
Conservative extensions of the A-calculus

for the computational interpretation of

sequent calculus

José Carlos Soares do Espirito Santo

Doctor of Philosophy

Laboratory for Foundations of Computer Science

Division of Informatics

University of Edinburgh

2002

Abstract

This thesis offers a study of the Curry-Howard correspondence for a certain

fragment (the canonical fragment) of sequent calculus based on an investigation

of the relationship between cut elimination in th a t fragm ent and normalisation.

The ou tpu t of this study may be summarised in a new assignment ©, to proofs

in the canonical fragment, of term s from certain conservative extensions of the

A-calculus. This assignment, in a sense, is an optim al improvement over the

trad itional assignment </?, in th a t it is an isomorphism bo th in the sense of sound

bijection of proofs and isomorphism of normalisation procedures.

First, a system atic definition of calculi of cut-elim ination for the canonical

fragment is carried out. We study various right protocols, i.e. cut-elim ination

procedures which give priority to right perm utation. We pay particular attention

to the issue of what parts of the procedure are to be implicit, th a t is, performed

by m eta-operators in the style of na tu ra l deduction. Next, a comprehensive study

of the relationship between norm alisation and these calculi of cut-elim ination is

done, producing several new insight of independent interest, particularly concern

ing a generalisation of P raw itz’s m apping of normal natu ra l deduction proofs into

sequent calculus.

This study suggests the definition of conservative extensions of natural deduc

tion (and A-calculus) based on the idea of a built-in distinction between applica

tive term and application, and also between head and tail application. These

extensions offer perfect counterparts to the calculi in the canonical fragment, as

established by the m entioned m apping 0 . Conceptual rearrangem ents in proof-

theory deriving from these extensions of natural deduction are discussed.

Finally, we argue th a t, computationally, botli the canonical fragment and na t

ural deduction (in the extended sense introduced here) correspond to extensions

of the A-calculus w ith applicative terms; and th a t w hat distinguishes them is the

way applicative term s are structured. In the canonical fragment, the head appli

cation of an applicative term is “focused” . This, in turn, explains the following

observation: some reduction rules of calculi in the canonical fragment may be

interpreted as transition rules for abstract call-by-name machines.

Acknowledgements

I am very grateful to my supervisor Samson Abramsky for his guidance and

encouragement and also for being patien t w ith my slow progress.

Thanks are also due to Alex Simpson, Ian Mackie and Harold Schellinx, who

kindly helped me in several ways.

I was supported by Fundagao para a Ciencia e Tecnologia, Portugal, grant

PRAXIS X X I/B D /1 1273/97.

Paul Taylor’s macros for diagram s and proof trees were used in typesetting

this thesis.

My colleagues Cristian, M atias, Dilsun, Bruce, Marco and Sibylle made my

stay a t LFCS more enjoyable. I will always relate Edinburgh w ith Joseph and

Long Shun.

Some colleagues at Minho must be mentioned: Fernando M iranda for being

helpful, Luis P into and Jorge Sousa P into for their interest in my work.

Some friends made indirect, bu t im portant contributions: Helder, Milucha

and Susana.

I thank my parents for their high expectations.

I am indebted to my mother-in-law M aria Alexandra for her immense gene

rosity.

Finally, I am deeply grateful to my wife Luisa for her background support,

w ithout which this work would not have been done.

Declaration

I declare th a t this thesis was composed by myself, th a t the work contained herein

is my own except where explicitly sta ted otherwise in the tex t, and th a t this work

has not been subm itted for any other degree or professional qualification except

as specified.

(José Carlos Soares do Espirito Santo)

D edicated to André and Pedro

IV

Table of Contents

1 In t r o d u c t io n 1

1.1 Curry-Howard correspondence and sequent c a lc u lu s 3

1.2 C ontribution of this t h e s i s .. 13

2 B a c k g ro u n d 20

2.1 A cut-elim ination p ro c e d u re ... 20

2.2 Herbelin’s s y s te m .. 26

3 A f ra g m e n t o f se q u e n t ca lc u lu s 36

3.1 The A P-calculus... 37

3.2 Independent left perm utation .. 55

3.3 Explicit right p e rm u ta t io n ... 69

3.4 A fully explicit s y s t e m .. 80

4 N o rm a lis a tio n as c u t-e l im in a t io n 91

4.1 A presentation of A ... 91

4.2 M appings T and © ...106

4.3 The isomorphism t h e o r e m ...113

5 G e n tz e n v e rsu s P ra w itz 128

5.1 G entzeirs m a p p in g ...128

5.2 P raw itz’s m a p p i n g ...132

5.3 The nature of X A f .. 138

5.4 M apping Q .. 150

v

6 E x te n s io n s o f n a tu r a l d e d u c t io n 164

6.1 Head and tail e lim in a tio n s ...164

6.2 Explicit su b s titu t io n s ... 184

6.3 A new la n d s c a p e ..207

7 T w o a p p lic a tio n s 218

7.1 Refinement of com putational in te rp re ta tio n ... 218

7.2 Call-by-name abstract m a c h in e s .. 225

8 C o n c lu s io n s 237

8.1 C o n tr ib u tio n s ...237

8.2 Future w o r k .. 239

B ib lio g ra p h y 241

In d e x 247

vi

List of Figures

6.1 N atural deduction c o u n te r p a r t s ... 208

6.2 The old landscape (simple version) .. 210

6.3 The old landscape (detailed version) ... 215

6.4 The new la n d s c a p e ... 216

vii

H ® ® tit* S®8®803 ¡1 §List of Tables

1.1 The A-calculus... 16

1.2 Typing rules for A .. 17

2.1 Sequent calculus inference r u l e s .. 21

2.2 Inference rules for H erbelin’s sequent calculus 29

2.3 C uts for Herbelin’s sequent c a lc u lu s ... 31

2.4 The A-calculus... 32

3.1 The A P-calculus... 38

3.2 Typing rules for X V .. 39

3.3 T he A 'Ph-calculus.. 56

3.4 Typing rules for XVh .. 57

3.5 From XVh to X V .. 62

3.6 The A 'P /ix -ca lcu lu s.. 70

3.7 Typing rules for AV h x ... 71

3.8 From A V h x to XV h .. 75

3.9 The A P /ix -ca lcu lu s .. 81

3.10 Typing rules for A V h x ... 82

3.11 From XV hx to A V h x ... 84

3.12 From A V h x to A3 .. 88

4.1 The A jV -ca lcu lu s ... 92

4.2 Typing rules for Aj \ f .. 93

4.3 From A to AJ\f... 94

4.4 From AJ\f to A... 97

vui

4.5 From AJ\J to X V ...107

4.6 From XV to AN .. : ...107

6.1 The X N h -ca lcu lu s ... 166

6.2 Typing rules for X N h .. 167

6.3 From XJ\fh to AN ... 171

6.4 The A x-calcu lus...186

6.5 The XJ\fhx-c a lc u lu s ..187

6.6 Typing rules for X A f h x ...188

6.7 From AjVTix to AJ \ f h .. 189

7.1 Transition rules for the Herbelin-style A bstract Machine233

ix

Chapter 1

Introduction

The Curry-Howard correspondence [Curry and Feys, 1958, Howard, 1980], in its

simplest form, establishes a connection1 between na tu ra l deduction for the intu-

itionistic im plicational logic and simply typed A-calculus. W hen types are seen

as formulas, A-terms may be seen as proofs of their types in na tu ra l deduction.

W hen formulas are seen as types, proofs may be seen as program s in a rudim en

ta ry program m ing language, actually the core of functional languages. Moreover,

up to th is correspondence, norm alisation in natu ra l deduction is the same as /3-

reduction in A-calculus. The correspondence may, then, be extended to much

stronger type theories [Barendregt, 1992], which integrate, according to the per

spective, b o th a proof system for a constructive logic, and a functional language

with a sophisticated type system .2

This thesis is about extensions of the Curry-Howard correspondence, bu t in

the sense of investigating whether it holds for other kinds of proof systems. Ac

tually, the correspondence was first observed for com binatory logic, which is the

type-theoretic counterpart of H ilbert systems [Curry and Feys, 1958]. Here we

study the extension of the correspondence to sequent calculus. Therefore, we are

interested in the project of finding a program m ing calculus whose term s may be

put in 1-1 correspondence with the proofs of a sequent calculus, in such a way

1 W hether this connection is an isomorphism or not is highly sensitive to technical formalities
like the style of typing (d la Curry or a la Church) or the m anagement of labels in natural
deduction [Hindley, 1997]

2The correspondence may also be extended to classical logic [Griffin, 1990, Parigot, 1992].

1

Chapter 1. Introduction 2

th a t each step of cut elim ination reads as an execution step in the correspond

ing program and vice-versa. In this thesis we restrict ourselves to intuitionistic

im plicational logic.

Recently, it has been clearly dem onstrated the interest of extending the Curry-

Howard correspondence to sequent calculus. We take the following quotation from

[Curien and Herbelin, 2000]:

(...) The correspondence between programs and proofs is trad ition
ally explained through natu ra l deduction (...). We believe th a t this
trad ition is in good part misleading. (...) Sequent calculus is far more
well-behaved than natural deduction: it enjoys the subformula prop
erty, and destruction rules - cuts - are well characterized in contrast
with the elimination rules of natural deduction which superimpose
both a construction and a destruction operation: the application is a
constructor in a term x M , bu t is destructive in a term (Ax .M)N .

Let us emphasize th a t the real challenge in the Curry-Howard correspondence

is th a t the term calculus must be meaningful in program m ing term s. This is what

we mean by a computational interpretation. As observed in [Abramsky, 1993],

W hat is particularly satisfying about this correspondence in the case
of Intuitionistic Logic is th a t the formalism on the com putational side
is immediately recognisable as an attractive program m ing paradigm.

Otherwise, we are left with the void exercise of converting a proof system into

the type system for some anonymous term calculus.

Now, the search for the desired programming calculus does not s ta rt from

square zero. Actually, it s ta rts from the A-calculus. This is quite natu ra l because

there are close links between sequent calculus and natu ra l deduction. Specifically,

there is a well-know mapping p> introduced in [Prawitz, 1965] and deeply studied

in [Zucker, 1974, Pottinger, 1977] th a t assigns natu ra l deduction proofs (hence A-

terms) to sequent calculus proofs. M apping ip in terprets axioms as assum ptions,

right inferences as introductions, every left inference as a certain combination of

an application and a substitution, and cuts as substitutions.

Assignment ip is the starting point of this thesis as well. However, this as

signment is far from giving an extension of the Curry-Howard correspondence to

Chapter 1. Introduction 3

sequent calculus. The A-calculus has to be refined and extended in several ways

in order to describe cut elimination. In the following, we review previous work

attem pting to tu rn ip into a Curry-Howard correspondence. Later on, we explain

the contribution of this thesis to the same goal.

1.1 Curry-Howard correspondence and sequent cal

culus

Just a few years ago, the situation as to the possibility of extending to sequent

calculus the Curry-Howard correspondence seemed discouraging.

From an algorithmic point of view, the sequent calculus has no Curry-
Howard isomorphism, because of the m ultitude of ways of w riting the
same proof.[Girard et al., 1989]

This rem ark refers to the possibility of perm utation of rules, observed both in

classical and intuitionistic sequent calculus [Troelstra and Schwitchtenberg, 2000,

Kleene, 1952]. A nother m anifestation of this is the fact th a t the trad itional m ap

ping ip from intuitionistic sequent calculus to na tu ra l deduction is not injective

[Zucker, 1974]. As a consequence, the trad itional assignm ent of A-terms to se

quent calculus proofs does not produce a Curry-Howard correspondence 3.

Furtherm ore, even in a paper where a term calculus w ith typing rules in the

style of sequent calculus is proposed, one may read:

The reader has probably noticed th a t our operational semantics is
quite different from the cut elimination rules; m any of these rules do
not seem to have com putational significance, a t least not in the spirit
of current programm ing practice.[Kesner et ah, 1995]

W hether real or apparent, these difficulties did not stop the search for a

Curry-Howard correspondence for sequent calculus in the last ten years or so.

Quite naturally, pioneer works attem pted a direct in terpretation of the fact

th a t in sequent calculus one has left introduction rules. The basic idea was th a t

3For a different opinion, see [Barendregt and Ghilezan, 2000],

Chapter 1. Introduction 4

right rules produce data, whereas left rules consume it [Abramsky, 1993]. Hence,

left rules seemed to correspond to pattern matching, an insight th a t goes back to

[Lafont, 1989]. For instance, using the notation of [Wadler, 1993], the left rule

for conjunction looks like

________ r , J : A , y \ B 1- t : C________
T, z : A A B b case z = (ar, y) o f t : C

The constructor case z = (x, y) o f t wants to decompose a value z of type

A A B into the two components x and y. This m atches w ith the right rule for

conjunction, which produces values of the form (u ,v) , where u has type A and v

has type B. The rule th a t does the actual m atch is cut

T \~ u : A T , x : A \ - t : B
P h let x be u in t : B

The intended meaning of these 4 constructors is

let z be (u ,v) in (case z = (x ,y) o f t) —> t[u /x \[v/y\ . (1.3)

A nother possibility offered by sequent calculus and fully exploited since the

early days is the fact th a t inference rules may act in any formula of the sequent,

unlike natu ra l deduction (in sequent style), in which only the RHS formula is

transform ed. This suggests a system of term assignment in which not only the

RHS formula, bu t instead any formula of the sequent is assigned a term , record

ing, so to say, its history. Let us call this kind of system asynchronous. Indeed,

there is no term recording the global history of the derivation. For instance,

instead of (1.1), one has

4 We started with conjunction instead of im plication, which is the connective we are interested
in, because the case constructor for the left introduction of im plication has a very unusual form

r I- u : A T . y : B \- v : C
F, z : A D B b case z = Xu.y o f v : C

The notation Xu.y is due to [Lafont, 1989]. The idea is to match Ax. t w ith Xu.y, similarly as
we match (u, v) with (x , y) . The reduction rule is

let z be Xx.t in (case z = Xu.y o f v) v[t[u/x} /y] .

Chapter 1. Introduction 5

r ,p : A, q] B \~ t : C . .
r, (p,g) : A A B h t : C 1 ' ’

Here, F contains declarations of patterns p : A. Observe how the term t remains

unchanged. The first system fully developed along these lines seems to have been

a term assignment system for classical linear logic in [Abramsky, 1993].

Asynchronous term assignment systems have the potential of modelling nested

patterns, like (x, (y, z)). This line of research was pursued in [Kesner et ah, 1995]

and [Cerrito and Kesner, 1999]. A nother characteristic is th a t these systems are

highly insensitive to perm utation of rules. To see this, suppose T in (1.4) is of the

form To, p' : A, y' : B ' and suppose we want to construct b o th A / \ B and A 1 A B ’.

Independently of the order by which the two instances of the left rule occur, the

final sequent will be

F0, (p \ q!) '■ A ' A B ' , (p, q) : A A B \~ t : C

There is no global record telling which conjunction was built first.5 Let us give

another example. Suppose in (1.4) t is of the form Xx.to and suppose we build a

cut w ith cutform ula C, whose left subderivation is a derivation ending with (1.4).

The term annotating this cut is of the form

let z be Xx.to in u . (1-5)

In this annotation we have direct access to the last tim e a right rule was applied

in the left subderivation. In a synchronous system, the access to the last right

rule is gained by explicitly perm uting the cut to the left.

Asynchronous term assignment system are a very interesting approach to the

problems caused by perm utability of rules in sequent calculus. Nevertheless, it is

an approach we do not follow here. This is so because, in this thesis, we avoid

the perm utability problem in a different way, by studying a perm utation-free

fragment of the sequent calculus, as explained below.

5This is why the mentioned term calculus for classical linear logic in [Abramsky, 1993] is
proposed as an alternative to proof-nets [Girard, 1987],

Chapter 1. Introduction 6

Once we decided not to follow the p a th of, say, [Kesner et ah, 1995], the analy

sis of sequent calculus so far leaves us w ith a system of the kind of [Wadler, 1993],

where left rules are interpreted as p a tte rn m atching constructors. We are back to

(1.1) and (1.2). Now, some obscure points remain in this in terpretation. W hat

does it mean the left perm utation of cuts, a necessary feature in this setting as ex

plained above when discussing (1.5)? A nother example is the m ism atch between

the intended meaning of p a tte rn m atching constructors (1.3) and w hat happens

in the key step of cut elimination

let z be (u, v) in (case z = (x , y) o f t) —> let y be v in (let x be u in t) , (1.6)

where the LHS cut, with cut formula A / \ B , say, is replaced by two cuts w ith cut

formulas A and B , respectively. How do the two le t’s in the RHS of (1.6) relate

to t[u/x][v/y\ in the RHS of (1.3)? Take, for instance, let x be u in t. In term s

of cut elimination, w hat we want is to perm ute to the right the cut represented

by this let. In other words, we want to perm ute u inside t and, somehow, this is

to be related to t[u/x]. While people were thinking about this, a new m etaphor,

a new conceptual tool appeared - th a t of explicit substitution [Abadi et al., 1991]

- th a t provided the right language in which to describe the portion of the cut

elimination process we are analysing. The right perm utation of let x be u in t

eventually performs t[u/x], bu t in a stepwise fashion. W hile the cut in the LHS

of (1.6) m atches the pair (u , v) with the pa ttern (x, y), the cuts in the RHS of

(1.6) are explicit substitutions and (1.6) should be rew ritten as

let z be (u ,v) in (case z = {x,y) o f t) —> t (x := u)(y := v) . (1.7)

This is the first piece of evidence th a t cuts bear different in terpretations according

to the stage of cut elimination they are going th rough .6

Several refinements of the traditional assignment <p of A-terms to sequent cal

culus proofs are suggested. Instead of interpreting cut as (“m eta”-)substitution,

one should interpret it as explicit substitution:

GThe im pact of this observation is clear in the evolution of the system of [Kesner et ah, 1995]
to that of [Cerrito and Kesner. 1999],

Chapter 1. Introduction 7

r b u : A r, x : A b t : B
T b t (x := u) : B

B ut th is is so only for newly-born cuts, which are willing to be perm uted to the

right, like those in the RHS of (1.7). Key cuts, like the cut in the LHS of (1-7),

should, for the moment, be annotated with a matching constructor, as in (1.2).

As firstly observed by [Gallier, 1993], explicit substitu tions allow, then, to

express in the term calculus (some of the) stepwise cut elim ination rules (see also

[Vestergaard and Wells, 1999]). This idea was fully realized for the first time in

[Herbelin, 1995]. Furtherm ore, as suggested in [Barendregt and Ghilezan, 2000],

explicit substitu tions improve th e situation as to the perm utability problem, if

one refines the traditional term assignment of left rules. For instance, the left

rule for im plication becomes

r b u : A F , y : B h t : C
T, x : A D B b t (y := xu) : C

Explicit substitu tion shows up in the place where m eta-substitu tion appeared

according to the old assignment. Let us see an example, taken from op. cit. (we

will be negligent about contexts). By perm uting the two rules of

..., x : C, w : B b w : B
 Rigflt

z : A h z : A ..., w : B b (Xx.w) : C D B (1.8)
 ------ ----------------------------L e f t
. . . ,z : A , y : A D B b (\x .w) (w := yz) : C D B

one obtains

. . . ,z : A h z : A ..., x : C, w : B b w : B
-- L e f t
..., x : C, z : A , y : A D B h w(iu := yz) : B

---R ight
z : A , y : A D B b Ax .(w (w := yz)) : C D B

In the trad itional term assignment, these two proofs would get the term Xx.yz.

W ith the new assignment, the distinction between these two proofs is reflected

in the distinction between (Ax.w)(ui := yz) and \x . (w (w yz)).

U nfortunately, explicit substitutions are not a panacea. Let us consider the

following situation (we focus on im plication from now on):

Chapter 1. Introduction 8

d\ d2

: : d3
... b u : A ..., x : B b t : C '. /-i Q\
-- L e f t ■ \ ■)

z \ A D B b £(x := zu) : C ... ,y : C b t' : D
— C ut

..., z : A D B b t!(y t (x := z u)) : D

Assume th a t the last inference of d3 is a left rule th a t introduced the displayed

C w ithout (implicit) contraction. This cut is, thus, right-perm uted, i.e. cannot

be perm uted to the right any further. On the other hand, it is left-perm utable.

The result of perm uting it over the displayed left inference is

do d'3

di
(1 .10). . . , x : B t - t :..., h :

---C ut
... b u : A . . . ,x : B b t'{y t) : D
-- L e f t

..., z : A D B b t '(y := t) (x := zu) : D

W ith the present assignment of term s, this perm utation reads

t '(y := t (x := zu)) —» t!(y := t) (x := zu) .

This is an unnatural and unusual rule. It seems th a t the explicit substitu tion

m etaphor, appropriate as it is for describing the right perm utation of cuts, is not

appropriate anymore for the left perm utation. So we are, again, in need of a new

idea.

A radical new idea may be found in [Herbelin, 1995]. The problem of per-

m utability is completely avoided by interpreting, not the whole sequent calculus,

bu t a perm utation-free fragment of it. The point is th a t nothing is lost in this

fragment, as it proves the same sequents as full L.J. At the same time, cut-free

proofs in this fragment are in 1-1 correspondence w ith normal natu ra l deduction

proofs. Actually, the fragm ent has many “structu ra l” advantages, as emphasized

in [Dyckhoff and Pinto, 1998]: for instance, head variables are brought to the

surface of an applicative term x N x...Nk, let alone the fact th a t it keeps being a

sequent calculus, therefore keeping the subformula property.

Chapter 1. Introduction 9

In fact, this fragment, which we call the canonical fragm ent (or the frag

ment of canonical proofs), was rediscovered several tim es [Danos et ah, 1997,

Dyckhoff and Pinto, 1999, Mints, 1996].' In a cut-free setting, bo th [Mints, 1996]

and [Dyckhoff and Pinto, 1999] called the proofs in the fragm ent “norm al” and

showed th a t they are the proofs irreducible w .r.t. a set of perm utation rules.

Since we will not restrict ourselves to a cut-free setting, we cannot adopt the

“norm al” terminology. [Danos et al., 1997] shows th a t the fragm ent is closed for

the “¿g-protocol” - or ra ther the ¿-protocol, as the fragment we have in mind

requires, in the terminology of op. cit., all formulas to be ¿-coloured. We will

come back to the relation between the ¿-protocol and H erbelin’s cut elimination

procedure.

The canonical fragment will be explained in detail in C hapter 2. However,

we show briefly here how the in terpretation of reduction step (1.9) —* (1-10)

improves.

The restriction defining the canonical fragment is such th a t in (1.9) and (1.10)

B = B \ D ... D Bk D C and C = C\ D ... D Cm D D, for some k ,m . Moreover,

derivation (¿2 (resp. (¿3) consists of the stack of k (resp. m) left inferences, starting

from axiom C h C (resp. D P D), th a t builds the B = B \ D ... D 5 ;c D C (resp.

C = C\ D ... D Cm D D) displayed in its end-sequent, and is annotated w ith a

list of term s I = [iq ,..., iq,] (resp. I' = [u [,..., v'm]), where ry (resp. v[) annotates

the left subderivation of the i-th left inference in the stack (from bo ttom to top).

The annotation for each left inference in those stacks is consing (notation ::) and

for the axioms C P C and D b D is the em pty list (notation []). Since the

formulas

' [Troelstra and Schwitchtenberg, 2000] attributes the identification of the fragment to Curry,
011 the basis o f a passage of [Howard, 1980]. See Chapter 2. As to [Danos et al., 1997], we are
thinking of the intuitionistic, ¿»coloured restriction of LK V.

Chapter 1. Introduction 10

C D

B k D C Cm D D

5 fc_! D B k D C and Cm- 1 D Cm D D

B = B XD ... D B k D C C — C\ D ... D Cm D D

successively introduced in those stacks are linear and m ain (in the usual sense of

sequent calculus), they do not get a variable. The new annotations for (1.9) are

di d2

d3
... \- u : A ..., B b I : C '.
 L e f t •

z : A D B \~ z(u :: I) : C . . . , C h l ' : D
 C ut

.. . ,z : A D B b (z{u :: l))l' : D
The displayed left inference is assigned z{u :: I). This is not simply consing

because A D B is not necessarily linear. An informal reading of z{u :: I) is th a t

2 is “applied” to u, w ith I providing further argum ents. Let t = z(u :: I). Then,

the displayed cut is annotated with t l ' . Again, th ink of th is as an application,

where I1 provides m arguments.

As to (1.10), the new assignment is

do ds

d { :
; . . . , B \ ~ l : C ..., C \~ I : D

-------------------------- C ut
... b u : A ..., x : B \~ W : D

L e f t

(1.12)

...,z : A D B b z{u :: (W)) : D
The displayed cut is of a new kind, between the two list I and I'. This is notated

W and should be understood as an explicit append, or “concatenation” . The left

perm utation (1.11) —► (1 .12) now reads

(z(u :: OK - z{u :: (ll1)) . (1.13)

Cut elimination will keep perm uting d$ over do and, in the term calculus, this

corresponds to a stepwise performance of the append of I w ith I'. The final result

Chapter 1. Introduction 11

of this perm utation is a stack of k + m left inferences, starting from axiom D b D

and generating B = B \ D ... D B k D C\ D ... D Cm D D.

The rem arkable result of Herbelin is th a t the Curry-Howard counterpart to his

sequent calculus is a version of the A-calculus w ith explicit substitutions, bu t in

which applicative term s no longer have the form (...{tui)...Uk) bu t instead have the

form t [u i , Wfc]. These two ways of representing applicative term s are regarded

by Herbelin as explaining the difference between a sequent calculus structure and

a natu ra l deduction structure. As to cut elimination, H erbelin’s system is the

first with several kinds of cuts bearing different com putational interpretations.

In his own words

Each elementary step of cut-elim ination exactly m atches w ith a (3-
reduction step, a substitu tion propagation step or a concatenation
com putation step.

S ubstitu tion propagation corresponds to right perm utation and “concatenation”

of lists is related to the left perm utation. As to the key-step of cut elimination,

observe th a t a key-cut is a right-perm uted cut whose left subderivation ends with

a right rule. It has the form

d d' d"

. . . ,x : A b t : B ... h u : A B b I : C
----------------------R i g h t ---------------------------------------L e f t

... • Xx.i : B , . , f 3 B h u : : l : C
--C ut

... h (Ax .t) (u :: I) : C

Hence, a key-cut is a kind of /3-redex. The key-step of cut elim ination produces

d' d

'■ d"
... b u : A x : A h t : B ;
-------------------- Cut

... b t l x := u) : B B h C . C
--C u t

... b t(X := u)l : C

Instead of a “¡3-reduction step” , this is a freia-reduction step, in the terminology

of explicit substitution calculi [Abadi et al., 1991], as it is the step th a t generates

an explicit substitution.

Chapter 1. Introduction 12

The weak point of this in terpretation is the meaning given to (1.13). Is it

a “concatenation com putation step” ? A better in terpretation is obtained by a

combination of two observation. F irst, the effect of (1.13) is to bring the head

variable 2 to the surface, so to speak. Second, an in terpretation in term s of “lists” ,

“concatenation” and so on seems too literal. Already in [Herbelin, 1995] this was

recognised, as the idea of “applicative context” is briefly m entioned in connection

w ith the idea of lists. An applicative context (other names: call-by-name evalua

tion context, or continuation8) is an expression of the form (...([—]ui)...Ufc), where

[—] represents a “hole” . W hen a term t is “filled” in the hole, an applicative term

(...(tui)...Uk) results.

In [Curien and Herbelin, 2000], the in terpretation of lists as evaluation con

texts was fully developed. Cuts tl are interpreted as t filled in the hole of I.

Consing u :: I means filling the hole of I w ith [—]u. A lthough cuts of the form 11'

were not considered in op. cit., it is clear th a t they correspond to the composition

of contexts, in an obvious sense. As sketched in op. cit., it results th a t reduction

rules close to (1.13), namely

(t[u])l -> t(u :: I) ,

model certain transition rules of environment machines like K rivine’s machine

[Krivine]. Here, lists receive yet another interpretation, as stacks in the abstract

machines terminology.

The search for the com putational in terpretation of sequent calculus reached its

highest point in [Curien and Herbelin, 2000]. In this paper it is argued th a t there

is a Curry-Howarcl m atch between the symmetry of classical logic, as expressed

in the sequent calculus L K , and implicit symmetries of program m ing languages

like program /context and call-by-name/call-by-value.

sThe idea of evaluation contexts may be traced back to [Felleisen et al., 1986].

Chapter 1. Introduction 13

1.2 Contribution of this thesis

The story we have just told may be seen as a long struggle for improving the

trad itional assignment ip of A-terms to sequent calculus. Manifestly, A-calculus is

too poor a language to express w hat is going on in cut elimination.

In accordance with the main requirem ent for obtaining a Curry-Howard inter

pretation, several authors proposed to extend the A-calculus w ith features which

were meaningful from a program m ing point of view, like p a tte rn m atching, or were

theoretical tools introduced for reasoning about programs, like explicit substitu

tions or evaluation contexts. We say th a t these extensions are of a computational

nature.

In th is thesis we propose a new assignment 0 , to the canonical fragment of

sequent calculus, of term s from certain conservative extensions of the A-calculus.

The m ain property of © is to be an isomorphism, both in the sense of sound

bijection of proofs, and in the sense of isomorphism of norm alisation procedures.

The extension of A-calculus proposed is based on the idea of a built-in dis

tinction between applicative terms and applications, and also between head and

tail applications.

This extension is proof-theoretical in nature, for three reasons. F irst, it does

not leave the framework of natu ra l deduction - actually it represents an extension

of it. Second, it is m otivated by an analysis of a m apping from natu ra l deduc

tion to sequent calculus introduced by Prawitz. Third, the issue of explicitness

(in particular, the issue of explicit substitutions), already present in the compu

ta tional interpretations mentioned above, will be taken seriously here from the

point of view of norm alisation procedures (both for sequent calculus and natura l

deduction), their relationship and interpretation.

As to the com putational in terpretation of sequent calculus, we have seen how

the identification of the canonical fragm ent of sequent calculus allowed a modular

approach, by which the perm utability problem is abstracted away, and a smaller

system - precisely th a t closer to na tu ra l deduction - is studied first. Here we

do the inverse, so to speak. By extending natura l deduction so as to obtain a

system isomorphic (but far from equal) to the canonical fragment, we will be able

Chapter 1. Introduction 14

to separate, in the interpretation of the la tter, among the features added to A-

calculus, the feature th a t characterises com putationally the canonical fragment,

from the features th a t were added because A-calculus is a weak system of natura l

deduction.

It tu rns out th a t the com putational in terpretation of bo th the canonical frag

ment and natural deduction (in the extended sense introduced here) is certain

extensions of the A-calculus w ith applicative terms. Moreover, w hat distinguishes

com putationally the canonical fragm ent from natura l deduction is the way ap

plicative term s are structured. In the natural deduction side, applicative terms

are built out of head and tail eliminations, and the head application is deeply

buried. In the canonical fragment, applicative term s are built out of an evaluation

context and the head application, and the la tter is “focused” , i.e. immediately

available.

As to proof theory, we think th a t, after the identification of the canonical

fragment, there was no systematic study of cut-elim ination in this fragment and

its relation with normalisation. We regard as a contribution of th is thesis the

system atic definition of calculi of cut-elim ination for the canonical fragment, as

well as the comprehensive study of the relationship w ith natu ra l deduction th a t

follows. Moreover, we show how the idea of a built-in distinction between ap

plicative term and application, simple as it is, causes a vast rearrangem ent of the

relationship between sequent calculus, natu ral deduction and A-calculus.

Overview of the thesis

In C hapter 2 we fix notations definitions and terminology as to sequent calculus

and cut elimination. It also provides the proof-theoretical background for the

following chapters.

In C hapter 3, calculi of cut elimination for the canonical fragment are sys

tem atically developed.

In Chapters 4 and 5 we produce the study of the relationship between cut

elimination in the canonical fragment and normalisation.

In C hapter 6 , extensions of natu ra l deduction are defined which provide per-

Chapter 1. Introduction 15

feet counterparts to the calculi defined in the canonical fragment. T he m apping

0 m ediates between these two kinds of calculi.

In C hapter 7, applications to the com putational in terpreta tion of sequent

calculus are discussed.

In C hapter 8 , we summarise the contributions of this thesis and propose future

work.

Notations and terminology

T y p e s : We just trea t intuitionistic im plicational logic. Formulas (or types) are

given by

A , B , C , D ::= p\ A D B

where p ranges over propositional letters. As usual, we assume th a t implication

is bracketed to the right. E.g. A D B D C = A D (B D C) .

C o n te x ts : A context is a consistent set of declarations x : A. By consistent

we mean th a t if x : A and x : B are in a context, then A = B. Contexts are

ranged over by F. We write x E F meaning x : A £ T for some A. T, x : A denotes

the consistent union FU {.r : A}, which means th a t, if x is already declared in T,

then it is declared with type A.

R e w rit in g : If R is a binary relation (sometimes called a notion of reduc

tion) on a set of terms, then — denotes its com patible closure and —>+, —>* the

usual closures of — We will never deal w ith conversion. Therefore, = will

always mean equality. If —>r is confluent, J./? denotes the associated normal-form

mapping. Usually we write i?i, R 2 instead of Ri U R 2.

A -calculus: See Table 1.1. We only work w ith pure terms. As usual, we

assume th a t application is bracketed to the left. E.g. M N \ N 2 = (M N i)N 2.

Typing is a la Curry. See Table 1.2. Sequent(s) above the deduction line of a

typing rule are the premiss(es) of the rule and the sequent below the deduction

line is called its conclusion. The order of premisses in rules m atters, and is as in

Table 1.2, so th a t we can refer w ithout ambiguity to the left premiss or the right

Chapter 1. Introduction 16

Table 1.1: The A-calculus

(Term s) M , N ::= x | X x .M | M N

((5) (X x .M)N - * M [N /x \

where

x [N /x } = N

y[N /x \ = y .
(A y .M)[N /x] = X y .M [N /x]

(M M ')[N /x \ = M [N /x \M '[N /x)

subderivation. The left premiss of Elim, is also called the main premiss. We may

refer to E l im (resp. In t r o) as the elimination (resp. introduction) rule.

A value is a variable or a A-abstraction [Plotkin, 1975]. If a A-term is not a

value, it is an applicative term. Given an application M N , we say the application

is a value application if M is a value.

In [Joachimski and Matthes] the syntax of the A-calculus is given as follows:

M, N ::= x | Ax .M \ x N N | (X x .M) N N

Here N ranges over (possibly empty) “vectors” of A-terms. This is an informal

device for bringing head variables and redexes to the “surface” of applicative

terms. In this thesis we will find formal ways of achieving the same effect.

For future reference, we give here the following definition.

D e fin itio n 1 (C o m p a tib le c lo su re) Given a binary relation R on X-terms.

the compatible closure —>r is the least binary relation on \ - te rm s containing

Chapter 1. Introduction 17

Table 1.2: Typing rules fo r A

y a r _____________ In tro X ' ^ ^ ^ ^ x d FVar r , x : A h x : A In tr o p |- \ x . M : A D B ^

F]im T \ - M : A P B F h N - . B
a a m - p p M N . B

R closed under:

M ->■ M 'In tro
Ax . M -> Ax .M '

R e n a m in g o f b o u n d v a r ia b le s : a-equi valent term s are seen as equal. Re

nam ing of bound variables is assumed whenever appropriate. In particular, we

may assume tha t, in an expression, the sets of free and of bound variables are dis

joint. This is B arendregt’s variable convention [Barendregt, 1984], which applies

to all calculi in this paper.

G ra m m a rs : We present syntax as in the top part of Table 1.1. T e r m s is the

syntactic class and M , N are meta-variables ranging over T erm s .

L ists : Em pty list and cons are w ritten [| and respectively, [iq, ?q, ..., Uk]

abbreviates tq :: (u2 :: ... :: (uk :: [])■■•)• particular, [u] is u :: \}.

N a m in g o f A -calculi: Often we refer to the A-calculus simply as A, and

similarly for other calculi. In nam ing A-calculi, we follow some conventions. (1)

A means th a t the calculus is close to Herbelin’s A-calculus [Herbelin, 1995]. (2)

Q is after Gentzen. (3) V is after Prawitz. (4) J\f means th a t the calculus is

a natu ra l deduction system. (5) h signals a reduction rule for simplifying head

applications. (6) x signals explicit substitutions.

Chapter 1. Introduction 18

R e la tio n sh ip b e tw e e n ca lcu li: We will find several times the following

situation. (1) The term s of a calculus Xy are also term s of another calculus A2.

(2) If t u in Ai then t —>+ u in A2. (3) There is a mapping p : A2 —» Ai

such th a t (i) pt = t, for all t in Xi and (ii) t —* u in A2 implies pt —>* pu in Ai.

Such m apping will be called a projection. Then, we say th a t A2 is a conservative

extension of Ax, because it holds th a t

t —»* u in Ai iff t —>* u in A2, for all t, u in Aj.

“Only if” follows from (2). As to “if” , suppose t —>* u in A2, with t , u in Aj.

Then, by (3-ii), pt —** pu in A*. But pt = t and pu = u, by (3-i).

Moreover, quite often p is such th a t t ■—■>* pt in A2- In th a t case, we say th a t

A2 is internally conservative over Aj.

S im u lta n e o u s in d u c tio n : Consider the following example:

N o rm a lT erm s N :: = x | (Ax.A7*) | app(A)

N orm al Applications A ::= (x N) \ (A N)

Let P be a property over the elements of N o rm a lT e rm s and Q a property over

the elements of N orm al Applications. Suppose we want to prove

for all N , P (N)

and (1-14)

for all A, Q(A) .

It suffices to prove

 P (N) Q(A)
P (x) P (X x .N) P (app(A))

P (N) Q(A) P (N)
Q (xN) Q (A N)

A proof of these five implications is w hat we call a proof of (1.14) by simultaneous

induction on N and A. We will refer to induction hypotheses P (N) and Q(A) as

IH1 and IH2 respectively.

Chapter 1. Introduction 19

S e q u e n t ca lcu lu s : See C hapter 2.

A b b re v ia t io n s : We will use the following: RHS (= right hand side). LHS

(= left hand side), iff (= if and only if), IH (= induction hypothesis), whnf (=

weak head norm al form).

Chapter 2

Background

In this chapter we introduce some preliminary m aterial. F irst, we define the

family of cut-elim ination procedures we adopt in this thesis and give one example

in detail - the so-called ¿-protocol [Danos et ah, 1997]. Second, we explain the

canonical fragment of sequent calculus. We adopt the approach of [Herbelin, 1995]

as to the way the syntactic machinery is set up.

2,1 A cut-elimination procedure

Consider the sequent calculus defined in Table 2.1. Sequents have the form

T h L : A , (2 .1)

where T is a consistent set of declarations x : B and L is a term in a certain

language defined by

L ::= Ax(.t) | Cut(L, (y) L) \ L(x, L, (y)L) \ R((x)L)

Rules in Table 2.1 have a natu ra l reading as typing rules for this language.

However they have another reading, as natura l as this, as rules for generating

logical derivations. This is clear if one understands a sequent (2.1) occurring in

a derivation as the usual sequent

20

Chapter 2. Background 21

Table 2.1: Sequent calculus inference rules

T b A ,

plus some inform ation about the derivation above the sequent, contained in the

term L, and which is made locally available. This is the same phenom enon as

natural deduction “in sequent style” , in which, for each formula occurrence in a

derivation, the inform ation about undischarged assum ptions (th a t is, th e undis

charged leaves of the derivation above the formula occurrence) is m ade locally

available in the form of a context.

In the case of (2.1), L keeps record of the sequence of rules by which the deriva

tion above the sequent was built, together w ith ex tra inform ation contained in

the bound and free variables of L. This inform ation refers, respectively, to which

formulas in the contexts were active in, or were introduced by, the application of

a rule.

The record L is an incomplete one in the sense th a t we cannot reconstruct,

from T h A plus L the whole derivation above the sequent. Actually, there may

be many derivations of T h L : A. This situation is due to the fact th a t L is

untyped, and is typical of Curry-style typing [Hinclley, 1997]. Nevertheless, we

stick to this logical understanding of sequents (2.1). The advantage is th a t we

Chapter 2. Background 22

may, for instance, define cut elimination directly in typing derivations. We do

not have two entities - the typing system and the underlying logical calculus -

bu t a single one, and we will never ta lk about term erasure. This approach will

apply to any calculus in this thesis.

We now introduce some terminology. In a sequent, we often refer to the part

to the left (resp. right) of b as the LHS (resp. RH S) of the sequent. In a

sequent calculus rule, the sequent(s) above the deduction line is (are) called the

premiss(es) of the rule and the sequent below the line is called the conclusion of

the rule. By an inference we mean an occurrence of a rule. An occurrence of A x ,

L e f t , R igh t and C ut may be referred to as an axiom, a left inference, a right

inference and a cut, respectively.

In each sequent calculus rule, some formulas play a distinguished role. Con

sider again Table 2.1. The occurrences of A and B in rules L e f t , R ight and C ut

are said to be active. In the case of Cut, active formulas are also called the cut

formulas. Moreover, the right (resp. the left) cut formula of an occurrence of

cut is the cut formula in the end-sequent, of the right (resp. left) sub derivation.

For this terminology to make sense, order of premisses in rules m atters and is

fixed as in Table 2 .1 . Observe th a t the right (resp. left) cut formula occurs in

the LHS (resp. RHS) of a sequent. The occurrences of A in A x and of A D B

in L e f t and Right are said to be main. C u t has no main formula, A x has two,

the left-main and the right,-m,ain. We distinguish between th e main formulas of

L e f t and R ig h t , on the one hand, and the main formulas of Ax. The former are

said to be logical. If a formula in a rule is neither active not main, it is said to

be passive.

Often, passive formulas are not as passive as they seem. Passive formulas

in rule A x are called weakened. Passive formulas in the conclusion of L e f t and

C ut are said to be contracted. The passive formulas th a t are simply passive are

those of R igh t and the formula C in L e f t and Cut. Even a m ain formula may be

contracted. This is when, in the rule L e f t , x is already in P. Finally, a formula

is linear if it is neither weakened nor contracted.

The variable displayed a t the right premiss of the C u t rule is called the cut

Chapter 2. Background 23

variable.

We now want to define the complete right permutation of a cut. This is the

expected process, consisting in perform ing the following instructions as long as

possible, to the initial cut and its descendants. The cut is perm uted upwards

through the right subderivation past R igh t inferences, other cuts and even L e f t

inferences when the main formula of the la tter is not the right cut formula. This

process causes duplication (resp. erasing) of the cut whenever the right cut

formula is contracted (resp. weakened). If the right cut formula is m ain in Ax,

the cut is replaced by its left subderivation. If the right cut formula is main in

L e f t , the perm utation of the cut stops (with two new copies of the cut continuing

their own perm utations, if the m ain formula of the L e f t inference is contracted).

The complete left permutation of a cut is simpler. Perm ute the cut upwards

through th e left subderivation as long as the last inference of th e la tte r is L e f t

or Cut. W hen the last inference of the left subderivation is A x , replace the cut

w ith its right subderivation; when it is Right, do nothing and stop the process.

A cut is right permuted if its right cut formula is main in L e f t and linear;

otherwise, the cut is right permutable. A cut is left, permuted if its left cu t formula

is main in R ig h t ; otherwise, the cut is left permutable. A key-cut is a cut th a t is

both right and left permuted.

By a cut-elimination procedure we m ean a (possibly non-determ inistic) set of

rules describing which transform ations are to be applied to an arbitrary instance

of cut. In this sense, a cut-elim ination procedure does not determ ine which

instance of cut is to be reduced next.

The t-protocol [Danos et al., 1997] is the cut elim ination procedure consisting

of the repeated application of the following instruction, regarded as a single step

of reduction, to an arb itrary instance of the cut rule. Given a cut, it is either

right perm utable or right perm uted. In the first case, perform its complete right

perm utation. In the second case, the cut is either left perm utable or left permuted.

In the former case, perform its complete left perm utation. In the la tte r case the

cut is a key cut. In this case, bo th cut formulas are logical, hence apply the key

step of cu t elimination.

Chapter 2. Background 24

The ¿-protocol is an example of a right protocol. A right protocol is a cut-

elimination procedure such th a t, when reducing a cut th a t is simultaneously right

and left-perm utable, gives priority to the right perm utation.

Given a cut

di do

T b U : A T, x : A Ì- Lo : B

T b Cut(Li, (x)L2) : b
its complete right perm utation generates right perm uted cuts. These have the

form

d

d2 i (¿22

T b I/2i - A \ F, y : A 2 I- ¿ 22 • B

P b L i : A \ D A 2 T , x : A 1 d A 2 L L(x, ¿ 21, (y)L 22) : B
L e f t

T b Cut(Li, (x)L(x, ¿211 {y)L22)) ■ B

where x is linear. We may compact this in a single construction Cut(Li, ¿ 21, {y)L22)

w ith typing rule

d\ (¿21 (¿22

T b L\ : Aj D A2 r b ¿21 : -^1 P, y : A 2 b ¿ 22 : B

r I- ¿^(¿!, ¿21> (^¿2 2) : 5
Observe th a t variable x disappears. Indeed, the variable is irrelevant when a for

mula is linear and becomes active immediately after being introduced. This in

ference rule is called generalised application in [Negri and von Plato, 2001]. The

complete left perm utation of each of these cuts generates, a t most, one cut of the

form

(¿11 d-21 «22

r , 2 : A i b ¿11 : A 2 r b L2\ : A\ P, y : Ao b ¿ 22 ■ B
Right------------- —------ L e f t

T b R ((s)T 11) : A\ D A 2 P, x : A \ D A 2 b L(x, ¿ 21, {y)L22) : B

r b C u t(R ((’) T 11), (x)L(x, ¿2 1 , (y)L 22)) : B

or, in com pact form,

<¿11 <¿21 <¿22

r , 2 : A 1 b L u : A 2 T h L 21 : A x T, y : A 2 h L 22 : B

T b Cut((2)L 11, L 2i, (y)L 22) : B

where C ut((z)L n , L 2i, (y)L 22) is the corresponding new construction. This is a

key cut.

