THE UNIVERSITY
of EDINBURGH

This thesis has been submitted in fulfiiment of the requirements for a postgraduate degree
(e.g. PhD, MPhil, DClinPsychol) at the University of Edinburgh. Please note the following
terms and conditions of use:

* This work is protected by copyright and other intellectual property rights, which are
retained by the thesis author, unless otherwise stated.

* A copy can be downloaded for personal non-commercial research or study, without
prior permission or charge.

* This thesis cannot be reproduced or quoted extensively from without first obtaining
permission in writing from the author.

* The content must not be changed in any way or sold commercially in any format or
medium without the formal permission of the author.

* When referring to this work, full bibliographic details including the author, title,
awarding institution and date of the thesis must be given.

STRATEGIES FOR IMPROVING THE EFFICIENCY

OI' AUTOMATIC THEOREM-PROVING

by

Donall Kuehner

Ph.D. Thesis
University of Edinburgh
July, 1971.

ABETRACT

In an attempt to overcome the great inefficiency of theorem-
proving methods, several existing methods are studied, and several
new ones are proposed., L concentrated attempt is made to devise &
unified proof procedure whose inference rules arc designed for the

efficient use by a search strategy.

For unsatisfiable sets of Horn clauses, it is shown that
P1—resolution and selcctive linear negative (SLN) resolution can be
alternated heuristically to conduct a bi-directional search. This
bi~direstional search is shown to be more efficient than ¢ither of

PTmresolution and SLN-resolution.

The extreme sparsencss of the SLN-search spaccs lead to the
externsion of SLN-resolution to a morc general and more powerful
resolution rule, selective linear (SL) resolution, which rcsembles
Loveland's model elimination strategy. With SL-resolution, all
immediate desccndants of a clause are obtained by resolving upon a

single selected literal of that clause.

Linear resolution, s—linear resolutioa and t-linear resolution
are shown to be as powerful as the most powerful resolution systemse
By slightly decrcasing the power, considerable incrcase in the
sparseness of search spaces is obtained by using SL-resolution. The
amenability of SL-resolution to applications of heuristic methods
suggest that, on these grounds alone, it is at least competitive with
theorem~proving procedures designed solely from heuristic consider~

ationse

Considerablc attention is devoted to various enticipation

procedures which allow an estimate of the sparseness of search trecs
before their generation. Unlimited anticipation takes the form of
pseudo-gearch trees which construct outlines of possible proofs.
Anticipation procedures together with a number of heuristic meas-
ures are suggested for the implementation of an exhaustive scarch

strategy for SlL-resolution.

ACKNOWLEDGMENTS

This resoarch has been supported during 1970-71 by an

IBM fellowship awarded by Imperial College.

I am indebted tn my supervigor, Dr. Bernard Meltzer, for
his encouragement and suggestions, and for the free and stimulating
atmosphere of his Metamathomatics Unit. I am thankful for the
illuminating and constructive discussions with my colleagues of
the Unit, Bob "owalski, Pat Hayes and J Moore. I am particularly
indebtod to Bob Kowalski, who co-authored Chapters 3 and 4 of this

thesis, as well as offvring suggestions for the other chapters.

TABLE OF CONTENTS

Chapter 1+ Basic Concepts
1.1 Introduction cos cee ceo coe
1.2 Derivations and Scarch 8paces eos cos

Pgrents of a resolvent, R-derivation, clause
att & node, immediate descendant node, immed-
iate subderivation, input clause of &
derivation, R-refutation, ancestor of a clause,
demcendant of & clause, immediate descendant of
& clause, R~search space, immediate descendant
node, clause of a search space.

1.3 Search Strategies and Layered Scarch Spaces c..

Proof procedure, search strategy, exhaustive
search strategy, difficulty, merit of a clause,
merit levels.

1.4 Efficient Search Spaces ... oo cee

Chapter 2.

2.1

Size of derivation, simplest refutationy
cost of a clause, sparse search space,
refinement, powerfu. inference rule,
branching rate of a clause.

SLN-Resolution

Introduction oo coe oon evo

Transformational system, uinit clause, trans—
formation clause, P1-resolution, purcly

linear resolution, Ny-resolution, Horn clause,

pcaitive Horn clause, mixed Horn clause,
negative Horn clause.

2.2 The Definition of SL¥-resolution ces eoo

Factor of a clause, basic factor, factoring
operation, m~factoring, ordered Horn clause,
ordered N1—resolution, literal resolved upon,

new literal, ordered factor, factored out
literal, factoring operation, merge literals,
norged out literal, merging operation, SLN-
derivation, initial clause, near parcnt,
input parent, support set.

11

16

2.3 The Completeness and Power of SLN-resolution
Ordered P,~derivation, size of a derivation,
Lemma 1, "ordered instance, lifts, Lemma 2,
Theorenm 1.

2+4 Bi-directional Refutations cos veo
Stage k meeting between derivations, meet,
stage k bi-directional refutation, pseudo-
derivations, Lemma 3, Lemme 4, Theorem 2.

2.5 A Bi-directional Scarch Stratcgy .«. soe
Merit, imported units, unit refutation.

Chapter 3. Linear Resolution Systems

3.:1 Introducticn soc ece san soe

%,2 Linear Deriations voe eeo P
Lincar derivation, near parent, input parent,
far parent, initial clausc, input resolution,
ancestor rosolution, linear refutation,
search trcce, root.

3.3 Refinements of Linear Resolution ... eseo
Desceads, L-ancestor, A-literal, t-lincar
derivation, s--linear restriction, absorption
restriction.

3.4 Minimal Derivations and rm-size sew ose

Branch of a derivation, resolved upon, minimel
refutation, ninimal derivation, rm-size.

3.5 Thc Completencss and Power of Linear Resolution

Lemmg 5, Lemma 6, Lemma 7, Theorenm 3,
Lemma 8, Lemma 9, Theorem 4.

Chapter 4. SL-~Resolution
4.1 Informal Definition ces cos oo
4.2 Formel Definition ers cee cee
Input chain, chain, status, B-literal, cell,
equivalent chains, selection function,

selected literal, SL-derivation, admissibility
restriction, truncation, reduction, extension.

22

28

33

49

41

51

56
60

4s3 Thec Completeness and Power of SL-resolution ...

Lemma 10, Leﬁﬁé.11, instance of a chain,
Theoren 5.

Chapter 5. Selcction Function and Support Set
501 Introduction P coo 0se coo
5.2 The Usces of a Sclection Furnction ... soe

Branching rate of a chain, operator literal,
operator clausc, mate literal.

5.3 Estimating Brancning Rates eco ese

Predicate mate, outer function clash, cuter
function mate, outer function branching rate.

5.4 Opecrator Classification Trees ces vos
5.5 Functional Agreement for Tie~-Breaking coo
5.6 A Two Stage Anticipation Procedurc ... cos

Residue of an operator, residual outer
function branching rate, second stage outer
function branching rate.

5.7 Unlimited Anticipation and Pseudo-Search Treces

Pseudo-resolvent, pseudo-factoring, pseudo-
ancestor resolution pseudo-search tree.

5.8 The Choice of Support Set «e. ces vee
Chapter 6. A Search Stratcgy for SL-Resolution
6g1: Introduution *C e o0 e 400 Sovn
6.2 An Expediency Tactic cos see ven
6.5 Complexity Saturation and Diagonal Scarch ..,
Merit saturation, complexity saturation,
cost, expectation, length, r+m size,
diagonal search, upper diagonal search.

6.4 Measurcs of Complexity eoe oo .

Difficulty, size of search, intricacy
number, size of a substitution.

67

75
7

79

8t
84
85

89

96

99

100
101

105

6.5

6.6

6.7

6.8

Heuristic Merit Functions ... ove

Local intricacy t, functional agrecments

number £, branching nwiber n.

Anticipation Strategies «.o oas
Anticipated difficulty.

A Deletion Strategy aee oow
Equivalent chains.

Generstion of Subgoals and Lemmas ...
Goal of & search, immediatc subgoal,

analogous immediate subgoals,
completely deconpnosed goal, lemmes.

LN

L N]

oee

13

115

117

Chapter 1. Basic Concepts

1.1 Introduction

Since the publication of Herbrand's theorem in 1930 [8], it
Las been theoretically possible to prove theorems by using an
algorithm. However, there has been considerable difficulty in
finding an automatic procedure which is efficient. The work of
Prawitz [24], Davis [5] and Robinson [28] first suggested that

efficiency is possible.

This thesis develops several related strategies in an attempt
to form a unified proof procedure for efficient <theorem proving.
The desire for efficiency has motivated every step, so that an
efficient and detailed search strategy was conceived of from the
beginning. Thus the form of the inference rules was dictated in

part by an awareness of & complementary search strategy.

In all of the following, attention is restricted to derivat-~
ions obtainable by the resolution rule [ZEﬂ. Several other infer-
ence rules, incluiing Loveland's model elimiaation [16] and the
Maslov inverse method [20] have been shown to be equivalent to
resolution by Loveland [18] and Kuehner [13]. Other arguments in

favour of resolution are supplied by Kowalski [12].

The unrestricted use of the resolution rule generates far
more derivations than are needed for obtaining a proof. Uin
increase in the efficiency of obtaining a proof can only be achieved
by @ selective search strategy together with a restricted use of

the resolution rule. Thus the achievement of an efficient proof

4:.2.-

rrocedure involves the devising of suitable restrictions for the

resolution rule,

-3

1.2 Derivations and Search Spaces

A familiarity with the basic terminology of resolution
theory is assumed. Robinson [30] provides an excellent back-
ground. The resolution rule will be treated as having only two
clauses as input, the parents of the resolvent. For any restriction
R of the resoluvion rule and any finite set S of input clauses, an

R~derivation D of the eclause ¢ from S is a tree of nodes, each node

being labelled by a clause which is gt the node. D has the follow-
ing properties. IfC € S, then D is a single node labelled by C.
If C £ S, then there exist R-derivations D; and D, of €y and C,
from S, such that C is an R-resolvent of 01 and 02. Then ,Q' is
composed of the labelled nodes of _]3’1 and D2 together with the node

labelled by C which is the immediate deseendan?’ of the nodes

labelled by C, and 02. The immediate descendant wrelationship

between nodes of 21 and of ;)02 is inherited by the nodes of D. The

derivations 21 and EZ are the immediate subderivations of D. Any
clause C' € S which labels a node of D is an input clause of D.
If D is an R~Gerivation of the null clause, [J, from S, then D is an

R-refutation of S. The clauses, other than C, at the nodes of D

are the ancestors of C, and C is the descendant of each of its

ancestors. C is the immediate descendant of its parents. Note

that the same clause may occur at different nodes of a derivation.

For any finite set S of input clauses, and any restriction R
of the resolution rule, a graph GR(S) of labelled nodes is the
R-search space for S, iff for each R-derivation of a clause C from

S there is a node of GR(S) which is labelled by C. The node N of

-4 -

Gp(S) is an immediate descendant of the nodes Ny and N, of Gp(s)

iff the R~derivations of the clauses at N‘l and N2 are the immediate
subderivations of the R-derivation of the clause at N. The clauses
labelling nodes of GR(S) are referred to as the clauses of GR(S).
For any clause C of GR(S)’ the portion of GR(S) whose nodes are
labelled by the ancestors of C is the derivation of J. It follows
that for any R-derivation D of C from S, D is isomorphic to &
descendancy related subset of the labelled nodes of GR(S)“
Kowalski's thesis [12] contains an extended examination of resolut-

ion graphs.

-5 -

1.3 Search Strategies and Layered Search Spaces

A resoliution proof procedure is a restriction R of the

resolution rule together with a search strategy. A search strategy
is an algorithm which determines, for any finite.set S of input
clauses, the order of generation of the clauses of GR(S). This
digtinction between the inference rule and the search strategy of a
proof procedure has been investigated in detail by Kowalski [12]

and has been elucidated by Meltzer [22].

A search strategy is exhaustive iff for any clause C of

GR(S), it generates only & finite number of clauses before generat-—
ing C. IS S is an unsatisfiable set of input clauses, and R is a
complete inference rule, then tne null clause is a clause of GR(S).
If » is an exhaustive search strategy, then 2 generates only a
finite number of clauses of GR(S) before generating a null clause.
Let Gﬁ(S) be the descendancy related subset of the labelled nodes
of GR(Sﬁ corresponding to the clauses of GR(S) generated by & when

L first generates a null clause. Thus GX(S) is finite if § is
unsatisfiable, R s complete and X is exhaustive. The difficulty
of finding a refutation of S may be measured by the number of nodes
of Gﬁ(s) which are not labelled by input clauses. The efficiency
of a proof prercedure is improved by choosing R and) in such a way
as to decrease the difficulty of finding a refutation of any

unsatisfiable set S.

It seems impossible to ensure that GE(S) is finite for all
unsatisfiable S and all complete R unless L is exhaustive. Tris

thesis will consider only exhaustive search strategies. In order

- B -

to ensure that J, is exhaustive, it is convenient to subdivide
GR(SQ into a denumerable collection of layers, each layer having
only a finite number of nodes. The search space is thought of as
being layered from the top down, the first layer being at the top
of the search tree, the second layer just below it, and so on. In
order that X be exhaustive, it is then necessary on'y that b2
generate all clauses in one layer hefore generating any clauses in

the next lower layer.

Clearly, any algorithm for layering search spaces partially
specifies the seawch strategy. Certain methods of layer ng are so
eagy and s¢ natural that they should be considered shen designing an
inference rule. In this way, it is possible to design a unified

proof piocedure for theorem.proving.

In Chapter €, several methods for layering search spaces are
congidered. TFor each of these., a detailed search strategy uses
heuristic criteria for determining the order of generating clauses

within layers of the search space.

The requirement that a search strategy generate all clauses
of one layer before generating any of the next layer implies that
the ancestors of @& clause C must be in the same layer as C or in
higher layers. Let the merit of a clause be the number of the
layer in which it occurs. Thus each layer of a search space is &
set of clauses of equal merit. The layers are the merit levels of
the search spaceo. Thus the merit of each ancestor of a clause is

less than or equal to the merit of the clause itself.

- T e

T.4 Efficient Search Spagces

4 search space should be layered so that null clauses with
simple derivations ocour at higher levels than null clauses with
more complex derivations. The measure of complexity which is easiest
to work with is the gize of the derivation, the number of resolvents
in the derivaticn. 4 simplest R-refutation of S is then one such
that no other R-refutation of S has fewer resolvents. In Chapter 6,
there is a thorough discussion of alternate measures of the complex~
ity of a derivation, and their relation to the difficulty of fiading
a refutation. It is argued that size is the best of the easy

measures ¢l complexity.

The most straightforward method of emsuring that simple
refutations are on higher layers than more complex refutations is to
assign all clauses with simp}g.derivations to layers which awe higher
than clauses with more compiex derivations. The merit of a clause
is then the complexity of its derivation. A more efficient layer-
ing defines the merit of a clause C to be & lowexr bound on the com-—
plexity of the sinaplest refutation obtainable from C. If the cost |
of a clause C is the complexity of its derivation, then the merit
of C is an upper bound on the cost of the least costly null clause
which could be a descendant of C. This is the merit used by

Kowalski's diagonal search [17].

