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Abstract

This thesis offers a study of the Curry-Howard correspondence for a certain 

fragment (the canonical fragment) of sequent calculus based on an investigation 

of the relationship between cut elimination in th a t fragm ent and normalisation. 

The ou tpu t of this study may be summarised in a new assignment ©, to  proofs 

in the canonical fragment, of term s from certain conservative extensions of the 

A-calculus. This assignment, in a sense, is an optim al improvement over the 

trad itional assignment </?, in th a t it is an isomorphism bo th  in the sense of sound 

bijection of proofs and isomorphism of normalisation procedures.

First, a system atic definition of calculi of cut-elim ination for the canonical 

fragment is carried out. We study various right protocols, i.e. cut-elim ination 

procedures which give priority to  right perm utation. We pay particular attention 

to the issue of what parts of the procedure are to  be implicit, th a t is, performed 

by m eta-operators in the style of na tu ra l deduction. Next, a comprehensive study 

of the relationship between norm alisation and these calculi of cut-elim ination is 

done, producing several new insight of independent interest, particularly  concern

ing a generalisation of P raw itz’s m apping of normal natu ra l deduction proofs into 

sequent calculus.

This study suggests the definition of conservative extensions of natural deduc

tion (and A-calculus) based on the  idea of a built-in distinction between applica

tive term  and application, and also between head and tail application. These 

extensions offer perfect counterparts to  the calculi in the canonical fragment, as 

established by the m entioned m apping 0 . Conceptual rearrangem ents in proof- 

theory deriving from these extensions of natural deduction are discussed.

Finally, we argue th a t, computationally, botli the  canonical fragment and na t

ural deduction (in the  extended sense introduced here) correspond to  extensions 

of the A-calculus w ith applicative terms; and th a t w hat distinguishes them  is the 

way applicative term s are structured. In the canonical fragment, the  head appli

cation of an applicative term  is “focused” . This, in turn, explains the following 

observation: some reduction rules of calculi in the canonical fragment may be 

interpreted as transition  rules for abstract call-by-name machines.
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Chapter 1

Introduction

The Curry-Howard correspondence [Curry and Feys, 1958, Howard, 1980], in its 

simplest form, establishes a connection1 between na tu ra l deduction for the intu- 

itionistic im plicational logic and simply typed A-calculus. W hen types are seen 

as formulas, A-terms may be seen as proofs of their types in na tu ra l deduction. 

W hen formulas are seen as types, proofs may be seen as program s in a rudim en

ta ry  program m ing language, actually the core of functional languages. Moreover, 

up to  th is correspondence, norm alisation in natu ra l deduction is the same as /3- 

reduction in A-calculus. The correspondence may, then, be extended to  much 

stronger type theories [Barendregt, 1992], which integrate, according to the per

spective, b o th  a proof system for a constructive logic, and a functional language 

with a sophisticated type system .2

This thesis is about extensions of the Curry-Howard correspondence, bu t in 

the sense of investigating whether it holds for other kinds of proof systems. Ac

tually, the  correspondence was first observed for com binatory logic, which is the 

type-theoretic counterpart of H ilbert systems [Curry and Feys, 1958]. Here we 

study the extension of the correspondence to sequent calculus. Therefore, we are 

interested in the project of finding a program m ing calculus whose term s may be 

put in 1-1 correspondence with the proofs of a sequent calculus, in such a way

1 W hether this connection is an isomorphism or not is highly sensitive to technical formalities 
like the style of typing (d la Curry or a la Church) or the m anagement of labels in natural 
deduction [Hindley, 1997]

2The correspondence may also be extended to classical logic [Griffin, 1990, Parigot, 1992].

1



Chapter 1. Introduction 2

th a t each step of cut elim ination reads as an execution step in the correspond

ing program and vice-versa. In this thesis we restrict ourselves to intuitionistic 

im plicational logic.

Recently, it has been clearly dem onstrated the interest of extending the Curry- 

Howard correspondence to  sequent calculus. We take the following quotation from 

[Curien and Herbelin, 2000]:

(...) The correspondence between programs and proofs is trad ition
ally explained through natu ra l deduction (...). We believe th a t this 
trad ition  is in good part misleading. (...) Sequent calculus is far more 
well-behaved than  natural deduction: it enjoys the subformula prop
erty, and destruction rules - cuts - are well characterized in contrast 
with the elimination rules of natural deduction which superimpose 
both  a construction and a destruction operation: the application is a 
constructor in a term  x M , bu t is destructive in a term  (Ax .M )N .

Let us emphasize th a t the real challenge in the Curry-Howard correspondence 

is th a t the term  calculus must be meaningful in program m ing term s. This is what 

we mean by a computational interpretation. As observed in [Abramsky, 1993],

W hat is particularly satisfying about this correspondence in the case 
of Intuitionistic Logic is th a t the  formalism on the com putational side 
is immediately recognisable as an attractive program m ing paradigm.

Otherwise, we are left with the void exercise of converting a  proof system into 

the type system for some anonymous term  calculus.

Now, the  search for the desired programming calculus does not s ta rt from 

square zero. Actually, it s ta rts  from the A-calculus. This is quite natu ra l because 

there are close links between sequent calculus and natu ra l deduction. Specifically, 

there is a well-know mapping p> introduced in [Prawitz, 1965] and deeply studied 

in [Zucker, 1974, Pottinger, 1977] th a t assigns natu ra l deduction proofs (hence A- 

terms) to sequent calculus proofs. M apping ip in terprets axioms as assum ptions, 

right inferences as introductions, every left inference as a certain combination of 

an application and a substitution, and cuts as substitutions.

Assignment ip is the starting  point of this thesis as well. However, this as

signment is far from giving an extension of the Curry-Howard correspondence to
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sequent calculus. The A-calculus has to  be refined and extended in several ways 

in order to  describe cut elimination. In the following, we review previous work 

attem pting  to  tu rn  ip into a Curry-Howard correspondence. Later on, we explain

the contribution of this thesis to the  same goal.

1.1 Curry-Howard correspondence and sequent cal

culus

Just a few years ago, the situation as to  the possibility of extending to  sequent 

calculus the  Curry-Howard correspondence seemed discouraging.

From an algorithmic point of view, the sequent calculus has no Curry- 
Howard isomorphism, because of the m ultitude of ways of w riting the 
same proof.[Girard et al., 1989]

This rem ark refers to  the  possibility of perm utation of rules, observed both  in 

classical and  intuitionistic sequent calculus [Troelstra and Schwitchtenberg, 2000, 

Kleene, 1952]. A nother m anifestation of this is the fact th a t the  trad itional m ap

ping ip from intuitionistic sequent calculus to  na tu ra l deduction is not injective 

[Zucker, 1974]. As a consequence, the trad itional assignm ent of A-terms to se

quent calculus proofs does not produce a Curry-Howard correspondence 3.

Furtherm ore, even in a  paper where a term  calculus w ith  typing rules in the

style of sequent calculus is proposed, one may read:

The reader has probably noticed th a t our operational semantics is 
quite different from the cut elimination rules; m any of these rules do 
not seem to  have com putational significance, a t least not in the spirit 
of current programm ing practice.[Kesner et ah, 1995]

W hether real or apparent, these difficulties did not stop the search for a 

Curry-Howard correspondence for sequent calculus in the last ten  years or so.

Quite naturally, pioneer works attem pted  a direct in terpretation  of the fact 

th a t in sequent calculus one has left introduction rules. The basic idea was th a t

3For a different opinion, see [Barendregt and Ghilezan, 2000],
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right rules produce data, whereas left rules consume it [Abramsky, 1993]. Hence, 

left rules seemed to correspond to  pattern matching, an insight th a t goes back to 

[Lafont, 1989]. For instance, using the notation of [Wadler, 1993], the left rule 

for conjunction looks like

________ r , J  : A , y \ B  1- t : C________
T, z : A  A B  b case z =  (ar, y) o f  t : C  

The constructor case z = (x, y) o f  t wants to  decompose a value z  of type 

A  A B  into the two components x  and y. This m atches w ith the right rule for 

conjunction, which produces values of the form (u ,v ) ,  where u  has type A  and v 

has type B. The rule th a t does the actual m atch is cut

T \~ u : A  T , x  : A \ - t  : B  
P h let x  be u in  t : B  

The intended meaning of these 4 constructors is

let z be (u ,v ) in  (case z = (x ,y )  o f  t ) —> t[u /x \[v/y\ . (1.3)

A nother possibility offered by sequent calculus and fully exploited since the 

early days is the fact th a t inference rules may act in any formula of the sequent, 

unlike natu ra l deduction (in sequent style), in which only the RHS formula is 

transform ed. This suggests a system of term  assignment in which not only the 

RHS formula, bu t instead any formula of the sequent is assigned a term , record

ing, so to say, its history. Let us call this kind of system asynchronous. Indeed, 

there is no term  recording the global history of the  derivation. For instance, 

instead of (1.1), one has

4 We started with conjunction instead of im plication, which is the connective we are interested  
in, because the case  constructor for the left introduction of im plication has a very unusual form

r  I- u :  A T . y  : B  \- v : C  
F, z  : A D B  b case z =  Xu.y o f  v  : C

The notation Xu.y is due to [Lafont, 1989]. The idea is to match Ax. t  w ith Xu.y,  similarly as 
we match (u, v)  with (x , y ) .  The reduction rule is

let z be Xx.t in (case z =  Xu.y o f  v) v[ t[u/x} /y]  .
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r ,p  : A, q] B  \~ t : C  . .
r, (p,g) : A A B h t  : C  1 ' ’

Here, F contains declarations of patterns p : A. Observe how the term  t  remains 

unchanged. The first system fully developed along these lines seems to  have been 

a term  assignment system for classical linear logic in [Abramsky, 1993].

Asynchronous term  assignment systems have the potential of modelling nested 

patterns, like (x, (y, z)). This line of research was pursued in [Kesner et ah, 1995] 

and [Cerrito and Kesner, 1999]. A nother characteristic is th a t these systems are 

highly insensitive to  perm utation of rules. To see this, suppose T in (1.4) is of the 

form To, p' : A, y' : B '  and suppose we want to construct b o th  A / \ B  and A 1 A B ’. 

Independently of the order by which the two instances of the left rule occur, the 

final sequent will be

F0, (p \ q!) '■ A ' A B ' , (p, q) : A  A B  \~ t  : C

There is no global record telling which conjunction was built first.5 Let us give 

another example. Suppose in (1.4) t is of the form Xx.to and  suppose we build a 

cut w ith cutform ula C, whose left subderivation is a derivation ending with (1.4). 

The term  annotating this cut is of the form

let z  be Xx.to in  u . (1-5)

In this annotation we have direct access to  the last tim e a right rule was applied

in the left subderivation. In a synchronous system, the access to  the last right

rule is gained by explicitly perm uting the cut to the  left.

Asynchronous term  assignment system are a very interesting approach to the

problems caused by perm utability of rules in sequent calculus. Nevertheless, it is

an approach we do not follow here. This is so because, in this thesis, we avoid

the perm utability problem in a different way, by studying a perm utation-free

fragment of the sequent calculus, as explained below.

5This is why the mentioned term calculus for classical linear logic in [Abramsky, 1993] is 
proposed as an alternative to proof-nets [Girard, 1987],
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Once we decided not to follow the p a th  of, say, [Kesner et ah, 1995], the analy

sis of sequent calculus so far leaves us w ith a system of the kind of [Wadler, 1993], 

where left rules are interpreted as p a tte rn  m atching constructors. We are back to 

(1.1) and (1.2). Now, some obscure points remain in this in terpretation. W hat 

does it mean the left perm utation of cuts, a necessary feature in this setting as ex

plained above when discussing (1.5)? A nother example is the  m ism atch between 

the intended meaning of p a tte rn  m atching constructors (1.3) and w hat happens 

in the key step of cut elimination

let z be (u, v) in  (case z  = (x , y ) o f  t ) —> let y be v in  (let x  be u in  t) , (1.6)

where the LHS cut, with cut formula A / \ B , say, is replaced by two cuts w ith cut 

formulas A  and B , respectively. How do the two le t’s in the RHS of (1.6 ) relate 

to t[u/x][v/y\ in the RHS of (1.3)? Take, for instance, let x  be u in  t. In term s 

of cut elimination, w hat we want is to  perm ute to  the right the  cut represented 

by this let. In other words, we want to  perm ute u  inside t  and, somehow, this is 

to be related to  t[u/x]. While people were thinking about this, a new m etaphor, 

a new conceptual tool appeared - th a t of explicit substitution [Abadi et al., 1991] 

- th a t provided the right language in which to  describe the  portion of the cut 

elimination process we are analysing. The right perm utation of let x  be u in  t 

eventually performs t[u/x], bu t in a  stepwise fashion. W hile the cut in the LHS 

of (1.6) m atches the pair (u , v ) with the pa ttern  (x, y), the  cuts in the RHS of 

(1.6) are explicit substitutions and (1.6 ) should be rew ritten as

let z  be (u ,v) in  (case z  =  {x,y) o f  t ) —> t (x  :=  u )(y  := v ) . (1.7)

This is the first piece of evidence th a t cuts bear different in terpretations according 

to the stage of cut elimination they are going th rough .6

Several refinements of the traditional assignment <p of A-terms to  sequent cal

culus proofs are suggested. Instead of interpreting cut as ( “m eta”-)substitution, 

one should interpret it as explicit substitution:

GThe im pact of this observation is clear in the evolution of the system  of [Kesner et ah, 1995] 
to that of [Cerrito and Kesner. 1999],
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r b u : A  r, x : A  b t : B
T b t (x  :=  u) : B

B ut th is is so only for newly-born cuts, which are willing to  be perm uted to the 

right, like those in the RHS of (1.7). Key cuts, like the  cut in the  LHS of (1-7), 

should, for the moment, be annotated  with a matching constructor, as in (1.2).

As firstly observed by [Gallier, 1993], explicit substitu tions allow, then, to

express in the  term  calculus (some of the) stepwise cut elim ination rules (see also

[Vestergaard and Wells, 1999]). This idea was fully realized for the  first time in 

[Herbelin, 1995]. Furtherm ore, as suggested in [Barendregt and Ghilezan, 2000], 

explicit substitu tions improve th e  situation as to  the perm utability  problem, if 

one refines the traditional term  assignment of left rules. For instance, the left 

rule for im plication becomes

r  b u :  A  F , y : B h t : C  
T, x  : A  D B  b  t (y  :=  xu)  : C  

Explicit substitu tion shows up in the place where m eta-substitu tion  appeared 

according to  the old assignment. Let us see an example, taken from op. cit. (we 

will be negligent about contexts). By perm uting the two rules of

..., x  : C, w : B  b  w : B
   Rigflt

z : A  h z : A  ..., w : B  b  (Xx.w ) : C  D  B  (1.8)
  ------ ----------------------------L e f t
. . . ,z  : A , y  : A  D  B  b ( \x .w ) (w  :=  yz) : C  D B

one obtains

. . . ,z  : A h  z  : A  ..., x  : C, w : B  b  w : B
-------------------------------------------------------------- L e f t
..., x  : C, z : A , y  : A  D  B  h  w(iu := yz) : B

-------------------------------------------------------------------R ight
z  : A , y  : A  D  B  b  Ax .(w (w  := yz))  : C  D B

In the trad itional term  assignment, these two proofs would get the term  Xx.yz.

W ith  the new assignment, the distinction between these two proofs is reflected

in the distinction between (Ax.w)(ui :=  yz)  and \x . (w (w  yz)).

U nfortunately, explicit substitutions are not a panacea. Let us consider the

following situation (we focus on im plication from now on):
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d\ d2

: : d3
... b u : A  ..., x  : B  b t  : C  '. /-i Q\
------------------------------------------  L e f t  ■ \ ■ )

z  \ A  D B  b £(x :=  zu) : C  ... ,y  : C  b t' : D
—  C ut

..., z : A  D  B  b  t!(y t (x  :=  z u )) : D

Assume th a t the last inference of d3 is a left rule th a t introduced the displayed

C  w ithout (implicit) contraction. This cut is, thus, right-perm uted, i.e. cannot

be perm uted to the right any further. On the other hand, it is left-perm utable.

The result of perm uting it over the displayed left inference is

do d'3

di
( 1 .10 ). . . , x : B t - t :..., h :

-----------------------------------------------------C ut
... b u : A  . . . ,x  : B  b t'{y t) : D
---------------------------------------------------------------- L e f t

..., z : A  D B  b t '(y  :=  t ) (x  :=  zu) : D

W ith the present assignment of term s, this perm utation  reads

t '(y  := t (x  := zu))  —» t!(y :=  t ) ( x  := zu) .

This is an unnatural and unusual rule. It seems th a t the explicit substitu tion 

m etaphor, appropriate as it is for describing the right perm utation of cuts, is not 

appropriate anymore for the left perm utation. So we are, again, in need of a new 

idea.

A radical new idea may be found in [Herbelin, 1995]. The problem of per- 

m utability is completely avoided by interpreting, not the whole sequent calculus, 

bu t a perm utation-free fragment of it. The point is th a t nothing is lost in this 

fragment, as it proves the same sequents as full L.J. At the same time, cut-free 

proofs in this fragment are in 1-1 correspondence w ith normal natu ra l deduction 

proofs. Actually, the fragm ent has many “structu ra l” advantages, as emphasized 

in [Dyckhoff and Pinto, 1998]: for instance, head variables are brought to  the 

surface of an applicative term  x N x...Nk, let alone the fact th a t it keeps being a 

sequent calculus, therefore keeping the subformula property.



Chapter 1. Introduction 9

In fact, this fragment, which we call the canonical fragm ent (or the frag

ment of canonical proofs), was rediscovered several tim es [Danos et ah, 1997, 

Dyckhoff and Pinto, 1999, Mints, 1996].' In a cut-free setting, bo th  [Mints, 1996] 

and [Dyckhoff and Pinto, 1999] called the  proofs in the fragm ent “norm al” and 

showed th a t they are the proofs irreducible w .r.t. a set of perm utation  rules. 

Since we will not restrict ourselves to  a  cut-free setting, we cannot adopt the 

“norm al” terminology. [Danos et al., 1997] shows th a t the  fragm ent is closed for 

the “¿g-protocol” - or ra ther the  ¿-protocol, as the fragment we have in mind 

requires, in the terminology of op. cit., all formulas to  be ¿-coloured. We will 

come back to  the relation between the  ¿-protocol and H erbelin’s cut elimination 

procedure.

The canonical fragment will be explained in detail in C hapter 2. However, 

we show briefly here how the in terpretation  of reduction step (1.9) —* (1-10) 

improves.

The restriction defining the canonical fragment is such th a t in (1.9) and (1.10) 

B  = B \  D  ... D  Bk D  C  and C  =  C\ D  ... D  Cm D  D, for some k ,m .  Moreover, 

derivation (¿2 (resp. (¿3 ) consists of the  stack of k  (resp. m)  left inferences, starting 

from axiom C  h  C  (resp. D  P D), th a t builds the B  =  B \ D  ... D  5 ;c D C  (resp. 

C  = C\ D ... D Cm D D ) displayed in its end-sequent, and is annotated  w ith a 

list of term s I =  [iq ,..., iq,] (resp. I' =  [u [,..., v'm]), where ry (resp. v[) annotates 

the left subderivation of the i-th  left inference in the stack (from bo ttom  to  top). 

The annotation  for each left inference in those stacks is consing (notation ::) and 

for the axioms C P C  and D  b D  is the em pty list (notation []). Since the 

formulas

' [Troelstra and Schwitchtenberg, 2000] attributes the identification of the fragment to Curry, 
011 the basis o f a passage of [Howard, 1980]. See Chapter 2. As to [Danos et al., 1997], we are 
thinking of the intuitionistic, ¿»coloured restriction of LK V.
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C D

B k D C  Cm D D

5 fc_! D B k D C  and Cm- 1 D Cm D D

B  = B XD ... D B k D C  C  — C\ D ... D Cm D D

successively introduced in those stacks are linear and m ain (in the usual sense of 

sequent calculus), they do not get a variable. The new annotations for (1.9) are

di d2

d3
... \- u : A  ..., B  b  I : C  '.
   L e f t  •

z : A  D B  \~ z(u  :: I) : C  . . . , C h l ' : D
 C ut

.. . ,z  : A D B  b (z{u :: l))l' : D  
The displayed left inference is assigned z{u  :: I). This is not simply consing 

because A  D B  is not necessarily linear. An informal reading of z{u  :: I) is th a t 

2 is “applied” to u, w ith I providing further argum ents. Let t =  z(u  :: I). Then, 

the displayed cut is annotated with t l ' . Again, th ink  of th is as an application, 

where I1 provides m  arguments.

As to  (1.10), the new assignment is

do ds

d { :
; . . . , B \ ~ l : C  ..., C  \~ I : D

--------------------------   C ut
... b u : A  ..., x  : B  \~ W : D

L e f t

(1.12)

...,z  : A D  B  b z{u :: (W)) : D  
The displayed cut is of a new kind, between the two list I and I'. This is notated 

W and should be understood as an explicit append, or “concatenation” . The left 

perm utation (1.11) —► (1 .12) now reads

(z(u  :: OK -  z{u  :: (ll1)) . (1.13)

Cut elimination will keep perm uting d$ over do and, in the  term  calculus, this 

corresponds to  a stepwise performance of the append of I w ith I'. The final result
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of this perm utation is a stack of k + m  left inferences, starting  from axiom D b  D  

and generating B  = B \ D  ... D  B k D C\ D ... D  Cm D D.

The rem arkable result of Herbelin is th a t the Curry-Howard counterpart to his 

sequent calculus is a version of the A-calculus w ith explicit substitutions, bu t in 

which applicative term s no longer have the  form (...{tui)...Uk) bu t instead have the 

form t [ u i , Wfc]. These two ways of representing applicative term s are regarded 

by Herbelin as explaining the difference between a sequent calculus structure and 

a natu ra l deduction structure. As to  cut elimination, H erbelin’s system is the 

first with several kinds of cuts bearing different com putational interpretations. 

In his own words

Each elementary step of cut-elim ination exactly m atches w ith a  (3- 
reduction step, a substitu tion  propagation step or a concatenation 
com putation step.

S ubstitu tion propagation corresponds to  right perm utation and “concatenation” 

of lists is related to  the left perm utation. As to  the key-step of cut elimination, 

observe th a t a key-cut is a  right-perm uted cut whose left subderivation ends with 

a right rule. It has the form

d d' d"

. . . ,x  : A  b t  : B  ... h u  : A  .... B  b I : C
----------------------R i g h t ---------------------------------------L e f t

... • Xx.i : B  , . , f 3  B h u : : l : C
----------------------------------------------------------------------C ut

... h  (Ax .t) (u  :: I) : C

Hence, a key-cut is a kind of /3-redex. The key-step of cut elim ination produces

d' d

'■ d"
... b  u :  A  ..... x  : A h  t : B  ;
--------------------  Cut

... b  t l x  :=  u) : B  . . . . B h C . C
----------------------------------------------------------------C u t

... b  t(X := u)l : C

Instead of a “¡3-reduction step” , this is a freia-reduction step, in the  terminology 

of explicit substitution calculi [Abadi et al., 1991], as it is the step th a t generates 

an explicit substitution.
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The weak point of this in terpretation is the meaning given to  (1.13). Is it 

a “concatenation com putation step” ? A better in terpretation is obtained by a 

combination of two observation. F irst, the effect of (1.13) is to  bring the head 

variable 2 to  the surface, so to  speak. Second, an in terpretation  in term s of “lists” , 

“concatenation” and so on seems too literal. Already in [Herbelin, 1995] this was 

recognised, as the idea of “applicative context” is briefly m entioned in connection 

w ith the idea of lists. An applicative context (other names: call-by-name evalua

tion context, or continuation8) is an expression of the form (...([—]ui)...Ufc), where 

[—] represents a  “hole” . W hen a term  t is “filled” in the hole, an applicative term  

(...(tui)...Uk) results.

In [Curien and Herbelin, 2000], the  in terpretation of lists as evaluation con

texts was fully developed. Cuts tl are interpreted as t  filled in the hole of I. 

Consing u :: I means filling the hole of I w ith [—]u. A lthough cuts of the  form 11' 

were not considered in op. cit., it is clear th a t they correspond to  the  composition 

of contexts, in an obvious sense. As sketched in op. cit., it results th a t reduction 

rules close to  (1.13), namely

(t[u])l -> t(u  :: I) ,

model certain transition rules of environment machines like K rivine’s machine 

[Krivine]. Here, lists receive yet another interpretation, as stacks in the abstract 

machines terminology.

The search for the com putational in terpretation of sequent calculus reached its 

highest point in [Curien and Herbelin, 2000]. In this paper it is argued th a t there 

is a Curry-Howarcl m atch between the symmetry of classical logic, as expressed 

in the sequent calculus L K ,  and implicit symmetries of program m ing languages 

like program /context and call-by-name/call-by-value.

sThe idea of evaluation contexts may be traced back to [Felleisen et al., 1986].
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1.2 Contribution of this thesis

The story we have just told may be seen as a long struggle for improving the 

trad itional assignment ip of A-terms to  sequent calculus. Manifestly, A-calculus is 

too poor a  language to  express w hat is going on in cut elimination.

In accordance with the main requirem ent for obtaining a Curry-Howard inter

pretation, several authors proposed to  extend the A-calculus w ith features which 

were meaningful from a program m ing point of view, like p a tte rn  m atching, or were 

theoretical tools introduced for reasoning about programs, like explicit substitu

tions or evaluation contexts. We say th a t these extensions are of a  computational 

nature.

In th is thesis we propose a new assignment 0 ,  to  the canonical fragment of 

sequent calculus, of term s from certain  conservative extensions of the A-calculus. 

The m ain property of © is to  be an  isomorphism, both  in the sense of sound 

bijection of proofs, and in the sense of isomorphism of norm alisation procedures.

The extension of A-calculus proposed is based on the idea of a  built-in  dis

tinction between applicative terms  and applications, and also between head and 

tail applications.

This extension is proof-theoretical in nature, for three reasons. F irst, it does 

not leave the  framework of natu ra l deduction - actually it represents an  extension 

of it. Second, it is m otivated by an analysis of a m apping from natu ra l deduc

tion to  sequent calculus introduced by Prawitz. Third, the issue of explicitness 

(in particular, the issue of explicit substitutions), already present in the compu

ta tional interpretations mentioned above, will be taken seriously here from the 

point of view of norm alisation procedures (both for sequent calculus and natura l 

deduction), their relationship and interpretation.

As to  the com putational in terpretation of sequent calculus, we have seen how 

the identification of the canonical fragm ent of sequent calculus allowed a modular 

approach, by which the perm utability problem is abstracted  away, and a smaller 

system - precisely th a t closer to  na tu ra l deduction - is studied first. Here we 

do the inverse, so to speak. By extending natura l deduction so as to  obtain a 

system isomorphic (but far from equal) to  the canonical fragment, we will be able
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to separate, in the interpretation of the  la tter, among the features added to A- 

calculus, the feature th a t characterises com putationally the canonical fragment, 

from the features th a t were added because A-calculus is a weak system of natura l 

deduction.

It tu rns out th a t the com putational in terpretation of bo th  the canonical frag

ment and natural deduction (in the extended sense introduced here) is certain 

extensions of the A-calculus w ith applicative terms. Moreover, w hat distinguishes 

com putationally the canonical fragm ent from natura l deduction is the way ap

plicative term s are structured. In the  natural deduction side, applicative terms 

are built out of head and tail eliminations, and the head application is deeply 

buried. In the  canonical fragment, applicative term s are built out of an evaluation 

context and the head application, and the la tter is “focused” , i.e. immediately 

available.

As to  proof theory, we think th a t, after the identification of the  canonical 

fragment, there was no systematic study of cut-elim ination in this fragment and 

its relation with normalisation. We regard as a contribution of th is thesis the 

system atic definition of calculi of cut-elim ination for the canonical fragment, as 

well as the comprehensive study of the  relationship w ith natu ra l deduction th a t 

follows. Moreover, we show how the  idea of a built-in distinction between ap

plicative term  and application, simple as it is, causes a vast rearrangem ent of the 

relationship between sequent calculus, natu ral deduction and A-calculus.

Overview of the thesis

In C hapter 2 we fix notations definitions and terminology as to  sequent calculus 

and cut elimination. It also provides the proof-theoretical background for the 

following chapters.

In C hapter 3, calculi of cut elimination for the canonical fragment are sys

tem atically developed.

In Chapters 4 and 5 we produce the study of the relationship between cut 

elimination in the canonical fragment and normalisation.

In C hapter 6 , extensions of natu ra l deduction are defined which provide per-
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feet counterparts to  the calculi defined in the canonical fragment. T he m apping 

0  m ediates between these two kinds of calculi.

In C hapter 7, applications to  the com putational in terpreta tion  of sequent 

calculus are discussed.

In C hapter 8 , we summarise the contributions of this thesis and propose future 

work.

Notations and terminology

T y p e s : We just trea t intuitionistic im plicational logic. Formulas (or types) are 

given by

A , B , C , D  ::= p\ A  D B

where p  ranges over propositional letters. As usual, we assume th a t implication 

is bracketed to  the right. E.g. A  D B  D C  = A  D (B  D C ) .

C o n te x ts :  A context is a consistent set of declarations x  : A. By consistent 

we mean th a t if x  : A  and x  : B  are in a context, then  A  =  B.  Contexts are 

ranged over by F. We write x E F meaning x  : A  £ T for some A. T, x  : A  denotes 

the consistent union FU  {.r : A}, which means th a t, if x  is already declared in T, 

then it is declared with type A.

R e w rit in g : If R  is a binary relation (sometimes called a notion of reduc

tion) on a  set of terms, then  — denotes its com patible closure and —>+, —>* the 

usual closures of — We will never deal w ith conversion. Therefore, =  will 

always mean equality. If —>r is confluent, J./? denotes the associated normal-form 

mapping. Usually we write i?i, R 2 instead of Ri  U R 2.

A -calculus: See Table 1.1. We only work w ith pure terms. As usual, we 

assume th a t application is bracketed to the left. E.g. M N \ N 2 =  ( M N i )N 2.

Typing is a la Curry. See Table 1.2. Sequent(s) above the deduction line of a 

typing rule are the premiss(es) of the rule and the sequent below the deduction 

line is called its conclusion. The order of premisses in rules m atters, and is as in 

Table 1.2, so th a t we can refer w ithout ambiguity to  the left premiss or the right
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Table 1.1: The A-calculus

(Term s) M , N ::=  x  | X x .M  | M N

((5) (X x .M )N  - * M [N /x \

where

x [ N /x } = N

y[N /x \ = y .
(A y .M )[N /x]  = X y .M [N /x]

(M M ')[N /x \  = M [N /x \M '[N /x )

subderivation. The left premiss of Elim, is also called the  main  premiss. We may 

refer to E l im  (resp. In t r o ) as the elimination (resp. introduction) rule.

A value is a variable or a A-abstraction [Plotkin, 1975]. If a A-term is not a 

value, it is an applicative term. Given an application M N , we say the application 

is a value application if M  is a value.

In [Joachimski and Matthes] the syntax of the A-calculus is given as follows:

M, N  ::= x  | Ax .M  \ x N N  | (X x .M ) N N

Here N  ranges over (possibly empty) “vectors” of A-terms. This is an informal 

device for bringing head variables and redexes to  the  “surface” of applicative 

terms. In this thesis we will find formal ways of achieving the same effect.

For future reference, we give here the following definition.

D e fin itio n  1 (C o m p a tib le  c lo su re ) Given a binary relation R  on X-terms. 

the compatible closure —>r  is the least binary relation on \ - te rm s  containing
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Table 1.2: Typing rules fo r A

y a r _____________  In tro  X ' ^  ^  ^  ^  x  d FVar r , x  : A h  x  : A  In tr o  p  |- \ x . M  : A  D  B  ^

F]im T \ - M : A P B  F h N - . B  
a a m  -  p  p  M N  . B

R  closed under:

M  ->■ M 'In tro
Ax . M  ->  Ax .M '

R e n a m in g  o f b o u n d  v a r ia b le s : a-equi valent term s are seen as equal. Re

nam ing of bound variables is assumed whenever appropriate. In particular, we 

may assume tha t, in an expression, the  sets of free and of bound variables are dis

joint. This is B arendregt’s variable convention [Barendregt, 1984], which applies 

to  all calculi in this paper.

G ra m m a rs :  We present syntax as in the top part of Table 1.1. T e r m s  is the 

syntactic class and M , N  are meta-variables ranging over T erm s .

L ists : Em pty list and cons are w ritten [| and respectively, [iq, ?q, ..., Uk] 

abbreviates tq  :: (u2 :: ... :: (uk :: [])■■•)• particular, [u] is u :: \}.

N a m in g  o f A -calculi: Often we refer to the A-calculus simply as A, and 

similarly for other calculi. In nam ing A-calculi, we follow some conventions. (1) 

A means th a t the calculus is close to  Herbelin’s A-calculus [Herbelin, 1995]. (2) 

Q is after Gentzen. (3) V  is after Prawitz. (4) J\f means th a t the calculus is 

a natu ra l deduction system. (5) h signals a reduction rule for simplifying head 

applications. (6) x signals explicit substitutions.
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R e la tio n sh ip  b e tw e e n  ca lcu li: We will find several times the following 

situation. (1) The term s of a calculus Xy are also term s of another calculus A2.

(2) If t  u  in Ai then t —>+ u  in A2. (3) There is a mapping p : A2 —» Ai

such th a t (i) pt = t, for all t in Xi and (ii) t  —* u  in A2 implies pt —>* pu  in Ai. 

Such m apping will be called a projection. Then, we say th a t A2 is a conservative 

extension of Ax, because it holds th a t

t —»* u  in Ai iff t  —>* u  in A2, for all t, u  in Aj.

“Only if” follows from (2). As to  “if” , suppose t  —>* u in A2, with t , u  in Aj.

Then, by (3-ii), pt —** pu  in A*. But pt = t and pu  =  u, by (3-i).

Moreover, quite often p is such th a t t ■—■>* pt  in A2- In th a t case, we say th a t 

A2 is internally conservative over Aj.

S im u lta n e o u s  in d u c tio n : Consider the following example:

N o rm a lT erm s  N  :: =  x  | (Ax.A7*) | app(A)

N orm al Applications A  ::=  (x N )  \ (A N )

Let P  be a property over the elements of N o rm a lT e rm s  and Q a property over 

the elements of N orm al Applications. Suppose we want to prove

for all N , P (N )

and (1-14)

for all A, Q(A) .

It suffices to  prove

  P (N )  Q(A)
P (x)  P (X x .N ) P (app(A ))

P (N )  Q(A) P (N )
Q (xN )  Q (A N )

A proof of these five implications is w hat we call a proof of (1.14) by simultaneous 

induction on N  and A. We will refer to induction hypotheses P (N )  and Q(A)  as 

IH1 and IH2 respectively.
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S e q u e n t ca lcu lu s : See C hapter 2.

A b b re v ia t io n s :  We will use the following: RHS (=  right hand side). LHS 

(=  left hand  side), iff (=  if and only if), IH (=  induction hypothesis), whnf (=  

weak head norm al form).



Chapter 2

Background

In this chapter we introduce some preliminary m aterial. F irst, we define the 

family of cut-elim ination procedures we adopt in this thesis and give one example 

in detail - the so-called ¿-protocol [Danos et ah, 1997]. Second, we explain the 

canonical fragment of sequent calculus. We adopt the  approach of [Herbelin, 1995] 

as to  the way the syntactic machinery is set up.

2,1 A cut-elimination procedure

Consider the sequent calculus defined in Table 2.1. Sequents have the form

T h L  : A  , (2 .1)

where T is a  consistent set of declarations x : B  and L  is a term  in a certain 

language defined by

L ::= Ax(.t) | Cut(L, (y ) L ) \ L(x, L, (y)L) \ R((x)L)

Rules in Table 2.1 have a natu ra l reading as typing rules for this language. 

However they have another reading, as natura l as this, as rules for generating 

logical derivations. This is clear if one understands a sequent (2.1) occurring in 

a derivation as the usual sequent

20
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Table 2.1: Sequent calculus inference rules

T b A  ,

plus some inform ation about the derivation above the sequent, contained in the 

term  L, and  which is made locally available. This is the same phenom enon as 

natural deduction “in sequent style” , in which, for each formula occurrence in a 

derivation, the  inform ation about undischarged assum ptions (th a t is, th e  undis

charged leaves of the derivation above the formula occurrence) is m ade locally 

available in the form of a context.

In the case of (2.1), L  keeps record of the sequence of rules by which the deriva

tion above the sequent was built, together w ith ex tra  inform ation contained in 

the bound and free variables of L. This inform ation refers, respectively, to  which 

formulas in the contexts were active in, or were introduced by, the application of 

a rule.

The record L  is an incomplete one in the sense th a t we cannot reconstruct, 

from T h  A  plus L  the whole derivation above the sequent. Actually, there may 

be many derivations of T h L  : A. This situation is due to the fact th a t L  is 

untyped, and is typical of Curry-style typing [Hinclley, 1997]. Nevertheless, we 

stick to this logical understanding of sequents (2.1). The advantage is th a t we
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may, for instance, define cut elimination directly in typing derivations. We do 

not have two entities - the typing system and the underlying logical calculus - 

bu t a single one, and we will never ta lk  about term  erasure. This approach will 

apply to any calculus in this thesis.

We now introduce some terminology. In a sequent, we often refer to  the part 

to the left (resp. right) of b as the LHS  (resp. RH S)  of the sequent. In a 

sequent calculus rule, the sequent(s) above the deduction line is (are) called the 

premiss(es) of the rule and the sequent below the line is called the  conclusion of 

the rule. By an inference we mean an occurrence of a rule. An occurrence of A x , 

L e f t , R igh t  and C ut  may be referred to as an axiom, a left inference, a right 

inference and a cut, respectively.

In each sequent calculus rule, some formulas play a distinguished role. Con

sider again Table 2.1. The occurrences of A  and B  in rules L e f t , R ight  and C ut  

are said to  be active. In the case of Cut,  active formulas are also called the cut 

formulas. Moreover, the right (resp. the left) cut formula of an occurrence of 

cut is the cut formula in the end-sequent, of the right (resp. left) sub derivation. 

For this terminology to make sense, order of premisses in rules m atters and is 

fixed as in Table 2 .1 . Observe th a t the right (resp. left) cut formula occurs in 

the LHS (resp. RHS) of a sequent. The occurrences of A  in A x  and of A  D B  

in L e f  t and Right  are said to  be main. C u t  has no main formula, A x  has two, 

the left-main and the right,-m,ain. We distinguish between th e  main formulas of 

L e f t  and R ig h t , on the one hand, and the main formulas of Ax.  The former are 

said to  be logical. If a formula in a rule is neither active not main, it is said to 

be passive.

Often, passive formulas are not as passive as they seem. Passive formulas 

in rule A x  are called weakened. Passive formulas in the conclusion of L e f t  and 

C ut  are said to be contracted. The passive formulas th a t are simply passive are 

those of R igh t  and the formula C  in L e f t  and Cut. Even a m ain formula may be 

contracted. This is when, in the rule L e f t ,  x  is already in P. Finally, a formula 

is linear if it is neither weakened nor contracted.

The variable displayed a t the right premiss of the C u t  rule is called the cut
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variable.

We now want to  define the  complete right permutation  of a cut. This is the 

expected process, consisting in perform ing the following instructions as long as 

possible, to  the initial cut and its descendants. The cut is perm uted upwards 

through the  right subderivation past R igh t  inferences, other cuts and even L e f t  

inferences when the main formula of the  la tter is not the right cut formula. This 

process causes duplication (resp. erasing) of the cut whenever the  right cut 

formula is contracted (resp. weakened). If the right cut formula is m ain in Ax,  

the cut is replaced by its left subderivation. If the  right cut formula is main in 

L e f t ,  the  perm utation  of the cut stops (with two new copies of the  cut continuing 

their own perm utations, if the m ain formula of the L e f t  inference is contracted).

The complete left permutation of a cut is simpler. Perm ute the cut upwards 

through th e  left subderivation as long as the last inference of th e  la tte r is L e f t  

or Cut. W hen the last inference of the  left subderivation is A x ,  replace the cut 

w ith its right subderivation; when it is Right,  do nothing and stop the  process.

A cut is right permuted if its right cut formula is main in L e f t  and linear; 

otherwise, the  cut is right permutable. A cut is left, permuted if its left cu t formula 

is main in R ig h t ; otherwise, the cut is left permutable. A key-cut is a cut th a t is 

both  right and left permuted.

By a  cut-elimination procedure we m ean a (possibly non-determ inistic) set of 

rules describing which transform ations are to be applied to  an arbitrary instance 

of cut. In this sense, a cut-elim ination procedure does not determ ine which 

instance of cut is to be reduced next.

The t-protocol [Danos et al., 1997] is the cut elim ination procedure consisting 

of the repeated application of the following instruction, regarded as a single step 

of reduction, to an arb itrary  instance of the cut rule. Given a cut, it is either 

right perm utable or right perm uted. In the first case, perform its complete right 

perm utation. In the second case, the cut is either left perm utable or left permuted. 

In the former case, perform its complete left perm utation. In the la tte r case the 

cut is a key cut. In this case, bo th  cut formulas are logical, hence apply the key 

step of cu t elimination.
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The ¿-protocol is an example of a right protocol. A right protocol is a cut- 

elimination procedure such th a t, when reducing a cut th a t is simultaneously right 

and left-perm utable, gives priority to  the right perm utation.

Given a  cut

di do

T b U  : A  T, x  : A  Ì- Lo : B

T b Cut(Li, (x)L2) : b  
its complete right perm utation generates right perm uted cuts. These have the

form

d

d2 i (¿22

T b I/2i - A \  F, y  : A 2 I-  ¿ 22 • B

P b L i : A \ D  A 2 T , x : A 1 d A 2 L L(x, ¿ 21, (y )L 22) : B
L e f t

T b Cut(Li, (x)L(x, ¿211 {y)L22)) ■ B  

where x  is linear. We may compact this in a single construction Cut(Li, ¿ 21, {y)L22) 

w ith typing rule

d\ (¿21 (¿22

T b L\ : Aj D A2 r  b  ¿21 : -^1 P, y : A 2 b  ¿ 22 : B

r I- ¿^(¿!, ¿21> (^¿2 2) : 5
Observe th a t variable x disappears. Indeed, the variable is irrelevant when a  for

mula is linear and becomes active immediately after being introduced. This in

ference rule is called generalised application in [Negri and von Plato, 2001]. The 

complete left perm utation of each of these cuts generates, a t most, one cut of the 

form

(¿11 d-21 «22

r ,  2 : A i  b  ¿11 : A 2 r  b L2\ : A\  P, y : Ao b ¿ 22 ■ B
Right-------------      —------ L e f t

T b R ((s )T 11) : A\ D  A 2 P, x  : A \  D A 2 b L(x, ¿ 21, {y)L22) : B

r b C u t(R (( ’ ) T 11), (x)L(x, ¿2 1 , (y )L 22)) : B



or, in com pact form,

<¿11 <¿21 <¿22

r ,  2 : A 1 b  L u  : A 2 T h L 21 : A x T, y  : A 2 h  L 22 : B  

T b Cut((2)L 11, L 2i, (y )L 22) : B  

where C ut((z )L n , L 2i, (y )L 22) is the corresponding new construction. This is a 

key cut.

Consider the derivations

d\ (¿2

F b L\ : A T ,x  : A \~  L 2 ■ B  

We say th a t this pair of derivations (by this order) constitutes an implicit cut. 

Now it should be clear how to define the complete right permutation o f d\ over d2 

at x. It is as if we completely right perm uted the “ghost” cut th a t th is implicit 

cut is. The complete right perm utation of a cut may then be defined as the 

complete right perm utation of its left subderivation over its right perm utation a t 

the cut variable.

Similarly one may define the complete left, permutation of d2 over d\ with x. 

The complete left perm utation of a cut is then the complete left perm utation of 

its right subderivation over its left sub derivation with its cut variable. In the 

particular case of an implicit right perm uted cut

d\ <¿21 d22

T h ¿ i  : A \  D A 2 r  b L21 : A i  T, y  : A 2 b L 22 : B  

we may also refer to the complete left permutation o f d2\ and d22 over d\ (without 

any variable, because the right cut formula is main and linear).

Finally, the complete permutation of d\ over d2 at x  is like the complete right 

perm utation of d\ over d2 at x, except th a t instead of generating right perm uted 

cuts, we im m ediately perform their complete left perm utation.

Chapter 2. Background  25
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2.2 Herbeiiti’s system

In [Howard, 1980] (w ritten in the late 1960’s), Howard attribu tes to  Curry the 

remark th a t, if one wants to  generate “irreducible” A-terms alone, then  one should 

replace application by a  new term -form ation rule, building xN i.. .N k  from given 

iV i,...,M fc, w ith typing rule (ignoring contexts)

... \~ N i : A i   h N k : A k

.. . ,x  : A i  D ... D A k D B  b  x N v ..Nk : B  

replacing usual elimination rule. Then Howard observes th a t this typing rule can 

be obtained by k  applications of G entzen’s left rule (plus an axiom). Explicitly,

------------------- A x
... b A k ..., Zk ■ B  b B
- — ———-------------------------L e f t

..., Zk-i : Ak D B b 5

: : (2-3)

: ... b i 2 ..., z2 ■ A 3 D ... D A k D B b 5
-------------------------------------------------------------- L e f t

... b  A \  ..., zi : A 2 D ... D A k D B  b B
-----------------------------------------------------------------------L e f t

. . . ,x  : A x D A 2 D ... D A k D B  b B

In fact, we will explain in detail in C hapter 5 th a t w hat is happening here is a 

mapping of norm al natural deduction proofs into cut-free sequent calculus deriva

tions introduced in [Prawitz, 1965], except th a t, instead of (2.2), Praw itz uses k

elimination rules and talks about the main branch of a norm al proof, i.e. the 

sequence of bold formulas in

--------------------------------------- V ar
x  b x  : A i D ... D A k D B ... b jVj : Ax

..., x  b  x N i  : A 2 D ... D A k D B
E lim

x  b  xNi.-.Nk-j.  : A k D B ... b N k : A k
E lim

.. x  \~ xN \.. .N k  : B
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Observe how the  sequence of formulas in the  m ain branch corresponds to  the 

sequence of bold formulas in (2.3), except th a t, as it were, the main branch was 

turned upside down. This is a typical phenomenon th a t one should bear in mind.