Consider the derivations

d\ (¿2

F b L\ : A T ,x : A \~ L 2 ■ B

We say th a t this pair of derivations (by this order) constitutes an implicit cut.

Now it should be clear how to define the complete right permutation o f d\ over d2

at x. It is as if we completely right perm uted the “ghost” cut th a t th is implicit

cut is. The complete right perm utation of a cut may then be defined as the

complete right perm utation of its left subderivation over its right perm utation a t

the cut variable.

Similarly one may define the complete left, permutation of d2 over d\ with x.

The complete left perm utation of a cut is then the complete left perm utation of

its right subderivation over its left sub derivation with its cut variable. In the

particular case of an implicit right perm uted cut

d\ <¿21 d22

T h ¿ i : A \ D A 2 r b L21 : A i T, y : A 2 b L 22 : B

we may also refer to the complete left permutation o f d2\ and d22 over d\ (without

any variable, because the right cut formula is main and linear).

Finally, the complete permutation of d\ over d2 at x is like the complete right

perm utation of d\ over d2 at x, except th a t instead of generating right perm uted

cuts, we im m ediately perform their complete left perm utation.

Chapter 2. Background 25

Chapter 2. Background 26

2.2 Herbeiiti’s system

In [Howard, 1980] (w ritten in the late 1960’s), Howard attribu tes to Curry the

remark th a t, if one wants to generate “irreducible” A-terms alone, then one should

replace application by a new term -form ation rule, building xN i.. .N k from given

iV i,...,M fc, w ith typing rule (ignoring contexts)

... \~ N i : A i h N k : A k

.. . ,x : A i D ... D A k D B b x N v ..Nk : B

replacing usual elimination rule. Then Howard observes th a t this typing rule can

be obtained by k applications of G entzen’s left rule (plus an axiom). Explicitly,

------------------- A x
... b A k ..., Zk ■ B b B
- — ———-------------------------L e f t

..., Zk-i : Ak D B b 5

: : (2-3)

: ... b i 2 ..., z2 ■ A 3 D ... D A k D B b 5
-- L e f t

... b A \ ..., zi : A 2 D ... D A k D B b B
---L e f t

. . . ,x : A x D A 2 D ... D A k D B b B

In fact, we will explain in detail in C hapter 5 th a t w hat is happening here is a

mapping of norm al natural deduction proofs into cut-free sequent calculus deriva

tions introduced in [Prawitz, 1965], except th a t, instead of (2.2), Praw itz uses k

elimination rules and talks about the main branch of a norm al proof, i.e. the

sequence of bold formulas in

--------------------------------------- V ar
x b x : A i D ... D A k D B ... b jVj : Ax

..., x b x N i : A 2 D ... D A k D B
E lim

x b xNi.-.Nk-j. : A k D B ... b N k : A k
E lim

.. x \~ xN \.. .N k : B

Chapter 2. Background 27

Observe how the sequence of formulas in the m ain branch corresponds to the

sequence of bold formulas in (2.3), except th a t, as it were, the main branch was

turned upside down. This is a typical phenomenon th a t one should bear in mind.

By the observation of (2.3), one realizes th a t in the range of this m apping

of natu ra l deduction into sequent calculus there are derivations of a particular

kind. Actually, all formulas declared w ith Zi in (2.3) (i = 1 ,...,&) are linear.

Only recently the im portance of this fact was fully recognised [Herbelin, 1995,

Danos et ah, 1997, Mints, 1996, Dyckhoff and Pinto, 1999].

D e fin it io n 2 A left inference is canonical i f the active formula of its right pre

miss is m ain and linear. A sequent calculus derivation is canonical i f all left

inferences occurring in it are canonical.

Indeed, every left inference in (2.3) is canonical. Conversely, let us see the

effect of th is restriction on derivations. Let d be a derivation ending w ith a left

inference introducing A \ D B\ and consider the active formula B i of its right

premiss. It is m ain and linear, and, moreover: (1) if it is not logical, it is main in

an axiom, and the right subderivation of the left inference consists of this axiom

alone. (2) if it is logical, it is main in a canonical left inference. Now look again

at the active formula of the right premiss of this new left inference.

By m eans of this process, while going upwards through the rightm ost branch of

d, we visit the sequence B \, B 2, ■ ■■Bk of the m ain formulas of successive (possibly

zero) left inferences, ending in the left-m ain formula Bk of an axiom. Let us put

B 0 = A\ D Bx and call the sequence B 0, B l: B 2, ...Bk the principal path of d. This

is exactly as the sequence of bold formulas in (2.3).

Now, there is a difference between all these left inferences th a t we visit, and

the bottom -m ost left inference of d, because the m ain formula of the la tte r is not

necessarily linear. Moreover, we know th a t the conclusion of a left inference of

the former kind is the right premiss of another left inference. The same is not

true of the bottom -m ost inference of cl. By the same reason, we may distinguish

two kinds of axioms. The first is the kind of axiom we find at the top of the

rightm ost branch of d. We know th a t its conclusion is the right premiss of a left

inference. The second kind of axiom is an unrestricted one.

Chapter 2. Background 28

The splitting of axioms and of left inferences into two cases may be expressed

in the term language for the sequent calculus used above by the existence of two

left constructors L(x , L l5 (_)L2) and L(_, L 1; (_)L2) and two axiom constructors

Ax(x) and Ax(_). Variables are om itted because when a linear formula th a t just

became m ain is immediately going to be active in the next inference. However,

how do we express tha t, in L(_, Li, (-)Lf), L 2 has to be either Ax(_) or another

L(_, L 3, (-) L 4)?

A solution due to [Herbelin, 1995] is to arrange the syntax into two classes

(we concentrate on cut-free proofs for the moment)

L ::= A x (x) |L (z ,L ,(_)A ') |R ((i)L)

K ::= Ax(_) | L(., L, (-)K)

where K annotates proofs introducing a linear formula on the LHS of secjuents.

The actual syntax of op. cit. is

u . v . t ::= x l lX x . t
1 2.5

l,V \ \ \ t : : l

with typing rules given in Table 2.2. There are axiom, left and right rules (named

Ax, L f t and Right) and a dereliction rule Der. This terminology comes from a

connection w ith linear logic explained in [Danos et al., 1995]. We refer to L f t as

Herbelin’s left rule. Rules operate on two kinds of sequents

T] - h t : A (2.6)

and

Y - B k l - . A (2.7)

both containing a distinguished position in the LHS, called the “stoup” - a device

invented in [Girard, 1991]. The stoup either is empty, as in (2.6), or contains a

formula, as in (2.7). Observe that: (1) the active formula in the right premiss of

Herbelin s left rule is in the stoup. (2) the only rules whose conclusion is a sequent

with a formula in the stoup are L f t and Ax. (3) The formula introduced by L f t

Table 2.2: Inference rules for Herbelin’s sequent calculus

Chapter 2. Background 29

is linear. Therefore, every formula in the stoup belongs to some th e principal

path.

C onstructors Xx.t, [] and u :: I correspond to R((x)L), Ax(_) and L(_, L, {-)K).

In term s of derivations, Der allows a formula to leave the stoup, possibly causing

a contraction, if x € T. The m ain formula of D er {i.e. the displayed occurrence

of A in the conclusion of D er) is the bottom -m ost formula of some principal

path. W ith dereliction we recover as x[] and x{u :: I) th e versions Ax(x) and

L(x ,L , (J)K) of axiom and left rule.

Let us go back to (2.3) and see how Herbelin’s system annotates a principal

path. T he Zi disappear, as each formula in the principal p a th is in the stoup.

Suppose each sequent ... L .4, is annotated with «¿. Then the displayed axiom gets

[], the left inference ju s t below gets Uk [], and so on, until we get [ii2, ..., u^]-

The bottom -m ost left inference is annotated w ith a com bination of dereliction

and H erbelin’s left inference. We get x{u\ :: [«2, t hat is x[u\, ...,«&].

Besides dereliction, there is an evident difference between syntaxes (2.4) and

(2.5) in th a t the la tter suggests and intended in terpretation. The right con

structor is A-abstraction and xl is like x applied to a list of arguments. This

in terpretation is supported by the fact, firstly observed in [Herbelin, 1995], th a t

there is a bijection between norm al natu ra l deduction proofs and cut-free deriva

tions of the canonical fragment. This bijection is nothing bu t the mapping be

tween natu ra l deduction and sequent calculus suggested above. The m ain branch

xN%...Nk is m apped to the principal path xjuj, ...,rp-]. More formally, in the style

Chapter 2. Background 30

of [Dyckhoff and Pinto, 1998], this is a m apping T from

N ::= x | X x .N \ app(A)

A ::= x N \ A N

to (2.5) given by

^ (x) — x|]

t y (Xx .N) — X x . ^ N

^{app(A)) = ^ ' (A , 0)

y ' i x N J) = x . (V N :: l)

V (A N , l) = ^ (A , ^ N :: I)

A generalisation of this mapping to non-normal proofs will be extensively studied

in the following chapters.

In the calculi for the canonical fragment we are going to introduce in Chapter

3, we will never use dereliction, bu t we will adopt a syntax in the style of (2.5),

suggesting a A-calculus interpretation.

We now consider cut-elinhnation in Herbelin’s system. The simple fact th a t

sequents in Table 2.2 have a distinguished position to the left of b determines

the existence of two kinds of cut, head-cuts and mid-cuts , according to whether

the right cut formula is or is not in the stoup, respectively. Actually, Herbelin

needed two species for each of these kinds of cuts,

m id-cuts head-cuts

t { x := v} tl

l{x := u} IV

with typing rules as shown in Table 2.3. W hen we refer to mid or head cut, we

mean constructors t { x := u) or tl. We refer to l{ x := n} and IV as auxiliary mid

or head cuts, respectively.

H erbelin’s A-calculus is presented in Table 2.4. Rules 4i and 5j suggest tha t

mid-cuts behave like explicit substitution. Hence the notation t.{x := u} and

Chapter 2. Background 31

Table 2.3: Cuts fo r Herbelin ’s sequent calculus

M id C u t í-1 h v : A T, x : A: — h t : B /-p
r ; - h t { i ,= v j : B X * T

A u x M id C u t —LT ; - h v : A r , x : A : C \ - l : B ^ p
 r;CH (, v) : B 1 * T

H eadC ut T; - h t : A F; A h I : B
T; - F tl : B

A u x H eadC ut r ¡ C h l : A r ; A h l ' : B
F ; C b 11' : B~~

l{x u}. Rules 3i suggest th a t cut IV is an explicit append. Similarly to xl, a

head cut tl is like the application of t to the list of argum ents I.

This calculus is about cut-elim ination a t least in the following sense: every

redex is a cut. Therefore, if t is cut-free (=no subterm is a cut) then t is normal

(^irreducible). The converse is also true. If t has a cut, it has an innerm ost one.

Such cut is a redex. Nevertheless, the exact cut-elim ination procedure defined

by the calculus is only provided in the proof of subject reduction. Then, rule 11

is the key step of cut elimination. Rules 4z and 5j , as well as rule 20, perform

stepwise right perm utation. Rules 21 and 3z perform stepwise left perm utation.

This suggests th a t mid-cuts are right perm utable cuts. On the other hand,

since the right cut formula of head-cuts is in the stoup, it seems th a t head-cuts

are right perm uted cuts. As observed in [Espirito Santo, 2000], this is not exactly

true. The first problem is th a t we are not sure w hether a contraction occurred

or not in a dereliction xl. In the la tte r case, m id-cut (.x l){ x := u} is, in a

sense, already right permuted. The second problem is th a t head cut t[] is a right

perm utable cu t th a t reduces to t by 20. This is why, in the following chapters,

we will neither consider head-cuts of the form f[] nor reduction rule 20. A th ird

problem is th a t auxiliary cuts take the system outside the canonical fragment,

Chapter 2. Background

Table 2.4: The A-calculus

(Term s) u , v , t ::= x l \ \ x . t \ t l \ t { x := v}

(Lists) 1,1' ¡ \\t :: l \ l l ' \ l { x := v}

(11) (Ax. t)(u :: I) —» t { x u}l

(20) *0 —> t

(21) (xl)l' - i' + D

(31) (u :: l)V -»■ u :: (¿ 0

(32) 0* - f I

(41) (xl){x := v} —> := x }

(42) (■yl){x : = x } -» := v } , y =4 x

(43) (Ay.u){x := x } —» A y .u {x := ?.;}

(51) (u :: l){x := x } —► u {:c := x } :: ¿{x : =

(52) [] { x : = x } - 0

Chapter 2. Background 33

because the formula in the stoup, although linear, is no longer necessarily main,

and, therefore, a Herbelin’s left inference is not necessarily canonical. This is why

in the calculi we introduce auxiliary cuts are kept implicit.

D isregarding these minor problems, the cut-elim ination procedure associated

to A is a stepwise right protocol. M id-cuts are perm uted to the right and this

occasionally generates head-cuts (rule 41). H ead-cuts are perm uted to the left.

However, a cut is never allowed to perm ute upwards past another cut (this is

w hat we call a inter-permutation of cuts). So, the procedure is essentially an

innerm ost strategy.

Herbelin observed th a t an inter-perm utation of cuts like

(44) (■t l){x := v} —► t { x := v } l { x := u }

was required if the cut-elim ination procedure was to simulate full /5-reduction.

However, Herbelin did not consider this reduction rule because it breaks the

proof of strong norm alisation in [Herbelin, 1995]. In [Dyckhoff and Urban, 2001]

it is shown th a t rule 44 may be added to the calculus w ithout loss of strong

norm alisation, bu t further inter-perm utations of cuts, among which is

(22) (tl)V - t{W) ,

are to be allowed for retaining confluence of the calculus.

In C hapter 3, we will design A-calculi for the canonical fragment in a system

atic way. O ur main design decision is to adopt right protocols w ith increasing

level of explicitness and stepwise character. We even define a fully explicit sys

tem, by m aking auxiliary cuts explicit. This system will be close to A plus 44 and

22. T hat is, a system atic procedure chose which inter-perm utations of cuts were

to be adm itted. Later on, we. will see th a t, in our setting, 44 and 22 are enough

for sim ulating full /3-reduction and retaining confluence - although this was not a

requirem ent im pending on how we defined the calculi. Moreover, reduction rule

22 will prove crucial in the com putational in terpretation of the fragm ent {e.g. it

is included verbatim in abstract machines). Actually, 22 is indispensable even

for simulating full (5 reduction, as long as one maps natural deduction into se

Chapter 2. Background 34

quent calculus not in the traditional way (G entzen’s m apping [Gentzen, 1935]),

but according to a suitable generalisation of P raw itz’s mapping [Prawitz, 1965].

W hat is manifest is th a t, after the breakthrough th a t constituted the iden

tification of the canonical fragment, there did not follow the necessary study of

cut elimination in this fragment, particularly the study of its relationship w ith

normalisation. The following chapters provide contributions in th a t direction.

For future reference, we give the following.

D e fin itio n 3

Xi = A

A2 = Ai + {44}

A3 = A2 + {22} = Aj + {22, 44}

The following result is due to [Dyckhoff and Urban, 2001].

T h e o re m 1 I f t is typable in A then t is strongly normalising (any i = 1,2,3}.

We define compatible closure for the Aj-calculi.

D e fin itio n 4 (C o m p a tib le c lo su re) Given a pair R of binary relations, the

first on T e r m s and the second on L is ts , the compatible closure — is the least

pair of relations — the first on T e rm s and containing the first relation of R, the

second on L is ts and containing the second relation of R, closed under:

Chapter 2. Background 35

Righta xì Z h i
H ea d C u tl ^ H eadC ut2 | ^

M id C u t l -7 -f ~* !/ r------------ T M id C u t2 y?------------ ? IV r ri{x := x} —> t {x := v \ t { x := v \ —> t { x := v }

L f n . .. i L f t 2 1 r7 / 7 JUJ 7 7/u :: t —> u :: i u :: L —> u :: I

A u x H e a d C u t l yy-— —77V A uxH ea d C u t2 y y — —7V
¿Oil —> ¿0*1 ¿Oil —>• ¿oil

A u x M id C u t l -¡7— -——7-— i ----------7 A u x M id C u t2 77------------------- --------- tv
¿{x := x j —> I {x := x} ¿{x := v \ —* ¿{x := v }

For instance, for defining —>n, take i? = (11,0) in Definition 4. The definition of

-* 3i (i = 1, 2, 3, 4) is by choosing R = (3i, 0). We could let

(3*)i = 31U32

and, thus, —>(3i)i (or, simply, —>3i) is defined by taking R = (0, (3z)j).

Chapter 3

A fragment of sequent calculus

In th is chapter we define four calculi of cut-elimination:

XV hx

(-)°

XV hx

(-)b

XV h

(-) “

XV

In this diagram each arrow is a projection. All cut-elim ination procedures asso

ciated to these calculi are right protocols, bu t with different levels of explicitness.

We s ta rt with XV, a calculus which only adm its key-cuts and wThose cut-

elimination procedure is fully implicit, in a sense. Then we define XVh, which

allows the more general right perm uted cuts and includes an independent reduc

tion rule for the complete left perm utation of cuts. Next we define XVhx. in

which the complete right perm utation of cuts is also separated from the key step

36

Chapter 3. A fragm ent o f sequent calculus 37

and performed stepwise. Finally, we define a fully explicit system AVhx. All

these calculi, except W h x , are in the canonical fragment.

In th is chapter we heavily rely on C hapter 2 for notation, term inology and

motivation.

3.1 The AP-calcuius

The AP-calculus1 is presented in Table 3.1. Typing rules are in Table 3.2.

Besides constructors for the cut-free canonical fragment, there is a key-cut

constructor (Ax.t) (u ■ I), and no other kind of cut. Reduction rules perform, in a

sense th a t will be m ade precise later, a right protocol. But, since the only kind of

explicit cut is key-cuts, most of the stages of cut-elim ination are im plicit, th a t is,

performed in a single go by calls to m eta-operators. These operators are in ser t

and append , which perform complete left perm utation, and subst , which performs

complete perm utation. This explains reduction rules (31 and [32, which s ta rt by

performing the key step of cut elimination, bu t which are forced to im mediately

perform the perm utation of the cuts generated by the key step. Since subst

performs complete perm utation, it has to im mediately call in ser t whenever it

generates a right perm uted cut.

C onstructor (Ax.t)(u-1) binds x in t. By variable convention, x occurs neither

in u nor in I.

D e fin itio n 5 (C o m p a tib le c lo su re) Given a pair R of binary relations, the

first on T e r m s and the second on L is ts , the compatible closure —>r is the least

pair of relations — the first on T e r m s and containing the first relation o f R , the

second on L is ts and containing the second relation o f R , closed under:

C alcu lu s XV was defined for the first time, with minor differences, in [Espirito Santo, 2000J,
with the name A¡j-

Chapter 3. A fragment o f sequent calculus 38

Table 3.1: The AP-calculus

(Term s) u , v , t ::= x | x (v ■ I) \ Xx.t | (Xx.t)(v ■ I)

(L ists) 1,1' :: = [] 11, :: I

(f 3 l) (Xx.t)(v ■ []) —» su b s t(v ,x , t)

(f32) (Ax .t)(v ■ (u :: I)) —> insert.(u, Z, subst(v, x , t))

where

subst.(v,x,x) = v

subst(v, x , y) = y , y x

s u b s t (v ,x ,x (u ■ I)) = insert(subst(v , x, u), subst(v ,x , I), v)

subst(v , x, y(u ■ I)) = y(subs t(v , x, u) ■ subst(v, x , l)), y ^ x

subst(v ,x , Xy.t) = X y .subst(v ,x ,t)

subst(v , x , (Xy. t)(u - I)) = (Xy.suhst(v , x, t))(subst(v , x, u) ■ subst(v , x, I))

s u b s t (v ,x ,u :: I) = s u b s t (v ,x ,u) :: subst.(v,x,l)

subst(v ,x , 0) = []

in ser t(u , /, x) = x(u ■ I)

insert(u , L x(u ' ■ I/)) = x(u ' ■ append(l\ u :: I))

in ser t(u ,l , Xx.t) = (Ax. t) (u: : l)

in se r t(u , I, (Ax.t)(u' ■ I')) = (Xx.t) (u' ■ append(l', u :: I))

append(t :: I, /') = t :: append(l, /')

append([], / ') = /'

Table 3.2: Typing rules fo r XV

Chapter 3. A fragment o f sequent calculus 39

V ar T, x : A; - b x : A R lgh t Y - - \ - Ax. t ^ A d B x $ T

J r . r , x : A D B] - \ - u : A T, x : A D B; B h I : C
1 T , x : A D B] — \~ x (u ■ I) : C

Ke v Cu t r > x '• A; - h f : I1; - h u : A F ; .B F / : C . p
K e y L u t F; — h {X x . t) (v ■ I) : C *

a- r f * r ; - l - t : A F] B F l : C
A x F; A h û : a L J t F; A D B F t :: I : C

L e f t 2 x j u ■ i) C i (u . i')

R u jkt X x l Z A¿7 (A,;, i)(u./) _i(Ax̂)(w./)

KeyCut.2 (Xx t ^ u . pj ^ Xx.t){u' ■ I) K 6 y C u t3 (A.t.£)(u • Z) —>• (Ax.i)(u • F)

L f t l — ^ ^ . L / f 2 ------
u :: t —* u :: I u :: I —* u :: I

For instance, for defining —*p, take R = {(31 U (32, 0) in Definition 5. T h a t is,

in XV we set (3 = {(31 U (32, 0). One can also define —>pi (resp. —>pf) by taking

R = ((31, 0) (resp. R = {(32, 0)).

Admissible rules

L e m m a 1 In XV, let Tt\ be a derivation of F ;C F I : B and tt2 be a derivation

of F; B F !(: A. The complete left permutation o f tt2 over iti is a derivation of

F; C F append(l, /') : A. In particular, the following rule is admissible:

F; C h / : B T; B F V : A
T; C- F append(l, /') : A

Chapter 3. A fragment o f sequent calculus 40

P ro o f : Let 7r3 be the complete left perm utation of 7r2 over tti. The proof is by

induction on I.

Case I = [}■ Then B = C and 7r3 = 7r2. Since append(l, V) = I', we are done.

Case I = t \ :: l\. Then there are C i, C2 such th a t 7Ti has the form

7 rl 7TÌ'

T; - h fi : Ci r ; C2 h h : #
L i t D C2 h i ! :: l x : B

and C = C'i D C2. Derivation 7t3 is

_/ /
7Ti 7To

F; — h fi : Ci F; C2 h append{l\ , F) : /I

^ F; Ci D C2 h ti :: appendali, I') : A

where 7r3 is given by IH. Since append(l, I1) = ti :: append{l\, I’), we are done.

L e m m a 2 In XV, let tti be a derivation o f T; — h t : C D B , 7t2 be a derivation

of F; — h -{/, : C arid 7r3 a derivation o f T \ B \ ~ l \ A . The complete left permutation

of tt2 and 7T3 over tti ?s a derivation of F; — h in s e r t (u , l , t) : /I. In particular,

the following rule is admissible:

F ; - C : C 3 f i F ; - h u : C F ;11C : A
F; — h insert(u , I, t) : A

P ro o f : Let 7t4 be the complete left perm utation of 7t2 and tt3 over 7Ti. The proof

is by induction on f.

Case t = x. Then, there is T' such th a t tti is

---y ar
F \ x : C D B: - h x : C D B

and F = T \ x : C D B. Derivation tt4 is

7T2 7T;3

r ' , x : C D B: — u : C F ', x : C D B] B h I : A

r', x : C D B: - h x(u ■ I) : ,4

Chapter 3. A fragm ent o f sequent calculus 41

Since insert(u , I, t) — x(u ■I), we are done.

Case t = x(u' ■ I'). Then there are , 7r", D, D, E such th a t 7Ti has the form

T r i 7TÎ'

r , x : D D E\ — h m' : D T ' , x : D D E; E h I' : C D B
——-..L e f t

r', x : D D E- - b x{u' ■ I') : C D B

and T = F', x : D D E. Derivation 7r4 is

tt'i :
: T; E b I' : C D S tt5

 L em m a 1
F; — \~ u : D F; i? b append(l\ u :: I) : A
--- L e f t

F ; — h x(V ■ appendil ' , u :: /)) : A

where 7Ts is

T2 7T3

r ; - b u : C F- .B\ - l :A
L f t

T]C D B u :: I : A

Since in se r t(u , I, t) = x (u ' ■ a,ppend(l', u :: Z)), we are done.

Case t = Ax.t': Then there is 7̂ such th a t 7Ti has the form

T, x : C- - h i ' : B
------------------------------ B ight
T; - h Ax.i' : C D B

and x £ T. Derivation tt4 is

/
"̂l 7T2 7T3

r , x : C\ - h t' : B F; — b u : C F ;B \~ I : A
 K e y C ut

F; - b (Xx.t')(u :: I) : A

Since in s e r t (u , l , t) = (Ax .t ') (u :: Z), we are done.

Chapter 3. A fragment o f sequent calculus 42

Case t = (Ax.t'){u' ■ I'): Then there are tt[, n", it"', D, E such th a t has the

form

TTI 7T, 7T,

T .x : D - - b t' : E F; - b u ' : D T - E C I ' - . C d B
— K e y C u t

r ; - h (A x.t')(u ' -l') : C D B

and x ^ P. Let 7t5 be as in case t = x(u ' ■ I'). Derivation 7r4 is

7T-,

7Ti'
: : F; E b V : C D 5 tt5

. L em m a 1
T, x : D] — F t' : E T; — b u : ZA T; E b append(l ' , u :: Z) : A
--— K e y C u t

F; — b (Xx.t')(u1 ■ append(l',u :: £)) : A

Since in se r t(u , Z, t) = (X x.f)(u ' ■ append(l', u :: /)), we are done. ■

L em m a 3 In XV, let 7Ti 6e a derivation o f T , x : B ; — \ - t : A , 112 a derivation of

F, x : B] C b I : A and n a derivation of T : — b v : B such that x ft F. Then,

the complete permutations of n, over tï\ at x, and over 7T2 at x, are derivations

o f T; — F s u b s t (v ,x , t) : A and of F ;C b s u b s t (v ,x , l) : A, respectively. In

particular, the following rules are admissible:

T: - b v : B F , x : B \ - b t : A , r
T; — b substfv, x, t) : A ^

F: — v : B T ,x : B ; C I : A , , r
F; C b substfv , x, I) : A X ^

P ro o f : Let tt]“ and Tpl be the complete perm utations of n, over -x\ a t x, and over

tt2 at x, respectively. The proof is by simultaneous induction on t (with induction

hypothesis IH1) and I (with induction hypothesis IH2).

Case t = x. Then B = A and ttj = 7r. Since su b s t(v ,x , t) = v, we are done.

Chapter 3. A fragm ent o f sequent calculus 43

Case t = y x . Then there is T' such that 7ti is of the form

V a r
T ' , y : A , x : B \ - h y : A

and r = F ' , y : A . Derivation 7r* is

V a rT' ,y:A\- \ -y\A
Since s u b s t (v , x , t) = y , we are done.

Case t = x { u ' ■ I ') : Then there are 7̂ , B X, B 2 such that txx has the form
7Ti 7To

T, x : B \ D B 2 \ — \~ 11 : B i T , x : B x D B 2; B 2 h I' ■ A--------------------------------- L e f tT, x : B \ D B 2 ; — \~ x (u ■ I ') \ A

and B — B \ D B 2 . Derivation -n\ is given by Lemma 2

r;- h v B i D B 2 T: — h s u b s t (v , x , u) : B \ F; — f— s u b s t f v , x , I ') : A

T; — h i n s e r t (s u b s t (v , x , u ') , s u b s t (v , x , I1) , v) : A

where and 7r̂ are given by IH1 and IH2, respectively. Since s u b s t (v , x , t) =
i n s e r t (s u b s t (v , x, u r) , s u b s t (v , x, l % v) , we are done.

Case i = |/(V • /'), y 7̂ x : Then there are i x[, tt̂ , F, Ci, C2 such that ttj has the
form

7r 1 7T9

r, y : C i D C 2 , x : 5; - h F : Ci F, y : C x D C 2 , x : B : C 2 V l! : ,4 L e f t
T \ y . C l D C 2, x - . B - - L y (u ' - l ') : A

and F = T ' , y : C \ D C 2 . Derivation 7r* is the following L e f t inference

Chapter 3. A fragment o f sequent calculus 44

TXf 7T2

P', y : C\ D C2; — F subst(v , x, v!) : C\ F', y : C\ D C2; C2 F subst(v, x, I') : A

T', y : Ci D C2; — F y(subs t(v , x, u ') ■ subst(v , x , F)) : A

where 7r^ and ^ 2" are given by IH1 and IH2, respectively. Since s u b s t (v , x , t) =

y(subst(v , x, u ') ■ subst (v , x, F)), we are done.

Case t = Ay.f: Then there are 71̂ , A x, A2 such th a t 7Ti has the form

/7Ti

r , y : Ai, x : i3; — F £' : A2
Right ,

F, x : B] — F Ay.F : Ai D A2

A = A\ D A2 and y ^ F. Derivation 7r ̂ is

tt;

T, y : A i; — F subst (u, x, t') : A2
--- Right
T; — h Ay.subst(v, x, F) : Ax D A2

where tt,1 is given by IH 1. Since s u b s t (v , x , t) = Ay. subs t (v ,x , t ') , we are done.

Case t = (Xy.t')(u' ■ V). Then there are 7r^, it", tt'2, C\, Co such th a t 7̂ has the

form

TTj n" 7T2

F. y : Cl, x : C2 T, x C x F, x : B: C2 F 1/ : A
 K e y Cut

F .x : / F - F (Xy.t’){u' ■ I') : A

Let us w rite s for subst. Derivation 7rJ is the following K e y Cut inference

7T + 7T+ + 71 +

r . y : Cl : — F s(v, x. t') : C2 T; — F s(v, x, u') : C\ T ; C2 F s{v, x, F) : A

r . x : 1?; - F (Xy.s(v, x, t')){s(v, x, u') • s(y, x, /')) : A

Chapter 3. A fragm ent o f sequent calculus 45

where 71-+ and tv** are given by IH l and ir£ is given by IH2. Since s (v , x , t)

(Ay . s (v , x , t ')) (s (v , x ,u ') - s (v ,x , l ')) , we are done.

Case I = il: Then C = A and iv%'2

A x
r ; A h [j : A

Since s u b s t (v , x , I) = [], we are done.

Case I = u' :: V: Then there are tv[, tv'2i C\, C2 such th a t 7r2 has the form

7ri

F ,x : B - - h u ' : Cl r , x : B ; C 2 \ - r : A

T , x : B]C \ D C2 F u' :-.V: A L ^

and C — C\ D C2. Derivation is

7T̂ 7T̂

T; — h subst(v , x, u') : Ci T; C2 h subst(v , x, I') : A

F; Ci D C2 b subst (v , x, u ') :: subst(v , x, /') : .A

where 7rf and 7oj" are given by IH l and IH2, respectively. Since s u b s t (v , x , l)

subst(v, x, u') :: subst(v, x, /'), we are done. ■

Cut elimination in XV

In this subsection we show in w hat precise sense the reduction rules of XV perform

cut-elim ination.

Rule pi: (Xx.t)(u • []) —* subst (u ,x , t) .

TV 1 1V2

------------ A x
r , x : A; — b t : B T; — h u : A F j B h f l
--K e y C u t

F ; - h (Xx. t)(u ■ 0) : B

reduces to

Chapter 3. A fragment o f sequent calculus 46

7T2 7Tj

F; — \~ u : A T, x : A; — h t : B
-- Lemma 3

F; — h subst{u, x , t) : B

Rule /32\ (Xx.t)(u ■ (v :: I)) —* in se r t (v , Z, subst(u , x, t)).

7T3 7T4

7Ti 7T2 - ■
F j - h - U i S ! r ; 5 , b Z : C

: : L f t
r , x : A; - h t : B l D B 2 V] - F u : A T; ^ D B 2 h v :: I : C
--- K e y Cut

r ; - h (\x . t) (u ■ (v :: Z)) : C

reduces to

7T2 7Ti

7T3 7r4
F; — h u : A F , x : A; — h t : B \ D i? 2
 : 1 (1) : :

T; — F subst (u , x , t) : B \ D Bo F; — h v : B \ F; B 2 F Z : C
 : (2)

T; — F insert(v, Z, subst.{u, x, i)) : C

where (1) is by Lemma 3 and (2) by Lemma 2 .

P ro p o s i t io n 1 (S u b je c t re d u c tio n) In XV, i f T; — h t : A and, t —> t ' , then

T; - b t' : A

P ro o f: The claim is proved together with the claim th a t if T; B I- I : A and

I —> I', then Y: B \~ I' \ A, by simultaneous induction on t —> t! and I I'. All

cases but the base cases are routine, and the la tte r were done above. 1 !

Permutation of meta-operators

We prove some perm utations of operators subst, in ser t and append.

L em m a 4 For all u, u ' , I, I" in XV:

append(append(/", u! :: l'), u :: /) = append(l",u' :: append(l', u :: I)).

Chapter 3. A fragment o f sequent calculus 47

P ro o f: Straightforw ard induction on I". ■

L e m m a 5 For all t, u, u ' , I, I1 in XV:

i n se r t (u , l , in se r t (u ' , l ' , t)) = insert{v! ,append(l ' ,u :: l), t) .

P ro o f: Straightforw ard case analysis of t. One case requires Lemma 4. ■

L e m m a 6 For all v, u, I, I' in XV:

subst{y, x, append{l' ,u :: I)) = append(subst(v,x, l '), subst(v,x,u) :: s ub st(v,x, l)) .

P ro o f: By straightforward induction on V. ■

L e m m a 7 For all v, u, t, I in XV:

subst(v, x, i n s e r t (u , f t)) = inser t(subs t(v , x, u), subs t(v , x, /), subst(v , .x, £)).

P ro o f: By case analysis of t. We write s for subst, i for insert and a for append.

Case t = x.

s (v , x , i (u , l , t)) = s (v , x , i (u , l , x))

= s (v , x , x (u ■ I)), by def. i n se r t ,

= i (s (v , x , u) , s (v , x , I) , v) , by def. subst,

= i (s (v , x , u) , s (v , x t l) , s (v , x , x)), by def. subst,

= i (s (v , x , u) , s (v , x , l) , s (v , x , t)) .

Case t — y, y x .

s (v , x , i (u , l , t)) = s (v , x , i (u , l , y))

= s (v , x , y (u - I)), by clef, insert,

= y(s(v, x, u) ■ s(y, x, I)), by clef, subst ,

= i { s{v ,x ,u) , s [y , x , l) , y) , by def. subst,

= i(s(v, x, u), s(v, x, I), s(v, x, y))

= i (s (v , x , u) , s (v , x , l) , s (v , x , t)) .

Chapter 3. A fragment o f sequent calculus 48

Case t = x(u' ■ I').

s(v, x, i(u, I, t))

= s (v , X , i (u , l , x (u ' ■ l')))

= s(v, x, x(u' ■ a(l' , u :: I)), by clef, in s e r t ,

= i(s(v, x, u'), s(v, x, a(l', u :: I)), v), by def. subst,

= i (s (v , x, u'), a(s(v, x, I'), s(v, x, u) :: s(v, x, l)),v) , by Lemma 6 ,

= i(s(v, x, u), s(v, x , I), i (s (v , x, u'), s(v, x, I'), v)), by Lemma 5,

= i($(v, x, u), s(v, x, I), s(v, x, x{u' ■ I')))., by def. subst,

= i (s { v , x , u) , s (v , x , l) , s (v , x , t)) .

Case t = y{u' ■ I'), y ^ x.

s(v, x , i(u, I, t))

= s { v , x , i (u , l , y (u ' ■ I')))

= s(v, x, y{u' ■ a(l', u :: /)), by def. insert,

= y(s(v, x, ¿̂/) • s(v, x, a(l \ u :: /))), by clef, subst,

= y (s (v , x ,u ') ■ a(s(v, x, I'), s(v, x, u) :: s (v ,x , l))) , by Lemma 6 ,

= i(s(v, x, u), s(v, x, l) ,y(s(v, x, u) ■ s(v, x, I'))), by def. insert,

= i(s(v, x, u), s(y, x, I), s(v, x, y{u ■ I'))), by def. subst,

= i (s (v , x , u) , s (v , x , l) , s (v , x , t)) .

Case t = Xy.t'.

s (v , x , i (u , l , t)) = s (v ,x , i (u , l ,X x . t '))

= s(v ,x , (Ay. t')(u ■ I)), by def. insert,

— {Xy.s(v.x . t '))(s(v,x ,u) ■ s(v, x. /)). by def. subst,

= i(s(v, x, u), s (v , x, I), Xy.s(v, x, t')). by def. insert,

Chapter 3. A fragm ent o f sequent calculus 49

= i(s(v, x, u), s(v, x, I)), s{v, x , Xy.t')), by def. subst ,

= i (s (v , x , u) , s (v , x , l) , s (v , x , t)) .

Case t = (Ay.t'){u' ■ V).

s(v, x, i(u, I, t))

= s(v, x, i(u, I, (Xy.t')(u ■ I')))

= s (v , x , (Ay.t'){v! ■ a(l ' ,u :: /))), by def. i n s e r t ,

= (\y . s (v , x, t '))(s(v, x, u) ■ s(v, x, a(l', u :: I))), by def. subst ,

= (Ay.s(v, x , t '))(s(v, x, u') • a(s(v, x, I'), s(v, x , u) :: s(v, x, /))), by Lemma 6 ,

= i(s(v, x, u), s(v, x, I), (Xy.s(v , x, t '))(s(v, x, u) ■ s(v, x, I'))), by def. i n s e r t ,

= i(s(v, x, u), s(v, x, I), s(v, x, (Xy.t'){u' ■ I'))), by def. subst ,

= i (s (v , x , u) , s (v , x , l) , s (v , x , t)) .

m

The perm utation of subst w ith itself might be called the su&st-lemma, by

analogy w ith the substitu tion lemma of A-calculus.

L e m m a 8 Let u , v , t , I G XV, x ^ y and y ^ F V (v) . Then:

1. subs t(v , x, subst(u, y, t)) = subst(subst(v, x, u) ,y , subst(v , x, t)).

2. subst(v , x, subst(u, y, I)) = subst(subst(v , x, u), ?/, subst(v , x, /)).

P ro o f: By simultaneous induction on £ and /, w ith induction hypotheses IH l

and IH2, respectively. We write s for subst and i for insert.

Case t = x.

s{v, x, s(u, y, £)) = s (u ,x ,s (u ,y ,x))

= s(u, x, x), as x y,

= v

Chapter 3. A fragment o f sequent calculus 50

= s (s (v ,x ,u) ,y ,v) , as y £ F V (v) ,

= s (s (v , x , u) , y , s (v , x , x))

= s (s (v , x , u) , y , s (v , x , t)) .

Case t = y.

s { v , x , s (u , y , t)) = s (v , x , s (u , y , y))

= s (v , x ,u)

Case t = z, z ^ x, y.

s (s (v , x , u) , y , y)

s(s(v, x, u), y, s {v , x , y)), as i / î / ,

s (s (v , x , u) , y , s (v , x , t)) .

s (v , x , s (u , y , t)) = s (v , x , s (u , y , z))

= s (v , x , z) , as 2 7 ̂ y,

Case i = x (u ' ■ Z').

= s(s(v , x ,ii) ,y , 2)), as 2 + y,

= s (s (u , x , u) , y , * • ({ , ' , X , 2)) , a s 2 ^ x ,

= s (5 (u , r r , t t) , y , s (u , x , i)) .

s{v, x, s(u, y, i))

= s(v, x, s(u, y, x(u' • Z')))

= s(y, x, x(s{u, y , « ') • s{y, y, Z'))), as x ± y,

= i(s(v, x, s (u , y, u')), s(v, x, s(u, y,

= *{.«(«(*>, ^ «(«, x, « '))•s(s(o, x, w), y, s(x, x, Z')): v), by IH L IH 2 ,

= i(s(s(t/, x, u) ,y . s(v, X. u')), s(s(v, x, u), y, s(v, x, l ')).s(s(v, x, u) ,y , u)),

Chapter 3. A fragm ent o f sequent calculus •51

as y i F V (v),

= s(s(v, x, u) , y , i (s (v , x , u ') , s (v , x , l ') , v)) , by Lemma 7,

= s(s(v, x, u), y, s(v, x, x(v! ■ I')))

= s (s (v , x , u) , y , s (v , x , t)) .

Case t = y{y! ■ I').

s (v, x, s(u, y, t))

= s (v , x , s (u , y , y (u ■ I'))

= s(v, x, i (s (u , y , u '), s(u, y, l '),u))

= i { s (v , x , s (u , y , u ')) , s (v , x , s (u , y ^ l ')) , s (v , x , u)) , by Lem ma 7,

= i{s{s(v, x, u), y, s(v, x, it')), s{s(v, x, u), y, s(v, x, I’)), s{v, x, u)), by IH1,IH2,

= s(s(v , x , u) ,y , y(s(v, x, u') ■ s(v, x, I')))

= s (s (v , x , u) , y , s (v , x , y (u ' -I'))), as x ^ y ,

= s (s (v , x , u) 1y , s (v , x , t)) .

Case t = z[u' - i ') y ^ x, y.

s(v, x, s(u, y , t))

= s (v ,x , s(u, y, z(u ' ■ I')))

= s (v ,x , z (s (u ,y ,v !) ■ s (u,y, l '))) , as z=£y ,

= z(s(v, X, s{u, y, u')) ■ s(v, X, s (u , y, /'))), as 2 ^ x,

= z (s (s{v7x , u) , y , s (v , x , u ')) ■ s(s(v, x, u), y, s(v, .x , /'))), by IH1.IH2,

= s(s(m x, u), 2/, z(s(x, x, w') • s(x, x, /'))), as z ^ y ,

= s(s(v, x, u), y, s(v, x, 2 (u' ■ /'))), as 2 ^ x,

= s (s (v , x , u) , y , s (v , x , t)) ■

Case t = Xz.t ' .

Chapter 3. A fragment o f sequent calculus 52

s (v , x , s (u , y , t)) = s(v, x, s(u, y, Xz.t')

= s(v, x , \ z . s (u, y, t'))

= \ z . s (v , x , s(u, t , t '))

= Xz . s (s (v ,x , u) , y , s (v ,x , t ')) , by IH1,

= s (s (v ,x , u) , y , \ z . s (v ,x , 1?))

= s (s (v ,x , u) , y , s (v , x ,Xz . t '))

= s (s (v , x , u) , y , s (v , x , t)) .

Case t = (Az.t')(u' ■ I1).

s (v , x , s (u , y , t))

= s (v , x , s (u , y , {Xz.t ')(v!-I'))

= s(v, x , (Az.s(u, y, £'))(s(u, y, u!) ■ s (u , y, /')))

= (Xz.s(v, X, s{u, y, t'))){s{v, x, s {u , y, u ’)) ■ s (v , ar, s(u, y, /')))

= (Az.s(s(v, x, n), y, s(v, x, t ')))(s{s(v, x, u), y , s(v, x, u')) ■ s(s(v, x, u), y, s(v, x, I'))),

by IH1,IH2,

= s (s (y , x ,u) , y , (\ z . s (v , x ,1 ?)) (s (v , x ,u ') ■ s (v ,x , I')))

= s(s(v, x , u), y, s(u, x, (Az.t ')(u' - /,')))

= s (s (v , x , u) i y , s (v , x , t)) .

Case / = [].

■s(ik x, ,s(u, y, I)) = ,s(x, x, s(u, y, 0))

= s (u ,x ,0)

s(s{iKX,u)yy,[})

s (s (v . x , u) , y , s (v ,x , 0))

s (s (v , x , u) , y , s (v , x , l))

Chapter 3. A fragment o f sequent calculus 53

Case I — u' :: I'.

s (v , x , s (u , y , l)) = s(v,x, s(u, y,u' :: V)

= s (v, x, s(u, y, u') :: s(u,y,l '))

= s(v, x, s(u, y, u)) :: s(v, x, s(u, y, I'))

— s(s(v, x , u) ,y , s(v, x, u')) :: s(s(v, x, u), y, s(v, x, I1)), by IH1,IH2

= s(s(u, x , u),y, s(v, x, u) :: s(v, x, /'))

= s (s (v , x , u) , y , s (v , x , u : : ï))

= s (s (v , x , u) , y , s (v, x , l)) .

Appendabiiity, ¡nsertability, substitutivity

L e m m a 9 In XV, i f f —> l2 then appendix, If) —> appendix , 1'2).

P ro o f: By induction on l\. ■

L e m m a 10 In XV:

1. (a) I f t —> t' then inser t (u , I, t) —> in s e r t f u , Z, i ') .

(b) I f lx —* l'x then append(l\, if) —* append(l[, l2).

2. I f u —> u' then in se r t fu , Z, f) —> inser t(u ', I, t).

3. I f I Z' then inser t (u , Z, t) —> insert fu, I f t).

P ro o f: 1. By simultaneous induction on t —> t' and C —> Zj. Cases according to

Definition 5. We just do the base cases. The rem aining cases are routine. We

write s for sn&st and i for insert.

Case (31.

Chapter 3. A fragment o f sequent calculus 54

i (u , l , (A x .t 0) (t i ■ 0)) = (Xx.to)(ti • append(\\,u :: I))

= (A x . i0) (i i • {u :: 0)

*’,82 i (u , l , s (t U X,t0)) .

Case /32.

i (u , Z, (A x . i 0) (t i • (i 2 :: Z0))) = (A x . i 0) (i i ' append{t2 :: Z0> u " 0)

= (Ax.i0)(A ■ (¿2 append(l0, u :: Z)))

—>132 i (t2,append(l0, u :: I), s (t i , x , t 0))

= ¿(it, Z, z(i2, Z0, s (i i , x, i0)), by Lemma 5.

2 . and 3. are by case analysis of t, using Lemma 9. ■

L e m m a 11 In XV:

1. (a) then s u b s t (u , x , t) —> subst (u ,x , t ') .

