changes to the system and agents

have on group formation and effectiveness, particularly in scenarios where agents are

permitted to deviate from the norm.

Work on the emergence of norms predominantly deals with social norms as implicit

changes in behaviour according to some environmental payoff as opposed to explicit

changes in order to achieve a social objective. There is a strong correlation with mech-

anism design approaches to ensuring coordination yet there is no guarantee that these

approaches can always be applied since they rely on making the norm compliant be-

haviour the rational choice. For example, Boella and van der Torre (2007) showed that

emergent norms cannot be guaranteed to emerge at all, if they do they are difficult to

alter, and that emergent norms are not practical when modelling behaviour of roles in

institutions since no explicit representation of social norms exist.

Unlike emergent norms, approaches to online synthesis utilise explicit norm rep-

resentations defined in institutions. Norms are not static constraints but contain prop-
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erties that model the current state of the norms in the system. In their extension of

the SMART agent framework, López y López et al. (2006) presented a specification of

norms whose state is altered at runtime, where norms can be active, issued, fulfilled

or violated. Similar approaches introduce norms when an event occurs. For example,

Dignum (1999) describes a dynamic logic approach where new norms are activated

when existing ones are fulfilled.

Related research on the offline design of social norms is most relevant to our work.

The seminal social law model coupled with its associated complexity results are inte-

gral to this work and are presented in detail. We then present other approaches at a

higher level, before analysing a second approach based on model checking.

2.4.1 The Social Law Model

Shoham and Tennenholtz (1992b, 1995) presented the social law model to investigate

the complexity of designing behavioural constraints in an offline fashion. A social

law is defined as a hard constraint on the behaviour of agents in a multiagent system:

from a social norms perspective, social laws are norms that are designed in an offline

fashion to regiment the behaviour of agents. Social laws are more restrictive than the

wider definition of social norms yet the complexity of designing social laws is key

when considering the design of norms.

In the social law model, given a set of states S, a set of actions A and some first

order language L , a constraint is said to be a restriction on an action of the form 〈a,ϕ〉
where a∈ A and ϕ∈ L . A social law is then defined as a set of such constraints 〈ai,ϕi〉
with at most one for each action ai ∈A: should the current state satisfy the precondition

ϕi, then the action ai is forbidden. A social agent is a tuple 〈S, L , A, SL, T 〉 where:

• S, L , A are defined as above,

• SL is a set of social laws, and

• T : S×A× SL→ 2S is a total transition function where for every s ∈ S, a ∈ A,

sl ∈ SL, if S |=ϕ and (a,ϕ)∈ sl then T (s,a,sl)= /0. If the social law applies in the

current state then the transition representing the prohibited action is disallowed.

Goal knowledge is incorporated into the model via focal states F ⊆ S. An agent must

always be able to transition from one focal state to another, irrespective of what any

other agent does. The social law model aims to restrict non-essential state transitions

that an agent can make, thereby simplifying deliberation and planning without restrict-

ing agents from any goal states.
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2.4.1.1 Complexity of the Social Law Model

Shoham and Tennenholtz show that the problem of finding laws that guarantee access

between focal states of the system is NP-complete. In order to understand the com-

plexity proof, and its implications, it is useful to introduce the three clause Boolean

satisfiability problem (3-SAT). Given a set of Boolean clauses in conjunctive normal

form, the Boolean satisfiability problem is concerned with finding a truth assignment

to the Boolean literals such that every clause is simultaneously satisfied, and the en-

tire expression is true. This general problem, and the restricted 3-SAT problem, is

NP-complete (Cook, 1971).

The social law computational problem is shown to be intractable through a reduc-

tion from 3-SAT. Initially, it is shown that any set of prohibitions can be encoded in

polynomial space. Next consider a reduction from a 3-SAT conjunctive normal form

Boolean expression to the social law model. Let each clause in the expression repre-

sent the transition between two sequential states. The set of all possible actions within

the system in each state can be represented as (c, l) where c represents the clause in the

expression, and l the relevant literal within the clause. Therefore, given k clauses there

are at most 3k actions. Two actions (c, l) and (c′, l′) are said to conflict if:

• either l = ¬l′ or l′ = ¬l, or

• if c = c′ and l 6= l′.

It is now clear to see that a satisfiability solution will limit each agent to a single action

per state, where no two actions will conflict with each other. In the worst case the

problem is intractable, yet in general much depends on the state of the system, the

complexity of the environment, the number of focal states and other factors. For the

offline design of constraints the time taken to compute and verify the constraints is

less inhibiting since the state of the system is not directly affected, whereas in online

design scenarios the computation is more constrained through resource limitations. It

is extremely advantageous to provide a partial solution in these situations. Finally, the

introduction of domain dependent heuristics in the synthesis process could result in

efficient synthesis procedures for particular subdomains of the general problem.

Shoham and Tennenholtz argue that even though the problem of effective norm

synthesis is intractable in the worst case, there are situations where norms can be ef-

fectively synthesised in practice. In the case where computation time is exceeded, they

note that partial results would be desirable, as they could still be used to guide the

agent toward conflict-free social behaviour.
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2.4.2 Alternative Synthesis Approaches

The social law model was extended by Onn and Tennenholtz (1997) where synthesis is

considered in robot mobilisation domains. A robot network is defined as a graph G =

(V,E), a set of R robots and the length of each edge (u;v) ∈ E is specified by a length

function. Agents wish to visit particular nodes in the graph while avoiding collisions

on graph nodes or edges. Social norms are a set of disallowed graph edges as well as

velocity and direction of movement restrictions along each allowed edge and ensure

goal reachability and collision avoidance. The underlying graph topology follows a set

structure. Norms are efficiently synthesised using a set of network traffic laws and a

vertex labelling mechanism defined as graph routing. While efficient, the algorithm is

specific to domains that can be modelled using the same topologies, and the approach is

not generally applicable and does not allow for any different specifications of conflict.

Fitoussi and Tennenholtz (2000) present the synthesis of minimal and simple social

laws as as an extension of artificial social systems. This approach is not concerned

with norm synthesis but rather presents a technique for choosing between alternative

existing social laws. Two choice criteria are introduced. A social law is minimal if no

other social law exists that is less restrictive than it, granting agents more freedom to

choose their behaviour while ensuring conformity. A social norm is simple if it is only

dependent on sensing information that agents are able to retrieve. To this end, simple

social laws are laws which apply to a variety of agents with a range of sensors, as well

as to agents without these sensors. The authors proceed to study these two criteria in

their automated guided vehicle framework. No synthesis procedure is defined in this

work: it is concerned with norm refinement rather than norm synthesis.

An interesting, alternative approach to norm synthesis is that presented by Koeppen

and López-Sánchez (2010). Here, norms are introduced during the execution of the

system by a regulatory body, where new norms are learnt from previous experience.

Case-base reasoning is employed to construct these norms based on the outcomes of

prior interactions, with the new norms designed to govern similar, future interactions.

The authors evaluate their proposal in a road traffic scenario. Interestingly, this learning

approach ensures that similar social situations are governed by similar norms, thereby

providing some level of generality and predictability to the results. However, the entire

process is based on feedback from an executing system: conflict situations must be

encountered a number of times before norms are synthesised.

van der Hoek et al. (2007) show that Alternating-time Temporal Logic (ATL) can
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be used to express and analyse social laws. Norm effectiveness (does a given set of

norms implement a social objective?), feasibility (does a set of norms exist that imple-

ments a social objective?) and synthesis (what norms implement a social objective?)

are all framed as an ATL model checking problem. The process of synthesising and

analysing social laws in this framework is compelling: the expressiveness of the action-

based systems provides an effective framework with which to study and understand

social laws. One key disadvantage to this approach is the lack of state abstractions

which results in semantic structures that are effectively enumerated joint state transi-

tion systems. Since this approach is used for comparison throughout this thesis we

now present it in significantly more detail.

2.5 Social Laws in Alternating Time

We begin by clearly stating that this approach solves a fundamentally different problem

to that which is solved by our work, and as such our empirical evaluation is not a true

head-to-head comparison. There are two key differences:

1. Our work assumes the set of desirable, focal states to be all conflict-free states

as opposed to a smaller subset of the conflict-free states.

2. Our approach sacrifices expressivity in the representation of conflict for scala-

bility benefits.

We compare our work with this approach as it is the most relevant, general approach

that also has an algorithmic instantiation. Our aim is only to show our approach to be

superior at solving the more specific norm synthesis problem outlined in this thesis.

An overview of branching time logics is essential in order to differentiate this

model checking approach from our technique. We present an overview of computation

tree logic followed by the more expressive alternating time logic. Readers familiar

with the concepts of model checking and temporal logic can forward to Section 2.5.2.

2.5.1 Branching Time Logics and CTL

Model checkers verify that a set of properties hold in a succinct representation of the

possible states of a system, called a model, where temporal logics are commonly used

to express the properties to be checked. We are interested in logics that utilise a branch-

ing time model, where different possible futures are represented as branches of a com-
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putation tree. We discuss two branching time temporal logics: Computation Tree Logic

(CTL) and the more expressive Alternating-time Temporal Logic (ATL).

We begin with the syntax of CTL. Consider φ = {p,q,r, . . .} to be a set of atomic

propositions. All valid CTL expressions can be generated from the following grammar:

ϕ ::= p where p ∈ φ

ϕ ::=> | ¬ϕ | ϕ∧ϕ

ϕ ::= AXϕ | EXϕ | E(ϕUϕ) | A(ϕUϕ).

CTL combines path quantifier operators with temporal operators. There are two path

quantifiers: A universally quantifies over all possible paths that originate from the

current state, while E existentially quantifies over at least one. The operators X, U, F

and G are path specific temporal operators: Xϕ indicates that ϕ holds in the next state

of the path; ϕUψ indicates that ϕ holds in the current and all future states on the path,

up until some point after which ψ holds; Fϕ indicates that ϕ holds in some future state

on the path, and Gϕ states that ϕ holds on every state in the path.

The semantics of CTL expressions are modelled using Kripke structures. A Kripke

structure K is a directed graph representation of possible worlds of a system. We write

S to represent the set of possible system states, and I ⊆ S to represent the initial states

of the system. A transition relation R ⊆ S× S captures the possible transitions of the

system between states. If an atomic proposition p holds in a state s ∈ S for model K

then we write K,s |= p. It is common to denote an interpretation function for states,

where each state is associated with a set of properties. We define a path over a sequence

of states as π = s0,s1 . . . where π[i] refers to the i’th state in π. Finally, Π(s) is the set

of all possible paths originating from s. The semantics of CTL in terms of a Kripke

structure K and an initial state s ∈ I are:

K,s |=>
K,s |= ¬ϕ iff K,s 6|= ϕ

K,s |= ϕ∨ψ iff K,s |= ϕ or K,s |= ψ

K,s |= AXϕ iff ∀π ∈Π(s) : K,π[1] |= ϕ

K,s |= EXϕ iff ∃π ∈Π(s) : K,π[1] |= ϕ

K,s |= A(ϕUψ) iff ∀π ∈Π(s),∃u ∈ N s.t. K,π[u] |= ψ and ∀0≤ v≤ u : K,π[v] |= ϕ

K,s |= E(ϕUψ) iff ∃π ∈Π(s),∃u ∈ N s.t. K,π[u] |= ψ and ∀0≤ v≤ u : K,π[v] |= ϕ

From these core semantics we define the following:

AFϕ ≡ A(>Uϕ) EFϕ ≡ E(>Uϕ)

AGϕ ≡ ¬EF¬ϕ EGϕ ≡ ¬AF¬ϕ
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A Kripke structure models a multiagent system, with states representing joint system

states and transitions action invoked changes in the world. We utilise model checking

to verify that properties hold in the resulting system by checking the model of the

system. It is useful at this point to discuss the interpretation of the path quantifier

operators in such a model. A CTL expression such as EFϕ states that some path exists

where ϕ eventually holds. In order to bring about this path we require all agents to

execute particular actions: if one agent were to execute different actions there is no

guarantee that ϕ will come about. Conversely, AFϕ states that ϕ will come about

independent of what actions the agents perform. The path quantifiers in CTL allow us

to reason about what is achievable through total cooperation, or the lack of cooperation,

yet does not allow reasoning about the effects of partial cooperation between agents.

2.5.1.1 Alternating-time Temporal Logic

Alternating-time Temporal Logic (ATL) was developed by Alur et al. (2002) as a gen-

eralisation of CTL used to represent and reason about coalitions in multiagent systems.

CTL allows us to verify properties regarding complete cooperation and no agent coop-

eration, yet not about computations that can be brought about by a subset of the agents.

ATL replaces both CTL path quantifiers with a cooperation modality, 〈〈C〉〉, where C

represents the set of cooperating agents. We write 〈〈〉〉 to represent situations where no

agents cooperate. ATL is strictly more expressive than CTL. Consider the following

ATL statements, where Ag represents the set of all agents:

• 〈〈Ag〉〉Gϕ is equivalent to EGϕ in CTL. The grand coalition can bring about any

computation that always satisfies ϕ.

• 〈〈〉〉Gϕ is equivalent to AGϕ in CTL. Since no coalition exists every computation

is a viable future path.

Consider the set of possible primitive propositions to be φ. The following grammar

can be used to construct all valid ATL expressions:

ϕ ::= p where p ∈ φ
ϕ ::= ¬ϕ|ϕ∨ϕ
ϕ ::= 〈〈C〉〉Gϕ|〈〈C〉〉Fϕ|〈〈C〉〉ϕUϕ|〈〈C〉〉Xϕ.

The temporal modalities follow from CTL. Note that in these ATL expressions all

temporal modalities must be preceded by a coalition modality in the same way as path

quantifiers precede temporal modalities in CTL.
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The semantic structures underpinning ATL are Alternating Transition Systems.

van der Hoek et al. (2007) use a semantic model with an alternative representation,

called Action-based Alternating Transition Systems (AATS), a semantically equivalent

structure to alternating transition systems but which provides a clearer separation of ac-

tions from their associated preconditions, a desirable property when considering ATL

as an approach to norm synthesis. Fundamentally, these systems are state automata

similar to the semantic model for CTL presented above. We refrain from a complete

presentation of AATS here but emphasise that the models are simply enumerations of

the joint state space, and that their formal representation is not required in this work.

2.5.2 Synthesising Norms using Model Checking

We present the synthesis of social norms via ATL model checking as proposed in

(van der Hoek et al., 2007). Given an AATS depicting an underlying multi-agent sys-

tem and an initial start state, we are interested in identifying computation paths that

abide by a given social objective. By expressing the permanent adherence to the social

objective as a requirement we are able to compute whether social norms are required

to enforce the social objective, and what these norms might be.

Let AcAg be the set of all agent actions, and 2Q be the set of all possible model

states. The prohibition function β : AcAg→ 2Q defines what agent actions are prohib-

ited in any state. As such, the application of β can be seen as a restriction of the model

since transitions that were previously possible are no longer allowed. We write the

norm synthesis model checking approach as a function:

Synth : S,s0,ϕ 7→ β

comprising:

• the AATS model S representing the multiagent system,

• an initial start state s0 from which the computations are generated,

• a social objective ϕ detailing the properties required in the normative system,

and

• a resulting set of prohibitionary norms β, that if applied to S result in a system

that ensures the social objective is always satisfied.

Given β, we create a restricted model S′ simply by removing the prohibited transitions

from the transition relation in S.
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2.5.2.1 Norm Effectiveness, Feasibility and Synthesis in ATL

We begin by investigating how we can use a model checker to determine whether a

given prohibition function β is effective at ensuring a social objective in a model S, such

that the resulting modified system S′ = S\β satisfies the following ATL expression:

S′,s0 |= 〈〈〉〉Gϕ.

The empty coalition modality above acts as a universal quantifier over computations

originating from s0, stating that for all computations originating from s0, ϕ must hold in

every state of each computation. In other words, no matter what strategies are adopted

by agents in the system, every resulting state will satisfy ϕ. This ensures that the social

objective always holds, and that the prohibitions β are effective.

Next we discuss norm feasibility: given a model S, starting state s0, and social

objective function ϕ, a social norm β exists if the following ATL expression holds:

S,s0 |= 〈〈Ag〉〉Gϕ.

If the agents cooperate and agree to a particular strategy profile, and if the resulting

computation always satisfies ϕ, then a social norm exists. Notice that the grand coali-

tion above is essentially an existential path quantifier.

Synthesising a prohibition function is identical to model checking feasibility. If

the feasibility expression holds then at least one computation exists where the social

objective is always satisfied. The positive witness to the feasibility checking is such

a computation which, if adhered to, will ensure the social objective. The prohibition

function β can be constructed from the positive witness simply by prohibiting all be-

haviour that does not correspond to that prescribed by the resulting computation.

2.5.2.2 Maintaining Reachability through Focal States

Synthesising norms using a model checker identifies a single computation that ensures

the social objective and regiments agent behaviour accordingly, effectively producing

a master plan for all agents in the system. The prohibition function β is therefore likely

to prohibit access not only to states that violate the social objective, but also states that

are simply not part of the prescribed behaviour, as illustrated in the next example.

Example Consider a single agent Grid World example. Our agent can always perform

one of two actions: to move between adjacent locations, and to remain idle. Assume

our agent wishes to traverse a simple three location topology:
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idle
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C

move

movemove

idleidle

Figure 2.1: A three-state Grid World topology, with initial state A and conflict state C

Our agent begins in state A and we wish to have it avoid location C. A number of infi-

nite computations satisfy the social objective, the simplest of which has the agent not

leaving A by continually remaining idle. The computation satisfies the social objec-

tive, however it also affects the reachability of states that do not violate the objective:

state B cannot be reached even though a computation that oscillates between A and B

would not violate the objective. �

van der Hoek et al. (2007) incorporate focal states into the social objective in order to

ensure that useful norms are found. Recall that a set of focal states ΣF ⊆ Σ represents

the states where an agent must be able to traverse from any focal state to any other. The

authors incorporate this objective into their definition of a social objective by assigning

a unique proposition si for every focal state si ∈ΣF . The resulting reachability objective

can then be expressed as follows:

∧
si∈ΣF

[
si→

∧
s′∈ΣF

〈〈Ag〉〉Fs′
]
.

Intuitively, the above expression states that if a given state satisfies the proposition si,

then it is focal, and a set of computations must exist whereby any other focal state is

reachable. The reachability objective is merged with the social objective ϕ to form the

new ATL objective:

S,s0 |= 〈〈Ag〉〉G
(

ϕ∧
∧

si∈ΣF

[
si→

∧
s′∈ΣF

〈〈Ag〉〉Fs′
])

. (2.1)

2.6 Summary of Social Norms in Multiagent Systems

Social norms provide an attractive means of coordinating agent behaviour that define

what is expected of agents, and allow agents to reason about the behaviour of others.

This form of coordination requires no runtime communication, producing persistent

and long-term restrictions that differ from fixed-term contracts or agreements.
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The ability to synthesise norms is a key capability of norm autonomous agents and

a useful tool for system designers. While a considerable amount of work exists that

formalises norms, particularly in institutional settings, much of this work requires the

norms to be specified by hand. A number of alternative synthesis approaches have

been presented, but many are domain specific or require particular knowledge of the

goals of the agents. The most compelling alternative presented by van der Hoek et al.

(2007), where norm synthesis is formalised as a model checking problem. This allows

for great expressivity, but has a number of drawbacks:

• The propositional nature of the problem results in many, state-specific norms.

• Performing a complete joint-state enumeration to create the model of the system

is computationally expensive, and requires significant resources.

• Encoding focal states into the model checking problem requires knowledge of

what these focal states are.

Our planning-based approach attempts to address these core concerns. In the following

chapter we present our planning background before progressing to our approach.
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Background: Automated Planning

Automated planning is concerned with synthesising a sequence of actions in a prob-

lem domain to achieve a goal. Through a process of deliberation agents select a goal

to achieve and invoke a planner to perform the means-end reasoning to achieve it.

Planning theory provides us with languages to describe agent action using succinct

declarative representations which we use to formalise the domains in which we syn-

thesise norms. By aligning our algorithm with planning we are able to harness not only

domain representation languages but also a range of related tools and techniques.

A key property of planning-based state and action representations is that they ab-

stract away from the underlying state-based system, allowing for more succinct repre-

sentations. Planning techniques search these more compact domain representations for

solutions to the planning problem, and our approach to norm synthesise adopts similar

abstract search techniques. In this work we consider two languages of differing ex-

pressivity: a Propositional representation and a more expressive first order Classical

representation.

Our domains are assumed to be fully observable, deterministic classical planning

environments with time modelled discretely. We do not consider more advanced plan-

ning notions such as partially observable environments, or environments with non-

deterministic outcomes.

3.1 State Transition Systems

We define planning semantics in state transition systems modelled as directed graphs

composed of nodes and connecting edges. We assume a finite set of discrete and

instantaneous environment states representing the nodes in our transition system where

33
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each state represents one unique configuration of the system. We write s to represent a

state and Σ to represent the set of all possible states such that s ∈ Σ.

We model agent action as a transition between states. Let A be the set of all actions

available to agents within the system. The transition effect of an action is a determin-

istic binary relation θ : Σ×A→ Σ. Executing some action in a current state of the

system results in a transition to a new state. This transition system is fully grounded as

no reference is made to transitions from, or to, sets or groups of states, and there is no

uncertainty modelled. We assume agent actions to be asynchronous. We define a state

transition system as the tuple 〈Σ,A,θ〉.

3.2 Set Theoretic Representation

The domain formalisms that follow are based on the General Propositional Planning

Formalism, an extension of traditional STRIPS that allows incomplete state specifica-

tions as described by Nebel (2000). We begin by defining a formal state space repre-

sentation and follow it with representations of action.

3.2.1 Propositional State Space Representation

Let Σ be a finite set of propositional atoms. We use these atoms to uniquely identify

states within our system. We present the set Σ̂ consisting of all atoms in Σ, their

negations, as well as > and ⊥ denoting truth and falsity respectively:

Σ̂ = {p,¬p|p ∈ Σ}∪{⊥,>} .

Given the set of atoms Σ we define the language of propositional logic over Σ as LΣ,

using the following grammar:

ϕ ::=ϕ∧ϕ|ϕ∨ϕ|¬ϕ| 〈symbol〉

where 〈symbol〉 ∈ Σ. Let L be an arbitrary set of literals where L⊆ Σ̂. We define ¬L to

be the element-wise negation of L such that:

¬L = {p|¬p ∈ L}∪{¬p|p ∈ L}.

Furthermore, we write set difference between two sets of literals L1 and L2 as L1\L2.

With these definitions in place we can now present the theory of our state representa-

tion. Recall that the propositional atoms, and more specifically the literals over these

atoms, are used to uniquely identify states within the system. A state s is defined as



3.2. Set Theoretic Representation 35

a complete truth assignment for every atom in Σ: states are described by the propo-

sitional atoms that hold in their description. We adopt a closed world assumption to

define any unlisted propositions as being false.

Example Consider the set of atoms Σ = {a,b,c}. The state s = {b} represents the

unique truth assignment where b is true and a and c are false. �

3.2.2 State Abstraction through Specification

A state specification describes a set of states by the truth assignments that they have in

common. Each specification is composed of a subset of the literals in Σ̂. We define a

state specification S to be:

• Consistent if⊥ /∈ S and @l ∈ Σ̂ such that l ∈ S and ¬l ∈ S. That is, a specification

is consistent if there are no complementary literals in S.

• Complete if for every atom a ∈ Σ, either a ∈ S or ¬a ∈ S. That is, a literal exists

in S for every atom in Σ.

A complete state specification references a single state, while an empty specification

represents all states. We write s |= S to denote that the state s models state specification

S, implying that the atoms in s satisfy the literals in S. The set of all states that model

a particular specification S is written as Mod(S).

Example Let Σ = {a,b,c}. A valid state description is again s1 = {b} where b holds.

Now consider a state specification S over Σ where S = {¬a,b}. s1 and S are subtly

different. The specification S represents all states where a does not hold and b holds.

Our closed world assumption does not hold here: we represent states where c holds

and does not hold. Therefore, S represents the states {b,c} and {b}. �

3.2.3 Propositional Operator Representation

Operators are action schemata that specify transitions between specifications of states.

Rather than defining transitions between states, we define schemata that model when

actions can be performed, and how the system changes once these actions are executed.

Operators are tuples of the form:

o = 〈name,pre,post〉

where:
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• name is the name that uniquely identifies this operator schema,

• pre is a set of consistent literals representing the preconditions required for this

operator to be applicable, where pre⊆ Σ̂, and

• post is a set of consistent literals representing the effects that this operator has

once applied, where post ⊆ Σ̂.

We write name(o), pre(o) and post(o) to refer to the first, second and third elements

of the tuple respectively and O to represent the set of all operator schemata. Operators

intuitively represent transitions between states in the system where an operator o can be

performed in state s if s |= pre(o). The effects describe what manipulations will occur

to s once o is performed to produce the successor state. We present the semantics of

operators in two stages. First we describe how operators represent state transitions

in a grounded transition system, and follow this with the semantics associated with

applying operators to abstract state specifications.

Example Consider the Parcel Delivery domain with agents able to move, pickup and

drop parcels. Let at(a1,node1) be the literal denoting that a1 is located at node1 and

conn represent the fact that two locations are connected. We model the agent’s ability

to move to node2 using the operator:

OPERATOR: move(a1,node1,node2)

PRE: {at(a1,node1),conn(node1,node2)}
POST: {¬at(a1,node1),at(a1,node2)} �

3.2.3.1 Transition Semantics

We define the semantics of an operator in a state transition system as the set of transi-

tions between states. We write pos(L) to be the positive literals in L and neg(L) to be

the negative literals. Given a state s∈ Σ and operator o∈O we can define the transition

function θ : Σ×O→ Σ as follows:

θ(s,o) =

{
s \ ¬neg(post(o)) ∪ pos(post(o)) if s |= pre(o), and

post(o) 6|=⊥.

If the precondition of the operator o is satisfied in state s and the effects of o are

consistent, then a transition occurs from s to a new state where all atoms in the negative

effects are removed from s and atoms in positive literals are added. We have assumed

that if the conditions do not hold that no transition exists.
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Now consider a state specification S and operator schema o. We define the transi-

tion between state specifications as a function R : 2Σ̂×O→ 2Σ̂ as follows:

R(S,o) =





(S \ ¬post(o))∪ post(o) if S 6|=⊥, and

S |= pre(o), and

post(o) 6|=⊥

If the preconditions of o are satisfied by S and the effects of o are consistent, then a tran-

sition exists to a new state specification where all negated effect literals are removed,

and the positive literals added.

Let a transition exist between two state specifications S1 and S2 such that S2 =

R(S1,o). For every state represented by S1, a state transition exists to some state rep-

resented by S2. That is, ∀s1 ∈Mod(S1) , ∃s2 ∈Mod(S2) where s2 = θ(s1,o).

3.2.4 Defining the Planning Problem

We now formally define the automated planning problem using propositional state and

operator representations. A planning problem is a tuple:

Π = 〈Ξ,SI,SG〉

where

• Ξ = 〈Σ,O〉 is the declarative domain structure consisting of the finite set of

propositional atoms Σ and a set of operators O,

• SI ⊆ Σ̂ is the initial state specification, and

• SG ⊆ Σ̂ is the goal state specification.

A solution to the planning problem is a plan. If we consider the set of all possible,

finite, operator sequences to be O∗ then a plan ∆ is an element of this set, ∆ ∈ O∗.
We write ∆ = 〈o1,o2, . . .〉 to represent the sequence of operators that compose a plan,

where ∀i . oi ∈ O. We write 〈〉 to represent the empty plan.

We have now defined what a plan is, but have not specified under what conditions

a plan represents a solution to a given planning problem. To this end we must specify

the result of a applying a plan ∆ to a given state specification S. We adopt a recursive

definition of the result function Res : 2Σ̂×O∗→ 2Σ̂ defined as follows:

Res(S,〈〉) = S,

Res(S,〈o1,o2...on〉) = Res(R(S,o1),〈o2, ...,on〉).
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Let S′ = Res(SI,∆) be the state specification reached through the application of a plan

∆ to the initial state specification of problem Π. We say that ∆ is a solution to Π iff:

1. S′ |= SG, and

2. S′ is consistent.

3.2.5 Extensions to Propositional Planning

A family of propositional planning formalisms has emerged in the planning literature

all based on extensions of STRIPS (Fikes and Nilsson, 1971). The most restrictive

formalism is the propositional variant of STRIPS which requires complete state spec-

ifications, unconditional effects and propositional atoms as formulae in the operator

preconditions. However, less restrictive formalisms exist that relax these restrictions

(Nebel, 2000). We detail the following subset of extensions for subsequent discussion:

• Incomplete state specifications (SI): solution plans are valid for all states rep-

resented by the incomplete state specifications in the planning problem.

• Conditional effects (SC): operator effects are conditional on the current state

where effects with satisfied conditions are applied.

• Literals as preconditions (SL): we allow literals in the set of preconditions for

operator schemata.

In Section 3.3 we present a formal theory SIL that combines SI and SL.

3.2.5.1 Complexity and Expressivity

The complexity of planning using each of the different propositional planning exten-

sions is computationally equivalent (Nebel, 2000). We adopt the notion of expressive

power to illustrate how concise a representation is in a particular formalism. A formal-

ism is more expressive than another if the space required to represent the planning

problem is less. We illustrate the expressivity relationships between planning for-

malisms in Figure 3.1. Additionally, we highlight two classes of formalism in grey,

in which the cross compilation of representations between formalisms does not lead to

an increase in any solution plans in the domain.

Given these complexity and expressivity relations we present the following related

points:

• The complexity of planning is equivalent for all the presented formalisms: there

is no theoretical benefit to using a more expressive representation.
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Figure 3.1: Expressivity Relations Between Planning Formalisms

• It is possible to compile conditional effects out of a representation, but this leads

to polynomial growth in the size of the plan.

• When moving up in Figure 3.1 there exists a polynomial-time compilation scheme

that preserves plan size exactly.

This completes our presentation of the propositional planning formalism. We present

the classical extension next.

3.3 Classical Planning Representation
In this section we present a classical planning formalism that greatly increases the

expressivity over the propositional formalism presented above by utilising state and

operator abstractions through parameterised predicates. We detail the classical rep-

resentation by extending our propositional notions of states and specifications, and

introduce parameterised operator schemata.

Example A propositional state representation of an agent’s location in the Parcel De-

livery domain requires an atom to describe every location of the agent. If the agent

is at location A then we might write agentAt A. A unique operator is required for

each possible movement between locations, such as move A B. The resulting domain

representation is verbose, even for the simplest problems. The classical representation

alleviates this as agent locations can be represented using a single variable predicate

agentAt(x1). Similarly, the move action is parameterised defining the conditions re-

quired and resulting effects in relation to variable start and end locations. �

3.3.1 States and State Specifications

Our classical representation is based on a restricted form of the language of first-order

logic. We define the language L as:

L = Lp∪Lc∪Lv
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composed of finitely many predicate symbols Lp, constant terms Lc and variable terms

Lv. A constant symbol represents an object or element in the domain, such as node1
or parcel2. Constant terms are analogous to propositions in the propositional formal-

ism, and are lowercase alpha-numeric character sequences. A variable symbol is an

element that may represent an arbitrary constant symbol. Variable symbols begin with

uppercase letters, such as Agent and Parcel. For this presentation we assume the

names of the variables to be arbitrary, and that the set Lv contains all of these varia-

tions. A predicate symbol defines a relation between a set of parameters. Predicates are

composed of the conjunction of the predicate symbol and the set of parameters (either

variable symbols or constant symbols) that the relation applies between. For example,

the predicate agentAt(a1,node2) defines a relationship between the symbols a1 and

node2 denoting the location of the agent.

The above language allows us to define predicates of an arbitrary structure. We let

A be the set of atoms composed of predicates with variable and constant terms. For

the purposes of this work it is useful to distinguish between predicates that contain

variable parameter symbols. We call an atom:

• ground if it contains no variable symbols, such as agentAt(a1,node3), and

• unground if it contains at least one, such as agentAt(Agent,node3).

We use bar notation to represent sets containing only ground elements. It follows that

A ⊆ A : the set of atoms includes all ground atoms. The set of literals LA follows:

LA = {a|a ∈ A}∪{¬a|a ∈ A}∪>∪⊥.

We write LA to represent the set of ground literals. The definitions of set difference

and element-wise negation follow as in Section 3.2.1.

A state is a subset of the possible ground atoms in A . As before, states follow a

closed world semantics. Our definition of a state specification S follows where S⊆ LA .

The set of symbols that hold in every state are said to be non-fluent, while those

that are true in a subset of the possible states are said to be fluent. If an agent might

perform an action that alters the truth assignment of any atom, then this atom is fluent.

3.3.2 Parameterised Operators

An operator o is a parameterised action schema triple of the form o= 〈name, pre, post〉
where:
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• name is of the form o(X1, . . . , Xn) specifying an operator name o and set of n

variable symbols, X1 . . . Xn, used in the rest of the operator definition,

• pre is the preconditions for the operator, a consistent (possibly ungrounded) sub-

set of the literals formed by LA , and

• post is the effects for the operator, a consistent (possibly ungrounded) subset of

the literals formed by LA .

We write name(o), pre(o) and post(o) to represent the first, second and third elements

in the tuple. A ground instance of an operator, termed an action, is obtained by sub-

stituting constant symbols for all variables in the operator schemata. From an operator

we can derive a finite number of possible instantiated actions through substitutions.

3.3.3 Substitutions

Given a mapping from variable to constant symbols it is possible to instantiate the

abstract operator schemata to ground action schemata by substituting constant symbols

for each operator parameter. We define a substitution set σ as a set of mappings from

variable to constant symbols:

σ⊆
{
(v← c) | v ∈ Lv , c ∈ Lc

}
.

Applying a substitution set to a set of atoms X ⊆ A is denoted σ[X ]. A grounding

substitution for an operator o is written σ and is a substitution that maps all operator

parameters to constant symbols. The application of a grounding substitution to an

operator o results in a ground instance a of the operator, where σ[o] = o = a.

Example Let operator o be move(Agent,From,To) and σ1 = {(Agent← a1),(From←
node1)}. Substitution results in the operator σ1[o] = move(a1,node1,To). Note that

this is still ungrounded, as no constant binding exists for the variable To. The sub-

stitution set σ2 = σ1 ∪ {(To ← node2)} is a grounding substitution, since σ2[o] =

move(a1,node1,node2) is ground. �

3.3.4 Applying Parameterised Operators

Since the initial and goal specifications for the classical planning representation are

always ground, and since we only consider the application of actions as opposed to

unground operators, the ground nature of state specifications is always maintained, re-

sulting in solution plans that are always ground. The semantic mapping from resulting
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plans to state and action sequences in the state transition system remains identical. One

of the key attributes of the conflict-rooted synthesis method is that it does not depend

on a ground state specification or any particular initial state. As a result, an extension

of this core classical planning representation is required to allow the application of

operators to specifications containing unground atoms. This extension is detailed in

Section 4.3.2.

3.4 Planning Domain Definition Language

The Planning Domain Definition Language (PDDL) is a standardised encoding lan-

guage for planning problems proposed by McDermott (2000). Originally proposed

as a means of standardising planner input for the International Planning Competition,

PDDL has evolved and increased in complexity along with the domains considered in

the competition. We provide an introduction to the language and define key concepts

and terminology that we utilise later. While an important component of the imple-

mentation of conflict-rooted synthesis, it should be stated that any classical planning

language could have been used. In our case we incorporated PDDL for three reasons:

1. It contains a superset of the encoding we required for conflict-rooted synthesis.

2. It is independent of any particular planning implementation.

3. It is the language of choice for planning benchmark domains.

A PDDL planning task is an encoding of a single planning problem. We utilise a subset

of PDDL composed of the following components:

• Objects: typed atoms present in the domain. Specifying a postman object of

type agent in the Parcel Domain is written as:

postman - agent

• Predicates: the set of predicate definitions in the domain, each of which in-

cludes the predicate name, and typed parameters. A predicate that encodes an

agent’s location is:

(agentAt ?person - agent ?place - location)

where agentAt is the predicate name, ?person is a variable of type agent and

?place is a variable of type location.
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• Operators: A PDDL Action Definition is an operator schema composed of a

name, the operator’s parameters, the preconditions and effects. We assume the

preconditions and effects to be STRIPS-style conjuncted lists of literal predicates.

The move operator which moves an agent from location ?l1 to ?l2 is:

(:action move
:parameters (?agent - agent ?l1 - location ?l2 - location)
:precondition (and

(conn ?l1 ?l2)
(agentAt ?agent ?l1)

)
:effect (and

(not (agentAt ?agent ?l1))
(agentAt ?agent ?l2)

)
)

• Initial State: A set of ground atoms that are true in the initial state. If the

postman agent starts in the location depot the following predicate is included:

(agentAt postman depot).

• Goal Specification: The goal state is an incomplete state specification. If the

postman requires to get to location delivery-point then the goal is:

(agentAt postman delivery-point).

PDDL adopts a separation of the planning problem into two input files: a domain

file that contains the predicates and action definitions, and a problem file for objects,

initial state and goal specifications. While this is purely an implementation detail it

does afford us the benefit of being able to divorce the domain structure from the prob-

lem specific details, allowing the domain structure to be reused by multiple different

problems. Reasoning about domains purely on the domain structure leads to problem-

independent results since all processing is independent of any particular problem in-

stance. This is a recurring theme in our work as we present a subtle balance between

maximising generality through domain structure reasoning, and ensuring applicability

through the incorporation of problem specific knowledge when required. Our approach

differs from many standard planning techniques which immediately merge domain and

problem instance information prior to solving the planning problem, and we later argue

that a more strategic approach to grounding and merging can lead to improved results

for certain problems.
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3.4.1 ADL Extensions

The subset of PDDL presented above contains the essential information required to

understand our implementation of conflict-rooted synthesis. We do however provide

some additional details on the more expressive language ADL (Pednault, 1987) which

allows for disjunctions and quantifiers in preconditions and goals, and effects that can

be conditional and themselves contain quantifiers. In this section we illustrate the use

of universal quantification in operator preconditions, as it is utilised again in Section

4.3.6.1.

ADL allows for arbitrary variables in the preconditions, where each variable is

quantified either universally or existentially. The result is an action definition language

that is more expressive, allowing for actions to be conditional on elements in the do-

main that are not explicitly passed into the action definition. ADL uses the syntax

forall and exists to represent the quantification. The scope of quantification is con-

tained within the condition formula that follows. For example, the precondition of the

move operator defined above might be extended as follows:

. . .

(not (exists (?agent2 - agent) (agentAt ?agent2 ?l2)))

. . .

stipulating that the move operator may only be applied if no agent is occupying loca-

tion ?l2. In situations where action definitions are altered and additional variables are

introduced, these variables must be quantified appropriately in the action schema.

3.5 Automated Planning Related Work

The planning work presented here does not aim to solve the problem of automated

norm synthesis, yet we reference this work since there are commonalities in the ap-

proaches adopted. We begin with approaches to incorporating control knowledge into

the planning process, followed by approaches to generalised planning. We reference

graphical problem representations and finally detail the Fast-Forward Planning System

utilised in our evaluation.

3.5.1 Control Rules in Planning

We begin by presenting alternative approaches to incorporating designer domain-specific

knowledge into the planning process. The PRODIGY system, presented by Veloso

(1994), is based around planning and was one of the first approaches to use control
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knowledge in the form of control rules. These rules govern operator selection, al-

lowing for the rejection and preference of particular operators. Although PRODIGY

allows for these rules to be explicitly provided, it focuses on learning them at runtime,

incorporating feedback from plan execution into subsequent planning steps to improve

its efficiency. Control rules in PRODIGY are algorithmic in nature, akin to those found

in expert systems. For example, the rule to always prefer the more specific operator

(OP1) to a more general alternative (OP2) is represented as:

(CONTROL-RULE PREFER-SPECIFIC-OPERATOR

(if (and (candidate-operator OP1)

(candidate-operator OP2)

(is-ancestor-of OP1 OP2)))

(then prefer operator OP1 OP2))

Similarly to PRODIGY, UCPOP (Barret et al., 1995) utilises algorithmic, rule-based

control knowledge, and was subsequently extended by Estlin and Mooney (1996) to

include the learning of control rules in the DOLPHIN framework. For the purposes of

our discussion the structure of control rules can be assumed identical to PRODIGY’s.

Bacchus and Kabanza (2000) incorporated formalised control rules into TLPLAN,

adopting a declarative representation for control knowledge. Rules are specified in

Linear Temporal Logic, allowing the designer to use time modalities to govern future

states of the system. For example, the LTL expression

∀ai,aj,nk . �¬
(
agentAt(ai,nk)∧agentAt(aj,nk)

)

ensures that agents never collide in the Parcel Delivery domain. TLPLAN extends
PRODIGY by allowing control rules that are not only restrictions on the current state

of the planner, but also on any previous states encountered. A main contribution of

this work is the theory of progressions, which allows the planner to efficiently track

the state of control rules without having to revaluate them on each planning iteration.

TLPLAN differs from model checking as it performs no verification but simply con-

trols the underlying plan search.

Inspired by TLPLAN, Kvarnström and Doherty (2001) presented TALplanner as

a similar forward search planner with a declarative language for control rules. In

TALplanner a control rule is a Temporal Action Logic expression of the form:

[t]parcelAt(p1,n1)∧goal
(
parcelAt(p1,n1)

)
→ [t+1]parcelAt(p1,n1)

stating that, at some time t if a parcel exists at its location, and this forms part of

the goal of the agent, then the parcel should remain at the location in the next time
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step. This rule therefore prevents agents from moving delivered parcels. Importantly,

control rules in both TLPLAN and TALplanner reference not only the goal state, but

the current and preceding states as well. Additionally, numerous approaches, such as

those by Cresswell and Coddington (2004) and Edelkamp (2006), have investigated

how logic-based control rules can be encoded as part of the goal specification.

In their work on domain control knowledge, Baier et al. (2007, 2008) use action-

centric procedural domain knowledge to represent a template of actions in a solution

plan. This GOLOG-based procedural domain language includes common programming

language constructs, allowing the designer to specify what actions should be used at

various stages of the plan. For example, the procedure:

if agentAt(a1,Node)∧parcelAt(Parcel,Node)
then pickup(a1,Parcel,Node)

dictates that if Agent a1 is in a location where a parcel exists, then the pickup action

should be invoked to pick up the parcel.

There are benefits to incorporating control rules into the planning process. Bacchus

and Kabanza (2000) showed that, with good control rules, TLPLAN is able to solve

certain classical planning problems orders of magnitude more quickly. A downside of

these approaches when applied to norm synthesis is that no explicit rules governing

behaviour are produced as an output. Instead, the control rules are evaluated at each

step of the planning process to ensure that a resulting plan satisfies the objectives.

3.5.2 Generalised Planning

A sequential plan is composed of a sequence of actions that, if executed, is guaranteed

to transition a system from an initial state to a goal state. These guarantees are possible

if the dynamics of the system are fully known: the effects of actions are deterministic,

the system adapts in easily predicted ways, etc. In many domains there is insufficient

knowledge with which to synthesise such a plan and conditional planners are used

to synthesise tree-like plans that include sensing actions. At execution time an agent

performs a sensing action and selects the branch of the plan corresponding to their

result. Conditional planning solves a more general problem than sequential planning.

Now consider the problem of finding a plan for not only a single problem instance,

but rather an entire class of problems. In the Parcel Delivery domain this equates to

delivering all the parcels in a domain, irrespective of how many exist in the problem in-

stance. The resulting plan is termed a generalised plan, since given a problem domain
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the generalised plan can be used to instantiate a sequential plan that solves the problem

instance with the added benefit of being able to invoke the same generalised plan to

solve different problems instances as well. Providing guarantees on correctness and

termination on iterative plans is far more complex than sequential plans since it must

be shown to solve all possible problem instances. As such, the majority of early work

on generalised planning involves theorem proving where plans are viewed as programs

and planning the task of program synthesis (Stephan and Biundo, 1996).

Plans with loops are termed iterative plans. In order to alleviate the difficulty of

producing iterative plans Levesque (2005) proposed that the guarantees on these plans

be reduced, and presented KPLANNER. His approach is two step: a generalised plan,

based on a variation of the programming language R is first produced that solves only

a small subset of problem instances, and once found this plan is verified against a

larger subset. By decoupling synthesis and verification Levesque showed benefits over

existing approaches, at the loss of general guarantees of correctness. Srivastava et al.

(2010) proposes limiting the class of loops involved in a plan, and shows that under

these constraints plans can be shown to be correct and applicable.

Work on generalised planning also focuses on learning a generalised plan from

sequential plans. Srivastava et al. (2008) utilise a three-value logical state representa-

tion to identify when sequential states are sufficiently similar to represent an expanded

loop. This three-valued logic (Sagiv et al., 1999) allows for the succinct representation

of sets of states by representing propositions about the state with 1 if they are present,

0 if they are not present, and 1
2 if possibly present. This is a very similar to state

specifications in the planning formalism, where propositions are specified if they hold,

negated and specified if they do not, and not specified if possibly present.

Srivastava et al. (2008, 2010) utilise this state abstraction technique to summarise

state representations into more abstract sets of states that are then incorporated into

the learnt generalised plan. As with our work, reasoning about actions applicable

in abstract state representations requires that assumptions be made regarding possi-

bly present predicates. The authors introduce focus and coerce operations to this end.

While similarities exist with our process of state specification refinement, there are dis-

tinct differences too. The authors use state abstraction techniques to reduce their plan

representation, while our traversal process begins with the most abstract representation

and refines down to the more specific. Finally, the authors focus mainly on merging se-

quential plans into a generalised plan structure, rather than actually synthesising plans

with loops.
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3.5.3 Graphical Problem Representations

In Section 6.1.2 we present traversal graphs as succinct representations of sets of plans

that are similar in their sequence of actions: they may start in the same specifications,

or deviate only in the last operator. A variety of alternative graphical representations

exist in the literature, yet these approaches differ in the following ways:

• Traversal graphs include the representation of unground predicates.

• They use state specifications to represent sets of states rather than individual

literals or propositions.

• Initial or goal state information is not required to construct them and every rep-

resented plan is sound.

While an important contribution of this work, traversal graphs are simply a data struc-

ture with which it is convenient to implement our approach. Our theoretical presenta-

tion is appropriately divorced from this implementation detail, allowing us to use the

more intuitive notion of runs when describing our approach. Traversal graphs draw in-

spiration from two existing approaches: Problem Space Graphs and Planning Graphs,

and we present these below for completeness.

Etzioni (1993) introduced Problem Space Graphs (PSG)s as a graph-based rep-

resentation of a problem space. A problem space is represented as a set of disjoint

graphs, each rooted with an achievable literal of the problem. Nodes are either opera-

tor or literal nodes, where edges are conjunctive or disjunctive. The root literal node

is connected, using disjunctive edges, to the operator nodes that include the literals as

an effect. Each of the operator nodes are connected via conjunction edges to the literal

nodes that appear in the operator’s preconditions.

Example Consider the PSG for the literal hold(A,P) in the Parcel Delivery domain in

Figure 3.2. Operator nodes are shaded, and disjunctive edges are dashed. This example

PSG represents what operators can be performed (and what dependencies are required)

to bring about the root literal. �

Etzioni showed that when constructing a PSG certain conditions could lead to the

pruning of particular branches of the tree. He showed that literal branches need not be

investigated if one of the following holds:

• Unachievable: : No operators contribute to the literal.

