
Interpreting Systemic Grammar as a Computational Representation

A Problem Solving Approach to Text Generation

Terry Patten

Ph.D.

University of Edinburgh

1986

TO MY PARENTS

Acknowledgements

I would like to express my sincere gratitude for the construc¬

tive criticism and guidance patiently provided by my thesis supervi¬

sor Graeme Ritchie throughout the development of this work. I would

also like to thank my other supervisor Austin Tate, and the rest of

the Planning Group, for providing insights into AI problem solving.

Thanks must also go to Jim Howe and Henry Thompson for helping me to

get underway on this project; to Mark Drummond, Andy Golding, and

Chris Sothcott for valuable technical discussions; and to Mark

Kingwell for proof-reading a draft of this thesis. Of course, I am

solely responsible for any mistakes and ommissions herein.

This work was supported in part by Alberta and Canada Student

Loans, and by an Overseas Research Student award.

Declaration

I hereby declare that this thesis has been composed by myself,

and that the work reported in it is my own.

Terry Patten

Copyright (c) , Terry Patten, 1986.

Abstract

A new approach to automatic natural-language text generation is
described. The approach exploits artificial intelligence (Al)
problem-solving techniques and explicitly represents the grammars
using an established linguistic formalism. It is demonstrated that
AI problem solving and Halliday's theory of systemic grammar share
some fundamental properties, and that this has resulted in an
equivalence between the representations found in these two fields.
The equivalent representations mean that a systemic grammar can be
translated trivially and automatically into AI knowledge-
representation languages and then used as a linguistic knowledge
base. This knowledge base can be put at the disposal of a powerful,
general-purpose problem solver which applies goal-directed
knowledge-based techniques to selectively and efficiently generate
text. A significant linguistic characteristic of this approach is
that it allows the incorporation of the socio-semantic level of sys¬
temic theory exactly as described in Halliday's recent writings.
This is also of major computational significance because the socio-
semantic level acts as highly-compiled knowledge that guides the
grammatical problem solving. The approach thus exploits the state-
of-the-art computational techniques while manifesting an established
linguistic theory.

The approach is ideal for generating explanations in expert
systems because the same problem solver that applies the expert
knowledge to problems can also apply the linguistic knowledge in the
grammar to text-generation problems. This not only supplies a
powerful and efficient mechanism for the text-generation problem,
but also greatly simplifies the system as a whole.

Although any one of several AI knowledge-representation
languages could have been used to represent systanic grammars, pro¬
duction rules were chosen for this project. Since systemic grammars
can be trivially translated into production rule form, a formaliza¬
tion of systemic grammars can be given in terms of productions and
derivations, resembling the traditional formalization of structure
grammars. This formalization of systemic grammar is part of the
formal model of the text-generation method which, together with a
sample implementation, serves to clarify and illustrate the
approach.

CONTENTS

Chapter 1 . Introduction 1
1.1. General overview 1
1.2. Scientific context 1
1.2.1. Major context: AI Text Generation 2
1.2.2. Minor context: functional linguistics 4

1.3. Important assumptions 4
1.4. Specific overview 4

Chapter 2. Background I: AI Problem Solving 7
2.1. Search 7
2.1.1. Brute-force search 8
2.1.2. Heuristic search 8
2.1.3. Forward chaining 9
2.1.4. Goal-directed backward chaining 10

2.2. Compiled problem-solving knowledge 11
2.2.1. Sources of compiled knowledge 11
2.2.1.1. Precompiled knowledge and compilation by hand 12
2.2.1.2. Automatic knowledge compilation 12

2.2.2. Reasoning from first principles 13
2.3. Summary 13

Chapter 3. Background II: Systemic Grammar 15
3-1. History 15
3.1.1. Maiinowski .15
3.1 .2. Firth 16
3.1 .3. Halliday .17

3.2. The goals of systemic grammar 17
3-3. Important concepts in systemic grammar 18
3.3.1 . Feature 19
3.3.2. Sys tern 19
3.3.3. System network 20
3.3.4. Delicacy 22
3.3.5. Functional analysis. 23
3.3.5.1 - Transitivity 24
3.3.5.2. Ergativity 25
3.3.5.3. Mood 27
3.3.5.4. Theme 27
3.3.5.5. Information 28
3.3.5.6. Functional analysis for groups 28

3.3.6. Rank 29
3.3.7. Realization rules 31
3.3.7.1. Conflation 31
3.3.7.2. Expansion 32
3.3.7.3. Adjacency32
3.3.7.4. Lexify 34
3.3.7.5. Preselection 34
3.3.7.6. NO insertion/inclusion 37

3.3.8. The metafunctions •37
3-3.8.1. The ideational metafunction 38
3.3.8.2. The interpersonal metafunction 38
3.3.8.3. The textual metafunction 38

3.3.8.4. Metafunction and linguistic description 38
3.3.9. Recursive systems 39

3.4. The strata 42
3.4.1. The semantic stratum 42
3.4.2. The grammatical stratum 43
3.4.3. The phonological/orthographic stratum 43
3.4.4. Interstratal preselection 43

3.5. The semantic stratum 44
3.5.1 . Field 46
3.5.2. Tenor 46
3.5.3. Mode 46
3.5.4. Register and metafunction 46
3.5.5. A closer look 48

3.6. Example 49
3.7. Summary 51

Chapter 4. The Conflation 53
4.1. The fundamental relationship53
4.1.1. Alternatives in AI problem solving 53
4.1.2. Alternatives in systemic linguistics 54
4.1.3. The fountainhead 56

4.2. The conflation 56
4.2.1. Conflating representations 57
4.2.1.1. Conflating gates and forward-chaining rules 57
4,St. 1.2. Conflating systems and backward-chaining rules....58
4.2.1.3. Conflating the grammar and the knowledge base 60

4.2.2. Conflating text generation with problem-solving 60
4.2.3. Conflating the semantic stratum

with compiled knowledge 63
4.2.4. Conflating behaviour potential and

general problem-solving knowledge 67
4.3. An example 68
4.4. Advantages 79

Chapter 5. Theoretical Issues 81
5.1. The interfaces... 81
5.1.1. The planner/generator boundary 81
5.1.2. Separation of semantic/pragmatic

and grammatical knowledge 83
5.2. The functional approach 84
5.2.1. What is a functional approach? 84
5.2.2. Formal and functional approaches. 85
5.2.3. A functional computational approach 88
5.2.4. Explanation and compiled knowledge ...91

5.3. Contrasts with the generative paradigm 94
5.3.1. Chomsky's modularity hypothesis 94
5.3.2. The power of the grammar 95

5.4. Summary 96

Chapter 6. The Formal Model 98
6.1. A formalization of systemic grammar 99
6.1.1. Structure 100
6.1.2. The language generated by a grammar 104
6.1.3. Derivation 106

6.2. The completeness proof 108
6.3. Problem reduction 111
6.3.1. AND/OR graphs 112
6.3.2. System networks and AND/OR graphs 113

6.4. Algorithms 118
6.5. An example 1 23

Chapter 7. SLANG-I -- The Implementation 126
7.1. Overview 1 26
7.1.1. The abstract architecture...........127
7.1.2. The grammar productions 127
7.1.3. The syntactic structures 130
7.1.4. The control strategy 132
7.1.5. Overview conclusion..... 133

7.2. SNORT (System Network - 0PS5 Rule Translator] 133
7.2.1. The system network notation 133
7.2.2. The production rule notation ...138
7.2.3. The translation 143

7.3. SLANG-I 1 45
7.3.1. Realization productions 145
7.3.2. The support system 150

7.4. Limitations of the current implementation 154
7.5. Alternative implementations 155
7.5.1. Other production systems 155
7.5.2. Inheritance hierarchies 156

7.6. Summary 157

Chapter 8. Comparison with Other Work 158
8.1. The grammar-driven approach 158
8.1.1. PROTEUS 159
8.1 .2. Nigel 161
8.1.3. Advantages of grammar-driven systems 162

8.2. The goal-driven approach 162
8.2.1 . KAMP 163
8.2.2. MUMBLE .165
8.2.3. Advantages of the goal-driven approach 166

8.3. Combining the approaches 167
8.3.1. TELEGRAM 167
8.3.2. SLANG 1 69
8.3.2.1. SLANG as a grammar-driven method 169
8.3.2.2. SLANG as a goal-driven system 170

8.4. Problem-reduction in Nigel and SLANG 171
8.4. Summary173

Chapter 9. Conclusions 174
9.1. Summary 1 74
9.1.1. The problem 17 4
9.1.2. The solution 175
9.1.3. Theoretical issues176
9.1.4. The formal model 177
9.1.5. The implementation 178
9.1.6. Other work 179

9.2. Major problems 179
9.3. Future research 181

9.3.1- Incorporation of SLANG into an expert system 182
9.3.2. Supplementary linguistic treatment 182
9.3.2.1. Systemic speech generation 182
9.3.2.2. Supply missing grammatical ranks 182
9.3.2.3. Linguistic defaults 183

9.3.3. Further compilation of the semantics 183
9.3.4. Reasoning with knowledge at the grammatical stratum..184
9.4.5. Natural-language understanding 184

9.4. Conclusion 187

Appendix A. 0PS5 Tutorial 189

Appendix B. Sample Texts 194
1. Explanation for a hypothetical expert system 194
2. Sample explanation of a plan 198
3. Examples from the semantic stratum 211

Appendix C. The Grammar 214
1. The clause network 214
2. The nominal-group network 231
3. The determiner network 234
4. The quantifier network 236
5. The prepositional-phrase network 238
6. The verb network 238
7. The noun network ...249
8. The conjunction network 256
9. The modal adjunct network 261
10. The adjective network 264
11. The adverb network 265
12. The preposition network 265
13. The semantic stratum 266

Appendix D. Program Listing 272
1. The initialization file272
2. Realization productions 272
3. The support system 275
4. The external LISP operators 278
5. SNORT 281

Bibliography 289

1* Introduction

General overview

This thesis explores a new approach to text generation that

interprets systemic grammar as a computational representation. Sys¬

temic grammars are interpreted as domain-specific knowledge and used

by an artificial intelligence problem solver to solve text-

generation problems. This is made possible by a fundamental, but

hitherto unrecognized, relationship between systemic grammar and

problem solving. This approach solves the methodological problem of

interfacing specialized knowledge-based computational representa¬

tions with equally specialized linguistic representations—because

in this case the representation is the same. Previously, text-

generation systems have had to make either linguistic sacrifices for

computational reasons or computational sacrifices for linguistic
reasons.

This approach to text generation has been investigated through

two different channels. The primary means of investigation has been

a substantial implementation involving a relatively large systemic

grammar. The secondary means of investigation has been the con¬

struction of a formal model. Aside from a detailed discussion of

the approach to text generation, the implementation, and the formal

model, the topics covered in this thesis include the relevant back¬

ground in AI problem solving and systemic grammar, a discussion of

the theoretical issues raised by this approach, a comparison with

other work in the field, and a sampling of ideas for future

research.

]_.2. The scientific context

Work in the area of natural-language processing has appeared

under several banners, each of which has associated objectives and

assumptions. It is therefore important to clarify the objectives
and assumptions of the present work. Perhaps it would be best to

begin by explicitly stating some of the fields of study to which no

- 1 -

contribution has been intended.

Some of the work in natural-language processing, and in partic¬

ular text generation, is intended to have psychological implications

(e.g. McDonald, 198oj. No such implications are intended here. It

is hoped that, like any other artificial intelligence (ai] research,
this thesis may provide useful suggestions and concepts for future

psychological description (see Ritchie, 1980, p. 19).

Some other work in natural-language processing is intended to

introduce or develop a linguistic theory (e.g. ibid.]. Although the

theory of systemic grammar is central to this thesis, no attempt has

been made, with the exception of some formalization, to contribute

to the existing theory. This point must be emphasized since one of

the most important claims that _is made here is that an established
linguistic theory has been used and has not been tampered with in

any way.

Finally, although the state-of-the-art AI problem-solving tech¬

niques play a central role in this thesis, no attempt has been made

to advance this state-of-the-art. This too must be emphasized since

the credibility of this approach to text generation depends on the

use of indubitable problem-solving techniques.

1_.2.1_. Major context: AI text generation

The primary scientific context for this work is the AI field of

text generation. Text generation is a subfield of natural-language

production although its boundaries are not easy to define exactly.

Certainly the bottom end of text generation is the actual text

itself, but at the top end the picture is not so clear. It will be

assumed that natural-language production consists roughly of two

stages that perhaps operate in parallel: text planning and text gen¬

eration. The text planner is responsible for dividing up and order¬

ing the conceptual input to the language production facility. The

text generator takes the resulting chunks of semantic/pragmatic

representation and transforms them into the desired natural-language

(English will be assumed throughout the thesis).

- 2 -

There are two major text-generation objectives that will be

stressed here. The first is that the text generator should include

an explicit grammar written in an established linguistic formalism.

This allows the grammar to be written, understood, modified, judged

and so on, independently of the rest of the text-generation system.

It also facilitates linguistic contributions to the project from

other sources.

A second objective of AI text generation is to develop systems

that are practical. The current interest in expert systems, and the

important claim that expert systems can explain their reasoning,

means that proficient text-generation systems are urgently needed

for practical application. The urgency is increasing as expert sys¬

tems are adopted in socially oriented domains such as medicine and

law. To be practical in this sense, the text generator must have

good linguistic coverage, and it must be fast. Given that the

linguistic coverage will be provided by a linguistic grammar (see
previous point], the coverage is really a linguistic problem and
will not be addressed here. The speed of the generation is, how¬

ever, extremely relevant. This constraint requires that the text

generation be controlled by the most sophisticated computational

techniques available. For this kind of problem, the most sophisti¬

cated and efficient computational techniques are those used in AI

knowledge-based problem solving.

Unfortunately, there appears to be a conflict in the two objec¬

tives just mentioned. Established linguistic formalisms use highly

specialized representations developed for linguistic purposes. AI

problem solving also uses highly specialized representations, but

these were developed for computational purposes. The problem is

that these two sets of highly specialized representations (not
surprisingly] appear to be incompatible. A crucial objective of AI

text-generation research is thus to interface the linguistic and

problem-solving representations so that the other two objectives can

both be met.

- 3 -

j_.2.2. Minor context: functional linguistics

The nature of the text-generation task—finding grammatical

constructs that satisfy semantic/pragmatic goals--suggests that a

functional linguistic approach is most appropriate. A functional

approach to linguistics views language in terms of what the speaker

can do with it; it attempts to tie language to the social purposes

for which it is used. The linguistic theory used throughout this

thesis (systemic grammar) is a functional theory. It is therefore

important that the grammars described here, and indeed the linguis¬

tic theory itself, not be judged by structural or generative cri¬

teria. The functional framework also means that there are several

terms used in this thesis in an unorthodox manner. Systemic gram¬

mar, the concepts and terms, are discussed in Chapter 3.

J_.3_. Important assumptions

Having defined the context of this thesis, and explicitly

stated that the linguistic coverage is a problem that will not be

addressed, it must be pointed out that a vital assumption has been

made here. Although the grammar implemented for this project is

relatively large, it still has very limited coverage. An assumption

has been made that systemic grammar, with enough work and develop¬

ment, can adequately describe the grammar of natural language for

the purposes of text generation. A more precarious assumption has

also been made, viz. that the semantic component of systemic theory

is adequate. The justification for these assumptions is discussed

in Section 9.2.

1_.£. Specific overview

At this point a brief outline of the remaining chapters should
be given. The thesis is roughly divided into three sections. The

first three chapters (including this one) provide the background and
introduce the relevant terms and concepts. The second three

chapters form the core of the thesis--they put forward the original

ideas. The final three chapters support and consolidate these ideas

_ H _

by illustration, comparison and discussion.

The title of Chapter 2 is "Background I: AI problem solving."
This should not be interpreted as background to the field in gen¬

eral, but rather as background to those problem-solving terms and

concepts that play a major role in the remainder of the thesis. The

primary purpose of this chapter is to introduce the key concept of

"search" and some powerful knowledge-based search techniques.

Chapter 3 is also a background chapter; it provides the back¬

ground to systemic grammar. Again the treatment is heavily biased

toward the terms and concepts that are important later on. This

chapter also provides a brief history of the development of systemic

theory to vindicate some of the less orthodox ideas. Examples are

provided to illustrate the key concepts.

Chapter ^ is the crux of the thesis. Here the special rela¬

tionship between AI problem solving and systemic grammar is unfolded

and developed into an approach to text generation that surmounts the

problem of interfacing AI problem-solving methods and an established

linguistic formalism. This "Systemic Linguistic Approach to

Natural-language Generation" (SLANG) is then illustrated by working

through an example in some detail.

Having presented SLANG, the new approach to text generation,

and shown how it overcomes specific text-generation problems, the

next chapter—Chapter 5—examines the approach from a broader per¬

spective. The approach raises several theoretical issues concerning

both scientific explanation and linguistic theory. Specific issues

addressed here are the functional approach, the interface between

the semantics and the grammar, and the differences between this

linguistic approach and generative grammar.

One problem with systemic grammar is that it has never been

given a formalization similar to that of more traditional grammars.

This makes it difficult to provide a formal model for this approach

to text generation. These problems are remedied in Chapter 6: "The

formal model." One of the interesting side-effects of the

- 5 -

relationship between systemic grammar and AI problem solving is that

it provides the basis for an almost traditional formalization of

this functional grammar. This allows formal definitions to be given

for "valid syntactic structure" and "derivation" and so on. A for¬

mal analysis of SLANG in terms of computational algorithms is also

provided. Several lemmas concerning both the formalization of sys¬

temic grammar and the computational process are proven.

The text generation, problem-solving and linguistic ideas

appearing in the the thesis have been implemented in a test system:

SLANG-I. This implementation is described in detail in Chapter 7.

The description is supplemented by a discussion of the limitations

of the implementation and some thoughts on alternative implementa¬

tions .

Chapter 8 compares SLANG with other recent approaches to text

generation. A scheme for classifying text-generation systems is

presented, and SLANG is shown to combine successfully the positive

attributes of both the major text-generation classes.

Finally, Chapter 9 provides a summary of the thesis and some

thoughts toward the future. Both the problems that may obstruct

future work, and some potential extensions and offshoots, are exam¬

ined .

Four appendices have been included at the end of the thesis.

Appendix A, a supplement to Chapter 7, is a brief tutorial on 0PS5-
-the implementation language of SLANG-I. Appendix B is a collection

of sample texts produced by SLANG-I. Appendix C is a transcript of
the grammar used in SLANG-I. Finally, Appendix D is a listing of

the 0PS5 and LISP code of the SLANG-I prototype text generator.

- 6 -

2. Background _I: AI Problem Solving

This chapter will provide the background in AI problem solving

necessary for the remainder of the thesis. The treatment of this

topic here is not intended to provide a comprehensive understanding

of all the issues in this large field; only the specific issues and

perspectives relevant to the argument will be discussed. Indeed,

this chapter should be read as part of the thesis argument.

The discussion will begin by presenting the underlying notion

behind AI problem solving: search. The methods that have been used

to perform search will be examined and compared, culminating with a

preview of rule-based search. Finally, a synopsis of knowledge com¬

pilation issues is given.

2_. 1_. Search

Problems in an AI context are often described in terms of

search. The idea is that a problem solver has a number of possibil¬

ities available to it, and the difficulty is to search through the

alternatives to find a solution to the problem. The exact nature of

the alternatives depends on the type of task. Planning, for

instance, involves alternative actions or operations that can be

performed by the agent. The problem is to search through the combi¬

nations of sequences of operations to find one that satisfies some

pre-set criteria. Similarly in a design application, the alterna¬

tives may be the various spatial arrangements of components that can

potentially be used to build an object. The task is then to find

some configuration of components that, again, satisfies some pre-set

criteria.

The reason this involves search is that the various alterna¬

tives are not independent. A set of alternatives that would

independently satisfy the solution criteria may be incompatible.

For instance, two actions may be required to go before each other,

or two components may require the same space. Thus a suitable com¬

putational representation for the alternatives must not only

describe all the possibilities, but also their interdependencies.

- 7 -

2.1_.J_. Brute-force search

There are several approaches to searching for a solution to a

problem. The simplest is just to start looking at all the possibil¬

ities, one by one, until a solution is found. This is called

"brute-force" or "blind" search. Two examples of this method are

depth-first search and breadth-first search (see Barr et al., 1981,
pp. 38-40). This approach may be adequate for problems where there

are only a small number of alternatives, but it is seriously inade¬

quate for large problems.

2_.1_.2. Heuristic search

Often, during search, all the alternatives are not equally

promising, given a particular set of solution criteria. An "evalua¬

tion function" can sometimes be found that can indicate preference

for particular alternatives as the search proceeds. The search can

then immediately focus on the most promising of the alternatives,

ignoring the others—at least as long as the promise is sustained.

The advantage of such "heuristic" search over brute-force search is

that by rejecting unlikely alternatives, the solution is often found

much sooner.

There are, however, some problems with this type of heuristic

search. For many domains it is difficult to find a suitable evalua¬

tion function. Also, if the function is expensive to compute--in

particular if it must take into consideration many complex

interactions--the benefits of heuristic search are lost.

For instance (following Bundy, 1983, p. 54), suppose a robot
needs to be at a certain position to satisfy the solution criteria.
An evaluation function could be devised that would favour moves

toward this position. Now suppose the robot is to collect an object

and return to the original position. In this case the evaluation

function would not work because the robot must move away from the

desired position in order to collect the object. The function could

perhaps be modified to take into account the distance between the
robot and the object, but suppose more than one object is to be

- 8 -

collected. Even if a function could be written that takes every¬

thing into account, it would be so expensive to compute that it

would be doing all the work instead of the heuristic search mechan¬

ism. Applying large amounts of knowledge to work out interactions

is not a bad idea, but in this case the problem-solving process is

no longer this kind of simple heuristic search.

£.1_.3^ Forward-chaining

One way to express problem-solving knowledge is in the form of

rules. Rules can be expressed in several ways, but there is always

a set of "conditions" and a set of "effects." Rule-based systems can

reason from the conditions to the effects, or from the effects back

to the conditions. These forms of reasoning are called forward-

chaining and backward-chaining respectively. Forward-chaining will

be examined in this section.

It was pointed out above that one of the reasons search is

necessary is that there are complex interactions between the various

sets of alternatives. Knowledge of these interactions can be used

to guide the search. For instance there may be a rule that says:

IF alternative A has been chosen

AND alternative C has been chosen,

THEN choose alternative X.

If in fact the problem solver has already decided to choose A

and C then it can use this rule instead of using search to decide

between X and other alternatives. Note that the problem solver can

use chains of these rules to reason from an initial situation toward

the solution—hence the term "forward-chaining." For instance, in a

medical domain the knowledge base may contain rules like:

IF the patient has symptom X

AND symptom Y

AND symptom Z

THEN the patient has condition C.

- 9 -

IF the patient has condition C

AND is over 40 years old

THEN prescribe drug D.

Of course, the solution to complex problems may involve the

construction of several interconnected chains of reasoning.

£•!•£* Goal-directed backward-chaining

Another form of rule-based reasoning involves chaining together

rules starting from the solution--the goal--and working backwards.

This is called goal-directed backward-chaining.

There may be a rule that achieves goal A but is conditional on

two other (preferably simpler) problems, B and C, having been
solved. The problem solver then sets B and C as subgoals and

attempts to solve them recursively. Problem A has been "reduced" to

problems B and C. This problem-solving strategy is thus called

"problem reduction." If the problem solver is successful, the prob¬

lems will eventually decompose into problems that can be solved

directly by applying a rule whose conditions are already satisfied.

Backward-chaining uses rules very similar to those used for

forward-chaining. In fact some systems (e.g. MYCIN, see Hasling et

al., 1984) use the same rules for both forward- and backward-

chaining. The inference engine simply looks in the knowledge base

for a rule whose effects directly satisfy the goal. The rule is

only applicable if the conditions are satisfied—so they are set as

subgoals and solved recursively. Eventually the goals will be

reduced to problems which can be solved directly or which are

already solved as part of another problem.

The effectiveness of goal-directed backward-chaining depends on

the interdependence of the rules. In the worst case many of the

rules have disjunctive conditions, and several rules are applicable
to each goal. In this case goal-directed backward-chaining degen¬

erates into blind search because the problem solver does not know

which rules and which subgoals result in a solution. In the best

- 10 -

case there will be no disjunctive entry conditions and only one rule

will be applicable to each goal and subgoal. In this case the

"search" is deterministic.

2.2_. Compiled problem-solving knowledge

[T]he quality true experts seem to possess that laymen do
not is an ability to recognize large-scale patterns and
jump quickly to reasonable hypotheses. Expert behaviour
seems to demand that blind search through large numbers of
hypotheses be avoided in favour of quick elimination of
many possibilities in each inferential move.

High-level macromoves that allow large amounts of ground
to be covered in each step are a key feature of all the
expert systems that have been built to date. (Brachman et
al., 1983, pp. 44]

Compiled knowledge. Knowledge that encodes rules of
inference in which implied chains of reasoning are

suppressed for the sake of efficiency (Brownston et al.,
1985, Glossary}.

A topic that deserves substantial attention here is "compiled"

knowledge. This is of interest to Al because it is this kind of

knowledge—together with techniques such as forward- and backward-

chaining--that has led to the success of Al problem solving in

expert systems. It is currently of particular interest because of

the recent research into giving expert systems the ability to reason

from first principles using deep as opposed to compiled knowledge

[see Chandrasekaran and Mittal, 1984). The topic of compiled

knowledge is also important for discussions in later chapters.

2.2.1_. Sources of compiled knowledge

Much of the compiled knowledge used to date has been acquired
in that form from human experts, or compiled by hand. There are

also limited means of automatically compiling knowledge. Both of

these sources are important in later chapters, so each will be

briefly discussed in this introduction.

- 11 -

2.2.Precompiled knowledge and compilation by hand

Most compiled knowledge in the problem-solving literature was

simply acquired in that form during the knowledge acquisition phase

of building an expert system--the human expert uses this sort of

compiled knowledge to solve problems in his domain of expertise.

Another possibility is that the problem solving in some specific

cases is too slow. The knowledge engineer may decide to add some

high-level specific rules that replace the long reasoning process in

these cases.

2.2.T^.2_. Automatic knowledge compilation

While compiled knowledge is desirable for reasons of effi¬

ciency, the rules are often awkward and difficult to understand,

modify and so on. A useful technique to avoid these problems is to

have the knowledge engineer work with knowledge of a certain grain

size (level of compilation, see Hobbs, 1985}, and then automatically

compile the knowledge to a larger grain size.

Probably the best known example of automatic knowledge compila¬

tion is the MACROP (macro operator} facility in STRIPS (see Bundy,

1983, pp. 60-62; Barr et al., 1981, pp. 131-134} . The basic idea
is that after constructing a plan to achieve some task, the plan is

generalized (by replacing specific tokens with variables where pos¬

sible} and saved for future use. The more of these MACROPS that
have been saved, the less work the planner has to do on the fine

details--the grain size of the planner's work increases.

Another type of automatic knowledge compilation is to have a

preprocessor that takes a rule-base and compiles it into larger,
more efficient rules. This technique, like the construction of

MACROPS, has the advantage that the knowledge engineer does not have

to write, modify, understand etc. rules with too large a granularity

(see Brownston et al, 1985, pp. 263-264}.

- 12 -

2.2.£. Reasoning from first principles

After the initial success of expert systems that relied on com¬

piled knowledge, there has recently been an interest in "reasoning

from first principles." This type of reasoning is used to supplement

the reasoning with compiled knowledge, primarily for reasons of

robustness and explanation.

The principle quality that general knowledge and inferen¬
tial ability produces, over and above what expert rules do
is robustness. As new, unanticipated patterns crop up,
inflexible, compiled solutions fail. General problem-
solving abilities allow a more graceful degradation at the
outer edges of domain knowledge--a kind of conceptual
extrapolation--as well as permit interpolation between
high-level rules that are not complete within the
domain....

It should be noted that this type of knowledge is essen¬

tially the antithesis of high-level macro-move expertise.
It is knowledge that is explicitly not compiled, so that
it may support general inferential procedures. Applying
knowledge with general methods, however, is inevitably
slower than using multi-step inferential rules. (Hayes-
Roth et al., 1983, p. 46)

This "reasoning from first principles" has also been advocated

for providing explanations of high-level reasoning.

Explanation in expert systems is usually associated with
some form of tracing of rules that fire during the course
of a problem-solving session. This is about the closest
to real explanation that today's systems can come, given
the fact that their knowledge is represented almost
exclusively as high-level rules. However, a satisfactory
explanation of how a conclusion was derived demands an
ability to connect the inference steps with fundamental
domain principles as justifications.... Each high-level
macromove can be justified only by recourse to the basic
principles that make it sound--the rule cannot be its own
justification. (Brachman et al., 1983, p. 48)

2.3_. Summary

The purpose of this chapter has been to provide the background

necessary to understand the Al problem-solving terms and concepts

appearing later in the thesis.

- 13 -

The concept of search was introduced first. Then some methods

for performing search were surveyed. Of particular note were the

knowledge-based techniques of forward-chaining and goal-directed

backward-chaining.

The issue of the compilation of the knowledge used by problem-

solving methods was then examined. The important concept here was

that problem-solving knowledge can be expressed at different levels

of compilation or granularity. The knowledge at higher levels of

compilation can be more efficient, and knowledge at lower levels of

compilation is robust and allows detailed explanations. Knowledge-

based problem-solving systems can contain knowledge of different

degrees of compilation, and may have mechanisms for automatically

raising the level of compilation.

- 1 i* -

3. Background II: Systemic Grammar

Any work on text generation must give an account of the

linguistic formalism—adopted or created--on which the generation

process operates. This chapter is an introduction to the linguistic

formalism adopted here—systemic grammar. The linguistic represen¬

tation plays a particularly important role in this thesis. Indeed,

an understanding of many of the computational text-generation ideas

requires an understanding of the underlying concepts in systemic

theory.

This introduction to systemic grammar begins with a short his¬

tory focused on the major contributors: Malinowski, Firth and Halli-

day. Then the goals or aims of systemic grammar are outlined. Some

of the concepts from systemic theory which are most relevant to this

thesis are then discussed in detail. Finally, descriptions of the

stratification of systemic grammar, and in particular of the seman¬

tic stratum, are given.

3-1_. History

3_.1_.1_. Malinowski

The origins of systemic linguistics clearly lie in the work of

the anthropologist Bronislaw Malinowski (e.g. 1923). From Mali¬
nowski come two ideas that have had a profound influence on systemic

theory. The first is the observation of the inseparability of

language and its social and cultural context (Whorf must also be
credited as an influence on this point—Kress, 1976, pp. ix-x).
Malinowski argued that language could only be viewed and explained

with reference to the social and cultural milieu. It is important

to note the sharp contrast between this starting point of systemic

linguistics and the starting point of the structural/formal tradi¬
tion: that language is a self-contained system (ibid., p. viii).
Most importantly here, Malinowski provided the idea of "context of

situation"--an abstract description of the contextual factors

influencing an utterance.

- 15 -

The second important idea from Malinowski is that language is

"functional"--!t is used to perform certain functions in society.

Of particular note is his grouping of the functions of a particular

language into broad but culturally dependent categories. For

instance, one of the functions of language in the Polynesian

societies studied by Malinowski is the "magical function" where

language is used to control the environment (ibid., p. viii).

Malinowski's influence remained unmistakable as his ideas were

refined and developed by others. The first step in the refinement

process was to transfer the thinking of the anthropologist into a

linguistic framework.

3_.1_.2. Firth

It was the linguist J.R.Firth who took Malinowski's ideas and

adapted them so they could fit into a linguistic theory. In partic¬

ular he accepted the close relationship between language and society

put forward by the anthropologist.

One key notion in Firth's work was the concept of "system"

(from which systemic grammar eventually took its name)--a set of

linguistic choices in a specific linguistic context (ibid., p.

xiii). Firth's emphasis on differentiating (according to de
Saussure's dichotomy) this "paradigmatic" (system-based) description
and the "syntagmatic" (structure-based) description set him apart
from the Bloamfieldian tradition (Halliday and Martin, 1981, p. 19).

Firth realized that words or sentences could not just be

related directly to a general context, but rather the context had to

be divided up into different levels—as he said, like "breaking

white light into a spectrum" (Monaghan, 1979, p. 185). Thus the

phonological choices must be made in a phonological context, gram¬

matical choices must be made in a grammatical context and so on.

Another key observation was that the general situation types

described by Malinowski resulted in a "multiplicity of languages"
within a language as a whole (Kress, 1976, p. xiv). This insight

- 16 -

later led Halliday to the important concept of register (see Section

3.5).

3-1.3. Halliday

Though Malinowski and Firth had made many important observa¬

tions and insights, a complete linguistic theory had still not been

developed. Halliday took this previous work and extended and

refined it to produce the theory of systemic grammar (originally
presented in Halliday, 1961) .

Halliday adopted Firth's emphasis on paradigmatic description,

and took it even further, to the point where the paradigmatic

description clearly dominates the syntagmatic description. Another

extension from Firth was the presentation of a coherent set of

categories which could be related to each other at the interface

between different levels of context (e.g. between the grammatical
and phonological levels. Kress, 1976, p. xv) . Later work included a

grammar notation--systen networks--and the work on register stemming

frcm Firth's "multiplicity of languages" (e.g. Halliday, 1978). The
remainder of this chapter will explore in some detail Halliday's

theory of systanic grammar.

3_. 2_. The goals of systemic grammar

The previous sections have shown that the origins of systemic

grammar differ significantly from those of the currently dominant

school of linguistics. The roots of systemic grammar

... were in anthropology and sociology, not in mathemat¬
ics or formal logic. The questions that motivated its
development were not those of grammaticality or the
acquisition of linguistic competence, but those of
language as a social activity: What are the social func¬
tions of language? How does language fulfill these social
functions? How does language work? (winograd, 1983, p.
273)

Some of the relevant goals of systemic grammar result from the

historical interests introduced in the previous sections. The first

of these is the goal of describing the function of language. There

- 17 -

are several levels at which this description must be made. On one

hand there is what might be called the semantic function—an utter¬

ance functions as a question or a statement, or part of an utterance

may identify the performer of an action or what is being talked

about. On the other hand there is what might be called the syntac¬

tic function—the "subject" of a clause, the "head" of a nominal-

group and so on. Thus one goal of systemic grammar is to capture

the subtle relationship between the semantic function, the syntactic

function and the form itself (ibid., p. 277).

Another important goal in systemic grammar, as in other gram¬

mars, is the description of the constituent structure of language.

The concept of constituency is the same in systemic grammar as in

more traditional grammars, but the goal of describing the various

functional aspects of language will force a somewhat different

approach to this topic.

Finally, and of primary significance for the present work, an

important goal in systemic grammar is the classification at all lev¬

els of linguistic alternatives. The classification of both social

situations and linguistic forms "plays a major theoretical role in

systemic grammar" (Winograd, 1983, p. 276). A result of this clas¬
sification is that a systemic grammar embodies a paradigmatic

description of all the alternatives in meaning and in form available

to the speaker.

3.3. Important concepts in systemic grammar

A brief look at the history and goals of systemic grammar has

been presented, and an introduction to the theory itself will now be

given. This will not be a thorough linguistic treatment, but will

attempt to provide some insight into the concepts from systemic

grammar that play a significant role in the remainder of this
thesis. A good general overview of systemic grammar can be found in

(Winograd, 1983, Chapter 6).

- 18 -

3_.3_.1_. Feature

Probably the best starting point is the notion of a "feature."

One of the primary goals of systemic grammar is classification (see
Section 3*2 above) and a feature can be defined as the name of a

class (Halliday and Martin, 1981, Glossary). Some features of the
clause (classes to which' a clause may belong) , are declarative, fin¬

ite, benefactive, negative, interrogative, positive and so on.

Now it should be apparent that these features are not all

independent. If a clause has the feature declarative then it cannot

also have the feature interrogative. Similarly if a clause is nega-

tive then it cannot also be positive. This leads to the concept of

"system."

3.3_.2. System

A system is a mutually exclusive set of classes (or features)
and thus represents a choice or "potential." This description of

language in terms of choices is the "paradigmatic" description men¬

tioned above. Note that this is important from the point of view of

classification and information theory—if a clause is labelled as

declarative it also ijieans that the clause is not interrogative.

The next step is to observe that a particular choice is not

always applicable—e.g. a linguistic item is not always either

declarative or interrogative. Thus some sort of context must be

introduced to determine which choices are relevant when. For Firth,

the context was a structural one—the relevant choices were directly

dependent on the structure of the linguistic item. Halliday, how¬

ever, made the radical step of defining the context in terms of

other choices. For instance the choice between declarative and

interrogative is only appropriate if the clause is indicative as

opposed to imperative.

Often a choice will depend on a logical combination of features

instead of on just one. In any case, the features that must be

present for a system to be appropriate are called the "entry

- 19 -

conditions" of the system. The system and entry condition relation¬

ships can be illustrated by drawing a "system network."

3.3.3. System network

System networks display graphically the relationships between

features in the grammar. A system is illustrated by a "T" intersec¬

tion (representing a choice between two or more features]:

f1

f 2

f 3

e .g.

declarative

interrogative

Entry conditions are illustrated by simply drawing lines from the

entry conditions to the system:

indicative
declarative

interrogative

imperative

wh-

pol ar

If several features are involved in entry condition relations—

either a feature acts as an entry condition to several systems or a

particular system has several entry conditions—this is illustrated

with curly brackets, and "}" respectively. Disjunctive (not
necessarily exclusive] entry conditions are represented by a square

bracket ("T" merge] "]-".

- 20 -

animate

question-j
subjective
objective

CASE reflexive

possessive
possessive-determiner

first

personal—^ PERSON second
feminine

third
GENDER masculine

singular
neuter

NUMBER

demonstrative-! —' near plural

far

System networks for English pronouns

Figure 3.1 (from Winograd, 1983, p. 293)

Consider Figure 3.1. Here there is a variety of complex relation¬

ships between features. Features are in lower case; system labels

are in upper case and are merely for documentation. The feature

question is the sole entry condition for the system containing ani¬

mate and is a disjunctive entry condition for the CASE system. The

feature personal is the entry condition for the PERSCN system and a

disjunctive entry condition for the CASE and NUMBER systems. The

features third and singular must both be chosen if the system GENDER

is to be relevant.

In addition to features which are terms in systems, there are

features—called "gates"-- which are simply dependent on seme combi¬

nation of other features, without choice. These could be thought of

as degenerate systans with only one feature. The entry conditions

of gates are represented in exactly the same way as those of sys¬

tems .

- 21 -

past

pr esent

future

.. do-finite

mass-subj ect
does

singular-subject

plural-subject

Figur e 3.2.
A gate from a clause network (Mann/Halliday).

In Figure 3.2, if the features present and do-finite have been

chosen, and either mass-subject or singular-sub j ec t have been

chosen, then the feature does is chosen as well—there is no choice

here. The entry conditions to gates may be terms in systems or

other gates: in Figure 3*2 present, mass-subject, and singular-

subject are terms in systems, while do-finite is another gate.

Excerpts from the clause system network, and the pronoun system

network (actually part of a larger noun network) have been

presented. System networks are required for constituents such as

the prepositional phrase, the clause-complex (roughly corresponding
to a sentence) and so on. "The grammar itself thus takes the form
of a series of system networks, where each network represents the

choices available to a given constituent type,..." (deJoia and Sten-

to'n, 1980, #685). Although there are clearly structural relation¬

ships between the types of constituents, the system networks allow a

complete paradigmatic description--in terms of feature choices--to

be given for any particular constituent without referring to its

substructure at all.

3.3.Delicacy

As with any classification system, a system network for
syntactic objects can go to varying levels of detail. In
biology, an organism that is assigned a species feature is
more precisely described than one assigned only to a

- 22 -

family or genus. The more precise the classification, the
more information is available about the object. In sys¬
temic grammar, this scale of precision is called deli¬
cacy (winograd, 1983, p. 296}

Delicacy applies to features and systems, and is clearly illus¬

trated in system networks. Generally speaking, system networks

increase in delicacy from left to right. Some of the delicacy rela¬

tions in Figure 3-1 are: the feature masculine is more delicate than

the feature personal; the system GENDER is more delicate than the

system NUMBER; the features subjective and objective are of equal

delicacy; and the system whose terms are question, personal and

demonstrative is the least delicate system.

_3.3^j>. Functional analysis

Another important concept in systemic linguistics is the idea

of "function." Functional analysis in systemic grammar consists of

more than just labelling linguistic items with terms like "Subject"

and "Agent." The theory provides for analysis of several functional

dimensions simultaneously, and indeed a large part of the linguistic

description consists of relating these analyses.

This gazebo was built by Sir Christopher

MOOD | Subject | Predicator| Adj unct

TRANSITIVITY | Goal | Action | j Actor

THEME | Theme I Rheme

Figure 3-3. (Winograd, 1983, p.283}

Figure 3-3 shows three functional analyses of the same clause. Each

function is associated with one type of analysis. The function

Actor, for instance, is always used in the analysis of transitivity,

and the function Subject is always used in the analysis of mood.
The different analyses are related by "conflating" functions from

different analyses (e.g. Subject, Goal and Theme are all interpreta¬
tions of "this gazebo" above}.

A consequence of this multidimensional functional treatment is

- 23 -

that there are in fact several constituent analyses associated with

a linguistic item--one for each different functional analysis. This

thesis will use four functional analyses: transitivity, ergativity,

mood and theme.

3.3.5.1_. Transitivity

The analysis of transitivity (see Halliday, 1985, p. 1 01 — 1 ■U-4;
Winograd, 1983, pp. 497—504) is an analysis of "process." The pro¬

cess per se is represented by the function Process (realized by
"built" in Figure 3.3]. The remainder of the set of functions

depends on the nature of the process.

The first type of process is "material" (Halliday, 1985, p.

102-106), a process of "doing" or "creating." The primary functions
are Actor and Goal. A Beneficiary appears in the case of benefac¬

tive processes.

Jack gave the book to Janet

|Actor|Process| Goal | |Beneficiary|
+ +

the apples were eaten by Jack

| Goal | | Process | |Actor|
+ _ +

If the process is "mental" (ibid., 106-112) then the functions
are the Process, the Senser, and the Phenomenon.

I like cheeseburgers

|Senser|Process| Phenomenon |
+ +

cannons hurt my ears

|Phenomenon|Process|Senser|
+ +

If the process is "verbal" (ibid., p. 129) then the functions
are the Process, the Sayer and what is usually an embedded clause,

- 24 -

Beta.

I said it was cold

|Sayer|Process| Beta j
+ +

Finally, the process may be "relational" (ibid., p. 112-128}.
There are two kinds of relational process, each with its own set of

functions. There are "attributive" processes which involve an

Attribute and a Carrier.

the book is pathetic
+ + + +

| Carrier|Process|Attribute|
+ +

my dog has fleas

|Carrier|Process|Attribute|
+ +

There are also the "identifying" processes which involve the func¬

tions Identifier and Identified.

Jack is the vice-president
+ + + +

|Identified|Process| Identifier |
+ +

the fleas are his

|Identified|Process|Identifier|
+ +

3.3.5.2. Ergativity

Halliday (1985, pp. 144-157} has argued that transitivity is no

longer as important an analysis of English as it once was. The idea

of transitivity is that there is a process and an Actor, and the

question is whether or not the process extends beyond the Actor to

something else (the Goal} (ibid., p. 145}.

- 25 -

a) the gun fired (intransitive)

b) the gun fired the bullet (transitive)

Here "the gun" is the Aetor in each case, and b) is transitive
because the bullet is the Goal. However, according to Halliday

(ibid.) the majority of high-frequency verbs that can be either
transitive or intransitive, yield pairs such as:

a) the glass broke (intransitive)

b) the singer broke the glass (transitive)

Here the relationship isn't really transitivity at all. The process

of the glass breaking in a) does not extend to the singer in b) as

did the firing of the gun in the previous example. The distinction

being made in this case is whether the process was caused or not--

ergative or non-ergative processes respectively. The functions used

for the ergative analysis are the Process, the Agent (called the
Causer in seme of the earlier literature), the Medium (earlier
called the Affected), and perhaps the Beneficiary.

the glass broke

ERG | Medium | Process
TRANS | Actor |Process

+

the singer broke the glass

ERG | Agent | Process | Medium j

TRANS | Actor | Process | Goal |
+ +

Notice that the Medium is constant in the above examples, whereas

the Actor shifts in the transitivity analyses. Both the transi¬

tivity and ergativity analyses, as well as their interaction (some¬
times the Medium is conflated with the Actor, sometimes with the

Goal) are useful.

- 26 -

3.3.5.3. Mood

The functional analysis of mood (Halliday, 1985, pp. 68-100) is

slightly more complex than that of either transitivity or erga-

tivity. This is because there is more than one level of analysis.

At the top level the functions used are: Mood, Residue and, option¬

ally, Moodtag.

the man has eaten the steak
+ + +

j Mood | Residue j
+ +

let's find the answer shall we

+ + + +

|Mood | Residue | Moodtag|
+ +

Each of these functions is divided or "expanded" into a number of

subfunctions. The Mood is expanded into the Subject and the Finite,

the Residue is expanded into the Lexverb (this differs from much of
the systemic literature] and the Residual, and the Moodtag is

expanded into the Tagsubject and the Tagfinite.

the man has eaten the steak

|Subject|Finite|Lexverb| Residual |
+ + +

[Mood | Residue |
+ +

let's find the answer shall we

| Subject | Lexverb | Residual | Tagfinite | Tagsubject |
+ + + +

| Mood | Residue | Moodtag |
+ +

3.3.5.^. Theme

Like the analysis of mood, the analysis of theme (ibid., pp.

38-67) involves several layers of functions. At the top layer are

the functions Theme and Rheme. The Rheme is not expanded further,

but the Theme is expanded into the Textual, the Interpersonal, and

the Topical. These are expanded further in (Halliday, 1985) but the

- 27 -

further subdivisions are not used here. The Topical is usually con¬

flated with the Subject, the Interpersonal is a modal adjunct

(ibid., p. 50), and the Textual is a conjunction or conjunctive

adjunct (ibid., and especially Halliday and Hasan, 1981, Chapter 5).

perhaps my team will win

|Interpersonal|Topical| [
+ 4 +

| Theme | Rheme |
+ +

in other words to be honest they are bad
+ + + + +

| Textual |Interpersonal|Topical| j
+ + +

| Theme | Rheme |
+ +

3_.3_.5_. 5. Information

Another functional analysis is important when working with

speech. This is the analysis of "information structure" and
involves the functions Given and New (Halliday, 1985, pp. 27*1-251;
Winograd, 1983, pp. 505-506). The portion of a "tone group" (often
a clause) conveying information already possessed by the hearer
functions as Given; the portion of the tone group conveying informa¬
tion new to the hearer functions as New. Information analysis is

germane to issues of stress, intonation and word order.

Since the information analysis is largely concerned with speech

issues, it has been excluded from this work to avoid the added com¬

plexity .

3_.3_.5_.6_. Functional analysis for groups

The functional analysis of the group is much less complex than

that of the clause. Although relatively complex group analyses are

provided in (Halliday, 1985, p. 159-175), the simpler analyses given
in (Halliday, 1976a, p. 131-135) are used here. The only substan¬
tial group network used is the nominal-group, because the verbal-

- 28 -

group is treated in the analysis of the clause. The functions

appearing in the analysis of the nominal-group are the Numerative (a
quantifier], the Deictic (usually a determiner], and the Head (often
a noun, pronoun, substitute etc., but may be conflated with either

or the other two fonotJonaj;
a few of the castles

|Numerative|Deictic| Head j
+ +

those castles

|Deictic| Head |
+ +

some castles

|Numerative| Head j
+ +

(I'll take] a few of those

| Numerative |Dei ctic |

| | Head |
+ +

3_.3_«6_- Rank

Although the emphasis in systemic grammar is primarily on the

functional issues of language, it still must relate this function to

structure. This requires a structural analysis that is similar to

that found in the traditional "immediate constituent" grammars, but

that is also consistent with all of the different functional ana¬

lyses. The deep, narrow trees (where each node has a small number
of constituents] produced by immediate constituent grammars typi¬

cally will conflict with at least one of the functional analyses.

Systonic grammar therefore adopts an approach called "minimal

bracketing" (where constituents are grouped together in a separate
level of structure only when absolutely necessary, see deJoia and

- 29 -

Stenton, 1980, #3). In fact there are only a small, fixed number of

groupings called units: the "clause-complex," the "clause," the

"group"/"phrase," the "word," and the "morpheme." The minimal brack¬

eting of a "rank grammar" has a significant effect on the consti¬

tuent analysis: the constituent trees are short and bushy rather
than long and narrow.

Clearly there is a hierarchical relationship between the vari¬

ous units. The constituents of a clause, for instance, will usually

be groups and words, while the constituents of a group will tend to

be words. For this reason the relationship between these various

units is called rank. Since all constituents in systemic grammar

are at one of these ranks, systemic grammar is called a "rank gram¬

mar" (see deJoia and Stenton, 1980, #608, #609]. Note that the top
and bottom ranks (clause-complex and morpheme] will not be used in
this work.

A constituent normally realized by units at a particular rank

may occasionally be realized by a unit of a higher rank. For

instance the Deictic in a nominal-group is normally an item at the

word rank (e.g. "that" in "that hat"]. In the case of a possessive

determiner, however, the Deictic may be a nominal-group acting as a

word (e.g. "the elephant's trunk"]. This is called "rankshifting."

Although "rank" and "unit" are important concepts in systemic

theory, they do not appear to play a significant formal role (see
Chapter 6], contrary to what one might expect given their prominence
in the systemic literature (Halliday, 1961, for instance]. This is

largely due to the phenomenon of "rankshifting," since no formal

restriction can be placed on the rank of constituents.

It is important to distinguish between "rank" and "delicacy."

It is easy to confuse these two scales of abstraction, but in fact

they are orthogonal. The feature nominal-group is not more delicate
than the feature clause; they are each the least delicate features

at their respective ranks. Starting at the feature clause, and

increasing in delicacy to finite to indicative to interrogative, the

description is not moving toward smaller constituents, but to finer

- 30 -

distinctions between classes of clauses.

_3.3.7. Realization rules

The features and system networks have been introduced, as have

been the ideas of functional analysis and rank. But there is a gap

left to be filled between the features and system networks on the

one hand, and the functional analysis and constituent structure on

the other. This gap is filled by the "realization rules" attached

to the features in the grammar.

The realization rules can be regarded as specifying the struc¬

tural implications of the feature to which they are attached. Ele¬

ments of structure are represented in realization rules by their

function (e.g. Subject, Agent). The set of functions described in
Section 3-3.5 is fairly standard, but unfortunately the realization

relationships vary from source to source, and there seems to be no

standard notation for even the widely-used ones.

The notation used in this thesis is taken from (Mann/Halliday).
An additional convention of enclosing realization rules in

parentheses has been introduced. Some examples of the various real¬

ization rules and their associated features will now be presented.

2*3.7.1_. Conflation (/)

A realization relationship that seems to be used universally in

systemic grammars is "conflation" (the symbol is "/" in

Mann/Halliday but "=" in Winograd, 1983, p. 305). This states that
the same linguistic item realizes more than one function. For

instance the feature unmarked-declarative-theme has the realization

rule (Subject / Topical), as in "Jack was applauded by the Duke,"
where "Jack" is functioning as both the Subject and Topical:

- 31 -

Jack was applauded by the Duke

MOOD | Subject | |
+ +

... +

THEME| Topical | |
+ +

3«3.7.2. Expansion (())

The "expansion" realization rule takes two arguments: a func¬

tion to be divided into subfunctions, and one of the subf unctions.

For instance, in Section 3-3.5.3 Mood was expanded into Subject and

Finite—this is written as the two realization rules (Mood(Subject))
and (Mood(Finite)), attached to the features indicative and finite

respectively. Similarly, (Theme(Topical)) is attached to topical-
inserted , and so on.