(b) I f I —> I' then su b s t (u ,x , l) —> subst{u,x, l ') .

2. (a) I f u —* u' then subst(u. x, /.) —** subst(ur, x , t) .

(b) I f u —* u/ then su b s t (u ,x , l) —>* subst(u' ,x , l) .

P ro o f: 1. By simultaneous induction on t —* t' and I —> I'. Cases according to

Definition 5. We just do the base cases. Case L e f t 1 (resp. L e f t2) requires part

2. (resp. part 3.) of Lemma 10. The remaining cases are routine. We write s for

subst and i for insert.

Case ¡31.

s (u , x t {Xy.tQ)(t i - \ \)) = (\ y . s (u , x , t o)) (s (u ,x , t i) • 0)
-* ¡3 1 s(s(u, x , ti), y, s(u, x, t0))

= s (u , x. s (t i, y. to)), by Lemma 8 .

Chapter 3. A fragm ent o f sequent calculus 55

Case ¡32.

s (u ,x , (Ay.i0)(ii • (t2 :: Z0)))

= (A?/.s(ii, x, £0))(s(it, X, £x) • (s(u, x, t 2) ■■■■ s (u , x, Z0)))

/̂32 ¿(s(w, a:, ¿2), s(u, x, Z0), s(s(u , x, t x) ,y , s(u, x, t0)))

= i(s(u, x, £2), s(m, x, l0), s (u , x, s(t 1, y, £0))), by Lemma 8 ,

= s (u , x , ¿(£2, ¿o, s(£ i, y, £0))), by L em m a 7.

2. By simultaneous induction on t and I. Requires part 1. of Lem ma 10. ■

3.2 independent left permutation

The AP/i-calculus is presented in Table 3.3. Typing rules are in Table 3.4.

Besides constructors for the cut-free canonical fragment, XVh includes in its

syntax a kind of cut, the right perm uted cut t (u ■ I), which is more general th a t

th a t found in XV. This construction subsumes both the key-cut (Ax. t)(u ■ I) and

the left rule x(u ■ I) of XV. W hen t (u ■ I) does not fall under one of these sub

classes, it is left perm utable, and there is a reduction rule h th a t performs the

complete left perm utation of such cuts. Notice th a t, in XVh, x (u - I) is a cut

but is not a redex. Moreover, the cuts th a t are generated by the key step of

cut-elim ination are completely right perm uted (but not completely perm uted, as

in XV). Therefore, there is an essential difference between snbst in XV and here.

D e fin it io n 6 (C o m p a tib le c lo su re) Given a pair R of binary relations, the

first on T e r m s and the second on Lists , the compatible closure is the least

pair of relations — the first on T e r m s and containing the first, relation of R. the

second on L is t s and containing the second relation of R, closed under:

Chapter 3. A fragment o f sequent calculus

Table 3.3: The AP /i-ca lcu lus

(Terms) u , v , t ::= x \ Xx. t \ t{u ■ I)

(Lists) I, I' ::= [] 11 :: I

((31) (Xx. t)(u • []) —► s u b s t (u , x , t)

(¡32) (Ax. t)(u ■ (v :: I)) —> subst(u, x , t) (v ■ I)

(/?,) (t(u ■ l))(u' ■ I') —► t (u ■ append(l, u ' :: /'))

where

su b s t (v ,x ,x) — v

subst(v , x, y) = y , y f i x

subst(v, x, Xy.t) = Xy.subst(v, x , t)

subs t(v , x, £(ti • /)) = subst(v , x, t) (subs t(v , x, u) • subst(v , x, /))

subst(v, x , u :: /) = subs t (v ,x ,u) :: subst (v ,x , l)

subst(v, x, []) = []

append(t :: 1,1') = £ : : append'! . I')

append(\\,l ') = I'

Table 3.4: Typing rules for XPh

Chapter 3. A fragment o f sequent calculus 57

Var ^ ~ : A; - F x : A Right F - h Az.i : A D B X ^ Tr, x

V - t : A D B F ; - h î i : A r ; 5 b i : C
H e a iC u t --------------

p. /i l_ n . a L f t
T; — h f : A F] B F I : C

F; A h [1 : A 1JJ0 I : A 3 B r

Righta A 7 L f H e a i C

HeadCut2 —, n ^ F /—nr HeadCutS —, J wv£(u • Z) —> f(u ■ Z) f(w • Z) —► f('u • Z)

u —> U T t+0 Z —► Z'L f t l . V , ¿ / i 2u : : l - > u : : l J u :: I - a : : ! '

For instance, for defining —»g, take i? = (/3l U /32, 0) in Definition 6 . T hat is, in

AP/i we set /3 = (/3l U /32, 0). One can again define — (resp. —>732) by taking

A = (/?!, 0) (resp. i? = (/?2, 0)), or define —̂ by taking R = (/?., 0).

Admissible rules

L e m m a 12 In XV h, let ttj be a derivation o f F \ C F l \ B and no be a derivation

of T \ B F V : A. The complete left permutation of no over n^ is a derivation of

T;C F append(l ,V) : A. In particular, the following rule is admissible:

F - C F l - . B T; B F I1 : A
T; C F append (I, I') : A

P ro o f : As in Lemma 1. S

Chapter 3. A fragment o f sequent calculus 58

L em m a 13 In XPh, let irx be a derivation o f T , x : B; — b i : A, n2 a derivation

of T , x : B] C \~ I : A and 7r a derivation of T : — b v : B such that x ^

T. Then, the complete right permutations of ir, over 7Ti at x, and over tt2 at

x, are derivations of F ;— b subst (v ,x , t) : A and of T]C b s u b s t (v , x , l) : A,

respectively. In particular, the following rules are admissible:

T - , - \ ~ v : B F , x : B] - \ ~ t : A ^ r
T; — b subst(v, x, t) : A '

T] ~ h v : B T , x : B \ C b I : A , r
T; C b subst (v , x , l) : A X “

P ro o f : Let 7rJ and ttI, be the complete right perm utations of 7r, over ir\ a t x,

and over 712 a t x, respectively. The proof is by simultaneous induction on t (with

induction hypothesis IH1) and I (with induction hypothesis IH2).

Cases t = x , t = y f = x , t = Xy.t1, I = [] and I = u' :: I' exactly as in the proof

of Lemma 3. The remaining case is

Case t = t '(u' ■ I1). Then there are ir[, 7r", 7r'2, C\, C 2 such th a t 7Ti has the form

/ // 1
7 r I 7TJ 7T2

r,x : B \ - b t' : Cy D C2 r,i:B;-bu': C x T , x : B ; C 2 b I' : A
---H eadCut

T , x : B \ - b t'[u' -I') : A

Let us write s for subst. Derivation 7r̂ is the following H eadCut inference

7T+ 7T++ -nf

T; — b s(v, x , t1) : C x D C2 T; — b s(v, x, u') : C\ F ; C2 b s(v, x, I') : A

T, x : B: — b s(v, x , t ')(s(v, x , u) ■ s(v, x, I')) : A

where tt̂ 1“ and rc{ + are given by IH1 and irf is given by IH2. Since s (v , x , t) =

s(v, x, t ')(s(v, x, u ') • subst(v , x, I1)), we are done.B

Chapter 3. A fragment o f sequent calculus 59

C u t e l i m i n a t i o n i n X P h

In this subsection we show in w hat precise sense the reduction rules of XVh

perform cut-elim ination.

Rule (31: (Ax . t){u- []) —> subs t (u ,x , t) .

7T i

: 7T2

T, x : A; — b t : B ;
----------------------------- Right ■ ------------ A x
T; - b A x . t : A d B T; - b u : A F; B b B
--- HeadCut,

r ; - b {Xx.t)(u- 0) : B

reduces to

7r2 Tii

F ;— \~ u : A F , x : A ; — \ - t : B
- Lemma 13

F; — b subst (u , x , t) : B

Rule (32: (Ax. t)(u ■ (v :: I)) —+ su b s t (u ,x , t) (v - I).

ITi 77,3 7T4

r , .T : A \ - b i : B i D Bn ** T ; - \ ~ v : B i T; B 2 b I : C
Ri g h t . L f t

r ; — b Xx. t : A D B x D B 2 T; B x D B 2 h v :: I : C
-- H e a d C u t

T; - b (Ax . t) (u ■ (v :: 0) : C

reduces to

7T2 7Tx

F; - b u : A T, x : A; — h t : B 2 D B 2 ^ **
 _ (1) : :

F; — b subst lu , x, t) : B\ D B% F: — b v : B \ T; B 2 b I : C
— (2)

T; — b subst{u , x, t)(v • I) : C

where (1) is by Lemma 13 and (2) is a H eadCut inference.

Rule h: t{u ■ l){u' ■ V) —»■ t (u ■ append(l, v! :: I1)).

Chapter 3. A fragment o f sequent calculus 60

7T i 7T2 7T3

7r4 7T5
r ; — \- t : D D E F ; — \- u : D T\ E \~ I : A D B
--- (i) : :

T-, — \- t(u • l) : A D B Y - - \ - u ' : A T \ B \ - V \ C
 (2)

F; - b t(u ■ l)(u ■ I) : C

where both (1) ancl (2) are HeadCut inferences, reduces to

7T4 7T5

7T3
; T \ - \ - u ' \ A F ; B h l ' : C

7T x TTo • -----------------------------------L f t
F; E \- I : A D B F\ A D B b u' :: V : C

: :------------- — ---------------------(3)
F; — (- t : D D E F; — F u : D T; E F append(Z, u :: I) : C
 —__— --- HeadCut

F; - h t(u ■ l)(u' ■ V) : C

where (3) is by Lemma 12.

P ro p o s i t io n 2 (S u b je c t r e d u c t io n) In AVh, i f T; — b t : A and t —> t ' , then

T; - h t.' : A

P ro o f: The claim is proved together with the claim th a t if T; B h I : A and

I —>■ If then T] B h I' : A, by simultaneous induction on t —> t! and I —> I'. All

cases but the base cases are routine, and the la tte r were done above. ■

Relating A Vh and XV

We regard the term s of XV as forming a subset of the term s of A Vh. This

inclusion is correct because typing rules L e f t and K e y C u t of XV may be seen

as the particular cases of typing rule HeadCut of A V h in which the inference

immediately above the leftmost premiss is a Var or Right inference, respectively.

First, we show th a t A V h simulates XV.

L em m a 14 In X Vh . either t(u ■ I) = in ser t fu , 1.1) or t (u ■ I) —>h in se r t (u , /, t),

for all u. t. I in XV.

Chapter 3. A fragment o f sequent calculus 61

P ro o f : Case analysis of t.

Case t — x. t{u ■ I) = x(u ■ I) = inser t{u , I, x) = in se r t (u , I, t).

Case t = x (uq ■ Iq). t (u ■ I) = (x (uq ■ Iq))(u ■ I) —*h x {uq ■ append(lo,u :: I)) =

i n s e r t (u j , x (u 0 ■ ¿o)) = in ser t (u , I, t), as append in XPh and XP coincide for

argum ents in the la tter calculus.

Cases t = Xx.t.Q and t = (Ax . t0)(uo ■ lo) are similar to cases t = x and

t = x(uo ■ lo) respectively. ■

We need to compare subst in XPh w ith subst in XP. In the following, when

required, we write the former as subst!.

L e m m a 15 In XPh, the following holds:

1. subst' (u, x , t) subst(u, x , t) , fo r all u, t in A P.

2. subst' (u, x, I) substfu, x, I), fo r all u, I in XV.

P ro o f: By simultaneous induction on t and I. The only interesting case is t =

x(v ■ I). In this case,

subst'(u, x , x (v ■ I))

u(subst ' (u , x, v) ■ subst'(u, x, I))

u (s u b s t (u , x , v) • s u b s t (u , x , l)), by IH1,IH2,

in ser t (subs t (u ,x ,v) , subs t (u ,x , l) ,u) , by Lemma 14,

substfu, x, x{v ■ I))

subst(u, x, t) .

subst' (u, x , t)

*
■h.

+h or =

P ro p o s i t io n 3 I f t —> tf in XP. then t. —A t' in XPh.

Table 3.5: From A'Ph to XV

Chapter 3. A fragment o f sequent calculus 62

X = X

(A x.t)~ = Xx.t~

— inser t{u~ ,l~ , t~)

(0 r - D
{u : : l) - = n r : : l~

P ro o f: The claim is proved together w ith the claim th a t if I —» I' in XV, then

I — I' in XVh, by simultaneous induction on t —> t' and I —> I'. Cases according

to Definition 5. We just show the base cases. The remaining cases are routine.

Case (31. (Xx.t)(u ■ []) —>pi su b s t ' (u ,x , t) — subst fu, x , t) .

Case (32. (Xx.t)(u ■ (v :: I)) —>32 subs t ' (u ,x , t) (v ■ I) ~̂ *h subs t (u ,x , t) (v ■ I).

In both cases, the last /¿-steps are by Lemma 15. ■

There is a translation (_)“ : XVh —> XV defined in Table 3.5. We now prove

its correctness.

P ro p o s i t io n 4 (C o rre c tn e s s o f (_)")

1. I f XVh derives T; — F t : A then XV derives F; — h t~ : A.

2. I f XVh derives T; C F / : A then XV derives T; C F /" : A.

P ro o f : Let tti be a derivation in XVh of F; — F t : A and tt2 be a derivation in

XVh of T: C \~ I : A. One proves by simultaneous induction 011 t (with induction

hypothesis IH1) and I (with induction hypothesis IFI2) th a t there are derivations

7T* and it2 in XV of T ;— F t~ : A and T ;C h F : A respectively. The only

interesting case is t — t0{uo • k)- The remaining cases are routine.

Case t = to(uo - Io): Then there are Tr[,ir", V ^ B , C such th a t has the form

Chapter 3. A fragment o f sequent calculus 63

7 r i 71T 7To

T ; - b t0 : B D C r - , - \ ~ u 0 : B r - C f - l 0 : A
 — ; 7---- r-7— ------------------------------ H eadC ut

r ; — h to(uo Co) : A

Since t~ = in s e r t {u f , I f , t f), we want a derivation 7rJ of T; — t— i n s e r t (u f , ¿0", to"

A Take ix\ as

+ + + 4*7TV 7TV 7To

r ; - h to : B D C T; - h «0 : £ r ; C H „ : 4
 —- —: _ ——— Lemma 2

I ; — r insert{u0 , l0 , t 0) : A

where n f and 7r^+ are given by IH1 and ix% is given IH2. ■

Now we show some properties of

L e m m a 16 t~ = t, fo r all t in XV.

P ro o f: Imm ediate, by definition of insert. ■

L e m m a 17 append (I, u' :: l')~ = append (l~ ,u'~ :: l'~), fo r all v!, I', I in A Vh.

P ro o f: By a straightforward induction on I. P

L e m m a 18

1. (subs t ' (v ,x , t))~ = subst(v~ , x , t~) , fo r all v, t in A Vh.

2. (subst ' (v , x , /))“ = subst(v~ , x, /“). for all v, I in XVh.

Chapter 3. A fragment o f sequent calculus 64

P ro o f: By simultaneous induction on t and /, w ith induction hypotheses IH1 and

IH2, respectively, subst' refers to subst in XPh. We just show the only interesting

case. The remaining cases are routine.

Case t = to(uo ■ Iq).

(subst'(v, x, t))

= (subst'(v, x, t0(u0 ■ l0)))~

= (subs t ' (v ,x , t0)(subst' (v,x,Uo) ■ subst'(v, x,

= insert(subs t ' (v ,x ,Uo)~, s ubs t ' (v ,xJo)~ , subst ' (v ,x , to)~)i by def. of

= in s e r t (s u b s t (v ~ ,x ,u f) , s u b s t (v ~ , x , l f) , s u b s t (v ~ , x , t f)) , by IH1,IH2,

= subst(v~, x, i n se r t (u f , I f , t f) , by Lemma 7,

= subst (v~, x, (t,Q(u0 • l0))~), by def. of

= subs t (v~ ,x , t~) ■

P ro p o s i t io n 5 I f t\ —> t2 in XPh, then either t x = t 2 or t l —> t 2 in XV.

P ro o f: The claim is proved together w ith the claim th a t if lx —■> V in XPh, then

either I f = I f or I f —> I f in XP, by simultaneous induction on t \ —> t 2 and

l\ —> ¿2- Cases according to Definition 6.

Case 01. Similar to the following case.

Case 02.

((Ax. t) (u ■ (v :: I))) = inser t(u , (v :: I) , (Xx.t))

= inser t(u~, (v~ :: l~), Xx .t-)

= (Ax. t~) (u~ ■ (v~ :: l~))

— inser t(v~, l~, su-bst(u~ , x, t ~))

= in se r t (v~ . l~ , subst(u, x, t.)~), by Lemma 18,

= (substfu, x, t)(v ■ l))~. by def. of

Chapter 3. A fragment o f sequent calculus 65

Case h.

((t(ui ■ h)) {u 2 ■ h))~ — inser t {u f , l f , i n s e r t { u f , l f , t~)) , by def. of

= i n s e r t (u f , a p p e n d (l f , u f :: l f) , t ~) , by Lemma 5,

= i n s e r t (u f , append(li, U2 :: ¿2)” ,), by Lem ma 17,

= (t(ui ■ a p p e n d ^ , U 2 :: ¿2)))” , by def. of

Case H ea d C u t 1. Suppose th a t either ¿3 = t f or ¿J —» t f . We want either

(t3(u ■ l))~ = (t4(u ■ l))~ or (t3(u ■ l))~ —*• (i4(ii • l))~. Now,

[t3(u ■ I)) = insert{u ,1 , t 3)

= or —> inser t (u ~ , l ~ , t f) , by part 1 of Lemma 10,

= [U { u - l) y .

Case HeadCut2 . Similar, by part 2. of Lemma 10.

Case H eadCutZ. Similar, by part 3. of Lemma 10.

The rem aining cases follow by IH. ■

C o ro lla ry 1 XPh is a conservative extension of XV, i.e. t —>* t! in XV i f f t —>* t'

in XVIi, fo r all t, t' in XV.

P ro o f : By Propositions 3, 5 and Lemma 16. H

P ro p o s i t io n 6 t — t ~ , all t in XVh.

P ro o f : T he claim is proved together w ith the claim th a t I — l~ , all I in XVh,

by sim ultaneous induction on t and I. The only interesting case is t = to('Uo • lo)-

In this case,

Chapter 3. A fragment o f sequent calculus 66

t.
 . *

h or = insert(v,Q ,Iq , t q), by Lemma 14,

= {to{uo ■ lo))

C o ro lla ry 2 I f XV is confluent, so is XVh.

P ro o f: By Propositions 5 and 6 . H

L e m m a 19 I f t\ —>h h in XVh, then t f = t f .

P ro o f : It suffices to look a t the proof of Proposition 5. IE

C o ro lla ry 3 In X V h , —>/,. is confluent.

P ro o f: By Proposition 6 and Lemma 19. W

Therefore, we may refer to the normal-form mapping

C o ro lla ry 4 For all t in XVh. t~ =X* (i)-

P ro o f: From Proposition 6 and the fact th a t each t in XV (as a term in XVh) is

h-normal. ■

Chapter 3. A fragment o f sequent calculus 67

Perm utation of meta-operators

We prove some perm utations of operators subst and append.

L e m m a 20 For all u, u', I, I', I" in XPh:

append(append(l" , v! :: l ') ,u :: I) = append(l",u' :: append(l' ,u :: I)).

P ro o f : Straightforw ard induction on I". ■

L e m m a 21 For all v, u, /, I' in XPh:

subst (v ,x ,append(l f, u :: I)) = append(subs t (v ,x , l ') , subs t (v ,x ,u) :: s u b s t (v , x , l)).

P ro o f : Exactly as in Lemma 6 . H

The following is the subst lemma for XPh.

L e m m a 22 Let u, v, t, I £ XPh, x ^ y and y £ F V (v) . Then:

1. subst (v , x , subst[u , y, t)) = subst(subst(v, x, u) , y , subs t(v , x , £)).

S. subst(v, x , subst(u , y, /)) = subst(subst(v, x, u), y , subst(v , x, I)).

P ro o f: By simultaneous induction on t and 1, w ith induction hypotheses IH1

and IH2, respectively. Cases t = x, t = y, t — z £ { x , y } , t = X z . t I = [

and I = u' :: I' exactly as in the proof of Lemma 8 . We write s for sufest in the

remaining case.

Case t — t'[t' ■ I').

s (v , x, s(u, y, I:))

= s(v, x, s(u, y, t ' (u ■ I')))

= s(v, X, s(u, y, t ')(s(u, y, u') ■ s(u, y, /')))

= s(i>, X, s(tt, y, t')){s(v, X, s(tt, y, u')) ■ s{v, x, s (u , y, /')))

= s(s(u , x, it), y, s(i>, x, i'))(s(s(t>, x, u), y, s(v, x. u')) ■ s(s(v, x, u) ,y , s(v, x, I'))),

Chapter 3. A fragment o f sequent calculus 68

by IH1,IH2,

= s(s(x, X, u), y, s (v , x , t ') { s { v , x, u) ■ s (y , x , I')))

= s (s (v , x, u) , y , s (v , x , t \ v l ■ I ')))

= s { s (v , x , u) , y , s (v , x , t)) .

Appendability and substitutivity

L e m m a 23 In XPh:

1. I f l\ —> l[, then appendali, l2) —* append(l[, h) ■

2. I f 1.2 l2, then appendali, If) —> append (I i, I'f) ■

P ro o f: 1. By straightforward induction on l\ —> l[.

2. By straightforward induction on l\. ■

L e m m a 24 In XPh:

1. (a) I f t —> t' then s u b s t (u , x , t) —+ subst (u ,x , t ') .

(b) I f I —> I1 then su b s i (u ,x , l) —> subst (u ,x, l ') .

2. (a) I f u —► vl then subst(u, x, t) —>* subst(u \ x, t) .

(b) I f u —> vl then subst(u , x, I) —>•* subst(u', x, I).

P ro o f: 1. By simultaneous induction on t —> tl and I —> I'. Cases according to

Definition 6 . We just do the base cases. The remaining cases are routine. We

write s for subst.

Case 01.

s (u ,x , (\y . to)(t i - [])) = (\y . s (u , x. i0))(s(u, x, t \) ■ 0)

*0 i s[s(u, x, t i) , y , s{u , x , to))

= s (u , x. tQ)), by Lemma 22 .

Chapter 3. A fragment o f sequent calculus 69

Case (32.

s (u ,x , (Ay.i0)(ii • (i2 ¿o)))

= (Ay.s(u, x, t0))(s(u, x, ti) ■ (s (u , x, t 2) ■■ s (u , x, l0)))

y/32 s(s(u, X, t i) , y, s(u, X, t 0))(s{u, X, t 2) ■ s (u , X, lo))

= s (u ,x , 5 (í i , y , í o)) (s (u , x , í 2) ■ s(u ,x , lo)) , by Lemma 22,

= s (u , x , s (í i , y , t 0)(Í2 ’ ¿o)) •

Case h.

s (u , x , t Q(t i • Zi)(t2 ■ ¿2))

= s (u ,x , to) { s (u ,x , t i) ■ s (u , x , l i)) (s (u , x , t 2) ■ s (u , x , l 2))

— s(u, x, to)(s(u , x, ¿1) • append(s(u , x, ¿1), s(u, x, £2) :: s(it, x, /2)))

= s(u, x, to)(s(u, x, t i) ■ s (u , x)append(l i , t2 ■■ h))) , by Lemma 21,

= s(ii, x, io(ii • append(l\, t 2 :: l2))) .

2. By simultaneous induction on t and L H

3.3 Explicit right permutation

The AT7?,x-calculus is presented in Table 3.6. Typing rules are in Table 3.7.

The n a tu ra l next step after the introduction of X V h would be to separate right

perm utation from the key step of cut elimination, introducing a new constructor

£{x := u} for right perm utable cuts, and keeping a m eta-operator for the complete

right perm utation. T h a t is, in addition to h, we would take rules @1 and ¡32 in

XVh and replace calls to subst by t { x := u}

(Xx.t)(u ■ 0) ->• t { x := u}

(Ax. t) (u ■ (v :: I)) —> t { x := u} (v ■ I)

Chapter 3. A fragment o f sequent calculus

Table 3.6: The AT/ix-calculus

(Terms) u , v , t ::= x \ X x . t \ t (u ■ I) \ t { x := v}

(Lists) I, I' ::= [| 11 :: I

(61) (Xx.t)(u • []) —> t { x := u}

(62) (Ax. t)(u ■ (v :: I)) —» i{x := ri}(x ■ /)

(/i) (t (u- i)) (ur - n —> i(u • appen d(l, u ' :: i'))

(x l) x { x := u} —►

(x2) y { x := u}

(x3) (Ay .u){x := y} II?»■<Î

(x4) (t(u ■ l)) { x : = v} -> (i{x := x})(('u{x := x})

where

a p p e n d (\\,l') = I1

append(u :: I , I') = u :: appen d(l. /')

s u b (v ,x ,\\) = [I

s u b (v , .t, u :: /) - (u{x := v }) :: su b (v , x, /)

Chapter 3. A fragment o f sequent calculus 71

Table 3.7: Typing rules for XVhx

V ar

H eadCut —1T] — \~ t \ A D B T ; - l - u : A V ; B \ ~ l : C
T; — h t{u • I) : C

M idCut T; — h v : A T, x : A] — h t : B - ^
 r XiV

Ax T; A h U : A
r f , r - - h t : A T; B \~ I : C
L f t T] A D B\ - t : : l :C

together w ith the rule2

t { x := u] —> s u b s t (u , x , t) .

A calculus organised in this way has an architecture th a t is as close as possible

to th a t of ¿-protocol. There is the key step and two “structu ra l” steps, one

for right perm utation, the other for left perm utation, being these perm utations

performed by m eta-operators.

Nevertheless, we did not isolate such a calculus here and im m ediately took

a step further, in th a t, not only constructor t { x := u} is included and right

perm utation separated from the key step, bu t also right perm utation becomes

explicit, th a t is, performed in stepwise fashion by rules of the calculus. Therefore,

there is no sub.st in this W h x . As it were, this calculus is a calculus of explicit

subst.

C onstructor t { x := u} binds x in t. By variable convention, x does not occur

in u.

2This is calculus A j of [Espirito Santo, 2000]

Chapter 3. A fragment o f sequent calculus 72

D e fin itio n 7 (C o m p a tib le c lo su re) Given a pair R of binary relations, the

first on T e r m s and the second on Lists , the compatible closure — is the least

pair of relations —», the first on T e r m s and containing the first relation of R, the

second on Lists and containing the second relation of R, closed under:

f v j-__v 4-f
Right -r— 7------7— 77 HeadCut 1 77---- 77------777-----77

Xx.t —> Xx.t, t (u ■ I) —> t [u ■ I)

HeadCut2 —,----- /(: A ,—77 HeadCut3 —,----- --------------ttt
i(u ■ 1) —» i(u • i) i(u • /) —» £(u • I)

M id C u t 1 77------------------- t M idC ut2 t j=4 t ---- rrt { x := —»■ t {.t := v) t { x v) —> t { x v)

L f t 1 .. , A / i2 ■ 1 l'u ::!■■> u' :: / J u :: I u :: T

For instance, for defining —% take R = (61 U 62, 0) in Definition 7. T hat is,

in XV hx we set 6 = (61 U 62,0). One can define —>¡,1 (resp. —+¡,2) by taking

R = (61, 0) (resp. R. = (62, 0)), or define — by taking R = (h , 0). The definition

of —»xi if — 1, 2, 3,4) is by choosing R = (xi, 0). We will also let

x = x l U x2 U x3 U x4

and, thus, —>x is defined by taking R = (x, 0).

Admissible rules

L em m a 25 In XVhx, let 7ra be a derivation o/T ; C h I : B and tt2 be a derivation

of T \ B \~ V : A. The complete left permutation of ir2 over tti is a derivation of

D C h append(l , I') : A. In particular, the following rule is admissible:

T ;C \~ I : B F; B h I' : A
T; C b append(l , /') : A

P ro o f: As in Lemma 1. ■

Chapter 3. A fragment o f sequent calculus 73

L e m m a 26 In XV hx the following rule is admissible:

L ; - b v : B r , x : B \ C V I : A
r; C b sub(v, x, I) : A X *

P ro o f : Let ir2 be a derivation of T, x : B; C b I : A such th a t x T. We prove

by induction on I th a t, for any derivation 7rx of F : — b v : B , there is a derivation

7T2 of L; — b sub(v , x, I) : A.

Case I = []: Then C — A and sub(v, x, I) = []. Hence we want a derivation 7r\

of T; A b [] : A. Take as an application of the A x rule.

Case I = u 1 :: I': Then there are 7r ,̂ n'2, C\, Ci such th a t 7r2 has the form

7Ti 7To

T ,x : B - - b u' : C x T , x \ B \ C 2 \~ V : A
 L f t

T , x : B ;C i D C2 h u ' :: V : A

and C = C\ D C2. Since sub(v ,x , l) = (u'{x := w}) :: subst (v ,x , l ') , we want a

derivation 7r| of F; C\ D C2 b [u'{x \= u}) :: subst(v , x, I') : A. Take 7r2 as

/
7T,

711

T] - \ - v : B F , x : B] - \ ~ u ' :Cy
M id C u t

T; — b u { x := v} : C\ T; C2 b subst iv , x, I') : A
 i L f t

T ;C i D C2 b (u '{x := u}) " s u b s t (v ,x , l ') ■ A

where ir f is given by IH. ■

Cut elimination in XVhx

We now see in w hat precise sense reduction rules of XVhx correspond to cut

elimination steps.

Rules j3l and (32. As for AVh, except th a t calls to Lemma 13 are replaced by

M id C u t inferences.

Rule h. Exactly as for XVh, using Lemma 25 instead of Lemma 12.

Chapter 3. A fragment o f sequent calculus 74

Rules xl ,x2. S tandard cut-elim ination steps reducing a cut whose right sub

derivation is an axiom.

Rules x3, x4. S tandard cut-elim ination steps, perm uting the cut upwards past

the last inference of the right subderivation. In the case of x4, Lemma 26 is used.

P ro p o s i t io n 7 (S u b je c t re d u c t io n) In XVhx, ¿ /T ; — F £ : A and t —> t ' , then

r; - h t! : A

P ro o f: The claim is proved together w ith the claim th a t if T; B b I : A and

I —* If then T ;B b V : A, by simultaneous induction on t —> t' and I —* I'. All

cases bu t the base cases are routine, and the la tter were sketched above. SB

Relating W h x and W h

First, we show th a t W h x simulates W h .

L e m m a 27 In W h x :

1. t { x := u} —A subst (v ,x , t) , fo r all t, v in W h .

2. sub (v ,x , l) —>* subst.(v,x,l), fo r all I, v in W h .

P ro o f: By a straightforward, simultaneous induction on t and I. IX

P ro p o s i t io n 8 / / £ —>■ £' in W h , then t —A t' in W h x .

P ro o f: The claim is proved together w ith the claim th a t if I —> I' in W h , then

I W I1 in AV hx , by simultaneous induction on £ —» tl and I —► I1. Cases according

to Definition 6 . We only show the base cases. The remaining cases are routine.

Case P 1. (Ax. t)(u • []) —»¡,1 t { x := v} subs t (v ,x , t) . the last reduction

being by Lemma 27.

Case 02. (Ax. t)(u ■ (v :: I)) —>62 t { r v} (v ■ I) — subs t (v , x , t) (v ■ I), the

last reduction being again by Lemma 27.

Table 3.8: From XVhx to XPh

Chapter 3. A fragment o f sequent calculus 75

•Tb = X

(A x . f) b = A x . i b
{ t { u - l) f = i V - / b)

{ t { x : = u }) b = s u b s t (v b , x , t b)

(0) b = D
(u :: l) b = v f : : l b

Case h. (t(u ■ ■ I') —p,, t (u ■ append(l,vl :: I')) in XVhx and we are done

because append in XVhx and XVh coincide for argum ents in the la tter calculus. ■

We now define a mapping (_)b from XVhx to XVh. The definition is given

in Table 3.8 and simply am ounts to replace each mid-cut by the corresponding

application of operator subst of XVh.

P ro p o s i t io n 9 (C o r re c tn e s s o f (_)b)

1. I f XV hx derives F; — F t : A then XVh derives T: — F tb : A.

2. I f XV hx derives T; C F / : A then XVh derives F; C F lb : A.

P r o o f : Let 7rj be a derivation in XVhx of F; — F t : A and 7r2 be a derivation in

XVhx of T; C F / : A. One proves by simultaneous induction on t (with induction

hypothesis IH1) and I (with induction hypothesis IH2) th a t there are derivations

7r* and tv?! in XVh of T; — F f : A and T; C F F : A respectively. The only

interesting case is t = t,0{x := tio}. The remaining cases are routine.

Case t. = t0{x := uq}: Then there are 7r(, tt", B such th a t Tiy has the form

Chapter 3. A fragment o f sequent calculus 76

7T ■.//

T] — \~ uo ■ B T , x : B] — \~ to ■ A
—-- M id C u tM id C u t

Since fb = subst(uo, x, tb0), we want a derivation 7r* of T ;— h subst(ub0, x, ig) : A

Take nt as

7T.+ +

P; — h Uq : B r , £ : B] — h tb0 : A
Lemma 13

T; — h subst(uh0, x, 4) : A

where 7r̂ ~ and tt̂ are given by IH1. If

Now we show some properties of (_)b.

L e m m a 28 tb = t, fo r all t in XPh.

P ro o f : Immediate. ■

L e m m a 29

1. sub{v , x, l)b = subst{yb, x, ¿b), for all v, I in W h x .

2. appendix , I2 Ÿ = append(l \ ,lb2). for all l-i, l2 in W h x .

P ro o f: By straightforward inductions on I and ¿1. ■

P ro p o s i t io n 10 I f ti —> t 2 in W h x , then t\ —A in W h .

P ro o f: The claim is proved together with the claim th a t if l\ —> l2 in W h x ,

then ¿5 —>* If in W h , by simultaneous induction on t x —» t2 and ¿1 —■* l2. Cases

according to Definition 7.

Chapter 3. A fragment o f sequent calculus

Case 61.

((A x.t){u • 0))b = (A x . ib) (u b ■ [])

—>/3i subst(ub, x , i b)

= {t{x := u })b .

Case 62.

((Ax. t)(u ■ (v :: /)))b = (Ax . tb){ub • (vb :: /b))

2 subst(ub, x, ib)(nb • /b)

= {t{x := u}(y; • /))b .

Case h.

■ h)) (u 2 ■ l2))b = (tb(u \ . l \)) ^ 2 -l\)

—>h tb(u\ ■ append(l\, ub2 :: ¿2))

= tb{u\ ■ append(l\, (u2 :: l2)b))

— tb(rib • appendali, (u2 :: l2))b), by Lemma 29,

= (t(ui ■ appendali,u 2 :: ¿2)))b

Case x l. (x{x := r;})b = subst(vb, x , x) = vb.

Case x2. (y { x := u})b = subst(vb, x , y) — y = yb.

Case x3.

((Xy. t){x := u})b = subst(if , x, A?/.tb)

= Xy.subst(vb, x , t b)

= (Ay.i{x := u})b .

Case x4.

Chapter 3. A fragment o f sequent calculus 78

(t (u - l)) { x : = u }) b

= subst(vb, x, tb(ub ■ /b))

= subst(vb, x , tb)(subst(vb, x, n b) ■ subst(vb, x, T))

= subst(vb, x, tb)(subst(vb, x, ?ib) ■ sub(v, x, /)b), by Lemma 29,

= (t{x := x})b((w{x := u})b • sub(v, x, ¿)P)

= ((t{x := n})(u{x := n} ■ sub(v, x, ¿)))b .

Case M id C u t l . Suppose 4 —A 4 - We want (^ { x := n})0 —A (i4{x := n})b-

Now,

(t3{x := ti})b = subst(ub, x, 4)

—A subst(ub, x , 4) , by part 1. of Lemma 24,

= (t 4{ x : = w }) b .

Case MidCut.2. Similar, by part 2. of Lemma 24.

The remaining cases are by IH. ■

C o ro lla ry 5 XVhx is a conservative extension of XVh, i.e. t —A if in XPh iff

t —A t! in XVhx, for all t , t ' in XVh.

P ro o f: By Propositions 8 and 10 and Lemma 28. ■

P ro p o s i t io n 11 t —A tb, for all t in XVhx.

P ro o f: The claim is proved together w ith the claim tha t I —A f . for all I in X V h x ,

by simultaneous induction on t and I. The only interesting case is t = to{x := Vq}.

In this case,

Chapter 3. A fragment o f sequent calculus 79

t = t0{x wo}

t l { x := wb}, by IH1,IH2,

—A subst(vQ, x, ¿q), by Lemma 27,

= (i0{£ := w0})b

= i b

The cases t = x and I = [] are im mediate and the remaining cases are by IH. H

C o ro lla ry 6 I f XVh is confluent, so is XT’hx.

P ro o f : By Propositions 10 and 11. ■

L e m m a 30 I f t \ —*x t 2 in XVhx, then t\ = t\.

P ro o f : It suffices to look at the proof of Proposition 10. ■

C o ro lla ry I In XVhx, —>x is confluent.

P ro o f : By Proposition 11 and Lemma 30. ■

Therefore, we may refer to the normal-form mapping }x.

C o ro lla ry 8 For all t in XVhx., tb = [x (t).

P ro o f : From Proposition 11 and the fact th a t each t in XVh (as a term in XVhx)

is x-normal. ■

Appendability and substitutivity

L em m a 31 In XVhx:

1. I f ¿i —> l[, then append(l i ,l2) —> append(l[, Z2).

2. I f Z2 —> I'o, then a p p e n d ^ , Z2) —> append(li,l '2).

P ro o f: Exactly as in Lemma 23. ■

L e m m a 32 In XVhx:

1. I f I —> V, then sub(u , x, I) —> sub(u , x, Z').

S. / / m —> u ' , then sub(u , x, Z) —»• sub(u ' , x, Z).

P ro o f: 1. By straightforward induction on I —► I'.

2. By straightforw ard induction on Z. ■

3.4 A fully explicit system

The calculi AP, XVh and AP/ix are the systems th a t will deserve our atten tion

in the following chapters. Nevertheless, we conclude this chapter by identifying

one further calculus, named X V h x , th a t happens to be outside the canonical

fragment. The point is th a t XVhx is a fully explicit system, in the sense th a t the

whole cut-elim ination procedure is clone by means of local rules, w ithout appeal

to m eta-operators. It is obtained from XVhx simply by making explicit operators

append and sub. The corresponding new constructors are l(u ■ I') and Z{x := u}.

The la tter binds x in Z. By variable convention, x does not occur in u.

As we will be dealing with fully explicit system, we briefly com pare XVhx

w ith Herbelin’s original A-calculus. It will become clear th a t a fully explicit right

protocol defined over the canonical fragment requires inter-perm utations 44 and

22 to be added to A. Moreover, the simulation of XVhx by A3 will allow the reuse

of the strong normalisability of A3.

The XVhx -calculus is defined on Table 3.9. Typing rules are in Table 3.10.

Chapter 3. A fragment o f sequent calculus 80

Chapter 3. A fragment o f sequent calculus

Table 3.9: The A'P/ix-calculus

(T erm s) u , v , t ::= x \ X x . t \ t (u ■ I) \ t { x := v}

(Lists) 1,1' \ \ \ t :: l \ l (u ■ I') \ l { x := u}

(61) (Ax . t) (u - []) - , t { x := u}

(62) (Ax. t)(u ■ (v :: I)) - , t { x := u}(v ■ I)

(h) (t(u ■ l))(ur ■ V) - , t (u ■ (l(u' ■ I')))

(xl) x { x := v} —» V

(x2) y { x := u}

(x3) (Ay .u){x := i>} - , Ay .u{x := v}

(x4) (t(u ■ l)){x ■= v} - , (t {x := u })((u { i

(hi) d (u ' - n u' :: V

(h,2) (u :: l)(u' ■ V) - , u :: (l(u' ■ I'))

(x41) []{* := t,} - []
(x42) (u :: l) {x := v} -> (u{x := u}) :: (l{

Chapter 3. A fragment o f sequent calculus

Table 3.10: Typing rules for XVhx

V a r r , x : A :- h x T A R '9htT \-- F Ax.t 7~k

H e a d C u t ÇnuADBF; - h u : A r ; B H : C
1 ; — h t (u ■ I) : G

M id C u t F ' ~ '' J ’X- : Ai ~ n * B x £ rT; — h t { x := v \ : B ^

A r f J T ; - h i : A T ; B h l : C
r ; A h [] : A 1 T] A d B \ - t : : l - . C

AuxHecidCut r ; - b i t ' : A : C
A u x n e a a u u t T; h l(u' ■ I) : C

a nr- An + T; — b v : A T , x : A \ C \~ I : B ^A u x M id C u t — „ „ . , r ’------- f — f-,------- x e TT; C h i{x := r;} : B ^

Chapter 3. A fragment o f sequent calculus 83

D e f in it io n 8 (C o m p a tib le c lo su re) Given a pair R of binary relations, the

first on T e r m s and the second on Lists , the compatible closure — is the least

pair of relations —>, the first on T e r m s and containing the first relation of R, the

second on L is t s and containing the second relation of R, closed under:

Right -T— \ — 77 H ea d C u t l t ^ t
Xx.t —7 Ax.t' ' ' t f u ■ I) t ' (u ■ I)

H e a d C u t 2 —, ft V", ,—w H e a d C u t Z }, wr
t (u ■ I) —* t(u ■ I) t (u ■ I) —7 t (u ■ I)

M i d C u t l j r ----- T M idC ut2 -7 7Tt { x := v \ —>■ t {x := x j t { x := v \ —> t { x := x }

L f t l y L f t . 2 — 77 A u x H e a d C u t l -----------------lk -----77
J u : : l - + u : : l u :: I -> u :: I l0(u • I) l0(u • I)

A u x H e a d C u t 2 T~, /■(' 4' t /—tv A uxH eadC u t3 7-7 I ,-----l0[u ■ I) -> l0{u ■ I) l0(u ■ I) -> lQ(u ■ i)

A u x M i d C u t l 77-------------- / f---7- A u x M i d C u t2 77----------LL ---------------- 77-
l{x x j —> I {x := v } l {x v } —> £{x := x }

Relating W hx and W hx

First, we show th a t W h x simulates W h x .

L e m m a 33 In W h x , the following holds:

1. l(u' ■ I') —̂ append(l, u' :: /'), all 1,11!, I1 in W h x .

2. l{x := x} J42 sub{v ,x, l) , all l , v in W h x .

P ro o f : B oth by straightforward induction 011 I. ■

P ro p o s i t io n 12 I f t —> f m W h x , then t —A t ' m W h x .

P ro o f: The claim is proved together with the claim th a t, if Z —5- Z/ in W h x ,

then / —>+ in W h x , by simultaneous induction on t t' and I —7 Cases

Table 3.11: From XVhx to XVhx

Chapter 3. A fragment o f sequent calculus 84

x° = x

(A x.t)° = A x.t°

(■t { u - l)) ° = t ° { u ° - l°)
{t{x := u})° = t ° { x := u0}

(D)° = D
(u :: 0° = u° :: 1°

= append(l l , u° :: If)

(l { x := u})° = s u b (v ° , x , l°)

according to Definition 7. We just show the interesting base cases, the remaining

being routine.

Case h. (t (u ■ l))(u' ■ I') — t (u - (l(u1 ■ I1))) — ■ (append(l ,u1 :: I'))),

where the steps —̂ are by Lemma 33.

Case x4. (t{u ■ l)){x : = u} —>s4 {t{x := v }) (u {x := v} ■ l{x := v})

(t{x := u})(u{x := v} ■ sub(v , x, /)), where the steps —>4"41 i42 are by Lemma 33. ■

We now consider a m apping (_)° from XVhx to XVhx. Its definition is given

in Table 3.11. Auxiliary cuts are translated to calls to append and sub.

P ro p o s i t io n 13 (C o rre c tn e s s o f (_)°)

1. I f XVhx derives F; — F f : A then XVhx derives T; — h £° : A.

2. I f XVhx derives T; C F I : A then XVhx derives F ; C H ° : A.

P ro o f : Let tti be a derivation in XVhx of T; — F £ : A and tt2 be a derivation in

XVhx of F; C F / : A. One proves by simultaneous induction on t (with induction

Chapter 3. A fragment o f sequent calculus 85

hypothesis IH1) and I (with induction hypothesis IH2) th a t there are derivations

7T* and 7t2 in W h x of T; — h t° : A and T; C h 1° : A respectively. We only do

the interesting cases. The remaining cases are routine.

Case I = lo(uo ■ li). Then there are 7r(, 7r2, 7t2, B x, S 2 such th a t 7t2 has the form

/ ! // 7ÎO 7T i 7To

T; C h l0 : B x D S 2 T; h : S x T; B 2 h Zx : A
--- A u x H e a d C u t

T - C \ - l 0{u0 - h) : A

Since (Zo(«o ■ Zi))° = a p p e n d ^ , Uq :: 1°), we want a derivation 7r2 of F; C b

append(lQ,UQ :: Zf) : A. Take tt2 as

7Ti+ 7rT+

r ; c h z s

T; b : Si r ; S 2 b 1° : A
 — L f t

B\ D S2 T - B 1 D B 2 bu° :: Z° : A
— L e m m a 25

T j C h a p p e n d ^ , U q : : 1 °) : A

where 77̂ is given by IH1 and 7r2f' , 7r^+ are given by IH2.

Case I = lo{x := Uo}- Then, there are ir'v tc'2, B such th a t 7t2 has the form

/ /7T i 7T2

F; - b u0 : B T, x : B \ C b Z0 : A
----------------- A u x M idCut

T; C b Zo{x := Uo} : A

and x tfz F. Since (lo{x := uq})° = sub(uq , x , Zg), we want a derivation 7r* of

T; C b sub(v,Q, x, 1$) : A. Take 7r2 as

7r+ 7T+

F ; - b u°0 : B F„x : B: C\~ l°0 : A
---L e m m a 26

F C h s i i ^ i . Z o) : A

where n f and n t a re given by IH1 and IH2, respectively. ■

Chapter 3. A fragment o f sequent calculus 86

L e m m a 34 t° = t, fo r all t in XVhx.