• Goal Cycle: : The literal is identical to an ancestor literal, a loop is identified.
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hold(A,P) pickup(A,P,N)

at(A,N)

parcelAt(P,N)

move(A,N2,N)

drop(A,P,N)
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recurs

goal-cycle

recurs

holds

Figure 3.2: The PSG rooted with hold(A,P) in the Parcel Delivery domain.

• Recurs: : The literal unifies with, but is not identical to, one of its ancestors.

• Holds: : The literal is already necessarily satisfied, given that its ancestors in the

PSG are subgoals waiting to be achieved.

These termination conditions were inspirational to our work, resulting in similar opti-

misations developed for conflict-rooted synthesis, and detailed in Chapter 5. PSGs had

an impact on the automated planning community as well, leading to the development

of planning techniques based on similar graph abstractions.

Planning graphs formed the basis for the Graphplan planning approach, and were

originally proposed by Blum and Furst (1997). A planning graph is a data structure

representing the search space for a relaxed version of the planning problem. It is

important to note that it is not a state-space encoding: paths in a planning graph do

not necessarily represent plans in the original problem instance, yet all possible plans

in the original problem are included in those found in the relaxed space. As such a

planning graph is akin to a constraint graph that encodes the original planning problem.

Blum and Furst showed that, through an iterative deepening search of a planning graph,

Graphplan could find solutions to the original planning problem more efficiently than

existing planners. While Graphplan is now considered a dated planner, the planning

graph representation is related to this work.

We detail planning graphs as proposed by Blum and Furst (1997), based on a

STRIPS-like planning formalism. A planning graph is a directed level graph. The lev-

els of the graph alternative between sets of proposition nodes and sets of action nodes.

The root proposition level is populated with the propositions in the initial state of the

planning problem. Edges represent relations between propositions and actions. Propo-

sition nodes are connected to action nodes in the subsequent level via precondition

edges if the proposition appears in the action’s preconditions. Actions are connected

to preconditions in the subsequent level through add edges if the action brings about
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the proposition, or delete edges if the proposition is deleted. Importantly, actions are

included in an action level if all of the action’s preconditions exist in the previous

proposition level, however there is no requirement for independence between actions

in the same level. Given a constructed planning graph to depth n, Graphplan guarantees

to find a partially-ordered plan of length n if one exists, and will state if none exists.

Example Consider a planning problem in the Parcel Delivery domain with initial

state specification {at(a1,node1),parcelAt(p1,node2)} and goal state specification

{parcelAt(p1,node1)}. We have omitted the conn predicates from the initial state

specification for brevity, and have only shown two action levels. �

at(a1,node1)

parcelAt(p1,node2)

conn(node1,node2)

conn(node2,node1)

¬at(a1,node1)

¬parcelAt(p1,node2)

at(a1,node2)

move(a1,node1,node2)

at(a1,node1)

parcelAt(p1,node2)

conn(node1,node2)

conn(node2,node1)

move(a1,node1,node2)

move(a1,node2,node1)

pickup(a1,p1,node2)

¬at(a1,node1)

at(a1,node2)

at(a1,node1)

parcelAt(p1,node2)

conn(node1,node2)

conn(node2,node1)

hold(a1,p1)

Predicate Action ActionPredicate Predicate

Figure 3.3: Example planning graph for plans of length 2 in the Parcel Delivery domain.

3.5.4 The Fast-Forward Planning System

One the of the benefits of conflict-rooted synthesis is that a substantial amount of com-

putation is performed by a highly optimised planner. The Fast-Forward (FF) Planning

System is a planner based on heuristic search proposed by Hoffmann and Nebel (2001)

and is the planner integrated into our implementation. We utilise it extensively in our

work to solve the planning problems produced during the reachability analysis por-

tion of our algorithm, and therefore provide some key details on how solution plans

are found. FF is a domain independent planner that searches for plans using two ap-

proaches:

1. Enforced Hill Climbing: The planner constructs a simpler, relaxed instance of

the planning problem (in which STRIPS delete lists are ignored) and performs

an enforced hill climbing search of this relaxed space. Successor states with the

highest heuristic value are picked greedily. If no successor state has a higher

heuristic value than the current, a breadth first search is adopted to find a se-

quence of actions that leads to a state with higher heuristic value.
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2. A∗ Search: Heuristic hill climbing search may fail since no backtracking is

performed. In this case FF falls back onto a standard A∗ search strategy of the

state space. This search process is guaranteed to find a solution if one exists.

FF quickly finds solutions through enforced hill climbing search, yet if this fails it can

take a considerable amount of time searching the full state space using the A∗ search.

We adopt FF in our work for three main reasons:

1. It is very efficient at finding solutions when the heuristic search is successful.

2. It has an open source, efficient native implementation.

3. Although dated, it is still a strong performer on classical planning problems.

3.6 Conclusion

A key feature of conflict-rooted synthesis is the planning-based nature of the approach.

By utilising state and action abstractions conflict-rooted synthesis is able to search a

state space composed of sets of states rather than performing a complete state enu-

meration, and is able to produce norms that are generally applicable. We detailed

two planning formalisms: a propositional set theoretic language followed by a more

expressive classical representation. Conflict-rooted synthesis is detailed in the next

chapter, first in propositional settings and subsequently extended to classical.

Conflict-rooted synthesis utilises a set of optimisations that simplify the resulting

search performed. There are strong similarities between the way we reason about

repeated applications of actions, and the subfield of generalised planning. The notions

of planning with loops and operator iteration are strong themes in generalised planning.

However the problems of plan synthesis and norm synthesis are very different: norm

synthesis is not concerned with a single plan from initial to goal states, but rather any

plan that traverses through the conflict-state space. In Chapter 8 we discuss the possible

application of conflict-rooted synthesis to solving the planning problem.

Planning approaches to incorporate domain knowledge into the planning process

are also related to norm synthesis. By specifying designer knowledge in the form of

a social objective agents can synthesise norm-compliant plans, but these approaches

do not allow for the synthesis of explicit norms. Additional similarities exist between

Traversal Graphs as presented in Section 6.1.2 and work on problem space graphs and

planning graphs, however our data structure allows us to efficiently represent sets of

similar plans, using unground predicates that are independent of initial and goal states.





Chapter 4

Conflict-Rooted Synthesis

Conflict-rooted synthesis has two advantages over norm synthesis approaches based

on complete system state enumerations:

1. It adopts a localised search of the undesirable state space, avoiding searching all

states where possible.

2. It utilises abstractions implicit in operator schemata to search at a more general

level between sets of states, rather than individual complete states.

In this chapter we present the theoretical details of our approach, with the core compo-

nents previously published by Christelis and Rovatsos (2009). We begin by describing

the process abstractly for state transition systems without confusing the core process

with specific details regarding any particular planning formalism. We then provide two

bindings between the abstract algorithm and specific planning formalism: first a map-

ping to the propositional formalism and later an extension to the classical formalism.

We use the Parcel Delivery domain outlined in Section 1.4 to illustrate key concepts.

4.1 Synthesis Introduction

Given a domain and a specification of undesirable conflict states, norm synthesis is

a procedure that creates a set of social norms for the provided domain that ensure

the social objective. An additional key requirement of applicable norm synthesis is

to provide guarantees on what effects the candidate norms have on goal reachability

in the normative system. Our approach, called Conflict-rooted synthesis, synthesises

norms while preserving agent autonomy and ensuring that the agents’ goals are still

achievable in the restricted system.

Intuitively, we can visualise the synthesis process as the construction and subse-

quent search of a directed graph, as in Figure 4.1. Nodes in the graph depict sets of

53
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system states that have common attributes, while edges depict the transition the sys-

tem takes between states when an agent performs some action. Darker nodes depict

sets of conflict states and all other nodes are conflict-free. Transitions in our model

are deterministic and the world is closed implying that states reached through operator

application are determined with certainty. In our systems there are no external forces

that can alter the applicability or result of an operator.

S1
P

S2
P S2

S

S1
S

o1

o2

∆1

∆2

∆3
∆4

Figure 4.1: Norm synthesis depicted as reachability checking of a transition graph

We call the above representation a transition graph. The single edge depicting a tran-

sition between nodes represents a set of transitions between states contained in the

connected sets, from each state in the source set, to some state in the target set. This is

illustrated in Figure 4.2 where the set of states S1 is connected to set S2 by the transi-

tion operator o. This abstract transition models a set of four underlying transitions all

invoked by o. Grouping states into sets based on common attributes allows us to reason

about operator application on the set, rather than considering all states contained within

it. One key benefit of our approach is that we actively maintain state abstractions to

simplify the search process, and to produce more expressive results.

S1 S2

o

Figure 4.2: Single transitions between sets of system states

Suppose that we are given a set of conflict states SC and a domain specification describ-

ing actions of agents in the system. From SC we identify the precursor conflict-free

sets that contain all states that, through the application of some operator, will lead to

a state in SC. In Figure 4.1 we have two precursor sets, labelled S1
P and S2

P, and two

actions that lead to conflict labelled o1 and o2. Similarly, we identify the successor

conflict-free sets which contain all conflict-free states that are reachable from a state

contained in the set SC, through a traversal of conflict states. In the graph the states la-
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belled S1
S and S2

S are future successor states. The transition graph represents a search of

the system space from conflict-free states through conflict states. This search is termed

localised, or conflict-rooted, since once a conflict-free successor state is encountered

the forward search is terminated. The resulting synthesised norms prohibit any agent

actions that lead from conflict-free to conflict states.

We next identify what effects the synthesised norms have on the reachability of

conflict-free states. We regiment the original system with our prohibitionary norms to

generate a restricted normative system, and then search for an alternative plan from

each precursor to each successor conflict-free state. In Figure 4.1 reachability checks

are depicted as dashed directed arcs labelled ∆1 . . .∆4 where each ∆i represents a se-

quence of actions that form part of a detour plan that agents can follow to avoid the

conflict states. If plans exist for all pairs of conflict-free states, then the imposition

of these norms does not restrict the reachability of conflict-free states. Consider two

arbitrary sequences of system states and actions as depicted in Figure 4.3.

si+1

si+1si

si

si+4 si+5

si+4 si+5

Figure 4.3: Reachability ensures that conflict sequences can be made conflict-free.

Darker nodes represent conflict states while all other nodes are conflict-free states.

The upper sequence begins and ends in conflict-free states, but traverses through three

conflict states. Under the synthesised norms this portion of the sequence is no longer

applicable, but if we guarantee reachability to conflict-free states then an alternative se-

quence of operators exists that can be used as a substitute for the conflict sub-sequence.

The combination of state search and reachability checks provide us with a synthesis

process that not only achieves the social objective, but also ensures goal reachability

in the restricted system.

4.1.1 Presentation Overview

We present conflict-rooted synthesis in stages beginning with a minimalist definition of

the process, followed by additional theory for the propositional and classical planning

formalism bindings. We present an overview in Figure 4.4. Conflict-rooted synthesis

contains three stages: Conflict Traversal, Norm Synthesis and Reachability Analysis.
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We describe the details of each of these steps in the context of a state transition system,

and subsequently utilising propositional and classical planning domain formalisms.

Conflict Rooted Synthesis

Conflict Traversal Reachability AnalysisNorm Synthesis

Propositional

Classical

State Transition

Input

Domain

Conflict States

Output

Social Norms

Reachability
Result

Figure 4.4: An overview of the presentation of the conflict-rooted synthesis algorithm.

Section 4.1.3.1

Section 4.2.3

Section 4.3.4

Section 4.1.3.2

Section 4.1.3.2

Section 4.3.5

Section 4.1.3.3

Section 4.2.4

Section 4.3.6

We begin by presenting important notions and definitions involving search in a state

transition system with no state or operator abstraction. In this work, we argue that

searching a grounded system should only be performed as a last resort: if our domain

contains implicit abstractions from the grounded system then synthesis should utilise

this knowledge to simplify synthesis and to produce generally applicable norms. We

follow the intuitive presentation of synthesis in a state transition system by illustrating

the mapping to conflict search utilising state and operator abstractions, and follow this

with a complete presentation of the conflict-rooted synthesis algorithm.

4.1.2 State Transition Definitions

Consider the definition of a simple state transition system presented in Section 3.1,

where a transition system is a tuple 〈Σ,A,θ〉 with Σ possible states, the set of actions

A, and action invoked transition relation θ.

We begin by splitting the set of all possible states into two mutually exclusive

subsets ΣC and ΣF where Σ = ΣC ∪ΣF and ΣC ∩ΣF = /0. Here, ΣC is the set of all

undesirable conflict states and ΣF represents the set of desirable conflict-free states.

As a shorthand, we write s a−→ s′ to denote that a transition exists for action a ∈ A

between states s and s′. We chain operator and state sequences to form paths through

the state transition system.

Definition 4.1.1. A path, p, is defined as a traversal of the transition system:

p = s1
a1−→ s2

a2−→ . . .
an−1−−→ sn
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where ∀i, si ∈ Σ and ai ∈ A. We use indices, p[i], to refer to the state i in the sequence

and p[ ai−→] to refer to action i.

Given a transition system and a clear notion of paths in the system we define the prob-

lem of prohibitionary norm synthesis in the context of a state transition system as:

Definition 4.1.2. Given a state transition system 〈Σ,A,θ〉 and the set of conflict states

ΣC ⊆ Σ, the problem of norm synthesis is to identify what actions must be forbidden to

prevent access to these conflict states while ensuring that every previously connected

pair of conflict-free states is still connected.

We now consider a naive approach to solving this norm synthesis problem. Through

repeated application of the transition relation from states specified in Σ it is possible to

enumerate the entire transition system. Access to conflict states can be prohibited by

denying transitions from conflict-free states to conflict-states. Checking reachability

involves identifying all paths between conflict-free states in the original system, and

ensuring that some alternative path exists in the normative system. This naive approach

is infeasible in practice since:

1. systems defining the set of all states are unrealistic for even the smallest exam-

ples due to the large space requirements to represent the domain, and

2. the resulting norms are equally numerous since a unique norm is constructed for

each transition that leads to a conflict state.

In order to solve the above issues a more succinct representation is required that ab-

stracts away from the underlying state-based system.

4.1.2.1 State and Operator Abstractions

Instead of referring to each individual state of a system, we introduce concise descrip-

tions of sets of states. By classifying states in the same set we are able to reason about

transitions from the set, rather than transitions from each state.

We recount the notion of a state specification S (Nebel, 2000) as a succinct repre-

sentation of a set of states and an operator specification o as a similar representation

for sets of actions. We write s |= S if the state s is one of the states represented by

the specification S, and a |= o if the action a represents an instance of the operator

o. We write Mod(S) to be the set of all states that model S. Furthermore we write

2Σ to represent the set of all possible state specifications over the atoms Σ. A conflict
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specification is a specification where all represented states are conflict states, and a

conflict-free specification represents only conflict-free states.

Example Suppose we wish for Agent a1 to avoid node1. Every state where Agent

a1 is in node1 represents a conflict state. The set of these states forms the conflict

specification, which we represent in natural language below:

SC =





state where a1 is in node1 and a2 is in node2

state where a1 is in node1 and a2 is in node3

state where a1 is in node1 and a2 is in node4

. . . �

Definition 4.1.3. A run R is defined as a sequence of operators oi and state specifica-

tions Si:

R = S1
o1−→ S2

o2−→ . . .
on−1−−→ Sn

where ∀i, Si ∈ 2S and oi ∈ O.

Let 2S represent the set of all state specifications. We write |R| to represent the number

of specifications in the run, R[i] to refer to the i’th specification and R[ oi−→] to refer

to the i’th operator. We write first(R) and last(R) to represent the first and final state

specifications in the sequence.

As visualised in Figure 4.5, a run represents a set of paths, one for every state rep-

resented by the initial specification S1, where paths are traversals through states repre-

sented by specifications in R. Note that not every state in a subsequent specification is

reachable from S1.

S1 S2 S3

o1 o2

Figure 4.5: Mapping abstract runs to grounded paths.

Formally, we say a run R represents a path p (p |= R) if and only if |R|= |p| and:

∀ j ≤ |R| . p[ j] |= R[ j] ∧ ∀ j < |R| . p[
oj−→] |= R[

oj−→].

Simply put, p models R if each of the specifications in R represents the corresponding

state in p, and if each of the operators in R represents the corresponding action in p.

We categorise a run by defining two mutually exclusive classes:
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• A complete run is a run that originates and terminates in a conflict-free specifi-

cation, but traverses only conflict specifications in between. Formally, a run R is

complete if and only if first(R) and last(R) are conflict-free specifications, and

∀1<i<|R| R[i] is a conflict specification.

• An incomplete run is a run that originates in a conflict-free specification and sub-

sequently only traverses conflict specifications. Formally, a run R is incomplete

if and only if first(R) is conflict-free and ∀1<i R[i] is a conflict specification

Runs are central to our presentation of conflict-rooted synthesis. As we progress

through the search space we compile runs detailing what has been searched. Runs pro-

vide a simple and intuitive representation with which we can develop our approach, but

more efficient data structures (such as the traversal graphs presented in Section 6.1.2)

are used in practice. We utilise runs to represent what is achievable in the conflict state

space of the system. From these runs we synthesise norms that prohibit the runs from

occurring in the normative system. We introduce our social norm representation next

and follow this final definition by introducing conflict-rooted synthesis.

4.1.2.2 Social Norm Representation

Prohibitionary social norms are behavioural constraints on the operators available to

an agent. These behavioural constraints dictate whether an operator can be performed

or not. Our norms are conditional on the current state of the system.

Definition 4.1.4. We define a set of prohibitionary norms as N = {n1,n2...} where:

ni = 〈ϕ,o〉

• ϕ is the norm condition which is a specification of a set of states, and

• o is the operator that is prohibited from being applied by any agent if the norm

condition holds in the current state.

We write ϕ(ni) and o(ni) to refer to the first and second components of the norm ni.

Example We wish that agents do not collide in the Parcel Delivery world. Using

natural language we construct a rule that prohibits this behaviour:

An agent is prohibited from moving to an adjacent node if this node is

occupied by another agent.
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We construct a norm n = 〈ϕ,o〉 to represent this rule where ϕ is if the adjacent node

is occupied by another agent, and o is that which results in the agent moving to this

adjacent node. �

Previously we have only mentioned prohibitionary social norms, yet we can consider

obligatory social norms as a more severe prescription of normative behaviour. A pro-

hibitionary norm prohibits a single operator, yet obligatory norms define what operator

must be performed. However, an obligation to perform some action is equivalent to a

prohibition on all other actions and in this sense obligations are a form of restriction

that is typically more severe than prohibitionary norms.

4.1.3 Conflict-Rooted Synthesis

We are now ready to define conflict-rooted synthesis in a state transition system. Let

SC be the provided conflict state specification representing the social objective. Given

SC and the set of operator schemata O we define synthesis as the function:

Synth(SC,O) =

{
N if the norms N prohibit SC and satisfy reachability,

⊥ otherwise.

That is, can we produce a set of norms that avoids all states represented by SC, given

the operators the agents can perform? If so, the set of prohibitions N is produced as

output, otherwise the function returns ⊥ to denote failure. Conflict-rooted synthesis is

modularised into three distinct stages:

1. Conflict Traversal: The search process conducted over the abstract state rep-

resentation, identifying every achievable conflict run representing all action se-

quences that are prohibited in the normative system.

2. Norm Synthesis: A set of candidate norms is constructed that prohibits access

to the identified conflict states.

3. Reachability Analysis: Ensure that each run identified in traversal is still

achievable under the candidate norms.

Note that there is commonality between our notion of conflict-free states and the theory

of focal states presented by Shoham and Tennenholtz (1995). Since we have assumed

no knowledge of agent goals we assume all conflict-free states to be focal, and attempt

to ensure that all are reachable.
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4.1.3.1 Conflict Traversal

Conflict traversal is a hypothetical search of the conflict state space since we do not

monitor an existing system but theorise about what agents could do. We make no

assumptions about agent goals and weigh all paths through conflict states equally. The

result of the traversal process is a set of runs, where each run begins and terminates in

a conflict-free state, but where all intermediate states are conflict states.

Traversal may identify paths that are not reachable in the actual domain, or that

may be disregarded once the goals of the agents are taken into consideration. This

additional knowledge restricts which runs are achievable, yet in this work we do not

assume this knowledge, implying that the runs generated during traversal represent a

possible superset of the actual runs achievable. This distinction is important: by not

considering domain specific knowledge we construct runs that are applicable in all

domains that utilise the provided operator set. We present methods to restrict the set of

generated runs in the presence of additional knowledge in Section 8.2.1.

We begin our presentation of conflict traversal by defining the following relation-

ships between state specifications and operators as illustrated for a state specification

S in Figure 4.6.

o ∈ Oapp(S)

o oo

o ∈ Opar(S)o ∈ Ocont(S)

S SS

Figure 4.6: Contributing, applicable and partially-applicable operators.

We say that an operator contributes to a state specification if, through the application

of the operator, the state specification is brought about.

Definition 4.1.5. For state specification S ∈ 2Σ̂ and operator o ∈ O, o contributes to S

if ∀s ∈Mod(S) ∃s′ such that θ(s′,o) = s.

Given a specification S, we write the set of all contributing operators to be Ocont(S)

where contributing operators lead to a particular state specification. Mirroring this

definition, we can specify the planning notion of applicability.

Definition 4.1.6. For state specification S ∈ 2Σ̂ the operator o ∈ O is applicable from

S if ∀s ∈Mod(S) ∃s′ such that θ(s,o) = s′.
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Given a specification S, we write the set of all applicable operators to be Oapp(S). It

is beneficial for us at this point to refine this definition of applicability. Recall that

we are interested in searching locally around conflict-state specifications which may

represent an arbitrary number of system states and can be very abstract. By restricting

our choice to applicable operators we are considering transitions that can be applied to

every state represented by the specification. This causes two issues:

1. Since the specifications are abstract it is possible that there does not exist a single

operator from which a transition can be made from every state.

2. Our desire is not to find operators that can be applied in all states, but to find all

operators that can be applied in any of the states represented by the specification.

Example Suppose we wish to prohibit the set of states in the Parcel Delivery domain

where Agent a1 is at node1. This very simple conflict specification is also very expres-

sive: it accounts for all systems and possible worlds where a1 is at node1.

Consider that we wish to identify what a1 might achieve in a conflict state, given

the move, drop and pickup actions at their disposal. None of these operators are ap-

plicable directly in the conflict specification. There exists a subset of undesirable states

where each operator is applicable, yet by considering the set of states as a monolithic

entity we are unable to reason about what is achievable from any subsets. �

We require a notion of a partially applicable operator which is applicable in some

subset of states represented by a specification.

Definition 4.1.7. For any state specification S ∈ 2Σ̂, an operator o is partially appli-

cable from S if ∃s ∈Mod(S) ∃s′ where θ(s,o) = s′.

Given a specification S, we write the set of all partially applicable operators to be

Opar(S).

4.1.3.1.1 Inference and Refinement Conflict traversal utilises two functional build-

ing blocks when searching for complete runs: state inference and state refinement.

Example Recall the conflict specification SC of undesirable states where Agent a1 is at

location node1. We wish to identify the successor state specifications that are possible

by applying actions in SC. We have a means of identifying the set Opar of partially

applicable operators, yet for each of these operators we require a means of identifying

the states that result from applying each operator.
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As before, there are states represented by SC where the agent can pickup a parcel,

move or drop a parcel. The following table lists possible states represented by SC, and

some of a1’s applicable operators in these states.

Example state represented by SC Applicable Action

Agent a1 at node1 and parcel1 at node1 pickup parcel1

Agent a1 at node1 and is carrying parcel1 drop parcel1

Agent a1 at node1 and node1 adjacent to node2 move to node2

We require a mechanism to identify subsets of a specification where operators are

applicable, and a means of computing the effect of performing these operators. �

In order to reason about the application of partially applicable operators we refine the

specification to only include states from where the operator is fully applicable, and

subsequently infer the next specification in the sequence. We begin by introducing

forward refinement and inference.

Definition 4.1.8. Given a state specification S and a partially applicable operator

o ∈ Opar(S), we define forward refinement as a function
−−−→
Refine : 2Σ̂×O→ 2Σ̂ where:

−−−→
Refine(S,o) = S′ where o ∈ Oapp(S′) and Mod(S′)⊆Mod(S).

Let S′ be the subset of states represented by S in which o is applicable. The operator is

partially applicable in S, but fully applicable in S′.

Example Let S1 be the specification where Agent a1 is at node1 and o be the operator

that moves a1 from node1 to node2. This operator is only applicable in a subset of the

states represented by S1: those states where node1 is adjacent to node2. We call this

subset S′1 and define forward refinement as the means of calculating this specification

from S1. We depict this in Figure 4.7.

S1

S�1
move

Agent a1 in node1 Agent a1 in node2

S2

Figure 4.7: Refining S1 to S′1 so that operator move is applicable.

�
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Next we introduce a function that allows us to construct the successor specification

that represents the outcome of applying an operator in a state specification.

Definition 4.1.9. We define forward inference as a function
−−→
Infer : 2Σ̂×O→ 2Σ̂ where:

−−→
Infer(S1,o) = S2 where ∀s ∈Mod(S1) ∃s′ = θ(s,o) such that s′ ∈Mod(S2).

Here, o is applicable in all states represented by S1. This is a generalisation of the oper-

ator application presented in Sections 3.2.3.1. In Figure 4.7, the outcome of inference

applied to S′1 and operator move is the specification S2.

S1 S2S1
o

?

−−−→
In f er(S1,o)

o

Figure 4.8: Inferring S2 through the application of operator o in S1

Forward refinement and inference provide tools with which we can begin a forward

search of the state specification space to produce runs. This forward search alone

is not sufficient for synthesis since our search begins within the conflict space. We

present backwards refinement and inference next to identify the conflict-free precursor

states.

Consider a given state specification S. The set of contributing operators that lead

to states represented by S is Ocont . We introduce a reverse refinement operator that

restricts the state specification S for a particular operator so that all states represented

by the restricted specification are reached through the application of o.

Definition 4.1.10. Formally, we define reverse refinement as a function
←−−−
Refine : 2Σ̂×

O→ 2Σ̂ where:

←−−−
Refine(S,o) = S′ where ∀s′ ∈Mod(S′) it holds that s′ ∈Mod(S) and ∃s.θ(s,o) = s′.

The state specification S is refined into a more restrictive version S′ where, for a given

operator o, all states represented by S′ can be reached through the application of o.

Again, we note that Mod(S′)⊆Mod(S).

S2
o

S1 S2

←−−−
In f er(S2,o)

?
o

Figure 4.9: Inferring the specification S1, from which the application of operator o leads

to S2.
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While reverse refinement allows us to identify the portion of a state specification that

can be reached by the application of an operator o, reverse inference allows us to iden-

tify the states from where o could be applied. We call these states the precursor states,

and say that the precursor specification is modelled by these states. Here, reverse

inference is a function that determines the precursor specification.

Definition 4.1.11. Formally, we define reverse inference as a function
←−−
Infer : 2Σ̂×O→

2Σ̂ where:

←−−
Infer(S2,o) = S1 where ∀s′ ∈Mod(S2) ∃s ∈Mod(S1) such that s′ = θ(s,o).

Just as forward inference is akin to operator applicability, so reverse refinement is akin

to inverse operator application in backward-search methods (Nau et al., 2004b). We

now detail a number of key features of inference and refinement:

• There is no need to distinguish between partially applicable, and applicable op-

erators during inference and refinement, since fully applicable operators simply

result in no subsequent refinement.

• Runs never contain partially applicable operators. Specification refinement en-

sures that operators used to construct future specifications are fully applicable in

the refined specification, and included in the runs.

4.1.3.1.2 Run Refinement Run refinement occurs when applying partially applica-

ble operators in the final state specification of a run and is an extension of forward

refinement. Recall that a run is a specification and operator sequence of the form:

R = S1
o1−→ . . .

on−1−−→ Sn.

Consider a partially applicable operator o to be applied in Sn. Refining Sn has a poten-

tial impact on all other specifications in the run.

Definition 4.1.12. Consider a run R and operator o ∈ Opar(last(R)). Here, o is par-

tially applicable in the last state specification of R. Run refinement is a function:

RunRefine(R,o) = S′1
o1−→ . . .

on−1−−→ S′n

where

• S′n =
−−−→
Refine(Sn,o) using forward refinement, and

• ∀i < n if ∃s |= Si, s′ |= S′n where a path exists from from s to s′ then s |= S′i.
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We illustrate run refinement in Figure 4.10 where the state specifications of R are larger

ovals and the refined specifications of R′ are internal, smaller ovals. The run R is refined

when the operator o is considered as a successor in S3. Since o is only applicable in

one of the states represented by S3 the state specifications of the refined run R′ do not

include references to paths from which o cannot be applied. As this figure illustrates,

runs become more refined as more partially applicable operators are considered.

S1 S2 S3

o1 o2 o
S4

R

R�

Figure 4.10: Run refinement illustrating how paths represented by the run R are dis-

carded as a new partially applicable operator o is considered in the refined run R′.

Example Lets consider a very simple run in our Parcel Delivery domain:

R = S1
move−−−→ S2

where S1 represents the set of states where Agent a1 is at node1, and S2 the set of

states where Agent a1 is now at node2. Consider a successor operator pickup where

the agent picks a parcel up in node2. For a1 to pick up a parcel in S2 it must be the

case that a parcel exists at location node2. Since the move operator did not introduce

the parcel, then it must exist in S1 as well. Run refinement is adopted to include the

knowledge of the parcel into the run, thereby ensuring that the pickup action can be

applied in S2. �

4.1.3.1.3 Conflict Traversal Algorithm With our state transition system semantics

for inference, refinement and run refinement we now present the conflict traversal al-

gorithm in its entirety.

Definition 4.1.13. Conflict traversal is defined as a function

Traversal(SC,O) = R

where:
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• SC is a specification of conflict states,

• O is the set of operators defined in the domain, and

• R is a set of complete runs.

We present the entire procedure in Algorithm 1 with explanation next:

Line Explanation and Comments

3–4 Identify the set of precursor operators OP ⊆ O that contribute to SC. Each operator

leads to conflict.

5–6 For each operator oi, identify the precursor states from which the operator can be

applied. Apply reverse state refinement on the conflict specification followed by state

inference to construct the precursor specification.

7 Check to ensure that the inferred state specification is conflict-free. If it is not, the

specification is ignored.

8–9 Initialise a run with the inferred precursor specification, contributing operator, and

the refined conflict specification. Initialise the set U containing all incomplete runs.

10 Iterate until there are no more incomplete runs to consider.

11–13 For each incomplete run retrieve the last state specification and all operators partially

applicable in this specification.

14–19 For each partially applicable operator construct a refined version of the original run

from which we append the operator and successor specification.

20 Check to ensure that all specifications in the new run are consistent, and that no loops

exist. Inconsistent runs, or runs with loops, are discarded.

21–24 If the run is complete add it to R , else add it to U.

25 The algorithm terminates when there are no longer any incomplete runs in the U set.

At this point, the set of complete runs found is returned.

As our search is exhaustive there is no benefit in examining runs with repeated specifi-

cations since all eventualities will have been considered the first time the specification

was encountered. We detect loops by scanning for repeated state specifications in a run,

where runs with loops are discarded. The role of loop detection is further discussed in

Section 4.2.5.1.

Naturally, the parallels between conflict traversal and plan projection exist. Plan

projection follows directly from the application of operators to state specifications. If

o is applicable for some state specification S and S′ = R(S,o) then ∀s |= S, there exists

an s′ such that (s o−→ s′) ∈ θ and s′ |= S′. The important fragment here is that plan

projection only considers operators that are fully applicable, whereas conflict-rooted
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Algorithm 1: Conflict-Free Run Traversal
Input: Conflict specification SC, and list of operator schemata O
Result: The set R , containing complete runs

begin1

R ←− {}2

Identify all operators contributing to conflict

OP ← Ocont (SC)3

for each precursor operator oi ∈ OP do4

Reverse state refinement and inference

S′C←
←−−
Re f(SC,oi)5

SP←
←−
In f(oi,S′C)6

Ensure that SP is not a conflict state specification

if SP is not a conflict state then7

Run initialisation

R← (SP
oi→ S′C)8

U ←− {R}9

Stop iterating when no more unsafe runs exist

while |U |> 0 do10

R← RemoveFirst(U)11

Slast ←last (Ri)12

OS← Opar(Slast )13

Consider each successor operator in turn

for each successor operator o j ∈ OS do14

R j← R15

Forward state and run refinement and inference

last(R j)←
−−→
Re f(last(R j), o j)16

S j
S←
−→
In f(o j, last(R j))17

R j←RunRefine(R j, S j
S)18

Create a new run for each successor

R′j← R j
o j→ S j

S19

if Consistent(R′j) and (S j
S 6∈ R j) then20

if S j
S is not a conflict state then21

R ← R ∪ R′j22

else23

U ← U ∪ R′j24

return R25

end26
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synthesis also considers partially applicable ones. We are not only interested in the

conflict-free specifications reachable from every state represented by SC, but also in

the conflict-free specifications accessible from any state represented by SC.

4.1.3.2 Norm Synthesis

Algorithm 2 details the Norm Synthesis stage where social norms are generated for

each complete run. As input this algorithm takes the set of runs R generated during

traversal, and as output it produces a set of prohibitionary norms N .

Algorithm 2: Synthesising Prohibitionary Norms
Input: The set of complete runs R
Result: A set of prohibitionary social norms N
begin1

Initialise the set of prohibitionary norms

N ←{}2

for each run R ∈ R do3

Create a norm for this run

ϕ← R[0]4

o← R[ 0−→]5

Append the norm to the set

N ← N ∪〈ϕ,o〉6

return N7

end8

Norm synthesis is the simplest stage in our approach. For each complete run we syn-

thesise a unique social norm, where the components of a norm tuple are extracted

from each complete run found during traversal. The condition of the norm is the first

conflict-free specification and the prohibited operator is the contributing action in the

run. These simple steps, conducted on each complete run, allow us to synthesise a

complete set of social norms.

Example Suppose we identify the following complete run in our Parcel Delivery do-

main:

{Agent at node3} move to node1−−−−−−−−→ {Agent at node1} −→ . . .

where a1 should not be in node1. One action that leads to conflict is when Agent a1
moves from node3 to node1. The synthesised norm for this run would be n = 〈ϕ,o〉
where:
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• ϕ is the specification representing all states where Agent a1 is at node3, and

• o is the action where Agent a1 moves from node3 to node1. �

4.1.3.3 Reachability Analysis

The set of synthesised norms is guaranteed to avoid conflict states but we must identify

the size of the conflict-free state space that will no longer be reachable. Figure 4.11

presents a graphic representation of this where the state space is split into conflict-free

(SF ) and shaded conflict (SC) regions. Reachability analysis is interested in the portion

of the conflict-free state space affected through the prohibition of the conflict state

space. This portion of the conflict-free space (bounded in the diagram with a dashed

border) should be equal to SC, symbolising that the norms only remove conflict states.

SC SF
?

Figure 4.11: Identifying the conflict-free space prohibited under norms

Definition 4.1.14. Reachability analysis is a function of the form:

Reachability(R ,N ,Ξ) =

{
> if reachability holds in Ξ under norms N
⊥ otherwise

where:

• R is the set of complete runs generated during conflict traversal,

• N is the set of prohibitionary norms generated during norm synthesis, and

• Ξ is the domain specification.

The function returns > to represent reachability, and ⊥ to represent failure.

To evaluate reachability we require a means of constructing the normative system with

the candidate norms. Using our state transition semantics we can easily construct an

alternative domain structure for reachability checking by constructing a new transition
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function, θ′, as follows:

θ′(s,o) =

{
θ(s,o) if ∀〈ϕ,o〉 ∈N . s 6|= ϕ
⊥ otherwise

The new transition function is a restricted form of the original and we call the process

of domain restriction norm application. When we introduce the bindings to particular

planning formalisms we readdress the issue of norm application and introduce tech-

niques that utilise the state and operator abstractions to avoid requiring the complete

transition relation.

We reduce the problem of reachability checking to instances of the planning prob-

lem where, for each complete run we search for a conflict-free alternative in the nor-

mative system. Consider an arbitrary complete run:

R = S1
o1−→ S2

o2−→ . . .
on−1−−→ Sn.

For this run we now construct a new planning problem ΠN = 〈Ξ,SI,SG〉 where:

• Ξ is a tuple 〈Σ,O〉 where Σ is the set of states in the transition system, and O is

the set of operators,

• SI = R[1], the initial state specification is the first specification of the run, and

• SG = R[n], the goal state specification is the last specification of the run.

In order to ensure that the alternative conflict-free plan is identical to the complete

run we introduce one additional constraint. The accessibility conditions are satisfied

by a conflict-free plan ∆ and original grounded conflict plan ∆ if the effects of ∆ are

identical to the effects of ∆. We define a solution to ΠN that satisfies these additional

requirements to be a valid solution.

Apart from reducing the development effort of implementing conflict-rooted syn-

thesis, mapping the reachability checking to a planning problem in this way provides

two significant benefits:

1. Reachability checking is more efficient since the mapping to a standardised prob-

lem representation allows us to adopt state of the art planning technologies.

2. This increased modularity allows conflict-rooted synthesis to easily use domain

specific planning approaches or technologies.

We present the reachability analysis in Algorithm 3. A simple extension of this reach-

ability analysis approach is to return the subset of runs that are identified as not being
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Algorithm 3: Reachability Analysis with Candidate Norms
Input: The set of complete runs R , candidate norms N and the original domain structure Ξ
Result: TRUE if all runs are reachable and reachability is satisfied, FALSE otherwise.

begin1

Create the restricted prohibitionary system

Ξ′← NormApplication(Ξ,N )2

Ensure reachability between conflict-free states of each run

for each complete run R ∈ R do3

Construct a planning problem to verify reachability

SI ← first(R)4

SG← last(R)5

Π← 〈Ξ′,SI ,SG〉6

Invoke a planner to solve the planning problem

∆← InvokePlanner(Π)7

if ∆ is not a valid solution then8

return FALSE9

All the runs have been verified as reachable

return TRUE10

end11

reachable, rather than simply a Boolean value. This allows us to quantify exactly which

runs are no longer reachable in the restricted system. Note that the algorithmic prop-

erties of our reachability analysis process are very dependent on the planner adopted.

For the purposes of this discussion we assume a sound and complete planner.

4.2 Propositional Synthesis

Our state transition description of conflict-rooted synthesis avoided associating the ab-

stract algorithm with any particular state space representation, choosing rather to adopt

the notions of states and state specifications at an intuitive level. The requirement to

enumerate all states in a domain representation is not realistic in practice. A represen-

tation that abstracts away from a transition system is required that allows for the real

world specification of domains. In this section we provide our first binding between

the conflict-rooted synthesis algorithm and a propositional set theoretic planning for-

malism previously presented in Section 3.2. We use the term binding since we do not

redefine the entire framework but instead extend it where appropriate. We write s to

represent a state in this formalism, and S a specification of a set of states. Operators are

tuples of the form 〈name,pre,post〉. We write O to represent the set of all operators.
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4.2.1 Propositional Parcel Delivery Domain

We reintroduce the Parcel Delivery domain in this setting encoding state attributes

using propositions. For clarity in our representation, propositions take a parenthe-

sised predicate form. This is simply a notational feature, and in implementation each

proposition could simply be mapped to an acceptable representation. For example,

at(a1,node1) could become at a1 node1.

The possible locations of a1 and a2 are defined using one of the following propo-

sitions:
at(a1,node1),at(a1,node2), . . .

at(a2,node1),at(a2,node2), . . .

The location of a parcel is defined similarly:

parcelAt(parcel1,node1),parcelAt(parcel1,node2), . . .

We use a hold atom to symbolise that a particular agent is currently carrying a parcel:

hold(a1,parcel1),hold(a2,parcel1), . . .

We represent the topology of the graph through directed node connectives as follows:

conn(node1,node2),conn(node1,node3), . . .

Our operator schemata are domain specific. For the purposes of brevity in this overview

we present a single instance of the move, drop and pickup operators. We begin with

a move operator which moves Agent a1 from node1 to node2:

OPERATOR: move(a1,node1,node2)

PRE: {at(a1,node1),conn(node1,node2)}
POST: {¬at(a1,node1),at(a1,node2)}

We illustrate the pickup operator with which Agent a1 picks up a parcel in node1:

OPERATOR: pickup(a1,parcel1,node1)

PRE: {at(a1,node1),parcelAt(parcel1,node1)}
POST: {¬parcelAt(parcel1,node1),hold(a1,parcel1)}

Finally, Agent a1 drops a parcel1 in node1 using the following operator:

OPERATOR: drop(a1,parcel1,node1)

PRE: {at(a1,node1),hold(a1,parcel1)}
POST: {¬hold(a1,parcel1),parcelAt(parcel1,node1)}
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Example Consider the specification where we do not wish Agent a1 to enter node1:

SC = {at(a1,node1)}

where at(a1,node1) is a predicate identifying the location of a1 as node1. There is no

need to list all states in order to define the set. Similarly, we can define specifications

involving multiple agents. The conflict specification to prohibit agents a1 and a2 from

both being in node1 simultaneously is:

SC = {at(a1,node1),at(a2,node1)}. �

4.2.2 Propositional Norms

The definition of a prohibitionary norm in a propositional planning formalism follows

directly from before. A prohibitionary norm is a tuple ni = 〈ϕ,o〉 where:

• ϕ ∈ 2Σ̂, and

• o ∈ O.

Our norm representation changes accordingly with the increased expressiveness of our

state representation. Here the representation of the condition of the norm is defined as

a set of literals over the atoms in our planning formalism.

4.2.3 Conflict Traversal

An operator o is applicable in a state specification S if S |= pre(o). Since we are

utilising a set-based representation the satisfiability relation |= follows:

• S |= pre(o) is equivalent to pre(o)⊆ S, and

• S 6|= pre(o) is equivalent to pre(o) 6⊆ S.

Given two state specifications S1 and S2, we write S1 |= S2 if S2 ⊆ S1. That is, every

state represented by S2 will also be represented by S1. We now extend our defini-

tions for contributing and partially-applicable operators in this propositional formal-

ism based on the specification transition function R presented in Section 3.2.3.1.

Definition 4.2.1. For a state specification S ⊆ Σ̂ and operator o ∈ O, o contributes to

S in the propositional planning formalism if:

1. ∃l ∈ (post(o)\pre(o)) where l ∈ S, and
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2. @l ∈
(
(pre(o)\¬post(o))∪post(o)

)
where ¬l ∈ S.

Operator o contributes to S if the application of o from some state specification results

in at least one literal that occurs in S, so long as none of the effects of o contradict

literals in S, and none of the preconditions of o that are not removed by ¬post(o) are

inconsistent with S.

Example Let SC = {at(a1,node1)}. Two operators can contribute to SC: when a1

moves from node2 to node1, and from node3 to node1. The set of contributing opera-

tors follows:

Ocont(SC) = { move(a1,node2,node1), move(a1,node3,node1) }. �

Definition 4.2.2. For a state specification S ⊆ Σ̂ and operator o ∈ O, o is partially

applicable in S if:

∀l ∈ S @l′ ∈ pre(o) such that (l = ¬l′∨ l′ = ¬l).

An operator o is partially applicable in S if there exists no literal in S that is the nega-

tion of a precondition of o. More simply, o is partially applicable if it is not explicitly

forbidden in S. A succinct set theoretic representation for this, with equivalent mean-

ing, is (¬S)∩pre(o) 6= /0. We interchange between the two definitions in this text. We

refer to this function as Opar : 2Σ̂→ 2O.

Example Let SC = {at(a1,node1)}. Here, the set of partially applicable operators

are any of those that, as one of their preconditions, require a1 to be in node1. For a

single parcel in the domain, parcel1, the partially applicable operator set follows:

Opar(SC) =

{
move(a1,node1,node2), move(a1,node1,node3),

pickup(a1,node1,parcel1), drop(a1,node1,parcel1)

}
.

�

4.2.3.1 State Inference and Refinement

We now redefine state inference and state refinement in the propositional planning

formalism.

Definition 4.2.3. Given a state specification S1 and applicable operator o, we define

forward inference as the function to construct the state specification S2 where:

S2 =
−−→
Infer(S1,o) =

(
S1\¬post(o)

)
∪post(o).
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The forward inference follows from the operator application function R : 2Σ̂×O→ 2Σ̂

we defined in Section 3.2.3.1. When an operator o is applied to a specification S1,

forward inference constructs a new specification which is identical to S1 except that

the negated postconditions are removed and the positive postconditions added.

Definition 4.2.4. Given a state specification S2 and contributing operator o we define

reverse inference as the function to construct the state specification S1 where:

S1 =
←−−
Infer(S2,o) = (S2\post(o))∪pre(o).

Given a specification S2 and a contributing operator o we infer the preceding state

specification from which o would be applied (S1). Here, S1 is S2 with all postconditions

removed, and all preconditions added. The intuition is that S1 may, or may not contain

any of the effects that are added through the application of o, but must satisfy all of o’s

preconditions. Note that the resulting specification is somewhat broad: it is impossible

to know whether any postconditions of o held in the precursor specification, so we

assume no knowledge of their state and simply remove them from the specification.

Definition 4.2.5. Given a state specification S and a partially applicable operator o,

a forward refinement of the state specification of S is defined as:

−−−→
Refine(S,o) = S∪pre(o).

Our set based specification representation becomes more restrictive as more literals

are added. This forward refinement is stating that o is only applicable from a subset of

states represented by S, specifically those that contain all preconditions of o.

Definition 4.2.6. Given a state specification S and contributing operator o, we define

reverse refinement as:

←−−−
Refine(S,o) = S∪ (pre(o)\¬post(o))∪post(o)

The refined specification is identical to S but contains the preconditions of o that are

not removed by o as well as the postconditions of o. That is, the application of o

results in the refined specification that includes all effects of o (post(o)) as well as the

preconditions of o that have not been removed by an effect (pre(o)\¬post(o)).

We now briefly illustrate how refinement always results in equally, or more specific

state specifications. This is a useful result that we discuss in Section 4.2.5.1.

Lemma 4.2.7. Both forward and reverse refinement of a specification S results in S′, a

restriction of S, where Mod(S′)⊆Mod(S).
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Proof. We handle the cases of forward and reverse refinement in turn through an anal-

ysis of the transition function R presented in Section 3.2.3.1:

• Let S′ =
−−−→
Refine(S,o). Since we only add literals in pre(o) to the specification S

to form S′ it follows that S′ ⊇ S.

• Let S′=
←−−−
Refine(S,o). Since we only add the literals post(o) and pre(o) \ ¬post(o)

to S it follows that that S′ ⊇ S.

The state specification generated through forward or reverse refinement is therefore at

least as specific as the original specification. �

The process of refinement only ever results in state specifications that are at least as

specific as the original, but usually are more restrictive.

Example Consider the specification S = {at(a1,node1)}. We will now illustrate the

steps of inference and refinement using example contributing and partially applica-

ble operators. Let op ∈ Ocont(S) be the contributing operator move(a1,node3,node1).