Let R be the unrestricted resolution rule, and let R' be any
restriction of R. Let GR(S) and GR,(S) be layered in some way com~
patible with the preceding discussion. There are two factors to

consider when designing the resolution rule R'. One is that

-8 -

GR,(S) should have fewer clauses on each layer than does GR(S).

The other is that the highest null clause of GR'(S) should not be
much lower than the highest null clause of Gp(S). The rule R' is
nore efficient than R if GR,(S) has fewer clauses on each level, and
its highest null clause is ag high as the highes}t null clause of
GR(S) . One may consider that GR,(S') is obtained by pruning the

search space GR(S) without pruning out all highest null clauses.

For any resolution rules R' and R, GR'(S) is more gparse
than GR(S) if each layer of GR,(S) has fewer clauses than the
corresponding layer of GR(S)¢ R" is a refinement of R if the
claugses on each layer of GR,(S) is a subset of the clauses on the
corresponding layer of GR(S). R' is as powerful as R if the high-~
est nuli elause of GR'(S) is as high as the highest null clause of
GR(S). Thus, in designing a proof procedure, one tries to con-
struct a resolution rule whose search spaces are as sparse as

possible with very little if any loss in power.

The construction of a sparse search space without loss of
power may be considered to be the process of pruning away clauses
which are irrelevant to the derivation of the highest null clauses.
Furthermore, all redundant rederivations of the same clause should
be pruned out. This pruning of redundant derivations should extend
to all but one of the highest null clauses. If all redundent and
irrelevant clauses were pruned out, then there would remain exactly

one derivation of the null clause.

The SLN~resolution rule of Chapter 2 produces extremely

sparse search spaces, but only for certain types of input sets. It

-9 w

is proved to be at least as powerful as P1-resolution. By combin-
ing SLN- with Pﬂ-resolution in a bi-directional search, the result-
ing search space is more sparse than the search space for either

rule alone, and *he corresponding rule is at least as powerful as

P1—resolution.

The s~linzar and t-linear rules of Chapter 3 produce very
sparse search spaces, and are proved to be as powerful as unrestrict-
ed resolution. The t~-linear rule is a refinsment of the s-linear

rule so the t-linear searcn spaces are always at least as sparse as

the s-linsar search spaces.

The branching rate of a rlause C ia GR(S) is the number of
clauses of GR(S) which are immeaiate descendants of C. If the
branching rate ¢f a clause C is reduced, then there are fewer
descendants of C. Thus there are fewer clauses either in the layer
that ¢ is in or in some layers below that. It follows that &
resolution rule which uniformly decreases the branching rate of
clauses produces sparser search spaces. That is, if R!' differs
from R only in thet any clause C has a lower R'-branching rate than

an R-branching rate, then GR,(S) is more sparse than GR(S).

SL-resolution of Chapter 4 has a markedly lower branching
rate for all non-unit clauses than does t-linear resolution, but
SL~-resolution is not quite as powerful ag t-linear resolution, and
thus is not as powerful as unrestricted resolution. However, it is
proved that Sh-resolution is as powerful as the rule for obtaining
minimal-derivations. With this bound on the power of SL-resol..

ution, it is felt that the advantage of its increased sparseness

- 0 -

outweighs the loss of power. This feeling is supported by

experimental evidence.

As well as being relatively powerful and having notably
sparse gearch spaces, s-linear, t-linear and SL-resolution have the
added advantage of determining search spaces which are exceptionally

amenable to a variety of methods for heuristic search.

Chapters 4 and 5 which investigate t-linear and SL-resolution
are extracted from papers [14 and 15] written in conjunction with
Rovert Xowalski, Since the completion of the original paper; we
have learned of the related investigations of Donald Loveland [18]
and Raymonl Reiter [26]. Loveland investigates in detail the
relationship between model elimination and linesr resolution, and
includes an interesting comparison of these systems with the
Prawits matrix reduction method [25]. Reiter investigates two
ordering resirictions and establishes their compatibility with
linear resolution and the merging restriction [2]. Reiter's second
crdering restriction coincides with the selection function restrict-

ion for ground derivations.

In SL-resolution, we have attempted to construct the best
inference system possible and have borrowed freely from what seems,
to us, the best in other systems. The resulting system can be
regarded as a form of either model elimination or linear resolution.
When compared with the systems investigated by Loveland and Reiter,

it bears the greatest resemblance to model elimination.

T

Chapter 2. SILN-Resolution

2.7 Introduction

Although bi-directional search has been investigated as a
general problem~solving technique by Pohl [23] and others, there are
difficulties in applying it to theorem-proving., However, bi-
directiornal search iz feagible for certain kinds of sets of input
clauses, the simplest of which are Reynolds'® transformational

systems [29].

4 transfoimational system is any finite set of clauses such

that each clause is either a one literal clause a ynit), or it
centaius exactly one negative and one positive literal (a transforme
ation). Any unsatisfiscble transformational srstem has & Py-
refutation vhich 1s purely linecar. (A.g$;;esolutigg [29] has one

parent all of whose literals are positive. A purely linear resol-

ution has one parent which is am input clause. Chang [3] calls

purely linear resolution, input resolution.)

Let 8 = {{1}, {T,u}, {K,¥}, {§,P}, {P}}
represent a ground-level (no variables) transformational system. In
all examples of clauses, set theoretical brackets will be omitted
together with the commas which separate elements of a set, Using
this notation,

s = {1, IM, NN, NP, P}.

Then figure 1 illustrates a purely linear P1—refutation of S.

M

M

-

NP

NN

Figure 1e

One remarkable property of purely linear P1-refuta'tions is thai
they are reversible. Figure 2 illustrates the reversal of the
refutation of figure 1. Here again the refutalion is lineax, but

uses tl\lql—resoly_’gwigg, in which all of the literals of one parent are

negative.
5 -
g
H i
L L
O
Figure 2,

Figure 3 illustrates a bi~directional refutation combining both

P1-— and N1—resolution.

- i35 ~

Figure 3.

The fact that the refutations of figures 1 and 2 can be com-
bined to form & bi-directional refutation suggests that two searches
may be conducted simultaneously, and their results combined to form
a refutatioo. The advantage of conducting a search in this way is
that a search to level n is usually less than half as difficult as
a search to level 2n. It follows that the sum of the difficulties

of the simultaneous searches should be less than the difficulty of

either search alone.

Bob Kowalski and Pat Hayes have suggested that some properties
of transforma’ional systems might apply to Horn clauses [9]. 4

clause is a Hoyn clause iff it has at most one positive literal.

Thus, a positive Horn clause is a unit clause, and a mixed Horn
clause has any number of negative literals and one positive literal.
A negative Horn clause has any number of negative literals and no
positive literals. There are many problems which can be expressed
uging only Horn clauses. Such problems are charazterised by

Cohn [4J and include many theorems of group therapy.

As with transformational systems, a P1—refutation of a set

of Horn clauses is reversible as an N1—refu’ca‘cion. However, in
this case only the N1~refutation is purely linear. For the

unsatisfiable set

s={1%q Q@RST, 1,5 R MNP, P, N, I}
of ground-level Horn clauses, figure 4 illustrates a P1—refutation

D, and figure 5 illustrates its linear N1—rever~sal D*.

T o

=
W

O
=}/
wn}
n
=
=i
i
(]
g

Q

QR R - MY o
Q M L
G {I S 4
1M 1IW T 0

Figure 4.

Note that for every resolvent C* of R*, there are subderiv-
ations of D wklch derive units complementary to each literal in C¥*.
For L M R of D*, there are subderivations of L, M and R of D. The
derivation of T M -fl- has size 3, and the derivations of L, M and N
have sizes 9, 2 and 0. The number k of resolutions needed to
obtain the null clause from these clauses is 3., The total number
of resolutions involved is %+0+2+0+3 = 8, The same total is obtain-
ed for every resolvent of Q* as is shown by the table following
figure 5.

In section 2.4, it will be shown that analogous results hold

for any unsatisfiable set of Horn clauses.

T¥Q 0/' QRS T
THRST ﬁ/o T
ITWRS g/ S
ITNR R
TN? ? P
N M '
T L
0 l/
F‘igure 5'0
derived derived
by D¥ size by D sizes k total
ITNQ 0 |} L:M,Q 0,2,3 3 8
LTERST t | L,M,R,S,T 0,2,0,0,0 5 8
o _?
TMNRS 2 | 1,M,8,8 0,2,0,0 4 8 |
THUR 3 | L,M,R 0,2,0 3 8 |
L 4 | LM 0,2 2 8
INP 5 | L,N,P 0,0,0 3 8
LY 6 {L,N 0,0 2 8
I 7 {1L 0 1 8

- 16 =

2.2 The Definition of SLN-resclution

The example of the preceding section suggests that there is
a linear N1—refutation of any unsatisfiable set of Horn clauses.
In figure 5 orly the rightmost literel of each negative clause is
resolved upon. That is, the clauses may be considered to be order~
eds An extension of the concept of ordering allows a selection
function to choose which literal is to be resolved upon. SLN-

resolution is selective linear negative resolubion.

Tor notational convenience and for efficient computer
implementation, it is useful to treat resolution as a sequence of
two operations, factoriug followed by resolution of factored clauses.
If C is a clause and E @ unifiable partition of the literals of C,
having most general unifier (m.g.u.) @ , then CO is & facter of C.

If exactly one component of E contains two literals and every other
component exactly one, then Cg is a basjc factor of C, and Cg is
obtained from C by one factoring operation. The resolution of
factored clauses unifies one literal from one parent with the
complement of one literal from the other parent. Although other
factoring methods are compatible with SIN-resolution, only Kowalgki's
m~factoring [12] is considered in the following discussion. The
method of implementing m~factoring is to factor inppt clauses in all
possible ways, and to factor resolvents in all possible ways
provided that the literals which are unified in the fac?oring
descend from different input parents. This last restriction
ensures against redundant factoring. This form of factoring is

built into the definition of SLN-resolution.

For any Horn clause C, an'ordered Horn clause C¥ is a

sequence consisting of the literals of C written in some fixed

order. If C contains a positive literal, then that positive
literal is the leftmost literal of C¥. TFor any set S of Horn
clauses, the set S* is the set ¢f all ordered Horn clauses obtain-
able from factors of clauses of S. That is, if

8 = {P(a,x) P(x,y)} then S* = {P(a,x) P(x,¥), P(x,y) P(a,x), P(a,‘x)}.,_
For any ordered Horn clause C* and C'¥*, let C¥C'* bc the ordered
clause beginning with the literals in C¥* in the order they appear

in 0¥, fullowed on the right bv the literals of C'* in the order that
they appear in C'*. Thus C*L is the ordered Horn clause whose

rightmost literal is T.

An ordered N,-resclution has as one parert an ordered negat-
ive Horn clause of the Tform C*-f and as the other parent a mixed or
unit Horn clause of the form KC'* where C'* may be empty. Neither

parent contains two literals whivh have the same atom. If L and K

are unifiable with m.gou. €, then the ordered I\T1_-;:_t;§solvent is

C¥C™© , Th- literal resolved upon in C*L is L, and in KO'™ it
is X, If C* ig not empty, then the literals of C%* which are to
the right of the literals of C* @ in C*¥C!'* 0 are the new literals

of C*¥C'* @

Let C* be an ordered I\T.I-resolvent, and let X occur as a new
literal of C¥. If there is a non-new literal L occurring in C*
such that L and K are unifiable with m.go.u. ©, then an ordered
factor of C¥* is Cg' ©, vhere C’(‘S is obtained by deleting the given

occurrence of -IT from C*. The literal -IT is factored out of C¥,

The factoring operation is said to have been applied to C¥, If

- 18 -

the n rightmost literals of C* are new in C*, then define the n
rightmost literalsocf Cée to be new in 06 ©, With this extension to
the definition of a new literal, the preceding definition of an
ordered factor alsn applies when C* itself is an ordered factor.

The definition of an ordered factor in terms of new literals avoids
redundant factoring. If the mgu & is *he null substitution, then
T =K. 1In this case L and K are said to mer e, and T is merged out

of C*. The merging operation is an instance of the factoring

operation.

An SLN-derivation from a set S of Horn clauses is & sequence
(Cfs oes 0?9 of ordered clauses satisfying the following conditions.
(1) The initial clause C% € S* and is negative.
(2) Cg*1 is an ordered I, ~resolvent of Ci (the pear
harent) and an ordered clause (the input parent)

from 8%, or C§+1 is an ordered factor of C?.

It should be noted that factoring must precede resolution if
it is to be done at all. That is, if a new literal can be factored
out of a clause, this factoring must be done efore any other new
literal is resolved upon. This is because only new literals can
be factored out, while all of the new litersals of a resolvent

descend from the input parent.

SLN~derivations are not represented in the standard deriv-
ation format. Together with other linear derivations, SLN-derivat-
ions are conceived of as being vine-like trees consisting of an
initial node together with a sequence of its descendants. The irput

parent of an ordered clause may be attached to the arc joining the

clause to its near parent. This device is particularly useful in
simplifying the appearance of SLN-search spaces. Using this
representation in figure 6 produces an illustration of an SLN~
refutation of a familiar group theory problem. " The sequence of

ordered clauses at the nodes is the SLN-refutation.
o P(k(x), %, k(x))

P(u,5,w) P(y,%,7v) P(x,y,u) P(xw,W)

6 P(y,2,v) P(x,y,%(z)) P(x,v,k(z))

P(e(z,7)5 % ¥)

o ¥(y,z,v) Bg(v,k(2)), 7, K(z))

P(e(=y), %, 7)

3 Py,z,y)

P(x, h(x,y), ¥)

60
Figure 6.

The implementation of SLN-resolution is more efficient if
there is a retroactive ordering of factors of input clauses.
Ordered N1-resolution could be redefined so that the literal resolv-
ed on in the negative parent is any literal selected from those
literals most recently introduced into the deduction. Thus, if

L ¥ N has near parent TP and input parent P M .1'\?, then ¥ and ¥ are

the literals in L M N which have been most recently introduced.

o 20 -

Iffﬁﬁmwh%wﬁhmtMnﬁthSﬂ%mdnwmldfﬁﬁ
and N is the literal in'fnﬁ which has been most recently introduced.
¥ and N are new in L ¥ -l\f, but ¥ is not new in L N, The selection of
¥ can be thought of as rewriting LTMNasL N¥ and then performing
the previously defined ordered N1~resolution. Resolving on some
selected most recent literal is a retrozctive choice of ordered
input clause. Thus, resclving on M rather than N in the preceding
example is a retroactive choice of using the input parent P NN
instead of P M N.» In order to use this dynamic ordering, some
nmarker should be inserted between the residues of the two parents
when forming & resolvent. Thus resolvents become sequences of cells
of literals separated by markers. Such scquences of cells corres-
pond to the chains of SL-~resolution (Chapter 4) and model eliminat-

ion [16]. Howaver, the use of ordered clauses rather than @

selection function simplifies the following discussion.