P ro o f: Immediate. ■

P ro p o s i t io n 14 I f t\ —> 12 in XVhx, then t \ —»•* t \ m XVhx.

P ro o f: The claim is proved together with the claim th a t if l\ —> 1% in XVhx,

then 1° —>* l?2 in XVhx, by simultaneous induction on t\ —► ¿2 and l\ —> ¿2- Cases

according to Definition 8 .

Cases 61, 62, li, x l, x2, x3 and x4. One step of these in XVhx is m apped by

(_)° to a step of the same kind in XVhx.

Cases h i , 6,2 , x41 and x42. One step of these is collapsed in XVhx by (_)°.

Case A u x H e a d C u t l . Follows by part 1. of Lemma 31.

Cases AuxH eadC ut2 and AuxHeadCutS . Follow by part 2. of Lemma 31.

Case A u x M id C u t 1. Follows by part, 1. of Lemma 32.

Case A uxM id C u t2 . Follows by part 2 . of Lemma 32.

All the remaining cases follow by IH. ■

C o ro lla ry 9 XVhx is a conservative extension of XVhx, i.e. t —>* t! in XVhx iff

t —>* tl in X V h x , for all t , t ' in XVhx.

P ro o f: By Propositions 12 and 14 and Lemma 34. ■

P ro p o s i t io n 15 t ~̂ *R t°, fo r all t in XVhx, and R = 61, 6-2,x41, x42.

P ro o f: The claim is proved together with the claim th a t I ~̂ *R 1°, for all I in

XVhx and same R, by simultaneous induction 011 t and I. Only two cases deserve

attention.

Case / = Ii (uq ■ If). Then

Chapter 3. A fragm ent o f sequent calculus 87

h (tto ■ h)

b y l H l , IH2,

append(ll,UQ :: 1%), by Lemma 33,

[h (u o ¿2))°

1° .

Case I = l0{x := u0}. Then

I

~>*R

x41,x42

■

C o ro lla ry 10 I f XV hx is confluent, so is XVhx.

P ro o f: By Propositions 14 and 15. ■

L e m m a 35 I f t \ — V in XVhx, R = h i , h2, x41, x42, then t\ = t°.

P ro o f: It suffices to look a t the proof of Proposition 14. ■

C o ro lla ry 11 In X V h x , ->R is confluent (R = h i , h2,x41,x42).

P ro o f : By Proposition 15 and Lemma 35. HI

Therefore, we may refer to the normal-form m apping f R.

l0{x : = w0}

l°0{ x := w“}, by IH1, IH2 ,

sub(vQ, x, Zq)» by Lemma 33,

(l0{x := w0})°

1° .

I

fR

hl,h2

Chapter 3. A fragment o f sequent calculus 88

Table 3.12: From AV h x to A3

X1 = xO

(a x . ty = \ x . h

0t (u - i) y = t f u 1 :: ll)

(:t {x := v}Y = t l{x := u !}

m = 0
(u :: iy = u l :: ll

(h (uo • h)) 1 = l[(ug :: If)

(l {x ■■= u})! = ll{x

C o ro lla ry 12 For all t in A V h x , t° (t) (R = h i , h2, x41, x42j.

P ro o f: From Proposition 15 and the fact th a t each t in W h x (when regarded

as a term in W h x) is /¿-normal. ■

Comparison with Herbelin’s system

The AP/rx-calculus is sufficiently close to the original A-caleulus to allow an easy

comparison. At the level of syntax, the difference is th a t the former has construc

tors x, t (u ■ I) and l(u ■ I'), whereas the la tter has xl, tl and 11'. Hence, A seems

a little bigger. However, in order to simulate reduction rules h and x4 of W h x ,

one needs to adjoin perm utations 44 and 22 to A. A m apping from W h x to A3

is suggested in Table 3.12.

P ro p o s i t io n 16 (C o rre c tn e s s o f (_)')

1. I f W h x derives F; — h t : A then A3 derives T; — b t l : A.

Chapter 3. A fragment o f sequent calculus 89

2. I f W h y : derives T; C b I : A then A3 derives F \ C h ll : A.

P r o o f : This is by the usual simultaneous induction. Here we are going to be

sketchier. We show how to “sim ulate” in A3 typing rules V a r , HeadCut and

A u x H e a d C u t of W h x .

Var:

A x
T - A h 0 : A

Der
T, x : A; — b x[] : A

HeadCut:

T; - b u l : B T] C ll : A
--L f t

T] — \- t l : B D C F; B D C \~ u l :: ll : A
--- H eadCut

T ; - h t . \ul :: ll) : A
AuxHeadCut:

T] - \ ~ u 0 : B T; C b l l : A
------------ L f t

F] D \~ l[: B D C F; B D C \~ u l :: l l : A
 — A u x H e a d C u t

.. f ■■ ■F]D\ ~ l[« :: ll2) : A

P ro p o s i t io n 17 I f t\ —» ¿2 in W h x , then t\ —>+ t l in A:!.

P ro o f: The claim is proved together w ith the claim th a t, if I —> I' in W h x , then

I —>+ I' in A3, by simultaneous induction on t —> t1 and I —*• I'. Cases according

to Definition 8 . We just show three base cases. Non-base case are routine.

Case h.

((t(ui ■ h)) (u 2 ■ k)) 1 = { t \u \ :: l[)){ul2 :: l \)

>22 t \ (u \ : : l \) (u \ : : l l2))

-»31 t \ u \ :: (l[(ul2 :: ll2))

= (t(ui ■ (h{u2 ■ l2)))Y

Chapter 3. A fragment o f sequent calculus 90

Case x l.

(x[}){x : = u 1}

u !(D(x := u1})

u>[]

u l .

Case x4.

(x{a; := u })! =

—>41

~ >52

—>20

(t(u • l) {x v })1 = t \ u l :: ll) {x := v 1}

—>44 (t l{x := v l})(ul :: l‘) {x := t ’! }

*51 {tl{x := v l})((ul{ x := u1}) :: (ll{x := uJ}))

= {{t{x := u})(iî{.t := i/} • l{x := w })) ! .

□

Hence, strong normalisability of typable term s may flow from A3 to XVhx.

C o ro lla ry 13 Let S 6 {XV, XVh, XVhx, XVhx}. I f t is typable in S , then t is

strongly normalising.

P ro o f: From Theorem 1 and Propositions 16, 17, 12, 8 and 3. ■

Chapter 4

Normalisation as cut-elimination

The goal of this chapter is to prove th a t XV is isomorphic to A h We do this by

defining an interm ediate calculus, nam ed Aj\f, and the following isomorphisms

T J\f
XV ̂ AN 1 - , A

0 |_|

The calculus AJ\f may be seen as a presentation of A w ith a separation between

the norm al subcalculus and a single constructor for /3-reclexes. The true nature

of AN will only become clear in the next chapter.

4,1 A presentation of A

A somewhat unusual treatm ent of A-calculus is presented in Table 4.1. We name

this calculus the AW-calculus. Typing rules are in Table 4.2. This is a presenta

tion in which the normal fragment is obtained by simply om itting one constructor,

very much in the style of sequent calculus. A nother characteristic is a distinction

between applicative terms app(A) and applications A 6 Apps. Actually, there

are three kinds of applications. Two of them are value applications (x N and

(Ax.M)Ar); we call the th ird (A N) an applicative application (because A is not

a value).

*The isomorphism between XV and A was announced for the first time in
[Espirito Santo, 2000],

91

Chapter 4. Normalisation as cut-elimination 92

Table 4.1: The AA/”-calculus

(Terms) M , N

(Apps) A

x | X x .M \ app(A)

xlV1 (X x . M) N | A N

((51) app((Xx.M)N) -»■ M [N /x \

((52) ((\ x . M) N) N ' -> M [N /x]@ N ’

where

x[N/x \ =

y[iV/x] =

(Xy.M) [N/x] =

(app(A))[N/x] =

N

y , y + *
X y .M [N /x \

app(A[N/ x])

(xM)[N/ x)

(j M) [N / x]

((Xy-M)M') \N / x]

(AM) [N/x]

= N @ M [N / x }

= y M [N / x] , y ^ x

= (Xy. M [N/ x])M'[N/x\

= A[N/ x]M[N/ x]

x @N =

(Xx . M) @N =

(app(A))@N =

x N

(Xx . M) N

A N

Table 4.2: Typing rules for AW

Chapter 4. Normalisation as cut-elim ination 93

Var T, x : B h x : B V E l i m T, x : B d C \ ~ N : B
T, x : B D C h x N : C

In t r o Y , x \ BV- M \ C x £ T Redex T , x : B \ ~ M : C T I- N : B , r
T h (X x . M) N : Cr h A x . M : B d C

A E l i m T \ - A : B d C T 3 N : B
T h A N : c

The syntactic class Apps is ranged over by A. U nfortunately A also ranges over

types. So, when typing AW-terms, we will only use the m eta-variables B, C, D.

Care is needed for distinguishing between the two operators of substitution: for

each N, x, there are substitution operators - \N/x \ : T e r m s —»■ T e r m s and ~[N/x] :

Apps —> Apps.

A surprisingly interesting exercise is to define /3 in this setting. The problem

w ith (X x . M) N —> M[N/ x] is th a t the redex is in Apps whereas the contractual

is in T e r m s . We can fix this by proposing

However, w ith (31 alone, we cannot reduce a:pp(((Ax. M) N) N ') . The solution is

to also consider the notion of reduction

Here the operator @ : T e r m s x T e r m s —> Apps (see again Table 4.1) makes

available the application between two AW-terms, a non-prim itive construction in

AA/". Relation (31 is a relation on T e r m s whereas relation (32 is a relation on

Apps.

D e fin it io n 9 (C o m p a tib le c lo su re) Given a pair R of binary relations, the

first on T e r m s and the second on Apps. the compatible closure is the least

{(31) app((Xx . M) N) -+ l\I[N/x] .

{,32) ((Ax . M) N) N ' -»• M[N/x]@N' .

Chapter 4. Normalisation as cut-elimination 94

Afx = X

Af (Xx . M) = Xx. Af (M)

A f (M N) = app(Af(M)@Ai(N))

Table 4.3: From A to XJ\f.

pair of relations —>, the first on T e r m s and containing the first relation of R, the

second on Apps and containing the second relation of R, closed under:

In t r o T - J ^ N - TF APV A “ * A 'Ax . M —t Ax . M app(A) —> app(A')

N -> N 'V E l i m x N x N '

Redex 1 t t — , M — n r m Redex2 iV —> iV
(Xx . M) N -> (Xx . M') N (X x . M) N - f (X x . M) N 1

A E l i m l , d 4 L A E l im 2 N N 'A N ->• A 'iV - * A IV '

For instance, for defining —>£, take i? = {(51 ,(32) in Definition 9. T hat is, in AJV

we set

(3 = (131,02) .

One can also define — (resp. —>32) by taking /?. = (/?1, 0) (resp. R = (0,/32).

We now prove th a t AN and A are isomorphic.

First we define a m apping A1' : X —>• AW in Table 4.3. If W (V) = V' (where

V is a value) and Af (Ni) = jV', then A f sends V N i . . .N k to app{V'N'v ..N'k). For

instance, Af ((xy)z) = app{app(j\f x@J\fy)@Af z) = app{app{xy)@z) = app{{xy)z),

whereas Af (x(yz)) = app{Afx@app{Afy@Afz)) = app(x@app(yz)) = app(xapp{yz))

L enrm a 36 I f XAf derives T F M : C D B and, F F N : C, then XAI derives

F F M @ N : B.

Chapter 4. Normalisation as cut-elim ination 95

P ro o f: Let 7r and ir0 be derivations of T h M : C D B and L b N : C,

respectively. We prove by case analysis of M th a t there is a derivation i t * of

L b M @ N : B.

Case M = x. Then M @ N = x N and 7r has the form

Var
Y ' , x : C d B C x : C d B

and T = P , x : C D B. We want a derivation of T', x : C D B b x N : B Take 7r*

as

tto

r ' , x : C D B b N : C
----------------------------------V E l i m
r , x : C D B b x N : B

Case M = Xx.M0. Then M @ N = (Xx.M0) N and it has the form

TTl

r , x : C b Mo : B
-----------------------------In t ro
T b Ax.M0 : C D B

We want a derivation of T b (Xx .Mq) N : B. Take 7r* as

T T i tto

r , x : C b Mo : B r b N : C
---Redex

T b (Xx .M q) N : B

Case M — app(A). Then M @ N = A N and 7r has the form

TTl

T C A i C d B
----------------------------- App
T b app (A) : C D B

We want a derivation of T b A N : B. Take tt* as

Chapter 4. Normalisation as cut-elimination 96

7T j 7T0

T C A : C d B F \ ~ N : C
---A E l i m

T b A N : B

P ro p o s i t io n 18 (C o rre c tn e s s) I f A derives F b M : B then XJ\f derives T b

Af{M) : B.

P ro o f: Let n be a derivation of T b M : B in A. One proves by induction on

M th a t there is a derivation 7r* of T b j \ f (M) : B in AJ\f. Cases M = x and

M = Xx .Mq are straightforward. Let M = M qN q. Then tt as the form

7Ti 7T2

r h Mo C D B r h No

r b MqNq : B
Since J\f(M) — app(J\f (Nq)), take n* as

7Ti 7T2

r b Mq : C d B r b N ô : c
-- Lemma 36

T b Af{M 0)@Af{N0)
--------------------------------- App
T b app(J\f(M0)@Af(N0))

where 7r*. 7t| are given by ILL ■

We now define, in Table 4.4, the inverse mapping, from XJ\f to A. M apping

|-| (absolute value) sends the different kinds of application in AN to application

in A and erases app. It is a forgetful mapping.

P ro p o s i t io n 19 (C o rre c tn e s s) The following holds:

1. I f XAf derives T b M : B, then A derives f b I Ml : B.

: C
— Elim,

Chapter 4. Normalisation as cut-elimination 97

\x\ = X

\Xx.M\ = \ x . \M \

\app{A)\ = 1-41

\xN\ = x\N\

\(Xx.M)N\ = (A i.|M |)|JV |

\AN\ = |4 ||JV |

Table 4.4: From XAf to A.

2. I f XAf derives T\~ A : B , then A derives F F ¡y4| : B.

P ro o f: Let 7Ti and 7r2 be derivations in XAf of T F M \ B and F F A : B,

respectively. We prove, by simultaneous induction on M and A (with induction

hypothesis IH1 and IH2, respectively) th a t there are in A derivations 7 and nif

of T F \M\ : B and F F |A| : B, respectively.

Case M = x. Immediate.

Case M — Xx .M q. Immediate, by IH1.

Case M = app(A). Then has the shape

/

F F A : B
---------------------- App
F F app(A) : B

Since |M | = |A|, we want a derivation n f of T F \A\ : B. By IH2, there is a

derivation tC"1" of T F |j4| : B. Take n f = Ti'f~.

Case A = x N . Then tt2 has the shape

Chapter 4. Normalisation as cut-elimination 98

/
^1

r ', x : C D B \~ N : C
----------------------------------V E l i m
r ;, x : C D B h x N : B

where T = T ' , x : C D B. Since \A\ = x|iV|, we want a derivation tx\ of T ',x :

C D B h x|jV| : B. By IH1, there is a derivation of T', x : C D B h \N\ : C.
Take as

------------------------------------- Var
T , x : C d B \ - x : C d B V , x : C D B h \N\ : C
 — E l im

T ' , x : C D B h x\N\ : B

Case A = (Xx .M)N. Then tï2 has the shape

r , x : C i- M : B T \~ N : C
--- Redex

T h (X x .M)N : B

Since |A| — (Xx. \M\)\N\, we want a derivation xxt of T h (Ax.|M |)|iV | : B. Using

IH1 twice, we build ixt as the trad itional In tro followed by Elim .

Case A = A qN. Follows easily by IH1 and IH2. US

We now prove the isomorphism between XJ\f and A a t the level of terms.

P ro p o s i t io n 20 Af\AI\ = M and Af\A\ = app(A), for all M and A in XJ\f.

P ro o f: By simultaneous induction on M and A, w ith induction hypotheses IH1

and IH2, respectively.

Case M = x. J\f\M\ = jV\x\ = Af(x) = x = M.

Case M - Xx.M0.

N \ M \ = Af \Xx.M0\

= J\f(Xx.\Mo\), by clef, of |_|,

Chapter 4. Normalisation as cut-elimination 99

= Ax.TV|M0|, by def. of J\f,

= Ax.M0, by ÏH 1 ,

= M .

Case M = app(A).

TV|M| = J\f\app{A)\

= m i by def- l-l,

= aPP(A), by IH2,

= M .

Case A = xN .

J\f\A\ = TV|xiV|

= TV(x|./V|), by def. of |_|,

= app(J\f(x)@J\f\N\), by def. of j\f,

= app(x@J\f\N\), by def. of TV,

= app(x@N), by IH1,

= ap p (xN), by def. of

= a p p (A) .

Case A = (Xx .M)N.

m \ = Af \{Xx.M)N\

= J\f((Xx . \M |)|iV |), by def. of |_|,

= app(J\f(Xx.\M\)@J\f\N\), by def. of TV,

= app((A.TV|M|)@TV|iV|), by def. of TV,

= app((Xx .M)@N) , by IH1,

= app((Xx .M)N), by def. of

= app(A) .

Case A — A q N o .

TV|j4| = m o N 0\

Chapter 4. Normalisation as cut-elim ination 100

= jV (|^ 0||iVo|), by def. of |_|,

= a p p (N \A 0 \@J\f\No\)i by def. of 7V,

= app(app(A0)@N0) , by IH1 and IH2,

= app(A0N 0), by def. of

= app(A) .

U

L e m m a 37 |M@iV| = |M ||iV |, for all M , N in XJ\f.

P ro o f: By case analysis of M. Variables and A-abstractions are uninteresting.

If M = app(A) then

\M@N\ = \app(A)@N\

= |j4Af|, by def. of

= |A ||iV |, by def. of |_|,

= \app(A)\\N\, by def. of |_|,

= \M\\N\.

U

P ro p o s i t io n 21 \J\f(M)\ = M , for all M in X.

P ro o f: By induction on M. Variables and A-abstractions are straightforward. If

M = Mo No, then

\M(M)\ = \Af(M0N 0)\

= \app(J\f(Mo)W\f(No))\, by def. of TV",

Chapter 4. Normalisation as cut-elimination 101

= |A/’(Mo)||A/’(iVo)|, by Lemma 37,

= Mo No, by I.H.,

= M .

Now it comes the proof of the isomorphism a t the level of reduction.

L e m m a 38 The following holds:

1 . |Af[JV/x]| = \M\[\N\/x], for■ all M , N m XNf.

2. |A[iV/x]| = |.A|[|jV|/:r], for all A, N in XJV.

P ro o f: By simultaneous induction on M and A, w ith induction hypotheses IH1

and IH2, respectively . There are only two interesting cases.

Case M — app(A). Then

\M[N/x]\ = \app(A)[N/ x]\

= \app(A[N/ x])\, by def. of in AJ\f,

= |^4[iV/x]|, by def. of |_|,

= |A |[|iV |/x],b y IH 2

= \app(A)\[\N\/x], by def. of |_|,

= |M |[|JV |/i] .

Case A — x M . Then,

A[N/x) \ = \{xM)[Njx]\

= |JV®ili[JV/i]|, by def. of -[JV/i],

= |iV||M[iV/x]|, by Lemma 37,
= |.Y |(|M |[jfV |/x]), by IH1,

Chapter 4. Normalisation as cut-elim ination 102

= (x\M\)[\N\/x], by def. of ~[N/x\ in A,

= |xiV/|[|iV|/x], by def. of |_|,

= |X|[|iV|/a:] .

H

C o ro lla ry 14 J \ f {M [N/x]) = M (M)[A f (N) /x] , fo r all M , N in A.

P ro o f:

J\f(M[N/x]) = J\f(\J\f(M)\[\Af(N)\/x]), by Proposition 21,

= N \ N (M) [A f (N) / x]|, by Lemma 38,

= J\f(M)[J\f(N)/x), by Proposition 20.

The following is the first half of the isomorphism.

T h e o re m 2 I f Mi -^p M 2 in AAf, then \M\\ -^p \M2\ in A.

P ro o f: The claim is proved together w ith the claim th a t if A \ -^p A 2 in AJ\f, then

|j4i| —rp \A2\ in A, by simultaneous induction 011 M \ —*p M 2 and A i —+p A 2 (with

induction hypotheses IH1 and IH2, respectively). Cases according to Definition

9.

Case 01:

\app((\x .M)N) \ = (Ax.|M |)|iV |, by def. of |_|,

|M |[|jV |/x]

= |M[Ar/a:]|, by Lemma 38.

Case 02:

Chapter 4. Normalisation as cut-elimination

\ ((X x .M)N 1) N 2\ = ((A i.|A f|)!JV ,|)|A y, by d ef. of |_|,

->/, |M |[(JV,|/i]|JV2|

= \M[N i / x]\\N2\, by Lemma 38,

= \M[N i / x]@N2\, by Lemma 37.

Case I n t r o : Suppose \M0 —>p \M2\ (IH1). Then,

|Ax.M i| = Ax.|M i|, by def. of |_|,

Ax .|M 2| (*)

= \Xx.M2\, by def. of |_|,

where step (*) is by IH1 and closure of —>p in A under Intro.

Case App: Suppose |A i| —>p \A2\ (IH2). Then,

\app(Ai)\ = | bydef. of |_|,

\A2\, by IH2,

= \aPP(M)\, by def. of |_|.

Case V E l i m : Suppose \Ni\ —>p |ATg] (IH1). Then,

|x7Vi| = x\Ni\ , by def. of |_|,

->/3 * 1^1 (*)

= |mÂ 21, by def. of |_|,

where step (*) is by IH 1 and closure of —>p in A under Elim2.

Case Redex 1: Suppose \M\\ —*p \M2\ (IH1). Then,

\ (\ x .M i) N \ = (Ax.IM jDI^I, by def. of |_|

(Ax.|M2|)|JV1.(*)

= |((Ax.M 2)AT|, by def. of |_|,

Chapter 4. Normalisation as cut-elimination 104

where step (*) is by IH1 and closure of -^p in A under In t r o and E l i m l .

Case Rede x2: Similarly, by IH1 and closure of —>(g in A under El im2.

Case A E l i m l : Suppose |j4i| —>/3 |H2| (IH2). Then,

\A iN\ = |Ai||JV|, by def. of f-j,

-+f> \A 2 Ì\N \ (*)

= |A2./V|, by def. of |_|,

where step (*) is by IH2 and closure of —*p in A under E l im l .

Case A E l i m 2 : Similarly, by IH1 and closure of —>p in A under Elim2. ■

L e m m a 39 The following holds in AM :

1 . I f M —>p M', then M @ N ->p M'@N.

2. I f N N' , then M @ N ^ p M @ N ' .

P ro o f: 1. Suppose M -^p Al'. We proceed by case analysis of M.

Case M = x. Vacuous.

Case M = Xx.Mo- Hence there is Mq such th a t M ' = Ax.Mg and M 0 —>p

M'q. Then, M @ N = (Ax .M 0)@N = (Ax .M 0) N ->p (Ax . N Q N = (Ax.M'0)@N =

M '@ N (here we used the fact th a t —>p in AJ\f is closed under Redex 1).

Case M = app(A). There are two subcases.

Subcase 1: A —>p A' and M ' = app(A'). Then M @ N = app(A)@N =

A N -^p A ' N = app(A')@N — M'@ N (here we used the fact th a t —*p in AM is

closed under A E l i m l) .

Subcase 2: A = (Xx.M0)N 0 and AT = M 0[N0/x\ . Then, M @ N = app(A)@N =

A N = ({Xx.Mo)N0) N -*p M 0[N0/x]@N = M'@N.

2. Suppose N —>g N' . We proceed by case analysis of M.

Case M = x. Then, A1@N = x@ N = x N ~^p x N ' = x@N' = M @ N ' (here

we used the fact th a t —>p in AM is closed under V E l im) .

Chapter 4. Normalisation as cut-elim ination 105

Case M = Xx.M0. Then, M @ N = (Ax .M 0)@N = (Ax . M 0) N (Xx.M0)N ' =

(Ax.Mo)@N' = M@ N' (here we used thè fact th a t — in AjV is closed under

Redex 2).

Case M = app(A). Then, M @ N = app(A)@N = A N —*p A N ' = app(A)@N' =

M @ N' (here we used thè fact th a t —>p in ATV" is closed under A E l im 2) . M

The second half of thè isomorphism is:

T h e o re m 3 I f Mi M 2 in then A i (Mi) —>p A f (M 2) in AAi.

P ro o f : By induction on Mi —>p M 2. Cases according to Definition 1.

Case (3:

J \ f (\ x . M) N) = app((Xx.Af(M))@J\f(N)), by def. of TV",

= app((Xx.J\ f(M))AÌ(N)) , by def. of @,

M (M W (N) / x }

= J\ f(M[N/x]) , by Corollary 14.

Case I n t r o : suppose TV(Mi) —>pJ\f(M2) (IH). Then,

Af(Ax.Mi) = A x .N (M i) , by dei. of J\f,

->p Xx .M (M 2) (*)

= J\f(Ax.M2), by def. of TV",

where step (*) is by IH and closure of —>p in A TV" under Intro.

Case E l im ì : suppose A i (Mi) —>pJ\f(M2) (IH). Then,

J\ f(MiN) = app(Af(Mi)@J\f(N)), by def. of TV",

-rp app(M(M 2)@ J f (N)) (*)

= M (M 2 N) , by def. of TV",

Chapter 4. Normalisation as cut-elimination 106

where step (*) is by IH and 1. of Lemma 39 and closure of — in XJ\f under App.

Case Elim2: Similarly, by IH and 2. of Lemma 39 and closure of — in AW

under App. ■

C o ro lla ry 15 (Iso m o rp h ism)

1 . M\ — M 2 in A i f fJ\ f (Mi) —»0 W (M 2) in AW.

2 . M\ —>p M 2 in AW if f | Mi | —>£ |M 2| in X.

C o ro lla ry 16

1 . \J \ f is confluent.

2. I f M is typable in AW, then M is strongly normalising.

3. AW satisfies subject reduction.

P ro o f: Because these properties hold of A and may be easily transferred from A

to AW with the help of W and |_|. ■

4,2 Mappings vF and 0

Translations T and © between AW and XV are given in Tables 4.5 and 4.6.

The idea of T (recall C hapter 2) is to “tu rn the main branch upside down” .

Roughly, if 'L(V') = v (where V is some value) and T (W) = uu then T sends

app(VNiNo.. .Nk) to v(iii ■ [it2, ..., u,/,]). © does precisely the inverse.

The following propositions were firstly proved for the cut-free fragment in

[Dyckhoff and Pinto, 1998].

P ro p o s i t io n 22 (C o rre c tn e s s o f T)

1. I f X N derives T h M : B then XV derives T: — h T (M) : B.

Chapter 4. Normalisation as cut-elim ination 107

' I ' (x) = x

'ÿ(Xx .M) = A x.tfrM

^ (appi A)) = V (A , D)

r (x N , I) = x (V N - l)

W ((X x . M) N i l) = (A x . ^ M) (^ N A)

V ' (A N , I) = ty ' (A , t y N : : l)

Table 4.5: From AN to XV

Q{x) = X

Q(x(u ■ I)) = & (x Q u , l)

0 (A x.t) = Xx.Qt

0 ((A x. t)(u ■ I)) = &{(Xx .Qt)Qu, 0

© ' (A D) = app(A)

O'(A, u :: I) = Q '{A Q u , l)

Table 4.6: From XV to AM .

Chapter 4. Normalisation as cut-elimination 108

2 . I f XW derives F b A : C and XV derives T ; C \~ I : B then XV derives

F; — b V (A , l) : B.

P ro o f: We prove by simultaneous induction on M and A (with induction hy

potheses IH1 and IH2, respectively) that: i) if iri is a derivation in XJ\f of

F b M : B , then there is in XV a derivation 7T* of T ;— b \I/(M) : B\ and ii)

if 7t2 is a derivation in AW of T b i : C, then, for all I such th a t XV derives

F ; C b l : B , there is in XV a derivation of T; — b T'(.A, I) : B.

Case M = x: Then there is F' such th a t tti has the form

V ar
r ;, x : B b x : B

and F = T' , x : B. Since T (M) = T(:r) = x , we want a derivation 7r* of

T', x : B; — b x : B. Take 7r* as one application of the V a r rule.

Case M = Xx.M': Then there are tt[, Bi , B 2 such th a t 7Ti has the form

7r(

r , x : B\ b M : B 2
In tro

T b Xx.M' : Bi D B 2

B — Bi D Bo and x F. Since T (M) = T(A x.M ;) = Ax.T(Af/), we want a

derivation 7r* of F; — b Xx.M' : B\ D B-2. Take 7r* as

r , i : B i ; - b $ (M ') : B 2
-------------------------------------Right
F; - b Ax. AT : D

where yrf is given by 1111.

Case A/ = app(A): Then there is 7r'2 such th a t ttj has the form

T b A : B
App

T b app(A) : B

Since T (M) = ^(app(A)) = T '(/L []) we want a derivation tt* of T; — b T '(A , []) :

B. Now XV derives T; B b [] : B and. hence, by IH2 , there is a derivation n f of

F: - b T '(A , 0) : B. Take tt* = tt2+.

Chapter 4. Normalisation as cut-elim ination 109

Case A = xN: The there are tt[, F', D such that 772 as the form

7ri

T , x : D D C b N : D
----------------------------------V E l im
T',x : D D C \~ xN : C

and T = T', x : D D C. Let 7t3 be a derivation in XV of F;C b I : B. Since

'if'(A, I) = \Er'(xiV, I) = x (^ N ■ I), we want a derivation n£ of T', x : D D C; — b

x f $ N • I) : B. Take 7r | as

n t 7T3

r ', x : D D C\ - b VN : D F; C b I : B
--L e f t

T',x : D D C \ - b x[fi!N-I) : 5

where 7r f is given by IH1.

Case A = (Xx.M)N: Then there are ix[, tt", D such that 7r2 has the form

/ //7Ti 7rx

r , x : D b M : C F b IV : D
--- Redex

T b (Xx.M)N : C

and x <£ r . Let 7t3 be a derivation in XV of F; C b I : B. Since ^ ' (A ,l) =

’4>'((Xx.A/I)N , l) = (Ax.'FM)(TA/"d), we want a derivation 7rJ ofT;— b (A x.T M)(T 7V-

I) : B. Take ttj as

7T i 7T++
1 7T3

r ,x : D ; - b tf(M) : C r ; - b V{N) : D F ; C b b B
 KeyCut

F ; - b (A x . T M) (T i Y - /) : £

where and ?rf+ are given by IH1.

Case A = A'N: Then there are t D such that 7r2 has the form

vr2 /i ,

T b T D D C T \~ N : D
 AElim

F b A'N : C

Chapter 4. Normalisation as cut-elimination 110

Let tt3 be a derivation in XV of F; C b / : B. Since = ty '(A 'N ,l) =

TiV :: I), we want a derivation n9 of T; — b T '(A , U N :: I) : B. Observe

th a t

I t f 7T3

r ; - h <4>N-.D T - C \ ~ l : B
-- L f t

r ; D D C b TiV :: I : B

is a derivation in XV of D C h W :: i : B , where 7r+ is given by IH1. Hence,

by IH2, there is a derivation rvf of T; — b ^ '(A , 'LiV :: I) : B. Take 7rj = ■

Proposition 23 (Correctness of 0)

1 . I f XV derives F; — b t : B then AAA derives F b 0 f : B.

2 . I f X N derives F b A : C and XV derives F; C b I : B then XJ\f derives

T b & {A , l) : B.

P ro o f: We prove by simultaneous induction 0111 and I (with induction hypotheses

referred to by IH1 and IH2, respectively) th a t i) if ty\ is a derivation in XV of

F; — b t : B, then there is in AAA a derivation 7r* of F b 0 f : B\ and ii) if 7T2 is a

derivation in XV of F; C b I : B, then for all A such th a t AAA derives T b A : C,

there is in AAA a derivation 7̂ of T b ©'(A, I) : B.

Case I = []: Then B = C. Let 7t3 be a derivation of T b A : C. Since

Q '(A J) = ©'(A, []) = app(A), we want a derivation tt^ of F b app(A) : B. Take

7t 9 as

F b A : B

APP T b app{A) : B '

Case / = v! :: I': Then there are ttJ, tc'2, C x, C2 such th a t tt2 has the form

Chapter 4. Normalisation as cut-elim ination 111

7To

r ; - h u' : Cl F; C2 \ - V : BI f f _ ________
F ;C ! D C2 h u' :: I' : B

and C = C i D C2. Let 7r3 be a derivation of T F A : Ci D C2. Since ©'(A, I) =

Q '(A ,u r :: I') = & (A Q u ' , I'), we want a derivation ^ of T h 0 ' (AQu' ,11) : B.

Observe th a t

7T3 7tF

r h A : Cl D C2 F b Qu' : c \
A E l i m ----------

r h AQu' : C 2

is a derivation in Xj\f of F h AQu' : C2, where n f is given by IH 1 . Hence, by

IH2, there is a derivation of F h Q '(A Q u ' , I') : B. Take -k ̂ = 7r^.

Case t = x: Then there is F' such th a t tt̂ has the form

Var
T', x : B] — F x : B

and F = F', x : B. Since Qt. = Q(x) = rr, we want a derivation t x \ of F', x : B h

x : B. Ju st take as an application of the V ar rule.

Case t = x(u ■ I) : Then there are t x ' X) 7 r i , . T ' , D such th a t 7 r has the form

C , x : D D C; - b u : D x : D D C; C V I : B

L e f t P , x :~D D C] — \~ x (u - l) : B ‘

and F = F', x : D D C. Since Qt — Q (x (u ■ I)) = Q ' (x Q u , /), we want a derivation

7T* of F ; , ,-r : D D C F 0 ' (a ; © u , /) : B. Observe th a t

Chapter 4. Normalisation as cut-elimination 112

is a derivation in XNf of T , x : D D C b xQ u : C, where 77 ̂ is given by IH 1. B y

IH 2 , there is a derivation of F ' ,x : D D C \~ Q ' (x Q u , I) : B. Take 77* = ■

Case t = Xx.t': T h e n there are B i, B 2 such th at 7Ti has the form

7ri

T, x : B i; — b t' : B 2

R l9h t r ; - h Ax . f - . B i D B z

and B — B \ D B 2. Since Qt = 0 (Ax.t') = Ax.Qt', we want a derivation i of

T b Ax.Qt' : B\ D B 2. Take 77* as

7r+

F ,x : Bi b Qt' : B 2

I n t r ° T b A x.Qt' : B 1 D B 2

where 77+ is given by I H 1 .

Case t = (Ax.t')(u ' ■ I’): T h e n there are 7^ ,77",7t'2, D , E such th at tti has the

form

ix[7r" 773

F, x : D \ - F t ' : E f - h u ' : D F] E b I' : B

A CyCUt T; — b (Xx. f) (u' ■ I') : B

and x F. Since Qt = Q((Xx.t')(u'cdotl')) = © '((A x.Q t')Q u ', 1'), we want a

derivation 77* of F F Q '((Xx.Qt')Qu', I') : B. ObserA^e that

77 ̂ 77F4"

r , x : D b 0 i ' : E F b Qu' : D
Redex -------

T b (Xx.Qt')Qu' : E

is a derivation in AJ\f of F b (Xx.Qt')Qu' : E, where 77+ and 77]f+ are given by

IH 1 . Hence, by IH 2 . there is a derivation 77 ̂ of F b 0 ' ((Ax.Qt')Qu' , 1') : B. Take

77 * = T\t- ■

Chapter 4. Normalisation as cut-elimination 113

4.3 The isomorphism theorem

We prove th a t T and 0 are mutually inverse. This establishes the isomor

phism between XV and AAf at the level of proofs. The m ethod is taken from

[Dyckhoff and Pinto, 1998].

P ro p o s i t io n 24 © o T = id and 0 0 $ ' = 0 '.

P ro o f: We prove 0 T M = M and ©'¡/'(A, I) = 0 '(A , I) by simultaneous induction

on M (respec. A) w ith induction hypothesis IH1 (respec. IH2).

Cases M = x and M = Ax .M ' are straightforward.

Case M = app(A):

0 T M = Qty(app(A))

= © ^ (A D)

= & (A , []), by IH 2 ,

= a p p (A) .
Case A = xM :

0 t t '(A O = Q V ' (x M , l)

= 0 (x ($ M d))

- 0 ' (i (0 $ M), I)

= Q'{xM,l) , b y f f l l .

Case A = (Xx .M)N:

Q ^ ' (A , l) = ©T'((Ax.A d)N , l)

= 0((A x.TA .i)(T iY -O)

= 0 '((A x . Q ^ M) (e ^ N) , l)

= Q \ { X x . M) N , l), b y lH l.

Chapter 4. Normalisation as cut-elim ination 114

Case A = A'M:

e v ' (A , i) = e v ' (A ' M , i)

= GV' iA ' , V M :: I)

= 0 ' (A ' , :: I), by IH2,

= e \ A ' (e ^ M) , i)

= O ' (A ' M , I), by IH 1,

= O ' (A , I) .

Proposition 25 $ o 0 = id and $ 0 0 ' =

Proof: We prove %Qt = t and ^ O ' (A J) = M (A , l) by simultaneous induction

on t (respec. /) with induction hypothesis IH1 (respec. IH2).

Cases t - x and t = Ax.tf are straightforward.

Case t = x(u - I):

4/0t = 4> Q (x (u ■ I))

= \PO '(x& u,l)

= ^ '(x 0 u , l) , by IH2,

= x ($ O u ■ I)

= x (u - /). by IH 1,

= t .

Case t = (Ax . f) (u ■ I):

\JjQt. = # 0 ((A x . t ') (u - l))

= * 0 '((A x . 0 t) 0 u , l)

= ^ ' ((X x .0 t)0u . , l) , by IH2,

Chapter 4. Normalisation as cut-elimination 115

Case

VQ'{A,l) = ^ © '(A D)

= ^f(app(A))

= ^ '(A O)

= *'(A0 .

Case I = u :: I':

T0'(A O = V&(A,u::r)
= V Q ' { A e u , l)

= ^ ' (A Q u J) , by IH2,

= ^ ' (A ^ Q u : : I)

= <S<'(A,u :: 0 , by IH1.

Now we establish some preliminary properties th a t will be useful later in

proving the isomorphism between the norm alisation procedures in AJ\f and XV.

The first results relate inser t and append in XV w ith @ in AJ\f.

L e m m a 40

1. i n s e r t ^ N , I, I 'M) = /), for all M , N in XJ\f and I in XV.

2. insert{u' , If T '(A /)) = T '(A append(l , u' :: I')), fo r all A in XJ\f and u f I, I'

in XV.

Chapter 4. Normalisation as cut-elimination 116

P ro o f: By a simultaneous induction on M and A, with induction hypotheses
IH1 and IH2, respectively.

Case M = x.

i n s e r t ^ N , I, t l /M) = i n s e r t ^ N , I ^ x)

= i n s e r t ^ N , I, x)

= x (V N - l)

= fy'(xN, I)

= y ' (x@ N ,l)

= V ' (M @ N,l) .

Case M = Xx .M ' .

i n s e r t ^ N , I, <4>M) - i n s e r t ^ N , I ^ (X x . M '))

= i n s e r t ^ N , I, X x . ^ M ')

= (A x . ^ M ') (^ N - l)

= tf'((A x . M ')N , l)

= tt'((A x .M')@ N,l)

= $ ' (M@N, l) .

Case M = app(A).

i n s e r t ^ N , l , \ S f M) = i n s e r t ^ N , I. ^(app(A)))

= insert(tS/NA,tS/'(A,\\)))

= $ ' (A , nppendQ., ■■ I)), by IH2,

= V ' (A t \EriV :: I)

= V ' (A N , l)

= y '(app(A) @N,l)

= t f '(M @ N , l) .

Chapter 4. Normalisation as cut-elimination 117

Case A = x M \

inser t(u ' , l \ ' f y ' (A , l)) — inser t i v i , 1', VP'(xM , l))

= inser t in ' , I', x (^ M ■ I))

= x (t y M ■ appendi! ,u' :: Z 7) ^

= t y ' (xM,append(l ,u f :: Z 7))

= {A,append(l ,v! I')) .

Case A = (Ax .M)N :

in ser t in ' , Z 7 , T 7{A, I)) = in ser t in ' , ! ' , ' $ ' ((\ x . M) N , l))

= insert(u', Z7, (A:r.'I'M)('I'./V • I
= • appendi!,, u' :

= ^ '((A x .M)N ,append{ l ,u ' I

= fy'iA, append^,, u' I')) .

Case A = / I 'M :

i n se r t in ' , ! ' , ^ ' i A , I)) = inser t in ' , ! ' ,4>\A!M, I))

= insert in ' , !', 'I 'M :: /))

— appendi^M : : Z . u 7 : : Z 7)) ,

= '3//(v4/, 'I'M :: appendi!, u' :: I'))

= i ' / i A 'M , a p p e n d i n ' :: I'))

= iA, appendi!, il I')) .

:!'))

'))

by IH2,

The following is an im mediate consequence of part 2. of Lemma 40, when

Z = []. Compare w ith equation 4/iapp{A)) = 'L/(-4, []), which belongs to the

definition of T.

Chapter 4. Normalisation as cut-elimination 118

C o ro lla ry 17 i n s e r t (u , l , ^ (a p p (A))) = '¡/'(A ,« :: I), for all A m XJ\f and u , l

in XV.

C orollary 18

1. Q(insert(u, l , t)) = 0'(0Z@ ©u, I), for a l l u , t , I in XV.

2. 0 '(A , append(l, vl :: I')) = ©'(©'(-A, l)@Qu', V), for all A in XJ\f and u \ I, I1

in XV.

Proof: 1.

Q (inser t (u , I, t)) = Q ^ n s e r t ^ Q u , '1/©/, 4 '0 i)) , by Proposition 25,

= (Qt@Qu, I), by Lemma 40,

= Q'(Qt@Qu, I), by Proposition 24.

2 .

Q\A,append.(l :u :: I')) = ©'¡''(A, append(l, u :: /')), by Proposition 24,

= 0 (in s e r t (u ' , f , ^ (A , /))), by Lemma 40,

= 0 (m seri('I '@ u /, Z', ^© '(A , /))), by Proposition 25,

= ©'¡/'(©'(A, l)@Qu\ I'), by Lemma 40,

= Q'(Ql(A,l)@Qu', l ') , by Proposition 24.

Mi

Next results relate substitution in AJ\f w ith the operator subst of XV.

Lem m a 41

1. tSf(M[N/x\) = s u b s t f ^ N .x . 'I'M), all M . N in XJ\f.

2. s u b s t (fyN ,x , fy ' (A J)) = A [N / x] , s u b s t (^ N , x , l)), all N , A in X M . I in

XV.

Chapter 4. Normalisation as cut-elim ination 119

P ro o f; By simultaneous induction on M and A w ith induction hypothesis re

ferred to as IH1 and IH2, respectively. Whenever convenient, we write s for

subst.

Cases M = x and M = Ay .M ' are straightforward.

Case M — app(A):

4/ (M [N /x \) = (app(A)[N/ x])

= (app(A[N/ x})), by def. of -[N/x],

= ^ ' (A lN /x] , []), by def. of 4b

= 4,/(A[iV/x], sw&st^iV, x, [])), by def. of subst ,

= subs t ($N , x , ty'{A, [])), by IH2,

= s u b s t ^ N , x, ty(app(A))), by def. of 'P,

= s u b s t ^ N , x, 4/(M)) .

Case A = xM:

s u b s t ^ N , x ^ ' (A J))

= s u b s t (f y N , x , f y \ x M , l))

= subst(tjjN, x, x(tSiM •./)), by def. of 4',

= insert(subst(t&N, x, 4/M), s u b s t ^ N , x, /), 4'iV), by def. of subst,

= i n s e r t ^ (M [N / x]) , s u b s t (f y N , x , I), 4'iV), by IH1,

= '&'(N@M[N/x],subst('&N,x, l)) , by Lemma 40,

= ((xM)[N/x] , s u b s t ^ N , x, /)), by def. of _|7V/x],

= <h'(A[N/x],subst()4 /N ,x , l)) .

Case A = (Xy.M)M':

s (4 / i V , x, ^ ' (A , I))

= s (* N , x , $ ' ([\ y . M) M ' t l))

= s (V N , x, (A ■ I)), by def. of 4/.

Chapter 4. Normalisation as cut-elimination

= (X y . s (^ N , x ^ M)) (s (^ N , x , ^ M ') ■ s (V N , x , l))) , by def. of subst,

= (Ay . ^ (M [N / x \)) (^ (M ' [N / x \) • s (^ N , x J)) , by IH l,

= ^ ' ({ X y -M [N /x }) (M ' [N /x]) , s (^ N ,x , l)) , by def. of

= ^ ' (((X y .M) M ') [N / x] , s { ^ N ,x , l)) , by def. of _[N/x],

Case A = A ' M :

subs t (^ fN ,x ,^ f ' (A , l))

= s u b s t ^ N , x , (A'M, l))

= s u b s t (^ N , x, ty'(A1, :: /)), by def. of ,

= ^ ' (A ' [N / x\, s u b s t (^N , x , <ÜM :: Z)), by IH2,

= V'(A'[FI/x], subs t(VN, x, 'Î'M) :: S'u6si(^7V, x, /))), by def. of su&s,

= ^ ' (A '[N/x] , tÿ(M[N/x]) :: su6st(^7V, x, Z))), by IH l,

= ^ ' (A ' [N /x \M [N /x \ , su b s t (^ N , x, Z))), by def. of

= ^ '(CA 'M ^iV /x], su&si($JV, x, Z)), by def. of _[lV/x],

= # V [N / x] , s u 6si(ifCV,x,Zj) .