It follows that op can lead to some of the states represented by S. We use reverse

refinement to identify this subset S1 and reverse inference to create the precursor spec-

ification S1
P:

S1 =
←−−−
Refine(S,op) = {at(a1,node1),conn(node3,node1),¬at(a1,node3)}

S1
P =
←−−
Infer(S1,op) = {at(a1,node3),conn(node3,node1),}

We can now initialise our consistent run: S1
P

op−→ S1. Similarly, it is possible to use

forward refinement and inference to construct a run originating in S. Let os ∈ Opar

be the partially applicable operator drop(a1,node1,parcel1). We again show the

refinement of S to S2, and infer the successor specification S2
S:

S2 =
−−−→
Refine(S,os) = { at(a1,node1), hold(a1,parcel1) }

S2
S =
−−→
Infer(S2,os) =

{
at(a1,node1), ¬hold(a1,parcel1),

parcelAt(parcel1,node1)

}

The consistent run S2 os−→ S2
S originating from a subset of the states represented by S

can now be initialised. �

4.2.3.2 Run Refinement

We define how refinement can be consistently applied to runs of state specifications

using our propositional formalism, first by introducing a definition of consistency, and

following this with the run refinement itself.
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Definition 4.2.8. Given a consistent specification S and a consistent set of literals L+,

the resulting specification S′ = S∪L+ is termed consistent if:

∀l ∈ L+ : ¬l 6∈ S.

Consider a run R = S1
o1−→ . . .

on−1−−→ Sn. Suppose we refine Sn for some successor

operator o. We construct a new successor specification S′n where S′n =
−−−→
Refine(Sn,o).

Let L+ be the set of new literals added to the specification Sn such that:

L+ = S′n\Sn.

Under certain conditions the literals we add may conflict with literals added in previous

specifications in the run. L+ is consistent with the run R if:

• L+ is consistent with each of the state specification S1 . . .Sn, and

• ∀l ∈ L+,∀i≤ n−1 : ¬l 6∈ post(oi).

The key notion here is to consider the set L+ with respect to each specification in the

run. We know that literals in L+, or their negations, do not appear in Sn since Sn is

consistent with L+ by definition. Since neither the literals in L+ nor their negations

appear in Sn it follows that they are not referenced at any point previously in the run.

If a previous operator added a literal that is present in L+, then either the literal or its

negation must appear in Sn since literals cannot be removed from a specification. Once

a literal is introduced by an operator, the literal or its negation will appear in every

subsequent specification of the run. Since none of the literals in L+ appear beforehand

we know that none of the prior specifications make reference to these atoms, and that

the literals must hold in every precursor specification. If we refine Sn and include the

literals in L+ then we must refine every specification in the run accordingly.

Definition 4.2.9. Given a run R = S1
o1−→ . . .

on−1−−→ Sn and a successor partially ap-

plicable operator o. Let the literals added to Sn during refinement be L+ as defined

above. The refined run R′ from which o is fully applicable is defined as:

R′ = (S1∪L+)
o1−→ (S2∪L+) . . .(Sn−1∪L+)

on−1−−→ (Sn∪L+).

Example Let SC = {at(a1,node1)}. A possible partial run of the form SP
op−→ SS is:

{
at(a1,node3),

conn(node3,node1)

}
move(a1,node3,node1)−−−−−−−−−−−−−→





at(a1,node1),

conn(node3,node1),

¬at(a1,node3)




.
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Now let’s consider drop(a1,node1,parcel1) a successor operator os to be appended

to this run. We refine SS to S′S by adding the literal set L+ = {hold(a1,parcel1)} so

that the operator os is applicable in all states specified by S′S. Run refinement states

that if the resulting specification (S′S) is consistent, then the remaining specifications in

the run must also be refined. The new, refined run is:





at(a1,node3),

conn(node3,node1),

hold(a1,parcel1)





move(...)−−−−−→





at(a1,node1),

conn(node3,node1),

¬at(a1,node3),
hold(a1,parcel1)





drop(a1,node1,parcel1)−−−−−−−−−−−−−−→

�

With these definitions we complete the presentation of propositional conflict traversal.

The next step of the synthesis algorithm, Norm Synthesis, follows directly as before.

We now conclude with our presentation of the Reachability Analysis stage.

4.2.4 Propositional Reachability Analysis

Reachability analysis is composed of two core steps: norm application transforms the

domain so that actions prohibited by the norms are no longer applicable and reachabil-

ity checking constructs a planning problem to verify that alternative conflict-free plans

exist for each complete run. We begin by presenting an extension to the planning for-

malism that compiles a given set of prohibitionary norms into the operator schemata

to accomplish norm application.

4.2.4.1 A Normative Planning Extension

We define what constitutes norm-respecting behaviour within a planning-based mul-

tiagent system. Typically, planning agents have no explicit representation of social

norms and plans might therefore violate the social norms. In such situations, there is

no notion of a norm-respecting plan, or norm-respecting behaviour. With this in mind,

we extend the presented propositional planning formalism to incorporate an explicit

representation of social norms.

Definition 4.2.10. A normative planning problem is an extended planning problem

presented as a tuple:

ΠN =
〈
Ξ,SI,SG,N

〉

where Ξ, SI and SG are the domain structure, initial state specification and goal state

specification respectively, and N are a set of prohibitionary norms.
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Any application of operators in this formalism is conditional on the set of prohibitions.

In this context, a solution to a normative planning problem must not contain any actions

that are prohibited by the set of norms. Formally, we can define a prohibition function

over a state specification as F : 2Σ̂×O×2N →{>,⊥} such that:

F(S,o,N ) =

{
> if ∃〈ϕ,o′〉 ∈N : (ϕ |= S)∧ (o′ = o)

⊥ otherwise.

An operator o is forbidden for a state specification S under norms N if there exists a

norm prohibiting o with precondition modelled by S. This prohibition function is used

to extend the state transition function presented in Section 3.2.3.1 as follows:

R(S,o,N ) =

{
R(S,o) if F(S,o,N ) =⊥

⊥ otherwise.

A solution to the normative planning problem ∆N = 〈o1,o2, . . .〉 is a set of operators

that, if applied to the initial state specification SI , will result in a state that satisfies the

goal state specification SG without violating any of the social norms in N .

4.2.4.2 Operator Specification Rewriting

A simple, static implementation of the prohibitionary norm set in a given domain can

be accomplished through an operator specification rewrite procedure, allowing us to

use off the shelf planners to compute a solution. We transform the task of planning

with norms into a simple classical planning problem.

We begin by rewriting each operator in turn. For each o ∈ O we rewrite the pre-

conditions of the operator as a conjunction of the conditions of the norms that refer-

ence the operator. The subset of norms that reference the operator o can be written

as No = {n|n ∈ N and o(n) = o}. The transformed precondition pre′ for operator o

follows:

pre′(o) = pre(o)∧
( ∧

n∈No

¬ϕ(n)
)
.

Since we use a set notation for pre(n) it should be emphasised that the Boolean ex-

pression resulting from this transformation will be formed by taking the conjunction

of each of the literals in pre(n).

Example Let SC = {at(a1,node1),at(a2,node1)} and n = 〈ϕ,o〉 be a norm that par-

tially enforces this where:

• ϕ = {at(a1,node3),at(a2,node1),conn(node3,node1)}
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• o = move(a1,node3,node1).

Here n prohibits Agent a1 from moving from node3 to node1 if Agent a2 is in node1.

Using our rewrite procedure, we would reform the preconditions of o as follows:

pre′(o) = pre(o)∧
(
¬
(
at(a1,node3)∧at(a2,node1)∧conn(node3,node1)

))

where pre(o) = at(a1,node3)∧ conn(node3,node1). Here move(a1,node3,node1)

can be applied in a state if its preconditions are satisfied, and if it is not the case that

Agent a1 will move into node1 while Agent a2 occupies this location. �

The remainder of the reachability analysis and checking follows directly from the al-

gorithm presented in Section 4.1.3.3.

4.2.5 Algorithm Properties

We present discussions and proofs related to the properties of termination and com-

plexity of the algorithm followed by an argument for completeness and correctness.

4.2.5.1 Termination

Theorem 4.2.11. The conflict-rooted synthesis bound to the propositional planning

formalism is guaranteed to terminate.

We show termination of the conflict-rooted synthesis algorithm by independently con-

sidering termination of the traversal, synthesis and reachability steps.

Lemma 4.2.12. The traversal procedure of the propositional conflict-rooted synthesis

algorithm always terminates.

Proof. We begin by stating the following assumptions according to definitions in our

planning formalism:

1. The set of operators O is finite. As a result, so too are the subsets Ocont and Opar.

2. The set of atoms Σ is finite. As a result, the set of literals Σ̂ is also finite.

3. The inference, refinement and run-based operations always terminate.

We present the proof of termination through a loop analysis of Algorithm 1. From

assumption (1) any iteration over precursor operators (line 3) and successor operators

(line 14) is bound. As a result the algorithm terminates once the set of incomplete runs

U is empty (¬|U|> 0).
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We now show the set of possible incomplete runs to be finite. Let R be the set

of all possible runs composed over the set of all possible state specifications 2Σ̂, using

operators from O. By assumption both O and 2Σ̂ are finite. The set R however is not

finite. To illustrate this consider an element of R to be the run R of arbitrary length:

R = S1
o1−→ S2

o2−→ S1
o1−→ S2 . . .

It is possible to construct an infinite sequence of runs simply by extending the se-

quence, resulting in an infinite member of the set R.

Let the subset of runs R̂ ⊆R be a set of runs that do not contain loops. A loop is

present if any two specifications in the run are identical. Formally:

R̂ =
{

R | R ∈R where ∀i @ j (R[i] = R[ j]∧ i 6= j)
}
.

The set R̂ is finite since the sets of all specifications and operators are finite.

Since conflict traversal does not consider runs that contain loops (line 20) and each

iteration of the traversal (via line 19) adds runs that are strictly longer than their prede-

cessor, we know that the set of all possible incomplete runs is finite and that no run is

considered twice. The conflict traversal is therefore guaranteed to terminate. �

Lemma 4.2.13. The norm synthesis procedure of the conflict-rooted synthesis algo-

rithm with the propositional planning binding always terminates.

Proof. From Lemma 4.2.12 it follows that the number of runs produced during traver-

sal is finite, and that the monotonicity of the traversal process guarantees that runs are

only considered once. The set R of complete conflict-free runs is finite, and as a result

the norm synthesis process terminates. �

Finally, we show termination of the reachability analysis procedure. Since we out-

source the solving of planning problems to an automated planner we emphasise that

the termination result is dependent on the ability of the planner to complete. Fortu-

nately, modern day planners that perform heuristic hill climbing search will fall back

onto breadth first searches when required, meaning that they too are guaranteed to ter-

minate given sufficient resources. We assume, for this lemma, that such a planner is

in use. Importantly, we acknowledge that in practice planning may take an excessive

amount of time, or may never complete due to a lack of resources.
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Lemma 4.2.14. The propositional reachability analysis procedure always terminates.

Proof. The set of complete runs R and the set of candidate norms N are both finite.

Termination of the reachability analysis algorithm holds since:

1. the norm application method (NormApplication on line 2) implemented via op-

erator transformations (as defined in Section 4.2.4.2) terminates since it is de-

pendent on the number of norms and operators, both of which are finite.

2. the reachability check terminates since the number of complete runs is finite

(lines 7 and 8) and by assumption the planner invocation, defined via the method

InvokePlanner call, will terminate.

Since each of the components of the reachability analysis terminates we show this

lemma proved. �

The proof of Theorem 4.2.11 follows from Lemmas 4.2.12, 4.2.13 and 4.2.14.

4.2.5.2 Complexity

Recall the set of operators to be O and the set of propositional atoms in the domain

be Σ. Using closed world semantics, a state is represented by some subset of atoms,

leading to a maximum number of 2|Σ| system states. The state specification space is

larger with 3|Σ| possible specifications, since specifications contain literals rather than

atoms. The worst case complexity of each of the conflict-rooted synthesis steps follow:

• Conflict Traversal: The length of runs found during traversal are bound above

by the number of specifications, 3|Σ|. At each step of the conflict traversal, the

algorithm chooses at most |O| operators as successors for each run, producing

a worst case computational complexity upper bound of O(|O|3|Σ|)1. If duplicate

runs are discarded, the total number of runs produced by traversal is bound above

by |R | = 32|Σ||O|, representing that a unique run is composed of a contributing

operator (|O|) and first and last state specifications (3|Σ|3|Σ|).

• Norm Synthesis: The synthesis step is linear in the number of runs produced

and is therefore O(32|Σ||O|).

• Reachability Analysis: For each run, a planner is invoked. In the worst case,

the planner will search the same space as performed during traversal for each

1We write O(. . .) for Big O notation that characterises the upper bound for the growth rate of a
function, in order to differentiate it from the set of operators O.
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run produced, resulting in a total complexity of O(32|Σ| |O|3|Σ|+1).

A large portion of the resulting complexity of conflict-rooted synthesis is dependent

on the complexity of plan synthesis. In the general case the decision problem of plan

existence is PSPACE-complete. Consider that if there are n propositional atoms, then

the length of the shortest solution to a planning problem must be less than or equal to

2n. All longer solutions contain loops, implying that in order to find the solution no

more than 2n nondeterministic operator choices are required. Although the length of a

solution plan is exponential, an algorithm need only polynomial space in order to find

a solution plan (Bylander, 1994). Since the plan existence problem is in NPSPACE it is

also in PSPACE. In time conflict-rooted synthesis is NP-complete, since an exponential

amount of computation is required to synthesise runs, and alternative plans for each of

the runs, yet the results can be verified in polynomial time. Space complexity is worse,

since the number of runs produced during traversal is exponential in the number of

atoms in the domain, implying a worst case complexity of EXPSPACE. If runs are not

remembered, the complexity is PSPACE.

Much of the complexity is involved in the planner invocations during reachability

analysis. While propositional planning is PSPACE-complete, restrictions on the do-

main are able to simplify the problem. For example, with no negative effects allowed

the problem is NP-complete and with no negative preconditions it is in P.

4.2.5.3 Soundness and Completeness

We present our statement of soundness in the following theorem and prove it using the

two subsequent lemmas.

Theorem 4.2.15. The propositional conflict-rooted synthesis algorithm is sound.

We show soundness in two parts by proving:

1. The norms synthesised are guaranteed to prohibit access to all conflict states

from conflict-free states.

2. A successful reachability check guarantees that a conflict-free alternative se-

quence of actions exists for every complete run, and thereby ensures that previ-

ously accessible conflict-free states remain accessible.

Our proof of correctness also shows completeness: the norms prohibit all conflict-

states and under no circumstances is a norm not found, if one exists.
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Lemma 4.2.16. The norms synthesised using propositional conflict-rooted synthesis

prohibit access to all conflict states.

Proof. We adopt a proof by contradiction. Let N represent the set of synthesised

norms for a conflict specification SC. We begin by assuming that there exists a simple

incomplete run R∗ = S∗P
o∗−→ S∗C where S∗P is conflict-free precursor specification, and

S∗C is a conflict specification, and where R∗ is not prohibited by any norms in N .

We prove our lemma by showing that the run R∗ cannot exist since the operator o∗

is always considered as a contributing operator, and that the inferred specification S∗P
must be accounted for by some norm condition.

First, we show that we always consider the operator o∗ in our set of contributing

operators Ocont . For o∗ to not be considered as a contributing action at least one of the

following two requirements (presented in Section 4.2.3) must hold:

1. @l ∈ post(o∗) where (i) l ∈ SC and (ii) l ∈ pre(o∗). That is, no effect l of o∗ exists

that contributes to SC and is not a precondition of o∗ already contained in S∗P.

2. There exists a literal effect l ∈
(
(pre(o∗)\¬post(o∗))∪post(o∗)

)
where ¬l ∈ S∗C.

This cannot hold, since if ¬l ∈ S∗C and l is an effect of the operator o∗ then the

resulting set S∗C is inconsistent.

Therefore, we know that the operator o∗ must be in the set of contributing operators.

Secondly, if R∗ is not accounted for by some norm it must be the case that the in-

ferred specification S∗P is not modelled by at least one norm condition. Given conflict

specification SC and the identified contributing operator o∗ we know that the inferred

precursor state is defined as (from Section 4.2.3):

SP = (SC\post(o∗))∪pre(o∗).

Since SP is used as a norm condition, for R∗ to not be considered during synthesis

it must hold that SP 6|= S∗P. That is, the condition that we synthesise for our norm to

prohibit o∗ does not include the provided precursor S∗P. However, we know:

1. pre(o∗)⊆ S∗P holds since the operator o∗ must be applicable in S∗P, and

2. (SC\post(o∗))⊆ S∗P holds since all literals in SC that were not added by an effect

of o∗ must be part of the precursor specification.

It cannot be the case that the norm does not have the correct condition to prohibit the

run R∗. We have reached a contradiction. �
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Lemma 4.2.17. If reachability is shown successfully then a conflict-free alternative

sequence of actions exists in the normative system for every conflict sequence in the

original.

Proof. We adopt a proof by contradiction. Assume that we have shown reachability

for all conflict runs, but that there exists a complete run R∗ which is not reachable in the

underlying system. From Lemma 4.2.16 we know that the traversal considered this run

(since it is a complete run) and synthesised a sound norm. For reachability to succeed,

we know that we found a sound plan ∆∗ which, when applied to the specification in

first(R∗) resulted in last(R∗) without traversing any conflict states. Yet if a sound

plan exists in the normative system then these actions can be used as a conflict-free

alternative to R∗, implying that R∗ is indeed reachable. We reach a contradiction. �

From Lemmas 4.2.16 and 4.2.17 we show that Theorem 4.2.15 holds and that conflict-

rooted synthesis is sound. A completeness result follows from Lemma 4.2.16 if the

planner is complete. There are a number of sound and complete planners for the do-

main formalism we are using that will guarantee a correct result, such as FF which

we utilise in our evaluation. If a complete planner is used then the completeness of

conflict-rooted synthesis follows.

4.2.6 Limitations

There are three core limitations to a propositional approach to norm synthesis:

1. The expressivity of conflict state specifications is limited by the planning formal-

ism. It is not possible to use variables in conflict state specifications to quantify

over states in the underlying propositional domain.

2. Limitations in the applicability of the approach are inherited from the limited

expressiveness of the planning formalism. Since propositional domains are ver-

bose, it is common that they are not utilised in practice. This provides a limita-

tion to the applicability of our norm synthesis approach.

3. We cannot generate independent norms. Instead, the norms are specific to the

input domain due to the lack of operator abstractions.

Example We have been considering conflict specifications where Agents a1 and a2

should not occupy node1 simultaneously. Consider the conflict specification where the
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two agents are to not occupy any nodes simultaneously. An enumeration is required to

describe collisions in each node:

{at(a1,node1),at(a2,node1)}
{at(a1,node2),at(a2,node2)}
{at(a1,node3),at(a2,node3)}

. . .

This enumeration is tied to the topology of the grid and is not feasible for large systems

or complicated social objectives. An unbounded quantification over the nodes in the

graph results in a single specification that is more expressive, and that applies inde-

pendent of the topology of the grid. In this way we not only generate more succinct

norms, but also norms that can be applied to different instances of the domain. �

Increases in expressivity often introduce additional complexity. A classical planning

formalism uses parameterisation to generalise actions, resulting in schemata that are

independent of fine details of the domain. While the propositional domain contains

a large amount of knowledge encoded implicitly in the operator schemata, a classi-

cal representation does not. Synthesising norms in this more expressive formalism

introduces new challenges. We extend the conflict-rooted synthesis algorithm to the

classical planning formalism next.

4.3 Classical Planning Synthesis

A classical planning representation affords a significant increase in the expressivity of

the planning domain, and we have argued previously that this extension is fundamental

to the usability of conflict-rooted synthesis. A benefit of a first order state formalism

is an increase in expressivity of conflict specifications, where variable symbols can be

included with ground literals, allowing for specifications quantified over all values of

these variables.

Unground specifications of states and actions expose a limitation in our existing

propositional conflict traversal algorithm. When applying parameterised operators in

a state specification planners require the state specification to be ground and that all

operator parameters should be unified with a ground literal in the specification. The

grounded nature of the state specifications is preserved as operators are applied since

operators never introduce variables into the state representation. By allowing unground

specifications we deviate from this traditional notion of a ground state specification.
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Consider the process of refining a specification as described before. In a classical do-

main, instead of adding ground literals to the specification, we may introduce unground

literals too. The ground nature of a specification is not necessarily preserved during

refinement, and an appropriate state representation is required to embody this.

Example Let SC = {at(a1,node1)}. We show that, even if we enforce SC to be

ground, a formalism that allows unground specifications is required. Consider the un-

ground operator o = pickup(a1,X,node1) where we write the unbound variable X to

represent an arbitrary parcel. Here S′C, the refined instance of SC, contains an unground

literal:

S′C = { at(a1,node1), parcelAt(X,node1) }

The ground nature of our state specification is not preserved during refinement due to

the abstract nature of conflict specifications. �

We present classical conflict-rooted synthesis as an extension of our propositional ap-

proach with more expressive, unground state specifications. This requires an extension

of the classical planning representation presented in Section 3.3. Our synthesis ap-

proach still assumes a classical planning domain representation as input and is still

sound for these domains. We are not proposing a new representation for the input do-

mains. Instead, to process these domains we require a more expressive representation

to use within our algorithm. This allows for unground conflict specifications as input to

the algorithm but does not preclude synthesis on standard classical planning domains.

4.3.1 Classical Parcel Delivery Domain

A classical planning representation allows us to introduce the notion of predicates and

parameterised operators into our Parcel Delivery notation. For consistency, we use a

notation that is very similar to the propositional case. We write at(Agent,Node) to

represent the location of an agent, where Agent and Node are variables. Similarly, we

write parcelAt(Parcel,Node) to represent the location of a parcel. The predicate

hold(Agent,Parcel) indicates that Agent is holding a Parcel. Finally, the adja-

cency of nodes is represented by a connectivity predicate conn(Node1,Node2). We

now present the parameterised operator schemata that we will use in our examples:

OPERATOR: move(Agent,From,To)

PRE: {at(Agent,From),conn(From,To)}
POST: {¬at(Agent,From),at(Agent,To)}
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OPERATOR: drop(Agent,Node,Parcel)

PRE: {at(Agent,Node),hold(Agent,Parcel)}
POST: {¬hold(Agent,Parcel),parcelAt(Parcel,Node)}

OPERATOR: pickup(Agent,Node,Parcel)

PRE: {at(Agent,Node),parcelAt(Parcel,Node)}
POST: {¬parcelAt(Parcel,Node),hold(Agent,Parcel)}

4.3.2 An Unground Planning Extension

Recall from Section 3.3.1 that a specification in the classical sense is defined over the

set of ground literals LA . We extend this definition by generalising the definition of a

state specification as a subset of the general literal set A as follows:

S⊆ LA , where LA = {a,¬a|a ∈ A}∪>∪⊥.

This differs from the previous definition even though we have switched only from

grounded to ungrounded literals. A ground specification S is defined as:

S⊆ LA , where LA =
{

a,¬a|a ∈ A
}
∪>∪⊥.

Now consider whether an instance of an operator o is applicable in a specification S.

Since S is unground we require a means of unifying unground literals. Our typical

substitution method σ only allows for constants to be substituted in for variables. If o

operates on one of the unground literals in S a unification between the variable param-

eter and variable literal is required. We illustrate this in the following example.

Example Consider the specification S= {at(A,node1),conn(node1,node3)}, depict-

ing a Parcel World where an unspecified agent, represented by variable A, is in node1.

In order to reason about A moving to node3 we must unify the parameters of the op-

erator move(Agent,From,To) with S. In this example, a substitution is not sufficient,

since the unification (Agent← A) is required along with the standard substitutions

(From← node1) and (To← node3). �

We require a more expressive substitution function that not only allows constant substi-

tutions for variables, but also variable unifications for variables. We call this functional

superset a substitution binding and define the function ς as an extension of σ:

ς⊆
{
(v← c) | v ∈ Lv,c ∈ Lc

}
∪
{
(v← v′) | v,v′ ∈ Lv

}
.
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Constant terms c can be substituted for variables v, as in (v← c), and also variables

v′ to be unified with v, as in (v← v′). As before we denote the bound instance of an

operator o as ς[o].

Given a state s and an unground specification S we define s |= S to represent that s

is included in the set of states that model S. Since S now may contain variable terms

we extend satisfiability for this more expressive state representation as:

• Given an unground specification S and a ground state s we say s |= S if ∃σ where

s |= σ[S]. If a substituted instance of S exists that is modelled by s, then s models

S.

• Given unground specifications S1 and S2 we say that S1 |= S2 if ∃ς where ς[S2]⊆
S1. That is, if a bound instance of S2 is modelled by S1, then S1 models S2.

Operator applicability in an unground specification follows virtually identically from

the classical definition of applicability, except that instead of identifying a substitution

we search for any binding.

Definition 4.3.1. Given an unground specification S and an operator o, the applica-

bility function App which determines whether an instance of o exists that is applicable

in S is defined as:

App(S,o) =

{
> if ∃ς where pre(ς[o])⊆ S

⊥ otherwise

An operator is applicable in S if a bound instance of the operator is applicable in S.

Note that this notion of applicability can easily be mapped to the standard classical

definition, and also to our propositional definition. In a classical domain we know that

S would be ground, so instead of ς we use σ to define substitutions of constants that

ground o. The propositional case is even simpler: since o is effectively ground no

substitution is required, and applicability is determined simply if pre(o)⊆ S. The final

component of our planning formalism extension is to define the transition function.

Definition 4.3.2. Given an unground specification S, an operator schema o and an

extended substitution ς, we define the transition between state specifications as:

R(S,o,ς) =





(
S\¬post(ς[o])

)
∪post(ς[o]) if (S 6|=⊥)∧ (S |= pre(ς[o]))∧

post(ς[o]) 6|=⊥
⊥ otherwise.
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This transition function is very similar to the propositional definition in Section 3.2.3.1

where we consider a bound instance of o rather than a substituted. The bindings here

are key to reasoning about the effect of an operator as they map the abstract schema o to

the variables and predicates present in S. Importantly, the sets of literal postconditions

that are removed and added can be ungrounded. As shown above, we can migrate from

this more general definition to standard classical and propositional definitions.

We are now able to represent specifications of sets of states that contain variable

symbols and reason about operator applicability and operator effects with these sets.

Classical conflict-rooted synthesis follows next.

4.3.3 Unground Norms

Our norms can now utilise unground specifications in their representation. A prohibi-

tionary norm is still a tuple ni = 〈ϕ,o〉 where:

• ϕ⊆ LA , and

• o ∈ O.

The norm condition is no longer a set of propositional atoms but rather a specification

over the unground atoms.

4.3.4 Conflict Traversal

For brevity we will not reintroduce each definition but only the components that have

changed from the propositional approach. Synthesising in our classical representation

follows almost identically from the propositional with one key difference: instead of

considering propositional, grounded operator schema we consider ungrounded oper-

ator representations. In general we cannot process abstract operator representations

directly so we utilise substitution bindings to instantiate the operator schemata into a

representation that can be applied to the state specifications directly. As such, many of

the definitions remain as before but refer to bound instance (ς[o]) of operators.

An operator o is applicable in a propositional state specification S if S |= pre(o).

Now, if S is unground and o is parameterised, then simply checking whether the op-

erator’s preconditions appear in the specification is insufficient: the operator must

be instantiated with substitutions for the operator parameters before applicability is

checked. Notice that if o = ς[o] is ground then applicability follows almost identically

as before (S |= pre(o)). We summarise each of the critical operator definitions below:
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• An operator o is applicable in a specification S⊆ LA under binding ς if

S |= pre(ς[o]).

• An operator o is partially applicable in a specification S⊆ LA under binding ς if

∀l ∈ S : @l′ ∈ pre(ς[o]) such that (l = ¬l′∨ l′ = ¬l).

• An operator o contributes to a specification S⊆ LA under binding ς if

∃l ∈ post(ς[o]) where
(
l ∈ S∧ l 6∈ pre(ς[o])

)

and

@l ∈
(
(pre(ς[o])\¬post(ς[o]))∪post(ς[o])

)
where ¬l ∈ S.

Computing the operator sets Ocont(S) and Opar(S) in this extended representation re-

quires some discussion since operators are now parameterised, abstractions of action.

Instead of identifying a subset of O we are now interested in the subset of the instanti-

ated operators: operators with bindings for their parameters. There are two problems

that require solving before we can apply our definitions of Ocont(S) and Opar(S) in the

context of our classical planning formalism:

1. Binding Predicates: We require a means to generate the set of all operator

bindings, since given a binding we are able to classify operators appropriately.

This is an extension of the propositional approach since we have not yet dealt

with variable assignments in parameterised operators.

2. Constraints: Given all possible bindings we can then generate sets of instanti-

ated operators, yet these operators may contain unground variables if the binding

is incomplete. A means to differentiate unground operators from more complete

grounded instances is required.

4.3.4.1 Binding Predicates

We adopt a simple approach to binding two sets of predicates and do not consider this

a contribution of this work, yet we present the approach for completeness. Consider

the specifications SF and ST where we wish to identify a binding from SF to ST : a

ς such that ST = ς[SF ]. We present a naive algorithm to perform binding next and

subsequently consider it the implementation of a function BindingEnumeration.

The algorithm recursively performs a full search of all possible bindings between pred-

icates in SF and ST . The base case on line 2 continues until SF is the empty set. On each
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Algorithm 4: Creating the set of all bindings between two state specifications
Input: The specifications SF and ST , the current binding ς = /0 and the set of all constructed

binding 2ς = /0
Result: The set of all bindings 2ς is populated.

begin1

The recursion base case: all literals have been considered

if SF is empty then2

Add the constructed binding to the set

2ς← 2ς∪ ς3

else4

Consider each predicate literal in the set SF

for each lF ∈ SF do5

S′F ← SF\lF6

Consider each predicate literal in the set ST

for each lT ∈ ST do7

Check whether a valid mapping exists

ς′← BindLiterals(lF , lT )8

if ς′ is not empty then9

lF and lT have been bound. Remove lT from consideration

S′T ← ST\lT10

call recursively with (S′F ,S
′
T ,ς∪ ς′,2ς)11

Consider the case where no binding exists for lF
call recursively with (S′F ,ST ,ς,2ς)12

end13

recursive call we pass a subset of SF on with the predicate that has been considered

removed, thereby guaranteeing termination. If a binding is found between two literals

then both literals are removed from consideration and the corresponding subsets are

now searched for subsequent bindings. We recurse regardless of whether a match is

found to return partial as well as maximal bindings, and the algorithm terminates with

the set of all possible bindings.

The function BindLiterals is responsible for producing a binding if one exists be-

tween two predicates. Consider two predicates p1(x1
1, . . . ,x

1
n) and p2(x2

1, . . . ,x
2
m). We

define the function BindLiterals as:

BindLiterals(p1,p2) =





{
(x1

i ← x2
i ) | ∀1≤ i≤ n

}
if p1 = p2 and m = n

/0 otherwise.

A binding exists between two predicates if they have the same predicate symbols, and

if a binding exists between each of the parameters. We assume binding sets are checked
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for consistency where sets that bind constant symbols to conflicting constant symbols

are considered inconsistent.

Our reworked implementations of Ocont(S) and Opar(S) follow in Section 4.3.4.3.

By first generating all possible bindings, we can in turn instantiate the abstract operator

schemata and use these sets of instantiated operators to compute the contributing and

partially applicable sets as before.

Example Consider two state specifications:

SF = { at(a1,X), conn(X,node3) }
ST = { at(A1,node2), conn(node2,Y) }

The resulting binding that satisfies ST = ς[SF ] is:

ς = { (A1← a1), (X← node2), (Y← node3) }

For this example there is only one such binding, but in practice any number of bindings

may occur. �

To summarise, our statements of contributing and partially applicable operators are

identical to those in the propositional formalism if a binding ς is considered for each

operator o. Here we have shown how the set of all possible bindings can be calculated.

With this complete set of bindings we can construct the complete set of instantiated

operators and can use our existing definitions to calculate the subsets of contributing

and partially applicable operators.

4.3.4.2 Variable Constraints

During refinement in the classical formalism unground literals may be introduced into

a state specification. We introduce constraints as explicit relationships between vari-

able literals contained in a state specification.

Example Consider the specification S = {at(a1,node1),conn(node1,node2)}, and

the operator schema move(Agent,From,To). One binding for this operator is:

ς = {Agent← a1,From← node1,To← node3}.

Here a1 moves to node3, yet a side effect of our notion of partial applicability is that S

might additionally represent states from where a1 moves from node1 to node2, node4
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or any other node. This is possible since there is no literal in S that forbids this action,

and we have no knowledge of the graph topology. Consider the reduced binding:

ς′ = {Agent← a1,From← node1}.

where we have intentionally left the To parameter unbound. If we consider ς[o] and

ς′[o] as two different successor operators when constructing runs then we must ensure

that the state spaces do not overlap. To distinguish between these two a constraint is

introduced for ς′ where the unbound variable To cannot be node3. �

More generally, consider an operator o. Suppose we identify some binding ς where

ς[o] is fully applicable in a specification S: pre(ς[o]) ⊆ S. No refinement is required

here since all preconditions have been satisfied. However, consider a new binding

ς′ ⊂ ς where pre(ς[o]) 6⊆ S and refinement is required. Without loss of generality, let

ς = ς′ ∪ (v1 ← v2). The set of operators represented by ς′[o] is a superset of those

represented by ς[o]. If we wish to create sets that are mutually exclusive then the

constraint (v1 6← v2) is required for ς′. That is, v1 can take any value other than v2, for

if it were to take v2 then ς′ would be identical to ς. We define a constraint set κ as:

κ⊆
{
(v 6← c) | v ∈ Lv,c ∈ Lc

}
∪
{
(v 6← v′) | v,v′ ∈ Lv

}
.

A constraint set contains pairs of symbols that cannot be bound together. Constraints

are important to conflict traversal for two reasons:

1. Constraints ensure that unground successor operators are mutually exclusive,

since constraints over the variable symbols preclude different unground opera-

tors from representing the same ground operator.

2. Constraints restrict which underlying states are represented by a state specifica-

tion, which simplifies the process of grounding the specification as the space of

possible variable assignments is smaller.

4.3.4.3 Conflict Traversal in a Classical Formalism

The core traversal algorithm remains unchanged from Algorithm 1. Instead, we rede-

fine the functions Ocont and Opar to return substituted instances of the abstract opera-

tors contained in O. Recall that the results of these functions are sets of operators in

O that have been substituted with some binding. We investigate all possible bindings

of parameters for each operator in O. Since not all bindings are maximal, it is the case
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that certain bindings are supersets of others. To ensure that the operators modelled

with these bindings are mutually exclusive we introduce constraints.

Example Let S = {parcelAt(p1,node1),agentAt(a2,node1)}. Using Algorithm 4

we compute the set of bindings for Agent a2’s operator o = pickup(a2,P,L) to be:

Substituted Operator - ς[o] Bindings - ς Constraints -κ

pickup(a2,p1,node1) {(P← p1),(L← node1)} /0

pickup(a2,p1,L) {(L← node1)} {(L 6← node1)}
pickup(a2,P,node1) {(P← p1)} {(P 6← p1)}
pickup(a2,P,L) /0 {(L 6← node1),(P 6← p1)}

�

Given a related binding ς and constraint set κ we write ςκ to symbolise that the vari-

ables in ς are governed by constraints in κ. Algorithm 5 details our implementation of

Ocont given abstract operator specifications, taking as input a conflict specification and

the set of operator schemata, and returning the set of contributing operators.

Algorithm 5: Ocont – Enumerating Contributing Operators in a Classical Formalism
Input: Conflict specification SC, and list of operator schemata O
Result: The set OP of contributing operators.

begin1

Initialise OP to the empty set

OP← /02

for each o ∈ O do3

Identify the set of all bindings of the effects of o to SC

2ς← BindingEnumeration(post(o),SC)4

For each binding add the substituted operator

for each ς ∈ 2ς do5

Create the set of constraints

κ← ConstraintsFromBinding(ς)6

OP← OP∪ ςκ[o]7

return OP8

end9

Similarly, Algorithm 6 implements Opar with abstract operator specifications. The key

difference here is that the operator’s preconditions are bound to the source state, as

opposed to the operator effects in Algorithm 5. The remainder of the conflict traversal

procedure follows as with the propositional domain formalism.
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Algorithm 6: Opar – Enumerating Partially Applicable Operators in a Classical Formalism
Input: Specification S, and list of operator schemata O
Result: The set OS of partially applicable operators.

begin1

Initialise OS to the empty set

OS← /02

for each o ∈ O do3

Identify the set of all bindings of the preconditions of o to S

2ς← BindingEnumeration(pre(o),S)4

For each binding add the substituted operator

for each ς ∈ 2ς do5

Create the set of constraints

κ← ConstraintsFromBinding(ς)6

OS← OS∪ ςκ[o]7

return OS8

end9

4.3.5 Norm Synthesis

The process of synthesising appropriate norms from the set of complete runs produced

by the conflict traversal remains unchanged from the propositional approach defined in

Algorithm 2. Although the algorithm is identical to before, the resulting set of norms

are far more expressive since they are synthesised over unground runs.

Example The conflict specification SC = {at(a1,Y),at(a2,Y)} prohibits collisions

in any node in the Parcel Delivery domain. One of the resulting norms from this

specification might be n = 〈ϕ,o〉 where:

• ϕ = { at(a1,X), at(a2,Y), conn(X,Y) }

• o = move(a1,X,Y).

That is, Agent a1 must not move into any adjacent node if Agent a2 is occupying the

node. A similar norm is generated for Agent a2. In this representation variables with

the same name are identical across terms. Our norms are therefore more expressive

since we are able to quantify over unbound variables in the norm specification. �

4.3.6 Classical Reachability Analysis

We have previously presented our reachability analysis algorithm composed of two

core steps:
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1. the norm application procedure that regiments the domain representation so that

our candidate norms are adhered to, and

2. the reachability checking procedure that solves planning problems in the norma-

tive system.

The unground nature of complete runs is problematic for both the steps above. Firstly,

when rewriting operators to include synthesised norms we require a means of quanti-

fying over variables in the norms. Secondly, we previously constructed the initial and

goal state specifications of each planning problem from the first and last state specifi-

cations of each complete run, yet classical planners are unable to plan using unground

specifications. In order to continue to use classical planners these specifications must

be ground prior to planning.

4.3.6.1 Normative Planning with Variables

Consider the norm n = 〈S1,o1〉 where S1 and o1 contain variable symbols. Suppose

an agent, currently in a ground specification S∗, wishes to check whether the condition

of n holds in S∗. It is not immediately clear whether or not n applies in S∗, since S1

contains variables that require binding.

The agent wishes to reason whether an action a is forbidden in S∗ under a prohibi-

tionary norm set N . We define whether or not an action is forbidden by extending the

prohibition function defined in our normative planning extension in Section 4.2.4.1.

Formally, we redefine the prohibition function as:

F(S,o,N ,σ) =

{
> if ∃〈ϕ,o′〉 ∈N where (S |= σ[ϕ])∧ (σ[o′] = o)

⊥ otherwise.

The only difference between this prohibitionary function and the propositional one is

the introduction of the substitution σ. The requirement to ground variable symbols is

a common addition in this classical planning extension, and it continues here.

When rewriting our operator schemata to incorporate the norms we have synthesised

we again must account for variables. Consider previously that we redefined the pre-

conditions of an operator by creating a conjunction composed of the negations of each

norm condition:

pre′(o) = pre(o)∧
[ ∧
〈ϕ,o〉∈No

¬ϕ
]
.

This rewriting procedure is not directly applicable for two reasons:
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1. The operator referenced by a norm may contain a partial assignment of the pa-

rameters of the operator. For example, a norm prohibiting the partially ground

operator move(a1,From,To) will have a precondition that contains the variables

To and From. We require a mechanism whereby these variables will be ground

appropriately.

2. The condition specification of a norm may contain variable references that do not

form part of the operator parameters. The resulting operator schema may refer

to variables that are not bound when assignments are made for all parameters of

the operator. For example, suppose ϕ contains an unbound variable v that is not

a parameter of o. The written precondition pre′(o) will still contain the variable

v as it cannot be bound. We require a means of binding v appropriately so that

we can utilise standard planners to check reachability.

We deal with each of these shortcomings in turn and present a new rewrite procedure

to conclude. First we introduce two key concepts:

• Consider an operator written in a parameterised form o(p1 . . . pn) where we write

pi(o) to refer to the ith parameter of o, and we write P (o) to represent the set

of parameters of o. Now consider o∗ to be an instance of o with a subset of its

parameters ground. We represent these assignments for operator o∗ as α(o∗), a

set composed of assignments (pi← ci) where pi is a parameter of o and ci ∈ Lc

is a constant symbol.

We wish to rewrite the specifications of the original operator schema. If a norm

prohibits a more specific version of an operator, then it is essentially prohibiting

the abstract operator in the presence of some existing parameter assignments.

The condition C(o,n) that must hold for a norm n, with partially assigned oper-

ator o(n), to prohibit o are:

C(o,n) =
∧

(pi←ci)∈α(o(n))
pi(o) = ci.

That is, for each parameter assignment in α(o(n)), the set of assignments for

the operator prohibited by n, we stipulate that this condition only holds if a

corresponding assignment exists for the original operator o.

Example Consider o = move(Agent,From,To). Let o∗ be an instance of o with

some of the parameters assigned: o∗ = move(a1,node1,To). Here, the assigned

parameters are α(o∗) = {(Agent← a1),(From← node1)}. If a norm n prohibits
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o∗ then we write the condition under which n is active for the operator o as

follows:

C(o,n) = (Agent= a1)∧ (From= node1).

This captures the fact that n prohibits o, but only when parameter assignments

match those in o∗. �

• We also require a means of identifying which variable symbols appear in a state

specification. Let Vars : 2LA → 2Lv be a function that, when given a specification

S, returns a set of variable symbols that appear in S. Now consider that an oper-

ator o with variable parameters P (o) is to be applied in state specification S. We

define V (S,o) to be a function that returns the set of variable symbols in S that

are not parameters of o:

V (S,o) = Vars(S)\P (o).

We write σV (S,o) to represent a substitution over these variables.

Example Let S = {at(Agent,node1),parcelAt(Parcel,node1)} and the op-

erator o = move(Agent,From,To). Here, Vars(S) = {Agent,Parcel} identi-

fies the variable symbols in S. The symbols that are not parameters of o are

V (S,o) = {Parcel}. �

We now present a reworked rewrite procedure and comment on it below:

pre′(o) = pre(o)∧
∧

〈ϕ,on〉∈No

¬
[
C(o,〈ϕ,on〉)∧

(
∃σV (S,o).σ[ϕ]

)]
.

The rewrite procedure can be described as follows. An operator o is permitted to be

applied in a state specification if its preconditions are satisfied (pre(o)) and no norms

are satisfied. A norm n is satisfied if it prohibits the operator o, and is active under the

following conditions:

• each of the parameter assignments of the operator prohibited by the norm are

present (C(o,n)), and

• there exists some substitution σ for all the unbound variables where the grounded

precondition of the norm holds.

This rewrite rule satisfies all the shortcomings of the propositional operator rewriting.

We ensure that existing parameter assignments form part of the rewrite rule. As a re-

sult, the condition of a norm is only considered applicable if the particular instance of
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the operator matches these assignments. Furthermore, by quantifying over all substi-

tutions of the remaining unbound variables we are guaranteed to have a fully ground

specification with which to check for applicability.

4.3.6.2 Grounding Runs

In order to guarantee reachability under the new synthesised prohibitions we must

show that a conflict-free plan exists for any state represented by the initial state specifi-

cation first(R), that results in a state represented by last(R), for all R∈R . Furthermore,

we must consider that the state specifications first(R) and last(R) could contain vari-

ables. For this, we extend the reachability check to show that a conflict-free alternative

plan exists for any grounding of these specifications.

Consider reachability checking for a run R containing specifications that are not

grounded. In order to always find an alternative, conflict-free plan to R additional

domain-specific knowledge is required.

Example Consider the conflict specification SC = {at(a1,node1),at(a2,node1)}. One

example of a complete run found during traversal where Agent a2 moves from some

location (X), into node1, and then again to some other location (Y).





at(a2,X),

at(a1,node1),

conn(X,node1),

conn(node1,Y)





move(a2,X,node1)−−−−−−−−−−→





at(a2,node1),

at(a1,node1),

conn(X,node1),

conn(node1,Y),

¬at(a2,X)





move(a2,node1,Y)−−−−−−−−−−→





at(a2,Y),

at(a1,node1),

conn(X,node1),

conn(node1,Y),

¬at(a2,node1),
¬at(a2,X),





Finding an alternative, conflict-free plan for this run is dependent on the topology of

the underlying world. Consider two instances of such a grid world in Figure 4.12. In

world (i) reachability does not hold since there is no sequence of actions that will result

in Agent a2 reaching node3 without colliding with Agent a1. In (ii) the alternative,

conflict-free run is a trivial move from node2 to node3. �

Our reachability algorithm changes appropriately to incorporate the additional domain

knowledge prior to solving the corresponding planning problem. If a run R is un-

ground, then it is modelled by a set of ground runs in the underlying system. We

identify each of these ground runs through the substitution that, when applied to R,

results in a grounded instance R. Consider a set of such substitutions {σ1,σ2 . . .} and
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node1 node2

node1 node2

node3

a1

node3 a1
a2

a2

(i) (ii)

Figure 4.12: Two Parcel Delivery worlds illustrating how the state reachability of un-

ground runs is dependent on the topology of the world.

a run R. To show reachability of conflict-free states in the unground run R we must

show reachability between states for each of the grounded runs σ1[R], σ2[R] . . . . If no

conflict-free alternative is found for a single grounded run, then no guarantees exists

for the general reachability of the ungrounded run. We adjust the reachability analysis

as follows:

1. For the run R, find the set {σ1,σ2 . . .} of consistent constant-only substitutions

that result in unique groundings of first(R) and last(R), given the set of possible

atoms A .

2. For each substitution σ, solve the planning problem Π for SI = σ[ f irst(R)] and

SG = σ[last(R)] under the synthesised prohibitions.

There are advantages to grounding the conflict-free pairs at the reachability analysis

stage of the synthesis. Firstly, the traversal runs are ungrounded and therefore com-

mon to all problem instances of the domain specification. Secondly, the refinement of

runs during traversal can be seen as a process whereby constraints are placed on the

possible variable groundings for any specific state: the grounding of variables need

only consider those atoms that satisfy the prohibition conditions in the problem in-

stance. This, coupled with object typing, reduces the number of unique grounded runs

that are considered for reachability. Finally, if we consider the operator rewrite pro-

cess under the synthesised prohibitions it becomes clear that grounding prior to, or

during the traversal produces many prohibitions conditional on each variable ground-

ing, and does not take advantage of the generality of the planning formalism and action

schemata. We present the revised reachability analysis in Algorithm 7.
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Algorithm 7: Modified Reachability Analysis in the Classical Planning Formalism
Input: Set of complete runs R , candidate norms N and domain structure Ξ
Result: TRUE if reachability is satisfied, FALSE otherwise.

begin1

Create the restricted prohibitionary system

Ξ′← NormApplication(Ξ,N )2

Ensure reachability between conflict-free states for each conflict run

for each complete run R ∈ R do3

Identify all substitution groundings for the unground R

for each grounding σi of R in Ξ do4

Construct a planning problem to verify reachability

SI ← first(σ[R])5

SG← last(σ[R])6

Π← 〈Ξ′,SI ,SG〉7

Invoke a planner to solve the planning problem

∆← InvokePlanner(Π)8

if ∆ is not a valid solution then9

return FALSE10

All the runs have been verified as reachable

return TRUE11

end12

4.3.7 Algorithm Properties

We now reassess our arguments for termination, complexity, soundness and complete-

ness for conflict-rooted synthesis in a classical planning domain.