By the observation of (2.3), one realizes th a t in the range of this m apping 

of natu ra l deduction into sequent calculus there are derivations of a particular 

kind. Actually, all formulas declared w ith Zi in (2.3) (i =  1 ,...,& ) are linear. 

Only recently the  im portance of this fact was fully recognised [Herbelin, 1995, 

Danos et ah, 1997, Mints, 1996, Dyckhoff and Pinto, 1999].

D e fin it io n  2 A left inference is canonical i f  the active formula of its right pre

miss is m ain  and linear. A sequent calculus derivation is canonical i f  all left 

inferences occurring in it are canonical.

Indeed, every left inference in (2.3) is canonical. Conversely, let us see the 

effect of th is restriction on derivations. Let d be a derivation ending w ith a left 

inference introducing A \  D B\  and consider the  active formula B i  of its right 

premiss. It is m ain and linear, and, moreover: (1) if it is not logical, it is main in 

an axiom, and  the right subderivation of the left inference consists of this axiom 

alone. (2) if it is logical, it is main in a canonical left inference. Now look again 

at the active formula of the right premiss of this new left inference.

By m eans of this process, while going upwards through the rightm ost branch of 

d, we visit the  sequence B \, B 2, ■ ■■Bk of the m ain formulas of successive (possibly 

zero) left inferences, ending in the left-m ain formula Bk of an axiom. Let us put 

B 0 = A\ D  Bx and call the sequence B 0, B l: B 2, ...Bk the principal path of d. This 

is exactly as the sequence of bold formulas in (2.3).

Now, there is a difference between all these left inferences th a t we visit, and 

the bottom -m ost left inference of d, because the m ain formula of the la tte r is not 

necessarily linear. Moreover, we know th a t the conclusion of a left inference of 

the former kind is the right premiss of another left inference. The same is not 

true of the bottom -m ost inference of cl. By the same reason, we may distinguish 

two kinds of axioms. The first is the kind of axiom we find at the top of the 

rightm ost branch of d. We know th a t its conclusion is the right premiss of a left 

inference. The second kind of axiom is an unrestricted one.
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The splitting of axioms and of left inferences into two cases may be expressed 

in the term  language for the sequent calculus used above by the existence of two 

left constructors L(x , L l5 (_)L2) and L(_, L 1; (_)L2) and two axiom constructors 

Ax(x) and Ax(_). Variables are om itted because when a linear formula th a t just 

became m ain is immediately going to  be active in the next inference. However, 

how do we express tha t, in L(_, Li, (-)Lf),  L 2 has to  be either Ax(_) or another 

L(_, L 3, ( - ) L 4)?

A solution due to  [Herbelin, 1995] is to  arrange the syntax into two classes 

(we concentrate on cut-free proofs for the  moment)

L  ::= A x (x ) |L (z ,L ,(_ )A ') |R (( i)L )

K  ::= Ax(_) | L(., L, (-)K)  

where K  annotates proofs introducing a linear formula on the  LHS of secjuents. 

The actual syntax of op. cit. is

u . v . t  ::= x l lX x . t
1 2.5

l,V \ \ \ t : : l

with typing rules given in Table 2.2. There are axiom, left and right rules (named

Ax, L f t  and Right)  and a dereliction rule Der. This terminology comes from a

connection w ith linear logic explained in [Danos et al., 1995]. We refer to  L f t  as 

Herbelin’s left rule. Rules operate on two kinds of sequents

T ] - h t : A  (2.6)

and

Y - B k l - . A  (2.7)

both containing a distinguished position in the LHS, called the “stoup” - a device 

invented in [Girard, 1991]. The stoup either is empty, as in (2.6), or contains a 

formula, as in (2.7). Observe that: (1) the active formula in the right premiss of 

Herbelin s left rule is in the stoup. (2) the only rules whose conclusion is a sequent 

with a formula in the stoup are L f t  and Ax.  (3) The formula introduced by L f t
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is linear. Therefore, every formula in the stoup belongs to  some th e  principal 

path.

C onstructors Xx.t, [] and u :: I correspond to  R((x)L), Ax(_) and L(_, L, {-)K). 

In term s of derivations, Der  allows a formula to  leave the stoup, possibly causing 

a  contraction, if x  €  T. The m ain formula of D er {i.e. the  displayed occurrence 

of A  in the  conclusion of D er ) is the bottom -m ost formula of some principal 

path. W ith  dereliction we recover as x[] and x{u  :: I) th e  versions Ax(x) and 

L( x ,L , ( J )K )  of axiom and left rule.

Let us go back to  (2.3) and see how Herbelin’s system annotates a principal 

path. T he Zi disappear, as each formula in the principal p a th  is in the stoup. 

Suppose each sequent ... L .4, is annotated  with «¿. Then the  displayed axiom gets 

[], the left inference ju s t below gets Uk [], and so on, until we get [ii2, ..., u^]- 

The bottom -m ost left inference is annotated w ith a com bination of dereliction 

and H erbelin’s left inference. We get x{u\ :: [«2, t hat  is x[u\, ...,«&].

Besides dereliction, there is an evident difference between syntaxes (2.4) and 

(2.5) in th a t the la tter suggests and intended in terpretation. The right con

structor is A-abstraction and xl is like x  applied to  a  list of arguments. This 

in terpretation is supported by the fact, firstly observed in [Herbelin, 1995], th a t 

there is a bijection between norm al natu ra l deduction proofs and cut-free deriva

tions of the canonical fragment. This bijection is nothing bu t the mapping be

tween natu ra l deduction and sequent calculus suggested above. The m ain branch 

xN%...Nk is m apped to the principal path  xjuj, ...,rp-]. More formally, in the style
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of [Dyckhoff and Pinto, 1998], this is a m apping T from

N  ::=  x  | X x .N  \ app(A) 

A ::= x N \ A N

to (2.5) given by

^ ( x )  — x|] 

t y (Xx .N )  — X x . ^ N  

^{app(A)) = ^ ' (A ,  0)

y ' i x N J )  = x . (V N :: l )

V ( A N , l )  = ^ ( A , ^ N  :: I)

A generalisation of this mapping to  non-normal proofs will be extensively studied 

in the following chapters.

In the calculi for the canonical fragment we are going to introduce in Chapter 

3, we will never use dereliction, bu t we will adopt a syntax in the style of (2.5), 

suggesting a A-calculus interpretation.

We now consider cut-elinhnation in Herbelin’s system. The simple fact th a t 

sequents in Table 2.2 have a distinguished position to  the left of b  determines 

the existence of two kinds of cut, head-cuts and mid-cuts , according to  whether 

the right cut formula is or is not in the stoup, respectively. Actually, Herbelin 

needed two species for each of these kinds of cuts,

m id-cuts head-cuts

t { x  :=  v} tl

l{x  := u} IV

with typing rules as shown in Table 2.3. W hen we refer to mid or head cut, we 

mean constructors t { x  := u)  or tl. We refer to  l{ x  :=  n} and IV as auxiliary mid 

or head cuts, respectively.

H erbelin’s A-calculus is presented in Table 2.4. Rules 4i and 5j  suggest tha t

mid-cuts behave like explicit substitution. Hence the notation t.{x :=  u}  and
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Table 2.3: Cuts fo r Herbelin ’s sequent calculus

M id C u t  í-1 h v : A T, x : A: — h t : B  /-p 
r ;  -  h t { i  ,= v j  : B  X * T

A u x M id C u t  —LT ; - h v : A  r  , x : A : C \ - l : B  ^ p  
  r;CH (, v)  : B  1  * T

H eadC ut T; -  h t  : A  F; A  h I : B  
T; -  F tl : B

A u x  H eadC ut r ¡  C  h  l : A  r ; A h l ' : B  
F ; C b  11' : B~~

l{x  u}. Rules 3i suggest th a t cut IV is an explicit append. Similarly to  xl, a 

head cut tl is like the application of t to  the list of argum ents I.

This calculus is about cut-elim ination a t least in the following sense: every 

redex is a cut. Therefore, if t is cut-free (=no subterm  is a cut) then t is normal 

(^irreducible). The converse is also true. If t  has a  cut, it has an innerm ost one. 

Such cut is a redex. Nevertheless, the exact cut-elim ination procedure defined 

by the calculus is only provided in the proof of subject reduction. Then, rule 11 

is the key step of cut elimination. Rules 4z and 5j ,  as well as rule 20, perform 

stepwise right perm utation. Rules 21 and 3z perform  stepwise left perm utation.

This suggests th a t mid-cuts are right perm utable cuts. On the other hand, 

since the right cut formula of head-cuts is in the stoup, it seems th a t head-cuts 

are right perm uted cuts. As observed in [Espirito Santo, 2000], this is not exactly 

true. The first problem is th a t we are not sure w hether a contraction occurred 

or not in a dereliction xl. In the la tte r case, m id-cut (.x l ){ x  :=  u} is, in a 

sense, already right permuted. The second problem is th a t head cut t[] is a right 

perm utable cu t th a t reduces to t by 20. This is why, in the following chapters, 

we will neither consider head-cuts of the form f[] nor reduction rule 20. A th ird  

problem is th a t auxiliary cuts take the system outside the canonical fragment,
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Table 2.4: The A-calculus

(Term s) u , v , t  ::=  x l \  \ x . t \ t l \ t { x  := v}

(Lists) 1,1' ¡ \\t  :: l \ l l ' \ l { x  := v}

(11) (Ax. t)(u  :: I) —» t { x  u}l

(20) *0 —> t

(21) (xl)l' -  i' +  D

(31) (u :: l)V -»■ u  :: (¿ 0

(32) 0* - f  I

(41) (xl){x := v} —> :=  x }

(42) (■yl ){x  : = x } -»  :=  v } , y  =4 x

(43) (Ay.u){x  :=  x } —» A y .u {x  :=  ?.;}

(51) (u :: l ){x  :=  x } —► u {:c  :=  x }  :: ¿{x : =

(52) [ ] { x : =  x } -  0
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because the  formula in the stoup, although linear, is no longer necessarily main, 

and, therefore, a Herbelin’s left inference is not necessarily canonical. This is why 

in the calculi we introduce auxiliary cuts are kept implicit.

D isregarding these minor problems, the cut-elim ination procedure associated 

to  A is a stepwise right protocol. M id-cuts are perm uted to  the right and this 

occasionally generates head-cuts (rule 41). H ead-cuts are perm uted to  the left. 

However, a  cut is never allowed to  perm ute upwards past another cut (this is 

w hat we call a inter-permutation  of cuts). So, the  procedure is essentially an 

innerm ost strategy.

Herbelin observed th a t an inter-perm utation of cuts like

(44) (■t l ){x  :=  v}  —► t { x  := v } l { x  := u }

was required if the cut-elim ination procedure was to  simulate full /5-reduction. 

However, Herbelin did not consider this reduction rule because it breaks the 

proof of strong norm alisation in [Herbelin, 1995]. In [Dyckhoff and Urban, 2001] 

it is shown th a t rule 44 may be added to  the calculus w ithout loss of strong 

norm alisation, bu t further inter-perm utations of cuts, among which is

(22) (tl)V -  t{W)  ,

are to be allowed for retaining confluence of the calculus.

In C hapter 3, we will design A-calculi for the canonical fragment in a system

atic way. O ur main design decision is to  adopt right protocols w ith increasing 

level of explicitness and stepwise character. We even define a fully explicit sys

tem, by m aking auxiliary cuts explicit. This system will be close to  A plus 44 and 

22. T hat is, a system atic procedure chose which inter-perm utations of cuts were 

to be adm itted. Later on, we. will see th a t, in our setting, 44 and 22 are enough 

for sim ulating full /3-reduction and retaining confluence - although this was not a 

requirem ent im pending on how we defined the calculi. Moreover, reduction rule 

22 will prove crucial in the com putational in terpretation of the fragm ent {e.g. it 

is included verbatim  in abstract machines). Actually, 22 is indispensable even 

for simulating full (5 reduction, as long as one maps natural deduction into se
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quent calculus not in the traditional way (G entzen’s m apping [Gentzen, 1935]), 

but according to a suitable generalisation of P raw itz’s mapping [Prawitz, 1965].

W hat is manifest is th a t, after the breakthrough th a t constituted the iden

tification of the canonical fragment, there did not follow the  necessary study of

cut elimination in this fragment, particularly the study of its relationship w ith

normalisation. The following chapters provide contributions in th a t direction. 

For future reference, we give the following.

D e fin itio n  3

Xi =  A 

A2 =  Ai +  {44}

A3 =  A2 +  {22} =  Aj +  {22, 44}

The following result is due to  [Dyckhoff and Urban, 2001].

T h e o re m  1 I f t  is typable in A then t is strongly normalising (any i =  1,2,3}.

We define compatible closure for the Aj-calculi.

D e fin itio n  4 (C o m p a tib le  c lo su re ) Given a pair R  of binary relations, the 

first on T e r m s  and the second on L is ts ,  the compatible closure — is the least 

pair of relations — the first on T e rm s  and containing the first relation of R, the 

second on L is ts  and containing the second relation of R, closed under:
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Righta xì Z h i
H ea d C u tl  ^  H eadC ut2  |  ^

M id C u t l  -7  -f ~* !/ r------------ T M id C u t2  y?------------ ?  IV r ri{x  :=  x} —> t {x :=  v \  t { x  := v \  —> t { x  := v  }

L f n  . .. i L f t 2  1 r7 / 7 JUJ 7 7/u :: t —> u  :: i u  :: L —> u  :: I

A u x H e a d C u t l  yy-— —77V  A uxH ea d C u t2  y y — —7V
¿Oil —> ¿0*1 ¿Oil —>• ¿oil

A u x M id C u t l  -¡7— -——7-— i ----------7 A u x M id C u t2  77------------------- --------- tv
¿{x :=  x j  —> I {x :=  x} ¿{x :=  v \  —* ¿{x :=  v  }

For instance, for defining —>n, take i? =  (11,0) in Definition 4. The definition of 

-* 3i (i =  1, 2, 3, 4) is by choosing R  =  (3i, 0). We could let

(3*)i =  31U32

and, thus, —>(3i)i (or, simply, —>3i) is defined by taking R  =  (0, (3z)j).



Chapter 3 

A fragment of sequent calculus

In th is chapter we define four calculi of cut-elimination:

XV hx

(-)°

XV hx

(-)b 

XV h

( - ) “

XV

In this diagram  each arrow is a projection. All cut-elim ination procedures asso

ciated to these calculi are right protocols, bu t with different levels of explicitness.

We s ta rt with XV, a calculus which only adm its key-cuts and wThose cut- 

elimination procedure is fully implicit, in a sense. Then we define XVh, which 

allows the  more general right perm uted cuts and includes an independent reduc

tion rule for the complete left perm utation of cuts. Next we define XVhx. in 

which the complete right perm utation of cuts is also separated from the  key step

36
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and performed stepwise. Finally, we define a fully explicit system AVhx.  All 

these calculi, except W h x ,  are in the canonical fragment.

In th is chapter we heavily rely on C hapter 2 for notation, term inology and 

motivation.

3.1 The AP-calcuius

The AP-calculus1 is presented in Table 3.1. Typing rules are in Table 3.2.

Besides constructors for the cut-free canonical fragment, there is a key-cut 

constructor (Ax.t) (u  ■ I), and no other kind of cut. Reduction rules perform, in a 

sense th a t will be m ade precise later, a  right protocol. But, since the  only kind of 

explicit cut is key-cuts, most of the stages of cut-elim ination are im plicit, th a t is, 

performed in a single go by calls to  m eta-operators. These operators are in ser t  

and append , which perform complete left perm utation, and subst , which performs 

complete perm utation. This explains reduction rules (31 and [32, which s ta rt by 

performing the key step of cut elimination, bu t which are forced to  im mediately 

perform the perm utation of the cuts generated by the key step. Since subst 

performs complete perm utation, it has to  im mediately call in ser t  whenever it 

generates a right perm uted cut.

C onstructor (Ax.t)(u-1)  binds x  in t. By variable convention, x  occurs neither 

in u nor in I.

D e fin itio n  5 (C o m p a tib le  c lo su re ) Given a pair R  of binary relations, the 

first on T e r m s  and the second on L is ts , the compatible closure —>r  is the least 

pair of relations — the first on T e r m s  and containing the first relation o f R , the 

second on L is ts  and containing the second relation o f R , closed under:

C alcu lu s XV  was defined for the first time, with minor differences, in [Espirito Santo, 2000J, 
with the name A¡j-



Chapter 3. A fragment o f sequent calculus 38

Table 3.1: The AP-calculus

(Term s) u , v , t  ::=  x  | x (v  ■ I) \ Xx.t | (Xx.t)(v ■ I)

(L ists)  1,1' :: =  [] 11, :: I

( f 3 l )  (Xx.t)(v ■ []) —» su b s t(v ,x , t )

(f32)  (Ax .t)(v  ■ (u :: I)) —> insert.(u, Z, subst(v, x , t ) )

where

subst.(v,x,x) = v 

subst(v, x , y )  = y , y  x  

s u b s t (v ,x ,x (u  ■ I)) = insert(subst(v , x, u), subst(v ,x , I), v) 

subst(v , x, y(u  ■ I)) =  y(subs t(v , x, u) ■ subst(v, x , l)), y ^  x  

subst(v ,x ,  Xy.t) = X y .subst(v ,x ,t)  

subst(v , x , (Xy. t )(u - I)) =  (Xy.suhst(v , x, t))(subst(v , x, u) ■ subst(v , x, I))

s u b s t ( v ,x ,u  :: I) =  s u b s t ( v ,x ,u ) :: subst.(v,x,l)  

subst(v ,x ,  0) =  []

in ser t(u , /, x) =  x(u ■ I)

insert(u , L x(u ' ■ I/)) = x(u ' ■ append(l\ u :: I))

in ser t(u ,l ,  Xx.t) =  (Ax. t ) (u: : l )

in se r t(u , I, (Ax.t)(u' ■ I')) = (Xx.t) (u' ■ append(l', u :: I))

append(t :: I, /') = t :: append(l, /') 

append([], / ')  =  /'
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V ar  T, x : A; -  b x : A  R lgh t Y - - \ -  Ax. t  ^ A  d B x  $ T

J r . r , x  : A D  B ] - \ - u :  A  T, x  : A  D  B; B  h  I : C  
1 T , x  : A  D B] — \~ x ( u  ■ I) : C

Ke v  Cu t  r > x '• A; -  h f : I1; -  h u : A F ; .B F / : C  . p
K e y L u t  F; — h {X x . t ) ( v  ■ I) : C  *

a-  r f * r ; - l -  t : A  F ] B F l : C
A x  F; A  h  û : a  L J t  F; A  D B  F t  :: I : C

L e f t 2 x j u ■ i ) C i ( u . i')

R u jkt X x l  Z  A¿7 (A,;, i)(u./) _i(Ax̂ )(w./)

KeyCut.2 (Xx t ^ u . pj ^ Xx.t){u' ■ I) K 6 y C u t3 (A.t.£)(u • Z) —>• (Ax.i)(u • F)

L f t l — ^  ^  . L / f 2 ------
u :: t —* u :: I u  :: I —* u  :: I

For instance, for defining —*p, take R  = {(31 U (32, 0) in Definition 5. T h a t is,

in XV  we set (3 = {(31 U (32, 0). One can also define —>pi (resp. —>pf) by taking

R  =  ((31, 0) (resp. R  = {(32, 0)).

Admissible rules

L e m m a  1 In  XV, let Tt\ be a derivation of F ;C  F I : B  and tt2 be a derivation 

of F; B  F !( : A. The complete left permutation o f  tt2 over iti is a derivation of 

F; C  F append(l, /') : A. In particular, the following rule is admissible:

F; C  h  / : B  T; B  F V : A  
T; C- F append(l, /') : A
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P ro o f  : Let 7r3 be the complete left perm utation of 7r2 over tti. The proof is by 

induction on I.

Case I = [}■ Then B  = C  and 7r3 =  7r2. Since append(l, V) =  I', we are done. 

Case I =  t \  :: l\. Then there are C i, C2 such th a t 7Ti has the  form

7 rl 7TÌ'

T; -  h fi : Ci r ; C2 h h : #
L i t  D  C2 h i !  :: l x : B

and C  =  C'i D C2. Derivation 7t3 is

_/ /
7Ti 7To

F; — h fi : Ci F; C2 h append{l\ , F) : /I

^  F; Ci D C2 h  ti :: appendali, I') : A

where 7r3 is given by IH. Since append(l, I1) = ti  :: append{l\, I’), we are done.

L e m m a  2 In  XV, let tti be a derivation o f  T; — h  t  : C  D B ,  7t2 be a derivation 

of  F; — h -{/, : C  arid 7r3 a derivation o f T \ B \ ~ l \ A .  The complete left permutation  

of  tt2 and 7T3 over tti ?s a derivation of F;  — h in s e r t (u , l , t )  : /I. In  particular, 

the following rule is admissible:

F ; - C : C 3 f i  F ; - h u : C  F ;11C : A  
F; — h insert(u , I, t) : A

P ro o f  : Let 7t4 be the complete left perm utation of 7t2 and tt3 over 7Ti. The proof 

is by induction on f.

Case t = x. Then, there is T' such th a t tti is

-----------------------------------------y  ar
F \ x  : C D  B: -  h  x : C D B

and F = T \ x  : C  D  B. Derivation tt4 is

7T2 7T;3

r ' ,  x  : C  D  B: — u : C  F ', x  : C  D B] B  h I : A

r', x  : C D B: -  h x(u  ■ I) : ,4
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Since insert(u ,  I, t) — x(u  ■I), we are done.

Case t =  x(u' ■ I'). Then there are , 7r", D, D, E  such th a t 7Ti has the form

T r i 7TÎ'

r ,  x : D D E\ — h  m' : D T ' , x : D  D E; E  h I' : C  D B
——-........................................................................................................L e f t

r', x : D D E- -  b x{u' ■ I') : C  D B

and T =  F', x  : D D E. Derivation 7r4 is 

tt'i :
: T; E  b  I' : C  D S  tt5

 L em m a  1
F; — \~ u : D F; i? b append(l\ u  :: I) : A
--------------------------------------------------------------- L e f t

F ; — h  x(V  ■ appendil ' , u :: /)) : A

where 7Ts is

T2 7T3

r ; -  b  u : C  F- .B\ - l :A
L f t

T ]C  D B  u :: I : A  

Since in se r t(u , I, t ) =  x (u ' ■ a,ppend(l', u  :: Z)), we are done. 

Case t =  Ax.t': Then there is 7̂  such th a t 7Ti has the  form

T, x : C- -  h i ' : B
------------------------------ B ight
T; -  h Ax.i' : C D  B

and x £  T. Derivation tt4 is 

/
"̂l 7T2 7T3

r ,  x : C\ -  h  t' : B  F; — b  u : C  F ;B  \~ I : A
 K e y  C  ut

F; -  b (Xx.t')(u :: I) : A

Since in s e r t ( u , l , t ) =  (Ax .t ') (u  :: Z), we are done.
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Case t  = (Ax.t'){u' ■ I'): Then there are tt[ , n", it"', D, E  such th a t has the 

form

TTI 7T, 7T,

T .x  : D - -  b t' : E  F; -  b  u ' : D T - E C I ' - . C d B
—   K e y C u t

r ; - h  (A x.t')(u ' -l' ) : C D  B

and x  ^ P. Let 7t5 be as in case t  = x(u ' ■ I'). Derivation 7r4 is

7T-,

7Ti'
: : F; E  b  V : C  D 5  tt5

.  L em m a  1
T, x  : D] — F t' : E  T; — b u : ZA T; E  b append(l ' , u :: Z) : A
--------------------------------------------------------------------------------------------—  K e y C u t

F; — b (Xx.t')(u1 ■ append(l',u  :: £)) : A

Since in se r t(u , Z, t) =  (X x.f)(u ' ■ append(l', u  :: /)), we are done. ■

L em m a 3 In XV, let 7Ti 6e a derivation o f T , x : B ; — \ - t : A ,  112 a derivation of 

F, x  : B] C  b  I : A  and n a derivation of T : — b  v  : B  such that x  ft F. Then,

the complete permutations of n, over tï\ at x, and over 7T2 at x, are derivations

o f T;  — F s u b s t ( v ,x , t ) : A  and of F ;C  b s u b s t ( v ,x , l ) : A, respectively. In  

particular, the following rules are admissible:

T: -  b v : B  F , x  : B \ -  b t : A , r  
T; — b substfv, x, t) : A  ^

F: — v : B  T ,x  : B ; C  I : A  , ,  r
F; C  b substfv , x, I) : A  X ^

P ro o f  : Let tt]“ and Tpl be the complete perm utations of n, over -x\ a t x, and over 

tt2 at x, respectively. The proof is by simultaneous induction on t (with induction 

hypothesis IH1) and I (with induction hypothesis IH2).

Case t =  x. Then B  = A  and ttj =  7r. Since su b s t(v ,x , t )  =  v, we are done.



Chapter 3. A  fragm ent o f sequent calculus 43

Case t  =  y  x .  Then there is T' such that 7ti is of the form

V a r
T ' , y  : A , x  : B \ -  h y  : A  

and r = F ' , y  : A .  Derivation 7r* is

V a rT' ,y:A\- \ -y\A
Since s u b s t ( v ,  x , t )  =  y , we are done.

Case t  = x { u '  ■ I ' ) : Then there are 7̂ , B X, B 2 such that txx has the form
7Ti 7To

T, x  : B \  D  B 2 \ — \~ 11 : B i  T , x  : B x D  B 2; B 2 h I'  ■ A---------------------------------  L e f tT, x  : B \  D  B 2 ; — \~ x ( u  ■ I ' )  \ A

and B  —  B \  D  B 2 . Derivation -n\ is given by Lemma 2

r;- h v B i  D  B 2 T: — h s u b s t ( v , x ,  u )  : B \  F; — f— s u b s t f v , x ,  I ' )  : A

T; — h i n s e r t ( s u b s t ( v , x , u ' ) ,  s u b s t ( v , x ,  I1) ,  v ) : A

where and 7r̂  are given by IH1 and IH2, respectively. Since s u b s t ( v , x , t ) = 
i n s e r t ( s u b s t ( v , x, u r) ,  s u b s t ( v , x, l % v ) ,  we are done.

Case i = |/(V • /'), y  7̂  x : Then there are i x[ , tt̂ , F, Ci, C2 such that ttj has the 
form

7r 1 7T9

r, y  : C i  D  C 2 , x : 5; - h F : Ci F, y  : C x D  C 2 , x  : B :  C 2 V  l! : ,4   L e f t
T \ y . C l D C 2, x - . B - - L y ( u ' - l ' ) : A

and F = T ' , y  : C \  D  C 2 . Derivation 7r* is the following L e f t  inference
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TXf 7T2

P', y : C\ D C2; — F subst(v , x, v!) : C\  F', y : C\  D C2; C2 F subst(v, x, I') : A  

T', y : Ci D C2; — F y(subs t(v , x, u ') ■ subst(v , x , F)) : A

where 7r^ and  ^ 2" are given by IH1 and IH2, respectively. Since s u b s t ( v , x , t ) =  

y(subst(v , x, u ') ■ subst (v , x, F)), we are done.

Case t  =  Ay.f: Then there are 71̂ , A x, A2 such th a t 7Ti has the form

/7Ti

r , y  : Ai, x : i3; — F £' : A2
Right  ,

F, x : B] — F Ay.F : Ai D A2 

A =  A\  D A2 and y ^ F. Derivation 7r  ̂ is

tt;

T, y : A i; — F subst (u, x, t')  : A2
------------------------------------------------- Right
T; — h Ay.subst(v,  x, F) : Ax D A2

where tt,1 is given by IH 1. Since s u b s t ( v , x , t ) =  Ay. subs t (v ,x , t ' ) ,  we are done.

Case t =  (Xy.t')(u' ■ V). Then there are 7r^, it", tt'2, C\, Co such th a t 7̂  has the

form

TTj n" 7T2

F. y : Cl, x : C2 T, x C x F, x : B: C2 F 1/ : A
      K e y  Cut

F .x  : / F -  F (Xy.t’){u' ■ I') : A

Let us w rite s for subst. Derivation 7rJ is the following K e y  Cut  inference

7T +  7T+ +  71 +

r .  y : Cl : — F s(v, x. t') : C2 T; — F s(v, x, u') : C\ T ; C2 F s{v, x, F) : A

r .  x : 1?; -  F (Xy.s(v,  x, t')){s(v,  x, u') • s(y, x, /')) : A
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where 71-+ and tv**  are given by IH l and ir£  is given by IH2. Since s ( v , x , t )  

(Ay . s ( v , x , t ' ) ) ( s ( v , x ,u ' )  - s ( v ,x , l ' ) ) ,  we are done.

Case I =  il: Then C  =  A  and iv%'2

A x
r ; A h [ j : A

Since s u b s t ( v , x , I) =  [], we are done.

Case I =  u' :: V: Then there are tv[, tv'2i C\, C2 such th a t 7r2 has the form

7ri

F ,x  : B - -  h u '  : Cl r , x :  B ; C 2 \ - r  : A

T , x  : B ]C \  D C2 F u' :-.V: A  L ^

and C  — C\  D C2. Derivation is

7T̂  7T̂

T; — h subst(v , x, u') : Ci T; C2 h  subst(v , x, I') : A  

F; Ci D C2 b subst (v , x, u ') :: subst(v , x, /') : .A

where 7rf and  7oj" are given by IH l and IH2, respectively. Since s u b s t ( v , x , l ) 

subst(v, x,  u') :: subst(v,  x, /'), we are done. ■

Cut elimination in XV

In this subsection we show in w hat precise sense the  reduction rules of XV  perform 

cut-elim ination.

Rule pi:  (Xx.t)(u  • []) —* subst (u ,x , t ) .

TV 1 1V2

------------ A x
r ,  x  : A; — b  t : B  T; — h u : A  F j B h f l  
----------------------------------------------------------------------K e y C u t

F ; -  h (Xx. t)(u  ■ 0) : B

reduces to
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7T2 7Tj

F; — \~ u : A  T, x  : A; — h t  : B
-------------------------------------------------- Lemma 3

F; — h subst{u, x , t )  : B

Rule /32\ (Xx.t)(u ■ (v :: I)) —* in se r t (v , Z, subst(u , x, t)).

7T3 7T4

7Ti 7T2 - ■
F j - h - U i S !  r ; 5 ,  b Z : C

: :  L f t
r ,  x : A; -  h t  : B l D B 2 V] -  F u  : A T; ^  D B 2 h v  :: I : C
------------------------------------------------------------------------------------------------------- K e y  Cut

r ; -  h ( \x . t ) (u  ■ (v :: Z)) : C

reduces to

7T2 7Ti

7T3 7r4
F; — h  u  : A  F , x  : A; — h  t  : B \  D  i? 2
 : 1  ( 1 ) : :

T; — F subst (u , x , t )  : B \ D  Bo F; — h v : B \  F; B 2 F Z : C
 :  (2 )

T; — F insert(v,  Z, subst.{u, x, i)) : C  

where (1) is by Lemma 3 and (2) by Lemma 2 .

P ro p o s i t io n  1 (S u b je c t re d u c tio n )  In XV, i f  T; — h t : A  and, t —> t ' , then 

T; -  b t' : A

P ro o f: The claim is proved together with the claim th a t if T; B  I- I : A and 

I —> I', then Y: B  \~ I' \ A,  by simultaneous induction on t —> t! and I I'. All 

cases but the base cases are routine, and the la tte r were done above. 1 !

Permutation of meta-operators

We prove some perm utations of operators subst, in ser t  and append. 

L em m a 4 For all u, u ' , I, I" in XV:

append(append(/", u! :: l'), u :: /) =  append(l",u'  :: append(l', u :: I)).
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P ro o f: Straightforw ard induction on I". ■

L e m m a  5 For all t, u, u ' , I, I1 in XV: 

i n se r t (u , l , in se r t (u ' , l ' , t ) )  = insert{v! ,append(l ' ,u  :: l ), t) .

P ro o f: Straightforw ard case analysis of t. One case requires Lemma 4. ■  

L e m m a  6  For all v, u, I, I' in XV:

subst{y, x, append{l' ,u  :: I))  =  append(subst(v,x, l ' ),  subst(v,x,u)  :: s ub st(v,x, l ) ) .  

P ro o f: By straightforward induction on V. ■

L e m m a  7 For all v, u, t, I in XV:

subst(v, x, i n s e r t (u , f t ) )  = inser t(subs t(v , x, u), subs t(v , x, /), subst(v , .x, £)).

P ro o f: By case analysis of t. We write s for subst, i for insert  and a for append. 

Case t  = x.

s ( v , x , i ( u , l , t ) )  =  s ( v , x , i ( u , l , x ))

=  s ( v , x , x ( u  ■ I)), by def. i n se r t ,

= i ( s ( v ,  x ,  u) ,  s ( v ,  x ,  I ) ,  v ) ,  by def. subst,

=  i ( s ( v ,  x ,  u) ,  s ( v ,  x t l ) ,  s ( v ,  x ,  x)), by def. subst, 

= i ( s ( v , x , u ) , s ( v , x , l ) , s ( v , x , t ) )  .

Case t — y,  y  x .

s ( v , x , i ( u , l , t )) =  s ( v , x , i ( u , l , y ) )

= s ( v , x , y ( u  - I)), by clef, insert,

= y(s(v,  x, u) ■ s(y, x, I)), by clef, subst , 

=  i { s{v ,x ,u ) ,  s [ y , x , l ) , y ) ,  by def. subst, 

=  i(s(v, x, u), s(v, x, I), s(v, x, y))

=  i ( s ( v , x , u ) , s ( v , x , l ) , s ( v , x , t ) )  .
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Case t  = x(u'  ■ I').

s(v, x, i(u, I, t))

=  s ( v , X , i ( u , l , x ( u ' ■ l')))

=  s(v, x, x(u' ■ a(l' , u  :: I)), by clef, in s e r t ,

=  i(s(v,  x, u'), s(v, x, a(l', u :: I)), v), by def. subst,

= i ( s ( v , x, u'), a(s(v, x, I'), s(v, x, u) :: s(v, x, l)),v) ,  by Lemma 6 , 

=  i(s(v,  x, u), s(v, x , I), i ( s (v , x, u'), s(v, x, I'), v)), by Lemma 5,

=  i($(v, x, u), s(v, x, I), s(v, x,  x{u' ■ I')))., by def. subst,

=  i ( s { v , x , u ) , s ( v , x , l ) , s ( v , x , t ) )  .

Case t =  y{u' ■ I'), y ^  x.

s(v, x , i(u, I, t))

=  s { v , x , i ( u , l , y (u '  ■ I')))

=  s(v, x, y{u' ■ a(l', u :: /)), by def. insert,

=  y(s(v,  x, ¿̂/) • s(v, x, a( l \  u  :: /))), by clef, subst,

=  y ( s (v , x ,u ' )  ■ a(s(v, x, I'), s(v, x, u) :: s (v ,x , l ) ) ) ,  by Lemma 6 ,

=  i(s(v,  x, u), s(v, x, l ) ,y(s(v,  x, u )  ■ s(v, x, I'))), by def. insert,

=  i(s(v,  x, u ), s(y, x, I), s(v, x, y{u  ■ I'))), by def. subst,

=  i ( s ( v , x , u ) , s ( v , x , l ) , s ( v , x , t ) )  .

Case t = Xy.t'.

s ( v , x , i ( u , l , t )) = s (v ,x , i (u , l ,X x . t ' ) )

=  s(v ,x ,  (Ay. t' )(u ■ I)), by def. insert,

— {Xy.s(v.x . t ' ) )(s(v,x ,u)  ■ s(v, x. /)). by def. subst,

= i(s(v, x, u), s ( v , x, I), Xy.s(v, x, t')). by def. insert,
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=  i(s(v,  x, u), s(v,  x, I)), s{v, x , Xy.t')), by def. subst ,

=  i ( s ( v , x , u ) , s ( v , x , l ) , s ( v , x , t ) )  .

Case t  =  (Ay.t'){u' ■ V).

s(v, x, i(u, I, t))

=  s(v, x, i(u, I, (Xy.t')(u ■ I')))

= s ( v , x ,  (Ay.t'){v! ■ a( l ' ,u  :: /))), by def. i n s e r t ,

=  ( \y . s (v ,  x, t '))(s(v,  x, u )  ■ s(v,  x, a(l', u :: I))), by def. subst ,

=  (Ay.s(v,  x , t '))(s(v,  x, u') • a(s(v,  x, I'), s(v, x , u) :: s(v,  x, /))), by Lemma 6 , 

=  i(s(v,  x, u), s(v,  x, I), (Xy.s(v , x, t ' ))(s(v,  x, u )  ■ s(v,  x, I'))), by def. i n s e r t , 

=  i(s(v,  x, u), s(v, x, I), s(v, x, (Xy.t'){u' ■ I'))), by def. subst ,

=  i ( s ( v , x , u ) , s ( v , x , l ) , s ( v , x , t ) )  .

m

The perm utation of subst w ith itself might be called the su&st-lemma, by 

analogy w ith the substitu tion lemma of A-calculus.

L e m m a  8 Let u , v , t ,  I G XV, x ^  y and y ^  F V (v ) .  Then:

1. subs t(v , x, subst(u, y, t)) = subst(subst(v,  x, u) ,y ,  subst(v , x, t)).

2. subst(v , x, subst(u, y, I)) =  subst(subst(v , x, u), ?/, subst(v , x, /)).

P ro o f: By simultaneous induction on £ and /, w ith induction hypotheses IH l 

and IH2, respectively. We write s for subst  and i for insert.

Case t =  x.

s{v, x, s(u, y, £)) =  s (u ,x ,s (u ,y ,x ) )

=  s(u, x, x), as x  y,

=  v
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=  s (s (v ,x ,u ) ,y ,v ) ,  as y £ F V (v ) ,  

= s ( s ( v , x , u ) , y , s ( v , x , x ) )

= s ( s ( v , x , u ) , y , s ( v , x , t ) )  .

Case t =  y.

s { v , x , s ( u , y , t ) )  =  s ( v , x , s ( u , y , y )) 

=  s ( v , x ,u )

Case t  = z, z  ^  x, y.

s ( s ( v , x , u ) , y , y )

s(s(v,  x, u), y, s {v , x , y)), as i / î / ,  

s ( s ( v , x , u ) , y , s ( v , x , t ) )  .

s ( v , x , s ( u , y , t ) )  = s ( v , x , s ( u , y , z ))

=  s ( v , x , z ) ,  as 2 7  ̂ y,

Case i  =  x (u ' ■ Z').

=  s(s(v , x ,ii) ,y , 2)), as 2 + y,

=  s ( s ( u ,  x ,  u ) ,  y ,  * • ( { , ' ,  X ,  2 ) ) ,  a s  2 ^  x ,  

=  s ( 5 ( u , r r , t t ) , y , s ( u , x , i ) )  .

s{v, x, s(u,  y, i))

=  s(v, x, s(u,  y, x(u'  • Z')))

=  s(y, x, x(s{u,  y , « ') • s{y, y, Z'))), as x ±  y,

= i(s(v,  x, s (u , y, u')), s(v, x, s(u, y,

=  *{.«(«(*>, ^  «(«, x, « '))•s(s(o, x, w), y, s(x, x, Z')): v), by IH L IH 2 ,

=  i(s(s(t/, x, u) ,y .  s(v,  X. u')), s(s(v, x, u), y, s(v, x, l ') ).s(s(v,  x, u ) ,y ,  u)),
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as y i  F V ( v ),

=  s(s(v,  x, u ) , y , i ( s ( v , x , u ' ) , s ( v , x , l ' ) , v ) ) ,  by Lemma 7,

=  s(s(v,  x, u), y, s(v, x, x(v! ■ I')))

= s ( s ( v , x , u ) , y , s ( v , x , t ) )  .

Case t  =  y{y! ■ I').

s (v, x, s(u, y, t))

= s ( v , x , s ( u , y , y ( u  ■ I'))

=  s(v, x, i ( s (u , y , u '), s(u, y, l '),u))

=  i { s ( v , x , s ( u , y , u ' ) ) , s ( v , x , s ( u , y ^ l ' ) ) , s ( v , x , u ) ) ,  by Lem ma 7,

=  i{s{s(v, x, u), y, s(v, x, it')), s{s(v, x, u), y, s(v, x, I’)), s{v,  x, u)), by IH1,IH2, 

=  s(s(v , x , u ) ,y , y(s(v, x, u') ■ s(v, x, I')))

= s ( s ( v , x , u ) , y , s ( v , x , y ( u '  -I'))), as x ^ y ,

= s ( s ( v , x , u ) 1y , s ( v , x , t ) )  .

Case t  =  z[u'  - i ' ) y  ^  x, y.

s(v, x, s(u, y , t))

=  s (v ,x ,  s(u, y, z(u ' ■ I')))

=  s (v ,x ,  z ( s (u ,y ,v ! )  ■ s (u,y, l ' ) ) ) ,  as z=£y ,

= z(s(v,  X, s{u, y, u')) ■ s(v, X, s (u , y, /'))), as 2 ^  x,

=  z (s (s{v7x , u ) , y , s ( v , x , u ' ) )  ■ s(s(v,  x, u), y, s(v, .x , /'))), by IH1.IH2,

=  s(s(m  x, u), 2/, z(s(x, x, w') • s(x, x, /'))), as z ^ y ,

= s(s(v,  x, u), y, s(v, x, 2 (u' ■ /'))), as 2 ^  x,

=  s ( s ( v , x , u ) , y , s ( v , x , t ) )  ■

Case t  = Xz.t ' .
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s ( v , x , s ( u , y , t ) )  =  s(v,  x, s(u, y, Xz.t')

=  s(v,  x ,  \ z . s (u,  y, t'))

=  \ z . s ( v , x ,  s(u, t , t ' ) )

=  Xz . s ( s ( v ,x , u) , y , s ( v ,x , t ' ) ) ,  by IH1, 

=  s ( s (v ,x , u) , y , \ z . s ( v ,x , 1?) )

=  s ( s ( v ,x , u) , y , s ( v , x ,Xz . t ' ) )

=  s ( s ( v , x , u ) , y , s ( v , x , t ) )  .

Case t =  (Az.t')(u' ■ I1).

s ( v , x , s ( u , y , t ) )

= s ( v , x , s ( u , y ,  {Xz.t ')(v!-I'))

=  s(v, x , (Az.s(u, y, £'))(s(u, y, u!) ■ s (u , y, /')))

=  (Xz.s(v, X, s{u, y, t'))){s{v, x, s {u , y, u ’)) ■ s ( v , ar, s(u, y, /')))

=  (Az.s(s(v, x, n), y, s(v, x, t ')))(s{s(v, x, u), y , s(v, x, u')) ■ s(s(v,  x, u), y, s(v, x, I'))), 

by IH1,IH2,

=  s ( s ( y , x ,u ) , y , ( \ z . s ( v , x ,1 ? ) ) ( s ( v , x ,u ' )  ■ s (v ,x ,  I')))

=  s(s(v,  x , u), y, s(u, x, (Az.t ')(u' - /,')))

= s ( s ( v , x , u ) i y , s ( v , x , t ) )  .

Case / =  [].

■s(ik x, ,s(u, y, I)) =  ,s(x, x, s(u, y, 0))

=  s ( u ,x ,0)

s(s{iKX,u)yy,[}) 

s ( s ( v . x , u ) , y ,  s (v ,x ,  0)) 

s ( s ( v , x , u ) , y , s ( v , x , l ) )
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Case I — u' :: I'.

s ( v , x , s ( u , y , l )) =  s(v,x, s(u, y,u'  :: V)

=  s ( v, x, s( u, y, u' )  :: s(u,y,l ' ) )

=  s(v, x, s(u, y, u ) )  :: s(v, x, s(u, y, I'))

— s(s(v,  x , u) ,y ,  s(v, x, u')) :: s(s(v,  x, u), y, s(v,  x, I1)), by IH1,IH2 

=  s(s(u, x , u),y,  s(v,  x, u )  :: s(v,  x, /'))

=  s ( s ( v , x , u ) , y , s ( v , x , u : : ï ) )

=  s ( s ( v , x , u) , y , s ( v, x , l ) )  .

Appendabiiity, ¡nsertability, substitutivity

L e m m a  9 In XV, i f f  —> l2 then appendix,  If) —> appendix ,  1'2).

P ro o f: By induction on l\. ■

L e m m a  10 In XV:

1. (a) I f  t  —> t' then inser t (u , I, t ) —> in s e r t f u , Z, i ') .

(b) I f  lx —* l'x then append(l\, if) —* append(l[, l2).

2. I f  u —> u' then in se r t fu , Z, f) —> inser t(u ', I, t).

3. I f  I Z' then inser t (u , Z, t) —> insert fu,  I f  t ).

P ro o f: 1. By simultaneous induction on t  —> t' and C —> Zj. Cases according to 

Definition 5. We just do the base cases. The rem aining cases are routine. We 

write s for sn&st and i for insert.

Case (31.
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i (u , l ,  (A x .t 0) ( t i  ■ 0) )  =  (Xx.to)(ti  • append(\\,u  :: I))

=  ( A x . i0) ( i i  • {u  :: 0)

*’,82 i ( u , l , s ( t U X,t0)) .