■

CoroIIary 19

1 . t) (subst (v, x, t)) = Qt[Qv/x], d i t , v in XV.

2. Q'(A[Qu/x], subst(u, x, Z)) = Q'(A,l)[Qu/x}; for d l A m X N and u,l
XV.

e(subs t(v , x , t)) = Q(subst(^Qv, x, $© i)), by Proposition 25,

= © (©i [Qv/x]), by Lemma 41,

= © i[©t'/x], by Proposition 24.

P ro o f: 1.

Chapter 4. Normalisation as cut-elim ination 121

2 .

Q'(A\Qu/x\ , subst(u , x, I))

= ©\I//(./1[©'u/.t], s u b s t ^ Q u , x, /)), by Propositions 24 and 25,

= Q (subs t (^Q u, x, '4/'{A, /))), by Lemma 41,

= Q(subst(tyQu,x, \b0 '(A /))), by Proposition 25,

= ©(^(©'(A l)[Qu/x})), by Lemma 41,

= ©'(A l)[Ou/x\, by Proposition 24.

■

L e m m a 42 In XV, i f I — I', then '¡/'(A I) —>pi '¡''(A V) (for all A in XJ\f,

i e { 1 , 2 }) .

Proof: By induction on A.

Case A = x N . t'(xJV , I) = x (^ N • I) ~^3l x (V N ■ I') = V (x N , I'), where the

reduction step is by I —>̂ I' and closure of — in XV under L e f t2 .

Case A = (Xx .M)N. Similarly, bu t by closure of — in AP under KeyCutd .

Case A = A'iV. ^'(A'TV, /) = tf'(A , ^iV :: /) t '(A , ^/JV :: I') = tf '(A ' N , f) ,

where th e reduction step is by I.H., as I —*pi V and — in XV is closed under

Lft.2. m

L e m m a 43 In XAf, i f A —>pi A', then Q ' (A J) — ©'(A',Z) (for all I in XV,

i e {1, 2};.

Proof: By induction on I.

Case I = []. ©'(A, []) = app(A) —>gi app(A') = © '(A ', []), where the reduction

step is by A —>pi A' and closure of -^>pt in XjV under App.

Case l = u: : V. & { A , u :: V) = Q ' (A Q uJ ') Q f A ' Q u J ') = & (A ' , u :: V),

where the reduction step is by I.H., as A A' and — in XJ\f is closed under

Chapter 4. Normalisation as cut-elimination 122

A E l i m l . ■

The first half of the promised isomorphism of norm alisation procedures is the

following

Theorem 4 Let i £ {1,2}. I f Ad —>pi Ad' in A N then I'M —̂ TM' in XV.

Proof: We prove the claim and also th a t

if A —*pi A! in AN , then T '(A , I) —>pt T /(J4/! I) in XV, for all I in XV,

by simultaneous induction on M —̂ pi M ' and A -o-pi A ' . Cases correspond to

closure rules, according to Definition 9. We prove both cases i = 1, 2 a t the same

time.

Case (31:

®{app((Xx.M)N)) = d/' ((Xx.M)N, []), by def. of T,

= (Ax.TM)(TlV • []), by def. of T,

—>pi subst(d?N,x,d/M)

= ^(Ad[N/x)) , by Lemma 41.

Case (32:

T'(((A x . M) N) N ' , I) = T '(((A x .M)N) , V N ’ :: I), by def. of T,

= (A x.Td/)(TA ' ■ (TiV' :: I)), by def. of T,

—>p-2 i n s e r t ^ N ' , I, subst(tS>N, x , T M))

= i n s e r t ^ N ' , lN (Ad[N/x})) , by Lemma 41,

= dJ'(AI[N/x]@N',1), by Lemma 40.

Case Intro: Suppose T (M) —>igi T (il/ ') (IH1).

Chapter 4. Normalisation as cut-elim ination 123

\Ü(X x .M) = Ax.'Sz(M), by def. of Ü/,

^ A x.tf(M ') (*)

= '¡/(Xx.M'), by def. of ,

where th e réduction (*) step is by IH1 and closure of —̂ in AP under Right.

Case App: Suppose Ü/'(A,/') —»g, ^ '(Æ , Z'), all V (IH2).

’î ’(app(A)) = ^ (A []), by def. of H/,

- p i ^ (A /,0) ,b y IH 2 î,

= df(app(A ')), by clef. of Ü/.

Case V E l i m : Suppose tUM —>gi d 'M ' (IH 1).

$ '(rM , 0 = • l), by def. of A

-» # x [^ M ' • Z) (*)

= by def. of A

where th e réduction step (*) is by IH1 and closure of —»gì in AP under L e f t l .

Case Redex 1: Suppose —»■pi 'hM / (IH 1).

tf'((Ai.M)ZV, /) = (A.x.'I'A'/)('iriY • Z), by def. of A

-»p.- (A x '.W ') (^ iV - 0 (*)

= ' ((Ax. M')1V, l), by def. of 'h ,

where the réduction step (*) is by IH1 and closure of --»p, in XV under K e y C u t l .

Case Redex2: Similarly, but by closure of —»g,- in AP under K e y C u t 2 .

Case A E l i m l : Suppose '¡/(A,ll) —»g,- \I/(A, Z'), all V (IH2).

Chapter 4. Normalisation as cut-elimination 124

'¡''(A M , Z) = '¡''(A, T M ::l), by def. o f 1!',

t t '(A ',t fM ::Z) ,b y IH 2 ,

= '¡/'(A 'M , /), by def. of T.

Case AElim2: Suppose 'I 'M —̂ 'I 'M ' (IH1).

'¡''(A M , Z) = T '(A , TAL :: Z), by def. of T,

^ (A . i M '- Z) (*)

= T '(A M ',Z), by def. of t ,

where the reduction step (*) is by Lemma 42, IH1 and closure of — in XV under

L f t l . m

The second half of the isomorphism is as follows.

T h e o re m 5 Let ¿ £ { 1 ,2 } . I f t —̂ t! in XV then 0 f — 0t ' in AW.

P ro o f: We prove the claim and also th a t

if I I' in X V , then ©'(A, I) —̂ 0 (A , I') in AW, for all A in AW,

by simultaneous induction on t —̂ t' and I — I' . Cases correspond to closure

rules, according to Definition 5. We prove both cases ¿ = 1,2 at the same time.

Case ¡31:

©((Ax. t)(v • [])) = ©'((Ax.Qt)Qv, []), by def. of 0 ,

= app((Xx.Qt)Qv), by def. of© ,

'¿31 Qt[Qv/x]

= Q(subst(v ,x , t)) , by Corollary 19.

Case (32:

Chapter 4. Normalisation as cut-elimination 125

0((A x. t) (v ■ (u :: /))) = 0 '((A x .Q t)0 v ,u :: Z), by def. of 0 ,

= 0 ;(((Ax.0 t)© v)0 u, l), by def. of 0 ,

—>/32 0 /((0 i [0 ,u/:r])@0'ii, 0) by Lemma 43,

= 0 '(0 (su b s t(v , x, t))@©u, Z), by Corollary 19,

= 0 (in s e r t(u , l, subst(v, x, t))), by Corollary 18.

Case L e f t l : Suppose Qu —̂ Qu 1 (IH1).

Q(x(u ■ Z)) = 0 '(x 0 u , Z), by def. of 0 ,

-VK G '(x G u \ l) (*)

= Q(x(u' • Z)), by def. of 0 ,

where thè reduction step (*) is by Lemma 43, IH1 and closure of —̂ in AM

under V E l im .

Case Left l-, Suppose Q'(A,l) —̂ 0 '(A , Z;), all A (IH2).

0(rr(u • Z)) = Q'(xQu, Z), by def. of 0 ,

0 ' (z © u , Z ') , b y I H 2 ,
= Q(x(u ■ l')), by def. of 0 .

Case R ig h i : Suppose ©f —̂ 0 f ' (IH 1).

Q(Ax.t) = Ax.Qt , by def. of 0 ,

A x .0 f ' (*)

— ©(Ax.i'), by def. of 0 ,

where thè reduction step (*) is by IH1 and closure of — in AJ\f under Intro.

Case K e y C u t i : Suppose 0 t —>*• Qt' (IH1).

Chapter 4. Normalisation as cut-elimination 126

©((Ax. t)(u ■ /)) = Q'((Xx.Qt)Qu, l), by def. of 0 ,

e\(\x.Qt')Qu,l) (*)

= Q((Xx.t')(u :: l)), by def. of 0 ,

where thè reduction step (*) is by Lemma 43, IH1 and closure of —>pi in XJ\f

under Redex 1.

Case K e y C u t l : Similarly, bu t by closure of —*/% in XJ\f under Redex2.

Case K eyC u t3 Suppose Q'(A,l) —>pz all A (IH2).

0((A x. t)(u ■ l)) = Q'((Xx.Qt)QuJ), by def. of 0 ,

-+/K 0 '((A x.Qt)Gu,l ') , by IH2,

= 0 ((A x i)(u ■ /')), by def. of 0 .

Case L / i l : Suppose Qu —*pi Qu' (IH1).

Q'{A,u :: l) = Q'(AQu, l), by def. of 0 ,

Q'(AQu', l) (*)

= Q'(A ,u ' :: /), by def. of 0 ,

where thè reduction step (*) is by Lemma 43, IH 1 and closure of —̂ in LA/”

under A E l i m 2 .

Case L f t2: Suppose 0 7(A Z) -> # 0 7(A O , all A (IH2).

Q '(A .u :: I) = 0 7(yl0 'ii,/), by def. of 0 ,

-»/sì ©7(-ì4 0 u , i7), by IH2,

= © '(A u :: l'), by def. of 0 .

C o ro lla ry 20 (I so m o rp h ism) Let i 6 {1,2}.

1 . M -+pi M ' in XJ\f if f 'I'M —>pi 4>M' in XV.

2. t —*pi t' in XV i ff Qt —>pi Qt' in XJ\f.

C o ro lla ry 21 XV, XVh, XVhx and, XVhx are confluent.

P ro o f: F irst, XV is confluent from Corollary 20 and confluence of AN . Then,

confluence of the other calculi follows from Corollaries 2, 6 and 10. ■

Chapter 4. Normalisation as cut-elimination 127

Chapter 5

Gentzen versus Prawitz

In this chapter we continue the analysis of the relationship between cut-elim ination

in the canonical fragment and normalisation. We recall two m appings of natu

ral deduction into sequent calculus, one due to Gentzen and the other due to

Prawitz. We show th a t they both are isomorphisms, and th a t the isomorphic

image of A by Praw itz’s mapping V is XV. Then, a comparison of mappings T

and V as mappings for “turning the main branch upside down” suggests th a t the

advantage of AW over A is th a t AW includes a built-in distinction between head

and tail applications. Finally, we study (an extension of) the inverse of V, named

Q. This mapping is the restriction to the canonical fragment of the good old </?.

5,1 Gentzen's mapping

In the original paper where sequent calculus was introduced [Gentzen, 193-5]1,

Gentzen proposed the well-known m apping of N J derivations into sequent calcu

lus derivations th a t, essentially, translates assumptions as axioms, introduction

rules as right rules and elimination rules as cuts plus left rules. For instance,

elimination of D becomes (ignoring contexts)

1The origin of natural deduction precedes Gentzen’s paper [Prawitz, 1965].

128

Chapter 5. Gentzen versus Prawitz 129

 A nr-

. . . h i . . . , B P B
-----------------------------L e f t

... t- A d B . . . ,A D B b B
-- Cut

... b B
Therefore, every elimination rule becomes a cut and, in general, norm al proofs

are not m apped to cut-free derivations.

Let us call this translation G and let us restric t ourselves to im plication. An

im m ediate observation is th a t, in a derivation in the range of Q: (1) every instance

of the left rule is canonical. Actually, the active formula of the right premiss of

each left inference is main in an axiom. (2) the right cut formula of every cut

instance is m ain in such an instance of the left rule. These observations suggest

th a t G entzen’s m apping may be w ritten as the following m apping from A into

A Vh:

Qx = x

G(Xx.M) = A x .Q M

G{MN) = G M {Q N ■ []) .

A pplication m ay be seen as a very particular kind of head-cut, nam ely a head-cut

in which the list of ex tra arguments is empty.

The origin of this mapping as a translation of logical systems guarantees its

correctness.

P ro p o s i t io n 26 (C o rre c tn e s s o f Q) I f X derives T b M : A, then XVh derives

T; - b Q(M) : A.

P ro o f: By induction on M. The only interesting case is M = M 0Nq. Suppose A

derives T b MqNq : A. Then A derives F b M 0 : B D A and F b N 0 : B, for some

B. By induction hypothesis, there are derivations in XVh of T; — b G(M0) : B D

A and F; — b G{N0) : B. These are combined with an application of the head-cut

nile:

Chapter 5. Gentzen versus Prawitz 130

; ; a x

F; - b G{Mq) : B D A r ; - b g {N 0) : B T; ,4 b [] : A
H eadCut

As we may observe, there are no instances of the left rule in derivations of

F; - b Q M : A in XPh. They are “absorbed” in head-cuts. Actually, g maps

into the ::-free fragment of XPh, th a t is

t, u ::= x | Ax. t \ t (u ■ I)

I D

In this fragment, lists are really residual. Let us write t (u ■ []) as t[u] 2, and

let us rewrite the previous gram m ar as

f, u ::= x | A x. t \ t[u] .

This is very much like A-calculus. Such impression is fully confirmed.

As to typing rules, in this fragment sequents have the form F; — b t : A,

typing rules for variables and A-abstraction are as usual, and t.[u] is typed as an

application by the rule

F;-bi: Ad 5 r;-bit:A
T; - b t[u] : B

which should be seen as an abbreviation of the head-cut

A x
F; - b t : A D B F; - b u : A F; B b f] : B
--- HeadCut

T ; - b t (u - [}) : B

As to reduction, only rule ¡31 makes sense in this fragment, as bo th (32 and h

require In the fragment, (31 reads

2Recall from the relation between XVhx and A3 that t (u ■ []) m ay be seen as t (u :: []) anyway.

Chapter 5. Gentzen versus Prawitz 131

(Ax.i)[?i] —> subst(u, x , t) ,

where subst is the operator subst of XVh. Now, th e calculation

subst(v, x, t[u]) = subst(v, x, t (u ■ []))

= subst(v, x , t)(subs t(v , x, u) ■ subst (v , x , []))

= subst(v, x , t)(subst(v, x , u) • [])

= subst(v, x, t)[subst(v, x, u)]

shows two things. First, th a t the ::-free fragment is indeed a fragment of XVh

because it is closed for subst and (31. Second, th a t the restriction of subst to this

fragment behaves exactly as A-calculus’ substitu tion (the calculation is enough

because the other cases in the definition of subst did not raise any doubt).

Therefore, the ::-free fragment of XVh is simply a rephrasing of A, where ap

plication is w ritten t[u], substitu tion is w ritten subst and sequents are w ritten in

the form T; — b t : A. Furtherm ore, G entzen’s mapping Q is trivially an isomor

phism between A and this fragment, because Q is a mere rephrasing mapping.

This justifies the following terminology.

D e f in it io n 10 The ::-free fragment of XVh is denoted XQ.

As a by-product, we get the following gentle addition to the theory of the rela

tionship between cut-elim ination and norm alisation [Gentzen, 1935, Prawitz, 1965,

Zucker, 1974, Pottinger, 1977, Ungar, 1992]:

T h e o re m 6 Gentzen’s mapping Q is an isomorphism from normalisation in X

to cut-elimination in XQ.

Chapter 5. Gentzen versus Prawitz 132

5,2 Prawitz’s mapping

W ith the purpose of showing cut-elim ination as a corollary of norm alisation in

natural deduction, Prawitz proposed in [Prawitz, 1965] a m apping from normal

N J proofs to cut-free derivations in a sequent calculus. Hence, P raw itz’s mapping

is an improvement over Gentzen’s translation w .r.t preservation of norm ality (see

also §6.3 in [Troelstra and Schwitchtenberg, 2000]). This optim isation makes use

of the structure of normal proofs, a structure which Prawitz had ju s t uncovered.

The new m apping (call it V) translates again assumptions as axioms and

introductions as instances of the right rule. Now suppose our norm al proof M

is an elimination. If we go upwards through the main branch [Prawitz, 1965] of

M , we visit the main premiss of successive elimination rules until we stop a t an

assumption. Hence, M has the form (ignoring contexts)

. . . ,x P x : Ax D ... D A k D B
Var

... P Nx : Ax

...,£ P xN i : A 2 D ... D A k D B

. . . ,x P xNx-. .Nk-1 : A k D B

E l im

- P N k : .4,
E l im

... ,x P xNx. . .Nk : B

for some k > 1 (if k — 1, A 2 D ... D A k D B is just B). We now extract from

this proof two smaller proofs. The first is just

whereas the second is
P N x : Ax

Chapter 5. Gentzen versus Prawitz 133

 Var
..., Zl b z x : A 2 D ... D A k D B ... h N 2 : A 2
--E l im

. . . ,z x b z xN 2 : A 3 D ... D A k D B

. . . , Z i b Z\N 2 .. .Nk- i '■ A k D B ... b N k : A k
-- E l i m

. . . , z i b z xN 2 . . .Nk : B

where z\ is free in no jV*. In the case k — 1, th is proof consists solely of the

assum ption

--------------------------V ar
..., zi : B b Zi : B

Now apply V to these two smaller proofs. If V is correct, we get two cut-

free derivations of sequents ... b V(N{) : A \ and : Ao D ... D A k D B b

V { z \ N 2 . . .Nk) '■ B. Finally, conclude with an application of the left rule:

... b P (N \) : A i ..., Z! : A 2 D ... D A k D B b V { z l N 2 . . .Nk) : B
 Le f t

. . . , x : D A 2 D ... D A k D B b V { x N l ...Nk) : B

If we borrow from C hapter 2 the notation for proofs in a generic sequent

calculus, P raw itz’s m apping is defined by

V (x) — Ax(x)

V { \ x . M) = R {(x)V{M))

V (x N i - . .N k) = L (x , V (N 1) , (z 1) V (z lN 2 . . .Nk))

As an algorithm for performing the translation, this recursive definition is

rather inefficient because, each time we have to calculate V (M N) , we need to

m atch M N w ith x N i . . .N k, which means inspecting M w ithout reusing previous

Chapter 5. Gentzen versus Prawitz 134

inspections or saving information for subsequent calculations. Is there a defi

nition of V w ith which we travel through a main branch x N \ . . .N k ju s t once?

Another issue, like in the case of Q, is whether the derivations in the range of

this translation are of a particular form. It tu rns out th a t these two questions

are related.

Let us go back to the derivation of

A i D A 2 D . . .D A k D B \ - V { x N i . . .N k) ■ B

and let us unfold the derivation of

..., zi : A 2 D ... D A k D B h V (z 1 N 2 . . .Nk) : B .

We obtain

__________________ 1̂21
. . . \ - V (N k) : A k . . . , zk : B \ - V (z k) : B
-- L e f t

... h V { N 2) : Ao ..., r2 : d 3 D ... D A k D B h P { z 2N 2. . .Nk) : B
--L e f t

... h V (N i) : Ay ..., 2i : A2 D ... D A k D B h P { ZlN 2. . .Nk) ■ B
---L e f t

. . . , x : A i D A 2 D ... D A k D B h V { x Ni . . . N k) : B

Again, we may observe th a t each displayed left inference is canonical be

cause each Zi is fresh. Therefore, each L e f t occurrence, except the lower one,

is indeed a L /¿-inference and corresponds to the :: constructor, and the right

subderivation may be represented by ..., V (N k)]. As to the lower in

ference, it corresponds to the constructor x(u ■ I). Hence, V (x N i N 2 -.-Nk) =

■T(^(M)-[P(iV 2),...,P (iY fc)]).

We would like to consider the range of V to be in AV instead of XPh because

in the la tte r x (u ■ I) is a cut and hence preservation of norm ality is lost. But

the decisive argum ent concerns the shape of the inevitable cuts in the range of V

when one translates non-normal proofs. In such generalised P raw itz’s mapping,

the translation of an application requires again a walk through the m ain premiss

Chapter 5. Gentzen versus Prawitz 135

of successive instances of the elim ination rule. However, such walk may now end

in the conclusion of an introduction rule. The new case in the definition of V is

then V {{ \x .M)N \N ^ . . .N k) - It is ra ther natu ra l to define th is to be the key cut

(.X x . V { M)) (V { N \) • [7?(Ar2) , ..., 'P(lVfc)]. We do not need any other kind of cut in

the range of V.

Summing up, V is a m apping from A to XV defined by the clauses

V(x)

V (X x .M)

V i x N ^ . - . N k)

V { (X x . M) N 1 N 2 .. .Nk)

= x

X x .V (M)

(5.1)

(5.2)

(5.3)

= (A x .P (M))(P (!V 1) - p (lV 2),...,iP(iV fc)]) (5.4)

This definition is somewhat informal because of the implicit decom position of

an application M N . W hat recursion is being used? W hat is, after all, V (M N) 7

We will try to shed some light at the above questions by studying o ther mappings

from A to XV th a t we met before.

T h e o re m 7 (A -square) The following square commutes3:

Gxg x

(-)-

XV

U

x u
P ro o f: We prove t y (U M) = (Q M) by induction on M. Cases M = x and

M = Xx.Mq are straightforward. Let M = M 0Nq. Then,

T(W A i) = $ (U (M qN o))

= ty(app(U(Mo)@U(No))) , by def. of A?,

3An observation similar to this in spirit is due to Curien and Herbelin, and may be found if
one reads intuitionistically the second half o f Proposition 2.3 of [Curien and Herbelin, 2000],

Chapter 5. Gentzen versus Prawitz 136

= ty' (J\f(M0)@ N (N0) , []), by def. of T,

= i n s e r t ^ (J \ f (N 0)), 0, ^ (A f (M 0))), by Lemma 40,

= insert ((QN0)~ , [], (QM0)~), by IH,

= (QMo(QNo - D))-, by def. of (_)" and 0“ = 0,

= (Q(M0N 0))~, by def. of Q,

= (GM)~ .

M

Let us clarify the situation after Theorem 7. Since Q\ (_)“ is an isomorphism

(because it is the composition of two isomorphisms), we have

M -> ¡3 N iff (QM)~ -» (G N) - . (5.5)

W hen restricted to the coclomain of G, (-)~ is bijective (because G\ (-)“ also is).

Moreover, by

G M GN iff M —>¡3 N

and (5.5), it is also an isomorphism of normalisation procedures. Therefore, in the

above square (which we refer to as the A-square), the four vertices are isomorphic

systems.

From Theorem 7, the two compositions of arrows in the A-square th a t lead

from A to XV are one and the same mapping. Let us call this m apping the

diagonal of the A-square. Now it comes the official definition of V.

D e fin itio n 11 (P r a w itz ’s m a p p in g) Praw itz’s m apping V is the diagonal of

the X-square.

T hat is, V (M) = (GNI)~ = T(A i (M)) , for all M in A. Let us see informally th a t

this definition agrees w ith definition given by clauses (5.1)-(5.4). As to variables

and A-abstractions, the situation is clear. As to applications, the calculations

Chapter 5. Gentzen versus Prawitz 137

' fy(Af(xNiN2 . . .Nk)) = U/(app(xJ\f(Ni)J\f(N2) .. .Af(Nk)))

= V (x A f (N 1)Af(N 2) . . .Af(Nh),\\)

= ^ ' (x A f i N ,) , [* (A f (N2)) , ..., (Ai (N k))})

= x (* m N i)) ■ M A T m) , * (A f (N k))})

and

{g ((X x .M)N 1 N 2 . . .Nk))~

= ({\x .gM)[QNi][QN 2\ . . \QNk})~

= inser t((QNk)~, [], . . . insert((QN2)~ , [], inser t{ (QN{)~ , [], \ x . { Q M) ~))...)

= insert{{QNk)~ , [], . . . insert([GN2)~, 0, (A x .(^M)_)((^ /7 i)_ • []))...)

= inser t((QNk)~, 0 , • [(^ 2)“]) -)

= (Ax . { g M) -) ^ g N x) - ■ [(q n 2)~ ,..., (W D

give enough evidence.

In the next result, one finds an answer to the question of w hat V (M N) is.

P ro p o s i t io n 27 Prawitz’s mapping is the unique mapping V : A —> XV such

that:

V x = x

V { \ x . M) = A x . V M

V (M N) = in ser t (V N , Q, V M)

P ro o f: Because (_)~ o Q satisfies these equations. 8

The clause for applications explains the difference between Q and V. Q (M N)

is simply the cut QM[QN], whereas V requires, in addition, the complete left

perm utation of this cut, performed by insert.

Chapter 5. Gentzen versus Prawitz 138

T h e o re m 8 (G e n tz e n vs P ra w itz) Prawitz’s translation of a proof is obtained

from, Gentzen’s translation of the same proof by the complete left permutation of

every cut occurring in the latter.

P ro o f: Sum up the following facts: (1) V = (f)~oQ. (2) M apping (_)“ : AQ —> XV

is the restriction to AQ of (_)_ : W h —» XV. (3) The la tter is the same as)./>.. (4)

In XVh, a term is a h-redex iff it is a left-perm utable cut. ■

Finally, because V is a composition of isomorphisms, the following holds:

T h e o re m 9 Prawitz’s mapping V is an isomorphism from normalisation in X to

cut-elimination in XV.

5„3 The nature of X J \ f

In term s of derivations, one of the effects of P raw itz’s m apping is to tu rn the

main branch upside down, so to speak. Here “main branch” may have its usual

sense in norm al proofs, or a suitably generalised sense th a t even applies to non-

normal proofs. Observe how the upperm ost instance of the elim ination rule in

the main branch corresponds, in the translated derivation, to the lowest instance

of the left rule; and how the instance of the elimination rule ju st below the former

corresponds to the instance of the left rule ju st above the la tter, and so on. This

effect can be described in term s of bracketing. The term (. . . ((xN i)N 2)...Nk),

which is bracketed to the left, is translated as x f P N i ■ (P N 2 . . . (PNk ■■ [])•■■))>

which is bracketed to the right.

Mapping T is another example of a translation into XV which maps applica

tions in a similar way, by turning main branches upside down. We m ight say th a t

T and V are based 011 the same idea, bu t th a t they differ because they translate

two different formulations of the A-calculus, namely usual A and X N . O ur goal is,

by comparing the two mappings T and V , to understand the difference between

the two formulations of the A-calculus, and particularly what is the “natu re” of

XN. Along the way, we exploit the relation between T and V, as we did before

with the relation between V and Q.

Chapter 5. Gentzen versus Prawitz 139

The first thing we want to do is to give another definition of V , bu t one th a t

is close to the spirit of T. W ith this purpose, we introduce a new inductive

definition of the A-terms.

D e f in it io n 12 The sets T and Ap are defined by the following simultaneous in

duction:

M G T (M, N) E Ap
x E T Ax . M E T M N E T

N G T M G T IV G T (Mi, M 2) G Ap N g T
(x, N) G Ap (Ax .M , N) G Ap (.M XM 2, N) G Ap

L e m m a 4 4 I f M E T and N G T, then (M, N) G Ap and hence M N G T .

P ro o f : By a case analysis of M. Case M = x. Since N £ T, (x, N) G Ap. Case

M — A x .M '. Since M G T, it follows M ' G T. From this and N E T, it follows

(Ax . M ' , N) G Ap. Case M = M \ M 2. Since M E T, it follows (M \ , M 2) E Ap.

From this and iV G T, it follows (M \ M 2, N) E Ap. Si

P ro p o s i t io n 28 M G T iff M is a. \ - term.

P ro o f: “If” : By induction on a A-term M . Case M = x. x E T. Case M =

A x .M'. By IH, M ' E T and, thus, A x . M ' E T. Case M = M 'N . By IH, M ' E T

and N e T . By Lemma 44, M ' N E T.

“Only if” : We prove tha t, for all M E T, M is a A-term, and th a t, for all

(M , N) E Ap, bo th M and N are A-terms, by simultaneous induction on M and

(M , N), w ith induction hypotheses IH1 and IH2, respectively.

Case M = x. x is a A-term.

Case M = A x .M' . By IH1, M ' is a A-term. Hence, A x . M ' is a A-term.

Case M M 'N . Then (M ', N) G Ap. By IH2, both M ' and N are A-terms.

Hence, M ' N is a A-term.

Case (M , N) = (x, N'). On the one hand, x is a A-term. On the other hand,

N ' E T. By IH1, N ' is a A-term.

Chapter 5. Gentzen versus Prawitz 140

Case (M , TV) = (Ax . M ' , TV'). On the one hand, M ' G T and, by IH1, M ' is a

A-term. Hence A x .M ' is a A-term. On the other hand, TV' G T. By IH1, TV' is a

A-term.

Case (M , TV) = (M 'M " , TV'). On the one hand, (M ', M ") G Ap and, by IH2,

bo th M ' and M " are A-terms. Hence M 'M " is a A-term. On the other hand,

TV' G T. By IH1, TV' is a A-term. ■

C o ro lla ry 22 (M, TV) G Ap if f M and, TV are X-terms.

P r o o f :“Only if” : see the the “only if” part of the proof of last Proposition. “If” :

If M and N are A-terms, then M and N are in T (by last Proposition) and

(M , N) G Ap (by Lemma 44). ■

The definition of Af : A —> Aj V needs an adjustm ent, if one takes the new

definition of A-terms. We define (_)n, where n is mnemonic for J\f.

D e fin itio n 13 The mapping (_)n : A —> AJ\f is defined by:

x n = x

(A x . M) n = A x . M 71

(MTV)" = app{{M ,N)n)

{ x , N) n = x N n

(A x.M , TV)” - (A x . M n) N n

(M iM 2, N) n = (Mi, Mo)71 TV"

Actually, this defines a m apping sending M G T to some ATV-term and another

mapping sending (M, N) G Ap to some application A in AJ\f.

P ro p o s i t io n 29 M " = J\f(M) and (M, TV)" = Af(M)@ j\ f (N) , fo r all M, TV in

A.

Chapter 5. Gentzen versus Prawitz 141

P ro o f : By simultaneous induction on M and (M , N) , w ith induction hypotheses

referred to by IH1 and IH2, respectively.

Cases M — x and M = Xx .M0: straightforward.

Case M = M qN o-

M n = (M0No)n

= app((M0, N 0)n), by def. of (_)n,

= app(jV{M0) m (N 0)), by IH2,

= J\f(MoN0), by def. of N ,

= U { M) .

Case (M , N) = (x, N 0):

(M, N) n = { x , N 0)n

= x N q , by def. of (_)n,

= xAi(No), by IH1,

= x’@7V(7V0), by def. of

= J\f(x)@J\f(N0): by def. of J\f,

= (N) .

Case (M , N) = (Ax.M0, N 0). Similar.

Case (M , N) = (M iM 2, N 0):

(M , N) n = (M xM 2 , N 0)n

= (Mi, M 2)nN£, by def. of (_)n,

= (A f (M i) m r (M 2))M(No), by IH1,IH2,

= app(J\f(Mi)@J\f(M2))@J\f(N0), by def. of

= M ’(M 1 M 2)@M’(N0) t by def. o îA f,

= Af (M)@J\f(N) .

Chapter 5. Gentzen versus Prawitz 142

Here is the promised new definition of V, w ith recursion according to the new

inductive definition of A-terms.

P ro p o s i t io n 30 Prawitz’s mapping is the unique mapping V : A —» XV such

that:

V x = x

V(Xx .M) = A x . V M

V (M N) = V ' (M , N, [])

V \ x , N , l) = x { V N ■ I)

V \ X x . M , N , l) = (A x . V M) { V N - l)

V (M xM 2 , N , l) = V ' (M i , M 2, V N :: I)

P ro o f: V ' { M , N , l) is to be understood as V '((M , N) , I), w ith (M , N) G Ap.

Recall th a t, by definition, V M is \E'(A/r(M)), which is the same as $ (M n), by

Proposition 29. In this proof we let V denote the mapping defined by the above

recursive definition. We prove V M = 4/(M n) and V ' (M , N , l) = N) n ,l)

by simultaneous induction on M and (M, IV), w ith induction hypotheses IH1 and

IH2, respectively.

Cases M = x and M = Xx .Mq. straightforward.

Case M = M 0N 0:

V M = V (M qN o)

= V ' (M q, N 0, []), by def. of V ,

= ^ ((M o,i V o r ,0) ,b y IH2,

= ty(app(M0, N 0)n), by def. of 4/,

= \&((M0lVo)n), by def. of

= ty (M n) .

Chapter 5. Gentzen versus Prawitz 143

Case (M , N) = { x , N 0):

V ' (M , N , I) = V ' (x , N 0J)

= x (V N 0 - I), by def. of P ,

= x (* (N S) - l) , b y f f l l ,

= '¡¡'(x N q . I), by def. of 4/,

= N 0)n, l), by def. of (_)n,

= N) n, I) .

Case (M , N) = (Xx.M0) N 0). Similar.

Case (Af, N) = (M iM 2, N 0):

P '(M , N, I) = P '(M 1M 2,iV0 iO

= V'(M i , M 2, V N 0 :: 0 , by def. of P ,

= P ,(M 1,M 2,'ir(iVo-) : : 0 , b y I H l) .

= ^ ((M 1,M 2)n,^(JV 0-) : : Z) , b y I H 2 J

= V ' ((M u M 2)nN S i I), by def. of

= tf '(((M aM 2), JVb)-, /), by def. of (_)r

This proposition, which allows a comparison between V and T, should be

contrasted w ith Proposition 27, which allowed a com parison between V and Q.

The proposition also contains a new way of calculating V { M N) .

We also need to adjust mapping |_| : \ N —> A to the new inductive definition

of the A-terms. The new m apping is denoted w ith a mnemonic for “absolute

value” .

Chapter 5. Gentzen versus Prawitz 144

D e fin itio n 14 The mapping (_)a : \J \ f A is defined by:

x a = x

(A x . M f = A x . M a

app(A)a = let (M, N) be A a in M N

(x N) a = (x, N a)

((A x . M) N) a = (A x . M \ N a)

(A N) a = let (Mi, M 2) be Aa in (M iM 2 , N a)

Actually, this defines a mapping th a t sends a AAA-term to some M € T and

another m apping th a t sends each A in AAA to a (M , N) € Ap. Notice the use of

an informal “let” notation. We now see th a t this definition agrees w ith |_|.

P ro p o s i t io n 31 For all M in AAA, M a = \M\. For all A in AAA, let A a =

(M, N) and \A\ = M ' N ' . Then M = M ' and N = N ' .

P ro o f: By simultaneous induction on M and A, w ith induction hypotheses re

ferred to as IH1 and IH2, respectively.

Cases M = x and M = Ax .M Q: straightforward.

Case M = app(A). Let A a = (M, N) and |A| = M 'N ' . By IH2, M — M ' and

N = N ' . Hence, M N = M 'N ' . Then, M a = app(A)a = M N = M ' N ' = |A| =

\app{A)\ = \M\.

Case A = x N 0. Then, A a = (x ,Ng) and |A| = x \N 0\. On the one hand,

x — x. O11 the other hand, Nft = 17V01, by IH1.

Case A = (Xx .Mo)Nq. Similar.

Case A = A 0N 0. Then, |A] = \A0 \\N0\. Let Ag = (M U M 2). Then,

An = (M i M 2 ,Nq). We want M XM 2 = |A0| and N§ = |Ar0|- The la tte r fol

lows by IH1. As to the former, let |A0| = M[M'2. Then, by IH2, M\ = M{ and

M 2 = M 2. Then, M XM 2 = M [M 2 = |A0|. ■

We now check th a t (_)n and (_)° are indeed m utually inverse.

Chapter 5. Gentzen versus Prawitz 145

P ro p o s i t io n 32 M na — M and (M, N) na = (M, N) , all M and (M , N) in X.

P ro o f: Two proofs are possible. The first is a direct proof, by simultaneous

induction on M and (M, N). The second, which we do next, uses the fact th a t

J\f and |_| are m utually inverse.

M na is \Af(M)\ by Propositions 29 and 31, and the la tter is A4 by Proposition

21. As to the second assertion, let A = {M , N) n . By Proposition 29, A =

J\f{M)@J\f (N). Now, by Proposition 31, there are A4' and N ' such th a t A a =

(M \ N') and \A\ = A4'N' . On the other hand,

\A\ = \JC(M)@Af(N)\

= \J\f(A4)\\J\f(N)\, by Lemma 37,

= A 4N , by Proposition 21.

Therefore, M N = |A| = A4'N ' and thus A4 = A4' and N = N ' . Finally,

(M, N) na = A a = {A4', N ') = {A4, N). ■

P ro p o s i t io n 33 M an = A4 and A an = A, all A4 and A in XJ\f.

P ro o f: Again, two proofs are possible. The first is a direct proof, by simultaneous

induction on A4 and A. The second, which we do next, uses the fact th a t N and

|_| are m utually inverse.

A4an is M \M \ by Propositions 29 and 31, and the la tter is A4 by Proposition

20. As to the second assertion, by Proposition 31, there are A 4,N such th a t

A a {A4, N) and \A\ = A4N. Hence, A an = {A4,N)n = J\ f{M)@Af{N), by

Proposition 29. On the other hand,

app{A) = A4\A\, by Proposition 20

= J\ f{MN)

= app{J\f{M)@J\f{N)), by def. of J\f.

Chapter 5. Gentzen versus Prawitz 146

Hence, app(A) = app(J\f(M)@J\f{N)) and thus A = J\ f(M)@Af(N). Therefore,

bo th A an and A are Af{M)@Af{N). Thus A an = A. M

D e fin itio n 15 Mapping V ~ l is denoted Q.

Hence Q = (_)“ o 0 . We will now prove an explicit definition of Q.

P ro p o s i t io n 34 The inverse of Prawitz’s mapping is the mapping Q : XV —>• X

defined by:

Qx = x

Q(Xx.t) = A x .Qt

Q { x (u - l)) = Q'(x, Qu, I)

Q((Xx.t)(u ■ I)) = Q!(Xx.Qt, Qu, I)

Q!(M, N, 0) = M N

Q'(M, N, u :: I) = Q \ M N , Qu, I).

P ro o f: Again Q'(M, N, I) stands for Q '((M , iV), I). In this proof we let Q denote

the mapping defined bj' the above recursive definition. We prove (0 i) a = Qt and

Q \ A , l)a = let (M, N) be Aa in Q'(M, N , I) (5.6)

by simultaneous induction on t and I, with induction hypotheses referred to by

IH1 and IH2, respectively .

Cases t = x and t = X: r i 0: straightforward.

Case t = x (u ■ I):

{Qt)a = Q(x(u ■ l))a

= Q'(xQu, l)a, by clef, of 0 .

= let (M. N) be (xQu)a in Q’(M, N, I), by IH2 ,

Chapter 5. Gentzen versus Prawitz 147

= let (M, N) be (x , (0«)°) in Q'(M, 77, I), by def. of (_)“,

= let (M, ZV) 6e (re, Qu) in Q ' (M , ZV, Z), by IH1,

= Q \ x , Q u , l)

= Q (x(u ■ 0), by def. of Q,

= Q(i) •

Case t = {Xx.t0){u ■ I): similar.

Case I = []:

Q '{A , i)a = e ' (A 0 r

= app{A)a, by def. of 0 ,

= Zei (M, 77) be A a in Q '{M , JV, []), by def. of (_)°,

= let (M, TV) 6e Aa in Q ' (M , iV, Z) .

Case Z = «o :: Z0:

0 '(A , Z)a

= O'(A, Uq :: Z0)a

= © '(Aeuo.Zo)“ , by def. of 0 ,

= let (M, N) be {AQu0)a in Q '(M , N, Z0), by IH2,

= let (M, JV) be {let, (M u M2) be Æ1 in (,\/-; .\/2. (0w o)Q) in Q '(M . 77, Z0),

by def. of (_)a,

= let (M i, M2) be A a in Q '(M iM 2, (©uo)0, Z0)

= let {Mi, M 2) be A a in Q!{MxM 2, Quo, ¿0), by IH 1,

= let (M i, M 2) be A a in Q!{MX) M 2 , u 0 :: Zq), by def. of Q,

= Zei (M i, M2) be 2ia Q '(M XlM 2 ,1) .

■

Chapter 5. Gentzen versus Prawitz 148

It is revealing th a t mapping Q, as defined in Proposition 34, could have been

shown to be the inverse of V in the same way as we proved th a t 0 is the inverse

of Indeed, one proves Q o V = id and Q o V ' = Q! by a simultaneous induction

similar to the one we find in the proof of Proposition 24; and one proves V o Q = id

and V o Q! = V ' by a simultaneous induction similar to the one we find in the

proof of Proposition 25. The parallel between V and Q, on the one hand, and

T and 0 , on the other hand, is quite tight. We recapitulate the situation in the

following diagram:

(- r

Let, us look again a t Definition 12, which allowed this parallel between V and

T. A nother presentation of the same inductive definition of the set of A-terms is

T ::= x | Xx.t | app(A)

A ::= (x , T) | (Xx.t, T) \ (app(A), N)

This may be obtained by unfolding Tj in

(5.7)

T ::= x \X x . t \ a p p (A)

71 ::= (Tu T2)

and this, in tu rn , is ju st the usual syntax of the A-calculus

T x | Xx.t | app(Tx, T2) .

Hence, every A in (5.7) and every Ap in Definition 12 may be seen as an appli

cation with look ahead.

Chapter 5. Gentzen versus Prawitz 149

As promised, the difference between (5.7) and XJ\f

M , N ::= x \ Xx.t \ app(A)

A ::= x N \ (X x .M) N \ A N

is best seen by comparing how V and T translate VN±.. .Nk , where V is a variable

or a A-abstraction and k > 1. T h a t is, we compare how they tu rn a main branch

“upside down” .

V calls TVfc), []), for some M , and now a decision has to be taken as

to w hat to do with Nk- If k > 1, then M = for some M ’, and Nk is,

so to speak, pushed on top of the second argum ent. The com putation continues

w ith Nk-i) , V N k :: 0)- If k = 1> then M = V and V' does not produce

another occurrence of constructor instead it either retu rns x (u - l) or (Ax. t)(u-l),

according to whether Id is a variable or a A-abstraction. Now, how does V make

up its mind? The constructor (M , Nk) per se does not tell anything. V has to

check w hether M is an application or some V, th a t is V has to look ahead.

As to T , the situation is different. T '(A , []) is called, for some A. But now the

topm ost constructor of A tells everything T 7 needs to decide the dilemma above.

If k > 1, A is of the form A'Nk and T ' im m ediately knows (w ithout checking

w hat A 1 is) th a t this application is not a value application. The com putation

resumes w ith T '(A ', TA^. :: []). If k — 1 , then A is of the form xA4 or (Xx.M)Nk

and some x (u ■ I) or (Ax. t)(u ■ I) is returned.

It seems th a t the dilemma V and T ' are faced w ith is w hether the application

they have to translate is value or not. The true dilem m a is slightly more general:

it is w hether the application they have to transla te is a head application or not

and the distinction between V and T is tha t, while (M , N) does not tell V this

inform ation, A does tell T '.

In order to see this, recall again the process of tu rn ing the m ain branch upside

down. The main branch contains k instances of the elim ination rule. Each of these

instances, except the topm ost one, corresponds, in the resulting derivation, to an

instance of Herbeliibs left rule (the L f t rule, or constructor ::). The topm ost

one either corresponds to a L e f t inference (the constructor x(u ■ /)), when the

topm ost formula of the main branch is an assum ption, or corresponds to a cut

Chapter 5. Gentzen versus Prawitz 150

(the constructor (Ax. t)(u ■I)), when the topm ost formula is the conclusion of an

introduction (recall th a t in XV h, x{u - I) and (Ax. t)(u ■ I) are particular cases of

head-cut t (u - I)). Therefore, the k instances of the elimination rule are not of

the same kind, from the point of view of sequent calculus. There is a distinction

between the topm ost one, which we call the head instance (hence the terminology

head application), and the remaining instances, which we call tail instances (and

which correspond to tail applications).

The difference between A and XJ\f becomes conspicuous. In AJ\f, the distinc

tion between a head and a tail application is built-in and reflects the distinction

between the two kinds of constructors they correspond to in XV. This is the

nature of AJ\f.

W ith this understanding of AJV, we can re-interpret (_)n and (_)a . Observe

how (M, N) n is defined as a different kind of application (head or ta il), according

to what kind of term M is. Conversely, A a forgets the kind of application A is

and always returns a (M , N). Moreover, since V — T o (_)n, P raw itz’s m apping

can be implemented as a two-pass translation. The first goes through the proof

and classifies each instance of elimination as head or tail. The second tu rns main

branches upside down w ithout looking ahead.

5,.4 Mapping Q

In this section we define and establish the properties of a m apping Q from XVh

to A th a t extends the inverse of V. This mapping Q is im portant for two main

reasons: (1) it embodies part of the com putational interpretation of XVh (and, in

particular XV) in the style of Curien and Herbelin [Curien and Herbelin, 2000].

Indeed, when one reads AP/z-terms as A-terms, it is mapping Q th a t is being

applied. This will be seen in Chapter 7. (2) Q is nothing else but the traditional

assignment ip [Prawitz, 1965, Zucker, 1974] of natural deduction proofs (or A-

terms) to sequent calculus, when sequent calculus is restricted to the canonical

fragment. This will be seen at the end of this section.

We also study the difference between AQ and XV as subsystems of XVh, and,

Chapter 5. Gentzen versus Prawitz 151

in particular, the difference between (_) and / , the projections from AV h to XV

and XQ, respectively. Of course, / is basically the same as Q.

Properties of Q : XV —>■ A

We s ta rt by proving some properties of Q (the inverse of V), nam ely how it

maps subst , inser t and append of XV. Direct proofs could be provided from the

definition of Q contained in Proposition 34. Nevertheless, we will show how to

reuse similar properties of 0 proved before (Corollaries 18 and 19), having in

mind th a t Q is the composition of 0 w ith (_)“. In view of Propositions 29 and

31, we will freely shift between J\f and (_)n and between |_| and (_)“ .