It should be noted that since every SlLN-resolvent is negative,
no resolvent can be a tautology. Thus, if tautologies are deleted
from the factors of the input set, then no further deletion of taut-

ologies need be done.

A subset S' of a set S of clauses is a gupport get (Wos et
al [31])for S iff S-S* is satisfiable. In common with other linear
resolution systems, the initial clause of an SLN~-derivation msay be
restricted to belong to a given support set of the input set S.

In this case, the support set must be a subset of the set of all

factors of negative clauses in S.

SLN-resolution can be extended to non-Horn clauses, but it

- 21 -

must then be weakened to SL-resolution. For SL-resolution {Chapter
4) there is no longer a requirement that one parent be negative,

and resolution must be allowed with an ancéstor Cg where j< i. It
is also possible to extend SLN-resolution to SN-resolution, by no

longer requiring linearity, but this weakens the selection functioa.

- 22 -

2.3 The Completeness and Power of SLN-Resolution

The existence of an SLN-refutation for any unsatisfiable set
of Horn clauses is proved by permuting the resolutions of a‘P1~
refusation of S. In order to do this, it is necessary to examine

the structure of a P1-refutation of a set of Horn clauses.,

Let 8 be any set of Horn clauses. Clearly, any P1-resolution
between members of S must have a Horn clause as a resolvent. Thus,
in any P1~derivation from S, one parent of each resolution must be
@ positive unit. If the other parent is a mixed Horm clause, then
the resolvent is either a shorter mixed Horn clause or & positive
unite If the other parvent is ¢ negative Horn clause, then the
resolvent is either a shorter negative clause or a null clause. It
follows that any P1—refutation of a set of Horn clauses has one and

only one negative input clause.

Since every P1-resolution has a positive unit clause as one
parent, all resolvents are instances of subsets of input clauses.
It follows thr% in every P1~derivation, the input clauses may be
replaced by appropriately ordered Horn clauses, with the positive
literal on the left, and with the rightmost literal the literal

resolved upon. A P1-derivation, all of whose clauses are ordered

Horn clauses, is an ordered P1—derivation. Clearly, there is a one=-
one correspondence betwenn P1~derivations and isomorphic ordered

P1-derivations.

In order to compare the complexity of P1—derivations and

\

SLN-derivations, it is necessary to have an appropriate definition

- 23 -

of the complexity., The refutations of figures 4 and 5 are felt to
hgve the same intuitive complexity although the P1~refutation is of
level 6 and the SLN-refutation is of level 8, Thus, for the pur~
pose of comparing linear and non-linear derivations, the measure of
complexity to be used is the gize of the derivation, the number of
resolutions performed in the derivation. In figures 4 and 5, both

refutations have size 8.

In calculating the gize of either an crdered P1-derivation
or an SLN-derivation, it is assumed that the input clauses of the
derivations are crdered factors of the clauses in the inpat set.
This is implemented by constructing the set S* o all ordered
clauses constructible from all the factors of the clauses in the
input set S, Any clause or variant of a claurs is considered to
be a factor of itself. Since all ordered P1-resolvents are
instances of subsets of ordered input clauses, P1—resolution for
Horn clauses is complete with no factoring other than the factoring
of input clauses. For this reason, ordered P1~search is more
efficient if ~o parent of an ordered P1-resolvent has two identical

literals.

Lemmz 1. Let S be any unsatisfiable set of ground-level
Horn clauses., Let T be any P1-refutation of S. Then there exists

an SLN-refutation D* of S which is at least as simple as D.

Proof (by induction on the size of ;9. Without loss of
generality, D can be assumed to be an ordered P1~refutation, and S
can be assumed to be the set of ordered input clauses of D. The

proof is for the stronger lemma which also proves that the ordered

- 24 -
negative input clause of D is the initial ordered clause of D*.

It D has size one, then g* and Q are tne same derivation, so

in this case the theorem is trivially true.

Otherwise, let D have size n > 1, and assume that the theorem
holds for all ordered P1—ref‘uta’cions of size less tkam n. Let LC*
be the ordered negative input clause of D. Then the immediate sub-
derivations of D derive T and L. Let ‘]‘)'1 be obtained by replacing
TC* with C* in the immediate subderivation which derives L. Then
R1 is an ordered P1-refutation cf the set S,’ of ordered input slauses
of 21. Also 21 is isomorphic to the derivation of T and it has C*
as its negative input clause. Since the size of 21 is less than =n,
then by the induction hypothesis there exists an SLN-refutation]Q"’f

of S1 which is at least as simple as 21, and whose initial ordered

clause is C¥,

If DY is (C%, C¥y oesy Ci) and C% is the first ordered clause

~1
of ']3"2!" which contains Z‘L-, then let 2* be obtained from Qj"‘ by concaten~
ating L onto the left of each of C*, Cf, ..., C¥_,, and inseriing
IC"{ between EC§-1 and C’i". Then C*i is obtained from ‘I-:C’J‘: by merging
out L. (T must be new in the first clause of .D}f in vhich it

occurs.) Then D* is an SLN-refutation of S with size less than n,

and initial ordered clause TC*,

Otherwise, none of the ordered clauses in ']23‘ contain L. Let
2}"1 be obtained from ']\):3'" by concatenating T onto the left of each
ordered chain of 2’,{'. Then (I?J”h is an SLN=-derivation of 'f, of the

same gize as 2‘!{, and with initial ordered clause fC*.

-25 -

Let D'be the immediate subderivation of D which derives L.
Let IC'* be the ordered input clause of D' from which L descends.
(That is, L occurs in all descendants of LC'* which are ancestors
of L.) Let D, be obtained by replacing IC'* in D' by C'¥. Then
is an ordered P1-refuta1:ion of the set S2 of ordered input clauses

22
of ']2'2« Also 22 is isomorphic to the derivation of I and has C*¥
ag its negative input clause. Since the size of 22 is less than n,
then by the induction hypothesis there exists an SL¥-refutation "Djé
of 32 vwhich is at least as simple as '12»2’ and whose initial ordered

clause is C'*,

Let 231 be obtained from]\Jjé by adding T onto the beginning of
the refntation 25' Then the second ordered chain C'¥ of ,]2"2‘1 is

obtained from L by the ordered N1 ~resolution with parents T ara

LC*,

Let D* be obtained by identifying the last ordered clause of
th with the initial clause of 2*{2 to form a refutation of 8, which

is at least as simple as D and which has initial ordered clause

IC*. Q.E.D.

It should be noted that if there is no merging in l)j" or if
the use of the merging operation is suppressed in constructing R*,

then D and D* have exactly the same size.

Since both ordered P1-resolution and SLN-resolution use
ordered clauses, the concept of lifting must be sliightly modified.

For any ordered clause C = L1 ese I‘n’ and for any substitution®© ,

the ordered clause C O = I"I © 5 eeey Lne is an ordered instance

of C. C® may contain identical literals even though C does not.

L 26—.

The derivation D 1lifts the derivation‘g' ife

(1) D is tree isomorphic to D,

(2) for any ordered clause C at a node of D, the
ordered clause C! at the corresponding node of
D' is an ordered instance of C, and

(3) the literal resolved upon in C' is an instance
of the literal resolved upon in C and is in the

same position in both clauses.

Lemmag 2. Let Qf be an SLN-refutation of a set of ground
instances of clauses in the set S of Horn clauses. Then there
exists an SLN-refutation D* which 1ifts D' and has the same size

as ',
”~

Proof. Let S' be the set of ordered input clauses of D',
and let C{ be the ordered negative clause of 8%, Let S* be the
set of ordered factors of clauses of S such that C* e S* iff S' con-

tains an ordered instance C' of C¥*.

The initial ordered clause C? of D¥ is the ordered clause in
S* which has C{ as an ordered instance. Assume that the SLN-
derivation (C?, eces Cﬁ) 1lifts the subderivation (Ci, seey Ci)
of D'= (C{, coo, Ci, asey CE). Then C? is an ordered instance

of C!.
i

If C;. 4 is obtained from C! by merging the i-th and j=th
literalsof C!, then there exists a most general unifier o which
unites the i-th and j-th literals of C% to produce C¥ ,. If

C! =C} 6, then ¢ =or for some A . If the i-th and j-th

- 27 =

literals are the only identical literals of C{, then they are the
only identical literals of C"{ ¢ . Let C"{ " be the factor of C"i"
obtainable by deleting the lefitmost of the i-th or j-th literals of

* 1 : . .
Ci ¢ » Clearly Ci+1 is an ordered instance of C"i_'_,‘.

Otherwise, let C i+1; be obtained from Ci by SLN-resolution
with C' € S'. Then there exists C* ¢ 8% such that C! is an ordered
instance of C*. By the lifting lemma of [29], there exists an SLN-

E o 1 > >
resolvent C"l‘ 4 such that Ci +1 is an ordered instance of C"i" 41°

i
i

In either case (c*f, oens C%y ceie“) is an SLN-derivation which
1ifts (c1', eees Cy c:sm). It follows that there exists an SLN-
refutation]2* which lifis Q" and has the szme size as R' . Q.E.D.

Theorem T, For any unsatisfiable set S of Horn clauscs,

there is an SLN-refutation _]3’* of S such that Q* is at least as

simple as the simplest P1~refutation of S.

Proof. By Lemma 6 (Section 3.5), there is a simplest Py~
refutation D of § which lifts and has the same size as an ordered
ground P1 ~-refutation R‘ of a set 8' of ordered ground instances of
clauses in S. By Lemma ¥, there is an SLN-refutation D'* of S'
which is at least as simple as D'. By Lemma 2 there is an SLN-
refutation D* which lifts D'* and which has the same size as D'*,
Therefore D* is an SLN-refutation of S which is at least as simple

as the simplest P,-refutation of S. Q.E.D.

- 28 -

2.4 Bi-directional refutations

As was suggested by the tvable of section 2.1, subderivations
of a P1—refu"ca’cion and an SLN-refutation may be combined to form a

bi~directional refutation.

Let S be an unsatisfiable set of Horn clauses, and let D* be
an SLN~derivation from 8. Let le; be the k-th subderivation of D¥,
and let gi‘; derive Ck 2= T‘T» sve fn. Let D be an oriered P1—deriv-
ation from § with subderivations 21, ooy Rn of K‘I’ ceny Kn res-

pectively. If {Ly, Ky}, eoo, {L, K } are simultencously unifiable,

then there is a gtage k meeting between D¥ and D, where Ck is said

to meet K19 ceny Knu

If '1\):’}‘; is considered to be in the derivation format of Chapter
1, then it can be combined with the derivations Dy. .eey D to form

a stage k Dbi-directional refutation of S. Schematically, this

bi-directional refutation has the forn of figure 7.

In figure 7, each ei is the most general. simultaneous
unifier of {L , K }, «.., L, Ki}. If D¥y Dys e, D have sizes
My s eoey W then the bi~directional refutation has size

m+m1+ oo +mn+n.

Pigure 7.

It should be noted that a bi-directional refutation may be &

pseudo-terivation in that 0y may contain identical literals. The

following discussion is considerably simplified by allowing this.

It is sufficicnt to note that for any such pseudo-derivation there

is a derivation which is at least as simple. The identical literals
are merged, and fewer ordered P1—derivations are used to construct

the bi-directional refutation.

Note also that any ordered P1—refutation is a stage 1 bi~
directional refutation, and that any SLN-refutation of size k

is a stage k bi-directional refutation.

t is possible to define a bi-directional refubtation in

which ordered P1-resolvents other than units may resolve with SIN~

- 30 ~

resolvents, or in which units resolve with several SLN-resolvents
in the same refutation. However, such exlensions of the definition
i

tend to make the search for a meeting more difficult.

Lemmg 3. Let D be any ordered Py~refutation of the
unsatisfiable set S of ground-level Horn clauses, and let R have
size s. Then there exists an SLN-refutation D¥ of S such that,
for every k 1less than or equal to the size of D¥, there is a stage
k meeting between D and D*, The corresponling stage k bi-

dire~ntional refutation of S has size less than or equal to s.

Proof. The lemma will be proved by presenting a recursive
method for the construction of J* from D. That is, the lemma to be
proved is that for every positive integer i, either (1) there is
an SLN-refutation D*j = (01, ceey cj) of 8§ for some j < i and there
is a k-~level meeting between '12:’5 and D for all k £ j, or (2) *here is

a derivation D¥ = (01, coey Ci) from 8 and there is a stage k meet-

ing between Qj{ and D for all k < 1.

If Cy = ('171’ cvoy 'f_p) is the ordered negative input clause of
D, then R‘!l" = (01) . Since D is a refutation, it has subderivatious
21, ceey Rn of L1, s ey I‘n' If these subderivations have size
Myy seey M then my o+ oees 40 = 8. Thus there is a stage 1
neeting between D‘Zi' and D« The resulting bi-directional refutation

~.

is D itself.

Let 1 ©De any positive integer and assume that the lemma

holds for i. If (1) holds, then the lemma is proved.

Otherwise, assume that there is a derivation

- 31 -

Dt = (01, cees Ci) such that there is a level k meeting between

D% end D for every kg 1. If C; is the null clause, then (1)

i

holds, and the lemma is proved.

Otherwise, let Ci = -IT1 soa -f‘n’ Then D has subderivations
21, ceoy I".n of L1, vecy Ln such that if these subderivations have
gize Byy sosy M then, by assunption, Wy 3+ 0o by mn+n5 g, where

m 1s the size of ;)éo

If Ci contains two identical literals, then let

¥

Dg = (C.], eoey Cgy Ci+1) where U, o is obtained from Cy by merging

two identical literals. Since Ci meets L1, ceey Ln it follows that

C.

41 meets a proper subset of L', essy Ln go that the level i+t

bi~directional refutation is at least as simple as the level i
bi-directional refutation. Since the latter refutation was assumed

to have size less than s, the lemma is proved.

Otherwise, Ci does not contain identical literals and Ci +1

must be obtained from Ci by SLN-resolution. If L, is an ordered

input clause, then the only clause of Rn is Ln. In this case, let
E*i-l»‘lf
Ci by SLN-refutation with L.

= (01, o ey Ci, Ci"’T) where Ci+1 =-I‘J.1 seo0 EIL—‘I is Obtained from

Otherwise, let Ln f[} ces Er be the ordered input clause of
'P»n from which L n deseends, Then Rn has subderivations ']\)‘%, cosy .]2‘:'[‘

3 l 1 t 1 m? =
of K1, voey Kr which have sizes Mis eeoy ML where D+ eoe AT = m o

Let 'I‘)’*i+1 = (01’ eney Ci’ Ci+1') Where Ci+1 = (L1, (XX Ln_.r,
EP vees fx) is obtained from Ci by SLN~resolution with

(Ln, '131) wess Er)’ But D contains subderivations

,]\)_,4" 209 b4 R;’ ceey ,]?,i. Of L19 ss9y Ln“n, K1, vcoy Kr Whose

Q»n—1
sizes are My, seey M 49 Diy eoey M, Singe W+ oee DS B
and mi+ oo +m]':+r =m , the size of the (stage i+l bi-directional

refutation obtainable from Qg 7 ,131, wees D 4o Q,“' y ese j}% is less

than or equal to s.