Case /32.

i ( u ,  Z, ( A x . i 0) ( t i  • ( i 2 :: Z0) ) )  =  ( A x . i 0) ( i i  ' append{t2 :: Z0> u  "  0 )

=  (Ax.i0)(A ■ (¿2 append(l0, u  :: Z)))

—>132 i ( t2,append(l0, u  :: I), s ( t i , x , t 0))

=  ¿(it, Z, z(i2, Z0, s ( i i , x, i0)), by Lemma 5.

2 . and 3. are by case analysis of t, using Lemma 9. ■

L e m m a  11  In XV:

1. (a) then s u b s t ( u , x , t ) —> subst (u ,x , t ' ) .

(b) I f  I —> I' then su b s t (u ,x , l ) —> subst{u,x, l ' ) .

2. (a) I f  u —* u' then subst(u. x,  /.) —** subst(ur, x , t ) .

(b) I f  u  —* u/ then su b s t (u ,x , l ) —>* subst(u' ,x , l ) .

P ro o f: 1. By simultaneous induction on t  —* t' and I —> I'. Cases according to 

Definition 5. We just do the base cases. Case L e f t 1 (resp. L e f t2 )  requires part 

2. (resp. part 3.) of Lemma 10. The remaining cases are routine. We write s for 

subst and i for insert.

Case ¡31.

s ( u , x t {Xy.tQ)(t i - \ \ ) )  = ( \ y . s ( u , x , t o ) ) ( s ( u ,x , t i )  • 0)
-* ¡3 1 s(s(u,  x , ti),  y, s(u, x, t0))

= s (u , x. s ( t i, y. to)), by Lemma 8 .
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Case ¡32.

s (u ,x ,  (Ay.i0)(ii • (t2 :: Z0)))

=  (A?/.s(ii, x, £0))(s(it, X, £x) • (s(u, x, t 2) ■■■■ s ( u , x, Z0)))

/̂32 ¿(s(w, a:, ¿2), s(u,  x, Z0), s(s(u , x, t x) ,y ,  s(u, x, t0)))

=  i(s(u,  x, £2), s(m, x, l0), s (u , x, s(t  1, y, £0))), by Lemma 8 ,

=  s (u , x , ¿(£2, ¿o, s(£ i, y, £0))), by  L em m a 7.

2. By simultaneous induction on t and I. Requires part 1. of Lem ma 10. ■

3.2 independent left permutation

The AP/i-calculus is presented in Table 3.3. Typing rules are in Table 3.4.

Besides constructors for the cut-free canonical fragment, XVh  includes in its 

syntax a  kind of cut, the right perm uted cut t (u ■ I), which is more general th a t 

th a t found in XV. This construction subsumes both  the key-cut (Ax. t)(u ■ I) and 

the left rule x(u  ■ I) of XV. W hen t (u ■ I) does not fall under one of these sub

classes, it is left perm utable, and there is a reduction rule h th a t performs the 

complete left perm utation of such cuts. Notice th a t, in XVh, x (u  - I) is a cut 

but is not a redex. Moreover, the cuts th a t are generated by the key step of 

cut-elim ination are completely right perm uted (but not completely perm uted, as 

in XV).  Therefore, there is an essential difference between snbst  in XV  and here.

D e fin it io n  6 (C o m p a tib le  c lo su re )  Given a pair R  of  binary relations, the 

first on T e r m s  and the second on Lists ,  the compatible closure is the least 

pair of  relations — the first on T e r m s  and containing the first, relation of R. the 

second on L is t s  and containing the second relation of  R,  closed under:
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Table 3.3: The AP /i-ca lcu lus

(Terms)  u , v , t  ::= x  \ Xx. t \ t{u ■ I)

(Lists)  I, I' ::= [] 11 :: I

((31) (Xx. t)(u  • []) —► s u b s t ( u , x , t )

(¡32) (Ax. t)(u ■ (v :: I)) —> subst(u, x , t ) ( v  ■ I)

(/?,) (t(u ■ l))(u' ■ I') —► t (u  ■ append(l, u ' :: /'))

where

su b s t ( v ,x ,x )  — v 

subst(v , x, y) =  y , y  f i  x  

subst(v, x, Xy.t) = Xy.subst(v, x , t )  

subs t(v , x, £(ti • /)) =  subst(v , x, t ) (subs t(v , x, u) • subst(v , x, /))

subst(v,  x , u  :: /) =  subs t (v ,x ,u )  :: subst (v ,x , l )  

subst(v,  x, []) =  []

append(t :: 1,1') =  £ : : append'! . I') 

append(\\,l ') = I'
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Var  ^  ~  : A; -  F  x  : A Right  F  -  h  Az.i : A  D B X ^  Tr, x

V - t : A D B  F ; - h î i : A  r ; 5 b i : C
H e a iC u t   --------------

p. /i l_ n . a L f t
T; — h f : A F] B  F I : C

F; A h [1 : A 1JJ0 I : A 3 B  r

Righta  A  7  L f  H e a i C

HeadCut2  —, n ^  F  /—nr HeadCutS  —, J   wv£(u • Z) —> f(u  ■ Z) f(w • Z) —► f('u • Z )

u  —> U T t+0 Z —► Z'L f t l  . V ,  ¿ / i 2u : : l - > u : : l  J u  :: I - a : : ! '

For instance, for defining —»g, take i? =  (/3l U /32, 0) in Definition 6 . T hat is, in

AP/i we set /3 =  (/3l U /32, 0). One can again define — (resp. —>732) by taking

A =  (/?!, 0) (resp. i? =  (/?2, 0)), or define —̂  by taking R  =  (/?., 0).

Admissible rules

L e m m a  12  In XV h, let ttj be a derivation o f F \ C F l \ B  and no be a derivation 

of T \ B  F V : A.  The complete left permutation of  no over n^ is a derivation of  

T;C F  append(l ,V) : A. In particular, the following rule is admissible:

F - C F l - . B  T; B  F I1 : A 
T; C  F append (I, I') : A

P ro o f : As in Lemma 1. S
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L em m a 13 In XPh, let irx be a derivation o f T ,  x  : B; — b  i  : A, n2 a derivation 

of T , x  : B ] C  \~ I : A  and 7r a derivation of  T : — b v : B  such that x  ^

T. Then, the complete right permutations of  ir, over 7Ti at x, and over tt2 at 

x, are derivations of  F ;— b subst (v ,x , t )  : A  and of T]C  b s u b s t ( v , x , l ) : A,  

respectively. In particular, the following rules are admissible:

T - , - \ ~ v : B  F , x  : B ] - \ ~  t  : A  ^  r
T; — b subst(v, x, t) : A  '

T ] ~ h v : B  T , x  : B \ C  b  I : A  ,  r
T; C  b subst (v , x , l )  : A  X “

P ro o f  : Let 7rJ and ttI, be the complete right perm utations of 7r, over ir\ a t x, 

and over 712 a t x, respectively. The proof is by simultaneous induction on t (with 

induction hypothesis IH1) and I (with induction hypothesis IH2).

Cases t = x , t  = y f = x , t  = Xy.t1, I =  [] and I = u' :: I' exactly as in the proof 

of Lemma 3. The remaining case is

Case t =  t '(u' ■ I1). Then there are ir[, 7r", 7r'2, C\, C 2 such th a t 7Ti has the  form

/ // 1
7 r I 7TJ 7T2

r,x : B \ -  b t' : Cy D C2 r,i:B;-bu': C x T , x  : B ; C 2 b I' : A
---------------------------------------------------------------------------------------------------------H eadCut

T , x  : B \ -  b t'[u' -I') : A

Let us write s for subst. Derivation 7r̂  is the following H eadCut  inference

7T+ 7T++ -nf

T; — b s(v, x , t1) : C x D C2 T; — b  s(v, x, u') : C\ F ; C2 b s(v, x, I') : A

T, x  : B: — b s(v, x , t ')(s(v, x , u )  ■ s(v, x, I')) : A

where tt̂ 1“ and rc{ + are given by IH1 and irf  is given by IH2. Since s ( v , x , t ) =

s(v, x, t ')(s(v, x, u ') • subst(v , x, I1)), we are done.B
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C u t  e l i m i n a t i o n  i n  X P h

In this subsection we show in w hat precise sense the reduction rules of XVh  

perform cut-elim ination.

Rule (31: (Ax . t ){u-  []) —> subs t (u ,x , t ) .

7T i

: 7T2

T, x  : A; — b t  : B  ;
----------------------------- Right  ■ ------------ A x
T; -  b A x . t  : A d B  T; -  b u  : A  F; B  b  B
--------------------------------------------------------------------------------- HeadCut,

r ; -  b {Xx.t)(u-  0) : B

reduces to

7r2 Tii

F ;— \~ u : A  F , x : A ; — \ - t : B
-  Lemma 13

F; — b subst (u , x , t )  : B  

Rule (32: (Ax. t)(u ■ (v :: I)) —+ su b s t (u ,x , t ) ( v  - I).

ITi 77,3 7T4

r , .T : A \ -  b i  : B i  D Bn ** T ; - \ ~ v : B i  T; B 2 b  I : C
Ri g h t  .  L f t

r ; — b  Xx. t  : A  D B x D B 2 T; B x D B 2 h v  :: I : C
-------------------------------------------------------------------------------------------------------------------------- H e a d C u t

T; -  b  (Ax . t ) (u  ■ (v  :: 0 ) : C

reduces to

7T2 7Tx

F; -  b u : A  T, x  : A; — h  t : B 2 D B 2 ^  **
 _ (1) : :

F; — b  subst lu , x, t) : B\  D B% F: — b v : B \  T; B 2 b  I : C
—    ( 2)

T; — b subst{u , x, t )(v  • I) : C

where (1) is by Lemma 13 and (2) is a H eadCut  inference.

Rule h: t{u ■ l){u' ■ V) —»■ t (u ■ append(l, v! :: I1)).
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7T i 7T2 7T3

7r4 7T5
r ; — \- t : D D E  F ; — \- u : D T\ E  \~ I : A D B
----------------------------------------------------------------- ( i )  : :

T-, — \- t(u • l) : A D B Y - - \ - u ' : A  T \ B \ - V \ C
 (2 )

F; -  b t(u ■ l)(u ■ I ) : C

where both  (1) ancl (2) are HeadCut  inferences, reduces to

7T4 7T5

7T3
; T \ - \ - u ' \ A  F ; B h l ' : C

7T x TTo •  -----------------------------------L f t
F; E  \- I : A D B F\ A D B  b u' :: V : C

: :------------- — ---------------------(3)
F; — (- t : D D E  F; — F u : D T; E  F append(Z, u :: I ) : C
     —__— ------------------------------------------------------- HeadCut

F; -  h t(u ■ l)(u' ■ V) : C

where (3) is by Lemma 12.

P ro p o s i t io n  2 (S u b je c t r e d u c t io n )  In  AVh,  i f  T; — b t  : A  and t  —> t ' , then 

T; -  h t.' : A

P ro o f: The claim is proved together with the claim th a t if T; B  h I : A  and 

I —>■ If then T ] B  h  I' : A, by simultaneous induction on t  —> t! and I —> I'. All 

cases but the base cases are routine, and the la tte r were done above. ■

Relating A Vh and XV

We regard the term s of XV  as forming a subset of the term s of A Vh.  This 

inclusion is correct because typing rules L e f t  and K e y C u t  of XV  may be seen 

as the particular cases of typing rule HeadCut  of A V h  in which the inference 

immediately above the leftmost premiss is a Var  or Right  inference, respectively. 

First, we show th a t A V h  simulates XV.

L em m a 14 In X Vh .  either t(u ■ I) = in ser t fu , 1.1) or t (u ■ I) —>h in se r t (u , /, t), 

for all u. t. I in XV.
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P ro o f : Case analysis of t.

Case t  — x. t{u ■ I) =  x(u  ■ I) = inser t{u , I, x)  =  in se r t (u , I, t ).

Case t  = x (uq ■ Iq). t (u ■ I) = (x (uq ■ Iq))(u ■ I) —*h x {uq ■ append(lo,u :: I)) =  

i n s e r t ( u j , x ( u 0 ■ ¿o)) =  in ser t (u , I, t), as append in XPh  and XP  coincide for 

argum ents in the la tter calculus.

Cases t  =  Xx.t.Q and t  =  (Ax . t0)(uo ■ lo) are similar to  cases t  =  x  and 

t = x(uo ■ lo) respectively. ■

We need to  compare subst  in XPh  w ith subst  in XP. In the following, when 

required, we write the former as subst!.

L e m m a  15 In XPh, the following holds:

1. subst'  (u, x , t )  subst(u, x , t ) ,  fo r  all u, t in A P.

2. subst'  (u, x, I) substfu,  x, I), fo r  all u, I in XV.

P ro o f: By simultaneous induction on t  and I. The only interesting case is t  =  

x(v  ■ I). In this case,

subst'(u, x , x (v  ■ I)) 

u(subst ' (u , x, v ) ■ subst'(u, x, I)) 

u ( s u b s t ( u , x , v ) • s u b s t (u , x , l )), by IH1,IH2, 

in ser t ( subs t (u ,x ,v ) ,  subs t (u ,x , l ) ,u ) ,  by Lemma 14, 

substfu,  x, x{v ■ I)) 

subst(u, x, t ) .

subst'  (u, x , t )

*
■h.

+h or =

P ro p o s i t io n  3 I f  t  —> tf in XP. then t. —A  t' in XPh.
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X =  X

(A x.t)~ = Xx.t~

— inser t{u~ ,l~ , t~ )

( 0  r -  D
{u : :  l ) - =  n r  : :  l~

P ro o f: The claim is proved together w ith the claim th a t if I —» I' in XV, then 

I — I' in XVh,  by simultaneous induction on t —> t' and I —> I'. Cases according 

to Definition 5. We just show the base cases. The remaining cases are routine. 

Case (31. (Xx.t)(u  ■ []) —>pi su b s t ' ( u ,x , t ) — subst fu,  x , t ) .

Case (32. (Xx.t)(u ■ (v :: I)) —>32 subs t ' (u ,x , t ) (v  ■ I) ~̂ *h subs t (u ,x , t ) (v  ■ I).

In both  cases, the last /¿-steps are by Lemma 15. ■

There is a translation (_)“ : XVh —> XV  defined in Table 3.5. We now prove 

its correctness.

P ro p o s i t io n  4 (C o rre c tn e s s  o f (_)")

1. I f  XVh derives T; — F t : A  then XV derives F; — h t~ : A.

2. I f  XVh derives T; C  F / : A  then XV derives T; C  F /" : A.

P ro o f  : Let tti be a derivation in XVh  of F; — F t : A  and tt2 be a derivation in

XVh  of T: C  \~ I : A. One proves by simultaneous induction 011 t  (with induction

hypothesis IH1) and I (with induction hypothesis IFI2) th a t there are derivations 

7T* and it2 in XV  of T ;— F t~ : A  and T ;C  h F  : A  respectively. The only 

interesting case is t  — t0{uo • k)-  The remaining cases are routine.
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7 r i  71T  7To

T ; - b  t0 : B D C  r - , - \ ~ u 0 : B  r - C f - l 0 : A
 — ; 7---- r-7—  ------------------------------ H eadC ut

r ; — h  to(uo Co) : A

Since t~ = in s e r t {u f  , I f , t f  ), we want a  derivation 7rJ of T; — t— i n s e r t ( u f  , ¿0", to" 

A  Take ix\ as

+  + +  4*7TV 7TV 7To

r ; -  h  to : B  D C  T; -  h  «0 : £  r ; C H „ : 4
 —- —:  _ ———   Lemma 2

I ; — r  insert{u0 , l0 , t 0 ) : A

where n f  and 7r^+ are given by IH1 and ix% is given IH2. ■

Now we show some properties of 

L e m m a  16 t~ =  t, fo r  all t in XV.

P ro o f: Imm ediate, by definition of insert.  ■

L e m m a  17 append (I, u' :: l')~ = append (l~ ,u'~ :: l'~), fo r  all v!, I', I in A Vh.  

P ro o f: By a  straightforward induction on I. P

L e m m a  18

1. (subs t ' ( v ,x , t ) )~  =  subst(v~ , x , t~ ) ,  fo r  all v, t in A Vh.

2. (subst ' (v , x , /))“ =  subst(v~ , x, /“ ). for all v, I in XVh.
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P ro o f: By simultaneous induction on t  and /, w ith induction hypotheses IH1 and 

IH2, respectively, subst'  refers to  subst  in XPh.  We just show the only interesting 

case. The remaining cases are routine.

Case t  = to(uo ■ Iq).

(subst'(v,  x, t ))

=  (subst'(v, x, t0(u0 ■ l0)))~

=  ( subs t ' ( v ,x , t0)(subst' (v,x,Uo) ■ subst'(v, x,

= insert(subs t ' (v ,x ,Uo)~, s ubs t ' ( v ,xJo )~ , subst ' (v ,x , to)~)i  by def. of

=  in s e r t ( s u b s t ( v ~ ,x ,u f ) ,  s u b s t ( v ~ , x , l f ) , s u b s t ( v ~ , x , t f ) ) ,  by IH1,IH2,

=  subst(v~,  x, i n se r t (u f  , I f  , t f ) ,  by Lemma 7,

=  subst (v~, x, (t,Q(u0 • l0))~), by def. of

=  subs t (v~ ,x , t~ )  ■

P ro p o s i t io n  5 I f  t\  —> t2 in XPh, then either t x = t 2 or t l —> t 2 in XV.

P ro o f: The claim is proved together w ith the claim th a t if lx —■> V in XPh,  then 

either I f  =  I f  or I f  —> I f  in XP,  by simultaneous induction on t \  —> t 2 and 

l\ —> ¿2- Cases according to Definition 6.

Case 01. Similar to the following case.

Case 02.

((Ax. t) (u  ■ (v :: I))) =  inser t(u  , (v :: I) , (Xx.t) )

=  inser t(u~,  (v~ :: l~), Xx .t- )

=  (Ax. t~) (u~ ■ (v~ :: l~))

— inser t(v~,  l~, su-bst(u~ , x, t ~))

=  in se r t ( v~ . l~ , subst(u, x, t.)~), by Lemma 18,

=  (substfu, x, t )(v ■ l))~.  by def. of
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Case h.

((t(ui  ■ h ) ) {u 2 ■ h) )~ — inser t {u f  , l f  , i n s e r t { u f  , l f  , t~)) ,  by def. of

=  i n s e r t (u f  , a p p e n d ( l f , u f  :: l f ) , t ~) ,  by Lemma 5,

=  i n s e r t ( u f , append(li,  U2 :: ¿2)” , ), by Lem ma 17,

=  (t(ui ■ a p p e n d ^ , U 2 :: ¿2)))” , by def. of

Case H ea d C u t  1. Suppose th a t either ¿3 =  t f  or ¿J —» t f .  We want either 

(t3(u ■ l))~ = (t4(u ■ l))~ or (t3(u ■ l))~ —*• (i4(ii • l))~. Now,

[t3(u ■ I)) = insert{u ,1 , t 3 )

=  or —> inser t  ( u ~ , l ~ , t f ) ,  by part 1 of Lemma 10, 

=  [ U { u - l ) y  .

Case HeadCut2 .  Similar, by part 2. of Lemma 10.

Case H  eadCutZ.  Similar, by part 3. of Lemma 10.

The rem aining cases follow by IH. ■

C o ro lla ry  1 XPh is a conservative extension of  XV,  i.e. t  —>* t! in XV i f f t  —>* t' 

in XVIi, fo r  all t, t' in XV.

P ro o f : By Propositions 3, 5 and Lemma 16. H 

P ro p o s i t io n  6 t — t ~ , all t in XVh.

P ro o f : T he claim is proved together w ith the claim th a t I — l~ , all I in XVh,  

by sim ultaneous induction on t  and I. The only interesting case is t  =  to('Uo • lo)- 

In this case,
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t.
 . *

h or = insert(v,Q ,Iq , t q), by Lemma 14, 

=  {to{uo ■ lo))

C o ro lla ry  2 I f  XV is confluent, so is XVh.

P ro o f: By Propositions 5 and 6 . H

L e m m a  19 I f  t\ —>h h  in XVh, then t f  =  t f .

P ro o f : It suffices to look a t the  proof of Proposition 5. IE

C o ro lla ry  3 In X V h , —>/,. is confluent.

P ro o f: By Proposition 6 and Lemma 19. W

Therefore, we may refer to  the normal-form mapping 

C o ro lla ry  4 For all t  in XVh.  t~ =X* (i)-

P ro o f: From Proposition 6 and the fact th a t each t  in XV  (as a term  in XVh)  is 

h-normal. ■
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Perm utation of meta-operators

We prove some perm utations of operators subst  and append.

L e m m a  20 For all u, u', I, I', I" in XPh:

append(append(l" , v! :: l ' ) ,u  :: I) = append(l",u'  :: append(l' ,u  :: I)).

P ro o f : Straightforw ard induction on I". ■

L e m m a  21 For all v, u, /, I' in XPh:

subst (v ,x ,append(l f, u  :: I)) =  append(subs t (v ,x , l ' ) , subs t (v ,x ,u )  :: s u b s t ( v , x , l )). 

P ro o f : Exactly as in Lemma 6 . H

The following is the subst  lemma for XPh.

L e m m a  22  Let u, v, t, I £ XPh, x  ^  y and y £ F V (v ) . Then:

1. subst (v , x , subst[u , y, t)) =  subst(subst(v, x, u ) , y , subs t(v , x , £)).

S. subst(v,  x , subst(u , y, /)) =  subst(subst(v, x, u), y , subst(v , x, I)).

P ro o f: By simultaneous induction on t  and 1, w ith induction hypotheses IH1 

and IH2, respectively. Cases t  = x,  t  = y, t  — z  £  { x , y } ,  t  = X z . t I  =  [

and I =  u' :: I' exactly as in the proof of Lemma 8 . We write s for sufest in the

remaining case.

Case t  — t'[t' ■ I').

s ( v , x, s(u, y, I:))

= s(v, x, s(u, y, t ' (u ■ I')))

= s(v, X, s(u, y, t ')(s(u, y, u') ■ s(u, y, /')))

=  s(i>, X, s(tt, y, t')){s(v, X, s(tt, y, u')) ■ s{v, x, s (u , y, /')))

=  s(s(u , x, it), y, s(i>, x, i'))(s(s(t>, x, u), y, s(v, x. u')) ■ s(s(v,  x, u ) ,y ,  s(v, x, I'))),
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by IH1,IH2,

=  s(s(x, X,  u ), y, s ( v , x , t ' ) { s { v , x, u )  ■ s ( y ,  x ,  I'))) 

=  s ( s ( v ,  x, u ) , y ,  s ( v ,  x ,  t \ v l  ■ I ' ) ) )

=  s { s ( v , x , u ) , y , s ( v , x , t ) )  .

Appendability and substitutivity

L e m m a  23 In XPh:

1. I f  l\ —> l[, then appendali, l2) —* append(l[, h ) ■

2. I f  1.2 l2, then appendali, If) —> append (I i, I'f) ■

P ro o f: 1. By straightforward induction on l\ —> l[.

2. By straightforward induction on l\. ■

L e m m a  24 In XPh:

1. (a) I f  t  —> t' then s u b s t (u , x , t ) —+ subst (u ,x , t ' ) .

(b) I f  I —> I1 then su b s i (u ,x , l ) —> subst (u ,x, l ' ) .

2. (a) I f  u  —► vl then subst(u,  x, t) —>* subst(u \  x, t ) .

(b) I f  u  —> vl then subst(u , x, I) —>•* subst(u',  x, I).

P ro o f: 1. By simultaneous induction on t  —> tl and I —> I'. Cases according to 

Definition 6 . We just do the base cases. The remaining cases are routine. We 

write s for subst.

Case 01.

s (u ,x ,  ( \y . to)(t i  - [])) =  ( \y . s (u ,  x. i0))(s(u, x, t \ )  ■ 0)

*0 i s[s(u,  x, t i ) , y ,  s{u , x , to))

= s (u , x. tQ)), by Lemma 22 .
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Case (32.

s (u ,x ,  (Ay.i0)(ii • (i2 ¿o)))

=  (Ay.s(u,  x, t0))(s(u,  x, ti) ■ (s (u , x, t 2) ■■ s (u , x, l0)))

y/32 s(s(u,  X, t i ) ,  y, s(u, X, t 0))(s{u, X, t 2) ■ s (u , X, lo))

=  s (u ,x , 5 ( í i , y , í o ) ) ( s (u , x , í 2) ■ s(u ,x , lo)) ,  by Lemma 22,

=  s ( u , x , s ( í i , y , t 0)(Í2 ’ ¿o)) •

Case h.

s ( u , x , t Q(t i • Zi)(t2 ■ ¿2))

=  s ( u ,x , to ) { s (u ,x , t i )  ■ s ( u , x , l i ) ) ( s ( u , x , t 2) ■ s ( u , x , l 2))

— s(u,  x, to)(s(u , x, ¿1) • append(s(u , x, ¿1), s(u, x, £2) :: s(it, x, /2)))

=  s(u, x, to)(s(u, x, t i)  ■ s ( u , x )append(l i , t2 ■■ h))) ,  by Lemma 21,

=  s(ii, x, io(ii • append(l\, t 2 :: l2))) .

2. By simultaneous induction on t and L H

3.3 Explicit right permutation

The AT7?,x-calculus is presented in Table 3.6. Typing rules are in Table 3.7.

The n a tu ra l next step after the introduction of X V h  would be to separate right 

perm utation from the key step of cut elimination, introducing a new constructor 

£{x :=  u}  for right perm utable cuts, and keeping a m eta-operator for the complete 

right perm utation. T h a t is, in addition to h, we would take rules @1 and ¡32 in 

XVh  and replace calls to  subst  by t { x  := u}

(Xx.t)(u ■ 0) ->• t { x  := u}

(Ax. t) (u  ■ (v :: I)) —> t { x  := u} (v  ■ I)
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Table 3.6: The AT/ix-calculus

(Terms)  u , v , t  ::=  x \  X x . t \ t ( u  ■ I) \ t { x  := v}

(Lists)  I, I' ::= [| 11 :: I

(61) (Xx.t)(u • []) —> t { x  :=  u}

(62) (Ax. t)(u ■ (v :: I)) —» i{x  :=  ri}(x ■ /)

(/i) ( t ( u- i ) ) (ur - n —> i(u  • appen d(l, u ' :: i'))

(x l) x { x  :=  u} —►

(x2) y { x  :=  u}

(x3) (Ay .u ){x  := y} II?»■<Î

(x4) (t(u ■ l ) ) { x  : =  v} -> (i{x := x})(('u{x := x})

where

a p p e n d (\\,l') =  I1

append(u :: I , I') =  u :: appen d(l. /')

s u b (v ,x ,\\)  =  [I

s u b (v , .t, u :: /) - (u{x := v } )  :: su b (v , x, /)
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Table 3.7: Typing rules for XVhx

V ar

H eadCut  —1T] — \~ t \ A  D B  T ; - l -  u : A  V ; B \ ~ l : C  
T; — h  t{u • I) : C

M  idCut T; — h  v : A  T, x  : A] — h  t  : B  - ^
 r   XiV

Ax T; A h U : A
r f , r - - h t : A  T; B \~ I : C 
L f t  T ] A D  B\ - t : : l :C

together w ith  the rule2

t { x  :=  u]  —> s u b s t ( u , x , t ) .

A calculus organised in this way has an architecture th a t is as close as possible 

to  th a t of ¿-protocol. There is the  key step and two “structu ra l” steps, one 

for right perm utation, the other for left perm utation, being these perm utations 

performed by m eta-operators.

Nevertheless, we did not isolate such a calculus here and im m ediately took 

a step further, in th a t, not only constructor t { x  := u}  is included and right 

perm utation  separated from the key step, bu t also right perm utation becomes 

explicit, th a t  is, performed in stepwise fashion by rules of the calculus. Therefore, 

there is no sub.st in this W h x .  As it were, this calculus is a calculus of explicit 

subst.

C onstructor t { x  := u} binds x  in t. By variable convention, x  does not occur 

in u.

2This is calculus A j of [Espirito Santo, 2000]
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D e fin itio n  7 (C o m p a tib le  c lo su re ) Given a pair R  of binary relations, the 

first on T e r m s  and the second on Lists ,  the compatible closure — is the least 

pair of relations —», the first on T e r m s  and containing the first relation of R,  the 

second on Lists  and containing the second relation of  R,  closed under:

f   v j-__v 4-f
Right  -r— 7------7— 77 HeadCut  1 77---- 77------777-----77

Xx.t —> Xx.t, t (u  ■ I) —> t  [u ■ I)

HeadCut2  —,----- /( : A ,—77 HeadCut3  —,----- --------------ttt
i(u  ■ 1) —» i(u  • i) i(u  • /) —» £(u • I )

M id C u t  1 77-------------------  t  M idC ut2   t j=4 t ---- rrt { x  :=  —»■ t {.t :=  v )  t { x  v )  —> t { x  v )

L f t  1 .. , A / i2 ■ 1 l'u ::!■■> u' :: / J u :: I u  :: T

For instance, for defining —%  take R  =  (61 U 62, 0) in Definition 7. T hat is,

in XV hx  we set 6 =  (61 U  62,0). One can define —>¡,1 (resp. —+¡,2) by taking 

R =  (61, 0) (resp. R. =  (62, 0)), or define — by taking R  =  (h , 0). The definition

of —»xi if — 1, 2, 3,4) is by choosing R  =  (xi, 0). We will also let

x =  x l U x2 U x3 U x4

and, thus, —>x is defined by taking R  =  (x, 0).

Admissible rules

L em m a 25 In XVhx,  let 7ra be a derivation o/T ; C  h  I : B  and tt2 be a derivation 

of T \ B  \~ V : A.  The complete left permutation of  ir2 over tti is a derivation of  

D C  h append(l , I') : A.  In particular, the following rule is admissible:

T ;C  \~ I : B  F; B  h I' : A  
T; C  b  append(l , /') : A

P ro o f: As in Lemma 1. ■
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L e m m a  26 In XV hx  the following rule is admissible:

L ; - b  v : B  r , x  : B \ C  V I : A  
r; C  b sub(v, x, I) : A  X *

P ro o f  : Let ir2 be a derivation of T, x  : B; C  b  I : A  such th a t x  T. We prove 

by induction on I th a t, for any derivation 7rx of F : — b v : B ,  there is a derivation 

7T2 of L; — b sub(v , x, I) : A.

Case I =  []: Then C  — A  and sub(v, x, I) =  []. Hence we want a derivation 7r\ 

of T; A  b  [] : A.  Take as an application of the A x  rule.

Case I = u 1 :: I': Then there are 7r ,̂ n'2, C\, Ci such th a t 7r2 has the form

7Ti 7To

T ,x  : B - -  b  u' : C x T , x  \ B \ C 2 \~ V : A
 L f t

T , x  : B ;C i  D C2 h u '  :: V : A

and C  =  C\ D C2. Since sub(v ,x , l )  = (u'{x := w}) :: subst (v ,x , l ' ) ,  we want a 

derivation 7r| of F; C\  D C2 b  [u'{x \= u}) :: subst(v , x, I') : A. Take 7r2 as

/
7T,

711

T ] - \ - v : B  F , x  : B ] - \ ~ u '  :Cy
M id C u t

T; — b u { x  := v}  : C\ T; C2 b  subst iv , x, I') : A
 i     L f t

T ;C i D C2 b (u '{x  :=  u}) " s u b s t ( v ,x , l ' ) ■ A  

where ir f  is given by IH. ■

Cut elimination in XVhx

We now see in w hat precise sense reduction rules of XVhx  correspond to cut 

elimination steps.

Rules j3l and (32. As for AVh,  except th a t calls to  Lemma 13 are replaced by 

M id C u t  inferences.

Rule h. Exactly as for XVh,  using Lemma 25 instead of Lemma 12.
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Rules xl ,x2.  S tandard cut-elim ination steps reducing a cut whose right sub

derivation is an axiom.

Rules x3, x4. S tandard cut-elim ination steps, perm uting the cut upwards past 

the last inference of the right subderivation. In the case of x4, Lemma 26 is used.

P ro p o s i t io n  7 (S u b je c t re d u c t io n )  In XVhx,  ¿ /T ; — F £ : A and t —> t ' , then

r; -  h t! : A

P ro o f: The claim is proved together w ith the claim th a t if T; B  b I : A  and 

I —* If  then T ;B  b V : A,  by simultaneous induction on t  —> t' and I —* I'. All 

cases bu t the  base cases are routine, and the la tter were sketched above. SB

Relating W h x  and W h

First, we show th a t W h x  simulates W h .

L e m m a  27 In W h x :

1. t { x  :=  u} —A  subst (v ,x , t ) ,  fo r  all t, v in W h .

2. sub (v ,x , l )  —>* subst.(v,x,l),  fo r  all I, v in W h .

P ro o f: By a  straightforward, simultaneous induction on t  and I. IX

P ro p o s i t io n  8 / / £ —>■ £' in W h ,  then t —A  t' in W h x .

P ro o f: The claim is proved together w ith the claim th a t if I —> I' in W h , then

I W  I1 in AV hx ,  by simultaneous induction on £ —» tl and I —► I1. Cases according

to Definition 6 . We only show the base cases. The remaining cases are routine.

Case P 1. (Ax. t)(u • []) —»¡,1 t { x  :=  v} subs t (v ,x , t ) .  the last reduction 

being by Lemma 27.

Case 02. (Ax. t)(u ■ (v :: I)) —>62 t { r  v} (v  ■ I) — subs t ( v , x , t ) ( v  ■ I), the 

last reduction being again by Lemma 27.
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•Tb =  X

( A x . f ) b =  A x . i b
{ t { u - l ) f =  i V - / b )

{ t { x  : =  u } ) b =  s u b s t ( v b , x , t b)

( 0 ) b =  D
( u  ::  l ) b =  v f  : :  l b

Case h. (t(u ■ ■ I') —p,, t (u ■ append(l,vl  :: I')) in XVhx  and we are done

because append in XVhx  and XVh  coincide for argum ents in the la tter calculus. ■

We now define a mapping (_)b from XVhx  to  XVh.  The definition is given 

in Table 3.8 and simply am ounts to  replace each mid-cut by the corresponding 

application of operator subst  of XVh.

P ro p o s i t io n  9 (C o r re c tn e s s  o f  (_)b)

1. I f  XV hx  derives F; — F t : A  then XVh derives T: — F tb : A.

2. I f  XV hx  derives T; C  F / : A then XVh derives F; C  F lb : A.

P r o o f  : Let 7rj be a derivation in XVhx  of F; — F t  : A  and 7r2 be a derivation in 

XVhx  of T; C  F / : A. One proves by simultaneous induction on t (with induction 

hypothesis IH1) and I (with induction hypothesis IH2) th a t there are derivations 

7r* and tv?! in XVh  of T; — F f  : A  and T; C  F F : A  respectively. The only 

interesting case is t = t,0{x  :=  tio}. The remaining cases are routine.

Case t. = t0{x  :=  uq}: Then there are 7r(, tt", B  such th a t Tiy has the form
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7T ■.//

T] — \~ uo ■ B  T , x  : B] — \~ to ■ A  
—------------------------------------------------------ M id C u tM id C u t

Since fb =  subst(uo, x, tb0), we want a derivation 7r* of T ;— h subst(ub0, x,  ig) : A 

Take nt  as

7T.+ +

P; — h Uq : B  r ,  £ : B] — h  tb0 : A
Lemma 13

T; — h subst(uh0, x, 4 )  : A

where 7r̂ ~ and tt̂  are given by IH1. If

Now we show some properties of (_)b.

L e m m a  28 tb =  t, fo r  all t in XPh.

P ro o f : Immediate. ■

L e m m a  29

1. sub{v , x, l)b =  subst{yb, x, ¿b), for all v, I in W h x .

2. appendix ,  I2 Ÿ  =  append(l \ ,lb2). for all l-i, l2 in W h x .

P ro o f: By straightforward inductions on I and ¿1. ■

P ro p o s i t io n  10 I f  ti  —> t 2 in W h x ,  then t\ —A in W h .

P ro o f: The claim is proved together with the claim th a t if l\ —> l2 in W h x ,  

then ¿5 —>* If in W h ,  by simultaneous induction on t x —» t2 and ¿1 —■* l2. Cases 

according to  Definition 7.
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Case 61.

((A  x.t){u • 0 ))b =  (A x . ib) (u b ■ [])

—>/3i subst(ub, x , i b)

= {t{x := u } )b .

Case 62.

((Ax. t)(u ■ (v :: /)))b =  (Ax . tb){ub • (vb :: /b))

2 subst(ub, x, ib)(nb • /b)

=  {t{x  :=  u}(y; • /))b .

Case h.

■ h ) ) (u 2 ■ l2))b = (tb( u \ . l \ ) ) ^ 2 -l\ )

—>h tb(u\ ■ append(l\, ub2 :: ¿2))

=  tb{u\ ■ append(l\, (u2 :: l2)b))

— tb(rib • appendali, (u2 :: l2))b), by Lemma 29,

=  (t(ui ■ appendali,u 2 :: ¿2)))b

Case x l. (x{x :=  r;})b =  subst(vb, x , x) =  vb.

Case x2. (y { x  :=  u})b =  subst(vb, x , y )  — y =  yb.

Case x3.

((Xy. t ){x :=  u})b =  subst( if ,  x, A?/.tb)

=  Xy.subst(vb, x , t b)

=  (Ay.i{x :=  u})b .

Case x4.
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( t ( u - l ) ) { x  : = u } ) b 

=  subst(vb, x, tb(ub ■ /b))

=  subst(vb, x , tb)(subst(vb, x, n b) ■ subst(vb, x, T))

=  subst(vb, x, tb)(subst(vb, x, ?ib) ■ sub(v,  x, /)b), by Lemma 29,

=  (t{x :=  x})b((w{x :=  u})b • sub(v,  x, ¿)P)

=  ((t{x :=  n})(u{x :=  n} ■ sub(v, x, ¿)))b .

Case M id C u t l .  Suppose 4  —A 4 - We want (^ { x  :=  n})0 —A (i4{x :=  n})b- 

Now,

(t3{x :=  ti})b =  subst(ub, x, 4 )

—A subst(ub, x , 4 ) ,  by part 1. of Lemma 24,

=  (t 4{ x  : =  w } ) b .

Case MidCut.2.  Similar, by part 2. of Lemma 24.

The remaining cases are by IH. ■

C o ro lla ry  5 XVhx is a conservative extension of  XVh,  i.e. t  —A if in XPh iff  

t —A t! in XVhx,  for all t , t ' in XVh.

P ro o f: By Propositions 8 and 10 and Lemma 28. ■

P ro p o s i t io n  11 t —A tb, for all t in XVhx.

P ro o f: The claim is proved together w ith the claim tha t I —A f . for all I in X V h x , 

by simultaneous induction on t and I. The only interesting case is t  = to{x := Vq}. 

In this case,
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t = t0{x  wo}

t l { x  := wb}, by IH1,IH2,

—A  subst(vQ, x, ¿q), by Lemma 27,

=  (i0{£ :=  w0})b

=  i b

The cases t =  x  and I =  [] are im mediate and the  remaining cases are by IH. H

C o ro lla ry  6 I f  XVh is confluent, so is XT’hx.

P ro o f : By Propositions 10 and 11. ■

L e m m a  30 I f t \  —*x t 2 in XVhx,  then t\ = t\.

P ro o f : It suffices to  look at the proof of Proposition 10. ■

C o ro lla ry  I  In XVhx,  —>x is confluent.

P ro o f : By Proposition 11 and Lemma 30. ■

Therefore, we may refer to the normal-form mapping }x.

C o ro lla ry  8 For all t  in XVhx., tb = [ x (t ).

P ro o f : From Proposition 11 and the fact th a t each t  in XVh  (as a term  in XVhx)  

is x-normal. ■



Appendability and substitutivity

L em m a 31 In XVhx:

1. I f  ¿i —> l[, then append(l i ,l2 ) —> append(l[, Z2).

2. I f  Z2 —> I'o, then a p p e n d ^ ,  Z2) —> append(li,l '2).

P ro o f: Exactly as in Lemma 23. ■

L e m m a  32 In XVhx:

1. I f  I —> V, then sub(u , x, I) —> sub(u , x, Z').

S. / /  m —> u ' , then sub(u , x, Z) —»• sub(u ' , x, Z).

P ro o f: 1. By straightforward induction on I —► I'.

2. By straightforw ard induction on Z. ■

3.4 A fully explicit system

The calculi AP, XVh  and AP/ix are the systems th a t will deserve our atten tion  

in the following chapters. Nevertheless, we conclude this chapter by identifying 

one further calculus, named X V h x , th a t happens to be outside the canonical 

fragment. The point is th a t XVhx  is a  fully explicit system, in the sense th a t the 

whole cut-elim ination procedure is clone by means of local rules, w ithout appeal 

to m eta-operators. It is obtained from XVhx  simply by making explicit operators 

append and sub. The corresponding new constructors are l(u ■ I') and Z{x :=  u}.  

The la tter binds x in Z. By variable convention, x  does not occur in u.

As we will be dealing with fully explicit system, we briefly com pare XVhx  

w ith Herbelin’s original A-calculus. It will become clear th a t a fully explicit right 

protocol defined over the canonical fragment requires inter-perm utations 44 and 

22 to  be added to A. Moreover, the simulation of XVhx  by A3 will allow the reuse 

of the strong normalisability of A3.

The XVhx -calculus is defined on Table 3.9. Typing rules are in Table 3.10.
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Table 3.9: The A'P/ix-calculus

(T erm s)  u , v , t  ::= x \  X x . t \ t ( u  ■ I) \ t { x  := v}

(Lists)  1,1' \ \ \ t  :: l \ l ( u  ■ I') \ l { x  := u}

(61) (Ax . t ) (u -  []) - ,  t { x  := u}

(62) (Ax. t)(u ■ (v :: I)) - ,  t { x  := u}(v  ■ I)

(h) ( t(u ■ l))(ur ■ V) - ,  t (u  ■ (l(u' ■ I')))

(xl) x { x  := v} —» V

(x2) y { x  :=  u}

(x3) (Ay .u ){x  :=  i>} - ,  Ay .u{x  :=  v}

(x4) (t(u ■ l ) ){x ■= v} - ,  ( t {x  := u } )((u { i

(hi) d ( u ' - n u'  :: V

(h,2) (u :: l)(u' ■ V) - ,  u  :: (l(u' ■ I'))

(x41) []{* :=  t,} -  []
(x42) (u :: l ) {x := v} -> (u{x := u}) :: (l{
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Table 3.10: Typing rules for XVhx

V a r r ,  x : A :-  h x T A  R '9htT \--  F  Ax.t 7~k

H e a d C u t ÇnuADBF; -  h u :  A  r ; B H : C
1 ; — h  t (u ■ I) : G

M id C u t  F ' ~  '' J ’X- : Ai ~ n  * B  x £  rT; — h t { x  := v \  : B  ^

A r f J T ; - h i : A  T ; B h l : C
r ; A h [] : A 1 T ] A d  B \ - t : : l - . C

AuxHecidCut  r ; - b i t ' : A  : C
A u x n  e a a u u t  T; h l(u' ■ I ) : C

a nr- An  + T; — b v : A  T , x  : A \ C  \~ I : B  ^A u x  M id C u t  — „  „  . , r ’------- f — f-,------- x  e  TT; C h i{x := r;} : B  ^
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D e f in it io n  8 (C o m p a tib le  c lo su re )  Given a pair R  of binary relations, the 

first on T e r m s  and the second on Lists ,  the compatible closure — is the least 

pair of relations —>, the first on T e r m s  and containing the first relation of  R,  the 

second on L is t s  and containing the second relation of  R,  closed under:

Right  -T— \ — 77 H ea d C u t l  t ^  t
Xx.t —7 Ax.t'  ' ' t f u  ■ I) t ' (u ■ I)

H e a d C u t 2 —, ft V", ,—w H e a d C u t Z  },  wr
t (u ■ I) —* t(u ■ I) t (u ■ I) —7 t (u  ■ I )

M i d C u t l  j r ----- T M idC ut2  -7  7Tt { x  := v \  —>■ t  {x :=  x j t { x  :=  v \  —> t { x  :=  x }

L f t l  y L f t . 2  — 77 A u x H e a d C u t l -----------------lk -----77
J u : : l - + u : : l  u  :: I -> u  :: I l0(u • I) l0(u • I)

A u x H e a d C u t 2 T~, /■( ' 4' t  /—tv A uxH eadC u t3  7-7 I ,-----l0[u ■ I) -> l0{u ■ I) l0(u ■ I) -> lQ(u ■ i )

A u x M i d C u t l  77-------------- / f---7- A u x M i d C u t2  77----------LL ---------------- 77-
l{x  x j  —> I {x :=  v } l {x  v } —> £{x :=  x }

Relating W hx  and W hx

First, we show th a t W h x  simulates W h x .

L e m m a  33 In  W h x ,  the following holds:

1. l(u' ■ I') —̂  append(l, u' :: /'), all 1,11!, I1 in W h x .

2. l{x  :=  x} J42 sub{v ,x, l ) ,  all l , v  in W h x .

P ro o f : B oth by straightforward induction 011 I. ■

P ro p o s i t io n  12 I f  t —> f  m W h x ,  then t  —A  t ' m W h x .

P ro o f: The claim is proved together with the claim th a t, if Z —5- Z/ in W h x , 

then  / —>+ in W h x ,  by simultaneous induction on t t' and I —7 Cases
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x° = x

(A x.t)° = A x.t°

(■t { u - l ) ) ° = t ° { u ° - l°)
{t{x  := u})° = t ° { x  := u0}

(D)° = D
(u :: 0° = u° :: 1°

= append(l l ,  u° :: If)

(l { x  := u})° = s u b ( v ° , x , l°)

according to  Definition 7. We just show the interesting base cases, the remaining 

being routine.