We s ta r t by giving a more m anageable characterisation of Q'(M, N , l) than

th a t of (5.6).

L e m m a 45 Q ' (M , N, I) = 0 ' (M n@ N n , l)a, fo r all M, N in X, all I in XV.

P ro o f : Observe th a t

| M n@ Nn | = | M n 11 N n |, by Lemma 37,

= M na N na

= M N .

Therefore, by Proposition 31,

(M n@Nn)a = (M , N) , (5.8)

and

Q ' (M n@Nn] I) = let (M0, N 0) be (M n@ N n)a in Q'(M0, N 0,1), by (5.6),

= let (Mo, N 0) be (M, N) m Q '(M0, N 0,1), by (5.8),

= Q'(M, N, I) .

Chapter 5. Gentzen versus Prawitz 152

L e m m a 46

1. Q (in s e r t (u , l , t)) = Q'{Qt, Q u,l), fo r a llt ,u ,l m XV.

2. Q'(M, N, append(l, v! : : V)) = Q'(Q'(M, N ,l),u',l'), fo r all M, N in X, all
u\ I, V in XV.

P ro o f: 1.

Q (i n s e r t (u , l , t)) = Q (i n s e r t (u , l , t)) a

= Q'(Qt@Qu, /)“, by Corollary 18,

= 0 '((0 i) an@ (0u)an, Z)a

= Q ' ({ Q t) n @ { Q u) n , l) a

= Q'(Qt , Qu, I), by Lemma 45.

Q '(M , N, append(l , u ' :: /'))

= Q \ M n@Nn, append(l, u' :: / '))“, by Lemma 45,

= 0 '(© '(M B@ r , l)@Qu\ l ' f , by Corollary 18,

= Q'(Q '(Mn@ N n, l)an@(Qu ')an, l')a

= N, l)n@(Qu')n, n \ by Lemma 45,

= Q'(Q'(M, N, I), Qu', I ' f by Lemma 45.

L em m a 47

1. Q(suhs t{u .x , t)) = Q{t)[Q{u)/x\, for a l l u , t in XV.

Chapter 5. Gentzen versus Prawitz 153

2. Q'(M[Qu/x], N [Q u /x \ , subs t (u ,x , l)) = Q '(M , N , l) [Q u /x \ , fo r a l l M , N in

X, all u , I in XT’.

P ro o f: 1. Since Q is the composition of 0 and |_|, it follows from Corollary 19

and Lemma 38.

2 .

Q '{M [Q u /x], N[Qu/x], subst(u , x, I))

— & (M [Q u /x] n@N[Qu/x)n, subst(u, x, /))“, by Lemma 45

= Q '(M n[Qu/x]@Nn[Qu/x] ,subs t (u ,x , l))a, by (*) below,

= Q '((M n@Nn)[Qu/x], subst(u, x, Z))°, by (**) below,

= (0 '(M n@iVn, l)[Qu/x])a, by Corollary 19,

= Q'{M n@Nn , l)a[(Qu)a/x], by Lemma 38,

= Q'(M, N, l)[(Qu)a/ x], by Lemma 45.

(*) For all M0 in A,

(.M 0[Qu/x})n = (M 0[(Qu)a / x])n

= MS[(Qu)an/x \ , by Corollary 14,

= Msieu/x] .

(**) For all M i, M2, N in -W , (M tÛ M 2)[N/x] = M ,[iV/i]@ M 2[iV/i]. This

follows by a straightforw ard case analysis of Mi. ■

Tw o subsystems of XVh

Observe the situation

Chapter 5. Gentzen versus Prawitz 154

XPh

Calculi AQ and XV are, respectively, Gentzen’s and P raw itz’s isomorphic copies

of A as a sequent calculus. They are also subsystems of XPh. In the following we

explain the differences between the two copies of A by explaining the differences

between them while subsystems of XPh.

Recall th a t term s in XPh are defined by

i, u , v x | Ax. t | t (u ■ I)

I ::= 01 u : : l

and that: (1) term s in AQ are those of XPh where :: does not occur: (2) term s in

AP are those of XPh such tha t t in t (u ■ I) is always some x or some Ax.to- The

difference between the two syntaxes is best seen when one tries to write down

an applicative term . In AQ this is done by means of iterated cuts: t[ui][w2]..-[itfc]

(recall th a t t[u] abbreviates t(u- [])). In AP, provided t itself is not an applicative

term and, therefore, is some value, the applicative term is w ritten t(u\-[u2 , «&])•

In term s of XPh, the application to the first argum ent is always a cut, bu t then

there are two ways of expressing application to further arguments: either by

further cuts or by ::.

Mapping (_)“ from AQ to AP am ounts to the unfolding of ■••[«/;] as

t (u\ ■ [u%,.... Ufc]). It is generalised by mapping (_)“ from XPh to AP, which is

determined by the clause (t(u ■ l))~ = i n s e r t , t ~) , and is the same as the

normal form m apping j/,.

Chapter 5. Gentzen versus Prawitz 155

Conversely, the inverse of th a t goes from XV to AQ and which we will

denote by (_)+ , folds t (ui ■ [u2, •••, Uk\) as Prom Theorem 7 and

Q = V ~l , the following is immediate.

L e m m a 48 The inverse of (_)“ : AQ —> XV is Q o Q.

Therefore, the two mappings from XV

g xg -— A

are the same up to g , which, in tu rn , is simply a rephrasing of A-terms with

syntax t ::= x\ Xx.t \ Hence, having in mind the definition of Q, it is clear

th a t (_)+ is defined by

x = x

{Xx. t) ' — Xx.t

(x(u ■ l))+ = {x ,u +, l) +

(A x . t) (u - l)) + = (A x.t.+ , u +, l)+

(i i , i 2,0)+ = h h]

{t i , t2, u :: l)+ = (ti[t2] , u + , l) +

where the ternary operator { t i , t 2 , l)+ is defined for all t \ , t 2 in Ag and I in XV.

Of course, a direct proof th a t this (_)+ is really g o Q is possible. One proves

g ~ \ t +) = Qt , (5.9)

for all t in XV, and

Chapter 5. Gentzen versus Prawitz 156

g - l { { g M ,G N , l)+) = Q'(M, N, I) , (5.10)

for all M, N in A and I in XV, by simultaneous induction on t and I.

We propose next a mapping for folding cuts in AVh.

D e fin itio n 16 The mapping f : A V h —> A Q is defined by:

f x = x

f (Xx . t) = X x . f t

f (t (u - l)) = f (f t j u f i)

D) — ti[h]
f ' { t u t 2,u :: 0 = f { t i [t 2] , f u , l)

Observe th a t / ' (¿ i , ¿2, 0 is defined for all t \ , t 2 in A Q and I in A Vh. O ur goal now

is to show th a t / generalises (_)+ , th a t is, f t = f+ , for all t in XV. This will

follow from f t = (I/,. (i))+ , which we prove next. We sta rt w ith a rephrasing of

p art 1. of Lemma 46.

C o ro lla ry 23 (■in ser t (u , l , t))+ = (t+, u +, l)+, a l l t , u , l in X V .

P ro p o s i t io n 35

T f t — (I/i {t))+, for all t in XVh.

2 . f ' (t , u, I) = (t, u , ih (l))+, for all t, u in XQ and I in XVh.

P ro o f: By simultaneous induction on t and /, w ith induction hypotheses IH1 and

IH2, respectively . In this proof, we write ht and hi instead of h x (t) and [h (I).

Below, when we justify an equality w ith “h = we mean th a t we are using

the definition of (_)“ : XVh —> XV and the fact th a t the la tter is the same as J

Cases t ~ x and t = Xx.to: straightforward.

Case t = to(uq ■ l0):

Chapter 5. Gentzen versus Prawitz 157

f t = f { t 0(u0 - l0))

= f i f t o , f u 0, lo), by def. of / ,

= f { { h t 0)+, (hu0)+ , l0), by IH1,

= ((htQ)+,(huo)+,h l0)+, byIH 2,

= (insert(huo, hlo, hto))+, by Corollary 23,

= {h(t0(u0 ■ k))) +, as h =

Case Z = []:

) = / ' (t , tx, D)

= i[u], by def. of / ,

= (i,u , [])+ , by def. of (_)+,

= {t,u,h[})+, as h =

= (i, u, /¿Z)+ .

Case I = Uq :: Iq\

f (t , u , l) = f (t , u , u 0 ::lo)

= / '(¿ N , /«o , Jo), bv def. of / ,

= (£[u], .fuo, h(l0))+, by IH2,

= (t[u], (hu0)+ , Zi(!0))+, by IH1,

= (t , u ,h u o :: hlo)+, by def. of (_)+ ,

- (£, w, h{uo :: Z0))+ , as h =

= (t , u , h l) + .

Therefore, / is a projection, because it is the composition of a projection w ith an

isomorphism.

Chapter 5. Gentzen versus Prawitz 158

C o ro lla ry 24 f t = t+, all t in X V .

P ro o f: Let t G XV. Then f t = (1/,, (i))+ , by Proposition 35. But U (t) = t,

because t G XV and by Lemma 16. Hence f t = t +. ■

Thus, / is an extension of (_)+ to XVh.

C o ro lla ry 25 f t = t, all t m XQ.

P ro o f: Let t G XQ. For emphasis, let i(t) be t seen as a XVh term . Then

f t = (I/, (z(t)))+ , by Proposition 35. But [h (i (t)) = t~ (here (_)_ is the m apping

w ith domain in XQ) and, thus, f t — t~+ = t. ■

It is also im mediate th a t j h {t) = (f t) ~ , for all t in XVh.

Let us sum up in a diagram the situation regarding G entzen’s and P raw itz’s

subsystems of XVh:

XVh

(-)-

The bridge between XV and XQ is a pair of m utually inverse mappings (_)+

and So to speak, the former performs folding whereas the la tte r performs

unfolding of cuts. The projection is an extension of the unfolding map, whereas

the projection / is an extension of the folding one. The fact th a t f t = t, for t in

XQ, can be seen as saying th a t term s in XQ are fully folded and, similarly, term s

in XQ can be seen as fully unfolded.

However, the situation is absolutely asymmetric w .r.t cut elimination. Pro

jection (_)" is the norm al form mapping w.r.t. reduction rule h of XVh, th a t is,

XVh is internally conservative over XV. Moreover, h is necessary for the simula

tion in XVh of cut elimination of XV. Therefore, unfolding (which is, of course,

Chapter 5. Gentzen versus Prawitz 159

another nam e for left perm utation) is a part of cut elim ination in bo th XV and

AVh. All th is fails for folding. W h is conservative, bu t not internally conser

vative, over XQ, and /3-reduction in the la tter is ju s t /31-reduction in the former.

Hence, even if we added to A V h a reduction rule for folding (a suggestion is

t[u ■ [y :: I)) —> t[u](v ■ I)), th is rule would rem ain unnecessary for the simulation

of A g.
In the following chapter we will show th a t a similar asym m etry exists, in

the “natu ra l deduction side” , between A and A_/V, this tim e w .r.t. a suitably

generalised notion of normalisation.

Mapping Q : A Vh —* A

Consider again the diagram

A V h

For the moment, we denote by Q0 m apping Q : XV —* A. This is so because we

want to define a mapping Q : XVh —> A th a t will tu rn out to be an extension of

Qo- Q is ju s t the following rephrasing of /

Qx = x

Q(Xx.t) = Xx.Qt

Q (t (u - l)) = Q'{Qt, Qu, I)

Chapter 5. Gentzen versus Prawitz 160

Q!{Ml t M 2 ,u-.: l) = Q \ M 1 M 2 , Q u , l)

T hat is, we have

Qt = (5 .ii)

Q'(M, N, I) = Q - \ f { Q M , G N , l)) , (5.12)

for all M, N in A, all £, I in XPh. Q '(M i, M 2, 1) is defined for all M i, M 2 in A (or,

equivalently, for all (M i, M2) G - recall Definition 12) and all I in XPh.

Lemma 49
1. Qt = Qo{ih (t)), all t in XPh.

2. Q '(M , N, I) = Q'0{M, N, in (/)), all M, N m A, all I m XPh.

Proof: 1.

Qt = ^ (/ (i)) , by (5.11),

= G~l {lh (t)+), by Proposition 35,

= Qo(U (i)), by (5.9).

2 .

Q '(M , N, I) = g - \ f \ G M ,G N , 0), by (5.12),

= 5 _1(GM , GiV, (/))+, by Proposition 35,

= Q '(M ,iV ,U (0) , by (5.10).

■

Since h, collapses —>/, steps (t —>h t! implies M (£) = l h (£')), so does Q.

Moreover, Q is indeed an extension of Q0 because J (f) = t and JU (/) = / when

£ and / are in XV.

Let us see how Q interprets operators subst and append of A Ph. We want to

"lift” Lemmas 46 and 47.

Chapter 5. Gentzen versus Prawitz 161

L e m m a 50 Q'(M, N, append(l,u' :: I')) = N , l) , Qu',1'), fo r a l l M , N

in X, all u \ I' in XPh.

P ro o f: From Lemmas 46, 17 and 49. ■

L e m m a 51

1. Q (s u b s t (u , x , t)) = Q(t)[Q(u)/x\ , all u , t in X Ph .

2. Q ' (M [Q u /x \ ,N [Q u /x \ iS u b s t (u ,x , l)) = Q!(M, N , l) [Qu/x] , all M , N in X,

all u, I in XVh.

P ro o f : From Lemmas 47, 18 and 49. ■

The return of </?

Consider a generic term notation for sequent calculus, as the one employed in

C hapter 2. The traditional assignment of A-terms to sequent calculus proofs is

defined by

Consider a right-perm uted cut Cut(Li, (x)L(a;, L 2i, {y)L22)). The right cut

formula is m ain and linear. Hence, x L 2\ , L 22. This cut is m apped as follows:

<p(Ax(x)) = x

i p (R { (x) L)) = A x.ip(L)

i p (L { x1L u { y) L 2) = tp(L2) [x (p(L i) /y]

ip(Cut(Ll , (x) L 2) = ip (L2) [(p(L i) /x\

(5.13)

(5.14)

(5.15)

(5.16)

(¿(Cut(Li, (x)L(a:, L 21, {y)L22))

= (p(L(x,L2i , (y) L 22))[<p(Li)/x]

= (p(L2 2)[x(p(L2i)/y][<p(Li)/x]
(5.17)

— !p {L 22)[<p(Li)ip(L2i) / y\, as x ^ L 2i , L 22.

Chapter 5. Gentzen versus Prawitz 162

Now we are ready to restrict ip to XVh.

p(x) = x

ip(Xx.t) = Xx.ipft)

ip(t(u ■ I)) = <p(l,w)[<p(t)<p(u)/w], w fresh

</>(Q,w) = w

ip(u :: l ,w) — <p(l, z)[wtp(u)/ z\, z fresh

The clause for t (u-l) is in accordance with (5.17). Since formulas in the stoup

do not have a variable, we also have to pass a fresh variable when m apping a list

I, as in <p(l,w). The clauses for x and [] are as (5.13), the clause for :: as (5.15).

P ro p o s i t io n 36

1. Qt = <pt, all t in XVh.

2. Q'(M, N , I) = ip(l, w)[MN/w], w fresh, all M , N in X, all I in XVh.

P ro o f: By simultaneous induction on t and I, w ith induction hypotheses IH1

and IH2 . Cases t = x and t = Ax.to are straightforward.

Case t = t0 (u0 ■ l0).

Qt — Q{to(uo • k))

= Q ' (Q (t 0) ,Q (u o) , l o)

= p (hw)[Q (t 0)Q{uo)/w\, by IH2,

= ip(l,w)[ip(t0)<p(u0) /w\ , by IH1,

= p (t 0{u0 ■ l0))

= tpt .

Chapter 5. Gentzen versus Prawítz 163

Case I = [].

Q ' (M , N , l) = Q'{M, N, [])

= M N

= w[MN/w]

= <¿>([], w)[MN/w]

= w)[MN/w]

Case I = u 0 :: l0.

Q'(M, N, l) = Q ' { M , N , u 0 :-.l0)

= Q ' { M N , Q (u 0), l o)

- ip(l0rz) [(M N)Q (uo) /z \ , by IH2,

= (p(lo,z)[(MN)(p(uo)/z\, by IH 1

= ip(l0 ,z)[wip(uo)/z][MN/iu], as w is fresh,

= ip(u0 :: l0 , w) [M N /w \

= <p(l,w)[MN/w} .

Chapter 6

Extensions of natural deduction

In this chapter, we construct systems of natu ral deduction th a t stand for XVh

and XVhx as XJ\f stands for XV. The idea of built-in distinction between head

and tail elimination is the key ingredient to obtain th e counterpart of XVh. Then,

we obtain the counterpart of XVhx by making substitu tion explicit.

We also discuss a t length the logical status of explicit substitutions, having in

mind th a t they serve as counterpart to explicit right perm utation of cuts.

Finally, we extract some conceptual and taxonomical consequences of the fact

th a t usual A-calculus is in the intersection of two degenerate fragments, the ::-free

fragment of sequent calculus, and the tail-application-free fragment of extended

natural deduction.

6.1 Head and tail eliminations

In Section 5.3, by an analysis of P raw itz’s mapping, we observed th a t, from the

point of view of sequent calculus, not all instances of the elimination rule have the

same nature, and th a t indeed the distinction between head and tail applications

built in the syntax of XAf (and which does not exist in A) m atched the distinction

in XV between a cut t (u ■ I) (more precisely, a left inference x(u ■ I) or a kev-cut

(Ax. t)(u ■ I)) and a Herbelin left inference :: . Moreover, recall th a t T is an

isomorphism between (3i in XAf and XV. for i = 1,2, whereas /3-reduction in A,

when rephrased by G, corresponds solely to /31-reduction in XVh. Therefore, XAf

Chapter 6. Extensions o f natural deduction 165

also improves over A in m atching certain aspects of cut-elim ination in AV and

AVh, namely left perm utation of cuts. The na tu ra l challenge is then to define

an extension of AJ\f th a t stands for this calculus as A V h stands for XV and,

in particular, th a t captures in the natural deduction “space” general head-cuts

t{u ■ I) and their complete left perm utation.

Such calculus, nam ed AJ\fh, exists and produces in the natura l deduction

“space of calculi” a perfect counterpart to the situation involving the calculi

XV h, XV and AQ (recall Section 5.4), as illustrated in the following diagram.

XV h AAfh

(6.1)

T h e AATi-calculus

The AA/"h-calculus is defined in Table 6.1. Typing rules are in Table 6.2. Notice

again the separation between applicative terms app(A) and applications A 6

Apps.

Corresponding to full head-cuts t (u- l) (in which t is not necessarily a variable

or A-abstraction), we generalise applications of XjV by

A ::= x N | (Ax . M) N | app{A)N | ,47V ,

which will simply be defined as

A ::= M N 1A N

Chapter 6. Extensions o f natural deduction 166

Table 6.1: The ATVTi-calculus

(Terms) M , N ::= x | X x .M \ app(A)

(Apps) A ::= IVIN \ A N

((51) app((Xx.M)N) M[N/x]

((52) ((A x . M) N) N ' -> M [J V / x] W '

(/i) app(A)N —> AiV

where

x j T V / x] = IV

yflV/x] = y , y ^ x

(Xy.M)[N/x\ = Ay.M[iV/x]

(a p p (A)) [l V / a ;] = a p p (A [A T / x])

(M 1M2)[JY/.x] = M![iV/x]M2[iV/x]

(AM)[JV/x] = A[lV/x]M[7V/x]

Chapter 6. Extensions o f natural deduction 167

Table 6.2: Typing rules for A _ A / 7 i

Var F , x : B h x : B In t ro r , x : B h M : C AT,
T b Ax . M : B D C X ^

H d E l i m r b M : B D C T b N : B
T b M N : C

T a i lE l im T b A : B d C F F N : B
T b A N : C

An application of the form M N (resp. A N) is called a head (resp. tail) ap

plication. The corresponding typing rules are nam ed head and tail elimination,

respectively. It is clear th a t ta il application corresponds to the constructor :: or,

in other term s, tail elimination correspond to H erbelin’s left rule. As to head

application, it subsumes the constructors x N and (Ax . M) N of AA f in the same

way as heacl-cut in X V h subsumes the constructors x (u ■ I) and (Ax.t)(u ■ I) of XV.

In AJsfh we still have to split (3 in two cases bu t we no longer need @ in {(52)

(as we did in AAA). In addition to {(31) and {(52), we only require the simple

which will play the role of counterpart to complete left perm utation of cuts. A

h-redex is an head application th a t is not a value application.

D e f in it io n 17 (C o m p a tib le c lo su re) Given a pair R of binary relations, the

f irst on T e r m s and the second on Apps, the compatible closure is the least

pair of relations the first on T e r m s and containing the first relation of R, the

second on Apps and containing the second relation of R, closed under:

(h) a.pp{A)N —>■ A N

Chapter 6. Extensions o f natural deduction 168

H d E l i m l M N -> M ' N
M -± Ml

T a i lE l im l A N -> A ' N
A - > A 1

For instance, for defining — t ake R — (¡31, ¡32) in Definition 17. T hat is, in

AJ\fh we also set (as we did in AJ\f)

One can again define —̂ (resp. —̂/32) by taking R = {(31, 0) (resp. R = (0, (32)),

or define — by taking R = (0, h).

There is an injection t between A and XJ\fh th a t simply sends M N in A to

app(M N) in AMh.

P ro p o s i t io n 37 I f Y b M : B in X, then T b t{M) : B.

P ro o f: By induction on M. Only case M = M 0N 0 m atters. Suppose A derives

T h M0Aro : B. Then A derives F h Mq : C D B and T b N 0 : C , for some C.

By induction hypothesis, there are derivations in AJ\fh of T b ¿(Mo) : C D B and

T b l{Nq) : C . Conclude with

(3 = {(31, (32) .

ix — x

l{ \ x .M) = A x .lM

l{ M N) = app{i{M)i{N))

It is immediately seen to be correct.

r b ¿(M0) : C D B F b ¿(iV0) : C
H d E l i m

Chapter 6. Extensions o f natural deduction 169

■

Now a situation very similar to th a t of mapping Q : A —> AV h is now observed

in mapping i : A —» XAfh. The range of i is the tail-application-free fragment of

\J\ih, which is

M , N ::= x | X x .M \ app(A)

A M N

or, equivalently,

M, N ::= x \ X x .M \a p p (M N) .

This is very much like A-calculus, bu t w ith application w ritten app(M N) . A ctu

ally, this constructor is typed by

T h M : C D B TV- N - C

T b app(M N) : B

which should be seen as an abbreviation of

T b M : C D B r b N : C
-- H d E l i m

T b M N : B
-------------------------- App
T b a pp(M N) : B

As to reduction, only rule 01

app((Xx.M)N) M [N /x \

makes sense in this fragment, as both 02 and h require tail elimination. Now,

the calculation

{app(M'N'))[N/x\ = a p p ((M 'N ') [N /x])

= app (M ’ [.N / x] N ' [A'/ x])

Chapter 6. Extensions o f natural deduction 170

shows two things. First, th a t the tail-application-free fragment is indeed a frag

ment of of AJ\fh because it is closed for substitu tion and (51. Second, th a t the

restriction of substitution of W f h to this fragment behaves exactly as A-calculus’

substitution.

Therefore, the tail-application-free fragment of AW/i is simply a rephrasing

of A, where application is w ritten app(MN). Furtherm ore, mapping l is triv

ially an isomorphism between A and this fragment. This justifies the following

terminology.

D e fin itio n 18 The tail-application-free fragment o f \J\ fh is denoted At.

For simplicity, in the remainder of this section we will not separate A and

At and, therefore, we will regard A as being the tail-application-free fragment of

AJ\fh. We will come back to At in the next section.

There is a simple mapping (_)“ from AA(h to AW, defined in Table 6.3. The

idea is an adaptation of mapping W from A to AW. W hen m apping a head

application M N (where M may be some app(A')) down to some A in AW, we

make use of operator @ for assuring th a t the head application of A is a value

application. The following is simple.

P ro p o s i t io n 38 W (M) = (t(M))~ , for all M in A.

Indeed, m apping from A to AW, being inductively determined by the clause

J \ f (M N) = app(J\f(M)@J\f(N)), is the composition of t, th a t sends each M N

to a p p (i (M) i (N)), with the mapping from AJ\fh to AW inductively determined

by (M N) ~ =

One sees at once th a t, in AWh, —p, is term inating and weakly confluent.

Therefore. is confluent. It is also easy to see th a t (_)“ from AW/?, to AW is

nothing bu t the normal form mapping (h w .r.t. h in AW/i.

P ro p o s i t io n 39 M ~ = 0 , (M). all M in XfJ'h.

P ro o f: One proves by simultaneous induction on M and A th a t M M ~ and

M~ is //-normal, and tha t A —>*h A~ and A~ is /¡.-normal, for all M and A in AW/?.

Chapter 6. Extensions o f natural deduction 171

X = X

(A x .M)~ = X x . M -

app(A)- = app{A~)

(M N) ~ = M ~ @ N ~

(.A N)- = A ~ N ~

Table 6.3: From XAfh to XJ\f

All cases are straightforward, the only interesting one being A = a,pp(A0)M 0.

Then, A~ = cipp(Aq)@Mq = AqMq . By the induction hypotheses, bo th A f and

Mq are h-norm al and, since a tail application cannot be a /z-redex, A~ itself can

not be a h-redex. Therefore A~ is h-normal. Moreover A = app(Ao)Mo —>h AqMq

and now, by the induction hypotheses, A 0Mq — A f M 0 = A~. ■

M appings T and © are naturally extended to AAfh and XVh by

I) = T M (T /V • I)

and

Q(t(u ■ I)) — Q'(OtQu, I) .

This definition is coherent with the former definition of \&'(x N , /) and ^ ' ((X x .M)N , I),

on the one hand, and w ith the former definition of Q'(x(u-l)) and Q'((Xx.t))(u-l)).

on the other hand. Therefore, the following is immediate.

P ro p o s i t io n 40 I f i denotes both the inclusion of XJ\f in XAfh and of XV in

XVh, then \l/(¿(M)) = z(TA7) and Q(i(t)) = ¿(07), fo r all M in XAf and t in XV.

P ro p o s i t io n 41 (C o rre c tn e s s o f T)

Chapter 6. Extensions o f natural deduction 172

1 . I f XJ\fh derives T F M : B then XVh derives F; — F 'F(M) : B.

2 . I f \J \ fh derives T h A : C and XVh derives T; C F I : B then XVh derives

F; - F : B.

P ro o f: By the same simultaneous induction as in the proof of Proposition 22.

Instead of cases A = x N and A = (Xx .M)N , one has

Case A — M N . Then there are ix[, 7r", D such th a t 7r2 has the form

/ //7Ti 71-!

F F M : D D C r F N : D
-- H d E l i m

T h M N : C

Let 7T3 be a derivation in A V h of T ;C h I : B. Since ty '(A, l)

TM(TvY - I), we want a derivation of T; — F : B

7T+ 7T̂ + 7r3

T; - h T (M) : D D C F; - h V (N) : D F ; C h F B
--- HeadCut

F; - h T M (T Y • I) : B

where 7rf and 7r^+ are given by IH1. ■

P ro p o s i t io n 42 (C o rre c tn e s s o f 0)

1 . I f XVh derives T: — h t : B then XAfh derives F h ©i : B.

2. I f XAfh derives T b A : C and XVh derives F; C F / : B then XJ\fh derives

T F ©'(A,«) : B.

P ro o f: By the same simultaneous induction as in the proof of Proposition 23.

Instead of case t = x(u ■ I) and t = (Ax. t')(u' ■ I'), one has

Case t = t'(u' ■ I'). Then there are tt(, tt". nt2, D, E such th a t tti has the form

= V ' (M N , l) =

. Take ni, as

Chapter 6. Extensions o f natural deduction 173

7ri ir '! 7ri,

r ; - b t' : D D E r ; - b v! : D T; E b I' : B
H e a d C u t — —— —----------------------------

F; - b t '(u' ■ I) : B

Since Qt — Q(t’(u' ■ I1)) = Q'(Qt'Qu' , I'), we want a derivation 7T* of T b

Q'(Qt'Qu' , I’) : B. Observe th a t

7r+ tTj

F b Qt' : D D E F b 0 u’ : D
H d E l i m ---------

T h Qt'Qu' : E

is a derivation in AN h of F b Qt'Qu' : E , where 7Tj~ and 7r++ are given by IH1.

Hence, by IH2, there is a derivation of T b Q'(Qt'Qu' , I') : B. Take 7r* = 7r^. ■

Now, T keeps transform ing applications into head-cuts by turning them “up

side down” . In particular, if the application consists of a single head application,

like app(M N) , the result is a head-cut with a single argum ent, nam ely TM[TiV],

as witnessed by the calculation T (a p p (M N)) = ^ ' (M N , []) = :: []) =

TM[T./V]. But this is how Q would have translated the application M N in A.

Having in mind th a t A may be embedded into AAfh, th is m eans th a t T is coherent

w ith Q. This is expressed in the following proposition.

P ro p o s i t io n 43 T (r(M)) - Q(M), for all M in A.

P ro o f: By induction on M . The only interesting case is M = M 0N 0. On the

one hand, Q M = QM0[GN0\- On the other hand,

T (r(M)) = 'F(app(i.(A/o)i(At0)), by clef, of

= T (6(Aio))['h(i'(Aro))], by the discussion above,

= GMq[GNq], by IH.

Chapter 6. Extensions o f natural deduction 174

Thus m apping T : AJ\fh —> AV h generalises bo th Q : A —> XQ and T : AJ\f AV.

Having in mind th a t the la tter may be seen as P raw itz’s mapping, when this is

defined in AJ\f and not in A, mapping T from AJ\fh to A V h is coherent w ith both

Gentzen’s and P raw itz’s way of m apping natu ra l deduction to sequent calculus:

(1) with the former because a head elim ination (all eliminations in A are head) is

mapped to a head-cut (and head-cuts is w hat left inferences and key cuts of XV

are in A Vh) . (2) w ith the la tter because ta il eliminations are m apped to Herbelin

left inferences (in accordance to Prawitz) and this necessarily agrees w ith Gentzen

because Gentzen does not map tail eliminations.

Given th a t T generalises Q, the following theorem generalises Theorem 7 and

gives another com mutative square in diagram (6 .1), if one bears in mind th a t

(-)" =ih-

T h e o re m 10 T (M ") = (\PM)-, for all M in XJ\fh.

P ro o f: We prove the claim together w ith the claim th a t T '(A “ , l~) = (T ^H , /))“ ,

for all A in AN h , by simultaneous induction on M and A, w ith induction hy

potheses IH1 and IH2 respectively. The cases M = x and M = Xx.A40 are

straightforward.

Case M = app(A).

T(AW) = <&((app(A))-)

= $(app(A~)) , by clef, of (_)- ,

= T '(A _ , []), by clef, of T,

= (T '(A []))-, by IH2 and Q- = [],

= (T (app(J4)))_ , by def. of T,

= ('PM)- .

Case A = M N

Chapter 6. Extensions o f natural deduction 175

= V ((M N) - , r)

= , r), by def. of

= inser t(ty(N~) , l~, 'L (M ~)), by Lemma 40,

= insert((' f>N)~, l~ , ('F M)_), by IH1,

= :: l))~, by def. of

= (ty‘ (MN, l))~, by def. of

= (* W)) " •

Case A = A qN q.

* ' (A - r) = ^ '((A 0iv0) - 5r)

= '¡i ' (A q N q , /“), by def. of

= :: T) , by def. of

= vl/(yl0 ; (vl/;V0)), by IHL

= by def. of

= (4//(Ao,4 'iV o ::0)“ ,b y IH2,

= (V (A o N 0 , l)) - , by def. o f * ,

= o m o r •

Now we get correctness of (_) : XAfh —> XAf as a corollary of correctness of

(_)“ : XVh -* XV

C o ro lla ry 26 I f XAfh derives F h M : A, then XAf derives F b M ~ : A.

Proof:

AJVTi derives F h M : A

Chapter 6. Extensions o f natural deduction 176

implies th a t XVh derives F; — b T M : A, by Proposition 41,

implies th a t XV derives F; — b (TAF)- : A, by Proposition 4,

implies th a t XV derives T; — b T (M ~) : A, by Theorem 10,

implies th a t XJ\f derives F b 0 T (M _) : A, by Proposition 23,

implies th a t XJ\f derives T b M ~ : A, by Proposition 24.

A n o t h e r i s o m o r p h i s m

We move to the proof of XVh = ATVTi, a generalisation of bo th the triv ial XQ = X

and of XV = ATV.

P ro p o s i t io n 44 © o T = id and © o T ' = &.

P ro o f: The proof is exactly as the proof of Proposition 24. We ju st do the new

case.

Case A = M N :

© T ' (A , 0 = © T (M i V , I)

= © (T M (T iY -O)

= © '((©TMXeTiV),/)

= Q' (MN, l) , b y lH l,

= & (A , I) .

P ro p o s i t io n 45 T o Q — id and T o ©' = Tb

P ro o f: The proof is exactly as the proof of Proposition 25. We just do the new

case.

Chapter 6. Extensions o f natural deduction 177

Case t = to(u0 ■ Iq):

qjQt = $ 0 (t o(u o • l0))

= * 9 ' ({ Q t 0e u 0) , l0)

= ^ ((0 t o 0 « o) , Z o) , b y f f l 2 ,

= V Q to iV Q u o ■ k))

= ¿o(«o ■ ¿o)> by IH1

= t .

L em m a 52

1 . ty(M[N/x]) = s u b s t (^ N , x , ^ f M) , all M , N in XJ\fh.

2. 4L(A[lV/:r|, subst(tyN, x, /)) = s u b s t ^ N , x, I)), all A , TV in XJ\fh and

all I in XVh.

P ro o f: By the same simultaneous induction as in the proof of Lemma 41. All the

cases stay unchanged, except th a t instead of cases A = x M and A = (Xy .M)M' ,

we have case A — M 0N 0. Then, writing s for subst ,

- s { * N , x , * ' { M 0No,l))

= s (tyN ,x , t y M o ^ N o ■ I)), by def. of T,

= s ^ N , x, '£Mo)(s('i&N, x, 4/./Vo) ■ s (^ fN ,x , l)) , by def. of subst ,

= %{M0[N/x])(*{No[N/x] - s (* N , x , l))) , by IH1,

= 'f'/(Mo[N/x]No[N/x], s (^ N , x, /)), by def. of T,

= ' fy'((MoN0)[N/x\ , s (^ N , x, /)), by def. of -[Af/x],

= yB '(A[N/x] ,s (VN,x , l)) .

Chapter 6. Extensions o f natural deduction 178

It turns out th a t the proof of this lemma becomes considerably simpler than the

proof of Lemma 41 because substitution in AJ\fh does not call the operator @ and

similarly subst in AV h does not call the operator insert.

C o ro lla ry 27

1. Q (su b s t (v ,x , t)) = Qt[Qv/x], fo r all v, t in XPh.

2. Q'(A[Qu/x], subs t (u ,x , t)) = Q'(A,l)[Qu/x], fo r all A in XXfh, all u , t in

XPh.

P ro o f: It follows from Lemma 52 and Propositions 45 and 44 in the same way

as Corollary 19 follows from Lemma 41 and Propositions 25 and 24. ■

The following lemma and corollary may be seen as an adaptation to XPh and

AN h of part 2 . of Lemma 40 and of Corollary 17, respectively.

L em m a 53 4' ' (A, l)(u ' ■ I') —*h A,append(l ,u ' :: I')), fo r all A in AN h , all

u ' , /, I1 in XPh.

P ro o f: By induction on A.

Case A = M N .

V' (A,l){u ' :: I') = V (M N , l) (v ! - I ')

= (TA/(TiY • l))(u - 1'), by def. of T,

— 4'i'\'/(4'Ar • append(l, u :: I'))

= ' fy '(MN,append(l ,u' :: I'), by def. of T.

= ^ ' (A , a p p e n d (l , u ' I ') .

Case ,4 = A!N '.

Chapter 6. Extensions o f natural deduction 179

V'{A , l) (u ' :: 0 = '¡?'(AIN I, l)(v! :: I')

= TÌV' :: l){v! :: 1% by def. of T,

-*h a p p e n d ^ N ' :: I, u' :: Z')), by IH,

= '¡/'(A7, 4/TV7 :: append{lpu! :: /')), by def. of append ,

= ' fy \A 'N ' ,append(l ,u ' :: Z7), by def. of T.

= d//(vf, append(l, v! :: Z7) .

C o ro lla ry 28 dr(app(A))(w ■ Z) —>h ^ ' (A , u :: Z), fo r all A in XJ\fh, all u , l in

XPh.

P ro o f : Im m ediate from Lemma 53, when I = []. ■

The following two lemmas are generalisations of Lemmas 42 and 43. Observe

th a t in these lemmas w hat m atters is not the notion of reduction R. bu t instead

the definition of 4/ and O and the closure rules w ith which —*R is defined.

L e m m a 54 In XPh, i f I —>R I', then 4?'{A,l) -+R 'it'(A, I1) (for all A in XJ\fh,

R e {01,02,h}).

P ro o f: By an induction on A similar to th a t of Lemma 42. Case A = A!N is as

before, because ^ R in XPh is also closed under L f t2 .

Case A = M N . T '(M N , l) = TM (TfV • I) ->R ■ V) = T 7(M N , l),

where the reduction step is by I ^ R I' and closure of —>r in XV h under HdCutZ.

■

L e m m a 55 In XAfh, i f A —>R A', then & (A , l) — Q'(A' , l) (for all I in XPh,

R e { 0 1 , 0 2 , h}).

Chapter 6. Extensions o f natural deduction 180

P ro o f: Identical to the proof of Lemma 43. H

There are two ways of understanding next lemma. The first is by observing

th a t the LHS and RHS, so to speak, of the /¿-step it claims are exactly th e images

under 0 of the LHS and RHS, respectively, of the /¿-step proved in Lemma 53.

Then second is as an adaptation to AJ\fh of part 2. of Corollary 18.

L e m m a 56 Q'(Q'(A , l)Qu ' ,1') —>h Q'(A,append(l ,u ' :: I')), for all A in AMh,

all u', Z, I! in XPh.

P ro o f: By induction on I.

Case / = 0-

© '(© '(A, l)Gu', I') = Q '(0' (A , [])©u', I')

= Q'{app(A)Qu' , / ') , by def. of 0 ,

Q '(A Q u , I’), by Lemma 55,

= Q '(A ,u ' :: I1), by def. of ©,

= Q'(A,append([],u :: Z')), by def. of append ,

= Q \A ,a p p en d (l ,u ' :: I')) .

Case Z = uq : : Zq

© '(© '(A l)Q u\ I') = © '(© '(A, u0 :: l0)Qu', I')

= Q'(Q'(AQu0J 0) Q u J ') , by def. of ©,

-*h Q'{AQu0,append(lQ,u ' :: I')), by IH,

= ©'(H, n0 :: append(l0, u :: Z')), by def. of ©,

= 0 '(H , appendalo :: Z0, u :: I')), by def. of a/ppend,

= Q'(A,append(l ,u ' :: I')) .

m

Now the first half of the isomorphism.

Chapter 6. Extensions o f natural deduction 181

T h e o re m 11 Let R e {/31,/32,/?,}. I f M —»ft M ' in XAfh then 'I 'M —»ft 'I 'M ' in

XPh.

P ro o f: We prove the claim and also th a t

if A —»ft A' in XAfh, then '¡''(A, I) —»ft I) in XPh, for all I in XPh,

by simultaneous induction, similar to the proof of Theorem 4, on M —»ft M ' and

A —»ft A ' , w ith induction hypotheses IH1 and IH2, respectively. Cases correspond

to closure rules, according to Definition 17.

Case pi: as in Theorem 4, bu t by Lemma 52, instead of Lemma 41.

Case p 2 \

T'(((A x . M) N) N ' , I) = $ '(((A x . M) N) , V N ' :: I), by def of T,

= (Ax.’I 'M)(^ iV • (TiV' :: I)), by def of T,

—>02 s u b s t { ^N , x, T M)(T N ' ■ I)

= y (M [N / x]) ^ N ' ■ I), by Lemma 52,

= V '{M [N /x]N ' , I), by def of T.

Case h:

T '(app{A)N , l) = 'i>(app(A))('$fN :: I), by def. of T,

—p, TvV :: I), by Corollary 28,

= d/ ' (AN,l) , by clef. of T.

Case Intro: As in Theorem 4, by closure of —»ft in XPh under Right.

Case App: As in Theorem 4.

Case HdElirn l: Suppose T M —»ft T M ' (IH1).

Chapter 6. Extensions o f natural deduction 182

V ' (M N , I) = V A f ^ N ■ I), by def. of T,

— ■ I) (*)

= T '(M 'iV , I), by def. of T,

where the reduction step is by IH1 and closure of —>R in XVh under H d C u t 1.

Case HdElim2: Similarly, bu t by closure of —>R in XVh under HdCut2.

Case T a i l E l i m l : As in Theorem 4.

Case T a i lE l im 2 : As in Theorem 4, bu t by Lemma 54 and closure of —>R in

XVh under L f t l . ffl

Finally, the second half of the isomorphism.

T h e o re m 12 Let R G {(31, (32, h}. I f t, t! in XVh then Qt Qt' in XJ\fh.

P ro o f : We prove the claim and also th a t

if I ~^R I1 in X V h , then ©'(A, I) —>r Q(A,l ') in XAfh, for all A in XMh,

by simultaneous induction, similar to th a t of Theorem 5, on t — tl and I — V.

Cases correspond to closure rules, according to Definition 6 .

Case (31: As in Theorem 5, bu t by Corollary 27 instead of Corollary 19.

Case ¡32:

0 ((Ax. t) (v ■ (u :: I))) = ©;((AX.Qt)Qv,u :: I), by def. of 0 ,

= 0 /(((A .x .0 t)0u)0 ri,/), by def. of 0 ,

>p2 0 '{{Ot[Ov/x])Ou,l) , by Lemma 55,

= Q'(@(subst(v,x , t))Qu,l) , by Corollary 27,

= Q (subs t (v ,x , t) (u :: I)) .

Case h:

Chapter 6. Extensions o f natural deduction 183

0 ((t(w ■ l))(u' ■ I')) = Q'(Q(t(u ■ l))Qu', I'), by def. of 0 ,

= Q'(Q'(QtQu, l)Qu', I'), by def. of 0 ,

—>h Q'(QtQu,append(l ,u ' :: I')), by Lemma 56,

= Q(t(u ■ append(l,u' :: I'))), by def. of 0 .

Case Right . As in Theorem 5, by closure of —>R in XJ\fh under Intro.

Case H dC ut l : Suppose Qt —>R Qt' (IH1).

Q(t(u ■ I)) = Q '(Q tQ u , l), by def. of 0 ,

yn Q \ Q t ' Q u J) (*)

= Q(t '(u ■ I)), by def. of 0 ,

where the step (*) is by Lemma 55, IH1 and closure of —>R in XJ\fh under

H d E l i m l .

Case HdCut2: Similarly, but by closure of —>R in AN h under HdElim2.

Case HdCutS: Suppose Q '(A , l) —>R Q'{A,l ') , all A (IH2).

Q(t(u :: I)) — Q '(Q tQ u , l), by def. of 0 ,

->R Q'{QtQu,l') , by IH2

= Q(t,(u :: I')), by def. of 0 .

■

C o ro lla ry 29 (Iso m o rp h ism) Let R £ {[51, ,32, h) .

1 . M —>R M ' in XJffh i f f 'S/M —>R I 'M ' in XVh.

2. t t' in XPh iff Qt —>R Qt' in \J\fh.

C o ro lla ry 30

1. \J\ fh is confluent.

2. I f M is typcible in X N h , then M is strongly normalising.

3 . XJ\fh satisfies subject reduction.

P ro o f: Because these properties hold of XPh and may be easily transferred from

XVh to Xfifh w ith the help of T and 0 . H

We can, so to speak, reuse conservativeness of XVh over XV th rough isomor

phisms 4/ and 0 .

C o ro lla ry 31 XJ\fh is internally conservative over XJ\f.

P ro o f: Conservativeness is by

M -» * M ' in XM

iff —C 4/M ' in XV, by Corollary 20 ,

iff i ($ M) —** 1(4/M') in X V h , as XVh is conservative over XV,

iff 4/(l(M)) —** 4/(l(M ')) in XVh, by Proposition 40,

iff 0 4 /(i(M)) —>* 0 4 /(l(M ')) in XJ\fh, by Corollary 29,

iff i (M) —+* i (M') in XJ\fh, as 0 o T = id.

Internal conservativeness is by Proposition 39. ■

6,2 Explicit substitutions

In the last section, we built in the natural deduction side a perfect counterpart

to the relationship between XVh and XV. Now we want to do the same for

calculi XVhx and XVh. It turns out th a t the problem is now simpler. XVhx

stands for XVh as the Ax-calculus [Rose, 1996b, Bloo, 1997] (a calculus of explicit

substitutions) stands for A. To illustrate this, we briefly recall Ax.

Chapter 6. Extensions o f natural deduction 184

Chapter 6. Extensions o f natural deduction 185

The definition of Ax is given in Table 6.4. T he calculus may be seen as

a version of A in which substitution is internalised. A new constructor, called

explicit substitu tion and w ritten M (x := N), is added and rule (3 is replaced by

rule b, which, instead of calling substitution, generates an explicit substitution.

E x tra rules for the explicit, stepwise performance of substitu tion are included

(rules x l, ...,x4). The typing rule for explicit substitu tion used here (and also in

[Bloo, 1997]) is straightforw ard1, in th a t we simply internalise the admissible rule

for substitu tion in A

r h N : A r, x : A I- M : B
r b M[N/x\ : B X *

Now, in W h x , rules (31 and (32 of XPh are replaced by rules bl and b2 in

which the call of operator subst (a substitu tion operator in X P h) is replaced by

a mid cut, a new constructor of the calculus th a t acts as an explicit subst. The

performance of subst is internalised in W h x by means of new reduction rules

x l , ..., x4.