Since it has been shown that ,Q?j‘: .1 can be constructed for any
i vhen R*i is not a refutation, it follows that D* can be construct-
ed and that for every k less than cr equal to the size of D¥, there
is a stage k meeting between 2* and D, and that the size of the

corresponding stage k Dbi-directional refutation is less than

Se QoE uLa

The following lemma and theorem follow easily from Lemma 3,

using the methods for proving Lemma 2 and Theorem 1.

Lemma 4. Let DF be a bi~directional refutation of a set of
ground instances of clauses in the set S of Horn clauses. Then
there exists a bi-directional refutation Q* of $ which 1lifts D' and

has the same nize as 2'.

Theorem 2. For any unsatisfiable set S of Horn clauses,
there is a bi~directional refutation of S which is at least as

simple as the simplest P1-refutation of S.

2.5 A Bi-directionsal Search Strategy

In the following discussion of a bi-directional search
strategy, it is assumed that the strategy should search so that the
first found bi~directional refutation is a simplest bi~directional
refutation obtainable. That is, the search strategy should exhaust
the possibility of finding & refutation of size k Dbefore trying to/
find a refutation of size k+i. Theorem 2 expresses the power of
bi-directional refutations in the anticipation of this kind of

gearch strategy.

Let C be an SLN-resolvent of cost g and length h, where
the cost of C is the size of the derivation of ¢, and the length of
C is its number of literals. There is a bi-directional refutation
of size g*¥ 1f C meets h P1~resolvent units, the sum m of
whose cnsts satisfies ghirtm = g%, To ensure that all such units
have been generated, it is necessary that all P1uresolvent units of
cost m or smaller have been generated. It is easy to verify that
all ancestors of a unit of cogt m have cost g' and length h' where
g'+h' < m+1, Let the merit of an ordered clause be defined to be
the sum of its cost and its length. If an SLN~resolvent of merit
g+h has been generated and if the search is attempting to generate
a refutation nf size g%, then the search should generate all ordered
P1-resolvents of merit g'+h' < g*+1 - (g+h). If all such P1-
resolvents have been generated, then to exhaust the possibility of
finding a refutation of size g¥, it is necessary and sufficient to

generate all SLN-resolvents of merit gth.

Defining merit in this way layers the SLN- and ordered

- 34

P,-search spaces according to Kowalski's strategy of diagonal
search [11]. Most of the strategies of Chapter 6 apply to the

searching of these merit levels.

The mesting of SLN~ and ordered P1-derivation has been
defined to use only positive unit P1wresolvents, while any SLN-
resolvent may be used to meet these units. There are three
searches, the ordered P1~search for units, the SLN-search, and the
search for a meeting between ordered P1nresolution units and SLN-~
resclvents. It seems mdst natural to combine the last two of these
searches by using *he ordered Pf-resolvent units to augment the
SLN-gearcirs Call such units the imported units of the SIN-search.
Since ihe imported units are intended to be used immediately if they
are to be used at all, they are treated as inpit claugses by the SLN-
search, Because the purpose of the ordered P1use3rch is to pro-
duce positive units, no negative clauses should be used ag input

clauses for the P1~search.

For any ordered P1~refutation‘g of a gset S of Horn clauses
there is an SLN-refutation Qf of 8 such that D and D* meet at any
stage. Since at least one clause of such a Q? occurs on each merit
level up to the size of 2?, each merit level contains at least one
clause which neets wdits of D. Because of this, the SLN-search
nay be stopped at any merit level, and a meeting will be obtained
by generating ordered P1-resolvents. By generating all ordered
P1~resolvents up to a merit level such that the sum of the merit
levels is the sigze of the refutation, a meeting is generated. &
similar argument holds for stopping the ordered P1—search at any

merit level. Thus the number of merit levels saturated by each

- 35 -

search is immaterial as long as the sum of the merit level reaches

the size of the refutatione.

A bi-directional search strategy is most efficient if it
saturates as many merit levels as pc¢ssible while generating as few
clauses as possible. The implementation of a bi-directioral search
requires an ailternation between searching an ordered P1~search space
and searching an SLN--search srace. To be most efficient, the alter-~
nation should be controlled ty the rzlative aumber of clauses on the

merit levels of the two 3earches.

On each merit level, the ordered P1»search and the SLN-search
count the number of clauses geLerated on tnat level. One search
generates clauses until its count exceeds that of the other search.
Then the other search begins generating clauses. If search A
saturetes a merit level before its count exceeds that of search B,
then search A begins generating clauses on its next merit level, and
its count becomes the number of clauses generated on the new level.
In this way, one search may generate all the clauses on one merit
level while the c¢ther search is inactive. In doing this, the
bi-directional search is saturating as many merit levels as possible
while generating as few clauses as possible. This also ensures
that the difficulty of the bi~directional search is less than or
equal to the difficulty of either search by itself. This method
resembles the bi-directional search procedure suggested by

Pohl [23].

This alternating procedure is interrupted whenever a unlit

positive clause is generated by the P1—search and imported to the

- 35 -

cIN-search. The SLN-search uses such a newly imported clause in
all possible ways up to its current merit level. This interruption
is necessary since the bi-directional search can be terminated only

by finding a refutation during the SLN-search.

Apert from the efficiency gained by alternating between search
spaces, the effiziency of bi-directional search is based on the
assunption that the number of clauses on a merit level increases as
the merit increases. It follows that the numnber of clauses gener-
ated in the search up to merit level u is less than half the
number generated in the search up to merit level 2n. If an ordered
P1~search and an SLN~search produce a meeting after searching m
and n levels respectively, then the bi-directional search generates

fewer clauses than if either search were to go %o level min.

One example of bi-directional search uses the following set

of Horm clause¢se.

P(z,e,x)

P(z,&(x),e)

P(g(a),a,e)

P(z,y,u) P(y,2v) Pu,z,w) B(x,v,w)

-i;(x’y’u) -f(y'z’v) F(X,W,W) P(u;%,w)

The ordered P1-search program of Isobel Smith generated 35
clauses and retained 21, When SLN-search was done by hand, 24
clauses were generated and 16 retained. Hand-done bi-directional
search generated 17 clauses and retained 14. In each case, the

refutation had size Te

- 3T -

With some care with the details of the search, the efficicncy
of bi-directional search can be improved. For instance, if all
clauses up to and including merit levels m and n have been
generated by the P1= and SLN--searches, and no meeting has occurred,
then there is no bi-directional refutation of size mtm+l or less.

In this case, no imported unit of merit m+1 should be used to meet
gn SLN-resolvent of merit less than n, for that would be an attempt

to find a bi-directional refutation of size min+l or less.

It is interesting %o note that Chang [3] proved that for any
purely linear refutation, which he calls an input clause r:futation,

there exists & unit refutation. A unit refutaticn is one all of

whose resolutions have a unit as one parent. Any P1—refutatian
with Horu clauses is a urit refutation, and any SLN-refutation with
Horn clauses is an input clause refutation. It is an open guestion
whether the class of unsatisfiable sets with purely linear refutat-
ions includes more than Horn clauses, or clauses which can dbe

renamed as Horn clauses-

- 38 -
Chapter 3. Linear Resolution Systems
3.1 Introduction

The bi-directional search techniques of Chapter 2 can be
axtended to input sets which contain non-Horn clauses. But the
search for a meeting becomes so difficult that a bi-cirectional
gearch is less efficient taan either of the two searches by itself.
However, the search spaces for SLN-resolution are so sparse that an
extension of SLN-resolution to non-Horn clauses seems worth invest-

igating.

In order to extend SLN-resolution, its restrictions must be
weakened. That is, if every resolution must have one negative
parent, one input parent, and have both parents ordered then, for
some unsatisfiable sets of non-dorn clauseg, no refutation car be
constructed. If the restrictions of SLN-resolution are weakened,
then the resulting search spaces are not a&s sparse as the correspond-
ing SLN-search spaces. However, when the restrictions of sm infer-
ence rule are weakened, its power generally increases. This would
be an advantage because it seems difficult to prove that SLN-
resolution is any more powerful than P1-resolution. It is proposed
to consider first linear resolution. The linear resolution rule is
a weakening of the restrictions of SLN~resolution which is as power-

ful as the most powerful resolution rule.

This chapter considers linear resolution and certain restrict-
ions to linear resolution which can be applied without decreasing
the power of the rule. Chapter 4 considers a further restriction

to linear resolution which somewhat decreases its power but for

|
U
W0

!

which there is a great gain in the sparseness of the search spaces.

Most of Chapters 3 and 4 were written with Robert Kowalski
and have appeared separately in [15]. I have tried to indicate
portions which are due solely to Kowalski, but we worked in such
close collaboration that most of these chapters must be considered
to be a joinit achievement. Kowalski's contribution is particularly
evident in the careful reasoning of the proofs;, and in the elegance

of the very strong admissibility restriction on SL-resolution.

3.2 Linesr Derjvations

Linear resolution was independently discovered by Lov7eland
[17], Luckhem [19] and Zamov and Sharonov [33]. It is a refine-
ment of unrestricted resolution whose search spaces are significant-
ly more sparse than the corresponding search spaces for uncestricted
resolution. For certain measures of complexity, such as size,
linear resolution can be proved to be ag powerful as unrestricted
resolution. That is, no form of resolution is more powerful than
lineer resolution. Linear resolution has the particular advantiage
that it offers excentional opportunities for the application of
heuristic search because of the relatively uncomplicated structure

of its search spaces.

A linesr derivation D, from a set S of clauses, is a sequence
of clauses (C1, susey Cn) such that C1 ¢ S and each Ci+1 is a resolvs

ent of C; (the near parent of C,,,) and B, where either

(1) B is in 5 (the input parent of Ci+1)’ or

(2) B is some ancestor, Cs of C;y J< 1, { the
far parent of Ci+1)°

C1 is the initial clause of D and Cn is the clause derived by D.
In case (1), Ci+1 is obtained by input resolution and, in case (2),
by ancsstor resolution. If D derives the null clause from S, then

Qbis a linear refutation of S.

The sequence D = (g, @, R, S, RT, T, P, 3) is & linear
refutation of S = {PQ, P, QR, RS, RST, PT}. Notice that, in this
example, C6 is obtained by resolving the near parent C5 with its

ancestor 03. All other resolvents are obtained by input resolution.

- 41 -

An example of a general-level linear derivation is the refutation
(B(z)P(a), R(a), a(y), R(y),0) of
{P(x)P(a), P()R(a), R(x)a(y), Uy)R(¥)}

Note that,in linear derivations, factoring is considered to be part

of the resulution rule.

For any set 8 of input clauses, the linear derivation search
space for S is a finite set of disjoint search trees. For each
inpub clause 01 which is an initial clause for linear derivations,

there is a search tree T = T(C1) satisfying the following.

(1) Cy is at the pgo% node of T.

(2) zf Cn is a c¢lause of T, derived by (01, cosy Cn),
then any clause Cn+1 is an immediate descendant
of Cn in T iff the derivation of Cn+1 is

(01, eeey Cpy 'JnH).

Pigure 8 illustrates part of a linear derivation search tres.
Although this search tree is sparse compared to the corresponding
search space Jor unrestricted resolution, it is evident that there
are many redundant derivations which are admitted by linear resolut—
ion. In the remainder of this chapter and in Chapter 4, refine-
ments of linear resolution are considered which successively remove

most of the redundancies of figure 8.

¢Amm@on mwmv TVOT,/NTOSSI IBOULT JOT €933 YoIeog '@ eandTg

\ |/

gopou Qh¢ ad
¥s 8 0 -
//I//I///////16&\\\\\\\\\\\\\\\\\\ 5mm

Bd 2

up

d

od

388 andut

- 42 -

503 Refinements of linear resolution

As with SLN~resolution, it is possible to impose on linear
resolution the restrictions that no resolvent is a tautology and
that the initial clause belongs to a given support set of the input
set S. DBoth restrictions increase the sparsenecsas of egarch spaces
without decreasing the power of linear resolution. The support set
restriction is especially useful because it limits the number of
search trees which need to be investigated in the course of search-
ing for a refutation. The easily recognisable support subsets of
8 include the set of all positive clauses, the set of all negative
clauses, and the set of all clauses which come from the negation of
the conclusion of the theorem (when the axioms and special hypo-
theses in S are satisfiable). 4 more detailed discussion of
support sets occurs in Chapter 5. TFor the example of figure 8, the
initial clause is the only clause in the support set of positive
clauses, so that in this case the search space consists of a single
search tree. A1l of the refinements of linear resolution discussed
in this thesis are compatible with both the support set and no-

tautologies restrictions.

Other restrictions which have been investigated for linear
resolution include the s-linear restriction (Loveland [17] and Zamov
and Sharonov [33]) and merging restrictions (Anderson and Bledsoe
[1], Yates et al [32], and Kieburtz and Luckhem [10]). The
t-linear and SL-resolution systems investigated in this and the next
chapters are both refinements of s~linear resolution with the support
set and no~tautologies restrictions. The merging restriction does

not seem to be a useful one and is not investigated. The

- 43 -

©21lowing table compares, for various refinements, the sigze o a
simplest proof and the number of derivations of the same or smaller

size for the input set and top clause of the example of figure 8.

linear { s~lin, | m=lin. { mg~lin. | t=1in. | SL(1) | su(2)

{ 8ize n of
sinplest
refutation 6 6 7 7 6 7 6

Number of
I clauses of 7
isiza<nn 193 174 224 | 224 74 | 13 12

The combination of linear resolution and the merging restriction
defined in 1] is denoted by 'm~-linear'; and the combination of
m-linear resolution and the s~linear restriction, by 'ms-linear?.
'SL(1)* and "SL{2)* denote SL-resolution with different selection
functions. (The selection function chooses and resolves upon the
alrhabetically least atom for SL(1) and the alphabetically greatest
stom for SL(Z).} The selection function for SL-resolution actis in
much the sare way as the choice of the order of input parents in
SLN-resolution. For each choice of order for SILN-resolution, as
with each choice of gselection function for SL-resolution, there is a

different search space.

As is Justified by Meltzer in [21], the input clauses of this
example can be rensmed to be Horn clauses. Rename P to belﬁ, and
P to be U. The corresponding SLN-search space consists of the
single search tree whose root is labelled by UT. The search space
in this case contains no redundant or irrelevant clauses, and con-

sists only of a derivation of the null clause. This is an

= Qi o
indication of the extreme sparseness of SLN-search spaces.

The three new restrictions incorporated in t-linear resolution
are defined only for derivations from input sets of ground clauses.
The extension of the definition to sets of general elauses is not

difficult, but the complications involved obscure the discussion.

Let D = (Cyy ouey Cn) be a ground linear derivation from S.
A literal L in Ci descends from L in an ancestor Cj iff L occurs in
every intermediate clause Ck’ J<k<i. An ancestor Cj of Ci is
an A-ancestor of Ci iff Cj +1 has an input parent and all literais in

C;j’ except for the literal X resolved upon in obtaining Cj 1 have

descendants in Ci. The literal K is called the A~-literal of Ci

from the A-ancestor Cj'
In the derivation (P4, Q, R, S, RT, T) from the input set

{ra, F, aR, 'ﬁs, -ﬁgﬁ‘}, the derived clause 06 hag A-ancesiors 02, 03

and C, and A-literals Q from 02, R from C

4 3
not an A-ancestor of 06 because 06 is not obtained by input

and S from 04. 05 is

resolution.