Case h. (t (u ■ l))(u' ■ I') — t (u  - (l(u1 ■ I1))) — ■ (append(l ,u1 :: I'))), 

where the steps —̂  are by Lemma 33.

Case x4. (t{u ■ l ) ){x  : =  u} —>s4 {t{x := v } ) (u {x  := v} ■ l{x  := v})

( t{x  := u})(u{x :=  v} ■ sub(v , x,  /)), where the steps —>4"41 i42 are by Lemma 33. ■

We now consider a m apping (_)° from XVhx  to XVhx.  Its definition is given 

in Table 3.11. Auxiliary cuts are translated  to calls to  append and sub.

P ro p o s i t io n  13 (C o rre c tn e s s  o f (_)°)

1. I f  XVhx  derives F; — F f : A then XVhx  derives T; — h £° : A.

2. I f  XVhx  derives T; C  F I : A then XVhx derives F ; C H °  : A.

P ro o f  : Let tti be a derivation in XVhx  of T; — F £ : A  and tt2 be a derivation in 

XVhx  of F; C  F / : A.  One proves by simultaneous induction on t (with induction
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hypothesis IH1) and I (with induction hypothesis IH2) th a t there are derivations 

7T* and 7t2 in W h x  of T; — h t° : A  and T; C  h  1° : A  respectively. We only do 

the interesting cases. The remaining cases are routine.

Case I =  lo(uo ■ li). Then there are 7r(, 7r2, 7t2, B x, S 2 such th a t 7t2 has the form

/ ! // 7ÎO 7T i 7To

T; C  h  l0 : B x D S 2 T; h  : S x T; B 2 h  Zx : A
----------------------------------------------------------------------------- A u x H e a d C u t

T - C \ - l 0{u0 - h)  : A

Since (Zo(«o ■ Zi))° =  a p p e n d ^ ,  Uq :: 1°), we want a derivation 7r2 of F; C  b 

append(lQ,UQ :: Zf) : A.  Take tt2 as

7Ti+ 7rT+

r ; c h z s

T; b : Si r ; S 2 b 1° : A
      —    L f t

B\  D  S2 T - B 1 D  B 2 bu° :: Z° : A
— L e m m a  25

T j C h  a p p e n d ^ ,  U q  : :  1 ° )  : A 

where 77̂  is given by IH1 and 7r2f' , 7r^+ are given by IH2.

Case I =  lo{x := Uo}- Then, there are ir'v  tc'2, B  such th a t 7t2 has the form

/ /7T i 7T2

F; -  b u0 : B  T, x  : B \ C  b Z0 : A
-----------------  A u x M  idCut

T; C  b  Zo{x :=  Uo} : A

and x  tfz F. Since (lo{x :=  uq})° = sub(uq , x ,  Zg), we want a derivation 7r* of

T; C  b  sub(v,Q, x, 1$) : A. Take 7r2 as

7r+ 7T+

F ; - b  u°0 : B  F„x : B: C\~ l°0 : A
-----------------------------------------------------L e m m a  26

F C h s i i ^ i . Z o )  : A

where n f  and n t  a re given by IH1 and IH2, respectively. ■
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L e m m a  34 t° = t, fo r  all t  in XVhx.

P ro o f: Immediate. ■

P ro p o s i t io n  14 I f  t\  —> 12 in XVhx,  then t \  —»•* t \  m  XVhx.

P ro o f: The claim is proved together with the claim th a t if l\ —> 1% in XVhx,  

then 1° —>* l?2 in XVhx,  by simultaneous induction on t\  —► ¿2 and l\ —> ¿2- Cases 

according to  Definition 8 .

Cases 61, 62, li, x l, x2, x3 and x4. One step of these in XVhx  is m apped by 

(_)° to  a step of the same kind in XVhx.

Cases h i ,  6,2 , x41 and x42. One step of these is collapsed in XVhx  by (_)°. 

Case A u x H e a d C u t l .  Follows by part 1. of Lemma 31.

Cases AuxH eadC ut2  and AuxHeadCutS .  Follow by part 2. of Lemma 31. 

Case A u x M id C u t  1. Follows by part, 1. of Lemma 32.

Case A uxM id C u t2 .  Follows by part 2 . of Lemma 32.

All the  remaining cases follow by IH. ■

C o ro lla ry  9 XVhx is a conservative extension of XVhx,  i.e. t —>* t! in XVhx iff  

t —>* tl in X V h x , for all t , t '  in XVhx.

P ro o f: By Propositions 12 and 14 and Lemma 34. ■

P ro p o s i t io n  15 t  ~̂ *R t°, fo r  all t in XVhx,  and R  = 61, 6-2,x41, x42.

P ro o f: The claim is proved together with the claim th a t I ~̂ *R 1°, for all I in 

XVhx  and same R,  by simultaneous induction 011 t and I. Only two cases deserve 

attention.

Case / =  Ii (uq ■ If). Then
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h  (tto ■ h)

b y l H l ,  IH2, 

append(ll,UQ :: 1%), by Lemma 33,

[ h ( u o  ¿2))°

1° .

Case I =  l0{x  :=  u0}. Then 

I

~>*R 

x41,x42

■

C o ro lla ry  10 I f  XV hx  is confluent, so is XVhx.

P ro o f: By Propositions 14 and 15. ■

L e m m a  35 I f t \  — V  in XVhx,  R  = h i ,  h2, x41, x42, then t\  =  t°. 

P ro o f: It suffices to  look a t the proof of Proposition 14. ■

C o ro lla ry  11 In  X V h x , ->R is confluent (R =  h i ,  h2,x41,x42).  

P ro o f : By Proposition 15 and Lemma 35. HI

Therefore, we may refer to  the normal-form m apping f R.

l0{x  : =  w0}

l°0{ x  := w“}, by IH1, IH2 , 

sub(vQ, x,  Zq)» by Lemma 33, 

(l0{x  := w0})°

1° .

I

fR

hl,h2
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Table 3.12: From AV h x  to  A3

X1 =  xO

(a x . ty =  \ x . h

0t ( u - i ) y =  t f u 1 :: ll)

(:t {x  := v}Y = t l{x  :=  u !}

m =  0
(u :: iy =  u l :: ll

(h (uo • h ) ) 1 =  l[(ug :: If)

(l {x  ■■= u})! = ll{x

C o ro lla ry  12 For all t in A V h x ,  t° (t) (R = h i ,  h2, x41, x42j.

P ro o f: From Proposition 15 and the fact th a t each t in W h x  (when regarded 

as a term  in W h x )  is /¿-normal. ■

Comparison with Herbelin’s system

The AP/rx-calculus is sufficiently close to the original A-caleulus to  allow an easy 

comparison. At the level of syntax, the difference is th a t the former has construc

tors x, t (u ■ I) and l(u ■ I'), whereas the  la tter has xl, tl and 11'. Hence, A seems 

a little bigger. However, in order to  simulate reduction rules h and x4 of W h x ,  

one needs to adjoin perm utations 44 and 22 to A. A m apping from W h x  to A3 

is suggested in Table 3.12.

P ro p o s i t io n  16 (C o rre c tn e s s  o f  (_)')

1. I f  W h x  derives F; — h  t  : A  then A3 derives T; — b t l : A.
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2. I f  W h y :  derives T; C  b I : A  then A3 derives F \ C  h  ll : A.

P r o o f  : This is by the usual simultaneous induction. Here we are going to  be 

sketchier. We show how to  “sim ulate” in A3 typing rules V a r , HeadCut  and 

A u x H e a d C u t  of W h x .

Var:

A x
T - A h  0 : A

Der
T, x : A; — b x[] : A  

HeadCut:

T; -  b u l : B  T ] C  ll : A
----------------------------------------L f t

T] — \- t l : B  D C  F; B  D C  \~ u l :: ll : A
----------------------------------------------------------------- H eadCut

T ; -  h t . \ul :: ll) : A
AuxHeadCut:

T ] - \ ~ u 0 : B  T; C  b l l  : A
------------    L f t

F] D  \~ l[ : B  D  C  F;  B  D C  \~ u l  :: l l  : A
  —     A u x H e a d C u t

.. f  ■■ ■F]D\ ~ l[ «  :: ll2) : A

P ro p o s i t io n  17 I f  t\ —» ¿2 in W h x ,  then t\ —>+ t l  in A:!.

P ro o f: The claim is proved together w ith the claim th a t, if I —> I' in W h x , then 

I —>+ I' in A3, by simultaneous induction on t  —> t1 and I —*• I'. Cases according 

to Definition 8 . We just show three base cases. Non-base case are routine.

Case h.

((t(ui ■ h ) ) (u 2 ■ k ) ) 1 = { t \u \  :: l[)){ul2 :: l \ )

>22 t \ ( u \ : : l \ ) ( u \ : : l l2)) 

-»31 t \ u \  :: ( l[(ul2 :: ll2))

=  (t(ui ■ (h{u2 ■ l2)))Y
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Case x l.

(x[}){x : = u 1} 

u !(D(x :=  u1}) 

u>[] 

u l .

Case x4.

(x{a; :=  u })! =

—>41 

~ >52 

—>20

(t(u • l ) {x  v } )1 =  t \ u l :: ll) {x  := v 1}

—>44 (t l{x  :=  v l})(ul :: l‘) {x  := t ’! }

*51 {tl{x := v l})((ul{ x  :=  u1} )  :: (ll{x  :=  uJ} ) )

=  {{t{x := u})(iî{.t :=  i/} • l{x  :=  w } ) ) ! .

□

Hence, strong normalisability of typable term s may flow from A3 to  XVhx.

C o ro lla ry  13 Let S  6  {XV, XVh, XVhx, XVhx}. I f  t is typable in S ,  then t is 

strongly normalising.

P ro o f: From Theorem 1 and Propositions 16, 17, 12, 8 and 3. ■



Chapter 4 

Normalisation as cut-elimination

The goal of this chapter is to  prove th a t XV  is isomorphic to  A h We do this by

defining an interm ediate calculus, nam ed Aj\f,  and the  following isomorphisms

T  J\f
XV   ̂ AN  1 -   ,  A

0 |_|

The calculus AJ\f may be seen as a presentation of A w ith a  separation between 

the norm al subcalculus and a single constructor for /3-reclexes. The true  nature 

of AN  will only become clear in the  next chapter.

4,1 A presentation of A

A somewhat unusual treatm ent of A-calculus is presented in Table 4.1. We name 

this calculus the AW-calculus. Typing rules are in Table 4.2. This is a presenta

tion in which the normal fragment is obtained by simply om itting one constructor, 

very much in the style of sequent calculus. A nother characteristic is a distinction 

between applicative terms app(A) and applications A  6  Apps.  Actually, there 

are three kinds of applications. Two of them  are value applications (x N  and 

(Ax.M)Ar); we call the th ird  ( A N)  an applicative application (because A  is not 

a value).

*The isomorphism between XV and A was announced for the first time in 
[Espirito Santo, 2000],

91
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Table 4.1: The AA/”-calculus

(Terms)  M , N  

(Apps) A

x | X x .M  \ app(A) 

xlV1 ( X x . M) N  | A N

((51) app((Xx.M)N)  -»■ M [ N /x \

((52) ( ( \ x . M ) N ) N '  -> M [N /x]@ N ’

where

x[N/x \  =  

y[iV/x] =  

(Xy.M) [N/x] = 

(app(A))[N/x]  =

N

y , y  + *
X y .M [N /x \  

app(A[N/  x])

( xM)[N/ x)  

(j M ) [ N / x ] 

( (Xy-M)M') \N /  x] 

( AM)  [N/x]

= N @ M [ N / x }

=  y M [ N / x ] , y ^ x  

= ( Xy. M [N/ x])M'[N/x\  

= A[ N/ x]M[ N/ x]

x @N  =  

( Xx . M) @N = 

(app(A))@N =

x N

( Xx . M) N

A N



Table 4.2: Typing rules for AW
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Var T, x  : B  h  x  : B V E l i m T, x : B d C \ ~ N : B  
T, x  : B  D C  h  x N  : C

In t r o Y , x  \ BV- M  \ C x  £ T Redex T , x : B \ ~ M : C  T I- N  : B  ,  r  
T h  ( X x . M) N  : Cr  h A x . M  : B d C

A E l i m T \ - A : B d C T 3 N : B  
T h A N : c

The syntactic class Apps  is ranged over by A. U nfortunately A  also ranges over

types. So, when typing AW-terms, we will only use the m eta-variables B, C, D. 

Care is needed for distinguishing between the two operators of substitution: for 

each N,  x,  there  are substitution operators - \N/x \  : T e r m s  —»■ T e r m s  and ~[N/x] : 

Apps  —> Apps.

A surprisingly interesting exercise is to  define /3 in this setting. The problem 

w ith ( X x . M ) N  —> M[N/ x]  is th a t the redex is in Apps  whereas the contractual 

is in T e r m s .  We can fix this by proposing

However, w ith (31 alone, we cannot reduce a:pp(((Ax. M ) N ) N ' ) .  The solution is 

to  also consider the notion of reduction

Here the operator @ : T e r m s  x T e r m s  —> Apps  (see again Table 4.1) makes 

available the  application between two AW-terms, a non-prim itive construction in 

AA/". Relation (31 is a relation on T e r m s  whereas relation (32 is a relation on 

Apps.

D e fin it io n  9 (C o m p a tib le  c lo su re ) Given a pair R  of  binary relations, the 

first on T e r m s  and the second on Apps.  the compatible closure is the least

{(31) app( ( Xx . M) N)  -+ l\I[N/x] .

{,32) ((Ax . M ) N ) N '  -»• M[N/x]@N' .



Chapter 4. Normalisation as cut-elimination 94

Afx = X

Af (Xx . M) = Xx. Af (M)

A f ( M N ) = app(Af(M)@Ai(N))

Table 4.3: From A to  XJ\f.

pair of relations —>, the first on T e r m s  and containing the first relation of  R,  the 

second on Apps and containing the second relation of  R,  closed under:

In t r o  T - J ^ N - TF  APV A  “ * A 'Ax . M  —t Ax . M  app(A)  —> app(A')

N  -> N 'V E l i m x N  x N '

Redex  1 t t — , M — n r m  Redex2 iV —> iV
( Xx . M) N -> ( Xx . M' ) N ( X x . M) N  - f  (X x . M ) N 1

A E l i m l  , d  4 L  A E l im 2  N  N 'A N  ->• A 'iV  - *  A IV '

For instance, for defining —>£, take i? =  {(51 ,(32) in Definition 9. T hat is, in AJV

we set

(3 = (131,02) .

One can also define — (resp. —>32) by taking /?. =  (/?1, 0) (resp. R  = (0,/32).

We now prove th a t AN  and A are isomorphic.

First we define a m apping A1' : X —>• AW in Table 4.3. If W (V) =  V'  (where 

V  is a value) and Af (Ni )  = jV', then A f  sends V N i . . .N k to  app{V'N'v ..N'k). For 

instance, Af ( (xy)z)  = app{app(j\f x@J\fy)@Af z) = app{app{xy)@z) =  app{{xy)z),  

whereas Af ( x(yz) )  = app{Afx@app{Afy@Afz)) =  app(x@app(yz)) =  app(xapp{yz))

L enrm a 36 I f  XAf derives T F M  : C  D B  and, F F N  : C, then XAI derives 

F F M @ N  : B.
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P ro o f: Let 7r and ir0 be derivations of T h  M  : C  D  B  and L b  N  : C,  

respectively. We prove by case analysis of M  th a t there is a derivation i t *  of 

L b M @ N  : B.

Case M  =  x. Then M @ N  = x N  and 7r has the  form

Var
Y ' , x : C d  B C x : C d  B  

and T =  P ,  x  : C  D  B.  We want a derivation of T', x  : C D  B  b x N  : B  Take 7r* 

as

tto

r ' , x  : C  D  B  b  N  : C
----------------------------------V E l i m
r ,  x : C  D B  b x N  : B

Case M  = Xx.M0. Then M @ N  =  (Xx.M0) N  and it has the form

TTl

r ,  x : C  b  Mo : B
-----------------------------In t ro
T b Ax.M0 : C  D  B

We want a  derivation of T b (Xx .Mq) N  : B.  Take 7r* as

T T i tto

r , x : C  b Mo : B  r  b N  : C
-----------------------------------------------Redex

T b (Xx .M q) N  : B

Case M  — app(A). Then M @ N  =  A N  and 7r has the form

TTl

T C A i C d B
----------------------------- App
T b app (A) : C D B

We  want a  derivation of T b  A N  : B.  Take tt* as
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7T j 7T0

T C A : C d B  F \ ~ N : C  
-------------------------------------------A E l i m

T b A N  : B

P ro p o s i t io n  18 (C o rre c tn e s s )  I f  A derives F b  M  : B  then XJ\f derives T b 

Af{M)  : B.

P ro o f: Let n  be a derivation of T b M  : B  in A. One proves by induction on 

M  th a t there is a derivation 7r* of T b j \ f (M )  : B  in AJ\f. Cases M  =  x  and 

M  =  Xx .Mq are straightforward. Let M  =  M qN q. Then tt as the form

7Ti 7T2

r  h Mo C  D B  r  h No 

r  b MqNq : B  
Since J\f(M) — app(J\f (Nq)), take n* as

7Ti 7T2

r b Mq : C d B  r b N ô  : c
---------------------------------------------- Lemma 36

T b Af{M 0)@Af{N0)
--------------------------------- App
T b app(J\f(M0)@Af(N0))

where 7r*. 7t| are given by ILL ■

We now define, in Table 4.4, the inverse mapping, from XJ\f to A. M apping 

|-| (absolute value) sends the different kinds of application in AN  to  application 

in A and erases app. It is a forgetful mapping.

P ro p o s i t io n  19 (C o rre c tn e s s )  The following holds:

1. I f  XAf derives T b M  : B,  then A derives f  b I Ml : B.

: C
—  Elim,
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\x\ =  X

\Xx.M\ =  \ x . \M \

\app{A)\ =  1-41

\xN\ =  x\N\

\(Xx.M)N\ =  (A i.|M |)|JV |

\AN\ =  |4 ||JV |

Table 4.4: From XAf to  A.

2. I f  XAf derives T\~ A :  B ,  then A derives F F ¡y4| : B.

P ro o f: Let 7Ti and 7r2 be derivations in XAf  of T F M  \ B  and F F A  : B,  

respectively. We prove, by simultaneous induction on M  and A  (with induction 

hypothesis IH1 and IH2, respectively) th a t there are in A derivations 7 and nif 

of T F \M\  : B  and F F |A| : B,  respectively.

Case M  =  x. Immediate.

Case M  — Xx .M q. Immediate, by IH1.

Case M  = app(A).  Then has the shape

/

F F  A :  B
---------------------- App
F F app(A) : B

Since |M | =  |A|, we want a derivation n f  of T F \A\ : B.  By IH2, there is a 

derivation tC"1" of T F |j4| : B.  Take n f  = Ti'f~.

Case A  =  x N .  Then tt2 has the shape
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/
^1

r ', x  : C D B  \~ N  : C
----------------------------------V E l i m
r ;, x  : C D B  h  x N  : B

where T = T ' , x  : C D B.  Since \A\ =  x|iV|, we want a derivation tx\ of T ',x  :

C D B  h x|jV| : B.  By IH1, there is a derivation of T', x  : C D B  h  \N\ : C.
Take as

------------------------------------- Var
T , x : C d B \ - x : C d B  V , x  : C  D  B  h  \N\ : C
 —  E l im  

T ' , x : C  D B h  x\N\ : B

Case A  =  (Xx .M)N.  Then tï2 has the shape

r ,  x  : C  i- M  : B  T \~ N  : C
--------------------------------------------- Redex

T h ( X x .M )N  : B

Since |A| — (Xx. \M\)\N\,  we want a derivation xxt of T h (Ax.|M |)|iV | : B. Using 

IH1 twice, we build ixt as the trad itional In tro  followed by Elim .

Case A = A qN.  Follows easily by IH1 and IH2. US

We now prove the isomorphism between XJ\f and A a t the  level of terms.

P ro p o s i t io n  20  Af\AI\ = M  and Af\A\  =  app(A), for  all M  and A  in XJ\f.

P ro o f: By simultaneous induction on M  and A,  w ith induction hypotheses IH1 

and IH2, respectively.

Case M  =  x. J\f\M\ =  jV\x\ =  Af(x)  = x  = M.

Case M  - Xx.M0.

N \ M \  = Af \Xx.M0\

=  J\f(Xx.\Mo\), by clef, of |_|,
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=  Ax.TV|M0|, by def. of J\f,

=  Ax.M0, by ÏH 1 ,

=  M  .

Case M  = app(A).

TV|M| =  J\f\app{A)\

= m i  by def- l-l,

=  aPP(A), by IH2,

=  M  .

Case A  = xN .

J\f\A\ =  TV|xiV|

=  TV(x|./V|), by def. of |_|,

=  app(J\f(x)@J\f\N\), by def. of j\f,

= app(x@J\f\N\), by def. of TV,

=  app(x@N ), by IH1,

=  ap p (xN ), by def. of 

= a p p ( A )  .

Case A = (Xx .M)N.

m \  = Af \{Xx.M)N\

=  J\f( (Xx . \M |)|iV |), by def. of |_|,

=  app(J\f(Xx.\M\)@J\f\N\), by def. of TV, 

=  app((A.TV|M|)@TV|iV|), by def. of TV, 

=  app((Xx .M)@N ) , by IH1,

=  app( (Xx .M )N ), by def. of 

=  app(A) .

Case A  — A q N o .

TV|j4| =  m o N 0\
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=  jV ( |^ 0||iVo|), by def. of |_|,

=  a p p (N \A 0 \@J\f\No\)i by def. of 7V,

=  app(app(A0)@N0) , by IH1 and IH2,

=  app(A0N 0), by def. of 

=  app(A) .

U

L e m m a  37 |M@iV| =  |M ||iV |, for  all M ,  N  in XJ\f.

P ro o f: By case analysis of M.  Variables and A-abstractions are uninteresting.

If M  = app(A)  then

\M@N\  =  \app(A)@N\

=  |j4Af|, by def. of

=  |A ||iV |, by def. of |_|,

=  \app(A)\\N\,  by def. of |_|,

=  \M\\N\.

U

P ro p o s i t io n  21 \J\f(M)\ =  M , for  all M  in X.

P ro o f: By induction on M.  Variables and A-abstractions are straightforward. If

M  =  Mo No, then 

\M(M)\  = \Af(M0N 0)\ 

= \app(J\f(Mo)W\f(No))\,  by def. of TV",
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=  |A/’(Mo)||A/’(iVo)|, by Lemma 37, 

=  Mo No, by I.H.,

=  M  .

Now it comes the proof of the isomorphism a t the  level of reduction.

L e m m a  38 The following holds:

1 . |Af[JV/x]| =  \M\[\N\/x], for■ all M ,  N  m  XNf.

2. |A[iV/x]| =  |.A|[|jV|/:r], for all A,  N  in XJV.

P ro o f: By simultaneous induction on M  and A,  w ith induction hypotheses IH1 

and IH2, respectively . There are only two interesting cases.

Case M  — app(A).  Then

\M[N/x]\ = \app(A)[N/  x]\

=  \app(A[N/ x])\, by def. of in AJ\f,

=  |^4[iV/x]|, by def. of |_|,

=  |A |[ |iV |/x ],b y IH 2  

=  \app(A)\[\N\/x],  by def. of |_|,

=  |M |[|JV |/i] .

Case A — x M .  Then,

A[N/x) \  =  \{xM)[Njx]\

=  |JV®ili[JV/i]|, by def. of -[JV/i], 

= |iV||M[iV/x]|, by Lemma 37,
=  |.Y |(|M |[jfV |/x]), by IH1,
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=  (x\M\)[\N\/x],  by def. of ~[N/x\ in A,

=  |xiV/|[|iV|/x], by def. of |_|,

=  |X|[|iV|/a:] .

H

C o ro lla ry  14 J \ f {M [N/x ]) =  M (M )[A f (N ) /x ] ,  fo r  all M ,  N  in A.

P ro o f:

J\f(M[N/x])  = J\f(\J\f(M)\[\Af(N)\/x]),  by Proposition 21, 

=  N \ N ( M ) [ A f ( N ) / x]|, by Lemma 38,

=  J\f(M)[J\f(N)/x),  by Proposition 20.

The following is the first half of the isomorphism.

T h e o re m  2 I f  Mi -^p M 2 in AAf, then \M\\ -^p \M2\ in A.

P ro o f: The claim is proved together w ith the claim th a t if A \  -^p A 2 in AJ\f, then 

|j4i| —rp \A2\ in A, by simultaneous induction 011 M \ —*p M 2 and A i  —+p A 2 (with 

induction hypotheses IH1 and IH2, respectively). Cases according to  Definition 

9.

Case 01:

\app(( \x .M )N) \  =  (Ax.|M |)|iV |, by def. of |_|,

|M |[|jV |/x]

=  |M[Ar/a:]|, by Lemma 38.

Case 02:
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\ ( (X x .M )N 1 ) N 2\ =  ((A i.|A f|)!JV ,|)|A y, by d ef. of |_|,

->/, |M |[(JV,|/i]|JV2|

=  \M[N i / x]\\N2\, by Lemma 38,

=  \M[N i / x]@N2\, by Lemma 37.

Case I n t r o : Suppose \M0 —>p \M2\ (IH1). Then,

|Ax.M i| =  Ax.|M i|, by def. of |_|,

Ax .|M 2| (*)

=  \Xx.M2\, by def. of |_|,

where step (*) is by IH1 and closure of —>p in A under Intro.

Case App: Suppose |A i| —>p \A2\ (IH2). Then,

\app(Ai)\ =  | bydef. of |_|,

\A2\, by IH2,

=  \aPP(M)\,  by def. of |_|.

Case V E l i m : Suppose \Ni\ —>p |ATg] (IH1). Then,

|x7Vi| =  x\Ni\ ,  by def. of |_|,

->/3 * 1^1  (*)

=  |mÂ 21, by def. of |_|,

where step (*) is by IH 1 and closure of —>p in A under Elim2.

Case Redex  1: Suppose \M\\ —*p \M2\ (IH1). Then,

\ ( \ x .M i ) N \  =  (Ax.IM jDI^I, by def. of |_|

(Ax.|M2|)|JV1.(* )

=  |((Ax.M 2)AT|, by def. of |_|,
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where step (*) is by IH1 and closure of -^p  in A under In t r o  and E l i m l .

Case Rede x2: Similarly, by IH1 and closure of —>(g in A under El im2.

Case A E l i m l : Suppose |j4i| —>/3 |H2| (IH2). Then,

\A iN\ = |Ai||JV|, by def. of f-j,

-+f> \A 2 Ì\N \ (*)

=  |A2./V|, by def. of |_|,

where step (*) is by IH2 and closure of —*p in A under E l im l .

Case A E l i m 2 : Similarly, by IH1 and closure of —>p in A under Elim2.  ■

L e m m a  39 The following holds in AM :

1 . I f  M  —>p M',  then M @ N  ->p M'@N.

2. I f  N  N' ,  then M @ N  ^ p  M @ N ' .

P ro o f: 1. Suppose M  -^p Al'. We proceed by case analysis of M.

Case M  = x. Vacuous.

Case M  =  Xx.Mo- Hence there is Mq such th a t M '  =  Ax.Mg and M 0 —>p 

M'q. Then, M @ N  =  (Ax .M 0)@N = (Ax .M 0) N  ->p (Ax . N Q N  =  (Ax.M'0)@N  =  

M '@ N  (here we used the fact th a t —>p in AJ\f is closed under Redex  1).

Case M  =  app(A).  There are two subcases.

Subcase 1: A  —>p A'  and M ' = app(A').  Then M @ N  = app(A)@N = 

A N  -^p A ' N  =  app(A')@N — M'@ N  (here we used the fact th a t —*p in AM  is 

closed under A E l i m l ) .

Subcase 2: A  =  (Xx.M0)N 0 and AT =  M 0[N0/x\ .  Then, M @ N  = app(A)@N = 

A N  = ({Xx.Mo)N0) N  -*p M 0[N0/x ]@N = M'@N.

2. Suppose N  —>g N' .  We proceed by case analysis of M.

Case M  =  x. Then, A1@N = x@ N  = x N  ~^p x N '  = x@N' = M @ N '  (here 

we used the fact th a t —>p in AM  is closed under V E l im ) .
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Case M  = Xx.M0. Then, M @ N  =  (Ax .M 0)@N  =  (Ax . M 0) N  (Xx.M0)N '  =

(Ax.Mo)@N' =  M@ N'  (here we used thè fact th a t — in AjV  is closed under 

Redex  2).

Case M  =  app(A).  Then, M @ N  = app(A)@N  =  A N  —*p A N '  = app(A)@N' = 

M @ N'  (here we used thè fact th a t —>p in ATV" is closed under A E l im 2 ) .  M

The second half of thè isomorphism is:

T h e o re m  3 I f  Mi M 2 in then A i (Mi)  —>p A f ( M 2) in AAi.

P ro o f : By induction on Mi —>p M 2. Cases according to  Definition 1.

Case (3:

J \ f ( \ x . M ) N )  = app((Xx.Af(M))@J\f(N)),  by def. of TV",

=  app((Xx.J\ f(M))AÌ(N)) , by def. of @, 

M ( M W ( N ) / x }

= J\ f(M[N/x]) ,  by Corollary 14.

Case I n t r o : suppose TV(Mi) —>pJ\f(M2) (IH). Then,

Af(Ax.Mi) = A x .N (M i) ,  by dei. of J\f, 

->p Xx .M (M 2) (*)

=  J\f(Ax.M2), by def. of TV",

where step (*) is by IH and closure of —>p in A TV" under Intro.

Case E l im ì :  suppose A i  (Mi)  —>pJ\f(M2) (IH). Then, 

J\ f(MiN)  =  app(Af(Mi)@J\f(N)),  by def. of TV", 

-rp  app(M(M 2 )@ J f (N )) (*)

=  M ( M 2 N) ,  by def. of TV",
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where step (*) is by IH and 1. of Lemma 39 and closure of — in XJ\f under App.

Case Elim2:  Similarly, by IH and 2. of Lemma 39 and closure of — in AW 

under App. ■

C o ro lla ry  15 ( Iso m o rp h ism )

1 . M\  — M 2 in A i f fJ\ f (Mi)  —»0 W (M 2) in AW.

2 . M\ —>p M 2 in AW if f | Mi | —>£ |M 2| in X.

C o ro lla ry  16

1 . \J \ f  is confluent.

2. I f  M  is typable in AW, then M  is strongly normalising.

3. AW satisfies subject reduction.

P ro o f: Because these properties hold of A and may be easily transferred from A 

to AW with the help of W  and |_|. ■

4,2 Mappings vF and 0

Translations T  and © between AW and XV  are given in Tables 4.5 and 4.6. 

The idea of T (recall C hapter 2) is to  “tu rn  the main branch upside down” . 

Roughly, if 'L(V') =  v (where V  is some value) and T (W ) =  uu then T sends 

app(VNiNo.. .Nk)  to v(iii ■ [it2, ..., u,/,]). © does precisely the inverse.

The following propositions were firstly proved for the cut-free fragment in 

[Dyckhoff and Pinto, 1998].

P ro p o s i t io n  22 (C o rre c tn e s s  o f  T)

1. I f  X N  derives T h M  : B  then XV derives T: — h T (M ) : B.
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' I ' (x ) =  x

'ÿ(Xx .M) =  A x.tfrM

^  (appi A)) = V ( A ,  D)

r ( x N ,  I) =  x ( V N - l )

W ( ( X x . M ) N i l) =  (A x . ^ M ) ( ^ N A)

V ' (A N ,  I) = ty ' ( A , t y N : : l )

Table 4.5: From AN  to  XV

Q{x) = X

Q(x(u  ■ I)) = & (x Q u , l )

0 ( A  x.t) =  Xx.Qt

0 ( ( A x. t)(u ■ I)) = &{(Xx .Qt)Qu, 0

© ' ( A D ) = app(A)

O'(A, u  :: I) = Q '{A Q u , l )

Table 4.6: From XV to AM .
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2 . I f  XW  derives F b A  : C and XV derives T ; C  \~ I : B  then XV derives

F; — b V ( A , l )  : B.

P ro o f: We prove by simultaneous induction on M  and A  (with induction hy

potheses IH1 and IH2, respectively) that: i) if iri is a  derivation in XJ\f of 

F b M  : B , then there is in XV  a derivation 7T* of T ;— b  \I/(M) : B\  and ii) 

if 7t2 is a derivation in AW of T b i  : C, then, for all I such th a t XV  derives 

F ; C b l : B ,  there is in XV  a derivation of T; — b T'(.A, I) : B.

Case M  =  x: Then there is F' such th a t tti has the  form

V ar
r ;, x  : B  b x  : B

and F =  T' , x  : B.  Since T (M ) =  T(:r) =  x , we want a derivation 7r* of 

T', x  : B; — b x  : B.  Take 7r* as one application of the  V a r  rule.

Case M  = Xx.M':  Then there are tt[, Bi , B 2 such th a t 7Ti has the form

7r(

r ,  x  : B\  b  M  : B 2
In tro

T b  Xx.M' : Bi  D B 2 

B  — Bi D Bo  and x  F. Since T (M ) =  T(A x.M ;) =  Ax.T(Af/), we want a 

derivation 7r* of F; — b  Xx.M' : B\  D B-2. Take 7r* as

r , i : B i ; - b $ ( M ' ) : B 2
-------------------------------------Right
F; -  b  Ax. AT : D

where yrf is given by 1111.

Case A/ =  app(A): Then there is 7r'2 such th a t ttj has the form

T b A : B
App

T b app(A)  : B

Since T (M ) =  ^(app(A))  =  T '(/L  []) we want a derivation tt* of T; — b T '(A , []) : 

B.  Now XV  derives T; B  b  [] : B  and. hence, by IH2 , there is a derivation n f  of 

F: -  b T '(A , 0) : B.  Take tt* =  tt2+.
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Case A =  xN: The there are tt[, F', D such that 772 as the form

7ri

T , x : D D C b N  : D
----------------------------------V  E l im
T',x : D D C \~ xN : C

and T = T', x : D D C. Let 7t3 be a derivation in XV of F;C b I : B. Since 

'if'(A, I) =  \Er'(xiV, I) = x ( ^ N  ■ I), we want a derivation n£ of T', x : D D C; — b 

x f $ N  • I) : B. Take 7r | as

n t  7T3

r ', x : D D C\ -  b VN : D F; C b I : B
------------------------------------------------------------------L e f t

T',x : D D C \ -  b x[fi!N-I) : 5

where 7r f  is given by IH1.

Case A =  (Xx.M)N: Then there are ix[ , tt", D such that 7r2 has the form

/ //7Ti 7rx

r ,  x : D b M : C  F b IV : D
------------------------------------------------- Redex

T b (Xx.M)N : C

and x <£ r .  Let 7t3 be a derivation in XV of F; C  b I : B. Since ^ ' (A ,l )  = 

’4>'((Xx.A/I )N , l )  = (Ax.'FM)(TA/"d), we want a derivation 7rJ ofT;— b (A x.T M )(T 7V- 

I) : B. Take ttj as

7T i  7T++
1 7T3

r ,x  : D ; -  b tf(M ) : C  r ; -  b V{N) : D F ; C b b B
     KeyCut

F ; - b ( A x . T M ) ( T i Y - / )  : £

where and ?rf+ are given by IH1.

Case A = A'N: Then there are t D such that 7r2 has the form

vr2 /i ,

T b T D D C  T \~ N  : D
 AElim

F b A'N : C
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Let tt3 be a derivation in XV  of F; C  b / : B. Since = ty '(A 'N ,l )  =

TiV :: I), we want a derivation n9 of T; — b T '(A , U N  :: I) : B.  Observe

th a t

I t f  7T3

r ; - h  <4>N-.D T - C \ ~ l : B
------------------------------------------------ L f t

r ; D D C  b TiV :: I : B

is a derivation in XV  of D C h  W  :: i : B , where 7r+ is given by IH1. Hence, 

by IH2, there is a derivation rvf of T; — b ^ '(A , 'LiV :: I) : B.  Take 7rj =  ■

Proposition 23 (Correctness of 0)

1 . I f  XV derives F; — b  t : B  then AAA derives F b 0 f  : B.

2 . I f  X N  derives F b A  : C and XV derives F; C  b  I : B  then XJ\f derives 

T b  & {A , l )  : B.

P ro o f: We prove by simultaneous induction 0111 and I (with induction hypotheses 

referred to by IH1 and IH2, respectively) th a t i) if ty\ is a derivation in XV  of 

F; — b t : B,  then there is in AAA a derivation 7r* of F b 0 f  : B\  and ii) if 7T2 is a 

derivation in XV  of F; C  b I : B,  then for all A  such th a t AAA derives T b A  : C, 

there is in AAA a derivation 7̂  of T b ©'(A, I) : B.

Case I =  []: Then B  = C.  Let 7t3 be a derivation of T b A : C. Since 

Q '(A J )  = ©'(A, []) =  app(A),  we want a derivation tt^ of F b app(A)  : B.  Take 

7t 9 as

F b A : B  

APP T b app{A) : B  '

Case / =  v! :: I': Then there are ttJ, tc'2, C x, C2 such th a t tt2 has the form
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7To

r ; -  h  u'  : Cl F; C2 \ - V : BI f f     _ ________
F ;C ! D C2 h u' :: I' : B  

and C  =  C i D C2. Let 7r3 be a derivation of T F A : Ci D C2. Since ©'(A, I) = 

Q '(A ,u r :: I') =  & (A Q u ' ,  I'), we want a derivation ^  of T h 0 ' (AQu' ,11) : B.  

Observe th a t

7T3 7tF

r  h A : Cl D C2 F b Qu' : c \ 
A E l i m ----------

r  h AQu'  : C 2

is a  derivation in Xj\f of F h AQu'  : C2, where n f  is given by IH 1 . Hence, by 

IH2, there is a derivation of F h Q '(A Q u ' ,  I') : B.  Take -k  ̂ =  7r^.

Case t = x: Then there is F' such th a t tt̂  has the  form

Var
T', x : B] — F x  : B

and F =  F', x  : B.  Since Qt. = Q(x)  =  rr, we want a derivation t x \  of F', x : B  h 

x  : B.  Ju st take as an application of the V ar  rule.

Case t =  x(u  ■ I ) :  Then there are t x ' X )  7 r i , .  T ' ,  D  such th a t 7 r  has the  form

C , x  : D  D C; -  b u  : D x  : D  D  C; C  V I : B

L e f t  P , x  :~D D  C] — \~ x ( u - l ) : B  ‘

and F =  F', x  : D  D C. Since Qt — Q ( x ( u  ■ I ))  =  Q ' ( x Q u , /), we want a derivation 

7T*  of F ; , ,-r : D  D  C  F  0 ' ( a ; © u ,  / )  : B.  Observe th a t
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is a derivation in XNf of T ,  x  : D  D C  b  xQ u : C,  where 77  ̂ is given by IH 1. B y 

IH 2 , there is a derivation of F ' ,x  : D D  C \~ Q ' ( x Q u , I) : B.  Take 77* =  ■

Case t = Xx.t': T h e n  there are B i,  B 2 such th at 7Ti has the form

7ri

T, x  : B i;  — b t' : B 2 

R l9h t  r ;  -  h  Ax . f  - . B i D B z  

and B  — B \ D  B 2. Since Qt  =  0 (Ax.t')  =  Ax.Qt',  we want a derivation i of 

T b Ax.Qt' : B\ D  B 2. Take 77* as

7r+

F ,x  : Bi  b  Qt' : B 2 

I n t r °  T  b A x.Qt' : B 1 D  B 2

where 77+ is given by I H 1 .

Case t  = (Ax.t')(u ' ■ I’): T h e n  there are 7^ ,77",7t'2, D , E  such th at tti has the 

form

ix[ 7r" 773

F, x  : D \ -  F t '  : E  f - h u ' : D  F] E  b  I' : B  

A  CyCUt T; — b (Xx. f ) (u'  ■ I') : B

and x  F. Since Qt  =  Q((Xx.t')(u'cdotl'))  =  © '((A x.Q t')Q u ', 1'), we want a 

derivation 77* of F  F  Q '((Xx.Qt')Qu', I') : B.  ObserA^e that

77  ̂ 77F4"

r ,  x  : D  b  0 i '  : E  F b Qu' : D 
Redex  -------

T b (Xx.Qt')Qu'  : E

is a derivation in  AJ\f of F  b (Xx.Qt')Qu'  : E,  where 77+ and 77]f+  are given by 

IH 1 . Hence, by IH 2 . there is a derivation 77  ̂ of F  b 0 ' ( (Ax.Qt')Qu' , 1') : B.  Take

77 * =  T\t- ■
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4.3 The isomorphism theorem

We prove th a t T and 0  are mutually inverse. This establishes the isomor

phism between XV  and AAf  at the level of proofs. The m ethod is taken from 

[Dyckhoff and Pinto, 1998].

P ro p o s i t io n  24 © o T =  id and 0  0 $ ' =  0 '.

P ro o f: We prove 0 T M  =  M  and ©'¡/'(A, I) =  0 '(A , I) by simultaneous induction 

on M  (respec. A)  w ith induction hypothesis IH1 (respec. IH2).

Cases M  =  x  and M  =  Ax .M '  are straightforward.

Case M  =  app(A):

0 T M  =  Qty(app(A))

=  © ^ (A D )

=  & (A ,  []), by IH 2 ,

= a p p ( A ) .
Case A  =  xM :

0 t t '( A O  = Q V ' (x M , l )

=  0 ( x ( $ M d ) )

-  0 ' ( i ( 0 $ M ), I)

=  Q'{xM,l ) ,  b y f f l l .

Case A = (Xx .M)N:

Q ^ ' ( A , l )  = ©T'((Ax.A d )N , l )

=  0((A x.TA .i)(T iY -O )

=  0 '((A  x . Q ^ M ) ( e ^ N ) , l )

= Q \ { X x . M ) N , l ), b y lH l.
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Case A  =  A'M:

e v ' ( A , i )  = e v ' ( A ' M , i )

= GV' iA ' ,  V M  :: I)

= 0 ' (A ' ,  :: I), by IH2,

=  e \ A ' ( e ^ M ) , i )

= O ' ( A ' M ,  I), by IH 1,

= O ' ( A ,  I)  .

Proposition 25 $ o 0 = id and $ 0 0 ' =

Proof: We prove %Qt =  t  and ^ O ' ( A J )  = M ( A , l )  by simultaneous induction 

on t  (respec. /) with induction hypothesis IH1 (respec. IH2).

Cases t - x  and t =  Ax.tf are straightforward.

Case t  =  x(u  - I):

4/0t = 4> Q ( x ( u  ■ I ) )

=  \PO '(x& u,l)

=  ^ '( x 0 u , l ) ,  by IH2, 

=  x ( $ O u  ■ I)

=  x (u  - /). by IH 1,

=  t .

Case t  =  (Ax . f ) ( u  ■ I):

\JjQt. =  # 0 ((A  x . t ' ) (u - l ) )

=  * 0 '( (A  x . 0 t ) 0 u , l )

= ^ ' ( (X x .0 t )0u . , l ) ,  by IH2,
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Case

VQ'{A,l )  =  ^ © '(A D ) 

=  ^f(app(A))

=  ^ '(A O )

= *'(A0 .

Case I = u :: I':

T0'(A O  = V&(A,u::r)
= V Q ' { A e u , l )

= ^ ' ( A Q u J ) ,  by IH2, 

=  ^ ' ( A ^ Q u : :  I) 

= <S<'(A,u :: 0 , by IH1.

Now we establish some preliminary properties th a t will be useful later in 

proving the isomorphism between the norm alisation procedures in AJ\f and XV. 

The first results relate inser t  and append in XV  w ith  @ in AJ\f.

L e m m a  40

1. i n s e r t ^ N , I, I 'M )  =  /), for  all M , N  in XJ\f and I in XV.

2. insert{u' ,  If  T '(A  /)) =  T '(A  append(l , u'  :: I')), fo r  all A  in XJ\f and u f  I, I' 

in XV.
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P ro o f: By a simultaneous induction on M  and A,  with induction hypotheses 
IH1 and IH2, respectively.

Case M  =  x.

i n s e r t ^ N ,  I, t l /M )  = i n s e r t ^ N ,  I ^ x )

=  i n s e r t ^ N ,  I, x)

= x ( V N - l )

=  fy'(xN, I)

= y ' (x@ N ,l )

= V ' (M @ N,l )  .

Case M  =  Xx .M ' .

i n s e r t ^ N ,  I, <4>M) -  i n s e r t ^ N ,  I ^ ( X x . M ' ) )

=  i n s e r t ^ N ,  I, X x . ^ M ' )

=  (A x . ^ M ' ) ( ^ N - l )

=  tf'((A x . M ' )N , l )

=  tt'((A x .M')@ N,l )

= $ ' ( M@N, l) .

Case M  =  app(A).

i n s e r t ^ N , l , \ S f M )  =  i n s e r t ^ N ,  I. ^(app(A)))

= insert(tS/NA,tS/'(A,\\)))

= $ ' (A ,  nppendQ., ■■ I)), by IH2, 

=  V ' ( A t \EriV  :: I)

= V ' (A N , l )

= y '(app(A) @N,l)

=  t f '( M @ N , l ) .
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Case A  = x M \

inser t(u ' , l \ ' f y ' (A , l ) )  — inser t i v i , 1', VP'( xM , l ) )

= inser t in ' , I', x ( ^ M  ■ I))

=  x ( t y M  ■ appendi! ,u' :: Z 7 ) ^  

=  t y ' ( xM,append( l ,u f :: Z 7 ) )  

=  {A,append(l ,v!  I')) .

Case A =  (Ax .M )N :

in ser t in ' , Z 7 ,  T 7{A, I)) =  in ser t in ' , ! ' , ' $ ' ( ( \ x . M ) N , l ) )

=  insert(u', Z7, (A:r.'I'M)('I'./V • I 
=  •  appendi!,, u' :

=  ^ '((A x .M )N ,append{ l ,u '  I

= fy'iA, append^,, u' I')) .