Expansion is indicated in the structure diagrams where there

are two levels of the same analysis, and one of the functions in the

bottom row spans exactly the same distance as two or more functions

in the top row. The expansions (Mood(Subject)), (Mood(Finite)),
(Residue(Lexverb)), (Residue(Residual)), (Moodtag(Tagfinite)) and

(Moodtag(Tagsubject)) are drawn:

the man has eaten the steak has he

| Subject | Finite| Lexverb |Residual | Tagf inite| Tagsubject |
+ + + +

| Mood | Residue | Moodtag |
+ +

3.3.7.3. Adjacency (")

Another realization relationship is "adjacency." This states

that the linguistic items realizing two particular functions are

adjacent in the structure. Consider the feature declarative, which
has the realization rule (Subject ~ Finite), where "is the symbol
for adjacency. For instance, in "Jack was applauded by the Duke,"
"Jack" is the Subject, and "was" is the Finite element. The feature

finite has the realization rule (Mood A Residue). In the same

_ 32 -

example, which is also finite, "Jack was" is the Mood, and

"applauded by the Duke" is the Residue.

Jack was applauded by the Duke
+ + + +

|Subject~Finite| I
+ + +

| Mood ~ Residue j
+ +

Some other grammars use a realization relation which merely indi¬

cates that one of the functions appear after (as opposed to immedi¬

ately after] the other (e.g. Winograd, 1983, p. 305; Mann et al.,

1983]. This can be used instead of, or as well as, adjacency.

A special case of adjacency is that in which an item is a left¬

most or rightmost constituent, and therefore adjacent to the boun¬

dary. The feature clause has the realization rule (# " Theme] indi¬

cating that in all clauses the Theme is at the beginning. This

thesis treats the boundary symbols as quasi-functions that appear in

adjacency statements like other functions. Mann et al. (198 3) have

opted to have special realization relationships called "order-at-

front" and "order-at-back" which take one real function as an argu¬

ment. These are simply two notational variants on the same theme.

Since it is convenient to be able to state, for instance, that

Subject is the leftmost subfunction of Mood, a new symbol has been

introduced to denote the boundary of an expanded function: t. The

realization rule [% " Subject] indicates that Subject is the left¬
most subfunction of some expanded function. This is not ambiguous

since a function can only be a subfunction of at most one function-

-though it can be associated with other expanded functions via conf¬
lation. For instance Topical is a subfunction only of Theme, and

Subject is a subfunction only of Mood, and the Subject and the Topi¬
cal may be conflated; but there can be no realization rules

(Mood(Topical]] or (Theme(Subject]]. Expansion, together with conf¬
lation, allows very complex structures to be specified. For

instance, (Mood(Subject]], (Mood(Fini te]], [% Subject], (Finite
%) (Theme(Interpersonal]], (Theme(Topical]], [% Interpersonal],
(Topical " %) , (# ~ Theme] and (Subject / Topical] constrain the

- 33 -

first three items in the clause to be the Interpersonal, the

Topical/Subject followed by the Finite:

perhaps this teapot was ...

j %~ Subject ~Finite~$
MOOD + + +

| | Mood |
+ + +

Winter personal" Topical "%
THEME + +

~ Theme j
+ +

3.3.7.4. Lexify (=)

The grammar may require a function to be realized by a particu¬

lar lexical item. This is indicated by the realization relationship

"lexify." This is most often found at the word rank, but is also

found at the clause and nominal-group ranks.

In fact lexify is not used in the clause network

(Mann/Halliday) but was adopted from (Mann et al., 1983, see p. 25J
for convenience. For instance the feature speaker-subject was given

the realization rule (Subject = i) as in:

I like that

| Subject | I
+ +

3.3..7.5. Preselection (:)

A realization rule that is particularly important in this

thesis is "preselection" (the symbol ":" is used in Mann/Halliday,
but it is called "classification" with the symbol "/" in Winograd,

19831 p. 305}. This is the form of realization used to interface
the different system networks. Sometimes classification at the

clause rank, for instance, implies classification for its consti¬

tuents at other ranks. A preselection classifies a linguistic item

(identified by a function) by selecting a feature for that item from

_ 3n _

a network representing a lower level of classification. For

instance, the feature speaker-subject mentioned above has the reali¬

zation rules (Finite : !first-person) and (Finite : !v-singular)
which preselect, from the verb network at the word rank, the

features classifying the Finite as a first person singular verb.

The grammar described in (Mann et al, 1983) uses the symbol "!"
instead of when preselecting lexical features because that gram¬

mar has no networks at the word rank (e.g. (Finite ! pastform)
ibid., p. 45). Even though the grammar used here does have word

rank networks, it is useful to distinguish preselections from the

word rank to avoid confusion where it is not clear to which rank a

feature belongs (e.g. it may not be clear if the feature name

singular has been used in the nominal-group network or the noun net¬

work) . Thus in the grammar described throughout the present work,

the symbol is used for all preselections, but features at the

word rank are prefixed with a "!" (! singular as opposed to singu¬

lar) . This is purely a notational convention to aid the reader;

there is no linguistic or computational significance.

This (Function : feature) notation is fine so long as the
feature applies to the constituent immediately below that

represented by the function in the constituent tree. In the case of

Finite, it is realized by a verb so there is no problem preselecting

the verb features !first-person and !v-singular.

However, consider the case of the feature proper-subject in the

clause network (Mann/Halliday) . The problem is that the Subject
will be realized by a nominal-group, and what is really needed is

for the feature !proper to be preselected for the Head of that

nominal-group--not for the nominal-group itself. This cannot be

done with the notation currently in the systemic literature, short

of introducing a special feature (e.g. proper) at the group rank
which itself has the realization rule (Head : Iproper) . This inter¬
mediate feature addition has been avoided here by using a "path

notation" for preselection realization rules. Instead of just giv¬

ing the single function, a whole path of functions are specified,

separated by the symbol "<" (symbolizing the constituent tree). The

- 35 -

feature proper-subject has the realization rule (Subject<Head :

!proper) . *

the Mercedes was black

CLAUSE) MOOD | Subject |Finite| |
=== == ===== = = = =+==== = ==+= = == = = = = =+ + +

GROUP { #Deictic| Head #
+ +

The group analysis is separated from the rest of the diagram by a

double line to indicate that it is not part of the clause analyses.

Paths can easily be represented with and read frcm a structure

diagram. For instance, in the clause "Jack's Uncle's hat was

mashed", where there are several embedded groups:

Jack's Uncle's hat was mashed

CLAUSE) MOOD I Subject I Finite ILexverbI

+

GROUP { # Deictic |Head #

GROUP { #Deictic|Head #

GROUP) //Head#

• +

= +

+ +

Jack's Uncle's hat is the .Subject

Jack's Uncle's i s the Subject<Dei ctic

Jack's is the Subject<Dei ctic<Deictic

Jack i s the Subject<Dei ctic<Dei ctic<Head

Uncle is the Subject<Deictic<Head

hat i s the Subject<Head

* Although this added notation may not appear to be justified by
the few cases for which it is needed, it is essential for other
reasons discussed in Section

- 36 -

3.3-7.6. No insertion/inclusion (+)

One type of realization rule which is almost universal in the

systemic literature but not used here is "insertion" (Mann et al.,

1983, p. 25), also called "inclusion" (winograd, 1983, p. 305) and

represented by the symbol "+". For instance, the feature finite

(Mann/Halliday) has the realization rule (+ Finite) meaning that
finite clauses have Finite elements. The feature determined in a

nominal-group network may have the realization rule (+ Deictic)
meaning that determined nominal-groups have an element functioning

as Deictic.

This type of realization rule has not been implemented here

because in any grammar detailed enough to be used in an automatic

text-generation system, the functions that are inserted will always

appear in other realization relationships (at least when given the
set of relationships outlined above) . Therefore the insertion
statements are at least technically redundant. It could perhaps be

argued that it is useful to provide insertion statanents for

linguistic clarity, but the author's experience has not indicated

this (e.g. Note in Winograd,' 1983, p. 305 that inclusion is almost

always combined with another realization relationship in the same

rule) .

3_.3.8_. The metafunctions

Following Malinowski's observation that language functions can

be grouped into abstract categories, Halliday has identified three

general "metafunctions" in adult language.* These provide a valuable

conceptual grouping, but like "rank" do not play a formal role in

the model.

* Halliday's work concerning the functional aspects of the
language of young children reveals a larger number of less
developed "macro-functions" (e.g. Halliday, 1978, pp. 50, 55-56,
and especially 121). There may be seme confusion because the term
"macro-function" was used in earlier writings (e.g. Halliday,
1973) to also refer to what are now called metafunctions.

- 37 -

3_.3_.8_. 1_. The ideational metafunotion

The ideational metafunction is language functioning to

represent the "world" in general--processes, events, actions,

objects etc., as well as logical relationships between them (Halli-
day, 1978, p. 21) .

3_.3>8.2. The interpersonal metafunotion

The interpersonal metafunction is language functioning to

express roles of the speaker in the discourse. The speaker is com¬

municating: what is being talked about, the relationship with the

hearer (e.g. contradicting, supporting), how strongly the text is

believed, whether or not the speaker is happy about what is being

said, and so on (ibid.).

3*3_*§..3. The textual metafunction

The textual metafunction of language is to organize the text in

such a way that it is internally cohesive, and fits into both the

larger discourse and the social situation in general. In other

words it ensures that the text is relevant and coherent (ibid.).

2«3.8.^. Metafunction and linguistic description

Although the metafunctions can be correlated with the different

functional analyses, in keeping with the spirit of systemic grammar

the metaf unctions have their basis in the paradigmatic description.

Looking at system networks of natural languages, Halliday noted that

there tends to be a high degree of interdependence among some groups

of features and relatively low interdependence between these groups.

The groups of features correspond to the three metafunctions men¬

tioned above.

In origin ..., the concept of metafunction is an empirical
claim about the paradigmatic organization of the clause
systems in English. (Martin, 198*1)

Halliday claims (1978, p. 21-22) that these metaf unctions are

- 38 -

common to all adult natural language (not just English], Presumably-
other languages may have others, such as the "magical" metafunction

observed by Malinowski in the Polynesian languages he encountered.

The functional analyses presented above are correlated with the

three metafunctions. The realization rules attached to ideational

features in general specify the transitivity and ergativity ana¬

lyses, the realization rules attached to interpersonal features in

general specify the analysis of mood (as illustrated by Figure 3. ■U) ,

and the realization rules attached to textual features in general

specify the theme analysis.

imperative
f i ni t e

(Mood(FiniteJ J declarative

(Mood ~ Residue) indicative (Subject ~ Finite)
(Mood(Subject J J |

non-finite interrogative

Figure 3-4
An excerpt from the interpersonal section

of the clause network.

3.3-9^. Recursive systems

The multi-dimensional functional analysis and the principle of

minimal bracketing have led to a serious problem with the system

network notation. The advantages of minimal bracketing are often

illustrated using the example of "parataxis." Parataxis is simply a

logical combination of items of the same rank forming a list (see
Halliday and Martin, 1981, Glossary--e .g. "John and Bill and Mary,"

"the red one, the blue one, or the black one," this list of examples

and so on). The minimal bracketing principle says that paratactic
structure should be flat:

Whereas immediate constituent grammars would form the list recur¬

sively, resulting in a tree:

- 39 -

Since the par atactic lists can be arbitrarily long, some recur¬

sive mechanism is needed to produce the structure. The solution

suggested in the current systemic literature is the "recursive sys¬

tem," which amounts to a loop in the system network.

'e.g. (_ incomplete_)
x |

com pi et e

Hudson (1971, p. 61-62) claims:

The big advantage of allowing recursion of this kind in
the system network, rather than in rules that affect the
structure directly, is that it does not add unwarranted
structure. If we use a phrase-structure rule, such as 'x
-> x+x' then we can generate nothing but binary struc¬
tures, whereas we really want to generate single layers of
structure with any number of ICs. In TG theory, the way
has been found out of this dilemma by the introduction of
a new bit of theoretical apparatus, the 'rule schema', but
in systemic theory, no special apparatus is needed. We
allow 'incomplete' to occur any number of times in the
paradigmatic description of an item, by a recursive sys¬
tem, and then we map each occurrence of 'incomplete' onto
a separate element in the item's structure.

Despite Hudson's claims, it is readily apparent that there are

some problems with recursive systems. If features are the name of a

class, then the distinction made here involves the number of times

an item belongs to a particular class, which makes little sense.

Hudson proposes to abolish the one-to-one correspondence between
classes and features. This not only introduces new theoretical

problems, but also does not really solve the original problem. For

instance, feature x in the example is really only an entry condi¬

tion for the first occurrence of the choice--not those foilowing--

- 110 -

yet the entry condition in the network is always a disjunction

involving x. More seriously, the functions in the realization rules

inside the loop would need to be indexed (as Halliday and Martin,

1981, Glossary, say they are), and almost certainly require vari¬
ables (e.g. (Fn ~ Fn+1)).

Given the problems with recursive systems, it is not surprising

that they have not been implemented in previous text generation pro¬

jects (e.g. Davey, 1978, says he is not convinced that recursive

systems are the answer to the problem).

There are seme general approaches that might lead to a satis¬

factory solution. All of these retain the one-to-one correspondence

between features and classes. First, since it appears that even

following Hudson's radical proposal the functions would have to be

indexed, the result ends up looking very much like a schema anyway.

Perhaps it would be best just to remove the recursive entry condi¬

tion and treat features with indexed functions as schemas of some

sort.

The suggestion in McCord (1975, p. 211) is that new realization
relations could be introduced that operate uniformly on lists of

structure nodes. For instance there could be a realization relation

"listify" that is similar to "lexify" but associates a list of lexi¬
cal itans with a function. The problem here is that paratactic ele¬

ments (for example) may not always be treated uniformly (e.g. "John,

Bill, and Mary"). This suggestion has the advantage of not requir¬

ing an entirely new mechanism to be added to systemic grammar, but

it is not clear that it will be sufficient in all cases.

There is no doubt that a replacement needs to be found for

recursive systans. This is a major theoretical problem that

severely restricts the abilities of systemic text generators.

Nevertheless, no attanpt has been made to remedy this situation

here; system networks are required to be loop-free and parataxis has

been avoided.

_ 41 _

3 The strata

Halliday adopts

... the general perspective on the linguistic system you
find in Hjelmslev, in the Prague school, with Firth in the
London school, with Lamb, and to a certain extent with
Pike--language as a basically tristratal system: seman¬
tics, grammar, phonology. (Halliday, 1978, p. 39)

It should be pointed out that "grammar" here refers to lexi-

cogrammar, i.e. it includes vocabulary. Also, "phonology" should

really be expanded to "phonology/orthography" to include writing as

well as speaking (as Halliday often doe3 elsewhere in his writings).

It is important to understand that the relationship between

these strata is not one of delicacy; for instance, phonology is not

just a more detailed continuation of the grammar. Each stratum has

its own relationships and dimensions of abstraction--this is the

point of stratification. Semantics, grammar and phonology are each

described in terms most appropriate to that particular aspect of

language. The result is three different but not independent

representations of language.

Although the three strata are different representations, the

representation language for the most part is the same. Each

description is organized as systems of features. As stressed ear¬

lier, this means that the representation at each of the strata is a

description of "potential."

3.£.1. The semantic stratum

The semantic stratum is a representation of the speaker's

"meaning potential": using Halliday's gloss, this is what a speaker

"can mean." For instance, suppose a mother wants to control the
behaviour of her child by issuing a threat. There are two potential

choices: she may threaten the child's privileges, or she may

threaten some form of physical punishment. The semantic stratum will

be discussed in detail in Sections 3.5 and 3.6.

- i42 -

3.^.2. The grammatical stratum

The grammatical stratum is a representation of what the speaker

"can say" (in the sense of "formulate"]. A typical choice here is
between an indicative and an imperative clause. The grammatical

stratum has already been discussed in some detail in this chapter.

3.4_.3. The phonological/orthographic stratum

The phonological/orthographic stratum is a representation of

how the speaker "can sound" or "can write." Typical kinds of choices

here are whether or not to emphasize a particular word in the case

of phonology, or what punctuation to use in orthography. This stra¬

tum will not be discussed further because it follows the same

theoretical principles as the other two strata, and has not been

implemented.

3.4.4_. Interstratal preselection

Although the strata have been presented as independent

representations, they are clearly related. The relationships are

represented through interstratal preselection, which is essentially

the same as the preselection between ranks described earlier.

Features at the semantic stratum may have realization rules which

preselect grammatical features. Similarly, grammatical features may

preselect features from the phonological/orthographic stratum. As

Halliday (1973, p. 85] says:

In general the options in a semantic network will be real¬
ized by selections of features in the grammar--rather than
'bypassing' the grammatical systems and finding direct
expression as formal items.

Thus, sets of features at the semantic stratum are mapped,

using preselection, onto sets of features at the grammatical stratum

which are, in turn, mapped onto sets of features at the

phonological/orthographic stratum. At the phonological/orthographic

stratum there is no lower stratum from which to preselect, so the

realization is in terms of physical characteristics instead of

- 43 -

features.

Note that there is no restriction on the rank from which gram¬

matical features are preselected. The semantics can, and in most

grammars probably must, preselect seme features from each of the

clause, group and word ranks. This means that the path of preselec¬

tions from the semantics to the word rank can involve several steps.

For instance, in the case of the Subject, the number is important at

the clause rank, so the semantics may preselect the feature

singular-subject. One of the realization rules of this feature

preselects the feature singular from the nominal-group network.

This in turn results in the feature ! singular being preselected from

the noun network (for the Head function). In other cases, for
instance to preselect a lexical entry like !floor, the semantic

stratum preselects the feature directly from the word rank. In
other cases the semantic stratum chooses from the nominal-group

network—for instance, to preselect features like non-possessive-

nom, which preselects the feature !non-possessive for the Head. It

makes no difference what the preselection path is. For instance all

the above features at the word rank are entry conditions to a gate:

! floor

!non-possessive_

!singular

_"floor"
(iNoun = floor)

Since there is no phonological/orthographic stratum, the "lex-

ify" realization rule above simply associates a lexical item with
the function.

3_.5_. The semantic stratum

The semantic stratum, as it appears in the systemic theory, is

particularly relevant to systemic work on text generation. This is
because the semantic stratum must act as the interface between the

extralinguistic inference and the grammar. Although systemic

_ 44 _

grammar has been used in several text-generation projects, the

semantic stratum as described in (Halliday, 1978] has never been
included. For these reasons the semantic stratum will be given some

extra attention here.

The term "semantic" in systemic theory has quite different con¬

notations than it does in other branches of linguistics. In sys¬

temic linguistics "semantics" includes much of what is normally

referred to as "pragmatics," and it is not represented or defined in

terms of truth functions. Semantics here is directly related to

Malinowski's notion of "context of situation." In fact Halliday ori¬

ginally used the term "contextual" to refer to this stratum.

All language functions in contexts of situation, and is
relatable to those contexts. The question is not what
peculiarities of vocabulary, or grammar or pronunciation,
can be directly accounted for by reference to the situa¬
tion. It is which kinds of situational factor determine
which kinds of selection in the linguistic system. (Halli¬
day, 1978, p. 32]

Thus, in systemic theory, the context becomes the key to the

semantics. Clearly, in this case a more precise notion of "context"

is required. To this end Halliday and others have developed the

idea of "register."

Types of linguistic situation differ frcm one another,
broadly speaking, in three respects: first, what is actu¬
ally taking place; secondly, who is taking part; and
thirdly, what part language is playing. These three vari¬
ables, taken together determine the range within which
meanings are selected and the forms which are used for
their expressions. In other words, they determine the
'register'.

The notion of register is at once very simple and very
powerful. It refers to the fact that the language we speak
or write varies according to the type of situation. This
in itself is no more than stating the obvious. What the
theory of register does is to attempt to uncover the gen¬
eral principles which govern this variation, so that we
can begin to understand what situational factors determine
what linguistic features, (ibid., pp. 31-32].

The three respects in which situations differ, as just

described, are termed: field—"what is actually taking place";

- J15 -

tenor--"who is taking part"; and mode--"what part language is play¬

ing" (Halliday, 1978, passim). Field, tenor and mode are useful

conceptual groupings that play a similar role to the metafunctions

at the grammatical stratum. Also, like the metafunctions, they do

not appear in the formal model.

3^.5.1_. Field

The field is the socially recognized physical setting in which

text occurs, including the activities in progress.

,3.5.2. Tenor

The tenor is a characterization of the relationship between the

participants. This includes not just their respective social posi¬

tions, discourse roles etc., but also the emotional issues of the

moment.

3_. 5.3. Mode

Mode refers to the role language is playing in a particular

situation. This involves characteristics of the text such as

whether it is spoken harshly or written, and so on. It also

involves the social function the text is performing, e.g. being

descriptive, being persuasive etc.

Field, tenor and mode define the register of a social context.

The semantic stratum is represented as a system network that speci¬

fies the choices available in field, tenor and mode--i.e. it is a

paradigmatic description of register.

3.5.. 4.. Register and metafunction

Halliday (ibid.) relates field, tenor and mode individually and
as a group to the metaf unctions at the grammatical stratum (see Sec¬
tion 3.3.8). Both register and metafunction provide broad organiza¬
tional principles to explain the relationship between features or

sets of features at their respective strata. Individually, field is

- 46 -

related to the ideational metafunction, by stating the general prin¬

ciple that semantic features associated with field tend to preselect

ideational features. Tenor and the interpersonal metaf unction have

the same relationship, as do mode and the textual metaf unction.

As an illustration, Halliday briefly describes two registers as

follows (ibid., p. 226 and p. 115 respectively):

Field: Instruction: the instruction of a novice
- in a board game (e.g. Monopoly) with equipment present
- for the purpose of enabling him to participate

Tenor: Equal and intimate: three young adult males;
acquainted

- but with hierarchy in the situation (2 experts, 1
novice)

- leading to superior-inferior role relationships

Mode: Spoken: unrehearsed Didactic and explanatory, with
undertone of non-seriousness

- with feedback: question-and-answer, correction of
error

Field Child at play: manipulating movable objects (wheeled
vehicles) with related fixtures, assisted by adult; con¬
currently associating (i) similar past events, (ii) simi¬
lar absent objects; also evaluating objects in terms of
each other and of processes.

Tenor Small child and parent interacting: child determin¬
ing course of action, (i) announcing his own intentions,
(ii) controlling actions of parent; concurrently sharing
and seeking corroboration of own experience with parent.

Mode Spoken, alternately monologue and dialogue, task-
oriented; pragmatic, (il referring to processes and
objects of situation, (ii) relating to and furthering
child's own actions, (iii) demanding other objects; inter¬
posed with narrative and exploratory elements.

Here are seme examples of interactions between register and the

grammar: In the second example, when assistance from the adult is

the subject matter, the ideational features related to benefaction
are relevant to the field. Similarly, when similar events are

recalled, the ideational feature past will be preselected. In the

case of tenor, interaction with the parent will require preselecting

- 47 -

the interpersonal features concerning "person." Determination of

course of events will mean preselecting interpersonal mood and

polarity features. In the case of mode, reference to objects and

situations will involve anaphoric and exophoric reference by

preselecting textual features (ibid., p.117).

3_. 5.5. A closer look

Unfortunately, there has been little detailed work done on the

semantic stratum, and several important issues are yet to be

resol ved.

For instance, one of the most important aspects of the grammat¬

ical stratum is the specification of grammatical structure. Halli-

day (1978, p. 41) admits:

We know more or less what the nature of grammatical struc¬
ture is. We know that constituent structure in some form
or other is an adequate form of representation of the
structures [at] the lexicogrammatical level. It is much
less clear what is the nature of the structures [at] the
semantic level.... [When working with the language of
young children] it has been possible to bypass the level
of semantic structure and go straight into lexi cogrammati¬
cal constituent structure. That's all right for certain
limited purposes. But there is obviously a limitation
here, and when we attempt semantic representation for any¬
thing other than these highly restricted fields, it is
almost certainly going to be necessary to build in some
concept of semantic structure. But what it will look like
exactly I don't know. I don't think we can tell yet.

For reasons of convenience, and since it seems to be adequate

for the limited examples presented here, the realization rules at

the grammatical stratum have been used at the semantic stratum as

well. In other words, a simplifying assumption has been made that

the structures at the semantic stratum are directly analogous to the

structures at the grammatical stratum. This implies that there are

semantic functions analogous to Agent, Subject etc.

- HQ -

3.6. Example

An example of the semantic stratum for a typical expert system
domain would be ideal at this point, but unfortunately the only

example from adult registers that Halliday presents in any detail is

that of a mother threatening her child. Nevertheless, this will be

sufficient to illustrate the ideas discussed in the previous sec¬

tion .

command

loss-of

privilege

-{■d
get-attention

unmar ked-command

decisionJh r ej ection

deprivation
pending_

resolution—|
—| deferred
obligation

H
immediate

unmarked
time

H
mother-centred

child-centred

punishment-

H

u

H

adult-centred

child-centred

chastisement

authority-figure

non-cond

condi tional-
H

H

explicit-repetition
I
non-repetitive reason

logical-cond fl [alternative

non-1 og-cond- strai ght

explanatory

exclamatory

Figure 3.5
Some semantic choices

- 49 -

Figure 3.5 shows seme systems fran a semantic system network--

the gates and realization rules have been omitted.

Note that this network represents only sane of the choices for

some very restricted registers. The choices illustrated here are

mainly to do with tenor--the specific relationship between the

mother and her child. For instance, in the case of explanatory on

one hand, the mother is acting as an informant and backing it up

with a threat; in the case of exclamatory on the other hand, the

mother is setting herself up as the authority and telling what the

consequences of disobedience will be. For instance, if the features

straight, explicit-repetition, chastisement, adult-centred, non-

log-cond, conditional, and punishment are chosen with explanatory,

the result is "you mustn't do that, next time I'll smack you". If

exclamatory is chosen instead, the text is "don't do that, next time

I'll smack you". Alternatively, the mother may set herself up as an

intermediary between the child and an "authority figure" who is to

carry out the threatened action. For instance, suppose instead of

chastisement above, the feature authority-figure is chosen. The

resulting text may be "don't do that, next time Daddy will smack

you".

When generating a clause, the choices for field and mode must

also be made. The mode will almost certainly involve choosing a

harsh tone of speech. The choices for field and mode may interact

with the choices illustrated here for tenor. Field choices are

likely to influence the choice of authority figure should the tenor

require one. If the scene is set at home, the authority figure is

very likely to be the father. If set elsewhere, the authority fig¬

ure may be, for instance, a policeman (Halliday, 1978, p. 8*1). Of
course the field may also influence the mode—the tone of voice may

be lowered if there are other people present, and so on. Thus there

may be a gate for a mode feature harsh-whisper that has entry condi¬

tions from both the field and tenor sections of the network.

It may appear that semantic features like people-nearby imply
that the semantic stratum must represent every possible physical

- 50 -

situation. This is not the case—only those factors that are

linguistically relevant for a particular speaker must be

represented. The fact that there are people nearby may have a sig¬

nificant effect on the form the utterance should take; the fact that

there is a person in the Empire State Building wearing red socks may

not. The point is that there is a discernable set of factors which,

for a particular speaker, are linguistically relevant during text

generation. The semantic stratum represents these and their various

int errelationships.

3.7_. Summary

The purpose of this chapter has been to introduce and motivate

those concepts from systemic linguistics that play a significant

role in the rest of the thesis. The origin of many of these con¬

cepts can be traced back through Halliday, through Firth, to Mali-

nowski . Malinowski's concept of an abstract "context of situation"

was developed by Firth into the idea of "system" and developed

further by Halliday into systemic grammar. Malinowski's emphasis on

the cultural and social environment of language led to Firth's con¬

cept of the "multiplicity of languages" within a language and to

Halliday's work on register and the sanantic stratum. Malinowski's

observation of the broad functions of language led to Halliday's

idea of macro- and metafunctions--making systemic grammar a func¬

tional theory as opposed to just a syntactic theory with some func¬

tional labels attached.

Three goals of systemic grammar were then identified. They

are: the description of the function of language, the description of

the structure of language, and the classification of linguistic

alternatives.

Some specific concepts from systemic grammar were then dis¬

cussed, and illustrated at the grammatical stratum. It was then

pointed out that there are in fact three strata: the semantic, the

grammatical, and the phonological/orthographic. Since the preceding

discussions were primarily concerned with the grammatical stratum,

51

and since the semantic stratum plays a particularly important role

in the approach to text generation described later, the semantic
stratum was then discussed in some detail.

- 52 -

... slang is ... often used by people who are deli¬
berately adopting a certain speech variant for social pur¬
poses. (Halliday, 1978, p. 158}

_4. The Conflation

The previous two chapters have discussed the independent fields

of AI problem solving and systemic grammar. This chapter will point

out that in fact there is an important relationship between the two

fields that can form the basis for a "Systemic Linguistic Approach

to Natural-language Generation" (SLANG). The first few sections
will describe the various facets of the relationship between AI

problem solving and systemic grammar, and the text-generation method

that results. Then some examples will be presented to illustrate

the text-generation method just described. Finally there is a short

discussion of the significance of this approach to text generation.

£.1_. The fundamental relationship

The central nature of intelligent problem solving is that
a system must construct its solution selectively and effi¬
ciently from a space of alternatives. (Hayes-Roth et al.,
1983a, p. 20}

We shall define language as 'meaning potential': that is,
as sets of options or alternatives, in meaning, that are
available to the speaker-hearer. (Halliday in deJoia and
Stenton, 1980, #572}

Compare these two quotations. The fields of study examined in

the previous two chapters are both organized around a space of

alternatives. Notice that these passages do not refer to peripheral

issues; the first few words of each, "The central nature of intelli¬

gent problem solving is ..." and "We shall define language as ...,"

indicate that the issues involving alternatives lie at the nucleus

of the respective disciplines. This being the case, there is

clearly a fundamental relationship between AI problem solving and

systemic grammar. This section will probe into this fundamental

relationship, in an attempt to discover its origins and nature.

- 53 -

4_.1_.1_. Alternatives in AI problem solving

AI problem solving is characterized as a "search" through a

space of alternatives. Chapter 2 discussed some of the techniques

employed by AI problem solvers over the years to find a solution

within a space of alternatives. The techniques ranged from blindly

searching through the possibilities until a solution was found, to

efficient goal-directed knowledge-based techniques that selectively

considered only alternatives that may lead to a solution. Whether

the alternatives are explicitly searched or whether they are

avoided, the entire space of alternatives is always at least impli¬

citly represented.

4_.1_.2_. Alternatives in systemic linguistics

The emphasis on alternatives in systemic linguistics originated

in two separate aspects of Malinowski's work (e.g. 1923). He
characterized language as an action, an integral part of the every¬

day actions in a society. He also argued that language can only be

understood in a specific context. The second point was developed

later by Firth when he precisely stated, and indeed defined, the

context of language in terms of "potential":

... Firth built his linguistic theory around the original
and fundamental concept of the 'system', as used by him in
a technical sense; and this is precisely a means of
describing the potential, and of relating the actual to
it....

The potential of language is a meaning potential. This
meaning potential is the linguistic realization of the
behaviour potential; 'can mean' is 'can do' when
translated into language. The meaning potential is in
turn realized in the language system as lexico-grammatical
potential, which is what the speaker 'can say'. (Halli-
day, 1973, pp. 50-51)

Thus in systemic linguistics, the starting point is the set of

alternatives in meaning. Linguistic contexts are characterized by

the alternatives in meaning available in the particular context--

meaning potential. These alternatives are realized by, or mapped

onto, sets of grammatical alternatives.

- 54 -

One important point also apparent from the quotation is that

systemic theory treats extralinguistic matters in terms of potential

as well. An agent in a particular (social rather than linguistic]
context has a "behaviour potential"—what the agent "can do." Some

of the alternatives in social situations are linguistic, and these

form the meaning potential. The crucial point is that the linguistic

alternatives are just a subset of the behavioural alternatives that

can realize the behavioural potential.

Now it must be understood that the notion of alternatives—

paradigmatic description—plays a more central role in systemic

grammar than in other linguistic theories:

If we go back to the Hjelmslevian (originally Saussurean]
distinction of paradigmatic and syntagmatic, most of
modern linguistic theory has given priority to the syntag¬
matic form of organization. Structure means (abstract]
constituency, which is a syntagmatic concept. Lamb treats
the two axes together: for him a linguistic stratum is a
network embodying both syntagmatic and paradigmatic rela¬
tions all mixed up together, in patterns of what he calls
AND and OR nodes. I take out the paradigmatic relations
(Firth's system] and give priority to these; for me the
underlying organization at each level is paradigmatic.
(Halliday, 1978, p. 40]

In Halliday's theory, the alternatives are dependent on other

alternatives, not on structures.

... and here I depart from Firth, for whom the environ¬
ment of a system was a place in structure--the entry con¬
dition was syntagmatic, whereas mine is again paradig-

. matic. (ibid., p. 41]

The important point to note here is that while many grammatical

theories have alternatives as a (perhaps even an important] con¬

sideration, they are usually first and foremost theories of struc¬

ture, and the representation of alternatives is sacrificed to this
end. Whereas in systemic grammar the alternatives are primary.

By 'text', then, we understand a continuous process of
semantic choice. Text is meaning and meaning is choice,
an ongoing current of selections each in its paradigmatic
environment of what might have been meant (but was not].
It is the paradigmatic environment—the innumerable

- 55 -

subsystems that make up the semantic system—that must
provide the basis of the description, if the text is to be
related to higher orders of meaning, whether social,
literary, or of some other semiotic universe. [ibid.,
P.137)

Thus in systemic linguistics, paradigmatic description—

description in terms of alternatives—is the crucial representa¬

tional concern.

£.1_.3_. The fountainhead

Noting the fact that AI problem solving and systemic grammar

are both organized around alternatives is only the first step. Next

it must be noted that in knowledge-based AI problem solving, the

alternatives represent the problem--knowledge about the alternatives

is then required to guide the problem solver to a solution. Sys¬

temic grammar is knowledge about linguistic alternatives; the entry

condition and realization rules specify the conditions and effects

of a particular alternative—exactly the information required by an

AI problem solver. Thus the primum mobile of this work becomes

apparent: a systemic grammar can be interpreted as linguistic

problem-solving knowledge and used by an AI problem solver to find-

-selectively and efficiently--the solution to linguistic problems in

exactly the same way as knowledge from other domains is used to

solve problems in those domains.

4_.2. The conflation

A particularly important consequence of the fundamental rela¬

tionship between AI problem solving and systemic grammar is that the

central representations found in each of the two fields is

equivalent. This means that a systemic grammar can be directly

interpreted as both linguistic description and problem-solving

knowledge simultaneously--!.e. the two interpretations can be con¬

flated. This conflation provides the impetus for a new approach to

text generation, but is only the beginning. The conflation reaches
much further than just the surface representation; it extends to the
foundations of systemic theory.

- 56 -

The discussion here, and throughout the remainder of the

thesis, will involve describing the relationship between systemic

grammar and one particular variation of the AI representation: pro¬

duction rules. A production system is only one of several architec¬

tures able to selectively and efficiently process a space of altei—

natives. Production rules were chosen here for reasons of simpli¬

city, accessibility and for their formal properties (see Chapter 6].
It is important that the reader understand that similar expositions

could be given for representations such as "objects" (see Section

7.5).

A brief comment should be made here about the role of the sys¬

tem networks in the SLANG model. Halliday is careful to state that

the system networks merely describe the "meaning potential" of

language, and careful not to state or imply that the system networks

themselves play any role whatsoever in the "actualization" of that

meaning potential.

... when we examine the meaning potential of language
itself, we find that the vast numbers of options embodied
in it combine into a very few relatively independent 'net¬
works' ; and these networks of options correspond to cer¬
tain basic functions of language. This enables us to give
an account of the different functions of language that is
relevant to the general understanding of linguistic struc¬
ture rather than to any particular psychological or socio¬
logical investigation. (Halliday in deJoia and Stenton,
1980, #541)

The system networks in SLANG are directly involved in the actu¬

alization of the meaning potential—they are exploited as problem-

solving knowledge. While this is not a contradiction of Halliday's

position, it is nevertheless a different interpretation than is nor¬

mally given to system networks. It is worth reiterating that the

term "knowledge" here is used only in the AI sense; no claims are

being made about the structure of human knowledgp (see Halliday,

1 978, pp. 38, 51).

- 56a -

4_.2_.1_. Conflating representations

Since both problem-solving knowledge and systemic grammar must

describe the complex relationships between interdependent alterna¬

tives, it is not too surprising that they developed the same basic

representations. For each alternative, the conditions under which

the alternative is applicable must be represented, as must the

effects or consequences of the particular alternative. Both AI

problem solving and systemic grammar have adopted this two-part

representation.

Ji.2_.1_.J_. Conflating gates and forward-chaining rules

Notice that gates, as described in Chapter 3, are represented

in terms of conditions and effects. Gates have a set of entry con¬

ditions and a set of realization rules. Consider the gate feature

does represented here in systemic notation:

. .. present

do-finite
does

... mass-subject | Finite : Idoes

... singular-subject

Figure 4.1
A gate (Mann/Hallidayj.

If the features present and do-finite have been selected, and either

- 57 -

mass-subject or singular-subject has been selected, then the feature

does must be selected. The effect or consequence of choosing this

feature is that the lexical feature !does is preselected, so the

Finite element will be realized by one of "does", "doesn't" or "does

not."

Now, since production rules, an AI problem-solving representa¬

tion, also have conditions and effects, gates can be interpreted as

production rules. E.g.:

if present and do-finite and
one of singular-subject or mass-subject
have been chosen,

then choose does and preselect the lexical
feature !does for the Finite.

This can be used for simple forward-chaining as described in

Chapter 2. Interpreting entry conditions of a gate as the LHS of a

production rule, and the choice and realizations as the RHS,

corresponds to the intuitive interpretation of a gate: if the logi¬

cal combination of features acting as the entry condition to a gate

feature is satisfied, then choose the feature and constrain/modify

the structure of the text according to the realization rules.

Thus we can interpret a gate in any of these representations

(systan network, or the various production notations, e.g. see

Chapter 7 for the 0PS5 representation] either as a piece of a sys¬

temic grammar, or as a piece of problem-solving knowledge. In fact

it is advantageous to conflate these interpretations—make both

interpretations simultaneously.

!•£•!•£• Conflating systems and backward-chaining rules

Suppose the features in a system network that are terms in a

system are interpreted similarly. For every feature in a system

there will be one rule stating:

- 58 -

if the entry condition of the system
is satisfied,

then choose this feature and perform the actions
specified by the realization rules.

Notice that if these rules are interpreted as forward-chaining

rules, they are not much use to the problem solver, since it doesn't

know which of the alternatives should be chosen. Specifying in the

representation that the terms in a system are mutually exclusive

doesn't help. The technique of backward-chaining will be used

instead. So the interpretation of the rule above is:

if there is a goal to choose
this feature, or a goal that can
be satisfied by one of the
realization rules,

then choose this feature and set the

entry conditions as subgoals.

E.g,

wh-
Wh Finite

unmarked-wh-theme
Wh / Topical

marked-wh-theme

Figure H.2.
A system (Mann/Halliday).

The feature unmarked-wh-theme can be interpreted as

backward-chaining rule:

if there is a goal to choose
unmarked-wh-theme

or there is a goal to conflate
the Topical with the Wh element,

then choose unmarked-wh-theme
and set a subgoal to choose wh-.

Again this rule could be written in any of the various production

notations as well as the system network notation.

- 59 -

4_.2.1_.3_. Conflating the grammar and the knowledge base

Thus all the features in a systemic grammar, together with

their entry conditions and realization rules, whether they form

gates or systems, can be interpreted as problem-solving rules of the

kind used by AI problem solvers. This means that the grammatical

stratum as a whole can be interpreted as a knowledge base (more
likely part of a larger knowledge base] of grammatical knowledge.
This knowledge can be used to solve grammatical problems in exactly

the same way as medical knowledge can be used to solve medical prob¬

lems, and chemistry knowledge can be used to solve chemistry prob¬

lems .

4_.2.2_. Conflating text generation with problem solving

Having shown that the fundamental relationship between systemic

grammar and AI problem solving allows the systemic representation to

be interpreted both as a grammar and as problem-solving knowledge,

it will now be possible to show that the process of systemic text

generation can be conflated with the process of problem solving.

- 60 -

interrogative
indicative

1 finite |

imperative

non-finite

declarative
marked

declarati ve
theme

unmarked
declarati ve
theme

clause- ^

Subject/
Theme

middle operative
Agent/Subject

effective

receptive
theme

| Theme"

/ : conflation

: adjacency # : boundary

Figure ^.3. A grammar excerpt.

Consider the simplified systemic fragment in Figure H.3, and

imagine a hypothetical problem solver that can perform forward- and

backward-chaining. Suppose the semantics sets the goal to conflate

the Agent and the Theme. This is a grammatical problem that can be

solved using the grammatical knowledge contained in the grammar.

This goal cannot be solved immediately since no feature has a reali¬

zation rule conflating these two functions. However, assuming there

is a general rule expressing the transitivity of conflation, this

rule can set as subgoals: the conflation of the Agent with X, and

the conflation of the X with the Theme--where X can be instantiated

to Subject. The features operative and unmarked-declarative-therne

respectively have these realization rules (effects) so the

backward-chaining begins there.

The feature operative, to start with, has the entry condition

effective. So effective becomes a subgoal. It in turn has the

entry condition clause which then becomes a subgoal. This chain of

reasoning stops once clause is chosen because it has no entry

- 61 -

conditions. Similarly, the problem solver will backward-chain from

unmarked-declarative-therne through declarative, indicative, finite

and clause. This backward-chaining is a similar idea to "path aug¬

mentation" described in (Mann et al., 1983, p. 68) for inter-rank

preselection.

Sometime after clause is chosen in the example, the gate

theme--interpreted as a forward-chaining rule—will fire, since its

entry condition is satisfied. Although this is the only gate in this

example, there will be many gates firing like this in a large gram¬

mar. The gates may fire in chains because many gates have other

gates as their entry conditions.

E.g. :

range-r eceptive_
I_passive-process-{--}-finitepass-{--}-were

receptive]
Figure 4.4

An excerpt from (Mann/Halliday)

Figure 4.4 shows a series of gates. If either range-receptive

or receptive (neither of which is a gate) is chosen, passive-process
fires. One of the gates for which passive process is one of the

entry conditions is finitepass. One of the gates for which fini-

tepass is one of the entry conditions is the gate were.*

It is important to understand that features such as declarative
arid finite in the original example, and finitepass and were in the

gate excerpt, have realization rules (not shown here) that become
side effects of the solution to the original goal.

Returning to the original example, there must be several goals
of this kind set by the semantics, and after all the forward and
backward reasoning has been done, and all the realization rules have

* Note that there is no choice here, so the input simply pro¬

pagates through these gate networks like a logic circuit--
presumably this is the origin of the term "gate."

- 62 -

been processed, the linguistic element will be uniquely determined.

A small amount of additional domain-specific (i.e. linguistic)
knowledge about conflation, adjacency and so on will enable the

problem solver to actually construct the clause.

The crux of the matter is that there is no special mechanism

here. The problem solver is using grammatical knowledge in exactly

the same way as it can use other knowledge in other domains. Thus

the process of text generation as described in this section has been

conflated with the process of problem solving.

^_.2_.3_. Conflating the semantic stratum with compiled knowledge.

The problem-solving process described in the last section would

work. There may, however, be several different ways to achieve any

particular goal, seme of which may lead to conflicts with other

goals and thus to backtracking. This method would have the advantage

of being simple; but the disadvantage, of course, is that the back¬

tracking makes even the most common and simple semantic goals very

expensive to achieve. AI problem solvers avoid having to solve the

same difficult problem repeatedly by "compiling" the result.

It is not a new idea that language involves difficult problems

that occur repeatedly and thus is a good candidate for knowledge-

compilation techniques. McDonald (1983a, p. 265) says his system
cannot do

'

...planning by backwards chaining from desired
effects....the effects of such instructions can sometimes
be achieved "off-line" however, by having the designer
precompute the decision-space that the deliberation would
entail and then incorporate it into the component's
library as what would in effect be an extension to the
rules of the grammar.

Also, as Berwick (Brady and Berwick, 1983, p. 26) says:

... it seems hardly likely that every time one hears "Can
you pass the salt?" one runs through in toto a long chain
of inferences that ends with the conclusion that what was

really meant was that someone wants you to pass the salt.
The obvious alternative is to squirrel away some commonly
occurring deductions ... Of course this approach begs an

- 63 -

important research question about the nature and organiza¬
tion of these ...

Berwick's comments clearly apply to generation as well, and the

answer to the begged question is Halliday's semantic stratum (as
described in Section 3.5]. The nature of the compiled plans or

deductions is that they associate grammatical features with situa¬

tions; their organization is by register. Thus the semantic stratum

can be conflated with the high-level compiled knowledge found in AI

problem solvers.

Of course the solutions can be compiled to various degrees.

For instance any semantic feature that preselects the grammatical

feature unmarked-declarative-theme in the sample grammar above could

also preselect the features declarative, indicative, finite and

clause—thus compiling part of the backward-chaining process

described earlier. There appears to be a tradeoff between clarity

and conciseness on one hand, and speed on the other. The approach

taken in this work is to have the semantic features preselect only

enough grammatical features to determine the result. There are

several reasons for this decision. First, in research of this nature

clarity is essential. Second, the backward-chaining process is very

efficient and does not introduce a large overhead. Third, in the

deeply compiled version, making a small change to the grammatical

stratum would require many changes to the semantic stratum (unless
the compilation is autcmatic--see 9.3.3].

The question is now: exactly which features need to be

preselected to determine the result? The answer lies in the various
sources of disjunction in the system network. The major sources of

disjunction are the systems. Since features that are terms in sys¬

tems are interpreted as backward-chaining rules, many of these

features will be chosen if and only if they are part of the entry

condition of a more delicate feature.

- 614 -

Figure 4.5

Consider Figure 4.5. There is simply no point in preselecting the

feature a, because then either b or c must be chosen somehow, and

whatever mechanism chooses between them (backward-chaining or

preselection] will thereby imply a, making the original preselection
redundant. Thus it becomes clear that there is no point in

preselecting a feature in a system if it is part of the entry condi¬

tion to another system.

Hudson (1981, p. 214] makes this point when discussing the
interface between the grammatical and the phonological strata:

[T]he only phoneme features that we need to specify as
realization for a lexical item are the ones on the right-
hand edge of the system-network. This obviously consti¬
tutes a major economy in the rules.

The exception to this rule is a result of another form of dis¬

junction: disjunctive entry conditions to systems.

.vowel-<

lax

tense

peripheral*

central.

centring

non-centring*

front*

back

I*

E

A

Figure 4.6
A fragment from a phonological network (Hudson, 1981, p. 213]

- 65 -

Consider Figure 4.6 (The asterisks indicate unmarkedness and

will be referred to in Section 9.3.2.3}. The features "on the

right-hand edge of the system network" i.e. those features that do

not have systems to their right are: lax, centring, non-centring,

front, back, I, E and A. Suppose non-centring is preselected. At

this point the problem solver does not know which of the two dis¬

junctive entry conditions (tense, peripheral or both] to set as

subgoals, so it cannot continue backward-chaining. On one hand, if

the vowel is in fact peripheral, then a feature must be preselected

from each of the other two systems (front/back and I/E/a). In this
case peripheral will be chosen during the course of backward-

chaining from each of these two systems and this gratuitously solves

part of the problem with the disjunctive entry condition to non-

centring. On the other hand, if the vowel is in fact tense there is

no way to infer this by backward-chaining from other systems, so it

must be preselected.

Disjuncts like peripheral that are dependent on other systems

and not disjunctive with respect to those, are termed dependent dis¬

juncts . Disjuncts like tense that have no such dependents and thus

cannot be resolved by backward chaining are termed independent dis¬

juncts . The rule then, is that features that do not have systems to

their right or are independent disjuncts (collectively termed seed

features) need to be preselected, and all other features can be

deduced from these (this will be proven in Chapter 6).

Note that gates never need to be preselected. Even if gates

have disjunctive entry conditions, it makes no difference because

the chaining is in the other direction. Recall Figure 4.1: mass-

subject and singular-subject are disjuncts, but it does not matter

which one has been chosen; the rule will still fire.

There is only one difficult case: features that are not terms

in systems themselves but are part of the entry conditions to sys¬

tems. In fact this happens in the (Mann/Halliday) clause network.

- 66 -

intensive .. .

... ascriptive
circumstantial...

.. . effective

}-equati ve possessive...
.. . relational

Figure 4.7. A fragment from (Mann/Halliday)

In this fragment equative looks like a gate, but in fact must

be interpreted as a backward-chaining rule since it may act as the

entry condition to a system. Notice also that it (like ascriptive)
is an independent disjunct. Therefore the semantics must preselect

either ascriptive or equative if the backward-chaining will run into

this disjunction.

The semantic stratum thus acts as a layer of highly-compiled

knowledge that guides the problem solving at the grammatical stratum

by preselecting seed features (features that do not have systems to

their right or are independent disjuncts). This is illustrated in
Section 4.3 below.

Another topic is the possibility of the problem solver using

the grammatical knowledge directly (as in the previous section] in

cases where no appropriate compiled/semantic knowledge exists.

As new, unanticipated patterns crop up, inflexible, com¬
piled solutions fail. General problem-solving abilities
allow a more graceful degradation at the outer edges of
domain knowledge. (Brachman et al., 1983, p. 46]

It is possible to envisage a text-generation system that when

"unanticipated registers crop up" could reason "from first princi¬

ples" using the knowledge at the grammatical stratum. This will not

be taken further here--see section 9.3.4.

4_.2_.4_. Conflating behaviour potential and general problem-solving
knowledge

It has already been mentioned briefly that systemic theory

views "can mean" as one form of "can do"; meaning potential is one

- 67 -

form of behavioural potential. This nicely completes the correspon¬

dence between AI problem solving and systemic theory, since even the

non-linguistic aspects of a problem-solving system can be related to

the theory. Consider, for instance, a planning system for the

blocks world. In a particular situation the planner may have

several rules indicating valid actions that can be performed. It

makes perfect sense to interpret this as the system's "behaviour

potential." Perhaps one of these actions is a linguistic request to

another agent to move a block. In this case the behavioural poten¬

tial is also a meaning potential. The ability to relate linguistic

issues to the larger behavioural sphere of activity will prove use¬

ful in cases where non-linguistic modes of communication are possi¬

ble (see Appelt, 1982, 1983, and Sections 8.2.1, 8.3.1].

An example

Ideally, an example from a typical expert-system application

would be given here, but unfortunately the only semantic stratum

available is a fragment of a network for a mother threatening her

child (described briefly in Section 3.6}. The following example is
meant to serve as an analogy to text generation in AI applications.

Suppose there exists a situation involving two agents: a mother

and her child. The child has performed some action and the mother,

in order to achieve seme parental or other social goal, plans to

prevent the child from repeating the act. As a result of some rea¬

soning which is not at issue here, the mother decides that solutions

such as physically restraining the child and so on would conflict

with other goals. Another alternative, however, is to achieve this

goal verbally. The task thus becomes a "text planning" task. The

mechanism that performs this task is referred to as the "text

planner" although it may well be the same general-purpose problem
solver working with linguistic knowledge, not necessarily a

special-purpose text-planning mechanism.

Again as a result of reasoning which is not at issue here, the

text planner decides it can achieve the goal with a two-part

- 68 -

utterance: first chastising the child, explaining that the action

should not be performed; second threatening punishment if the action

is repeated. The text planner reduces the goal of creating this

utterance to a set of semantic goals. It is now the job of the text

generator to take these semantic goals and produce the natural-

language output.

It will be assumed that the text generation is performed using

the SLANG approach--a general purpose problem solver uses the

knowledge contained in the grammar (semantic and grammatical strata]
and some knowledge about systemic realization to generate the text.

To avoid confusion, semantic features are prefixed by to

help the reader easily distinguish them from grammatical features

(there is no linguistic or computational significance placed on the

prefix]. Also, where there may be doubt, the network containing a

feature will follow the feature in parentheses--e .g. declarative

(clause] .

The semantic goals set by the text planner are: $straight-

threat, $explicit-repetition, ^chastisement, $smack, $explanatory-
cond and $adult-centred-punishment. These semantic goals are seed

features of the following excerpt from a semantic stratum to which

the text generator has access.