A linear derivation D is f~linear if it satisfies the follow-

ing three restrictions.

(1) zr Ci+1 is obtained by ancestor resolution, then
it is obtained by resolution with an A-ancestor
of Cio

(2) 1f Ci contains a literal complementary to one of

its A-literals, then C,41 is obtained by ancestor

resolution.,

(3) A-literals of ¢; from distinct A-ancestors

have distinct atoms.

I+ has already been remarked that the no-tautolegies and support
set restrictioas are compatible with t-linear resolution. Figure 9
illustrates part of the t-linear search space for the example of

fj.gure 8.

o0

Figure 9. Search tree for t-linear resolution (134 nodes).

Notice that the first condition implies that if Ci resolves
with an A-ancestor Cj then the literal resolved upon :i.n\c._j is the
A-literal of ¢, from C 3 (for otherwise ¢, would be a tautology) .

Thus the resolvent Ci+1 is contained in its near parent. (This

- 46 =

last property is Loveland's s-linear restriction [17] and Zamov and

Sharonov's absorption restriction [33].) The second condition

states that ancestor resolution is compulsory in the sense that it

must be performed &s soon as it can be performed.

Clearly, for an efficient implementation of the t-linear
restrictions, it would seem desirable to find an efficient way of
agsociating with each clause Ci & list of its A~ancestors and
A~literals. In fact, it is cnly necessary to associate A-literals,
since all the other literals in A-ancestors are already contained in
C;» Restrictions (1) and (2) can then be implemented by simply
deleting any literal in Ci which is complementary to an associated
A-literal. The implementation of (3) is equally simplified. In
the next chapter, there is defined a chain form:t for SL-derivations

which provides Jjust such a way of associating A-litarals with clauses.

It is instructive to comrare ancestor resolution in *%-lineaxr
derivations with the implicit merging operation. The merging oper-
ation is implicit in the representations of clauses as sets of
literals. If clauses were replaced by ordered clauses, the merging
operation would need to be performed explicitly. So far, for
t-linear resolution, ancestor resolution resembles the merging
operation in that both remove a single literal from a clause and
both are compulsory. For SL-resolution, the resemblance is more
marked and both operations are treated as special cases of a single
rule. For SlL-derivations from sets of general clauses, ancestor

resolution resembles factoring.

- 47 -

3.4 Minimal Derivations and rm-size

In order to investigate the power of linear and SL-resolution,
their refutations will be compared with minimal refutations. Mini-
mal refutations include the simplest obtainable by any resolution
rule. Moreover, every minimal refutation (whether simplest or not)
can be regarded as reasonably simple for the theorem it proves. It
will be shown that for every minimel refutation there exists an
s-linear refutation of the same complexity for the same set of
clauscs, and for every unsatisfiable set of clauses there exists an

SL-refuvation as simple as some minimal refutation.

A branch of a non~linear derivation] consists of a node
labelled by an input clause C, together with all nodes of D
labellea by the descendants of C. A literal ir resolved uvon &t a
node if it occurs in the clause at that node and is removed when
obtaining the resolvent at the immediate descendant node. 4 ground

non-linear refutation is pinimal, if, for every branch, the literals

resolved upon at distinct nodes have distinct atoms. A ground non-~
refutation is minimal if it can occur as a subderivation of & mini~
mal ground refutation. That is, it derives a non-tautology and,
for every literal resolved upon at a node, its atom does not occur
in any clause at a descendant node. A general derivation is
minimal if it 1lifts a minimal ground derivation. (It is tree-~
isomorphic, the clause at any node has as an instance the clause at

the corresponding node, etc.)

Figure 10 illustrates minimal and non-minimal refutations of

~y

the same input set. The minimal refutation hus 4 branches, size 3

and level 2. The non-minimal refutation has 5 branches, size 4

o 48 -

and level 3. The literal Q is resolved upon twicc in the lefimost

branch of the non-minimal derivation.

PO)
[«]
q 18] i)
P \/
Q

O

ol

non-mi.imal

PQ 2] PQ PQ

minimal
Figure 10. Non-linear refutations of {PQ, PQ, PQ, PQ}

If a s.t S of ground clauses contains exactly n distinct
atoms, then there are only finitely many minimal derivations from S,
none of which has size greater than 2% = 1 or a branch with more than
n+? nodes. Under quite general conditions on 8§ (which apply, in
particular, to the example of figure 10) there are infinitely many
non-minimal derivations and refutations of unbounded size. (The
conditions are that some minimally unsatisfiable subset of S con-
tains at least two clauses containing a literal L and two other

clauses containing b.)

- 49 -

The notion of minimal derivaticns was introdreced by Loveland
[17] and investigated independently by Kowslski [12] in conjunction
with Pat Hayes. Minimal derivaticns are Just those derivations
which can be obtaincd by the construction of semantic trees (Hayes
and Kowalski [6])° Loveland defines a ground derivation to be
minimal if it cannot be 'pruned', The two definitiorns are not
equivalent. Every unprunable derivation is minimal in our sense,
but not ccnversely. It follows from Loveland!s Corollary 2 that
there exist minimal refutations as simple as the simplest obtairable

by uny resolution system (Theorem 3 of the next section).

* %#* He

Ancestor resolution in lirear derivations resembles the
factoring (and merging) operation more closely than it does ‘he
resclution operation. Fcr this reason, the size of derivations is
not entirely appropriate for comparing the ccmplexities of linear
with non~linear derivations. Ancestor resolution is to be con-
gidered a form of factoring. If this is done, then factoring and
merging must t. considered to be explicit operations in both linear
and non-linear derivations if their complexities are to be ccmpared.
As with SLN-resolution, Kowalski's m~factoring [12] will be used.
That is, all input clavses are initially factored in all possible
ways. Subsequently, resolvents and factors may be factored, and
nmust be merged, provided that one of the unified literals is new.
Neither parent of a linear or non-linear resolution operation may
have two identical literals. These restrictions avoid the redundant
refactoring of clauses., Each factoring operation is considered

to factor out oaly one literal.

- 50 -

Define the rm-size of a non-linear derivation to be the paiwr
(r,m) where m is the number of factoring operations performed in
the derivation and r the number of resolution (of factors) oper-
ations. For a lirear derivation, the rm-gize is (r,m) where r is
the number of input resolution operations and = +the number of both
ancestor resolution and factoring operations. When factoring is
explicitly displayed; then m4m is the number of non-~input clauses of

the derivation.

In figure 10, the minimal derivation has rm-size (3,2) and

the non-minimal derivation has rm-size (4,2).

For both linear and non-linear der.vations, m does not
include the number of initial factoring operations applied to input
clauses. TFor linear derivations, the definition of rm-size is
deliberately ambiguous when a near parent resolves with a top clause,

which can be treated as either 2u input or far parent.

If complexity is defined as any function of r and m then
two derivations, linear or non-linear, have the same complexity if
they have the same rm-size. In order to compare the complexities
of derivations having different rm-sizes, we shall assume only that
complexity is non-decreasing with increasing » and m and that an
increase in m does not increase complexity more than the same
increase in r. More preecisely, if (r1,mi) < (r2,m2) means that no
derivation of rm-size (r1,m1) is more complex than one of rm-gize
(rz,mz) then the assumptions ave that ry < v, and m S m, imply
(r1,m1) < (r2,m2), and that (r,m) < (rn, m-n). Therefore & rofut-
ation D is a simplest refutation of S if its rm-size is less than

or equal to the rm-size of all other refutations of S.

3.5 The Completeness and Power of Linear Resolution

Linear resolution will be shown to be as powerful as any
resolution rule by proving that there is a linear refutation as
simple as the simplest minimal refutetion. Thus it is first necess-
ary to prove that there is a minimal refutation which is as simple &s

the gimplest obtainable by unrestricted resolution.

Lemma 5. Let D' be a non-linear ground refutation of a set
of greund instances of clauses in S. Then there exists a refutation

Q .f S which 1ifds Q' and has the same rm-size.

The proof is not difficult and is similar vo that of

Kowalski's Theorem 4.7.1 in [12] .

Lemma 6. For any unsatisfiable set S of clauses, there
exists a simplest non~linear refutation which lifts, and has the
same rm-size as, a simplest ground refutation of & set of ground

instances of clauses in S,

Proof Outline. Let D be a simplest non-linear refutation of
S and assume it lifts a ground refutation 2'. Note that D cannot
be simpler than D*. By using Lemmg 5 and the fact that D is
simplest and lifts ']2,', it is easy to verify that D and ']2' have the
same ru~-size. It follows from & second applica"bion of Lemma 5 that

Q' is a simplest ground iefutation of a set of instances of clauses

in S.

If D is a simplest non~linear refutation which lifts no ground
refutation, then it is necessary to show that tiuere exists another

simplest refutation which does. This can be done by first construct-

- 52

ing a ground !pseudo-derivation! isomorphic to and having the zame
rm-size as D. (The pseudo—~derivation fails to be a derivation
because certain compulsory merging operations are not performed.)

The pseudo-~derivcation, in turn, can be ‘coatracted® to obtain a
ground derivation from instances of clauses in S. The contracted
derivation has fewer resolution operatioas and, at wcrst, has no

more merging operation than it has fewer resolution operations.
Therefore it is at least as simple as the pseudo~derivation. By
Lemma 5, the contracted derivation can be lifted to a refutation of

S J4hich has the same rm~-size. This derivation is obviously at least

as simple as D and is therefore a simplest refutation of S. Q.E.D.

{The definition of a pseudo-derivation is given in [7] and
the contraction operation for a pseudo-derivati~n is the analogue of

the contraction overation for derivations ctudied in [7] and [12].)

Lemma J. For every unsa®tisfiable set of ground clavses, there

exists a simplest ground refutation which is also minimal,

Proof Qutline. Let D be a simplest ground refutation of the
set, 8. By Loveland's Corollary 2 [17], if D is not minimal then
it can be 'pruned' to obtain a minimal refutation D* of S. The
pruning operation removes resolution operations and introduces no
more merging operations than the resolution operation it removes.

Therefore D' 1ls a simplest refutation of S. Q.E.D.

Theorem 3. For every unsatisfiable set of clauses, there

exists & simplest refutation which is also minimal,

Proof. By Lemma 6, there is a simplest refutation of the

o 5% =

zet 8 which lifts and has the same rm-size as a simplest refutation
R' of a set S' of instances of clauses in 3. By Lemma 7, there is
a minimal refutation D" of S' which is as simple as D'. By Lemma
5, there is a refubation D of 8, which lifts R" and has the same

ru-size as D" « Therefore D is 2 minimal and simplest refutation

of 8. Q.E.D.

The following theorems are proved not for linear resolution
bus for s-linear resolution. Since s~linear resolution is a ra-
finement of linear resolution, Lemmas 8 and 9, and Theorem 4 apply
to linear resolution as well. The proofs for t-linear resolution

follow much the same line, but are more complicated.

Lemma 8, Let I be a minimal ground refutation of a set S
of ground clauses. For any input clause C.i of D, there is an

s~linear refutation of S with initial clause C‘l and having the same

rm-size as D.
La V]

Proof Outline (illustrated in figure 11 and appearing in full
detail in [14]). The proof is by induction on the size n of D.
If n = 0, then the desired refutation is Jjust the one clause

s-linear derivation oi [J . Suppose n > 0.

Let the two immediate subderivations of D derive the unit
clauses {L} and {-1::}. Because D is minimal, if we delete from all
clauses at nodes of D the literals L and I, we obta’n minimal
refutations _]2‘1 of S1, and 22 of 32’ tree-isomorphic respectively to

the subderivations of {L} and ff}. Suppose that 01 - {L} oceurs as

[

delete
L

induction
hypothesis

replace L !

induction
hypothesis

replace f?

Figure fl.

Qutline of the proof of Lemma §.
figure 1% connects a resolvent with its input or far parent.)

(A broken line, here and 1n

- 54 -

an input clause of 24, and B - {f} (where T €BaniBe S) is an

input clause of Qz_o

By the induction hypothesis, there exist s-linear refutations
D of 5y with initial clause C; - {L!, and D} of S, with initial

clause B - {L}. D; and D! have the same rm-size.

Let D' be the s-linear derivation of {L} from S, isomorphic
to ,]‘)‘1‘, with initial clause C, obtained by replacing L in all input
parents from which L was deleted in obtaining S1. (L is inserted
irto all resolvents of such parents and into all descendants of such

resclvents,)

et l)é' be obtained from J)é by first inserting {L} as new
initial clause before B - {L, and by next inserting immediately be-
fore any resolvent C, with near parent of the form ¢ - {1}, where
Cef andl € S, the clause Ci U {-I-:}o It is easy to check that P,é'
is an g-linear refutation of S U {{L}}, where {L} oceurs only as
initial clause. ({1} is treated as far parent for resolvents Gi in

0" oy T,
Dy with near parents C; U {L}.)

The desired s~linear refutation D' of S is obtained by append-
ing ']\’.)é' to 21" ana deleting the duplicated occurrence of {L}. It is
straightforward to verify that D and 2‘ can be constructed so that

they have the same rm-size. Q.E.D.

Lemma 9. Let D be an s-linear refutation of a set of ground
instances of clauses in S. Then there exists an s -linear refutation

of S which lifts D and has the same rm-size.

The proof of Lemma 9 is similar to, but much simpler than, the

proof of Lemma 11.

Theorem 4. For any unsatisfiable set S and support subset
S()’ there exicts an s~linear refutation of S with initial clause in

SO such that no non-linear refutation of S is simpler.

Proof. As in the proof of Theorem 3, there is a simplest
non~linear refutation D of S which lifts and has the same rm-size,
as & simplest minimal refutation D' of a set of ground instances S°
of clauses in 3. Some input clause C% of D' is an instance of scme
clause in SO’ By Lemma 8, there is an s-linear refutation o of
S' with input clause C{ and having the same rm~size as D'. 3By
Lemma 9, there exists an s~linear refutation of S, with top clause
01 in SO, which has the same rm-size as D" and therefore is as

simple as a simplest non-linear refutation of S. Q.E.D.

- 56 .

Chapter 4. Sh-Resolution

4.1 Informal Definition

SLN-resolution can be extended and t-linear resolution can be
restricted to SL-resolution. The ordering of clauses of SN
resolution can be considered to be a selection of the literal to be
resolved upon. SL-resolution is t-linear resolution with an addit~
ional restriction which calls for a single literal %0 be selected from
each clause Ci in an Sh~derivation. The selected literal is the
only literal in Ci which is ever resolved upon when Ci is used us
near parent for input resolution. The choice of selected literal
is constrained by the condition that it be a literal most recently
introduced into the derivation of Ci' Thus, in the derivation
(PQ, PR) only R may be selected in C,» and therefore (rq, PR, R)
corresponds to no SL-derivation for any legitimate way of selacting

literals.