4.3.7.1 Termination

If we consider propositional planning, then the traversal process is guaranteed to termi-

nate since the set of literals is bounded and each successor operator only adds literals

to specifications in the run. Furthermore, the reachability check for these runs is also

grounded. While our first order extension provides the advantage of generally appli-

cable, variable operators, it results in the loss of any implicit problem specific infor-

mation. As a result, when successor operators are considered they can introduce new,

unbounded variables into runs: the process might repeat infinitely and never terminate.

Theorem 4.3.3. Conflict-rooted synthesis bound to a classical planning formalism is

not guaranteed to terminate.

Proof. We prove non-termination by showing that conflict traversal is not guaranteed
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to terminate. Consider a simplified Parcel Delivery world where agents can only move.

Assume Agent a1 begins in node1. Through refinement and inference we generate the

run:

R =

{
at(a1,node1),

conn(node1,Node)

}
move(a1,node1,Node)−−−−−−−−−−−−→





at(a1,Node),

¬at(a1,node1),
conn(node1,Node)





with the constraint that Node 6= node1. We can continue to pick new move operators

in the sequence:

move(a1,Node,Node1) where (Node1 6= Node)

move(a1,Node1,Node2) where (Node2 6= Node1)

move(a1,Node2,Node3) where (Node3 6= Node2)

. . .

Using this process we are always able to create a new run that has not been considered

to date. Conflict traversal is not guaranteed to terminate. �

We propose two techniques to improve the termination properties of our algorithm:

1. Optimisations, such as those described in the following Chapter, reduce the num-

ber of infinite runs considered by discarding sequences that are known to be

reachable.

2. Termination can be guaranteed by bounding the algorithm. We investigate pos-

sible bounding strategies next.

Bounding the Traversal The simplest means of bounding the traversal is to limit ei-

ther the number of runs produced during traversal, or the maximum length of any run

investigated. These strategies are similar: once the run limit is exceeded the traversal

process can be queried to identify the run length of the last iteration. Limiting traversal

in this way negatively affects the guarantees that conflict-rooted synthesis produces

during reachability analysis. Since a subset of the complete runs are analysed, en-

suring reachability only provides guarantees that the same subset is achievable in the

normative system. In our evaluation we utilise the bounding of the traversal process to

ensure that traversal is consistently limited while analysing the properties of our algo-

rithm. For a full comparison a superior strategy is required that can provide guarantees

over all runs in a domain.
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Domain knowledge (initial state knowledge from a planning perspective) is re-

quired to bound the traversal. Theorem 4.3.3 highlights that, without domain knowl-

edge, traversal is not guaranteed to terminate. The remaining question then is, given

this domain knowledge, how can we effectively bound the traversal process? To this

end we introduce a bound based on limiting the number of predicates in state specifi-

cations investigated during traversal.

Our strategy is simple to implement. Given initial state knowledge we count the

number of predicates, and each time refinement increases the size of a state specifica-

tion we ensure that none of the predicate limits have been breached.

Example In Theorem 4.3.3 we illustrated how the core synthesis process does not ter-

minate by illustrating that an arbitrary number of move operators could be sequenced.

Each move operator introduced a new predicate into our state specification during re-

finement: conn(Node1,Node2), conn(Node2,Node3), . . . . It is clear that, given a par-

ticular problem instance, we are able to deduce the maximum number of conn pred-

icates allowed. For example, in a 2x2 grid this equates to 8 bidirectional links. By

ensuring no specification references more than 8 conn predicates we can effectively

bound the traversal. �

What is particularly appealing about this approach is that the norms synthesised are

independent of the initial state knowledge, and the Reachability Analysis results guar-

antee reachability for the given problem instance.

4.3.7.2 Complexity

The classical planning formalism adopted in this thesis does not include functional

symbols, implying that the systems represented by these domain are finite. Bylander

(1994) showed that the plan existence decision problem in these domains is PSPACE-

complete. Conflict-rooted synthesis in classical domains differs from the propositional

variant in that unground predicates are introduced during state refinement. This, cou-

pled with the lack of problem knowledge during traversal implies that the search space

is infinite, as new unique predicates can be introduced arbitrarily. As a result, we bound

the traversal process by incorporating problem-specific knowledge, thereby ensuring

that a limit exists for the maximum run length, and subsequently that the algorithm is

guaranteed to terminate. Under these assumptions, the worst case complexity remains

unchanged from the propositional.
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4.3.7.3 Soundness and Completeness

Our soundness and completeness argument follows the propositional result in Theorem

4.2.15. We assume the traversal to be bound, and that the planner used for reachability

analysis is sound and complete.

Theorem 4.3.4. Bound conflict-rooted synthesis in classical domains is sound and

complete.

Proposition 4.3.5. The bound conflict traversal algorithm is sound and complete for

classical planning domains.

Proof. We adopt a proof by contradiction. Assume R= S1
o1−→ . . .

on−1−−→ Sn is a complete

conflict run that is not identified during traversal. Since the core traversal is sound by

Theorem 4.2.15 it follows that there are two reasons why R is not identified:

1. The set of contributing operators does not include the operator o1.

2. At least one of o2 . . . on−1 was not found in the set of partially applicable opera-

tors.

Completeness and soundness therefore follows from the completeness and soundness

properties of Ocont and Opar. The operators in Ocont and Opar are all created through

bindings generated by the function BindingEnumeration: for an operator to be miss-

ing, a corresponding binding must be erroneously left out. Yet this cannot be the

case, since BindingEnumeration enumerates all possible bindings between all subsets

of predicates in each of the given state specifications. Since all operators are considered

correctly, every valid conflict run will be found, and a contradiction is reached. �

Our proof for the Norm Synthesis algorithm follows identically as before. Next, we

investigate reachability analysis.

Proposition 4.3.6. In a classical domain, if reachability is ensured then a conflict-

free alternative sequence of actions exists in the normative system for every conflict

sequence in the original.

Proof. We refrain from a complete proof of reachability, choosing rather to focus on

the core change from the propositional approach. Since conflict runs are unground,

reachability analysis performs a grounding step to identify every run represented. If

reachability checking is successful for every ground run, then we deduce that the reach-

ability requirements are satisfied for the unground run.
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The soundness of reachability analysis in a classical domain is dependent on two

factors:

• Soundness and completeness of the adopted planner.

• Soundness and completeness of the grounding algorithm used.

In our work we assume the planner to be both sound and complete while the grounding

approach simply enumerates all possible bindings of each variable in the run, incorpo-

rating those that do not violate the run’s constraints. Since every possible assignment

is considered, no possible binding is ignored, and every binding returned is valid. It

therefore follows that reachability is sound in classical domains. �

From Propositions 4.3.5 and 4.3.6 it follows that Theorem 4.3.4 holds. The inherent

value in keeping variable constraints becomes clear through our grounding algorithm

discussion, since with no constraints all combinations of bindings must be considered

during grounding. Constraints help to reduce the number of runs produced, allowing

only runs that are consistent and valid in the problem domain.

4.4 Conflict-Rooted Synthesis Summary

The conflict-rooted synthesis algorithm is separated into three components:

1. Conflict Traversal: Inference and refinement operators facilitate a localised

search of the conflict specification space. The main output of this process is a

set of complete runs that represent everything achievable through conflict.

2. Norm Synthesis: Given the set of complete runs, norm synthesis extracts ap-

propriate prohibitionary norms where the contributing operators are prohibited

conditional on the first specification of each run.

3. Reachability Analysis: With the set of complete conflict runs and synthesised

norms, reachability analysis invokes an external planner to verify that each of the

complete runs is achievable using a conflict-free plan in the normative system.

The semantics of our approach were detailed in a state transition system. The algorithm

was then extended to utilise state and operator abstractions in propositional and classi-

cal planning domains. In the propositional setting we showed conflict-rooted synthesis

to always terminate, while always being sound and complete. Since less information

is contained in classical domains we introduced a set of approaches to bounding the

traversal, thereby ensuring that the approach continues to terminate and to be sound
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and complete.

In the worst case conflict-rooted synthesis is intractable, yet in Chapter 7 we show

that it is still applicable in a number of benchmark domains. In order to reduce the need

for unnecessary computation we introduce a set of domain independent optimisations

of the algorithm next.



Chapter 5

Synthesis Optimisations

Even though conflict-rooted synthesis utilises state and operator abstractions a sizeable

number of runs are generated during traversal for even the simplest domains. In the

Parcel Delivery domain a full traversal considers over 350000 complete runs of length

5 or less. There is clearly incentive to reduce the number of runs investigated during

synthesis, especially when each resulting run produces a set of planning problems to

be solved. In order to reduce the computation required to synthesise norms we focus

on two classes of optimisations:

1. Traversal Optimisations: are performed during, or directly after conflict traver-

sal. They prune the traversal space allowing for a reduction in the number of

subsequent planner invocations.

2. Reachability Optimisations: are performed in the reachability analysis phase

of the algorithm. These reduce the number of planning iterations required to

ensure reachability.

In this work we intentionally use the term “optimisation” rather than “heuristic”. Re-

call that we perform an exhaustive traversal search and reachability check to determine

the effectiveness of our candidate norms without any assumptions or approximations.

It is important that every run is considered since we require every outcome to be achiev-

able in the normative system. We use the term optimisation since we are concerned

with changes to the algorithm that will produce identical results to the original, but

with some computation or space reduction. None of the approaches we detail in this

chapter alter the soundness or completeness properties of the conflict-rooted synthe-

sis algorithm. The main contributions of this chapter were previously published by

Christelis et al. (2010).

109



110 Chapter 5. Synthesis Optimisations

5.1 Traversal Optimisations

We begin by illustrating the intuition behind our traversal optimisations. The search

adopted by conflict traversal produces a set R containing every complete conflict run.

Traversal optimisations reduce the size of R .

Proposition 5.1.1. Let R1 and R2 be runs contained in R . R1 can be removed from R
if it holds that the reachability of states in R1 is dependent on the reachability of R2.

This dependency relationship implies that, during reachability analysis, if a conflict-

free run exists for R2 then a conflict-free run must exist for R1.

Example Consider the trivial case where R2 is identical to R1. Let ∆ be an alternative,

conflict-free plan found during reachability analysis for R2. Since R1 is identical to R2,

then we know that ∆ is also an alternative for R1. There is no reason to consider R1

during reachability analysis: R1 can be removed from R . �

In Section 4.1.3.3 we detailed how planning problems are constructed from runs in

order to ensure goal reachability in the normative system. Importantly, for a given run

R a planner searches for plans with initial state first(R) and goal state last(R). All other

intermediate specifications do not form part of the planning problem. We now refine

our notion of reachability dependence, writing S1 ≡ S2 to represent set equivalence.

Definition 5.1.2. Let R1 and R2 be runs contained in R . The reachability of states in

R1 is dependent on the reachability of those in R2 if both of the following hold:

• first(R1)≡ first(R2).

• last(R1)≡ last(R2).

Proof. The proof follows directly from the fact that both R1 and R2 will produce iden-

tical planning problems during reachability analysis if the above conditions hold. As

such, any conflict-free alternative plan for R1 will also hold for R2. �

The traversal optimisations in this chapter remove runs from consideration using the

following two guidelines:

1. Redundancy: If an optimisation guarantees a run to be reachable in the norma-

tive system then it is excluded.

2. Dependency: If an optimisation shows that the reachability of conflict-free

states in a run is dependent on the reachability of states in an already investigated

run, then the run is removed.
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Figure 5.1 provides a visual representation of the set of conflict runs. Dependencies be-

tween runs are illustrated using directed edges. Our optimisations exclude runs known

to be reachable, or runs dependent on others. Now we need only check the remaining

subset of runs during reachability analysis.

Reachable Runs Dependent RunsRuns to Check

All Complete Runs

Figure 5.1: Identifying reachable and dependent runs in the set of complete runs.

Dependency removal also allows us to remove incomplete runs during the traversal

process too. Let U be the set of incomplete runs after some iterations of the con-

flict traversal algorithm. The conditions in Definition 5.1.2 can be used to remove

incomplete runs from consideration. Let R1 and R2 be two runs in U. Since the final

specifications of R1 and R2 are identical, we know that the subsequent searches dur-

ing traversal will be identical too, resulting in a duplication of search effort. In this

situation we can simply remove one of R1 or R2 from U.

A common technique we adopt in our optimisations to expose dependency relations

is operator reordering. Consider an arbitrary, complete run of the form:

R1 = S1
o1−→ . . .

on−1−−→ Sn.

Let R2 be a run constructed by reordering ok to the beginning of R1. We assume R2 to

be consistent and that the reordering does not affect the first and last specifications of

the run. We present the reordered R2 below:

R2 = S1
ok−→ S′2

o1−→ . . .
ok−1−−→ S′k

ok+1−−→ S′k+1 . . .
on−1−−→ Sn.

Notice that first(R1)≡ first(R2) and last(R1)≡ last(R2), while all other specifications

are possibly different. We illustrate R1 and R2 in Figure 5.2. In both cases the con-

tributing operator o1 has been emphasised. Notice that if ok does not lead to conflict

then the sequence of conflict specifications has been shortened. We shade conflict

specification nodes appropriately.

The two runs are now dependent by Definition 5.1.2 since the shorter conflict se-

quence in R2 is considered prior to R1 and R1 can therefore be removed from consid-
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S1 Sn

o1

o2

on−1

ok

o1

on−1

ok ok+1

ok+1ok−1

R1

R2

Figure 5.2: Comparing runs in which an operator has been reordered.

eration.

Each of the optimisations presented in this section can be applied independently of

the domain, and they generically exploit implicit constraints and dependencies between

operators. The effectiveness of these optimisations is dependent on what characteris-

tics any particular domain has, but exploiting these characteristics can be performed

in a domain independent fashion. Importantly, the optimisations we present never in-

crease the number of traversal runs.

5.1.1 Traversal Optimisations Overview

We begin our presentation of traversal optimisations by providing an overview of each

optimisation in the context of an example run. Consider the complete conflict run

produced for the simple conflict specification SC = {at(a1,node1)}:

S1
o1−→ S2

o2−→ S3
o3−→ S4

o4−→ S5
o5−→ S6

o6−→ S7

where the operators oi are listed in the following table:

Index Operator

o1 move(a1,X,node1)

o2 destroy(a1,parcel1)

o3 pickup(a1,parcel2,node1)

o4 idle(a1)

o5 pickup(a1,parcel3,node1)

o6 move(a1,node1,Y)

We include two additional operators: an agent can destroy a held parcel, resulting in

the parcel no longer existing, or can remain idle with no effects. This run forms part

of the set of complete runs generated for the specification SC, alongside many other

complete runs. We number and detail each optimisation in the context of this example.
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1. A Priori Operator Filtering
Through operator dependency analysis identify which operators depend on, or

contribute to, the conflict specification. The set of independent operators that

remain need not be considered during traversal, resulting in a smaller operator

set and subsequently reducing the number of runs produced.

The operator idle(a1) in the above run is discarded since it is not dependent on,

and does not contribute to the literals in SC. Removing the operator results in a

shorter run with conflict-free state reachability dependent on the longer.

2. Traversal Pruning
Exploit operator reordering during each iteration of conflict traversal to identify

shorter dependent runs. If a shorter run is identified, the longer is discarded.

In the example the agent can invoke the destroy(a1,parcel1) action first, prior

to moving into node1 while maintaining the effects of the destroy action. The

remaining operators form a shorter run, and the longer run is discarded.

3. Duplicate Run Removal
We need not consider complete runs that are duplicates of each other as already

highlighted in Definition 5.1.2.

4. Partial Order Sequencing
Identify operators in the run that can be applied in any order since their precon-

ditions and effects are independent. Arbitrary orders of the operators results in

a set of identical runs, all of which are dependent on one another. We select one

of these for analysis and discard the remainder.

The two actions pickup(a1,parcel2,node1) and pickup(a1,parcel3,node1)

in our example can be executed in any order. We need only consider a single

ordering of these actions.

5. Repetitive Operators
Runs that model the repeated application of an operator can share common

reachability plans. More specifically, in certain situations altering a run that

has been shown to be reachable by repeating a particular operator in the run will

result in similar repetitions in the alternative conflict-free run. Inductively, if we

can show that the reachability of states in the modified run is still satisfied by the

modified conflict-free run, then an arbitrary repetition is catered for as well.
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In our example run above, if a conflict-free plan exists for a1 to pick up parcel2,

then a similar plan exists for a1 to pick up parcel3, or any other parcel in node1.

We consider these repeated actions as a single instance, thereby reducing the

number of runs considered. Furthermore, this allows us to reason about the

reachability of states incurred through sequences of actions of arbitrary length.

These optimisations never increase the search space size, make no assumptions regard-

ing agent goals and preserve soundness by disregarding complete runs that are known

to be reachable. We formally present each of these optimisations in turn.

5.1.2 Traversal Optimisation 1: A Priori Operator Filtering

A priori operator filtering is an optimisation that reduces the set of operator schemata

that are considered prior to beginning traversal. It is not sufficient to only consider op-

erators that are partially applicable in the conflict specification. We also must consider

operators that are independent of the conflict specification, since applying independent

operators may result in a dependent operator becoming applicable. We begin by prov-

ing this fact via Proposition 5.1.4 below which shows that operators that are entirely

independent of the conflict specification SC must still be considered during traversal.

Definition 5.1.3. An operator o ∈ O is independent of a state specification S if the

operator is not dependent on, and does not affect any of the literals in S. Formally, o

is independent of S if and only if:

@ς where ∀l ∈
(
pre(ς[o])∪post(ς[o])

)
. l 6∈ S∧¬l 6∈ S.

We write lit(o) = pre(o)∪post(o) to be the set of literals in o.

Proposition 5.1.4. Let OI ⊆ O be the subset of operators that are independent of a

conflict-state specification SC. Operators in OI cannot be removed from consideration

during conflict traversal a priori.

Proof. We present a proof by counterexample. Consider the following three abstract

operators operating over literals {x,y,z,q}:

{z} o1−→ {x,y,¬z} {y} o2−→ {q} {q} o3−→ {¬x}

Let SC = {x}. Operator o1 is a contributing operator that results in a conflict state,

while o3 is guaranteed to leave a conflict state. Let the set of independent operators

OI = {o2} since neither y nor q are atoms that exist in SC. By not considering o2
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during traversal we acknowledge that no run containing o2 exists that is not reachable

in the resulting normative system. Our counterexample must show that a run exists

that contains o2 that is not reachable when access to SC is prohibited. Consider the

complete run:

{z} o1−→ {x,y} o2−→ {x,y,q} o3−→ {y,q}

which achieves q through the application of o2. Even though o2 makes no reference

to any atoms in SC, it is enabled as a side effect of performing o1: o2 is not dependent

on SC but is only applicable in a conflict state. There is no conflict-free way to achieve

q since the above run cannot be applied in the normative system. If the independent

operators in OI are ignored, the above run is not considered and is assumed reachable.

All other conflict runs are shown to be reachable, and we deduce that the synthesised

norms preserve reachability in the general case. A contradiction is reached. �

A stronger notion of operator independence is required. Instead of showing indepen-

dence between o and S we also show independence between o and any refined subset

of the specification S: if a sequence of operators can be applied in S that leads to a state

specification S′ still represented by S, then o must be independent of S′ as well.

Let OD be the set of operators dependent on each other or on SC, and OI for all other

operators. Algorithm 8 introduces a simple approach to create the set of dependent

operators. We initialise Λ with the literals in SC and the set of dependent operators,

OD, to be empty. The algorithm repeats, continually adding all operators dependent on

the literals in Λ to OD until no new operators are added.

SC

Λ

OD OI

o1 o2 o3 o4 o5

Figure 5.3: Splitting the operator set into those dependent on SC (OD) , and those

independent (OI).

We illustrate operator filtering in Figure 5.3 with the set of atoms on the top and the set

of operator schemata o1 . . .o5 on the bottom. Initially, operators are linked to the atoms

in their preconditions and effects producing a two-level graph structure. Operators

contained in the same graph as atoms in the conflict specification are considered to be
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Algorithm 8: Computing the Independent Operator Set
Input: Conflict specification SC, and list of operator schemata O
Result: The set of dependent operators OD

begin1

Initialise the set of dependent literals Λ to SC

Λ← SC2

Begin with no dependent operators

OD← /03

repeat4

continue← false5

for each o ∈ O do6

If we have not considered the operator already, and if the

operator is dependent on some literal in Λ
if o 6∈ OD and (lit(o)∩Λ) 6= /0 then7

Add to the dependent set

OD← OD∪o8

Add the literals to the set of dependent literals

Λ← Λ∪ lit(o)9

Ensure we repeat with the new literals added

continue← true10

until continue is false11

return OD12

end13

dependent and all other operators are independent. Here, the effects of operators in

OD never conflict with those in OI . We term this independence over all possible action

sequences universal independence.

Example We revisit the example in Proposition 5.1.4. None of o1, o2 or o3 are uni-

versally independent, and therefore none can be excluded during traversal. We present

the resulting dependency graph.

o1 o2 o3

x y z q

Figure 5.4: Graph identifying universal independence for operators in Proposition 5.1.4.

Consider a further action {a,b} o4−→ {c}. Here, Λ = {q,x,y,z}, and since no literal in

Λ is referenced by D we know OD = {o1,o2,o3} and OI = {o4}. Therefore, operator
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o4 can be ignored during traversal. �

Proposition 5.1.5. Let OI be the operators universally independent of SC, and OD

be the remaining operators. If operators OI are excluded from traversal the norm

synthesis algorithm remains sound.

Proof. Let the operators in a complete conflict run be the plan:

∆ = 〈o1,o2, . . . ,on〉 .

We split the operator sequence ∆ into two subsequences, ∆I which contains the opera-

tors independent of SC, and ∆D which contains the dependent operators:

∆I = ∆\OD ∆D = ∆\OI.

Let the result of applying ∆ in a state specification S1 result in S2 (Res(S1,∆) = S2). If

the sequence of independent operators can be applied prior to the dependent operators

without altering the effects of the plan then it holds that we can apply all ∆I and sub-

sequently all ∆D in S1 and result in the same specification S2. We write this as a nested

set of functions, Res
[
Res(S1,∆1),∆2

]
and state the equality:

Res
[
Res(S1,∆1),∆2

]
= Res(S1,∆).

We now show that any independent operator can be reordered before a dependent one.

Consider the two operator plan 〈oi,od〉 where od ∈ OD and oi ∈ OI . Since oi cannot

alter any literals referenced in od , the operators can be switched to form the equivalent

sequence 〈od,oi〉. It follows that the sequence ∆I can always be reordered before ∆D,

and since operators in ∆I cannot contribute to SC a dependency exists where reachabil-

ity holds for ∆ if it holds for the subsequence ∆D. �

5.1.2.1 Complexity of A Priori Filtering

Let the operator count be no = |O| and the number of atoms be na = |A |. The computa-

tional complexity of constructing the dependency graph is proportional to the number

of atoms considered for each operator, where in the worst case each operator refer-

ences every atom, resulting in the complexity O(nona). A dependency graph requires

nodes for every operator and every atom, with space complexity O(na +no). Once the

preprocessing is complete and the set of operators has been filtered this data structure

can be discarded prior to synthesis beginning.
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5.1.3 Traversal Optimisation 2: Traversal Pruning

The traversal pruning optimisation exploits reachability dependencies of operator se-

quences at runtime. If a candidate successor operator of a run can be applied at the

beginning of the sequence, then the reachability of states in the partial run is depen-

dent on a shorter run that has already been considered. If traversal pruning determines

that an operator need not be considered then the search is pruned, removing the need

to search all successor operators.

Consider the following incomplete run, R= S1
o1−→ . . .

on−1−−→ Sn. During traversal we

identify the successor operators that are partially applicable in Sn. Operator reordering

reduces the size of the successor set by discarding operators that are applicable in S1

so long as the reordering does not alter the effects of the run. A successor operator o

for run R can be removed from consideration under the following pruning conditions:

1. Applicable: The successor operator o is applicable in the first state specification

of R. Formally, o is applicable in S1 if and only if:

pre(o)∩Sn ⊆ S1.

All the preconditions of o that exist in Sn must also exist in S1.

2. Consistent: No intermediate operator in the run is dependent on a literal that o

affects. If o affects a literal required by a subsequent operator then this operator

may no longer be applicable and the run is inconsistent. Formally, consistency

is guaranteed if and only if:

S1∩¬post(o) = /0.

Notice that we determine whether a subsequent operator is dependent purely

based on the literals in S1 rather than investigating each intermediate specifica-

tion. Consider a subsequent operator dependent on a literal l. If l is not in S1,

then some intermediate operator has l as an effect and l will therefore exist after

reordering. If l is in S1, then it has been added during refinement and some fu-

ture operator is dependent on l. We consider the second case only and determine

consistency by analysing S1 only.

3. Preserved Effects: Assume that o is reordered from some position k to the

beginning of the run. For R to be consistent we must preserve the effects of o at

k, even though o has been reordered to the beginning of the run. Formally, we
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know effects are preserved if:

Sn∩¬post(o) = /0.

That is, no negated effect of o exists in the final state specification of R. Again,

we only consider the final specification rather than each intermediate one. If

no intermediate operator contradicts the effects of o, then these effects will be

preserved in Sn. Our approach allows for an intermediate operator to negate the

effects of o if a subsequent operator restores each of the negated effects.

Proposition 5.1.6. Only runs that are guaranteed to be reachable are excluded if the

pruning conditions are satisfied.

Proof. We write runs simply as a sequence of operators for brevity. Consider an in-

complete run that would be generated during the traversal process:

Rk = 〈o1 . . .ok〉.

Assume R to be an extension of Rk that is complete, but that is not reachable:

R = 〈o1 . . .ok−1,ok,ok+1 . . .on〉.

No conflict-free alternative exists to R. All other complete runs are shown to be reach-

able. We now remove ok from R to construct a new, shorter complete run R′:

R′ = 〈o1 . . .ok−1,ok+1 . . .on〉.

We now present our proof by contradiction. If R′ is consistent and reachable, then so is

R, and since R′ is shorter than R we know that R′ will be considered first. Importantly,

we terminate the traversal if a run is found to not be reachable. Since R′ is considered

prior to R, we know that for R to be considered R′ must be consistent and reachable.

Let Rk = 〈ok,o1 . . .ok−1〉 be the reordered instance of Rk where the operator ok is

moved to the beginning of the run. We show that the conditions and effects of Rk are

identical to Rk if the operator pruning conditions are met.

• Let S1 = first(Rk) and Sn = last(Rk). We begin by showing that the reordered

operator ok is applicable in S1. When considering ok as a successor operator we

refine the preceding specification by adding the literals L+ = pre(o)\Sn to each

specification in the run. Let the refined initial specification be S′1 = S1 ∪ L+.

According to pruning condition (1) the remaining literals pre(o)∩Sn are already

present in S1. It therefore holds that ok is applicable in S′1.



120 Chapter 5. Synthesis Optimisations

S1 Sn Consistent Reason

/0

/0 Yes No subsequent operators affect l.

l Yes Reordering ok has no effect on l since l is already present.

¬l No
Inconsistent since a subsequent operator has ¬l as one of its

effects. Reordering ok does not preserve effects.

¬l - No
A subsequent operator is dependent on ¬l. Reordering ok

results in an inconsistent run.

l

l Yes No conflicting effects since l is preserved.

¬l No
A subsequent operator negates l by having ¬l as an effect.

Reordering results in an inconsistent run.

Table 5.1: Conditions under which operator reordering results in an inconsistent run.

• Next we show that the effects of ok are preserved after reordering. If reordering

ok has no effect on the run then last(Rk)= last(Rk). We now show that this holds.

Consider each effect literal l ∈ post(ok). Table 5.1 details the conditions where

inconsistencies occur due to effects not being preserved, depending on whether

l or ¬l appear in S1 and Sn. If neither l nor ¬l are present, we write /0.

There are three conditions (highlighted in grey above) under which an effect is

not preserved. Each of these three conditions is shown not to hold since they

are eliminated by the pruning conditions (2) and (3). Under these conditions,

reordering ok to the beginning of the sequence of actions does not alter the net

effects of the run: last(Rk) = last(Rk).

Since ok does not contribute to conflict the reachability of states in R and R follow

from the reachability of those in R′. Since we know the reachability of this shorter

run has already been checked, then the states in R are reachable, and a contradiction is

reached. �

Example Let SC = {hold(a1,Parcel1),hold(a2,Parcel2)} be the conflict specifi-

cation where Agents a1 and a2 are not permitted to hold parcels concurrently, where

Parcel1 and Parcel2 are unbound and represent any parcel in the domain. Suppose

that during conflict traversal we initialise the partial run R:




¬hold(a1,Parcel1),
hold(a2,Parcel2),

at(a1,X),

parcelAt(Parcel1,X)





pickup(a1,Parcel1,X)−−−−−−−−−−−−−→





hold(a1,Parcel1),

hold(a2,Parcel2),

at(a1,X),

¬parcelAt(Parcel1,X)





.
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In this run, Agent a2 is holding Parcel2 and a1 enters conflict by picking up Parcel1

in location X. Now consider a successor operator o to be the action move(a2,Y,Z)

where Agent a2 moves from Y to Z. We are now interested in the effects that o has on

our partial run. During traversal, the pruning optimisation will result in o not being

considered with the following filtering conditions:

1. Applicability holds since pre(o)∩ last(R) = /0⊆ first(R). Here, refinement adds

all of pre(o) to first(R) so o is certainly applicable in first(R).

2. Reordering o to the beginning of the run does not affect the applicability of the

pickup action in the run, since first(R)∩¬post(o) = /0.

3. Since last(R)∩¬post(o) = /0 we know that if o is reordered prior to pickup then

the effects of o are preserved since pickup does not negate any effects of o.

Since the effects of o are preserved the operator is ignored for this run. This implies

that move(a2,Y,Z)’s contributions to the conflict run are achievable out of conflict and

reachability for any descendent runs need not be checked. �

Traversal pruning significantly improves the traversal process, especially in classical

domains where we consider all possible bindings of operators. Traversal pruning re-

moves unrelated operators from consideration, reducing the number of operators con-

sidered and the number of runs produced. One side effect of traversal pruning is that

operators filtered using the a priori optimisation are also excluded by the traversal

pruning optimisation. We still performed the a priori optimisation since it is compu-

tationally inexpensive, and reduces the number of operators that are analysed during

each iteration of the traversal process.

5.1.3.1 Complexity of Traversal Pruning

Traversal pruning occurs every time a new successor operator is considered for a run.

For each run, the complexity of performing the optimisation is proportional to the num-

ber of literals in the specification sets. Let nl = |LA | be the total number of literals in

the domain. The worst computational complexity of traversal pruning is O(nl) where

each specification contains all literals and the complexity of set intersection is linear.

The traversal pruning optimisation does not increase the computational complexity of

the algorithm, as we already perform set intersections to compute successor specifi-

cations. It is therefore an attractive optimisation, since it is effective at reducing the

number of runs considered, requires no additional space, and is feasible to implement.
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5.1.3.2 Reverse Traversal Pruning

We have only considered reordering operators to the beginning of the run since, for

incomplete runs, it makes little sense to reorder elsewhere: the only conflict-free spec-

ification in the run is the first. Once a run is complete it is possible to reorder after the

final specification which is conflict-free, in which case the run can be discarded.

The benefits of reverse traversal pruning are not as significant as forward pruning

since it only removes a single, complete run at runtime. We argue it is still useful, es-

pecially when considering ungrounded runs that may be grounded into many instances

prior to reachability analysis.

5.1.4 Traversal Optimisation 3: Partial Order Sequencing

Since runs are constructed in a breadth first fashion all sequences of operators are

considered independently. Post processing the runs ensures that we do not consider

two runs that are identical but it is in our interests to also reduce the number of times

we consider different permutations of operators. Consider the sequences of operators

in a run as partially ordered where subsets of operators can be applied in any order

without altering the effects of the run. The sequencing of these groups still applies in

the run, specifying that all runs in one set must be performed before another.

Conflict traversal produces a unique run for every combination of operator order-

ings, even though the effects of partially ordered operators are identical for all com-

binations. Since norm synthesis and reachability analysis is not concerned with the

actual contents of a run we pick a single possible ordering from the set of all permuta-

tions of the operators.

Example Let SC = {at(a1,node1),at(a2,node1)} be the conflict specification where

Agents a1 and a2 occupy node1 simultaneously. Let R1 and R2 be two incomplete runs:

R1 =©
move(a1,node2,node1)−−−−−−−−−−−−−→© pickup(a1,parcel1,node1)−−−−−−−−−−−−−−−−→© drop(a2,parcel2,node1)−−−−−−−−−−−−−−→©

R2 =©
move(a1,node2,node1)−−−−−−−−−−−−−→© drop(a2,parcel2,node1)−−−−−−−−−−−−−−→© pickup(a1,parcel1,node1)−−−−−−−−−−−−−−−−→©

Since the operators pickup and drop in the runs are independent, both R1 and R2 have

identical net effects. There is no reason to consider both of these permutations. In this

optimisation we identify these independent operators and pick only a single sequential,

unique ordering to investigate. �
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Identifying order independent operators a priori is not possible in a classical planning

representation as we cannot enumerate all possible parameter bindings for each op-

erator schema. Instead, we adopt an online approach that scans operators at runtime

to identify partial orderings, and then discards duplicated orderings, selecting a sin-

gle one to investigate further. In our implementation we select a simple ascending

lexicographic ordering of the operator names as the unique ordering to be kept.

Definition 5.1.7. The operators o1 . . .on are order independent if ∀i, j ∈ {1 . . .n} it

holds that @ς where:

i 6= j ∧ pre(ς[oi])∩¬post(ς[o j]) = /0 ∧ post(ς[oi])∩¬post(ς[o j]) = /0.

Proposition 5.1.8. An incomplete run R= S1
o1−→ . . .

on−1−−→ Sn constructed during traver-

sal can be removed from consideration if ∃k < n where operators in {on−k . . .on−1} are

order independent, and not lexicographically sorted.

Proof. Let R be the set of runs constructed by considering all permutations of the last

k operators in R. Since the last k operators are order independent, we know that each

run in R is consistent, and has the same effects as all other runs in the set when applied

in identical start specifications.

During the traversal process each incomplete run in R is iteratively expanded into

a set of complete runs. Each of these complete runs begins with the same initial in-

complete portion. Since runs in R have the same effects it is possible to substitute this

initial portion of each complete run with any other run in R. Using this mechanism

we show the state reachability of runs derived from all runs in R simply by performing

reachability analysis on complete runs derived from a single element of R. Without

loss of generality, we select this single incomplete run to be that in which the operators

are ordered in an ascending lexicographic fashion. �

5.1.4.1 Complexity of Partial Order Sequencing

We invoke the partial order sequencing optimisation after every iteration of the conflict

traversal produces a new incomplete run R. In the worst case the set of candidate

independent runs is proportional to the length of R. Furthermore, since each operator

is checked against every other operator in the sequence the computational complexity

to evaluate partial order sequencing on a single run is O(|R|2).
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5.1.5 Traversal Optimisation 4: Duplicate Runs

This optimisation identifies and removes duplicate incomplete runs found during traver-

sal, or complete runs once traversal completes. We wish to avoid a specification and

operator comparison that ensures that each element of one runs is exactly the same as

another, since:

1. During synthesis and reachability analysis we only utilise the first state specifi-

cation, the last state specification, and the contributing operator.

2. Specifications and operators in runs may contain variables that can be unified to

create matching specifications.

Definition 5.1.9. Two complete runs R1 and R2 are duplicates if ∃ς where:

1. ς[first(R1)] = ς[first(R2)], the bound first state specifications are equal, and

2. ς[last(R1)] = ς[last(R2)], the bound last state specifications are equal, and

3. ς[R1[
1−→]] = ς[R2[

1−→]], the contributing operators are equal.

The three conditions presented above are based on the components of the runs that are

checked during reachability analysis. We plan from the first to the last state specifica-

tion and synthesise norms using the contributing operators.

Example Consider the two complete runs R1 and R2. We abbreviate parceli as pi
and nodei as ni.

R1 =
〈
move(a1,n2,n1), pickup(a1,p1,n1), move(a2,n1,n2)

〉

R2 =
〈
move(a1,n2,n1), pickup(a2,p1,n1), drop(a2,p1,n1), pickup(a1,p1,n1), move(a2,n1,n2)

〉

Even though these two runs contain different operators they are considered equivalent

since the first and last specifications of each run are the same, and the contributing

operator, move(a1,n2,n1), is the same in each case. �

5.1.5.1 Complexity of Duplicate Run Removal

The duplicate run optimisation is expensive in terms of space required, since all incom-

plete runs found to date must be kept for comparison. Let R be the set of runs kept.

In practice, we can reduce the size of |R | by keeping only the relevant components of

each run: the first and final state specifications, and the contributing operator. If space

is still a concern we keep only complete runs, trading a reduction in space required
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for an increase in time required to complete the conflict traversal. Importantly, the

resulting set of complete runs will be identical.

Given a set of operators O and literals L we estimate an upper bound to the number

of runs. Let nl = |L| and no = |O|. From nl literals we can construct 3nl possible specifi-

cations. A run is composed of a unique first and last specification pair and contributing

operator: the maximum number of possible runs is 3nl+1no, and the corresponding

space complexity to store all runs is O(3nl+1no).

Duplicate runs is also the most computationally complex traversal optimisation.

Given a candidate run R′ we wish to know whether a binding ς exists for any R ∈ R
such that R′ = ς[R]. Constructing ς requires us to investigate all possible pairings of

literals, which is O(nl!) for every run in R . The resulting computational complexity

of the duplicate run removal algorithm is O(nl!3nl+1no). Due to the space and time

requirements of this optimisation it is invoked after all other optimisations, once the

set of runs to operate on is as small as possible.

5.1.6 Traversal Optimisation 5: Repetitive Operators

The repetitive operators optimisation is a means of reasoning about the state reachabil-

ity of runs containing (possibly infinite) sequences of repeatedly applied operators.

Example Consider the following incomplete runs created by repeatedly applying pickup

operators in the Parcel Delivery domain:

© pickup(a1,P1,node1)−−−−−−−−−−−−→©
© pickup(a1,P1,node1)−−−−−−−−−−−−→© pickup(a1,P2,node1)−−−−−−−−−−−−→©
© pickup(a1,P1,node1)−−−−−−−−−−−−→© pickup(a1,P2,node1)−−−−−−−−−−−−→© pickup(a1,P3,node1)−−−−−−−−−−−−→©

Agent a1 repetitively applies the pickup operator, each time with a new unbound

variable representing the parcel to be picked up. If a1 is able to pickup parcel P1,

then they should be able to pick up P2 and P3 as well. We justify this intuition by

considering the preconditions of the operator pickup(a1,P3,node1) in turn:

• at(a1,node1) - this holds since Agent a1 is already in node1.

• parcelAt(P3,node1) - this holds as it is introduced during refinement since

parcel P3 is not mentioned previously in the run.

Consider now the subsequent reachability analysis of this run. If the agent is able to

find an alternative, conflict-free plan to pick up a parcel P1 in node1, then a conflict-
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free alternative plan exists to pick up P2 and P3 as well. In fact, the agent is able to

pick up any number of parcels in node1 in a conflict-free manner. �

5.1.6.1 Definitions and Notation

We adopt grammar-like + symbols to markup repetitively applied operators and literals

affected by these operators according to the following definitions:

• A repetitive operator is an operator that can be repeatedly applied. We write

pickup+ to denote that the operator pickup can be applied repetitively.

• A repetitive parameter is an unbound parameter of a repetitive operator. Ev-

ery repetitive operator has at least one repetitive parameter. For example, the

operator pickup+(a1,P+,node1) includes the repetitive parameter P+. We can

substitute any unique variable symbol or parcel for P+ to create unique instances

of the pickup operator that are all applicable.

• A repetitive literal is a predicate literal that has at least one repetitive parameter.

For example, the repetitive parameter P+ may be referenced in the repetitive

literal parcelAt+(P+,node1).

We have avoided implicitly defining repetitive operators based on whether they contain

a repetitive parameter. We have chosen to be explicit about the repetitive nature of

operators, parameters and literals for clarity.

5.1.6.2 Repetition in Operators

A successor operator o for an incomplete run R is repetitive if it does not affect a

literal present in last(R). If o alters a literal in last(R) then we say that o consumes

this literal, since another instance of o cannot certainly be applied immediately after.

Literals specifically added to a run during refinement in order to make o applicable

can be affected by o, since repeated applications of the operator introduces a literal for

each consumed. We are interested in the literals already present in R that are affected

by o only.

Definition 5.1.10. Let o be the successor operator considered for a run R, and L =

last(R)∩ pre(o) be the subset of o’s preconditions already in last(R). Operator o is

repetitive if either of the following hold:

1. L∩¬post(o) = /0, or
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2. ∀l ∈ (L∩¬post(o)) . l is repetitive.

That is, no literals are affected, or every affected literal is introduced by a previous

repetitive operator. The intuition is that if an operator consumes no literals in the last

specification then it can be applied repetitively (1), or if it does consume a literal then

this literal should be repetitive (2).

Definition 5.1.11. Let o+ be a repetitive successor operator for run R with parameters

p1 . . . pn. We define pi as a repetitive parameter if:

1. pi ∈ Lv. That is, pi is a variable symbol, and

2. @l ∈ last(R) where l references pi. That is, the only occurrences of variable pi

are introduced by o+.

We identify repetitive operators by considering the binding ς used to instantiate o+

from its source schema. Every parameter of o+ that is not contained in the operator’s

binding ς is considered to be repetitive, since it does not already exist in the run.

Definition 5.1.12. Every literal that references a repetitive parameter is repetitive.

Identifying repetitive operators is now fully defined, but it is unclear what the semantics

are of a non-repetitive operator that is dependent on a repetitive literal in a run. To this

end we introduce repetitive operator instantiation next.

5.1.6.3 Instantiating Repetitive Operators

A repetitive literal is added as an effect of a repetitive operator, hence an arbitrary num-

ber of literals can be introduced. Consider the situation where a successor operator is

not repetitive but is dependent on a literal introduced by some previous repetitive oper-

ator. In this situation we employ an instantiation procedure to create non-repetitive in-

stances for each operator that contributes a literal, thereby ensuring that non-repetitive

operators are dependent only on literals introduced by other non-repetitive operators.

Example Consider the following incomplete run:

© move(a1,node1,node2)−−−−−−−−−−−−−→©

where Agent a1 moves from node1 to node2. Let o = pickup(a1,P1,node2) be the

successor operator. The set of existing precondition literals is L = {at(a1,node2)}
and since L∩¬post(o) = /0 we consider pickup to be repetitive:

© move(a1,node1,node2)−−−−−−−−−−−−−→© pickup+(a1,P1
+,node2)−−−−−−−−−−−−−−→©
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Next, consider successor o to be drop(P1+,node2). Since L = {hold+(a1,P1+)} then

condition (1) of Definition 5.1.10 does not hold. Since hold(a1,P1
+) is introduced

through repetitive operator pickup+(a1,P1+,node2) then drop(a1,P1
+,node2) too

is repetitive, and the resulting run is:

© move(a1,node1,node2)−−−−−−−−−−−−−→© pickup+(a1,P1
+,node2)−−−−−−−−−−−−−−→© drop+(a1,P1

+,node2)−−−−−−−−−−−−→©

Finally, consider operator o to be destroy(a1,P1
+) that affects a single instance of

P1+. Since P1+ is introduced by a repetitive operator it is possible that when this run

is implemented in practice that a number of parcels are introduced. In order to invoke

the destroy operator on just one of these parcels we instantiate the repetitive operator

pickup+ as follows:

© move(...)−−−−−→© pickup+(a1,P1
+,node2)−−−−−−−−−−−−−−→© pickup(a1,P3,node2)−−−−−−−−−−−−→© drop+(a1,P1

+,node2)−−−−−−−−−−−−→©

We have introduced a new variable P3, of which there is a single instance by inserting

the non-repetitive operator pickup(a1,P3,node2). We can now apply the destroy

operator to this particular parcel:

. . .
pickup(a1,P3,node2)−−−−−−−−−−−−→© drop+(a1,P1

+,node2)−−−−−−−−−−−−→© destroy(a1,P3)−−−−−−−−−→© �

Definition 5.1.13. A non-repetitive operator o is an instance of a repetitive operator

o+ if:

1. o and o+ are produced from the same operator schema,

2. every non-repetitive parameter of o is identical to that in o+, and

3. every repetitive parameter of o+ is replaced by a unique non-repetitive variable

parameter in o.

We write non-optimised to describe a run without any repetitive operators and opti-

mised a run with repetitive operators.

Example Consider the repetitive pickup operator from the previous example:

pickup+(a1,P1
+,node2).

An instance of this operator must also be a pickup action involving Agent a1 and

node2, but with P1+ replaced with a non-repetitive instance. For example, the subset

of possible instances of this operator are:

pickup(a1,P4,node2)

pickup(a1,Parcel,node2)

. . .
�
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We write Instantiate(R,o) as the function that instantiates the repetitive operator o in

R. In practice when we instantiate an operator we seek to introduce non-repetitive pa-

rameters for each repetitive parameter. Since all variable symbols are represented as

parameters in our operators we can be sure that an operator with no repetitive parame-

ters is itself not repetitive.

In this model, repetitive operators can be conditional on literals added by previous

repetitive operators. We say that a dependency exists between the operators, and if the

later operator is instantiated then the prior must be too.

5.1.6.4 Managing Dependencies Between Repetitive Operators

Dependencies between operators imply that runs should be interpreted right to left

with dependencies followed during instantiation. For example, consider the run with

repetitive pickup and drop operators presented previously. Each instantiated drop

action must be preceded by a matching pickup action. By processing a run from right

to left we ensure that a sufficient number of precursor operators are created for each

dependent successor. If we produce 5 drop actions, then we know to also produce 5

pickup actions. We have modularised our approach into two Algorithms:

1. Algorithm 9: Given a run R with non-repetitive operator o, return a new run

R′ where all repetitive operators that o is dependent on are instantiated. The

resulting run R′ ensures that o is dependent on no repetitive operators.

2. Algorithm 10: Given a run R and a candidate successor operator o, Algorithm

10 returns new instances of R and o where o is appropriately marked to be repet-

itive and all repetitive dependencies of o are managed through Algorithm 9.

Line Explanation and Comments for Algorithm 9

2 Identify the set of repetitive literals that o is conditional on.

4 Initialise R′ a modified version of R that is subsequently modified and returned.

5 We wish to instantiate all operators that as an effect provide a repetitive literal in L+.

Since this must be performed for every literal we repeat until the set is empty

6 Identify the set of operators O that bring about the literals in L+. Each of the operators

in O are already in the run R. Since they contribute repetitive literals they are in turn

repetitive and must be instantiated.

7 O contains all operators that bring about L+, so we clear L+ appropriately.
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Line Explanation and Comments for Algorithm 9

8–9 For each of the operators in O we modify the run R′ by instantiating a version of o′ in

the run R′. The instantiated operator is inserted into the run directly after its repetitive

ancestor.

10 It may be the case that the instantiated repetitive operator is dependent on other repet-

itive operators. We repeat the instantiation process by adding all remaining repetitive

literals to L+.