- 69 -

loss-of

command-{

privilege

■rl
get-attention

unmarked-command

decision- *

rej ection
H
deprivation

pending_
resolution- |

—| deferred
obligation

H
mother-centred

puni shment-

H

H

immediate

unmarked
time

child-centred

adult-centred

child-centred

chastisement

authori ty-f igure

non-cond ^ explicit-repetition

conditional—J non-repetitive reason

logical-cond

non-1og-cond-

H

alternative

strai ght

explanatory

exclamatory

Some semantic choices

The features corresponding to these goals will be chosen and

their entry conditions will be set as subgoals. The problem solver

backward-chains from $explanatory-cond to $non-logical, from

$explicit-repetition to $conditional, from $adult-centred-punishment
to $punishment, from $chastisement to $punishment, from $non-logical
to $conditional, from $conditional to $punishment, and from $punish-
ment to $threat. Notice that several backward chains often pass

through the same goal. The problem solver only achieves the goal

- 70 -

once, and if it is set again, it is recognized as being redundant.

Sometime during the backward-chaining, seme forward-chaining rules

(not shown in the above figure, but listed in Appendix C, Section

13) also fire, viz. choosing $explanatory-cond triggers $stated-
cond, and choosing $explicit-repetition and $straight-threat

triggers $repeat-straight, while choosing $adult-centred-punishment
and $chastisement triggers $mother-punishes.

The realization rules of these semantic features (See Appendix

C, Section 13) preselect seed features from the grammatical

stratum—they set grammatical goals. In fact the problem solver may

not wait until all the semantic goals are solved before it begins to

solve for goals at the grammatical stratum. The generation will be

described word by word from left to right, starting at the top for

each word in turn. This is not necessarily the exact order in which

the problem solver attacks the goals but in fact is similar to the

implemented pr obi on-solving process described in Chapter 7. Many of

the details, especially at the grammatical stratum, will be glossed

over to make the description comprehensible. Nevertheless, it is

hoped that the general idea will be conveyed.

The feature $conditional divides the text up into two parts: a

condition and a threat, represented by the semantic functions $Cond
and $Threat. There is also an adjacency realization rule ($Cond
$Threat) that orders the condition before the threat. This semantic

adjacency is not the proper way to do this, but has been used as a

shortcut. There should be a clause-complex rank at the grammatical

stratum that handles this kind of clause ordering (Halliday, 1985,
Chapter 7). So first the generation of the condition will be
described.

The feature $stated-cond has realization rules which preselect,

or set as goals, the features unmarked-declarative-theme and non-

attitudinal (both clause features). The former has the effect of
conflating the Topical and the Subject. The feature $non-logical-
cond, which was inferred from $explanatory-cond or $straight-threat,
sets the goal non-textual-theme (clause). When non-textual-theme

- 71 -

and non-attitudlnal are chosen, they trigger a forward-chaining rule

that together with other inferences orders the Topical at the front

of the $Cond clause (by ordering Theme as the leftmost function in

the clause, and Topical as the leftmost subfunction of Theme] .
Since the Topical is conflated with the Subject, this also means

that the Subject is at the front of the clause. The feature $condi-
tional also sets the grammatical goal addressee-subject (clause]
which in turn has the effect (Subject = you]* and sets the goal
! second-person (verb] for the Finite. Since the Subject is com¬

pletely realized, and since it is the first item in the clause, it

can now be output. The following is the current structure of the

first clause:

you

MOOD | Subject |

Topical"?
THEME + +

~ Theme |

The feature $explanatory-cond sets the goal modal (clause] , and

sets the goal !must (verb] for the Modal element.** The feature

modal, chosen to achieve the above goal, has the effect (Modal /

* This could also be done by preselecting the appropriate
features frcm the pronoun part of the noun network. Since the lex¬
ical item is in fact completely determined, lexification has been
used instead.

** In fact, in this case "must" is not a modal, but rather what
Halliday (1976b] calls a "quasi-modal" [l] or modulation (see also
Halliday, 1985, p. 86]. This is the difference between "Mary
can't think that!" and "Mary can't think period!" (Halliday,
1976b], The former uses a modal to indicate that what is being
said is obvious (the modal plays an interpersonal role]; the
latter uses a quasi-modal to indicate Mary's inability (the modu¬
lation plays an ideational role]. Since the grammar used for the
implementation cannot handle modulation, and since the syntax for
the two is often identical, the current system pretends quasi-
modals are true modals. This cheat prevents the implementation of
the $obligation examples such as "you'll have to go upstairs"
since, unlike modulations, modals can never be combined with the
future tense.

- 72 -

Finite]. At some point the problem solver backward-chains frcrn

unmarked-declarative-theme to infer the feature declarative, which

has the effects {% " Subject], (Finite ~ %) and (Subject ~ Finite].
This, together with the fact that Modal and Finite have been con¬

flated, means that the Modal is the next item to be generated.

Another of the effects of $non-logical-cond is that it sets the goal

unmarked-negative (clause] . At seme point the problem solver infers
indicative and finite from declarative by backward-chaining. These

have the realization rules (Mood(Subject]] and (Residue ~ #], and

(Mood(Finite]] and (Mood " Residue] respectively. From indicative
and unmarked-negative the feature reduced-negfinite is inferred by

forward-chaining, and sets the goal ! reduced (verb] for the Finite.
The feature negative is a condition for unmarked-negative and is

thus inferred by backward-chaining. This, and the feature indica¬

tive , result in negative-finite being inferred by forward-chaining.

The latter feature sets the goal ! negative for the Finite. When the

goals ! negative, ! reduced, and ! must (all verb] are satisfied by

choosing the corresponding features, "mustn't" is inferred by the

forward-chaining rule shown in Figure 4.8.

!must

[negative f --"mustn't"
([Aux = | mustn't |

[reduced

Figure 4.8

The lexical item "mustn't" thus realizes the Finite/Modal and can

now be output.

- 73 -

CLAUSE

WORD {

you mustn't

^"Subject "Finite"?
MOOD + + +

! Mood " Residue "#
+ + +

| | Modal |
+ + +

?"Topical"?
THEME + +

" Theme |
=======+=========+=======+

#"!Aux "#
+ +

The realization of the next item to be output, the Process, is

again started by the feature $conditional, which sets the goal !-do-

for the Process. This together with ! stem triggers the feature "-

do-" which lexifies the verb as "do" (the hyphens distinguish the
lexical verb "do" from the auxiliary "do", but both are realized by

the same item in the end]. The feature ! stem is inferred as fol¬
lows: modal was an effect of $explanatory-cond; non-past-in (non-
perfective) and non-present-in (non-progressive) were both effects
of $conditional. Frcm these, together with active-process, inferred

from operative by forward-chaining, can be inferred

modalstemlexverb—which has the effect of setting the goal !stem for

the Lexverb. However this is also a goal for the Process since the

Lexverb and the Process are conflated as an effect of clause, which

will be inferred at the end of some backward-chaining process. The

current relevant structure is:

_ yn _

you mustn't do
+ + + +

^"Subject ~Fini te" % 1$~Lexverb |
MOOD + + +

| Mood ~ Residue " #
+ + +

CLAUSE ■ TRANS | Actor | | Process |
+ + +

% A Topical*/?
THEME +-- +

~ Theme |
===============+========= +========+========= +

WORD { !Aux ~ # |#~ ! Ver b

Finally, the grammatical function Goal is generated starting

from a number of preselections from the nominal-group network by the

semantic feature $conditional. It sets the following nominal-group

goals: non-possessive-nom, singular, determiner-head and far. The

two relevant functions in the nominal-group are the Deictic and the

Head, which are conflated in this case by determiner-head. The

feature far has the conditions demonstrative and non-interrogative-

det which are thus inferred by backward-chaining. These, together

with singular, trigger a forward-chaining rule that sets the goal

!singular-pronoun for the Deictic. Frcm !singular-pronoun and

!singular (set as a goal by singular) the feature "that" is

inferred, which sets the last lexical item in this clause to "that."

Thus the conditional clause "you mustn't do that" has been gen¬

erated. The final structure is:

- 75 -

you mustn't do that

MOOD
rSubject ~Finite~$ |$~Lexverb~Residual~

1 Mood Residue

1 | Modal 1

CLAUSE
TRANS 1 Act or | | Process | Goal

ERG 1 Agent | | Process | Medium

THEME
r Topical"^

Them e |

GROUP
#~Deictic
H

| Head
+ +

WORD !Aux "# 1!Verb~#|!Noun

Next, the threat clause must be generated. The semantic

feature $non-logical-cond sets the goal textual-theme, which means

that the Theme of this clause will consist of both a Textual and a

Topical. The feature $repeat-straight sets the goal thesis-

repetitive (conjunction], which has the effect of lexifying the
function Time as "next time". Backward-chaining frcm there results

in Time being conflated with Conjunct, which is then conflated with
Textual (an effect of textual-theme (clause]]. Since the Textual
element is ordered first (another effect of textual-theme] , "next
time" can be output.

The feature unmarked-declarative-theme, set as a goal by $pun-

ishment, again conflates the Subject with the Topical, the next item
to be generated. The semantic feature $mother-punishes sets the

goal speaker-subject (clause], which has the effect (Subject = i],
lexifying the Subject. "I" can now be output.

- 76 -

next time I

MOOD | (Subject |
CLAUSE + + +

^"Textual "Topical"?
THEME + +

" Theme j
+ +

The features future and unmarked-positive (both clause) are set
as goals by $punishment. The feature future sets the goal !will

(verb) for the Finite. The features declarative and indicative are

inferred by backward-chaining frcm unmarked-declarative-theme. The

feature interactant-subject is inferred by backward-chaining frcm

sp eak er-sub j ec t. From declarative, unmarked-positive, and

interactant-subject, the feature reduced-posfinite is inferred by

forward-chaining, which sets the goal !reduced (verb) for the Fin¬
ite. The feature positive (clause) is inferred frcm unmarked-

positive, and this, together with indicative, allows the problem

solver to infer positive-finite, which sets the goal Ipositive

(verb) for the Finite. The forward-chaining rule shown in Figure

4.9 then fires, realizing the Finite as "'11".

. .. !will I

...Ipositive > —"11"
I (!Aux = | ' 111)

...Ireduced I

Figure 4.9

Since declarative orders the Finite just after the Subject, the Fin¬

ite can be output.

The semantic feature $smack sets the goal ! smack for the Pro¬

cess, the next item to be generated. Just like in the last clause,

the feature modalstemlexverb is chosen, setting the goal !stem

(verb) for the Lexverb, which is again conflated with the Process.
The result is that the Process is realized as "smack".

- 77 -

Finally, the semantic feature $adult-centred-punishment has

preselected the nominal-group features non-possessive-nom, personal,
and singular for the Goal of the $Threat, and the word-rank features

!second and !objective for the Head of the Goal of the $Threat

($Threat<Goal<Head]. The nominal-group feature personal implies the

feature pronoun, which together with singular triggers a forward-

chaining rule that has the effect of setting the goal !singular-

pronoun for the Head. The forward-chaining rule shown in Figure

4.10 then fires, realizing the Head (the only part of the Goal) as

"you".

! subjective
! objective

! singular-pronoun
! plural-pronoun

!second "you"
(iNoun = you)

Figure 4.10

The structure of the second clause is:

next time I '11 smack you

MOOD
| | $~Subject~Fini te~ 551 $~Lexverb~Residual~$

| | Mood Residue

CLAUSE
TRANS | | Act or | | Process | Goal

ERG | | Agent | | Process | Medium

THEME
^"Textual "Topical"^
+ +

~ Them e

Group # " Head

WORD ir !Aux ~
+

#|#~!Verb~#|INoun

Thus the text "you mustn't do that[,] next time I'll smack you"

- 78 -

is generated.

£. Advantages

This chapter began by pointing out the fundamental relationship

between AI problem solving and systemic grammar. It was shown that

the linguistic interpretations of the concepts found in systemic

linguistics can be conflated wi th problem-solving interpretations.

The system networks found in the linguistic literature can be inter¬

preted as sets of forward- and backward-chaining production rules

forming a linguistic knowledge base; the semantic stratum as

described in the systemic theory can be interpreted as compiled

knowledge--rules capable of high-level inferential macrcmoves; the

process of generating text from systemic grammars (given the

interpretation just mentioned] can be interpreted as a straightfor¬
ward application of general purpose AI pr obi em-sol ving techniques

and domain specific knowledge to solve problems in that domain; the

notion of behavioural potential can be interpreted as being

described by the sum total of a problem solver's knowledge—

linguistic + non-linguistic.

The fact that these two (until recently] independent fields can

be conflated in this way is of theoretical and historical interest.

There is, however, also an important practical significance, in that

the conflation allows text generation from linguistically formalized

grammars to exploit state-of-the-art AI pr obi em-sol ving techniques.

To' date, text-generation systems have had to either pay a computa¬

tional price for the use of an established linguistic formalism, or

else pay a linguistic price for access to the best computational

techniques (see Chapter 8]. Since representations in systemic gram¬

mar and AI problem solving can be conflated, no sacrifices, linguis¬

tic or computational, need be made.

What makes text generation a hard problem (or an AI problem] is

that there is a huge space of alternatives that must be discharged

quickly. The discipline of AI problem solving has developed

representations (e.g. production rules] for knowledge of the

- 79 -

alternatives, and selective, efficient techniques for searching

through the space of alternatives given suitably represented

knowledge. The conflation of systemic grammar with problem-solving

knowledge means that these sophisticated computational techniques

can be exploited while the grammar (including the semantics) retains
its linguistic status.

It is not surprising that systemic grammars can be processed

computationally to generate text--what is significant is that una¬

dulterated systemic grammars, as they appear in the linguistic

literature, can be processed directly by the state-of-the-art

knowledge-based problem-solving methods.

It is also not surprising that AI pr obi an-solving techniques

can be used to process a linguistic formalism—what is significant

in this case is that given enough knowledge at the semantic

stratum—note that this is within the linguistic framework--the

search is optimal in the sense that it is deterministic; only steps

that lead- directly to a solution are taken. Thus best-case perfor¬

mance is achieved for the most efficient computational techniques

available.

The fundamental relationship between AI problem solving and

systemic grammar will ensure that SLANG retains these advantages.

As better computational techniques become available, they will still

be techniques for constructing a solution "selectively and effi¬

ciently frcm a space of alternatives." And as better systsnic gram¬

mars are developed, they will still represent language as "sets of

options or alternatives."

- 80 -

5_. Theoretical Issues

The last chapter has described SLANG, a new approach to text

generation. Before going into the details of a formal model or the

implementation, it may be useful to pause at this higher level of

abstraction and look at the theoretical issues raised by this

approach. The first set of issues is concerned with the interface

between the semantics and the grammar. The interface employed in

this method differs from current approaches in that parts of the

semantics and pragmatics, usually dealt with by a text planner, are

"compiled" to form a "semantic stratum." Another set of issues con¬

cerns taking a functional approach to computational linguistics. An

analogy will be drawn between linguistic description and biological

description, and some insights into the functional approach will be

sought through a comparison with physiology. Finally, seme impor¬

tant differences between the approach taken by SLANG and the

approach taken by the generative paradigm will be explored. This

chapter is not meant to be a presentation of concrete conclusions,

but is rather an attempt to share with the reader some of the intui¬

tions and insights which resulted in or resulted from this work.

5_.1_. The interfaces

The issue of compiled knowledge in SLANG introduces some

interesting complications regarding the interfaces between the text

planner and the text generator, and within the text generator

between the semantics and the grammar. The specific issues dis¬

cussed in this section will be the floating boundary between the

text planner and the text generator, and the separation of semantic
and grammatical knowledge.

5.1_.1_. The planner/generator boundary

The previous chapter initially introduced the hypothetical idea
of actually doing goal-directed backward-chaining with knowledge at
the grammatical stratum. It was later shown that the efficiency of

this process can be greatly improved by using compiled knowledge.

- 81 -

Note that the boundary between the text planner and the text genera¬

tor depends on how much of the possible reasoning at the grammatical

stratum has been compiled, and the degree to which it has been com¬

piled. In the case of registers where there is little or no com¬

piled knowledge available the text planner will have to reason down

to a level of detail where it can set goals involving the syntactic

functions (e.g. make the Agent the Theme], which can then by solved
with knowledge from the grammar. If there exists highly compiled,

large-grain-size semantic knowledge applicable to the text planner's

goals, it can give the text generator relatively high-level situa¬

tional and social goals.

This relationship between text planning and systemic text gen¬

eration should not be surprising. Text planning has always been

centred around the theory of speech acts—the idea that utterances

can be treated like other physical actions. This is reflected in

the term "text planning" and in the methodology of planning

sequences of linguistic actions using AI planning techniques usually

applied to robot actions (e.g. Sacerdoti, 1975]. Functional

linguistics takes the same view. As Halliday says, meaning poten¬

tial is just one form of behavioural potential, or "'can mean' is

one form of 'can do'" (deJoia and Stenton, 1980, #5^9].

Note also that it is misleading in this context to view the

text planner and text generator as separate mechanisms. It should

be envisaged that the same inference engine is active in each case.

When, it is using text planning knowledge it is the "text planner"

and when it is using knowledge from any of the systemic strata it is
the "text generator."

Thus the boundary between the text planner and the text genera¬

tor, or perhaps more accurately, the interface between the text

planning and the text generation, depends directly on the status of
the semantic stratum. It depends on the degree of compilation and

the particular registers involved. Thus, while the distinction
between text planning and text generation (or whatever terms are

used in their stead] may indeed be useful, the line between them can

- 82 -

not and should not be drawn too heavily.

5^.1_.2. Separation of semantic/pragmatic and grammatical knowledge

One theoretical goal which is almost universal among computa¬

tional linguists is that of keeping the semantic/pragmatic knowledge

distinct from the grammatical knowledge. For the sake of modular¬

ity, neither level should contain detailed knowledge of the other.

At first it may appear that the compiled nature of the semantic

stratum in SLANG has violated this constraint: the preselection

paths (see Section 3.3*7.5] contain what are essentially structural

descriptions. These, it could be objected, belong in the grammar,

not in the semantics.

The objection can be answered in two ways. First, the struc¬

tural descriptions appear in the realization rules at the semantic

stratum. The realization rules relate the semantics downward to the

grammatical stratum, and thus should be thought of as being between

the two strata. This is not just splitting hairs; there is an

important point here. The semantic stratum represents the paradig¬
matic organization of register. The representation of register is

completely independent of grammatical concerns. The realization
rules embody the knowledge of how to map the various registers onto

the grammatical organization.

The second part of the answer is that the semantic realization

rules should contain constituency information. Immediate consti¬

tuency grammars often contain constituency introduced for grammar

writing convenience (e.g. recursive representation of parataxis—see
Section 3.3.9]. There is no doubt that the semantics should not
know about this constituency. However, the minimal bracketing prin¬

ciple in systemic grammar (see Section 3.3.6] ensures that this form
of constituency does not appear in systemic grammars.

Literally interpreted, the wording 'minimal bracketing'
would presumably mean no bracketing at all. It does not
mean that, of course; what it does mean is functional
bracketing--bracketing together only those sequences that
have seme function relative to a larger unit. (Halliday,

- 83 -

1985, p. 24)

Groupings can be introduced for grammar-writing convenience

through the "expand" realization rule (see Section 3-3.7-2), but

expanded functions never appear in preselection paths.

The preselection paths explicitly represent the hierarchy of

functions formed by the minimal bracketing, and there should be no

objection to this functional hierarchy appearing at the semantic

stratum.

5.2_. The functional approach

A set of issues not independent of the compilation issues has

to do with the functional approach SLANG inherits from systemic

grammar. "Function versus form" has been discussed at length in

several fields of study outside AI. First, the idea of a functional

approach to linguistics will be introduced, and this will be com¬

pared to the currently dominant "formal" approach.* Second, an anal¬

ogy with biology will be drawn to make this comparison and to put

the linguistic issues into perspective. Third, still using the

analogy, the relevance of the functional approach for computational

linguistics will be suggested.

5_.2.1_. What is a functional approach?

. The functional description of a mechanism says what it
does. The implementation description says how it does it.
The implementation description of the frame of which it is
a part says what it is used for. If you want to under¬
stand in more detail, then the interface information,
represented either explicitly or inherited from the imple¬
mentation model, tells you how the functions of the parts
come together to implement the total behaviour. If you
want to understand in still more detail, you recurse and

* Unfortunately, the two candidates here: "formal" and "struc¬
tural" are both ambiguous. "Formal," as used by Hall iday (198 5)
and Leech (1983) seemed the lesser of the two evils. Note that
this does not mean the functional approach cannot be "formalized,"
only that it does not deal with form as the primary char acteri stic
of language.

- 84 -

examine the functions of the subparts in the same way.
Etc. ad infinitum. (Smith, 1978, p. 31)

... we are taking a functional view of language, in the
sense that we are interested in what language can do, or
rather in what the speaker, child or adult, can do with
it; and that we try to explain the nature of language, its
internal organization and patterning, in terms of the
functions that it has evolved to serve. (Halliday in
deJoia and Stenton, 1980, #193)

What do we understand by a 'functional approach' to the
study of language? ... Among other things, it would be
helpful to be able to establish some general principles
relating to the use of language; and this is perhaps the
most usual interpretation of the concept of a functional
approach. (Halliday in deJoia and Stenton, 1980, #191)

A functional approach to any domain involves classifying and

relating the entities of that domain by their function. The func¬

tion of an entity is "what it does," which is intimately related to

"what it is used for," and when we have a hierarchy of functional

entities, this becomes "how it works."

This type of functional approach has received very little

attention in mainstream linguistics to date. Instead, a primarily

"formal" approach has been taken—classifying and relating the enti¬

ties of a domain by their structure.

5.2.2. Formal and functional approaches

The functional and formal approaches, and their relationship to

each other, may best be illustrated with an example. Both the func¬

tional and formal approaches can be found in biology: physiology and

anatomy respectively.

Anatomy (here referring to "regional anatcmy") is the study of
the structure of an organism. The organism is divided up into struc¬

tural regions, which then contain substructures, and so on. This is

analogous to the formal approach in linguistics where the descrip¬

tion consists of dividing a sentence (for instance) into a noun

phrase and a verb phrase, then dividing these etc.

- 85 -

Physiology is a functional approach because it is concerned

with the functions of various components of an organism and how they

combine to form larger functional wholes. Physiology is analogous

to the functional approach in linguistics, represented here by sys¬

temic grammar.

Functional description is a basic cognitive tool. Consider
the problem of writing a 'grammar for animals'—a formal¬
ism that describes what their pieces are and how they fit
together. In doing this, biologists look for functional
systems, such as the skeletal system, the muscular system
and the circulatory system. Individual structures are then
described in the context of these different systems and
the roles they play in them. Indeed, anatomy could be stu¬
died without any reference to this 'physiological' level
of description. An animal can be seen as a complex
interweaving of cords, tubes, bones, fibers etc. But to do
so would make the structure seem impossibly complex and
arbitrary. The key to understanding the complexity of the
structure lies in recognizing its functional organization.
The old adage that 'form follows function' can serve as a
framework for understanding language, (winograd, 1983, p.
279]

An analogy can be drawn between the organs of a human body

(e.g. the heart] and units of a text (e.g. Subject]. Each plays a

functional role in the respective description, i.e. they do some¬

thing .

It must be understood that it is important to distinguish

between a functional approach, as described above, and a formal

approach that uses functional labels for constituents. It is possi¬

ble (and sometimes useful] to give an anatomical description (in
terms of regions and spatial relationships] where the components are

given functional labels such as "pump" without relating these labels

to higher-level functions. It is also possible (and sometimes use¬

ful] to give formal linguistic descriptions where constituents are

given functional labels such as "Agent," without relating these

labels to higher-level functions.

The currently popular functional notations—in particular
"functional unification grammar" (Kay, 1984, 1985]--confound this
distinction because they are not explicitly associated with a

- 86 -

functional theory. They can thus be used with a proper functional

theory, or used for formal description, or (as in the case of some

recent language generation work—e.g. Appelt, 1983; McKeown, 1982,

1983) used functionally but within an ad hoc and piecemeal func¬

tional framework. What distinguishes systemic grammar from mere

functional notations is the fact that it is explicitly associated

with an established functional theory. All of this is analogous to

biological description.

A simple structural analysis would be based on laying out
maps of organs, what they connected to, and what tissue
structures appeared in which areas. A functional analysis
would involve a study of physiology, viewing the body as
an intertwined set of systems (such as the circulatory
system and the respiratory system) and describing indivi¬
dual organs and internal structures in terms of the func¬
tions they serve in each of these systems. A macro-
functional analysis would include an understanding of the
functions these systems serve in preserving the individual
and the species. The organs and structures can be
described in terms of the way they contribute to one or
more of the necessary macro-functions (which have been
succinctly characterized as 'feeding, fleeing, fighting,
and reproduction'), (winograd, 1983, p. 288)

A structural (formal) analysis in linguistics would be based on

laying out maps of constituents, what they are adjacent to, and what

constituents appear in which places in the string. A functional

analysis would involve viewing the text as intertwined sets of syn¬

tactic functions (such as Agent, Process, Goal; Subject, Finite;

Theme, Rheme) and describing individual constituents in terms of the
functions they serve in each of these. A macro-functional

analysis--Halliday now uses the term "metafunctional" for adults—

would include an understanding of the functions these sets of syn¬

tactic functions serve in communication. The constituents and

structures can be described in terms of the way they contribute to

one or more of the necessary metafunctions (which have been suc¬

cinctly characterized as "ideational, interpersonal and textual").

Now, in biology the complementary relationship between the for¬
mal and functional approaches is understood.

- 87 -

The distinction between anatcmy and physiology as areas of
study is largely a matter of emphasis; obviously the form
and structure of an arm, an eye, a hand or an internal
organ cannot be fully explained without reference to the
functions with which these organs evolved. (Encyclopaedia
Britannica, 1964, Vol. 1, p. 866)

And as Purves (1985, p.4l) points out,

One of the deepest and most productive concepts of biology
is that of the intimate relationship between structure and
function. To understand a structure, whether that struc¬
ture is an infinitesimal protein molecule, a two meter
tall termite hill, or the megalithic array of Stonehenge,
we must understand its function ... In AI, one should not
just study a behaviour in and for itself, but should take
it in a larger context, considering its function in accom¬
plishing goals. Natural language processing by humans
relates to such goals as information transfer, and this
consideration should inform research on language.

Despite all this, the functional approach has been neglected in

most linguistic and (of particular interest here) computational

linguistic work. As Halliday points out (1978, p. 17), despite the

complementary nature of the formal and functional approaches, they

"have tended to become associated with conflicting psychological

theories and thus to be strongly counterposed." The next section

will outline the importance of a functional approach for computa¬

tional linguistics.

5^.2_.3_. A functional computational approach

physiology [fizi-ology] n study of the functions of and
processes in living bodies. (The Penguin English Diction¬
ary, 1979)

The quotation indicates that biologists have found it useful to

study process in a functional framework (physiology) rather than in
a formal framework (anatomy) .

It is interesting to note that a functional approach would

immediately alleviate two of the three limitations of the computa¬
tional paradigm listed by Winograd (1983, pp. 28-29). First, con¬

sider the study of the social aspects of language:

- 88 -

... for example, we want to understand why a particular
dialect is adopted by some members of society but not oth¬
ers, or how dialect differences play a role in establish¬
ing and maintaining group identity and cohesiveness. At
the individual level, we may want to understand how
linguistic devices serve to establish personal power rela¬
tionships or to reinforce social distinctions of rank and
status.

Hall iday (197 8), for instance, devotes an entire chapter to one

extreme form of dialect variation--antilanguages* (pp. 16^-182). He

says, "the significance for the social semiotic, of the kind of

variation _in the linguistic system that we call social dialect,
becomes very much clearer when we take into account the nature and

functions of antilanguages" (ibid., p. 179).

[in] the Calcutta underworld language we find not just one
word for 'bomb' but twenty-one; forty-one words for 'pol¬
ice', and so on.... A few of these are also technical
expressions for specific subcategories; but most of them
are not—they are by ordinary standards synonymous, and
their proliferation would be explained by students of
slang as the result of a never-ending search for original¬
ity, either for the sake of liveliness and humour or, in
some cases, for the sake of secrecy, (ibid., p.' 165)

Note also that the study of "how linguistic devices serve to

establish personal power relationships and reinforce social distinc¬

tion of rank and status" is included in the study of tenor (see Sec¬
tion 3.5.2) .

Another

grad (1983,
language:

... some of the earlier paradigms for language study
emphasized the historical side of language--the ways that
languages evolve, divide, and merge. (Winograd, 1983, p.
29)

The antilanguages mentioned above are an example of languages

limitation of the computational paradigm given by Wmo-

p. 29) is the study of the historical aspects of

* An "antilanguage" is a dialect purposely developed by a group
(e.g. criminals, students, comics etc.) intending to distance it¬
self from the mainstream society for one reason or another.

dividing, and even the harshest critics of the functional approach

admit a functional approach is important for the study of linguistic

evolution:

It is difficult to say what "the purpose" of language is,
except, perhaps, the expression of thought, a rather empty
formulation. The functions of language are various. It
is unclear what might be meant by the statement that some
of them are "central" or "essential".

A more productive suggestion is that functional considera¬
tions determine the character of linguistic rules. Sup¬
pose it can be shown, for example, the [sic] some rule of
English grammar facilitates a perceptual strategy for sen¬
tence analysis. Then we have the basis for a functional
explanation for the linguistic rule. But several ques¬
tions arise, quite apart from the matter of the source of
the perceptual strategy. Is the linguistic rule a true
universal? If so then the functional analysis is relevant
only on the evolutionary level; human languages must have
this rule or one like it. Suppose, on the contrary, that
the linguistic rule is learned. We may still maintain the
functional explanation, but it will now have to do with
the evolution of English. That is, English developed in
such a way as to accord with this principle. In either
case, the functional explanation applies on the evolution¬
ary level--ei ther the evolution of the organism or of the
language. (Chomsky, 1980, pp. 230-231).

It would be possible to view biological processes as causal

epiphenomena of structures—processes following "a complex

interweaving of cords tubes, bones, fibers etc."--but to do so would

make the processes seem "impossibly complex and arbitrary." To avoid

this, processes are studied in physiology where they can be organ¬

ized and explained by what they accomplish. This kind of

explanation—explaining something in terms of its purpose—is called

teleological explanation (see von Wright, 1971), and is intimately
linked with a functional approach.

A teleological explanation of the heart, for instance, would

not begin by describing the subcomponents and their structural

characteristics. Instead, it would be pointed out that the heart is

part of the circulatory system, whose function is to provide tran¬

sportation to all areas of the body, and the function or goal of the

heart itself is to pump the transportation medium (the blood)

- 90 -

through the system. The explanation would relate downward by

describing the functional subgoals of the heart (e.g. some process

for creating pressure is'needed) .

The same reasons that process is studied in a functional frame¬

work in biology also hold for linguistics. This suggests that com¬

putational linguistics, where process is a central issue, could

benefit frcm a functional approach. The functional approach is

especially important in the social sciences because teleological

explanation allows phenomena to be related upward to the social lev¬

els, something which is awkward at best in a causal framework (see
Downes, 198*1, Chapter 11).

5.2.4_. Explanation and compiled knowledge

One of the characteristics of systems that use compiled

knowledge is that seme of the goal-directed reasoning is suppressed.

Simply following the chain of reasoning does not provide teleologi¬

cal explanations with a smaller grain size than the knowledge actu¬

ally used (see Brachman et al., 1983, p. 44). Nevertheless, for the
most part the interest here is not in automatically providing expla¬

nations for the results of text generation, but merely to provide a

framework for understanding the reasons for particular linguistic

choices made during, for instance, automatic explanation in an

expert system. For a helpful analogy here, the study of biology is

revisited.

Good examples of compiled problem-solving strategies which are

described functionally are provided by physiology. The same physio¬

logical entities that were used as examples in the earlier section

on function, the heart and the circulatory system, are compiled

genetically. The body, when it is developing in the wemb, does not

reason that it needs to circulate its blood and therefore that it

needs some sort of pumping mechanism. This and other functional

goals have been achieved through natural selection and the solutions

have been compiled into the genetic code. As physiology demon¬

strates, compilation does not affect the ability to give

- 91 -

teleological explanations—one can still refer to the purpose of the

heart or circulatory system.

Similarly, functional, teleological explanations can be pro¬

vided for generated text, even though large parts of the reasoning

process were compiled. A similar argument applies to the explana¬

tion of language production as a whole. Consider the discussion of

linguistic explanation frcm Thompson (1977):

The only explicit formulation I have been able to arrive
at is one which says that to explain a phenomenon, you
describe a system which in some way exhibits that
phenomenon when it operates. As an example, consider the
solar system. Copernicus explained the motion of the
planets by describing a mathematical system which would
generate that motion. Newton explained that mathematical
system by describing the operation of the force of grav¬
ity. Modern theoretical physicists seek to explain the
force of gravity by describing the behaviour of sub-atomic
particles, ... ad infinitum.

In my case then, I am trying to explain at least seme
aspects of the structure of English by describing a system
which produces English.

... Functional explanations have been pushed back along
some dimension, and I am coming to understand a little
better how sense can be made of Chomsky's (1975 [see also
the quotation in Section 5.2.3] J claim that functional
pressures may shape language development, but do not enter
directly into the mechanisms of language use, at least not
at the syntactic level.

Now, if it is conceded that functional pressures are not

direct, but compiled, then the situation becomes analogous to biol¬

ogy. If a functional approach has been taken, then, as in physiol¬

ogy, the explanation can be carried one step further by explaining

the processes and structures by describing the goals which they

serve to achieve. Notice that this does not affect the ability to

give causal explanations—the system still produces English and the

physical mechanism can be reduced to the level of sub-atcmic parti¬

cles. Thus the teleological explanation is a bonus resulting from

the functional framework, compiled or otherwise.

It is important to note this position is independent of the

- 92 -

debate over the mechanism of the linguistic compilation itself.

Traditionally, functional grammarians tend to argue that linguistic

knowledge is learned (compiled cogni tively] , whereas generative

grammarians argue that the linguistic knowledge is largely inherited

(compiled genetically) (see Leech, 1983, p. ^6; and Halliday, 1978,

p. 17). The point made in this section remains valid whether the

compiled solutions are a result of nature, of nurture, or both.

Now, in the case of SLANG specifically, the

macro/metafunctional framework facilitates teleological explanations

of grammatical choices, the choices that made them and the struc¬

tures that realize them--even when the process is highly compiled.

When a semantic feature preselects a grammatical feature, the theory

indicates the broad function of that grammatical feature and there¬

fore the high-level reason for the choice. If the feature is in the

"mood" section of the clause network, for instance, the theory indi¬

cates that the contribution the feature makes is interpersonal. The

theory, then, provides general guidelines for which grammatical

features achieve which kinds of goals, in the same way as physiolog¬

ical theory provides general guidelines for which processes and

structures achieve which kinds of goals. These guidelines are made

specific when the relationship between register and metafunction is

spelled out (see Section 3.5. 4).

This section has explored the relationship between functional

and formal description. It was pointed out that the complexity and

arbitrariness of linguistic description can be reduced by comple¬

menting formal description with functional description. It was

observed that such functional description would help fill two impor¬

tant gaps in the current computational paradigm: the study of the

social aspects of language and the study of the historical side of

language. It was also emphasized that a functional approach--even

if it is complementing a formal approach—provides the basis for a

teleological explanation of the processes and structures involved in

computational linguistics, in exactly the same way as the functional

approach to biology provides the basis for teleological explanations
of biological processes and structures.

- 93 -

5.3. Contrasts with the generative paradigm

The approach described here has some very important differences

from the generative paradigm. This section will raise two of the

most important issues: Chomsky's modularity hypothesis, and the

power of the grammar. It happens that these issues are related, as

will be discussed below.

I5.3.-1* Chomsky's modularity hypothesis

One of the characteristics of the generative paradigm is that

the language mechanism is viewed as being to a large degree indepen¬

dent of the rest of the cognitive mechanism. This view contrasts

sharply with SLANG, which relies on the same problem-solving mechan¬

ism which does non-linguistic applications problem-solving to do the

text generation at all levels as well. The latter approach

corresponds to the computational paradigm described by Winograd

(1983, p. 21):

Most researchers in the computational paradigm give a good
deal of attention to the interaction between linguistic
and non-linguistic knowledge. It is assumed that the
knowledge structures and processes for dealing with
language are to a large degree shared with other aspects
of intelligence. In developing computational models,
researchers emphasize the commonalities between language
and other faculties. In the generative paradigm, in con¬
trast, it is generally assumed that there is a distinct
language faculty, possessed by humans but not by other
animals, which determines the structure of language.

Thi's discussion is continued (ibid, p. 186):

One of the central methodological principles of transfor¬
mational grammar is the autonomy of syntax. It is assumed
that the human mental capacities underlying syntactic com¬
petence are the result of specialized mechanisms (the
language faculty) that are ... to a large extent distinct
from the rest of our mental processes.

... Within artificial intelligence, on the other hand,
the goal has been the identification of the general prin¬
ciples and mechanisms that underlie all thought processes.
Instead of looking for specialized faculties (except in
obvious cases like the processing in the retina),
researchers formulate general theories of representation

_ 94 _

and problem solving that can be applied to a wide range of
information processing activities.

This position also matches part of Halliday's description of

the "environmentalist" position--to which Halliday evidently

ascribes:

... what the child has is the ability to process certain
highly abstract types of cognitive relations which under¬
lie (among other things) the linguistic system. (Halliday,
1978, p. 17).

This illustrates yet another dimension of the fundamental rela¬

tionship between systemic theory and AI problem solving upon which

this research is based.

5.3.2. The power of the grammar

One theoretical issue related both to the modularity hypothesis

above and to the functional approach is the issue of the power of

the grammar. Generative grammarians criticize functional grammar on

the grounds that it is too powerful. But, as Winograd (198 3 > pp.

187) explains:

The computational paradigm grew out of computer program¬
ming, and the formal structures are seen as analogous to
programming languages and data structures. They are good
to the extent that they make it possible (and easy) to
model the observed phenomena of language use. Often a par¬
ticular mechanism will be preferred because it is more
powerful than its predecessors, since this allows it to
cover more of the phenomena.

In transformational grammar, on the other hand, the intui¬
tions grew out of mathematics and the physical sciences. A
theory is not something to be 'programmed,' but a terse
set of axioms that can be used to predict the data. One
theory is better than another because it is more restric¬
tive, or as often stated less powerful. Much of the
meta-theoretical discussion in transformational grammar
deals with questions of how to limit the power of the for¬
malism so that it can serve as a more precise theory of
the capacities it models. Frcm this point of view, most
AI models are hardly theory at all.

The two issues, the modularity hypothesis and the power of the

grammar, are closely related in the following way. If the

- 95 -

modularity hypothesis is ignored, i.e. if the same techniques are

used to do general problem-solving tasks as well as language, then

clearly these techniques must be very powerful. The goal of giving

as simple and terse a description as possible applies to the

knowledge base--in this case the grammar—not to the mechanisms or

representations themselves.

5.'—' Summary
4

This chapter has tried to throw some light on some of the

important theoretical issues arising from this particular approach

to text generation. The issues fell into three main categories:

those resulting from the knowledge compilation, those resulting from

the functional approach, and those which were issues simply because

they were different than the generative approach.

The first set of theoretical issues stems from the compiled

knowledge in the semantic stratum. One result of this is that there

can be no firm boundary between text planning and text generation.

Another result is that constituent trees appear in the semantic

stratum. These, however, appear only in the realization rules and

carry semantic and not syntactic information.

Another set of theoretical issues involves the functional

approach to computational linguistics. Besides facilitating the

study of social and historical aspects of language, the functional

approach reduces the arbitrariness and complexity of linguistic

description and allows teleological explanation of linguistic struc¬

tures and processes.

The final area of interest here has been the relationship of

this approach to generative linguistics. The two primary issues at

stake are the modularity hypothesis and the power of the grammar.

These are related since if, following the computational paradigm,

the modularity hypothesis is abandoned then the techniques used to

process the grammar will be far too powerful to be acceptable to the

generative school.

- 96 -

In conclusion, SLANG differs fran the current linguistic ortho¬

doxy on several important theoretical points. The differences are a

result of working in the computational paradigm as described by

Winograd (op. cit.). In this paradigm powerful computational tech¬

niques, in this case goal-directed problem-solving with compiled

knowledge, are used to process language. This results in different

techniques being applied, and different theoretical assumptions

being made.

- 97 -

6. The Formal Model

Despite the fact that systemic grammar has a relatively long

history, and has been adopted in several computer implementations,

it has never been given the type of rigorous formalization that

traditional grammars have received. The reason for this seems to

involve the difficulty of formalizing the aspects of language that

are of interest to systemic linguists—the available formal tools

were developed for structural description. As Winograd (1983, p.

278] comments:

Since systemic grammar is not centered on concern with
formal rules, the general attitude is that it is better to
say something less precise about an important aspect of
language than to ignore it completely because it does not
yield to available formal tools. It is possible to pro¬
vide descriptions that are structured (i.e. they include
formal representations like system networks not just
descriptive text] but that are not generative in the
strong sense of providing rigorous rules. Much of sys¬
temic grammar follows this course.

The formal language used by systemicists to describe natural-

language, like natural-language itself, reflects the functional con¬

straints imposed upon it:

The consumers of systemic grammar have more often been
practical language teachers and sociologists than psychol¬
ogists and computer programmers. The formal mechanisms
were designed to be used by human interpreters, so the
rules for applying than can call for judgement and
interpretation, (ibid., p. 280] .

It appears that in the eyes of systemic grammarians, "rigorous

rules" are inherently structural. Rules have thus been avoided

since it is necessary, from a functional perspective, to view

language as a "resource."

It has been customary among linguists in recent years to
represent language in terms of rules.

In investigating language and the social system, it is
important to transcend this limitation and to interpret
language not as a set of rules but as a resource. I have
used the term 'meaning potential' to characterize language
in this way....

- 98 -

[I]n the interpretation of language, the organizing con¬
cept that we need is not structure but system. Most
recent linguistics has been structure-bound (since struc¬
ture is what is described by rules). With the notion of
system we can represent language as a resource, in terms
of the choices that are available, the interconnection of
these choices, and the conditions affecting their access.
(Halliday, 1978, pp. 191-192)

One of the characteristics of SLANG is that it demonstrates

that system networks can be interpreted as collections of production

rules. Production rules in AI are treated as a problem-solving

resource—they do not necessarily describe structure.

Thus, following from Chapter 4, another important conflation is

made by SLANG: the conflation of rules and resource. Systemic gram¬

mar can be given a formalization in terms of rigorous rules while

these are simultaneously interpreted as a resource. This has not

been possible heretofore.

The remainder of this chapter is a formal model of SLANG,

including an outline of a formalization of systemic grammar. Like

the rest of this thesis, this formalization is largely exploratory.

It is meant to investigate and illustrate the possibility of

rigorously formalizing systemic grammar in terms of production

rules, derivations and so on, rather than to provide the definitive

formal treatment. This is not an attempt to present a general sys¬

temic model that is compatible with all other work in computational

systemic linguistics—rather the model corresponds to the version of

systemic grammar presented in (Halliday, 1978) and Chapter 3. It
also reflects the limits of the current implementation (see Chapter

7). For instance, chaining is only done on features--never on real¬
ization relationships (as hypothetically illustrated in 4.2.2).

6_. 1_. A formalization of systemic grammar

Formally, a grammar G is denoted by (f, V, Vn, Vt, P). The

symbols F, *p, Vn, Vt, and P are, respectively, the features, sys-

tems, grammatical functions, terminals, and productions.

- 99 -

Capital letters near the beginning of the Latin alphabet will

be used for grammatical functions. Lower case letters at the begin¬

ning of the Latin alphabet are used for terminals. Lower case

letters near the end of the Latin alphabet denote strings of termi¬

nals. Lower case letters near the beginning of the Greek alphabet

denote features; and lower case Greek letters near the end of the

alphabet denote feature heaps—except £ which denotes a logical

expression.

f, T, Vn, Vt, and p are finite sets. f is simply the set of
all features appearing in a grammar, f is a set of proper subsets
of f, where each of these subsets represents a mutually exclusive
set of features as described in Section 3.3-2. T will typically

have members such as {declarative, interrogative}, {unmarked-
positive, marked-positive}, {future, present, past}, {proper-noun,
common-noun}, {count, mass} and so on. Since these represent mutu¬
ally exclusive sets, the cardinality of the members of T is always
greater than one. Vn is the set of grammatical functions from all
the functional analyses [see Section 3.3.5). Vn will contain
members such as Agent, Theme, Deictic, Head and so on. Vt is the
set of terminals or lexical items which eventually realize the con¬

stituents specified by the grammar [e.g. "the", "on the contrary",
"Sir Christopher Wren", "is" etc.). Vn and Vt contain no elements
in common: that is Vn A Vt = 0. The set of productions P consists

of expressions of the form £-»-a,R where £ is a logical expression (an
arbitrary combination of disjunction and conjunction, possibly nil)
over F, a is in F, and R is a set of realization rules each having
one of the following forms: A/b, a(b), a<b<...<c:b» A~b, or A=a.-f
(The productions represent the forward- and backward-chaining rules
as described in Section 4.2.1. The logical expression 5 represents

the entry conditions of feature a and R represents the realization
rules [see Section 3-3.7].

-} This is of course only one possible set of realization rela¬
tions. The exact set of relations is not critical to the model as

a whole.

- 100 -

The forms of the realization rules above are: conflation, expansion,

preselection, adjacency and lexification.] Note that the only place

elements of Vt may appear in the grammar is in realization rules of

the form A=a, where aeVt (i.e. in lexify rules].

Each member a of F appears in exactly one production of the

form £->-a,R. Note that P thus implies a mapping from features to

sets of realization rules.

As an example, consider the following excerpt from a clause

systan network (Mann/Halliday]:

clause
Theme
f"

non-t extual-theme

textual-theme

Theme(Textual J
Textual/Conj unct
%"Textual

topical-inserted
Theme(Topical J
Topical"#

F = {clause, topical-inserted,
non-textual-theme, textual-theme}

T = {{non-textual-theme, textual-theme}}

Vn = {Theme, Topical, Textual, Conjunct}

Vt = 0

P = { nil^-clause, {#~Theme};
clause->non-t extual-theme,{} ;

clause+textual-theme,{Theme(Textual},
Textual/Conj unct,

%"Textual};
clause-»topical-inserted, {Theme[Topical] , Topical"#} }

- 101 -

6_.1_.1_. Structure

Since there are several simultaneous constituent analyses

(transitivity, ergativity, mood and theme], and since seme of these

analyses may consist of more than one layer (e.g. Mood, Residue on

top; Subject, Finite, Lexverb, Residual on bottcm), the structures

required for this model will be more complex than those found in

some of the more traditional grammars. Nevertheless, the skeleton

of these structures is still a tree:

A tree is a finite set of nodes connected by directed
edges, which satisfy the following three conditions (if an
edge is directed from node 1 to node 2, we say the edge
leaves node 1 and enters node 2):

1 J There is exactly one node which no edge enters. This
node is called the root.

2] For each node in the tree there exists a sequence of
directed edges from the root to the node. Thus the tree
is connected.

3] Exactly one edge enters every node except the root.
As a consequence there are no loops in the tree. (Hop-
croft and Ullman, 1969, p. 18—20)

An important relationship between nodes in a tree is descen-

dancy:

The set of all nodes n, such that there is an edge leaving
a given node m and entering n, is called the direct des¬
cendants of m. A node n is called a descendant of node m

if there is a sequence of nodes n1, n2, ... ,nk such that
nk = n, n1 = m, and for each i, ni + 1 is a direct descen¬
dant of ni. We shall, by convention, say a node is a
direct descendant of itself, (ibid.)

A leaf node of a tree is a node that has no descendants.

Now that tree and descendant have been defined, the formal

description of a systanic syntactic structure can be given. A sys¬

temic syntactic structure consists of:

1] a set N of nodes; this set is partitioned into two disjoint
sets, the "unit nodes" (u) and the non-unit nodes or "expanded
nodes" (x). The unit nodes are those nodes that represent unit con¬

stituents (i.e. clauses, groups, or words. See Section 3.3.6). The

expanded nodes represent functional items that do not have unit

status (e.g. Theme and Mood).

- 101a -

2] the functions OF, SUPER, MOM, LEX and ADJACENT are defined such

that:

(a] OF maps from VnxU to N. (This is used to attach grammatical

functions to nodes in the structure. Non-expanded f unctions--e ,g.

Subject, Topical--will be mapped onto members of U; expanded

functions—e.g. Mood, Theme—will be mapped onto members of X.)
(b] SUPER maps frcm VnxU to members of X. (This is the formal

representation of the results of the "expand" realization rule

a(bJ).
(c] MOM maps from N to members of U. (This mapping indicates,

for each unit or non-unit functional item, the immediately enclos¬

ing unit. For instance the immediately enclosing unit of a particu¬

lar item labelled "Theme" will be a particular clause.] An important
subset of the MOM function defines a tree of unit nodes (u, MOM]
which represents the rank consitituency of a linguistic item (see
Section 3.3.6].

(d] LEX maps from terminal nodes in the tree (u, MOM] to Vt.

(e] ADJACENT is a function mapping frcm VnxU to Vn. The impor¬
tant effect of the function ADJACENT is that it implies an ordering

on the leaves of the tree (u, MOM]: For any two leaf nodes n,meN, n

is ordered before m if there exist A,BeVn and OF(A,p]=n and

0F(B,q]=m and either:

a] ADJACENT(A,p] = B where p = q,

b] ADJACENT(c,r] = D, where n and m are descendants of 0F(c,r] and

OF(D,r] respectively, or

c] ADJACENT(A,p] = E, and 0F(E,p] is ordered before m.

Otherwise, m is ordered before n. Informally, this is achieved by

including pairs of grammatical functions frcm the same level of the

same functional analysis in ADJACENT. That is, (Subject, Finite]
can be an element of ADJACENT but not (Subject, Residue] or (Topi¬
cal , Finite].

ADJACENT may operate on the "quasi-functions" # and % which
indicate boundaries for members of U and X respectively. These

quasi-f unctions can be regarded as being associated with imaginary

nodes that are defined to be boundary descendants. The occurrences

of the quasi-f unctions in the grammar are assumed to be distinct,

- 101b -

and for formal purposes they will be uniquely subscripted in the

model.

The names of these five functions have been coined here, but

some similar set of mathematical relations will be necessary for any

systemic model. These functions capture formally all the relation¬

ships illustrated by the structure diagrams used in earlier

chapters.

For instance, consider the following structure diagram:

perhaps this teapot was

MOOD
I % Subject "Finite"

CLAUSE
I I Mood

THEME
% "interpersonal" Topical %

Theme I
GROUP #"Deictic"Head"#l

This corresponds to the following partial systemic syntactic struc¬
ture:

- 102 -

N = { n1, n2,..., n7 }

U = { n1, n2, n4, n6, n7 }

X = { n3, n5 }

OF = { ((Subject, root), nl),
((Finite, root), n2),
((Mood, root), n3),
((interpersonal, root), n*j) ,

((Topical, root), nl),
((Theme, root), n5),
((Deictic, n1), n6),
((Head, n1), n7) }

SUPER={ ((Subject, root), n3) ,

((Finite, root), n3) ,

((interpersonal, root), n5),
((Topical, root), n5) }

MOM = { (n1, root), (n2, root), (n3, root),
(n4, root), (n5, root),
(n6, nl), (n7, nl) }

The LEX function involves only leaf nodes, none of which are

represented in the diagram. However it would have the form: LEX = (
(n12, perhaps), (n23, this), (n17, teapot), (nil, was), ...}

- 103 -

ADJACENT = { {{% 1, root), Subject),
(Subject, root), Finite),
(Finite, root), %2] ,
[%3t root), Interpersonal),
(interpersonal, root), Topical),
(Topical, root), %H),
(#5, root), Theme),
(#6, n1), Deictic) ,

(Deictic, n1), Head),
(Head, nl) #7) }

(The occurrences of % and # in ADJACENT are uniquely identified with

subscripts.)

The result of the systemic syntactic structure is the string

produced by reading the LEX values of the leaf nodes of the tree (u,
MOM) from left to right.

In this case the result is "perhaps this teapot was...."

6.1_.2. The language generated by a grammar

The grammar, G = (f, y, Vn, Vt, P), has been presented but the

language it generates has not yet been defined. The generation is

defined in terms of a feature heap w. Given the grammar G = (f, T,

Vn, Vt, P) and a set of unit nodes U, a feature heap from G and U is
a finite subset of FxU. A feature heap thus consists of pairs: a

feature and a unit node in the structure. (This is necessary to dif¬
ferentiate between the different nominal-group Heads in a clause, or

the various Subjects in a multi-clause text, and so on).