We will come back later (see subsection “Com pleting the picture”) to this

analogy between how Ax stands for A, on the one hand, and how W h x stands

for XPh, on the other hand. For the moment, as we said above, we are interested

in finding the calculus th a t is the natura l deduction counterpart to W h x . The

obvious guess now is th a t such calculus is a version of AAf h in which substitution

is made explicit.

Explicit substitutions for AJ\fh

We define a version of \ j \ f h w ith explicit substitutions, nam ed Xhfhx, in Table

6.5. Typing rules are in Table 6 .6 . The definition is straightforward. A con

structor for substitu tion is added to the syntax and old reduction rules calling

m eta-substitu tion are replaced by similar rules generating explicit substitution.

Rules for the stepwise performance of substitu tion are added. Similarly to W h x ,

an operation remains in the meta-language, nam ely the operation sub th a t dis-

h4 slight variations of this typing rule has appeared in [di Cosmo and Kesner, 1997].

Chapter 6. Extensions o f natural deduction 186

(Terms) M, N ::= x | Xx.Ad \ M N \ M (x := N)

Var F, x : B b x : B

I I ',. t : B S~ M : C j t-. E R T h M - . B D C T h N : B
i n t r o p p Xx M • B p, q x T T ' r M N - . C

E xSubs t r h iV : C
E xbubs t r b M (x := N) : B *

(b) (X x .M)N -»■ M (x := N)

(x l) x(x := iV) = A"

(x2) y(x := IV) = y, y ^ x

(x3) (A y . M) (x : = N) — X y . M (x : — N)

(x4) (M M ') (x := N) = (M (x := N)) (M ' (x := N))

Table 6.4: The Ax-calcuius

Table 6.5: The ATVTix-calculus

Chapter 6. Extensions o f natural deduction 187

(Terms) M, N ::= x \ X x .M \ app(A) \ M (x := N)

(Apps) A ::= M N | A N

(61) app((Xx.M)N) -> M (x := N)

(62) ((X x .M)N)N ' -+ M (x N) N '

(h) app(A)N -)■ A N

(xl) x (x := N) = N

(x2) ji5» = y , y f i x
(x3) (Ay .M) (x := N) = X y .M (x := N)

(x4) (app(A))(x := N) = app(sub(N, x, A))

where

s u b (N ,x , M 1 M 2) = M i (x := N) M 2(x := N)

sub(N , x, A M) = sub(N, x, A) M (x := N)

tributes a substitution through ail application A. C onstructor M (x := N) binds

x in M. By variable convention, x does not occur in N.

D e fin itio n 19 (C o m p a tib le c lo su re) Given a pair R of binary relations, the

first on T e r m s and the second on Apps, the compatible closure is the least

pair of relations —y the first on T e r m s and containing the first relation of R, the

second on Apps and containing the second relation of R, closed under:

Table 6 .6 : Typing rules for AJ\fhx

Chapter 6. Extensions o f natural deduction 188

y n r ______________ In tro F, x : -B l~ M : C T y p
Vm T , x : B h x : B l n t T ° T h AX.M : B D C X * L

Avv T I- A : B E xS u b s t X ' ^ ^ ^ r F iV : C ^ p
PP T h app{A) : B ^ xi3Ut)St r h M (x N) : B “

T a i lE l im

T h M N : C

T h A : B D C T \~ N : B
T h A N : C

I n t r o ¥ r a, ' A PP A ~ ^ A 'Ax . M —> Ax .M ' app(A) —> app(A')

E x S u b s t l ; E x S u b s t 2 N N'
M (x := N) -+ M ’{x := N) m (x := N) -> M (x := N')

H d E H m l - J * 2 % , N HdEUm.2 M % ^ NI

T a i lE l im l -¡~4 4 /» r T a i lE l im 2 E —> NA N -y A ' N — A N ^ A N >

For instance, for defining —>b, take R = (61,62) in Definition 19. That, is, in

XNfhx we set b = (61, 62). One can define —>bi (resp. —>b2) by taking R = (61, 0)

(resp. R = (0,62)), or define —p,. by taking R = (0 ,6). The definition of —

(i = 1, 2, 3, 4) is by choosing R = (xz, 0). We will also let

x = x l U x2 U x3 U x4

and, thus, — is defined by taking R. = (x, 0).

Chapter 6. Extensions o f natural deduction 189

x b = X

(A x . M) b = A x . M b

(app(A))b II â_e>II = M h[Nb/x]

(.M N) b = M bN b

(.A N) b = A bN b

Table 6.7: From AAfhx to XAfh

By analogy with m apping (_)b : AV h x —> XVh, there is a m apping (_)b :

AA f h x —> XJ\fh, defined in Table 6.7, th a t replaces explicit substitu tion by m eta

substitu tion in XAfh.

M appings E and 0 , between XJ\fh and XVh, are extended to mappings be

tween XAfhx and XV hx by

E { M (x := N)) = EM{:x := 'EN}

0 (t { x := m}) = Ot(x := Ou) .

Given the correctness of T and 0 between XAfh and AVh, and given the typing

rules for explicit substitutions and mid-cuts, the correctness of these extensions

is routine.

Explicit substitutions are m apped to mid-cuts and vice-versa. The following

proposition is even simpler than Proposition 40.

P ro p o s i t io n 46 I f i denotes both the inclusion of XAfh in XAfhx and of XVh in

XVhx, then E (i (M)) = i (E M) and 0 (z(i)) = i(Ot) , for all M in XAfh and t in

XVh.

P ro p o s i t io n 47 (T (M))b = E (M b), for all M in XAfhx.

Chapter 6. Extensions o f natural deduction 190

P ro o f: One proves the claim and also ('¡/'(A, l))b — 'L/(.A1>, /b), for all A in XJVhx

and all I in AVhx , by simultaneous induction on M and A, w ith induction hy

potheses IH1 and IH2, respectively.

Case M = app(A):

(* (M)) b

Case M = Mo(x := No)

(T (M)) b = ^ { A f 0(x : = N o) Ÿ

= (($ M0){x := (T N 0) }) \ by def. of T,

= subst{{^N 0) \ x , (M 0f) , by clef, of (_)b,

= s u b s t (^ (N b0) , x , ^ (M b0)), b y lH l,

= '¡i (Mq[Nq/ x]), by Lemma 52,

= d/((M0(x := N q)Ÿ), by def. of (_)b,

= 'L(M b) .

The remaining cases are straightforward. ■

C o ro lla ry 32 I f XjVhx derives F h M : A, then XJKih derives F h M° : A.

P ro o f: O btained from correctness of (S f : A V h x —» XV h (Proposition 9) by the

method of Corollary 26. ■

= {^{app(A)))b

= (* \ A , D))b, by def. of T,

= T /(Ab,a b) ,b y IH 2 ,

= y ' (A b, 0), by def. of (_)\

= T(app(A b)), by def. of T,

= ^{{app{A))h), by def. of (_)\

= T (M b) .

Now we lift the isomorphism XJ\fh = XVh.

Chapter 6. Extensions o f natural deduction 191

Yet another isomorphism

The goal is now to prove AJ\fhx = XPhx. We will try to follow closely the develop

ments th a t led from Proposition 44 to Corollary 29, emphasizing the differences.

P ro p o s i t io n 48

Î. © O T = id and 0 O T ' = ©'.

2 . T o Q — id and $ o 0 ' =

P ro o f : The novelty relatively to Propositions 44 and 45 is the cases of explicit

substitu tion and mid cut. The result follows because one constructor is m apped

to the other and vice versa. ■

Since there are no substitu tion operators in XjVhx and AVhx , there are no

analogues of Lemma 52 and Corollary 27. Instead, we need the following two

results.

L e m m a 57 T'(7l, 1){x := T1V} —>x4 ^ ' (s u b (N , x , A) , x , s u b (]i f N , x , l)) , for all

A, N in \J\ fhx, all I in XPhx.

P ro o f : By induction on A.

Case A = Ad'N'.

V ' { A , l) { x := TAr}

= V ' (M ' N ' , l) { x : = V N }

= (T A f (TIV' • l)) {x := T1V}, by def. of T,

—>x4 (($ M '){ r := W }) (((W ') { r := TiV}) • su 6(TiY, x , I))

= (T (M '(x := Y)))((T (Y /{.t := N))) ■ s u b ^ N , x, /)), by def. of T,

= T '((M '(x := N)) (N ' { x := N)), sub(VN, x, /)), by def. of T,

= T ;(sub (N , x, M 'N ') , su 6(TiV, x, /)), by def. of sub,

= T '(su 6(Y ,a ',A) ,su 6(TlV,x,Z)) .

Chapter 6. Extensions o f natural deduction 192

Case A = A'N'\

V ' (A , l) { x := ^ N }

= '&'(A'N', l){x tyN}

= ^ '(A 7, ^ iV 7 :: i) { i := 'I'iV}, by def. of

—>x4 \E'7(sti6(Air, x, A7), sub(t$fN, x, t y N 1 :: I)), by IH,

= ty'(sub(N, x, /I7), ((\&iV7){x := \&iV}) :: s u b ^ N , x, /)), by def. of sub,

= '¡>'(sub(N, x, A'), (t(jV 7(x := N))) :: s u b (^ N , x, I)), by def. of iH,

= 'E'(sub(N, x, A ') (N ' (x := N)) , s u b ^ N , x, I)), by def. o f 1!',

= ty'(sub(N, x, A ' N 1), s u b ^ N , x, I)), by def. of sub,

= '&'(sub(N, x, A), sub(^/N, x, I)) .

■

One way of understanding next lemma is by observing th a t it asserts a reduc

tion between two term s th a t are the images under © of the two term s involved

in the reduction asserted by the previous lemma.

L e m m a 58 Q '(A , l) (x := Qv) —̂x4 Q'(sub(Qv, x , A) , sub(v, x , I)), fo r all A in

AAfhx, all v , I in W h x .

P ro o f: By induction on I.

Case / = [].

©7(A, l)(x := Qv)

= & (A , \ \) (x : = Q v)

= app(A)(x := Qv), by def. of 0 ,

i*x4 app{sub(Qv,x ,A))

= Q'(sub(Qv,x,A), []), by def. of 0 ,

= Q'(sub(Qv, x , A), sub(v , x, [])), by def. of sub,

= Q '(s ub (Q v ,x ,A) , sub (v ,x , l)) .

Chapter 6. Extensions o f natural deduction 193

Case I — u' :: I'.

& (A , l) (x := Qv)

= Q '(A ,u ' : : l ') (x := Qv)

= Q '(AQu' , l ') (x := Q v}, by clef, of ©,

—>x4 Q'(sub(Qv, x , AQu'), sub(v , x, Z7)), by IH,

= Q \s u b (Q v , x, A){Qv!(x := Q v)), sub(v, x, I')), by def. of su 6,

= Q'(sub(Qv, x, A)Q{v!{x := v }), sub(v, x, I1)), by def. of 0 ,

= Q'(sub(Qv , x, A), (ti'{x := u}) :: sub(v, x, I')), by def. of 0 ,

= Q'(sub(Qv, x, A), sub(v, x , u ' :: Z7)), by def. of sub,

= Q'(sub(Qv, x, A), sub(v, x, I)) .

The following five results are an im m ediate lifting of, and have exactly the

same proofs as the corresponding results we have seen before.

L e m m a 59 \F(A , Z)(V ■ I') —>h A ,append(l ,u7 :: I'), for all A in XAfhx, all

u' ,l , I' in XVhx.

C o ro lla ry 33 '¡t(app(A))(u ■ I) —>h ^ ' { A , u :: I), fo r all A in XAfhx, all u , l in

A Vhx .

P ro o f: From Lemma 59. ■

L e m m a 60 In XPhx, i f I —>r I', then \I/7(A, I) —>r 4/7(A , I') (for all A in XAfhx,

R G {61, 62, h , x l, x2, x3, x4}).

L e m m a 61 In XAfhx, i f A - ^ r A ' , then ©'(A, I) ^ r © '(A7, /) (for all I in XPhx,

R G {61, 62, h , x l, x2, x3, x4}).

L e m m a 62 Q'(Q '(A , l)Q u ' ,1') —>h Q'(A ,append(l ,u ' :: I')), for all A in XAfhx,

all u ' , I, I1 in XPhx.

Chapter 6. Extensions o f natural deduction 194

P ro o f: Using Lemma 61. ■

Finally, we are ready for the isomorphism theorems.

T h e o re m 13 Let R G {61, 62, h, x l, x2, x3, x4}. I f M —>r M ' in AA/Tix then

4/M —>r 'EM' in XPhx.

P ro o f: We prove the claim and also th a t

if A —>/j A! in AA/7ix, then 4/'(A, Z) — '¡/'(A', Z) in XPhx, for all I in AVhx,

by simultaneous induction, similar to the proof of Theorem 11, on M - ^ r M ' and

A — A \ w ith induction hypotheses IH1 and IH2, respectively. Cases correspond

to closure rules, according to Definition 19.

Case 61:

E (a p p ((\ x .M) N)) = E ' ((\ x . M) N , []), by def. of T,

= (Ax . E M) (E N ■ []), by def. of E,

— (E M) { x := E N]

— E { M (x := N)) , by def. of 4/.

Case 62:

E ' (((X x . M) N) N ' , Z) = E ’(((\ x . M) N) , E l Y :: Z), by def. of E,

= (\ x . E M) (E N • (E N 1 :: I)), by def. of E,

- > b2 ((E M) { x := E N }) (E N ' ■ I)

= E (M (x := N)) (E N ' ■ Z), by def. of 4/,

= E ' (M (x := N) N ' , Z), by def. of E.

Case h: Exactly as in Theorem 11, bu t using Corollary 33 instead of Corollary

Cases x l, x2 and x3: Straightforward.

28.

Chapter 6. Extensions o f natural deduction 195

Case x4:

E(app(A)(x := N)) = E(app(A)){x := 4/IV}, by def. of T,

= E'{A, D){a: := E N } , by def. of T,

—>x4 E'(sub(N, x, A), sub(EN, x, [])), by Lemma 57,

= E ' (s u b (N ,x ,A) , []), by def. of sub,

— E(app(sub(N, x, A))), by def. of 4L

Case I n t r o : As in Theorem 11, by closure of —>r in XV hx under Right.

Case A p p : As in Theorem 11.

Case H d E l i m l : As in Theorem 11, by closure of — in XVhx under H d C u t l .

Case HdElim2: As in Theorem 11, by closure of in XV hx under H d C u t 2 .

Case T a i l E l i m l : As in Theorem 11 .

Case TailE lim2\ As in Theorem 11, by closure of — in XVhx under Lft. 1,

bu t by Lem ma 60 instead of Lemma 54.

Case E xS u b s t l : Suppose E M —>R 'EM' (IH1).

E { M (x := N)) = (E M) { x := E N } , by def. of E,

>r (E M ') { x := E N } (*)

= E (M '{ x := N)) , by def. of E,

where the reduction step (*) is by IH1 and closure of —>r in XV hx under M id C u t l .

Case ExSubst2: Similarly, by closure of —>r in XVhx under MidCut.2. ■

T h e o re m 14 Let R £ {61, 62, h , x l , x2, x3, x4}. I f t —>r t' in XVhx then Ot - ^ r

O t' in XjMhx.

P ro o f: We prove the claim and also th a t

if I ~^R I' in XVh, then O'(A, I) ~^r 0 (A , I') in XjVhx , for all A in XAfhx,

Chapter 6. Extensions o f natural deduction 196

by simultaneous induction, similar to th a t of Theorem 12, on t t' and I — I'.

Cases correspond to closure rules, according to Definition 7.

Case 61:

Q((Xx.t)(u ■ [])) = Q'((Xx.Qt)Qu, [])by def. of 0 ,

= app((Xx .Qt)Qu)by def. of 0 ,

—>¡,1 Qt(x := Qu)

= 0 (i{x := u})by def. of 0 .

Case 62:

0((A x. t)(v ■ (u :: I))) = Q'((Xx.Qt)Qv,u :: Z), by def. of 0 ,

= 0 \ ((X x .Q t)Q v)Q u , Z), by def. of 0 ,

— 0 ' ((0 i (x := Q v))Q u , Z), by Lemma 61,

= 0 '(0 (f{ x := ti})0w, Z), by def. of 0 ,

= Q((t{x := v}) (u :: I)), by def. of 0 .

Case h: Exactly as in Theorem 12, bu t using Lemma 62 instead of Lemma

56.

Cases x l, x2 and x3: Straightforward.

Case x4:

Q ((t (u - l) { x : = v }))

= Q(t(u ■ l))(x := Qv) , by def. of 0 ,

= Q '(B tO u , l)(x := ©u), by def. of 0 ,

—>X4 Ql(sub(Qv, x, 0 f0 u) , sub(v , x, I)), by Lemma 58,

= 0 /((©Z)(;r := Qv)(Ou)(x := 0 u), sub(v , x, Z)), by def. of sr/6,

= 0 '((0 (i{ x := v})Q(u(x := u}), su 6(u, x, Z)), by def. of 0 ,

= 0((Z{x := u})(-u{x := u} • sub (v ,x , Z))), by def. of 0 .

Chapter 6. Extensions o f natural deduction 197

Case Right: As in Theorem 12, by closure of —>■# in AJ\fhx under Intro.

Case H d C u t l : As in Theorem 12, by closure of —>r in XJ\fhx under H d E l i m l ,

bu t by Lem ma 61 instead of Lemma 55.

Case HdCut2: As in Theorem 12, by closure of in \J \ fhx under H dElim2.

Case HdCut3: As in Theorem 12.

Case M i d C u t l : Suppose Qt -~+r Qt' (IH1).

0 (i{ x := u }) = Qt(x Qu), by def. of 0 ,

>R Qt' (x := O u) (*)

= Qt'{x := 0 ti} , by def. of 0 ,

where the reduction step (*) is by IH1 and closure of — in Xj\f hx under E x S u b s t l .

Case MidCut2: Similarly, bu t by closure of — in Xj\fh,x under ExSubst2 . ■

C o ro lla ry 34 (Iso m o rp h ism) Let R E (61, 62, /i, x l, x2, x3, x4}.

1. M —yjt M ' in AH h x i f f ^ M I 'M ' in XVhx.

2. t —>r t! in AV h x iff Qt —>r Qt,' in \J\ fhx.

C o ro lla ry 35

1. XJ\fhx is confluent.

2. I f M is typable in Xhfhx, then M is strongly normalising.

3. XJflhx satisfies subject reduction.

P ro o f: Because these properties hold of A V h x and may be easily transferred

from A V h x to AJ\fhx w ith the help of T and 0 . ■

The next two results are proved in view of obtaining a third, asserting internal

conservativeness of Aj f lhx over AA/Ti. The idea of proofs is, as it were, to reuse

known properties through isomorphisms T and 0 .

Chapter 6. Extensions o f natural deduction 198

P ro p o s i t io n 49 —>x in XJ\fhx is confluent.

P ro o f: Suppose M0 —>* Mi, M 2 in AJ\fhx. By Theorem 13, T M 0 —>* TM] , 4/M2

in AVhx. By Corollary 7, there is t in AV h x such th a t 4/M i, $ M 2 —>* t. Then,

by Theorem 14, and since © T M = M , we get M i, M 2 —>* 0 i . ■

Therefore, we may refer to the normal-form m apping | x.

P ro p o s i t io n 50 M b =J,X (M), for all M in \J\fhx.

P ro o f: Since M b is x-normal, it suffices to prove M —>* M b. Now, by Proposi

tions 11 and 47, 4/M —>* ('I'M)1' = T (M b). Therefore, by Theorem 14, we get

M = 0 4 /M 0 T (M b) = M b. ■

C o ro lla ry 36 AJ\fhx is internally conservative over XJ\fh.

P ro o f : Conservativeness is by

M ->* M' in XJVh

iff 4/M T M' in AVh, by Corollary 29,

iff '¿(4/M) —>* i(4/A7'j in A Vhx , as A V h x is conservative over A Vh,

iff 4>(z(M)) —P 4f (i (M')) in A Vhx , by Proposition 46,

iff ©4/(z(M)) —»* 0 4 ' (i (M')) in XJVhx, by Corollary 34,

iff z(M) —>* i (M') in AM h , as 0 o 4/ = id.

Internal conservativeness is by Proposition 50. ■

Completing the picture

Recall from section 5.1 th a t Gentzen's mapping Q is an isomorphism between A

and A Q, the la tter being the ::-free subsystem of A Vh, in which, therefore, only

Chapter 6. Extensions o f natural deduction 199

reduction rule (31 makes sense. The isomorphism am ounts to the rephrasing of

application as the head-cut t[t'] (this is short for t(t ' ■ [])).

Now, th e same fragment exists in XVhx. Terms are of the form

t , u, v ::= x \ Ax .t \ t[u\ \ t { x := u} ,

reduction rules 62 and h are dropped (as they require ::) and all the remaining

rules 61, x l , x2, x3, x4 are retained. The fragment is indeed closed for these rules.

Only rule x4 requires a verification:

(i[u]){z := v} = (t (u - \ \)) { x := v }

—>X4 (t{x := v }) (u { x := n} ■ sub(v, x, []))

= (t{x := n})(u{z := v} ■ 0)

= (t{x := r;})[n{x := n}] .

This fragment, named A<5x, is nothing but a rephrasing of Ax2. Application

is rephrased as before and explicit substitu tion is rephrased as m id-cut. Typing

rules are the same, except tha t, in A£/x, sequents have the form T; — b t : A. The

rephrasing m apping Q : Ax —* XQx is an extension of Q : A —>■ XQ defined by

Q (M (x := N)) = Q M {x := Q N} .

By analogy with mapping (_)b : XV hx —> AV h, let us define mappings (_)b :

XQx —> XQ and (_)b : Ax —> A simply by translating, in the first case, m id-cut as

substitu tion (or rather subst) in XQ, and translating, in the second case, explicit

substitu tion as substitution in A. The situation is as follows:

2Therefore, this may be regarded as a logical reconstruction of Ax.

Chapter 6. Extensions o f natural deduction 200

i G
W h x XGx <-------------Ax

(-)b (la) y b (lb) (-)b (6.2)

XVh X G X

Square (16) is com mutative because rephrasing Q clearly commutes w ith (_)b. As

to square (la) , recall th a t (_)b : XVhx —> XVh is determ ined by the translation

of mid-cut as subst in XVh. Consider the restriction of this m apping to A£x. Its

range is not the whole XVh but only AQ. This is so because AQ is closed for subst

of XVh. Since subst in AG (in term s of which we defined (_)b : XQx —* AQ) is the

restriction to AG of subst in XVh, the com m utativity of (la) follows.

Let x = xlUx2Ux3Ux4. Prom the construction of diagram (6.2) and Corollary

8 , it is clear th a t —>x is confluent in each XVhx, XGx and Ax, and th a t (_)b = j x, for

each (_)b. We could also infer, from diagram (6.2) and conservativeness of XVhx

over XVh, the conservativeness of AQx (resp. Ax) over AG (resp. A). Anyway,

conservativeness of Ax over A is not new [Rose, 1996b].

Now we prove th a t square

XVhx XJ\fhx

(-)b (6.3)

XVh AAfh

(which is the back face of (6.5) below) generalises square (16) of diagram (6.2)

(which is the front face of (6.5) below). This is interesting because it shows

tha t the perfect m atch between mid-cuts in XQ and explicit substitutions of Ax

extends from the ::-free and tail-application-free fragments to include, on the one

hand, full head-cuts and left perm utation, and, on the other hand, the distinction

Chapter 6. Extensions o f natural deduction 201

between head and ta il eliminations and the associated new notion of reduction h.

Accordingly, the perfect m atch will be established by the not so trivial T, instead

of mere rephrasing Q.

First, observe th a t, since bo th 11/ and Q send explicit substitutions to mid

cuts, Hi keeps being coherent w ith Q (recall Proposition 43). The following is

immediate.

P r o p o s i t io n 51 \k(t(M)) = G(M), fo r all M in Ax.

Second, by analogy w ith square (la) of diagram (6 .2), regarding the ::-free

fragments of AV h x and AV h, there is a square

AJ\fhx Ax

(-)b (2) (-)b (6.4)

AN h A

regarding the tail-application-free fragments of XJ\fhx and \J\fh. Mapping /, :

A —> W fh, is lifted to a m apping i : Ax —> \J \fhx by pu tting

t (M (x := N)) = lM (x := l.N) .

W hat remains to be proved is th a t this last square commutes. By gluing it with

diagrams (6.3) and (6.2), we obtain the cube

Chapter 6. Extensions o f natural deduction 202

T
AV h x --------------------------------------AAffix

We have seen th a t all faces of this cube, except one, commute. The bo ttom face

(resp. the top face) commutes by Proposition 43 (resp. Proposition 51). The front

face is square (16) in diagram (6.2), whereas the back face is square (6.3), which

commutes by Proposition 47. Two faces remain: one is the com m utative square

(la) of diagram (6.2). The other is square (6.4), whose com m utativity we seek.

This com m utativity follows by a diagram chase and the fact th a t T : \J \fh —*■ XVh

is an isomorphism.

Logical content of explicit substitutions

The idea of making substitution explicit has a logical appeal th a t asks for the

understanding of the proof-theoretical sta tus of calculi of explicit substitutions.

Yet, we could classify as computational the initial motivations and goals of explicit

substitu tion calculi. This is so because initially [Abadi et ah, 1991] they intended

to serve as an interm ediate formalism between usual A-calculus and its actual

im plem entations 3.

3One is interested in actual implementations of the A-calculus because the problem of imple
menting real-world functional programming languages can usually be reduced to the problem

Chapter 6. Extensions o f natural deduction 203

In an im plem entation, on the one hand, substitu tion (and renam ing of bound

variables) cannot be left in some informal limbo; on the other hand, if a calculus

is to reflect the ex tant practice, substitu tion has to happen in a controlled way. In

fact, in textbooks on (im plem entation of) functional languages [Henderson, 1980,

Peyton Jones, 1987, Field and Harrison, 1988], one finds, among others4, three

kinds of im plem entations: evaluation by an in terpreter (this goes back to the first

paper on LISP [McCarthy, I960]), com pilation to an abstract machine like the

SECD-machine [Landin, 1964], or graph reduction, invented in [Wadsworth, 1971].

The first two techniques are environment-based, in th a t argum ents of a function

are stored, together w ith the bound variable, in a separate list of bindings, called

an environment, ra ther than immediately substitu ted in the body of the function.

The second technique is based on the idea of substitu ting pointers (rather than

the actual argum ents) for the formal param eters of a function. Common to these

techniques is the fact th a t substitu tion is delayed and copying of argum ents is

avoided. The m otivations for doing so are clear: copying is typically a waste of

space, and may be a waste of tim e if the copied argum ents contain redexes whose

different copies will have to be reduced separately later.

O ther com putational motivations are the following facts: (1) the num ber of ¡3-

steps is not a good measure of the cost of com putation [Rose, 1996b]; (2) explicit

substitu tion is a way of recovering confluence of weak reduction5 in A-calculus

[Curien et al., 1996].

Because of these com putational goals, the earlier developments in explicit

substitu tion calculi had to introduce complications th a t, w ithout destroying the

logical content behind explicit substitutions, actually by adding ex tra ingredients

to th a t content, made it less obvious and simple. T he first complication is the use

of de Bruijn indices. Computationally, this means th a t, not only substitution, bu t

also renam ing of bound variables is m ade explicit. This is w hat Rose calls “explicit

naming” in [Rose, 1996b] and “explicit binding” in [Rose, 1996a]. Logically, this

is related to an explicit management of weakening [Vestergaard and Wells, 1999],

of im plem enting the A-calculus [Field and Harrison, 1988, Peyton Jones, 1987]
'E.g. com pilation into combinators.
5In weak reduction, reduction under A-abstractions is forbidden.

Chapter 6. Extensions o f natural deduction 204

The second complication is the introduction of a separate syntactical class of

substitutions, typical of the Atx-calculus [Abadi et ah, 1991] and its descendants

[Lescanne, 1994]. A substitution s is typed with a list of types and a “closure”

t[s] is typed with a kind of simultaneous cut [Abadi et ah, 1991, Pagano, 1998}

r b s : Ai, ...A„ A i , ..., A n h t : B
P h t[s] : B

The logical impact of introducing explicit substitutions is best understood

in a simpler (perhaps the simplest) setting, namely the Ax-calculus, where none

of these complications is present. This calculus adds two ingredients to natural

deduction.

The first ingredient is a new constructor, a form of cut,

----------f p g -------------------- , (6.6)

which is the logical content of the typing rule for explicit substitutions. Observe

th a t, as stressed in [Negri and von P lato, 2001], this is a very particular kind of

cut because formulas in the LHS of sequents are introduced only by axioms 6.

Nevertheless, the inclusion of such a constructor seems to have an advantage

(besides the fact th a t the relationship with sequent calculus improves). N atural

deduction is equipped with a way of reusing (or sharing) proofs. This is the old

idea th a t the cut-formula is like a lemma in informal proofs. Gentzen observed in

§2.2 of [Gentzen, 1935] tha t a sharing mechanism was missing in natu ra l deduc

tion, but this was the price to pay for keeping the tree form at of natu ra l deduction

proofs. Indeed, if natural deduction is defined, not. in “sequent style” , but, in

stead, w ith the traditional trees of formulas, then a rule like (6 .6) (or rather its

formulation with trees of formulas) breaks the tree format because the conclusion

of the proof of A has to be “linked” to several assumptions in the proof of B , as

many as the elements in the assum ption class A x.

The second ingredient Ax adds to natural deduction is a new normalisation

procedure, which is new, not only because the set of proofs it acts upon has

''The ''strength of the cut rule has nothing to do with the rule itself, but rather with the
system to which the rule is adjoined.

Chapter 6. Extensions o f natural deduction 205

changed, bu t also and mainly because it is a “small-step” procedure defined by

means of local transform ations of derivations.

Traditionally [Gentzen, 1935, G irard et al., 1989, Gallier, 1993], the content

of cut-elim ination proofs am ounted to procedure consisting of local transform a

tion of derivations', whereas norm alisation [Prawitz, 1965] called external rou

tines (like substitution) for performing global transform ations of proofs. Lately,

things have changed. In the sequent calculus side, starting w ith [Danos et al., 1997],

cut-elim ination procedures were proposed containing global operations like the

complete, upward, right or left perm utation of a cut, which were performed in

“natu ra l deduction style” , th a t is, as if executed in one go by some external

routine. See also [Urban and Bierman, 1999, Espirito Santo, 2000]. Explicit sub

stitu tions in Ax represent, in tu rn , an approxim ation of natu ra l deduction to

the spirit of original cut-elim ination procedures, w ith norm alisation completely

internalised and broken down into local steps of reduction.

But there is more than an analogy between the spirit of norm alisation in

Ax and the spirit of small-step cut-elim ination. The x-rules do perform cut-

elimination, where cut here is precisely the new constructor (6 .6). This is true,

not only up to XQx = Ax, bu t also, crucially, and before anything else, by an

analysis in Ax of the effect of reduction rules in derivations. Therefore, let us

emphasize th a t Ax really adds to natu ra l deduction a cut rule and a procedure

for its stepwise elimination, and this is de facto and not only up to interpretation.

All this holds of AJ\fhx. The difference is th a t this calculus represents a

natu ral deduction system in which the two new ingredients introduced by Ax

are combined w ith other new ingredients already present in AJ\fh, namely the

distinction between head and ta il elimination, together w ith the related new

notion of reduction.

'These procedures act on a system with a contraction rule and elim inate a gen
eralisation of cut called m ulticut or mix. Recently [Dragalin, 1988, Dyckhoff, 1997,
TYoelstra and Schwitchtenberg, 2000], procedures were defined for contraction-free system
which elim inate cut instead of mix. These procedures are defined in terms of local trans
formations of derivations together with uses of admissibility of contraction. The latter hides
global transformations of derivations. Anyway, in both cases some atomic operations, which
may not be regarded as “local", remain in the meta-language, like the duplication or the erasing
of an entire derivation.

Chapter 6. Extensions o f natural deduction 206

We are led to conclude the following: the inclusion of a cut rule, together with

reduction rules for its stepwise elimination, is a feature of “calculi of sequents”

like sequent calculus or natural deduction in “sequent style” . It is not exclusive

of sequent calculus. It does not tell sequent calculus from natura l deduction.

Usually natu ra l deduction is not recognised as having a cut rule because, in the

traditional presentation of natural deduction with trees of formulas, the cut rule

would break the tree format, as explained above. Yet, Ax is a presentation of

natural deduction (but as a “calculus of sequents”) with a constructor - explicit

substitution - which acts logically as a cut.

Similarly, the inclusion of a constructor for explicit substitution, together with

rules for its stepwise propagation and performance, is a feature of term calculi,

e.g. term calculi associated with sequent calculus or term calculi associated with

natural deduction. Although the Curry-Howard correspondence traditionally as

sociates a term calculus (possibly containing explicit substitutions) to a natural

deduction system, explicit substitutions are not an exclusive of natu ral deduction.

Usually sequent calculus is not recognised as having explicit substitutions because

traditional presentations of sequent calculus do not emphasize the related term

calculus, and, therefore, it becomes difficult to recognise th a t right perm utation

of cuts is related to a substitution operator. Yet, this is w hat may be observed

in AP/?,x, a presentation of a sequent calculus (together w ith a term calculus) in

which the constructor for mid-cuts acts as an explicit subst , where subst. is the

substitution operator of XPh.

Therefore, explicit substitution is not an issue in the relationship between

sequent calculus and natural deduction8. This is best seen by observing the cube

(6.5). Mappings Q and T mediate between the left face and the right face of the

cube, one corresponding to sequent calculus, the other to natu ra l deduction. The

issue here (see C hapter 7) is how to represent applicative terms. M appings i and

l mediate between the front face and the back face. The former is a degenerate

case of the la tter, corresponding to the ::-free and tail-aplication-free fragments.

Hence, the issue here is whether :: and tail-aplications occur or not. Finally.

Although explicit substitution is an issue in the com putational interpretation of sequent
calculus (and natural deduction!).

Chapter 6. Extensions o f natural deduction 207

mappings (_)b m ediate between the top face and the bo ttom face. The issue here

is, logically, whether a cut rule is included or not; and, a t the term calculus level,

whether substitu tion is explicit or not. This applies equally to systems in the

sequent calculus side and to systems in the natural deduction side. It is an issue

which is, as it were, orthogonal to the sequent calculus versus natu ra l deduction

divide.

6.3 A ¡new landscape

Summing up

We pause to observe the proof-theoretical landscape resulting from gluing dia

grams (6.1) and (6.5), as depicted in Fig.6.1.

In this Figure, if x (resp. h) labels an arrow, then the arrow stands for J.x,

which is the same as (_)b (resp. [h, which is the same as (-)“)■ Vertical arrows

represent projections, horizontal arrows represent isomorphisms. All squares and

triangles commute.

Let us refer to AW, AJ\fh and AWhx as W -system s , and to AT, AV h and AV h x

as V-systems.

The resulting diagram may be seen as diagram (6.1) topped w ith a layer

of explicit substitutions (the topm ost face). A nother point of view shows the

diagram as consisting of a left half (corresponding to sequent calculus) and a

right half (corresponding to natural deduction), w ith T, 0 , Q and Q~l mediating

between these halves. Finally, the diagram may be considered as consisting of

the back-most squares, together with a degenerate layer (the front-most square,

where A lives), corresponding to the ::-free and tail-application-free fragments.

Figure 6.1 is a visual sum m ary of the main claims we are making in this

chapter, namely th a t the natural deduction “space of calculi1' may be expanded

so as to provide perfect counterparts to calculi w ith different levels of explicitness,

pertaining to the canonical fragment of sequent calculus.

N atural deduction could have been expanded a little bit further, so as to

simulate auxiliary m id-cuts and their explicit elimination. T hat is, there is a

Chapter 6. Extensions o f natural deduction

$ 0
XV hx ■* *- AH h x

Figure 6.1: Natural deduction counterparts

Chapter 6. Extensions o f natural deduction 209

jV-system corresponding to the system obtained from XV hx by m aking explicit

m eta-operator sub. The idea is simply to make sub of AJ\fhx explicit as well.

However, there seems to be a point to which the explicitness of cut-elim ination

cannot be taken w ithout breaking the perfect m atch between sequent calculus and

natural deduction. This is when auxiliary head-cuts l(u-1') and their elimination

are made explicit, as they are in XVhx. T h a t is, we do not see w hat the natural

deduction counterpart to the explicit and stepwise append of two list could be.

A distortion

Now we will argue th a t Fig. 6.1 contains a distortion relatively to the true

proof-theoretical landscape defined by the relationship between P-system s and

TV-systems. Later we will make a proposal as to w hat the true landscape should

be.

To see this, we have to s ta rt by trea ting equally the embeddings Q : A —> XVh

and i : A —► X N h. In Fig. 6.1, the isomorphic copy of A in XVh (AQ) is visible,

whereas th e isomorphic copy of A in XJ\fh (Al) is not. The simpler solution is to

hide AQ and XQx in Fig. 6.1. The result is Fig. 6.2.

Alternatively, we can make Ai and the new Xlx visible in Fig.6.1 (as expected,

Xlx is simply a rephrasing of Ax, where application is w ritten app(M N)) . This

causes a long, yet straightforward, chain of refinements.

First, we have the commutative triangles

XAf h XJ\f hx

which are self-explanatory. Second, the com m utative triangle asserted by Propo

sition 38 has to be decomposed as

Chapter 6. Extensions o f natural deduction 210

Figure 6.2: The old landscape (simple version)

Chapter 6. Extensions o f natural deduction 211

\J \fh

M apping (_)~ : Ai —> AJ\f is simply the restriction to At of m apping (_)“ :

AJ\fh —> ATV. Hence, the upper triangle in diagram (6 .8) commutes. Since the

larger triangle of (6 .8) commutes (by Proposition 38 and com m utativity of the

left triangle in (6.7)), the lower triangle in (6 .8) commutes as well.

Third, square (6.4) as to be decomposed, very much like diagram (6.2), as

follows:

AAfh

ATVh
i t

The proof th a t these two squares commute is exactly as the proof th a t the two

squares in (6 .2) commute. Alternatively, use the com m utativity of (6.4), the

trivial com m utativity of square (26) and the fact th a t t is an isomorphism to get

com m utativity of square (2a).

Fourth, define both Q : \Q —» Ai and Q : AQx —► Atx by

Q = Q o i

and both I : At —> AQ and I : Atx —> \Q x by

Chapter 6. Extensions o f natural deduction 212

I = i o Q 1 .

Hence, Q and I are m utually inverse. This gives the com mutative triangles

Let us glue

AQx ■< ~ ► Aix

where (26)' is like (26), bu t with i 1 instead of i. Since (26)' stays com mutative,

and since Q and I are m utually inverse, we get the two com mutative squares

\ Ç x \ t x

a g G.z
A L

Fifth, observe tha t the two squares in

Chapter 6. Extensions o f natural deduction 213

Q r 1
X G *— A -------- Ai

(-)- N

XV AW -- Xw

commute. The left one is by Theorem 7 (it is the “A-square”), the right one is by

the com m utativity of the lower triangle in diagram (6 .8). Since Q and I, on the

one hand, and T and 0 , on the other hand, are m utually inverse, the following

two squares commute

X Ç - Q' b » Xl

(-)' (-) '

T ©
XV — — AN

Finallj^, the two squares in

XV h
T

AN h - X N h

, - i
xg X L

commute. The left one is by Proposition 43, the right one by the com m utativity

of the left triangle in (6.7). Since Q and on the one hand, and T and 0 , on the

other hand, are mutually inverse, the following two squares commute

Chapter 6. Extensions o f natural deduction 214

4/ ©
XV h — -— - AN h

i i

xg < L * Xt

Similarly, using Proposition 51 and the com m utativity of the right triangle in

(6.7), one proves the com m utativity of

T 0
AV h x -— —*■ AN h x

i i

G, I
XQx — Xlx

We sum up these facts in Fig. 6.3, a detailed version of Fig. 6.1 in which all

squares and triangles remain commutative.

We are now ready to propose an alternative architecture for the “space of calculi” .

Figures 6.2 and 6.3 do not trea t the sequent calculus and the natu ra l deduction

sides symmetrically. They are biased towards the natu ra l deduction side. This

asymm etry is the graphical m anifestation of a preconception, namely th a t the

calculi AW, AN h and X N h x are “natu ra l deduction systems” in the same sense

th a t A and Ax are natura l deduction systems, and, therefore, th a t the la tter

should be “close” to the former.

However, we propose th a t A (and Ax, if substitu tion is to be explicit) is

“equidistant” to XV, XVh and A V hx , on the one hand, and to AW, AJ\fh and

Chapter 6. Extensions o f natural deduction 215

'I' 0
XV hx ■* » XJ\fhx

Figure 6.3: The old landscape (detailed version)

Chapter 6. Extensions o f natural deduction 216

\j/ @
XVhx - *- XAfhx

Figure 6.4: The new landscape

XJ\fhx, on the other hand. Indeed, if A. At and AQ are mere rephrasings of each

other, if they are the same object, why should one consider A and At to be “closer”

to W -systems than AQ? Therefore, we think th a t the true proof-theoretical land

scape (in its simple version) is as shown in Fig. 6.4.

If TV”-systems are regarded as “natu ra l deduction” systems (as we do in this

thesis, because they prefer elimination rules to left rules), then A and Ax should

be regarded as systems of a neutral kind, belonging to the intersection of sequent

calculus and natural deduction. Notice th a t, w ith this taxonomy, A belongs to

the natura l deduction side as much as it belongs to the sequent calculus side -

something th a t sounds like a heresy 9.

9 An alternative taxonom y is to consider as being “natural deduction" system s those cal
culi whose purpose is to model informal reasoning (this is the sense of the word “natural" in

Chapter 6. Extensions o f natural deduction 217

Our proposal implies th a t there are pairs of systems and pairs of morphisms

w ith homologous (let us say “dual”) roles. For instance, the dual of Gentzen’s em

bedding Q is l . The m ost interesting example concerns Af and P raw itz’s m apping

V . P raw itz’s m apping is the “diagonal” of the A-square

A g + A

Similarly, there is a “dual” square

L
A ------------- Ai

whose “diagonal” is TV. Indeed, the lower triangle commutes because P = $ o J\f

and 0 o f = id, whereas the upper triangle is the lower triangle of (6 .8).

[Gentzen, 1935, Prawitz, 1965]). In this case, A and Ax keep being natural deduction system s
(perhaps Ax even more than A, because of the presence of a form of sharing). Ho%vever, similarly
to sequent calculus, jV■-system s become “unnatural” because the distinction between two kinds
of elim ination rules seems artificial from the strict point of view of m odelling informal reasoning.
W ith this taxonomy, natural deduction is sim ultaneously a fragment of sequent calculus and a
fragment of TV-systems.

Chapter 7

Two applications

In this chapter we give com putational applications for two of the contributions of

this thesis. F irst, we show th a t the new assignment 0 , particularly the extended

A-calculi th a t constitute its range, provide a language with which one can refine

Curien and Herbelin’s interpretation of sequent calculi in the canonical fragment.

Second, we will show tha t the A-calculi we defined for the canonical fragment

have a remarkable relation with call-by-name abstract machines.

7.1 Refinement of computational interpretation

In this section we consider the assignment Q (which am ounts to the traditional

assignment tp - see Proposition 36) and the new assignment 0 , explaining what

new insights the la tter brings to the com putational in terpretation of sequent

calculus.

We will focus on the relation between XVh and ATT on the one hand, and AJ\fh

and AW, on the other hand. This is so because it is in the differences between

these systems th a t the distinction between sequent calculus and natu ra l deduction

is expressed, particularly in the opposition between two ways of representing

applicative terms. As became clear in the preceding chapters. A-abstraction and

mid-cuts (or explicit substitution) are constructors th a t exist in bo th kinds of

systems.

It is useful to situate ourselves with the following diagram

218

Chapter 7. Two applications 219

X P h ------------- — ------------ - ATVTi

X V — ATV
where we distinguished mappings w ith the same nam e by means of indexes. Recall

th a t Q\ and bo th 0 i and 02 are isomorphisms, bu t Q2 is not. Typically, Q2

collapses —yt-steps.

We will adap t to XVh and XV the com putational in terpretation contained in

some remarks and insights due to Herbelin and Curien. Since these are in term s

of evaluation contexts, we explain the la tter first.

An evaluation, or applicative, context is an expression generated by the gram

mar

E ::= [-] I E N (7.1)

Informally, it is an applicative A-term with a “hole” [—] in the head position.

These evaluation context are call-by-name, as opposed to call-by-value ones in

e.g. [Felleisen et al., 1986]. Filling the hole of E — [—]Ni...Nk with M results

in the applicative term M N \.. .N k of the A-calculus, denoted E[M], A hole [—]

is itself a context. Given a context E and a term N , we can form another

context £?[[—]N] such th a t £'[[—]iV][M] = E[MN] , Given contexts E ,E ' , there

is a context E o E' satisfying (E o E')[M] = E'[E[M]].

Herbelin and C urien’s insights [Herbelin, 1995, Curien and Herbelin, 2000]

are as follows: (1) the in terpretation of a list is an evaluation context. (2) []

is [—]. (3) u :: I is £?[[—]iV], where E . N are the interpretations of l,u . (4) a

head-cut tl is interpreted as the result of filling the hole of E with M , if the

interpretation of l , t is A, M .

Chapter 7. Two applications 220

In our setting, head-cuts are always of the form t(u ■ I), hence we refine (4)

as: a head-cut t(u ■ I) is interpreted as the result of filling the hole of E w ith the

application M N , if the interpretation of l , t , u is E, M, N . Therefore, we will only

fill holes w ith applications. Moreover, it is clear th a t append(l, I') corresponds to

E o E ' .

Now, in terpretation (4) of a head-cut t = t0{ui ■ [«2, H) is nothing but

Q(t). Indeed, if Qto = M and Qui = Ni then

Q {to(u i-[u2l...,Uk])) = Q '{ M ,N U [ii2, ...,Uk\)

= M N i N 2...Nk (7.2)

= ([-]JV2...iVfc) [M ^ 1] .