13 If o is dependent on no repetitive literals then R and o can be used for traversal as is.

Algorithm 9 takes as input a non-repetitive operator. It is possible that a successor

operator may be classified as repetitive. In this case no manipulation of the run is re-

quired since repetitive operators are permitted to depend on other repetitive operators.

We therefore append the repetitive operator and continue as usual. The algorithm to

determine whether an operator is repetitive is presented in Algorithm 10.

Line Explanation and Comments for Algorithm 10

2 First, we identify whether o can be applied repetitively, according to Definition

5.1.10.

3–4 If we can apply o repetitively, then we create an annotated version o+ of o using the
+ notation introduced above to identify all repetitive literals in o. The run R and o+

can then be used for traversal.

6–7 We have identified as o being a non-repetitive operator, although it may still be depen-

dent on repetitive literals. Here we make a call to Algorithm 9 that returns a modified

instance of R where all dependent repetitive operators have been instantiated. We

then return the modified run and original operator for further traversal.

5.1.6.5 Generating Non-Optimised Runs

We have already detailed under what conditions operators are considered repetitive,

and have provided an algorithm that can be followed to manage the dependencies be-

tween these operators. Once conflict traversal concludes a set of optimised complete

runs is produced. We require a means of producing non-optimised runs from these

optimised runs so that we can perform reachability analysis.

We present unfolding as a process to compute a set R of non-optimised runs from

an optimised run R̂ . Each of the repetitive operators in R̂ is instantiated a number

of times to form a sequence of non-repetitive operators. The set of all runs is infinite

since repetitive operators can be unfolded an arbitrary number of times. We adopt a
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Algorithm 9: Instantiating Dependent Repetitive Operators
Input: The run R and non-repetitive operator o, where o ∈ R.

Result: The new run R′ with all repetitive operators that o depends on instantiated.

begin1

Check whether o is dependent on a repetitive literal.

L+← RepetitiveLiterals(pre(o))2

if L+ 6= /0 then3

R is modified and repetitive operators instantiated

R′← R4

while L+ 6= /0 do5

Identify operators that create literals in L+

O← Operators(L+)6

L+← /07

for o′ ∈ O do8

Instantiate the repetitive operator o′

R′← Instantiate(R′,o′)9

Add each of o′s repetitive dependencies to L+

L+← L+∪RepetitiveLiterals(pre(o′))10

return R′11

else12

No dependency on repetitive literals.

return R13

end14

Algorithm 10: Managing Repetitive Successor Operators
Input: An incomplete run R with repetitive operators, and successor operator o.

Result: The tuple 〈R′,o′〉 where all repetitive dependencies are instantiated in R′, and o′ is the

altered operator to be used for traversal.

begin1

Begin by identifying if o is repetitive

if o is repetitive then2

Annotate o with + and perform run refinement as usual

o+←MarkAsRepetitive(o)3

return 〈R,o+〉4

else5

Instantiate all dependencies on other repetitive operators by

calling Algorithm 9

R′← call Algorithm9(R,o)6

return 〈R′,o〉7

end8
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specified bound to limit the length of the unfolded runs as detailed in Section 4.3.7.1.

A non-optimised run is represented by an optimised run if the non-optimised run can

be generated through the unfolding of repetitive operators.

Example Consider the run where Agent a1 moves into node2, performs at least one

pickup action, and then moves to node1:

© move(a1,node1,node2)−−−−−−−−−−−−−→© pickup+(a1,P1
+,node2)−−−−−−−−−−−−−−→© move(a1,node2,node1)−−−−−−−−−−−−−→©

The set of non-optimised runs produced from this run through repetitive operator un-

folding includes:

© move(...)−−−−−→© pickup(a1,P1,node2)−−−−−−−−−−−−→© move(...)−−−−−→©
© move(...)−−−−−→© pickup(a1,P1,node2)−−−−−−−−−−−−→© pickup(a1,P2,node2)−−−−−−−−−−−−→© move(...)−−−−−→©
© move(...)−−−−−→© pickup(a1,P1,node2)−−−−−−−−−−−−→© pickup(a1,P2,node2)−−−−−−−−−−−−→© pickup(a1,P3,node2)−−−−−−−−−−−−→© . . .

�

Unfolding is straightforward so we avoid a full presentation. Given an optimised run R̂
we continually identify repetitive operators to instantiate. For each of these operators

we create an instantiated instance by calling the Instantiate method detailed in Section

5.1.6.3, and subsequently call Algorithm 9 to ensure that the repetitive dependencies

are also instantiated in the run. The process continues until the bound is exceeded.

5.1.6.6 Properties of Repetitive Operators

We present two propositions specifying properties of the repetitive operator optimisa-

tion regarding soundness and expressivity of optimised runs.

Proposition 5.1.14. Using the repetitive operator optimisation results in a set of com-

plete traversal runs from which every non-optimised run is represented.

Proof. Let R be the set of complete runs returned by the traversal when the repetitive

optimisation is not used, and write R to be the set when the repetitive optimisation is

used. If no repetitive operators are found during traversal then R ≡R since Algorithm

9 performs no modification of the run, and Algorithm 10 similarly returns the run and

successor operator unchanged. Conflict traversal continues as usual and the resulting

set of runs contains every non-optimised run as before.
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Let us assume now that some runs in R contain repetitive operators. Let R ∗ =
R ∩R be the set of non-optimised runs that appear in both traversal sets. We wish to

show that every run in (R \R ∗) is represented by a run in R .

We present a proof by contradiction. Let R ∈ (R \R ∗) be a run that cannot be

represented by a run in R . By definition, R must contain repeated operators, other-

wise it would be in R . Without loss of generality let O′ = {ok,ok+1,ok+2 . . .} be the

sequence of repetitively applied operators in R. By Definition 5.1.10 we know that

none of the operators in O′ consume literals in the run and that during traversal we will

have constructed an alternative run R′ by replacing all O′ operators in R with a single

repetitive operator o+. All subsequent operators remain the same. Our proof holds if

R is represented by R′. Since the operators in O′ do not consume any preceding literals

we know we can instantiate instances of o+ in R′, continually refining the run with the

additional literals added. By completing this process for each operator in O′, and by

subsequently removing o+ from R′ we are left with a run that is equivalent to R. A

contradiction is reached. �

An intuitive way to think about repetitive operators is to consider optimised runs as

partially expanded. During conflict traversal repetitive operators are identified but not

unfolded immediately since we know that they can be unfolded in the future. In fact,

the process of unfolding is very similar to run refinement since required preconditions

are added to the run for every unfolded operator.

We now show that every optimised run represents an infinite set of non-optimised

runs, implying that repetitive operator runs are strictly more expressive than traditional

runs and allowing us to reason about infinite sequences of operators.

Proposition 5.1.15. The repetitive operator optimisation results in more expressive

runs since each optimised run represents an infinite set of non-optimised runs.

Proof. Consider the run R = S1
o1−→ . . .

o+k−→ . . .
on−1−−→ Sn with a single repetitive operator

o+k . Furthermore, let O+ be the set of instantiated, non-repetitive operators derived

from o+k , where each instance of O+ is unique. The size of O+ is infinite, since for

every repetitive parameter we can construct a unique, non-repetitive parameter and

substitute this during instantiation.

By the definition of repetitive operators specified in Definition 5.1.10, we know

that every operator in O+ can be applied directly after o+k in R. Furthermore, we know

that the instances of the repetitive operators do not consume any literals in R. As a

result, every operator in O+ can be inserted into R sequentially after o+k , resulting in
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different runs of arbitrary length. The finite length optimised run R therefore represents

an infinite set of non-optimised runs. �

We have introduced a simple means of identifying and tracking which operators in a

run can be applied repetitively. There are many benefits to this optimisation:

1. Repetitive operators increase the effectiveness of traversal pruning since an ar-

bitrary number of repeated actions are considered for removal.

2. Successor operators that are instances of previous repetitive operators need not

be considered if the results of the repetitive operator is preserved, since the repet-

itive operator can always be instantiated to provide the successor operator.

3. This succinct representation conserves space since we do not represent arbitrary

sequences of operators if they can be represented by a single repetitive operator.

4. In Section 5.2.2 we detail a reachability optimisation that utilises this more suc-

cinct representation to produce similarly expressive alternative plans that show

state reachability for every run represented by optimised runs.

5.1.6.7 Repeating Compound Actions

One limitation of our repetitive operator approach is we are only able to represent

repetitions of single operators rather than sequences of operators. Successor operators

that do not consume any literal are considered to be repetitive, however the same can

be said for sequences of non-repetitive operators.

Example In the Parcel Delivery domain we can represent an arbitrary number of par-

cel pickups followed by an arbitrary number of drops using the following run:

© pickup+(a1,P1
+,node1)−−−−−−−−−−−−−−→© drop+(a1,P1

+,node1)−−−−−−−−−−−−→©

We change the pickup and drop operators so that an agent can carry only a single

parcel at a time through the introduction of a holding atom:

OPERATOR: drop(Agent,Node,Parcel)

PRE: {at(Agent,Node),hold(Agent,Parcel),holding}
POST: {¬hold(Agent,Parcel),parcelAt(Parcel,Node),¬holding}
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OPERATOR: pickup(Agent,Node,Parcel)

PRE: {at(Agent,Node),parcelAt(Parcel,Node),¬holding}
POST: {¬parcelAt(Parcel,Node),hold(Agent,Parcel),holding}

The previous run is no longer valid, since the pickup operator now consumes the atom

¬holding which is required by any subsequent pickup. While 〈pickup+,drop+〉 is

not valid, the sequence 〈pickup,drop〉+ is. Here, since the drop operator reverses the

effect of the pickup operator on the holding predicate the sequence can be applied

repetitively. �

We refrain from reproducing all the theory presented above for sequences of actions

since the fundamental process is identical to when we consider single actions. Instead

of considering single successor operators we consider single compound actions con-

structed at runtime from sequences of operators in the run. A compound action is a

single schema representation of a sequence of operators. We construct these compound

operators by considering the net preconditions and net postconditions of a sequence of

operators as defined by:

post(〈o1〉)= post(o1)

post(〈o1 . . .on〉)=
[

post(〈o1 . . .on−1〉) \ ¬post(on)
]
∪post(on)

pre(〈o1〉)= pre(o1)

pre(〈o1 . . .on〉)= pre(〈o1 . . .on−1〉)∪
[

pre(on) \ post(〈o1 . . .on−1〉)
]

For example, consider a sequence of pickup, move and drop operators that include

the holding predicate as detailed in the example above:

© pickup+(a1,P1
+,N1+)−−−−−−−−−−−−−→© move+(a1,N1

+,N2+)−−−−−−−−−−−→© drop+(a1,P1
+,N2+)−−−−−−−−−−−→©

A single compound operator that embodies the effects of this sequence is:

OPERATOR: pickup move drop(Agent,Node1,Node2,Parcel)

PRE: {at(Agent,Node1),parcelAt(Parcel,Node1),conn(Node1,Node2),¬holding}
POST: {at(Agent,Node2),¬at(Agent,Node1)

parcelAt(Parcel,Node2),¬parcelAt(Parcel,Node1)}

Notice that the above compound operator is repetitive since it no longer affects holding.

The means by which we incorporate the compound action into a run is identical to be-

fore, instead we repeat each operator in the sequence so that we do not need to keep an

explicit representation for every possible compound operator.
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5.1.6.8 Complexity of Repetitive Operators

Consider a run R with successor operator o. By Definition 5.1.10 the cost of deciding

whether an operator is repetitive is independent of the length of the run. If |L| is the

number of literals in our domain then the complexity of evaluating whether or not an

operator is repetitive is O(|L|). Importantly, this result does not increase the complexity

of our algorithm, since the cost of incorporating the successor operator into the run is

linear in L too.

The worst case cost of instantiating dependent repetitive operators is O(|R|), since

it is possible that for every successor operator every preceding operator must be in-

stantiated. This computational complexity is in line with the complexity of the partial

operator ordering optimisation.

5.1.7 Traversal Optimisation 6: Loopback

For completeness we term that the loop detection built into the conflict traversal pro-

cess as the Loopback optimisation. If any specification appears more than once in a

given run, traversal can be terminated.

5.1.8 Traversal Optimisations Summary

We rank traversal optimisations in Figure 5.5 according to their computational com-

plexity and their effectiveness at reducing the state space, and invoke more effective

optimisations first in our implementation.

A Priori Operator Filtering

Traversal Pruning

Duplicate Run Removal

Partial Order Sequencing
Repetitive Operators

Pre Traversal

During Traversal

Post Traversal Reverse Traversal Pruning

C
om

plexity

E
ffectiveness

Figure 5.5: Overview of Conflict Traversal Optimisations

Each of these optimisations reduces the number of runs produced during traversal.

Next we investigate optimisations invoked during reachability analysis.
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5.2 Reachability Optimisations

We present two optimisations that reduce the number of reachability checks performed

during reachability analysis, starting with a high level overview of each followed by a

more in depth formal presentation.

1. Planning with Variables
Conflict traversal may produce ungrounded conflict runs that are subsequently

ground prior to reachability analysis. This optimisation avoids this grounding by

assuming variables to be atoms and searching for a single, alternative plan for

the unground run.

2. Reachability with Repetitive Operators
Repetitive operators allow us to reason about the reachability of states visited

through infinite sequences of operators without enumerating all runs. This opti-

misation allows us to determine whether every possible non-optimised run rep-

resented by an optimised run is reachable based on a simple analysis of only the

optimised run.

5.2.1 Reachability Optimisation 1: Planning with Variables

Determining the state reachability of ungrounded runs in a classical domain involves

grounding each run. Enumerating groundings can be an expensive process: in the

Parcel Delivery domain groundings of runs might enumerate all combinations of nodes

in the underlying graph topology. This optimisation makes assumptions about the

unground run in order to find a solution plan that applies to all possible groundings,

thereby skipping the grounding and planning process entirely.

Example Let SC = {at(a1,NodeY),at(a2,NodeY)} be a conflict specification pro-

hibiting agents a1 and a2 from occupying any node simultaneously. Consider the

following complete run:

© move(a1,NodeX,NodeY)−−−−−−−−−−−−−→© move(a2,NodeY,NodeX)−−−−−−−−−−−−−→©

with unbound variables NodeX and NodeY (and the constraint that NodeX 6= NodeY). An

alternative plan can be constructed by reordering the sequence of existing operators:

© move(a2,NodeY,NodeX)−−−−−−−−−−−−−→© move(a1,NodeX,NodeY)−−−−−−−−−−−−−→©.
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The information about the topology of the graph is implicit in the conflict run: the fact

that NodeX and NodeY are adjacent allows us to construct an alternative plan without

requiring any more domain specific information. �

Proposition 5.2.1. Let R be a conflict run containing variable symbols and σ being

a substitution containing mappings for each variable symbol in R to a unique fresh

constant symbol. If state reachability can be shown for the grounded run σ[R] then it

holds for all possible groundings of R.

Proof. Let ∆ be the alternative plan for σ[R]. We prove that ∆ is a viable alternative

plan for any possible grounding of R by mapping each unique constant symbol present

in ∆ and σ back to its variable symbol. In a sense we are reversing the σ mapping.

Let ∆ represent the unground instance of ∆ where ∆ is identical to ∆ except that

for all substitution pairs (v← c) ∈ σ, every occurrence of c is replaced by v. Since

the constant symbols are unique we are guaranteed that this reverse mapping exists,

and that no non-substituted constant symbols will be changed inadvertently. ∆ is a

reachable plan for R containing unground actions. For any possible substitution σ′ the

ground plan σ′[∆] is a reachable alternative for σ′[R]. �

The simplicity of this optimisation should not detract from its effectiveness. By avoid-

ing the grounding of runs in a domain we save a substantial amount of computation.

Naturally, this optimisation is not guaranteed to work in all cases, particularly when

additional domain knowledge is required to find an alternative plan. In these fail cases

we continue with reachability analysis as before.

5.2.1.1 Complexity of Planning with Variables

Planning with variables requires an additional planning step for every complete run

generated, prior to the run being grounded. The classical planning problem is PSPACE

complete. While planning in general is expensive we point out that the complexity of

the initial and goal state specifications for the complete run is typically minimal, so

we expect the resulting planning process to fail abruptly if no viable solution is found.

Furthermore, while we are invoking an additional planning step, we are potentially

saving many more subsequent invocations.
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5.2.2 Reachability Optimisation 2: Repetitive Operators

The final reachability optimisation takes advantage of the succinct repetitive operator

representation introduced in Section 5.1.6. By producing runs with repetitive operators

we are able to synthesise conflict-free alternatives that utilise repetitive operators to

reduce the number of reachability checks performed.

Example Consider the conflict specification SC = {at(a1,node1),at(a2,node1)} in

the Parcel Delivery domain. One conflict run produced during traversal is:

R =© move(a1,node2,node1)−−−−−−−−−−−−−→© pickup+(a1,P
+,node1)−−−−−−−−−−−−−→© move(a2,node1,node2)−−−−−−−−−−−−−→ .

In this run Agent a1 moves into location node1, picks up a number of parcels (repre-

sented by repetitive parameter P+) and subsequently Agent a2 moves to node2. The

run below is an alternative plan for every run represented by R:

R =© move(a2,node1,node2)−−−−−−−−−−−−−→© move(a1,node2,node1)−−−−−−−−−−−−−→© pickup+(a1,P
+,node1)−−−−−−−−−−−−−→ .

Agent a2 moves out of conflict prior to Agent a1 entering node1. Reachability with

repetitive operators constructs optimised conflict-free alternative runs as above so that

no unfolding of repetitive runs is required. �

For each optimised complete run we construct an unoptimised version by unfolding all

repetitive operators out a minimum number of times. This produces the shortest run

that is represented by the optimised run. Next, we plan for a conflict-free alternative to

this run, and analyse this plan to determine whether the same set of repetitive operators

exist. If the operators exist and can still be repetitively applied then state reachability

for all represented runs is guaranteed and the process terminates. If this is not the case,

then reachability analysis continues as per usual and no improvements are made.

Proposition 5.2.2. Let R be a complete run with repetitive operators and R be a mod-

ified version of R with each repetitive operator replaced by one of its instances. Let ∆
be a conflict-free alternative plan for the run R.

Furthermore, let O+ be the set of repetitive operators in R, and O be the set of

instances of these operators in R. Let the following conditions hold ∀oi ∈ O:

1. oi ∈ ∆.

2. oi can be repetitively applied in ∆ (by Definition 5.1.10).

3. the repetitive instance o+i of oi is in O+.
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Finally, let ∆ be the modified instance of ∆ where each oi ∈O is marked repetitive. The

plan ∆ guarantees state reachability for every run represented by R.

Proof. We present a proof by contradiction. Assume that ∆ does not guarantee the state

reachability of runs represented by R. This can only be the case if first(∆) 6= first(R)

or last(∆) 6= last(R).

We know that first(∆) = first(R) and last(∆) = last(R). Furthermore, we know

that by substituting every instantiated operator in O with its corresponding repetitive

operator from O+ in R results in R (since this is the process that generates R). We

show that by performing a similar substitution in ∆ we produce ∆ where the first and

last specification are equal.

We know by (1) above that an instance of every repetitive operator appears in ∆, and

by (2) that each instance in ∆ can be applied repetitively. We can therefore construct

∆ and substitute appropriate repetitive operators for instances. Condition (3) above

guarantees that the repetitive operators match exactly, implying that the exact same

literals are added to the first and final specifications during refinement.

From (1) and (2) we know that ∆ must have the same set of repetitive operators as

R. From (3) we have shown that the net preconditions and net postconditions of these

repetitive operators are also identical to those in R. That is, since reachability holds for

states visited by ∆, and since the literals added when creating ∆ are identical to those

added to R to create R we know that both first(∆) 6= first(R) and last(∆) 6= last(R) must

hold, and a contradiction is reached. �

5.2.2.1 Complexity of Reachability with Repetitive Operators

The worst case complexity of checking reachability with repetitive operators is PSPACE

complete, due to the invocation of the planner on the grounded run R. However, con-

sidering that the planner would be invoked on all possible instantiations of R if the

optimisation fails, we consider the additional planning step for this optimisation as

minimal extra effort for a potentially large benefit.

5.2.3 Reachability Optimisation Summary

Both of the reachability optimisations presented are invoked prior to grounding, and

both reduce the number of reachability checks performed, but since Planning with

Variables is computationally simpler we invoke this first.
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The most important consideration when adopting reachability optimisations is the

complexity of planning in the underlying domain. While the pre-grounding optimisa-

tions are beneficial in systems where planning can be performed very quickly, post-

grounding optimisations are not. The fundamental question is therefore whether it is

more efficient to employ an optimisation to avoid the reachability check for a single

run, or simply to perform the reachability check regardless.

5.3 Optimisations Summary

We presented two classes of optimisations that can be used to improve conflict-rooted

synthesis performance:

1. Traversal Optimisations: Reduce the number of runs produced during traver-

sal, and the resulting complete runs produced as output, by taking advantage of

dependencies between operators to ensure that the state space searched is re-

duced.

2. Reachability Optimisations: Reduce the number of reachability checks re-

quired by attempting to show that reachability holds for the unground runs pro-

duced, prior to grounding and subsequent planning.

While the optimisations are sound, the question remaining is how effective they are

in practice. To this end we present essential details of our implementation of conflict-

rooted synthesis next, and follow this with an in depth investigation of its performance

when applied to a set of benchmark planning domains.





Chapter 6

CRS Architecture and Design

We have presented conflict-rooted synthesis as a theoretically sound approach to norm

synthesis, and we detail the benefits of our approach in Section 7.5.1. We are interested

not only in theoretical advantages, but also in how significant these benefits are in

practice. In this chapter we present details regarding the design and implementation of

our approach, split into three sections:

1. Details regarding the conflict-rooted synthesis approach and the associated opti-

misations.

2. Details on the integration of the model checking approach into the evaluation

framework.

3. Details of the evaluation framework.

The CRS source code, as well as the integration and testing framework are provided

with the archived copy of this thesis. Additionally, all code is available upon request

from the University of Edinburgh’s Agents Group web site (Agents Group, 2011).

6.1 CRS: A Conflict-Rooted Synthesis Implementation

Our implementation of the conflict-rooted synthesis algorithm is called CRS, and is

broadly composed of a PDDL parser and processor, and an implementation of the

conflict traversal, norm synthesis and reachability analysis procedures. For efficiency

purposes our traversal process utilises a succinct data structure called traversal graphs.

We present the implementation details of this data structure next, followed by a discus-

sion of how we produce randomly generated conflict specifications, and additionally

comment on mechanisms employed to ensure consistent execution results. Finally, we

143
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document the changes made to FF to support the batch processing of planning prob-

lems.

CRS is implemented in the Java language, apart from the modifications made to

the native FF planner. CRS represents a proof of concept implementation sufficient

to detail the benefits of our approach, yet significant gains could be made through an

improved reimplementation. Currently, CRS totals over 40000 lines of Java code and

15000 lines of modified C code. It ensures accuracy in repeated empirical tests by

managing the order in which traversal runs are created in order to produce identical

results. This simplifies our empirical evaluation, since the only performance deviation

in the computation of CRS is attributed to the underlying operating system.

6.1.1 Architecture and Design

The architecture of CRS closely follows the presentation of the theory detailed in

Chapters 4 and 5 and is illustrated in Figure 6.1. Control flows between four core

modules that implement parsing, conflict traversal, norm synthesis and reachability

analysis. Each module is composed of a set of components, and produces artefacts that

follow as input to subsequent components. As input, CRS takes textual representations

of the PDDL domain and conflict specification, and as output produces a positive re-

sult if norms are synthesised than ensure goal reachability, and a negative result if goal

reachability is not guaranteed.

6.1.1.1 Parsing Module

The CRS parsing module is responsible for parsing textual input into a model that can

subsequently be used programmatically. The module is composed of three compo-

nents: a PDDL domain file parser, a PDDL problem file parser, and a conflict specifi-

cation parser, and produces a model of the planning domain and a model of the con-

flict specification. All three parsing components are generated from a grammar that

specifies the PDDL language and generates Java source code capable of recognising

individual language fragments. Actions are associated with the produced recogniser in

order to populate the models that are eventually produced as output.

CRS’s parsers are programmatically produced using the ANTLR parser generation

tool (Parr, 2007) and a modified version of Zeyn Saigol’s PDDL grammar (Saigol,

2011). The grammar was extended to allow for the parsing of state specifications

containing variable terms. CRS extends Zeyn Saigol’s PDDL model to allow the mod-
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elling of unground state specifications, as well as the application of partially applicable

operators. Furthermore, the model was extended to provide support for the representa-

tion of constraint sets, substitutions and bindings as detailed in Section 4.3.2. The re-

sulting models provide a structured, programmatic domain representation upon which

our abstract search algorithm is implemented.

6.1.1.2 Conflict Traversal Module

Conflict traversal takes the parsed domain and conflict specification models as input,

and performs the abstract search of the specification space. Although central to the

theoretical presentation of this work, the conflict traversal module does not utilise a set

of runs as the core data structure due to the redundancy involved in persisting many,

very similar runs. Instead, traversal graphs are equivalent graph-based representations

that reduce the redundancy significantly, resulting into less space required to represent

the same traversal search. We present details of this data structure in Section 6.1.2.

Conflict traversal begins with an initialisation component that takes the parsed

models as input and produces a set of traversal graphs as output. The traversal graphs

represents all runs of length 2, where all operators are contributing operators. An it-

erative process then follows. First the traversal graphs are pruned by invoking each of

the traversal optimisations in order to discard represented runs. Next, traversal com-

pletes successfully if no incomplete runs are represented by the traversal graphs. If

incomplete runs exist, a second check is performed in order to identify whether the

traversal bounds (as proposed in Section 4.3.7.1) have been exceeded. If the bounds

are exceeded traversal terminates in failure, otherwise the traversal graphs are iterated

and the process continues. The domain model is taken as input into the bound checking

as the specified limits may be proportional to the size of the domain.

A key requirement for the efficient implementation of the conflict traversal optimi-

sations is the ability to identify duplicate runs, according to the conditions outlined in

Section 5.1.5. Runs are characterised by their first and last state specifications, and first

contributing operators. If a binding exists from a new run to a stored run then the runs

are considered duplicates. However, storing and enumerating all runs generated during

traversal is expensive, since identifying the existence of a binding for every member

requires expensive search. In order to efficiently identify duplicates we adopt signa-

tures for runs in order to identify smaller sets of candidate matching runs. Candidate

runs must contain the same number of literals in the first and last specifications, iden-

tical counts for each predicate symbol and have contributing operators with the same
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operator symbol.

At every point in our implementation bindings and constraint sets are kept con-

sistent. We utilise a graph structure called a constraint graph to simplify this, with

nodes representing variable and constant symbols. Nodes connected by a binding edge

are unified, while those connected by a constraint edge cannot be. New bindings or

constraints must comply with the restrictions depicted by the graph: bindings cannot

be created between two nodes where constraint edges exist, and constraints cannot be

added if a binding exists.

6.1.1.3 Norm Synthesis Module

Conflict traversal produces a set of traversal graphs that represent all complete runs

found. Norm synthesis takes these graphs as input and produces a set of prohibitionary

social norms as output. For the purpose of norm synthesis the runs represented by

traversal graphs are enumerated, and the corresponding norms produced for each run.

Once complete, the norms are again utilised to produce a model of the normative do-

main: the domain where norm-abiding behaviour is regimented. Operators contained

within the domain model are rewritten as described in Section 4.3.6.1, and the resulting

domain model is produced as input for reachability analysis checking.

6.1.1.4 Reachability Analysis Module

Reachability analysis takes as input the set of traversal graphs representing all complete

runs, and the model of the normative domain. As with the conflict traversal module,

an iterative approach is taken. Given the traversal graphs a set of complete runs are

generated from the graphs. For the purposes of this discussion note that this set could

contain a single run, but for efficiency purposes in practice it may contain multiple

runs. If a complete run exists that has not been checked it is passed to the reachability

optimisation component that decides whether the given run can be safely discarded.

Discarded runs are removed from the set runs.

A grounding step is then required. Recall that traversal graphs may represent un-

ground runs, and the reachability optimisations typically utilise this more abstract rep-

resentation to discard sets of complete, grounded runs. Should the reachability optimi-

sations not discard a run, it must be grounded to produce a set of runs to be checked.

As discussed in Section 4.1.3.3, for each grounded run a unique planning problem is

constructed and the external planner is invoked to find an alternative conflict-free plan
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for each run. Should any of these checks fail, the synthesis procedure terminates in fail-

ure. Additionally, the process fails if planning time limits are exceeded. If all runs are

shown to have conflict-free alternatives, the process continues until no more complete

runs can be generated from the traversal graphs. If this is the case, CRS terminates and

is successful and the social norms can be utilised safely.

When grounding, simplified representations for the runs are created according to

the run’s constraint graph. All variable symbols bound to a constant symbol are re-

placed with the constant symbol, while all variables bound to variable symbols are

replaced with an arbitrary variable symbol. The result is a run representation that con-

tains the minimal number of unground variable symbols to be ground.

Reachability analysis utilises a modified version of the FF planner called BatchFF

which allows for the more efficient batch processing of multiple planning problems.

The motivation and implementation details behind BatchFF are presented in Section

6.1.3.

6.1.2 Traversal Graphs

Throughout the formal presentation of our norm synthesis algorithm we have utilised

sets of runs to quantify what agents might achieve in conflict. For each successor op-

erator considered during traversal we create a run by appending the successor operator

to the original run. The copying of the original run to an independent version is re-

quired since modifications made through refinement to one run should not alter any

other runs. A run-based representation is intuitive for discussion purposes, yet has two

downsides in practice:

1. Runs are not space efficient since a complete copy of the original run is created

for each successor operator. A more efficient representation would allow runs to

share their common components, to reduce the space required to represent the

set of complete runs.

2. Copying entire runs is computationally expensive since the complexity is pro-

portional to the length of the run and is invoked on every iteration of traversal.

We require a data structure that succinctly represents the space of possible runs. Adopt-

ing standard planning graphs, where nodes represent state specifications and edges

between nodes represent operator applications, is not sufficient for our purposes. Con-

sider how a planning graph changes under run refinement where literals are added to
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existing state specifications in the graph, which in turn affect the representation of

every run specified.

We present traversal graphs as a means of achieving a succinct representation for

generated runs without unnecessary duplication of the state or operator representations.

These graphs are simple to modify, and crucially, many of our optimisations can be

applied directly to the graph. In practice, the benefits of traversal graphs are significant:

the space saved by reducing redundancy and the computational effects of less structure

duplication is presented next, after the theoretical outline.

6.1.2.1 Definition of Traversal Graphs

An acyclic graph is a tuple G =
〈
V ,E

〉
composed of a set of vertices V and set of pairs

E representing directed edges between nodes. We write v ∈ V to refer to a specific

vertex v, and e = (v1,v2) to refer to the directed edge e ∈ E originating from vertex v1

and terminating in vertex v2. The graphs we construct have tree-like structures.

Traversal graphs are an annotated form of acyclic graph, where vertices are la-

belled as state specifications and edges continue to represent action-based transitions.

We incorporate the notion of partial operator applicability by defining that an edge is

labelled with an operator that is partially applicable in the specification modelled by

the vertex it originates from. Importantly, we annotate the edge not only with the op-

erator, but also the literals added to the precursor specification during refinement. A

traversal graph is a tuple composed of an acyclic graph and two labelling functions:

TG =
〈
V ,E , lv, le

〉

where:

• V and E are the vertices and edges as above,

• lv is a labelling function linking each vertex in V with a state specification com-

posed over the atoms in our state representation language, and

• le is an edge labelling function linking each edge in E with a tuple 〈a,L+〉 where

a is an action, and L+ is is a set of literals.

An edge in a traversal graph is annotated using an action a, a ground instance of an

operator in O, and by L+, the set of literals that must be added to the precursor state

specification during refinement so that a is fully applicable. We write S(v) as a short-

hand to represent the specification referenced by vertex v, and we write a(e) and L+(e)
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to represent the action of edge e and the literals to be added during refinement respec-

tively. Finally, when illustrating these edges we write the action name above the edge,

and the set L+(e) below, as in Figure 6.2, meaning that a transition exists from a subset

of the states represented by v1 to all states represented by v2.

L+(e)

a(e)

v1 v2

Figure 6.2: An annotated edge e = (v1,v2) with action a(e) and refined literals L+(e).

Example Suppose we wish to represent the following set of runs using a traversal

graph:

R1 = ©
move(a1,node1,node2)−−−−−−−−−−−−−→©

R2 = ©
move(a1,node1,node3)−−−−−−−−−−−−−→©

R3 = ©
pickup(a1,parcel1,node1)−−−−−−−−−−−−−−−−→©

All three of the above runs are partially applicable in states represented by the speci-

fication S = {at(a1,node1)}, where each run is applicable from a mutually exclusive

subset of S. Conflict traversal produces the following initial states for each of the runs:

R1[1] = {at(a1,node1),conn(node1,node2)}
R2[1] = {at(a1,node1),conn(node1,node3)}
R3[1] = {at(a1,node1),parcelAt(parcel1,node1)}

Conflict traversal would traditionally consider each of these runs to be entirely differ-

ent, and continue traversal independently of each. We represent this diagrammatically

in Figure 6.3, where each run originates from a subset of the states represented by S.

S

R1[1]

R2[1]

R3[1]

move(a1,node1node2)

move(a1,node1node3)

pickup(a1,parcel1,node1)

Figure 6.3: Three runs originating from subsets of a common specification S.

Figure 6.4 presents a traversal graph that represent these runs. Here, the successor

state specification S1, S2 and S3 are equal to the final specifications in each of the

runs, last(R1), last(R2) and last(R3) respectively. Even though S is not equivalent to
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first(R1), first(R2) or first(R3), these first specifications can be constructed if required.

move(a1,node1node3)

pickup(a1,parcel1,node1)

move(a1,node1node2)

{conn(node1,node2)}

{conn(node1,node3)}

{parcelAt(node1,parcel1)}

{at(a1,node1)}
S

S1

S2

S3

Figure 6.4: A traversal graph representing runs R1, R2 and R3. �

6.1.2.2 Constructing Traversal Graphs

Adapting conflict traversal to utilise traversal graphs requires minimal modifications

to our existing algorithms. We present a high level description of the graph creation

process in the terms of conflict traversal initialisation and iteration.

6.1.2.2.1 Initialisation We require traversal graphs that represent the initialised runs

SP
oc−→ S′C, where SC is the conflict specification, S′C the refined specification, oc a con-

tributing operator and SP the precursor specification. We construct a graph with ver-

tices V = {v1,v2} connected with edges E = {e}. We define the labelling functions

as follows:
a(e) = oc S(v1) = SP

L+(e) = /0 S(v2) = S′C

Similarly, we construct an initialised traversal graph for every contributing operator.

6.1.2.2.2 Iteration We identify the set of successor operators for each conflict spec-

ification represented as a leaf node of a traversal graph. Formally, given a traversal

graph TG we define the set of incomplete vertices VI as:

VI = {v ∈ V | S(v) |= SC∧@v2.(v,v2) ∈ E}

An incomplete vertex represents a conflict specification and has no edges traversing

from it to other vertices. For each incomplete vertex vI ∈VI we identify the set of par-

tially applicable operators as before using the function Opar(S(vI)): we are interested

in all partially applicable operators from the specification represented by the vertex vI .

For each operator o we identify the successor state SS and the set of literals L+ added
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during refinement, however we do not refine S(vI) with the literals in L+. Instead, we

create a vertex vS and the corresponding edge e = (vI,vS) with the labels:

S(vS) = SS L+(e) = L+ a(e) = o.

As it is inefficient in practice to continually search the entire graph for incomplete

vertices we instead maintain a list of references to these vertices. We terminate when

there are no longer any incomplete vertices.

6.1.2.3 Generating Runs from Traversal Graphs

Traversal graphs can be constructed during traversal and subsequently utilised during

reachability analysis. In order to check the reachability of states in runs represented by

a traversal graph we require a means of enumerating these runs. Similar to incomplete

vertices, we present the set of complete vertices of a graph as:

VC = {v ∈ V |@v2.(v,v2) ∈ E}.

Complete vertices are simply leaf nodes of the graph. Given a traversal graph TG we

generate a set of runs R , where for each complete vertex we produce a single run by

traversing from the leaf node to the root of the tree, adding specifications and operators

as we progress. For each complete vertex v ∈ VC we initialise the run R = S(v) with a

single specification and no operators. We keep account of the literals L that are added

during each step of the process, where L is initially the empty set. Let the precursor

vertex to v be vP connected by the edge:

e = (vP,v).

We have identified the transition between the relevant specifications and now update

the set of literals by appending the refinement literals of the edge e to L:

L = L+(e)∪L.

We can now create the precursor specification SS by taking the specification repre-

sented by vP and adding the literals L to form the new specification:

SS = S(vP)∪L.

Here, SS is more specific than S(vP), and represents the subset of states represented by

S(vP) where the operator for edge e is fully applicable. We complete this step of the

iteration by appending the new specification and operator to R as follows:

R = SS
a(e)−−→ R.
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If vP is a root node with no incoming edges then we have completed iterating up the

tree and can add the produced run R to the set of runs R .

We now discuss the implications and benefits of utilising traversal graphs:

• Traversal graphs are a more concise representation. Runs in the set represented

by a graph are inherently similar, in that they share state specifications and opera-

tors. One need only think of two runs that deviate in their final actions to realise

that storing an independent representation for each of these runs is inefficient.

Traversal graphs allow us to reduce this redundancy.

• Creating traversal graphs is more computationally efficient. New operators and

specifications can be added to the graph without having to clone any of the data,

reproduce state specifications or duplicate entire runs.

We conclude our discussion of traversal graphs by emphasising that both a run-based

and traversal graph-based approach to conflict-rooted synthesis are identical. Traver-

sal graphs represent no runs that would not originally be found during a run-based

traversal.

6.1.3 Batch FF

Conflict-rooted synthesis utilises the FF planner to perform reachability analysis of

synthesised runs, allowing us to harness automated planning techniques directly in our

approach. Since the input to the planner is standard PDDL it is possible to replace the

planner with any other planner that utilises the same input specification language.

The primary concern when selecting a planner is efficiency, not only in planning

time but also in planner initialisation time. Since it is common for reachability analysis

to solve many planning problems, there is merit in having a planner capable of batch

processing planning problems as continually re-instantiating the planner for each new

planning problem requires considerable resources. On our test machine a native pro-

cess takes 30ms to initialise: to solve 10000 planning problems requires 5 minutes of

processor time simply to initialise the planner process (without even performing any

planning).

We chose the Fast Forward (FF) Planner originally proposed by Hoffmann and

Nebel (2001) since it is a well understood planner with an accompanying stable and

efficient implementation. Furthermore, it is well regarded in the literature and a good
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performer on the classical domains used in this thesis. Our adaptation of FF, called

BatchFF, adds the ability to batch process planning problems without repeated process

instantiation. To support this the planner was modified to perform complete memory

management of internal data structures, since the assumption that the planner termi-

nates once a problem is solved no longer holds. BatchFF incorporates memory man-

agement so as to support batch problem processing.

6.2 Model Checker Integration

A key requirement of our evaluation is for both the conflict-rooted synthesis and model

checking approaches to execute identical test cases. To this end NuSMV is fully in-

tegrated into the test configuration, allowing us to easily switch between approaches

using the same input domain specifications. We standardised on PDDL input and fo-

cused on translating our PDDL domain specifications into an SMV model, and post

processed the resulting NuSMV computations to extract the synthesised norms. We

provide an overview of this integration.

6.2.1 Encoding of Focal State Reachability

In Section 2.5.2.2, expression (2.1) detailed how van der Hoek et al. (2007) ensure goal

reachability by encoding focal state reachability into the social objective. The resulting

reachability expression is repeated below:

S,s0 |= 〈〈Ag〉〉G
(

ϕ∧
∧

si∈ΣF

[
si→

∧
s′∈ΣF

〈〈Ag〉〉Fs′
])

. (6.1)

We argue that model checking this expression will not result in a computation where

all focal states will be reached, and more importantly, is not sufficient to ensure that

any subsequent paths from reached focal states will themselves comply with the social

objective. We prove each of these in turn.

Lemma 6.2.1. The computation derived from the positive witness does not always

ensure that all focal states are reachable.

Proof. Consider the example system detailed in Figure 2.1 where we write a,b,c to

represent propositions indicating that we in state A,B or C respectively. Let the com-

putation λ∗ satisfy the expression (2.1). Let B be focal such that ΣF = {b} and let

ϕ = ¬c: we wish to avoid C.
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Let λ∗ = {a} idle−−−→ {a} idle−−−→ {a} . . . be the infinite computation where the agent

never leaves state A. λ∗ satisfies (2.1) since ϕ holds in every state of λ∗. Furthermore,

the reachability subexpression b→ 〈〈Ag〉〉Fb also holds, since we never enter state B,

so the implication is always true. The focal state is never reached directly by adhering

to the positive witness, and our lemma is proved. �

Lemma 6.2.2. Computations that satisfy the ATL expression (2.1) and show reacha-

bility between focal states can violate the social objective.

Proof. Again we adopt a proof by contradiction. For this we use a simplified version

of our previous example, again with ϕ = ¬c but with ΣF = {a,b} and with no path

existing from A to B, as depicted below:

C

BA idle

movemove

idle

idle

Figure 6.5: A refined three-state gridworld topology, with no direct path from A to B

Let λ∗ = {a} idle−−−→ {a} idle−−−→ {a} . . . be the infinite computation where our agent

never leaves state A. Such computation satisfies the expression detailed in (2.1), for

in every state of the computation ϕ holds. However, the reachability subexpression

a→ 〈〈Ag〉〉Fb also holds, since from every state in λ∗ it is possible to achieve b:

∀i≥ 0.λ∗[i] |= a→ 〈〈Ag〉〉Fb.

Notice that this reachability requirement makes no mention of ϕ. Indeed, the alterna-

tive computations originating from state A must traverse through C to reach B, thereby

conflicting with the social objective as depicted below:
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Here λ∗ ensures access to B, however only by traversing C. Therefore, the resulting

computation from model checking (2.1) may result in norms that deny access to focal

states. �

From the above two lemmas we conclude that an additional mechanism, or more ex-

pressive representation, is required to ensure reachability of focal states when model

checking is utilised to synthesise norms. We propose an alternative means of ensuring

continued access to focal states through the specification of fairness constraints. Fair-

ness constraints specify a set of states in the model that must be visited infinitely often

by any resulting computation. Incorporating fairness constraints into CTL leads to a

strictly more expressive logic often referred to as Fair CTL (Büchi, 1966). Fairness

constraints reduce the set of computations investigated to only those that are guaran-

teed to traverse through the focal states specified in the constraints. The existing path

operators apply to this reduced set only, and the remainder of the paths are discarded.

Any resulting computation ensures focal state reachability since from any focal state

one can follow the computation to reach any other focal state. We are now in a posi-

tion where we have all the theoretical machinery required to synthesise norms using a

model checker.

6.2.2 Choosing a Model Checker

We begin by justifying our choice of NuSMV as the model checker used in this evalua-

tion. A candidate model checker must provide the following three capabilities in order

to implement the norm synthesis approach:

1. ATL or CTL: model check either ATL or CTL expressions, or any more ex-

pressive temporal logic.1

2. Witnesses: the candidate model checker must return a counterexample when

an expression does not hold in the model.

3. Fairness Constraints: support for the filtering of paths using fairness con-

straints to allow for the encoding of focal states.

van der Hoek et al. (2007) reference the MOCHA ATL model checker as a viable tool

for implementing their synthesis approach. The MOCHA project provides two model

checkers: cMocha (version 1.0.1) and jMocha (version 2.0). cMocha was proposed

1The more expressive CTL∗ is suitable yet other temporal logics, such as LTL, are not.
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by Alur et al. (1998) as a tool with which to check reactive models (Alur and Hen-

zinger, 1999). cMocha has one crucial flaw: it does not provide witness support so no

counterexamples can be generated2. Furthermore, cMocha is no longer updated, with

development of the MOCHA project now focusing on jMocha which in turn only sup-

ports invariant and refinement checking with no support for checking ATL expressions.

For our implementation we adopted the NuSMV symbolic model checker initially

proposed by Cimatti et al. (1999). NuSMV is a redesign and reimplementation of

the original CMU SMV model checker aiming to provide robust, state of the art

model checker functionality that reaches industrial systems standards. For our pur-

poses NuSMV offers a number of benefits:

• It supports CTL checking, fairness constraints and produces counterexamples.

• It is highly optimised with a strong focus on performance.

• It is current and frequently updated.

• It supports a range of models from asynchronous to synchronous.

• It uses optimised Binary Decision Diagram (BDD) and SAT-based model check-

ing techniques.

What is particularly interesting about NuSMV is its integration with external libraries,

utilising the CUDD BDD (Somenzi, 2005) and SIM SAT (Giunchiglia et al., 2001)

libraries to offer improved checking performance. The only notable downside of us-

ing NuSMV is the lack of support for ATL, however no other applicable ATL model

checker was found at the time of writing. Furthermore, since we are primarily inter-

ested in synthesising norms for all agents in the systems the grand coalition suffices,

we substitute CTL for ATL without losing quality in our results.

NuSMV takes a SMV model as input that describes a set of synchronous or asyn-

chronous finite state machines as reusable modular components that operate over a

set of finite data types. For our purposes this is not a limitation since we assume our

domains to be finite. Each machine includes a transition relation composed of propo-

sitional expressions allowing for a more succinct and compact representation. We will

not present a complete analysis of the SMV language, but provide a sample model

in Appendix B and detailed our integration in Section 6.2. Additional details can be

found in the literature (Cimatti et al., 1999).

2The inability to produce a counter-example is documented in the model checker source
code(Mocha, 2011). While initially planned, it was not implemented before work began on jMocha.
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Our implementation of the conflict-rooted synthesis algorithm is called CRS and

we refer to the model checking approach as NuSMV in order to differentiate between

the theory and the resulting implementations. To invoke each approach on identical

input domains we map PDDL input domains into SMV models, as detailed in Sec-

tion 6.2. Our NuSMV integration operates as follows: Firstly, we automatically create

SMV input from a set of PDDL files and a given conflict specification, enumerating

variable parameters in the conflict specification. Next, the resulting set of ground ex-

pressions are checked against the generated model. Finally, the resulting computations

found are automatically translated into a set of prohibitionary norms.

We do not automatically create fairness constraints to encode goal reachability. We

justify this in Section 7.5.1 when describing how reachability conditions are encoded,

but for now emphasise that this preprocessing is not included in our analysis of the

model checking approach. We evaluate the best-case time to construct the model with-

out performing any checking of the built model.

6.2.3 Incorporating NuSMV Domain Models

In order to utilise NuSMV to synthesise norms, a set of translation and extraction

procedures are required to compose appropriate domains models to model check, and

subsequently to produce prohibitionary norms from the model checker’s output.

6.2.3.1 PDDL to SMV Translation

PDDL is translated into a finite state machine model that NuSMV model checks, and

is composed of four key components:

1. VAR: The list of state variables used in the state model of the finite state ma-

chine. For example, in the Parcel Delivery domain we wish to model the location

of agents and parcels:

VAR

agentat_a1_n1 :boolean;

parcelat_p1_n1 :boolean;

2. DEFINE: A list of macro definitions used to reduce the representation size of the

finite state machine. Each macro symbol is associated with a Boolean expression

over state variables. We use macro definitions for specifying non-fluents, as well

as for encoding the preconditions of actions:

DEFINE
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conn_n1_n2 := TRUE;

pickup_a1_p1_n3 := agentat_a1_n3 & parcelat_p1_n3;

Here we write & to be the logical conjunction of the left and right expressions.