For each derivation D in an SL-search tree, there is only one
literal in the derived clause C, which is resolved upon in obtaining
all immediate descendants by input resolution. If the same deriv-
ation occurs in a t-linear search tree then there are additional
immediate descendants obtained by resolving on all other literals in
C. Thus, if C contains m literals, then there are, on the average,
m times as many immediate descendants of C in t-linear search tree
than there are in the SLe-search tree. If m is the average number
of literals in clauses derived by t-linear derivations of size < n,
then there are, on the average, n” more t-linear derivations of size

n +than there are SlL-derivations of the same size.

- 57 -

PQ
PR
Ps BST
o PRT]
o PT o) P.ﬁ
0P o P
o O o0

TFigure 12, BSearch iree for SL-resolution (12 nodes)

p[QlR]ST
¢ P[QIRTS]RT ¢ p[alR] sfojp
} P[AIEE]T ¢ Pa[R]S
o rlalr[sTr]P 3 poIRISIR
cr P q P
o [6 O

FPigure 13. Search tree for SL-resolution in chain format.

- 53 -

Figure 12 illustrates, for the example of figures 8 and 9,
the entire search tree for SL-resolution with the selection function
which chooses the literal having alphabetically greatest atom. The
SL-gearch tree has only 12 nodes, which compares favourably with the
134 nodes of the t-linear search tree and the 513 nodes of the

linear search tree.

Notice that when a clause is used as near parent for ancestor
resolution, the literal resolved upon is already constrained by the
eompulsory ancestor resolution restriction on {~lineayr derivations.
Thus, in the clause TRT in figure 12, only the literal E'may be
resolved upon, even though both E'and T are most recently intro-

duced and T is alphabetically greater than R.

In the formal definition of SlL-derivations, clauses are
replaced by sequences of literals, called chains. When a near
parent resolves with an input perent, the resolvent is obtained by
concatenating literals from the near parent to the left of literals
from the input parent. Between these two subsequences of literals
is ingerted the selected literal resolved upon in the near parent.
This literal is the A-literal of the resolvent from its near parent.
More generally, each resolvent chain contaius all of its 4-literals.
A-literals are deleted when they no longer belong to A-ancestors.
Those iiterals in a chain which are not A-literals are called

B-literals.

Figure 13 illustrates in chain format the SL~search ftree of
figure 12, A-literals are enclosed in boxes. Merging operations

ayre displayed sxplicitly. Of two identical literals in a chain,

- 59 ..

the rightmost is deleted. ILiterals resolved upon and literals
renoved by the merging operation are underlined. The operation of
deleting A-literals is not displayed, although defined explicitly

in the formal defirdtion.

The definition of SL~resolution treats chains in the same way
that separate and explicit rules for factoring and resolution of
factors treats clauses. Altogether there are three operations which
can be applied in order to obtain chains in Su~derivations. The
exlernsion operation i= input resolution of factored chains. The
reduction operaticn incorporates, as special cases, both basic
factoring and ancestor resolution of factored chains. The trunc-

ation cperation is a bookkeeping device for eliminating A~literals.

4,2 Formal Definition

Let S be a given set of input clauses. For each faztor C of
a clause in S and for each literal L in C, choose exactly omne
sequence C¥ ccnsisting of all literals in C, with L leftmost in C¥%,
C* is an input chain. (Onl'y the leftmost literal in C¥ is resclved
upon when C¥ is input parent for an extension operation.) Poxr the

input set of clauses
{P(x)2(a), P(x)R(a), R(x)a(y), A7)R()},

there is only one corresponding set of input chains. Of the 9

input chains, one is obtained by facvoring. For
s = {m, P, Qr, RS, RST, PT},

each corresponding set of input chains containg exactly 12 meumbers.
Each such set contains exactly one of RST and -I-{’T-S—, one of SRT and -S“’.[‘.li,
and cne of TRS and TSR. For the purpoge of SL-resolution, it is of
no importance which one of these sets is chosen to specify the set

of input chains.

In general, a chain is any sequence of literals, each of
which is assigned the gtatus of either A~ or B-literal. 411
literals in input chains are B-literals. Two B-literals in a chain
belong to the same ceil if they are not separated by an A-literal.
Two chains are equivalent if one can be obtained from the other by
permuting B-literals within the same cell. Thus the chain
P§ T has two cells, one containing only the B-literal P and
the other, the rightmost cell, containing the B-literals -S- and T,
The chains Ptg T and PT S are equivalent.

- 61 -

Let ? be a function defined on non-empty chains, having
chgins as values. ¥ is a selection function iff (?(C*) is C* ore
can be obtained from C¥* by interchanging the rightmost B-iiterzl in
¢* with another B-~literal in the rightmost cell. Thus, if C¥ is
P[alR} § T then @ (c*) is P[OJR]T § or ¢* itself. The rightmost

literal in P (C*) is the gelected literal in C*, (The extension

operation applied to (* resolves ?9(0*) on its rightmost B~literal
with an input chain on its leftmost literal.) We vequire, further,

that equivalent chains have the same selected literals. Thus if

P(raR]S 1) = P[Q[R]T § then ¥ (P[QIR]T §)= P[Q[R]T S.

For & given set of clauses S, support set S! and selection
function 3’, an Sl-derivation from S is a sequence D¥ = (C#, oeay 0;)

of chaine satisfying (1) - (3).

(1) The initial chain C¥ is an input chain from §'.

(2) Bach C§+1 is obtained from C¥ by one of
extension, reduction or truncation.

(3) Unless C§+1 is obtained from C§ by reduction,
then no two literals occurring at distinet
rositions in C? have the same atom
(admissibility restriction).

* .
C¥41 is obtained from % by truncation iff (a) and (b):

(2) The rightmost literal in C} is an A~literal,

(v) C¥.q is the longest initial subsequence of C%
whose rightmost literal is a B-literal. The
status of @ literal in C§+f is the same as its

status in Cﬁ.

- 62 -

3%
Ci+1 is obtained from C"i" by reduction iff (a) - (e):

(a) The rightmost literal in C% is a B-literal
(v) C¥ is not obtained from C¥ , by truncation.
(c¢) The rightmost cell of C* contains a B-literal
L and either
(1) (";‘f eontains a B-literal K, which is not
in the rightmost cell of C¥%, (basic
factoring) or
(ii) C¥ containc an A-literal K, which is
not the rightmost A-literal of C"J.‘:,
(ancestor resolution).

(d) L and K are ugifiable with mgu ©.

(o) Let C¥* be obtained by deleting the given
occurrence of L in C’;{. Then C?H = C"J.‘.* B,
The status of & literal L 6 in C.):':;,T; is the same
as the status of the literal L from which it

descends in C"i".

#
Ci+1 is obtained from C"j‘_’ by extension with an input chain B* iff

(a) < (a):

(a) The rightmost literal in ¢4 is a B-literal,

(v) C¥ and B* chare no variables.

(c) The selected literal L in C’j‘: and the complement K
of the leftmost literal X in B* are unifiable with
mgu ©.

(d) Let B** be obtained by deleting the leftmost literal
K from B¥. Then C¥,1 is the chain (C? (C"{)B**))

obtained by applying O to the result of concatenating

- 63

{ 14y
*P (C%) and B** in that order. The literal L6 in
+*
Ci+@: descending from the rightmost literal in
* - -
P(ct) 1s an s-literal in Ot ,.
has the same status as the literal

Every other
l. i
iteral in C#* 1

from which it descends in C? or B¥#,

* * 3%

It is not difficult to verify that the admissibility re-
striction, together with (b) in the definition of reduction,
insorporates the three restricticns on t-linear derivations as well
as the compulsory merging and no-tautologies restriction, The effect
of (b) is to guarantee that if = literal can be wemoved by reduction,

then this is done before any extension operations are performed.

The restrirtions (¢) (i) and (c¢) (ii) on redaction are both
concerned with restrictions on the factoring operation. If reducte
ion were performed with a B-literal K in the rightmost cell, then
the effect of this factoring operation would be to generate a chain
already derivable by choosing a different factor for the input
chain of the last extension operation. Similarly, if reduction
were performed with the rightmost A-literal f, then a variant chain
could be derived without this reduction operation by using a differ-

ent factor for the most recent input chain,

The factoring restrictions incorporated in the reduction
operation correspond to restrictions which can be imposed on arbit-
rary resolution systems. The factoring method involved (m-factoringo
imposes no constraints on the generation of factors of input clauses

but allows only those factors of resolvents which do not involve the

-y 64_ -

merging of literals which descend from the same parent. It is
easy to show that w-factoring is the least redundant factoring
method which generates short clauses as soon as possible and does

not increase the cumplexity of derivations.

The truncation operation can be eliminated and incorporated
into more complicated definitions of extension and reduction.
Wevertheless, there is 2 good 1eason for treating it as a separate
operation. The admissibility restriction applies to the parents

of chains obtained by truncation.

Case (ii) of the reduction operation does not, in fact, com=
pletely correspond to ancestor resolution in lincar resolution
systems. It corresponds, rather, to resolution with an instance of
an ancestor. In linear resolution, a clause Ci resalves with an
ancesicr Gj which is standardised apart to share no variables. The
corresponding case of reduction in SL-resolution can be intzrpreted
as resolving Cg with Cg © where 6 is the result of composing all
m.g.u-'s generated in obtaining the sequence of chains C§+T to Cip
Moreover, the resolvent C§+T is obtained without renaming the
variables which occur in its parents. This way of defining
ancestor resolution can be applied to linear resolution systems in
general and caa be justified by resolution-theoretic arguments.

In the context of SL-resolution, it has sevewral noteworthy
advantages. It provides the most efficient and restrictive way
of implementing ancestor resolution in SL~derivations, without in
any way complicating simplest refutations. Moreover, it reflects
on the general level the relationship between ancestor resolution

and factoring which is the analogue of the relationship between

- 65 -

ancestor resolution and merging for Sl-derivations from sets of

ground clauses.

SL-resolution is more closely related to Loveland?s model
elimination system [16] than it is to othier resoluticn systems. In
particular, chain foxmat, A- and B-literals, extension, ancestor
resolution, reduction, and truncation all derive from model elimin-
ation. (We have used Loveland's terminology, except for !contraction®
which we have renamed 'truncatior' in order to distinguish it mure

easily from 'reduction',)

SL-resolution differs from model elimination primarily in that,
for ground derivations, model elimination has n» merging operation.
At the genersal level, a limited amount of factoring is obtained in
model elimination by allowing ancestor resolution with rightmost A~
literals. For these reasons, only a weskened version of the admiss~

ibility restriction holds for model elimination.

Although nct explicitly incorporated in Loveland®s original
definition, it is easy to verify that compulsory ancestor resolution
is compatible with model elimination. For certain restricted
selection functions, zesolution with selected literels is already
incorporated in model elimination. (The selected literal is the
rightmost literal in a chain and is determined, therefore, by the
initial choice of input cheins.) The compatibil.ty of the more
liberal employment of selection functions can be established for model

elimination by the same method used for SL-resclution.

- 66 -

It is not difficult to show that, in most cases, SL-resolution
yields simpler refutations and fewer unnecessary derivations than
model elimination. (The anomalous case arises when & simplest SL-
refutation involves no basic factoring reduction operations and these

cparations are performed in unnecessarily generated SL-derivations,)

In the next section the power of SL-resolution is compared
with that of other resolution syvstems. Comparison of these systems
with model elimination will not be investigated beyond that which
is implied by the preceding comparison of SL-resolution with model
elimination. The preliminary investigations reported in this
paper suggest that the study and implementation of model elimination
procedures have been unprofitably neglected in fawour of less

efficient resolution procadures.

- 67 -

4.3 The Completeness and Power of SL-resolution

The following lemmas and theorem establish that the simplest
SL-refutation of a set of clauses may be more complex than the
simplest obtainable by t-linear resolution. However, the use of &
selection function causes such an increase in the spareseness of the
search spaces that SL-resolution appears to be considerably more
efficient than t=linear resolution. Theorem 5 establishes that the
complexity of a most complex winimal refutatison is a bound on the

complexity of a simplest SlL-refutation.

Lemma 10. For every unsatisfiable set S of ground clauses,
support setl So and selection furction %3, there exists an SL-
refutation of S which has the same rm-size as some minimal ground

refutation of 3.

Proof Qutline (illustrated in figure 14 and appearing in

full detail in [14]). The proof is by induction on the number n
of distinct atoms in S. if n = 0 then the desired SL-refutation

containg Just the null chain and has rm-size (0,0). Suppose n >0,

It suffices to consider the case where S is minimally
unsatisfiable anrd So contains just one clause 01. Choose as
initial chain any inp't chain C? formed from this clause. The
selection function 99 determines a unique order in which literals
descending from those in C? are resolved upon in any SL-derivation
with iniftial chain C?. In particular, g7 determ.nes a literal L in
C? whose descendants are the last to be resolved upon, among all

descendants of literals in C?.

delete L delete L

induction

hypothesis J
4

induction
hypothesis

_ 5\
¢, ~{L} Cf-L B¥.L B-{1}
e emim ey] 0 O
2 o lower 3 c*.I)
/ f"’p V4 ,'0
'd Vi
’ . ‘Pé 1% gt,a* t
| i i
0[] o]
replace L replace T
N 0-116 -
X 9
1 |
Z
L) C -
by T /% 1% I P,* (B*-0) N&
C? | ’;G‘*L L ey
i I P N
LC !* s | ~ < —
+ (B*-L <%L_'| C¥L
L K b T} c¥ %
{r} io s (T
\ 01 B /

)
b~
MN

O

Figure ¥+ Qutline of the proof of Lemma G

It is easy to verify that the set of clauses obtained from S
by deleting all occurrences of L and ignoring clauses containing T is
unsatisfiable and therefore contains a minimally unsatisfiable subset
Sye Obtain the corresponding set of chains Sil* from the set S* of
input chains by deleting L, ignoring chains containing T and, of the
remaining chains, choosing those which correspond to clauses in 81'
It is easy to check that tue chain C’{f -~ 1L, obtained by deleting T

from C"f, belongs to S“Zf.

Similarly, there exists a minimally unsatisfiable set of
clauses S2 and a vorresponding set of chains 5%, obtained by delet-
ing T from clauses in S and chains in S*, ignoring clauses and chains
containing L. S§ contains a chain B¥ - -L’, obtained by deleting L

from some chain B¥ ¢ S* yhick contains i,

The induction hypothesis is applied to the sets of clauses S1
and §, with respective support sets fc, - {L}} ana {B - {T}}. Por
this purpose, we define selection functions (ﬂ for S1 and CPZ for S2.
Suppose that C¥ is any chain obtainable by an SL~derivation from S
with top chaia C"{ for the selection function (F .« Let C*¥* be C* with
all occurrences of L and I deleted. If L occurs in C* only as &
B-literal in the leftmost cell then 301(0**) = ﬁo(c*), If L occurs
in C* only as the lefumost A-literal then P,(c*¥) = P(o*). The

values of (‘?1 and CPZ for other chains may be defined arbitrarily.