Case A  =  / I 'M :

i n se r t in ' , ! ' , ^ ' i A ,  I)) = inser t in ' , ! ' ,4>\A!M, I))

=  insert in ' ,  !', 'I 'M  :: /))

—  appendi^M  : :  Z . u 7 : :  Z 7 ) ) ,

=  '3//(v4/, 'I'M  :: appendi!, u' :: I'))

=  i ' / i A 'M ,  a p p e n d i n '  :: I'))

= iA, appendi!, il I')) .

:!'))

'))

by IH2,

The following is an im mediate consequence of part 2. of Lemma 40, when 

Z =  []. Compare w ith equation 4/iapp{A)) =  'L/(-4, []), which belongs to  the 

definition of T.
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C o ro lla ry  17 i n s e r t ( u , l , ^ ( a p p ( A ))) =  '¡/'(A ,«  :: I), for all A  m  XJ\f and u , l  

in XV.

C orollary 18

1. Q(insert(u,  l , t ))  =  0'(0Z@ ©u, I), for a l l u , t ,  I in XV.

2. 0 '(A , append(l, vl :: I')) = ©'(©'(-A, l)@Qu', V), for all A  in XJ\f and u \  I, I1 

in XV.

Proof: 1.

Q (inser t (u , I, t)) =  Q ^ n s e r t ^ Q u ,  '1/©/, 4 '0 i)) , by Proposition 25,

=  (Qt@Qu, I), by Lemma 40,

=  Q'(Qt@Qu, I), by Proposition 24.

2 .

Q\A,append.( l :u :: I')) =  ©'¡''(A, append(l, u  :: /')), by Proposition 24,

=  0 ( in s e r t (u ' , f , ^ ( A ,  /))), by Lemma 40,

=  0 (m seri( 'I '@ u /, Z', ^© '(A , /))), by Proposition 25, 

=  ©'¡/'(©'(A, l)@Qu\ I'), by Lemma 40,

=  Q'(Ql(A,l)@Qu', l ') ,  by Proposition 24.

Mi

Next results relate substitution in AJ\f w ith the operator subst of XV. 

Lem m a 41

1. tSf(M[N/x\) =  s u b s t f ^ N .x .  'I'M), all M .  N  in XJ\f.

2. s u b s t ( fyN ,x , fy ' (A J ) )  = A [ N / x ] , s u b s t ( ^ N , x , l )), all N ,  A  in X M . I in 

XV.
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P ro o f; By simultaneous induction on M  and A  w ith induction hypothesis re

ferred to  as IH1 and IH2, respectively. Whenever convenient, we write s for 

subst.

Cases M  = x  and M  =  Ay .M '  are straightforward.

Case M  — app(A):

4/ (M [ N /x \ )  =  (app(A)[N/  x])

=  (app(A[N/ x})), by def. of -[N/x],

=  ^ ' (A lN /x ] ,  []), by def. of 4b 

=  4,/(A[iV/x], sw&st^iV, x, [])), by def. of subst ,

=  subs t ($N ,  x , ty'{A, [])), by IH2,

=  s u b s t ^ N ,  x, ty(app(A))),  by def. of 'P,

=  s u b s t ^ N ,  x, 4/(M )) .

Case A  =  xM:

s u b s t ^ N , x ^ ' ( A J ) )

=  s u b s t ( f y N , x , f y \ x M , l ) )

= subst(tjjN, x, x(tSiM •./)), by def. of 4',

=  insert(subst(t&N, x, 4/M ), s u b s t ^ N ,  x, /), 4'iV), by def. of subst, 

= i n s e r t ^ ( M [ N / x ] ) , s u b s t ( f y N , x ,  I), 4'iV), by IH1,

=  '&'(N@M[N/x],subst( '&N,x, l)) ,  by Lemma 40,

=  ((xM)[N/x] ,  s u b s t ^ N ,  x, /)), by def. of _|7V/x],

=  <h'(A[N/x],subst()4 /N ,x , l) )  .

Case A  = (Xy.M)M':

s ( 4 / i V ,  x, ^ ' (A ,  I))

= s ( * N , x , $ ' ( [ \ y . M ) M ' t l))

=  s ( V N ,  x, ( A ■ I)), by def. of 4/.
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= ( X y . s ( ^ N , x ^ M ) ) ( s ( ^ N , x , ^ M ' )  ■ s ( V N , x , l ) ) ) ,  by def. of subst, 

= (Ay . ^ ( M [ N / x \ ) ) ( ^ ( M ' [ N / x \ )  • s ( ^ N , x J ) ) ,  by IH l,

=  ^ ' ( { X y -M [ N /x } ) (M ' [ N /x ] ) , s ( ^ N ,x , l ) ) ,  by def. of 

=  ^ ' ( ( ( X y .M ) M ' ) [ N / x ] , s { ^ N ,x , l ) ) ,  by def. of _[N/x],

Case A  = A ' M :

subs t (^ fN ,x ,^ f ' (A , l ) )

= s u b s t ^ N ,  x , (A'M, l))

= s u b s t ( ^ N ,  x, ty'(A1, :: /)), by def. of ,

=  ^ ' ( A ' [ N / x\, s u b s t ( ^N ,  x , <ÜM :: Z)), by IH2,

=  V'(A'[FI/x], subs t(VN, x, 'Î'M ) :: S'u6si(^7V, x, /))), by def. of su&s, 

=  ^ ' (A '[N/x] ,  tÿ(M[N/x])  :: su6st(^7V, x, Z))), by IH l,

=  ^ ' (A ' [ N /x \M [ N /x \ ,  su b s t ( ^ N ,  x, Z))), by def. of 

=  ^ '(CA 'M ^iV /x], su&si($JV, x, Z)), by def. of _[lV/x],

=  # V [ N / x ] , s u 6si(ifCV,x,Zj) .

■

CoroIIary 19

1 . t) (subst (v, x, t)) = Qt[Qv/x], d i t ,  v in XV.

2. Q'(A[Qu/x], subst(u, x,  Z ) )  =  Q'(A,l)[Qu/x}; for d l  A m X N  and u,l  
XV.

e(subs t(v ,  x , t)) = Q(subst(^Qv,  x, $© i)), by Proposition 25,

=  © ( ©i [Qv/x] ), by Lemma 41,

=  © i[©t'/x], by Proposition 24.

P ro o f: 1.
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2 .

Q'(A\Qu/x\ ,  subst(u , x, I))

=  ©\I//(./1[©'u/.t], s u b s t ^ Q u ,  x, /)), by Propositions 24 and 25,

=  Q (subs t (^Q u,  x, '4/'{A, /))), by Lemma 41,

=  Q(subst( tyQu,x,  \b0 '(A /))), by Proposition 25,

=  ©(^(©'(A l)[Qu/x})),  by Lemma 41,

=  ©'(A l)[Ou/x\,  by Proposition 24.

■

L e m m a  42 In XV, i f  I — I', then  '¡/'(A I) —>pi '¡''(A V) (for all A  in XJ\f, 

i e {  1 , 2 } ) .

Proof: By induction on A.

Case A  =  x N .  t'(xJV , I) = x ( ^ N  • I) ~^3l x ( V N  ■ I') =  V ( x N ,  I'), where the 

reduction step is by I —>̂  I' and closure of — in XV  under L e f t2 .

Case A =  (Xx .M)N.  Similarly, bu t by closure of — in AP under KeyCutd .  

Case A =  A'iV. ^'(A'TV, /) =  tf'(A , ^iV  :: /) t '( A ,  ^/JV :: I') =  tf '(A ' N , f ) ,

where th e  reduction step is by I.H., as I —*pi V and — in XV  is closed under 

Lft.2. m

L e m m a  43 In XAf, i f  A  —>pi A', then Q ' (A J )  — ©'(A',Z) (for all I in XV,  

i e  {1, 2};.

Proof: By induction on I.

Case I =  []. ©'(A, []) =  app(A) —>gi app(A') =  © '(A ', []), where the reduction 

step is by A  —>pi A'  and closure of -^>pt in XjV  under App.

Case l =  u: :  V. & { A , u  :: V) = Q ' (A Q uJ ' )  Q f A ' Q u J ' )  = & ( A ' , u  :: V),

where the  reduction step is by I.H., as A  A'  and — in XJ\f is closed under
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A E l i m l .  ■

The first half of the promised isomorphism of norm alisation procedures is the 

following

Theorem 4 Let i £  {1,2}. I f  Ad —>pi Ad' in A N  then I'M —̂ TM' in XV.

Proof: We prove the claim and also th a t

if A  —*pi A! in AN ,  then T '(A , I) —>pt T /(J4/! I) in XV,  for all I in XV,

by simultaneous induction on M  —̂ pi M '  and A  -o-pi A ' . Cases correspond to 

closure rules, according to  Definition 9. We prove both  cases i = 1, 2 a t the same 

time.

Case (31:

®{app((Xx.M)N )) =  d/' ((Xx.M)N,  []), by def. of T,

=  (Ax.TM )(TlV • []), by def. of T,

—>pi subst(d?N,x,d/M)

=  ^(Ad[N/x)) ,  by Lemma 41.

Case (32:

T'(((A x . M ) N ) N ' ,  I) =  T '(((A x .M )N ) ,  V N ’ :: I), by def. of T,

=  (A x.Td/)(TA ' ■ (TiV' :: I)), by def. of T,

—>p-2 i n s e r t ^ N ' , I, subst(tS>N, x , T M ))

=  i n s e r t ^ N ' , lN (Ad[N/x}) ) ,  by Lemma 41,

=  dJ'(AI[N/x]@N',1), by Lemma 40.

Case Intro:  Suppose T (M ) —>igi T (il/ ')  (IH1).
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\Ü(X x .M ) =  Ax.'Sz(M), by def. of Ü/,

^  A x.tf(M ') (*)

=  '¡/(Xx.M'), by def. of ,

where th e  réduction (*) step is by IH1 and closure of —̂  in AP under Right.  

Case App: Suppose Ü/'(A,/') —»g, ^ '(Æ , Z'), all V (IH2).

’î ’(app(A)) =  ^ ( A  []), by def. of H/,

- p i  ^ ( A /,0 ) ,b y IH 2 î,

=  df(app(A ')), by clef. of Ü/.

Case V E l i m : Suppose tUM —>gi d 'M ' (IH 1).

$ '( rM , 0  =  • l), by def. of A

-» #  x [ ^ M '  • Z) (*)

=  by def. of A

where th e  réduction step (*) is by IH1 and closure of —»gì in AP under L e f t l .  

Case Redex  1: Suppose —»■pi 'hM / (IH 1).

tf'((Ai.M)ZV, /) =  (A.x.'I'A'/)('iriY • Z), by def. of A

-»p.- (A x '.W ') ( ^ iV - 0  (*)

=  ' ( (Ax. M')1V, l), by def. of 'h ,

where the réduction step (*) is by IH1 and closure of --»p, in XV  under K e y C u t l .  

Case Redex2: Similarly, but by closure of —»g,- in AP under K e y C u t 2 .

Case A E l i m l : Suppose '¡/(A,ll) —»g,- \I/(A, Z'), all V (IH2).
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'¡''(A M , Z) =  '¡''(A, T M  ::l), by def. o f 1!',

t t '(A ',t fM ::Z ) ,b y IH 2 ,

=  '¡/'(A 'M , /), by def. of T.

Case AElim2:  Suppose 'I 'M  —̂  'I 'M ' (IH1).

'¡''(A M , Z) =  T '(A , TAL :: Z), by def. of T,

^ ( A . i M '- Z )  (*)

=  T '(A M ',Z), by def. of t ,

where the reduction step (*) is by Lemma 42, IH1 and closure of — in XV  under 

L f t l .  m

The second half of the isomorphism is as follows.

T h e o re m  5 Let ¿ £ { 1 ,2 } .  I f t  —̂  t! in XV then 0 f  — 0t '  in AW.

P ro o f: We prove the claim and also th a t

if I I' in X V , then ©'(A, I) —̂  0 (A , I') in AW, for all A in AW,

by simultaneous induction on t —̂  t' and I — I' . Cases correspond to closure 

rules, according to Definition 5. We prove both  cases ¿ =  1,2 at the same time. 

Case ¡31:

©((Ax. t)(v  • [])) =  ©'((Ax.Qt)Qv,  []), by def. of 0 ,

=  app((Xx.Qt)Qv), by def. of© ,

'¿31 Qt[Qv/x]

= Q(subst(v ,x , t ) ) ,  by Corollary 19.

Case (32:
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0((A x. t) (v  ■ (u :: /))) =  0 '( (A x .Q t)0 v ,u  :: Z), by def. of 0 ,

=  0 ;(((Ax.0 t)© v)0 u, l), by def. of 0 ,

—>/32 0 /( ( 0 i [ 0 ,u/:r])@0'ii, 0) by Lemma 43,

=  0 '(0 (su b s t(v , x, t))@©u, Z), by Corollary 19,

=  0 ( in s e r t(u , l, subst(v, x, t))), by Corollary 18.

Case L e f t l :  Suppose Qu —̂  Qu 1 (IH1).

Q(x(u  ■ Z)) =  0 '( x 0 u ,  Z), by def. of 0 ,

-VK G '(x G u \  l) (*)

=  Q(x(u'  • Z)), by def. of 0 ,

where thè reduction step (*) is by Lemma 43, IH1 and closure of —̂  in AM  

under V E l im .

Case Left l-,  Suppose Q'(A,l )  —̂  0 '(A , Z;), all A  (IH2).

0(rr(u  • Z)) =  Q'(xQu,  Z), by def. of 0 ,

0 ' ( z © u , Z ' ) ,  b y  I H 2 ,
=  Q(x(u  ■ l')), by def. of 0 .

Case R ig h i : Suppose ©f —̂  0 f ' (IH 1).

Q(Ax.t)  =  Ax.Qt , by def. of 0 ,

A x .0 f '  (* )

— ©(Ax.i'), by def. of 0 ,

where thè reduction step (*) is by IH1 and closure of — in AJ\f under Intro.  

Case K e y C u t i  : Suppose 0 t  —>*• Qt'  (IH1).
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©((Ax. t)(u ■ /)) =  Q'((Xx.Qt)Qu, l), by def. of 0 ,

e\(\x.Qt')Qu,l) (*)

=  Q((Xx.t' )(u :: l)), by def. of 0 ,

where thè reduction step (*) is by Lemma 43, IH1 and closure of —>pi in XJ\f 

under Redex  1.

Case K e y C u t l : Similarly, bu t by closure of —*/% in XJ\f under Redex2.

Case K eyC u t3  Suppose Q'(A,l)  —>pz all A  (IH2).

0((A x. t)(u ■ l)) = Q'((Xx.Qt)QuJ),  by def. of 0 ,

-+/K 0 '((A x.Qt)Gu,l ' ) ,  by IH2,

=  0 ((A x i)(u  ■ /')), by def. of 0 .

Case L / i l :  Suppose Qu —*pi Qu'  (IH1).

Q'{A,u  :: l) = Q'(AQu, l), by def. of 0 ,

Q'(AQu', l )  (*)

=  Q'(A ,u '  :: /), by def. of 0 ,

where thè reduction step (*) is by Lemma 43, IH 1 and closure of —̂  in LA/”

under A E l i m 2 .

Case L f t2:  Suppose 0 7(A  Z) -> #  0 7( A O ,  all A (IH2).

Q '(A .u  :: I) =  0 7(yl0 'ii,/), by def. of 0 ,

-»/sì ©7(-ì4 0 u , i7), by IH2,

=  © '(A  u :: l'), by def. of 0 .



C o ro lla ry  20 ( I so m o rp h ism ) Let i 6  {1,2}.

1 . M  -+pi M '  in XJ\f if f  'I'M  —>pi 4>M' in XV.

2. t —*pi t' in XV i ff  Qt —>pi Qt' in XJ\f.

C o ro lla ry  21 XV, XVh, XVhx and, XVhx are confluent.

P ro o f: F irst, XV  is confluent from Corollary 20 and confluence of AN . Then, 

confluence of the other calculi follows from Corollaries 2, 6 and 10. ■
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Chapter 5 

Gentzen versus Prawitz

In this chapter we continue the analysis of the relationship between cut-elim ination 

in the canonical fragment and normalisation. We recall two m appings of natu 

ral deduction into sequent calculus, one due to Gentzen and the other due to 

Prawitz. We show th a t they both  are isomorphisms, and th a t the  isomorphic 

image of A by Praw itz’s mapping V  is XV.  Then, a comparison of mappings T 

and V  as mappings for “turning the main branch upside down” suggests th a t the 

advantage of AW over A is th a t AW includes a built-in distinction between head 

and tail applications. Finally, we study (an extension of) the inverse of V,  named 

Q. This mapping is the restriction to the canonical fragment of the good old </?.

5,1 Gentzen's mapping

In the original paper where sequent calculus was introduced [Gentzen, 193-5]1, 

Gentzen proposed the well-known m apping of N J  derivations into sequent calcu

lus derivations th a t, essentially, translates assumptions as axioms, introduction 

rules as right rules and elimination rules as cuts plus left rules. For instance, 

elimination of D becomes (ignoring contexts)

1The origin of natural deduction precedes Gentzen’s paper [Prawitz, 1965].

128
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  A  nr-

. . . h i  . . . , B P B
-----------------------------L e f t

... t- A d  B  . . . ,A  D B  b B
---------------------------------------------- Cut

... b  B
Therefore, every elimination rule becomes a cut and, in general, norm al proofs 

are not m apped to  cut-free derivations.

Let us call this translation G and let us restric t ourselves to  im plication. An 

im m ediate observation is th a t, in a derivation in the range of Q: (1) every instance 

of the left rule is canonical. Actually, the  active formula of the right premiss of 

each left inference is main in an axiom. (2) the right cut formula of every cut 

instance is m ain in such an instance of the left rule. These observations suggest 

th a t G entzen’s m apping may be w ritten  as the following m apping from A into 

A Vh:

Qx = x  

G(Xx.M) =  A x .Q M  

G{MN)  =  G M {Q N  ■ []) .

A pplication m ay be seen as a very particular kind of head-cut, nam ely a  head-cut 

in which the  list of ex tra  arguments is empty.

The origin of this mapping as a translation  of logical systems guarantees its 

correctness.

P ro p o s i t io n  26 (C o rre c tn e s s  o f  Q) I f  X derives T b  M  : A, then XVh derives 

T; -  b Q(M)  : A.

P ro o f: By induction on M.  The only interesting case is M  = M 0Nq. Suppose A 

derives T b MqNq : A.  Then A derives F b M 0 : B  D A  and F b N 0 : B,  for some 

B.  By induction hypothesis, there are derivations in XVh  of T; — b  G(M0) : B  D 

A  and F; — b  G{N0) : B.  These are combined with an application of the head-cut 

nile:
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; ;  a x

F; -  b G{Mq) : B D  A  r ; -  b g {N 0) : B  T; ,4 b [] : A
H eadCut

As we may observe, there are no instances of the left rule in derivations of 

F; -  b Q M  : A  in XPh.  They are “absorbed” in head-cuts. Actually, g  maps 

into the ::-free fragment of XPh,  th a t is

t, u  ::=  x  | Ax. t  \ t (u  ■ I)

I D

In this fragment, lists are really residual. Let us write t (u  ■ []) as t[u] 2, and 

let us rewrite the previous gram m ar as

f, u  ::=  x  | A x. t  \ t[u] .

This is very much like A-calculus. Such impression is fully confirmed.

As to  typing rules, in this fragment sequents have the  form F; — b t : A,  

typing rules for variables and A-abstraction are as usual, and t.[u] is typed as an 

application by the rule

F;-bi: Ad 5 r;-bit:A
T; -  b t[u] : B

which should be seen as an abbreviation of the head-cut

A x
F; -  b t : A  D B  F; -  b u : A  F; B  b f] : B
-------------------------------------------------------------------   HeadCut

T ; - b  t ( u - [ } ) : B

As to reduction, only rule ¡31 makes sense in this fragment, as bo th  (32 and h 

require In the fragment, (31 reads

2Recall from the relation between XVhx  and A3 that t (u ■ []) m ay be seen as t (u  :: []) anyway.
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(Ax.i)[?i] —> subst(u, x , t )  ,

where subst is the operator subst  of XVh.  Now, th e  calculation

subst(v, x, t[u]) =  subst(v, x, t (u ■ []))

=  subst(v, x , t )( subs t(v , x, u ) ■ subst (v , x , []))

=  subst(v, x , t)(subst(v,  x , u) • [])

=  subst(v, x, t)[subst(v, x, u)]

shows two things. First, th a t the ::-free fragment is indeed a fragment of XVh  

because it is closed for subst  and (31. Second, th a t the  restriction of subst to this 

fragment behaves exactly as A-calculus’ substitu tion  (the calculation is enough 

because the  other cases in the definition of subst  did not raise any doubt).

Therefore, the ::-free fragment of XVh  is simply a rephrasing of A, where ap

plication is w ritten t[u], substitu tion is w ritten subst  and sequents are w ritten in 

the form T; — b t  : A.  Furtherm ore, G entzen’s mapping Q is trivially an isomor

phism between A and this fragment, because Q is a mere rephrasing mapping. 

This justifies the following terminology.

D e f in it io n  10 The ::-free fragment of  XVh is denoted XQ.

As a  by-product, we get the following gentle addition to the theory of the rela

tionship between cut-elim ination and norm alisation [Gentzen, 1935, Prawitz, 1965, 

Zucker, 1974, Pottinger, 1977, Ungar, 1992]:

T h e o re m  6 Gentzen’s mapping Q is an isomorphism from normalisation in X 

to cut-elimination in XQ.
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5,2 Prawitz’s mapping

W ith the purpose of showing cut-elim ination as a corollary of norm alisation in 

natural deduction, Prawitz proposed in [Prawitz, 1965] a m apping from normal 

N J  proofs to  cut-free derivations in a sequent calculus. Hence, P raw itz’s mapping 

is an improvement over Gentzen’s translation  w .r.t preservation of norm ality (see 

also §6.3 in [Troelstra and Schwitchtenberg, 2000]). This optim isation makes use 

of the structure of normal proofs, a structure which Prawitz had ju s t uncovered.

The new m apping (call it V)  translates again assumptions as axioms and 

introductions as instances of the right rule. Now suppose our norm al proof M  

is an elimination. If we go upwards through the main branch [Prawitz, 1965] of 

M , we visit the main premiss of successive elimination rules until we stop a t an 

assumption. Hence, M  has the form (ignoring contexts)

. . . ,x  P x  : Ax D ... D A k D B
Var

... P Nx : Ax

...,£  P xN i  : A 2 D ... D A k D B

. . . ,x  P xNx-. .Nk-1  : A k D B

E l im

-  P N k : .4,
E l im

... ,x P xNx. . .Nk : B

for some k > 1 (if k  — 1, A 2 D ... D A k D B  is just B).  We now extract from 

this proof two smaller proofs. The first is just

whereas the second is
P N x : Ax
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   Var
..., Zl b  z x : A 2 D ... D A k D B  ... h N 2 : A 2
----------------------------------------------------------------------------E l im

. . . ,z x b  z xN 2 : A 3 D ... D A k D B

. . . , Z i  b Z\N 2 .. .Nk- i  '■ A k D B  ... b N k : A k
-------------------------------------------------------------------------------------------- E l i m

. . . , z i b  z xN 2 . . .Nk : B

where z\ is free in no jV*. In the case k  — 1, th is  proof consists solely of the 

assum ption

--------------------------V ar
..., zi : B  b  Zi : B

Now apply V  to  these two smaller proofs. If V  is correct, we get two cut- 

free derivations of sequents ... b  V(N{)  : A \  and : Ao D  ... D A k D  B  b  

V { z \ N 2 . . .Nk) '■ B.  Finally, conclude with an application of the left rule:

... b  P ( N \ ) : A i  ..., Z! : A 2 D ... D A k D B  b  V { z l N 2 . . .Nk) : B
 Le f t

. . . , x :  D A 2 D ... D A k D B  b V { x N l ...Nk) : B

If we borrow from C hapter 2 the notation for proofs in a generic sequent 

calculus, P raw itz’s m apping is defined by

V (x)  — Ax(x)

V { \ x . M )  =  R {(x)V{M))

V (x N i - . .N k) =  L ( x , V ( N 1 ) , ( z 1 ) V ( z lN 2 . . .Nk))

As an algorithm  for performing the translation, this recursive definition is 

rather inefficient because, each time we have to calculate V ( M N ) ,  we need to  

m atch M N  w ith x N i . . .N k, which means inspecting M  w ithout reusing previous
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inspections or saving information for subsequent calculations. Is there a defi

nition of V  w ith which we travel through a main branch x N \ . . .N k ju s t once? 

Another issue, like in the case of Q, is whether the derivations in the range of 

this translation are of a particular form. It tu rns out th a t these two questions 

are related.

Let us go back to  the derivation of

A i D  A 2 D . . .D  A k D B \ -  V { x N i . . .N k) ■ B  

and let us unfold the derivation of 

..., zi : A 2 D ... D A k D B  h  V ( z 1 N 2 . . .Nk) : B  .

We obtain

__________________  1̂21
. . . \ - V ( N k) : A k . . . , zk : B \ - V ( z k) : B
-------------------------------------------------------------- L e f t

... h V { N 2) : Ao ..., r2 : d 3 D ... D A k D B  h P { z 2N 2. . .Nk) : B
----------------------------------------------------------------------------------------------------L e f t

... h V ( N i )  : Ay ..., 2i : A2 D ... D A k D B  h P { ZlN 2. . .Nk) ■ B
-------------------------------------------------------------------------------------------------------------------L e f t

. . . , x : A i  D A 2 D ... D A k D B h  V { x Ni . . . N k) : B

Again, we may observe th a t each displayed left inference is canonical be

cause each Zi is fresh. Therefore, each L e f t  occurrence, except the lower one, 

is indeed a L /¿-inference and corresponds to  the :: constructor, and the right 

subderivation may be represented by ..., V ( N k)]. As to  the  lower in

ference, it corresponds to the constructor x(u  ■ I). Hence, V ( x N i N 2 -.-Nk) =  

■T(^(M )-[P(iV 2),...,P (iY fc)]).

We would like to consider the range of V  to be in AV  instead of XPh  because 

in the la tte r x (u  ■ I) is a cut and hence preservation of norm ality is lost. But 

the decisive argum ent concerns the shape of the inevitable cuts in the range of V  

when one translates non-normal proofs. In such generalised P raw itz’s mapping, 

the translation of an application requires again a walk through the m ain premiss
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of successive instances of the elim ination rule. However, such walk may now end 

in the conclusion of an introduction rule. The new case in the definition of V  is 

then V {{ \x .M )N \N ^ . . .N k ) -  It is ra ther natu ra l to  define th is to  be the key cut 

(.X x . V { M ) ) ( V { N \ ) • [7?(Ar2) , ..., 'P(lVfc)]. We do not need any other kind of cut in 

the range of V.

Summing up, V  is a m apping from A to  XV  defined by the  clauses

V(x)

V (X x .M )

V i x N ^ . - . N k )

V { ( X x . M ) N 1 N 2 .. .Nk)

= x

X x .V (M )

(5.1)

(5.2)

(5.3)

=  (A x .P (M ))(P (!V 1) - p ( lV 2),...,iP(iV fc)]) (5.4)

This definition is somewhat informal because of the implicit decom position of 

an application M N .  W hat recursion is being used? W hat is, after all, V ( M N ) 7  

We will try  to  shed some light at the above questions by studying o ther mappings 

from A to  XV  th a t we met before.

T h e o re m  7 (A -square) The following square commutes3:

Gxg x

(-)-

XV

U

x u
P ro o f: We prove t y (U M )  =  (Q M ) by induction on M.  Cases M  =  x  and 

M  = Xx.Mq are straightforward. Let M  = M 0Nq. Then,

T(W A i) =  $  ( U ( M qN o))

=  ty(app(U(Mo)@U(No))) ,  by def. of A?,

3An observation similar to this in spirit is due to Curien and Herbelin, and may be found if 
one reads intuitionistically the second half o f Proposition 2.3 of [Curien and Herbelin, 2000],
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=  ty' (J\f(M0)@ N (N0) , []), by def. of T, 

=  i n s e r t ^ ( J \ f ( N 0)), 0, ^ (A f ( M 0))), by Lemma 40,

=  insert ((QN0)~ , [], (QM0)~), by IH,

=  (QMo(QNo - D))-, by def. of (_)" and 0“ =  0, 

=  (Q(M0N 0))~, by def. of Q, 

= (GM)~ .

M

Let us clarify the situation after Theorem 7. Since Q\ (_)“ is an isomorphism 

(because it is the composition of two isomorphisms), we have

M  -> ¡3  N  iff (QM)~  -»  (G N ) -  . (5.5)

W hen restricted to the coclomain of G, (-)~ is bijective (because G\ (-)“ also is). 

Moreover, by

G M GN  iff M  —>¡3 N

and (5.5), it is also an isomorphism of normalisation procedures. Therefore, in the 

above square (which we refer to  as the A-square), the four vertices are isomorphic 

systems.

From Theorem 7, the two compositions of arrows in the A-square th a t lead 

from A to XV  are one and the same mapping. Let us call this m apping the 

diagonal of the A-square. Now it comes the official definition of V.

D e fin itio n  11 ( P r a w itz ’s m a p p in g )  Praw itz’s m apping V  is the diagonal of  

the X-square.

T hat is, V ( M )  =  (GNI)~ =  T(A i (M )) ,  for all M  in A. Let us see informally th a t 

this definition agrees w ith definition given by clauses (5.1)-(5.4). As to  variables 

and A-abstractions, the situation is clear. As to applications, the calculations
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' fy(Af(xNiN2 . . .Nk)) =  U/(app(xJ\f(Ni)J\f(N2 ) .. .Af(Nk)))

=  V ( x A f ( N 1 )Af(N 2 ) . . .Af(Nh),\\)

= ^ ' ( x A f i N , ) ,  [* (A f (N2) ) , ..., (Ai ( N k))})

= x ( * m N i ) )  ■ M A T m ) ,  * ( A f ( N k))})

and

{g ( (X x .M )N 1 N 2 . . .Nk))~

= ({\x .gM)[QNi][QN 2\ . . \QNk})~

=  inser t( (QNk)~, [], . . . insert((QN2)~ , [], inser t{ (QN{)~ , [], \ x . { Q M ) ~ ))...)

= insert{{QNk)~ , [], . . . insert([GN2)~, 0, (A x .(^M )_ )((^ /7 i)_ • []))...)

=  inser t((QNk)~, 0 , • [ ( ^ 2)“ ] ) - )

=  (Ax . { g M ) - ) ^ g N x) -  ■ [(q n 2)~ ,..., ( W D

give enough evidence.

In the next result, one finds an answer to the question of w hat V ( M N )  is.

P ro p o s i t io n  27 Prawitz’s mapping is the unique mapping V  : A —> XV such

that:

V x  =  x  

V { \ x . M )  = A x . V M  

V ( M N )  = in ser t (V N ,  Q, V M )

P ro o f: Because (_)~ o Q satisfies these equations. 8

The clause for applications explains the difference between Q and V. Q ( M N ) 

is simply the  cut QM[QN],  whereas V  requires, in addition, the complete left 

perm utation of this cut, performed by insert.
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T h e o re m  8 (G e n tz e n  vs P ra w itz )  Prawitz’s translation of a proof is obtained 

from, Gentzen’s translation of the same proof by the complete left permutation of 

every cut occurring in the latter.

P ro o f: Sum up the following facts: (1) V  = (f)~oQ. (2) M apping (_)“  : AQ —> XV  

is the restriction to AQ of (_)_ : W h  —» XV. (3) The la tter is the same as )./>.. (4) 

In XVh, a term  is a h-redex iff it is a left-perm utable cut. ■

Finally, because V  is a composition of isomorphisms, the following holds:

T h e o re m  9 Prawitz’s mapping V  is an isomorphism from normalisation in X to 

cut-elimination in XV.

5„3 The nature of X J \ f

In term s of derivations, one of the effects of P raw itz’s m apping is to  tu rn  the 

main branch upside down, so to speak. Here “main branch” may have its usual 

sense in norm al proofs, or a suitably generalised sense th a t even applies to  non- 

normal proofs. Observe how the upperm ost instance of the elim ination rule in 

the main branch corresponds, in the translated  derivation, to  the lowest instance 

of the left rule; and how the instance of the elimination rule ju st below the  former 

corresponds to  the instance of the left rule ju st above the la tter, and so on. This 

effect can be described in term s of bracketing. The term  ( . . . ( ( xN i)N 2 )...Nk), 

which is bracketed to the left, is translated  as x f P N i  ■ (P N 2 . . . (PNk ■■ [])•■■))> 

which is bracketed to  the right.

Mapping T is another example of a translation into XV  which maps applica

tions in a similar way, by turning main branches upside down. We m ight say th a t 

T and V  are based 011 the same idea, bu t th a t they differ because they translate 

two different formulations of the A-calculus, namely usual A and X N . O ur goal is, 

by comparing the two mappings T and V , to  understand the difference between 

the two formulations of the A-calculus, and particularly what is the “natu re” of 

XN.  Along the way, we exploit the relation between T and V,  as we did before 

with the relation between V  and Q.
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The first thing we want to  do is to give another definition of V , bu t one th a t 

is close to  the  spirit of T. W ith  this purpose, we introduce a new inductive 

definition of the A-terms.

D e f in it io n  12  The sets T  and Ap are defined by the following simultaneous in

duction:

M  G T  (M, N )  E Ap
x E T  Ax . M  E T  M N  E T  

N  G T  M  G T  IV G T  (Mi,  M 2) G Ap N  g T
(x, N )  G Ap  (Ax .M ,  N ) G Ap  (.M XM 2, N )  G Ap  

L e m m a  4 4  I f  M  E T  and N  G T, then (M, N ) G Ap and hence M N  G T .

P ro o f : By a  case analysis of M.  Case M  =  x. Since N  £ T,  (x, N ) G Ap. Case 

M  — A x .M '. Since M  G T, it follows M ' G T. From this and N  E T,  it follows 

(Ax . M ' , N )  G Ap. Case M  =  M \ M 2. Since M  E T,  it follows ( M \ , M 2) E Ap. 

From this and iV G T, it follows ( M \ M 2, N )  E Ap.  Si

P ro p o s i t io n  28 M  G T  iff M  is a. \ - term.

P ro o f: “If” : By induction on a A-term M .  Case M  =  x. x  E T.  Case M  = 

A x .M'.  By IH, M ' E T  and, thus, A x . M '  E T.  Case M  =  M 'N .  By IH, M '  E T  

and N e T .  By Lemma 44, M ' N  E T.

“Only if” : We prove tha t, for all M  E T, M  is a A-term, and th a t, for all 

(M , N)  E Ap,  bo th  M  and N  are A-terms, by simultaneous induction on M  and 

(M , N ), w ith induction hypotheses IH1 and IH2, respectively.

Case M  = x. x  is a A-term.

Case M  =  A x .M' .  By IH1, M '  is a A-term. Hence, A x . M '  is a A-term.

Case M  M 'N .  Then (M ', N ) G Ap. By IH2, both  M '  and N  are A-terms. 

Hence, M ' N  is a A-term.

Case (M , N )  = (x, N').  On the one hand, x  is a A-term. On the other hand, 

N '  E T.  By IH1, N '  is a A-term.
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Case (M , TV) =  (Ax . M ' , TV'). On the one hand, M '  G T  and, by IH1, M '  is a 

A-term. Hence A x .M '  is a A-term. On the other hand, TV' G T.  By IH1, TV' is a 

A-term.

Case (M , TV) = (M 'M " ,  TV'). On the one hand, (M ', M ") G Ap  and, by IH2, 

bo th  M ' and M " are A-terms. Hence M 'M "  is a A-term. On the  other hand, 

TV' G T. By IH1, TV' is a A-term. ■

C o ro lla ry  22 (M, TV) G Ap if f  M  and, TV are X-terms.

P r o o f :“Only if” : see the the “only if” part of the proof of last Proposition. “If” : 

If M  and N  are A-terms, then M  and N  are in T  (by last Proposition) and 

(M , N ) G Ap  (by Lemma 44). ■

The definition of Af  : A —> Aj V  needs an adjustm ent, if one takes the new 

definition of A-terms. We define (_)n, where n is mnemonic for J\f.

D e fin itio n  13 The mapping (_)n : A —> AJ\f is defined by:

x n =  x  

(A x . M ) n = A x . M 71 

(MTV)" =  app{{M ,N)n)

{ x , N ) n = x N n 

(A x.M , TV)” -  (A x . M n) N n 

(M iM 2, N ) n = (Mi,  Mo)71 TV"

Actually, this defines a m apping sending M  G T  to  some ATV-term and another 

mapping sending (M, N)  G Ap  to  some application A  in AJ\f.

P ro p o s i t io n  29 M " =  J\f(M) and (M,  TV)" =  Af(M)@ j\ f (N) ,  fo r  all M, TV in 

A.
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P ro o f : By simultaneous induction on M  and (M , N ) ,  w ith induction hypotheses 

referred to  by IH1 and IH2, respectively.

Cases M  — x  and M  = Xx .M0: straightforward.

Case M  = M qN o-

M n =  (M0No)n

=  app((M0, N 0)n), by def. of (_)n, 

=  app(jV{M0) m ( N 0)), by IH2, 

=  J\f(MoN0), by def. of N ,

= U { M )  .

Case (M , N )  = (x, N 0):

(M, N ) n =  { x , N 0)n

= x N q , by def. of (_)n,

=  xAi(No), by IH1,

=  x’@7V(7V0), by def. of 

=  J\f(x)@J\f(N0): by def. of J\f, 

= (N)  .

Case (M , N ) =  (Ax.M0, N 0). Similar. 

Case (M , N )  = (M iM 2, N 0):

(M , N ) n = (M xM 2 , N 0)n

=  (Mi,  M 2)nN£,  by def. of (_)n,

=  ( A f ( M i ) m r ( M 2 ))M(No), by IH1,IH2, 

=  app(J\f(Mi)@J\f(M2 ))@J\f(N0), by def. of 

=  M ’(M 1 M 2 )@M’(N0) t by def. o îA f,  

= Af (M)@J\f(N)  .
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Here is the promised new definition of V,  w ith recursion according to  the new 

inductive definition of A-terms.

P ro p o s i t io n  30 Prawitz’s mapping is the unique mapping V  : A —» XV such 

that:

V x  =  x  

V(Xx .M )  =  A x . V M  

V ( M N )  = V ' (M ,  N,  [])

V \ x , N , l )  = x { V N  ■ I) 

V \ X  x . M , N , l )  =  (A x . V M ) { V N - l )  

V ( M xM 2 , N , l )  =  V ' (M i ,  M 2, V N  :: I)

P ro o f: V ' { M , N , l )  is to be understood as V '( (M ,  N ) ,  I), w ith (M , N ) G Ap. 

Recall th a t, by definition, V M  is \E'(A/r(M )), which is the same as $ (M n), by 

Proposition 29. In this proof we let V  denote the mapping defined by the above 

recursive definition. We prove V M  = 4/(M n) and V ' ( M , N , l )  = N ) n ,l)

by simultaneous induction on M  and (M, IV), w ith induction hypotheses IH1 and 

IH2, respectively.

Cases M  = x  and M  = Xx .Mq. straightforward.

Case M  =  M 0N 0:

V M  = V ( M qN o)

=  V ' ( M q, N 0, []), by def. of V ,

=  ^ ( ( M o,i V o r ,0 ) ,b y  IH2,

=  ty(app(M0, N 0)n), by def. of 4/, 

=  \&((M0lVo)n), by def. of 

=  ty (M n) .
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Case (M , N )  = { x , N 0):

V ' (M ,  N ,  I) = V ' ( x , N 0J )

= x ( V N 0 - I), by def. of P ,

=  x ( * ( N S ) - l ) ,  b y f f l l ,

=  '¡¡'(x N q . I), by def. of 4/,

=  N 0)n, l),  by def. of (_)n,

=  N ) n, I) .

Case (M , N ) =  (Xx.M0) N 0). Similar. 

Case (Af, N) =  (M iM 2, N 0):

P '(M , N, I) =  P '(M 1M 2,iV0 iO

=  V'(M i ,  M 2, V N 0 :: 0 , by def. of P , 

=  P ,(M 1,M 2,'ir(iVo- ) : : 0 , b y I H l ) .

=  ^ ( ( M 1,M 2)n,^(JV 0- ) : : Z ) , b y I H 2 J 

=  V ' ( ( M u M 2 )nN S i I), by def. of 

=  tf '(((M aM 2), JVb)-, /), by def. of (_)r

This proposition, which allows a comparison between V  and T, should be 

contrasted w ith Proposition 27, which allowed a com parison between V  and Q. 

The proposition also contains a new way of calculating V { M N ) .

We also need to  adjust mapping |_| : \ N  —> A to  the  new inductive definition 

of the A-terms. The new m apping is denoted w ith a mnemonic for “absolute 

value” .



Chapter 5. Gentzen versus Prawitz 144

D e fin itio n  14 The mapping (_)a : \J \ f  A is defined by:

x a = x  

(A x . M f  =  A x . M a 

app(A)a = let (M, N )  be A a in M N

( x N ) a =  (x, N a)

((A x . M ) N ) a = (A x . M \ N a)

( A N ) a = let (Mi,  M 2) be Aa in ( M iM 2 , N a)

Actually, this defines a mapping th a t sends a AAA-term to  some M  €  T  and 

another m apping th a t sends each A  in AAA to  a (M , N ) € Ap. Notice the use of 

an informal “let” notation. We now see th a t this definition agrees w ith |_|.

P ro p o s i t io n  31 For all M  in AAA, M a = \M\. For all A  in AAA, let A a = 

(M, N)  and \A\ = M ' N ' . Then M  = M '  and N  = N ' .

P ro o f: By simultaneous induction on M  and A, w ith induction hypotheses re

ferred to as IH1 and IH2, respectively.

Cases M  = x  and M  =  Ax .M Q: straightforward.

Case M  = app(A).  Let A a =  (M, N ) and |A| =  M 'N ' .  By IH2, M  — M '  and 

N  =  N ' . Hence, M N  = M 'N ' .  Then, M a = app(A)a =  M N  = M ' N '  =  |A| =  

\app{A)\ = \M\.

Case A =  x N 0. Then, A a =  (x ,Ng)  and |A| =  x \N 0\. On the one hand,

x  — x. O11 the other hand, Nft =  17V01, by IH1.

Case A =  (Xx .Mo)Nq. Similar.

Case A =  A 0N 0. Then, |A] =  \A0 \\N0\. Let Ag =  (M U M 2). Then,

An = ( M i M 2 ,Nq).  We want M XM 2 =  |A0| and N§ = |Ar0|- The la tte r fol

lows by IH1. As to the former, let |A0| =  M[M'2. Then, by IH2, M\  =  M{ and 

M 2 = M 2. Then, M XM 2 = M [ M 2 =  |A0|. ■

We now check th a t (_)n and (_)° are indeed m utually inverse.
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P ro p o s i t io n  32 M na — M  and (M, N ) na = (M, N ) ,  all M  and (M , N )  in X.

P ro o f: Two proofs are possible. The first is a direct proof, by simultaneous 

induction on M  and (M, N).  The second, which we do next, uses the  fact th a t 

J\f and |_| are m utually inverse.

M na is \Af(M)\  by Propositions 29 and 31, and the  la tter is A4 by Proposition 

21. As to  the  second assertion, let A  = {M , N ) n . By Proposition 29, A  = 

J\f{M)@J\f (N).  Now, by Proposition 31, there are A4' and N '  such th a t A a =  

( M \  N')  and \A\ =  A4'N' .  On the other hand,

\A\ = \JC(M)@Af(N)\  

= \J\f(A4)\\J\f(N)\, by Lemma 37,

=  A 4N , by Proposition 21.

Therefore, M N  =  |A| =  A4'N '  and thus A4 = A4' and N  =  N ' . Finally, 

(M, N ) na = A a = {A4', N ')  = {A4, N ). ■  

P ro p o s i t io n  33 M an =  A4 and A an = A,  all A4 and A  in XJ\f.

P ro o f: Again, two proofs are possible. The first is a  direct proof, by simultaneous 

induction on A4 and A. The second, which we do next, uses the fact th a t N  and 

|_| are m utually inverse.

A4an is M \M \  by Propositions 29 and 31, and the la tter is A4 by Proposition 

20. As to  the second assertion, by Proposition 31, there are A 4,N  such th a t 

A a {A4, N )  and \A\ = A4N. Hence, A an = {A4,N)n = J\ f{M)@Af{N),  by 

Proposition 29. On the  other hand,

app{A) =  A4\A\, by Proposition 20 

=  J\ f{MN)  

=  app{J\f{M)@J\f{N)), by def. of J\f.
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Hence, app(A)  =  app(J\f(M)@J\f{N))  and thus A  = J\ f(M)@Af(N).  Therefore, 

bo th  A an and A  are Af{M)@Af{N).  Thus A an = A. M

D e fin itio n  15 Mapping V ~ l is denoted Q.

Hence Q = (_)“ o 0 .  We will now prove an explicit definition of Q.

P ro p o s i t io n  34 The inverse of Prawitz’s mapping is the mapping Q : XV  —>• X 

defined by:

Qx = x 

Q(Xx.t) =  A x .Qt  

Q { x ( u - l )) =  Q'(x, Qu, I)

Q((Xx.t)(u ■ I)) = Q!(Xx.Qt, Qu, I)

Q!(M, N,  0) =  M N  

Q'(M, N,  u :: I) = Q \ M N ,  Qu, I).