3. INIT: The initialisation constraints specify the initial assignments of state vari-

ables, identifying the state that the checker will search from. In our example we

specify the initial location of a1 as follows, where ! is a logical negation:

INIT

agentat_a1_n1 & !agentat_a1_n4 & !agentat_a1_n2 & !agentat_a1_n3;

4. TRANS: The transition relation is a set of current state / next state pairs specified

as a Boolean expression. A given state pair are connected if the state variables

satisfy the Boolean expression. We represent a transition invoked by Agent a1
moving from node1 to node2 as:

TRANS

move_a1_n1_n2 & -- Preconditions

next(agentat_a1_n2) & !next(agentat_a1_n1) & -- Effects

(agentat_a1_n4 <-> next(agentat_a1_n4)) & -- Frame Conditions

(agentat_a1_n3 <-> next(agentat_a1_n3)) --

Here <-> represents logical equivalence. For a transition to exist the action pre-

conditions must hold, the next state must contain the effects of the action, and

all unrelated state variables must remain constant.

Each of the four declarations above are encapsulated into a MODULE declaration called

normative system. In SMV modules can be instantiated into unique instances, with

each module designed to represent an independent process. Here we are modelling

asynchronous action so we utilise just a single module for the finite state machine.

It should be clear how an arbitrary PDDL specification can be expanded from initial

state specification to model the entire system. The set of state variables correspond to

a conjunction of the predicates and planning domain objects specified in PDDL. We

construct macro definitions for each of the non-fluents in the initial state specification,

and we compose shorthand variables for the preconditions of each action. Finally,

transitions follow directly through the application of each grounded action. We obtain

the grounded actions by invoking the FF planner with a customised switch to print out

all grounded actions for a given domain and subsequently parse this output to construct

the SMV finite state machine. The result is that, given input PDDL we produce an

SMV module that fully captures the domain.
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6.2.3.2 Model Checking the Finite State Machine

In order to model check the normative system module we require a second wrapper

module, with the following components:

1. VAR: Here we define a single variable, a reference to the normative system

module using the syntax:

normative_system: process normative_system();

2. CTLSPEC: The CTL social object is specified next. Since SMV is purely propo-

sitional we must ground any variables in our conflict specifications accordingly.

For the conflict specification SC = {at(a1,X),at(a2,X}, we ground all bindings

of X to produce a set of constraints:

{ at(a1,node1),at(a2,node1) }
{ at(a1,node2),at(a2,node2) }
. . .

We are interested in the computation where none of the above hold. As a result

we produce a CTL expression of the form:

CTLSPEC ! EG (

!(normative_system.agentat_a1_n4 & normative_system.agentat_a2_n4) &

!(normative_system.agentat_a1_n3 & normative_system.agentat_a2_n3) &

!(normative_system.agentat_a1_n1 & normative_system.agentat_a2_n1) &

!(normative_system.agentat_a1_n2 & normative_system.agentat_a2_n2))

Recall that, since we are interested in the grand coalition we rewrite the original

ATL expression S,s0 |= 〈〈Ag〉〉Gϕ to the equivalent CTL expression S,s0 |= EGϕ.

Additionally, since NuSMV produces counterexamples when a CTL expression

does not hold we negate the original social objective.

3. FAIRNESS: We encode the reachability fairness constraints as a set of Boolean

expressions over the state variables. For example, to ensure access to a state

where Agent a1 is at location node1, and Agent a2 is at node2 we write:

FAIRNESS

normative_system.agentat_a1_n1 & normative_system.agentat_a2_n2

We produce a single fairness constraint per focal state. Since we wish to guar-

antee access to all focal states we list each in its complete form.
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While the translation from focal states to fairness constraints is straightforward, the

question of how to produce the list of focal states is more complex. There are two

issues associated with creating the list of focal states:

• Enumerating conflict-free states is not a viable solution since there is no guaran-

tee that a synthesised conflict-free state is reachable in the original system. Since

we wish to preserve reachability, we must require states to be reachable in the

normative system only if they are reachable in the original.

• This approach does not support terminal focal states that are reachable but from

which it is not possible to return to all other focal states.

In order to avoid the complete state enumeration and reachability check required to

find all focal states we assume this knowledge to be supplied. While it is possible for

us to automate the creation of these constraints in the Parcel Delivery domain the same

does not hold for the IPC domains. For tests requiring timing of the model checker

we record the time required to construct the model, prior to checking. As such we

compare against the best case performance of the model checker in situations where

enumerating the focal states is not feasible.

6.2.3.3 Prohibitionary Norm Extraction

NuSMV produces a computation where transitions between states are described by

the change in the state variables. For example, where Agent a2 moves from node2 to

node4 the output is of the form:

-> State: 1.2 <-

normsystem.agentat_agent2_node4 = 1

normsystem.agentat_agent2_node2 = 0

...

This output states that the proposition indicating a2 is in node2 is set to false (0), and

the new location of node4 set to true (1). From this we construct a computation orig-

inating from the initial state specification that traverses through all focal states. The

resulting prohibitionary norms are extracted from the computation, where for each

state a prohibitionary norm is created prohibiting the agents from performing any ac-

tion other than that specified in the run. The set of resulting prohibitionary norms

is: { 〈
R[i],¬R[ i−→]

〉
| ∀i < |R|

}
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where R[i] indicates the i’th state specification in the run R, and R[ i−→] the i’th operator.

We negate the operator in the norms so as to prohibit the application of any other

operator. Equivalently, we could synthesise obligatory norms to perform the action in

each of of the states, rather than prohibit all other actions.

6.3 Empirical Evaluation Design

We now consider both NuSMV and CRS as black box implementations and describe

the surrounding evaluation configuration used during our evaluation. In Figure 6.6 we

detail the key components we utilised to perform a balance comparison between the

two approaches.

To ensure accurate comparisons both approaches operate off identical domain rep-

resentations. From the set of five domains the domain selector is configured to select

the desired domain. The selected domain is the utilised as input into three subsequent

components. First, the problem selector takes the domain as input and selects a spec-

ification from the set of problems. Next, both the problem and domain specifications

are combined to form the PDDL input specification. Finally, the conflict generator

randomly generates a conflict specification that will be used for the evaluation run.

The PDDL input and conflict specifications are passed to the synthesis approaches.

CRS synthesises norms directly from these specifications, but a translation is required

in order to produce a model that NuSMV is capable of checking. The PDDL to SMV

translator (outlined in Section 6.2) produces a SMV model that fully describes the

PDDL domains and conflict specification, and this model is subsequently passed to

NuSMV for the checking to commence.

6.3.1 Conflict State Generation

In order to effectively evaluate our approach we require a means of generating con-

flict state specifications. Our approach randomly assigns literals to each specification,

choosing with probability 0.5 whether to bind with existing literals in the specifica-

tion or to introduce new variable symbols, allowing us to create specifications with

dependencies between literals. We present our procedure for random conflict state

specification in Algorithm 11.

RandomPredicate(P) randomly selects a predicate definition from the set P after which

each of the parameters for the predicate are set. Parameters are selected randomly with
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Figure 6.6: The architecture and key components of the CRS and NuSMV evaluation

configuration.

probabilities sampled from a uniform distribution. Options are weighted equally in

order to generate sufficiently varied conflict specifications that represent the possible

specification space. IntroduceNewParameter returns true with probability 0.5, and is

used to decide whether a new parameter should be introduced, or this predicate should

share a parameter with an existing predicate in the specification. NewParameter will

either create a new variable parameter with probability 0.5 or will randomly select

a constant from the domain. In the event that an existing parameter is selected the

method SelectExistingParameter(S) randomly selects a parameter from the set of ex-

isting parameters of predicates in S.

Example As an example, consider the steps followed to generate a specification of the

following form in the Parcel Delivery domain:

agentAt(Agent,node1),hold(Agent,Parcel)
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Algorithm 11: Synthesising Prohibitionary Norms
Input: The size of the desired specification n, the set of predicates P

Result: A randomly generated specification S

begin1

S←{}2

for 1 . . .n do3

p = RandomPredicate(P)4

for each parameter pi of p do5

if IntroduceNewParameter(0.5) then6

pi← NewParameter(0.5)7

else8

pi← SelectExistingParameter(S)9

S← S∪{p}10

return S11

end12

The construction of this specification would occur as follow:

• Randomly select a specification length of 2.

• The literals agentAt and hold are assigned randomly from the set of possible

predicates in the domain.

• The first parameter is chosen to be a variable and Agent is introduced. The

second parameter is chosen to be unique and ground, and node1 is randomly

selected from the set of available objects.

• Next we choose to let the first parameter of hold be dependent on an existing

symbol, and so Agent is selected.

• Finally, the variable Parcel is introduced for the final parameter. �

This process generates conflict specifications that may or may not ensure goal reach-

ability in the normative system and since we wish to test the empirical behaviour of

both the positive and negative results of our algorithm we do not filter out any cases,

but instead ensure that half of the randomly chosen specifications are shown to be

reachable.

We utilise CRS to determine whether runs in the sample set are reachable, allowing

us to construct an evaluation set that balances problems in which CRS succeeds, with

those that CRS fails. Importantly, there is no danger of CRS gaining unfair advantage

through this process. On the contrary, since CRS terminates once reachability analy-
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sis fails an increase in the number of problems in which CRS succeeds ensures that

these more expensive executions are equally represented. This process allows us to

investigate CRS performance across a range of input in a balanced manner.

6.4 Summary

CRS is a Java-based implementation of conflict-rooted synthesis which invokes FF to

solve reachability planning problems. The key implementation details are:

• CRS is composed of a PDDL parser and associated model, traversal and reach-

ability analysis procedures as well as implementations for each of the optimisa-

tions detailed in this work.

• To improve the performance of planning during reachability analysis CRS utilises

a modified version of the FF planner called BatchFF, allowing for the batch solv-

ing of planning problems.

• It utilises a succinct data structure, called a traversal graph to represent sets of

similar runs, saving both on computational and space requirements.

In order to ensure an accurate comparison NuSMV is integrated directly into our test

mechanism. PDDL input is translated into a SMV finite state machine, and the conflict

state specification is mapped to a CTL expression to be checked. We illustrate the syn-

tax of the generated SMV as well as the form of the output produced by NuSMV, and

briefly detail how prohibitionary norms can be created from the resulting computation.

Both the NuSMV integration and the CRS implementation were thoroughly tested.

By constructing a normative system using the synthesised norms we repeatedly invoke

FF to find a plan from the initial state to a conflict state in the normative system. By

ensuring that no plans were found we could be certain that it was not possible for

the normative system to transition into a conflict state, thereby indicating that both

synthesis approaches were functioning correctly.
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Evaluation

We hypothesised that a synthesis procedure based on localised search around conflict

states is more efficient at synthesising norms, that the resulting process is anytime and

that the produced norms are of a higher quality. Our evaluation validates these claims

through analytic analysis and empirical tests to achieve three objectives:

1. Optimisation Effectiveness: We illustrate that the core, unoptimised, synthesis

procedure is not applicable in practical domains due to the computational com-

plexity involved in performing combinatorial search. With this motivation we

investigate how effective each optimisation is at reducing these computational

requirements in a variety of benchmark domains.

2. Theoretical Comparison: We theoretically compare the conflict-rooted syn-

thesis and model checking approaches comparing the methods and results pro-

duced, while analysing the impact these differences have on the resulting syn-

thesised norms.

3. Real-World Applicability: We provide a structured, thorough empirical com-

parison between the conflict-rooted synthesis and model checking approaches in

order to assess the benefits conflict-rooted synthesis provides for system design-

ers and norm autonomous agents in practice.

We first present the evaluation design, detailing the choice of domains, experimental

parameters and metrics captured. We then propose an empirical plan for each of the

three objectives, and follow each plan with results and discussion. The combination of

plan, results and discussion act as the basis from which we gauge whether or not the

hypothesis in this work holds.
167
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7.1 Empirical Evaluation Parameters and Metrics

We begin by detailing the components of our evaluation plan, including the evaluation

domains used for empirical comparison, the control parameters and the resulting met-

rics that are collected and analysed. We do not present a plan for our evaluation here

but simply detail the tools required.

7.1.1 Evaluation Domains

The automated planning community have a well defined set of evaluation domains

that provide a basis for the empirical comparison of planning systems. The multi-

agent systems community does not boast a single, generally accepted set of evaluation

domains mainly due the broad nature of research in the field, and due to the lack

of standardisation on agent system specifications. Typically, a customised evaluation

domain is developed alongside each new body of work, making the direct comparison

of agent technologies difficult.

Our alignment with planning-based theory provides a well structured and generally

accepted domain representation language allowing us to easily harness the standard-

ised planning domains present in the planning literature. There are three benefits to

adopting planning domains:

• They are generally accepted testbeds for empirical evaluation and the commu-

nity is familiar with the characteristics and nuances of these domains.

• A large set of tailored predefined problem instances exist, reducing the need for

hand crafting or randomly generating problem instances.

• The benchmarks are designed to be challenging, realistically modelling charac-

teristics of real-world domains.

Our domain set includes the Parcel Delivery domain and a subset of domains featured

in the International Planning Competition.

7.1.1.1 Parcel Delivery Domain

We have previously introduced the Parcel Delivery domain in Section 1.4. The operator

schemata used for our evaluation have been included in Appendix A, and model agents

that utilise the move, drop and pickup operators detailed previously. This simple

world allows us to easily generate problem instances that challenge modern classical
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planners simply by increasing the size of the grid, and the number of parcels in it.

For the purposes of this evaluation we limit ourselves to grid-like configurations of the

world, and randomly distribute parcels and agents within it.

7.1.1.2 International Planning Competition Domains

The International Planning Competition (IPC, 2011) is a key event in the field of auto-

mated planning, and is run during the International Conference on Automated Planning

and Scheduling, with the goal to provide a standardised testbed of challenging problem

domains that can be used to analyse the state of the art in automated planning systems.

The competition provides a set of domains classified into different tracks that are used

to evaluate different approaches to automated planning. The deterministic, observ-

able track includes classical planning problems, including those adopted in this work.

Other tracks include planning with uncertainty (for non-deterministic and probabilistic

actions in fully or partially observable domains) and planning with learning, but we do

not incorporate these into our domain set.

We adopt four sample domains from the competition’s deterministic track based on

how easily they can be represented in a multi-agent setting. When given the option we

chose typed variants of each domain and all domains adopt a classical representation

with parameterised operators. We summarise the essential details of each domain next,

and present the operator schemata in Appendix A.

7.1.1.2.1 Logistics The Logistics domain is a common benchmark domain often

used in AI planning. Each problem is composed of a set of cities and within each

city are a set of locations. Each agent has a goal to move packages from a source

location in some city to a target location (possibly in a different city). Agents can

utilise different vehicles to traverse the world. Trucks are vehicles that are able to move

between locations in the same city, whereas aeroplanes are able to traverse between

cities but are limited to locations of type airport.

There are six operators defined in the domain. Packages can be loaded into trucks

if the package and truck are in the same location, or unloaded from trucks. Simi-

larly, packages can be loaded into aeroplanes. Aeroplanes can fly between airports in

different cities, and trucks can drive between locations in the same city.

7.1.1.2.2 Depots Depots is similar to the Logistics domain presented above. Here

we are concerned only with trucks driving between depots and distributors delivering
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packages. The additional complexity is introduced when trucks can no longer simply

load or unload packages as before, but must now ensure that packages are stacked

onto pallets at their destinations. The stacking is achieved using hoists: the resulting

stacking problem is therefore very similar to the classic block stacking problem.

There are five operations defined in the Depots domain. Trucks can drive between

locations. At each location a hoist is able to lift crates up off of a pallet and drop crates

down onto a pallet. Similarly, hoists are able to load and unload crates from trucks.

7.1.1.2.3 Rovers The Rovers domain is inspired by planetary rover problems. This

domain requires that a collection of rovers navigate a planet surface looking for rocks

and soil to sample. Once sampled the results are sent back to the centralised lander.

Different rovers have different capabilities: some are only able to analyse soil and

others can analyse rocks. Some are equipped with a number of cameras, each of which

can be used to photograph a particular object.

The domain has 9 operators. Agents can navigate between waypoints if it is pos-

sible to traverse between them. They can sample soil and sample rocks at a particular

waypoint, which involves the rovers filling their internal stores with the sample. Once

processed they are able to drop the contents of their store in order to empty it. If a

rover is equipped with a camera they can calibrate the camera for a particular object,

and can subsequently take an image of the object. Finally, they can communicate the

soil, rock and image data back to the mothership.

7.1.1.2.4 Satellites The Satellites domain is our second domain inspired by space

applications. It involves planning and scheduling a collection of observation tasks

between multiple satellites, each of which is equipped in slightly different ways. The

goal of this domain is to collect image data. Each satellite is able to orientate itself in

a particular direction in order to take an image.

This domain has five operators. Satellites can turn so that they point in a new

direction. In order to take a photo the instrument must be calibrated for each new

direction it faces. A calibrated satellite can toggle an instrument on the satellite on or

off. In this version of the domain the satellite can only have one instrument on at a time.

Finally, the satellite can take an image of the direction it is facing, with its calibrated

instrument. The goal of the domain is to collect a required set of such images.
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7.1.1.3 Testing and Evaluation Domain Sets

For testing purposes, a set comprised of the Parcel Delivery domain and the Logistics

domains were used. The final evaluation was performed using the set of all domains.

We chose to utilise both the Parcel Delivery and Logistics domains in the evaluation

set since the variability introduced through the generated conflict specification and

problem instances is sufficient to greatly distinguish the input specifications in the

evaluation set from those in the test set. While the sets of operators are identical, all

other input parameters are variable.

7.1.2 Evaluation Parameters

Evaluation parameters are configurable attributes of the conflict-rooted synthesis pro-

cess that are adjusted for each evaluation iteration. We detail each of the evaluation

parameters in turn.

7.1.2.1 Conflict Specifications

The performance of our algorithm and the effectiveness of each of the optimisations

is dependent on the particular conflict specification used. Conflict specifications dic-

tate which successor operators will be considered during traversal, and in turn affect

the size of the resulting traversal search space. In order to accurately estimate the be-

haviour and scalability of our approach we use a set of randomly generated conflict

specifications, aggregating collected metrics over these varying specifications. The

process of randomly generating conflict state specifications is presented in Section

6.3.1. We investigate specifications containing a minimum of 2 literals and a maxi-

mum of 5 providing a sufficient range from simple to complex conflict specifications.

7.1.2.2 Optimisation Activation

Any combination of conflict-rooted synthesis optimisations can be enabled. In Section

5.1.8 we argue for an ordering of optimisations based on the complexity of performing

the optimisations, and we adopt this sequence permanently.

7.1.2.3 Problem Instance Specifications

We select 20 problem instances for each IPC domain, a figure that is dependent on the

number of problems available in the competition, as follows:
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• Logistics: 20 problem instances from the 2000 competition.

• Rovers: 20 problem instances from the 2002 competition.

• Satellites: 20 problem instances from the STRIPS track of the 2004 competition.

• Depots: 20 problem instances from the STRIPS track of the 2002 competition.

One benefit of the Parcel Delivery domain over the IPC domains is that it affords us

a great degree of control over the problem instances generated. This makes it the

ideal domain with which to begin our investigations. CRS is a domain-independent

algorithm so it is possible that many other competition domains could be selected. The

above domains are suitable for our purposes as they are the set that can most easily be

interpreted as multiagent systems, and while later competitions have proposed other

domains they have largely been extended to include advanced planning concepts that

our formalism does not support.

7.1.3 Measured Metrics

We now discuss the set of metrics measured during the execution of our algorithm.

7.1.3.1 Computational Time

Measuring computational time as a basis for comparison between competing methods

typically requires commonality in implementations, yet here CRS is Java-based and

NuSMV is natively implemented in C. We are selective about what conclusions we

draw from a head-to-head analysis since the codebases are significantly different. We

still adopt the measurement of computational time as a fundamental comparison metric

for a number of reasons:

• the relative change in computational time with respect to the varying of param-

eters and problem instances allows us to compare the rate of change without

comparing the times themselves,

• computational time gives us an idea of real-world execution times, and

• we empirically quantify the relative effect of the optimisations on the execution

time of the conflict-rooted synthesis process.

For CRS we measure the computational time required to perform traversal and reach-

ability separately. For NuSMV we measure the time required to load (and in the case
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of the Parcel Delivery domain, search) the model, but do not include the time required

to translate the input representations. Computational time is measured in milliseconds

unless otherwise stated. Importantly, we choose to measure total computational time

as opposed to user time since CRS performs significant input and output to disk and

invokes a separate planner process. Overall computational time is a more effective

measure of real-world performance in this case.

7.1.3.2 Conflict Runs and Reachability Checks

We quantify how effective an optimisation is by measuring the relative decrease in

conflict runs or reachability checks. We measure both the number of complete and

incomplete runs at the end of each iteration of the traversal process, as well as the total

number of reachability checks performed.

7.1.3.3 Optimisation Success Rate

We use two measures of how effective an optimisation is. In the case of traversal opti-

misations we study the change in the number of runs produced with and without each

of the optimisation combinations. One downside of this measure is that it is not inde-

pendent of the conflict specification or problem domain since some inputs simply result

in fewer conflict runs than others. A second metric improves this by analysing the rel-

ative reduction in number of runs, allowing us to normalise the result thus making it

more suitable for comparison using different domains and conflict specifications. This

metric has an additional downside: results are skewed and unreliable when bounds to

the traversal process are applied. A less efficient approach may generate fewer result-

ing runs for a particular run length since the search is truncated, while a more efficient

search may search beyond this limit without violating the bound.

Our chosen metric to effectively gauge the performance of an optimisation is its

success rate. The success rate of an optimisation Op is written as:

Success Rate(Op) =
Number of runs discarded by Op

Total runs analysed by Op
×100.

When a run is processed by an optimisation we monitor whether or not the run is dis-

carded. The success rate identifies the percentage of runs removed by an optimisation

and is independent of the number of complete runs generated allowing us to compare

results more effectively.
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7.1.3.4 Quantity of Norms Generated

Our approach preserves generality during traversal to produce norms that apply to

larger sets of states, thereby producing fewer norms for a given social objective. In

order to quantify the generality of produced norms we measure the number of norms

required to implement the social objective. The fewer norms required, the more gen-

erally applicable the synthesised norms are. It should be noted that additional runtime

processing of unground norms is required. We discuss the benefits and limitations of

norm expressiveness in Section 8.1.4.1.

7.1.4 Execution Environment

All empirical tests were run on identical hardware, under consistent, reproducible con-

ditions. The required number of iterations for each test are minimised due to two

reasons:

1. Conflict-rooted synthesis is an exhaustive search, so the order taken during search

does not affect the norms synthesised.

2. The entire algorithm is deterministic. The outcomes of performing actions are

certain and the traversal process produces identical conflict runs.

The exhaustive, deterministic nature of our algorithm implies that fewer repeated eval-

uation runs need to be executed for identical input. We account for the slight variance

in certain metrics (most notably computational time) by executing multiple runs and

aggregating the results accordingly. We compute both the mean and standard deviation

for each metric. Furthermore, we track both the minimum and maximum values for all

measured metrics. Finally, even though computation of the conflict-rooted synthesis

process can be distributed we restrict the implementation to a single execution thread

in order to better compare results with the model checker. All tests were run on a ma-

chine composed of a Intel Core 2 Duo 2.66 GHz processor and 4 GB of RAM running

Linux Kernel 2.6.31-20.

7.2 Empirical Evaluation

The evaluation is split into three parts. First, we analyse the performance of the core

conflict-rooted synthesis algorithm with none of the optimisations enabled. Next, we

investigate what improvements the optimisations bring, and thirdly we conduct a com-
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parison between CRS and NuSMV. We present the plan for each part separately. We

introduced three mechanisms to bound the traversal process in Section 4.3.7.1: limiting

the number of runs, limiting the maximum length of runs and restricting the number

of unique predicates in specifications according to a given problem instance. We adopt

all three of these approaches in our evaluation.

7.3 Part A - Core Synthesis Performance

Much of our work has focused on optimisations to improve the synthesis process. In

this first part of our evaluation we justify this by investigating how efficient the synthe-

sis process is without any optimisations enabled, and analyse how the algorithm scales

when a full, unoptimised search is performed. While it is possible to theoretically de-

duce that the algorithm will conduct a full search of the space in the worst case, it is

difficult to quantify how poor this search may be in practice. We show how the algo-

rithm scales computationally as the domain size is increased and highlight how, even

for very small domains, an excessive amount of computation is required.

7.3.1 Part A - Evaluation Setup

We execute our tests using instances of the Parcel Delivery domain, with increasing

grid sizes. We iterate the process 10 times, collecting the computational time and run

count metrics. Since we adopt no optimisations here we limit the length of the runs

to 6 as longer runs were not manageable on our test machine. We summarise these

settings in Table 7.1 below. We generate square grids of varying dimensions in the

Parcel Delivery domain, with each grid node connected to its four neighbours. Note

that we constrain the underlying graph representation to a grid, but emphasise that

the domain operators allow agents to traverse a more general graph topology. For the

purposes of this evaluation we use the following conflict specification:

SC = { agentAt(a1,X), agentAt(a2,X) }

where we randomly position two agents at arbitrary, unique locations on the grid. The

conflict specification identifies states where each of the two agents (a1 and a2) occupy

the same location, specified by variable X.
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Domain Parcel Delivery World

Conflict State Specification 100 Randomly Generated

Problem Instance Set Grid sizes from 2x2 . . . 5x5

Optimisations None

Computational Time (ms)
Measured Metrics

Number of Complete Runs

Bound Run Length ≤ 6

Table 7.1: Part A - Empirical Evaluation Setup for Core Synthesis Performance

7.3.2 Part A - Results

Table 7.2 presents the change in metrics as the grid size is increased. Note that only

the traversal and reachability components are timed, since the remaining computation

is negligible.

Computation Traversal Reachability

Grid Size Time (ms) Time (ms) Std. Dev. Time (ms) Std. Dev.

2 x 2 7164.43 147.46 22.16 6984 .36 243.73

3 x 3 54172.10 142.86 24.09 53994.73 513.12

4 x 4 284751.55 154.41 21.93 284564.22 651.75

5 x 5 1062935.13 165.93 20.34 1062672.91 1594.66

Table 7.2: Conflict-rooted synthesis computational time with no optimisations in the

Parcel Delivery domain.

Since conflict traversal is independent of the initial state of the system it is not depen-

dent on the size of the grid. Adjusting the grid size has no significant impact on the

time taken to construct the traversal runs. The growth in time is entirely due to the

grounding of the complete runs and subsequent reachability checks performed. This

increase is also expected: the larger the grid, the more possible groundings exist for

every unground run. Table 7.3 illustrates this growth by presenting the number of

complete ungrounded runs generated during traversal, as well as the total number of

grounded runs created prior to reachability analysis.

It is interesting to consider the rate of increase of the number of grounded runs.

The increase factor is the number of grounded runs at a particular grid size, divided

by the number of runs at the previous size, and gives an indication of how the search

is scaling. Note that the increase factor decreases as the grid size gets larger. This is

a domain specific feature: as the grid sizes increase there is a reduced increase in the
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Ungrounded Grounded Increase

Grid Size Run Count Run Count Factor

2 x 2 180 3017 -

3 x 3 180 18688 6.19

4 x 4 180 57024 3.05

5 x 5 180 134384 2.35

Table 7.3: The number of ungrounded runs created during traversal and the number of

grounded runs generated during reachability analysis in the Parcel Delivery domain.

number of grid nodes, resulting in fewer groundings being found.

Example Consider the Parcel Delivery domain where agents are only permitted to

move. A conflict specification devised to avoid collisions results in runs of length 3,

where agents move into conflict, and subsequently move out. In a 2x2 grid there are 16

unique conflict runs of length 2, as illustrated below.

A B

DC

1. A→ B→ A

2. A→ B→ D

3. A→ C→ A

4. A→ C→ D

5. B→ A→ B

6. B→ A→ C

7. B→ D→ B

8. B→ D→ C

9. C→ A→ C

10. C→ A→ B

11. C→ D→ C

12. C→ D→ B

13. D→ C→ D

14. D→ C→ A

15. D→ B→ D

16. D→ B→ A

In a 3x3 grid this increases significantly to 68. The factor of increase then decreases in

a 4x4 grid, with 152 runs found. �

The decrease in the increase factor of grounded runs results is reflected in the compu-

tational time of the algorithm. We illustrate this decrease in computation time as the

grid sizes increase, in Figure 7.1.

The core conflict-rooted synthesis method is a brute force state space search, akin to

a complete breadth first search of a graph. Searching the exponentially growing space

of possible runs is very complex: computation takes over 17 minutes to complete in a

5x5 Parcel Delivery world.

Let us now consider the expected variance of the results collected. Given a domain,

the norm synthesis process is entirely deterministic, and efforts have been made to en-

sure that the results generated are as reproducible as possible. Repeated iterations of
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Figure 7.1: Logarithmic computation time plotted for increasing grid sizes in the Parcel

Delivery domain.

the algorithm create the same number of runs, perform the same reachability checks,

and produce the same set of synthesised norms. However, the algorithmic computation

is directly linked to the input domains considered, and in this way is similar to classi-

cal planning: factors in the input domain dictate the size of the search space and the

resulting performance of the algorithm. Therefore aggregating performance metrics

over varying domains is expected to produce varied results and a corresponding high

variance in the performance of the algorithm. The same holds for varying instances of

domains (for example, adjusting the topology of the Parcel Delivery domain grid) and

even for the conflict state specifications provided as input. In summary, when the input

to the conflict synthesis algorithm is fixed, the process is deterministic and computa-

tional metrics are expected to converge. When the input varies we expect a significant

variance in the measured metrics.

7.4 Part B - Optimisations

We now highlight the computational benefits of the optimisations proposed in Chapter

5 which take advantage of implicit dependencies between operators to reduce com-

putation performed during synthesis. The dependences are specific to the operator

schema in the problem domain and it is therefore unrealistic to analytically quantify

the advantages provided by the optimisations without considering practical domains.

The aims of this evaluation part are:

1. Investigate what effects each traversal optimisation has on the number of conflict

runs generated during traversal.
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2. Investigate what effects the optimisations have on the computational time and

resources required for synthesis.

3. Investigate the effects the reachability optimisations have on the resulting ground-

ings and reachability checks.

7.4.1 Part B - Evaluation Setup

For this analysis we use both the IPC and Parcel Delivery domains. We monitor five

metrics for comparison: synthesis computational time, optimisation computational

time, number of complete runs generated, number of reachability checks performed

and the success rate of optimisations. For each domain we construct an evaluation

set for each unique tuple of input with varying conflict specifications and problem

instances, and vary which combinations of optimisations are enabled. Since our ap-

proach is deterministic we limit each test to 10 iterations. We set the active optimisa-

tions according to two policies:

1. In Turn: Perform a linear pass through all optimisations enabling each in turn

and disabling all others to analyse the effects of each optimisation independently.

2. Sequential: Begin with all optimisations disabled and perform a sequential

pass enabling each optimisation in the sequence, with ordering based on the

computational complexity of each optimisation presented previously.

Table 7.4 presents a summary of the evaluation configuration for this part.

Domains Parcel Delivery World IPC Domains

Conflict State Specification 100 Randomly Generated 100 Randomly Generated

Problem Instance Set Grid sizes from 2x2 . . . 5x5 IPC Domain Sets

Optimisations In Turn, Sequential

Synthesis Computational time

Optimisation computational time

Number of conflict runs

Optimisation success rate

Measured Metrics

Number of reachability checks

Run Count ≤ 20000

In Turn - Run Length ≤ 6Bound

Sequential - Run Length ≤ 15

Table 7.4: Part B - Empirical Evaluation Setup for Optimisation Performance
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7.4.2 In Turn Traversal Optimisation Results

We begin with the results for the Parcel Delivery domain, and follow this with the re-

sults for all the remaining domains. The In Turn empirical results in the Parcel Delivery

domain are presented in Figure 7.2, and are plotted on a logarithmic scale. The results

presented are averaged over 100 randomly generated conflict state specifications. Run

lengths are bound to 6.

Figure 7.2: The number of complete runs produced during traversal in the Parcel Deliv-

ery domain with each optimisation enabled in turn.

The core, unoptimised performance of our approach is represented by the No Opti-

misations bar. Each preceding bar highlights the number of complete runs generated

when each listed optimisation is enabled where smaller bars represent better results.

The Loopback optimisation is the least effective optimisation as the number of runs is

virtually identical to unoptimised performance. This may seem counter intuitive since

the set of synthesised runs in the Parcel Delivery domain is sure to contain instances

where agents undo a previous action by moving out of their initial node, and then sub-

sequently moving back. For example consider the run where Agent a1 is initially at

node1 and subsequently performs the following:

© move(a1,node1,node2)−−−−−−−−−−−−−→© move(a1,node2,node1)−−−−−−−−−−−−−→©

The result of performing this run is that Agent a1 returns to their start location (node1),

yet it does not register as a loop. The resulting initial and final state specifications

differ: the final state specification contains the literal ¬agentAt(a1,node2) which is

not present in the initial specification. As such, we expect the Loopback optimisation
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to improve as the run length increases. Similarly, the longer the runs the higher the

likelihood that the Repetitive operator optimisation will be invoked.

The Traversal and Independence optimisations produce the best results: the effec-

tiveness of these optimisations is attributed to the naive way in which successor actions

are selected during traversal. We consider all possible groundings of each action, many

of which are irrelevant. These optimisations remove these irrelevant actions from con-

sideration, resulting in far fewer successor operators. In particular, both discard the

shortest runs of length 2, thereby pruning the resulting search space significantly. The

performance of the Duplicates optimisation lies between Loopback and the Traversal

and Independence optimisations, with its effectiveness relative to the number of runs

that have been considered. As the number of runs increases the performance of the

duplicate run optimisation increases similarly.

Average Standard

Optimisation Complete Runs Minimum Maximum Deviation

Traversal (O2) 854.31 318 2829 565.40

Independence (O3) 1475.16 19 5689 1430.41

Duplicates (O4) 4268.25 602 13424 3029.20

Loopback (O6) 5683.00 2566 13611 2039.55

Table 7.5: Metrics highlighting the dependence of the number of complete runs gen-

erated during conflict traversal on the input conflict state specification in the Parcel

Delivery domain. Results are for runs of length 6 and are averaged over 100 random

conflict specifications.

Since these results are averaged over randomly generated conflict state specifications

we expect high deviations from the means. We highlight this in Table 7.5. The large

variance does not allow us to be as objective as possible regarding the performance of

each of the optimisations, since the number of complete runs generated is dependent

on the input domain and conflict specifications. There is no benefit to constraining the

forms of our conflict specifications either as single literal conflict specifications can

result in large variance in performance.

One means of reducing the dependence on input parameters is to adopt the success

rate of each optimisation as a metric that can be aggregated over different runs. In

Figure 7.3 we illustrate the success rate of each optimisation, again averaged over 100

randomly generated conflict specifications, split into two graphs to avoid the overlap

of error bars.
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Figure 7.3: Optimisation success rate with error bars indicating the standard deviation

from the mean, aggregated over 100 randomly generated conflict specifications.

The success rate results confirm our initial impressions while providing a more accu-

rate deviation bound. Loopback has a very poor success rate that is not distinguishable

from the baseline of 0. Traversal and Independence are the only optimisations able to

remove runs of length 2, where all removals by the Traversal optimisation occur due

to its reverse application as there are no intermediate operators to reorder: the first of

the two operators is reordered after the second. As is expected the performance of the

Duplicate and Repetitive optimisations increase as the length of the runs increases.

Perhaps the most interesting result from Figure 7.3 is the reduction in the success

rate of the Traversal optimisation. We don’t expect the optimisation to improve with

run length since it only considers the final operator for reordering, with all previous

operators already considered. Furthermore, as the run length increases the likelihood of

the reordered operator conflicting with intermediate operators increases. The Traversal

optimisation is therefore more likely to succeed with shorter runs.

Optimisation Success Rate % Minimum % Maximum % Standard Deviation

Traversal (O2) 46.36 37.00 53.80 3.78

Independence (O3) 42.74 28.80 52.50 4.99

Duplicates (O4) 61.40 59.74 63.81 0.89

Repetitive (O5) 51.57 39.41 70.50 7.56

Loopback (O6) 0.12 0 1.01 0.06

Table 7.6: The success rate of each traversal optimisation for runs of length 6 in the

Parcel Delivery domain.
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The success rate metric limits the variance significantly, allowing for a more objec-

tive statement regarding the performance of each optimisation. Table 7.6 highlights

the aggregations for runs of length 6 averaged over 100 randomly generated conflict

state specifications. We present the results of similar tests for the four IPC evaluation

domains. For brevity we group our results together in Figure 7.4 and follow this with

a unified discussion of the results.

Figure 7.4: The percentage of runs removed by traversal optimisations in the IPC do-

mains.

We analyse each optimisation in turn. As in the Parcel Delivery domain, the Traver-

sal optimisation is very effective removing 35% of initial runs in Depots and 60% in

the remaining domains. It is the most effective optimisations for short runs, which is

particularly appealing, since the effects of pruning at this stage are amplified. The ef-

fectiveness of the optimisation gradually reduces in all domains as runs become longer,

for reasons presented above.

The Independence optimisation is the only other optimisation that removes runs of

length 2 in all domains. While always being less effective than Traversal initially, its
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success rate increases with the run length. As runs become longer it is possible to find

larger sets of independent operators, as opposed to sets of only 2 operators initially. As

the runs increase, so does the potential size of these sets, yet interestingly, the increase

slows as run length increases. We attribute this to the fact that it is less likely that larger

sets of independent operators will be found in longer runs.

The Loopback optimisation is poor in all but the Satellites domain where it has a

success rate of approximately 20%. In order to understand this behaviour we detail the

calibrate operator from the domain description:

OPERATOR: calibrate( ?s−satellite ?i−instrument ?d−direction )

PRE: { on board(?i,?s), target(?i,?d), pointing(?s,?d), power on(?i) }
POST: { calibrated(?i) }

The calibration status of a satellite is represented by the calibrated literal. Notice

that none of the preconditions are consumed, meaning that the calibrate operator

can be applied in a repeated fashion with identical parameters, resulting in the creation

of runs of length 2 with identical calibrate operators that contain loops. This feature

is also present in the Rovers domain, but in no other.

A similar initial deviation in success rate is present for the Duplicates optimisation

in the Depots domain. In all other domains the initial success rate is 0 yet in Depots it

is approximately 13% implying that duplicate runs of length 2 are found. For this to

be the case we must be considering duplicate candidate operators. When identifying

candidate operators we identify each operator in the domain and enumerate all possible

bindings with literals in the final specification of the run. It is possible in the depots

domain to bind separately to two different literals and obtain identical bindings. Hence,

even though we bind to unique literals we identify the same binding set, and therefore

a duplicate operator.

Finally we analyse the effectiveness of the Repetitive operator optimisation. In

all domains the optimisation begins with a success rate of 0 and increases in a linear

fashion. However there is significant difference in the rate of increase. In the Logistics

and Satellites domain the optimisation ends with success rate of approximately 40%,

yet in the Depots domain the success rate is below 5%. To better understand why

the Repetitive optimisation in the Depots domain is less effective at these shorter run

lengths we compare the domain operators to the Parcel Delivery operators. Recall that

in the Parcel Delivery domain it is possible for an agent to repetitively apply a pickup

or drop operator (if the appropriate conditions hold). Each of these operators does not
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consume anything it is dependent on. If each agent were only able to hold a single

parcel at any time then the repetitive application of these operators no longer holds.

The effect is that repetitive operators are identified for shorter runs. In the Depots

domain a hoist is not available once it has lifted a crate from a surface or truck

with the implication that a hoist may only lift a single crate at any time. This restriction

results in far fewer repetitive actions found, particularly for shorter runs. For longer

runs, the repetitive combination of actions (Load,Unload or Lift,Drop) are identified.

We conclude our In Turn empirical results by emphasising the importance of re-

moving shorter runs effectively. Figure 7.5 below presents the % of complete runs

removed by the Traversal and Duplicates optimisations in the Satellites domain over

the unoptimised core synthesis results.
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Figure 7.5: The percentage reduction in number of complete runs when using the

Traversal and Duplicates optimisations in the Satellites domain.

Initially removing runs is advantageous. The success rate of the traversal optimisation

is above the Duplicates optimisation for runs of length 2 and 3 only. Eventually the

Duplicates optimisation will remove a higher percentage of complete runs than the

Traversal optimisation, yet there are benefits to a higher initial success rate.

To conclude, of all the optimisations both Traversal and Independence were suc-

cessful in all domains. As runs become longer the Duplicates optimisation becomes

more successful, until for runs of length 6 or more it is the most successful optimisa-

tion in all domains. This comes at a cost as the more runs considered, the larger the

space required to store these runs, and subsequently the more complex the process of

checking for Duplicates. The Repetitive optimisation varied: very strong in the Logis-
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tics and Satellites domains, and less so in the Rovers and Depots domains. While the

Loopback optimisation is not very effective in comparison to the other optimisations it

is still able to eliminate runs, particularly as the length of the runs increase.

7.4.3 Sequential Traversal Optimisation Results

The second part of our traversal optimisation analysis investigates how effective the

optimisations are in unison. Our presentation follows as before: we begin by present-

ing results and discussion for the Parcel Delivery domain, and then follow this by the

results of the IPC domains. We abbreviate each of the optimisations as Tr (Traversal

[O2]), I (Independence [O3]), D (Duplicates [O4]), R (Repetitive [O5]) and L (Loop-

back [O6]), and specify combinations of these optimisations as L+I+Tr. We begin with

an analysis of the number of complete runs produced during traversal. The results,

averaged over 100 randomly generated conflict specifications in the Parcel Delivery

domain, are presented in Figure 7.6. We bound the length of runs to under 15, and

terminated traversal if the number of runs exceeded 20000.

��

����

�����

�����

�����

�� �� �� �� �� �� �� �� �� ��� ��� ��� ��� ��� ���

�
�
�
�
��
��
��
�
�
�

����������

��������������

��

����

������

��������

����������

Figure 7.6: Cumulative reduction in the number of complete runs as optimisations are

sequentially enabled during traversal.

It is clear that the optimisations provide a significant cumulative benefit over core

synthesis. The core synthesis process with no optimisations exceeds 20000 complete

conflict runs of length≤ 6. We have graphically represented up to 2000 runs for clarity.

The unoptimised process violates this bound at run length 4, the Traversal optimisation

doubles this limit to runs of length 8, while Independence and Loopback allow runs of

length 9 and discarding duplicates increases the maximum run length to 12. Finally, by

including repetitive operators we significantly reduce the number of runs. The result is
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that, with all optimisations enabled, we find 256 complete runs of length up to 15.

We briefly discuss the variance of these results. Figure 7.7 individually presents the

Traversal and cumulative Traversal and Independence results. The shaded area repre-

sents the range between the maximum and minimum values recorded, and the error

bars present the standard deviation. Notice that the minimum number of runs is 0 since

for some conflict specifications the optimisations remove all runs from consideration.

+ +

Figure 7.7: Variance in the run count with the Traversal and Independence optimisa-

tions. The shaded area represents the range between maximum and minimum values.

As with the In Turn optimisation analysis it is difficult to predict what effect an opti-

misation has on the traversal process. An analysis of the success rate of each optimi-

sation allows us to better gauge performance. Additionally, since the optimisations are

sequentially applied we are able to identify what impacts preceding optimisations have

on a subsequent’s success rate. Figure 7.8 presents the results split into two charts.

Figure 7.8: The success rate of sequentially applied traversal optimisations in the Parcel

Delivery domain.
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Figure 7.9: The average success rate of sequential optimisations with the area between

the maximum and minimum shaded and standard deviation error bars depicted.

We plot the relative benefit of introducing each new optimisation: it is not the case

that the combination of Loopback, Traversal and Independence (L+Tr+I) performs

worse than just Traversal, but rather that the improvement by introducing Loopback is

minor. This confirms our initial results: in the Parcel Domain there is little to be gained

through the Loopback optimisation. Sequences on the chart terminate at different run

lengths, on account of the maximum run limit of 20000. Only on the introduction

of the Duplicates optimisation is the limit not reached. The increase in run lengths

indicates that fewer runs are considered as each optimisation is introduced.

By comparing the Sequential success rate results with the In Turn results in Figure

7.3 it is clear that the optimisations are not independent. Only the Traversal optimi-

sation maintains its success rate as it is the first optimisation applied. The sequential

introduction of the Independence optimisation shows a reduced success rate since the

reverse application of the Traversal optimisation removes runs of length 2 with inde-

pendent operators. As run lengths increase the difference between the success rates of

the Independence optimisation for the In Turn and Sequential results decreases. The

Duplicates optimisation is also affected by preceding optimisations. When executed

sequentially the Independence and Traversal optimisations reduce the success rate of

the Duplicates optimisation, emphasised by the drop in success rate of the Duplicates

optimisation from approximately 20% when applied alone to 0% when applied se-

quentially for runs of length 3, although the success rate does increase as run length

increases. Similarly, the Repetitive optimisation increases for runs up to length 8 but

then levels between 50% and 60%.

To summarise the performance of sequentially applied optimisations in the Parcel



7.4. Part B - Optimisations 189

Delivery domain we illustrate the deviations from the mean in Figure 7.9. The shaded

area is the bound between maximum and minimum values and the error bars repre-

sent the standard deviations. There are two conclusions to be drawn from these charts.

Firstly, the success rate metric reduces the deviation due to its independence from the

conflict state specifications and number of complete runs generated. Secondly, from

the samples taken over 100 conflict state specifications we are afforded tight bounds

on the success rate of all optimisations except for the Repetitive optimisation. Where

the other optimisations end with deviations of under 5% from the mean the Repetitive

optimisation had a deviation of 13%. From this we conclude that the Repetitive op-

timisation has more of a dependency on the input conflict state specifications in the

Parcel Delivery domain than the other optimisations.

Figure 7.10: The average percentage success rate achieved through the sequential

introduction of optimisations in the IPC domains.

In Figure 7.10 we present the success rate results for sequential optimisations in the

IPC domains with traversals limited to 20000 complete runs. The Logistics domain

is the simplest for traversal purposes followed closely by the Satellites domain. With
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all optimisations enabled, traversal in both domains is not inhibited by the run limit.

For runs of length up to 10 the success rates of optimisations in the Rovers domain is

very similar to those in the Satellites domain, yet for longer runs the Rovers domain

is bound for two reasons: Firstly, the repetitive optimisation is not as effective in the

Rovers domain leading to fewer runs being discarded. Secondly, and more importantly,

the branching factor of the search traversal in the Rovers domain is larger, due to the 9

domain operators as opposed to Satellite’s 5. Traversal in the Depots domain is poor in

comparison. Here no runs exceed length 7 without violating the imposed run bound.