By the induction hypothesis, there exist minimal refutations
Dy of Sy and D, of S,, and SL-refutations D¥ of Sy for ¥, with

initial chain C% - L and D% of §, for ¥, with initial chain B¥ - I,

D. and D* have the same rm-size.
R4 ~4

- 70 -

The desired SL-refutation D* of S can now be obtained from 2’1"
and 2*2* as in the similar construction of the s~linear refutation of
Lemma 8. Introduce L as new B-literal in the leftmost cell of all
chains fn Qj{ Introduce L as new initial chain and as a new &-
literal to the left of all literals in chains of '13;5 and insert
C“;S‘_ T immediately before any chain Cfi obtained by extension in P"L,!‘ with
a chain C* - L € S"é“ where L € C* and C* e S*. D* is then obtained
by appending the second derivation to the first, deleting the
duplicated occurrence of the chain L. It is not difficult to
verify that D* is an SL-refuteticn of 8% for the selection funcsion

(P with initial chain C"{.

The minimal refutation D of S, with same rm-size as D¥, is
obtained from «]31 and 22” T¢ each clause C - {T} at a tip of Q‘%,
where L € C and C ¢ S, add the iiteral L. Alsc add L to the clauses
at 2ll nodes in 21 which descend from such tips. The resulting
derivation is a minimal derivation of {L} from S. 1In a similar
mameyr obtain from }32 & minimal derivation of {f} from S. D is
then the minimal refutation of S, having these two minimal derivations
as immediate subderivations. It is quite straightforward to check
that D* and D can be constructed so that they have the same rm-

size. QOE-D'

Lemma 11. PFor every unsatisfiable set S, supporit set So and
selection function (F, there exists a set S* of ground instances of
clauses in 3, a support subset Sé of S' and a selection function ¢!
such that, for every ground SL-refutation of S', for Sé and Cp‘,
there exists an SL-refutation of S, for Sy and §, which has the

game rm-size.

Proof Outline (appearing in full detail in [14]). For

simplicity, we may assume that S is minimally unsatisfiable and that
SO consists of a single clause C1. Let S' be any minimally unsatis-
fiable set of ground instances of clauses in S. S*® oontains some
instanoe C? of Cyo Let S* be a set of input chains corresponding
to S, let S be the corresponding set ol input ohains for SY and let
C?‘be any chain in S* corresponding to Cy and C{* be the chain in St*
corresponding to Cj, where Ci*is an instance of Cf. - (The chain C'*
is an instance of the chain C¥ iff C'¥ is an ordered instance of C¥
and the literals of C!* and C¥ ir corresponding positions have ~he

same status.)

We construct a tree T, each node of which is labelled both by
& chain derived by an SL-derivation D* from 5% for § with initial
chain C? and by a chain derived by a ground SL-derivation Q}* from
S'* with initial chain C{*. Both derivations have the same rm-size
and D'* derives an instance of the ohain derived by D*. The root of
T is labelled by the chaing C¥ and Ci*. Suppose that a node N and
the SL-derivation D* = (C?, soey Cﬁ) and D'* = (C%*, coes Cﬁf) derive
C¥ and C;¥ at N have been conmstructed fied to have the
desired erties. We need to spec: wmediate descendant

nodes and tviae Sk-derivations of the clauses labelling them.

If Cﬁ* violates the admissibility restriction then N has no
immediate descendants. If truncation can be performed on C!* then
it can be performed on C} and N has one immediate descendant obtain-

ed by adding to Qf‘and'g'* the chains whioh result from truncation.

If reduction needs to be performed on Céf then one way of

-T2 -

doing reduction is chosen and performed in order to obtain the single
node which is the immediate descendant of N. The new node is label~
led by the chain which results from this reduction. A similar

reduction operaticn can be performed on Cﬁ and the result also labels

the new node.

Let L be the selected literal in C; and let L'in C;f be the
corresponding instance of L. Treat L' as the selected literal in
Cﬁ*. If the preceding cases dc¢ not apply and ao extension operation
with € chain B'¥* from S'* can be performed on Cﬁ* then N has no
immediate descendants. Otherwise, N has immediate descendants for
each such B'*, Fach new node is labelled by addiag the chain which
results J{rom extension. A similar extension operation can be per-
formed on C; with a chain B¥ {rom S¥. The chai» which results from

the performance of this extension operation also latels the new node.

In each of the preceding cases, it is straightforward to

verify that all new nodes have the desired properties.

The tree T labelled by its ground derivations may fail to be
an SlL-search tree for some selection function x?’. There may be
distinet nodes N and N' labelled by the same ground chain C'¥, bul
by distinct general chains. The selected literals in the general
chains may correspond to different literals in C'*, 1In such a case,
a single such node N can be selected and all subtrees of T rooted at
nodes N' can be replaced by the subtree rooted at N. It can now be
verified that the modified tree, together with the gmround chains
labelling its nodes, constitutes an SL-search tree T for some sel-

ection function ?”, for the initial chain C'* and for the input

- T3 -

set S8'., It follows that, for every ground Sl—refutation R'* of S¢
for ()0 ', there is an SL~refutation of S for (P with initiael chain C*f,

having the same rm-size as D'¥.

Theorem 5. For every unsatisfiable set S, support set So and
selection function ‘P, there exists an SL-refutation of S which kas

the same rm~size as some minimal refutation of S.

Proof. Let S, Sé and ?”, be as stated in Lemma 11. By
Lemma 10, there exists an SL-refutation D'* of S' for 33', with
initial chain in Sé* and D'* has the same rm-size as some minimal
refutation Q’ o S'. But, by Lemma 6, there is a minimal refutation
2 of S which has the same rm-sire as D' aud, by Lemma 1%, there is
an SL-refutation D* for %P with initial chain in Sg which has the

same rm-siZe as Qf*o ‘Pherefore, the SL—refutation,Qf has the same

rm-gize as the minimel refutation D. Q.E.D.

Better bounds can be obtained for special cases. We conject-
ure that an improved bound can also be established for the general
case. It is easy to verify that, for every unsatisfiable set of twow
literal ground clauses S, no SL-refutation has rm-size worse than
(2n -~ 1,2) where n is the number of distinct atoms occurring in 3.
On the other hand, for each n there exists an unsatisfiable set
of two-literal clauses S and & minimal refutation of S with rm-sige

(2% - 1,2).

We have only found one example of a set S such that no
selection function or support set yields an SL-refutation as simple
as can be obtained by unrestricted, minimal or s-linear resolution.

For & = {IN, 1P, IR, LR, NMQ, NPR, NT, T}

- T4 -

& simplest refutation has rm-size (7,3). The simplest SL-
refutation obtainable has rm-size (9,2),(10,4),(11,%),(12,3),
(14,2) or (15,1) depending on the specification of selection

function and supprrt set.

We lLiave not found any examples where SL-resolution signific-
antly increases the complexity of a simplest proof. For & number
of other systems it is easy to construct refutations which are the
simplest obtainable by those s7stems end which exceed in complexity
the bound established for SL-refutations. In particular, for
S = {PQ, fa; ?lefi}, P1 - deduction yields as simplest pruof no
refutation tree of rm-size better than (4,2). A1l minimal and
SL-refutations of S have rm-size (3,2). For the same set of
clauses, resolution with any singleton set of sunport also yields
simplest proofs more complex than minimal refutatiors. It is an
open question whether the complexity of simplest proofs obtainable
by m-linear resolution exceed the bound of the complexity of minimal
refutations. Our analysis of the completeness proofs for m~linear
resolution yields bounds on complexity which are worse than have

been established for SL-resolution.

-T5 -

Chapter 5. Selection Function and Support Set:

5ot Introduction

SL-resoluticn has two parameters which affect the structure
of its search spaces. For each choice of selection function and
each choice of support set, different seurch spaces ere determined.
Various anticipation methods allow some prediction of the structure
of the search trees and thus aid the choice of a selection function

and a support set.

The choice of a selected literal can be deferred urtil its
chain is geaerated. Thus heuristic criteria can be employed to
select literals from chains at the time of their genera*ion. These
heuristics determine the selection function dynomically. Similar

heuristics can be used to determine the support set.

The secarch trees are asswied to be layered from the top dowm
so that the search strategy generates all chains in higher layers
before generating any on the next lower layer. DProvided that the
layering is czhaustive, the search trees for any umsatisfiable set
must have a highest layer which contains a null chain. For a glven
input set, the best search space is one which has fewest chains on
all layers above the highest one which contains a null chain. 4
powerful resolution rule has few layers above the layer containing
the null chain. A search space is sparse if it has few chains on
each layer. The choice of a selection function and a support set
affect both the power of SL-resolution and the sparsemess of its

search spaces.

Estimating the number of layers above a highest null chain can
be done by using the unlimited anticipation methods which will be
discussed later. However, if this estimation is dome for every
choice of a selection function and support set, the difficulty becomes
50 great that it seems to outweigh the advantages. Granting this,
the selection function and svpport set will be chosen in an attempt
to increase the sparseness of the snarch spaces. Since the choice
of support set and selection function does not affect the bound on
the conplexity of simplest SL-refutations, congistent increase in
sparsene3s results in an overall reduction of the size of the svb~-

space which needs to be generated before finding a first refutation.

- T =~

5.2 The Uses of a Selection Function

It is assumed that the number of chains on each layer is an
increasing function of the branching rates of the immediate ancestors
of those chains. (The branching rate of a chain is the number of
immediate descendants of that chain.) It follows that choosing a
selection function so as to decrease the branching rate should

increase the sparseness of the search spaces.

It is convenient to consider each literal of each factor of

each inyut clause as an operator literal. Corresponding to each

operator literal is an operator, which is the chain constructed from

@ factor of an input clause with the operator literal distinguished.

The result of using au operator is the resolvent obtained by
using extension with the operatur as the irput chain, where the dis-
tingvished operator literal is the literal resolved upon. A search
tree's structure is particularly simple when an operator is consider-
ed to be associated with the arc joining the near parent node with

the resolvent node.

Let C be a chain and L & literal in C. Any literal X such
that I and K are unifiable is a mate for L. The branching rate of
L is the number of opsrator literals which are mates for L. (The
estimation of branching rates is investigated in the next section.)
To reduce the branching rate of a chain, the most recent literal with

lowest branching rate should be the selected literal.

Let the most recent literals of C by L1 and L2 with brarching

rates n, and Bys where n, is less than n,. It is not difficult to

-8 -

verify that if L1 is selected rather than L2, then in general there
are at least n, ~ n, fewer chains generated as descendants of C.
If a solution is found between the selection of L1 and L2, then the

advantages of selecting L1 are even greater.

The branching rate of a literal is defined without reference
to the desirability of the chains of the operator literals. For
example, operator literals from unit chains are more desirable than
operator literals from longer chains. lLater, anticipation pro-
cedures will be used to estimate the difficulty of 'getting rid of!

the literals of ar. input chain other than the operator literal.

-T9 =

5.3 Estimating Branching Rates

Rather than actually estimating branching rates, it is simplex
to estimate which literal of a chain has the lowest branching rate.
This may be dcne by selecting the literal which is most instantiated
and is thus likely to resolve with fewer operators. The more general
literals which are not selected in the chain will tend to become more
highly instantiated in the descendants of the chain, and will there-
fore tend to produce fewer immediate descendants when selected later.
The smount of ingtantiation might be measured by the number of
gymbols in its arguvent places less the number of distinci variables
there. Thus the simplest selection function which reduces the
branching rate selects the most recent literal with the greatest

measure of instantiation.

An upper limit for the branching rate of a literal is the
nurber of operator literals whose predicate letters are apprropriate

for a mate. The literal i'is a predicate mate for L if X and L have

the same predicate letters.,

A lower upper limit for the branching rate of L is the numver
of predicate mates for L which do not have any outer function
clashes with L. Two terms s and t have gn outer function clazh
if they begin with different function letters. (A constant is &
function with no arguments.) If s and t do not have an outer
function clash, they may still not be unifiable if there is an inner
function clash or if they both contain the same variable at differ-
ent function nestings. Two literals have an outer function clash

if they contain terms in corresponding argument places which have an

- 80 -

outer function clash. If two literals are predicate mates and

they do not have an outer function clash, then they are outexr

function mates. The outer function branching rate of a literal is

the number of iis outer function mates among operator literals.

To avoid repetious calculations of outer function clashes,
the operators should be classified so as to make the calculations

easy.

- 81 -

5.4 Operator Classification Trees

For any input set, the number of operators is fixed. Thus
the work involved in their classification need only be done once.
Besides simplifying the estimation of branching rates, the classific-
ation of operators according to outer function clashes avoids attempt-
ing ynifications which are bound to fall. Although alternate and
more sophisticated classification trees can be constructed, the

following description indicates the method of construction.

Given any literal L, the cperator classification tree fo:r &
given input set has one and only one branch corresponding to L, and
at the tip of that branch is the set of all operators whose disting-

uished literals are outer function mates for L.

Let P1, cony Pm and f1, voey fn be the predicate and function
letters occufring in a set S of input clauses. The operator clasg-

ification tree for S is the tree T(S) composed of all braunches of the

forn (z, Q, 8qy oecs gk) where T 1is the root of T(S),

Q 2 {Py, Pyy eeey P 'ﬁm}, g; € {1y ooy £, 7} for 1 Sigk and
k is the number of argument places of Q. From the root of (s)
one may visualise an arc for each of P1, 5}, eoaey Pm! 5;. Each

node below the root is either a tip, or from it there is an arc for

each of f1, dawy fng Te

The literal L travels along the branch (z, @ 8yeees &) if
L has predicate letter Q. If g; =7V then the i=-c¢h argument of L is
a variable. If 8; # v then the i~th argument of L is a term
beginning with g;. At the tip of (ry Q) 819 eeey &) is the set

of all operator literals which are outer function mates for L.

o 82

If K is an operator literal at the tip of (r, Q, &1: ecey gn) then
the predicate letter of K is'a. If g; = v then the i-th argument
of K may be sny term. If g # v then the i~th argument of K is a

variable or is a term beginning with g;e

It may be that several tips of an operator classification
tree have the sawe set of operators. In this cese, the tree may be

condensed. This is done by lebelling an arc with several functions.

Consider the following list of input clauses

P(x,e,x)

P(x,g(x);e)

Pe(a),ae)

P(x,5,u) P(y.2,v) B(x,v,u) Pu,z,w)

B(x,7,m) 2(y,2,7) Plu,z,w) P(x,%w).

Tigure 15 is a condensed operator classification tree for these
eleven literals. The literals are represented by an ordered pair
of integers, the first integer being clause number and the second
being literal number in the order they are written above. If
this operator classification tree were not condensed, it would have

128 tips instead of 5.

®og O <

(U ORI

(4,1)
(4,2)
(4,3)
(5,1)
(5,2)

(5,3)

(3,1)
(4,1)
(452)
(4,3)
(5,1)
(5,2)
(5,3)

- 8% -

root

2
&
(1,1) (2,1) (4,4)
(4,4) (4:4) £y4)
(5,4) (5,4)
Figure 15,

A more sophisticated operator classification tree than the one

described would classify operators by more than the outer function

of each temn.

be indicated.