P ro o f: Again Q'(M, N,  I) stands for Q '( (M , iV), I). In this proof we let Q denote 

the mapping defined bj' the above recursive definition. We prove ( 0 i ) a =  Qt  and

Q \ A ,  l)a = let (M, N )  be Aa in Q'(M, N ,  I) (5.6)

by simultaneous induction on t  and I, with induction hypotheses referred to by 

IH1 and IH2, respectively .

Cases t  = x  and t = X: r i 0: straightforward.

Case t  = x (u  ■ I):

{Qt)a = Q(x(u  ■ l))a

= Q'(xQu, l)a, by clef, of 0 .

=  let (M. N )  be (xQu)a in Q’(M, N,  I), by IH2 ,
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=  let (M, N ) be (x , (0« )°) in  Q'(M,  77, I), by def. of (_)“,

=  let (M, ZV) 6e (re, Qu) in  Q ' (M , ZV, Z), by IH1,

=  Q \ x , Q u , l )

=  Q (x(u ■ 0 ), by def. of Q,

=  Q(i) •

Case t  = {Xx.t0){u ■ I): similar.

Case I =  []:

Q '{A , i )a =  e ' ( A 0 r

=  app{A)a, by def. of 0 ,

=  Zei (M, 77) be A a in Q '{M , JV, []), by def. of (_)°,

=  let (M, TV) 6e Aa in  Q ' (M , iV, Z) .

Case Z =  «o :: Z0:

0 '(A , Z)a 

=  O'(A,  Uq :: Z0)a 

=  © '(Aeuo.Zo)“ , by def. of 0 ,

=  let (M, N) be {AQu0)a in  Q '(M , N,  Z0), by IH2,

=  let (M, JV) be {let, ( M u  M2) be Æ1 in  (,\/-; .\/2. (0w o)Q) in  Q '(M . 77, Z0), 

by def. of (_)a,

=  let (M i, M2) be A a in  Q '(M iM 2, (©uo)0, Z0)

=  let {Mi, M 2 ) be A a in Q!{MxM 2, Quo, ¿0), by IH 1,

=  let (M i, M 2) be A a in  Q!{MX) M 2 , u 0 :: Zq), by def. of Q,

=  Zei (M i, M2) be 2ia Q '(M XlM 2 ,1) .

■
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It is revealing th a t mapping Q, as defined in Proposition 34, could have been 

shown to be the inverse of V  in the same way as we proved th a t 0  is the inverse 

of Indeed, one proves Q o V  = id and Q o V '  =  Q! by a simultaneous induction 

similar to  the  one we find in the proof of Proposition 24; and one proves V o Q  =  id 

and V  o Q! = V '  by a simultaneous induction similar to the one we find in the 

proof of Proposition 25. The parallel between V  and Q, on the one hand, and 

T and 0 ,  on the other hand, is quite tight. We recapitulate the situation  in the 

following diagram:

( - r

Let, us look again a t Definition 12, which allowed this parallel between V  and 

T. A nother presentation of the same inductive definition of the set of A-terms is

T  ::=  x  | Xx.t  | app(A)

A  ::= (x , T) | (Xx.t, T)  \ (app(A), N ) 

This may be obtained by unfolding Tj in

(5.7)

T  ::= x \X x . t \ a p p ( A )

71 ::= (Tu T2) 

and this, in tu rn , is ju st the usual syntax of the A-calculus

T  x  | Xx.t | app(Tx, T2) .

Hence, every A  in (5.7) and every Ap  in Definition 12 may be seen as an appli

cation with look ahead.



Chapter 5. Gentzen versus Prawitz 149

As promised, the difference between (5.7) and XJ\f

M , N  ::= x  \ Xx.t \ app(A)

A  ::=  x N  \ (X x .M ) N  \ A N  

is best seen by comparing how V  and T translate VN±.. .Nk , where V  is a variable 

or a A-abstraction and k > 1. T h a t is, we compare how they  tu rn  a  main branch 

“upside down” .

V  calls TVfc), []), for some M , and now a  decision has to be taken as

to  w hat to  do with Nk- If k > 1, then  M  =  for some M ’, and Nk is,

so to speak, pushed on top of the second argum ent. The com putation continues 

w ith Nk-i ) ,  V N k  :: 0)- If k =  1> then M  =  V  and V'  does not produce

another occurrence of constructor instead it either retu rns x (u - l ) or (Ax. t)(u-l),  

according to  whether Id is a variable or a A-abstraction. Now, how does V  make 

up its mind? The constructor (M , Nk) per se does not tell anything. V  has to  

check w hether M  is an application or some V,  th a t is V  has to  look ahead.

As to  T , the situation is different. T '(A , []) is called, for some A.  But now the 

topm ost constructor of A  tells everything T 7 needs to  decide the dilemma above. 

If k > 1, A is of the form A'Nk  and T ' im m ediately knows (w ithout checking 

w hat A 1 is) th a t this application is not a value application. The com putation 

resumes w ith T '(A ', TA^. :: []). If k — 1 , then A is of the form xA4  or (Xx.M)Nk  

and some x (u  ■ I) or (Ax. t)(u ■ I) is returned.

It seems th a t the dilemma V  and T ' are faced w ith is w hether the application 

they have to translate is value or not. The true dilem m a is slightly more general: 

it is w hether the application they have to transla te  is a  head application or not 

and the distinction between V  and T is tha t, while (M , N )  does not tell V  this 

inform ation, A does tell T '.

In order to see this, recall again the process of tu rn ing  the m ain branch upside 

down. The main branch contains k  instances of the elim ination rule. Each of these 

instances, except the topm ost one, corresponds, in the  resulting derivation, to an 

instance of Herbeliibs left rule (the L f t  rule, or constructor ::). The topm ost 

one either corresponds to  a L e f t  inference (the constructor x(u  ■ /)), when the 

topm ost formula of the main branch is an assum ption, or corresponds to a cut
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(the constructor (Ax. t)(u ■I)), when the topm ost formula is the conclusion of an 

introduction (recall th a t in XV h, x{u  - I) and (Ax. t)(u ■ I) are particular cases of 

head-cut t (u - I)). Therefore, the k instances of the elimination rule are not of 

the same kind, from the point of  view of sequent calculus. There is a  distinction 

between the topm ost one, which we call the head instance (hence the  terminology 

head application), and the remaining instances, which we call tail instances (and 

which correspond to  tail applications).

The difference between A and XJ\f becomes conspicuous. In AJ\f, the  distinc

tion between a head and a tail application is built-in and reflects the distinction 

between the two kinds of constructors they correspond to  in XV. This is the 

nature of AJ\f.

W ith this understanding of AJV, we can re-interpret (_)n and (_)a . Observe 

how (M, N ) n is defined as a different kind of application (head or ta il), according 

to  what kind of term  M  is. Conversely, A a forgets the kind of application A  is 

and always returns a (M , N ). Moreover, since V  — T o (_)n, P raw itz’s m apping 

can be implemented as a two-pass translation. The first goes through the proof 

and classifies each instance of elimination as head or tail. The second tu rns main 

branches upside down w ithout looking ahead.

5,.4 Mapping Q

In this section we define and establish the properties of a m apping Q from XVh  

to  A th a t extends the inverse of V.  This mapping Q is im portant for two main 

reasons: (1) it embodies part of the com putational interpretation of XVh  (and, in 

particular XV)  in the style of Curien and Herbelin [Curien and Herbelin, 2000]. 

Indeed, when one reads AP/z-terms as A-terms, it is mapping Q th a t is being 

applied. This will be seen in Chapter 7. (2) Q is nothing else but the traditional 

assignment ip [Prawitz, 1965, Zucker, 1974] of natural deduction proofs (or A- 

terms) to sequent calculus, when sequent calculus is restricted to  the  canonical 

fragment. This will be seen at the end of this section.

We also study the difference between AQ and XV  as subsystems of XVh,  and,
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in particular, the  difference between (_) and / ,  the projections from AV h  to  XV  

and XQ, respectively. Of course, /  is basically the same as Q.

Properties of Q : XV —>■ A

We s ta rt by proving some properties of Q (the inverse of V),  nam ely how it 

maps subst , inser t  and append of XV.  Direct proofs could be provided from the 

definition of Q contained in Proposition 34. Nevertheless, we will show how to 

reuse similar properties of 0  proved before (Corollaries 18 and 19), having in 

mind th a t Q  is the composition of 0  w ith (_)“. In view of Propositions 29 and 

31, we will freely shift between J\f and (_)n and between |_| and (_)“ .

We s ta r t by giving a more m anageable characterisation of Q'(M, N , l )  than  

th a t of (5.6).

L e m m a  45 Q ' ( M , N,  I) = 0 ' ( M n@ N n , l)a, fo r  all M, N  in X, all I in XV. 

P ro o f : Observe th a t

| M n@ Nn | =  | M n 11 N n |, by Lemma 37, 

=  M na N na 

=  M N  .

Therefore, by Proposition 31,

( M n@Nn)a =  (M , N )  , (5.8)

and

Q ' (M n@Nn] I) = let (M0, N 0) be (M n@ N n)a in  Q'(M0, N 0,1), by (5.6), 

=  let (Mo, N 0) be (M, N )  m  Q '(M0, N 0,1), by (5.8), 

=  Q'(M, N,  I) .
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L e m m a  46

1. Q ( in s e r t (u , l , t )) =  Q'{Qt, Q u,l), fo r  a llt ,u ,l  m  XV.

2. Q'(M, N, append(l, v! : :  V)) = Q'(Q'(M, N ,l),u',l'), fo r  all M, N in X, all 
u\ I, V in XV.

P ro o f: 1.

Q ( i n s e r t ( u , l , t )) = Q ( i n s e r t ( u , l , t ) ) a

= Q'(Qt@Qu,  /)“, by Corollary 18, 

=  0 '( ( 0 i ) an@ (0u)an, Z)a 

= Q ' ( { Q t ) n @ { Q u ) n , l ) a 

= Q'(Qt , Qu, I), by Lemma 45.

Q '(M , N, append(l , u ' :: /'))

=  Q \ M n@Nn, append(l, u' :: / '))“, by Lemma 45, 

=  0 '(© '(M B@ r ,  l)@Qu\ l ' f ,  by Corollary 18,

=  Q'(Q '(Mn@ N n, l)an@(Qu ')an, l')a 

= N, l)n@(Qu')n, n \  by Lemma 45,

=  Q'(Q'(M, N, I), Qu', I ' f  by Lemma 45.

L em m a 47

1. Q(suhs t{u .x , t ))  =  Q{t)[Q{u)/x\,  for  a l l u , t  in XV.
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2. Q'(M[Qu/x],  N [ Q u /x \ ,  subs t (u ,x , l ) )  =  Q '(M , N , l ) [ Q u /x \ ,  fo r  a l l M , N  in 

X, all u , I in XT’.

P ro o f: 1. Since Q is the composition of 0  and |_|, it follows from Corollary 19 

and Lemma 38.

2 .

Q '{M [ Q u /x ], N[Qu/x],  subst(u , x, I))

— & ( M [ Q u /x ] n@N[Qu/x)n, subst(u, x,  /))“, by Lemma 45 

=  Q '(M n[Qu/x]@Nn[Qu/x] ,subs t (u ,x , l ) )a, by (*) below,

=  Q '( (M n@Nn)[Qu/x], subst(u, x, Z))°, by (**) below,

=  (0 '(M n@iVn, l)[Qu/x])a, by Corollary 19,

=  Q'{M n@Nn , l)a[(Qu)a/x],  by Lemma 38,

=  Q'(M, N,  l)[(Qu)a/ x], by Lemma 45.

(*) For all M0 in A,

(.M 0[Qu/x})n = (M 0[(Qu)a /  x])n

=  MS[(Qu)an/x \ ,  by Corollary 14,

=  Msieu/x] .

(**) For all M i, M2, N  in -W , ( M tÛ M 2 )[N/x] =  M ,[iV/i]@ M 2[iV/i]. This 

follows by a straightforw ard case analysis of Mi.  ■

Tw o subsystems of XVh

Observe the  situation
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XPh

Calculi AQ and XV  are, respectively, Gentzen’s and P raw itz’s isomorphic copies

of A as a sequent calculus. They are also subsystems of XPh.  In the following we

explain the differences between the two copies of A by explaining the differences 

between them  while subsystems of XPh.

Recall th a t term s in XPh  are defined by

i, u , v x  | Ax. t  | t (u ■ I)

I ::= 01 u : : l

and that: (1) term s in AQ are those of XPh  where :: does not occur: (2) term s in 

AP  are those of XPh  such tha t t in t (u ■ I) is always some x  or some Ax.to- The 

difference between the  two syntaxes is best seen when one tries to  write down 

an applicative term . In AQ this is done by means of iterated  cuts: t[ui][w2]..-[itfc] 

(recall th a t t[u] abbreviates t(u-  [])). In AP,  provided t itself is not an applicative 

term  and, therefore, is some value, the applicative term  is w ritten t(u\-[u2 , «&])•

In term s of XPh,  the application to the first argum ent is always a cut, bu t then 

there are two ways of expressing application to further arguments: either by 

further cuts or by ::.

Mapping (_)“ from AQ to AP  am ounts to the unfolding of ■••[«/;] as

t (u\ ■ [u%,.... Ufc]). It is generalised by mapping (_)“ from XPh  to  AP,  which is 

determined by the clause (t(u ■ l))~ = i n s e r t , t ~ ) ,  and is the same as the 

normal form m apping j/,.
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Conversely, the inverse of th a t goes from XV  to  AQ and which we will 

denote by (_)+ , folds t (ui  ■ [u2, •••, Uk\) as Prom Theorem  7 and

Q =  V ~l , the following is immediate.

L e m m a  48 The inverse of  (_)“  : AQ —> XV is Q o Q.

Therefore, the two mappings from XV

g xg  -—  A

are the same up to  g , which, in tu rn , is simply a rephrasing of A-terms with 

syntax t ::=  x\ Xx.t \ Hence, having in mind the  definition of Q, it is clear 

th a t (_)+ is defined by

x  =  x

{Xx. t) ' — Xx.t

(x(u ■ l))+ = {x ,u +, l ) +

(A x . t ) ( u - l ) ) + =  (A x.t.+ , u +, l )+

( i i , i 2,0 )+ =  h h ]

{t i , t2, u :: l )+ =  (ti[t2] , u + , l ) +

where the  ternary  operator { t i , t 2 , l )+ is defined for all t \ , t 2 in Ag  and I in XV. 

Of course, a direct proof th a t this (_)+ is really g  o Q is possible. One proves

g ~ \ t + ) =  Qt  , (5.9)

for all t in XV,  and
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g - l { { g M ,G N , l )+) = Q'(M, N,  I) , (5.10)

for all M, N  in A and I in XV, by simultaneous induction on t  and I.

We propose next a mapping for folding cuts in AVh.

D e fin itio n  16 The mapping f  : A V h  —> A Q is defined by:

f x  = x  

f (Xx . t )  = X x . f t  

f ( t ( u - l ) )  = f ( f t j u f i )

D) — ti[h]
f ' { t u t 2,u  :: 0  =  f { t i [ t 2] , f u , l )

Observe th a t / ' ( ¿ i , ¿2, 0  is defined for all t \ , t 2 in A Q and I in A Vh.  O ur goal now 

is to  show th a t /  generalises (_)+ , th a t is, f t  =  f+ , for all t  in XV.  This will 

follow from f t  = (I/,. (i))+ , which we prove next. We sta rt w ith a rephrasing of 

p art 1. of Lemma 46.

C o ro lla ry  23 (■in ser t (u , l , t ) )+ =  (t+, u +, l )+, a l l t , u , l  in X V .

P ro p o s i t io n  35

T f t  — (I/i {t))+, for all t  in XVh.

2 . f ' ( t , u, I) = (t, u , ih (l))+, for all t, u  in XQ and I in XVh.

P ro o f: By simultaneous induction on t  and /, w ith induction hypotheses IH1 and 

IH2, respectively . In this proof, we write ht  and hi instead of h x (t) and [h (I). 

Below, when we justify an equality w ith “h =  we mean th a t we are using

the definition of (_)“ : XVh —> XV  and the fact th a t the la tter is the same as J 

Cases t ~  x  and t =  Xx.to: straightforward.

Case t = to(uq ■ l0):
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f t  = f { t 0(u0 - l0))

=  f i f t o ,  f u 0, lo), by def. of / ,

=  f { { h t 0)+, (hu0)+ , l0), by IH1,

=  ((htQ)+,(huo)+,h l0)+, byIH 2,

=  (insert(huo,  hlo, hto))+, by Corollary 23, 

=  {h(t0(u0 ■ k ) ) ) +, as h =

Case Z =  []:

) =  / ' ( t ,  tx, D)

=  i[u], by def. of / ,

=  ( i,u , [])+ , by def. of (_)+,

=  {t,u,h[})+, as h =

=  (i, u, /¿Z)+ .

Case I = Uq :: Iq\

f ( t , u , l )  =  f ( t , u , u 0 ::lo)

=  / '( ¿ N ,  /«o , Jo), bv def. of / ,

=  (£[u], .fuo, h(l0))+, by IH2,

=  (t[u], (hu0)+ , Zi(!0))+, by IH1,

=  (t , u ,h u o  :: hlo)+, by def. of (_)+ ,

-  (£, w, h{uo :: Z0))+ , as h =

=  (t , u , h l ) + .

Therefore, /  is a projection, because it is the composition of a projection w ith an 

isomorphism.
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C o ro lla ry  24 f t  =  t+, all t in X V .

P ro o f: Let t  G XV.  Then f t  =  (1/,, (i))+ , by Proposition 35. But U  (t) = t, 

because t G XV  and by Lemma 16. Hence f t  =  t +. ■

Thus, /  is an extension of (_)+ to XVh.

C o ro lla ry  25 f t  = t, all t m  XQ.

P ro o f: Let t  G XQ. For emphasis, let i(t) be t  seen as a XVh  term . Then 

f t  =  (I/, (z(t)))+ , by Proposition 35. But [h (i ( t )) =  t~ (here (_)_ is the m apping 

w ith domain in XQ) and, thus, f t  — t~+ =  t. ■

It is also im mediate th a t j h {t) =  (f t ) ~ , for all t in XVh.

Let us sum up in a diagram the situation regarding G entzen’s and P raw itz’s 

subsystems of XVh:

XVh

(-)-

The bridge between XV  and XQ is a pair of m utually inverse mappings (_)+ 

and So to  speak, the former performs folding whereas the la tte r performs

unfolding of cuts. The projection is an extension of the unfolding map, whereas 

the projection /  is an extension of the folding one. The fact th a t f t  =  t, for t  in 

XQ, can be seen as saying th a t term s in XQ are fully folded and, similarly, term s 

in XQ can be seen as fully unfolded.

However, the  situation is absolutely asymmetric w .r.t cut elimination. Pro

jection (_)" is the norm al form mapping w.r.t. reduction rule h of XVh,  th a t is, 

XVh  is internally conservative over XV. Moreover, h is necessary for the simula

tion in XVh  of cut elimination of XV. Therefore, unfolding (which is, of course,
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another nam e for left perm utation) is a part of cut elim ination in bo th  XV  and 

AVh.  All th is fails for folding. W h  is conservative, bu t not internally conser

vative, over XQ, and /3-reduction in the la tter is ju s t /31-reduction in the former. 

Hence, even if we added to  A V h  a reduction rule for folding (a suggestion is 

t[u ■ [y :: I)) —> t[u](v ■ I)), th is rule would rem ain unnecessary for the simulation 

of A g.
In the following chapter we will show th a t a similar asym m etry exists, in 

the “natu ra l deduction side” , between A and A_/V, this tim e w .r.t. a suitably 

generalised notion of normalisation.

Mapping Q : A Vh  —* A

Consider again the diagram

A V h

For the moment, we denote by Q0 m apping Q : XV —* A. This is so because we 

want to define a mapping Q : XVh —> A th a t will tu rn  out to  be an extension of 

Qo- Q is ju s t the following rephrasing of /

Qx = x 

Q(Xx.t) = Xx.Qt  

Q ( t ( u - l )) =  Q'{Qt, Qu, I)
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Q!{Ml t M 2 ,u-.: l ) = Q \ M 1 M 2 , Q u , l )

T hat is, we have

Qt =  (5 .ii)

Q'(M, N,  I) = Q - \ f { Q M , G N , l ) )  , (5.12)

for all M, N  in A, all £, I in XPh.  Q '(M i, M 2, 1) is defined for all M i, M 2 in A (or,

equivalently, for all (M i, M2) G - recall Definition 12) and all I in XPh.

Lemma 49
1. Qt = Qo{ih (t )), all t in XPh.

2. Q '(M , N,  I) = Q'0{M, N,  in (/)), all M, N  m  A, all I m  XPh.

Proof: 1.

Qt  =  ^ ( / ( i ) ) ,  by (5.11),

=  G~l {lh (t )+ ), by Proposition 35,

=  Qo(U (i)), by (5.9).

2 .

Q '(M , N, I) = g - \ f \ G M ,G N ,  0 ), by (5.12),

=  5 _1(GM , GiV, (/))+, by Proposition 35,

=  Q '(M ,iV ,U (0 ) ,  by (5.10).

■

Since h,  collapses —>/, steps (t —>h t! implies M (£) = l h (£')), so does Q. 

Moreover, Q is indeed an extension of Q0 because J ( f )  =  t  and JU (/) =  / when 

£ and / are in XV.

Let us see how Q interprets operators subst and append of A Ph.  We want to 

"lift” Lemmas 46 and 47.
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L e m m a  50 Q'(M,  N,  append(l,u'  :: I')) = N , l ) ,  Qu',1'), fo r  a l l M , N

in X, all u \  I' in XPh.

P ro o f: From Lemmas 46, 17 and 49. ■

L e m m a  51

1. Q ( s u b s t ( u , x , t )) =  Q(t)[Q(u)/x\ ,  all u , t  in X Ph .

2. Q ' (M [ Q u /x \ ,N [ Q u /x \ iS u b s t (u ,x , l ) )  = Q!(M, N , l) [Qu/x] ,  all M , N  in X, 

all u, I in XVh.

P ro o f : From Lemmas 47, 18 and 49. ■

The return of </?

Consider a generic term  notation for sequent calculus, as the one employed in 

C hapter 2. The traditional assignment of A-terms to  sequent calculus proofs is 

defined by

Consider a right-perm uted cut Cut(Li, (x)L(a;, L 2i, {y)L22)). The right cut 

formula is m ain and linear. Hence, x  L 2\ , L 22. This cut is m apped as follows:

<p( Ax(x)) =  x

i p ( R { ( x ) L ) )  =  A x.ip(L)

i p ( L { x1L u { y ) L 2) =  tp(L2) [ x (p( L i ) /y ]

ip(Cut(Ll , ( x ) L 2) = ip ( L2) [ (p(L i ) /x\

(5.13)

(5.14)

(5.15)

(5.16)

(¿(Cut(Li, (x)L(a:, L 21, {y)L22)) 

=  (p(L(x,L2i , ( y ) L 22))[<p(Li)/x] 

= (p(L2 2)[x(p(L2i)/y][<p(Li)/x]
(5.17)

— !p {L 22)[<p(Li)ip(L2i) /  y\, as x  ^  L 2i , L 22.
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Now we are ready to  restrict ip to  XVh.

p(x )  =  x

ip(Xx.t) = Xx.ipft)

ip(t(u ■ I)) = <p(l,w)[<p(t)<p(u)/w], w fresh

</>(Q,w) =  w

ip(u :: l ,w) — <p(l, z)[wtp(u)/ z\, z  fresh

The clause for t (u-l)  is in accordance with (5.17). Since formulas in the stoup 

do not have a variable, we also have to  pass a fresh variable when m apping a list 

I, as in <p(l,w). The clauses for x  and [] are as (5.13), the clause for :: as (5.15).

P ro p o s i t io n  36

1. Qt  =  <pt, all t in XVh.

2. Q'(M, N ,  I) = ip(l, w)[MN/w],  w fresh, all M , N  in X, all I in XVh.

P ro o f: By simultaneous induction on t and I, w ith induction hypotheses IH1

and IH2 . Cases t = x  and t =  Ax.to are straightforward.

Case t = t0 (u0 ■ l0).

Qt — Q{to(uo • k) )

=  Q ' ( Q ( t 0) ,Q (u o ) , l o )

=  p (hw )[Q ( t 0)Q{uo)/w\,  by IH2, 

=  ip(l,w)[ip(t0)<p(u0) /w\ ,  by IH1, 

=  p ( t 0{u0 ■ l0))

= tpt .
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Case I =  [].

Q ' ( M , N , l ) =  Q'{M, N,  []) 

=  M N  

=  w[MN/w ]  

=  <¿>([], w)[MN/w]  

=  w)[MN/w]

Case I =  u 0 :: l0.

Q'(M, N,  l) = Q ' { M , N , u 0 :-.l0)

= Q ' { M N , Q ( u 0), l  o)

-  ip(l0rz ) [ (M N )Q (uo) /z \ ,  by IH2, 

=  (p(lo,z)[(MN)(p(uo)/z\,  by IH 1 

=  ip(l0 ,z)[wip(uo)/z][MN/iu],  as w is fresh, 

=  ip(u0 :: l0 , w ) [M N /w \

= <p(l,w)[MN/w} .



Chapter 6

Extensions of natural deduction

In this chapter, we construct systems of natu ral deduction th a t stand for XVh  

and XVhx  as XJ\f stands for XV. The idea of built-in  distinction between head 

and tail elimination is the key ingredient to  obtain th e  counterpart of XVh.  Then, 

we obtain the counterpart of XVhx  by making substitu tion explicit.

We also discuss a t length the logical status of explicit substitutions, having in 

mind th a t they serve as counterpart to  explicit right perm utation of cuts.

Finally, we extract some conceptual and taxonomical consequences of the fact 

th a t usual A-calculus is in the intersection of two degenerate fragments, the ::-free 

fragment of sequent calculus, and the tail-application-free fragment of extended 

natural deduction.

6.1 Head and tail eliminations

In Section 5.3, by an analysis of P raw itz’s mapping, we observed th a t, from the 

point of view of sequent calculus, not all instances of the elimination rule have the 

same nature, and th a t indeed the distinction between head and tail applications 

built in the syntax of XAf (and which does not exist in A) m atched the distinction 

in XV  between a cut t (u  ■ I) (more precisely, a left inference x(u  ■ I) or a kev-cut 

(Ax. t)(u ■ I)) and a  Herbelin left inference :: . Moreover, recall th a t T is an 

isomorphism between (3i in XAf and XV.  for i =  1,2, whereas /3-reduction in A, 

when rephrased by G, corresponds solely to /31-reduction in XVh.  Therefore, XAf
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also improves over A in m atching certain aspects of cut-elim ination in AV  and 

AVh,  namely left perm utation of cuts. The na tu ra l challenge is then to  define 

an extension of AJ\f th a t stands for this calculus as A V h  stands for XV  and, 

in particular, th a t captures in the natural deduction “space” general head-cuts 

t{u ■ I) and their complete left perm utation.

Such calculus, nam ed AJ\fh, exists and produces in the natura l deduction 

“space of calculi” a  perfect counterpart to the situation  involving the calculi 

XV h, XV  and AQ (recall Section 5.4), as illustrated  in the following diagram.

XV h AAfh

(6.1)

T h e  AATi-calculus

The AA/"h-calculus is defined in Table 6.1. Typing rules are in Table 6.2. Notice 

again the separation between applicative terms app(A)  and applications A  6  

Apps.

Corresponding to  full head-cuts t (u- l)  (in which t is not necessarily a variable 

or A-abstraction), we generalise applications of XjV by

A  ::=  x N  | (Ax . M ) N  | app{A)N  | ,47V , 

which will simply be defined as

A  ::=  M N  1A N
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Table 6.1: The ATVTi-calculus

(Terms)  M , N  ::=  x  | X x .M  \ app(A)

(Apps) A  ::= IVIN \ A N

((51) app((Xx.M)N) M[N/x]  

((52) ( ( A x . M ) N ) N '  -> M [ J V / x ] W '

(/i) app(A)N  —> AiV

where

x j T V / x ]  =  IV 

yflV/x] =  y , y ^ x  

(Xy.M)[N/x\  =  Ay.M[iV/x] 

( a p p ( A ) ) [ l V / a ; ]  =  a p p ( A [ A T / x ] )

(M 1M2)[JY/.x] =  M![iV/x]M2[iV/x] 

(AM)[JV/x] =  A[lV/x]M[7V/x]
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Table 6.2: Typing rules for A _ A / 7 i

Var F , x  : B  h x : B In t ro r ,  x : B  h M  : C  AT, 
T b  Ax . M  : B  D C X ^

H d E l i m r  b  M  : B  D C  T b  N  : B  
T b M N : C

T a i lE l im T b A :  B d C F F  N  : B  
T b A N : C

An application of the form M N  (resp. A N )  is called a head (resp. tail) ap

plication. The corresponding typing rules are nam ed head and tail elimination, 

respectively. It is clear th a t ta il application corresponds to  the constructor :: or, 

in other term s, tail elimination correspond to  H erbelin’s left rule. As to head 

application, it subsumes the constructors x N  and (Ax . M ) N  of AA f  in the same 

way as heacl-cut in X V h subsumes the  constructors x (u  ■ I) and (Ax.t)(u ■ I) of XV.

In AJsfh we still have to  split (3 in two cases bu t we no longer need @ in {(52) 

(as we did in AAA). In addition to  {(31) and {(52), we only require the simple

which will play the role of counterpart to complete left perm utation  of cuts. A 

h-redex is an head application th a t is not a value application.

D e f in it io n  17 (C o m p a tib le  c lo su re )  Given a pair R  of  binary relations, the 

f irst on T e r m s  and the second on Apps, the compatible closure is the least 

pair of  relations the first on T e r m s  and containing the first relation of R,  the 

second on Apps and containing the second relation of  R,  closed under:

(h) a.pp{A)N —>■ A N
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H d E l i m l M N  -> M ' N
M  -± Ml

T a i lE l im l A N  -> A ' N
A - >  A 1

For instance, for defining — t ake R  — (¡31, ¡32) in Definition 17. T hat is, in 

AJ\fh we also set (as we did in AJ\f)

One can again define —̂  (resp. —̂/32) by taking R  = {(31, 0) (resp. R  =  (0, (32)), 

or define — by taking R  =  (0, h).

There is an injection t between A and XJ\fh th a t simply sends M N  in A to  

app(M N)  in AMh.

P ro p o s i t io n  37 I f  Y b M  : B  in X, then T b t{M) : B.

P ro o f: By induction on M.  Only case M  =  M 0N 0 m atters. Suppose A derives 

T h M0Aro : B.  Then A derives F h Mq : C D B  and T b N 0 : C , for some C. 

By induction hypothesis, there are derivations in AJ\fh  of T b ¿(Mo) : C  D B  and 

T b l{Nq) : C . Conclude with

(3 = {(31, (32) .

ix  — x

l{ \ x .M)  =  A x .lM  

l{ M N )  = app{i{M)i{N))

It is immediately seen to be correct.

r  b ¿(M0) : C  D B  F b ¿(iV0) : C
H d E l i m
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■

Now a situation  very similar to  th a t of mapping Q : A —> AV h  is now observed 

in mapping i : A —» XAfh. The range of i is the tail-application-free fragment of 

\J\ih,  which is

M , N  ::= x  | X x .M  \ app(A)  

A  M N

or, equivalently,

M, N  ::= x \  X x .M  \a p p (M N )  .

This is very much like A-calculus, bu t w ith application w ritten app(M N) .  A ctu

ally, this constructor is typed by

T h M  : C  D B  TV- N  - C  

T b app(M N )  : B  

which should be seen as an abbreviation of

T b M  : C  D B  r  b N  : C
---------------------------------------------- H d E l i m

T b M N : B
-------------------------- App
T b a pp(M N )  : B

As to  reduction, only rule 01

app((Xx.M)N)  M [ N /x \

makes sense in this fragment, as both  02  and h require tail elimination. Now, 

the calculation

{app(M'N') )[N/x\  = a p p ( (M 'N ' ) [N /x ])

=  app (M ’ [.N / x ] N '  [A'/  x])
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shows two things. First, th a t the tail-application-free fragment is indeed a frag

ment of of AJ\fh because it is closed for substitu tion and (51. Second, th a t the 

restriction of substitution of W f h  to  this fragment behaves exactly as A-calculus’ 

substitution.

Therefore, the tail-application-free fragment of AW/i is simply a rephrasing 

of A, where application is w ritten app(MN).  Furtherm ore, mapping l is triv

ially an isomorphism between A and this fragment. This justifies the  following 

terminology.

D e fin itio n  18 The tail-application-free fragment o f  \J\ fh is denoted At.

For simplicity, in the remainder of this section we will not separate A and 

At and, therefore, we will regard A as being the tail-application-free fragment of 

AJ\fh. We will come back to At in the next section.

There is a simple mapping (_)“ from AA(h to  AW, defined in Table 6.3. The 

idea is an adaptation of mapping W  from A to  AW. W hen m apping a  head 

application M N  (where M  may be some app(A')) down to  some A  in AW, we 

make use of operator @ for assuring th a t the head application of A  is a value 

application. The following is simple.

P ro p o s i t io n  38 W (M ) =  ( t(M ) )~ , for  all M  in A.

Indeed, m apping from A to  AW, being inductively determined by the clause 

J \ f (M N )  = app(J\f(M)@J\f(N)),  is the composition of t, th a t sends each M N  

to a p p ( i (M ) i (N )), with the mapping from AJ\fh to  AW inductively determined 

by ( M N ) ~  =

One sees at once th a t, in AWh, —p, is term inating and weakly confluent. 

Therefore. is confluent. It is also easy to see th a t (_)“  from AW/?, to AW is 

nothing bu t the normal form mapping ( h w .r.t. h in AW/i.

P ro p o s i t io n  39 M ~  = 0 , (M).  all M  in XfJ'h.

P ro o f: One proves by simultaneous induction on M  and A  th a t M  M ~  and 

M~  is //-normal, and tha t A —>*h A~ and A~  is /¡.-normal, for all M  and A  in AW/?.
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X = X

(A x .M )~ =  X x . M -

app(A)- =  app{A~)

( M N ) ~ = M ~ @ N ~

(.A N )- = A ~ N ~

Table 6.3: From XAfh to XJ\f

All cases are straightforward, the only interesting one being A  = a,pp(A0)M 0. 

Then, A~ = cipp(Aq)@Mq = AqMq . By the induction hypotheses, bo th  A f  and 

Mq are h-norm al and, since a tail application cannot be a /z-redex, A~  itself can

not be a h-redex. Therefore A~  is h-normal. Moreover A  =  app(Ao)Mo —>h AqMq 

and now, by the induction hypotheses, A 0Mq — A f M 0 = A~.  ■

M appings T and © are naturally  extended to  AAfh and XVh  by

I) =  T M (T /V  • I)

and

Q(t(u ■ I)) — Q'(OtQu, I) .

This definition is coherent with the former definition of \&'(x N , /) and ^ ' ( (X x .M )N ,  I), 

on the one hand, and w ith the former definition of Q'(x(u-l))  and Q'((Xx.t))(u-l)).  

on the other hand. Therefore, the following is immediate.

P ro p o s i t io n  40 I f  i denotes both the inclusion of  XJ\f in XAfh and of  XV in 

XVh, then \l/(¿(M)) =  z(TA7) and Q(i(t))  =  ¿(07), fo r  all M  in XAf and t in XV.

P ro p o s i t io n  41 (C o rre c tn e s s  o f  T )
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1 . I f  XJ\fh derives T F M  : B  then XVh derives F; — F 'F(M ) : B.

2 . I f  \J \ fh derives T h A  : C  and XVh derives T; C  F I : B  then XVh derives 

F; -  F : B.

P ro o f: By the same simultaneous induction as in the proof of Proposition 22.

Instead of cases A  = x N  and A  = (Xx .M )N ,  one has

Case A  — M N . Then there are ix[, 7r", D  such th a t 7r2 has the form

/ //7Ti 71-!

F F M  : D  D C  r  F N  : D
---------------------------------------------- H d E l i m

T h M N : C

Let 7T3 be a  derivation in A V h  of T ;C  h I : B.  Since ty '(A, l)

TM(TvY - I), we want a derivation of T; — F : B

7T+ 7T̂ + 7r3

T; -  h T (M ) : D D C  F; -  h V ( N )  : D  F ; C h F B
------------------------------------------------------------------------------------------- HeadCut

F; -  h T M (T Y  • I) : B

where 7rf and 7r^+ are given by IH1. ■

P ro p o s i t io n  42 (C o rre c tn e s s  o f 0 )

1 . I f  XVh derives T: — h t : B then XAfh derives F h ©i : B.

2. I f  XAfh derives T b A : C and XVh derives F; C  F / : B  then XJ\fh derives 

T F ©'(A,«) : B.

P ro o f: By the same simultaneous induction as in the proof of Proposition 23. 

Instead of case t = x(u  ■ I) and t =  (Ax. t')(u'  ■ I'), one has

Case t  =  t'(u' ■ I'). Then there are tt(, tt". nt2, D, E  such th a t tti has the form

=  V ' ( M N , l )  = 

. Take ni, as
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7ri ir '!  7ri,

r ; -  b t' : D  D E  r ; -  b  v! : D T; E  b  I' : B
H e a d C u t  —     —— —----------------------------

F; -  b t '(u' ■ I ) : B

Since Qt — Q(t’(u' ■ I1)) = Q'(Qt'Qu' , I'), we want a derivation 7T* of T b 

Q'(Qt'Qu' , I’) : B.  Observe th a t

7r+ tTj

F b Qt'  : D D E  F b 0 u’ : D  
H d E l i m ---------

T h Qt'Qu' : E

is a derivation in AN h  of F b Qt'Qu'  : E , where 7Tj~ and 7r++ are given by IH1. 

Hence, by IH2, there is a derivation of T b Q'(Qt'Qu' , I') : B.  Take 7r* =  7r^. ■

Now, T keeps transform ing applications into head-cuts by turning them  “up

side down” . In particular, if the application consists of a single head application, 

like app(M N) ,  the result is a head-cut with a single argum ent, nam ely TM[TiV], 

as witnessed by the calculation T (a p p ( M N )) =  ^ ' ( M N ,  []) =  :: []) =

TM[T./V]. But this is how Q would have translated  the application M N  in A. 

Having in mind th a t A may be embedded into AAfh,  th is m eans th a t T  is coherent 

w ith Q. This is expressed in the following proposition.

P ro p o s i t io n  43 T (r(M )) - Q(M),  for all M  in A.

P ro o f: By induction on M .  The only interesting case is M  =  M 0N 0. On the 

one hand, Q M  = QM0[GN0\- On the other hand,

T (r(M )) =  'F(app(i.(A/o)i(At0)), by clef, of

=  T (6(Aio))['h(i'(Aro))], by the discussion above, 

=  GMq[GNq], by IH.
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Thus m apping T  : AJ\fh —> AV h  generalises bo th  Q : A —> XQ and T  : AJ\f AV.

Having in mind th a t the la tter may be seen as P raw itz’s mapping, when this is 

defined in AJ\f and not in A, mapping T  from AJ\fh to  A V h  is coherent w ith both 

Gentzen’s and P raw itz’s way of m apping natu ra l deduction to  sequent calculus: 

(1) with the  former because a head elim ination (all eliminations in A are head) is 

mapped to  a  head-cut (and head-cuts is w hat left inferences and key cuts of XV  

are in A Vh) .  (2) w ith the la tter because ta il eliminations are m apped to  Herbelin 

left inferences (in accordance to Prawitz) and this necessarily agrees w ith Gentzen 

because Gentzen does not map tail eliminations.

Given th a t T generalises Q, the following theorem  generalises Theorem  7 and 

gives another com mutative square in diagram  (6 .1), if one bears in mind th a t 

(-)" =ih-

T h e o re m  10  T (M ") =  (\PM )-, for  all M  in XJ\fh.

P ro o f: We prove the claim together w ith the claim th a t T '(A “ , l~) =  (T ^H , /))“ , 

for all A  in AN h ,  by simultaneous induction on M  and A,  w ith induction hy

potheses IH1 and IH2 respectively. The cases M  = x  and M  = Xx.A40 are 

straightforward.

Case M  = app(A).

T(AW ) =  <&((app(A))-)

= $(app(A~)) ,  by clef, of (_)- ,

=  T '(A _ , []), by clef, of T,

=  (T '(A  []))-, by IH2 and Q- =  [], 

=  (T (app(J4 )))_ , by def. of T,

=  ('PM )-  .

Case A  = M N
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= V ( ( M N ) - , r )

=  , r), by def. of

=  inser t( ty(N~) ,  l~, 'L (M ~)), by Lemma 40, 

=  insert((' f>N)~, l~ , ( 'F M )_ ), by IH1,

=  :: l))~, by def. of

=  (ty‘ (MN, l))~, by def. of

=  ( * W ) ) "  •

Case A  =  A qN q.

* ' ( A - r )  =  ^ '( (A 0iv0) - 5r )

=  '¡i ' (A q N q , /“ ), by def. of 

=  :: T ) ,  by def. of

=  vl/(yl0 ; (vl/;V0) ), by IHL

=  by def. of

=  (4//(Ao,4 'iV o ::0 )“ ,b y  IH2,

=  ( V ( A o N 0 , l ) ) - ,  by def. o f * ,

=  o m o r  •

Now we get correctness of (_) : XAfh —> XAf as a corollary of correctness of

(_)“ : XVh -* XV

C o ro lla ry  26 I f  XAfh derives F h  M  : A, then XAf derives F b M ~  : A.

Proof:

AJVTi derives F h  M  : A
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implies th a t XVh  derives F; — b T M  : A,  by Proposition 41, 

implies th a t XV  derives F; — b (TAF)-  : A,  by Proposition 4, 

implies th a t XV  derives T; — b T (M ~) : A,  by Theorem  10, 

implies th a t XJ\f derives F b 0 T ( M _ ) : A,  by Proposition 23, 

implies th a t XJ\f derives T b M ~  : A, by Proposition 24.

A n o t h e r  i s o m o r p h i s m

We move to  the proof of XVh  =  ATVTi, a  generalisation of bo th  the triv ial XQ = X 

and of XV  =  ATV.

P ro p o s i t io n  44 © o T =  id and © o T ' =  &.

P ro o f: The proof is exactly as the proof of Proposition 24. We ju st do the new

case.

Case A  = M N :

© T ' ( A , 0  =  © T ( M i V ,  I )  

=  © (T M (T iY -O ) 

= © '((©TMXeTiV),/) 

=  Q' ( MN, l ) ,  b y lH l,

=  & (A ,  I) .

P ro p o s i t io n  45 T o  Q — id and T o ©' =  Tb

P ro o f: The proof is exactly as the proof of Proposition 25. We just do the new

case.
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Case t  =  to(u0 ■ Iq):

qjQt =  $ 0 ( t o(u o • l0))

= * 9 ' ( { Q t 0e u 0) , l0)

=  ^ ( ( 0 t o 0 « o ) , Z o ) , b y f f l 2 ,

=  V Q to iV Q u o  ■ k ) )

=  ¿o(«o ■ ¿o)> by IH1 

=  t .

L em m a  52

1 . ty(M[N/x])  =  s u b s t ( ^ N , x , ^ f M ) ,  all M ,  N  in XJ\fh.

2. 4L(A[lV/:r|, subst(tyN, x,  /)) =  s u b s t ^ N ,  x, I)), all A , TV in XJ\fh and 

all I in XVh.

P ro o f: By the same simultaneous induction as in the  proof of Lemma 41. All the 

cases stay unchanged, except th a t instead of cases A  =  x M  and A  = (Xy .M)M' ,  

we have case A  — M 0N 0. Then, writing s for subst ,

-  s { * N , x , * ' { M 0No,l))

= s ( tyN ,x ,  t y M o ^ N o  ■ I)), by def. of T,

=  s ^ N ,  x, '£Mo)(s('i&N, x,  4/./Vo) ■ s ( ^ fN ,x , l ) ) ,  by def. of subst ,

=  %{M0[N/x])(*{No[N/x]  - s ( * N , x , l ) ) ) ,  by IH1,

=  'f'/(Mo[N/x]No[N/x],  s ( ^ N ,  x,  /)), by def. of T,

=  ' fy'((MoN0)[N/x\ ,  s ( ^ N ,  x, /)), by def. of -[Af/x],

=  yB '(A[N/x] ,s (VN,x , l ))  .
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It turns out th a t the proof of this lemma becomes considerably simpler than  the 

proof of Lemma 41 because substitution in AJ\fh does not call the operator @ and 

similarly subst  in AV h  does not call the  operator insert.

C o ro lla ry  27

1. Q (su b s t ( v ,x , t )) =  Qt[Qv/x], fo r  all v, t in XPh.

2. Q'(A[Qu/x],  subs t (u ,x , t ) )  =  Q'(A,l)[Qu/x],  fo r  all A  in XXfh, all u , t  in 

XPh.

P ro o f: It follows from Lemma 52 and Propositions 45 and 44 in the  same way 

as Corollary 19 follows from Lemma 41 and Propositions 25 and 24. ■

The following lemma and corollary may be seen as an adaptation  to  XPh  and 

AN h  of part 2 . of Lemma 40 and of Corollary 17, respectively.

L em m a 53 4' ' (A, l)(u '  ■ I') —*h A,append( l ,u ' :: I')), fo r  all A  in AN h ,  all 

u ' , /, I1 in XPh.

P ro o f: By induction on A.

Case A  =  M N .

V' (A,l ){u '  :: I') =  V ( M N , l ) ( v ! - I ' )

=  (TA/(TiY  • l))(u - 1'), by def. of T,

— 4'i'\'/(4'Ar • append(l, u  :: I'))

= ' fy '(MN,append(l ,u'  :: I'), by def. of T. 

=  ^ ' ( A , a p p e n d ( l , u ' I ' )  .