There is significant room for improvement in the way optimisations remove runs

from consideration. For example an entire third class of optimisation could deal with

intelligently constructing the set of candidate operators instead of simply enumerat-

ing all operators and subsequently attempting to reduce the run set, thereby reducing

the need to construct runs that are subsequently removed. While we present further

discussion of future work in Section 9.3 we briefly illustrate the benefit of devising

optimisations that perform well initially. Figure 7.11 is a cumulative plot highlighting

the percentage of runs removed by the sequential addition of each optimisation, ap-

plied in the Logistics domain. The Processed Runs segment refers to the percentage

of runs that were not removed by a traversal optimisation. The percentage of runs re-
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Figure 7.11: The cumulative percentage of runs removed by sequentially applied traver-

sal optimisations in the Logistics domain.

moved by the Traversal optimisation itself is impressive, not because it had the highest

success rate overall, but because it had the highest success rate initially. If the goal of

any future optimisations is to reduce the number of complete runs then it pays to be

effective initially for short runs.
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7.4.4 Planning with Limited Knowledge

We now present an analysis of the Planning with Limited Knowledge optimisation

performance. This optimisation is performed on each run prior to grounding, and runs

are assumed reachable if the optimisation is successful.

We present the success rate of the optimisation not as a single metric but as the

number of attempts made by the optimisation and the number of these that are suc-

cessful. We ran the Parcel Delivery domain on grids of size 2x2, 3x3 . . . 21x21, and

ran each of the IPC domains on the same set of 20 problem instances. We kept running

totals of attempts and successes across 100 randomly generated conflict specifications

for each, and present the results in Figure 7.12. For the purposes of this test we limited

the maximum number of traversal runs to 2000.
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Figure 7.12: Planning with Limited Knowledge attempts and successes.

The success rate of the optimisation is good, ranging from 22% in the Depots domain

to 64% in the Satellites domain. Both the Depots domain and Parcel Delivery do-

mains have low success rates for this optimisation, highlighting the fact that in these

domains additional problem instance knowledge is required to find alternative plans

during reachability analysis. In the Depots domain this might correspond to what ad-

ditional hoists are at a particular distributer, or the number of palettes available

to be loaded. In the Parcel Delivery domain this knowledge is related to the topology

of the grid world. In these situations the reachability optimisation is less effective.

Compare this with the Satellites or Logistics domain where there are fewer con-

straints imposed by the problem instance. A satellite can change direction at any point,

irrespective of where it is facing. Similarly, vehicles in the Logistics domain can move

to any location arbitrarily. The lack of reliance on additional domain knowledge results

in the optimisation being more effective in these domains.
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7.5 Part C - A Model Checking Comparison

This final evaluation part identifies whether our conflict-rooted synthesis implemen-

tation (CRS) is superior to a model checking approach that utilises NuSMV. We are

interested in the performance of conflict-rooted synthesis as a whole and hence treat

the approach as a black box component without configuring or adjusting internal pa-

rameters. Our analysis is a two step process: we present a theoretical comparison and

follow this with empirical results to reaffirm our theoretical conclusions. The aims and

objectives of this empirical evaluation component are:

1. Compare the computational requirements of CRS with NuSMV to determine the

benefits of adopting the proposed approach.

2. Compare the quality of the synthesised norms.

We begin with the theoretical comparison of the approaches.

7.5.1 Theoretical Comparison

We perform a complete theoretical comparison from the input to the approach to the

output produced. We begin by analysing the domain and conflict state specifications

provided to each algorithm. We compare the expressiveness of each representation

and comment on how properties of the input affect the norms produced. Finally, we

illustrate that the dependence on initial system states is a further key difference between

the two approaches.

We begin by revising the model checking approach. van der Hoek et al. (2007)

showed how a model checker can be used to solve the problem of prohibitionary norm

synthesis. The basis of this approach is that by encoding conflict state avoidance as a

CTL expression a model checker can find a computation which is conflict-free. Given

this computation a set of norms are synthesised that regiment the behaviour of all

agents. We showed that if we wish the computation to satisfy conditions regarding

conflict-free state reachability, these can be encoded into the checker using fairness

constraints. The resulting computation avoids conflict states but ensure that all speci-

fied conflict-free states are reachable.

7.5.1.1 Domain Representation

Let us begin by analysing the domain representation used by each approach. Conflict-

rooted synthesis takes, as input, a set of PDDL files. We utilise only the domain opera-
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tors in order to synthesise generally applicable norms and then incorporate the problem

instance when checking goal reachability. NuSMV requires the specification of a finite

state automaton describing the global behaviour of the system, including the behaviour

of agents within it. There are no abstract operator schemata: actions are encoded as

transitions between states in the model where each edge identifies a unique action.

The automaton is constructed from an initial state and fully describes the system from

that point. There are two significant differences between the domain representations

adopted by each approach:

1. CRS uses parameterised operator schemata providing a more concise means of

specifying agent actions. NuSMV models are more specific and verbose relying

on a propositional representation and explicit transition relations to define the

finite state automata.

2. CRS takes advantage of the separation between the operator set and initial state

information to synthesise norms that are independent of the initial state of the

system, while NuSMV is implicitly bound to a single initial system state from

which the model was generated. The result is that norms synthesised are domain-

specific in CRS, and problem-specific in NuSMV.

7.5.1.2 Conflict Specification

Conflict-rooted synthesis restricts the expressiveness of its conflict specification, al-

lowing only ungrounded state specifications without any temporal or branching re-

lations. The resulting conflict specifications are state-centric, and cannot be used to

model conflict based on action. For example, we cannot define a conflict state to be

the third sequential state where an agent in the Parcel Delivery domain is holding the

same parcel.

Model checking provides a significant increase in expressiveness as CTL includes

state information and temporal modalities to reason about future states of the sys-

tem. ATL is even more expressive as it can reason about specifications brought about

through compliance by a subset of the system agents. These specifications are strictly

more expressive than our approach, yet are limited in not supporting any quantification

over variable symbols. A concise conflict specification such as:

{agentAt(a1,X),agentAt(a2,X)}
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must be enumerated beforehand to remove the variables, as in:

{agentAt(a1,node1),agentAt(a2,node1)}
{agentAt(a1,node2),agentAt(a2,node2)}
{agentAt(a1,node3),agentAt(a2,node3)}
. . .

Additionally a CTL model checker is required even if the conflict specification does

not require temporal or path modalities, since the expression over the social objective

is

S,s0 |= EGϕ

where ϕ represents the social objective. Even if ϕ were a simple Boolean logical

expression, the resulting expression is still a CTL expression due to the preceding path

and temporal quantifications, implying that CTL model checking is always required

and thereby reducing the set of appropriate model checkers.

7.5.1.3 Encoding Reachability

A comparison is not complete without mentioning the mechanisms each approach

adopts to encode reachability. This is in some ways an unfair comparison. Conflict-

rooted synthesis is an approach specifically engineered with reachability analysis as

a primary consideration, while a model checker is a general purpose tool in which

reachability analysis is encoded into the problem. Regardless of these differences, it

is an important consideration since reachability analysis is essential when synthesising

useful norms.

CRS ensures goal reachability by identifying conflict-free alternative plans for each

run generated. It is only interested in the conflict-free states that are direct precursors

or successors of conflict states and not interested in showing reachability between all

conflict-free states. In order to ensure similar reachability requirements using a model

checker an enumeration of the set of conflict-free states is required. van der Hoek

et al. (2007) encode focal states into the social objective, yet since we assume that

all conflict-free states are focal it follows that every joint conflict-free state is focal

and must be encoded as input into the model checker. There are two issues with this

approach:

1. The resulting expression is potentially very large as it grows with the number of

joint conflict-free system states.
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2. An automated mechanism is required to identify these conflict-free states so that

they can be fed as input into the model checker.

The second point above is important. Goal reachability must ensure that goals that

were reachable in the original system are still reachable in the normative. Put differ-

ently, it is not the case that all conflict-free states must be reachable since the resulting

norms might be overly restrictive. Requiring that a conflict-free state that is not reach-

able in the original system be reachable in the normative system is clearly incorrect. It

is not sufficient to list all conflict-free states, but rather the set of reachable conflict-

free states. The task is therefore not simply an enumeration of the state space but rather

a plan enumeration in order to identify all of the conflict-free states that are reachable.

Conflict-rooted synthesis has three advantages over this approach:

1. The search for conflict-free states is an intrinsic component of the algorithm so

no additional search is required.

2. It deals with unground incomplete state specifications, avoiding a compulsory

complete state enumeration.

3. It maintains the exact reachability properties of the original system, ensuring that

candidate norms are not too restrictive.

7.5.1.4 Social Norms Produced

Let us compare the norms produced by each method. Recall that the output of the

model checking approach is a single computation dictating a master plan: a sequence

of actions, for all agents in the system, where no deviation is allowed. We argue that

there are significant issues with this approach:

1. Agent autonomy is greatly reduced since agents are forced to follow a sin-

gle course of action, regardless of whether this course becomes impossible to

achieve.

2. The norms are prohibitions conditional on complete states and are not abstracted

away from the state representation. The resulting norms are in no way ab-

stracted away from the propositional domain representation, often resulting in

more norms than system states.

3. The norms prohibit all actions not prescribed by the master plan, which either

requires a norm representation language able to deal with negations of actions,
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or alternatively requires an enumeration of all prohibited actions possible in each

system state.

4. The master plan revisits system states. In order to decide what action to perform,

agents must keep a history of what actions have already occurred.

5. If an agent deviates from the master plan then the sequence is broken and it is

unclear what behaviour the other agents should perform.

Conflict-rooted synthesis does not suffer from these drawbacks. We preserve agent

autonomy by prohibiting only the actions leading to conflict and do not pre-specify

behaviour in conflict-free states. Agents are able to achieve any goals, or to adapt to

new domain knowledge without recalculating the set of norms. Norms are conditional

on sets of system states, resulting in far fewer, more concise norms.

Furthermore, since the computation produced by the model checker contains loops,

every conflict-free state is visited infinitely often. The property that every conflict-free

state is reachable from every other is unrealistic in practice.

Proposition 7.5.1. Reachability between focal states is unrealistic in systems where

goal states are terminal.

Proof. Consider a simple version of the Parcel Delivery domain where a single par-

cel is placed, and the agent that delivers this Parcel receives maximum utility. This

configuration is similar to achieving check mate in a game of chess. Once this state is

achieved the system no longer continues since the core objective has been satisfied. If

we consider a single computation that satisfies this objective then it is clear that once

the system is in this terminal state it is no longer possible to adapt it to return to the

initial state. Since these terminal states were reachable in the original system they must

still be made reachable in the normative system. Enforcing an infinite computation that

dictates a master plan cannot satisfy this requirement. �

7.5.1.5 Space and Time Complexity

In this work we make the assumption that the conflict state specification identifies a set

of states that is smaller than the conflict-free set. We traverse this conflict space, avoid-

ing grounding where possible, and incorporate state abstractions to reduce the search

space further. All these factors ensure that we perform an efficient search avoiding a

compulsory enumeration of the state space.
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NuSMV is unable to take advantage of these factors since the domain model is

fully enumerated. Furthermore, it searches the entire conflict-free state space rather

than an abstract representation of the conflict state space. The model checker scales

poorly with respect to the size of the domain since the search for a single computation

through the entire conflict-free state space is akin to finding a master plan for all agents.

On small domains we expect the model checker to be very efficient due to two factors:

1. NuSMV is a mature model checker adopting techniques that have been thor-

oughly researched. The implementation is native and highly optimised.

2. The enumeration of the conflict-free states is performed prior to model checking

and the propositional finite state automaton reduces the need for grounding.

It is not possible to fully analyse how these two approaches compare on practical do-

mains without performing an empirical evaluation. Next we present the empirical re-

sults of our tests to attempt to identify whether conflict-rooted synthesis provides a

tangible benefit over a model checking approach to norm synthesis.

7.5.2 Part C - Evaluation Plan

We begin by investigating how CRS and NuSMV compare first for small instances of

the Parcel Delivery domain, subsequently on larger instances, and finally on the IPC

domains. In this entire part we evaluate conflict-rooted synthesis with all optimisations

enabled and monitor the computational time and number of norms generated.

For each domain, we construct an evaluation set for each unique tuple of input.

As neither of the approaches are subject to non-determinism, and since the problem

instances are provided, we limit each set to 10 iterations, where each iteration repre-

sents a single run of each synthesis approach with identical input domains, problem

instances and conflict specifications. The comparison metrics for each test are then

aggregated over all instances.

The input for each approach is a two dimensional space, where the conflict state

specification parameter is varied along with the problem instances of a particular do-

main. Average behaviour over all domains can then be computed by aggregating the

results obtained from each domain. Conflict specifications are randomly generated as

before. Table 7.7 presents a summary of the configuration for this component.
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Domains Parcel Delivery World IPC Domains

Problem Instance Set Grid sizes from 2x2 . . . 10x10 IPC Domain Sets

Conflict Specification 100 Random Per Problem 100 Random Per Problem

Optimisations All

Computational Time
Measured Metrics

Number of Synthesised Norms

Table 7.7: Part C - Empirical Evaluation Setup for Model Checking Comparison

7.5.3 Empirical Results

We take this opportunity to emphasise that the analysis of these two approaches is

not a direct head-to-head comparison. Section 7.5.1 shows that, even though both

approaches produce norms, they do so in very different ways. Neither the input to the

algorithms, the methods adopted nor the resulting norms are identical in representation

or expressivity. In order to standardise the input to each process we provide CRS

with additional domain knowledge regarding the number of objects in each problem

instance. This allows CRS to bound the traversal process, producing norms that are

guaranteed to hold in all instances of the domain with objects less than or equal to

the limit provided, and to provide a better comparison of the output of each of the

algorithms. We present the results next.

7.5.3.1 Computational Time

We first illustrate the benefits in computational time afforded by CRS in the Parcel

Delivery domain and subsequently in each of the IPC domains. We begin by monitor-

ing the change in computational time when the size of the grid world is increased in a

single dimension, with the conflict specification:

SC = {agentAt(a1,node2),agentAt(a2,node2)}

where nodes are numbered linearly according to the grid topology. We do not consider

parcels in the domain and restrict agents to the move operator. The results are presented

in Figure 7.13.

The slight increase in CRS computation times with increasing grid size is due to

increased processing times required to parse the larger problem instances. The same

number of runs are generated for each of the problem instances, and an identical num-

ber of reachability checks are performed in all but the 1x2 grid. NuSMV scales poorly,

taking over 7 seconds to synthesise norms in the largest grid size, as opposed to the
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Figure 7.13: A comparison of the increase in computation times produced by increasing

the size of the grid in the Parcel Delivery domain.

160ms that CRS took. As we have shown theoretically this is expected since NuSMV’s

search is dependent on the conflict-free state space. As the graph size increases more

complex and longer master plans are investigated in the hope of finding a single com-

putation that traverses all conflict-free states. We verify this analysis by observing the

number of norms generated by each approach. The conflict-rooted synthesis approach

generates exactly 2 norms in each problem instance, independent of the underlying

topology. The number of norms produced by NuSMV is presented in Figure 7.14.

Figure 7.14: The number of norms produced by NuSMV for increasing grid sizes.

The model checking results are deterministic in the sense that the same number of

norms are generated for repeated runs of the model checker, however they are not min-

imal as can be seen by the sharp increase in norms for the 1x12 size grid. The sheer

number of norms produced illustrates why the model checking approach scales so

poorly. By producing over 1200 norms in a 1x20 grid the model checker has searched

and found a computation composed of 1200 actions, which is far more than the num-
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ber of states in the system. This search is dependent on the size of the enumerated

joint conflict-free state space. By increasing the grid width 10 fold from 2 to 20, we

increased the size of the set of joint states 100 fold from 4 to 400 and the set of synthe-

sised norms produced by the model checker from 6 to 1260.

Let us now analyse the change in computational time produced by increasing the

grid size in two dimensions. We begin with a 2x2 grid size and increase to a 10x10 grid

size. Furthermore, instead of the static conflict specification used above, we introduce

a dynamic alternative:

SC = {agentAt(a1,X),agentAt(a2,X)}.

As the grid size increases so too does the conflict state space, since we are prohibiting

concurrent access in all nodes of the graph. We present the computational time results

in Figure 7.15. Notice we have presented a logarithmic plot of the results, and we omit

the dynamic NuSMV results since they are indistinguishable from the static.

Figure 7.15: A comparison of the increase in computation times produced by increasing

the size of the grid polynomially in the Parcel Delivery domain.

The largest grid size with which we are able to synthesise norms using NuSMV in the

Parcel Delivery domain with agents only permitted to move, is 5x5. This computation

takes 501 seconds to complete, with the model checker consuming over 6 gigabytes

of memory to construct the model1. The implementation is not able to deal with the

increase in the enumerated joint state space with the complexity unable to be bound

by an exponential function of the form O(cn) where c is a constant and n increases

with the size of the system. CRS is a less efficient implementation, but in practice the

1In order to determine this figure additional memory was installed in our test machine.



7.5. Part C - A Model Checking Comparison 201

computation time required for larger grid sizes grows more favourably. For systems

with a small number of states the model checker’s efficiency of implementation is able

to produce output in reasonable time, but even the slightest increase in system size sees

NuSMV’s time increase exponentially. The approaches are in different complexity

classes. NuSMV cannot be bound above by any exponential function of the form cn,

while CRS is bound above by the same function and is O(cn).

Finally, we comment on the difference between static and dynamic conflict state

specifications in CRS. The size of the grid worlds grow polynomially as we increase

the grid size. For the dynamic conflict state specification this implies at least a cor-

responding polynomial increase in the number of reachability checks performed (the

traversal process is identical for both). However for the static conflict specification

we perform the identical number of reachability checks for all grid sizes, implying an

increase in the time taken to perform each reachability check. This is attributed to the

increase in the size of the problem instances, resulting in more time required for FF to

instantiate the operator schemata into ground, STRIPS-style actions prior to planning.

Since the size of the domain is increasing polynomially, so too is the set of actions and

the corresponding planning initialisation time.

We conclude computational time analysis by presenting the results for each of the

IPC domains in Table 7.8. We present the mean time over 100 randomly generated con-

flict specifications, shading cells depending on whether all specifications were solved,

a portion were solved, or none were solved. In these tests we limited the plan time

for each reachability analysis check of a grounded run to 5 seconds in order to bound

the amount of time required to run the tests, and to simulate realistic computation time

requirements2. Recall however that the anytime nature of our algorithm allows us to

be certain of reachability up to the point where the planner exceeded the time limit,

ensuring that plans of length less that or up to the current point are guaranteed to be

reachable. NuSMV was not bound in any way except by the resources of the test

machine. Additionally, NuSMV performed no reachability checks on the constructed

model, and the times reported do not include the PDDL to SMV domain translation.

As such, the NuSMV results are best case times.

The Logistics domain is the simplest test domain, and NuSMV is able to solve

the first 9 problem instances while CRS solves all problem instances with no bounds

exceeded. The Satellites domain is particularly challenging for both approaches, with
2The figure of 5 seconds appropriately limits the execution time of the planner. The heuristic search

employed by FF typically requires far less time to complete, while the fallback breadth first search
requires far more. This time limit is sufficient to allow the heuristic search to complete.
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– No Results Partial Results [Planner Timeout] Partial Results [Run Limit]

Times (ms)

Logistics Satellites Rovers Depots

Problem NuSMV CRS NuSMV CRS NuSMV CRS NuSMV CRS

1 54814 206 92 184 169 652 679 2596

2 56169 193 9874 2306 86 1326 96794 58759

3 53182 158 – 18428 2030 3281 – 97152

4 58982 180 – 5666 2345 6144 – 96546

5 54287 165 – 85903 79594 11362 – 63683

6 53207 189 – 33953 – 15171 – 63145

7 52723 197 – 21196 – 34959 – 57165

8 53604 161 – 32960 – 316983 – 62510

9 53993 170 – 41980 – 62229 – 56535

10 – 315 – 123427 – 27715 – 56246

11 – 276 – 53836 – 81258 – 60681

12 – 319 – 176536 – 23520 – 60352

13 – 219 – 150137 – 41787 – 57086

14 – 232 – 239478 – 94441 – 60342

15 – 452 – 718131 – 30599 – 50723

16 – 1438 – 565845 – 16710 – 44755

17 – 608 – 343207 – 25140 – 61090

18 – 1471 – 189672 – 26405 – 55948

19 – 830 – 238083 – 86920 – 51243

20 – 502 – 378319 – 91576 – 52530

Table 7.8: IPC computation times. Empty cells represent runs where NuSMV produced

no output. Lighter shaded cells represent runs where CRS solutions were approximate.

NuSMV solving the first two domains, and CRS the first 4. Both approaches fare better

in the Rovers domain, with NuSMV solving 5 and CRS half of the problems. The

results for the Depots domain confirm what we deduced from the traversal optimisation

analysis: Depots is challenging to any search based approach. Both NuSMV and CRS

solve the two simplest Depots problems.

Figure 7.16: The number of specifications where reachability analysis is not completed

due to planner timeout.
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It is not clear from Table 7.8 how many of the conflict specifications could not be solved

by CRS. The shaded cells simply indicate that at least one of the conflict specifications

resulted in the planner exceeding the time limit. Figure 7.16 details the number of

conflict specifications (out of the total 100 randomly generated) that are unsolved for

each problem in the Satellites and Rovers domains. We have omitted the Depots and

Logistics domains as the planner did not time out in any of these.

Conducting reachability planning in the Satellites domain is a complex task, with

CRS only able to solve 77.5% of the conflict specifications encountered. Planning in

the Rovers domain is considerably simpler, with the number of unsolved specifica-

tions topping 5 only for problem 18. In total CRS solved 99.1% of the specifications

across the Rovers domains. Given more time to plan, reachability analysis would have

completed the remainder.

Finally, we discuss the results obtained for the Depots domain. None of the reach-

ability analysis planning steps exceeded the 5 second limit, yet only the first two prob-

lem are solved entirely by CRS. In all other problems CRS is limited not by planning

time, but by run limit. The result is that, in at least one conflict specification in each

subsequent problem instance, the traversal process exceeds the run limit. Reachabil-

ity analysis continues on the set of produced runs, but there is no guarantee that the

resulting norms ensure goal reachability in the normative system. One reason the plan-

ner takes more time on certain problems is that when the planning heuristics fail to

identify a plan the planner falls back onto a far less efficient A∗ search of the state

space. The tendency for the Depots domain to exceed the practical run limit is also not

surprising as the traversal optimisation analysis showed that the run count grows far

more quickly in the Depots domain than any other. Even with the additional problem

instance knowledge assumed in these tests CRS is not able to fully solve 18 of the 20

Depots domains.

To conclude, we have shown that NuSMV performs very well on small domain

instances. However, as the domain size increases the state enumeration performed

leads to NuSMV failing to construct the model and subsequently to synthesise any

norms. While CRS is not as efficient an implementation the benefits of a localised

search are clear. CRS is able to synthesise norms in all problem instance that NuSMV

is, and in many problem instances where NuSMV fails. Additionally, the anytime

nature of our algorithm allows for partial solutions to be drawn at any time during the

process. Finally, should CRS be afforded more execution time then it would solve the

more difficult problems too.
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7.5.3.2 Norm Quality

In order to evaluate the quality of norms we compare the number of norms produced

by each synthesis approach. Recall that we define higher quality norms to be abstract

and generally applicable. Each of these more abstract norms govern interactions in nu-

merous system states rather than each dictating behaviour specific to individual states.

A direct result of more abstract norms is that fewer norms are required to bring about

the same social objective.

We compare the number of norms produced by each approach, beginning with

the average number of norms synthesised for the IPC domains in Figure 7.17. The

number of norms is a function of the number of contributing actions, and hence the

size of the conflict state specification. In all but the Depots domain the number of

norms grows linearly with respect to the conflict specification size, since in all other

domains an additional literal introduces only a single new contributing operator (and

hence a single new norm), whereas in Depots more operators are often introduced. For

example, a hoist is available if it Loads a crate onto a truck or Drops a crate onto a

surface. The literal available is contributed to by both operators.

Figure 7.17: The increase in the number of synthesised norms for conflict specifications

of increasing length, where the length is the number of literals in the specification.

Interestingly, even with this increase in the number of contributing operators the aver-

age norm count is slightly over 20 for conflict specifications of size 10 in the Depots

domain, and even lower for the other IPC domains. We know from our traversal results

that these norms correspond to thousands of complete conflict runs, but we also know

that these small sets of norms prohibit every one of the complete runs.

Synthesising norms for arbitrary IPC domains is not possible without enumerating

all reachable states. Previously, in Figure 7.14 we have already presented the norm
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Grid Size 2x2 2x3 3x3 3x4 4x4 4x5 5x5

NuSMV 24 62 160 310 554 896 1937

CRS 2 2 2 2 2 2 2

Table 7.9: A comparison of the number of norms produced by the CRS and NuSMV

approaches in the Parcel Delivery domain.

count for varying grids in the Parcel Delivery domain where agents are not permitted

to collide. Here, NuSMV synthesises 6 norms in a 1x2 grid, but 1260 in a 1x20 grid.

This growth is even further emphasised as we increase grid sizes in both dimensions.

Table 7.9 presents these results.

The number of norms synthesised by NuSMV appears extreme. A closer inspection

of the synthesised norms is required. Let the conflict specification be:

SC = {agentAt(a1,X),agentAt(a2,X)}.

In a 2x2 grid CRS synthesises the following generally applicable norms based on the

two contributing actions, where a1 moves into conflict or where a2 moves in:

〈
{agentAt(a1,X′),agentAt(a2,X),conn(X′,X)}, move(a1,X

′,X)
〉

〈
{agentAt(a2,X′),agentAt(a1,X),conn(X′,X)}, move(a2,X

′,X)
〉
.

NuSMV produces a master plan dictating exactly what each agent should do in each

state of this system. For the 2x2 grid the sequence of actions is:

1. move(agent2,node2,node4) 13. move(agent2,node1,node3)

2. move(agent2,node4,node3) 14. move(agent2,node3,node4)

3. move(agent2,node3,node4) 15. move(agent2,node4,node3)

4. move(agent1,node1,node3) 16. move(agent1,node2,node4)

5. move(agent2,node4,node2) 17. move(agent2,node3,node1)

6. move(agent2,node2,node1) 18. move(agent2,node1,node2)

7. move(agent2,node1,node2) 19. move(agent2,node2,node1)

8. move(agent2,node2,node4) 20. move(agent2,node1,node3)

9. move(agent2,node4,node2) 21. move(agent1,node4,node2)

10. move(agent1,node3,node4) 22. move(agent2,node3,node4)

11. move(agent2,node2,node1) 23. move(agent1,node2,node1)

12. move(agent1,node4,node2) 24. move(agent2,node4,node2)

For each of these actions a norm is synthesised prohibiting all other action. The set

of synthesised norms is very specific to the particular domain and problem instance,

and the autonomy of agents is removed entirely. However there is an additional prop-

erty with norms generated from this master plan: in order to select which operator
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Figure 7.18: An automaton describing the normative behaviour of two agents (A1, A2)

in a 2x2 grid.

to perform in a particular state the history of the system must be kept. Consider the

automaton generated from the above master plan, illustrated in Figure 7.18.

The start state has Agent a1 at node1 and a2 at node2. Once the first action in the

plan is performed the system transitions to the state where a2 is now at node4. We

know the next action to be 2 since we have the knowledge that we have just performed

action 1. However, without this knowledge it is unclear whether to perform action 2,

4, or 24. Not only are the norms generated by the model checking approach overly

restrictive, but they require knowledge of the history of the system.

7.5.4 NuSMV Memory Analysis

So far we have only reported that NuSMV was not able to synthesise norms, but we

have not mentioned the reason. In our tests when NuSMV failed to synthesise norms

this was due to the test machine not having sufficient memory for the model checker

to build the model.

Consider the square grid tests conducted using the Parcel Delivery domain, where

agents were restricted to only moving. Here we are unable to retrieve results for the

5x5 Parcel Delivery Domain on our test machine due to the process exceeding the ma-

chine’s available memory. Executing the model checker on a machine with additional

resources did allow us to synthesise norms. In the 5x5 Parcel Delivery domain the

model checker synthesised 1937 norms. Once the model was loaded the process occu-

pied 6.291GB of memory. Yet for a 2x2 grid the model checker consumed a negligible

amount of memory. The super-exponential time performance of the model checker can

be directly correlated to the amount of memory it is consuming. Figure 7.19 illustrates

how memory consumption grows as grid sizes are increased from 2x2 to 5x5, not in
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terms of process memory but rather in terms of the size of the model itself.

Figure 7.19: The increase in allocated nodes used to construct the NuSMV model with

increasing Parcel Delivery domain sizes.

This behaviour is common in approaches that enumerate the state space. The trade

off between scalability and efficiency is common too in automated planning. Rather

than plan at the more complex abstract operator level many planners (including FF)

enumerate the state space representation because planning with ground terms and op-

erators is more efficient. This approach has its limitations as the size of the domain

grows. The same limitations are present when using NuSMV to synthesise norms.

Even though the checker itself is highly optimised and efficient, once the size of the

domain scales beyond a manageable point model checking is no longer possible.

7.6 Conclusion

We claim that conflict-rooted synthesis is a more efficient approach to synthesising so-

cial norms that produces higher quality results. To validate these claims we compared

CRS to NuSMV, finding that while NuSMV is superior on small problems, CRS is

more efficient when problems increase in size. The anytime nature of our algorithm

ensures that in situations where CRS exceeds resource limitations we are still able to

place some guarantees for the norms synthesised. Furthermore, the norms synthesised

are conditional on sets of system states, resulting in fewer norms being required to en-

force the social objective. CRS is susceptible to scalability problems in systems with

many operators, or with operators that contain many parameters, as illustrated by the

poor performance in the Depots domain.

We presented a comprehensive analysis of the proposed optimisations, investigat-

ing the standalone and cumulative effects of each one. The benefits of the optimi-
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sations are clear, as they reduce the resources consumed during traversal, and subse-

quently reduce the number of reachability checks performed. The breadth-first nature

of the traversal search rewards optimisations that reduce the number of runs early in

the traversal: we showed that the Traversal and Independence optimisations were con-

sistently more effective than the others, across all benchmark domains.
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Discussion

The discussion of conflict-rooted synthesis is separated into three sections. The first

gathers the evidence presented, both theoretical and empirical, and discusses the find-

ings of this work in the context of the thesis research statement to judge whether or

not the thesis hypothesis holds. The second section details a set of extensions to this

work that adapts conflict-rooted synthesis in order to apply it to new classes of prob-

lem domains. Finally, the third section discusses the significance of this work in the

fields of Multiagent Systems, Automated Planning and Artificial Intelligence in gen-

eral. Throughout this discussion chapter we address common criticisms explicitly,

through individual analysis of each point in turn.

It is important to clarify the claims of this work. Firstly, a scalable approach to

synthesising social norms is compulsory both for designers and for norm autonomous

agents. We argue goal reachability must be incorporated into norm synthesis, but high-

light situations where utilising focal state knowledge results in theoretical and practi-

cal issues. We introduce a new description of the synthesis problem that ensures goal

reachability without any explicit goal knowledge, and we develop conflict-rooted syn-

thesis as a solution to this problem which is superior to the model checking approach

analysed in the evaluation.

8.1 Conflict-Rooted Synthesis

Synthesising norms in the absence of goal knowledge is a novel problem that differs

from related problems in the literature. We show that our approach to solving this

problem has a number of advantages over adopting a model checking approach. For

the purposes of discussion we reiterate our hypothesis:

209
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We can devise an algorithmic process that automates the synthesis of so-

cial norms given a declarative description of a planning domain and a

specification of undesirable conflict states so that:

1. the process is more efficient than state enumeration approaches, since

a complete joint state enumeration is not always necessary,

2. the norms produced are of a higher quality as they are fewer, more

abstract and generally applicable, and

3. the norms produced do not prevent agents from achieving their goals.

We argue that conflict-rooted synthesis is a superior technique for synthesising social

norms when compared to a model checking approach, as it is more computationally

efficient, produces higher quality norms and can provides better coverage as it synthe-

sises correct norms where a model checking approach fails. We reiterate our arguments

for each of these points next, and provide possible counter arguments for discussion.

8.1.1 Efficiency of Abstract Localised Search

Conflict-rooted synthesis is more efficient than competing approaches based on propo-

sitional state groundings and enumerations for two reasons:

1. A localised search in the conflict state space means a conflict-free state space

search is avoided.

2. Abstract operator schemata facilitate a more abstract search, avoiding a com-

pulsory enumeration of individual states.

Chapter 7 showed that CRS scales more favourably than NuSMV, when evaluated

against a set of challenging benchmark domains from the planning literature. In small

domains NuSMV produces results more quickly than CRS, and consumes fewer re-

sources.

. Would enumerating the system states produce a simpler representation with which

to synthesise norms more efficiently?

Planning research has shown that grounding actions into propositional representations

is an effective way of simplifying plan synthesis. This technique, commonly used by

leading planners such as FF, simplifies the representation of the domain at the cost of
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an increase in representation size. There are three reasons why such an approach is not

suitable for norm synthesis:

• NuSMV showed that the cost of enumerating the domain prior to synthesis is an

inhibiting factor, even for small domains, resulting in the entire synthesis process

failing during the grounding process.

• CRS performance is dependent on the number of runs generated during traversal.

An abstract specification search produces fewer runs than a state search, enabling

CRS to process larger domains than if grounded sequences were considered.

• Abstract search is not only beneficial from a computational perspective, but is

key in generating abstract norms. An approach that grounds the domain prior to

synthesis is likely to discard the knowledge needed to synthesise abstract norms.

Importantly, this discussion highlights that approaches used in plan synthesis may not

be beneficial to conflict-rooted synthesis. Optimisations in planning commonly relax

the problem domain in the hope of efficiently identifying a single plan, yet the same set

of optimisations are not effective for conflict-rooted synthesis since traversal searches

not for a single plan, but for every valid plan, equating norm synthesis to the worst

case behaviour of plan synthesis: a plan enumeration.

. Traversal is independent of the conflict-free state space, but reachability analysis is

not?

Each planning invocation during reachability analysis searches for an alternative in the

conflict-free state space requiring resources proportional in size. We present two points

for discussion:

• While reachability is checked through conflict-free state search, no plans are

required to search the entire state space. NuSMV illustrates that searching for a

master plan through every conflict-free state is infeasible, while CRS shows that

searching for many, simpler plans between conflict-free states is more efficient.

• This search is required when problem-specific knowledge is required to check

reachability. When the Planning with Variables optimisation succeeds this search

is avoided, since sufficient knowledge is contained in the traversal run to synthe-

sise an alternative plan.
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8.1.2 Generally Applicable Social Norms

Conflict-rooted synthesis produces norms of higher quality, based on three key prop-

erties:

1. Norms are generally applicable since they are conditional not on individual sys-

tem states, but rather on sets of states, thereby producing fewer norms.

2. Norms are more expressive, using variables to produce fewer succinct norms.

3. Knowledge of the history of the system, or the ability to perceive other agent

action, is not required.

Additionally, unlike norms produced by NuSMV, CRS norms govern only the space

from which conflict may arise, avoiding the need for a master plan that governs be-

haviour in conflict-free states. Finally, a severe limitation of a model checking ap-

proach to norms is the sheer quantity of norms: in many examples, NuSMV synthe-

sises more norms than system states.

When drawing comparisons to more general state enumeration approaches many

of the same arguments hold. Consider a naive approach that searches all system states

in order to identify and prohibit transitions that lead to conflict states. Here, no master

plan is produced, but the number of norms is still conditional on the number of states

in the enumerated system. We again analyse some points for discussion.

. How do agents incorporate abstract norms into their means-end reasoning? Are

abstract norms more complex?

CRS produced norms containing variables that are bound to the agent’s current state at

runtime in order to identify whether the norm is applicable. While binding at runtime

is more complex, there are additional factors to consider:

• There are fewer abstract norms, thereby saving computation since fewer norms

are checked.

• Agents can incorporate abstract norms into their practical reasoners through the

use of control knowledge, allowing for efficient norm-compliant plan synthesis.

• Abstract norms can be grounded if required to produce a variable-free represen-

tation. Importantly, the resulting norms are ground, but still conditional on sets

of states rather than individual system states.

In short, conflict-rooted synthesis produces succinct norms that can be enumerated

into state-specific norms: a simpler process than inferring a more general, abstract
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representation from a more specific one.

. If CRS does not complete, what partial guarantees does its anytime nature provide?

Let the resources available to CRS be bound so that it is not able to complete synthe-

sising norms. The anytime nature of the algorithm provides guarantees for sequences

of actions up to the length of the runs investigated during traversal. Should agents in

the normative system create plans longer than this limit, then there is no guarantee that

goal reachability holds. A system designer can enforce goal reachable behaviour by

limiting the plan lengths, or by forcing agents to re-plan once the limit is exceeded.

. Would generating a master plan and accordingly regimenting agent behaviour pro-

duce more efficient systems?

Domains can be found where regimenting agent behaviour is beneficial, both for norm-

compliance but also for system efficiency since agents are required to reason less about

their actions. For these domains a model checker is the ideal tool for synthesising such

plans, yet in practice it is unlikely that a designer would wish to reduce the autonomy

of agents in a system. Regimented systems are not necessarily more efficient since

there is no guarantee that the resulting master plan would be efficient, from an agent’s

perspective to achieve its goals, or from a systems perspective. In Section 7.5.3.2 we

highlighted this empirically in a 2x2 Parcel Delivery world where the master plan com-

posed of 24 actions was inefficient for agents, primarily since it ensured reachability of

joint states, but also since the resulting plan visited these states multiple times. Once

Agent a1 left node1 after action 4 of the sequence, it only returned 13 actions later.

This is less efficient than allowing autonomous behaviour so that a1 can move back to

node1 immediately, or even by forcing agents to continually move in a single direction.

. Can the synthesised norms be used in enforcement-based systems?

Conflict-rooted synthesis allows a system designer to synthesise norms for goal au-

tonomous agents as the produced norms still allow agents to achieve their goals, no

matter what these goals are. The designer can regiment the system with these new

rules, and be guaranteed that goal achievement is preserved. However, these rules

provide no guarantees over the efficiency of the system as it is possible that goals are

achieved at a higher cost in the normative system. In systems where there is no cost

associated with a particular course of action, no additional incentives are required for

agents to adopt and comply with the norms, as agents still achieve their goals through



214 Chapter 8. Discussion

norm compliance. However, in systems where agents choose to deviate from the norms

then additional norm enforcement mechanisms are required to ensure that agents are

incentivised to comply with the norms.

Norm synthesis is a core function of norm autonomous agents, where agents are

required to synthesise and evaluate norms at runtime. Our approach is a viable tool

that allows norm autonomous agents to synthesise these norms.

8.1.3 Improved Norm Coverage

Conflict-rooted synthesis offers improved norm coverage, since it synthesises norms

in domains where a model checking approach fails independent of any computational

limitations. In Section 7.5.1 we detail a theoretical comparison of the two approaches,

and show them to differ in how they ensure goal reachability. Conflict-rooted synthe-

sis ensures that every goal that was previously achievable in the system is still achiev-

able in the normative system while the model checker ensures that every focal state is

reachable an infinite number of times. Terminal focal states cannot be visited infinitely

often, and it is therefore not possible to encode goal reachability of these states into

the checker’s model. We discuss some of the implications of this next.

This is best illustrated in the Parcel Delivery domain. Consider that when an agent

drops a parcel the system consumes the parcel, thereby altering the number of parcels

in the domain. The goal state to have a parcel delivered is key to allowing agents to

achieve their goals. When considering norms that prohibit agents from colliding we

must consider whether or not these norms allow agents to deliver parcels. The model

checking approach does not facilitate this: once a particular parcel is dropped the states

where the parcel existed are no longer achievable. Any master plan that attempted to

bring them about would fail.

. Should social norms be problem-specific?

Consider the case where the operator specifications remain constant, but the problem

specification of the domain changes at runtime. A master plan is unable to cater for

these dynamic systems since the plan itself requires updating to ensure reachability

of any altered conflict-free states. For example, suppose that the topology of the Par-

cel Delivery world changes at runtime. Conflict-rooted synthesis norms ensure goal

reachability and it ensures continued system function. Regimenting agent action is

therefore detrimental to agent autonomy, and subsequently to the performance of the
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system itself, and is an inherent problem with a model checking approach to norm

synthesis.

. Could social norms be re-synthesised at runtime?

It is possible to re-synthesise norms at runtime when the system changes but this may

prove to be expensive and is contrary to the core objective of social norms: they are

long term and persistent. An approach that does not require this re-synthesis is superior

to one that does, since agents are able to complete their individual plans safe in the

knowledge that the social objective is satisfied.

8.1.4 Limitations of Our Approach

We now detail the limitations of this work and the assumptions made in its develop-

ment, and comment on the impact on the applicability of our approach in practice.

We address some common concerns, such as the incorporation of conditional operator

effects, through extensions in Section 8.2.

8.1.4.1 Limited Conflict Specification Expressivity

The language used to specify conflict state specifications is derived directly from the

adopted planning formalism, with additional support for universally quantified vari-

ables. This conflict state representation was inspired by the work on Social Laws by

Shoham and Tennenholtz (1995) and further motivated by the fact that, even for these

simple specifications, no efficient process exists to synthesise norms. This representa-

tion is limited in two ways:

1. Conflict specifications are state-specific and do not include any action informa-

tion, thereby excluding specifications of conflict based on sequences of agent

action.

2. There are no temporal or path operators allowing for specifications of conflict

based on future states of the system.

The fact that conflict-rooted synthesis does not allow for the specification of conflict

using action information makes sense if there are no temporal relations since if a de-

signer wishes to prohibit a particular action then they can do so simply by altering the

operator schema, or by creating a trivial norm that unconditionally prohibits the action.

Since actions are asynchronous in our model it is never the case that concurrent action

can be specified as leading to conflict.
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With temporal operators, action-based specifications of conflict are more viable,

since it is now possible to specify a sequence of actions as undesirable. In the Par-

cel Delivery domain this may equate to prohibiting agents from picking parcels up

and subsequently dropping them immediately. Currently we have no mechanism to

represent this undesirable behaviour.

8.1.4.2 Dependence on Planning-Based Operators

Our approach requires planning-based operator schemata, with abstract search not pos-

sible in an enumerated system. We adopted planning-based formalisms since they are

well known, flexible in expressivity, and general in that an entire class of domains

can be specified. As a result, our approach is applicable in any domain that can be

expressed through the adopted formalism, and the resulting norms are independent of

any planning instance.

Abstract operator representations are central to our approach, yet planning for-

malisms are not the only source of languages. Plan libraries in AgentSpeak (Rao, 1996)

contain similar action abstractions, allowing us to define acceptable agent behaviour

succinctly. A mapping from any custom action specification to a planning-based one

would allow our approach to be applied as is.

8.1.4.3 Expressiveness in the Planning Formalism

The planning formalisms presented in this work lack many of the expressivity features

of current planning languages. For example, they do not include basic planning notions

such as conditional effects, nor do they consider action costs, numeric fluents or non-

deterministic action outcomes.

8.1.4.4 Support for Obligatory, Permissive Norms

This work has primarily focused on the synthesis of prohibitionary social norms, yet it

is simple to extend this norm synthesis approach to produce obligatory norms through

a rewrite procedure: an agent is obliged to perform a particular action if they are for-

bidden to perform any other action. We detail an approach to synthesising obligations

in Section 8.2.5. There are limitations to the obligations produced by this method:

• Obligations are single step where agents in a precursor state are obliged to make

a transition to an obligatory state. These obligatory norms cannot dictate agent

behaviour over a sequence of actions, or plans. This is an effect of the limited
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expressivity of the conflict state specifications in this work: with temporal opera-

tors it would be possible to specify desirable sequences of states, and to produce

multiple action obligations.

• Obligations are not motivations that are incorporated into the agent’s deliberative

process. Agents deliberate, select goals and perform means-end reasoning to

achieve these goals. Typically, norm autonomous agents select these goals based

on their current set of activated norms. The problem of normative deliberation is

not one we approach here, but rather focus on the effects norms have on means-

end reasoning. That is, given a goal, how do planning agents synthesise norm-

compliant sequences of actions to achieve these goals.

There are many additional norm-related concepts that we have not discussed. Prohi-

bitions and obligations are commonly grouped with permissions. Permissions act as

exceptions to prohibited action with semantics typically defined by the institution or

normative system. Kollingbaum and Norman (2003) define permissions as superior

to prohibitions in the NoA architecture, allowing general prohibitionary norms to be

overridden with more specific permissive ones. For our purposes permissions are not

utilised since we are only interested in a static set of undesirable system states. This

is particularly appealing, since it avoids assuming a set semantics for the interactions

between obligatory, prohibitory and permissive norms.

Power in normative systems indicates how pivotal an agent is with respect to the

ability of the agents to achieve the social objective. Agents critical to the objective are

more powerful than those that are not. In our system all agents referenced, directly or

through a variable binding, by the set of produced social norms are required to achieve

the social objective. As such, the norms we generate distribute power equally among

these agents. Furthermore, Ågotnes et al. (2009) defined a set of social laws as being

minimal if no subset of the norms achieves the social objective. In this work, the set

of social norms produced are always minimal in the sense that if any norm is removed

the social objective is not guaranteed to hold.

8.1.4.5 Violation of Synthesised Norms

This thesis does not describe how system designers can implement their normative

systems to ensure that agents abide by the synthesised norms. Reachability analysis

assumes compliance, yet in practice agents may choose to deviate from the suggested

behaviour. We intentionally make little distinction between regimented and enforced
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norm implementation mechanisms in our work as we believe our approach to social

norm synthesis to be applicable in both paradigms, yet it is important to acknowledge

that our evaluation of conflict-rooted synthesis assumes that agents comply with the

norms. While we derive significant inspiration from work done in artificial social

systems we also note that our approach caters more generally towards norms found

in normative multiagent system research, but emphasise that for a complete normative

systems implementation the synthesised norms must be coupled with an appropriate

norm implementation strategy.

8.2 Conflict-Rooted Synthesis Extensions

We discuss a set of extensions to the conflict-rooted synthesis algorithm, which differ

from optimisations as they aim to alter the class of problems that the synthesis approach

can solve.

8.2.1 Extension 1: Incorporating Initial and Goal Knowledge

Synthesising norms using agent operator schemata produces prohibitions that are com-

mon for different problem instances of the domain, yet the guarantees produced dur-

ing reachability analysis may not hold for all these problem instances as ensuring a

conflict-free path often requires problem-specific knowledge. In fact, it is possible that

a large subset of the runs produced during traversal are not reachable from a specific

initial state in a given problem instance. Similarly, when guaranteeing reachability we

may not wish to ensure global goal state reachability, but rather reachability to a de-

fined set of goal states. We now present an extension of our work for discussion that

incorporates initial and goal state knowledge into the traversal process so that each

of the runs produced during traversal are reachable from the initial states, and subse-

quently that alternative plans exist for each of these runs to the goal states.

Example Consider the specification {agentAt(a1,node1),agentAt(a1,node2)} in

the Parcel Delivery domain where a1 is in two different locations. It makes little sense

for an agent to occupy two locations, yet there is nothing in the operator schemata

alone that forbids this. Instead, the initial state dictates that agents begin in a single

location, and since the occupation of a single location is preserved during operator ap-

plication it follows that agents cannot occupy more than a single location at one time.
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Without knowledge of the initial state, traversal must consider states where agents are

able to occupy an arbitrary numbers of states at a time.. �

Initial Reachability Conflict Traversal Goal Reachability

SI SC SG

Figure 8.1: Incorporating Initial and Goal State Knowledge

Our approach to incorporating knowledge into conflict-rooted synthesis is illustrated in

Figure 8.1, with an initial reachability step to the left, and goal reachability step to the

right. The specification SI represents the initial specification, while SG the goal spec-

ification. For each run produced during the traversal process, reachability is checked

from SI to the first specification of the run, and from the last specification of the run to

SG. If no path exists to the goal state specification then the run is discarded since it is

not reachable in the unrestricted system.