An S-feature is a feature a such that either aell(>l')=|= or there
is a production £->■$, R in P where 3 is an S-feature and a is a term

in £. (informally, an S-feature is either a term in a system, or
directly or indirectly an entry condition of a system. S-features
are those features represented in SLANG as backward-chaining rules).

=} u(t) denotes the "bigunion" of t. I.e. if Y is a set of sets:
[5, n, £,..., ft} then u(t) = {s u n u i u ... u ft}.

- 10H -

Any member of F that is not an S-feature is defined to be a G-

feature. (G-features represent gates—those features represented in
SLANG as forward-chaining rules.)

A logical expression 5 is either a feature or a conjunction of

logical expressions or a disjunction of logical expressions or nil.

£ is satisfied by a feature heap to at node n if

a) 5 is a feature and (s,n) e to.

b) 5 is a conjunction and all conjuncts are satisfied by to at node
n.

c) 5 is a disjunction and at least one disjunct is satisfied by to

at node n.

to is a consistent feature heap of grammar G and set of unit

nodes U if to C FxU, and there is no a, £5 and n such that: £eT &

ae£ & 8e£ & a*3 & {(a,n), (B,n)} C to. (i.e. if to does not contain
two features frcm the same systan at any particular node.)

A valid feature heap to of a grammar G is a consistent feature

heap such that:

1. There are no productions £-»Y,R in P such that £ is satisfied by to

at node n, and Y is a G-feature, but (Y,n) is not in to.
(There are no gates whose entry conditions are satisfied but
where the gate feature has not been chosen.)

2. There are no productions £->a,R such that [a,nj is in to, but 5 is

not satisfied by to at node n. [There are no features in to
whose entry conditions are not satisfied).

3. For all systems such that there exists a production £-»ct,R e P

where ae£ and £ is satisfied at node n, there is exactly one

feature b (where possibly a=3) such that bel & (b, n)eto.
(There is no system whose entry conditions are satisfied but

none of whose terms appear in to.)
Suppose S is a systemic syntactic structure, with N, U, X, OF,

SUPER, MOM, LEX and ADJACENT defined as above. S is said to realize

a realization rule r at node n in a feature heap to if

a) There is seme (a,n)eto & £->a,R e P & reR, and
b) one of the following is the case:

r is of the form "A~B" and ADJACENT(A,n) = B. One of A

or B may be a subscripted occurrence of one of the quasi-
functions or

- 105 -

r is of the form "A(b)m and SUPER(0F(b,n))=0F(A,nj

r is of the form "A/B" and OF(A,n] =OF(B,n);

r is of the form "A1 <A2<...<Ai:a" and 0F(A1,n)=h1;
0F(A2,h1)=h2;...;0F(Ai,hi-1)=hi; and (a,hi)etj.

r is of the form "A=a" and LEX[OF[A,n])=a.

A systemic syntactic structure S is said to realize a feature

heap oj if for every member of

((r,n) | (a,n)eaj & £-*a,R e P & reR}, S realizes r at n in oj.

Aside from the fact that different realization relations and

notation may be used, a similar treatment of realization will appear

in any systemic model.

A language generated by G [denoted L(G)] is defined to be:

[z | zeVt* & a(s,o)) .realizes [s,oi) & valid[w} & z=result(s)[

6_.1_.3_. Derivation

The definition of l(g) above was independent of any computa¬

tional issues, and would therefore hold for systemic models in gen¬

eral. Traditionally, however, l(g) for some grammar is defined in
terms of derivation. Although there are several ways derivation

could be expressed in systemic grammar, the following corresponds to

the SLANG model.

The relations => and =>* between feature heaps will now be

defined. Suppose w is a feature heap from G and U [where G = (f, T,

Vn, Vt, P)). If £-*6,R is a production in P, and n is in U,

a) to => oj U {[6,n3} when w satisfies E, at node n, and 6 is
a G-feature.

- 106 -

b) w => to U {(a,n)} when a is an atomic conjunct in E,

(i.e. E, is a conjunction and a is a term in the conjunc¬

tion) and (6,n)eo), and a is an S-feature.

In each case the production £-+6,R is applied to feature heap u>.

a) and b) are forward- and backward-applications respectively. Thus
=> relates two feature heaps exactly when the second is obtained

from the first by the application of a single production.

Suppose that to 1, oo2, o)3, com are feature heaps such that mi

C FxU and o)1 => o)2, o)2 => o)3, tom-1 => aim. Then it is said that

o)1 =>* aim.-f-f In simple terms, for two feature heaps <J> and w, to =>* <f>
if <p can be obtained from to by application of some number of produc¬

tions of P. By convention to =>* to for each feature heap to.

Note that in the case of both forward- and backward-

applications, the new feature description that is added to the

feature heap has the same node as those feature descriptions from

which it is inferred: In the case of a) above, (6, n) is added when,
inter alia, E, is satisfied at node n; In the case of b) (a, n) is
added when, inter alia, (fi, n) e to. Informally, this should be

expected since entry condition features should apply to the .Same

unit as the features for which they are entry conditions (e.g. if
indicative is derived from declarative these two features should

\ /

both refer to a particular clausej. In fact the node remains con¬

stant during a derivation (including both S-features and G-features)
within any particular system network (any S-features or G-features
in the clause network that are derived--however indirectly--from

declarative will still refer to the same clause as declarative).

Ah equivalent, definition of valid (defined deciaratiVely above)
could now be given in terms of derivation: A valid feature heap w of

-fj Say co 1 derives com. If all the steps are forward applica¬
tions, say col derives mm by forward-chaining. Mutatis mutandis,
col may also derive urn by backward-chaining, or by a combination of
forward- and backward-chaining. As the terminology indicates,
this approach to derivation is specific to the SLANG model.

- 107 -

a grammar G is a consistent feature heap such that:

a) It is maximal with respect to =>, i.e. there is no larger con¬

sistent feature heap that can be derived.

b). There is no feature a such that 5+a.R e P and 5 is satisfied by

w at node n, and {g | {a, g}c£ & leT} x {n} intersected with u>

is 0. (There is no system whose entry conditions are satisfied

but none of whose terms appear in w.]

l(g] could still be defined as above.

6_. 2_. The completeness proof

A feature a is an independent disjunct if it is an S-feature

and for every instance of a on the left of a production (every a in
some 5) a is a term in a disjunction.

A feature a is a tail feature if cteU(and there are no pro¬

ductions 5+3, R in P such that a is a term in 5 and g is a S-feature.

(a is a term in a syston and has no systems to its right.]

A feature is a seed feature if it is an independent disjunct or

a tail feature.

Lemma 1: All seed features are S-features.

Proof: If a is an independent disjunct this follows from the

definition above. If a is a tail feature then aell(T) and therefore
is an S-feature.

For any set of nodes N, a seed is an ordered pair (a, n] where
a is a seed feature and neN.

A feature a is a root feature if nil+ct,R e P. (i.e. if it has
no entry conditions—a least delicate feature: e.g. clause,

nominal-group etc.]

A feature a is less-delicate-than a feature 6 if and only if

either a] P contains a production 5+6,R and a is a term in 5; or b]

- 108 -

P contains a production E>B,R and a is a term in £ and 8 is less

delicate than 6.

A grammar is acyclic if the less-delicate-than relation over P

is a strict partial order. (The notion of an acyclic grammar will
be used to restrict the discussion to those grammars that do not

contain recursive systems.)

A grammar is expressive if all root features are S-features.

(informally, this means that all system networks must have at least

one system.)

Theorem: All valid feature heaps of an acyclic, expressive grammar

can be derived from some initial feature heap consisting entirely of

seeds.

Proof:f

Suppose there is some valid feature heap oj that cannot be

derived from any initial feature heap consisting entirely of seeds.

For this to be the case, there must be some element (a,n) in a: that
cannot be derived from seeds. The proof will show that there can be

no such element and therefore no such uj.

During the derivation of particular feature heap elements, by

forward- or backward-chaining, the second part of the ordered pair

(the node) remains constant. Thus instead of saying (a, n) derives

(8i n) it will simply be said that a derives 8. This will be called
the "network assumption" since the node remains constant within a

specific system network.

j This proof is simplified by assuming that there is an "initial
feature heap" that contains not only those seeds which are given
initially (as described in the discussion on derivation), but also
seeds which would be preselected during the derivation. This does
not affect the relevance of the proof because the origin of the
seeds and the order in which they are added to the feature heap
are irrelevant.

- 109 -

Lemma 2: Each S-feature can be derived from some seed feature.

proof: Assume that some S-feature a cannot be derived from any

seed feature. If a is a seed feature this immediately results in a

contradiction since by convention to =>* to. If a is not a seed

feature, a contradiction is also reached as follows:

Since a is an S-feature, by definition either:

a) a e u(v), or

b) there is a production 5+3.R in P where 3 is an S-feature and a

is a term in £.

In the case of a) it follows from the definition of a seed feature
and the definition of a tail feature that there is a production

£->3,R such that 3 is an S-feature and a is a term in £. Thus in

either case there is a production £>3,R in P such that 3 is an S-

feature and a is a term in £. Further, there must be seme such case

where a is a term in a conjunction since it is not an independent

disjunct (by the definition of seed feature). Now if 3 can be
derived from a seed feature, then a can be derived from the same

seed feature by one further backward-application.

If a cannot be derived from any seed feature then neither can

3. By the same argument there must be some production £1-»6,R1 in P

where 6 is an S-feature and 3 is a term in £1 and so on, ad infini¬

tum. If a cannot be derived from a seed feature then this step must

be applied an infinite number of times. But this results in a con¬

tradiction since the grammar is acyclic and F is finite. The origi¬

nal assumption always leads to contradiction, therefore each S-
feature can be derived from some seed feature.

Lemma 3: All G-features Y can be derived from seed features.

proof by minimization: Assume that there is some G-feature Y

that cannot be derived from seed features. It was stated earlier

that "Each member a of F appears in exactly one production of the

form 5^a,R." Therefore there must be a production £-»Y,R in P. If
all terms in £ can be derived from seed features then Y can be
derived in one additional forward application. If Y cannot be

- 110 -

derived from seed features then there must be some G-feature a

embedded in E, that cannot be derived from seed features (a is not an

S-feature by Lemma 2). So there is some G-feature <5 in a production

£i->-S,Ri where all the terms in £i can be derived from seed features

but 6 cannot (6 is not the root feature since the grammar is assumed

to be expressive). This is a contradiction because <5 can be derived

in one additional forward application. Therefore, there can be no

such Y, and it follows that all G-features can be derived from seed

features.

Therefore, by Lemmas 2 and 3, all features can be derived from

seed features. Thus all valid feature heaps can be derived from

seeds Q.E.D.

6_.3_. Problem reduction

The grammar g, and l(g) have been defined formally using tech¬

niques similar to those used in formalizations of more traditional

grammars. At this point, the traditional computational algorithms

could be given that blindly traverse the grammar and generate all

the possible strings of the language. A more interesting goal here

though, is to efficiently generate particular strings from the gram¬

mar. As one would expect from the model above, there are three

important mechanisms: forward-chaining, backward-chaining, and

structure building. The forward-chaining and structure building are

simple and straight forward. The backward-chaining, since it is at

the heart of this model, will be given a more substantial treatment.

A formal problem-solving algorithm from the AI literature that can

use the productions from the grammar for backward-chaining will be

presented in this section.

This section will follow the discussion in Nilsson (1971, pp.

80-123) very closely, and the non-systanic terms and concepts have
been taken from there.

The algorithm that will be used to describe the backward-

chaining is called problem-reduction. The idea is to "reason back¬

ward" from the problem at hand by reducing it to subproblems, these

-111-

to sub-subproblems and so on, until the original problem has been

reduced to a set of primitive problems that can be solved immedi¬

ately .

The pr obi on-reduct ion algorithm involves transforming problem

descriptions into subproblem descriptions. For the text generation

method here the problem descriptions will be feature descriptions.
A problem description is transformed into a set of reduced or suc¬

cessor problem descriptions by a problem-reduction operator (ibid.,
p. 85). The problem-reduction operators here will be the produc¬

tions in P.

The object of the problem-reduction algorithm is to eventually

reduce the original problem to a set of primitive problems whose

solutions are obvious. Primitive problems take one of two forms:

either they are trivial problems that cannot be reduced further, or

they may be other more complex problems having known solutions.

£. 3_.1_. AND/OR graphs

Problem-reduction can be illustrated with a graph-like struc¬

ture. Following Nilsson, suppose problem A can be solved either by

solving problems B and C or by solving problems D and E, or by solv¬

ing problem F. It is conventional to draw the graph such that each

conjunction of subproblems is under its own graph node.

A

N M F
/-\ /-\

B CD E

An AND/OR graph [ibid.]

The nodes labelled N and M are introduced as exclusive parents

for the sets of subproblems {B, C } and {D, E} respectively. If M and
N are thought of acting as problem descriptions, the diagram shows

problem A as having been reduced to the alternative subproblems N, M
or F. The graph nodes N, M and F are thus called OR nodes. Problem

- 112 -

N is reduced to the set of subproblems B and C and these subproblems

are represented by AND nodes. AND nodes are represented by bars

between their incoming arcs.

The successors of an AND/OR graph node are either all OR nodes

or all AND nodes (in the case of a single successor there need be no

distinction).

Terms like parent nodes, successor nodes and arc connecting two

nodes will be used, and given the obvious meanings when discussing

AND/OR graphs.

Each AND/OR graph has a single graph node called the start node

that represents the original problem description. Graph nodes

corresponding to primitive problem descriptions are called terminal

nodes.

The final objective of the search of an AND/OR graph is to show

that the start node is solved. A solved node in an AND/OR graph can

be defined as follows:

The terminal nodes are solved nodes (since they are asso¬
ciated with primitive problems)

If a nonterminal node has OR successors, then it is a
solved node if and only if at least one of its successors
is solved

If a nonterminal node has AND successors, then it is a
solved node if and only if all of its successors are
solved (ibid., p. 89)

The subgraph of solved nodes that demonstrates (according to

the definition above) that the start node is solved is defined to be
a solution graph.

6_.3_.2_. System networks and AND/OR graphs

It is tempting to interpret a system network as an AND/OR graph
where the start node is the least delicate feature in the network.

For instance, the following network where a is the root feature

-113-

a— v-{>

6

could be drawn as

a

/ I \
3 Y 6
/-\

n m

/ \ / \
e C n 0

where a is the problem description being reduced, a is reduced to

solving one of 3, Y or <5.

This is essentially the approach taken by Nigel (Mann et al.,

1983; see Section 8.4 for a discussion).

In SLANG, problem-reduction is done frcm seeds, so the start

node in the graphs is a seed. Instead of having one large AND/OR

graph stretching frcm left to right across the system network as a

whole, SLANG has several smaller AND/OR graphs stretching from right

to left where each graph is associated with an initial seed. When

solving for a in a grammar where P={... (y&6)->-a, Ri; (c&n)-*Y, Rj;
(0&i)->5, Rk ..} and where a is a seed feature

the and/or graph is

-114-

a

/-\
Y <5
/-\ /-\

e n 0 i

Note that in this case the start node is the most delicate

feature instead of the least delicate. The start node a is reduced

to solving both Y and 6. Y is reduced to solving both c and n; 6 is

reduced to solving both 0 and i.

The term "graph" must be used instead of "tree" because the

reduction of subproblems may overlap, e.g.:

6

both Y and 6 reduce to £.

In general, AND/OR graphs can be searched with techniques such

as depth-first search, breadth-first search and heuristic search.

When AND/OR graphs are used to represent search from seed features

in systanic grammars however, they have some special characteris-

ti cs.

Primitive problems in the context of SLANG are the root

features since they cannot be reduced further, and any features hav¬

ing disjunctive entry conditions. The reason the latter are assumed

to be primitive problems is that they always appear in another solu¬

tion and therefore are assumed to be solved. Informally, the diffi¬

culty here is that the fact that a feature 6 is a disjunctive entry

condition to a problem feature a does not determine whether or not <5

should appear in the solution (as opposed to the problem-reduction)
of a. Given only that 6 is a disjunctive entry condition to a, a

can still be solved with or without 6 in the solution. Thus 6 must

e

-115-

be included or excluded from the solution on some other basis.

There are two cases: a term in a disjunctive entry condition can be

an independent disjunct [e.g. 61 below], or it can be dependent on

other systems [e.g. 62 below].

.. .61

. .62-{=H

01

02

In the case of independent disjuncts, there is no basis for the

decision in the system network, so the only basis can be whether or

not the feature is preselected—this is why independent disjuncts

are seeds. All seeds are treated as initial problem descriptions

and thus must have their own problem-reduction graph. Thus indepen¬

dent disjuncts are always part of another solution—their own solu¬

tion. In the case of disjuncts that are dependent on other systems,

the basis for the decision--whether or not the disjunct should

appear in the solution—lies in the system network. If a disjunct 6

is not an independent disjunct, then 6 must be an S-feature which

appears on the left of seme production £1-»01,R1 such that 6 is not a

term in a disjunct in £. If 01 is a term in a system (as illus¬
trated above] this implies that 6 also appears as a non-disjunct on

the left of productions £i->0i,Ri for all features 0i in the same

system as 01 (i.e. {Bi | Bie£ & B1e£ & £eT}]. In this case, 6 will
appear in the solution graph of a if and only if seme Bi appears in

another solution graph--in which case 6 is again part of another
solution.

The AND/OR graphs representing problem-reduction from seed
features contain no OR nodes. This is because a problem description

can never be reduced to a set of OR nodes because any feature with

-116-

disjunctive entry conditions is treated as a primitive problem and

is therefore represented by a terminal node.

Lemma 4: There is exactly one reduction operator in P that can

be applied to any specific problem description.

Proof; It was specified above that: Each member a of F appears

in exactly one production in P of the form £->a,R. Since the produc¬

tions are the reduction operators, and a represents the problem

description, there is exactly one reduction operator in P that can

be applied to any specific problem descriptor.

In discussions of problem solving, AND/OR graphs are usually

explicitly drawn, and the search for the solution consists of trying

to find a solution graph. In practice, however,

... we seldom have explicit graphs to search, but instead
the graph is defined implicitly by an initial problem
description and reduction operators. It is convenient to
introduce the notion of a successor operator r that when
applied to a problem description produces all of the sets
of successor problem descriptions. (The successor operator
T is applied by applying all of the applicable reduction
operators.] (ibid., p. 90)

In the case at hand T will produce only one set of successor

problem descriptions because by Lemma 4 there is exactly one appli¬
cable reduction operator.

r in the case of SLANG can be defined simply as backward appli¬

cations of =>.

Lemma 5: The solution graph for an AND/OR graph where the start

node is a seed feature represents exactly those features that can be

derived from that seed feature by backward-chaining.

Proof: (making the network assumption] Since backward applica¬
tions of => are equivalent to r (see above], and since the features
that can be derived from a seed feature by backward-chaining are

those that can be derived by some number of backward applications of
= >, it follows that exactly the same features will appear in the

solution graph since each of these is the result of some number of

- 117 -

applications of r.

Since there is no disjunction there is exactly one solution

graph for any problem.

6_. 4_. Algorithms

At this point computational algorithms will be given for text

generation within the SLANG approach. In general terms, the deriva¬

tion (forward- and backward-chaining) is done by the PROBLEM-SOLVER
which is domain independent—it could be used for solving non-

linguistic problems. The backward-chaining is expressed in terms of

problem-reduction (see previous section). The third task that must
be performed is realization. In the next chapter, which describes

the implementation of SLANG-I, the realization is represented as

production rules and executed by the problem solver. This is merely

for convenience--realization does not require, or take advantage of,

the power of the problem solver. The derivation, on the contrary,

does exploit the ability of the problem solver to selectively and

efficiently search through a space of alternatives. For these rea¬

sons the realization is explicitly separated from the derivation and

depicted as a simple procedure which could be implemented in almost

any computational notation.

- 118 -

algorithm: generate (g, semantic-seeds)
input: g subfields F, ¥, Vnf Vt, P ; a grammar

input: semantic-seeds ; a set of semantic feature

; descriptions where the node in each case

; is seme identifier that by convention

; represents the root node of the structure tree,

variable: w ; the feature heap

variable: OF, SUPER, MOM, LEX, ADJACENT ; functions

variable: g-set ; a local variable

begin

g-set «- goals(semantic-seeds) ; mark seeds as goals

PROBLEM-SOLVER(P, oj, g-set)
; to here is a pointer so the feature heap can be

; modified by the problem solver.

end.

- 119 -

algorithm: PROBLEM-SOLVER (k, M, goals]
input: K ; a knowledge-base in the form of a set

; of production rules,

input: M ; the working memory represented as a

; set of facts or patterns,

input: goals ; a set of goals

concurrent procedures: FORWARD-CHAIN,
BACKWARD-CHAIN

algorithm: FORWARD-CHAIN
variable: Fdone, initially 0

begin

if there is seme k e K

and there is some set of facts f e M

and match(LHS(k), f]
and not (f, k) e Fdone

then EXECUTE(f, k, M]
Fdone «- Fdone U {(f, k)}

repeat

end.

algorithm: BACKWARD-CHAIN
variable: Bdone, initially 0

begin

if there is a goal g in goals

and not g e Bdone

then SQLVE(g)
repeat

end.

- 120 -

;;; the pr obi em-reduction algorithm

algorithm: SOLVE (p)
input: p ; a problem

variable: successors ; a set of problems

begin

if p e Bdone then return

Bdone <- Bdone U {p}
successors «- r (p)
execute(p, rt(p), m)

; r'(p) returns the production used for

; the expansion of p

if primitive(p) then return
if successors is a set of sets

; i.e. a disjunction

then DISJUNCTION(successors)
j this will never happen in SLANG because

; the primitive check checks for disjunction

; and returns before this is executed

else for each member s of successors

goals <- goals U {s}
return

end.

Lemma 6: SOLVE(g) adds exactly those feature descriptions to

the feature heap that can be derived from g (a feature description)
by backward-chaining.

Proof: SOLVE simply traverses the solution graph for g which by

Lemma 5 represents all the feature descriptions that can be derived

from g by backward-chaining.

The procedure EXECUTE called by both FORWARD-CHAIN and SOLVE is

domain specific--it recognizes specific patterns and acts accord¬

ingly.

- 121 -

algorithm: EXECUTE (fd, p, to]
input: fd ; a feature description

input: p ; a production

input: oj ; the feature heap

;(a pointer to working memory]
begin

w «- w U fd

for each realization rule r in the RHS of p

REALIZE(r, node(fd], to]
end.

The algorithm REALIZE builds a structure according to the real¬

ization rules in the feature heap. Note that preselection modifies

the feature heap—if it adds seeds, this will result in additional

problem-reduction by SOLVE and so on.

algorithm: REALIZE (r, n, to]
input: r ; a realization rule

input: n ; a structure node

input: w ; the feature heap

begin

If r is of the form "A^B"

then

if A = # or % then

A <- subscript (A, make-uni que-subscript (]]
if B = # or % then

b «- subscript (b, make-uni que-subscri pt (]]
ADJACENT(A, n] <- B

If r is of the form "A(b]"
then SUPER <- SUPER U {(0F(B,n], 0F(A,n]]}

- 122 -

If r is of the form "A/B"

then

0F(B,n) <- 0F(A,n)
if LEX(0F(B, n) J * 0
then LEX(of(A, n)) <- LEX(of(b, n))
for all members of to having the form (A,nJf
substitute B for A.

for all members of MOM having the form ((A,n),m)f
substitute B for A.

for all members of SUPER having the form ((A,n),s),
substitute B for A.

If r is of the form "A1 <A2< .. .<Am:ct"

then

hO «- n

for i <- 1 to m do :

if 0F(Ai,hi-1]=0
then OF(Ai,hi-l) <- create-node;
hi 0F(Ai ,hi-1);
MOM(hi) •»- hi — 1 .

to *• to U {(a, hm) }

If r is of the form "A=a" then LEX(A,n) *■ a.

end.

6.5. An example

Consider the following system network:

- 123 -

a=0 j
irk)

c=1
c~#

final

U~C)

non-final

(b:b) (a~b) (b~c)

This system network can be represented formally as the grammar:

F = {b, final, non-final}
¥ = {{final, non-final}}
Vn = {a, b, c}
Vt = {0, 1}
P = { nil+b, (a=0, C=1, #~a, C~#} ;

b^final,{A~C};
b-»non-f inal, {B :b, A~B, B~c} }

This grammar generates the well known language {on1n| nS 1}.

The features will be referred to with paths: e.g.

Subject: determined, Subject<Dei ctic<Dei ctic: possessive ,

Subject<Deictic<Head:singular and so on. So instead of representing

members of a feature heap as ordered pairs, they are represented as

a single descriptor using the path notation.

The realization rules will be omitted from the productions for

simplicity.

Returning to the example, the standard left-to-right generation

described in most of the systemic literature begins by initializing

the feature heap to {b} (making the root feature the initial problem

description]. At this point some mechanism must choose between
final and non-final. Suppose non-final is chosen. b-*non-f inal =>

fb, non-final} generating a string 0B1 where B is a non-terminal

(grammatical function). The feature B:b (a level of nesting now) is

preselected as part of the last derivation step--this initializes

the feature heap for the recursive generation: {b, non-final, B:b}.

- 124 -

Suppose again non-final is chosen. b->non-f inal => {b, non-final,
B:b, B :non-f inal} with the preselection resulting in B<B :b being

added to the feature heap. Suppose this time final is chosen.

b-*final => {b, non-final, B:b, B:non-final, B<B:b, B<B :final}. Now

no more productions can be applied consistently. The result of the

derivation tree is "0001 11".

0 0 0 1 1 1
+ _ +_ _ +- _ +

#*V B

b ~cr*
+- - + +- - +

riCcr#
+ +

SLANG, in contrast, backward-chains from seeds; seeds are the

initial problem descriptions. Three seeds are required to generate

"000111": {non-final, B:non-final, B<B:final} which together form

the initial feature heap. From the seed non-final, b-+non-final

derives b by one backward-application. The backward-chaining stops

after only one application because no more probiem-reduction can be
done--b is a primitive problem. From the seed B:non-final, b->non-
f inal derives B :b (again the chain must stop here}. From the seed
B<B .-final, b-»f inal derives B<Bb. The final feature heap is {b,
non-final, B:b, B:non-final, B<B:b, B<B:final}. This is realized by

the same syntactic structure as above, and it has the same result.
The significant difference is that the derivation in the SLANG model

is- deterministic given the original feature heap containing the

necessary seeds.

- 125 -

The Implementation

This chapter will describe the first implementation of the Sys¬

temic Linguistic Approach to Natural-language Generation (SLANG-I).
SLANG-I has been implemented as a production system using the pro¬

duction language 0PS5. Since many 0PS5 rules appear in this

chapter, a short introduction to 0PS5 has been provided in Appendix

A.

This chapter is divided into five sections. The first is an

overview of the system as a whole. It will provide high-level

descriptions and explanations for the mechanisms used in the imple¬

mentation. The second section is a detailed description of the Sys¬

tem Network - 0PS5 Rule Translator (SNORT) which outputs the grammar

in the form of 0PS5 production rules that can be used by SLANG-I.

The text-generation system itself--SLANG-I—is described in detail

in the third section. The fourth and fifth sections look at the

limitations of this implementation and some possible alternatives

respectively. Finally, a summary is given.

7.1_. Overview

The purpose of this section is to provide a high-level overview

of SNORT and SLANG-I before getting down to details in the next two

sections. To a large extent this is made necessary by the inter¬

dependence between these two components. It is impossible to

motivate the output of SNORT before explaining to a certain extent

how SLANG-I works, and similarly SLANG-I cannot be explained before

it is understood how the grammar is represented in 0PS5 production

rules. This section consists of four parts: first, a presentation

of the abstract architecture of SLANG-I; second, a discussion of the

0PS5 productions representing the systemic grammar; third, a

description of the data structures used by SLANG-I; and fourth, a

brief look at the control strategy used to coordinate the text-

generation process.

- 126 -

The abstract arehiteeture

The architecture of SLANG-I is very simple. The primary com¬

ponents are a "problem solver" (the 0PS5 inference engine slightly
abstracted in the sense that it is being used to do both forward-

and backward-chaining—see Section 7.1.2) and a "knowledge base"

(the system networks represented as 0PS5 productions). As described
in Chapter 4, the problem solver simply forward- and backward-chains

using the productions. As the problem-solving proceeds, the reali¬

zation rules attached to those features that are inferred by the

problem solver are processed to build a structure realizing the

text. It was convenient to process the realization rules with 0PS5

productions, so the problem solver also builds the structures. If a

more sophisticated problem solver were used in SLANG (e.g. if SLANG
were implemented within an expert system) it may also be convenient
for the problem solver to build the structure. But note that it is

not important whether or not the problem solver performs this task-

-structure building does not involve search so it does not require

the power of the problem solver. So the realization (with the

important exception of preselection, which sets goals to be solved)
is not really part of the problem solving per se; it could just as

easily be performed by a simple program.

Thus the abstract architecture is that there are three major

components: the problem solver, the knowledge base (grammar), and a

mechanism (which in this case happens to be written as productions
used by the problem solver) that builds the syntactic structures and

outputs the text.

^.1_»2. The grammar productions

The previous chapters have already described in abstract terms
the forward- and backward-chaining rules which are the SLANG

interpretation of gates and system features respectively. To avoid
confusion with these abstract rules, and also with realization

rules, the term "production" will be used instead of "rule" when

referring to 0PS5 code.

- 127 -

The forward-chaining rules (gates) can be implemented as 0PS5

productions in a very straight-forward manner. Working memory ele¬

ments of the form (chosen x) can represent the fact that feature x

has been chosen. The left-hand-side (LHS) of the production simply

specifies the logical combination of features acting as the entry

conditions of the gate. The right-hand-side (RHS) puts an element

of the form (chosen ...) in working memory indicating that the

feature has been chosen, and puts a "realization statement" in work¬

ing memory for each realization rule of the gate ("realization
statement" is used for the 0PS5 version of a systemic realization

rule). For instance the feature non-bene-reception

.. .non-benef active

—non-bene-reception
...receptive / (Medium / Subject)

can be written in 0PS5 as

;;;IF the features non-benef active and receptive
;;; have been chosen
;;;THEN choose non-bene-reception and conflate
;;; the Medium and the Subject
(p non-bene-reception::first-approx
fchosen non-benefactive)
(chosen receptive)

-->

(make chosen non-bene-reception)
(make conflate "fun Medium "with Subject))

Ideally, backward-chaining rules could be implemented simi¬

larly, with the entry conditions in the LHS, realization statements

in the RHS, and a (make chosen ...) statement also in the RHS. Then
if there was a goal to choose such a feature, the realization rules

would be treated as effects, and the entry conditions would be set

as subgoals. Note that this would involve looking at the RHS of

productions to determine which productions satisfy the goal. Unfor¬

tunately, the 0PS5 architecture--technieally speaking--is strictly

forward-chaining; productions are selected solely on the basis of

matching the LHS with working memory.

This problem can be overcome by using working memory elements

of the form (goal x) and writing productions so the goal statement

- 128 -

is matched in the LHS (e.g. Brownston et al., 1985, Appendix). The

entry conditions must be made into subgoals in the RHS. For

instance:

;;;IF there is a goal to choose declarative
;;;THEN change the goal statement
;;; to a chosen statement,
;;; and set indicative as a subgoal,
;;; and make the Subject adjacent
;;; to the Finite element
(p declarative: :first-approx
(goal declarative)

— >

(modify 1 "1 chosen)
(make goal indicative)
(make adjacent "to Subject "is Finite))

Thus backward-chaining can be implemented within the 0PS5 forward-

chaining architecture. Notice this prevents the realization rela¬

tionships being stated as goals (e.g. there can be no goal to make
the Agent the Theme as in 4.2.2; the original goals are all

preselected features as in 4.2.3).

Although all 0PS5 productions are--in the strictly technical

sense—forward-chaining, the terms "forward-chaining production" and

"backward-chaining production" will be used to refer to productions

that represent the abstract forward- and backward-chaining rules

described in Chapter 4.

Another problem resulting from 0PS5 is that several identical

elements in working memory will independently match the LHS of pro¬

ductions. This may cause a production to fire several times,

perhaps generating more redundant working memory elements. For

instance, several features have declarative as an entry condition.

If each one puts a separate (goal declarative) in working memory,

the production above will fire several times, generating several

copies of (goal indicative), which in turn will cause the production
for indicative to fire several times (in addition to all the redun¬
dant firings as a resulting from _it being an entry condition to
several features) and so on. A similar phenomenon occurs when gates
have disjunctive entry conditions. If several of the disjuncts are

satisfied, the production will fire for each one--resulting in

- 129 -

several firings of productions whose LHS matches the identical

copies of the "chosen" statement and so on.

This accumulation of redundant work for the problem solver is

unacceptable. The solution to this problem adopted here is to call

a LISP operator, which checks if a feature has been chosen already

before it creates a new "goal" or "chosen" statement. These opera¬

tors are called GOAL and ASSERT respectively and are used throughout

the implementation instead of "make goal" and "make chosen" respec¬

tively .

;;;IF there is a goal to choose declarative
;;;THEN choose declarative, set indicative as

;;; a subgoal, and make the Subject adjacent
;;; to the Finite element
(p declarative::second-approx
(goal declarative]

-->

(modify 1 "1 chosen]
(call GOAL indicative]
(make adjacent "to Subject "is Finite]]

7_.1_.3_. The syntactic structures

The productions just described represent realization rules

using 0PS5 realization statements that are put into working memory.

A substantial part of the SLANG-I system consists of 0PS5 produc¬

tions whose LHS matches these realization statements. The RHS of

each of these productions modifies the structure of the text accord¬

ingly. These realization productions are described in detail later;

the point that needs to be made here is that the structure being

built plays an important role in the text generation.

The building block for the linguistic structures is the "hub"

(from Mann et al., 1983]. A hub is represented by a unique atom--

generated by LISP's "gensym" or 0PS5's "genatom." Recall from

Chapter 6 that the structure has the form of an acyclic directed

graph. The hubs are the nodes in this graph. Each hub is associ¬
ated with, inter alia, a set of functions (Agent, Subject, etc.].
The hubs themselves do not have individual entries in working

- 130 -

memory, but merely appear in the individual entries for each of the

associated functions. Each function has an entry in working memory

with the following template:

(hub of [e.g. Subject, Head, !Noun etc.]
"is [the hub identifier e.g. g00023]
"super [another hub e.g. g00005]
"output? [either yes, no, or nil]
"lex [e.g. ran, John, in etc.]
"mom [another hub e.g. g00007]

)

Note the correspondence between some of these fields and the formal

description of the structure in the previous chapter.

If two functions are conflated, for instance the Subject and

the Agent, the descriptions will be changed so that they have the

same "is field (i.e. they have the same hub]: e.g. (hub "of Subject
"is g00015...), (hub "of Agent "is g00015...). The "super field
describes hierarchies of functions as defined by the expansion real¬

ization rule. For instance the Subject and the Finite are both sub-

functions of the Mood, hence the hub of the Mood will appear in the

"super field of both the Subject and Finite:

e.g.

(hub "of Finite "is g00056 "super g00023...]
(hub "of Subject "is g00043 "super g00023...]
(hub "of Mood "is g00023...]

Similarly, the "mom field contains the hub of the next unit above in

the structure hierarchy. For instance if the Subject in a clause is

realized by a nominal-group, all the functions in that nominal-group

will have the hub of the Subject in their "mom field. If the Head of
that nominal group is realized at the word rank by a noun, the func¬

tion in the noun network (there is only one--!Noun] will have the
Head of the nominal group in its "mom field.

All this leads up to an important point: there may be several

- 131 -

nominal groups in, for instance, a clause, and it is not good enough

to put (chosen determined] in working memory without indicating to

which of the nominal groups it refers. If both the Subject and the

Medium of a particular clause are realized by nominal groups, and

(hub "of Subject "is g0001 6 "mom g00005] and (hub "of Medium "is
g000l8 "mom g00005] and the Subject is determined, then (chosen
determined g000l6] will unambiguously state this fact. A similar

addition must be made to "goal" statements and realization state¬

ments. The final form of a forward-chaining production, for

instance non-bene-reception, is:

;;;IF the features non-benefactive and receptive
;;; have been chosen
;;;THEN choose non-bene-reception and conflate
;;; the Medium and the Subject
(p non-bene-reception

chosen non-benefactive <mom>)
chosen receptive <mom>]

-->

(call ASSERT chosen non-bene-reception <mom>]
(make conflate "fun Medium "with Subject "mom <mom>J]

7.1_.4_. The control strategy

Before the final form for backward-chaining productions can be

given, one last issue must be resolved: the control strategy. It is

desirable to have the text generated in a left-to-right fashion so

it can be output as it is generated. This is accomplished by mark¬

ing the hubs in the structure as "sub-judice" (under consideration],
in- a left-to-right depth-first manner, and not firing backward-

chaining productions unless they are relevant to hubs in a "sub-

judice" statement in working memory.

- 132 -

;;;IF there is a goal to choose declarative
;;; at a node under consideration
;; ;THEN choose declarative, set indicative as

;;; a subgoal, and make the Subject adjacent
;;; to the Finite element
(p declarative
(sub-judice <mom>]
(goal declarative <mom>]

—>

(modify 2 "1 chosen]
(call GOAL indicative <mom>]
(make adjacent "to Subject "is Finite "mom <mom>))

Since forward-chaining productions are dependent on features chosen

by backward-chaining productions, only the latter need an explicit

check.

7.1_.5. Overview conclusion

This overview has provided a high-level gloss of the workings

of SLANG-I and motivation for the form of the productions represent¬

ing the grammar. The next section will describe in detail how these

productions are generated automatically from a system network nota¬

tion. The section following that will describe the details of

SLANG-I including the productions for realization, and productions

for implementing the control strategy and output.

7.2. SNORT (System Network - 0PS5 Rule Translator]

The implementation of SLANG-I depends on the systemic grammar

bei'ng in the form of 0PS5 productions. To this end a set of LISP

operators has been written that translates from a system-network-

like notation to 0PS5 productions (the System Network - 0PS5 Rule

Translator: SNORT]. This section will briefly describe this trans¬
lation and the program that performs it.

7.2.1_. The system network notation

Since it is impractical to enter grammars in the graphical

notation in which they appear in the linguistic literature, some

notation must be used that can easily be input using ordinary

- 133 -

keyboards and characters. The solution to this problem is a LISP

based notation which represents the grammar feature-by-feature, but

which also attempts to capture some of the graphics through the use

of symbols such as -{=,]-, =}- and so on. The idea was not to

create a notation that the grammar-writer can use to develop the

system networks, but rather to create a notation that the grammar-

writer could easily use to type in his system networks once they

have been developed. It is intended that the grammar-writer modifies

and expands the grammar while referring to the original graphical

notation, and then enters these changes using the LISP notation.

First, consider the gates or forward-chaining rules. These are

represented as lists (EC f RR1 RR2 ...) where the first element of
the list is a description of the entry conditions, the second ele¬

ment is the name of the feature, and any further elements are reali¬

zation rules. The description of an entry condition is a list where

the the final element is a graphical symbol and the other elements

are either features or nested descriptions of entry conditions. The

graphical symbols =}- and -<> represent conjunction, the symbol]-
represents disjunction, and the symbols — and -{= are used when

there is only one feature acting as the entry condition.

Here are seme examples:

...indicative

...negative

is written

[(indicative negative =}-) negative-finite
(Finite : Inegative]).

negative-finite
Finite : !negative

.. .operative

. . .range-operative

.. .non-ranged

active-process

- 134 -

is written

((operative range-operative non-ranged]-} active-process).

mass-subj ect

do-finite

present

does
Finite : !does

. . .singular-subject__ f

is written

((present
do-finite

(mass-subject singular-subject]-)
= }-) does

(Finite : !does))

Note that the nesting can be arbitrarily complex with ordinary

LISP parentheses indicating the nesting. For instance

! -be-

! past

.!singular

!second-person

! plural

!third-person

"-were-"
IVerb = were

is written

((!-be-
! past

"-were-"

(!Verb = were))

- 135 -

The "diamond" notation which is often used to avoid tangled

system networks has also been implemented.

is equivalent
to

-e

-f

Part a] of the above diagram uses the bracket notation which

requires crossed lines. Features e and f are represented in this

case by ((a c =}-) e] and ((a d =}-) f) respectively. Part B] of

the diagram uses the diamond notation to avoid the crossed lines.

In this case the same features are represented by ((a c -<>] e] and

((a d -<>] f] . Note that in the LISP notation =}- and -<> are

synonymous.

Features that are terms in systems are represented in much the

same way as features that are gates. The graphical symbol -[is
used to represent a system.

As in the case of gates, complex entry conditions are simply

nested. The following system from (winograd, 1983, p. 293]

feminine
...third I GENDERI
.singular-f

masculine

n eut er

can be written as three statements--one for each feature:

(((third singular =}-] -[] feminine]
(((third singular =}-] -[] masculine]
(((third singular =}-] -[] neuter]

Labelling of systems (e.g. GENDER above] is a common practice,
and often provides useful documentation. Thus the notation allows

- 136 -

the system labels, in capitals, to appear in place of the entry con¬

dition to the system. The above system can also be written:

((third singular = }-) GENDER)
((GENDER -[) masculine)
((GENDER -[) feminine)
((GENDER -[) neuter)

Often there is a single feature acting as a particular entry

condition. The graphical symbols used to represent this are — and

-{=. The difference between these is purely visual; the latter is

used if a branch appears in the system network:

This piece of system network would be written:

((f1 "{=) f2)
((f2 --) SYSTEM2)

((SYSTEM2 -[) . . .)
((SYSTEM2 -[) .. .)

((f1 -{=) f3)
((f3 -{ =) SYSTEM31)

((f3 -{=) SYSTEM32)

- 137 -

As another example:

interrogative
INDICATIVE-TYPE

.. .indi eati ve- {=<T.
declarative

(Subject " Finite)

is written:

((indicative -{=) INDICATIVE-TYPE)
((iNDICATIVE-TYPE -[) declarative (Subject " Finite))
((INDICATIVE-TYPE -[) interrogative)

7.2.2. The production rule notation

The system network notation is translated by SNORT into 0PS5

(Forgey, 1981) (Brownston, et al., 1985) production rules. There
are two production templates that are used, one for forward-chaining

and one for backward-chaining. The forward-chaining productions

have the form:

(chosen entry-conditionN <mom>)
-->

(call ASSERT chosen feature-name <mom>)
(make realization-statementl "mom <mom>

(make realization-statanent2 "mom <mom>

(make realization-statarientN "mom <mom>))

The entry conditions illustrated in this template are conjuncts. If

there is disjunction within the conjuncts, 0PS5 disjunction << d1 d2

d3 ... dn >> is used to represent this. Also, the realization

statements are written in the 0PS5 attribute-value notation. These

(p feature-name
(chosen entry-conditionl <mom>
(chosen entry-condition2 <mom>

- 138 -

take one of the following forms (equivalent rule form in

parentheses) :

adjacent "to Functionl "is Function2 (F1 " F2)
expand "fun Functionl "into Function2 (F1(F2))
conflate "fun Functionl "with Function2 (F1 / F2)
lexify "fun Functionl "as lexl (F1 = lexl)
preselect "feature featurel "for Functionl ... FunctionN

(F1 <F2.. .<FN : f)

For instance the forward-chaining rule does illustrated above is

written:

;; ;IF present, do-finite and one of mass- or

;;; singular-subject have been chosen
; ; ;THEN choose does and preselect the lexical feature
;;; !does for the Finite element
(p does
(chosen present <mom>)
(chosen do-finite <mom>)
(chosen << mass-subject singular-subject >> <mom>)

—>

(call ASSERT chosen does <mom>)
(make preselect "feature !does "for Finite "mom <mom>))

The forward-chaining rule for active-process

.. .operative

. . .range-operati ve_

_ .. .non-ranged

acti ve-pr ocess

is written:

IF one of operative range-operative or non-ranged have
been chosen

THEN choose active-process
(p active-process
(chosen << operative range-operative non-ranged >> <mom>)

— >

(call ASSERT chosen active-process <mom>))

At this point a complication is encountered. Recall the gate

-were-" above. It contains conjunction nested within the

- 139 -

disjunction. This was no problem for the LISP notation, but it poses

a problem for the simple 0PS5 templates described above. In 0PS5

there is no way to express conjunction nested within disjunction in

this way. The solution is not difficult however: intermediate pro¬

ductions can be introduced such that there is only one level of con¬

junction in any one production. In the case of "-were-", for

instance, the problem is conjoining ! second-person and ! singular

within a disjunct, and ! third-person and ! singular in another dis¬

junct. If two intermediate productions are written (using the same

template illustrated above):

;;;IF !second-person and !singular have been
;;; chosen
;;;THEN choose the dummy feature "-were-"g00005
(p M-were-"g00005
(chosen !second-person <mom>)
(chosen !singular <mom>)

-->

(call ASSERT chosen "-were-"g00005 <mom>))

and

;; ;IF ! third-person and ! plural have been
;; ; chosen
;;;THEN choose the dummy feature "-were-"g00006
(p "-were-"g00006

chosen !third-person <mom>)
chosen !plural <mom>)

— >

(call ASSERT chosen "-were-"g00006 <mom>))

then the forward-chaining production can be written as

;;;IF one of the dummy features "-were-"g00005
; ;; or "-were-"g00006 have been chosen as well as
; ; ; !-be- and ! pas t
; ; ;THEN choose "-were-" and assign !Verb the lexical
;; ; item "were".
(p "-were-"
(chosen !-be- <mom>)
(chosen !past <mom>)
(chosen << "-were-"g00005 "-were-"g00006 >> <mom>)

— >

(call ASSERT chosen "-were-" <mom>)
(make lexify "fun IVerb "as were "mom <mom>))

Since an arbitrary number of intermediate levels of productions can

be introduced (recursively, as described below), arbitrarily complex

- 140 -

entry conditions can be handled.

The backward-chaining productions have, of course, a different

tempi ate:

(p feature-name
fsub-judice <mom>)
[goal feature-name <mom>]

— >

[modify 2 "1 chosen]
[call GOAL entry-condition! <mom>]
[call GOAL entry-condition2 <mom>)

call GOAL entry-conditionN <mom>)
make realization-rulel "mom <mom>
make realization-rule2 "mom <mom>

(make realization-ruleN "mom <mom>))

As one would expect, the production is activated if the particular

feature is a goal, the entry conditions are set as subgoals, and the

realization statements are the effects. The "modify 2 "1 chosen"

means "modify the first field of the second condition to 'chosen'"

so that the "goal" statanent is now a "chosen" statanent. The

"sub-judice" at the beginning of the production is for controlling

the order of execution of the productions, and will be explained

later. For instance:

;; ; IF there is a goal to choose declarative
;;; at a node under consideration
;;;THEN choose declarative, set indicative as
;;; a subgoal, and make the Subject adjacent
;;; to the Finite elanent
(p declarative
(aub-Judioe <mom>)
(goal declarative <mom>]

-->

(modify 2 "1 chosen)
(call GOAL indicative <mom>)
(make adjacent "to Subject "is Finite "mom <mom>))

It is possible to have complex entry conditions to systems, and
it would be easy enough to use intermediate productions to handle

- 1 A! -

nested conjunction, as in the case of gates. But recall (frcm Sec¬

tion 4.2.3) that disjunctive conditions pose a special problem to

backward-chaining—this was the reason that independent disjuncts

needed to be included as seed features.

Generally, when a disjunctive entry condition is encountered

during backward-chaining, it amounts to a choice. The question is:

along which path does the best solution lie? Indeed, the wrong

choice could lead to a conflict and to backtracking. Faced with

disjunctive entry conditions, even goal-directed backward-chaining

degenerates to searching explicitly through alternatives.

Fortunately, in many search spaces--including those normally

represented by systanic grammars—there is a high degree of inter¬

dependence between the various branches of the search path. This

can be exploited by the technique of least commitment (stefik et

al., 1983). Least commitment suggests that when a disjunctive entry
condition is encountered, the choice should just be left pending

since it is very likely that one of the disjuncts will appear in the

solution to another goal, thus gratuitously resolving the pending

disjunction without choice. In systemic terms, if there are several

possible entry conditions to a goal feature, the choice should be

delayed. If one of the entry conditions is chosen as part of

another backward-chain of reasoning, then there is no longer any

problem—the entry conditions of the goal feature are satisfied.

• Generally, there will always be the possibility that none of

the disjuncts ever appear gratuitously, in which case seme form of
search must take place. The policy in SLANG-I is for the semantic

stratum to provide enough knowledge so that there is no blind search
whatsoever. The case where search would be needed is exactly the

case of independent disjuncts, and the avoidance of this search is
the reason that independent disjuncts are preselected. Thus the
resolution of disjunctive entry conditions is guaranteed. For this
reason it was decided to simplify SLANG-I by not implementing least
commitment at all—disjunctive entry conditions are simply ignored

entirely. This does not affect the forward- and backward-chaining

- 142 -

since the disjunction would always be resolved gratuitously by a

preselected feature or by another chain of reasoning.

((((a b]-) c =}-) -[j sample)

would be translated into

(p sample
sub-judice <mom>)
goal sample <mom>)

— >

[modify 2 ~1 chosen)
[call GOAL c <mom>))

assuming that either a or b will be preselected or chosen when

achieving another goal. This is a simplifying assumption made in

this implementation. If a more sophisticated problem solver were

used, it would explicitly use least commitment and would perform the

appropriate checks.

7.£.3_. The translation

The top level operator of SNORT [see Appendix D, Section 5),
takes as an argument a list of feature descriptions as described

above. It simply loops through this list, translating each feature

[skipping over the system labels--identified by being in capitals)
into 0PS5 productions. For each feature, the operator "f-p"

[feature to production) is called with the following arguments:

a) the feature name,

b) a flag indicating whether or not the feature is "in a system"

[i.e. a term in a systan, or an entry condition to a feature
"in a system"--this determines whether the feature is written

as a forward- or backward-chaining production) ,

c) the entry conditions to the system,*

* Note that the entry conditions of a system will not be speci¬
fied in the same feature description as the feature name if a sys¬
tem label is used. In this case SNORT simply finds the descrip¬
tion for the system label, and uses the entry conditions there.

- 143 -

d) a list of the realization rules.

F-p simply builds a production following one of the two tem¬

plates (depending on the "in-a-system" flag). There are two impor¬
tant operators that are called by "f-p": "decode," which decodes the

entry condition description; and "unformat," which translates the

systemic format realization rules into realization statements in the

0PS5 attribute-value notation.

Decode takes the nested entry condition descriptions described

above (including =}-, -[, -<> etc.) and returns a list of conjuncts

where any sublists are disjuncts (there is no further nesting). Thus

"f-p" can easily take this and write each element of the list as a

condition in the case of gates, or ignore the disjuncts in the case

of systems. Thus it is "decode" that is responsible for building

the intermediate productions for gates with nested conjunction in

their entry conditions. This is done very easily, however, by simply

calling "f-p" with trivial arguments (where the name of the inter¬
mediate production is made by concatenating the original feature

name with a unique symbol returned by gensym). Since "f-p" and
"decode" are mutually recursive in this way, arbitrary levels of

nesting can be handled.

The other important operator called by "f-p" is "unformat." In

most cases the unformatting of realization rules is trivial. For

instance if the argument is "(F1 / F2)", "unformat" returns "(make
co.nflate "fun F1 "with F2 "mom <mom>)". The only difficult case is

preselection. The rule " (GoaKDei cticCHead : Isingular)", is unfor¬
matted to "(preselect "feature Isingular "for Goal Deictic Head "mom
<mom>)" where "Goal Deictic Head" is a path describing the place in
structure to which the feature applies.

Aside from a few subtleties, in particular the creation of

For instance, the entry condition of masculine in its feature
description is GENDER. So the description of GENDER is found, and
the entry conditions (third and singular) are used in the produc¬
tion for masculine.

_ 11,4 _

intermediate productions, SNORT is a very simple program. The top-

level operator takes a second argument, a file name, and the result¬

ing 0PS5 productions are pretty-printed to this file. Once the sys¬

tem network has been SNORTed, the productions can be loaded into

0PS5 any number of times. SNORT only needs to be used again if

changes are made to the network.