Case ,4 =  A!N '.
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V'{A , l ) (u '  :: 0  =  '¡?'(AIN I, l)(v! :: I')

=  TÌV' :: l){v! :: 1%  by def. of T,

-*h a p p e n d ^ N '  :: I, u'  :: Z')), by IH,

=  '¡/'(A7, 4/TV7 :: append{lpu! :: /')), by def. of append ,

=  ' fy \A 'N ' ,append( l ,u '  :: Z7), by def. of T.

=  d//(vf, append(l, v! :: Z7) .

C o ro lla ry  28 dr(app(A))(w ■ Z) —>h ^ ' ( A , u  :: Z), fo r  all A  in XJ\fh, all u , l  in 

XPh.

P ro o f : Im m ediate from Lemma 53, when I =  []. ■

The following two lemmas are generalisations of Lemmas 42 and 43. Observe 

th a t in these lemmas w hat m atters is not the notion of reduction R.  bu t instead 

the  definition of 4/ and O and the closure rules w ith which —*R is defined.

L e m m a  54 In XPh, i f  I —>R I', then 4?'{A,l) -+R 'it'(A, I1) (for all A  in XJ\fh,

R e  {01,02,h}).

P ro o f: By an induction on A  similar to  th a t of Lemma 42. Case A  = A!N  is as

before, because ^ R in XPh  is also closed under L f t2 .

Case A  =  M N .  T '(M N , l ) = TM (TfV  • I) ->R ■ V) =  T 7(M N , l ),

where the  reduction step is by I ^ R I' and closure of —>r  in XV h  under HdCutZ.  

■

L e m m a  55 In XAfh, i f  A  —>R A', then & ( A , l ) — Q'(A' , l )  (for all I in XPh,  

R e  { 0 1 , 0 2 , h}).
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P ro o f: Identical to  the proof of Lemma 43. H

There are two ways of understanding next lemma. The first is by observing 

th a t the LHS and RHS, so to speak, of the /¿-step it claims are exactly th e  images 

under 0  of the LHS and RHS, respectively, of the /¿-step proved in Lemma 53. 

Then second is as an adaptation to AJ\fh of part 2. of Corollary 18.

L e m m a  56 Q'(Q'(A , l)Qu ' ,1') —>h Q'(A,append(l ,u '  :: I')), for all A  in AMh,  

all u', Z, I! in XPh.

P ro o f: By induction on I.

Case / =  0-

© '(© '(A, l)Gu', I') = Q '(0' (A ,  [])©u', I')

= Q'{app(A)Qu' , / ') ,  by def. of 0 ,

Q '(A Q u ,  I’), by Lemma 55,

=  Q '(A ,u '  :: I1), by def. of ©,

=  Q'(A,append([],u  :: Z')), by def. of append , 

=  Q \A ,a p p en d ( l ,u '  :: I')) .

Case Z =  uq : : Zq

© '(© '(A  l )Q u\  I') = © '(© '(A, u0 :: l0)Qu', I')

= Q'(Q'(AQu0J 0) Q u J ' ) ,  by def. of ©,

-*h Q'{AQu0,append(lQ,u '  :: I')), by IH,

=  ©'(H, n0 :: append(l0, u  :: Z')), by def. of ©,

=  0 '(H , appendalo :: Z0, u :: I')), by def. of a/ppend,

=  Q'(A,append(l ,u '  :: I')) .

m

Now the first half of the isomorphism.
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T h e o re m  11 Let R  e  {/31,/32,/?,}. I f  M  —»ft M '  in XAfh then 'I 'M  —»ft 'I 'M ' in 

XPh.

P ro o f: We prove the  claim and also th a t

if A  —»ft A'  in XAfh, then '¡''(A, I) —»ft I) in XPh,  for all I in XPh,

by simultaneous induction, similar to  the  proof of Theorem  4, on M  —»ft M '  and 

A  —»ft A ' , w ith  induction hypotheses IH1 and IH2, respectively. Cases correspond 

to  closure rules, according to  Definition 17.

Case pi:  as in Theorem  4, bu t by Lemma 52, instead of Lemma 41.

Case p 2 \

T'(((A x . M ) N ) N ' ,  I) = $ '(((A x . M ) N ) ,  V N '  :: I), by def of T,

=  (Ax.’I 'M )(^ iV  • (TiV' :: I)), by def of T,

—>02 s u b s t { ^N ,  x,  T M )(T N '  ■ I)

= y ( M [ N / x ] ) ^ N '  ■ I), by Lemma 52,

=  V '{M [N /x]N ' ,  I), by def of T.

Case h:

T '(app{A )N , l ) =  'i>(app(A))('$fN :: I), by def. of T,

—p, TvV :: I), by Corollary 28,

=  d/ ' (AN,l) ,  by clef. of T.

Case Intro:  As in Theorem 4, by closure of —»ft in XPh  under Right.  

Case App: As in Theorem 4.

Case HdElirn l:  Suppose T M  —»ft T M '  (IH1).
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V ' ( M N ,  I) = V A f ^ N  ■ I), by def. of T,

— ■ I) (*)

=  T '(M 'iV , I), by def. of T,

where the reduction step is by IH1 and closure of —>R in XVh  under H d C u t  1.

Case HdElim2:  Similarly, bu t by closure of —>R in XVh  under HdCut2.  

Case T a i l E l i m l : As in Theorem 4.

Case T a i lE l im 2 : As in Theorem 4, bu t by Lemma 54 and closure of —>R in

XVh  under L f t l .  ffl

Finally, the second half of the isomorphism.

T h e o re m  12 Let R  G {(31, (32, h}.  I f  t, t! in XVh then Qt Qt' in XJ\fh.

P ro o f : We prove the claim and also th a t

if I ~^R I1 in X V h , then ©'(A, I) —>r Q(A,l ' )  in XAfh, for all A  in XMh,

by simultaneous induction, similar to  th a t of Theorem 5, on t — tl and I — V. 

Cases correspond to closure rules, according to Definition 6 .

Case (31: As in Theorem 5, bu t by Corollary 27 instead of Corollary 19.

Case ¡32:

0 ((Ax. t) (v ■ (u :: I))) =  ©;((AX.Qt)Qv,u  :: I), by def. of 0 ,

=  0 /(((A .x .0 t)0u )0 ri,/), by def. of 0 ,

>p2 0 '{{Ot[Ov/x])Ou,l) ,  by Lemma 55,

=  Q'(@(subst(v,x , t ))Qu,l) ,  by Corollary 27, 

=  Q (subs t (v ,x , t ) (u  :: I)) .

Case h:
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0 ((t(w ■ l))(u' ■ I')) = Q'(Q(t(u ■ l))Qu', I'), by def. of 0 ,

=  Q'(Q'(QtQu, l)Qu', I'), by def. of 0 ,

—>h Q'(QtQu,append( l ,u '  :: I')), by Lemma 56,

=  Q(t(u ■ append(l,u'  :: I'))), by def. of 0 .

Case Right .  As in Theorem 5, by closure of —>R in XJ\fh under Intro.

Case H dC ut l :  Suppose Qt —>R Qt'  (IH1).

Q(t(u ■ I)) =  Q '(Q tQ u , l ), by def. of 0 ,

yn Q \ Q t ' Q u J )  (*)

=  Q(t '(u ■ I)), by def. of 0 ,

where the  step (*) is by Lemma 55, IH1 and closure of —>R in XJ\fh under 

H d E l i m l .

Case HdCut2:  Similarly, but by closure of —>R in AN h  under HdElim2.  

Case HdCutS:  Suppose Q '(A , l ) —>R Q'{A,l ') ,  all A  (IH2).

Q(t(u :: I)) — Q '(Q tQ u , l ), by def. of 0 ,

->R Q'{QtQu,l' ) ,  by IH2 

=  Q(t,(u :: I')), by def. of 0 .

■

C o ro lla ry  29 ( Iso m o rp h ism ) Let R  £ {[51, ,32, h ) .

1 . M  —>R M '  in XJffh i f f 'S/M —>R I 'M ' in XVh.

2. t t' in XPh iff Qt  —>R Qt' in \J\fh.

C o ro lla ry  30



1. \J\ fh is confluent.

2. I f  M  is typcible in X N h ,  then M  is strongly normalising.

3 . XJ\fh satisfies subject reduction.

P ro o f: Because these properties hold of XPh  and may be easily transferred from 

XVh  to Xfifh w ith the help of T  and 0 . H

We can, so to speak, reuse conservativeness of XVh  over XV  th rough isomor

phisms 4/ and 0 .

C o ro lla ry  31 XJ\fh is internally conservative over XJ\f.

P ro o f: Conservativeness is by

M  -» * M '  in XM  

iff —C 4/M '  in XV,  by Corollary 20 ,

iff i ($ M ) —** 1(4/M')  in X V h , as XVh  is conservative over XV, 

iff 4/(l(M )) —** 4/(l(M ')) in XVh,  by Proposition 40, 

iff 0 4 /(i(M )) —>* 0 4 /(l(M ')) in XJ\fh, by Corollary 29, 

iff i ( M ) —+* i (M')  in XJ\fh, as 0  o T =  id.

Internal conservativeness is by Proposition 39. ■

6,2 Explicit substitutions

In the last section, we built in the natural deduction side a perfect counterpart 

to  the relationship between XVh  and XV. Now we want to  do the  same for 

calculi XVhx  and XVh.  It turns out th a t the problem is now simpler. XVhx  

stands for XVh  as the Ax-calculus [Rose, 1996b, Bloo, 1997] (a calculus of explicit 

substitutions) stands for A. To illustrate this, we briefly recall Ax.
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The definition of Ax is given in Table 6.4. T he calculus may be seen as 

a version of A in which substitution is internalised. A new constructor, called 

explicit substitu tion  and w ritten M ( x  := N ), is added and rule (3 is replaced by 

rule b, which, instead of calling substitution, generates an explicit substitution. 

E x tra  rules for the explicit, stepwise performance of substitu tion  are included 

(rules x l, ...,x4). The typing rule for explicit substitu tion  used here (and also in 

[Bloo, 1997]) is straightforw ard1, in th a t we simply internalise the admissible rule 

for substitu tion in A

r  h N  : A  r, x : A  I- M  : B  
r  b M[N/x\  : B  X *

Now, in W h x ,  rules (31 and (32 of XPh  are replaced by rules bl and b2 in 

which the  call of operator subst  (a substitu tion  operator in X P h ) is replaced by 

a mid cut, a  new constructor of the calculus th a t acts as an explicit subst. The 

performance of subst  is internalised in W h x  by means of new reduction rules 

x l , ..., x4.

We will come back later (see subsection “Com pleting the picture” ) to  this 

analogy between how Ax stands for A, on the one hand, and how W h x  stands 

for XPh,  on the other hand. For the moment, as we said above, we are interested 

in finding the calculus th a t is the natura l deduction counterpart to  W h x .  The 

obvious guess now is th a t such calculus is a version of AAf  h in which substitution 

is made explicit.

Explicit substitutions for AJ\fh

We define a  version of \ j \ f h  w ith explicit substitutions, nam ed Xhfhx,  in Table 

6.5. Typing rules are in Table 6 .6 . The definition is straightforward. A con

structor for substitu tion is added to the syntax and old reduction rules calling 

m eta-substitu tion are replaced by similar rules generating explicit substitution. 

Rules for the  stepwise performance of substitu tion are added. Similarly to  W h x , 

an operation remains in the meta-language, nam ely the operation sub th a t dis- 

h4 slight variations of this typing rule has appeared in [di Cosmo and Kesner, 1997].
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(Terms)  M, N  ::= x  | Xx.Ad \ M N  \ M ( x  := N)

Var F, x : B  b x  : B

I  I ',. t  : B  S~ M  : C j  t-. E R  T h M - . B D C  T h N  : B  
i n t r o  p  p Xx M  • B  p, q x  T T ' r M N - . C

E xSubs t  r  h iV : C
E xbubs t  r  b M ( x  := N )  : B  *

(b) (X x .M )N  -»■ M ( x  := N)

(x l) x(x := iV) =  A"

(x2) y(x := IV) =  y, y ^ x

(x3) (A y . M ) ( x : = N )  — X y . M ( x : — N)

(x4) ( M M ' ) ( x  := N )  = ( M ( x  := N ) ) ( M ' ( x  := N))

Table 6.4: The Ax-calcuius



Table 6.5: The ATVTix-calculus
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(Terms)  M, N  ::= x \  X x .M  \ app(A) \ M ( x  :=  N)

(Apps) A  ::= M N  | A N

(61) app((Xx.M)N) -> M ( x  :=  N)

(62) ( (X x .M )N )N ' -+ M ( x  N ) N '

(h) app(A)N -)■ A N

(xl) x ( x  := N) = N

(x2) ji5» = y , y  f i x
(x3) (Ay .M ) ( x  :=  N ) = X y .M (x  :=  N )

(x4) (app(A))(x  :=  N) = app(sub(N, x, A))

where

s u b ( N ,x , M 1 M 2 ) =  M i ( x  := N ) M 2(x  :=  N)  

sub(N , x, A M )  = sub(N, x, A ) M ( x  := N)

tributes a substitution through ail application A.  C onstructor M  (x :=  N )  binds 

x  in M.  By variable convention, x  does not occur in N.

D e fin itio n  19 (C o m p a tib le  c lo su re )  Given a pair R  of  binary relations, the 

first on T e r m s  and the second on Apps, the compatible closure is the least 

pair of relations —y the first on T e r m s  and containing the first relation of  R,  the 

second on Apps and containing the second relation of  R,  closed under:



Table 6 .6 : Typing rules for AJ\fhx
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y n r ______________  In tro  F, x : -B l~ M  : C  T y p
Vm  T , x  : B  h  x : B  l n t T °  T h AX.M  : B  D C X * L

Avv  T I- A  : B  E xS u b s t  X ' ^  ^  ^  r  F iV : C  ^  p
PP T h app{A) : B  ^ xi3Ut)St r  h M ( x  N )  : B  “

T a i lE l im

T h M N : C

T h  A :  B  D C  T \~ N  : B
T h A N : C

I n t r o  ¥ r  a, '  A PP A ~ ^ A 'Ax . M  —> Ax .M '  app(A) —> app(A') 

E x S u b s t l  ; E x S u b s t 2  N  N'
M ( x  := N)  -+ M ’{x := N )  m ( x  := N )  -> M ( x  := N')

H d E H m l  - J *  2  % , N  HdEUm.2 M % ^ NI  

T a i lE l im l  -¡~4  4 /» r T a i lE l im 2  E —> NA N  -y  A ' N  — A N  ^  A N >

For instance, for defining —>b, take R  =  (61,62) in Definition 19. That, is, in 

XNfhx we set b =  (61, 62). One can define —>bi (resp. —>b2) by taking R  =  (61, 0) 

(resp. R  =  (0,62)), or define —p,. by taking R  = (0 ,6). The definition of —

(i =  1, 2, 3, 4) is by choosing R  =  (xz, 0). We will also let

x =  x l U x2 U x3 U x4 

and, thus, — is defined by taking R. = (x, 0).
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x b =  X

(A x . M ) b =  A x . M b

(app(A))b II â_e>II =  M h[Nb/x]

(.M N ) b = M bN b

(.A N ) b = A bN b

Table 6.7: From AAfhx  to  XAfh

By analogy with m apping (_)b : AV h x  —> XVh,  there is a m apping (_)b : 

AA f h x  —> XJ\fh, defined in Table 6.7, th a t replaces explicit substitu tion  by m eta

substitu tion  in XAfh.

M appings E  and 0 ,  between XJ\fh and XVh,  are extended to  mappings be

tween XAfhx  and XV hx  by

E { M ( x  :=  N ))  = EM{:x  :=  'EN}

0 ( t { x  :=  m}) =  Ot(x := Ou) .

Given the correctness of T and 0  between XAfh and AVh,  and given the typing 

rules for explicit substitutions and mid-cuts, the correctness of these extensions 

is routine.

Explicit substitutions are m apped to mid-cuts and vice-versa. The following 

proposition is even simpler than  Proposition 40.

P ro p o s i t io n  46 I f  i denotes both the inclusion of  XAfh in XAfhx and of  XVh in 

XVhx,  then E ( i (M ))  =  i ( E M )  and 0 (z(i)) =  i(Ot) , for all M  in XAfh and t  in 

XVh.

P ro p o s i t io n  47 (T (M ))b =  E ( M b), for  all M  in XAfhx.
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P ro o f: One proves the claim and also ('¡/'(A, l))b — 'L/(.A1>, /b), for all A  in XJVhx 

and all I in AVhx ,  by simultaneous induction on M  and A,  w ith induction hy

potheses IH1 and IH2, respectively.

Case M  = app(A):

( * ( M ) ) b

Case M  =  Mo(x :=  No)

( T ( M ) ) b =  ^ { A f 0( x : = N o ) Ÿ

= ( ( $ M0){x := (T N 0) } ) \  by def. of T,

=  subst{{^N 0) \ x ,  ( M 0f ) ,  by clef, of (_)b,

=  s u b s t ( ^ ( N b0) , x , ^ ( M b0)), b y lH l,

=  '¡i (Mq[Nq/ x]), by Lemma 52,

=  d/((M0(x :=  N q)Ÿ),  by def. of (_)b,

=  'L(M b) .

The remaining cases are straightforward. ■

C o ro lla ry  32 I f  XjVhx derives F h M  : A,  then XJKih derives F h  M° : A.

P ro o f: O btained from correctness of (S f  : A V h x  —» XV h (Proposition 9) by the 

method of Corollary 26. ■

=  {^{app(A)))b 

= ( * \ A ,  D))b, by def. of T,

=  T /(Ab,a b) ,b y IH 2 ,

=  y ' ( A b, 0), by def. of (_)\

=  T(app(A b)), by def. of T,

=  ^{{app{A))h), by def. of (_)\ 

=  T ( M b) .

Now we lift the isomorphism XJ\fh =  XVh.
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Yet another isomorphism

The goal is now to  prove AJ\fhx = XPhx.  We will try  to  follow closely the develop

ments th a t led from Proposition 44 to  Corollary 29, emphasizing the  differences.

P ro p o s i t io n  48

Î. © O T  =  id and 0  O T ' =  ©'.

2 . T o  Q — id and $  o 0 ' =

P ro o f : The novelty relatively to  Propositions 44 and 45 is the cases of explicit

substitu tion  and mid cut. The result follows because one constructor is m apped

to the other and vice versa. ■

Since there are no substitu tion operators in XjVhx  and AVhx ,  there are no 

analogues of Lemma 52 and Corollary 27. Instead, we need the following two 

results.

L e m m a  57 T'(7l, 1){x  := T1V} —>x4 ^ ' ( s u b ( N , x , A ) , x , s u b ( ]i f N , x , l ) ) ,  for all 

A, N  in \J\ fhx,  all I in XPhx.

P ro o f : By induction on A.

Case A  = Ad'N'.

V ' { A , l ) { x  :=  TAr}

=  V ' ( M ' N ' , l ) { x : = V N }

=  (T A f (TIV' • l )) {x := T1V}, by def. of T,

—>x4 ( ( $ M '){ r  :=  W } ) ( ( ( W ') { r  := TiV}) • su 6(TiY, x , I))

= (T (M '(x  :=  Y )))((T (Y /{.t :=  N)))  ■ s u b ^ N ,  x, /)), by def. of T,

=  T '( (M '(x  :=  N ) ) ( N ' { x  :=  N)),  sub(VN,  x,  /)), by def. of T,

=  T ;(sub (N , x, M 'N ' ) ,  su 6(TiV, x, /)), by def. of sub,

=  T '(su 6(Y ,a ',A ) ,su 6(TlV,x,Z)) .
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Case A  = A'N'\

V ' ( A , l ) { x  :=  ^ N }

=  '&'(A'N', l ){x tyN}

=  ^ '(A 7, ^ iV 7 :: i ) { i  :=  'I'iV}, by def. of

—>x4 \E'7(sti6(Air, x, A7), sub(t$fN, x, t y N 1 :: I)), by IH,

=  ty'(sub(N,  x, /I7), ((\&iV7){x :=  \&iV}) :: s u b ^ N ,  x, /)), by def. of sub,

=  '¡>'(sub(N, x, A'),  ( t( jV 7(x := N )) )  :: s u b ( ^ N ,  x, I)), by def. of iH,

=  'E'(sub(N, x, A ' ) (N ' (x  := N)) ,  s u b ^ N ,  x, I)), by def. o f 1!',

=  ty'(sub(N,  x, A ' N 1), s u b ^ N ,  x, I)), by def. of sub,

= '&'(sub(N, x, A), sub(^/N, x, I)) .

■

One way of understanding next lemma is by observing th a t it asserts a reduc

tion between two term s th a t are the images under © of the two term s involved 

in the reduction asserted by the previous lemma.

L e m m a  58 Q '(A , l ) (x  :=  Qv) —̂x4 Q'(sub(Qv, x , A ) , sub(v, x , I)), fo r  all A  in 

AAfhx, all v , I in W h x .

P ro o f: By induction on I.

Case / =  [].

©7(A, l)(x  :=  Qv)

= & ( A , \ \ ) ( x : = Q v )

=  app(A)(x  :=  Qv),  by def. of 0 ,  

i*x4 app{sub(Qv,x ,A ))

=  Q'(sub(Qv,x,A),  []), by def. of 0 ,

=  Q'(sub(Qv, x , A),  sub(v , x, [])), by def. of sub,

=  Q '(s ub (Q v ,x ,A ) , sub (v ,x , l ) )  .
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Case I — u'  :: I'.

& ( A , l ) ( x  :=  Qv)

= Q '(A ,u ' : :  l ' ) ( x :=  Qv)

= Q '(AQu' , l ' ) (x  := Q v}, by clef, of ©,

—>x4 Q'(sub(Qv, x , AQu'),  sub(v , x, Z7)), by IH,

=  Q \s u b ( Q v , x, A){Qv!(x := Q v)), sub(v, x, I')), by def. of su 6,

=  Q'(sub(Qv, x, A)Q{v!{x  :=  v }), sub(v, x, I1)), by def. of 0 ,

=  Q'(sub(Qv , x, A), (ti'{x :=  u}) :: sub(v, x, I')), by def. of 0 ,

=  Q'(sub(Qv, x, A), sub(v, x , u '  :: Z7)), by def. of sub,

= Q'(sub(Qv, x, A), sub(v, x, I)) .

The following five results are an im m ediate lifting of, and have exactly the 

same proofs as the corresponding results we have seen before.

L e m m a  59 \F(A , Z)(V ■ I') —>h A ,append( l ,u7 :: I'), for all A  in XAfhx, all 

u' ,l ,  I' in XVhx.

C o ro lla ry  33 '¡t(app(A))(u ■ I) —>h ^ ' { A , u  :: I), fo r  all A  in XAfhx, all u , l  in 

A Vhx .

P ro o f: From Lemma 59. ■

L e m m a  60 In XPhx,  i f  I —>r I', then \I/7(A, I) —>r  4/7(A , I') (for all A  in XAfhx,  

R  G {61, 62, h , x l, x2, x3, x4}).

L e m m a  61 In XAfhx, i f  A  - ^ r  A ' , then ©'(A, I) ^ r  © '(A7, /) (for all I in XPhx,  

R  G {61, 62, h , x l, x2, x3, x4}).

L e m m a  62 Q'(Q '(A , l )Q u ' ,1') —>h Q'(A ,append( l ,u '  :: I')), for  all A  in XAfhx,  

all u ' , I, I1 in XPhx.
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P ro o f: Using Lemma 61. ■

Finally, we are ready for the isomorphism theorems.

T h e o re m  13 Let R  G {61, 62, h, x l, x2, x3, x4}. I f  M  —>r  M '  in AA/Tix then 

4/M —>r 'EM' in XPhx.

P ro o f: We prove the claim and also th a t

if A  —>/j A! in AA/7ix, then  4/'(A, Z) — '¡/'(A', Z) in XPhx,  for all I in AVhx,

by simultaneous induction, similar to  the  proof of Theorem  11, on M  - ^ r  M '  and 

A  — A \  w ith induction hypotheses IH1 and IH2, respectively. Cases correspond 

to closure rules, according to  Definition 19.

Case 61:

E ( a p p ( ( \ x .M ) N )) =  E ' ( ( \ x . M ) N ,  []), by def. of T,

=  (Ax . E M ) ( E N  ■ []), by def. of E, 

— ( E M ) { x  := E N ]

— E { M ( x  := N)) ,  by def. of 4/.

Case 62:

E ' ( ( ( X x . M ) N ) N ' , Z) =  E ’( ( ( \ x . M ) N ) ,  E l Y  :: Z), by def. of E,

= ( \ x . E M ) ( E N  • ( E N 1 :: I)), by def. of E,

- > b2 ( ( E M ) { x  := E N } ) ( E N '  ■ I)

=  E ( M ( x  := N ) ) ( E N '  ■ Z), by def. of 4/,

=  E ' ( M ( x  :=  N ) N ' , Z), by def. of E.

Case h: Exactly as in Theorem 11, bu t using Corollary 33 instead of Corollary

Cases x l, x2 and x3: Straightforward.

28.
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Case x4:

E(app(A)(x  := N ) )  =  E(app(A)){x  :=  4/IV}, by def. of T,

=  E'{A,  D){a: :=  E N } ,  by def. of T,

—>x4 E'(sub(N, x, A),  sub(EN, x, [])), by Lemma 57,

=  E ' ( s u b (N ,x ,A ) ,  []), by def. of sub,

— E(app(sub(N, x,  A))), by def. of 4L

Case I n t r o : As in Theorem 11, by closure of —>r in XV hx  under Right.

Case A p p : As in Theorem 11.

Case H d E l i m l :  As in Theorem 11, by closure of — in XVhx  under H d C u t l .  

Case HdElim2:  As in Theorem  11, by closure of in XV hx  under H d C u t 2 .

Case T a i l E l i m l : As in Theorem 11 .

Case TailE lim2\  As in Theorem 11, by closure of — in XVhx  under Lft.  1, 

bu t by Lem ma 60 instead of Lemma 54.

Case E xS u b s t l :  Suppose E M  —>R 'EM'  (IH1).

E { M (x  := N ) )  =  (E M ) { x  := E N } ,  by def. of E,

>r  (E M ' ) { x  :=  E N }  (*)

=  E ( M '{ x  :=  N)) ,  by def. of E,

where the reduction step (*) is by IH1 and closure of —>r in XV hx  under M id C u t l .  

Case ExSubst2:  Similarly, by closure of —>r  in XVhx  under MidCut.2.  ■

T h e o re m  14 Let R  £  {61, 62, h , x l ,  x2, x3, x4}. I f  t —>r  t' in XVhx  then Ot - ^ r 

O t' in XjMhx.

P ro o f: We prove the claim and also th a t

if I ~^R I' in XVh,  then O'(A,  I) ~^r 0 (A , I') in XjVhx , for all A  in XAfhx,



Chapter 6. Extensions o f natural deduction 196

by simultaneous induction, similar to th a t of Theorem  12, on t t' and I — I'. 

Cases correspond to  closure rules, according to  Definition 7.

Case 61:

Q((Xx.t)(u  ■ [])) =  Q'((Xx.Qt)Qu,  [])by def. of 0 ,

=  app((Xx .Qt )Qu)by  def. of 0 ,

—>¡,1 Qt(x  :=  Qu)

=  0 (i{x :=  u})by def. of 0 .

Case 62:

0((A x. t)(v ■ (u :: I))) =  Q'((Xx.Qt)Qv,u  :: Z), by def. of 0 ,

=  0 \ ( (X x .Q t )Q v )Q u ,  Z), by def. of 0 ,

— 0 ' ( ( 0 i ( x  := Q v ) )Q u , Z), by Lemma 61,

=  0 '(0 ( f{ x  :=  ti})0w, Z), by def. of 0 ,

=  Q((t{x  := v} ) (u  :: I)), by def. of 0 .

Case h: Exactly as in Theorem 12, bu t using Lemma 62 instead of Lemma

56.

Cases x l, x2 and x3: Straightforward.

Case x4:

Q ( ( t ( u - l ) { x : = v } ) )

= Q(t(u ■ l))(x  :=  Qv) , by def. of 0 ,

=  Q '(B tO u , l)(x  := ©u), by def. of 0 ,

—>X4 Ql(sub(Qv, x, 0 f0 u ) ,  sub(v , x, I )), by Lemma 58,

=  0 /((©Z)(;r := Qv)(Ou)(x  :=  0 u ), sub(v , x, Z)), by def. of sr/6,

=  0 '( ( 0 ( i{ x  :=  v})Q(u(x  :=  u}), su 6(u, x, Z)), by def. of 0 ,

=  0((Z{x :=  u})(-u{x := u} • sub (v ,x , Z))), by def. of 0 .
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Case Right:  As in Theorem 12, by closure of —>■# in AJ\fhx  under Intro.

Case H d C u t l :  As in Theorem 12, by closure of —>r  in XJ\fhx under H d E l i m l , 

bu t by Lem ma 61 instead of Lemma 55.

Case HdCut2:  As in Theorem 12, by closure of in \J \ fhx  under H dElim2.  

Case HdCut3:  As in Theorem 12.

Case M i d C u t l : Suppose Qt -~+r Qt'  (IH1).

0 ( i{ x  :=  u }) =  Qt(x  Qu),  by def. of 0 ,

>R Qt' (x := O u ) (*)

=  Qt'{x  :=  0 ti} , by def. of 0 ,

where the reduction step (*) is by IH1 and closure of — in Xj\f hx  under E x S u b s t l .  

Case MidCut2:  Similarly, bu t by closure of — in Xj\fh,x under ExSubst2 .  ■

C o ro lla ry  34 (Iso m o rp h ism ) Let R  E (61, 62, /i, x l, x2, x3, x4}.

1. M  —yjt M '  in AH h x  i f f ^ M  I 'M ' in XVhx.

2. t —>r  t! in AV h x  iff Qt —>r Qt,' in \J\ fhx.

C o ro lla ry  35

1. XJ\fhx is confluent.

2. I f  M  is typable in Xhfhx,  then M  is strongly normalising.

3. XJflhx satisfies subject reduction.

P ro o f: Because these properties hold of A V h x  and may be easily transferred 

from A V h x  to  AJ\fhx w ith the help of T  and 0 . ■

The next two results are proved in view of obtaining a third, asserting internal 

conservativeness of Aj f lhx  over AA/Ti. The idea of proofs is, as it were, to reuse 

known properties through isomorphisms T and 0 .
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P ro p o s i t io n  49 —>x in XJ\fhx is confluent.

P ro o f: Suppose M0 —>* Mi, M 2 in AJ\fhx. By Theorem 13, T M 0 —>* TM ] , 4/M2 

in AVhx.  By Corollary 7, there is t  in AV h x  such th a t 4/M i, $ M 2 —>* t. Then, 

by Theorem 14, and since © T M  =  M , we get M i, M 2 —>* 0 i .  ■

Therefore, we may refer to  the normal-form m apping | x.

P ro p o s i t io n  50 M b =J,X (M),  for all M  in \J\fhx.

P ro o f: Since M b is x-normal, it suffices to prove M  —>* M b. Now, by Proposi

tions 11 and 47, 4/M —>* ('I'M )1' =  T (M b). Therefore, by Theorem 14, we get 

M  =  0 4 /M  0 T (M b) = M b. ■

C o ro lla ry  36 AJ\fhx is internally conservative over XJ\fh.

P ro o f : Conservativeness is by

M  ->* M'  in XJVh 

iff 4/M  T M'  in AVh,  by Corollary 29,

iff '¿(4/M) —>* i(4/A7'j in A Vhx ,  as A V h x  is conservative over A Vh,  

iff 4>(z(M)) —P 4f ( i (M'))  in A Vhx ,  by Proposition 46, 

iff ©4/(z(M)) —»* 0 4 ' ( i (M'))  in XJVhx, by Corollary 34, 

iff z(M) —>* i (M')  in AM h ,  as 0  o 4/ =  id.

Internal conservativeness is by Proposition 50. ■

Completing the picture

Recall from section 5.1 th a t Gentzen's mapping Q is an isomorphism between A 

and A Q, the  la tter being the ::-free subsystem of A Vh,  in which, therefore, only
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reduction rule (31 makes sense. The isomorphism am ounts to the rephrasing of 

application as the head-cut t[t'] (this is short for t(t ' ■ [])).

Now, th e  same fragment exists in XVhx.  Terms are of the form

t , u, v ::= x \  Ax .t  \ t[u\ \ t { x  := u}  ,

reduction rules 62 and h are dropped (as they require ::) and all the  remaining 

rules 61, x l ,  x2, x3, x4 are retained. The fragment is indeed closed for these rules. 

Only rule x4 requires a verification:

(i[u]){z :=  v} = ( t (u - \ \ ) ) { x  := v }

—>X4 ( t{x  :=  v } ) (u { x  :=  n} ■ sub(v, x, []))

=  ( t{x  :=  n})(u{z :=  v} ■ 0)

=  ( t{x  :=  r;})[n{x :=  n}] .

This fragment, named A<5x, is nothing but a  rephrasing of Ax2. Application 

is rephrased as before and explicit substitu tion  is rephrased as m id-cut. Typing 

rules are the  same, except tha t, in A£/x, sequents have the form T; — b t : A. The 

rephrasing m apping Q : Ax —* XQx is an extension of Q : A —>■ XQ defined by

Q (M (x  :=  N ))  = Q M {x  :=  Q N}  .

By analogy with mapping (_)b : XV hx  —> AV h,  let us define mappings (_)b : 

XQx —> XQ and (_)b : Ax —> A simply by translating, in the first case, m id-cut as 

substitu tion  (or rather subst) in XQ, and translating, in the second case, explicit 

substitu tion as substitution in A. The situation is as follows:

2Therefore, this may be regarded as a logical reconstruction of Ax.
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i  G
W h x   XGx <-------------Ax

(-)b (la )  y b (lb) (-)b (6.2)

XVh X G X

Square (16) is com mutative because rephrasing Q clearly commutes w ith (_)b. As 

to square ( la ) , recall th a t (_)b : XVhx  —> XVh  is determ ined by the translation 

of mid-cut as subst in XVh. Consider the restriction of this m apping to  A£x. Its 

range is not the whole XVh  but only AQ. This is so because AQ is closed for subst 

of XVh. Since subst in AG (in term s of which we defined (_)b : XQx —* AQ) is the 

restriction to  AG of subst in XVh, the com m utativity of ( la )  follows.

Let x =  xlUx2Ux3Ux4. Prom the construction of diagram  (6.2) and Corollary 

8 , it is clear th a t —>x is confluent in each XVhx, XGx and Ax, and th a t (_)b = j x, for 

each (_)b. We could also infer, from diagram (6.2) and conservativeness of XVhx  

over XVh, the conservativeness of AQx (resp. Ax) over AG (resp. A). Anyway, 

conservativeness of Ax over A is not new [Rose, 1996b].

Now we prove th a t square

XVhx XJ\fhx

(-)b (6.3)

XVh AAfh

(which is the back face of (6.5) below) generalises square (16) of diagram  (6.2) 

(which is the front face of (6.5) below). This is interesting because it shows 

tha t the perfect m atch between mid-cuts in XQ and explicit substitutions of Ax 

extends from the ::-free and tail-application-free fragments to include, on the one 

hand, full head-cuts and left perm utation, and, on the other hand, the distinction
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between head and ta il eliminations and the associated new notion of reduction h. 

Accordingly, the perfect m atch will be established by the not so trivial T, instead 

of mere rephrasing Q.

First, observe th a t, since bo th  11/ and Q send explicit substitutions to  mid

cuts, Hi keeps being coherent w ith Q (recall Proposition 43). The following is 

immediate.

P r o p o s i t io n  51 \k(t(M )) =  G(M), fo r  all M  in Ax.

Second, by analogy w ith square (la )  of diagram  (6 .2 ), regarding the ::-free 

fragments of AV h x  and AV h,  there is a  square

AJ\fhx Ax

(-)b (2) (-)b (6.4)

AN h A

regarding the tail-application-free fragments of XJ\fhx and \J\fh. Mapping /, : 

A —> W fh,  is lifted to  a m apping i : Ax —> \J \fhx  by pu tting

t (M (x  :=  N ))  = lM ( x  := l.N) .

W hat remains to be proved is th a t this last square commutes. By gluing it with 

diagrams (6.3) and (6.2), we obtain the cube
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T
AV h x  --------------------------------------AAffix

We have seen th a t all faces of this cube, except one, commute. The bo ttom  face 

(resp. the top  face) commutes by Proposition 43 (resp. Proposition 51). The front 

face is square (16) in diagram (6.2), whereas the back face is square (6.3), which 

commutes by Proposition 47. Two faces remain: one is the com m utative square 

(la )  of diagram  (6.2). The other is square (6.4), whose com m utativity we seek. 

This com m utativity follows by a diagram  chase and the fact th a t T  : \J \fh  —*■ XVh  

is an isomorphism.

Logical content of explicit substitutions

The idea of making substitution explicit has a logical appeal th a t asks for the 

understanding of the proof-theoretical sta tus of calculi of explicit substitutions. 

Yet, we could classify as computational the initial motivations and goals of explicit 

substitu tion calculi. This is so because initially [Abadi et ah, 1991] they intended 

to  serve as an interm ediate formalism between usual A-calculus and its actual 

im plem entations 3.

3One is interested in actual implementations of the A-calculus because the problem of imple
menting real-world functional programming languages can usually be reduced to  the problem
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In an im plem entation, on the one hand, substitu tion  (and renam ing of bound 

variables) cannot be left in some informal limbo; on the other hand, if a calculus 

is to  reflect the  ex tant practice, substitu tion has to  happen in a controlled way. In 

fact, in textbooks on (im plem entation of) functional languages [Henderson, 1980, 

Peyton Jones, 1987, Field and Harrison, 1988], one finds, among others4, three 

kinds of im plem entations: evaluation by an in terpreter (this goes back to  the first 

paper on LISP [McCarthy, I960]), com pilation to  an abstract machine like the 

SECD-machine [Landin, 1964], or graph reduction, invented in [Wadsworth, 1971]. 

The first two techniques are environment-based, in th a t argum ents of a function 

are stored, together w ith the bound variable, in a  separate list of bindings, called 

an environment, ra ther than  immediately substitu ted  in the body of the function. 

The second technique is based on the idea of substitu ting  pointers (rather than  

the  actual argum ents) for the formal param eters of a  function. Common to  these 

techniques is the  fact th a t substitu tion is delayed and copying of argum ents is 

avoided. The m otivations for doing so are clear: copying is typically a waste of 

space, and may be a  waste of tim e if the copied argum ents contain redexes whose 

different copies will have to  be reduced separately later.

O ther com putational motivations are the following facts: (1) the num ber of ¡3- 

steps is not a good measure of the cost of com putation [Rose, 1996b]; (2) explicit 

substitu tion is a  way of recovering confluence of weak reduction5 in A-calculus 

[Curien et al., 1996].

Because of these com putational goals, the  earlier developments in explicit 

substitu tion calculi had to introduce complications th a t, w ithout destroying the 

logical content behind explicit substitutions, actually by adding ex tra ingredients 

to  th a t content, made it less obvious and simple. T he first complication is the use 

of de Bruijn indices. Computationally, this means th a t, not only substitution, bu t 

also renam ing of bound variables is m ade explicit. This is w hat Rose calls “explicit 

naming” in [Rose, 1996b] and “explicit binding” in [Rose, 1996a]. Logically, this 

is related to  an explicit management of weakening [Vestergaard and Wells, 1999],

of im plem enting the A-calculus [Field and Harrison, 1988, Peyton  Jones, 1987]
'E.g. com pilation into combinators.
5In weak reduction, reduction under A-abstractions is forbidden.
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The second complication is the introduction of a separate syntactical class of 

substitutions, typical of the Atx-calculus [Abadi et ah, 1991] and its descendants 

[Lescanne, 1994]. A substitution s is typed with a list of types and a “closure” 

t[s] is typed with a kind of simultaneous cut [Abadi et ah, 1991, Pagano, 1998}

r  b s : Ai, ...A„ A i , ..., A n h  t : B  
P h t[s] : B

The logical impact of introducing explicit substitutions is best understood 

in a simpler (perhaps the simplest) setting, namely the Ax-calculus, where none 

of these complications is present. This calculus adds two ingredients to  natural 

deduction.

The first ingredient is a new constructor, a form of cut,

----------f p g -------------------- , (6.6)

which is the  logical content of the typing rule for explicit substitutions. Observe 

th a t, as stressed in [Negri and von P lato, 2001], this is a very particular kind of 

cut because formulas in the LHS of sequents are introduced only by axioms 6.

Nevertheless, the inclusion of such a constructor seems to  have an advantage 

(besides the fact th a t the relationship with sequent calculus improves). N atural 

deduction is equipped with a way of reusing (or sharing) proofs. This is the old 

idea th a t the cut-formula is like a lemma in informal proofs. Gentzen observed in 

§2.2 of [Gentzen, 1935] tha t a sharing mechanism was missing in natu ra l deduc

tion, but this was the price to pay for keeping the tree form at of natu ra l deduction 

proofs. Indeed, if natural deduction is defined, not. in “sequent style” , but, in

stead, w ith the traditional trees of formulas, then a rule like (6 .6 ) (or rather its 

formulation with trees of formulas) breaks the tree format because the conclusion 

of the proof of A has to be “linked” to  several assumptions in the proof of B , as 

many as the elements in the assum ption class A x.

The second ingredient Ax adds to  natural deduction is a new normalisation 

procedure, which is new, not only because the set of proofs it acts upon has

''The ''strength of the cut rule has nothing to do with the rule itself, but rather with the 
system  to which the rule is adjoined.
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changed, bu t also and mainly because it is a “small-step” procedure defined by 

means of local transform ations of derivations.

Traditionally [Gentzen, 1935, G irard et al., 1989, Gallier, 1993], the content 

of cut-elim ination proofs am ounted to  procedure consisting of local transform a

tion of derivations', whereas norm alisation [Prawitz, 1965] called external rou

tines (like substitution) for performing global transform ations of proofs. Lately, 

things have changed. In the sequent calculus side, starting  w ith [Danos et al., 1997], 

cut-elim ination procedures were proposed containing global operations like the 

complete, upward, right or left perm utation of a  cut, which were performed in 

“natu ra l deduction style” , th a t is, as if executed in one go by some external 

routine. See also [Urban and Bierman, 1999, Espirito Santo, 2000]. Explicit sub

stitu tions in Ax represent, in tu rn , an approxim ation of natu ra l deduction to  

the spirit of original cut-elim ination procedures, w ith norm alisation completely 

internalised and broken down into local steps of reduction.

But there is more than  an analogy between the  spirit of norm alisation in 

Ax and the spirit of small-step cut-elim ination. The x-rules do perform cut- 

elimination, where cut here is precisely the new constructor (6 .6 ). This is true, 

not only up to XQx =  Ax, bu t also, crucially, and before anything else, by an 

analysis in Ax of the effect of reduction rules in derivations. Therefore, let us 

emphasize th a t Ax really adds to  natu ra l deduction a cut rule and a procedure 

for its stepwise elimination, and this is de facto and not only up to interpretation.

All this holds of AJ\fhx. The difference is th a t this calculus represents a 

natu ral deduction system in which the  two new ingredients introduced by Ax 

are combined w ith other new ingredients already present in AJ\fh, namely the 

distinction between head and ta il elimination, together w ith the related new 

notion of reduction.

'These procedures act on a system  with a contraction rule and elim inate a gen
eralisation of cut called m ulticut or mix. Recently [Dragalin, 1988, Dyckhoff, 1997, 
TYoelstra and Schwitchtenberg, 2000], procedures were defined for contraction-free system  
which elim inate cut instead of mix. These procedures are defined in terms of local trans
formations of derivations together with uses of admissibility of contraction. The latter hides 
global transformations of derivations. Anyway, in both cases some atomic operations, which 
may not be regarded as “local", remain in the meta-language, like the duplication or the erasing 
of an entire derivation.
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We are led to conclude the following: the inclusion of a cut rule, together with 

reduction rules for its stepwise elimination, is a feature of “calculi of sequents” 

like sequent calculus or natural deduction in “sequent style” . It is not exclusive 

of sequent calculus. It does not tell sequent calculus from natura l deduction. 

Usually natu ra l deduction is not recognised as having a cut rule because, in the 

traditional presentation of natural deduction with trees of formulas, the cut rule 

would break the tree format, as explained above. Yet, Ax is a presentation of 

natural deduction (but as a “calculus of sequents” ) with a constructor - explicit 

substitution - which acts logically as a cut.

Similarly, the inclusion of a constructor for explicit substitution, together with 

rules for its stepwise propagation and performance, is a feature of term  calculi, 

e.g. term  calculi associated with sequent calculus or term  calculi associated with 

natural deduction. Although the Curry-Howard correspondence traditionally  as

sociates a term  calculus (possibly containing explicit substitutions) to  a natural 

deduction system, explicit substitutions are not an exclusive of natu ral deduction. 

Usually sequent calculus is not recognised as having explicit substitutions because 

traditional presentations of sequent calculus do not emphasize the related term  

calculus, and, therefore, it becomes difficult to recognise th a t right perm utation 

of cuts is related to a substitution operator. Yet, this is w hat may be observed 

in AP/?,x, a presentation of a sequent calculus (together w ith a term  calculus) in 

which the constructor for mid-cuts acts as an explicit subst , where subst. is the 

substitution operator of XPh.

Therefore, explicit substitution is not an issue in the relationship between 

sequent calculus and natural deduction8. This is best seen by observing the cube 

(6.5). Mappings Q and T mediate between the left face and the right face of the 

cube, one corresponding to sequent calculus, the other to  natu ra l deduction. The 

issue here (see C hapter 7) is how to represent applicative terms. M appings i and 

l mediate between the front face and the back face. The former is a degenerate 

case of the la tter, corresponding to the ::-free and tail-aplication-free fragments. 

Hence, the issue here is whether :: and tail-aplications occur or not. Finally.