This extension is incorporated into reachability analysis since the goal and initial

state reachability can only be checked once the runs have been grounded. For each

grounded run, the planner is invoked not only to check conflict reachability, but initial

and goal reachability as well.

8.2.2 Extension 2: Invariant Constraints

Initial and goal state knowledge is incorporated into the reachability analysis step of

conflict-rooted synthesis where runs are removed from consideration once they have

been identified during traversal. A second extension of our approach allows us to easily

incorporate additional domain-specific knowledge into the traversal process.

A simple means of incorporating domain knowledge is the use of invariant con-

straints. For our purposes we define an invariant constraint as a tuple 〈S,κ〉 composed

of a unground state specification S and set of constraints κ over the variables in S. The

expressivity of S and κ follow from the planning formalisms as before.

Example To prohibit a single agent from occupying two locations at the same time
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we can introduce the following invariant constraints into the Parcel Delivery world:
〈
{agentAt(A,X),agentAt(A,Y)}, (X= Y)

〉
�

Invariant constraints are applied each time a new specification is created during traver-

sal. Let Sn be a specification created during inference or refinement in traversal and

I = 〈S,κ〉 be an invariant constraint. We can verify the invariant constraint with Sn as

follows:

1. Identify every substitution binding ς where Sn |= ς[S].

2. For each ς, incorporate the constraints ς[κ] into the run containing Sn.

3. If the modified constraints are no longer consistent, then the run can be dis-

carded.

Alternatively, the incorporation of invariant constraints can be introduced after runs

are grounded during reachability analysis. Here a ground run is discarded under SI if

any of its specifications can be bound to S, and if the binding results in κ becoming

inconsistent.

8.2.3 Extension 3: Conditional Operator Effects

Our final extension addresses the lack of support for conditional operator effects. We

detail this extension using the classical planning formalism. Conditional effects are

conditional operator effects of the form Γ⇒ E, where Γ are effect conditions and E

the effects, where the effects E are only applied if the conditions Γ hold in the current

specification. There are two approaches to incorporating conditional effects:

1. Algorithm Adaptation: Alter the conflict traversal algorithm to handle the

conditional effects.

2. Operator Compilation: Compile conditional effects away using an appropriate

technique (such as that presented by Gazen and Knoblock (1997)) to produce a

larger set of operators but with no conditional effects. This new set of operators

can be used to perform the traversal and subsequent reachability analysis.

We begin by briefly detailing the changes required to the conflict-traversal process to

incorporate conditional effects, before discussing which is favourable in practice:

• Contributing Operators: Conditional effects bring a change to how contribut-

ing operators are identified during traversal. Here, an operator o contributes to
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SC if any of the conditional effects can bring about a literal in SC. Furthermore,

inferring the precursor specification now involves not only the preconditions of

the operator (pre(o)) but also the preconditions of the conditional effects that

bring about S.

• Successor Specifications: Assume a specification S and an operator o that is

partially applicable in S. Traversal typically refines S to ensure that o is fully

applicable. With conditional effects this refinement process does not result in

a single refined specification, but rather a set of possible specifications, where

each specification satisfies all the preconditions of o as well as some subset of

the conditional effects. To ensure that all possible specifications are produced

every combination of conditional effects must be modelled.

Even though it is possible to incorporate conditional effects directly into the conflict

traversal process, it remains uncertain whether it is advantageous to do so. Many of

the steps required to incorporate conditional effects into conflict traversal are identical

to those performed during operator compilation, except that this added complexity is

introduced at every step of the traversal process. Furthermore, while operator compi-

lation results in an increase in the number of operators, it does not affect the number

of resulting runs produced during conflict traversal, and there is therefore no represen-

tational benefit in preserving conditional effects during traversal.

8.2.4 Extension 4: Asynchronous Action

A key distinction between our approach and competing approaches is our assump-

tion that agent actions are asynchronous. We consider social norms to be prohibi-

tions on local, agent-specific behaviour, yet prohibiting single agent action in a sys-

tem with asynchronous action results in overly restrictive norms. For example, let

SC = {at(a1,node1),at(a2,node1)} in the Parcel Delivery domain. We depict the set

of three contributing joint actions in Figure 8.2. Each contributing action’s edge is la-

belled with the relevant norm synthesised to prohibit access to the conflict state, where

we write “. . .” to signify that an agent can perform any action except one that alters

its current location. We prohibit a1 and a2 from moving into node1 should another

agent occupy node1. Now consider the joint actions that are prohibited according to

these norms, as depicted in Figure 8.2. By restricting joint action based on prohibited

individual action, our norms prohibit joint actions that do not lead to conflict. For

example, consider the joint action where a1 moves into conflict, but a2 moves away.
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{¬at(a1,n1),¬at(a2,n1)}

{at(a1,n1),at(a2,n1)}{¬at(a1,n1),at(a2,n1)}

{at(a1,n1),¬at(a2,n1)}

�
. . .

move(a2,Y,n1)

�

�
move(a1,X,n1)
move(a2,Y,n1)

�

�
move(a1,X,n1)

. . .

�

Figure 8.2: The three joint actions contributing to conflict in the Parcel Delivery domain.

The resulting state after this action is conflict-free, yet the joint action is prohibited.

As a result, single agent prohibitions are overly restrictive when synchronous actions

are considered. Assuming asynchronous action allows us to synthesise more accurate

action prohibitions that can be applied by agents based solely on the current state of

the system, independent of the actions of other agents.

To avoid these shortcomings we serialise synchronous agent systems so that our

approach can be applied directly. Figure 8.3 illustrates one way of transforming a

synchronous state transition to an asynchronous transition. The transition from (i)→
(ii) applies in systems where the actual action execution is not synchronous while (i)→
(iii) is applied when actions are guaranteed to execute synchronously. In the Figure,

o j
i represents agent j performing operator i and m j

i represents a message operation.

S S S

S� S� S�

(oa
1,o

b
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1
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1

oa
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2
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2
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2
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b
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a

(i) (ii) (iii)

Figure 8.3: Modelling joint action in an asynchronous action system.

In systems with global state transitions over joint actions, where the underlying oper-

ation execution is serialised, the norm synthesis procedure can be applied on a trans-

formed system where joint operators are replaced by serialised actions with the intro-

duction of intermediate states. In Figure 8.3 (ii), the joint operator (oa
1,o

b
2) transition-

ing from S to S′ is replaced by two paths, the first where agent a performed operator

o1 before agent b performs o2, and vice versa. The intermediate states are introduced

to represent that the first operator has been performed after state S. In Figure 8.3 (iii),
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where actions are guaranteed to be performed synchronously, the introduction of inter-

mediate states does not suffice. In this situation, some communication is required for

agents to ensure that the combination of their actions will not violate the introduced

norms. The prescribed normative behaviour is for an agent to communicate their oper-

ator preference prior to execution. We assume some mechanism, such as an ordering

of agent IDs, for the resolution of communication ties. The norm is to notify other

agents in states that might lead to conflict, to ensure that the joint operator executed

subsequently by all agents ensures the conflict state is avoided.

8.2.5 Extension 5: Synthesising Single Step Obligations

An agent is obliged to perform a particular action if they are forbidden to perform any

other action. While both prohibitions and obligations restrict the system it is obliga-

tions that are more restrictive since they prohibit all behaviour that does not lead to

desirable system states. We define an obligation as an identical tuple to prohibitions:

〈ϕ,o〉

where ϕ is a specification modelling the states in which this norm applies, and o is

the obligatory operator to be performed. Obligatory norms can be synthesised by our

approach using the following steps:

1. Let SO be the specification of obligatory states.

2. Traversal identifies the contributing operators that lead to SO, and infers the set

of possible successor states from SO, creating a set of runs of length 3.

3. For each run, and obligation is synthesised to perform the contributing operator

conditional on the first specification in the run.

4. To check reachability each obligation is rewritten as a prohibition, with identical

conditions but where all actions other than the obligatory one are prohibited.

From here, reachability analysis continues as before.

Importantly, the obligations synthesised are single step obligations, in that they only

apply in the precursor specification. There is no mechanism to ensure that obligations

are satisfied at a future point in the system.
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8.3 Significance and Impact

We now take a more high-level perspective in analysing the possible contributions of

this work in the fields of multiagent systems and automated planning. We separate

our discussions on the significance and impact of our work along these lines and ad-

ditionally present comments on more general contributions to the field of Artificial

Intelligence.

8.3.1 Contributions to Multiagent Systems

The use of institutional models to structure and regulate agent-based systems has in-

troduced a number of key concepts into multiagent systems research. By using social

norms as the mechanism to define roles within an institution designers are able to ex-

press an expectation of agent behaviour that can bring about predictability in the sys-

tem. Systems comprised of norm autonomous agents have been proposed that are self-

regulated where agents reason about proposed norms, choose whether to adopt norms,

and decide whether to violate adopted norms. Most of this work is focused at the

system design level (norm negotiation, norm specification languages, sanction mech-

anisms . . . ), or at the agent level on norm governed practical reasoning, yet very little

research has been conducted into how these social norms come about even though the

ability to synthesise norms is a fundamental capability of a norm autonomous agent. If

agents are not able to synthesise norms, then these self-regulated multiagent systems

are not possible, regardless of the level of expressivity of the norms in the system or

the completeness of negotiation dialogues.

Synthesis is important for another reason. The problem of how agents choose

whether to adopt proposed norms, and how agents choose to create new norms are

inherently related. The key question in both of these is how an agent quantifies the

effects that a norm has on its ability to achieve its goals. If an agent is able to list

the goals it can no longer achieve, it can weigh this loss in utility against any penal-

ties for non-collaboration. Our approach to norm synthesis takes this quantification

into account when synthesising norms by performing an analysis of the effects of the

synthesised norms. Our contributions are therefore not only related to the synthesis of

social norms but also to the adoption of social norms.

We need not limit the contributions of this work to online norm proposal and adop-

tion, for even as a system designer’s tool there is utility in being able to guarantee the

effects of system modifications. Just as designers utilise planners to synthesise plans
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contained in a plan library, so they require a tool to synthesise norms in an offline

manner. There is no requirement for the designer to manually create these norms even

if the agents are not able to synthesise norms themselves, yet without an automated

approach to norm synthesis even the offline design of norms becomes a complicated

task for system designers.

We split our work into three contributions to the multiagent systems community:

1. Norm Synthesis: Conflict-rooted synthesis is a scalable, practical approach

to online and offline automated synthesis and reachability analysis in planning

environments.

2. Norm Adoption: An anytime approach to reasoning about proposed norms

based on the same reachability analysis procedure.

3. CRS: An implementation of the conflict-rooted synthesis algorithm and associ-

ated optimisations.

Additionally, one might consider the formalisation of the problem of norm synthe-

sis with no explicit goal information as an additional contribution. We have shown

that practical synthesis using focal states is not possible without explicit knowledge of

what states should be reachable in the normative system. Our approach at attempting

to ensure all states are reachable is novel, and potentially an avenue to be further in-

vestigated. By using standard benchmark planning problems we also ensure that any

future work can empirically be compared to our approach, allowing for more precise

comparisons to be drawn. To summarise, we believe our work to be the first viable

norm synthesis approach able to synthesise concise, generally applicable norms. The

ability to synthesise norms is a key capability of norm autonomous agents, and essen-

tial for agents in agent-mediated, or self-regulated, electronic institutions. Our main

contribution is a vital component of autonomous agents.

8.3.2 Potential Contributions to Automated Planning

The contributions of this work to automated planning are more speculative. The mo-

tivating problem behind the development of our approach is norm synthesis, however

there are certainly aspects of our approach that interest the automated planning com-

munity. We emphasise that these contributions are purely for the purposes of discus-

sion, and have not been formally presented to the community.
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8.3.2.1 Applicability to Plan Synthesis

As presented previously, the plan existence problem differs from our approach to

reachability analysis: instead of searching for a single plan from initial to goal spec-

ifications, we search for any plans that traverse through some state specification. If

we analyse the approaches more closely it seems reasonable to state that we are inter-

ested in enumerating plans rather than searching for a single plan. Even if we were to

adapt our approach accordingly there is another key difference, our approach utilises

refinement to identify plans through any state represented by the conflict specification,

rather than identifying a single plan that can be applied to all states in the initial speci-

fication. That is, given an initial and goal specification, conflict-rooted synthesis could

be adapted to search for a plan, yet would produce one that traverses from some subset

of represented initial states to the goal states.

Conflict-rooted synthesis is different to sequential planning, yet there appears scope

for using our approach in situations where a single plan does not exist and a sequential

planner fails. Refinement allows us to search for plans originating from subsets of the

initial state specification. A solution to this planning problem is a set of plans, each

traversing from different (possibly overlapping) subsets of the initial state specifica-

tion. For example, consider the classical planning problem where we wish to locate a

plan that traverses from initial specification SI to goal specification SG. It could be that

no single sequential plan exists, and sequential planning fails. By placing restrictions

on SI we could construct different plans that are independently able to achieve SG, and

through their combination are applicable in all states represented by SI . Consider that

a literal l might be added to SI during refinement, resulting in a more specific state

specification SI ∪{l}. Now, we additionally require a plan from the subset of SI that

has been discarded, SI ∪{¬l}. One might consider this a form of conformant planning

with deterministic action outcomes where uncertainty exists in the initial specification.

The outcome of applying our approach would not be a single plan, but rather a set

of plans, each traversing from some subset of SI . This is potentially beneficial in

situations where a single sequential plan does not exist.

8.3.2.2 Applicability to Generalised Planning

Our work is similar to approaches in the sub-field of generalised planning where, rather

than synthesise a single sequential set of actions, we wish to create a general plan that,

given a problem, can be instantiated into a sequence of problem-specific actions. One
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key subfield of generalised planning is the synthesis of plans with loops. Intuitively,

if we create runs with the possibility of repetitive operators, then we are creating runs

with loops. Consider a single instance of such a run containing repetitive operators. By

unfolding the repetitive operators we produce an infinite number of sequential plans,

each of which solves a different planning problem. We discuss this approach to gen-

eralised planning according to the following desirable criteria presented by Srivastava

et al. (2009):

1. Applicability Test: It is desirable for a generalised plan to provide an efficient

test of applicability: whether or not the generalised plan can be applied in a

given problem instance. In the context of our approach this equates to identifying

whether a given run solves the planning problem, which can easily be done by

checking the initial and goal specifications. If the run’s specifications model the

planning problem’s, then a solution exists where repetitive literals in the run can

be mapped to any number of grounded instances.

2. Quality of Instantiations: Generalised plans should produce sound plan in-

stantiations. Since traversal is based on a breadth first search of the search space

we are guaranteed to not only find a plan, but also to find the shortest one.

In the context of generalised planning it appears that conflict-rooted synthesis has much

to offer yet further work is required to quantify its significance.

By searching the state space in an ungrounded fashion our approach avoids a com-

pulsory state enumeration, at the cost of added complexity involved in the continual

binding of variable symbols. This tradeoff is a common theme in the planning commu-

nity, with planners (such as FF) that ground operators prior to planning proving very

effective in practice. This characteristic is also evident in our empirical evaluation,

where on smaller domains NuSMV requires fewer resources than CRS. As such, we

do not expect an adaptation of our work to automated planning to be superior to ex-

isting planning approaches, yet suggest that it may be applicable to problems where a

state enumeration is not feasible, or in situations where the abstract nature of operator

schemata should be preserved in the resulting plans.

8.3.3 Potential Contributions to Artificial Intelligence

Conflict-rooted synthesis, automated planning and model checking can all broadly be

classed as approaches to searching a state space. It seems sensible to therefore discuss
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the contributions that conflict-rooted synthesis may have on the Artificial Intelligence

community at large through the characterisation of the norms synthesis problem purely

in terms of search. Search problems in which an approach similar to conflict-rooted

synthesis may be suitable should contain the following core properties:

1. Abstract Specifications: Systems defined at a high level using relational rep-

resentations that have clear operational semantics. Norm synthesis utilises this

through the use of state and operator abstractions.

2. General Results: Problems where the result of the search process should pre-

serve the abstract nature of the system, lowering the level of generality only when

required. Our approach is applicable to problems where the abstract nature of

the underlying system specification is key to the results produced. Discarding

this generality through an initial grounding is not desired.

3. Dynamic Systems: Systems that are iteratively modified, where guarantees

must be placed over potential modifications are well suited to our approach.

4. Unground Search: Systems that are more efficiently searched at an abstract

level, where enumerating and building a grounded model is simply not feasible.

Broadly speaking, many approaches in the field of Artificial Intelligence are unable to

search abstract state spaces, choosing rather to ground representations for efficiency

purposes. Conflict-rooted synthesis shows that for a specific Artificial Intelligence

problem there are scalability benefits to searching at this more abstract level, even

though the abstract representation is more complex in principle.

8.4 Summary

Our discussion is separated into three parts. First, we discuss different criticisms of

our approach, particularly concerned with the validation of our research statement.

Conflict-rooted synthesis has limitations, particularly in complex domains and in do-

mains that require higher levels of expressivity or conflict representations. In these

more complex domains our approach may not suffice, yet in domains where these as-

sumptions are acceptable our approach is a viable means of synthesising norms. By

assuming simpler representations we are able to present an approach that encompasses

all domains within these restrictions, and are able to theoretically show it to be sound.

This initial contribution has significant scope for future extensions and refinement,
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both in the core algorithm, optimisation extensions, and resulting implementation.

This research presents an approach to solve the fundamental problem of norm syn-

thesis. As multiagent systems models more complex institutions it is necessary that

agents be able to reason about norms, and to propose new norms. Our solution is

primarily aimed at multiagent systems, yet contributions exist more generally general

in the field of automated planning, although future work is required to quantify any

potential contribution.





Chapter 9

Conclusion

This research focused on the problem of norm synthesis in planning-based environ-

ments. We demonstrated that the problems of reachability analysis and norm synthesis

are fundamentally related and that any approach to norm synthesis must provide some

goal reachability guarantees. Existing approaches to norm synthesis are able to cre-

ate norms that ensure reachability when additional goal knowledge is provided, yet

in practice it is often infeasible, or even impossible to list focal states in this man-

ner. Conflict-rooted synthesis avoids a focal state enumeration by assuming that all

conflict-free states are focal, and synthesises norms that guarantee access to all previ-

ously reachable states.

Conflict-rooted synthesis is not only a more efficient means of synthesising norms,

but also produces norms of higher quality by utilising high level, abstract agent ac-

tion specifications to produce fewer abstract norms. These norms are independent on

individual states and instead govern entire sets of states, yet have clear operational

semantics and can easily be instantiated into state-specific representations.

Although norm synthesis is not a new problem, the lack of approaches that preserve

operator and state abstractions was a primary motivation behind this work. Approaches

based on compulsory state enumerations that require a priori grounding of agent ac-

tions are counterproductive when abstract norms are required. The number of norms

synthesised by the model checking approach for even the simplest domains is evidence

that approaches based on state grounding are less effective at solving this problem of

norm synthesis. Furthermore, the numerous norms synthesised results in draconian

restrictions on agent behaviour thereby severely limiting agent autonomy, and is not

practical in systems where agents are independently implemented.

Perhaps the most significant motivation for conflict-rooted synthesis is provided by
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the work on norm autonomous agents. For agents to be autonomous of the norms they

adhere to, they must have an explicit notion of these norms, must be able to propose

new norms and must assess proposed norms for adoption. With conflict-rooted synthe-

sis, designers now have the necessary tooling with which to equip their agents to reason

about norms. The anytime nature of our approach allows agents to make preliminary

decisions regarding norms even in situations with very limited resources. The abil-

ity for agents to reason about norms is a fundamental capability of norm autonomous

agents, and is essential tooling for institution-based agents.

From a designer’s view, our work can be incorporated into agent machinery to

facilitate this norm autonomy, or designers can use it to regiment systems of goal

autonomous agents. Our approach allows a system designer to synthesise norms that

are entirely independent of the goals of the agents within the system, allowing for

system-wide restrictions and guarantees no matter how agents deliberate.

9.1 Thesis Summary

An approach to norm synthesis that avoids a compulsory state enumeration must adopt

abstractions over the underlying system. Automated planning provides us with these

abstraction mechanisms, and it follows that the background and related work for the

fields of multiagent systems and automated planning are provided. In Chapter 2 we

detailed key background in multiagent systems, beginning with an overview of co-

ordination techniques in order to motivate social norms as a form of pre-planning

coordination. The key properties of social norms were outlined: explicitness, per-

sistence, generality and compliance incentives. We followed this with relevant social

norm representations from the literature, identifying a number of representations that

are typically overly formal and lack operational semantics, or state-specific and lack

generality. Broadly we classified approaches to synthesising norms as emergent, on-

line, and offline approaches, and discussed each in turn, but chose to focus on the social

law model which acts as inspiration for our subsequent research. We outlined the com-

putational complexity of synthesising social norms in this framework but noted that

no algorithmic means is provided to synthesise them. We concluded the chapter by

presenting the details of the most credible approach to norm synthesis, based on ATL

model checking.

Our approach relies heavily on automated planning representations. In Chapter 3

we detailed two such formalisms: a propositional set theoretic approach, and a more
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expressive classical approach. Since our approach is built on search in planning do-

mains, we presented related work split into three core sections. First, we detailed

approaches to generalised planning that have strong similarities with optimisations in

our approach, but differentiate the two by arguing that our approach reasons about

runs which are liable to change due to refinement. Similarly, we presented related

work on incorporating control knowledge into planning and argued that while these

approaches can satisfy a social objective, they cannot produce explicitly represented

norms, nor can they reason about the negative effects of these norms. Finally, we

detailed graph-based problem representations that was an inspiration for our traversal

graph data structures.

Our presentation of the conflict-rooted synthesis algorithm is split into the core ap-

proach in Chapter 4 and a set of domain independent optimisations in Chapter 5. Con-

flict traversal searches the conflict state space to identify what agents might achieve if

they are able to enter conflict states. We then synthesise norms and conduct a reach-

ability analysis for each run, determining whether the same states are achievable in

the normative system. While this approach to norm synthesis is sound, it is also com-

plex since traversal is a complete search of the state space. In propositional domains

this traversal terminates, but in classical domains the lack of initial state knowledge

results in no termination guarantees. The optimisations introduced aim to improve the

performance of the traversal and reachability analysis steps, while ensuring that the

optimised algorithms is still sound.

In order to judge the performance of conflict-rooted synthesis we evaluated it on

a set of benchmark domains common in planning literature. The specifics of our im-

plementation, called CRS, were presented in Chapter 6. We refrained from presenting

every detail of the implementation, instead focusing on the novel aspects of our imple-

mentation. CRS was compared empirically and theoretically to NuSMV in Chapter 7

and further discussion followed in Chapter 8. CRS was shown to scale more favourable

than NuSMV as the domain size increases, particularly in domains where the conflict

state space remains constant. Here, while NuSMV enumerates the entire system un-

necessarily, CRS simply searches locally around conflict specifications. This results in

improved performance and scalability. Furthermore, we detailed how the norms pro-

duced by CRS are minimal, in the sense that no smaller subset of norms exists that

ensures the social objective is met, without violating the autonomy of agents in the

system. Importantly, CRS provides greater domain coverage as NuSMV is not able to

synthesise norms in domains where focal states are terminal. Finally, CRS is anytime,
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implying that some guarantees over the effects of synthesised norms are possible when

the algorithm is terminated prematurely.

9.2 Main Contributions

We now summarise the main contributions of this research:

• Norm Synthesis without Goal Knowledge: Previous approaches have required

explicit knowledge of focal states. The most fundamental contribution of this

work is the definition of the problem of synthesising norms in domains where no

explicit goal knowledge is provided, or where listing goal states is not feasible.

• Conflict-Rooted Synthesis: The next contribution is the conflict-rooted synthe-

sis algorithm, showing that it is possible to synthesise norms in domains with no

focal state knowledge, and to still provide guarantees over goal reachability. Our

technique is theoretically sound, and designed to act as the formal underpinnings

required to further investigate extensions in future work.

• Optimisations: The optimisations to the conflict-rooted synthesis approach are

as important as the core algorithm, enabling this approach to be applied in more

challenging benchmark domains.

• CRS Implementation: CRS is the main software deliverable of this work pro-

viding a stable implementation of conflict-rooted synthesis that can be adopted

into future agent-based tooling. Furthermore, it provides a default, standard im-

plementation that can be used by future approaches for comparison purposes.

• Technique for Ungrounded Search: More generally, this work contributes to

Automated Planning and Artificial Intelligence, by illustrating a problem domain

in which an ungrounded search-based approach is favourable to a ground one.

We provide essential theory that can act as inspiration in applying ungrounded

search-based techniques to new problems.

9.3 Future Work

The following possible directions represent avenues of future work to advance the

conflict-rooted synthesis approach and to apply this work to new interesting problems

and domains.
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• Improved Optimisations and Search Techniques: There are strong similari-

ties between our approach and other search-based solutions, and potentially ex-

isting techniques and optimisations can be incorporated into this work leading

to performance gains that would increase the applicability of this work. Possible

avenues for future work include:

1. Investigate existing techniques adopted by search-based planners, and mi-

grate the core concepts to this work, similar to how the work by Etzioni

(1993) inspired our existing optimisations.

2. Select a more recent planner with which to perform reachability analy-

sis, providing improved performance and greater domain applicability. For

example, SGPlan6 (Hsu and Wah, 2008) was very successful in the deter-

ministic track of IPC 2008, and full source code is available.

3. Introduce a new class of optimisations and heuristics to simplify the prob-

lem of enumerating all possible specification bindings. Identifying bind-

ings for sets of predicates is a common requirement for predicate-based

programming languages and techniques, and this work would identify heuris-

tics to be incorporated into conflict-rooted synthesis.

• Increase Conflict Specification Expressivity: Our conflict specification rep-

resentation is simple, and potentially too limiting for many real world require-

ments. There are two feasible approaches to increasing this expressivity:

1. Introduce a formal logic-based representation for conflict states. In their

work on TLPLAN, Bacchus and Kabanza (2000) introduced progression

as a technique to efficiently incorporate LTL control rules into planning.

Future work could adapt these progression concepts to allow for LTL-based

conflict state representations. If not, a more restricted form of LTL could

be incorporated, still allowing for increased conflict-state expressivity.

2. Conflict specifications are purely state-based in that they contain no action

information. An avenue of research is to investigate how action-based spec-

ifications are incorporated into the conflict representation, perhaps taking

cues from the action logics adopted by TALplanner (Kvarnström and Do-

herty, 2001). This allows for the specification of conflict using both action

and state information.
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• Increase Formalism Expressivity: A limitation of our approach is that it only

operates on classical planning domains that allow incomplete state specifications

and literal preconditions. Additional expressivity could be introduced by incor-

porating support for Boolean expressions in operator preconditions. Since pre-

conditions are no longer sets of literals, our refinement and inference operators

should be adjusted. Boolean formulae reduction techniques should be investi-

gated to ensure that the resulting formulae generated after the reverse operator

application will be minimal in representation (with respect to the ordering of

literals within the formulae). Ordered Binary Decision Diagrams are a viable

means of performing such a reduction (Bryant, 1992).

• Identify Termination Properties: Traversal in classical domains is not guaran-

teed to terminate if no bounds are applied. However, in certain domains such as

Logistics and Parcel Delivery, the Repetitive Operators optimisation resulted in

the traversal terminating. In all other domains bounds were required. A valuable

avenue of future work might identify the properties of domains that terminate, so

that these domains can be classified. Then, future optimisations can be gauged

not only on performance, but also on the set of domains that are entirely solved

by them.

• Improve CRS Performance: The performance of norm synthesis is impor-

tant in online systems. A revision and reimplementation of CRS would lead

to greatly improved performance, reducing the problems in which NuSMV is

applicable and increasing the number of domains in which CRS completes. A

native, C-based implementation would result in such improvements, while the

process would also result in a cleaner codebase for future work.

Additionally, a large set of possible applications of our research exist outside of the

problem of norm synthesis. For instance, it would be interesting to identify whether

techniques developed in this work could be used for plan synthesis, and whether the

optimisations offer are avenues to synthesising generalised plans. In this way, traversal

graphs may represent an interesting representation for such generalised plans, incor-

porating uncertainty in state specifications and looping over operators with an efficient

mechanism to check generalised plan applicability.
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9.4 Final Remarks

At the most fundamental level, this work is concerned with the preservation of intuitive,

abstract domain representations during search. The guiding principle behind our work

is one of least commitment, where we only enumerate abstract representations if it is

necessary, allowing us to produce results that are independent of individual states of

the system. Contrary to most other Artificial Intelligence search problems, norm syn-

thesis illustrates that searching a simpler, enumerated system is less advantageous to

searching a more abstract representation. In problems such as these, traditional search

techniques produce results of poorer quality since the intuitive, abstract representation

of the system is discarded.

This thesis presents a contribution towards the development of multiagent systems

and truly autonomous agents, describing the first viable approach to social norm syn-

thesis that produces concise, generally applicable norms. Conflict-rooted synthesis

is an algorithm that allows designers to shape the global computation of large-scale

distributed systems, requiring participating agents to coordinate in order to achieve a

social objective while ensuring that any system modifications maintain system flexibil-

ity. From an agent designers perspective, conflict-rooted synthesis is the first anytime

approach to online norm design, enabling intelligent agents to reason with, and affect

the norms that govern them, allowing for the design and implementation of truly norm

autonomous agents.





Appendix A

PDDL Operator Schemata

For reference purposes we present the complete PDDL domain specifications for our

evaluation domains.

Parcel Delivery Domain

(define (domain ParcelDomain)
(:requirements :typing)
(:types parcel location agent)

(:predicates
(parcelAt ?parcel - parcel ?x - location)
(has ?agent - agent ?parcel - parcel)
(agentAt ?agent - agent ?x - location)
(conn ?l1 - location ?l2 - location))

(:action MOVE
:parameters (?agent - agent ?l1 - location ?l2 - location)
:precondition (and

(conn ?l1 ?l2)
(agentAt ?agent ?l1))

:effect (and
(not (agentAt ?agent ?l1))
(agentAt ?agent ?l2)))

(:action DROP
:parameters (?agent - agent ?x - location ?parcel - parcel)
:precondition (and

(has ?agent ?parcel)
(agentAt ?agent ?x))

:effect (and
(not (has ?agent ?parcel))
(parcelAt ?parcel ?x)))
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(:action PICKUP
:parameters (?agent - agent ?x - location ?parcel - parcel)
:precondition (and

(parcelAt ?parcel ?x)
(agentAt ?agent ?x))

:effect (and
(not (parcelAt ?parcel ?x))
(has ?agent ?parcel)))

(:action IDLE
:parameters (?agent - agent)
:precondition ()
:effect ())

)

Logistics Domain

(define (domain logistics)
(:requirements :strips :typing)
(:types

city - object
place - object
physobj - object
package - physobj
vehicle - physobj
truck - vehicle
airplane - vehicle
airport - place
location - place)

(:predicates (in-city ?loc - place ?city - city)
(atLocation ?obj - physobj ?loc - place)
(in ?pkg - package ?veh - vehicle))

(:action LOAD-TRUCK
:parameters (?pkg - package ?truck - truck ?loc - place)
:precondition (and

(atLocation ?truck ?loc)
(atLocation ?pkg ?loc))

:effect (and
(not (atLocation ?pkg ?loc))
(in ?pkg ?truck)))

(:action LOAD-AIRPLANE
:parameters (?pkg - package ?airplane - airplane ?loc - place)
:precondition (and

(atLocation ?pkg ?loc)
(atLocation ?airplane ?loc))

:effect (and
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(not (atLocation ?pkg ?loc))
(in ?pkg ?airplane)))

(:action UNLOAD-TRUCK
:parameters (?pkg - package ?truck - truck ?loc - place)
:precondition (and

(atLocation ?truck ?loc)
(in ?pkg ?truck))

:effect (and
(not (in ?pkg ?truck))
(atLocation ?pkg ?loc)))

(:action UNLOAD-AIRPLANE
:parameters (?pkg - package ?airplane - airplane ?loc - place)
:precondition (and

(in ?pkg ?airplane)
(atLocation ?airplane ?loc))

:effect (and
(not (in ?pkg ?airplane))
(atLocation ?pkg ?loc)))

(:action DRIVE-TRUCK
:parameters (?truck - truck ?loc-from - place ?loc-to - place ?city - city)
:precondition (and

(atLocation ?truck ?loc-from)
(in-city ?loc-from ?city)
(in-city ?loc-to ?city))

:effect
(and (not (atLocation ?truck ?loc-from))
(atLocation ?truck ?loc-to)))

(:action FLY-AIRPLANE
:parameters (?airplane - airplane ?loc-from - airport ?loc-to - airport)
:precondition (and

(atLocation ?airplane ?loc-from))
:effect (and

(not (atLocation ?airplane ?loc-from))
(atLocation ?airplane ?loc-to)))

)

Satellites Domain

(define (domain satellite)
(:requirements :strips :equality :typing)
(:types satellite direction instrument mode)

(:predicates
(on_board ?i - instrument ?s - satellite)
(supports ?i - instrument ?m - mode)
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(pointing ?s - satellite ?d - direction)
(power_avail ?s - satellite)
(power_on ?i - instrument)
(calibrated ?i - instrument)
(have_image ?d - direction ?m - mode)
(calibration_target ?i - instrument ?d - direction))

(:action TURN_TO
:parameters (?s - satellite ?d_new - direction ?d_prev - direction)
:precondition (and

(pointing ?s ?d_prev))
:effect (and

(pointing ?s ?d_new)
(not (pointing ?s ?d_prev))))

(:action SWITCH_ON
:parameters (?i - instrument ?s - satellite)
:precondition (and

(on_board ?i ?s)
(power_avail ?s))

:effect (and (power_on ?i)
(not (calibrated ?i))
(not (power_avail ?s))))

(:action SWITCH_OFF
:parameters (?i - instrument ?s - satellite)
:precondition (and

(on_board ?i ?s)
(power_on ?i))

:effect (and
(not (power_on ?i))
(power_avail ?s)))

(:action CALIBRATE
:parameters (?s - satellite ?i - instrument ?d - direction)
:precondition (and

(on_board ?i ?s)
(calibration_target ?i ?d)
(pointing ?s ?d)
(power_on ?i))

:effect (and (calibrated ?i)))

(:action TAKE_IMAGE
:parameters (?s - satellite ?d - direction ?i - instrument ?m - mode)
:precondition (and

(calibrated ?i) (on_board ?i ?s)
(supports ?i ?m) (power_on ?i)
(pointing ?s ?d) (power_on ?i))

:effect (and (have_image ?d ?m))))
)
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Rovers Domain

(define (domain Rover)
(:requirements :typing)
(:types rover waypoint store camera mode lander objective)

(:predicates
(at_rover ?x - rover ?y - waypoint)
(at_lander ?x - lander ?y - waypoint)
(can_traverse ?r - rover ?x - waypoint ?y - waypoint)
(equipped_for_soil_analysis ?r - rover)
(equipped_for_rock_analysis ?r - rover)
(equipped_for_imaging ?r - rover)
(empty ?s - store)
(have_rock_analysis ?r - rover ?w - waypoint)
(have_soil_analysis ?r - rover ?w - waypoint)
(full ?s - store)
(calibrated ?c - camera ?r - rover)
(supports ?c - camera ?m - mode)
(available ?r - rover)
(visible ?w - waypoint ?p - waypoint)
(have_image ?r - rover ?o - objective ?m - mode)
(communicated_soil_data ?w - waypoint)
(communicated_rock_data ?w - waypoint)
(communicated_image_data ?o - objective ?m - mode)
(at_soil_sample ?w - waypoint)
(at_rock_sample ?w - waypoint)
(visible_from ?o - objective ?w - waypoint)
(store_of ?s - store ?r - rover)
(calibration_target ?i - camera ?o - objective)
(on_board ?i - camera ?r - rover)
(channel_free ?l - lander))

(:action NAVIGATE
:parameters (?x - rover ?y - waypoint ?z - waypoint)
:precondition (and

(can_traverse ?x ?y ?z) (available ?x)
(at_rover ?x ?y) (visible ?y ?z))

:effect (and
(not (at_rover ?x ?y)) (at_rover ?x ?z)))

(:action SAMPLE_SOIL
:parameters (?x - rover ?s - store ?p - waypoint)
:precondition (and

(at_rover ?x ?p) (at_soil_sample ?p)
(equipped_for_soil_analysis ?x) (store_of ?s ?x)
(empty ?s))

:effect (and
(not (empty ?s)) (full ?s)
(have_soil_analysis ?x ?p) (not (at_soil_sample ?p))))

(:action SAMPLE_ROCK



244 Appendix A. PDDL Operator Schemata

:parameters (?x - rover ?s - store ?p - waypoint)
:precondition (and

(at_rover ?x ?p) (at_rock_sample ?p)
(equipped_for_rock_analysis ?x) (store_of ?s ?x)
(empty ?s))

:effect (and (not (empty ?s)) (full ?s)
(have_rock_analysis ?x ?p) (not (at_rock_sample ?p))))

(:action DROP
:parameters (?x - rover ?y - store)
:precondition (and

(store_of ?y ?x) (full ?y))
:effect (and

(not (full ?y)) (empty ?y)))

(:action CALIBRATE
:parameters (?r - rover ?i - camera ?t - objective ?w - waypoint)
:precondition (and

(equipped_for_imaging ?r) (calibration_target ?i ?t)
(at_rover ?r ?w) (visible_from ?t ?w)(on_board ?i ?r))

:effect (and
(calibrated ?i ?r)))

(:action TAKE_IMAGE
:parameters (?r - rover ?p - waypoint ?o - objective ?i - camera ?m - mode)
:precondition (and

(calibrated ?i ?r) (on_board ?i ?r)
(equipped_for_imaging ?r) (supports ?i ?m)
(visible_from ?o ?p) (at_rover ?r ?p))

:effect (and
(have_image ?r ?o ?m) (not (calibrated ?i ?r))))

(:action COMMUNICATE_SOIL_DATA
:parameters (?r - rover ?l - lander ?p - waypoint ?x - waypoint ?y - waypoint)
:precondition (and

(at_rover ?r ?x) (at_lander ?l ?y)
(have_soil_analysis ?r ?p) (visible ?x ?y)
(available ?r) (channel_free ?l))

:effect (and (not
(available ?r)) (not (channel_free ?l))
(channel_free ?l) (communicated_soil_data ?p)
(available ?r)))

(:action COMMUNICATE_ROCK_DATA
:parameters (?r - rover ?l - lander ?p - waypoint ?x - waypoint ?y - waypoint)
:precondition (and

(at_rover ?r ?x)(at_lander ?l ?y)
(have_rock_analysis ?r ?p)
(visible ?x ?y)(available ?r)(channel_free ?l))

:effect (and
(not (available ?r))(not (channel_free ?l))
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(channel_free ?l)(communicated_rock_data ?p)
(available ?r)))

(:action COMMUNICATE_IMAGE_DATA
:parameters (?r - rover ?l - lander ?o - objective ?m - mode

?x - waypoint ?y - waypoint)
:precondition (and

(at_rover ?r ?x)(at_lander ?l ?y)
(have_image ?r ?o ?m)(visible ?x ?y)
(available ?r)(channel_free ?l))

:effect (and
(not (available ?r))(not (channel_free ?l))
(channel_free ?l)(communicated_image_data ?o ?m)
(available ?r)))

)

Depots Domain

(define (domain Depot)
(:requirements :typing)

(:types place locatable - object
depot distributor - place
truck hoist surface - locatable
pallet crate - surface)

(:predicates
(atLocation ?locatable - locatable ?place - place)
(on ?crate - crate ?surface - surface)
(in ?crate - crate ?truck - truck)
(lifting ?hoist - hoist ?crate - crate)
(available ?hoist - hoist)
(clear ?surface - surface))

(:action DRIVE
:parameters (?truck - truck ?place - place ?place - place)
:precondition (and

(atLocation ?truck ?place))
:effect (and

(not (atLocation ?truck ?place)) (atLocation ?truck ?place)))

(:action LIFT
:parameters (?hoist - hoist ?crate - crate ?surface - surface ?place - place)
:precondition (and

(atLocation ?hoist ?place) (available ?hoist)
(atLocation ?crate ?place) (on ?crate ?surface)
(clear ?crate))

:effect (and
(not (atLocation ?crate ?place)) (lifting ?hoist ?crate)
(not (clear ?crate)) (not (available ?hoist))
(clear ?surface) (not (on ?crate ?surface))))
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(:action DROP
:parameters (?hoist - hoist ?crate - crate ?surface - surface ?place - place)
:precondition (and

(atLocation ?hoist ?place) (atLocation ?surface ?place)
(clear ?surface) (lifting ?hoist ?crate))

:effect (and
(available ?hoist) (not (lifting ?hoist ?crate))
(atLocation ?crate ?place) (not (clear ?surface))
(clear ?crate) (on ?crate ?surface)))

(:action LOAD
:parameters (?hoist - hoist ?crate - crate ?truck - truck ?place - place)
:precondition (and

(atLocation ?hoist ?place) (atLocation ?truck ?place)
(lifting ?hoist ?crate))

:effect (and
(not (lifting ?hoist ?crate)) (in ?crate ?truck)
(available ?hoist)))

(:action UNLOAD
:parameters (?hoist - hoist ?crate - crate ?truck - truck ?place - place)
:precondition (and

(atLocation ?hoist ?place) (atLocation ?truck ?place)
(available ?hoist) (in ?crate ?truck))

:effect (and
(not (in ?crate ?truck)) (not (available ?hoist))
(lifting ?hoist ?crate)))

)



Appendix B

SMV Sample Input Model

Below we present an example NuSMV input model representing a 2x2 Parcel Delivery

domain, composed of 2 agents that are restricted to just the move operator.

MODULE main
VAR

normsystem: process normsystem();
ASSIGN

SPEC ! EG (
!(normsystem.agentat_agent1_node4 & normsystem.agentat_agent2_node4) &
!(normsystem.agentat_agent1_node3 & normsystem.agentat_agent2_node3) &
!(normsystem.agentat_agent1_node1 & normsystem.agentat_agent2_node1) &
!(normsystem.agentat_agent1_node2 & normsystem.agentat_agent2_node2)

)
FAIRNESS

normsystem.agentat_agent1_node4 & normsystem.agentat_agent2_node3
FAIRNESS

normsystem.agentat_agent1_node4 & normsystem.agentat_agent2_node2
FAIRNESS

normsystem.agentat_agent1_node4 & normsystem.agentat_agent2_node1
FAIRNESS

normsystem.agentat_agent1_node2 & normsystem.agentat_agent2_node4
FAIRNESS

normsystem.agentat_agent1_node2 & normsystem.agentat_agent2_node3
FAIRNESS

normsystem.agentat_agent1_node2 & normsystem.agentat_agent2_node1
FAIRNESS

normsystem.agentat_agent1_node3 & normsystem.agentat_agent2_node4
FAIRNESS

normsystem.agentat_agent1_node3 & normsystem.agentat_agent2_node2
FAIRNESS

normsystem.agentat_agent1_node3 & normsystem.agentat_agent2_node1
FAIRNESS

normsystem.agentat_agent1_node1 & normsystem.agentat_agent2_node4
FAIRNESS

normsystem.agentat_agent1_node1 & normsystem.agentat_agent2_node3
FAIRNESS

normsystem.agentat_agent1_node1 & normsystem.agentat_agent2_node2
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MODULE normsystem
VAR

agentat_agent2_node4 :boolean;
agentat_agent1_node4 :boolean;
agentat_agent2_node3 :boolean;
agentat_agent2_node2 :boolean;
agentat_agent1_node2 :boolean;
agentat_agent2_node1 :boolean;
agentat_agent1_node3 :boolean;
agentat_agent1_node1 :boolean;

DEFINE
conn_node2_node1 := TRUE;
conn_node3_node4 := TRUE;
conn_node4_node2 := TRUE;
conn_node4_node3 := TRUE;
conn_node2_node4 := TRUE;
conn_node1_node2 := TRUE;
conn_node3_node1 := TRUE;
conn_node1_node3 := TRUE;
move_agent1_node4_node3 := agentat_agent1_node4;
move_agent1_node4_node2 := agentat_agent1_node4;
move_agent1_node2_node1 := agentat_agent1_node2;
move_agent1_node2_node4 := agentat_agent1_node2;
move_agent2_node3_node4 := agentat_agent2_node3;
move_agent1_node3_node4 := agentat_agent1_node3;
move_agent2_node3_node1 := agentat_agent2_node3;
move_agent1_node3_node1 := agentat_agent1_node3;
move_agent2_node4_node3 := agentat_agent2_node4;
move_agent2_node4_node2 := agentat_agent2_node4;
move_agent2_node1_node2 := agentat_agent2_node1;
move_agent1_node1_node2 := agentat_agent1_node1;
move_agent2_node1_node3 := agentat_agent2_node1;
move_agent1_node1_node3 := agentat_agent1_node1;
move_agent2_node2_node1 := agentat_agent2_node2;
move_agent2_node2_node4 := agentat_agent2_node2;

INIT
agentat_agent2_node2 & agentat_agent1_node1 &
!agentat_agent1_node4 & !agentat_agent2_node4 &
!agentat_agent2_node3 & !agentat_agent1_node2 &
!agentat_agent1_node3 & !agentat_agent2_node1;

TRANS
(move_agent1_node4_node3 &

next(agentat_agent1_node3) & !next(agentat_agent1_node4) &
(agentat_agent2_node4 <-> next(agentat_agent2_node4)) &
(agentat_agent2_node3 <-> next(agentat_agent2_node3)) &
(agentat_agent1_node2 <-> next(agentat_agent1_node2)) &
(agentat_agent2_node2 <-> next(agentat_agent2_node2)) &
(agentat_agent2_node1 <-> next(agentat_agent2_node1)) &
(agentat_agent1_node1 <-> next(agentat_agent1_node1)))

xor
(move_agent1_node4_node2 &

next(agentat_agent1_node2) & !next(agentat_agent1_node4) &
(agentat_agent2_node4 <-> next(agentat_agent2_node4)) &
(agentat_agent2_node3 <-> next(agentat_agent2_node3)) &
(agentat_agent2_node2 <-> next(agentat_agent2_node2)) &
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(agentat_agent1_node3 <-> next(agentat_agent1_node3)) &
(agentat_agent2_node1 <-> next(agentat_agent2_node1)) &
(agentat_agent1_node1 <-> next(agentat_agent1_node1)))

xor

...
xor
(move_agent2_node2_node4 &

next(agentat_agent2_node4) & !next(agentat_agent2_node2) &
(agentat_agent1_node4 <-> next(agentat_agent1_node4)) &
(agentat_agent2_node3 <-> next(agentat_agent2_node3)) &
(agentat_agent1_node2 <-> next(agentat_agent1_node2)) &
(agentat_agent1_node3 <-> next(agentat_agent1_node3)) &
(agentat_agent2_node1 <-> next(agentat_agent2_node1)) &
(agentat_agent1_node1 <-> next(agentat_agent1_node1)));
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López y López, F. and Luck, M. (2003). Modelling norms for autonomous agents. In
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