7.3. SLANG-I

The first implementation of the "Systemic Linguistic Approach

to Natural-language Generation" generates text using the the 0PS5

productions output by SNORT. Aside from SNORT, the rest of the sys¬

tem can be divided into two parts: first, the linguistic productions

that interpret the realization statements and build the structure of

the text; second, the non-linguistic productions and operators

responsible for the low-level workings of the system. These will be

discussed in the following two sections.

7.3^1_. Realization productions

This section describes the 0PS5 realization productions, which

interpret the realization statements put in working memory during

the processing of the grammar. These productions are responsible

for building a linguistic structure for the text being generated.

0PS5 grammar productions use the "make" command to put elements

in working memory. The first three productions look for realization

statements in working memory that involve functions which do not yet

have function descriptions. In each case a function description is
created with the "make" command, and a unique hub is created using

the built-in 0PS5 function "genatcm." Remember when reading the 0PS5

productions that only those fields relevant to the pattern matching

process will appear in the LHS of the production, and that the
attribute-value pairs may appear in any order.

- 145 -

;;;IF there is a conflate lexify or expand statement
;;; whose first argument does not have a hub,
;; ;THEN create a unique hub for it.
(p new-hub::first-arg
(<< conflate lexify expand >> "fun <f> "mom <m>]
-(hub "of <f> "mom <m>]
— >

(make hub "of <f> "is (genatom] "mom <m>]]

;;;IF there is a conflate statement whose second
;;; argument does not have a hub,
;; ;THEN create a unique hub for it.
(p new-hub:: second-arg: conflate
(conflate "with <f> "mom <m>]
-(hub "of <f> "mom <m>)
-->

(make hub "of <f> "is (genatcm) "mom <m>]]

;;;IF there is an expand statement whose second
; ; ; argument does not have a hub,
;; ;THEN create a unique hub for it.
(p new-hub::second-arg:expand
(expand "into <f> "mom <m>]
-[hub "of <f> "mom <m>]

— >

(make hub "of <f> "is (genatcm] "mom <m>))

For instance, suppose a conflation statement is put in working

memory during the processing of the grammar:

(conflate "fun Subject "with Agent "mom g00007)

Furthermore, suppose neither of these functions appears in any of

the realization statements processed at this particular point in

structure—and thus they do not yet have hubs assigned to them.

Note that the first condition of the first production is matched by

this conflation statement (conflate "fun Subject "mom g00007j, and
ex hypothesi the second condition is met since there is no working

memory element (hub "of Subject "mom g00007j. Thus the first pro¬

duction can fire resulting in (for instance]

(hub "of Subject "is g00010 "mom g00007]

being added to working memory. Similarly, the second production

- 146 -

also matches (conflate "with Agent "mom g00007], and since there is

no (hub "of Agent "mom g00007] this production can also fire adding

(for instance]

(hub "of Agent "is g00011 "mom g00007]

to working memory. For the actual conflation see the description
below.

Hubs are created in a similar manner for functions appearing in

lexify and expand statements. Preselection and adjacency are both

special cases. Recall that preselection statements can contain an

arbitrary number of functions in the paths. Thus it is easiest to

write a special production for preselection that calls LISP to loop

through the list of functions in the path (see below]. Adjacency is

special because it does not require changes in the function descrip¬

tions (note that there is no "adjacent attribute for the functions].
In fact the adjacency statements put in working memory by the gram¬

mar are simply used as they stand.

The 0PS5 productions that actually interpret the realization

rules of the grammar can now be described. These productions will
not fire until hubs have been created for all functions involved in

the productions above. The first production is for expansion:

;;;IF an expand statement is encountered, expanding a
;;; function into subfunctions
;;;THEN put the hub of the expanded function as the "super
;of the hub of the subfunction.
(p expand
{(expand "fun <f> "into <subf> "mom <m>] <expand>}
(hub "of <f> "is <h> "mom <m>]
{(hub "of <subf> "mom <m>] <hub-of-subf>}
-->

(modify <hub-of-subf> "super <h>]
(remove <expand>]]

This is a very simple production that simply inserts a value for

"super into the subfunction's description. For instance, if (expand
"fun Mood "into Subject "mom g00012] and (hub "of Subject super nil
"mom g00012] and (hub "of Mood "is g00004 "mem g00012] are all in
working memory, then the description of Subject will be modified to

- 147 -

(hub "of Subject "super gOOOO^t "mom g00012].

The "conflate" production itself simply recognizes the need for

a conflation and then sets a task that will be performed by another

set of productions.

IF a conflate statement is encountered and the functions
have different hubs,

THEN substitute the hub of the first for all instances
of the hub of the second by setting the task
change-hub.

(p conflate
conflate "fun <f1> "with <f2> "mom <m>) <conflate>}
hub "of <f1> "is'<h1> "mom <m>]
hub "of <f2> "is { <h2> <> <h1> } "mom <m>]

-->

(remove <conflate>]
(make task change-hub <h2> to <h1>]]

For instance, if the conflation statement (conflate "fun Subject
"with Agent "mom g00007] and (hub "of Subject "is g00010 "mom
g00007] and (hub "of Agent "is g00011 "mom g00007} are all in work¬

ing memory, then the element (task change-hub g0001 1 to g00010] is
put in working memory, activating the following set of productions:

;;;IF any functions are associated with the old hub,
;;;THEN associate them with the new one instead,
(p change-hub::functions
(task change-hub <old> to <new>]
{(hub "is <old>] <hub>}

— >

(modify <hub> "is <new>]]

The above production is useful in cases where there are several

functions associated with the to-be-replaced hub (as a result of

previous conflations] .

IF any attribute-value statanents have the old hub
in the "mom field,

THEN change it to the new one.

(p change-hub::mothers:value-attribute
(task change-hub <old> to <new>)
{(<< hub adjacent >> "mom <old>] <hub/adj acent>}

— >

(modify <hub/adjacent> "mom <new>}]

- 1H8 -

; ;;IF any vector statements have the old hub in the
;; ; las t (mom J field,
; ; ;THEN change it to the new one.

(p change-hub::mothers: vector
(task change-hub <old> to <new>)
{(<< chosen goal >> {} <old>) <vector>}

— >

(modify <vector> "3 <new>))

; ; ;IF any "super fields have the old hub
; ; ;THEN change it to the new one.

(p change-hub::super
ftask change-hub <old> to <new>}
((hub "super <old>) <hub>}
-->

(modify <hub> "super <new>))

The task "change-hub" has the effect of simply substituting the

new hub symbol for the old one throughout working memory.

The production for lexification, like that for expansion, sim¬

ply adds a value to a field in the function description--in this

case the "lex field.

; ; ;IF a lexify statement is encountered,
;;;THEN associate the lexical item with the function's hub.
(p lexify
(lexify "fun <f> "as <lex> "mom <m>) <lexify>}
(hub "of <f> "is <h> "mom <m> "output? <> yes) <hub>}

— >

(modify <hub> "lex <lex> "output? no)
(remove <lexify>))

The only moderately difficult realization is preselection. Here

the difficulty is not because preselection itself is especially

complex, but merely because the paths in preselection involve a

variable number of functions, and therefore are not easily handled

directly by the 0PS5 pattern matching facility.

However, 0PS5 allows LISP operators to be called from the RHS

of productions.

- 149 -

;; ; IF a preselection statement is encountered
; ; ;THEN pass the whole thing to a lisp operator that
; ; ; handles this .

;;; [This is necessary because the number of arguments
;;; is arbitrary.]
(p preselect
{(preselect "feature <feature> "mom <m>] <preselect>}
-->

fcall PRESELECT (substr <preselect> 1 inf]]
(remove <preselect> J J

The LISP operator PRESELECT (see Appendix D, Section receives a

feature and a path (list of functions] as arguments. It loops

through the list of functions where each function appears in the

"mom field of the next function in the list (if necessary, a new hub
and function description are created] . Finally, a goal statement
for the feature is put in working memory, with the mother

corresponding to the last element in the list.

Suppose a preselection statement is put in working memory dur¬

ing the processing of the grammar: (preselect "feature Ifeminine
"for Agent Deictic Head "mom g00006]. Suppose none of these func¬
tions have hubs already. PRESELECT is called and begins looping

through the list (Agent Deictic Head]. The Agent in this case is a

function at the current place in structure, so an element such as

(hub "of Agent "is 1100004 "mom g00006] is created with the help of

gensym. The further elements (hub "of Deictic "is h00005 "mom
h00004] and (hub "of Head "is h00006 "mom h00005] are then created.
Thus the path as a whole points to the place in structure occupied

by the hub h00006. Accordingly, an element (goal Ifeminine h00006]
is placed in working memory to actually perform the preselection.

The support system

The other group of productions to be described are those

responsible for the low-level workings of the system. These produc¬

tions are concerned with two related aspects of the system. The

productions are responsible for keeping track of what parts of the

text have been output. Also, most of the productions are used to

coordinate the systan so that the text is generated from left to

- 150 -

right.

The first production can be found in almost any 0PS5 program:

IF a task is no longer appropriate
(it matches no other productions],

.THEN delete it.
(p ranove-task
{(task) <task>}
-->

(remove <task>)]

0PS5 will match statements with more specific (more vector places

specified) conditions first; since this condition is the least

specific possible, it is guaranteed to match last, that is when the

task has already been done (see Waltzman, 1983, p. 29).

The next production is used to mark functions conflated with an

output function as also being output.

;;;IF a hub has been output,
;;;THEN make sure all the wm elements for that
;;; hub are marked accordingly.
(p spread-output
(hub "is <h> "output? yes)
{(hub "is <h> "output? <> yes) <out-of-date>}

— >

(modify <out-of-date> "output? yes))

The remaining productions involve the idea of a node being

sub-judice, or under consideration. The idea is that nodes in the

structure are marked as being sub-judice progressively from left to

ri'ght as more of the text is actually output. Recall that the

backward-chaining productions in the grammar require the place in

structure (the mother node) to be sub-judice before they can fire.
Thus when the nominal group realizing the leftmost constituent in a

clause (say the Topical) is sub-judice, productions for this nominal

group will fire first. The sub-judice "marker" is only moved to the

right once the constituents to the left have actually been output.

Of course it is slightly more complicated than this because the

structure is a graph resembling a tree, not a list. Since 0PS5

gives the most recent working-memory elements priority, if the

structure graph is created depth-first, the deepest element has the

- 151 -

highest priority, but the ancestors are also sub-judice. So going

back to the previous example, the productions will fire for the nom¬

inal group if possible, but if there have not been enough preselec¬

tions, the generation of the Topical will eventually get stuck. The

next most recent node (the clause) then has some more of its produc¬
tions fired until a preselection or conflation (e.g. Topical / Sub¬

ject) gives the nominal-group productions sane more information to
work with. Thus in general, the sub-judice constraint forces the

generation to proceed in an in-order depth-first manner.

It may appear that there is a possibility of the generation

getting "deadlocked" if a preselection is required fran a non-sub-

judice node. It becomes clear that deadlock can not occur, however,

when it is considered that the only source of input to the genera¬

tion at a particular node is preselection, and preselection can only

come from an ancestor in the constituent tree, and all ancestors of

a sub-judice node are required to be sub-judice themselves. There¬

fore, because preselection is directional, deadlock cannot occur.

- 151a~

The following production is a result of the possibility of a

hub having more than one supernode. For instance, if the Topical is

conflated with the Subject (a common occurrence], then the common

hub will be a subnode of both the Theme (the supernode of Topical]
and Mood (the supernode of the Subject]. This production ensures

that if the Subject is sub-judice by virtue of being conflated with

the Topical, then the Mood should also be sub-judice.

;; ; IF a node is under-consideration (sub-judice],
; ; ;THEN make sure any supernodes are also
;;; under consideration.
(p fill-scope::super
(sub-judice <sj>]
(hub "is <sj> "super { <super> <> nil }]
-(sub-judice <super>]
-->

(make sub-judice <super>]]

The following production actually outputs a lexical item. If a

hub is sub-judice and it has a lexical itan associated with it (see
lexify above] then simply write out the lexical item and mark the
hub as output.

;; ; IF a lexical item has been associated with a hub,
;; ; and that hub is sub-judice,
;;;THEN output that lexical item

and mark the hub as output.
(p output
{fhub "is <h> "lex { <1> <> nil } "output? no] <hub>}
(sub-judice <h>]

— >

(write <1> (crlf]]
(modify <hub> "output? yes]]

- 152 -

The final set of productions is responsible for the flow of

control through the structure network. The first of these produc¬

tions moves the sub-judice marker down one level of unit nesting.

; ; ; IF a node is sub-judice and not output,
; ; ;THEN declare its leftmost child (if there is one)
;;; sub-j udice .

(p move::down:#
(sub-judice <sj>)
(adjacent "to # "is <f> "mom <sj>)
(hub "of <f> "is <h> "output? <> yes "mom <sj>)
-(hub "is <sj> "output? yes)
-->

(make sub-judice <h>))

The second production moves the sub-judice marker down to the

leftmost subnode of a node that is sub-judice.

;; ; IF a node is sub-judiee and not output,
; ; ;THEN declare its leftmost subnode (if there is one)
; ; ; sub-j udi ce .

(p move::down:%
(sub-judice <sj>)
(adjacent "to % "is <f> "mom <m>)
(hub "of <f> "is <h> "super <sj> "output? <> yes "mom <m>)
-(hub "is <sj> "output? yes)
— >

(make sub-judice <h>))

; ; ;IF a hub has just been output
; ; ;THEN declare the node adjacent to it (if there is one)
; ; ; sub-j udice .

(p move::across
(hub "of <f> "output? yes "mom <m>)
(adjacent "to <f> "is <f1> "mom <m>)
(hub "of <f1> "is <h1> "output? <> yes "mom <m>)

— >

(make sub-judice <h1>))

;; ; IF the rightmost child of a node has just been output,
; ; ;THEN declare the node output
(p move::up:#
(adjacent "to <f> "is # "mom <m>)
(hub "of <f> "output? yes "mom <m>)
{(hub "is <m> "output? <> yes) <mother>}

— >

(modify <mother> "output? yes))

- 153 -

;; ; IF the rightmost subnode has just been output,
;; ;THEN declare the supernode output.
(p move::up:$
fadjacent "to <f> "is % "mom <m>)
(hub ^of <f> "output? yes "super <super> "mom <m>)
{(hub "is <super> "output? <> yes) <supernode>}

— >

(modify <supernode> "output? yes))

Finally, there are the two LISP operators, GOAL and ASSERT (see
Appendix P, Section 'l) , mentioned earlier. Unlike PRESELECT, which
was written in LISP by necessity, GOAL and ASSERT have been written

in LISP for reasons of efficiency. Almost every grammar production

calls one of these two operators, so they greatly affect the effi¬

ciency of the system, (call GOAL feature <mom>) and (call ASSERT
chosen feature <rnom>) are equivalent to (make goal feature <mom>)
and (make chosen feature <mom>) respectively, except that in each
case the external routines check to make sure that feature has not

already been chosen. This turns out to be faster than putting a

-(chosen feature <mom>) condition in every grammar production.

The reason these external routines are so fast is that they

take advantage of the hashing mechanism used by 0PS5. Working

memory elements are hashed on their first field. The elements that

have the form (chosen ...) are stored in a list separate from the
rest of working memory. A quick look at the source code of 0PS5

reveals that this list can be retrieved by (get 'chosen 'wmpart*).
Thus the feature check can be made by scanning a fraction of working

memory.

7.{J_. Limitations of the current implementation

Seme limitations of SLANG-1 resulted from shortcuts taken to

reduce the development time, complexity, and running time of the

system. For instance, no checks are made to make sure exactly one

feature is chosen from a system whose entry conditions are satis¬

fied. No checks are made that preselected features actually exist.

It is assumed that the networks form a coherent whole and that the

input to the system will be reasonable. These checks would be easy

- 154 -

to implement, but were excluded for reasons of simplicity and execu¬

tion speed.

Several other limitations are the result of one major shortcut,

viz. that what is essentially the 0PS5 inference engine has been

used as the "problem solver." Ideally a more sophisticated problem

solver would perform forward- and backward-chaining. It would also

have built-in mechani sms to handle disjunctive conditions (e.g.
least commitment—see Stefik et al., 1983) and would eliminate the
need for GOAL and ASSERT. The results would be the same, but the

mechanism would be less ad hoc.

7.5_. Alternative implementations

There is no doubt that SLANG-I's straight 0PS5 production rule

implementation was only one of many possibilities. This section

will suggest that other production systems and even object-oriented

languages could, and perhaps should, be used in future implementa¬

tions .

]_.5Other production systems

The advantages of essentially using the actual 0PS5 mechanism

as the problem solver for this initial implementation were its sim¬

plicity and speed. In practice, however, SLANG will be implemented

within an expert system where the problem solving is done by a much

inor o aophlatioatod inforonco onglno. This problem solver may, for

instance, have the ability to reason about the RHS of the production

rules instead of simply trying to match the LHS. This may, for

instance, enable the problem solver to "reason from first princi¬

ples" by reasoning with the functional relationships described in
the realization rules at the grammatical stratum in cases where no

suitable compiled knowledge is available.

The point is that even with a representation almost identical
to that used in SLANG-I, problem-solving techniques that are much

more sophisticated than those built into 0PS5 can be applied to text

generation by a more sophisticated problem solver.

- 155 -

It must be considered, however, that speed will always be an

important !§§i;§)ri prabtioal Uxt-genqrntlon work. Lengthy ronson-

ing about language can only be tolerated in some rare circumstances.

Thus, even though reasoning from first principles, as one example,

is necessary to round-out SLANG's capabilities, the high-speed com¬

piled approach demonstrated by SLANG-I must remain the dominant form

of reasoning.

If a production system is used to implement SLANG then, it must

have the ability to do simple forward- and backward-chaining very

quickly. It should also have the flexibility to allow access to all

parts of the production (including the effects] and efficiently

implement backtracking and the techniques to avoid it (e.g. least

commitment, Stefik et al., 1983].

7.5.2. Inheritance hierarchies

One interesting possibility is that of representing system net¬

works as inheritance hierarchies. This could be done, for instance,

using a semantic network notation, or an object-oriented notation.

Clauses, for instance, could be represented as a class of objects,

finite clauses as a subclass of these, indicative clauses as a sub¬

class of these, declarative clauses as a subclass of these and so on

(note the use of of the term "class" corresponds exactly to the sys¬

temic term—see Section 3.3.1]. Declarative clauses thus inherit
the properties (represented by realization rules] of indicative

clauses, finite clauses and clauses. In a sense, the backward-

chaining of SLANG-I implorients the mechanism of inheritance, but it

may be more elegant and efficient if the problem solver performs

inheritance as a primitive task. Of course the complex relation¬

ships found in system networks (including multiple inheritance] must
be able to be represented in whatever notation is chosen. It may be
that a hybrid representation (where, for instance, an inheritance

hierarchy represents the systems and productions represent the

gates] is best.

Indeed, returning to the fundamental relationship described in

- 156 -

Chapter 4, SLANG should be able to be implemented using many of the

tools and techniques developed to "construct [a] solution selec¬

tively and efficiently from a space of alternatives" (Hayes-Roth et

al.f 1983).

7 • 6_. Summary

This chapter has discussed some of the implementation issues of

SLANG and the implementation of a prototype system. This implemen¬

tation uses an 0PS5 representation for the system networks. The

networks are translated from a LISP-based system network notation

into the 0PS5 productions. Gates are translated into forward-

chaining productions, and other features are translated into

backward-chaining productions. The realization rules , which appear

as effects in the productions, are put in working memory as they are

encountered in the form of 0PS5 realization statements. Other pro¬

ductions, which are not part of the grammar but were written in 0PS5

for convenience, then interpret these realization statements and

build the linguistic structure of the text. Still other 0PS5 pro¬

ductions perform the low-level behind-the-scenes work including

writing out the text as it is generated.

Several shortcuts have been taken to reduce the size and com¬

plexity of the initial implementation. These included the omission

of error checks, and the use of a slight abstraction of the 0PS5

inference engine as the "problem solver" instead of implementing

something more substantial. Finally, a straight production system

implementation is only one possibility. Other problem-solving

representations, in particular inheritance hierarchies--perhaps in

copjunction with production rules--may work as well or better.

- 157 -

8. Comparison with Other Work

This chapter will compare and contrast the text-generation

method described in the previous chapters with other recent work in

the field. This will not include the large body of research done

recently on discourse planning, but only work concerned with realiz¬

ing these plans. The most notable exclusion on these grounds is

McKeown's TEXT (McKeown, 1982, 1983} which sets some discourse
related goals then does the actual text generation using unguided

search and backtracking (see Appelt, 1983, p. 599).

A look at recent systans reveals that there are currently two

general approaches to text generation: the "grammar-driven" approach

and the "goal-driven" approach. Both of these will be outlined,

including their major practitioners, and the advantages that are

offered.

Next, the systems that try to combine these two approaches will

be considered. It will be shown that SLANG successfully achieves

this, capturing the advantages of both the grammar-driven and goal-

driven approaches.

23.1_. The grammar-driven approach

Several of the major text-generation projects are "grammar-
driven." This term will be used to refer to those systems that

traverse an explicit linguistic grammar. Since the flow of control

is directed by the grammar traversal, the logical structure of the

system reflects the structure of the grammar.

The original grammar-driven systems would simply traverse the

grammar, typically an ATN, backtracking where necessary. More

recent grammar-driven systans avoid backing up by doing an analysis

at choice points to make sure the right decision is made the first

time. This analysis often involves considering semantic and prag¬

matic issues that, for reasons of modularity, should not be directly

accessible to the grammar. Therefore an interface mechanism of seme

kind is provided through which the higher level guidance may be

obtained. Two grammar-driven systems will now be surveyed.

- 158 -

8.1.1 PROTEUS

PROTEUS (Davey, 1978] is a program for annotating games of

noughts and crosses (ti c-tac-toe] . It produces fluent text in this

limited domain, with particular emphasis on referring expressions
and ellipsis. PROTEUS traverses an explicit systemic grammar in

order of delicacy (from left to right]. Some features will already

have been chosen when the grammar is entered, but most decisions at

choice points are made by "specialists." Seme specialists consider

the text that has been produced so far, and the "semantic special¬

ists" consult the non-linguistic domain knowledge for guidance. The

program either plays a game itself or accepts the moves of a game as

input. In either case the game annotation begins with a transcript

of a valid set of moves.

An example from (ibid., p. 17]:

The following commentary was given on the moves shown:

'The game began with my taking a corner,
and you took an adjacent one.

I threatened you by taking the corner
adjacent to the one that you had just
taken, but you blocked my diagonal
and threatened me.

I blocked yours and forked you.

Although you blocked one of my edges
and threatened me, I won by completing
the other.'

The general procedure is to choose some number of consecutive

moves to be described in a sentence, to generate this, and to

repeat. First the tactical significance of the moves is determined.

Then, depending on this, descriptions of the appropriate moves are

conjoined to form a sentence of not more than three main clauses.

The actual sentences are formed by traversing system networks.

When faced with a choice, PROTEUS calls upon a "specialist

- 159 -

procedure" to make a decision based on the "syntactic and semantic

context." These specialists may actually generate bits of text as

part of the decision process to see, for instance, if a satisfactory

modifier or qualifier can be constructed. Davey claims that

It will therefore be obvious that the program's operations
cannot be categorized as working 'top-down'. It does not
invariably construct an item by determining its feature-
set, thence determining constituent-structure, and finally
building each constituent. Instead, syntax and semantics
are woven together and dependent on each other, either one
being able to take control as the situation demands,
(ibid., p. 120-121J .

When traversing the network, PROTEUS uses defaults to save some

work. For instance, unless told otherwise it assumes clauses are

independent, indicative, declarative, and past. This would not be

useful except in the restricted register in which PROTEUS operates.

One interesting aspect of the semantic specialists is that they

may choose several features at a time as opposed to the "one

feature, one specialist" approach adopted in Nigel (see below]. For

example, if a semantic specialist decides a relative clause is

necessary, it preselects (not a term used by Davey] clause, depen¬
dent , finite, and relative. The semantic specialists may also

decide that a special time adverb or aspect is required, and again

it will preselect the necessary clause features.

PROTEUS has similar specialists to help construct referring

expressions. These can be quite complex: "the corner common to the

ed'ge opposite the square X had just taken and the one opposite the

square 0 had just taken" (ibid., p. 144].

In summary, PROTEUS produced impressive results in the limited

domain but relied on aU hoc procedures and "specialists" to a large

degree. Despite the shortcomings of the implementation, PROTEUS
became a major influence in text-generation research since essen¬

tially the same approach was adopted for the Nigel system.

- 160 -

8.1_.2. Nigel

Nigel (Mann et al., 1983; Mann, 1985) is a general purpose

text-generation sy3tan very similar in design to PROTEUS. It too is

built around an explicit systemic grammar, and the grammar itself

has been the focus of most of the work. As in PROTEUS, the grammar

is traversed in order of delicacy, from left to right. The deci¬

sions at choice points (systems) are handled by "choosers," that are

organized and documented much better that Davey's specialists.

There is also a well-defined interface between the choosers and the

"environment." The "environment" knows about the text plan and goals

of the speaker, and has access to the non-linguistic domain

knowledge. The choosers base their decision on the answers received

in response to specific questions posed to the "environment."

As an example of how the grammar is traversed, consider the

informal description of how the mood of a clause is chosen (Mann et

al., 1983, p. 41). The grammar finds itself in a system where the
choice is between indicative and imperative. The chooser asks the

environment, "Is the illocutionary point of the surface level speech

act ... a command, i.e. a request of an action by the hearer?" The

environment then answers, "It's not intended to command." So the

chooser chooses indicative. The grammar, having just passed through

one system, now finds itself at another labelled "IndicativeType"

where the choice is between declarative and interrogative. The

chooser for this system asks the environment, "Is the illocutionary

point of the surface level speech act ... to state?" And the

environment answers, "Yes, it's intended to state." The chooser

therefore chooses declarative. Any realization rules attached to

the features are processed as soon as they are chosen. This same

"question and answer" procedure is repeated for every system encoun¬

tered during the traversal. The clause network is traversed again
for any embedded clauses, the nominal-group network is traversed
for any nominal groups required and so on. Nigel will be discussed
further in Section 8.4 below.

- 161 -

8.1_.3. Advantages of grammar-driven systems

The grammar-driven approach, of which PROTEUS and Nigel are

examples, has several important advantages. The grammars may be

represented in a linguistic formalism since no processing informa¬

tion needs to be included. This is advantageous because it means

that grammar can be judged, modified, understood etc., independently
of the rest of the system (Appelt, 1982). In addition, the logical
structure of the system is explicit in the grammar. This makes the

operation of the system easier to understand.

In general, these advantages are conducive to research pro¬

jects, like PROTEUS and Nigel, that are primarily concerned with

linguistic issues rather than with processing.

8.2. The goal-driven approach

On the other side of the text-generation coin are systems that

generate text by goal-direct ed problem solving. The control in these

systems typically rests with some form of text-planner; the flow of
control is driven by the goals the planner is trying to achieve. It

is the mechanism of this planner and the interface with the grammat¬

ical component which is of interest in these systems. The grammar

itself is relegated to an obscure if not invisible role. They tend

to regard the form of the linguistic component (lc) as being subsi¬

diary to, or even dependent on, the goal-directed problem solving.

[w]e believe (and it is here that we part company with
researchers such as Mann and Matthiessen [1983] whose aims
we otherwise share) that the demands placed on the LC by
the need to work efficiently from a plan have overriding
implications for the LC's architecture (McDonald et al.,
1985, p. 800) .

Note that a new term--"goal-driven"--has been coined here to

make the distinction between systems which merely take goals into

consideration, and systems whose control structure is goal-oriented.
Consider the choosers in Nigel. The choices that are made often

depend on consideration of the goals of the speaker (Mann et al.,

- 162 -

1983). Clearly in seme sense Nigel is therefore directed by these

goals, but the choosers are invoked in the first place because of

their position in the grammar, not because a particular goal

emerged.

Two examples of goal-driven text generators are Appelt's KAMP

and the work involving McDonald's MUMBLE.

8.2.1_. KAMP

KAMP (Appelt, 1982) is a planner that integrates linguistic and
other types of actions to achieve communicative goals. The impor¬

tant issues in KAMP are this integration, and the ability to reason

about the knowledge and intentions of other discourse participants.

Consider a situation (frcm ibid., p. 2) where there are two

agents, A and B, working in a shop where there are several objects

on a table. Suppose agent A knows agent B wants to perform a pai—

ticular task. Suppose agent A wants to help agent B by telling him

to use a particular tool with which agent B is unfamiliar. Agent A

may, for instance, point to one of the objects and say "Use the

wheel-puller to remove the flywheel." In this case the speaker has

combined a non-linguistic act (pointing) and a linguistic act to
achieve two goals: first to communicate which tool to use, and

second to communicate the name of the tool for future use.

Suppose further that, in a similar situation, the speaker had

his hands full and there was no satisfactory verbal description of

the wheelpuller. The speaker would then have to plan to put down

what he was carrying and again point to the tool while giving his

advice. Thus there is a potential for complex interactions between

linguistic and non-linguistic acts that are integrated. These

interactions can be resolved, however, by an AI problem solver.

KAMP is the problem solver Appelt constructed to explore and illus¬

trate these ideas.

In the last example it was important that the speaker knew that
the hearer didn't know the name of the necessary tool—otherwise the

- 163 -

pointing action is redundant. Similarly, the entire episode would

have been unnecessary if agent A had known that agent B already knew

what tool to use. It is clear that in communication of this sort,

reasoning about the knowledge of the agents involved is required.

Appelt illustrates this kind of reasoning with an example (ibid.,
p .83):

Consider the following problem:

A robot named Rob and a man named John are in a room that
is adjacent to a hallway containing a calendar. Both Rob
and John are capable of moving, reading calendars, and
talking to each other, and they each know that everyone is
capable of performing these actions. They both know they
are in the rocm, and they both know where the hallway is.
Neither Rob nor John knows what date it is. Suppose
further that John wants to know what day it is, and Rob
knows he does. Furthermore, Rob is helpful and wants to do
what he can to ensure that John achieves his goal. We
would like to see KAMP devise a plan, perhaps involving
actions by both Rob and John, that will result in John
knowing what day it is.

We would like to see Rob devise a plan that consists of a
choice between two alternatives. First, if John could find
out where the calendar is, he could go to the calendar and
read it, and in the resulting state would know the date.
So, Rob might tell John where the calendar is, reasoning
that this information is sufficient for John to form and
execute a plan that would achieve his goal. The second
alternative is for Rob to move into the hall and read the
calendar himself, move back into the room, and tell John
the date.

KAMP solves the problem by doing hierarchical planning (Sacer-
doti, 1975) with predicates and instantiations such as

KnowsWhatIs(Rob, date), and actions such as Do(Rob, Move(loc(Rob),
Loc(call))) and Do(Rob, Inform(john, Date=D)).

Thus KAMP can solve this type of problem by goal-directed rea¬

soning about the mental states of agents including itself, and about
the interactions between the linguistic and non-linguistic acts

involved. But unfortunately, the grammar is built into the planner

ad hoc and is thus not easily accessible or observable (Appelt,
1983).

- 164 -

8.2.2. MUMBLE

The other major goal-driven work is that of McDonald (1980,
1983a, 1983b and McDonald et al., 1985]. This, like KAMP, is pri¬

marily concerned with the achievement of goals and the organization

of language generation, not grammatical issues.

McDonald labels his control structure as "description directed

control." The description is of the final text, but at a very high

level of abstraction. This description can be regarded as a special

notation for specifying sets of goals.

The general organization of McDonald's most recent work

(McDonald et al., 1985] is that of a pipeline performing four opera¬

tions concurrently. The first step is "planning," using specific

script-like knowledge for specific linguistic registers. In the

example domain, legal discourse, these scripts are "Descri be-legal-

case," "Describe-a-party-to-a-case ," "Describe-corporate-party,"

etc. Additional register information is included in the plan

labelled as "perspectives," such as "establish-relation-of-speaker,"

and "misappropriation-script."

The second step is "attachment." The parts of the plan are

attached to a phrase-structure representation according to various

grammatical constraints and some "stylistic rules" indicating the

preferred length and complexity of sentences for a particular regis¬

ter .

The third step in the pipeline is "realization." Here the

high-level representation attached to the phrase-structure tree is

realized as a phrase-structure subtree. The process annotates the

nodes with functional labels and morphological information to help

constrain further processing.

The fourth step in the pipeline is the "phrase-structure execu¬

tion." At this step the phrase-structure representation built by the
last step is traversed, recursively traversing subtrees and output-

ting lexical items attached to leaf nodes.

- 165 -

The interest here is in what information gets passed when

between the various components. Notice that the semantic knowledge

here, unlike that of the grammar-driven systems, can be organized by

semantic criteria. For instance it is explicitly stated that

"Describe-corporate-party" is a sub-type of "Describe-a-party-to-a-

case" (McDonald et al., 1985]. The grammar in MUMBLE, like that of

KAMP, is built into the workings of the program and is not presented

as being a major issue.

8_.2.^. Advantages of the goal-driven approach

The goal-driven approach also has some important advantages.

One particularly important characteristic of the goal-driven

approach is that the semantic knowledge can be organized according

to semantic criteria instead of being tied to the grammar. When

using the grammar-driven approach, the semantic knowledge responsi¬

ble for interfacing the extralinguistic inference with the grammar

must be attached to choice points in the grammar. No such con¬

straints are imposed on goal-driven systems.

Another advantage is that, as KAMP demonstrated, non-linguistic

acts can be integrated with linguistic acts to achieve goals. This

is not possible in a strictly grammar driven approach because the

grammar contains no extralinguistic knowledge.

More abstractly, the goal-driven approach seems to be more con¬

sistent with the aims of the computational paradigm than the

grammar-driven approach. This is not surprising since the emphasis

in this paradigm is on processing.* The computational paradigm (see
Section 5.3] tries to apply general problon-solving techniques to

processing language. One of the most powerful problem-solving tech¬

niques is goal-directed search (see 2.1.4] which, applied to

language generation, is the goal-driven approach.

* Note, however, that McDonald takes a generative stance (see
the introduction to McDonald, 1983b].

- 166 -

8.3_. Combining the approaches

Both the grammar-driven and goal-driven approaches have advan¬

tages. Ideally the explicit grammar and logical structure of the

grammar-driven approach could be combined with the goal-oriented

pr obi em-sol ving approach reflecting communicative goals of the

speaker.

8.3-1. TELEGRAM

TELEGRAM (Appelt, 1983} was an attempt to combine KAMP's

emphasis on planning throughout the generation with an explicit

grammar (in this case a functional unification grammar}. Although
TELEGRAM had a planner available throughout the generation, the pri¬

mary locus of control was in the grammar.

[T]he TELEGRAM planner will create a high level functional
description of the intended utterance. ... At this point,
the planner is no longer directly in control of the plan¬
ning process. The planner invokes the unifier with the
above text functional description, and the grammar func¬
tional description, and relinquishes control to the unifi¬
cation process.

The unification process follows the [unification algo¬
rithm] until there is either an alternative in the grammar
that needs to be selected, or some feature in the text FD
does not unify with any feature in the grammar FD.
(Appelt, 1983, p. 598}

For cases where the unification does in fact fail, the grammar

is "annotated" with special signals to tell the unifier to invoke

the planner with certain goals. Suppose the unifier is trying to

unify a functional description for an NP with the corresponding part

of the grammar. Suppose that the unification will not be success¬

ful because there is no referent feature in the textual functional

description to unify with the grammar (ibid., p. 598}. The referent

feature, however, may have an annotation that tells the unifier to
invoke the planner to plan the referent. The planner will reason,

as KAMP did, about the knowledge of the discourse participants and

work toward a functional description suitable for the unification at

hand. If no suitable plans can be found using linguistic acts, the

- 167 -

planner can insert non-linguistic acts (e.g. pointing) into the plan
as KAMP did.

Although descriptions of TELEGRAM place heavy emphasis on the

role of the planner, it really has the design of a grammar-driven

system similar to Nigel: "the system 'choosers' of Nigel play a role

similar to the annotation on the alternatives in TELEGRAM, and many

other parallels can be drawn" (ibid., p. 599). Thus, like Nigel,
TELEGRAM appears to have to organize a large part of the semantics

by grammatical criteria since the annotations are attached to indi¬

vidual grammatical features. In addition, the process is still

driven by the unification algorithm:

In spite of its advantages, there are some serious prob¬
lems with unification grammar if it is employed straight¬
forwardly in a language planning system. One of the most
serious problems is the inefficiency of the unification
algorithm ... A straightforward application of that algo¬
rithm is very expensive, consuming an order-of-magnitude
more time in the unification process than in the entire
planning process leading up to the construction of the
text FD. The problem is not simply one of efficiency of
implementation. It is inherent in any algorithm that
searches alternatives blindly and thereby does work that
is exponentially related to the number of alternatives in
the grammar. Any solution to the problem must be a concep¬
tual one that minimizes the number of alternatives that
ever have to be considered, (ibid., p. 596).

Although TELEGRAM'S planner reduces this problem, the unification

process is still in control, and in common with Nigel this prevents

other problem-solving techniques (like backward-chaining) to be used

to reduce even further the number of alternatives considered. When¬

ever a choice is encountered by the unifier, the problem solver is

invoked to make a decision based on the "annotations" attached to

the various choices. The point is that the annotations of all the

choices have to be considered explicitly.

In summary, TELEGRAM achieves the advantages of a grammai—

driven system while maintaining KAMP's ability to integrate linguis¬
tic and non-linguistic actions. However, two of the advantages of

goal-driven systems have still been sacrificed: the ability to

organize the semantics independently of the grammar, and the

- 168 -

computational power and flexibility of having the problem solver in

control.

8.3.2. SLANG

As TELEGRAM demonstrated, the difficulty in achieving the

advantages of both the grammar-driven and goal-driven approaches
lies in interfacing the goal-directed problem solver with a

linguistically formalized grammar. The SLANG system does not have
this problem because of the conflation described in Chapter 4.

SLANG'S grammar, even though it is represented in a linguistic

formalism, can be interpreted as problem-solving knowledge by a

goal-directed problem solver. The key phenomenon here is that the
control dictated by the goals and the control dictated by the gram¬

mar are the same--they have been conflated. This makes SLANG both a

grammar-driven and a goal-driven method.

8.3_«2.1_. SLANG as a grammar-driven method
The conflation of grammar and knowledge base in SLANG gives it

the desirable characteristics of the grammar-dri ven systems.

Specifically, this means that the grammar can be judged, modified

etc. independently of the rest of the system. The logical struc¬

ture is also explicit in the structure of the grammar, making the

method comparatively easy to visualize and understand. Compare the

two methods of traversing the same type of grammar: SLANG (see Sec¬
tion 4.3} and Nigel (see 8.1.2). In SLANG, the compiled knowledge
in the semantic stratum, through the preselection of seed features,

constrains the right-to-left traversal of the grammar. Less deli¬

cate systems are no longer explicit choice points in the sense that

the feature to be chosen is determined by these constraints. Nigel,

without the benefit of these constraints, must explicitly consider

many more choice points during its left-to-right traversal.

Also, consider the problem Nigel has with the ordering of

choices. When the grammar enters the system to choose the number of

an indicative Subject, the chooser asks the environment, "Is the

[Subject] inherently multiple, i.e. a set of collection of things,

or unitary?" (Mann et al., 1983). The problem is that at this point
in the traversal, the Subject may not yet be conflated with another

-169-

function for which this information is available. In that case the

environment cannot answer the question. Mann suggests that it would

be unreasonable to suspend the decision until later because the

entire system might eventually get stalled. He therefore suggests

that the grammar could be rewritten so that the choices are

guaranteed to be made only when the information is known at that

point in the traversal (Mann, 1985). This, however, would seem to
violate the principles of the grammar-driven approach because the

linguistic clarity is being sacrificed for computational reasons.

Note that SLANG does not suffer from this problem because, as

demonstrated in Chapter 6, the only explicit choice points are the

seed features that are chosen by the semantic stratum.

Despite the differences between SLANG and Nigel, SLANG is still

a grammar-driven method. An explicit grammar is still traversed and

provides the logical structure of the method--the difference is that

features in SLANG are also interpreted as goals.

8.3.2.2. SLANG as a goal-driven system

The conflation of grammar and knowledge base also means that

SLANG is a goal-driven system and thus inherits the desirable

characteristics of that approach. The control structure is goal-

directed backward-chaining starting from communicative goals (in the

form of semantic features).

Like other goal-driven systems, SLANG has the ability to organ¬

ize' semantic knowledge by semantic criteria. In fact the semantic

stratum as presented in (Halliday, 1978) and as implemented in SLANG
is much further advanced--in that it is part of a carefully con¬

structed and substantial theory--than the facilities described in

(McDonald et al., 1985).

Since, like other goal-driven systems SLANG's activities are

initiated and governed by a general-purpose problem solver, theoret¬

ically it has the ability to integrate non-linguistic and linguistic

acts. Although this line of research has not been pursued, unlike

- 170 -

other grammar-driven systems SLANG has this potential.

Finally, SLANG inherits the advantage of being able to apply

powerful AI techniques to the generation, with all the computational

and theoretical benefits this implies.

8.^. Prob 1 em-reduction in Nigel and SLANG

For the purpose of clearly illustrating the grammar-driven

nature of Nigel, the above (Section 8.1.2] discussion glossed over

some important issues. This, together with the fact that Nigel is

currently the best-known systemic text-generation system, motivates

some further discussion of the differences between Nigel and SLANG.

One of the most important issues that was glossed over is that

in the case of features that are preselected by realization rules at

the grammatical stratum, Nigel has a process called "path augmenta¬

tion" that seems to be equivalent to SLANG's backward-chaining.

Any feature in the system network has one or more paths
leading to it, i.e., a set of choices through which it can
be reached. As long as there is only one path leading to
the feature, it can be preselected, and its path computed
through redundancy, so-called path augmentation. In other
words, on a unique path only the most delicate feature
need be preselected. (Mann et al., 1983, p. 68).

Also note that there are no important differences in how the

gates are processed.

The key distinction between Nigel and SLANG is the interface

between the semantics and the grammar. Nigel does the grammar-

driven traversal discussed earlier and SLANG has the semantic stra¬

tum preselect grammatical features. The interesting point here is

that both of these approaches can be interpreted as problem-
reduction (see Section 6.3).

Nigel can be viewed as having a problem-reduction methodology
where the start nodes of the AND/OR graphs are the root features of

the system networks. So the "initial problem" to construct a

clause, for instance, is reduced to making it either finite OR non-

- 171 -

finite, AND making it either material-process, mental-process,

verbal-process OR relational-process, and so on. The problem of

making it finite is reduced to making it either indicative OR
imperative and so on through the entire system network.

The problem that Nigel faces is that most of the reductions are

to OR nodes, since in this formulation any feature that is a term in
a system will be represented by an OR node. Thus the problem solver
does not know which of the OR nodes should be reduced. The choosers

make these decisions after interacting with the environment.

In SLANG, the start nodes are seed features and the AND/OR

graphs . stretch from them back to the root features. The result of

this, the preselection of independent disjuncts, and being able to

treat dependent disjuncts as solved, is that there are no OR nodes

in SLANG's AND/OR graph. This means that once the initial goals

have been set, SLANG can proceed deterministically with no need for

interaction with other components and only considering those nodes

that will be in the solution graph (see Section 6.3). The compiled

knowledge allows SLANG to set seed features as initial problems and

do problem reduction against the grain of the systems, avoiding the

disjunction. SLANG and Nigel produce the same result, and the same

implicit grammatical choices are made by the two methods (i.e. the

grammatical search space is the same), but the compiled knowledge in
the semantic stratum and the goal-driven processing make SLANG's

search more selective and more efficient.

A question which could be asked at this point is: "Intuitively

speaking, if both Nigel and SLANG are doing problem-reduction by

goal-directed backward-chaining, why is there such a difference?"

The answer is that the goals in Nigel's case (the start nodes) are

vacuous—saying that the solution must be a clause conveys almost no

information to the problem solver. The goals SLANG works from,

unmarked-declarative-theme, addressee-subject and so on, provide

enough information for the problem solver to find the solution

selectively without recourse to outside help. This is a result of
the compiled knowledge contained in the semantic stratum exploited

by SLANG—the strictly grammar-driven nature of Nigel prevents the

grammar traversal from being compiled out.

- 172 -

8.5. Summary

This chapter has briefly reviewed the two major approaches to

text generation, the grammar-driven approach and the goal-driven

approach, and shown that SLANG in fact fits both descriptions.

The grammar-driven approach has the advantages of using an

explicit grammar represented in a linguistic formalism. Since this

grammar is simply traversed, the control structure of the system is

explicit. The goal-driven approach has the advantages of allowing

non-linguistic and linguistic acts to be integrated, allowing the

semantics to be organized by semantic criteria, and using powerful

AI techniques throughout the generation process.

The difficulty of interfacing a goal-directed problem solver

with a linguistic grammar is overcome by the conflation of grammar

and knowledge base. As a result, SLANG benefits from the advantages

of both the grammar-driven and goal-driven approaches to text gen¬

eration .

- 173 -

9_. Conclusions

This final chapter consists of four parts. First, the main

points from the previous chapters will be summarized, giving a con¬

densed description of the work done on the SLANG approach to text

generation. Second, the problems that may impede progress on SLANG

will be examined. Third, some ideas for future research will be

explored. Fourth, the concluding remarks will include an evaluation

of SLANG and the current progress, and the prospects for the future.

9.1_. Summary

9_.1_.1_. The problem

One problem that has persistently occupied and bedevilled

text-generation research is how to interface higher-level reasoning

with an explicit grammar written in an established linguistic for¬

malism. This problem is central to text generation because of the

computational and linguistic requirements of the task.

Text generation involves an enormous, complex search space, yet

must be performed quickly if it is to be effective. These charac¬

teristics suggest that text generation requires the powerful

knowledge-based computational methods—such as forward-chaining and

goal-directed backward-chaining—developed in AI over the past fif¬

teen years.

Text generation also has important linguistic requirements.

Specifically, an explicit grammar that is represented in an esta¬

blished linguistic formalism is required. This enables direct input

from linguists and the linguistic literature. It also allows the

grammar to be understood, judged, modified and so on, independently
of the computational concerns (Appelt, 1982). Finally, assuming
that the processing is guided by the explicit grammar, the grammar

can provide a useful display of the logical structure of the text-

generation process.

- 174 -

The problem of interfacing the AI problem-solving techniques
with the linguistic formalism arises because of the apparent incom¬

patibility of the representations involved. The computational

representation on the one hand has been developed with issues such

as selectivity and efficiency in mind. The linguistic representa¬

tions on the other hand have been developed for the purpose of per¬

spicuously describing particular areas of linguistic theory.

9_.1_.2. The solution

The solution to the problem of interfacing AI problem-solving

techniques and an established linguistic formalism has involved

identifying a linguistic formalism that in fact uses the same

representation as the required probl em-sol ving methods. Ironically,

this linguistic formalism originated not from mathematics or from

the theory of computation, but from anthropology. The formalism is

Halliday's systemic grammar, which originated from the work of the

anthropologist Malinowski and the sociolinguist Firth.

The shared representation, which is the basis of this solution,

resulted frcm the historical accident that at the core of both AI

problem solving and systemic grammar is the representation of a

space of alternatives. In each case this representation consists of

describing the conditions under which an alternative is appropriate,

and the effects or consequences of that alternative. Systenic gram¬

mar is probably unique in having this fundamental relationship with

AI. problem solving because the emphasis on paradigmatic description
is an invention of Firth and Halliday.

The common representation means that in fact no interface per

se is needed at all. An AI problem solver can simply interpret a

systemic grammar as linguistic knowledge to be used to solve

linguistic problans, in exactly the same way as it can use chemistry
to solve chemistry problems, or medical knowledge to solve medical

problems. Indeed, it is only because there is no interface per se

that the solution is possible--otherwi se the powerful computational

techniques embodied in the problem solver would lose control to the

- 175 -

interface component during the processing of the grammar.

A significant advantage of SLANG is that it embodies linguisti¬

cally, and exploits computationally, Halliday's semantic stratum of

systemic theory. Computationally, the semantic stratum acts as a

body of large-grain-size compiled knowledge that guides the problem

solving at the grammatical stratum. Thus the semantic stratum

serves linguistically to link the grammar to the social situation,

and computationally to increase significantly the speed of the text

generation.

The resulting approach to text generation, then, uses the

state-of-the-art computational techniques (e.g. forward-chaining,
goal-directed backward-chaining, and knowledge compilation], and an

explicit grammar--including the semantics--represented in an esta¬

blished linguistic formalism.

9_.1_.3_* Theoretical issues

Chapter 5 examined seme of the theoretical issues raised by the

SLANG approach. The three areas of interest are: the interface

issues, the functional nature of systemic grammar, and the relation¬

ship between systemic/functional grammar and the currently dominant

generative paradigm.

There are two different interfaces in SLANG worth noting: the

interface between the text planner and the text generator, and the

interface between the semantics and the grammar. The first of

these, as mentioned above, is not an interface per se; the only dis¬

tinction that could be made is between text-planning knowledge and

text-generation knowledge since the same inference engine uses both.

Even the distinction between these is not clear-cut because the

boundary between them depends on the amount of compilation of the

knowledge in the sanantic stratum. The second interface--between

the semantics and the grammar--is of interest because of what appear

to be grammatical structural descriptions in the preselection reali¬
zation rules at the semantic stratum. These structural descriptions

were shown to be part of a legitimate interface between the two

- 176 -

strata, and the modularity between the two is not violated.

Systanie grammar, as a functional grammar, contrasts with the

more popular formal approach. However, it was argued that the rela¬

tionship between the functional and formal approaches to language

correspond to the functional and formal approaches to biology—

physiology and anatomy respectively. It was then pointed out that

the study of process in language, like the study of process in biol¬

ogy, may benefit from a functional approach. Specifically, issues

such as the social aspects of language and language evolution can be

studied; and in the context of text generation, teleological expla¬

nations can be given for the texts and the processes that generated

them.

There are two important ways in which SLANG is at odds with the

generative paradigm. The first of these concerns the modularity

hypothesis made in the generative paradigm: that there is a language

faculty that operates relatively independently of the rest of the

cognitive mechanism. SLANG does not respect this hypothesis and

takes advantage of powerful, general-purpose AI representations and

techniques. This bears on the second theoretical issue: the power

of the grammar. Since SLANG exploits general problem-solving

representations and methods, the resulting model is far too powerful

to be of interest frcm a generative point of view. This is not to

be seen as a 1 iability--the search for general theories of represen¬

tation and problem solving, and the "identification of general prin¬

ciples and mechanisms that underlie all thought processes," form an

integral part of the paradigm of computational linguistics (see
Winograd, 1983, p. 186).

9.1.4. The formal model

One of the interesting results of the fundamental relationship
between AI problem solving and systemic grammar is the formal model

presented in Chapter 6. Systemic grammar has always lacked the for¬

mal treatment available for grammars of mathematical origin. How¬

ever, since the common representation allows a systemic grammar to

- 177 -

be interpreted as a set of productions (a common AI representation),
an almost traditional formalization in terms of productions can be

gi ven.

A formal treatment of the SLANG model can then be given in

terms of the formalized grammar and formal algorithms from the AI

literature (in particular, problem-reduction). Several lemmas can

then be proven concerning both completeness and the relationship

between the grammar and the algorithms. This formal model of sys¬

temic grammar is particularly significant because it--demonstrates

that systemic grammar can be rigorously formalized in terms of

rules, while allowing the grammar to describe language as a

resource.

9_.1_.5_. The implementation

For the purposes of testing and demonstrating SLANG, a proto¬

type system was constructed using a grammar pieced together from

several sources. Several shortcuts were taken to keep the project

manageable: the phonological/orthographic stratum, the clause-

complex rank and the morphological rank were omitted, the word rank

is small and ad hoc , and only a very small semantic stratum has been

implemented. Nevertheless, the system adequately shows the process¬

ing of a large system network (the clause systems) , interstratal

preselection, and inter-rank preselection. The system was tested by

generating examples (see Appendix b) from several domains. These
include two sets of examples that illustrate generation from expli¬

cit semantic networks (listed in Appendix c), supporting the plausi¬

bility of the proposed generation method.

The test system, SLANG-I, is written in the production language

0PS5. The systemic grammar is stored as a set of 0PS5 productions

after being translated frcm a LISP-based system network notation.