Although explicit substitution is an issue in the com putational interpretation of sequent 
calculus (and natural deduction!).
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mappings (_)b m ediate between the top  face and the bo ttom  face. The issue here 

is, logically, whether a cut rule is included or not; and, a t the  term  calculus level, 

whether substitu tion  is explicit or not. This applies equally to systems in the 

sequent calculus side and to  systems in the natural deduction side. It is an issue 

which is, as it were, orthogonal to  the sequent calculus versus natu ra l deduction 

divide.

6.3 A ¡new landscape

Summing up

We pause to  observe the  proof-theoretical landscape resulting from gluing dia

grams (6.1) and (6.5), as depicted in Fig.6.1.

In this Figure, if x (resp. h) labels an arrow, then  the  arrow stands for J.x, 

which is the  same as (_)b (resp. [h, which is the same as (-)“ )■ Vertical arrows 

represent projections, horizontal arrows represent isomorphisms. All squares and 

triangles commute.

Let us refer to AW, AJ\fh and AWhx as W -system s , and to  AT, AV h  and AV h x  

as V-systems.

The resulting diagram  may be seen as diagram  (6.1) topped w ith a layer 

of explicit substitutions (the topm ost face). A nother point of view shows the 

diagram  as consisting of a left half (corresponding to  sequent calculus) and a 

right half (corresponding to  natural deduction), w ith T, 0 , Q and Q~l mediating 

between these halves. Finally, the diagram  may be considered as consisting of 

the back-most squares, together with a degenerate layer (the front-most square, 

where A lives), corresponding to  the ::-free and tail-application-free fragments.

Figure 6.1 is a visual sum m ary of the main claims we are making in this 

chapter, namely th a t the natural deduction “space of calculi1' may be expanded 

so as to provide perfect counterparts to  calculi w ith different levels of explicitness, 

pertaining to  the canonical fragment of sequent calculus.

N atural deduction could have been expanded a little bit further, so as to 

simulate auxiliary m id-cuts and their explicit elimination. T hat is, there is a
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$  0
XV hx ■*   *- AH h x

Figure 6.1: Natural deduction counterparts
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jV-system corresponding to  the system obtained from XV hx  by m aking explicit 

m eta-operator sub. The idea is simply to  make sub of AJ\fhx  explicit as well. 

However, there  seems to be a point to  which the explicitness of cut-elim ination 

cannot be taken w ithout breaking the perfect m atch between sequent calculus and 

natural deduction. This is when auxiliary head-cuts l(u-1') and their elimination 

are made explicit, as they are in XVhx. T h a t is, we do not see w hat the  natural 

deduction counterpart to the explicit and stepwise append of two list could be.

A distortion

Now we will argue th a t Fig. 6.1 contains a distortion relatively to  the true 

proof-theoretical landscape defined by the  relationship between P-system s and 

TV-systems. Later we will make a proposal as to  w hat the true  landscape should 

be.

To see this, we have to  s ta rt by trea ting  equally the embeddings Q : A —> XVh  

and i : A —► X N h.  In Fig. 6.1, the isomorphic copy of A in XVh  (AQ) is visible, 

whereas th e  isomorphic copy of A in XJ\fh (Al) is not. The simpler solution is to 

hide AQ and  XQx in Fig. 6.1. The result is Fig. 6.2.

Alternatively, we can make Ai and the new Xlx visible in Fig.6.1 (as expected, 

Xlx is simply a rephrasing of Ax, where application is w ritten app(M N )) .  This 

causes a  long, yet straightforward, chain of refinements.

First, we have the commutative triangles

XAf h XJ\f hx

which are self-explanatory. Second, the com m utative triangle asserted by Propo

sition 38 has to  be decomposed as
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Figure 6.2: The old landscape (simple version)



Chapter 6. Extensions o f natural deduction 211

\J \fh

M apping (_)~ : Ai —> AJ\f is simply the restriction to  At of m apping (_)“ : 

AJ\fh —> ATV. Hence, the upper triangle in diagram  (6 .8 ) commutes. Since the 

larger triangle of (6 .8) commutes (by Proposition 38 and com m utativity of the 

left triangle in (6.7)), the lower triangle in (6 .8) commutes as well.

Third, square (6.4) as to  be decomposed, very much like diagram  (6.2), as 

follows:

AAfh

ATVh
i t

The proof th a t these two squares commute is exactly as the proof th a t the two 

squares in (6 .2) commute. Alternatively, use the com m utativity of (6.4), the 

trivial com m utativity of square (26) and the fact th a t t is an isomorphism to get 

com m utativity of square (2a).

Fourth, define both  Q : \Q  —» Ai and Q : AQx —► Atx by

Q =  Q o i

and both  I : At —> AQ and I : Atx —> \Q x  by
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I  =  i o Q 1 .

Hence, Q and I  are m utually inverse. This gives the com mutative triangles

Let us glue

AQx ■< ~ ► Aix

where (26)' is like (26), bu t with i 1 instead of i. Since (26)' stays com mutative, 

and since Q and I are m utually inverse, we get the two com mutative squares

\ Ç x     \ t x

a g G.z
A L

Fifth, observe tha t the two squares in
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Q r 1
X G  *—  A  -------- Ai

(-)- N

XV AW -- Xw

commute. The left one is by Theorem 7 (it is the “A-square” ), the right one is by 

the com m utativity of the lower triangle in diagram  (6 .8). Since Q and I, on the 

one hand, and T and 0 , on the other hand, are m utually inverse, the following 

two squares commute

X Ç - Q' b » Xl

(-)' (-) '

T  ©
XV  — —  AN

Finallj^, the  two squares in

XV h
T

AN h - X N h

, - i
xg X L

commute. The left one is by Proposition 43, the right one by the com m utativity 

of the left triangle in (6.7). Since Q and on the one hand, and T  and 0 ,  on the 

other hand, are mutually inverse, the following two squares commute
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4/ ©
XV h — -— -  AN h  

i  i

xg < L * Xt

Similarly, using Proposition 51 and the com m utativity of the right triangle in

(6.7), one proves the com m utativity of

T 0
AV h x  -— —*■ AN h x

i i

G, I
XQx —    Xlx

We sum up these facts in Fig. 6.3, a detailed version of Fig. 6.1 in which all

squares and triangles remain commutative.

We are now ready to  propose an alternative architecture for the “space of calculi” . 

Figures 6.2 and 6.3 do not trea t the sequent calculus and the natu ra l deduction 

sides symmetrically. They are biased towards the natu ra l deduction side. This 

asymm etry is the graphical m anifestation of a preconception, namely th a t the 

calculi AW, AN h  and X N h x  are “natu ra l deduction systems” in the same sense 

th a t A and Ax are natura l deduction systems, and, therefore, th a t the la tter 

should be “close” to the former.

However, we propose th a t A (and Ax, if substitu tion is to be explicit) is 

“equidistant” to XV, XVh  and A V hx ,  on the one hand, and to AW, AJ\fh and
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'I' 0
XV hx ■*   » XJ\fhx

Figure 6.3: The old landscape (detailed version)
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\j/ @
XVhx -   *- XAfhx

Figure 6.4: The new landscape

XJ\fhx, on the other hand. Indeed, if A. At and AQ are mere rephrasings of each 

other, if they are the same object, why should one consider A and At to  be “closer” 

to W -systems than  AQ? Therefore, we think th a t the true proof-theoretical land

scape (in its simple version) is as shown in Fig. 6.4.

If TV”-systems are regarded as “natu ra l deduction” systems (as we do in this 

thesis, because they prefer elimination rules to left rules), then  A and Ax should 

be regarded as systems of a neutral kind, belonging to  the intersection of sequent 

calculus and natural deduction. Notice th a t, w ith this taxonomy, A belongs to 

the natura l deduction side as much as it belongs to  the sequent calculus side - 

something th a t sounds like a heresy 9.

9 An alternative taxonom y is to consider as being “natural deduction" system s those cal
culi whose purpose is to model informal reasoning (this is the sense of the word “natural" in
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Our proposal implies th a t there are pairs of systems and pairs of morphisms 

w ith homologous (let us say “dual” ) roles. For instance, the dual of Gentzen’s em

bedding Q is l . The m ost interesting example concerns Af  and P raw itz’s m apping 

V .  P raw itz’s m apping is the “diagonal” of the A-square

A g +   A

Similarly, there is a “dual” square

L
A -------------  Ai

whose “diagonal” is TV. Indeed, the lower triangle commutes because P  =  $ o J\f 

and 0  o f  =  id, whereas the upper triangle is the lower triangle of (6 .8).

[Gentzen, 1935, Prawitz, 1965]). In this case, A and Ax keep being natural deduction system s 
(perhaps Ax even more than A, because of the presence of a form of sharing). Ho%vever, similarly 
to sequent calculus, jV■-system s become “unnatural” because the distinction between two kinds 
of elim ination rules seems artificial from the strict point of view  of m odelling informal reasoning. 
W ith this taxonomy, natural deduction is sim ultaneously a fragment of sequent calculus and a 
fragment of TV-systems.



Chapter 7 

Two applications

In this chapter we give com putational applications for two of the contributions of 

this thesis. F irst, we show th a t the new assignment 0 ,  particularly the extended 

A-calculi th a t constitute its range, provide a language with which one can refine 

Curien and Herbelin’s interpretation of sequent calculi in the canonical fragment. 

Second, we will show tha t the A-calculi we defined for the canonical fragment 

have a remarkable relation with call-by-name abstract machines.

7.1 Refinement of computational interpretation

In this section we consider the assignment Q (which am ounts to  the  traditional 

assignment tp - see Proposition 36) and the new assignment 0 ,  explaining what 

new insights the la tter brings to  the com putational in terpretation of sequent 

calculus.

We will focus on the relation between XVh  and ATT on the one hand, and AJ\fh 

and AW, on the other hand. This is so because it is in the differences between 

these systems th a t the distinction between sequent calculus and natu ra l deduction 

is expressed, particularly in the opposition between two ways of representing 

applicative terms. As became clear in the preceding chapters. A-abstraction and 

mid-cuts (or explicit substitution) are constructors th a t exist in bo th  kinds of 

systems.

It is useful to situate ourselves with the  following diagram

218
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X P h ------------- — ------------ - ATVTi

X V  —    ATV
where we distinguished mappings w ith the same nam e by means of indexes. Recall 

th a t Q\ and bo th  0 i  and 02  are isomorphisms, bu t Q2 is not. Typically, Q2 

collapses —yt-steps.

We will adap t to  XVh  and XV  the com putational in terpretation contained in 

some remarks and insights due to  Herbelin and Curien. Since these are in term s 

of evaluation contexts, we explain the  la tter first.

An evaluation, or applicative, context is an expression generated by the gram

mar

E  ::=  [-]  I E N  (7.1)

Informally, it is an applicative A-term with a  “hole” [—] in the head position.

These evaluation context are call-by-name, as opposed to call-by-value ones in 

e.g. [Felleisen et al., 1986]. Filling the hole of E  — [—]Ni...Nk with M  results 

in the applicative term  M N \.. .N k  of the A-calculus, denoted E[M],  A hole [—] 

is itself a context. Given a context E  and a  term  N  , we can form another 

context £?[[—]N] such th a t £'[[—]iV][M] =  E[ MN] ,  Given contexts E ,E ' ,  there 

is a context E  o E'  satisfying (E  o E')[M] =  E'[E[M]].

Herbelin and C urien’s insights [Herbelin, 1995, Curien and Herbelin, 2000] 

are as follows: (1) the in terpretation of a list is an evaluation context. (2) []

is [—]. (3) u  :: I is £?[[—]iV], where E . N  are the  interpretations of l,u .  (4) a

head-cut tl is interpreted as the result of filling the hole of E  with M ,  if the 

interpretation of l , t  is A, M .
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In our setting, head-cuts are always of the form t(u  ■ I), hence we refine (4) 

as: a head-cut t(u  ■ I) is interpreted as the  result of filling the hole of E  w ith the 

application M N , if the interpretation of l , t , u  is E, M, N .  Therefore, we will only 

fill holes w ith applications. Moreover, it is clear th a t append(l, I') corresponds to 

E o E ' .

Now, in terpretation (4) of a head-cut t  = t0{ui ■ [«2, H )  is nothing but 

Q(t). Indeed, if Qto =  M  and Qui = Ni then

Q {to(u i-[u2l...,Uk])) =  Q '{ M ,N U [ii2, ...,Uk\)

= M N i N 2...Nk (7.2)

=  ([-]JV2...iVfc) [M ^ 1] .

But interpreting i0(«i • [«2, -•■,«&]) as M N i N 2...Nk seems more like saying what 

the head-cut is not. Indeed, if we stare enough a t (7.2) we conclude th a t head-cut 

to{u\ ■ [u2, ..., life]) is as if MAfi jV2...lVfc was decomposed into the  application M N \  

and the evaluation context [—]772...iVfc. Thus XPh  may be seen as a version of A 

which, instead of application, includes a  construction

Q!_(MN, E)  , (7.3)

representing an applicative term . M N  is its head application. E  ranges over 

expressions

E ::=  H |  AM: E

representing evaluation contexts (the meaning of N  :: E  is E[[—]A7]). The

head application M N  and E  contain the information needed for reconstruct

ing the applicative term. The point of (7.3) is th a t the head application, deeply 

buried in traditional syntax, is brought to the surface. This is a known theme 

[Dyckhoff and Pinto, 1998]. We will also refer to M N  in (7.3) as the  focus.

We call (7.3) a Q-expression, and it would be an interesting exercise to  rewrite 

the definition of XPh  with this new syntax for head-cuts.

W hen the focused application is not a value application, we say th a t the focus 

is imperfect, and the Q-expression is of the form
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Q ffQ ffM N , E )N ' ,  E')  .

This is precisely how a h-redex is w ritten  in this syntax. Then, a —»^-step looks 

like

Q f(Q f(M N , E ) N ', E')  ->h Q f{M N ., £  o (N ’ :: £ ') )  , (7.4)

which may be interpreted as improvement of focus, a necessary feature when 

imperfect focus is allowed. However, by Lemma 50,

Q '(Q '(M , IV, 0 , Qu', 0  =  Q'(M, iV, append(I, u ' :: 0 )  .

Actually, b o th  members of this equation are one and the same A-term

{ M N N 2...Nk)N'N'2. . .N fl = M N N 2...NkN ,N ^ . . N ,m .

In XV, Q-expressions are restricted to  the case when the focused applica

tion  is a value application. The isomorphism Qi means th a t these are enough 

and tha t, conversely, there is a canonical way of writing an application as a Q- 

expression. Actually, XV  may be seen as a formalisation of the  vector syntax of 

[Joachimski and M atthes].

W ith the  in terpretation of head-cuts as Q-expressions, we sum up four for

m ulations of the A-calculus with applicative term s
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In Af-systems, applicative term s are of the form app(A). In ^-system s, they 

are Q-expressions. If an applicative term  is m apped to  an application M N  in 

A, we say th a t the former is an unfolding of the la tter. Unfoldings of the same 

application may be linearly ordered: the  smaller the  head application, the bigger 

the unfolding. Mappings V  and J\f send each application to  its maximal unfolding.

Comm utative triangles

A

say th a t XV  and AJ\f are not only isomorphic, bu t also coherent as formulations 

of A with applicative terms. Indeed, if two (representations of) applicative term s 

are related by \b, 0 ,  they are unfoldings of the same application. If we define |_|2 

as the composition of (_)~ : XJ\fh —> XJ\f w ith |_|! : XJ\f —>■ A, and if we recall the 

com m utativity of

'1C 0 o 
AV h  * 2l I  XJ\fh

(-)-

XV -<----------   XM
i ; i, 0 i

we get the com m utativity of

\EC Qo
A V h    ?---------► AN h
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which says th a t XVh  and AJ\fh are not only isomorphic, bu t also coherent as 

extensions of A w ith applicative terms.

Summarising our quest for the com putational ingredient th a t tells the canon

ical fragment of sequent calculus from natural deduction: if the A-calculus is the 

only representative of the natural deduction world, then  the  formalisation of ap

plicative term s th a t may be found in "P-systems is entirely due to  the change to  

a sequent calculus form at. If W -systems are allowed in the  natura l deduction 

world, then  the  difference between P-system s and n a tu ra l deduction is merely in 

the representation of applicative terms, and w hat is typical of P-system s is the 

focus on the head application.

Let us see yet another in terpretation of P-system s. This time, head-cuts in 

AV h  and XV  are interpreted as evaluation contexts, not for A, bu t for AN h  and 

AW, respectively.

We define evaluation contexts for XJ\fh and AJ\f exactly as in (7.1), w ith the 

proviso th a t E N  is to  be understood as tail application. We are supposed to  fill 

the hole of these contexts w ith head applications, and the result of filling M N \  

in the hole of E  — [] W  • ■ ■ W  is the applicative term  app(M  N \N 2---Nk).

Then, if 0fo =  M  and Otq =  N t.

Q (t0(ui ■ [u2, . .. ,u fc])) =  Q \ M N i , [ u 2, . . . ,u k})

=  a,pp(MNl N 2...Nk)

=  ( [ - ] i v 2 . . . i v fc) [ y v / iv 1] ■

This suggests considering XVh  and XV  as versions of AJ\fh and AW, respectively, 

in which an applicative term  (now in the formal sense of AJ\fh and AW) is decom

posed into its head application (again in the formal sense of AJ\fh and AW) and an 

evaluation context (for AN h  or AW). Head-cuts become expressions displaying 

this information, which we name 0 -expressions and look like

& { M N ,  E)  . (7.5)

Both in the case of AN h  and of AW there is a mapping, actually an isomor

phism, th a t decomposes each applicative term  in a  canonical way, by pu tting  in
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the focus the  head application. This m apping is T. The picture now looks like

09
XVh  „..................................... :  X N h

/

l - h /

A

AAsystems are now responsible for the form alisation of applicative terms. V-  

systems are isomorphic versions of AA-systems in which applicative are represented 

w ith focus on the head application, w ith the  m eaning of “applicative te rm ” and 

“head application” given in each A/"-system.

A —>/i-step now reads

, E )N ',  E') ->h & ( M N ,  E  o {N' :: E'))  , (7.6)

but this is simply a —>/,-step in X N h  w ritten w ith ©-expressions. Indeed, it 

follows from Lemma -56 th a t

Q '( 9 ' ( M N , l ) e u ' , r )  -+h Q '(M N , append(l, u' :: I')) , 

which is, perhaps, more easily understood as the reduction step

app{a,pp{MNN2...Nk)N'N'2...N'rn) -+h a p p (M N N 2...NkN'N'2.. .N ’m) . (7.7)

The in terpretation of (7.6) as improvement of focus is now somewhat non

primitive. We must not forget tha t w hat happens in (7.6) is the same as in

(7.7). T hat is, when we recognise th a t the head application of an applicative 

term  is not a value application, we are able to  reorganise the applicative term
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so th a t th e  head application becomes simpler. The meaning of h in bo th  AJ\fh 

and XVh  is to  simplify the head application and ultim ately tu rn  it into a value 

application. However, in AJ\fh, the effect is th a t the value application becomes 

even more deeply buried (because the applicative term  becomes longer). In XV h, 

by the fo rtunate  conjugation w ith the  focus on th e  head application, the value 

application is brought closer to  the surface of the applicative term .

It is no surprise, then, th a t this effect of bringing the value application closer 

to  the surface has applications in the  setting of weak head evaluation. This is 

w hat we are going to  study in the next section.

7.2 Caii-by-iiame abstract machines

In this section, we show th a t the A-calculi we have defined in C hapter 3 for the 

canonical fragment have the rem arkable property th a t their reductions rules may 

be seen as transitions rules for call-by-name abstract machines. In the  case of 

XV  and XV h, this is exactly so. An explanation for this is already present in 

the observation th a t lists in Herbelin-style calculi model stacks in environment 

machines [Curien and Herbelin, 2000]. In the case of XV hx, there is only a feature 

th a t is no t immediately modelled by a reduction rule of the calculus, namely the 

search for a t  buried inside a m id-cut like

t { x i :=  u x} .. .{xn := un} .

Here it is easy to  speculate th a t the problem lies in the fact th a t there is no 

independent syntactic class for lists of bindings (i.e. environments) in XVhx, as 

there would be if explicit substitutions in this calculus were in the style of the 

Acr-calculus [Abadi et ah, 1991].

Simple machines

We show w hat abstract machines are associated w ith XV  and XVh. These m a

chines will be simple, in the sense th a t if the program  is not fully evaluated, then
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it is itself the redex to be reduced next. Therefore, redexes do not have to  be 

searched.

D e fin itio n  20 In X, the weak head (or call-by-name)  reduction (notation: -* c b n )

is the least binary relation —> on terms closed under

M  M '
1 (X x .M )N  -» M [N /x \ i m l  M N  M 'N

A \- tem n  is a weak head normal form (abbrev. whnf) i f  it is of the form

xN i.. .N k or X x .M  (any x, N i , ..., A4, M  in X).

Relation —:>c b n  is actually a partial function also nam ed C B N  . A  A-term M  

is a  whnf iff C B N ( M )  is undefined. We define the weak head (or CBN) reduction 

of M  as the repeated application of C B N  starting  from M .  This process either 

term inates w ith a whnf of M ,  or diverges. The following basic result asserts the 

completeness of —>c b n -

T h e o re m  15 In X, i f  M  —sfi N  and N  is a whnf, then the weak head reduction 

of M  terminates (with a whnf of M ).

Therefore, C B N  may be seen as a rudim entary machine. We may use terminology 

accordingly. For instance, we may say th a t C B N  is loaded w ith M , meaning th a t 

C B N  is applied to M .  A lthough rudimentary, the machine will always obtain 

the whnf of a  given term, if there is one to be found.

D e fin itio n  21 In XAI, we define the weak head (or call-by-name)  reduction 

(notation: —>c b n )  over terms and over application as the least pair of binary 

relations —> closed under

'31 app((Xx.M )N )  -> M [N/x] ApP app{A) ^  app{A')

n o _______________________  4 Fdim i ^  A _______
'  ̂ ((Ax .M ) N ) N '  M[N/x]@ N' /m m 7 U  A N  -> A 'N

D e fin itio n  22  In XV, the weak head (or call-by-name) reduction (notation: 

—*c b n ) is the least binary relation —> on terms closed under
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^  (Xx.t)(u ■ []) —» subst(u , x, t)

( 3 2 _________________________________________________________________________________________________________

(Ax .t) (u  ■ (v :: I)) —> in se r t(v , Z, subst(u , i))

T  XV-term  is a whnf i f  it is o f the form  x  or x (u  ■ I) or Ax . t  (any x, u, I, t  in XV).

In AP, the weak head reduction is simply the notions of reduction [3i, i.e. 

restricted to the “top level” or “empty context”.
Relation — >c b n  in AP is again a partial function also named C B N  . A  XV- 

term t is a whnf iff C B N [ t ) is undefined. We define the weak head (or CBN) 
reduction of t as the repeated application of C B N  starting from t. This process 
either terminates with a whnf of t, or diverges. Again, we regard C B N  as a 
rudimentary machine.

We now prove that the isomorphism between —in A and in AA f  restricts to 
weak head reduction, and later we prove the same for —in AA f  and XV.

To begin with, we need a restricted form of Lemma 39.

Lemma 63 In XAf, i f  M  —±c b n  M ', then M @ N  - * c b n  M '@ N.

Proof: It is an adaptation of the proof of part 1. of Lemma 39, and is by case 
analysis of M .

M  = x  and M  =  X x . M q are vacuous cases. Let M  =  app(A). Then, again 
there are two subcases.

Subcase 1: A  — *•c b n  A! and M '  = app(A'). Follows by closure under A E l im l .  

Subcase 2: A  = (.X x . M o ) N q and M '  = M q [ N 0 / x }. Follows by closure under
(52. a

Theorem 16 The following holds:

1. Mi —*c b n  M 2 ^  X i f f  N M i  —>c b n  -Af M 2 in  XJ\f.



Chapter 7. Two applications 228

P ro o f: 1. “Only if” : the proof is by induction on M i —>c b n  M2 in A, as in the 

proof of Theorem  3. However, only first and th ird  cases are relevant. The former 

now follows by closure of -* cbn  hr AJ\f under (31, whereas the la tte r requires 

closure under App  and Lemma 63.

2. “Only if” : the claim is proved together w ith the  claim th a t if A i ~^c b n  A 2 

in AW, then |A i| —>c b n  \A2\ in A by simultaneous induction on M \  —>cb n  M 2 

and A\ —+c b n  A 2 in AW, as in the proof of Theorem  2 . This time, only cases (31, 

App, (32 and A E l i m l  are relevant. Cases (31 and (32 follow by closure of —>c b n  

in A under (3. Case A E l im l  requires closure under E l i m l  and IH2. Case App  is 

by IH2.

The “if” part of 1. follows from the “only if” p a rt of 2 . and |W (M )| — M , 

whereas part “if” of 2 . follows from the “only if” p a rt of 1. and J\f\M\ = M .  ■

We now need a  restricted form of Lemma 43.

L e m m a  64 I f  A  —>c b n  A', then O'(A, I) —+c b n  O '{A1,1).

P ro o f: Again by a straightforward induction on I. Case I — [] requires closure of 

- >c b n  in AW under App, whereas case I = u 0 :: l0 requires closure under A E l im l .  

■

T h e o re m  17 The following holds:

1. M  —>c b n  M ' in  AW i f f  T M  —>c b n  in  XV.

3- t —>c b n  t ' i n  X T  i f f  ©t —> Q t '  in  X V .

P ro o f: 1. “Only if” : the claim is proved together w ith the claim th a t if A  —>cb n  

A' in AW, then T '( A /)  —>c b n  W(M ' , l ) (all I) in X V ,  by simultaneous induction 

on M  —>c b n  AT and A -* c b n  A 1, as in the proof of Theorem 4. This time, only 

cases i, Hi, in and v ii — a are relevant. Cases i and iv  require top level — -steps, 

whereas case in  and vii — a follow by IH2.

2. "Only if” : As in case i of Theorem 5. Instead of Lemma 43, use Lemma

64.
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The “if” part of 1. follows from the  “only if” part of 2. and  © T M  =  M , 

whereas part “if” of 2 . follows from the  “only if” part of 1 . and =  t. ■

Recall th a t V  : A —*■ AV  is T o J\f and its inverse is denoted Q. Observe th a t 

bo th  V  and Q send whnfs to  whnfs. We say th a t they preserve whnf.

One may use C B N  in XV  for reducing A-terms to  whnf. Given M  in A, load 

th e  machine of XV  w ith V ( M ) and perform  in XV  the weak head reduction. If 

this term inates with u, say, re tu rn  Qu. Thus, the machine is correct.

T h e o re m  18 (C o m p le te n e ss )  In XV, i f t  u  and u is a whnf, then the weak 

head reduction o f t  terminates (with a whnf of t).

P ro o f : Since Q is an isomorphism and preserves whnf, Qt — Qu  in A and Qu 

whnf. By completeness of —>c b n  in A, the  weak head reduction of Qt term inates. 

By part 1. of Theorems 16 and 17, and  the  fact th a t V  preserves whnfs, the weak 

head reduction of t term inates, ffl

There is an advantage of C B N  in XV  over C B N  of A: in the former, we do

not have to  search for the redex to  be reduced next. If a term  is not a whnf, the

term  itself is the redex to be reduced next.

Now, how about X V h i  Is there a simple weak head evaluator associated with 

this calculus? The answer is affirmative.

D e f in it io n  23 In XVh, the weak head (or call-by-name)  reduction (notation: 

—*cb n )  is the least binary relation —> on terms closed under

^  (Ax.t)(u  • [ ] ) —» s u b s t (u ,x , t )

*" (Ax.t)(u  ■ (v  :: I)) —* subst(u , x, t)(v ■ I)

^ t(u ■ l)(u' ■ I') —> t(u ■ append(l, u' :: I '))

A XV-term  is a whnf i f  it is of the form, x  or x (u  ■ I) or Xx.t (any x , u. I, t in 

XV h).
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In XPh, the  weak head reduction is simply the union of the  notions of reduction 

/3i and h, i.e. —̂  and —y, restricted to the “top  level” or “em pty context” .

Relation — > c b n  in XPh  is again a partial function also nam ed C B N  . A 

A'P/i-term t  is a whnf iff C B N { t ) is undefined. We define the weak head (or 

CBN) reduction of t as the repeated application of C B N  starting  from t. This 

process either term inates w ith a whnf of t, or diverges. Again, we regard C B N  

as a simple machine.

Recall m apping (_)“ : XPh —> XV.

L em m a 65 The weak head reduction of t in XP h terminates iff the weak head 

reduction o f t~  in XP terminates. Moreover, i f  the form er terminates w ithu , the 

latter terminates with u ~ .

P ro o f: One goes back to Proposition 5 and Lemma 19 and checks th a t a —+pi- 

step in XPh  (at the top level) is m apped by (_)“ to  a similar step in XP  (at the 

top level) and th a t a —>/l-step in XPh  is collapsed by (_)“ in XP. Moreover, (_)“ 

preserves whnf. This is sufficient for the  “only if” p a rt and the  second statem ent.

As to the “if” part, first observe th a t, if t~ —>c b n  v in X P , then  there is tk 

such th a t t  —>c b n  tk in XPh  and t]~ =  v .  Indeed, if t~  is not whnf, neither is t, 

because (_)“ preserves whnf. Since —y, is term inating and (_)“ collapses h-steps, 

there is k  >  1 such th a t the weak head reduction of t looks like t =  t 0 —>>h ... —p, 

tk-1 —►# tk. Moreover, t j  =  t ~ , when 0 <  j  < k , and tk_ r —>C b n  t f .  But —>C b n  

is a function, hence t f  — v.

Now, suppose the weak head reduction of t~ in XP  term inates. From the last 

paragraph, it term inates w ith t]7, for some tk such th a t t  ^*CBN tk■ Is tk a whnf 

in XPh? If it is not, the weak head reduction of tk can a t most perform —y,-steps 

(otherwise t k would not be whnf in XP). But — is term inating. ■

Hence, we can use the machine of XPh  to perform weak head reduction of XP. 

Load the former with a AP-term  t and perform weak head reduction in XPh. If 

this term inates with u, re tu rn  u ~ . This works because of the previous lemma and 

t~ = t. Thus, the machine is correct.
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T h e o re m  19 (C o m p le te n e ss )  In  XVh, i f  t —V u and u  is a w h n f then the 

weak head reduction o f t  terminates (with a whnf).

P ro o f : By the properties of t~  —>* u~ and u~ is a  whnf. By Theorem 18, 

the weak head reduction of t~ in XV  term inates. Hence, by Lemma 65, the weak 

head reduction of t in XVh  term inates. ■

Notice th a t the machine associated with XVh  is very much like a Krivine 

machine w ithout environments [Krivine] [Curien and Herbelin, 2000], except th a t 

the  former runs programs in XVh, whereas the la tte r runs program s in A (i.e. 

X G).

Similarly to  XV, a term  in XV h  is either a whnf or is itself the redex to be 

reduced next. In the machine for XV, this redex is always a Pi-redex. In the 

machine for XVh, th is is not the  case, it may be a  h-redex. But the effect of 

/¿-reduction is to bring the value application to  the surface, th a t is, to  bring the 

applicative term  closer to  the  form of a  Pi-redex.

A Herbelin-style abstract machine

Now we want to obtain the weak head reducer associated w ith XVhx. We will 

present the definition of the  weak head reduction in X V hx  in the form of an 

abstract machine, which we nam e the  Herbelin-style abstact machine (HAM). 

The states, or dumps, of the HAM are defined as follows (where T erm  is the 

class of term s of XVhx):

D u m p  — T e r m  x E n v iro n m en t  x  Stack  

E n v iro n m en t  =  Binding*

Stack  =  T  erm*

B inding  = V a r  x T e rm

The m ain point is th a t dum ps should be regarded as AP/ix-terms. To make 

this more apparent, we will use a no tation  for bindings, environm ents and stacks
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th a t makes the reading of dumps as term s easier. Environments are ranged over 

by e, e', etc. Bindings are w ritten {x  :=  t} and ranged over by b. The cons of 

a new binding is w ritten {x  :=  t}e, the empty environm ent is w ritten  as a blank 

or as — and append of environments as ee!. Stacks are ranged over by I, I', etc. 

Let d, d', etc. range over dumps. The cons of a new term  is w ritten  as u  :: I and 

the empty stack as []. The term  associated to  the dum p

(f, {xi :=  Ui}...{xk := u k} J )

is

( , . . ( t { x  1 : =  U i } ) . . . { x k := u k} )  0  I

where

i © 0 = t 

t 0  (u :: I) = t {u ■ I) .

If we allow tb to represent a  mid-cut (although, crucially, in W h x  there  is no 

separate syntactic class of bindings), then the reading of dum p as term s is easily 

specified by: read {t,bi...bk ,l)  as (...(tbi)...bk) © I.

The transition  rules of the machine may be found in Table 7.1. Each row, 

except the rows defining the stopping or final states, defines a transition rule and 

displays the states of the machine before and after the  transition. We write d —» d! 

when d and d! are related by some transition rule. In rule H 3, if b = {a: := u}, 

sub(b. I) means sub(v, x. I).

It should be clear th a t, when dumps are seen as A'P/j.x-terms, there is a cor

respondence between transition  rules and reduction rules of W h x  as follows:

H I -  x2 H  2 - x l

H3 -  x4 HA - h

H5 — x3 H6  - bj

Rule H 7 corresponds to no reduction rule. As opposed to  rule H 4 (the other rule 

tha t pushes an object on top of a list) the effect of H 7 is not observed in W h x .
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(771) X {y  :=  t}e I X e

(772) X {x :=  t}e I t e

{S T O P ) X I — -

(773) t{u ■ I) be I' tb{ub ■ sub{b, I)) e

(774) t{u  - I) I' t

{S T O P ) Xx.t e 0 — —

(775) Xx.t be u :: I Xx.tb e

(776) Xx.t u  :: I t {x  :=  u}

(777) t { x  u } e I t {x  :=  u}e

r

u :: append',(1,1')

u ::

Table 7.1: Transition rules for the Herbelin-style Abstract Machine

The reason is clear. The stack of argum ents is a syntactic object of its own in 

the syntax of X V hx , whereas the list of bindings is not. Rule 776 corresponds to 

either 61 or 62 according to  whether ¿ is  [] or not.

Contrary to the simple machines for XV  and AV h,  the redex to  be reduced 

next is not always found a t the top level. However, observe th a t such desirable 

situation only fails for transition rules th a t correspond to  xi  reduction rules.

Let us give some operational intuitions for the HAM. We have in mind starting  

the machine with an initial state, i.e. a dum p of the form (t, —,[]), for some 

XVhx-term  t. A dum p consists of a term , which we might call the program., a 

list of bindings, called the environment, and a stack of arguments. The program 

operates over the environment and the  stack, bu t this is only a partially  correct 

m etaphor because rules 773 and 775 use the program  as a tem porary store. W hat 

is true is th a t, in the same way as we use the stack for storing argum ents as we 

go deeper in heacl-cuts (rule 774), we use the environment for storing bindings as 

we go deeper in mid-cuts (rule 777). Rules H I  and 772 perform a look-up in the 

environment. Rule 776 is the usual rule creating a  new binding and popping the
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stack.

The peculiarity of the HAM is seen in rules H 3 and H 5 and it derives from 

the fact th a t dumps must be interpreted as A'Phx-terms, and in W h x  we cannot 

separate the term  and the bindings of a mid-cut. A transition  H 3 is a preliminary 

step for H 4. The point is th a t, if the environment is not empty, there is no single 

reduction rule in W h x  th a t allows the argument to  pass over the bindings. T hat 

is why, by repeated application of H 3, we “hide” the environment, performing at 

the same tim e its duplication. Similarly, a transition H 5 is a prelim inary step for 

HQ. Before the application of HQ we have to  hide the environment behind the A 

by repeated application of HQ.

Given a dump d,, a t most one transition rule applies. We also want to  apply 

rules to  A'Phx-terms. This is done by fixing a  canonical way of seeing a term  t as a 

dum p d(t). O uter bindings and “argum ents” go to  the environment and the stack, 

respectively. For instance (Ax .t){y  u}(u  ■ I) becomes (Ax . t , { y  u } ,u  :: I). 

Therefore, given a term, at most one of the rules H I  to  HQ applies.

D e fin itio n  24 In W h x ,  the weak head (or call-by-name) reduction (notation: 

—>cbn) is defined as follows: t —>cbn t' i f  d(t) d ', fo r  some i €  {1, 2, 3,4, 5, 6} 

and d! such that d' is t! when seen as a term,. A W h x - t e r m  is a whnf i f  it has 

one of the foixas x ,  x(u  ■ I) or (Ax.t)e (any x , u, I, f, e in W h x ) .

Of course, (Ax . t ) e  is an iterated mid-cut. Relation —>c b n  hi W h x  is again a 

partial function also named C B N  . A W h x - te v m  t is a whnf iff C B N ( t ) is 

undefined. We define the weak head (or CBN) reduction of t as the repeated 

application of C B N  starting  from t. This process either term inates w ith a whnf 

of t, or diverges.

This time, if we regard C B N  as a machine, it is a version HAM ’ of the HAM in 

which H 7 steps are silent. Of course, the HAM and the HAM’ are essentially the 

same machine because the HAM can only perform a finite number of consecutive 

H I  transitions and a H I  transition does not change the reading of the dump as 

a term.

The difference between the HAM and the HAM’ is quite revealing. It shows
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th a t, contrary to  XV  and XVh, there is an ingredient missing in X V h x , namely

the im m ediate availability of the scope t of a “closure”

t { x i  :=  u i} . . . { x n :=  un} .

In the HAM ’, the search for t is implicit. In the HAM, it is done by the rule H 7,

which is not a reduction rule of XVhx.

We now prove correctness and completeness of the HAM ’. T he proofs are 

analogous to  Lemma 65 and Theorem  19. Recall m apping (_)b : X V hx  —► XVh.

Let x =  x l U x2 U x3 U x4. Then, —>x is term inating. One sees this by going 

to  C hapter 3 and recalling how xi steps are m apped first to  X V hx  and later to 

A3 and finally reusing the term ination result in [Dyckhoff and Urban, 2001] for 

explicit substitu tion rules and com muting conversion.

L e m m a  66  The weak head reduction of t in XVhx terminates iff the weak head 

reduction o f tb in XVh terminates. Moreover, i f  the form er terminates with u, 

the latter terminates with u b.

P ro o f : One goes back to  Proposition 10 and Lemma 30 and checks th a t a —̂  

or — step in XVhx  (at the top level) is m apped by (_)b to a similar step in 

XVh  (at the top level) and th a t a —>xi-step in XV hx  is collapsed by (_)b in XVh. 

Moreover, (_)b preserves whnf. This is sufficient for the “only if” part and the 

second statem ent.

As to  the “if” part, first, by the  same argum ent as in Lemma 65, using ter

m ination of —>x, one proves th a t if f  ~^c b n  v hr XVh, then there is R. such th a t 

t — > c b n  tk in XVhx  and t\ =  v.

Now, suppose the weak head reduction of t b in XVh  term inates. From the 

last paragraph, it term inates with tk , for some R. such th a t t ~^c b n  tk- Is tk a 

whnf in X V h x ? If it is not, the weak head reduction of R can a t m ost perform 

—>xi-steps (otherwise tbk would not be whnf in XVh). But —>x is term inating. ■

Hence, since tf = t when t is in XVh, both  the HAM and the HAM ’ are correct 

machines for performing weak head reduction of XVh.
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T h e o re m  20 (C o m p le te n e ss )  In W h x ,  i f  t  —A u and, u is a w hn f then the 

weak head reduction o f t  terminates (with a whnf).

P ro o f: By the  properties of (_)b, tb —>* r f  and ub is a whnf. By Theorem  19, the 

weak head reduction of tb in W h  term inates. Hence, by Lemma 66 , the weak 

head reduction of t in W h x  term inates. ■

One of the good characteristics of the  HAM is its neat organisation. First, 

the relation between head-cuts and the stack, and between mid-cuts and the 

environment. Second, the understanding of rules H I ,  H 3 and H 5 as preliminary 

steps for H 2 , H 4 and H 6 , respectively.

A nother characteristic is the proximity with W h x , and hence w ith cut elimi

nation. From a theoretical point of view, this is positive. From a practical point 

of view, this brings inefficiency. Since environments do not constitu te a  separate 

syntactic class in the syntax of W h x , the duplication of the environment by H 3 

is stepwise and rule H6  requires the environment to  be hidden (by rule H 5), so 

th a t it does not get in the way to  the  next argument.
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Conclusions

In this chapter we list the contributions of this thesis and propose future work.

8.1 Contributions

The contributions of th is thesis are the following.

First, a system atic definition of calculi of cut-elim ination for the canonical 

fragment. We considered several right protocols of cut-elim ination, with increas

ing degree of explicitness and stepwise character, starting  from X'P - a new iso

morphic copy of A-calculus as a calculus of cut-elim ination - and ending in Why:.  

W hen the  remaining m eta-operators of the la tte r  calculus are internalised, we 

obtain X V h x , a system close to  Herbelin’s A-calculus, bu t already outside the 

canonical fragment. This system atic process identified in XVhx  which (and a 

small number of) inter-perm utation of cuts are required for sim ulating full (3- 

reduction.

Second, a comprehensive study of the relationship between cut-elim ination 

for the canonical fragment and normalisation. Results here include the isomor

phism between XV  and A, the identification of the ::-free fragment of the canonical 

fragment, the definition of a generalisation of P raw itz’s mapping to non-normal 

proofs, the fact th a t both  G entzen’s and P raw itz’s mappings establish an isomor

phism between norm alisation and a certain cut-elim ination procedure, and the 

identification of the relation between Praw itz’s m apping and G entzen’s mapping.

237
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Third, the  introduction of a new proof-theoretical tool, nam ely certain  conser

vative extensions of natural deduction (and corresponding extension of A-calculus) 

based on the  idea of a built-in distinction between applicative te rm  and appli

cation, on the  one hand, and between head and ta il application, on the other 

hand. We proposed a new conceptual organisation of proof-systems and A-calculi 

based on the  observation th a t A-calculus is in the intersection of the ::-free and 

tail-application-free fragments.

Fourth, a  reassessment of the relationship between cut-elim ination in the 

canonical fragment and normalisation, by virtue of the introduction of the men

tioned conservative extensions of natu ra l deduction. This included the  definition 

of a m apping © th a t may be seen as a new assignment of A-terms, taken from 

the extensions of the A-calculus, to  proofs in the canonical fragm ent of sequent 

calculus. The main property of this assignment is to  be an isomorphism, both  in 

the sense of sound bijection of proofs and isomorphism of norm alisation proce

dures. Moreover, we had to  consider th e  issue of explicitness also in the natural 

deduction side. The conclusion is th a t (the existence of) isomorphism © is insen

sitive to a varying degree of explicitness in the cut-elim ination and normalisation 

procedures it bridges.

Fifth, a study of the proof-theoretical sta tus of explicit substitutions, con

cluding th a t the issue of explicit substitution in a term  calculus is correlated with 

the  inclusion or not of a cut constructor in a proof-system, and th a t both  issues 

are orthogonal to the sequent calculus versus natu ra l deduction divide.

Sixth, contributions to the com putational in terpretation of sequent calculus. 

On the one hand, the A-calculi for the canonical fragment were shown to be 

extensions of the A-calculus, with a constructor for applicative term s. Relatively 

to calculi in the natural deduction side, the difference is th a t applicative terms 

are built w ith the help of evaluation contexts, instead of ta il applications; and 

th a t, instead of being buried, the head application is available a t the  “surface” 

of the applicative term . This structu ra l difference explains th a t some reduction 

rules of A-calculi for the canonical fragment may be interpreted as transition rules 

for abstract call-by-name machines.
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Seventh, from a strict A-calculus point of view, the proposal of several exten

sions based on the idea of applicative term , and the proofs of conservativeness, 

subject reduction, confluence and strong norm alisation of typable term s.

3,2 Future work

In this thesis, we restricted ourselves to  (1) intuitionistic im plicational logic. 

(2) right protocols of cut-elim ination. (3) the canonical fragment of sequent 

calculus. Obeying such stringent constraints is methodologically correct. One 

must be m odular and separate the problems. Accordingly, the next step should 

be to  relax constraint (3) and study right protocols of cut-elim ination on the 

whole set of sequent calculus derivations for intuitionistic im plicational logic. We 

would be particularly  interested in investigating w hether there is an extension 

of na tu ra l deduction matching this step, and w hether the good properties of © 

resist. Of course, when constraint (3) is relaxed, the perm utability  problem is 

back again. However, we believe th a t a clearer understanding of the perm utation- 

free fragm ent will allow a fresh a ttack  on th a t problem.

We regard the study of the com putational in terpretation of sequent calcu

lus as a  contribution to an useful, and perhaps unexpected, extension of the 

Curry-Howard isomorphism. Unexpected, because we are not referring to the 

“cross fertilisation” [Cardelli, 1997] between type theory and program m ing lan

guages, by which strong logics offer sophisticated type systems and, conversely, 

program m ing features like, say, concurrency, challenge a logical understanding. 

The extension is of a different kind, observable even if we keep contenting our

selves w ith simple types and intuitionistic im plicational logic. It is an extension 

from natu ra l deduction to other kinds of proof-systems. W hat varies is not the 

logic, it is the system in which we w rite the proofs and v'here the norm alisation 

procedure lives. And correspondingly, in the com putational side, we seem to 

find different, useful approaches to A-calculus w ith benefits for its implementa

tion. T hink of H ilbert systems and com binators, think of the canonical fragment 

of sequent calculus and environment machines, think even of linear logic and
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proof-nets, on the one hand, and graph reduction [Wadsworth, 1971] and sharing 

graphs [Asperti and Guerrini, 1998], on the other hand. We believe th a t the most 

im portant thing to do in the future is the  full investigation of this new dimension 

in the expansion of the Curry-Howard correspondence.
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