But interpreting i0(«i • [«2, -•■,«&]) as M N i N 2...Nk seems more like saying what

the head-cut is not. Indeed, if we stare enough a t (7.2) we conclude th a t head-cut

to{u\ ■ [u2, ..., life]) is as if MAfi jV2...lVfc was decomposed into the application M N \

and the evaluation context [—]772...iVfc. Thus XPh may be seen as a version of A

which, instead of application, includes a construction

Q!_(MN, E) , (7.3)

representing an applicative term . M N is its head application. E ranges over

expressions

E ::= H | AM: E

representing evaluation contexts (the meaning of N :: E is E[[—]A7]). The

head application M N and E contain the information needed for reconstruct

ing the applicative term. The point of (7.3) is th a t the head application, deeply

buried in traditional syntax, is brought to the surface. This is a known theme

[Dyckhoff and Pinto, 1998]. We will also refer to M N in (7.3) as the focus.

We call (7.3) a Q-expression, and it would be an interesting exercise to rewrite

the definition of XPh with this new syntax for head-cuts.

W hen the focused application is not a value application, we say th a t the focus

is imperfect, and the Q-expression is of the form

Chapter 7. Two applications 221

Q ffQ ffM N , E)N ' , E') .

This is precisely how a h-redex is w ritten in this syntax. Then, a —»^-step looks

like

Q f(Q f(M N , E) N ', E') ->h Q f{M N ., £ o (N ’ :: £ ')) , (7.4)

which may be interpreted as improvement of focus, a necessary feature when

imperfect focus is allowed. However, by Lemma 50,

Q '(Q '(M , IV, 0 , Qu', 0 = Q'(M, iV, append(I, u ' :: 0) .

Actually, b o th members of this equation are one and the same A-term

{ M N N 2...Nk)N'N'2. . .N fl = M N N 2...NkN ,N ^ . . N ,m .

In XV, Q-expressions are restricted to the case when the focused applica

tion is a value application. The isomorphism Qi means th a t these are enough

and tha t, conversely, there is a canonical way of writing an application as a Q-

expression. Actually, XV may be seen as a formalisation of the vector syntax of

[Joachimski and M atthes].

W ith the in terpretation of head-cuts as Q-expressions, we sum up four for

m ulations of the A-calculus with applicative term s

Chapter 7. Two applications 222

In Af-systems, applicative term s are of the form app(A). In ^-system s, they

are Q-expressions. If an applicative term is m apped to an application M N in

A, we say th a t the former is an unfolding of the la tter. Unfoldings of the same

application may be linearly ordered: the smaller the head application, the bigger

the unfolding. Mappings V and J\f send each application to its maximal unfolding.

Comm utative triangles

A

say th a t XV and AJ\f are not only isomorphic, bu t also coherent as formulations

of A with applicative terms. Indeed, if two (representations of) applicative term s

are related by \b, 0 , they are unfoldings of the same application. If we define |_|2

as the composition of (_)~ : XJ\fh —> XJ\f w ith |_|! : XJ\f —>■ A, and if we recall the

com m utativity of

'1C 0 o
AV h * 2l I XJ\fh

(-)-

XV -<---------- XM
i ; i, 0 i

we get the com m utativity of

\EC Qo
A V h ?---------► AN h

Chapter 7. Two applications 223

which says th a t XVh and AJ\fh are not only isomorphic, bu t also coherent as

extensions of A w ith applicative terms.

Summarising our quest for the com putational ingredient th a t tells the canon

ical fragment of sequent calculus from natural deduction: if the A-calculus is the

only representative of the natural deduction world, then the formalisation of ap

plicative term s th a t may be found in "P-systems is entirely due to the change to

a sequent calculus form at. If W -systems are allowed in the natura l deduction

world, then the difference between P-system s and n a tu ra l deduction is merely in

the representation of applicative terms, and w hat is typical of P-system s is the

focus on the head application.

Let us see yet another in terpretation of P-system s. This time, head-cuts in

AV h and XV are interpreted as evaluation contexts, not for A, bu t for AN h and

AW, respectively.

We define evaluation contexts for XJ\fh and AJ\f exactly as in (7.1), w ith the

proviso th a t E N is to be understood as tail application. We are supposed to fill

the hole of these contexts w ith head applications, and the result of filling M N \

in the hole of E — [] W • ■ ■ W is the applicative term app(M N \N 2---Nk).

Then, if 0fo = M and Otq = N t.

Q (t0(ui ■ [u2, . .. ,u fc])) = Q \ M N i , [u 2, . . . ,u k})

= a,pp(MNl N 2...Nk)

= ([-] i v 2 . . . i v fc) [y v / iv 1] ■

This suggests considering XVh and XV as versions of AJ\fh and AW, respectively,

in which an applicative term (now in the formal sense of AJ\fh and AW) is decom

posed into its head application (again in the formal sense of AJ\fh and AW) and an

evaluation context (for AN h or AW). Head-cuts become expressions displaying

this information, which we name 0 -expressions and look like

& { M N , E) . (7.5)

Both in the case of AN h and of AW there is a mapping, actually an isomor

phism, th a t decomposes each applicative term in a canonical way, by pu tting in

Chapter 7. Two applications 224

the focus the head application. This m apping is T. The picture now looks like

09
XVh „..................................... : X N h

/

l - h /

A

AAsystems are now responsible for the form alisation of applicative terms. V-

systems are isomorphic versions of AA-systems in which applicative are represented

w ith focus on the head application, w ith the m eaning of “applicative te rm ” and

“head application” given in each A/"-system.

A —>/i-step now reads

, E)N ', E') ->h & (M N , E o {N' :: E')) , (7.6)

but this is simply a —>/,-step in X N h w ritten w ith ©-expressions. Indeed, it

follows from Lemma -56 th a t

Q '(9 ' (M N , l) e u ' , r) -+h Q '(M N , append(l, u' :: I')) ,

which is, perhaps, more easily understood as the reduction step

app{a,pp{MNN2...Nk)N'N'2...N'rn) -+h a p p (M N N 2...NkN'N'2.. .N ’m) . (7.7)

The in terpretation of (7.6) as improvement of focus is now somewhat non

primitive. We must not forget tha t w hat happens in (7.6) is the same as in

(7.7). T hat is, when we recognise th a t the head application of an applicative

term is not a value application, we are able to reorganise the applicative term

Chapter 7. Two applications 225

so th a t th e head application becomes simpler. The meaning of h in bo th AJ\fh

and XVh is to simplify the head application and ultim ately tu rn it into a value

application. However, in AJ\fh, the effect is th a t the value application becomes

even more deeply buried (because the applicative term becomes longer). In XV h,

by the fo rtunate conjugation w ith the focus on th e head application, the value

application is brought closer to the surface of the applicative term .

It is no surprise, then, th a t this effect of bringing the value application closer

to the surface has applications in the setting of weak head evaluation. This is

w hat we are going to study in the next section.

7.2 Caii-by-iiame abstract machines

In this section, we show th a t the A-calculi we have defined in C hapter 3 for the

canonical fragment have the rem arkable property th a t their reductions rules may

be seen as transitions rules for call-by-name abstract machines. In the case of

XV and XV h, this is exactly so. An explanation for this is already present in

the observation th a t lists in Herbelin-style calculi model stacks in environment

machines [Curien and Herbelin, 2000]. In the case of XV hx, there is only a feature

th a t is no t immediately modelled by a reduction rule of the calculus, namely the

search for a t buried inside a m id-cut like

t { x i := u x} .. .{xn := un} .

Here it is easy to speculate th a t the problem lies in the fact th a t there is no

independent syntactic class for lists of bindings (i.e. environments) in XVhx, as

there would be if explicit substitutions in this calculus were in the style of the

Acr-calculus [Abadi et ah, 1991].

Simple machines

We show w hat abstract machines are associated w ith XV and XVh. These m a

chines will be simple, in the sense th a t if the program is not fully evaluated, then

Chapter 7. Two applications 226

it is itself the redex to be reduced next. Therefore, redexes do not have to be

searched.

D e fin itio n 20 In X, the weak head (or call-by-name) reduction (notation: -* c b n)

is the least binary relation —> on terms closed under

M M '
1 (X x .M)N -» M [N /x \ i m l M N M 'N

A \- tem n is a weak head normal form (abbrev. whnf) i f it is of the form

xN i.. .N k or X x .M (any x, N i , ..., A4, M in X).

Relation —:>c b n is actually a partial function also nam ed C B N . A A-term M

is a whnf iff C B N (M) is undefined. We define the weak head (or CBN) reduction

of M as the repeated application of C B N starting from M . This process either

term inates w ith a whnf of M , or diverges. The following basic result asserts the

completeness of —>c b n -

T h e o re m 15 In X, i f M —sfi N and N is a whnf, then the weak head reduction

of M terminates (with a whnf of M).

Therefore, C B N may be seen as a rudim entary machine. We may use terminology

accordingly. For instance, we may say th a t C B N is loaded w ith M , meaning th a t

C B N is applied to M . A lthough rudimentary, the machine will always obtain

the whnf of a given term, if there is one to be found.

D e fin itio n 21 In XAI, we define the weak head (or call-by-name) reduction

(notation: —>c b n) over terms and over application as the least pair of binary

relations —> closed under

'31 app((Xx.M)N) -> M [N/x] ApP app{A) ^ app{A')

n o _______________________ 4 Fdim i ^ A _______
' ̂ ((Ax .M) N) N ' M[N/x]@ N' /m m 7 U A N -> A 'N

D e fin itio n 22 In XV, the weak head (or call-by-name) reduction (notation:

—*c b n) is the least binary relation —> on terms closed under

Chapter 7. Two applications 227

^ (Xx.t)(u ■ []) —» subst(u , x, t)

(3 2 ___

(Ax .t) (u ■ (v :: I)) —> in se r t(v , Z, subst(u , i))

T XV-term is a whnf i f it is o f the form x or x (u ■ I) or Ax . t (any x, u, I, t in XV).

In AP, the weak head reduction is simply the notions of reduction [3i, i.e.

restricted to the “top level” or “empty context”.
Relation — >c b n in AP is again a partial function also named C B N . A XV-

term t is a whnf iff C B N [t) is undefined. We define the weak head (or CBN)
reduction of t as the repeated application of C B N starting from t. This process
either terminates with a whnf of t, or diverges. Again, we regard C B N as a
rudimentary machine.

We now prove that the isomorphism between —in A and in AA f restricts to
weak head reduction, and later we prove the same for —in AA f and XV.

To begin with, we need a restricted form of Lemma 39.

Lemma 63 In XAf, i f M —±c b n M ', then M @ N - * c b n M '@ N.

Proof: It is an adaptation of the proof of part 1. of Lemma 39, and is by case
analysis of M .

M = x and M = X x . M q are vacuous cases. Let M = app(A). Then, again
there are two subcases.

Subcase 1: A — *•c b n A! and M ' = app(A'). Follows by closure under A E l im l .

Subcase 2: A = (.X x . M o) N q and M ' = M q [N 0 / x }. Follows by closure under
(52. a

Theorem 16 The following holds:

1. Mi —*c b n M 2 ^ X i f f N M i —>c b n -Af M 2 in XJ\f.

Chapter 7. Two applications 228

P ro o f: 1. “Only if” : the proof is by induction on M i —>c b n M2 in A, as in the

proof of Theorem 3. However, only first and th ird cases are relevant. The former

now follows by closure of -* cbn hr AJ\f under (31, whereas the la tte r requires

closure under App and Lemma 63.

2. “Only if” : the claim is proved together w ith the claim th a t if A i ~^c b n A 2

in AW, then |A i| —>c b n \A2\ in A by simultaneous induction on M \ —>cb n M 2

and A\ —+c b n A 2 in AW, as in the proof of Theorem 2 . This time, only cases (31,

App, (32 and A E l i m l are relevant. Cases (31 and (32 follow by closure of —>c b n

in A under (3. Case A E l im l requires closure under E l i m l and IH2. Case App is

by IH2.

The “if” part of 1. follows from the “only if” p a rt of 2 . and |W (M)| — M ,

whereas part “if” of 2 . follows from the “only if” p a rt of 1. and J\f\M\ = M . ■

We now need a restricted form of Lemma 43.

L e m m a 64 I f A —>c b n A', then O'(A, I) —+c b n O '{A1,1).

P ro o f: Again by a straightforward induction on I. Case I — [] requires closure of

- >c b n in AW under App, whereas case I = u 0 :: l0 requires closure under A E l im l .

■

T h e o re m 17 The following holds:

1. M —>c b n M ' in AW i f f T M —>c b n in XV.

3- t —>c b n t ' i n X T i f f ©t —> Q t ' in X V .

P ro o f: 1. “Only if” : the claim is proved together w ith the claim th a t if A —>cb n

A' in AW, then T '(A /) —>c b n W(M ' , l) (all I) in X V , by simultaneous induction

on M —>c b n AT and A -* c b n A 1, as in the proof of Theorem 4. This time, only

cases i, Hi, in and v ii — a are relevant. Cases i and iv require top level — -steps,

whereas case in and vii — a follow by IH2.

2. "Only if” : As in case i of Theorem 5. Instead of Lemma 43, use Lemma

64.

Chapter 7. Two applications 229

The “if” part of 1. follows from the “only if” part of 2. and © T M = M ,

whereas part “if” of 2 . follows from the “only if” part of 1 . and = t. ■

Recall th a t V : A —*■ AV is T o J\f and its inverse is denoted Q. Observe th a t

bo th V and Q send whnfs to whnfs. We say th a t they preserve whnf.

One may use C B N in XV for reducing A-terms to whnf. Given M in A, load

th e machine of XV w ith V (M) and perform in XV the weak head reduction. If

this term inates with u, say, re tu rn Qu. Thus, the machine is correct.

T h e o re m 18 (C o m p le te n e ss) In XV, i f t u and u is a whnf, then the weak

head reduction o f t terminates (with a whnf of t).

P ro o f : Since Q is an isomorphism and preserves whnf, Qt — Qu in A and Qu

whnf. By completeness of —>c b n in A, the weak head reduction of Qt term inates.

By part 1. of Theorems 16 and 17, and the fact th a t V preserves whnfs, the weak

head reduction of t term inates, ffl

There is an advantage of C B N in XV over C B N of A: in the former, we do

not have to search for the redex to be reduced next. If a term is not a whnf, the

term itself is the redex to be reduced next.

Now, how about X V h i Is there a simple weak head evaluator associated with

this calculus? The answer is affirmative.

D e f in it io n 23 In XVh, the weak head (or call-by-name) reduction (notation:

—*cb n) is the least binary relation —> on terms closed under

^ (Ax.t)(u • []) —» s u b s t (u ,x , t)

" (Ax.t)(u ■ (v :: I)) — subst(u , x, t)(v ■ I)

^ t(u ■ l)(u' ■ I') —> t(u ■ append(l, u' :: I '))

A XV-term is a whnf i f it is of the form, x or x (u ■ I) or Xx.t (any x , u. I, t in

XV h).

Chapter 7. Two applications 230

In XPh, the weak head reduction is simply the union of the notions of reduction

/3i and h, i.e. —̂ and —y, restricted to the “top level” or “em pty context” .

Relation — > c b n in XPh is again a partial function also nam ed C B N . A

A'P/i-term t is a whnf iff C B N { t) is undefined. We define the weak head (or

CBN) reduction of t as the repeated application of C B N starting from t. This

process either term inates w ith a whnf of t, or diverges. Again, we regard C B N

as a simple machine.

Recall m apping (_)“ : XPh —> XV.

L em m a 65 The weak head reduction of t in XP h terminates iff the weak head

reduction o f t~ in XP terminates. Moreover, i f the form er terminates w ithu , the

latter terminates with u ~ .

P ro o f: One goes back to Proposition 5 and Lemma 19 and checks th a t a —+pi-

step in XPh (at the top level) is m apped by (_)“ to a similar step in XP (at the

top level) and th a t a —>/l-step in XPh is collapsed by (_)“ in XP. Moreover, (_)“

preserves whnf. This is sufficient for the “only if” p a rt and the second statem ent.

As to the “if” part, first observe th a t, if t~ —>c b n v in X P , then there is tk

such th a t t —>c b n tk in XPh and t]~ = v . Indeed, if t~ is not whnf, neither is t,

because (_)“ preserves whnf. Since —y, is term inating and (_)“ collapses h-steps,

there is k > 1 such th a t the weak head reduction of t looks like t = t 0 —>>h ... —p,

tk-1 —►# tk. Moreover, t j = t ~ , when 0 < j < k , and tk_ r —>C b n t f . But —>C b n

is a function, hence t f — v.

Now, suppose the weak head reduction of t~ in XP term inates. From the last

paragraph, it term inates w ith t]7, for some tk such th a t t ^*CBN tk■ Is tk a whnf

in XPh? If it is not, the weak head reduction of tk can a t most perform —y,-steps

(otherwise t k would not be whnf in XP). But — is term inating. ■

Hence, we can use the machine of XPh to perform weak head reduction of XP.

Load the former with a AP-term t and perform weak head reduction in XPh. If

this term inates with u, re tu rn u ~ . This works because of the previous lemma and

t~ = t. Thus, the machine is correct.

Chapter 7. Two applications 231

T h e o re m 19 (C o m p le te n e ss) In XVh, i f t —V u and u is a w h n f then the

weak head reduction o f t terminates (with a whnf).

P ro o f : By the properties of t~ —>* u~ and u~ is a whnf. By Theorem 18,

the weak head reduction of t~ in XV term inates. Hence, by Lemma 65, the weak

head reduction of t in XVh term inates. ■

Notice th a t the machine associated with XVh is very much like a Krivine

machine w ithout environments [Krivine] [Curien and Herbelin, 2000], except th a t

the former runs programs in XVh, whereas the la tte r runs program s in A (i.e.

X G).

Similarly to XV, a term in XV h is either a whnf or is itself the redex to be

reduced next. In the machine for XV, this redex is always a Pi-redex. In the

machine for XVh, th is is not the case, it may be a h-redex. But the effect of

/¿-reduction is to bring the value application to the surface, th a t is, to bring the

applicative term closer to the form of a Pi-redex.

A Herbelin-style abstract machine

Now we want to obtain the weak head reducer associated w ith XVhx. We will

present the definition of the weak head reduction in X V hx in the form of an

abstract machine, which we nam e the Herbelin-style abstact machine (HAM).

The states, or dumps, of the HAM are defined as follows (where T erm is the

class of term s of XVhx):

D u m p — T e r m x E n v iro n m en t x Stack

E n v iro n m en t = Binding*

Stack = T erm*

B inding = V a r x T e rm

The m ain point is th a t dum ps should be regarded as AP/ix-terms. To make

this more apparent, we will use a no tation for bindings, environm ents and stacks

Chapter 7. Two applications 232

th a t makes the reading of dumps as term s easier. Environments are ranged over

by e, e', etc. Bindings are w ritten {x := t} and ranged over by b. The cons of

a new binding is w ritten {x := t}e, the empty environm ent is w ritten as a blank

or as — and append of environments as ee!. Stacks are ranged over by I, I', etc.

Let d, d', etc. range over dumps. The cons of a new term is w ritten as u :: I and

the empty stack as []. The term associated to the dum p

(f, {xi := Ui}...{xk := u k} J)

is

(, . . (t { x 1 : = U i }) . . . { x k := u k}) 0 I

where

i © 0 = t

t 0 (u :: I) = t {u ■ I) .

If we allow tb to represent a mid-cut (although, crucially, in W h x there is no

separate syntactic class of bindings), then the reading of dum p as term s is easily

specified by: read {t,bi...bk ,l) as (...(tbi)...bk) © I.

The transition rules of the machine may be found in Table 7.1. Each row,

except the rows defining the stopping or final states, defines a transition rule and

displays the states of the machine before and after the transition. We write d —» d!

when d and d! are related by some transition rule. In rule H 3, if b = {a: := u},

sub(b. I) means sub(v, x. I).

It should be clear th a t, when dumps are seen as A'P/j.x-terms, there is a cor

respondence between transition rules and reduction rules of W h x as follows:

H I - x2 H 2 - x l

H3 - x4 HA - h

H5 — x3 H6 - bj

Rule H 7 corresponds to no reduction rule. As opposed to rule H 4 (the other rule

tha t pushes an object on top of a list) the effect of H 7 is not observed in W h x .

Chapter 7. Two applications 233

(771) X {y := t}e I X e

(772) X {x := t}e I t e

{S T O P) X I — -

(773) t{u ■ I) be I' tb{ub ■ sub{b, I)) e

(774) t{u - I) I' t

{S T O P) Xx.t e 0 — —

(775) Xx.t be u :: I Xx.tb e

(776) Xx.t u :: I t {x := u}

(777) t { x u } e I t {x := u}e

r

u :: append',(1,1')

u ::

Table 7.1: Transition rules for the Herbelin-style Abstract Machine

The reason is clear. The stack of argum ents is a syntactic object of its own in

the syntax of X V hx , whereas the list of bindings is not. Rule 776 corresponds to

either 61 or 62 according to whether ¿ is [] or not.

Contrary to the simple machines for XV and AV h, the redex to be reduced

next is not always found a t the top level. However, observe th a t such desirable

situation only fails for transition rules th a t correspond to xi reduction rules.

Let us give some operational intuitions for the HAM. We have in mind starting

the machine with an initial state, i.e. a dum p of the form (t, —,[]), for some

XVhx-term t. A dum p consists of a term , which we might call the program., a

list of bindings, called the environment, and a stack of arguments. The program

operates over the environment and the stack, bu t this is only a partially correct

m etaphor because rules 773 and 775 use the program as a tem porary store. W hat

is true is th a t, in the same way as we use the stack for storing argum ents as we

go deeper in heacl-cuts (rule 774), we use the environment for storing bindings as

we go deeper in mid-cuts (rule 777). Rules H I and 772 perform a look-up in the

environment. Rule 776 is the usual rule creating a new binding and popping the

Chapter 7. Two applications 234

stack.

The peculiarity of the HAM is seen in rules H 3 and H 5 and it derives from

the fact th a t dumps must be interpreted as A'Phx-terms, and in W h x we cannot

separate the term and the bindings of a mid-cut. A transition H 3 is a preliminary

step for H 4. The point is th a t, if the environment is not empty, there is no single

reduction rule in W h x th a t allows the argument to pass over the bindings. T hat

is why, by repeated application of H 3, we “hide” the environment, performing at

the same tim e its duplication. Similarly, a transition H 5 is a prelim inary step for

HQ. Before the application of HQ we have to hide the environment behind the A

by repeated application of HQ.

Given a dump d,, a t most one transition rule applies. We also want to apply

rules to A'Phx-terms. This is done by fixing a canonical way of seeing a term t as a

dum p d(t). O uter bindings and “argum ents” go to the environment and the stack,

respectively. For instance (Ax .t){y u}(u ■ I) becomes (Ax . t , { y u } ,u :: I).

Therefore, given a term, at most one of the rules H I to HQ applies.

D e fin itio n 24 In W h x , the weak head (or call-by-name) reduction (notation:

—>cbn) is defined as follows: t —>cbn t' i f d(t) d ', fo r some i € {1, 2, 3,4, 5, 6}

and d! such that d' is t! when seen as a term,. A W h x - t e r m is a whnf i f it has

one of the foixas x , x(u ■ I) or (Ax.t)e (any x , u, I, f, e in W h x) .

Of course, (Ax . t) e is an iterated mid-cut. Relation —>c b n hi W h x is again a

partial function also named C B N . A W h x - te v m t is a whnf iff C B N (t) is

undefined. We define the weak head (or CBN) reduction of t as the repeated

application of C B N starting from t. This process either term inates w ith a whnf

of t, or diverges.

This time, if we regard C B N as a machine, it is a version HAM ’ of the HAM in

which H 7 steps are silent. Of course, the HAM and the HAM’ are essentially the

same machine because the HAM can only perform a finite number of consecutive

H I transitions and a H I transition does not change the reading of the dump as

a term.

The difference between the HAM and the HAM’ is quite revealing. It shows

Chapter 7. Two applications 235

th a t, contrary to XV and XVh, there is an ingredient missing in X V h x , namely

the im m ediate availability of the scope t of a “closure”

t { x i := u i} . . . { x n := un} .

In the HAM ’, the search for t is implicit. In the HAM, it is done by the rule H 7,

which is not a reduction rule of XVhx.

We now prove correctness and completeness of the HAM ’. T he proofs are

analogous to Lemma 65 and Theorem 19. Recall m apping (_)b : X V hx —► XVh.

Let x = x l U x2 U x3 U x4. Then, —>x is term inating. One sees this by going

to C hapter 3 and recalling how xi steps are m apped first to X V hx and later to

A3 and finally reusing the term ination result in [Dyckhoff and Urban, 2001] for

explicit substitu tion rules and com muting conversion.

L e m m a 66 The weak head reduction of t in XVhx terminates iff the weak head

reduction o f tb in XVh terminates. Moreover, i f the form er terminates with u,

the latter terminates with u b.

P ro o f : One goes back to Proposition 10 and Lemma 30 and checks th a t a —̂

or — step in XVhx (at the top level) is m apped by (_)b to a similar step in

XVh (at the top level) and th a t a —>xi-step in XV hx is collapsed by (_)b in XVh.

Moreover, (_)b preserves whnf. This is sufficient for the “only if” part and the

second statem ent.

As to the “if” part, first, by the same argum ent as in Lemma 65, using ter

m ination of —>x, one proves th a t if f ~^c b n v hr XVh, then there is R. such th a t

t — > c b n tk in XVhx and t\ = v.

Now, suppose the weak head reduction of t b in XVh term inates. From the

last paragraph, it term inates with tk , for some R. such th a t t ~^c b n tk- Is tk a

whnf in X V h x ? If it is not, the weak head reduction of R can a t m ost perform

—>xi-steps (otherwise tbk would not be whnf in XVh). But —>x is term inating. ■

Hence, since tf = t when t is in XVh, both the HAM and the HAM ’ are correct

machines for performing weak head reduction of XVh.

Chapter 7. Two applications 236

T h e o re m 20 (C o m p le te n e ss) In W h x , i f t —A u and, u is a w hn f then the

weak head reduction o f t terminates (with a whnf).

P ro o f: By the properties of (_)b, tb —>* r f and ub is a whnf. By Theorem 19, the

weak head reduction of tb in W h term inates. Hence, by Lemma 66 , the weak

head reduction of t in W h x term inates. ■

One of the good characteristics of the HAM is its neat organisation. First,

the relation between head-cuts and the stack, and between mid-cuts and the

environment. Second, the understanding of rules H I , H 3 and H 5 as preliminary

steps for H 2 , H 4 and H 6 , respectively.

A nother characteristic is the proximity with W h x , and hence w ith cut elimi

nation. From a theoretical point of view, this is positive. From a practical point

of view, this brings inefficiency. Since environments do not constitu te a separate

syntactic class in the syntax of W h x , the duplication of the environment by H 3

is stepwise and rule H6 requires the environment to be hidden (by rule H 5), so

th a t it does not get in the way to the next argument.

Chapter 8

Conclusions

In this chapter we list the contributions of this thesis and propose future work.

8.1 Contributions

The contributions of th is thesis are the following.

First, a system atic definition of calculi of cut-elim ination for the canonical

fragment. We considered several right protocols of cut-elim ination, with increas

ing degree of explicitness and stepwise character, starting from X'P - a new iso

morphic copy of A-calculus as a calculus of cut-elim ination - and ending in Why:.

W hen the remaining m eta-operators of the la tte r calculus are internalised, we

obtain X V h x , a system close to Herbelin’s A-calculus, bu t already outside the

canonical fragment. This system atic process identified in XVhx which (and a

small number of) inter-perm utation of cuts are required for sim ulating full (3-

reduction.

Second, a comprehensive study of the relationship between cut-elim ination

for the canonical fragment and normalisation. Results here include the isomor

phism between XV and A, the identification of the ::-free fragment of the canonical

fragment, the definition of a generalisation of P raw itz’s mapping to non-normal

proofs, the fact th a t both G entzen’s and P raw itz’s mappings establish an isomor

phism between norm alisation and a certain cut-elim ination procedure, and the

identification of the relation between Praw itz’s m apping and G entzen’s mapping.

237

Chapter 8. Conclusions 238

Third, the introduction of a new proof-theoretical tool, nam ely certain conser

vative extensions of natural deduction (and corresponding extension of A-calculus)

based on the idea of a built-in distinction between applicative te rm and appli

cation, on the one hand, and between head and ta il application, on the other

hand. We proposed a new conceptual organisation of proof-systems and A-calculi

based on the observation th a t A-calculus is in the intersection of the ::-free and

tail-application-free fragments.

Fourth, a reassessment of the relationship between cut-elim ination in the

canonical fragment and normalisation, by virtue of the introduction of the men

tioned conservative extensions of natu ra l deduction. This included the definition

of a m apping © th a t may be seen as a new assignment of A-terms, taken from

the extensions of the A-calculus, to proofs in the canonical fragm ent of sequent

calculus. The main property of this assignment is to be an isomorphism, both in

the sense of sound bijection of proofs and isomorphism of norm alisation proce

dures. Moreover, we had to consider th e issue of explicitness also in the natural

deduction side. The conclusion is th a t (the existence of) isomorphism © is insen

sitive to a varying degree of explicitness in the cut-elim ination and normalisation

procedures it bridges.

Fifth, a study of the proof-theoretical sta tus of explicit substitutions, con

cluding th a t the issue of explicit substitution in a term calculus is correlated with

the inclusion or not of a cut constructor in a proof-system, and th a t both issues

are orthogonal to the sequent calculus versus natu ra l deduction divide.

Sixth, contributions to the com putational in terpretation of sequent calculus.

On the one hand, the A-calculi for the canonical fragment were shown to be

extensions of the A-calculus, with a constructor for applicative term s. Relatively

to calculi in the natural deduction side, the difference is th a t applicative terms

are built w ith the help of evaluation contexts, instead of ta il applications; and

th a t, instead of being buried, the head application is available a t the “surface”

of the applicative term . This structu ra l difference explains th a t some reduction

rules of A-calculi for the canonical fragment may be interpreted as transition rules

for abstract call-by-name machines.

Chapter 8. Conclusions 239

Seventh, from a strict A-calculus point of view, the proposal of several exten

sions based on the idea of applicative term , and the proofs of conservativeness,

subject reduction, confluence and strong norm alisation of typable term s.

3,2 Future work

In this thesis, we restricted ourselves to (1) intuitionistic im plicational logic.

(2) right protocols of cut-elim ination. (3) the canonical fragment of sequent

calculus. Obeying such stringent constraints is methodologically correct. One

must be m odular and separate the problems. Accordingly, the next step should

be to relax constraint (3) and study right protocols of cut-elim ination on the

whole set of sequent calculus derivations for intuitionistic im plicational logic. We

would be particularly interested in investigating w hether there is an extension

of na tu ra l deduction matching this step, and w hether the good properties of ©

resist. Of course, when constraint (3) is relaxed, the perm utability problem is

back again. However, we believe th a t a clearer understanding of the perm utation-

free fragm ent will allow a fresh a ttack on th a t problem.

We regard the study of the com putational in terpretation of sequent calcu

lus as a contribution to an useful, and perhaps unexpected, extension of the

Curry-Howard isomorphism. Unexpected, because we are not referring to the

“cross fertilisation” [Cardelli, 1997] between type theory and program m ing lan

guages, by which strong logics offer sophisticated type systems and, conversely,

program m ing features like, say, concurrency, challenge a logical understanding.

The extension is of a different kind, observable even if we keep contenting our

selves w ith simple types and intuitionistic im plicational logic. It is an extension

from natu ra l deduction to other kinds of proof-systems. W hat varies is not the

logic, it is the system in which we w rite the proofs and v'here the norm alisation

procedure lives. And correspondingly, in the com putational side, we seem to

find different, useful approaches to A-calculus w ith benefits for its implementa

tion. T hink of H ilbert systems and com binators, think of the canonical fragment

of sequent calculus and environment machines, think even of linear logic and

Chapter 8. Conclusions 240

proof-nets, on the one hand, and graph reduction [Wadsworth, 1971] and sharing

graphs [Asperti and Guerrini, 1998], on the other hand. We believe th a t the most

im portant thing to do in the future is the full investigation of this new dimension

in the expansion of the Curry-Howard correspondence.

Bibliography

[Abadi et al., 1991] Abadi, M., Cardelli, L., Curien, P.-L., and Levy, J.-J. (1991).

Explicit substitutions. Journal o f Functional Programming, 1(4):375-416.

[Abramsky, 1993] Abramsky, S. (1993). C om putational interpretations of linear

logic. Theoretical Computer Science, 111:3-57.

[Asperti and Guerrini, 1998] Asperti, A. and Guerrini, S. (1998). The optimal

implementation of programming languages, volume 45 of Cambridge Tracts in

Theoretical Computer Science. Cambridge University Press.

[Barendregt, 1984] Barendregt, H. (1984). The Lambda Calculus. North-Holland.

[Barendregt, 1992] Barendregt, H. (1992). Lam bda calculi w ith types. In S.

Abramsky and D. M. Gabbay and T. S. E. M aibaum, editor, Handbook of

Logic in Computer Science, volume 2, pages 118-309. Oxford University Press.

[Barendregt and Ghilezan, 2000] Barendregt, H. and Ghilezan, S. (2000).

Lam bda term s for natu ra l deduction, sequent calculus and cut elimination.

Journal o f Functional Programming, 10(1):121—134.

[Bloo, 1997] Bloo, R. (1997). Preservation of termination for explicit substitution.

PhD thesis, Eindhoven University of Technology.

[Cardelli, 1997] Cardelli, L. (1997). Type systems. In Handbook of Computer

Science and Engineering. CRC Press.

241

Bibliography 242

[Cerrito and Kesner, 1999] Cerrito, S. and Kesner, D. (1999). P a tte rn matching

as cut elimination. In Proceedings of l f t h annual IE E E Symposium on Logic

in Computer Science (L IC S’99), pages 98-108.

[Curien et al., 1996] Curien, P.-L., Hardin, T ., and Levy, J .-J . (1996). Confluence

properties of weak and strong calculi of explicit substitutions. Journal o f the

ACM , 43(2):389—402.

[Curien and Herbelin, 2000] Curien, P.-L. and Herbelin, H. (2000). The dual

ity of com putation. In Proceedings of International Conference on Functional

Programming 2000. IEEE.

[Curry and Feys, 1958] Curry, H. B. and Feys, R. (1958). Combinatory Logic.

Noth Holland, Amsterdam.

[Danos et al., 1995} Danos, V., Joinet, J.-B., and Schellinx, H. (1995). L K Q and

L K T : sequent calculi for second order logic based upon dual linear decompo

sitions of classical implication. In Girard, J.-Y., Lafont, Y., and Regnier, L.,

editors, Advances in Linear Logic, volume 222 of London Mathematical Society

Lecture Notes , pages 211-224. Cambridge University Press.

[Danos et ah, 1997] Danos, V., Joinet, J.-B., and Schellinx, H. (1997). A new

deconstructive logic: linear logic. The Journal of Symbolic Logic, 62(2) :755

807.

[di Cosmo and Kesner, 1997] di Cosmo, R. and Kesner, D. (1997). Strong nor

malization of explicit substitutions via cut elimination in proof nets. In Pro

ceedings of L IC S '97.

[Dragalin, 1988] Dragalin, A. (1988). Mathematical Logic: Introduction to Proof

Theory, volume 67 of Translations o f Mathematical Monographs. American

M athem atical Society, Providence, Rhode Island.

[Dyckhoff, 1997] Dyckhoff. R. (1997). D ragalin’s proof of cut-adm issibility for

the intuitionistic sequent calculi G3i and G3ih Technical Report C S/97/8,

Computer Science Division, St. Andrews University.

Bibliography 243

[Dyckhoff and Pinto, 1998] Dyckhoff, R. and Pinto, L. (1998). Cut-elim ination

and a perm utation-free sequent calculus for intuitionistic logic. Studia Logica,

60:107-118.

[Dyckhoff and Pinto, 1999] Dyckhoff, R. and Pinto, L. (1999). Perm utability of

proofs in intuitionistic sequent calculi. Theoretical Computer Science , 212:141—

155.

[Dyckhoff and Urban, 2001] Dyckhoff, R. and Urban, C. (2001). Strong norm al

isation of Herbelin’s explicit substitu tion calculus with substitu tion propaga

tion. In Fourth International Workshop on Explicit Substitutions: Theory and

Applications to Programs and Proofs (W E S T A P P ’01).

[Espirito Santo, 2000] Espirito Santo, J. (2000). Revisiting the correspondence

between cut-elim ination and normalisation. In Proceedings of I C A L P ’2000,

volume 1853 of Lecture Notes in Computer Science. Springer-Verlag.

[Felleisen et al., 1986] Felleisen, M., Friedman, D., Kohlbecker, E., ancl Duba,

B. (1986). Reasoning with continuations. In 1st Symposium on Logic and

Computer Science. IEEE.

[Field and Harrison, 1988] Field, A. J. and Harrison, P. G. (1988). Functional

Programming. Addison-Wesley.

[Gallier, 1993] Gallier, J. (1993). Constructive logics. P art I: A tu to ria l on proof

systems and typed A-calculi. Theoretical Computer Science, 110:248-339.

[Gentzen, 1935] Gentzen, G. (1935). Untersuchungen liber das logische schliessen

(Investigations into logical deduction). Mathematische Zeitschrift, pages 176-

210,405-431. Translation in [Szabo, 1969].

[Girard, 1987] G irard, J.-Y. (1987). Linear logic. Theoretical Computer Science,

50(1)4-102.

[Girard, 1991] G irard, J.-Y. (1991). A new constructive logic: classic logic. Math

ematical Structures in Computer Science, l(3):255-296.

Bibliography 244

[Girard et al., 1989] Girard, J.-Y ., Lafont, Y., and Taylor, P. (1989). Proofs and

Types. Cambridge University Press.

[Griffin, 1990] Griffin, T. (1990). A formulae-as-types notion of control. In A C M

Conf. Principles of Programming Languages. ACM Press.

[Henderson, 1980] Henderson, P. (1980). Functional Programming: application

and implementation. Prentice-Hall International.

[Herbelin, 1995] Herbelin, H. (1995). A A-calculus structure isomorphic to a

Gentzen-style sequent calculus structure. In Pacholski, L. and T iuryn, J., edi

tors, Proceedings of C SL ’94, volume 933 of Lecture Notes in Computer Science,

pages 61-75. Springer-Verlag.

[Hindley, 1997] Hindley, J. R. (1997). Basic Simple Type Theory, volume 42

of Cambridge Tracts in Theoretical Computer Science. Cam bridge University

Press.

[Howard, 1980] Howard, W. A. (1980). The formulae-as-types notion of con

struction. In J. P. Seldin and J. R. Hindley, editor, To H. B. Curry: Essays

on Combinatory Logic, Lambda Calculus and Formalism, pages 480-490. Aca

demic Press, New York.

[Joachimski and Matthes] Joachimski, F. and M atthes, R. (Accepted for publi

cation). Short proofs of normalization for the simply-typed lambda-calculus,

perm utative conversions and Goclehs T. Archive for Mathematical Logic.

[Kesner et ah, 1995] Kesner, D., Puel, L., and Tannen, V. (1995). A typed p a t

tern calculus. Information and Computation, 124(1).

[Kleene, 1952] Kleene, S. (1952). Perm utability of inferences in Gentzeffis calculi

LK and LJ. Memoirs o f the American Mathematical Society, pages 1-26.

[Krivine] Krivine, J.-L. (Unpublished). Un interpréteur du lambda-calcul.

Bibliography 245

[Lafont, 1989] Lafont, Y. (1989). Functional programm ing and linear logic. Lec

ture notes for the Summer School on Functional Program m ing and Construc

tive Logic, Glasgow, September 1989.

[Landin, 1964] Landin, P. J. (1964). T he mechanical evaluation of expressions.

Computer Journal, 6:308-320.

[Lescanne, 1994] Lescanne, P. (1994). From Acr to \ v : a journey through calculi

of explicit substitutions. In Proceedings o f 21st Annual A C M symposium on

Principles o f Programming Languages (P O P L ’94)-

[McCarthy, 1960] McCarthy, J. (1960). Recursive functions of symbolic ex

pressions and their com putation by machine. Communications o f the A C M ,

3(4): 184—195.

[Mints, 1996] Mints, G. (1996). Normal forms for sequent derivations. In P.

Odifreddi, editor, Kreiseliana, pages 469-492. A. K. Peters, Wellesley, Mas

sachusetts.

[Negri and von Plato, 2001] Negri, S. and von Plato, J. (2001). Structural Proof

Theory. Cambridge.

[Pagano, 1998] Pagano, B. (1998). An explicit natu ra l deduction. In Fist In

ternational Workshop on Explicit Substitutions: Theory and Applications to

Programs and Proofs (W E S T A P P ’98).

[Parigot, 1992] Parigot, M. (1992). A¿¿-calculus: an algorithmic in terpretation

of classic natu ral deduction. In Int. Conf. Logic Prog. Automated Reasoning,

volume 624 of Lecture Notes in Computer Science. Springer Verlag.

[Peyton Jones, 1987] Peyton Jones, S. L. (1987). The implementation of func

tional languages. Prentice-Hall.

[Plotkin, 1975] Plotkin, G. (1975). Call-by-name, call-by-value and the A-

calculus. Theoretical Computer Science, 1:125-159.

Bibliography 246

[Pöttinger, 1977] Pöttinger, G. (1977). Normalization as a homomorphic image

of cut-elimination. Annals of Mathematical Logic, 12:323-357.

[Prawitz, 1965] Prawitz, D. (1965). Natural Deduction. A Proof-Theoretical

Study. Almquist and Wiksell, Stockholm.

[Rose, 1996a] Rose, K. (1996a). Explicit substitutions: Tutorial & survey. Tech

nical Report LS-96-3, BRICS.

[Rose, 1996b] Rose, K. H. (1996b). Operational reduction models fo r functional

programming languages. PhD thesis, University of Copenhagen.

[Szabo, 1969] Szabo, M., editor (1969). The collected papers o f Gerhard Gentzen.

North Holland.

[Troelstra and Schwitchtenberg, 2000] Troelstra, A. and Schwitchtenberg, FI.

(2000). Basic Proof Theory. Cambridge University Press, second edition.

[Ungar, 1992] Ungar, A. (1992). Normalization, Cut-eliminations and the Theory

of Proofs. Number 28 in CSLI Lecture Notes.

[Urban and Bierman, 1999] Urban, C. and Bierman, G. (1999). Strong normali

sation of cut-elim ination in classical logic. In Proceedings of TLCA ’99, Lecture

Notes in Com puter Science. Springer-Verlag.

[Vestergaard and Wells, 1999] Vestergaard, R. and Wells, J. (1999). Cut rules

and explicit substitutions. In Second International Workshop on Explicit Sub

stitutions.

[Wadler, 1993] Wadler, P. (1993). A Curry-Howarcl isomorphism for sequent cal

culus. M anuscript.

[Wadsworth, 1971] W adsworth, C. P. (1971). Semantics and pragmatics o f the

lam.bda calculus. D.Phil. thesis, Oxford.

[Zucker, 1974] Zucker, J. (1974). The correspondence between cut-elim ination

and normalization. Annals of Mathematical Logic, 7:1-112.

ndex

abstract machine

HAM ’, 234

Herbelin-style (HAM), 231

simple, 225

Ap, 139

application, 91, 165

applicative, 91

generalised, 24

head, 13, 150, 167

tail, 13, 150, 167

value, 16

applicative term , 13, 16, 91, 165

asynchronous system, 4

binding, 231

com putational interpretation, 2

conclusion, 15, 22

context, 15

cut

auxiliary, 30

head, 30

implicit, 25

key, 23

left perm utable, 23

left perm uted, 23

mid, 30

right perm utable, 23

right perm uted, 23

cut variable, 23

d, 234

declaration, 15

dereliction, 28

derivation

canonical, 27

diagonal, 136

dum p, 231

environment, 231

evaluation context, 12, 219, 223

extension

conservative, 18

internally conservative, 18

focus, 220

imperfect, 220

folding, 155, 156

formula, 15

active, 22

contracted, 22

cut, 22

left, 22

right, 22

left-main, 22

247

IND EX 248

linear, 22

main, 22

logical, 22

passive, 22

right-m ain, 22

weakened, 22

fragment

canonical, 9

::-free, 130

tail-application-free, 169

Herbelin’s left rule, 28

hole, 12, 219

inference, 22

left, 22

canonical, 27

inter-perm utation, 33

(22), 33

(44), 33

A, 15

A-square, 135

A Q, 131

A Qx, 199

A i, 170

Atx, 209

AJ\f, 91

AAfh, 165

AXf hx, 185

A, 30

Aj, 34

A2, 34

A3, 34

XV h x , 80

XV, 37

XVh, 55

XVhx, 69

Ax, 184

list, 9, 29

look ahead, 148

m ain branch, 26

m apping

(_)“, 143

absolute value, 96

(_)°„ 84

/ , 156

(_)b, 75, 189, 199

Q, 129

Q, 211

168, 201

l, 211

(_)-, 62, 170

N , 94

(_)", 140

V, 132, 136, 142

V, 2 , 161

(-)+ , 155

30, 106, 171, 189

Q, 146, 159

0 , 13, 106, 171, 189

(-)', 88

AA-system, 207

IN D E X 249

weak head norm al from, 226, 227, 229,

234

weak head reduction, 226, 229, 234

vector, 16

Q-expression, 220

stack, 231

state

final, 232

initial, 233

stoup, 28

subderivation

left, 22

right, 22

T, 139

0-expression, 223

tu rn upside down, 27

type, 15

unfolding, 154, 222

value, 16

variable convention, 17

P-system , 207

perm utation

complete, 25

com plete left, 23, 25

complete right, 23, 25

premiss, 15, 22

main, 16

principal path , 27

program , 233

projection, 18

protocol

right, 24

t, 23