The grammar can then be loaded into 0PS5 and used directly to to do

forward- and backward-chaining. The text-generation system itself

is very simple, consisting of a small number of productions and LISP

operators to build linguistic structures from realization rules and i
to do low-level maintenance.

- 178 -

9_.1_.6_. Other work

Finally, a comparison was made between SLANG and some other

recent text-generation projects. It was observed that all the pro¬

jects could be classified as either grammar-driven, goal-driven, or

an attempt to combine the two. Grammar-driven systems have two main

advantages: the grammars can be understood, judged, and modified

independently of the computational aspects of the system; and the

grammar provides an explicit and useful display of the logical

structure of the text-generation process. Goal-driven systems have

three main advantages: they exploit the powerful goal-directed AI

problem-solving techniques; they allow linguistic and non-linguistic

acts to be integrated; and they allow the semantics to be organized

independently of the grammar.

Davey's PROTEUS and Mann's Nigel are clearly grammar-driven

systans, Appelt's KAMP and McDonald's MUMBLE are clearly goal-driven

systems, while Appelt's TELEGRAM and SLANG are attempts to combine

the grammar-driven and goal-driven approaches to achieve the advan¬

tages of both.

Although TELEGRAM was an attempt to combine the grammar-driven
and goal-driven approaches, it fell short of this aim because of the

problem of interfacing the AI problem-solving methods with the func¬
tional unification formalism. The systemic grammar in SLANG, on the

contrary, can be used directly as linguistic probl em-solving

knowledge by a state-of-the-art AI problem solver. Thus SLANG is
able to achieve successfully the advantages of both the grammar-

driven and goal-driven approaches.

9_.2. Major problems

Though the preceding arguments have hopefully convinced the
reader that SLANG represents a premising new approach to text gen¬

eration, there are still some problems to be overcome before this

promise can be fully realized. These problems are not

computational--given only the existing computational methodologies,
and existing hardware and software tools, SLANG should be able to

- 179 -

provide an effective, practical text-generation facility, given suf¬

ficient linguistic resources. The problem is that sufficient

linguistic resources do not yet exist.

The relatively small number of linguists working within the

systemic framework has severely restricted the availability and cov¬

erage of the grammars. Only small subsets of English are covered,

even for areas that have received the most attention (e.g. the

clause). Large components of the grammatical description have been

left untouched (for instance, it seems no substantial work has been

done on the systanic morphology of English). Often the level of
detail of grammars in the linguistic literature is not suitable for

computational treatment.

The grammar developed by Mann et al. (1983) and the grammar

pieced together for SLANG-I indicate that at least for the grammati¬

cal stratum, the large system networks necessary for practical text

generation can be constructed. The doubt really lies with the

semantic stratum. But even here, one of the most difficult issues-

-the organization—has already been resolved. The semantic stratum

is a paradigmatic description of register, as prescribed by Halliday

(1978).

The obvious application for SLANG is text generation in expert

systems. Some linguistic work on particular expert-system domains

has been done within the systemic framework (e.g. Mishler, 1984),
but unfortunately no sufficiently detailed semantic analyses of

expert systan domains are currently available. Nevertheless,

several considerations in the field of expert systems justify an

optimistic outlook on the semantic stratum.

Expert sys tens--almost by def ini tion--work in very restricted

domains (see Brachman et al., 1983, p. 42). In many cases at least,
this implies that the linguistic registers involved will also be

very restricted. The high degree of specialization that makes the

non-linguistic domain knowledge manageable yet practical, may also

make the semantic knowledge manageable yet practical.

- 180 -

Another point is that the semantic stratum could potentially be

developed to a large extent during the normal knowledge-

acquisition-engineering process when building an expert system.

Note that linguistic observation is already part of the recommended

procedure:

In addition, the knowledge engineer also listens for jus¬
tifications of the associations, terms, and strategical
methods the expert uses when solving a problem. These are
important to record not only for the knowledge engineer's
own clarification but also for maintaining adequate system
documentation and allowing accurate system explanations.
(Buchanan et al., 1983, p.135)

The knowledge engineer schedules numerous meetings with
the expert over a period of a few months to uncover the
basic concepts, primitive relations, an definitions needed
to talk about the problem and its solutions, (ibid., p.
133]

Record a detailed protocol of the expert solving at least
one prototypical case.
... It provides a list of vocabulary terms and hints

about strategies, (ibid., p. 1 61]

In addition to a study of the terms the expert uses in particu¬

lar registers, the grammatical constructions used in those registers

could also be noted.

No doubt the construction of semantic strata will be slow and

painful in the beginning. But, as more experience accumulates, and

generalizations are passed on, and techniques are developed, build¬

ing a semantic stratum may become no worse than any other area of

knowledge acquisition and engineering.

9_.3,. Future research

Given the exploratory nature of this work, it is not surprising

that there are several interesting continuations and offshoot ideas

that can be pursued in future research. Two obvious continuations-

-the incorporation of SLANG into a full-scale expert systan, and the

improvement of the currently implemented linguistic capabilities—

will be touched on first. Then a technical offshoot concerning

highly-compiled semantics will be looked at. Finally, the

- 181 -

possibility and implications of the SLANG ideas for parsing will be

explored.

9_.3_.1_. Incorporation of SLANG into an expert system

One obvious continuation of the present work is to incorporate

SLANG as the text-generation component of an expert system. This

would allow SLANG to be studied in the context of a full-blown AI

problem solver, and would provide an opportunity to examine the

requirements of the semantic stratum objectively.

9.3.2. Supplementary linguistic treatment

£.3_.2/1_. Systemic speech generation

An interesting and practical extension to this work would be to

implement the phonological stratum and use SLANG to do speech gen¬

eration. Halliday already has a relatively well-developed treatment

of phonology, especially intonation and rhythm, and its relation to

the rest of the linguistic system (e.g. see Halliday, 1976c; and

Halliday, 1985, Chapter 8]. This would also involve augmenting the

grammatical stratum. Specifically, another functional analysis

would have to be included: the analysis of Given and New (see also

Halliday, 1985, pp. 274-281 and Winograd, 1983, p. 284-285] as part
of the textual metafunction. Realization rules would have to be

added to the grammatical stratum to preselect appropriate phonologi¬

cal features.

2/3-2.2. Supply missing grammatical ranks

Although the grammatical stratum forms the bulk of the imple¬

mentation, shortcuts have been taken in the current implementation.

Both the top and bottom ranks have been omitted--neither the

clause-complex nor the morphological rank has been implemented. The

former has not been needed because the examples have been so small,

and the latter has been avoided by greatly constraining the size of

the dictionary and listing all morphological forms explicitly. It

- 182 -

is clear, however, that in a larger system--even a larger

prototype--both of these ranks would be absolutely necessary.

9.3.2.3. Linguistic defaults

Another potentially useful idea is the unmarked feature. These

appear often in the systemic literature, and are indicated by an

asterisk (e.g. Figure 4.6). The idea is that if the entry condi¬

tions for a system are satisfied, and none of the other features

have been chosen, then the unmarked feature is chosen by default.

The usefulness of this particular mechanism is suggested by the

interest in default reasoning in AI problem solving (e.g. Stefik et

al., 1983, p. 73). A set of productions, one for each default

feature, could be introduced which have the entry conditions of the

system as conditions and the choice of the features as the effect.

Some mechanism would also have to be added to make sure all other

avenues of reasoning are explored before any default production

fires. It is not clear if the advantages of such default reasoning

outweigh the added complexity.

9.3.3. Further compilation of the semantics

The semantic stratum was described in Chapter 4 as "compiled

knowledge" that guides the problem solving at the grammatical stra¬

tum. It was pointed out (Section 4.2.3) that the knowledge at the

semantic stratum could potentially be compiled further by precomput-

ing the inference at the grammatical stratum and attaching the

results directly to the semantic features in the internal represen¬

tation. For the purposes of discussion, this further compilation

will be called "hypercompilation."

The process of hypercompilation would involve looking at each

preselection statement at the semantic stratum, preccmputing the

resulting forward- and backward-chaining as far as possible (includ¬
ing following any preselection statements leading to lower ranks and

strata), and collecting the realization rules attached to the
features involved. The realization rules are then attached directly

- 183 -

to the original semantic feature in place of the preselection rule.

All this is done automatically, and is transparent to the grammar

writer. This means that very sophisticated computational techniques

can be used during the hyperccmpilation, including keeping detailed

tables, carefully looking for redundant realization rules, and so

on. If the linguist makes a change to the system networks at any

stratum, the hypercompilation is done again, perhaps incrementally.

It may be desirable for the computational linguist to designate only

certain portions (e.g. high frequency registers) of the semantic
stratum for hypercompilation.

The idea of hypercompilation is very vague at this stage, but

it may be worth investigating. It appears that it may allow a sig¬

nificant increase in the speed of the text generation, while being

linguistically transparent.

9_.3.4_. Reasoning with knowledge at the grammatical stratum

Another topic related to knowledge compilation is the possibil¬

ity of "reasoning frcm first principles" (see Section 2.2.2) with
the knowledge at the grammatical stratum. It is possible that the

grammatical stratum could be used as base-level knowledge to solve

problems when there is no appropriate compiled knowledge available

(insufficient semantic knowledge) or to provide automatic linguistic

explanations of generated text, since the use of compiled knowledge

prevents the automatic generation of teleological explanations.

One example of this kind of reasoning--solving the goal of con¬

flating the Agent and the Theme—has already been described in

detail (4.2.2). It is unclear, however, how far this type of rea¬

soning can be taken.

9.3*5. Natural-language understanding

The final point for future research is to investigate the

implications of the present work for natural-language understanding.
The major problem that has been solved here is how to interface AI

problem solving with a linguistic formalism. It was shown how the

- 184 -

higher levels of linguistic and non-linguistic knowledge could be

used to process the grammar selectively and efficiently. The main

point to be made in this section is that the same problem occurs in

natural-language understanding, and that the same solution also may

apply.

Parsing, like text generation, is a task that requires substan¬

tial guidance frcm higher-level knowledge. Parsing also preferably

uses an established linguistic formalism. Thus the same interface

problem that occurs in text generation also occurs in parsing. The

solution to the problem in text generation may also work for pars¬

ing.

The semantic stratum, during a parse, can preselect features

from the grammatical stratum. In this case the preselections

represent hypotheses instead of goals, but the same forward- and

backward-chaining can be done to determine all the implications of

these hypotheses. The suggestion that the semantic stratum,

representing knowledge of register, could be useful when parsing

should not be surprising. As Halliday says, given a particular

register

... we can predict quite a lot about the language that
will be used, in respect of the meanings and the signifi¬
cant grammatical and lexical features through which they
are expressed. If the entries under field, tenor and mode
are filled out carefully and thoughtfully, it is surpris¬
ing how many of the features of the language turn out to
be relatable to the context of situation. This is not to
claim that we know what the participants are going to say;
it nrerely shows that we can make sensible and informed
guesses about certain aspects* of what they might say, with
a reasonable probability of being right. There is always,
in language, the freedom to act untypically--but that in
itself serves to confirm "the reality of the concept of
what is typical. (Hal11day, 1978, p. 226)

If the register could only ascertained by linguistic means,

then using knowledge of register to help understand language would

be begging the question. This is not the case however. Register is

largely determined from outside language. Field and tenor in par¬

ticular, are determined, to a large extent, before any linguistic

- 185 -

interaction occurs at all. The physical setting, the social status

of the participants, and even the emotional issues at the moment

(see Section 3.5], can often be ascertained easily without linguis¬
tic interaction.

The linguistic system ... is organized in such a way that
the social context is predictive of the text. This is
what makes it possible for a member to make the necessary
predictions about the meanings that are being exchanged in
any situation which he encounters. If we drop in on a

gathering, we are able to tune in very quickly, because we
size up the field, tenor and mode of the situation and at
once form an idea of what is likely to be being meant. In
this way we know what semantic configurations--what
register--will probably be required if we are to take
part. If we did not do this, there would be no communica¬
tion, since only a part of the meanings we have to under¬
stand are explicitly realized in the wordings. The rest
are unrealized; they are left out--or rather (a more
satisfactory metaphor] they are out of focus. We succeed
in the exchange of meanings because we have access to the
semiotic structure of the situation from other sources,

(ibid., p. 189]

Knowledge of register is not used in any substantial or sys¬

tematic way by current natural-language understanding systems. Seme

systems use knowledge of the world to resolve the ambiguity of input

texts (e.g. Winograd, 1972], and other systems use knowledge of
discourse structure and intentions (Grosz and Sidner, 1985]. But
these are not using knowledge of what linguistic devices are

specific to what social situations. Winograd's program does not

take advantage of the fact that there are very specific English con¬

structs used to describe the relations between objects like blocks

and the operations that are performed on sets of these objects

(knowledge of field].*

Neither does Winograd's program take advantage of the relation¬

ship between the "robot" and the interlocutor (knowledge of tenor].
The program should, to use a simple example, be expecting impera¬

tives. Seme systems (e.g. Sullivan and Cohen, 1985] use knowledge

* No doubt Winograd took advantage of this when constructing his
grammar and dictionary, but the program does not.

- 186 -

of the relationship between the speaker and hearer to make infer¬

ences about the speaker's intentions. However, these systems do not

use knowledge of the specific linguistic constructs likely to appear

as a result of this relationship.

Similarly, using knowledge of discourse patterns is not the

same as using knowledge of which patterns of discourse are used in

which types of social situations (knowledge of mode--for instance,

knowledge of the ellipsis that is used heavily in question and

answer dialogues). Knowledge of the most likely types of reference
in particular situations would also be useful.

Unlike text generation, the parsing interface works both ways-

-the results of the parse must be passed back up through the seman¬

tics. It may be possible to do the sort of reconstructive reasoning

that MYCIN, for example, does (Hasling et al., 198*)). Once a set of

grammatical features has been determined, whose realization rules

specify a syntactic structure corresponding to the text, the seman¬

tic stratum is examined to find semantic features compatible with

the register which preselect the grammatical seed features.

Only a few natural-language understanding issues have been men¬

tioned here and none have been examined in detail. It appears, how¬

ever, that a more thorough investigation of the implications of

3LAN0 for natural-language under a Landing would be worthwhile.

9_. A_. Conclusion

Text generation is a subfield of natural-language work that has
received relatively little attention. However, as expert systems

t

move into areas such as medicine and law, where effective natural-

language communication is important, text-generation research
acquires a new significance.

This thesis has presented a novel approach to text generation-
-the Systemic Linguistic Approach to Natural-language Generation

(SLANG) . By interpreting a systemic grammar as AI problem-solving
knowledge, SLANG is able to breach one of the major obstacles in

- 187 -

text generation, viz. how to interface computational AI problem-

solving techniques with an established linguistic formalism. Thus

SLANG, unlike any other approach to date, allows that text genera¬

tion to be performed by a powerful, goal-directed AI problem

solver, while the process still follows an explicit grammar written

in an established linguistic formalism.

Although SLANG has been formalized and implemented, its status

at best is that it has successfully undergone a preliminary investi¬

gation. Much more work will have to be done to discover the real

limitations, or for that matter the real benefits, of this approach.

- 188 -

Appendix A: Introduction to 0PS5

0PS5 (Forgy, 1981 ; Brownston et al., 1985] is the production

language used to implement SLANG-I. The purpose of this appendix is

to provide the reader with enough 0PS5 background to understand the

0PS5 terms and code that appear in the implementation chapter.

The two main components of an 0PS5 production system are the

production memory, which stores the productions themselves, and the

working memory, which is a repository of information accessed and

modified by the productions. Productions have a left-hand-side

(LHS] and a right-hand-side (RHS]. The LHS is a list of patterns

which is "matched" if all the patterns are matched by working memory

elements. The RHS is a list of procedure calls.

When 0PS5 is running, it takes all the productions whose LHS is

matched by the current working memory, selects the production which

is matched by the most recent working memory elements, and executes

the procedure calls in the RHS of that production. A new set of pro¬

ductions whose LHS is matched is then calculated and the process

repeats. This process begins with a working memory initiallized by

the user, and ends when the set of productions whose LHS is matched

is empty.

Pattern matching

The patterns in the LHS of productions and in working memory

are of two varieties: attribute-value pairs and vectors. An

attribute-value pair pattern is of the form (identifier "a1 v1 "a2
v2 ... "an vn] where the order of the individual pairs "ai vi is not

significant. For instance, there may be an element in working memory

(house "colour white "floors 2 "rooms 10] . LHS patterns matching
this element must have the same identifier and some (possibly empty]
subset of the attribute-value pairs in any order. For instance,

(house "colour white] and (house "rooms 10 "floors 2] would match
but (house "colour blue] would not.

- 189 -

The values can be made more general through the use of the sym¬

bols for "not equal" "<>", "greater than" ">", and so on. For

instance (house "colour <> pink) , (house "rooms > 4 "floors < 4)
would match the description of the house above, but (house "rooms <

8) would not. Disjunction can be specified with double angle brack¬

ets "<<" and ">>"—e.g. (house "colour << green white red >> "floors
« 1 2 >>).

0PS5 rules look like

(p production-name
LHS

—>

RHS)

So an actual production might be

(p eg1
(house "colour << red white >> "rooms > 6)

-->

The LHS of this production would

in working memory describing a

rooms.

It is usually necessary to have variables in productions to

link the different patterns in the LHS and to mediate between the

LHS and the RHS. Variables in 0PS5 are symbols whose first and last

characters are open and closed angle brackets respectively (e.g.
<x>, <house1>, <new-house> etc.). The LHS of the production

(p eg2
(house "colour < house-col our >

"rooms <house-rocms>)
(customer "age > 25

"eyes <house-col our>
"children < <house-rooms>)

-->

will be matched if there are elements in working memory describing a

house, and a customer who is older than 25, whose eyes are the same

colour as the house, and who has fewer children than the number of

be satisfied if there is an element

red or white house with more than 6

- 190 -

roans of the house. Several constraints can be put on a value using

curly brackets For instance

(house "colour {<> blue <> red Chouse-colour>}
"rooms {< 12 Chouse-rooms> > 5} J

will match a working memory element describing a house which is not

blue or red and has between 6 and 11 rooms—setting the variable

Chouse-colour> to whatever the actual colour is, and setting the

variable Chouse-rocms> to whatever the number of rooms is.

The other type of pattern used in 0PS5 is the vector. In this

case there are no attributes; the vector is simply a list of values

where order _is important. A LHS vector pattern with n symbols is
matched by a working memory vector whose first n elements match

those of the pattern. The vector (roses are CC red black >> and

Cflowers> are <colour2>) is matched by (roses are red and violets
are blue), (roses are black), and (roses).

The RHS

The RHS of an 0PS5 production is a list of procedure calls of

the form (procedure arg1 arg2 ...). The procedure must be a built-
in 0PS5 procedure. The procedures used in SLANG are "make",

"modify", "remove", and "call".

The procedure "make" is used to add an element (attri bute-value
or vector) to working memory. For instance, (make house "colour
white "roans 10 "floors 2) and (make roses are red) add the working

memory elements (house "colour white "rooms 10 "floors 2) and (roses
are red) respectively.

The procedure "modify" is used to change an existing element in

working memory. The part to be modified is specified by an attri¬

bute in the case of attri but e-value pairs, or an index number in the

case of vectors. The working memory element to be modified is iden¬

tified by the number of the LHS pattern it matches (1 to modify a

match of the first pattern, 2 to modify a match of the second pat¬

tern and so on) or a label on the pattern. For instance if the

- 191 -

patterns of

(p eg3
(house "id <h>)
(paint <h> <new-colour>)

— >

(modify 1 "colour <new-colour>)
(modify 2 "1 painted)]

are matched by (house "id house3 "colour white) and (paint house3

black), and if 0PS5 fires this production, then these working memory

elements will be changed to (house "id house3 "colour black) and

(painted house3 black). The same production could also be written

using labels on the patterns:

(p eg3
(house "id <h>) <house>
(paint <h> <new-colour>) <paint>

-->

(modify <house> "colour <new-colour>)
(modify <paint> "1 painted))

<house> and <paint> above are "element variables" that represent the

entire working memory element that matches the pattern.

The procedure "remove" simply deletes a working memory element

identified in either of the ways described above for "modify"—e.g.

(remove 2) or (remove <paint>).

The procedure "call" is used to call a procedure the user has

defined in another language (e.g. LISP). The parameter-passing con¬

ventions are awkward to explain, but the parameters themselves are

either identifiers, variables, or the results of function calls (see
below). The procedures do not pass back values, but access working

memory directly through some special routines provided by 0PS5.

The procedure "write" simply writes its arguments to the termi¬
nal. It too takes identifiers, variables and function calls as

arguments. The function often called from "write" is "crlf," which

prints a carriage return at the terminal.

Besides "crlf", the only other functions called in SLANG-I are

"substr" and "genatom." The function "substr" returns a substring of

- 192 -

an element matched in the LHS. The only call on this function is

(call PRESELECT (substr <preselect> 1 inf)), which passes the entire

working memory element matching the element variable <preselect> to

the LISP operator PRESELECT. The function "genatcm" takes no argu¬

ments and returns a unique identifier—this is essentially the same

as "gensym" in LISP.

- 193 -

Appendix B: Sample texts

The fo] lowing are some examples of the text produced by SLANG-I

using the grammar in Appendix C. Recall that SLANG-I was not pro¬

vided with an orthographic stratum, so there are no "an"s, punctua¬

tion or capitalization--except as provided by the systems at the

word rank (the dictionary). To avoid confusion, line spacing has
been added in lieu of punctuation where necessary.

In all cases SLANG-I generates the text one clause at a time.

Although some of the samples are of paragraph length, it should not

be inferred that SLANG-I has done any text planning; all the exam¬

ples are collections of clauses which, as far as SLANG-I is con¬

cerned, were generated independently.

Explanation for a hypothetical expert system

The following example was generated to demonstrate the grammar,

and to illustrate the utility of flexible natural-language genera¬

tion in expert systems.

Suppose there is a hypothetical medical expert system inter¬

viewing the mother of a patient named Mary (following an example in

Hasling et al., 1984). The mother has reported that Mary has been

suffering from stiff neck muscles and headaches. At this point the

hypothetical dialogue continues:

Does Mary have a fever?

*WHY

Mary's mother wants to know why she is being asked this ques¬

tion. The following text was generated by preselecting the grammat¬
ical features by hand. The construction of a good semantic stratum
in this domain would be a major project in itself.

- 194 -

well Mary has been having headaches

on this basis perhaps she has a infection

this possibility would be supported by a fever

so we ask

does she have one

The preselections for each of the clauses is as follows:

CLAUSE 1.

($C1<Carrier<Head : !mary)
f$C1<Carrier : non-possessive-nom)
($C1<Carrier : noun)
f$C1<Carrier : non-determined)($C1<Carrier : non-quantified)
($C1<Carrier : singular)

($C1<Attribute<Head : !headache)
f$C1<Attribute : plural)
f$C1<Attribute : noun)
($C1<Attribute : non-determined)f$C1<Attribute : non-quantified)
($C1<Attribute : non-possessi ve-nom)

($C1 : possessive-attribute)
f$C1 : ascriptive)
f$C1 : range-operative)
($C1 : residual)
[$C1 : present)
f$C1 : past-in)
f$C1 : present-in)
f$C1 : unmarked-declarative-theme)
f$C1 : singular-subject)
f$C1 : nominal-subject)
I $C1 i uoiraUi ludlnal)
[$C1 : textual-theme)
[$C1 : responsive/explanative)
[$C1 : unmarked-positive)
f$C1 : non-place)
($C1 : non-time)

- 195 -

CLAUSE 2.

($C2<Carrier<Head : Ifeminine)
f$C2<Carrier : non-possessive-nom)
($C2<Carrier : personal)
($C2<Carrier : singular)

f$C2<Attribute<Head : !infection)
f$C2<Attribute : singular)
f$C2<Attribute : noun)
($C2<Attribute : determined)
f$C2<Attribute : non-add)
f$C2<Attribute : non-quantified)
f$C2<Attribute : non-possessive-nom)
[$C2<Attitude : !obvious)
[$C2<Attitude : !low)

($C2 : possessive-attribute)
($C2 : ascriptive)
f$C2 : pronominal-subject)
($C2 : range-operative)
f$C2 : residual)
f$C2 : present)
f$C2 : non-past-in)
f$C2 : non-present-in)
f $C2 : unmarked-declarative-theme)
f $C2 : singular-subject)
($C2 : pronominal-subject)
f$C2 : non-place)
f$C2 : non-time)
($C2 : interpersonal-theme)
f$C2 : textual-theme)
f$C2 : prop-reason)
[$C2 : unmarked-positive)

CLAUSE 3.

($C3<Medi urn
$C3<Medi urn
$C3<Medi urn
$C3<Medium
$C3<Medi urn
$C3<Medium

noun)
singular)
determined)
non-quantified)
non-possessive-nom)
non-add)

($C3<Medium<Head : Ifever)

($C3<Process : Isupport)

- 196 -

i$C3<Range : noun)$C3<Range : singular)
$C3<Range : determined)
$C3<Range : non-quantified)
f$C3<Range : near)
f$C3<Range<Head : !possibility)
($C3<Range : non-possessive-nom)

($C3<Modal : .'would)

!$C3 : non-past-in)$C3 : non-present-in)
$C3 : unmarked-positive)
$C3 : modal)
$C3 : unmarked-declarative-theme
f$C3 : non-attitudinal)
f$C3 : non-textual-theme)
f$C3 : mediated]
f$C3 : residual]
($C3 : singular-subject)
($C3 : nominal-subject)
f$C3 : non-place)
($C3 : non-time)

CLAUSE 4.

($0*1 : speaker-pius-subject)
($0^ : unmarked-positive)
[$04 : unmarked-declarative-themef$C4 : non-attitudinal)
f$C*J : textual-theme)
f$C^ : residual)
($04 : interrogating)

!$C^ : gen-simple)$04 : prop-causal)
$C^ : present)
$C^ : non-past-in)
$C4 : non-present-in)
f$C4 : non-place)
($C^ : non-time)

($C4<Process : !ask)

- 197 -

CLAUSE 5.

($C4<Beta : present]
f$Ci4<Beta : non-past-in]
f$C4<Beta : residual]
($C1l<Beta : non-present-in]
f$C1J<Beta : singular-subject]
f$C^<Beta : range-operative]
f$C4<Beta : unmarked-yes/no-theme]
f$C4<Beta : non-textual-theme]
($C4<Beta : ascriptive]
f$C4<Beta : possessive-attribute]
f$C4<Beta : unmarked-positive]
f$C4<Beta : pronominal-subject]
f$C4<Beta : non-place]
($C1J<Beta : non-time]

f$C1KBeta<Carrier : non-possesive-nom]
f$C^<Beta<Carrier : personal]
f$CiKBeta<Carrier : singular]
($C4<Beta<CarrierCHead : Ifeminine]

f$C4<Beta<Attribute : non-possessive-nom]
f $Ci(<Beta<Attri bute : singular]
f $CJKBeta<Attribute : non-determined]
f$C1KBeta<Attribute : non-quantified]
($C1J<Beta<Attri bute : substitute]

2. Sample explanation of a plan

The following text was generated as part of a project to

automatically generate explanations of plans. The program that did

the plan analysis and text planning (Sothcott, 1985] also does the

semantic reasoning, so again only the grammatical stratum was used

by SLANG-1. It is assumed that the planner is explaining the plan

to one of the plan participants who is responsible for the sanding,

painting and varnishing.

- 198 -

first you do the painting

at the same time the basement floor is poured

at the same time the plasterer fastens the plaster board

if the basement floor has been poured

and the plaster board has been fastened

then the finished flooring oan be laid

after that the carpentry can be finished

if the carpentry has been finished

and you've done the painting

then you can sand the floors

after that you can varnish the floors

The text planner EXPLAN (Sothcott, 1985) begins by running a

scheduler that examines the output of a planner and produces a

schedule of the planned actions to be described. The text planner

then decides what sort of description should be given for each of

these actions. The result is a blueprint for the entire text in

terms of a high-level description for each clause. The text planner

then fills the functional role slots for each clause using domain-

specific knowledge and input from the user. Based on relationships

between these functional roles (e.g. if the Actor and the Subject

match), and domain specific knowledge about processes and entities

(e.g. knowledge that "carpentry" is a mass entity), it preselects

appropriate grammatical features. The following are the preselec¬

tion lists for the above example as generated by EXPLAN (with very

slight modifications to allow them to run on a later version of the

gr ammar).

- 199 -

(comment
Addressee: painter
Discourse type: actor_focussed

]

(comment

Node number: 9
Sentence number: 1
Clause number: 1
Clause type: core
Topical theme: painter
Subject: painter
Voice: operative
Case frame:

Goal painting]
Process do]
Actor painter]

)

($C<Goal<Head : Ipainting]
$C<Goal : non-possessive-nom)
$C<Goal : non-quantified]
$C<Goal : non-selective]
$C<Goal : determined]
$C<Goal : noun]
$C<Goal : mass]
$C<Process : !-do-]
$C : unmarked-imperative-theme]
$C : imperative-subject-explicit]
$C : dispositive]
$C : non-benefactive]
$C : residual]
$C : operative]
$C : unmarked-positive]
$C : non-attitudinal]
$C : present]
$C : non-present-in]
$C : non-past-in]
$C : thesis-initial]
$C : textual-theme]
$C : non-pi ace]

- 200 -

(comment

Node number: 5
Sentence number: 2
Clause number: 2
Clause type: core

Topical theme: basement_floor
Subject: basement_floor
Voice: non-agentive (passive]
Case frame:

Goal basement_floor]
Process pour]
Actor unknown]

i$C<Goal<Head : Ibasanent-floor)
$C<Goal : non-possessive-nom]
$C<Goal : non-quantified)
$C<Goal : non-selective)
$C<Goal : determined)
$C<Goal : noun)
$C<Goal : singular)
$C<Process : !pour)
,$C : unmarked-declarative-theme)
$C : singular-subject)
$C : nominal-subject)
$C : creative)

. $C : non-benefactive)
($C : non-residual)
$C : non-agentive)
$C : unmarked-positive)
$C : non-attitudinal)
$C : non-present-in)
$C : non-past-in)
$C : present)
$C : thesis-simultaneous)
$C : textual-theme)
$C : non-place)

- 201 -

(comment

Node number: 4
Sentence number: 3
Clause number: 3
Clause type: core
Topical theme: plasterer
Subject: plasterer
Voice: operative
Case frame:

(Goal plaster_board]
Process fasten]
Actor plasterer]

)

$C<Goal<Head : !pi aster-board]
$C<Goal : non-possessive-nomJ
$C<Goal : non-quantified]
$C<Goal : non-selective]
$C<Goal : determined]
$C<Goal : noun!
$C<Goal : mass]
$C<Actor<Head : !plasterer]
$C<Actor : non-possessi ve-nom]
$C<Actor : non-quantified]
$C<Actor : non-selective]
$C<Actor : determined]
$C<Actor : noun]
$C<Actor : singular]
$C<Process : Ifasten]
$C : unmarked-declarati ve-theme]
$C : singular-subject]
$C : nominal-subject]
$C : dispositive]
$C : non-benefactive]
$C : residual]
$C : operative]
$C : unmarked-positive]
$C : non-attitudinal]
$C : non-present-in]
$C : non-past-in]
$C : present]
$C : thesis-simultaneous]
$C : textual-theme]
$C : non-place]

202

(comment

Node number: 5
Sentence number: 4
Clause number: 4
Clause type: subsidiary
Topical theme: basement floor
Subject: basement_floor
Voice: non-agentive [passive]
Case frame:

Goal basement_floor]
Process pour]
Actor unknown]

)

_$C<Goal<Head : !basement-floor]
$C<Goal : non-possessive-nom]
$C<Goal : non-quantified]
$C<Goal : non-selective]
$C<Goal : determined]
$C<Goal : noun]
$C<Goal : singular]
$C<Process : !pour]
$C : unmarked-declarative-theme]

i $C : singular-subject]
$C : nominal-subject]
$C : creative]
$C i non-henofaotlve)
$C : non-residual 1

i $C : non-agentive]
$C : unmarked-positive]
($C : non-attitudinal]
($C : thesis-conditional]
$C : cond-antecedent]
$C : present]
$C : past-in]
$C : non-present-in]
$C : textual-theme]
$C : non-place]
$C : non-time]

- 203 -

(comment

Node number: 4
Sentence number: 4
Clause number: 5
Clause type: subsidiary
Topical theme: plaster_board
Subject: plaster_board
Voice: non-agentive (passive)
Case frame:

Goal plaster_board]
Process fasten]
Actor plasterer]

)

p$C<Goal<Head : ! pi aster-board)
$C<Goal : non-possessive-nom)
$C<Goal : non-quantified)
$C<Goal : non-selective)
$C<Goal : determined)
$C<Goal : noun]
$C<Goal : mass)
$C<Process : !fas ten)
$C i uriiriur*kod-duolur*aL 1 vu-thorne)
$C : mass-subject)
$C : nominal-subject)
$C : dispositive)
$C : non-benefactive)
$C : non-residual 1
$C : non-agentive)
$C : unmarked-positive)
$C : non-attitudinal)
$C : simp-add)
$C : present)
$C : past-inj
$C : non-present-in)
$C : textual-theme)
$C : non-place)
$C : non-time)

- 204 -

(comment

Node number: 6
Sentence number: 4
Clause number: 6
Clause type: core

Topical theme: finished_flooring
Subject: finished_flooring
Voice: non-agentive (passive)
Case frame:

Goal finished_flooring]
Process lay]
Actor unknown]

)

>$C<Goal<Head : !finished-flooring)
$C<Goal : non-possessive-nom)
$C<Goal : non-quantified)
$C<Goal : non-selective)
$C<Goal : determined)
$C<Goal : nounl
$C<Goal : mass)
$C<Process : !lay)
$C : unmarked-declarative-theme)
$C : mass-subject)
$C : nominal-subject)
$C : dispositive)
$C : non-benefactive)
($C : non-residual)
$C : non-agentive)
$C : unmarked-positive)
$C : non-attitudinal)
$C : thesis-conditional)
$C : cond-simple)
$C : textual-theme)
$C<Modal : lean)
$C : modal)
.$C : non-past-in)
$C : non-present-in)
$C : non-place)
$C : non-time)

- 205 -

(comment

Node number: 7
Sentence number: 5
Clause number: 7
Clause type: core
Topical theme: carpentry
Subject: carpentry
Voice: non-agentive (passive)
Case frame:

Goal carpentry
Process finish
Actor unknown]

)

($C<Goal<Head : !carpentry)
$C<Goal : non-possessive-nom)
$C<Goal : non-quantified)
$C<Goal : non-selective)
$C<Goal : determined)
$C<Goal : noun

$C<Goal : mass]
$C<Process : Ifinish)
$C : unmarked-declarative-theme)
$C : mass-subject)
$C : nominal-subject)
$C : dispositive)
$C : non-benefactive)
$C : non-residuall
$C : non-agentive)
$C : unmarked-positive)
$C : non-attitudinal)
$C : thesis-succeeding)
$C : textual-theme)
$C<Modal : lean)
$C : modal)
$C : non-past-in)
$C : non-present-in)
$C : non-place)

- 206 -

(comment

Node number: 7
Sentence number: 6
Clause number: 8
Clause type: subsidiary
Topical theme: carpentry
Subject: carpentry
Voice: non-agentive (passive)
Case frame:

Goal carpentry_
Process finish
Actor unknown]

)

($C<Goal<Head : !carpentry)
$C<Goal : non-possessive-nom)
$C<Goal : non-quantified)
$C<Goal : non-selective)
$C<Goal : determined)
$C<Goal : noun!
$C<Goal : mass)
$C<Process : Ifinish)
$C : unmarked-declarative-theme)
$C : mass-subject)
$C : nominal-subject)
$C : dispositive)
$C : non-benefactive)
$C : non-residuall
$C : non-agentive)
$C : unmarked-posi ti ve)
$C : non-attitudinal)
$C : thesis-conditional)
$C : cond-antecedent)
$C : present)
$C : past-in)
$C : non-present-in)
$C : textual-theme)
$C : non-place)
$C : non-time)

- 207 -

(comment

Node number: 9
Sentence number: 6
Clause number: 9
Clause type: subsidiary
Topical theme: painter
Subject: painter
Voice: operative
Case frame:

Goal painting]
Process do]
Actor painter]

]

$C<Goal<Head : !painting]
$C<Goal : non-possessive-nom)
$C<Goal : non-quantified]
$C<Goal : non-selective]
$C<Goal : determined]
$C<Goal : nounl
$C<Goal : mass]
$C<Process : !-do-]
$C : unmarked-declarative-theme]
$C : addressee-subject]
$C : dispositive]
$C : non-benefact!ve]
$C : residual]
$C : operative]
$C : unmarked-positive]
$C : non-attitudinal]
$C : simp-add]
$C : present]
$C : past-inj
$C : non-present-in]
$C : textual-theme]
$C : non-place]
$C : non-time]

- 208 -

(comment

Node number: 8
Sentence number: 6
Clause number: 10
Clause type: core
Topical theme: painter
Subject: painter
Voice: operative
Case frame:

Goal floors]
Process sand]
Actor painter]

)

f$C<Goal<Head : !floor)
f$C<Goal : non-possessive-nom)
[$C<Goal : non-quantified)
f$C<Goal : non-selective)
f$C<Goal : determined)
[$C<Goal : noun)
($C<Goal : plural)
f$C<Process : Isand)
f$C : unmarked-declarative-theme)
f$C : addressee-subject)
f$C : dispositive)
f$C : non-benefactive)
[$C : residual)
f$C : operative)
f$C : unmarked-positive)
($C : non-attitudinal)
($C : thesis-conditional)
f$C : cond-simple)
f$C : textual-theme)
[$C<Modal : lean)
f$C : modal)
($C : non-past-in)
f$C : non-present-in)
f$C : non-place)
($C : non-time)

- 209 -

(comment

Node number: 2
Sentence number: 7
Clause number: 11
Clause type: core
Topical theme: painter
Subject: painter
Voice: operative
Case frame:

Goal floors]
Process varnish]
Actor painter]

)

($C<Goal<Head : Ifloor]
$C<Goal : non-possessive-nom]
$C<Goal : non-quantified]
$C<Goal : non-selective]
$C<Goal : determined]
f$C<Goal : noun]
($C<Goal : plural]
$C<Process : !varnish]
$C : unmarked-declarative-theme]
$C : addressee-subject]
$C : dispositive]
$C : non-benefactive]
$C : residual]
$C : operative]
^$C : unmarked-positive]
$C : non-attitudinal]
$C : thesis-succeeding]
$C : textual-theme]
$C<Modal : lean]
$C : modal]
($C : non-past-in]
$C : non-present-in]
$C : non-place]

- 210 -

The interface and compiled knowledge embodied in EXPLAN can be

extracted to form a semantic system network for this domain. The

blueprint for the text would be constructed exactly as before, but

now the text planning of the individual clauses would end by simply

setting features of the semantic stratum as goals.

The semantic systan network contains the following systems (due
to space restrictions, only two gates—builder-mentioned and

builder-unmentioned--have been included in the diagram. The com¬

plete network including gates and realization rules can be found in

Appendix C].

-2l0a.~

untied

build-

r non-enabled

enabling

ini tial-act ion

simultaneous -act ion

first-enabling

another-enabling

single-enabler
enabled

multiple-enabler

builder-oriented

action-oriented
builder-oriented builder-mentioned

not-addressee-builder—<>
act ion-oriented builder-unmentioned

addressee-builder

singular-component

p 1 ur al-c om po nent

mass-component

one-builder

sever al-builders

painting

create-basement-f loor

put-up-plas ter-bo ar d

do-finished-flooring

carpentry

sanding-floor

varnishing-floor

When text planning for a particular action on the schedule, the

text planner may decide to describe the other actions that enabled

the action in question. When constructing the blueprint for a

series of descriptions of enabling actions followed by a description

of the enabled action, the planner simply sets goals such as

$first-enabling (for the first of the enabling actions] and

$multiple-enablers (for the enabled action]. If the addressee of
the text is the person that is performing the action, then the goal

- 2IOb-

$addressee-builder is set, otherwise $not-addressee-builder is set.

The text planner need not assign grammatical functional roles—that

will be done by the grammar. Using the same type of reasoning

already done by EXPLAN, the text planner can set the appropriate

goals for the number of the component being operated upon, and the

operation itself. The EXPLAN choice between Actor-focused and

Goal-focused is simply replaced by the choice between $builder-
oriented and $action-oriented.

The input SLANG now requires to generate the example is as fol¬

lows (in each case the semantic features are associated with the

top-level hub--by convention hub 0):

first you do the painting

(make goal $initial-action 0)
(make goal $action-oriented 0]
(make goal $addressee-builder o)
(make goal $mass-component 0)
(make goal $one-builder o)
(make goal $painting o)

at the same time the basement floor is poured

(make goal $simultaneous-action o)
(make goal $action-oriented o)
(make goal $not-addressee-builder 0)
(make goal $singular-component 0)
(make goal $one-builder 0)
(make goal $create-basement-floor o)

at the same time the plasterer fastens the plaster board

(make goal $ simultaneous-act ion o)
(make goal $builder-oriented o)
(make goal $not-addressee-builder o)
(make goal $mass-component o)
(make goal $one-builder o)
(make goal $put-up-piaster-board 0)

-2IOc~

if the basement floor has been poured

'make goal $first-enabling O)
make goal $act ion-oriented 0]
make goal $not-addressee-builder o)
make goal $singular-component o)
[make goal $one-builder o)
^make goal $ereate-basement-floor o)

and the plaster board has been fastened

(make goal $anothei—enabling o)
[make goal $action-oriented o)
[make goal $not-addressee-builder O)
[make goal $mass-component oj
[make goal $one-builder o)
(make goal $put-up-plaster-board o)

then the finished flooring can be laid

(make goal $multiple-enabler O)
(make goal $action-oriented 0)
(make goal $not-addressee-builder 0]
(make goal $mass-component 0]
(make goal $one-builder 0)
(make goal $do-finished-flooring oj

after that the carpentry can be finished

(make goal $single-enabler 0)
(make goal $action-oriented o)
(make goal $not-addressee-builder o)
(make goal $mass-component 0)
(make goal $one-builder o)
(make goal $carpentry oj

if the carpentry has been finished

(make goal $first-enabling 0]
(make goal $action-oriented o)
[make goal $not-addressee-builder 0)
[make goal $mass-component o)
(make goal $one-builder o)
(make goal $carpentry o)

-2tOdL~

and you've done the painting

(make goal $another-enabling o)
make goal $action-oriented 0)
make goal $addressee-builder o)
make goal $mass-component 0]
make goal $one-builder oj
^make goal $painting o]

then you can sand the floors

fmake goal $multiple-enabler o)
fmake goal $action-oriented o]
fmake goal $addressee-builder o)
fmake goal $plural-component o)
fmake goal $one-builder o)
(make goal $sanding-floor o)

after that you can varnish the floors

fmake goal $single-enabler o)
fmake goal $action-oriented O)
fmake goal $addressee-builder o)
fmake goal $plural-component 0)
(make goal $one-builder oj
(make goal $varni shing-f loor o]

There are some important advantages to using a semantic system
network as an interface between the text planner and the grammar.
The linguistic notation developed expressly for this purpose makes
it easier to perceive the grammatically relevant decisions and how
they are realized. The modularity of the language production is
improved since the text planner is not required to know about gram¬
matical features and functional roles.

-2lOe-

3. Examples from the semantic stratum

The following samples were generated using the semantic stratum

(based on Halliday, 1978, pp. 82-84), which is listed at the end of

Appendix C. The register involves a mother attempting to control

the behaviour of her child with a threat.

Each example consists of an input to SLANG-I (a set of semantic
seed features to be set as goals), preceded by the resulting text.
In each case the features are associated with the top-level hub--by

convention hub 0.

you'll be going upstairs

(make goal $rejection o)
make goal $at-home 0)
make goal $child-centred-decision 0)
make goal $deferred o)

you're going upstairs

make goal $rejection 0)
make goal $at-home 0)
make goal $child-centred-decision o)
make goal $pending 0)
make goal $unmarked-time 0)

I'm taking you upstairs now

(make goal $rejection 0)
make goal $at-home o)
make goal $mother-centred-decision o)
make goal $pending o)
make goal $immediate o)

I'll smack you

(make goal $unconditional o)
make goal $chastisement o)
make goal $smack 0)
make goal $adult-centred-punishment o)

- 211 -

you mustn't do that because I'll smack you

(make goal $ threatening-reason o)

!make goal $non-repetitive ojmake goal $chasti sanent o)
make goal $smack o]
make goal $explanatory-cond o]
make goal $adult-centred-punishment 0]

if you do that I'll smack you

(make goal $logical-cond o)
(make goal $non-repetitive 0]
(make goal $chastisanent 0]
(make goal $smack o]
(make goal $adult-centred-punishment 0)

don't do that
next time I'll smack you

imake goal $straight-threat o]
make goal $explicit-repetition o]
make goal $chastisement O)
make goal $smack 0]
make goal $exclamatory-cond 0)
make goal $adult-centred-punishment 0)

go upstairs now

(make goal $unmarked-command oj
(make goal $immediate oj
(make goal $at-home o)

you'll be smacked

(make goal $unconditional o]
(make goal $chasti sanent 0]
(make goal $smack o]
(make goal $child-centred-puni shment o]

you mustn't do that or you'll be smacked

!make goal $ threatening-alternative 0]make goal $non-r epeti tive Oj
make goal $chastisanent o)
make goal $smack o)
make goal $explanatory-cond o]
make goal $child-centred-punishment 0)

- 212 -

don't do that or you'll be smacked by Daddy

(make goal $threatening-alternative o)
(make goal $non-repetitive 0]
(make goal $daddy ol
(make goal $smack OJ
(make goal $exclamatory-cond o]
(make goal $child-centred-punishment o)

you mustn't do that
next time I'll smack you

(make goal $straight-threat Oj
(make goal $explicit-repetition o]
(make goal $chastisenent o]
(make goal $smack o]
(make goal $explanatory-cond o)
(make goal $adult-centred-punishment o)

I am not giving you a sweet

(make goal $deprivation o)
(make goal $at-home oj
(make goal $mother-centred-decision O]
(make goal $pending o]
(make goal $unmarked-time O]

you are not being given a sweet

Imake goal $deprivation o)make goal $at-home o)
make goal $child-centred-decision o]
make goal $pending o]
make goal $unmarked-time o]

you will not be being given a sweet

(make goal $deprivation o]
(make goal $at-home oj
(make goal $child-centred-decision O]
(make goal $deferred Oj

I will not be giving you a sweet

(make goal $deprivation o]
[make goal $at-home o)
[make goal $mother-centred-decision 0)
(make goal $deferred 0]

- 21 3 -

Appendix C: The grammar

This appendix contains the grammar used in the implementation,

and used to generate the sample texts in Appendix B. The networks

were collected from a variety of sources, and patched together when

necessary. No attanpt has been made to provide a polished grammar-

-there are several dubious fixes and no doubt many outright errors

and omissions. This grammar was intended only to test the ideas

described in this thesis.

The notation used here is a LISP-based system network notation

described in Section 7.2.1.

1_. The clause network

The clause systems were based on (Mann/Halliday), an early ver¬

sion of the clause systems for Nigel (Mann et al., 1983).

(nil CLAUSE)

((CLAUSE -[) clause
(Process / Lexverb) (// ~ Theme))

((clause -(=) MOOD)

((MOOD -[) finite
(Mood (Finite)) (Mood ~ Residue))

((finite -{ =) MOOD-TYPE)

((MOOD-TYPE -[) indicative
(Mood (Subject)) (Residue ~ #))

((indicative -{ =) INDICATIVE-TYPE)

((INDICATIVE-TYPE -[) declarative
(Subject ~ Finite) {% " Subject) (Finite ~ %))

((INDICATIVE-TYPE -[) interrogative)

((interrogative -{=) INTERROGATIVE-TYPE)

((INTERROGATIVE-TYPE -[) wh-
(Wh " Finite))

((wh- -{=) WH-FUNCTION)

- 21 4 -

((WH-FUNCTION -[) wh-subject
(Wh / Subject) {% ~ Subject) (Finite ~ %))

((WH-FUNCTION -[) wh-other
fwh / Residual)
(Finite ~ Subject)
\% " Finite)
(Subject ~ l))

((INTERROGATIVE-TYPE -[) yes/no
(Finite " Subject) " Finite) (Subject " %))

((wh- -{=) THEME-MARKING-WH-)

((THEME-MARKING-WH- -[) unmarked-wh-theme
(Topical / Wh))

((yes/no —) THEME-MARKING-YES/NO)

((THEME-MARKING-YES/NO -[) unmarked-yes/no-theme

iTopical / Subject)Theme (interpersonal))
Interpersonal / Finite))

((MOOD-TYPE -[) imperative
(Mood (Subject)) (Process : !stem))

((finite -{=) SUBJECT-PERSON)

((SUBJECT-PERSON -[) interactant-subject)

((indi cative
i nt eract an t -s ubj e ct
= }-) INDICATIVE-INTERACTANT-SUBJECT)

((iNDICATIVE-INTERACTANT-SUBJECT -[) speaker-subject
(Subject = i)
(Finite : !first-person)
(Finite : !v-singular))

((INDICATIVE-INTERACTANT-SUBJECT -[) addressee-subject
(Subject = you) (Finite : ! second-person))

((INDICATIVE-INTERACTANT-SUBJECT -[) speaker-plus-subject
(Subject = we)
(Finite : !first-person)
(Finite : !v-plural))

((SUBJECT-PERSON -[) other-subject)

((other-subject -{=) INDICATIVE-OTHER-SUBJECT-NUMBER)

- 215 -

((INDICATIVE-OTHER-SUBJECT-NUMBER -[] mass-subject
Subject : mass]
Finite : !third-person]
Finite : Iv-singular]]

(INDICATIVE-OTHER-SUBJECT-NUMBER -[] singular-subject
(Subject : singular]
(Finite : !third-person]
(Finite : !v-singular]]

(INDICATIVE-OTHER-SUBJECT-NUMBER -[] piural-subject
(Subject : plural]
(Finite : !third-person]
(Finite : !v-plural]]

(imperative
i nt eract ant-subj ect
= }-] IMPERATIVE-INTERACTANT-SUBJECT]

(IMPERATIVE-INTERACTANT-SUBJECT -[] oblative
(Subject = |let rae|]]

(IMPERATIVE-INTERACTANT-SUBJECT -[] jussive]

(IMP ERA TIVE-INTERACTANT-SUBJECT -[] suggestive
(Subject = (1 et* s |]]

(jussive -{ =] IMPERATIVE-SUBJECT-PRESUMPTION]

(indicative other-subject =}-] INDICATIVE-OTHER-SUBJECT]

(iNDICATIVE-OTHER-SUBJECT -[] pronominal-subject
Subject : pronoun]
SubjectCHead : ! subjective]
Subject<Head : ! third]]

(INDICATIVE-OTHER-SUBJECT -[] nominal-subject]

(IMP ERA TIV E-SUBJECT-PRESUMPTI ON
-[] imperative-subject-implicit]

(IMP ERATIVE-SUBJECT-PRESUMPTION
-[] imperative-subject-explicit

(Subject = you]]

(other-subject imperative =}-] IMPERATIVE-OTHER-SUBJECT]

(IMPERATIVE-OTHER-SUBJECT -[] proper-subject
(Subject : Noun-head] (SubjectCHead : Iproper]]

(IMPERATIVE-OTHER-SUBJECT -[] common-subject
(Subject : Noun-head] (Subject<Head : Icommon]]

(imperative -(=] IMPERATIVE-TAG]

- 216 -

((iMPERATIVE-TAG -[) imperative-untagged
(Residue ~ #)J

((iMPERATIVE-TAG -[) imperative-tagged
(Residue " Moodtag)
fMoodtag " #)
(Moodtag (Tagfinite))
fMoodtag (Tagsubject])
fTagfinite " Tagsubj ect]
\% ~ Tagfinite)
(Tagsubject ~ %))

((imperative-tagged oblative =}-) oblative-tagged
(Tagfinite = shall) (Tagsubject = i))

((imperative-tagged j ussive =}-) jussi ve-tagged
(Tagfinite = will) (Tagsubject = you))

((imperative-tagged suggestive =}-) suggestive-tagged
(Tagfinite = shall) (Tagsubject = we))

((finite -{=) POLARITY)

((POLARITY -[) positive)

((POLARITY -[) negative)

((positive -{=) POLARITY-MARKING-POSITIVE)

((POLARITY-MARKING-POSITIVE -[) unmarked-positive)

((POLARITY-MARKING-POSITIVE -[) marked-positive)

((negative -(=) POLARITY-MARKING-NEGATIVE)

((POLARITY-MARKING-NEGATIVE -[) unmarked-negative)

((POLARITY-MARKING-NEGATIVE -[) marked-negative)

('(clause -{ =) AGENCY)

((AGENCY -[) middle)

((AGENCY -[) effective)

((clause -{=) RESIDUALITY)

((RESIDUALITY -[) non-residual)

((RESIDUALITY -[) residual)

((declarative -{=) ATTITUDE)

((ATTITUDE -[) non-attitudinal)

- 217 -

(ATTITUDE -[J attitudinal]

(attitudinal —) INTERPERSONAL-THEMEj
(iNTERPERSONAL-THEME -[j no-interpersonal-theme]
(iNTERPERSONAL-THEME -[] interpersonal-theme

(Theme (interpersonal)]
(interpersonal / Attitude)
(interpersonal ~ Topical))

(middle -(=) RANGE)

(RANGE -[) non-ranged
(Modlu/ri / Subject))

(RANGE -[) ranged)

(effective -{=) BENEFACTION)

(BENEFACTION -[) non-benefactive)
(BENEFACTION -[) benefactive)
(clause -{=) PROCESS-TYPE)

(PROCESS-TYPE -[) material)

(middle material =}-) HAPPENING)
(HAPPENING -[) behavioural

(Actor / Medium)
(Actor : conscious)
(Process : behaviour))

(HAPPENING -[) eventive
(Actor / Medium)
(Actor : non-conscious)
(Process : event))

(effective material =}-) DOING)
(DOING -[) creative

(Actor / Agent) (Goal / Medium))
(DOING -[) dispositive

(Actor / Agent) (Goal / Medium))

(PROCESS-TYPE -[) mental)

(mental -{=) SENSING)

(SENSING -[) perception)

- 218 -

(SENSING -[) reaction)

(SENSING -[) cognition)

(PROCESS-TYPE -[) verbal)
(verbal non-ranged =}-) SAYING)

(SAYING -[) indicating
(Beta / Residual) (Beta : finite))

(indicating --) INDICATING)

(INDICATING -[) declaring
(Beta : declarative))

(INDICATING -[) interrogating
(Beta : interrogative))

(SAYING -[) imperating)

(PROCESS-TYPE -[) relational)
(middle relational =}-) TYPE-OF-BEING)
(TYPE-OF-BEING -[) ascriptive

(Be-er / Carrier)
(Carrier / Subject)
(Attribute / Range))

(TYPE-OF-BEING -[) existential
fBe-er / Existent)
(Existent / Range)
(-There- / Subject)
(Process : !-be-))

(relational effective =}-) equative
(Be-er / Identified))

(ascriptive equative]-) RELATION-TYPE)
(RELATION-TYPE -[) intensive

(Process : !-be-))

(RELATION-TYPE -[) circumstantial
(Process : !-be-at-))

(RELATION-TYPE -[) possessive
(Process : !-have-))

(middle intensive =}-) ATTRIBUTE-STATUS)

- 219 -

(ATTRIBUTE-STATUS -[J property-attribute
fValue / Attribute]
(Attribute : nominal-group-epithet-head]]

(ATTRIBUTE-STATUS -[] class-attribute
(Value / Attribute]]

(effective intensive =}-] IDENTIFICATION-DIRECTION]

(IDENTIFICATION-DIRECTION -[] decoding
(identified / Token] (identifier / Value]]

(IDENTIFICATION-DIRECTION -[] encoding
(idintified / Value] (identifier / Token]]

(middle circumstantial =}-] CIRCUMSTANCE-AS-ATTRIBUTE]

(CIRCUMSTANCE-AS-ATTRIBUTE -[] circumstantial-ascription
(Circumstance / Process]]

(CIRCUMSTANCE-AS-ATTRIBUTE -[1 circumstantial-attribute
(Circumstance / Attribute]]

(effective circumstantial =}-] CIRCUMSTANCE-AS-IDENTITY]

(CIRCUMSTANCE-AS-IDENTITY —[1 circumstantial-equation
(Circumstance / Process]]

(CIRCUMSTANCE-AS-IDENTITY -[] circumstantial-identity
(Circumstance / Identified]
(Circumstance2 / Identifier]]

(circumstantial -{=] CIRC-TYPE]

(CIRC-TYPE -[] relational-extent
(Circumstance / Extent]]

(CIRC-TYPE -[] relational-location
(Circumstance / Locative]]

(CIRC-TYPE -[] relational-cause
(Circumstance / Cause]]

(CIRC-TYPE -[] relational-manner
(Circumstance / Manner]]

(CIRC-TYPE -[] relational-accompaniment
(Circumstance / Accompaniment]]

(CIRC-TYPE -[] relational-matter
(Circumstance / Matter]]

(CIRC-TYPE -[] relational-role
(Circumstance / Role]]

- 220 -

((middle possessive =}-) POSS-AT)

((POSS-AT -[) possessive-ascription
(Possession / Process))

((POSS-AT -[] possessive-attribute
(Possession / Attribute])

((effective possessive =}-) POSS-ID)

((POSS-ID -[) possessive-equation
(Possession / Process))

((POSS-ID -[) possessive-identity
(Possession / Identified) (Possession2 / Identifier))

((indicative -(=) DEICTICITY)

((DEICTICITY -[) modal
(Modal / Finite)
(Residue (Modalstem))
{% " Modalstem))

((DEICTICITY -[) temporal)

((temporal —) PRIMARY-TENSE)

((PRIMARY-TENSE -[) future
(Future / Finite)
(Future : !will)
(Residue (Futstem))

Futstem))

((PRIMARY-TENSE -[) present
(Finite : !present))

((PRIMARY-TENSE -[) past
(Finite : Ipast))

((clause -{=) EXTENT)

((EXTENT -[) non-extent)

((EXTENT -[) extent
(Extent / Residual))

((extent —) EXTENT-TYPE)

((EXTENT-TYPE -[) duration
(Extent / Duration))

((EXTENT-TYPE -[) distance
(Extent / Distance))

- 221 -

(clause -{ =) TIME)

(TIME -[) non-time)

(TIME -[) time)

(time -[) non-textual-time
(Residue (Temporal))
(Temporal : prep-phrase)
(Temporal ~ $))

(time -[) textual-time)

(clause -{ =) PLACE)

(PLACE -[) non-place)

(PLACE -[) place
(Residue (Spatial)) (Spatial : prep-phrase))

(clause -(=) CAUSE)

(CAUSE -[) non-cause)

(CAUSE -[) cause)

(cause —) CAUSE-TYPE)

(CAUSE-TYPE -[) reason)

(reason -[) non-textual-reason
(Residual / Reason))

(reason -[) textual-reason)

(CAUSE-TYPE -[) purpose
(Cause / Purpose) (Residual / Cause))

(CAUSE-TYPE -[) behalf
(Cause / Behalf) (Residual / Cause))

(clause -{=) ACCOMPANIMENT)

(ACCOMPANIMENT -[) non-accompaniment)
(ACCOMPANIMENT -[) accompaniment

(Accompaniment / Residual))
(clause -(=) MATTER)

(MATTER -[) non-matte")

(MATTER -[) matter
(Matter / Residual))

- 222 -

((clause -{=} ROLE]

((ROLE -[] non-role]

((ROLE -[] role
(Role / Residual]]

((declarative -{=] THEME-MARKING-DECLARATIVE]

((THEME-MARKING-DECLARATIVE -[] unmarked-declarative-theme
(Topical / Subject]]

((imperative -{=] THEME-MARKING-IMPERATIVE]

((THEME-MARKING-IMPERATIVE -[] unmarked-imperative-theme]

((ranged -{=] RANGE-VOICE]

((RANGE-VOICE -[] range-operative
(Medium / Subject] (Range / Residual]]

((RANGE-VOICE -[] range-receptive
(Range / Subject] (Lexverb : !en]]

((range-receptive =}-] RANGE-MEDIATION]

((RANGE-MEDIATION -[] non-mediated]

((RANGE-MEDIATION -[] mediated
(Residue (Medmarker]]
(Medmarker = by]
(Medium / Residual]
fLexverb ~ Medmarker]
(Medmarker ~ Medium]]

((clause -{=] SECONDARY-TENSE-1]

((SECONDARY-TENSE-I -[] non-past-in]

((SECONDARY-TENSE-I -[] past-in
(Residue (En]]]

((clause -{ =] SECONDARY-TENSE-II]

((SECONDARY-TENSE-II -[] non-present-in]

((SECONDARY-TENSE-II -[] present-in
(Residue (ing]]]

((effective -{=] EFFECTIVE-VOICE]

((EFFECTIVE-VOICE -[] operative
(Agent / Subject] (Medium / Residual]]

- 223 -

((operative benefactive = }-) BENEFACTIVE-CULMINATION-Ij

((BENEFACTIVE-CULMINATION-I -[) ben-med
(Lexverb ~ Beneficiary) (Beneficiary ~ Medium))

((BENEFACTIVE-CULMINATION-I -[) med-ben
f Lexverb ~ Medium)
(Medium ~ Benmarker)
(Benmarker ~ Beneficiary)
(Benmarker = to))

((EFFECTIVE-VOICE -[) receptive

((benefactive receptive =}-) BENEFACTIVE-VOICE)

((BENEFACTIVE-VOICE -[1 medioreceptive
(Medium / Subject))

((BENEFACTIVE-VOICE -[) benerecepti ve
(Beneficiary / Subject))

((medioreceptive agentive =}-) BENEFACTIVE-CULMINATION-III)

((BENEFACTIVE-CULMINATION-III -[) ben-ag

r))

((BENEFACTIVE-CULMINATION-III -[) ag-ben
(Benmarker = to)
f Benmarker ~ Beneficiary)
fLexverb ~ Agentmarker)
(Agent ~ Beneficiary))

((benereceptive agentive =}-) BENEFACTIVE-CULMINATION-II)

((,BENEFACTIVE-CULMINATION-II -[) med-ag
(Lexverb ~ Medium) (Medium ~ Agentmarker))

((BENEFACTIVE-CULMINATION-II -[) ag-med
(Lexverb ~ Agentmarker) (Agent ~ Medium))

((receptive -{=) AGENTIVITY)

((AGENTIVITY -[) non-agentive)

((AGE]

(Lexverb : !en

((clause -{=) TEXTUAL-THEME)

- 22H -

((TEXTUAL-THEME -[} non-textual-theme]

((TEXTUAL-THEME -[] textual-theme
(Theme (Textual]] [% ~ Textual] (Textual / Conjunct]]

((indicative positive =}-] positive-finite
(Finite : /positive]]

((indicative negative =}-] negative-finite
(Finite : !negative]]

((imperative negative =}-] negimperati ve-f ini te
(Mood (Finite]]
t% " Finite]
Finite / Dont]
Finite / Topical]]

((negimperati ve-f ini te
imperative-subject-impl ici t
=}-] neg-imp-subj

(Finite %))

((declarative
unmarked-positive
(pronominal-subject interactant-subject]-]
= }-} reduced-posfinite

(Finite : /reduced]]

((indicative
(interrogative marked-positive nominal-subject]-]
=}-] nonreduced-posfinite

(Finite : ! nonreduced]]

((marked-positive imperative =}-] pos-do-finite
(Finite : /do] (Finite ~ Subject]]

((indicative unmarked-negative =}-] reduced-negf ini te
(Finite : /reduced]]

(('imperative marked-negative =}-] do-not-finite
(Dont = |do not|]]

((indicative marked-negative =}-] nonr educe d-negf ini te
(Finite : /nonreduced]]

((imperative unmarked-negative =}-] dont-finite
(Dont = |don't|]]

((benerecepti ve non-agentive =}-] ben-non-ag
(Residual / Medium] (Lexverb ~ Residual]]

((non-benefactive receptive =}-] non-bene-reception
(Medium / Subject]]

- 225 -

((non-bene-reception agentive = }-) ag-non-bene-reception
(Lexverb ~ Agentmarker))

((operative range-operative non-ranged]-) active-process)

((receptive range-receptive]-) passive-process
(Pass ~ Lexverb))

((past-in present-in =}-) enprog
(Prog = been) (En / Prog))

((modal past-in =}-) modalstemperf
(Perf = have) (Modalstem / Perf))

((modal non-past-in present-in =}-) modalstemprog
(Prog = be) (Modalstem / Prog))

((future past-in =}-) futstemperf
(Perf = have) (Futstem / Perf))

((future non-past-in present-in =}-) futstemprog
(Prog = be) (Futstem / Prog))

((future
passive-process
non-past-in
non-present-in
«}-) futstempas3

(Pass = be) (Futstem / Pass))

((active-process
non-past-in
non-pr esent-in
future
= }-) futstemlexverb

(Lexverb : !stem) (Futstem / Lexverb))

(((past present]-) past-in =}-) finiteperf
(Finite / Perf) [% ~ En))

(((past present]-) non-past-in present-in =}-) finiteprog
(Finite / Prog) {% " Ing))

((passive-process
(past present]-)
non-past-in
non-present-in
=}-) finitepass

(Finite / Pass) [% ~ Lexverb))

((passive-process past-in non-present-in =}-) enpass
(Pass = been) (En / Pass))

- 226 -

((active-process past-in non-present-in =}-} enlexverb
(Lexverb : Sen] (En / Lexverb]]

((present-in passive-process =}-] ingpass
(Pass = being] (ing / Pass]]

((active-process present-in =}-] inglexverb
(Lexverb : Sing] (ing / Lexverb]]

((modal
non-past-in
non-pr esent-in
pas si ve-pr ocess
= }-] modalstempass

(Pass = be] (Modalstem / Pass]]

((modal
non-pas t-in
non-pr esent-in
active-process
=}-] modalstemlexverb

(Lexverb : Sstem] (Modalstem / Lexverb]]

U(f initeprog finitepass]-]
present
speaker-subject
=}-) am

(Finite : Sam]]

(((finiteprog finitepass]-]
present
(addressee-subject
speaker-plus-subject
plural-subject

are

(Finite : Sare]]

(((finiteprog finitepass]-]
present
(singular-subject mass-subject]-]
=}-] is

(Finite : lis]]

(((finiteprog finitepass]-]
past
(singular-subject mass-subject speaker-subject]-]
=}-] was

(Finite : !was]]

- 227 -

(((finiteprog finitepass]-)
past
(a ddr ess ee-s u bj e ct
speaker-pl us-subject
plural-subject

=} - I wer e
(Finite : !were] J

((f ini teperf
present
(plural-subject
speaker-subject
addressee-subject
speaker-pl us-subject

=]-] have
(Finite : !have]J

((finiteperf
present
(singular-subject mass-subject]-]
= }-) has

(Finite : !has]]

((finiteperf past =}-) had
(Finite : !hadj]

((positive (declarative imperative]-] =}-) assertive)

((negative interrogative]-) non-assertive)

(((past present imperative]-)
active-process
non-past-in
non-present-in
=}-) not-auxed)

((circumstantial-ascription
possessive-ascription
acti ve-process
material
mental
verbal

]-) do-needing-verbs)

((modal past-in =}-) perf-en
(Perf ~ En))

(((future modal past-in]-) present-in =}-) prog-ing
(Prog ~ Ing))

- 228 -

((past do-finite = }-) did
(Finite : ! di d))

Upr es ent
do-finite

(plural-subject
addressee-subject
speaker-plus-subject
speaker-subject

(Finite : !do))

((present
do-finite

(mass-subject singular-subject]-)
=} -) do es

(Finite : Idoes))

((indicative
(imperative interactant-subject =}-)
subject-specified
]-} subject-inserted)

(((subject-inserted middle =}-)
effective

]-) medium-inserted)

((medium-inserted mental =}-) senser-inserted
(Medium / Senser))

((medium-inserted verbal =}-) sayer-inserted
(Medium / Sayer))

((medium-inserted relational =}-) be-er-inserted
(Medium / Be-er))

((imperative-subject-implici t
unmarked-imperative-theme
unmarked-positive
= }-) topical-predicator

(Topical / Process) (Process : stem))

((unmarked-imperati ve-theme
(imperative-subject-explicit suggestive oblative
= }-) topical-impsubject

(Topical / Subject))

((topical-predi cat or
(negative marked-positive]-)
=}-) neg-predicator

() ~ Fini te))

- 229 -

((clause -{=) topical-inserted
(Theme (Topical)J (Topical ~ %))

((non-textual-theme
(marked-yes/no-theme
no-interpersonal-theme
non-attitudinal
wh¬

imper at i ve

=j-j topical-only
{% ~ Topical))

((non-textual-theme
(interpersonal-theme unmarked-yes/no-theme]-)
=}-) int-topical

[% ~ Interpersonal))

((textual-theme
(marked-yes/no-theme
no-interpersonal-theme
non-attitudinal
wh¬

imperati ve

=]-) text-topic
(Textual * Topical))

((textual-theme
(interpersonal-theme unmarked-yes/no-theme]-)
=}-) text-int

(Textual ~ Interpersonal))

((residual wh-other =}-) fronted-residual
(Lexverb " %))

((residual
(wh-subject yes/no declarative imperative non-finite]-)
= }-) unmarked-residual

(Residue (Residual)))

((unmarked-residual processf ini te =}-) res-first
(% Residual))

((unmarked-residual place =}-) res-place
(Residual ~ Spatial))

((unmarked-residual
non-place
non-textual-time

=}-) res-time
(Residual ~ Temporal))

- 230 -

((unmarked-residual
non-place
(non-time textual-time]-)
= }-) residual-final

[Residual ~ %))

((agentive wh-other =}-) agentive-wh-other
(Agentmarker ~ %))

((agentive unmarked-residual = }-) unmarked-agentive
(Agentmarker ~ Residual)]

((not-auxed assertive =}-) processf inite
[% ~ Residual) (Process / Finite))

((interrogati ve
future

passive-process
negative
modal

pas t-in
present-in
]-) processlexverb

(Residue (Lexverb)) (Process / Lexverb))

((processlexverb
active-process
unmar ke d-residual
= }-) unmarked-operative

(Lexverb ~ Residual))

((non-residual (non-place textual-time]-) =}-) lex-final
(Lexverb ~ %))

((non-residual place =}-) lex-place
(Lexverb " Spatial))

((place (non-time textual-time]-) =}-) place-final
(Spatial ~ %))

((non-residual non-place non-textual-time =}-) lex-time
(Lexverb " Temporal))

((place non-textual-time =}-) place-time
(Spatial " Temporal))

((unmarked-posi tive imperative =}-) unmarked-imppos
(Subject ~ Finite) (Finite " %))

2. The nominal-group network

This network was taken from (Halliday, 1976a, p. 131) -

- 231 -

nil nominal-group
(Head ~ #))

(nominal-group -{=) CLASS-AT-HEADJ

(CLASS-AT-HE AD -[} nominal)

(nominal -[) pronoun
(# ~ Head))

(pronoun -[) non-personal)

(non-personal -[) -i t-
(Head = it))

(non-personal -[) -there-
(Head = there))

(pronoun -[) personal
(Head : !personal))

(nominal -[) noun)

(nominal -[) substitute
(Head = one))

(noun substitute]-) QUANTIFICATION)

(QUANTIFICATION -[) non-quantified)

(QUANTIFICATION -[) quantified)

(CLASS-AT-HEAD -[) non-nominal)

(non-nominal -[) determiner-head
(Deictic / Head) (# ~ Deictic))

(non-nominal -[) quantifier-head)

(quantifier-head -[) superlative-quant)

(quantifier-head -[) quant)

(quantifier-head -[) comparative-quant)

(quantifier-head -[) superlative-adj)

(noun
substitute

superlative-quant
quant
com pa r at i ve - quan t
superlative-adj
]-) determination)

- 232 -

(DETERMINATION -[] non-determined]

(DETERMINATION -M determined
(# ~ Deictic) J

(non-nominal -[] non-superlative-adj-head]

(non-superl ati ve-adj-head -[] comparative]

(non-superlative-adj-head -[] intensified]

(non-superlative-adj-head -[] unmarked]

(nominal-group -{=] POSSESSION]

(POSSESSION -[] non-possessive-nom]

(POSSESSION -[] possessive-nom]

(nominal-group -{ =] NUMBER]

(NUMBER -[] count]

(count -[] singular]

(count -[] plural]

(NUMBER -[] mass]

(personal non-possessive-nom -<>] non-pers-pos]

(personal possessive-nom -<>] personal-possessive
(Head : !possessive]]

((determiner-head pronoun]-]
(singular mass]-]
=}-] sing-pro

(Head : Isingulai—pronoun]]

(.(determiner-head pronoun]-] plural =}-] plur-pro
(Head : Iplural-pronoun]]

((noun substitute]-] (singular mass]-] =}-] sing-
(Head : !singular]]

((noun substitute]-] plural =}-] plur-noun
(Head : !plural]]

(pronoun possessi ve-nom =}-) poss-pro
(Head : Ipossessive-pronoun]]

((noun substitute]-] possessive-nom =}-] poss-noun
(Head : ! possessi ve]]

- 233 -

(((noun substitute]-]
non-possessive-nom
= }-] non-poss-noun

(Head : !non-possessive}}

((determined non-quantified nominal = }-) det-non-quant
(Dei ctic ~ Head]]

((non-determined non-quantified =}-] head-only
(# ~ Head}]

3_. The determiner network

This network was taken from (Halliday, 1976a, pp. 132-133],
with slight extensions and modifications from (Quirk, Greenbaum,
Leech and Svartvik, 1973, 4.122]. The "selective" system was rear¬

ranged to be compatible with (winograd, 1983, p. 537}.

(determined determiner-head]-} DETERMINER]

(DETERMINER -[] specific]

(specific -[} non-selective
(Deictic = the]}

(specific -[} selective]

(selective -[] pronominal-det]

(pronominal-det -[} interrogative-det]

(interrogative-det -[} wh-det
(Deictic : !wh}}

(interrogative-det -[] wh-ever-det
(Deictic : !wh-ever}]

(pronominal-det -[} non-interrogative-det]

(pronominal-det -[} demonstrative]

((demonstrative interrogative-det -<>] -[] which
(Deictic : !which}]

((demonstrative interrogative-det -<>] -[} what
(Deictic : Iwhat}}

((demonstrative non-interrogative-det -<>] -[] near
(Deictic : Inear}}

- 234 -

((demonstrative non-interrogative-det -<>) -[) far
(Deictic : ! far J J

(pronominal-det -[) possessive-det
(Deictic : ! possessi ve-determiner))

(selective -[) nominal-det
(Deictic : possessive-nomJ)

(DETERMINER -[J non-specific)

(non-specific -[) total)

(total -[) posi tive-det)

((positive-det singular -<>) -[) individual
(Deictic = each))

((positive-det singular -<>) -[) group
(Deictic = every))

((positive-det (mass plural]-) -<>) -[) exactly-two
(Deictic = both))

((posi ti ve-det (mass plural]-) -<>) -[) >two
(Deictic = all))

(total -[) negative-det)

(negati ve-det -[) quasi-negative)

(negative-det -[) full-negative)

(non-specific -[) partial)

(partial -[) part-non-selective)

((part-non-selective singular -<>) -[) additional
(Deictic = another))

((part-non-selective singular -<>) -[) non-add
(Deictic = a))

((part-non-selective (mass plural]-) -<>) -[) sufficient
(Deictic = enough))

((part-non-selective (mass plural]-) -<>)
-[) non-sufficient

(Deictic = seme))

(partial -[) part-selective)

(part-selective -[) restricted)

- 235 -

((part-selective -[} unrestricted}

(((singular mass]-}
non-interrogative-det
demonstrative

=}-} sing-pro-det
(Deictic : !singular-pronoun]}

((plural
non-interrogative-det
demonstrative
= }-] plur-pro-det

(Deictic : !plural-pronoun] }

(((quasi-negative unrestricted]-} singular -<>} "either"
(Deictic = either]}

(([quasi-negative unrestricted]-}
(mass plural]-}
-<>] "any"

(Deictic = any]]

((full-negative singular -<>} "neither"
(Deictic = neither}}

((full-negative (mass plural]-] -<>] "no"
(Deictic = no]}

((restricted singular -<>} "one"
(Deictic = "one"}]

((restricted (mass plural]-] -<>] "some"
(Deictic = same]}

. The quantifier network

This network was taken from (Halliday, 1976a, pp. 13^—135}.

((superlative-quant -[] numerical]

((superlative-quant -[} non-numerical]

((quantifier -[} cardinal]

((cardinal -[] integer]

((cardinal -[] fraction]

((quantifer -[] indefinite]

((indefinite -[} quantitative]

- 236 -

(quantitative -[} multall]

(quantitative -[] neutrall
(Numerative = several]]

(quantitative -[] paucall]

(indefinite -[] partitive]

(partitive -[] multal2
(Numerative = |lots of |]]

(partitive -[] neutral2]

(partitive -[] paucal2]

(comparative-quant -[] multal3
(Numerative = more]]

(comparative-quant -[] paucal3]

(superlative-adj -[] multal^
(Numerative = most]]

(superlative-adj -[] paucal1!]

(integer singular -<>] one
(Numerative = one]]

(multall mass -<>] much
(Numerative = much]]

(multall plural -<>] many
(Numerative = many]]

(paucall mass -<>] little
(Numerative = little]]

(paucall plural -<>] few
(Numerative = few]]

(neutral2 mass -<>] a-number-of
(Numerative = |a number of |]]

(neutral2 plural -<>] a-certain-amount-of
(Numerative = |a certain amount of |]]

(paucal2 mass -<>] a-little
(Numerative = |a little]]]

(paucal2 plural -<>] a-few
(Numerative = |a few|]]

- 237 -

((paucal3 mass -<>) less
(Numerative = less)}

((paucal3 plural -<>) fewer
(Numerative = fewer))

((paueal^ mass -<>) least
(Numerative = least)}

((paucal^l plural -<>) fewest
(Numerative = fewest))

5. The prepositional-phrase network

This is described in (Halliday, 1985, pp. 189-190).

(nil prep-phrase
(Range : nominal-group) (Range " #))

((prep-phrase -[) unmar ked-pr ep-phrase
(# ~ Minor-process)
(Minor-process ~ Range)
(Minor-process : !preposition))

((prep-phrase -[) merged
(# ~ Range J J

6. The verb network

This is an integrated verb and auxiliary network, very loosely

fashioned after (winograd, 1983, p. 53*0 .

(nil Iverb)

((!verb -{=) VERB-TYPE)

((VERB-TYPE -[} !aux
(# ~ !Aux))

((laux -{=) AUX-POLARITY)

((AUX-POLARITY -[) Inegative)

((AUX-POLARITY -[) ipositive
(!Aux ~ #))

((!aux -{=) AUX-MODALITY)

((AUX-MODALITY -[) !modal-aux)

- 238 -

modal-aux -[!could)

modal-aux -[! would)

modal-aux -[! should)

modal-aux -[Imust)

modal-aux -[! can)

modal-aux -[! mi ght)

modal-aux -[! will)

! am)

! are)

! is)

! was)

! were)

aux -[) !do-aux)

(

(AUX-MODALITY -[) !non-modal-

(l non-modal-aux -[) !be-aux)

(! be-aux -

(! be-aux -

(!be-aux

(I be-aux -

(! be-aux -|

(!non-modal-

(!do-aux -[) !do)

(! do-aux -[) ! did)

(! do-aux -[) ! does)

(!non-modal-aux -[) !have-aux

(lhave-aux -[) !have)

(!have-aux -[) !had)

(!have-aux -[) !has)

(VERB-TYPE -[) !non-aux
(# ~ !Verb) (iVerb ~ #))

(lnon-aux -[) !achieve)

(l non-aux -[) ! fas ten)

(!non-aux-[) !pour)

(lnon-aux -[) !begin)

(!non-aux -[! lay)

(!non-aux -[Ifinish]

(! non-aux -[I sand]

(!non-aux -[I var ni sh]

(! non-aux -[I build]

(! non-aux -[I give]

(! non-aux -[! go]

(! non-aux -[!-do-]

(Inon-aux -[!-be-]

(!non-aux -[I-have-]

(! non-aux -[I put]

(! non-aux -[I support]

(Inon-aux -[I as k]

(!non-aux -[I take]

(! non-aux -[I smack]

(laux ! non-aux]-] VTENSE]

(VTENSE -[) I pas t]

(VTENSE -[J Ipresent]

(ipast ! present]-] VNUMBER]

(VNUMBER -[} Iv-singular]

(VNUMBER -[] I v-plural]

(Ipast ! present]-] VPERSON]

(VPERSON -[) Ifirst-person]

(VPERSON -[) I second-person]

(VPERSON -[} I third-person]

(VTENSE -[) 1 infinitive]

(VTENSE -[) I stem]

VTENSE -[) Sing)

VTENSE -[) Sen)

Sverb -{=) VERB-REDUCTION)

VERB-RE DUCT ION -[) 'reduced)

VERB-REDUCTION -[) Snonreduced)

! negative Snonreduced =}-) ! negnonreduced)

!aux !negative !reduced =}-) Sauxnt
(SAux ~ #))

!aux !negnonreduced =}-) Saux-not
(SNeg = not) (SAux ~ SNeg) (SNeg ~ #))

Sam ((ipositive Snonreduced =}-) Snegative]-)
(SAux = am))

Sam ! positive ! reduced =}-) "m"
(!Aux = | 'm|))

Sare Snonreduced =}-) "are"
(!Aux = are))

Sare ! positive ! reduced =}-) "re"
(SAux = |'re|))

Sare Snegative ! reduced =}-) "arent"
(SAux = |aren't|))

Sis Snonreduced =}-) "is"
(!Aux = is))

(Sis !has]-) !positive !reduced =}-) "s"
(!Aux = | 's J))

Sis Snegative !reduced =}-) "isnt"
(SAux = | isn'11))

! was (ipositive ! negnonreduced]-) =}-) "was"
(SAux = was))

! was Snegative ! reduced =}-) "wasnt"
(SAux = |wasn't|))

! were (s positive ! negnonreduced]-) =}-) "were"
(! Aux = were))

Swere Snegative ! reduced =}-) "werent"
(SAux = |weren't|))

- 241 -

!will Inonreduced =}-) "will"
(!Aux = will})

!will [positive [reduced =}-) "11"
(!Aux = | 'll|))

[will [negative [reduced =}-) "wont"
(!Aux = |won'11))

[have Inonreduced =}-) "have"
(!Aux = have))

[have [positive [reduced =}-) "ve"
(!Aux = | 've |))

[have [negative [reduced =}-) "havent"
([Aux = |haven't|))

[has !nonreduced =}-) "has"
(!Aux = has))

[has [negative [reduced =}-) "hasnt"
([Aux = |hasn't|))

[had Jnonreduced =}-) "had"
(!Aux = had))

[had [negative [reduced =}-) "hadnt"
([Aux = |hadn't|))

! do ([positive ! negnonreduced]-) =}-) "do"
([Aux = do))

!do [negative [reduced =}-) "dont"
([Aux = |don't|))

[did ([positive [negnonreduced]-) =}-) "did"
(!Aux = did))

[did [negative [reduced =}-) "didnt"
([Aux = |didn't|))

[does ([positive [negnonreduced]-) =}-) "does"
(! Aux = does))

[does [negative [reduced =}-) "doesnt"
(! Aux = | doesn'11))

[could Inonreduced =}-) "could"
(! Aux = could))

- 2*12 -

(((icould !would !should !had]-)
!positive
!reduced

=}-) "d"
(!Aux = | 'd |))

((icould ! negative ! reduced =}-} "couldnt"
(iAux = |couldn't|)]

((i would inonreduced = }-) "would"
(! Aux = would))

((i would !negative !reduced =}-) "wouldnt"
(!Aux = |wouldn't|))

((i should inonreduced =}-) "should"
(iAux = should))

((i should ! negative ! reduced =}-) "shouldnt"
(iAux = |shouldn't)))

((imust (ipositive ! negnonreduced]-) =}-) "must"
(!Aux = must))

((imust !negative !reduced =}-) "mustnt"
(iAux = |mustn't|))

((lean (ipositive !negnonreduced]-) =}-) "can"
(!Aux = can))

((lean !negative !reduced =}-) "cant"
(iAux = |can't|))

((imight (ipositive ! negnonreduced]-) =}-) "might"
(!Aux = might))

((imight [negative ! reduced =}-) "mightnt"
(iAux = |mightn't|))

((.'present ! third-person !v-singular =}-) !sing3)

((!pas t
! first-person
!second-person
! v-plur al
]-) !non-sing3)

((iachieve (!stem !non-sing3]~) =}-) "achieve"
(iVerb = achieve))

((iachieve !sing3 =}-) "achieves"
(iVerb = achieves))

- 243 -

lachieve linfinitive = }-) "to-achieve"
(IVerb = |to achieve|]]

lachieve (1 en Ipast]-) = }-) "achieved"
(IVerb = achieved]]

lachieve ling =}-] "achieving"
(IVerb = achieving]]

Ifasten (istem !non-sing3]-] =}~] "fasten"
(IVerb = fasten]]

Ifasten !sing3 =}-] "fastens"
(IVerb = fastens]]

Ifasten linfinitive =}-] "to-fasten"
(iVerb = |tofasten|]]

Ifasten (1 en Ipast]-] =}-) "fastened"
(IVerb = fastened]]

Ifasten ling =}-] "fastening"
(IVerb = fastening]]

1 pour (Istem !non-sing3 J-] =}~] "pour"
(IVerb = pour]]

1 pour !sing3 =}-) "pours"
(IVerb = pours]]

Ipour linfinitive =}-] "to-pour"
(IVerb = | to pour |]]

Ipour (1 en Ipast]-] = }-] "poured"
(IVerb = poured]]

Ipour ling =}-] "pouring"
(IVerb = pouring]]

1 begin (istem !non-sing3]-] =}-) "begin"
[IVerb = begin]]

1 begin !sing3 =}-] "begins"
(IVerb = begins]]

1 begin linfinitive = }-] "to-begin"
(1 Verb = |to begin |]]

1 begin (1 en Ipast]-] =}-] "began"
(1 Verb = began]J

1 begin ling =}-] "beginning"
(iVerb = beginning]]

- 244 -

Ifinish (istem !non-sing3]-) = }-) "finish"
(IVerb = finish))

Ifinish !sing3 =}-) "finishes"
(IVerb = finishes))

Ifinish I infinitive =}-) "to-finish"
(iVerb = |tofinish|J)

Ifinish (I en I past]-) =}-) "finished"
(IVerb = finished))

Ifinish ling =}-) "finishing"
(IVerb = finishing))

Hay (I stem Inon-sing3]-) =}-) "lay"
(IVerb = lay))

I lay Ising3 =}-) "lays"
(iVerb = lays))

I lay I infinitive =}-) "to-lay"
(IVerb = | to lay |))

I lay f I en Ipast]-) «}-) "laid"
(IVerb = lai d))

I lay ling =}-) "laying"
(IVerb = laying))

I sand (I stem Inon-sing3]-) = }-) "sand"
(IVerb = sand))

I sand Ising3 =}-) "sands"
(I Verb = sands))

I sand I infinitive =}-] "to-sand"
(IVerb = | to sand|J)

I sand (Jen Ipast]-) =}-) "sanded"
(IVerb = sanded))

I sand ling =}-) "sanding"
(IVerb = sanding))

I varnish (I stem Inon-sing3]-) =}-) "varnish"
(IVerb = varni sh))

I varnish I sing3 =}-) "varnishes"
(IVerb = varnishes))

I varnish [infinitive =}-) "to-varnish"
(IVerb = | to varnish |))

- 2*15 -

! varnish (I en Ipast]-) = }-) "varnished"
(I Verb = varnished])

! varnish ! ing =}-) "varnishing"
(I Verb = varnishing))

I build (I stem !non-sing3]-) =}-) "build"
(!Verb = build))

Ibuild Ising3 =}-) "builds"
(IVerb = builds))

Ibuild I infinitive =}-) "to-build"
(IVerb = | to build |))

Ibuild (I en Ipast 1-) =}-) "built"
(IVer b = bu i 11) J

Ibuild ling =}-) "building"
(IVerb = building))

I give (I stem !non-sing3]-) =}-) "give"
(IVer b = g i ve))

I give Ising3 =}-) "gives"
(IVerb = gives))

I give I infinitive =}-] "to-give"
(IVerb = | to give |))

I give Ipast =}-) "gave"
(IVerb = gave))

I give ling =}-) "giving"
(IVerb = giving))

I give I en =}-) "given"
(I Verb = given))

I go (I stem !non-sing3]-) =}-) "go"
(IV er b = go))

I go Ising3 =}-) "goes"
(IVerb = goes))

Igo I infinitive =}-) "to-go"
(IVerb = | to go |))

Igo Ipast =}-) "went"
(IVerb = wait))

Igo ling =}-) "going"
(I Verb = going))

- 246 -

! go ! en = }-] "gone"
(! Verb = gone]}

!-do- (istem !non-sing3]-] =}~] "-do-"
(!Verb = do]]

!-do- !sing3 =}-] "-do-es"
(!Verb = does]]

!-do- !infinitive =}-] "to-do"
(!Verb = | to do |]]

!-do- !past =}-] "-did-"
(!Verb = didj]

!-do- ling =}-] "-doing-"
(IVerb = doing]]

!-do- !en =}-] "-done-"
(! Verb = done]]

!-be- Istem =}-] "-be-"
(1 Verb = be]]

!-be- ! infinitive =}-] "to-be"
(!Verb = |to be|]]

!-be- !first-person !singular =}-] "-am-"
(1 Verb = am]]

1 -be-
! present
(l plural (lsecond-person ! singular =}-]]
=}-] "-are-"

(! Ver b = are]]

!-be- !sing3 1 present =}-] "-is-"
(iVerb = is]]

!.-be-
! past
(1 first-person !third-person]-]
!singular
=}-] "-was-"

(IVerb = was]]

! -be-
1 past
(f! second-person ! singular =}-]

1 third-person !plural =}-)

J "-were-"
(IVerb = were]]

- 247 -

!-be- ling = }-] "-being-"
(!Verb = being]]

!-be- !en =}-] "-been-"
(!Verb = been]]

!-have- (1 stsn !non-sing3]-] = }-) "-have-"
(1 Verb = have]]

!-have- !sing3 = }-) "-has-"
(IVerb = has]J

!-have- !infinitive =}-] "-to-have-"
(! Verb = | to have |]]

!-have- (1 en Ipast]-] =}-] "-had-"
(1 Verb = had]]

!-have- ling =}-] "-having-"
(1 Verb = having]]

1 support (istem !non-sing3]-] =}-] "support"
(1 Verb = support]]

1 support 1sing3 =}-) "supports"
(1 Verb = supports]]

1 support 1 infinitive =}-! "to-support"
(iVerb = |to support|]]

1 support (1 en Ipast]-] =}-] "supported"
(IVerb = supported]]

1 support ling =}-] "supporting"
(IVerb = supporting]]

1 smack (Istem !non-sing3]-) =}-] "smack"
(IVerb = smack]]

1 smack !sing3 =}-] "smacks"
(IVerb = smacks]]

1 smack 1 infinitive =}-] "to-smack"
(IVerb = | to smack|]]

1 smack (1 en Ipast]-] =}-] "smacked"
(IVerb = smacked]]

1 smack ling =}-] "smacking"
[IVerb = smacking]]

1 put (istem !non-sing3 1 en Ipast]-] =}-) "put
(IVerb = put]]

- 248 -

!put !sing3 =}-] "puts"
(!Verb = puts]]

! put ! infinitive =}-] "to-put"
(! Verb = | to put | J]

!put !ing =}-] "putting"
(!Verb = putting]]

!ask (istem !non-sing3]-] =}~] "ask"
(iVerb = ask]]

!ask !sing3 =}-] "asks"
(!Verb = asks]]

!ask ! infinitive =}-] "to-ask"
(! Ver b = J to as k |]]

!ask (! en ipast]-] =}-] "asked"
(iVerb = asked]]

lask ling -}-] "asking"
(!Verb = as king]]

!take (istem !non-sing3]-) = }-) "take"
(!Verb = take]]

!take !sing3 =}-] "takes"
(!Verb = takes]]

! take ! infinitive =}-] "to-take"
(!Verb = | to take|]]

! take !en =}-] "taken"
(!Verb = taken]]

! take ipast =}-] "took"
(!Verb = took]]

! take !ing =}-] "taking"
(!Verb = taking]]

The noun network

The important systans from this network were taken from (Wino-
grad, 1983, p. 537].

(nil inoun
(# ~ iNoun] (iNoun " #]]

((inoun -[] !pronoun]

- 249 -

! pronoun -[) ! question]

! question -[] ! animate
(!Noun = who]]

! question -[] ! inanimate]

!inanimate -[] !what
(iNoun = what]]

!inanimate -[] !why
(iNoun = why]]

! inanimate -[] ! where
(iNoun = where]]

!inanimate -[] Iwhen
(iNoun = when]]

!pronoun -[] !personal]

! personal ! question]-] PRONOUN-CASE]

PRONOUN-CASE -

PRONOUN-CASE -

PRONOUN-CASE -

PRONOUN-CASE -

PRONOUN-CASE -

! subjective]

! obj e ct i ve]

!reflexive]

!possessive-pronoun]

!possessive-determiner]

! personal -{=] PRONOUN-PERSON]

PRONOUN-PERSON -[] Ifirst)

PRONOUN-PERSON -[] !second]

PRONOUN-PERSON -[] ! third]

!pronoun -[] !demonstrative]

! demonstrative ! personal]-] PRONOUN-NUMBE

PRONOUN-NUMBER -[] ! singular-pronoun]
! third ! singular =}-] PRONOUN-GENDER]

PRONOUN-GENDER -[] Ifeminine]

PRONOUN-GENDER -[] Imasculine]

PRONOUN-GENDER -[] Ineuter]

- 250 -

PRONOUN-NUMBER -[] ! plural-pronoun]

!demonstrative -[J !near]

!demonstrative -[j !far)

Inoun -[) ! proper]

!daddy]

!mary]

! scotl and]

! cwren]

!taj-mahal]

!table]

! blockA]

!blockB]

! blockC]

IblockD]

!noun -[] !common]

! proper ! common]-] NOUN-NUMBER]

NOUN-NUMBER -[] !singular]
NOUN-NUMBER -[] ! plural]

(l common ! proper]-] -[] ! possessive]

(l common ! proper]-] -[] ! non-possessi

! proper

! proper

!proper

! proper

! proper

! proper

! proper

!proper

! proper

! proper

!common -

!common -

!common -

!common -

!common -

!common -

!common -

lupstairs]

!headache]

!infection]

!fever]

!possibility]

! gazebo]

!sweet]

- 251 -

(!common

(!common

(!common

(!common

(!common

(!common

(!common

(!common

(!common

(!common

(! common -

Ifloor]

!basement-floor]

! f ini she d-f1 oor i ng]

!flooring]

!painter]

!painting]

!carpentry]

! plasterer]

! pi as ter-board]

! pi an]

!tas k-decorate]

(I singular-pronoun !first ! subjective =}-] "I"
(iNoun = i]]

(I singular-pronoun Ifirst !objective =}-] "me"
(!Noun » mo]]

(I plural-pronoun Ifirst ! subjective =}-] "we"
(!Noun = we]]

(I plural-pronoun Ifirst I objective =}-] "us"
(INoun = us]]

((isingulai—pronoun I plural-pronoun]-]
Isecond

(I subjective I objective]-]
=}-] "you"

(I Noun = you]]

(I singular-pronoun Ithird Isubjective Imasculine =}-) "he"
(INoun = he]]

(I singular-pronoun Ithird I objective Imasculine =}-] "him"
(I Noun = him]]

(I singular-pronoun Ithird Isubjective I feminine =}-] "she"
(INoun = she]]

- 252 -

((! singular-pronoun
!third

(I objective ! possessive-determiner]-)
! feminine

=}-} "her"
(INoun = her))

((l plural-pronoun ! third ! subjective =}-) "they"
(iNoun = they))

((l plural-pronoun ! third ! objective =}-) "them"
(INoun = them))

((I singular-pr onoun
!third

(l subjective ! objective]-)
! neuter

=}-) "it"
(INoun - it))

((lsingular-pronoun !first ! possessi ve-pronoun =}-) "mine"
(!Noun = mine))

((lplural-pronoun !first ! possessive-pronoun =}-) "ours"
(INoun = ours))

(((I plural-pronoun I si ngul ar-pr onoun]-)
I second
I possessive-pronoun
=}-) "yours"

(INoun = yours))

((I singular-pr onoun
I third

(I possessive-pronoun I possessive-determiner]-)
Imasculine

=}-) "his"
(INoun = his))

(('! singular-pronoun
I third

I posses si ve-pronoun
If eminine

=}-) "hers"
(I Noun = hers))

((I plur al-pr onoun I third I possessive-pronoun =}-) "theirs"
(I Noun = theirs))

((I singular-pronoun I first I possessive-determiner =}-) "my"
(I Noun = my))

((Iplural-pronoun Ifirst I possessive-determiner =}-) "our"
(INoun = our))

- 253 -

(((I singular-pronoun ! plural-pronoun]-)
! second

!possessive-determiner! posse;
=H "3

(iNoun = your)]
■your"

((!singular-pronoun
! third
! neuter

! possessive-determiner
=]-) "its"

(!Noun = its))

((l plural-pronoun
!third

!possessive-determiner
=}-) "their"

(INoun = their))

((l animate I subjective =}-) "who"
(!Noun = who))

((! ani mat e
(I possessive-pronoun I possessive-determiner
=}-) "whose"

(iNoun = whose))

((inear I singular-pronoun =}-) "this"
(I Noun = this))

((inear !plural-pronoun =}-) "these"
(iNoun = these))

((ifar I singular-pronoun =}-) "that"
(iNoun = that))

((ifar I plural-pronoun =}-) "those"
(iNoun = those))

((]sweet I non-possessive =}-) "sweet"
(iNoun = sweet))

((lgazebo I non-possessive =}-) "gazebo"
(INoun = gazebo))

((icwren I non-possessive =}-) "CWren"
(iNoun = |Sir Christopher Wren|))

((icwren I possessive =}-) "CWrens"
(iNoun = |Sir Christopher Wren's|))

((ldaddy Inon-possessive =}-) "Daddy"
(iNoun = Daddy))

- 254 -

!taj-mahal ! non-possessive =}-} "the-Taj-Mahal"
(iNoun = | the Taj Mahal

!table !non-possessive =}-)
(!Noun = table))

"table"

IbloekA !non-possessive =

(iNoun = A))

IblockB !non-possessive =

(iNoun = b))

IblockC !non-possessive =

(iNoun = c))

IblockD ! non-possessi ve =

(iNoun = d))

Imary ! non-possessi ve =}-) "Mary"
(!Noun = Mary))

Imary !possessive =}-) "Marys"
(INoun = |Mary's|))

I upstairs I singular ! non-possessi ve =}-) "upstairs"
(iNoun = upstairs))

!headache I singular Inon-possessive =}-) "headache"
(iNoun = headache))

! headache I plural I non-possessi ve =}-) "headaches"
(iNoun = headaches))

I infection I singular Inon-possessive =}-) "infection"
(iNoun = infection))

I fever I singular !non-possessive =}-) "fever"
(INoun = fever))

I possibility I singular Inon-possessive =}-) "possibility"
(iNoun = possibility))

I floor I singular Inon-possessive =}-) "floor"
(iNoun = floor))

I floor I plural I non-possessi ve =}-) "floors"
(iNoun = floors))

I basement-floor
I singular
Inon-possessive
=}-) "basement-floor"

(iNoun = |basement floor]))

- 255 -

((!finished-flooring
! singular
! non-possessive
=}-) "finished-flooring"

(iNoun = |finished flooring|]]

((iflooring !singular !non-possessive =}-] "flooring"
(iNoun = flooring]]

((lpainter !singular !non-possessive =}-] "painter"
(!Noun = painter]]

((lpainting !singular !non-possessive =}-] "painting"
(iNoun = painting]]

((l carpentry !singular !non-possessive =}-] "carpentry"
(iNoun = carpentry]]

((iplasterer ! singular ! non-possessive =}-] "plasterer"
(iNoun = plasterer]]

((! plas ter-board
! singular
! non-possessive
= }-] "plaster-board"

(iNoun = |pi aster board|]]

((iplan ! singular ! non-possessi ve =}-] "plan"
(INoun = plan]]

((I task-decorate
Isingular
I non-possessi ve
=}-] "decorate-task"

(iNoun = | DECORATE TASK |]]

8. The conjunction network

This network of conjunctive expressions was based on (Halliday
and Hasan, 1976, pp. 242-243]. The least delicate systems are from
the clause network of (Mann/Halliday] which interface well with the
table of conjunctive relations in (Halliday and Hasan, 1976]. Thus
this network takes the form of an extention of the clause network

rather than the separate network at the work rank.

((clause -{=] CONJUNCTION]

((CONJUNCTION -[] non-copj uncted]

- 256 -

(CONJUNCTION -[] conjuncted]

(conjuncted -{ =] CONJUNCT ION-ARGUMENT}

(CONJUNCTION-ARGUMENT -[} thesis]

(CONJUNCTION-ARGUMENT -[] proposition]

(conjuncted -{ =] CONJUNCTION-TYPE]

(CONJUNCTION-TYPE -[1 temporal-type
(Conj unct / Time]}

(temporal-type thesis textual-time =}-} thesis-temporal
(Temporal / Time]]

(thesis-temporal -[] tt-simple]

(tt-sIrriple -[] thesis-sequential
(Time = then]}

(tt-simple -(] thesis-simultaneous
(Time = |at the same time|}]

(tt-simple -[} thesis-preceding
(Time = | before that|}}

(tt-simple -[] thesis-succeeding
(Time = |after that |}]

(tt-simple -[} thesis-initial
(Time = first]]

(tt-simple -[} thesis-conclusion
(Time = finally]}

(thesis-temporal -[] tt-complex]

(tt-complex -[} thesis-immediate
(Time = |at once|}]

(tt-complex -[] thesis-interrupted
(Time = soon]}

(tt-complex -[} thesis-repetitive
(Time = |next time|}]

(tt-complex -[] thesis-durative
(Time = meanwhile}]

(tt-complex -[} thesis-terminal
(Time = |until then|}}

- 257 -

((tt-complex -[J thesis-punctilliar
(Time = |at this moment |))

((temporal-type proposition =}-) prop-temporal]

((prop-temporal -[1 prop-sequential
(Time = next))

([prop-temporal -[) prop-conclusion
(Time = finally))

((prop-temproal -[) here-and-now)

((here-and-now -[) prop-past
(Time = | up to now |))

((here-and-now -[) prop-present
(Time = |at this point |))

((here-and-now -[) prop-future
(Time = |from now on|))

((prop-temporal -[) summary)

((summary -[) prop-summarizing
(Time = |to sum up|))

((summary -[) prop-resumption
(Time = |to return to the point |))

((CONJUNCTION-TYPE -[) causal
(Conjunct / Causal))

((causal thesis textual-reason =}-) thesis-causal
(Causal / Reason))

((causal proposition =}-) prop-causal)

(((thesis-causal prop-causal]-) -[) causal-general)

((causal-general -[) gen-simple
(Causal = so))

((causal-general -[) gen-emphatic
(Causal = consequently))

(((thesis-causal prop-causal]-) -[) causal-specific)

((causal-specific -[) causal-reason
(Causal = |on account of this|))

((causal-specific -[) causal-result
(Causal = |as a result ())

- 258 -

(causal-specif ic -[} causal-purpose
(Causal = |with this in mind|))

(causal-specific -[) causal-prestatement
(Causal = since)J

(thesis-causal -[) thesis-conditional)

(prop-causal -[) prop-specific)

(prop-specific -[) prop-reason
(Causal = | on this basis|))

(prop-specific -[) prop-result
(Causal = |arising out of this|))

(prop-specific -[) prop-purpose
(Causal = | to this end|))

(prop-oaiiflal -[)
(Causal = because))

(prop-causal -[) prop-respective)

(prop-respective -[) resp-direct
(Causal = | in this respect |))

(prop-respective -[) resp-rev-polari ty
(Causal = otherwise))

(prop-causal -[) prop-conditional)

((thesis-conditional prop-conditional]-) -[) conditional)

(conditional -[) cond-antecedent
(Causal = if))

(conditional -[) cond-simple
(Causal = then))

(conditional -[) cond-emphatic
(Causal =]in that case|))

(conditional -[) cond-general ized
(Causal = Junder the circumstances)))

(conditional -[) cond-r ev-pol ari ty
(Causal = junder other circumstances)))

(CONJUNCTION-TYPE -[) additive
(Conjunct / Additive))

(additive -[) add-simple)

- 259 -

(add-simple -[] simp-add
(Addi ti ve = and]]

(add-simple -[) simp-neg
(Additive = nor]]

(add-simple -[] simp-alternative
(Additive = or]]

(additive -[] add-emphatic]

(add-emphatic -[] emph-add
(Additive = besides]]

(add-emphatic -[] anph-alternative
(Additive = alternatively]]

((additive proposition =}-] -[] add-de-emphatic
(Additive = |by the way|)]

((additive proposition =}-] -[] add-apposition]

(add-apposition -[] expository
(Additive = |l mean|]]

(add-apposition -[] examplificatory
(Additive = |for instance|]]

((additive proposition =}-] -[] add-compari son]

(add-compari son -[] comp-similar
(Additive = similarly]]

(add-compari son -[] comp-di similar
(Additive = |on the other hand|]]

(CONJUNCTION-TYPE -[] adversative
(Conjunct / Advers]]

(adversative -[] advers-proper]

(advers-proper -[] prop-simple
(Advers = yet]]

(advers-proper -[] prop-emph
(Advers = nevertheless]]

((adversative thesis =}-] -[] cont-simple
(Advers = but]]

((adversative thesis =}-] -[] cont-emph
(Advers = however]

- 260 -

((adversative proposition = }-] -[J avowal
(Advers = |as a matter of fact|]]

((adversative proposition =}-) -[) correction]

(correction -[) of-meaning
(Advers = rather]]

(correction -[] of-wording
(Advers = jI mean|]]

((adversative proposition =}-] -[] dismissal]

(dismissal -[] dismiss-closed
(Advers = |in any case|]]

(dismissal -[] dismiss-open-ended
(Advers = |at any rate|]]

(CONJUNCTION-TYPE -[] continuative
(Conjunct / Cont)]

(continuative -[] changing
(Cont = now]]

(continuative -[] cont-advers
(Cont = |of course |]]

(continuative -[] responsive/explanative
(Cont = well]]

(continuative -[] cont-resumptive
(Cont = anyway]]

(continuative -[] cont-conclusive
(Cont = |after all|]]

£. The modal adjunct network

This network is based on (Halliday, 1985, p. 50] .

(nil ! modal-adj unct
(# * !Adj] (! Adj ~ #]]

((lmodal-adj unct -[] ! no-degree]

((! no-degree -[] ! admissive]

((! admissive -[] !frankness
(! Adj = frankly]]

- 261 -

! admissive -[] ! honesty
(lAdj = | to be honest |]]

! admissive -[] ! truth
(! Adj = | to tell you the truth

! no-degree -[J ! assertive]

! assertive -[) !lack-of-doubt
(! Adj = | without any doubt |))

! assertive -[) ! seriousness
(lAdj = seriously]]

! assertive -[] ! reality
(! Adj = really]]

! assertive -[] ! should-bel ieve
(lAdj = | believe me|]]

!modal-adj unct -[] ! degree]

! degree -{=] type]

! degree -{=] degree]

type -[Ilikely]

type -[!obvious]

type -[! often]

type -[!typical]

type -[! presumabl e]

type -[! desirable]

type -[!constant]

type -[!valid]

type -[! sensible]

type -[! expected]

degree - [] Ihigh]
degree - [] !medium]

degree -•[] ! low]

!likely !high =}-] "certainly
(! Adj = certainly]]

- 262

! likely Smedium = }-) "probably"
(!Adj = probably))

!likely Slow =}-} "possibly"
(! Adj = possibly]]

!obvious Shigh =}-] "obviously"
(lAdj = obviously]]

!obvious Smedium =}-] "maybe"
(lAdj = maybe]]

!obvious Slow =}-] "perhaps"
(! Adj = perhaps]]

Soften Shigh =}-] "always"
C s Adj = always]]

Soften Smedium =}-) "usually"
(! Adj = usually))

Soften Slow =}-) "sometimes"
(SAdj = sometimes)]

! typical Shigh =}-) "often"
(! Adj = often)]

!typical Smedium =}-) "for-the-most-part
(!Adj = |for the most part|))

! typical Slow =}~) "seldom"
(SAdj = seldom))

! presumable Shigh =}-) "no-doubt"
(SAdj = | no doubt |])

! presumable Smedium =}-) "presumably"
(SAdj = presumably))

! presumable Slow =}-) "apparently"
(SAdj = apparently))

! desirable Shigh =}-) "to-my-delight"
(SAdj = | to my delight |))

!desirable Smedium = }-) "fortunately"
(SAdj = fortunately)]

!desirable Slow =}-) "unfortunately"
(! Adj = unfortunately))

Sconstant Shigh =}-) "initially"
(SAdj = initially))

- 263 -

(iconstant Imedium = }-) "provisionally"
(lAdj = provisionally)J

(iconstant How =}-) "tentatively"
(!Adj = tentatively))

(lvalid Ihigh = }-) "on-the-whole"
(lAdj = |on the whole|))

(ivalid Imedium =}-) "in-general-terms"
(lAdj = |in general terms|))

(ivalid llow =}-) "strictly-speaking"
(lAdj = |strictly speaking|))

(lsensible Ihigh =}-) "wisely"
(lAdj = wisely))

(lsensible Imedium =}-) "understandably"
(lAdj = understandably))

(lsensible llow =}-) "by-mistake"
(lAdj = |by mistake|))

(lexpected Ihigh =}-) "as-expected"
(lAdj = |as expected|))

(lexpected Imedium =}-) "by-chance"
(1 Adj = j by chance |))

(lexpected llow =}-) "amazingly"
(1Adj = amazingly))

_0. The adjective network

nil 1 adjective
(# ~ 1 Adj) (1 Adj ~ #))

(ladjective -[) 1 clear
(lAdj = clear))

(1adjective -[) 1 red
(1Adj = red))

(ladjective -[) Ibig
(1 Adj = big))

(ladjective -[) Ismail
(1Adj = small))

(ladjective -[) 1 severe
(1Adj = severe))

- 26H -

((!adjective -[) !mild
(!Adj = mild))

((ladjective -[) ! tangy
(!Adj = tangy))

11 . The adverb network

(nil ladverb
(# ~ !Adv) (!Adv ~ #))

((ladverb -[) !quickly
(! Adv = quickly))

((ladverb -[) !immediately
(lAdv = immediately))

((!adverb -[) !now
(!Adv = now))

12. The preposition network

This fragment of a preposition network was taken from (Quirk
and Greenbaum, 1973, p. 1^6).

(nil !preposition
(# ~ IPrep) (I Prep " #))

((lpreposition -{=) POS/NEG)

((POS/NEG -[) Iprep-positive)

((POS/NEG -[) !prep-negative)

((!preposition -{=) DIR/POS)

((DIR/POS -[) Iprep-direction)

((DIR/POS -[) !prep-position)

((lpreposition -{=) DIMENSION)

((DIMENSION -[) !point)

((DIMENSION -[) !line/surface)

((DIMENSION -[) !area/volume)

((lprep-positive Iprep-direction Ipoint =}-) "to"
(IPrep = to))

- 265 -

((lprep-positive !prep-position Ipoint = }-} "at"
(!Prep = at}}

((Iprep-negative !prep-direction Ipoint = }-} "from"
(I Prep = from}}

((I prep-negative Iprep-position Ipoint =}-} "away-from"
(I Prep = |away from|}}

((Iprep-positive Iprep-direction I line/surface =}-} "onto"
(I Prep = onto}}

((Iprep-positive Iprep-position I line/surface =}-} "on"
(I Prep = on}}

((Iprep-negative I line/surface =}-} "off"
(I Prep = off}}

((Iprep-positive Iprep-direction larea/volume =}-} "into"
(I Prep = into}}

((Iprep-positive Iprep-position larea/volume =}-} "in"
(I Prep = in}}

((I prep-negative larea/volume =}-} "out-of"
(I Prep = |out of |}}

1 3■ The semantic stratum

The semantic system network presented here contains the house

building semantics (see Appendix B Section 2} and the threat seman¬

tics (see Section 3.6 and Appendix B Section 3}.

(nil $emantics}

;;; The house building semantics

(($emantics -[} $build
'# ~ $Build}
|$Build ~ #}
$Build : non-benefactive}
$Build : unmarked-positive}
$Build : non-attitudinal}
$Build : non-present-in}
$Build : textual-theme}
$Build : non-place}
$Build<Goal : non-possessive-nom}
$Build<Goal : determined}
$Build<Goal : non-quantified}
$Build<Goal : non-selective}
$Build<Goal : noun}}

- 266 -

($build -{=) ENABLEMENT)

(ENABLEMENT -[) $non-enabled
($Build : present))

($non-enabled -[) $untied
($Build : non-past-in))

($untied -[) $ini tial-action
($Build : thesis-initial))

($untied -[) $ simultaneous-act ion
($Build : thesis-simultaneous))

($non-enabled -[) $enabling
($Build : past-in) ($Build : non-time))

($enabling -[) $f irst-enabling
($Build : thesis-conditional) ($Build : cond-antecedent))

($enabling -[) $another-enabling
($Build : simp-add))

(ENABLEMENT -[) $enabled
f$Build : non-past-in)
f$Build : modal)
($Build<Modal : lean)($Build : non-time)
($Build : unmarked-declarative-theme))

($enabled -[) $single-enabler
($Build : thesis-succeeding))

($enabled -[) $multiple-enabler
($Build : thesis-conditional) ($Build : cond-simple))

($build -{ =) DISCOURSE-TYPE)

(DISCOURSE-TYPE -[) $builder-oriented
($Build : residual) ($Build : operative))

(DISCOURSE-TYPE -[) $act ion-oriented)

($build -(=) ADDRESSEE)

(ADDRESSEE -[) $not-addressee-builder
($Build : unmarked-declarative-theme)
f$Build : nominal-subject))

(ADDRESSEE -[) $addressee-builder
($Build : residual) ($Build : operati ve))

($build -{=) COMPONENT-NUMBER)

((COMPONENT-NUMBER -[) $singular-component
($Build<Goal : singular))

((COMPONENT-NUMBER -[) $plural-component
($Build<Goal : plural))

((COMPONENT-NUMBER -[) $mass-component
($Build<Goal : mass))

(($build -{=) BUILDER-NUMBER)

((BUILDER-NUMBER -[) $one-builder)

((BUILDER-NUMBER -[) $several-builders)

(($build -{=) ACTION)

((ACTION -[) $painting
f$Build : dispositive)
f$Build<Process : !-do-)
($Build<Goal<Head : !painting))

((ACTION -[) $create-basement-floor
($Build : creative)
f $Build<Process : !pour)
($Build<Goal<Head : !basement-floor))

((ACTION -[) $put-up-plaster-board
f$Build : dispositive)
f$Build<Process : !fas ten)
($Build<Goal<Head : !plaster-board))

((ACTION -[) $do-finished-flooring
f$Build : dispositive)
f$Build<Process : !lay)
($Build<Goal<Head : !finished-flooring))

((ACTION -[) $carpentry
f$Build : dispositive)
($Build<Process : Ifinish)
($Build<Goal<Head : !carpentry))

((ACTION -[) $sanding-floor
f$Build : dispositive)
f$Build<Process : !sand)
($Build<Goal<Head : !floor))

((ACTION -[) $varnishing-floor
f$Build : dispositive)
f $Build<Process : ! varnish!
($Build<Goal<Head : Ifloorj)

—266b~~

(($addressee-builder $untied -<>) $addressee-command
($Build : unmarked-imperative-theme J
($Build : imperative-subject-explicit)]

(($addressee-builder (^enabled ^enabling]-) -<>) $addressee-check
f$Build : unmarked-declarative-theme)
($Build : addressee-subject))

((f$builder-oriented $one-builder =}-)
f$action-oriented $singular-component =}-)
]-) $single-subject

[$Build : singular-subject))

((f$builder-oriented $several-builders =}-)
($action-oriented $plural-component =}-)
]-) $plural-subject

($Build : plur al-subject))

(($not-addressee-builder
$act ion-ori ented
$mas s-c om po nent
= }-) $mass-subject

($Build : mass-subject))

(($not-addressee-builder $action-oriented -<>) $builder-unmentioned
($Build : non-agentive) ($Build : non-residual) J

(($not-addressee-builder $builder-oriented -<>) $builder-mentioned
f$Build<Actor : non-possessive-nom)
f $Build<Actor : non-quantified)
f $Build<Actor : non-selective)
f $Build<Actor : determined)
($Build<Actor : noun) j

[($builder-mentioned $painting =}-) $painter
($Build<Actor<Head : ! painter J)

(($builder-mentioned
($do-finished-flooring $carpentry j-)
= }-) $carpenter

($Build<Actor<Head : !carpenter))

(($builder-mentioned $put-up-piaster-board =}-) $plasterer
($Build<Actor<Head : Iplasterer))

;;; The threat semantics frcm (Halliday 1978, pp. 82-84).

(($emantics -[) $threat
($Threat : non-past-in]
f$Threat : dispositive)
($Threat ~ #))

(($threat -[) $loss-of-privilege
(# " $Threat) ($Threat : non-textual-theme)J

-266c-

(($loss-of-privilege -[) $command
$Threat : middle)
$Threat : jussive)
$Threat : non-benefactive)
$Threat : unmarked-imperative-theme)
$Threat : proper-subject)
$Threat : non-residual)
$Threat : non-present-in)
$Threat : operative)
$Threat : unmarked-positive)
$Threat : place)
$Threat<Process : !go))

(($command -[) $get-attention
($Threat : imperative-subject-explicit))

(($command -[) $unmarked-command
($Threat : imperative-subject-implicit))

(($loss-of-privilege -[) $decision
f$Threat : unmarked-declarative-theme)
($Threat : non-attitudinal))

(($decision -[) $rejection
$Threat : unmarked-positive)
$Threat : place)
$Threat : non-benefactive))

(($decision -[) $deprivation
$Threat : marked-negative)
$Threat : non-place)
$Threat : residual)
i$Threat<Process
$Threat<Mediurn
$Threat<Mediurn
$Threat<Medium
$Threat<Mediurn
$Threat<Medium
$Threat<Medium
$Threat<Medium<Head : !sweet))

(($decision -[) $resolution
($Threat : present-in))

(($decision -[) $obligation
($Threat : passive-modulation) ($Threat : necessary))

((^decision -[) $mother-centred-decision
($Threat : speaker-subject) ($Threat : operative))

(($decision -[) $child-centred-decision
($Threat : addressee-subject))

!give)
non-possessive-nom)
singular)
noun)
non-quantified)
determined)
non-add)

- 267 -

(($resolution -[J $pending
($Threat : present]]

((($pending $command]-] -[] $unmarked-time
($Threat : non-time]]

((($pending $command]-] -[] $immediate
f$Threat : non-textual-time]
($Threat<Temporal : !now]]

(($resolution -[] $def erred
($Threat : future] ($Threat : non-time]]

(($emantics -[] $at-home]

(($threat -[] $punishment
($Threat : non-benefactive]
$Threat : unmarked-declarative-theme]
^Threat : non-place]
$Threat : non-attitudinal]
$Threat : non-present-in]
$Threat : residual)
$Threat : unmarked-positive)
($Threat : future))

(($punishment -[) $adult-centred-punishment
$Threat : operative)
$Threat<Goal : non-possessive-nom)
$Threat<Goal : personal)
$Threat<Goal : singular]
$Threat<Goal<Head : !second)
$Threat<Goal<Head : !objective))

(($punishment -[) $child-centred-punishment
($Threat : addressee-subject))

(($punishment -[) $chastisement)

(($punishment -[) $authority-figure
($Threat<Actor : non-possessive-nom)
($Threat<Actor : noun))

(($punishment -[) $unconditional
(# " $Threat) ($Threat : non-textual-theme))

- 268 -

(($punishment -[) $conditional
f # " $CondJ
f$Cond ~ $Threat)
($Cond : non-benefactive)
f$Cond : non-place)
f$Cond : non-time)
f$Cond : addressee-subject)
($Cond : operative)
f$Cohd : residual)
f$Cond : non-past-in)
($Cond : non-present-in)
f$Cond : dispositive)
f$Cond<Process : !-do-)
($Cond<Goal : non-possessive-nom)
[$Cond<Goal : singular)
f$Cond<Goal : determiner-head)
($Cond<Goal : far))

(($conditional -[) $explicit-repetition)

(($conditional -[) $non-repetitive
($Threat : non-time))

(($conditional -[) $logical-cond

!$Cond : textual-theme)$Threat : non-textual-theme)
$Cond : thesis-conditional)
$Cond : cond-antecedent)
$Cond : unmarked-positive)
($Cond : present))

(($conditional -[) $non-logical-cond

i$Threat : textual-theme)$Cond : non-textual-themel
$Cond : unmarked-negative))

(($non-logical-cond -[) $ threatening-reason
($Threat : reversed-causal))

(($non-logical-cond -[) $threatening-alternative
($Threat : simp-alternative))

(($non-logical-cond -[) $straight-threat)

(($non-logical-cond -[) $exclamatory-cond
f$Cond : unmarked-imperative-theme)
($Cond : proper-subject)
($Cond : imperative-subject-implicit))

(($non-logical-cond -[) $explanatory-cond
f$Cond : modal)
f$Cond : addressee-subject)
($Cond<Modal : !must))

- 269 -

(($deprivation
$mother-centred-decision
-<>] $mother-deprivation

$Threat : ben-med)
$Threat<Beneficiary : non-possessive-nom)
$Threat<Beneficiary : personal]
$Threat<Beneficiary : singular)
($Threat<Beneficiary<Head : !second)
($Threat<Beneficiary<Head : !objective))

(($deprivation
$child-centred-decision
-<>) $child-deprivation

[$Threat : non-agentive) ($Threat : benereceptive))

(($rej ection
$mother-centred-decision
-<>) $mother-rejection

$Threat : residual)
$Threat<Process : itake)
$Threat<Goal : non-possessive-nom)
$Threat<Goal : personal)
$Threat<Goal : singular)
$Threat<Goal<Head : !second)
$Threat<Goal<Head : !objective))

(($rejection $child-centred-decision -<>) $child-rejection
$Threat : non-residual)
$Threat<Process : !go)
$Threat : non-ranged))

(($explanatory-cond $logical-cond]-) $stated-cond
f$Cond : unmarked-declarative-theme)
($Cond : non-attitudinal))

(($straight-threat
$explicit-repetition
= }-) $repeat-straight

($Threat : thesis-repetitive))

(($adult-centred-punishment
$chastisement
-<>) $mother-punishes

($Threat : speaker-subject))

(($adult-centred-punishment
$authori ty-f igure
-<>) $authority-punishes

[$Threat : nominal-subject))

(($child-centred-punishment
$authori ty-f i gur e
-<>) $puni shed-by-authori ty

($Threat : agenti ve))

- 270 -

(($child-centred-punishment
$chastisement
-<>) $punished-by-mother

($Threat : non-agent i ve))

(($punishment -[) $smack
($Threat<Process : !smack]J

(($authori ty-f igure -[] $daddy

!$Threat<Actor<Head : !daddy]$Threat<Actor : singular]
$Threat<Actor : non-determinedl
$Threat<Actor : non-quantified)]

((($rejection $command]-] $at-home =}-] $ threat-at-home

i$Threat<Spatial<Range : noun]$Threat<Spatial<Range : singular]
$Threat<Spatial<Range : non-determined]
$Threat<Spatial<Range : non-quantified)
$Threat<Spatial<Range : non-possessive-nom]
$Threat<Spatial<Range<Head : !upstairs)
$Threat<Spatial : merged))

- 271 -

Appendix D: Program Listing

1_. The initialization file

iprinc ' |... initialize SLANG . ..|)terpri)
setsyntax '
setsyntax '

#1 'vcharacter
" 'vcharacter

(watch O] ; no trace of productions firing

(defun reload (fn) ; load and run a new example
(remove *] ; clear working memory

; a file containing goals
(terpri

SLANG: J J (terpri
^terpri

load fn

princ '
princ '
(princ '
[make sub-judice 0) ; initialize root node
[run])

(external PRESELECT GOAL ASSERT)

(vector-attribute for)

(strategy mea) ; use the means-end analysis strategy

;;; The literalize statements define the attributes
;;; for the various elements.

(literalize adjacent to is mom)

(literalize conflate fun with mom)

(literalize expand fun into mom)

(literalize lexify fun as mom)

(literalize preselect feature for mom)

(literalize hub of is super mom lex output?)

2. Realization productions

- 272 -

99

; This file contains rules relating to the realization in ;

; systemic grammar. They build and manipulate the syntactic;
; structures associated with a text. ;

> 9

; The primary data structure is the "hub" which is a node ;

; in the syntactic structure tree. ;

M M M M M M M l» 15 I ! J M ! I I » J I I M ! ! ! I I) J ! I! ! J II M II J ! >> ! ! II n

.***
9

; Realization rules take grammatical functions as ;
; arguments and these must be associated with hubs. ;

; The following rules create hubs for functions that ;

; do not yet have one. ;
99

;;;IF there is a conflate lexify or expand realization
; ; ; rule whose first argument does not have a hub,
;;;THEN create a unique hub for it.
(p new-hub::first-arg
(<< conflate lexify expand >> "fun <f> "mom <m>]
-(hub "of <f> "mom <m>J
-->

(make hub "of <f> "is (genatomj "mom <m>])

;;;IF there is a conflate realization rule whose
;;; second argument does not have a hub,
;;;THEN create a unique hub for it.
(p new-hub::second-arg:conflate
fconflate "with <f> "mom <m>)
-(hub "of <f> "mom <m>]
-->

(make hub "of <f> "is (genatom] "mom <m>]J

;;;IF there is an expand realization rule whose
;;; second argument does not have a hub,
;;;THEN create a unique hub for it.
(p new-hub::second-arg:expand
(expand "into <f> "mom <m>)
-(hub "of <f> "mom <m>]
— >

(make hub "of <f> "is (genatcm) "mom <m>)]

- 273 -

.***

; The following rules actually implement the realization. ;

; The above rules have guaranteed that the functions ;

; involved are associated with hubs ;

t M) M M M M M M M M M M M M M M M) M M) M M)) M M)) M) I > M I

;;;IF an expand rule is encountered, expanding a function
;;; into subfunctions
; ; ;THEN put the hub of the expanded function as the "super
;;; of the hub of the subfunction.
(p expand
{[expand ''fun <f> "into <subf> "mom <m>) <expand>}
(hub "of <f> "is <h> "mom <m>)
{(hub "of <subf> "mom <m>) <hub-of-subf>}

— >

(modify <hub-of-subf> "super <h>)
(remove <expand>))

;;;IF a conflate rule is encountered and the functions
;;; have different hubs,
;;;THEN substitute the hub of the first for all
;;; instances of the hub of the second by setting
;;; the task change-hub.
(p conflate
{[conflate "fun <f1> "with <f2> "mom <m>) <conflate>{
[hub "of <f1> "is <h1> "mom <m>)(hub "of <f2> "is { <h2> <> <h1> } "mom <m>)

(remove <conflate>]
(make task change-hub <h2> to <h1>))

;;;IF a preselection rule is encountered
;;;THEN pass the whole thing to a lisp operator that
;;; handles this.

[This is necessary because the number of arguments
; ; ; is arbi trary.]
(p preselect
{(preselect "feature <feature> "mom <m>) <preselect>}
-->

(call PRESELECT (substr <preselect> 1 inf)}(remove <preselect>j]

;;; IF a lexify rule is encountered,
; ; ;THEN associate the lexical item with the function's hub.
(p lexify
(lexify "fun <f> "as <lex> "mom <m>) <lexify>{(hub "of <f> "is <h> "mom <m> "output? <> yes] <hub>}

-->

modify <hub> "lex <lex> "output? no)
remove <lexify>))

- 27^ -

.***
I

; The following rules are used to conflate to functions ;

; (see above). They substitute one function for another ;
; throughout working memory. ;

) I M M M > M M M M M M I > M M M M M M M M) M I M M M M > M M M M

;;;IF any functions are associated with the old hub,
;;;THEN associate them with the new one instead,
(p change-hub::functions
(task change-hub <old> to <new>)
{(hub "is <old>) <hub>}

— >

(modify <hub> "is <new>))

;;;IF any value attribute statements have the old hub
;;; in the "mom field,
; ; ;THEN change it to the new one.

(p change-hub::mothers:value-attribute
[task change-hub <old> to <new>)
{(<< hub adjacent >> "mom <old>) <hub/adjacent>}
-->

(modify <hub/adjacent> "mom <new>))

;;;IF any vector statements have the old hub
;;; in the last (mom) field,
;;;THEN change it to the new one.
(p change-hub::mothers:vector
[task change-hub <old> to <new>)
{(<< chosen goal >> {} <old>) <vector>}

— >

(modify <vector> "3 <new>))

; ; ;IF any "super fields have the old hub
; ; ;THEN change it to the new one.
(p change-hub::super
[task change-hub <old> to <new>){[hub "super <old>) <hub>}

— >

(modify <hub> "super <new>))

3. The support system

- 275 -

this file contains the support system —

productions that don't really have any intimate
connection to systemic grammar but are necessary for
the system to work.
99

IF a task is no longer appropriate
(it matches no other rules],

THEN delete it.

(p remove-task
{(task] <task>}
-->

(remove <task>]]

;;;IF a node is under-consideration (sub-judice],
;;;THEN make sure its supernode is also under consideration,
(p fill-scope::super
fsub-judice <sj>]
(hub "is <sj> "super { <super> <> nil }]
-(sub-judice <super>]
-->

(make sub-judice <super>]]

;; ;IF a hub has been output,
;; ;THEN make sure all the wm elements for that hub are
;; ; marked accordingly.
(p spread-output
fhub "is <h> "output? yes]
{(hub "is <h> "output? <> yes] <out-of-date>}
-->

(modify <out-of-date> "output? yes]]

;;IF a lexical item has been associated with a hub,
;;; and that hub is sub-judice,
;;;THEN output that lexical item
;;; and mark the hub as output.
(p output
{(hub "is <h> "lex { <1> <> nil } "output? no] <hub>}
(sub-judice <h>]

-->

write <1> (crlf]]
modify <hub> "output? yes]]

- 276 -

The following rules move around the boundaries of what
is under consideration (sub-judice]. Hubs (structure
nodes] are marked for consideration in a depth-first
left to right fashion.
M M I M M M M > M M) M) M M M M)) M M M M M) M M M M M M M)

;;;IF a node is sub-judice and not output,
; ; ;THEN declare its leftmost child (if there is one]
;;; sub-judice.
(p move::down:#
(sub-judice <sj>)
adjacent "to # "is <f> "mom <sj>]
hub "of <f> "is <h> "output? <> yes "mom <sj>]
[hub "is <sj> "output? yes]

-->

(make sub-judice <h>]]

;; ; IF a node is sub-judice and not output,
;;;THEN declare its leftmost subnode (if there is one]
; ; ; sub-judice .

(p move::down:$
(sub-judice <sj>]
(adjacent "to % "is <f> "mom <m>]^(hub "of <f> "is <h> "super <sj> "output? <> yes "mom <m>]
-(hub "is <sj> "output? yes]
-->

(make sub-judice <h>]]

; ; ;IF a hub has just been output
; ; ;THEN declare the node adjacent to it (if there is one]
;;; sub-j udice .

(p move: :across
(hub "of <f> "output? yes "mom <m>]

' (adjacent "to <f> "is <f1> "mom <m>]
(hub "of <f1> "is <h1> "output? <> yes "mom <m>]

-->

(make sub-judice <h1>]]

;; ; IF the rightmost child of a node has just been output,
; ; ;THEN declare the node output
(p move::up:#

!adjacent "to <f> "is # "mom <m>]hub "of <f> "output? yes "mom <m>]
hub "is <m> "output? <> yes] <mother>}

-->

(modify <mother> "output? yes]]

- 277 -

;;; IF the rightmost subnode has just been output,
;; ;THEN declare the supernode output.
(p move::up:%

!adjacent "to <f> "is % "mom <m>)hub "of <f> "output? yes "super <super> "mom <m>)
hub "is <super> "output? <> yes) <supernode>}

— >

(modify <supernode> "output? yes))

4. The external LISP operators

The following are Franz LISP operators called from within
0PS5 for the SLANG project. The functions prefixed with
'$'are special operators provided by 0PS5 and are
described in the 0PS5 manual.
99

;;; The function GOAL is invoked by the "call GOAL — <mom>"
;;; rhs statements. This is meant to be like "make goal —"
;;; except it will not enter goals which are already
;;; present. This keeps working memory clean and pays for
;;; itself by cutting down on redundant work.

(defun GOAL ()
(or (scanwm ($parameter 1) ; a feature,

($parameter 2)) ; its mom.
; if scan unsuccessfully
; for a feature then:

(prog (feature mom)
fsetq feature ($parameter 1))
fsetq mom ($parameter 2))
($reset) ; clear the result element
($value 'goal)
($value feature) ; put (goal -- <mom>) in
($value moml ; the result element.
($assert)))j ; put the result element in wm.

- 278 -

ASSERT is called by "(call ASSERT chosen -- <mom>]"
and is equivalent to "(make chosen except that
it avoids duplicates as above.

(defun ASSERT (]
; $parameter 1 is the dummy "chosen"

(or (scanwm ($parameter 2l ; a feature,
($parameter 3J} ; its mom.

; if scan unsuccessfully
; for a feature then:

(prog (feature mom]
(setq feature ($parameter 2]]
(setq mom ($parameter 3]]
$reset] ; clear the result element
$value 'chosen]
Rvalue feature] ; put (chosen -- <mom>]
$value mom! ; in the result element.
$assert]]]] ; put the result element in wm.

;;; scanwm checks to see if a feature description is
;;; already in working memory.
;;; scanwm is efficient because only the wm goal elements
;;; are looped through, (get 'chosen 'wmpart*] returns a
;;; list of descriptions of wm elements whose car is
;;; "chosen". This is using the 0PS5 hashing mechanism
;;; directly -- but is essential for efficiency reasons.

(defun scanwm (feature mom]
(do ((features (get 'chosen 'wmpart*] (cdr features]]

(target (list feature mom]]]
(null features] nil] ; if not found return nil
cond ((equal target (cdaar features]]

(return t]]]]]

- 279 -

;;; PRESELECT is called from the preselect rule since the
;;; number of arguments is arbitrarily large.
;;; The argument is a preselection statement containing
;;; are a list of functions that form a path
;;; to a place in structure, and a feature. PRESELECT
;;; descends the structure along this path (creating
;;; structure representing the path if necessary} until the
;;; end of the path. It then sets the feature as a goal.

(defun PRESELECT (}
(do ((feature ($parameter ($litbind 'feature}})

mom ($parameter ($litbind 'mom)))
path ; initialize path as the vector "for field
(do (fi ($litbind 'for) (addl i))

(pathlist nil (append pathlist
(list ($parameter i)))))

((> i ($parameter count)) pathlist))
(cdr path))
(outgoing-hub
f$parameter ($litbind 'mom))
(get-hub (car path) outgoing-hub)))

([null path) ; loop until path is finished
(cond ((not (scanwm feature outgoing-hub))

[$r eset)
[$value 'goal)
[$value feature)
[$value outgoing-hub)($assert))))))

;;; returns a hub-number for function, has the side effect
;;; of creating one if one does not already exist.

(defun get-hub (function mom)
(do ((hubs (get 'hub 'wmpart*) (cdr hubs))

fnewhub))
((null hubs) ; if no such hub, create one

i$reset)$value 'hub)
$tab 'of! ($value function)
$tab 'is) (setq newhub (gensym 'h)) ($value newhub)
$tab 'mom)($value mom)
[$assert)(return newhub))
(and [eq (get-att-value (car hubs) 'of) function)

(eq (get-att-value (car hubs) 'mom) mom)
(return (get-att-value (car hubs) 'is)))))

- 280 -

;;; get-att-value returns the value corresponding to an
;;; attribute for a particular element.

(defun get-att-value (elem att)
(nthelem ($litbind att] (car elem)))

5. SNORT

;;; System Network - 0ps5 Rule Translator

;;; this file contains operators for translating a
;;; system-network into a set of production rules.

(declare ; for compilation
(setsyntax ' # 'vcharacter)
(setsyntax ' ['vcharacter] ;these are needed for
(setsyntax '] 'vcharacterl ; for systems networks,
(setsyntax ' " 'vcharacter)
(special IN-A-SYSTEM p grammar s))

.setsyntax '
setsyntax '
^etsyntax '
.setsyntax '

#| 'vcharacter
'vcharacterl
* vcharacter,

1,1 'vcharacter.

; these are needed for
; systems networks.

;;; snort is the top level operator. It's args are a
;;; systan net and an output file. It simply loops
;;; through the features in the grammar, translating
;;; each one in turn.

(defun snort (grammar file]
(do ((IN-A-SYSTEM nil) ; a global list of all system

; features.
(undone (cdr grammar) (cdr undone))
(next (car grammar) (car undone))
fp (fileopen (concat file '|.ops|) 'w)))
((null next) (close p)) ; when done close file
(cond ((feature-namep (cadr next))

; only translate features not system labels
(f-p (cadr next)

(in-a-systemp next) ; boolean flag
(get-ecs next) ; entry conditions
(cddr next)) ; realization rules

- 281 -

in-a-systemp is a predicate which returns t if a
feature is part of a system, and nil if it is part of
a gate. Its argument is the entire feature description,
entry conditions, name and realization rules.
A feature is "in a system" if it is marked as such (-[),
or if it is a degenerate system ie. it is marked
otherwise ('--' etc.] but is indirectly or directly an
entry condition for a system (my definitions}.

(defun in-a-systemp (x}
(cond ((or fsystan-namep (cadr x])

f eq (cadar x) '-[}
(syston-namep (caar x]}
(memq (cadr x] IN-A-SYSTEM]
[null (car xj J ; the root of the network should

; be treated as if it were

; part of a system.
(apply 'or (mapcar 'in-a-systemp

(right-of (cadr xl
grammar]}])

(setq IN-A-SYSTEM (cons (cadr x) IN-A-SYSTEM)}
t)
(t nil}]]

right-of returns the elements of a grammar to the
immediate right of a feature in a system network.
I.e. those features and systems which have this
feature as an entry condition.

(defun right-of (feature gram]
(cond ((null gram] nil]

(fmemq feature (just-names (caar gram]}]
(cons (car gram] (right-of feature (cdr gram]]]]
(t (right-of feature (cdr gram]]]]}

;;; get-ecs returns the FEATURE entry conditions of
;;; a feature. If the immediate ec of the feature is a
;;; system label, the ecs of the system are returned.

(defun get-ecs (feature]
(cond ((eq (cadar feature] '-[}

(cond ((system-namep (caar feature]}
fecs-of (caar feature]}]
((feature-namep (caar feature}]
(car feature]]
(t (caar feature]}]} ; an expression

(t (car feature}}}}

- 282 -

;;; ecs-of simply scans through the grammar for a feature
;;; whose name is the argument.
;;; When it finds it, the entry conditions are returned.

(defun ees-of [name]
(do ((next (car grammar) (car undone))

fundone (cdr grammar) fcdr undone)))
f (eq fcadr next) name) (car next))
(and (null next) (error name 'not 'found))))

;;; system names are assumed to be all upper case.

(defun system-namep (name)
(and fsymbolp name)

(< (getcharn name 1) 91)
(> (getcharn name 1) 614)))

;;; feature names are assumed to be all lower case

(defun feature-namep (name)
(and fsymbolp name)

(or fmemq (getchar name 1)'(!$- "))
(and (< (getcharn name 1) 123)

(> (getcharn name l) 96)))))

- 283 -

;;; f-p, feature to production, translates the features from
;;; the system network into 0PS5 production-rules.
;;; The hard part is translating the entry conditions.
;; ; For this purpose f-p calls decoding operators which
;;; return a "simple form"—a list of conjucts where any
;;; sublists are lists of disjuncts (only one level of
;;; nesting [see decode below]].

(defun f-p (name in-system ecs rrs]
(prpr (append

list 'p]
list name]

; if this feature is part of a system ...

; ie. if feature will be entered from right
(cond (in-system

(append [list '(sub-judice <mom>]]
(list (list 'goal name '<mom>]]
(list '—>]
'((modify 2 ~1 chosen]]
(do ((subgoals (decode ecs

' system
t

name]
(cdr subgoals]]

(goodies nil]]
; when done return goodies
((null subgoals] goodies]
(cond ((atom (car subgoals]]

; if not a disj unct
(setq goodies

(cons (list 'call
' GOAL

(car subgoals]
'<mom > 1

goodies]]]]]]]

- 284 -

; if entry condition is not a system
; ie. if this is a gate
(t (append

(mapcar '(lambda
(cond

ec)
(atom
(list

ec)
'chosen
ec

'<mom>))
(t ; disjunction
(append
(list 'chosen

•«)
ec

list '»)
list '<mom>)

1 ist
list (list

'gate t name))

; in either case
; done the same ...

(mapcar 'unformat rrs))))

(Jiii ees
">)

' call
'ASSERT
'chosen
name

'<mom>)))))
the realization rules are

- 285 -

;;; decode is used to transform the input notation for entry
;;; conditions (including =}- -- -<> etc.] into a 'simple
;;; form' that the higher level operators can use easily.
;;; This simple form is a list of conjucts where any
;;; sublists are disjuncts.
;;; Deeper nesting than this (eg. conjuncts within
;;; disjuncts} cannot be represented in the LHS of a single
;;; 0PS5 rule.
;;; The two types of ecs (system and gate] identified by the
;;; 'type' arg are treated differently. It is common for
;;; gates to have very complex ecs, so the 0PS5 limitation
;;; must be overcome through the use of intermediate rules.
;;; So decode may pass back "(f1 f2 s0003 f3j" where s0003
;;; is the name of a rule which decode itself (via f-p]
;;; has built embodying the next level of conjunction.
;;; This is done recursively so arbitrarily complex
;;; ecs for gates can be decoded.
;;; Disjunctive entry conditions to systems are
;;; simply ignored (as explained in Section 7.2.2.].

(defun decode (ec type top name]
(cond ((atom ec] ec]

([eq (car (last ec]] ']-]
(mapcar 'flatten ; remove nested disjunction

;; ; if at top level and it is a disjunct,
;;; just convert it to a one element conjunct and restart.

(cond (top (decode (list ec '--] type t name]]
((not top] ; if not top level ...
(mapcar '(lambda (e]

(decode e type nil name]]
(all-but-last ec]]]]]]

((or fmemq (car (last ec]] '(=}- — -<> -{ =]]
(and (eq type 'system]

(eq (car (last ec]]
(cond (top (mapcar '(lambda (e]

(decode e type nil name]]
(all-but-last ec] 11

([and (not top] (eq type 'gate])
(f-p (setq s (concat name

(intern (gensym 'g))))
nil

ec

nil)
s)))

(t (error 'bad 'ec 'to 'decode: ec))))

- 286 -

;;; unformat converts systemic realization rules
;;; into 0PS5 notation.

(defun unformat (rr)
(cond ((not (atcm (cadr rr)))

(list 'make
'expand
'"fun (car rr)
'"into (caadr rr)
'"mom '<mom>))

((eq (cadr rr) '/) (list 'make
'conflate

'"fun (car rr)
'"with (caddr rr)
'"mom '<mom>))

((eq (cadr rr) '=) (list 'make
'lexify
'"fun (car rr)
'"as (caddr rr)
'"mom '<mom>))

((eq (cadr rr) '") (list 'make
' adjacent
'"to (car rr)
'"is (caddr rr)
'"mom '<mom>))

((eq (cadr rr) ' :)
(preselection (caddr rr) (car rr)))
(t (error 'bad 'rr 'format: rr)))

(defun preselection (feature function)
(do ((next (car (explode function)) (car undone))

(undone (cdr (explode function)) (cdr undone))
(w nil)
(path nil) 1
((null next)
(setq path (append path (list (implode w))))
(append '(make preselect "feature)

(list feature)
'("for) path'("mom <mom>)))

(cond ((eq next ' <)
(setq path (append path (list (implode w
(setq w nil))
(t (setq w (append w (list next)))))))

all-but-last returns everything but the last
element of its argument.

(defun all-but-last (l)
(reverse (cdr (reverse l))))

- 287 -

;;; prpr prints the results to the port p.
(defun prpr (pr) ; pretty print an 0PS5 production
(terpri p)
(princ '|(p | p) (print fcadr pr) p)
(do ((undone (cdddr pr) (cdr undone))

(next (caddr pr) (car undone)))
((null next) (princ '|)| p) (terpri p))
fterpri p)
(or (eq next '—>) (princ '| | p))
(print next p)))

;;; just-names removes all special symbols and brackets
;;; from an entry condition, leaving just the names.

(defun just-names (ec)
(delq '=}-
(delq '-{=
(delq '-[
(delq '—
(delq ']-
(delq '-<>
(flatten ec))))))))

;;; flatten removes all internal nesting from a list.

(defun flatten (l)
(cond ((atom l) l)((null l) nil)

((atom (car l]) (cons (car l) (flatten (cdr l))))
(t (append (flatten (car l)) (flatten (cdr l))))))

- 288 -

Bibliography

Appelt.D.E. 1982 Planning Natural-Language Utterances to Satisfy
Multiple Goals. Ph.D. Thesis, Stanford University. Also
Technical Note 259, Stanford Reasearch Institute, Menlo Park.

. 1983 TELEGRAM: a Grammar Formalism for Language Planning. In:
Proceedings of the Eighth International Joint Conference on
Artificial Intelligence, Karlsruhe: 595-599.

Barr,A. and Feigenbaum,E.A. Eds., 1981 The Handbook or Artificial
Intelligence, Volume _I. Pitman, London.

Brachman.R.; Amarel,S.; Engelman,C.; Engelmore,R.; Feigenbaum,E. and
Wilkins,D. 1983 What are Expert Systems ? In: Hayes-Roth,F. ;

Waterman,D. and Lenat,D. Eds., Building Expert Systems.
Addison-Wesley, London: 31-58.

Brady,M. and Berwick,R. Eds., 1983 Computational Models of
Discourse. M.I.T. Press, Cambridge Mass.

Brownston.L.; Farrell.R.; Kant,E. and Martin,N. 1985 Programming
Expert Systems in 0PS5. Addison-Wesley, Menlo Park.

Buchanan,B.; Barstow,D.; Bechtal,R.; Bennett,J.; Clancey,W.;
Kulikowski,C.; Mitchell,T. and Waterman,D. 1983 Constructing an
Expert System. In: Hayes-Roth,F.; Waterman,D. and Lenat.D.
Eds., Building Expert Systems. Addison-Wesley, London: 127—
167.

Bundy, A. 1983 AI 1 Problem Solving Notes. Occasional Paper No. 30,
Department of Artificial Intelligence, University of Edinburgh,
Edinburgh.

Chandrasekaran.B. and Mittal.S. 198^ Deep Versus Compiled Knowledge
Approaches to Diagnostic Problem Solving. In: Coombs,M. Ed.,
Developments in Expert Systems. Academic Press, London: 23-34.

Chomsky,N. 1975 Reflections on Language. Fontana, Glasgow.

. 1980 Rules and Representations.
j

Davey.A. 1978 Discourse Production.
Edinburgh.

Downes.W. 1984 Language and Society.

Blackwell, Oxford..

Edinburgh University Press,

Fontana, London.

Firth,J.R. 1957 A Synopsis of Linguistic Theory (1930-1955). In
Palmer,F.R. Ed., Selected Papers of J.R.Firth 1952-1959. Long¬
man, London: 168-205.

Forgey,C.L. 1981 0PS5 User's Manual. CMU-CS-81 -135, Carnegie Mellon
University, Pittsburgh.

- 289 -

Gaschnig,J. ; Klahr,P. ; Pople,H. ; Shortliffe, E. and Terry, A. 1983
Evaluation of Expert Systems: Issues and Case Studies. In:
Hayes-Roth,F.; Waterman,D. and Lenat.D. Eds., Building Expert
Systems. Addi son-Wesley, London: 241-282.

Grosz,H. and Sidner,C. 1985 Discourse Structure and the Proper
Treatment of Interruptions. In: Proceedings of the Ninth
International Joint Conference on Artificial Intellegence, Los
Angeles: 832-839.

Halliday ,M .A.K. 1961 Categories of the Theory of Grammar. Word
17(3}: 241-292.

. 1973 Explorations in the Functions of Language. Edward Arnold,
London.

. 1976a English System Networks. In: Kress,G. Halliday: System
and Function in Language. Oxford, London: 101-135.

1976b Modality and Modulation in English. In: Kress,G.
op.ci t. : 1 89-21 3-

. 1976c Intonation and Meaning. In: Kress,G. op.cit: 214-234.

. 1978 Language as a Social Semiotic. Edward Arnold, London.

. 1985 An Introduction to Functional Grammar. Edward Arnold,
London.

Halliday,M.A.K. and Hasan,R. 1976 Cohesion in English. Longman,
London.

Halliday,M.A.K. and Martin,J.R. Eds., 1981 Readings in Systemic
Linguistics. Batsford Academic, London.

Hasling,D.; Clancey,W. and Rennels,G. 1984 Strategic Explanation for
a Diagnostic Consultation System. In: Coombs,M. Ed., Develop¬
ments in Expert Systems. Academic Press, London: 117-133.

Hayes-Roth,F.; Waterman,D. and Lenat,D. Eds., 1983 Building Expert
Systems. Addi son-Wesley, London.

. 1983a An Overview of Expert Systems. In: ibid.: 3-29.

Hobbs,J. 1985 Granularity. In: Proceedings of the Ninth Interna¬
tional Joint Conference on Aritficial Intelligence. Los
Angeles: 432-435.

Hopcroft,J. and Ullman,J. 1969 Formal Languages and their Relation
to Automata. Addison-Wesley, Reading, Mass.

Hudson,R.A. 1971 English Complex Sentences. North-Holland, London.

. 1981 Systemic Generative Grammar. In: Hall iday ,M. A. K and
'

Martin,J.R. Readings in Systemic Linguistics. 'Batsford
Academic, London: 190-217.

- 290 -

deJoia,A. & Stenton,A. 1980 Terms in Systemic Linguistics. Batsford
Academic, London.

Kay,M. 198-4 Functional Unification Grammar: a Formalism for Machine
Translation. In: Proceedings of COLING84. Stanford: 75-78.

. 1985 Parsing in Functional Unification Grammar. In: Dowty.D. ;
Karttunen,L. and Zwicky,A. Natural Language Parsing. Cam¬
bridge University Press, London: 251-278.

Kress,G. Ed., 1976 Halliday: System and Function in Language.
Oxford, London.

Leech,G.N. 1983 Principles of Pragmatics. Longman, London.

Malinowski, B. 1923 The problem of meaning in primitive languages.
Supplement 1 to: Ogden.C.K. and Richards, I. A. The Meaning of
Meaning. Kegan Paul, London.

Mann,W. 1985 The anatcmy of a systemic choice. Discourse Processes
8(lj: 53-74.

Mann ,W ./Hall iday ,M .A.K . Systemic Grammar of English, S.G. Clause
Systems. From the PENMAN system, Information Sciences Insti¬
tute, University of Southern California, Marina Del Rey [No
date, but this is an early version].

Mann,W. and Matthiessen ,C. 1983 Nigel: A Systemic Grammar for Text
Generation. RR-83-105, Information Sciences Institute, Univer¬
sity of Southern California, Marina Del Rey.

Martin, J. R. 1984 Functional Components in a Grammar: a review of
deployable recognition criteria. In: Nottingham Linguistic
Circular 13 (special issue on systemic lingui sties J . University
of Nottingham, Nottingham: 35-71.

McCord.M. 1975 On the Form of a Systonic Grammar. In: Journal of
Linguistics 11 (2): 195-210.

McDonald,D.D. 1980 Natural Language Production as a Process of
Decision-Making under Constraints. Ph.D. Thesis, M.I.T. , Cam¬
bridge Mass.

. 1983a Natural Language Generation as a Computational Problem.
In: Brady,M. and Berwick,R. Computational Models of Discourse.
M.I.T. Press, Cambridge, Mass.

1983b Description Directed Control: its implications for
natural language generation. In Cercone.N. Computational
Linguistics Pergamon Press, Oxford: 111-129.

McDonald,D.D. and Pustejovsky,J. 1985 Description-Directed Natural
Language Generation. In: Proceedings of the Ninth International
Joint Conference on Artificial Intellegence. Los Angeles:

- 291 -

799-805.

McKeown.K. 1982 Generating Natural Language Text in Response to
Questions about Database Structure. Ph.D. Dissertation, Univer¬
sity of Pennsylvania.

. 1983 Focus constraints on Language Generation. In: Proceedings
of the Eighth International Joint Conference on Artificial
Intelligence, Karlsruhe: 582-589.

Mishler.E. 1984 The Discourse of Medicine. Ablex, Norwood, New Jer¬
sey .

Monaghan.J. 1979 The Neo-Firthian Tradition and its Contribution to
General Linguistics. Max Niemeyer Verlag, Tubingen.

Nilsson.N. 1971 Problem-solving Methods in Artificial Intelligence.
McGraw-Hill, London.

Patten,T. 1985 A Problem Solving Approach to Generating Text from
Systemic Grammars. In: Proceedings of the Second Conference of
the European Chapter of the Association for Computational
Linguistics. Geneva: 251-257. Also Research Report No. 260,
Dept. of Artificial Intelligence, University of Edinburgh,
Edinburgh.

Purves.W.K. 1985 A Biologist Looks at Cognitive AI. In: The AI
Magazine 6(2): 38-43.

Quirk,R. and Greenbaum,S. 1973 A University Grammar of English.
Longman, Hong Kong.

Quirk,R.; Greenbaum,S.; Leech,G. and Svartvik,J. 1973 A Grammar of
Contemporary English . Longman, London.

Ritchie,G.D. 1980 Computational Grammar. Harvester, Sussex.

Sacerdoti,E. 1975 A structure for plans and behaviour. Technical
Note 109, Stanford Research Institute, Menlo Park.

Smith,B.C. 1978 A Proposal for a Computational Model of Anatomical
and Physiological Reasoning. AI Memo 493, M.I.T. , Cambridge
Mass.

Sothcott.C. 1985 EXPLAN: A System for Describing Plans in English.
M.Sc. Dissertation, Dept. of Artificial Intelligence, Univer¬
sity of Edinburgh, Edinburgh.

Stefik.M.; Aikins.J.; Balzer.R.; Benoit,J.; Birnbaum.L.; Hayes-
Roth, F. and Sacerdoti.E. 1983 The Architecture of Expert Sys¬
tems. In: Hayes-Roth,F.; Waterman,D. and Lenat,D. Eds., Build¬
ing Expert Systems. Addison-Wesley, London: 59-86.

Sullivan,M. and Cohen,P. 1985 An Endorsement-Based Plan Recognition

- 292 -

Program. In: Proceedings of the Ninth International Joint
Conference on Artificial Intellegence, Los Angeles: 475-479.

Tate, A. 1975 Interacting Goals and their Use. In: Advance Papers
of the Fourth International Joint Conference on Artificial

Intelligence. Tbilisi: 215-218.

. 1976 Project Planning using a Hierarchic Non-linear Planner.
Reasearch Memo No. 25, Dept. of Artificial Intelligence,
University of Edinburgh, Edinburgh.

Thompson,H. 1977 Strategy and Tactics: A Model for Language Produc¬
tion. In: Papers from the Thirteenth Regional Meeting, Chicago
Linguistics Society. Chicago: 651-668.

Waltzman.R. 1983 0PS5 Tutorial. Teknowledge Inc. n.p.

Winograd, T. 1972 Understanding Natural Language. Edinburgh Univer¬
sity Press, Edinburgh.

. 1983 Language as a Cognitive Process. Addison-Wesley, London.

von Wright,G.H. 1971 Explanation and Understanding. Routlege Kegan
Paul, London.

- 293 -