The length and intricacy of each operator could also

The following sections indicate verious anticipation

techniques whose implementation would depend on a sophisticated

operator classification tree.

- 84 -

Be5 Functional Agreement for Tie-Brealking

In many cases, there are several most rzcent literals in a
¢lause which have the same outer function branching rate. The sel~
ection function must have some sort of tie-breaking rule. One such
rule chooses the literal which has the greatest functional agreement

with overator literals.

If two terms are both variables or they begi=n with the same

function letter, then they have functional agreement. The number

of functional agreements of two literals which are outer functiun

mates is the number of terms in corresponding argument places which

have functional agreement.

A functional agreement tie-breaking rule is the type of
heuristic used by wathematicians. To choose to unify literals
because of their similarity has a strong appeal for a mathematician.
It should also be noted that when functional agreement is high, then
the unifying substitution should be simple., The advantages of

this are discussed in the next chapter.

The implementation of functional agreement for tie-bresking
could be achieved by modifying the operator classification tree.

Consider the evample cf figure 16.

- 85 .

PE(x)y Pf(x)y Pf(x)y PH(x)y

(i) (i) (iii) (iv)

Figure 16,

If a selected literal is of the form P(f(t),z), for any term
t , then it would follow the tree down to the tip marked (ii). In
this case, there are two functional agreements. Any selected
literel which follows the tree down to tips (i) or (iv) has one
functional agreement. Following the tree down to (iii) indicates

no outer function clash, but also no functional agreement.

- 85 -

5.6 A Two Stage Anticipation Procedure

Using an operator classification tree allows the estimation
of the number of immediate descendants of a chain, This anticip~
ation can be extended a stage further by considering the branching

rates of the immediate descendants of a chain.

Let L and ¥ be outer function mates where E is the disting-
uished literal in the operator C. Let the residue of K be c*,

obtained by deleting K from C, -

The outer function branching rate for each literal in C!
can be calzulated using the operator classification tree. Let
the minimal outer function branching rate of the literals of C' be
the residual outer function branching rate of K. Let the second
stage outer function branching ate of L be the sum of the residusl

outer function branching rates of the outer function mates of L.

Consider the following minimally unsatisfiable set of

clauses:

P(a,x) P(x,f(x)) = 1M
P(a,x) P(f(x),x) = NP
P(a,x) P(x,0) = QR

P(a,a) =9

- 8T -

Literal Residual

Literal branching rate Residue Rate

L 3 M 1

M 1 L 3

N 3 P 1

P * N 3

Q 3 R 3

R 3 Q 3

S 2 . none -

If a selected literal were to resolve with L, then the residue
would be the literal M which hag a branching rate ofﬁf: Thus the
residual outer function branching rate of L ig 1. The literal R
has outer function mates, L. N and P so that the first stage outer
function branch rate of R is 3. "Byt L, N and P have residual
outer function branching rates ¢f 1, 1 and 3. Thus the second
stage outer function branching rate for R is 1 + 1 + 3 =5, That
is, using outer function branching rates, it is estimated that in
selecting R, there will be 3 immediate descendants and 5 second
level descendants. Irn this case, the difficulty of generating &l1
descendants of R two levels below R is 8. TFigure 17 illustrates

the anticipated descendants of R to two levels below R.

By using a two-stage anticipation method, the first and
second level branching rate can be estimated. The selected literal
in a chain should be the most recent literal whose cstimated first

and second level branching rate is smallest.

=~ 88 -

Second stage anticipation also indicates which operators
contribute to the least branching. This can be used by the search

strategy.

Clearly, the anticipation methoa can be extended to estim-
ating third level branching rates. There seems no limit to the
nunber »f levels investigated, but the labour involved and the pro-

gressive inaccuracy of the results will curb too deep an estimate.

Therc remains some difficulty when considering the second
level branching rate when a chain C resolves with a unit operatorr.
The branching of another literal in C determines the second level
branching rate., Although this determinabion is possible, the
amount and differentness of the calculation makes it attractive to
define the residual brenching rate of a unit operator s zero,

From +his point of view, the first and second level branching rates
are an estimaive of the two level difficulty in 'getting rid of' the
selected literal. This in turn suggests an extended anticipation
method which calculates an upper bound on the difficulty of getting

rid of a literal.

- 89 .«

5.7 Unlinmited Anticipation and Pseudo-Search Trees

The preceding anticipation methods can be extended without .
limit, but then it becomes difficult to keep track of the structure
of the anticipated chains. To overcome this difficulty, it is
conveniont to construct pseudo-resolvents corresponding to the

anticipated chaias.

Assume that the chains A and B have an SL-resolvent
(A'EE]B“) 8 , where L is the literal resolved upon and where A' and

B! are the residues of 4 and B. Then the pseudo-resolvent of .4

and B is AJIEJB’ where the unifying substitution © is not applied.

Pseudo~factoring, and pseudo-—ancestor resolution can be defined in

& similar way.

For the example of tne preceding section, figure 17 illus-

trates a pair of 2-stage anticipation trees using pseudo-~resolution.

A literal may be selected based on the results of construct-
ing an extended anticipating tree which uses all possible selection
functions. If tle tree is extended far enough a selection function
can be chosen so that the search tree it defines is anticipated to
have the fewest chains above the first null chain, In practice,
the amount of extension of the anticipation tree depends on the size
of the tree. Instead of limiting the number of stages of andicip-
ation as was considered in the preceding section, it is possible to
have some limit on the size of the anticipation tree, Then

selecting a literal would have some constant difficulty.

- 90 -

gr QR Qg

of 0

(o}
oRIMR oRER e[ilEla a «o[R[Ela

Figure 17,

The possibility of extending an anticipation tree until a null
chain is found suggests & new and very attractive nethod for con-
ducting a search. If only one selection function is used, then the
size of the anticipation tree is considerably reduced, so that

extending it to a null chain seems more feasible.

For any selection function, a search tree employing pseudo=-
resolution, factoring and ancestor resolution is a pseudo-search

trce, By applying the appropriate unifying substitutions, and

deleting branches where unification fails, it is clear that a real

-9 -

search tree may be obtained from the corresponding pseudo-search
tree. Thus any real search tree is an instance of a subtree of
the corresponding pseudo-search tree. For ground chains, a pswudo-

search tree is a real search tree.

Since SL-resolution is complete, at least one pseudo-
refubation of & pseudo-search tree corresponds to a real refutation.
Thus the pseudo-search tree indicates which branches of a real
search tree are most likely to lead to real refutations. The use
of a pseudo-search tree is not itself a search strategy. Because
the branching rat: »f a pseudo-search tree is usually grewter than
that for a real search tree, a search strategy may be more important
in generating a pseudo-search than in generating a real search.
However, each pseudo-resslvent is much easier t» generate than a

real resolvent.

Consider the following example:

Represent P(a,x) P(x,f(x)) by IM,
P(=,x) P(f(x),x) by WP,
P(a,x) P(x,a) by R, and

T(a,a) by S.

In the following diagram, mate literals are counnected by lines.

S

- 92 -

Using only the relationships represented by this diagram, the pseudo-
search of figure 18 can be constructed. In figure 18, {QR,S} is
chosen as support set. The parenthesised numbers indicate the order
in which chains sre generated using upper diagonal search. (4 full
deseription of search strategies appears in the next chapter.) Tae
operator appears beside the lines, literals to be resolved upon are

underlined, and A-literals appear in bozxes.

QR

P;\T_Ar HL

(s) a[g]p 04) EIN S (7) QR

(8)q \
W

M L 3
(9) QL o~ (10) TalM & (1) Qo

S
1M PN
(1) [sin (2)
QR QR
(3) [Etlr ¢ (4) [E[E]e
3
(12) [sIMIr]w o
et
(13) O 4

Figure 18,

The pseudo-refutation of the pseudo~-search of figure 18 has

the refutation of figure 19 as &n instance.

o B(a,z)

P(a,x) P(x,£(x))
Eaaale(e,2(2))
Pla,x) P(x,s)

6 (P(a,2) Ip(a,#(2)) | P(£(a),a)

P
e

| Pg ffx),x) P(a,x)

b (Blaya) | P(af(a) [Bls(a).a) b Pla,a)

ancestor
resolution

o O

Figure 19.

In more complicated examples, there are pseudo-factorings and
pseudo-admigsibility clashes (where the admissibility restriction
fails to hold). It has been observed in several examples that al-
most all pseudo admissibility clashes correspond to real admissibil-
ity clashes or to failure of unification. It has also been found
that almost every branch leading to a null clause in a pseudo~
search corresponds to a branch leading to a null clause in g real
search. Thus, there are indications that pseudo-search gives

fairly accurate information about the corresponding real search.

It should not be difficult to implement a pseudo-search

using far less time and space than a real search. If the conjecture

- 94 -

about the accuracy of the information of a pseudo-search is correct,

then finding a refutation by using a pseudo-search might be the most

efficient method of searching for a refutation.

If the branch corresponding to a pseudo-refutation fails to
be a refutation, then the literals on this branch could be treated
as the literals in the input set were treated. That iz, each is
given a name, @nd the literals which are mates are noted. In this
way, a pseudo-search can be partly replaced by a real search. The
pseucdo-search can be considered to be a look-ahead for the real
search. In easy problems, it is possible to look shead 1o possible
solutions. In more difficult problems, where the pseudo-search
becomes very large, the look-ahead might be restricted %o some fixed
number ¢f levels, or to some fixed degree of difficulty. When the
look-ahead is limited to one level, then the pseudc-search is

reduced to an estimate of the branching mate.

An alternate unlimited anticipation method has been suggested
by Bob Xowalski. The pseudo-search could be limited to single
literals of t+he input set. One advantage of this is that several
simpler pseudo-searches are done. Another advantage is that when
trying to prove several theorems from the same axiom set, there should

be some transferal from one problem to the next.

- 96 -

5.8 The Choice of g Support Set

Let S be any unsatisfiable set of clauses, and let S% be the
set of chains corresponding to all factors of clauses of S. Among
all the SL--scarch trees with top chaing in 8%, at lecast one and
usually several contain a refutation of 8. It is clearly advantag-
cous to consider as few of these search trees as possible provided
that at least one of thise considered contains a refutation. Any
gubset S of 5% such that S*-S'* igs satisfiable is a support set

for S*., At least one search tree with top chain in S'* contains &

refutation.

One metnhnod for choosing S'* depends only on the sign of the
literals in the chains of S, From the completeness of hyper-
resolution, it follows that the set of 11 negative chains in S¥
is a support set for S*. (A chain is negative if all of its
literals are negative.) By reneming every literal in S%, so that
every sign is changed, it is evident that the set of all pesitive
chains in 8% is also a support set for S*¥. In fact, for auy
renaming, the chains of S* which are renamed to become negative are
a support set for S¥. The ground unsatisfiable set
{rQ, 5; ER, 53, ﬁgﬁ, f?} has 16 support sets identified by noting

which subsets ~2an be renamed to contain negative chains.

A seccnd method of choosing a support set depends upon
knowledge of the problem. Many problems are expressed as a number
of axioms and a theorem which follows from the axioms. Assuming
the axioms and conditions of the theorem to be comsistent, the

negation of the conclusion of the theorem forms @& set of clauses

which is a support set for the clauses

- 97 -

of the problem. The support set of chains which can be used as
top chains is the set of chains corresponding to factors of the
clauses in the support set of clauses. From a mathematiciants
point of view, this choice of support set is particularly attract-
ire. This is because he can check whether resolvents are false

in his model for the axioms. If such checking could be mechanised,

then many irrelevant derivations could be deleted from the search.

It is evident that any unsatisfiable set of clauses conbains
several support sels. The support set should be chosen in an
eifort to reducc the difficulty of the search. The simplest
criterion £or the choice of a support set is that it be the one with
the fewest chains, In this way, the corresponding search space has
fewest szarch trees. This is a reasonable choice if it is assumed
that there is no difference between search trees or that the diffew-

ence camnot be determined by inspecting the root chains.

The number of chaing in a support set can be thought of as
its gero level branching rate. The anticipation methods of the
preceding sections can bc used to estimate tre higher level branching
rates of a support set. For each chain in a support set, the liter-
al with lowest cuter function branching rate is selected. The sun
of these branching rates for all chains in the support set is the

branching rate of the set. The sparsest search tree should be

obtained by choosing the support set with the lowest branching rate.
Obviously, this method can be extended to estimate second and higher
level branching rates. It should be noted that the chains corres-
ponding to the negation of the conclugion of the theorem tend to be

more highly instantiated and should thus have a lower brenching rate.

- 98 -

Although choosing the support set with the fewest literals
has some intuitive appeal (there are fewer literals to get rid of),
it seems to have no theoretical justification, and examples

indicate that it has no advantages.

- 99 =

Crapter 6. A Search Strategy for SL=Resolution

6.1 Introduction

All of the preceding development has defined an inference
gystem. Por any set of chains, an SL-inference system specifies
a search space composed of one or more scarch trees, It is now
necessary to investigate a search strategy which specifies an

order in which the chains of the search trees are generated.

There are certain properties of a resoivent which can be
precisely predicted from the properties of its parents. The most
important of these are the complexity of iis deriration, and the
nunber of B~literals it has. Such precise predictions allow &
discussion of search strategies which comnsider wnroperties of chains
which have not yet beer generated. These candidates for generation
can also be distinguished by properties which belong only to their
parents. A search strategy compares properties and then selects

one chain {0 be generated from all candidates for generation.

Although tre following is conceived of as being used with
normal SL~resolution, the search strategies also apply to pseudo-

resolution and pseudo-searches.

- 160 ~

6.2 An Expediency Tactic

In any search for a refutation, the null chain is the best
chain to generate., It should be generated whenever possible and
however possible; even if this overrides other tactics of the search

strategy.

When a unit chain (with one B—literal) is generated, there
should be & search for any other unit chain which will resolve with
it. To avoid too much search in the implementation of this tactic,
special storage is needed for unit chains. These unit chains need
not be on the same branch of @& search tree nor even on the same
search tree., Thus the resulting refutat’.on may not Ye SL, nor

least complex, but it should have the easiest search.

Although this tectic seews bound to increase efficiency, it
is very difficult to find an extension of it. One possibility
would be to extend the null chain preference to a unit chain pre-
ference. Another is to have unit chains act ag operators. How-

ever, both of these tactics are likely to cause inefficiency.

- 101 «

6.3 Complexity Saturation and Disgonal Sdéarch

As was mentioned in Chapter 1, only exliaustive search
strategies are to be considered. Any exhaustive search strategy
enumerates the chains of the search space. This enumeration can
be partially specified by layering the search space, All chains
on the same layer have the same merit. A4 null chain with a simple
derivation is to have a better merit than a null chain with a more

complex derivation.

A merit saturation search strategy for SL-resolution first

generates all chains of merit zero. After generating all chains
with merit %k, the search next ~enerates all chains with merit ki,
Such a search will terminate when it finds the refutation of small-
est merit obtainable by Sl-resolution. If the merit of a deriv-

ation is its complexity, then the corresponding saturation scarch

is a complexity saturation search.

The efficiency of a complexity saturation search is much
improved by using Kowalski's method of diagonal search [11]. A
search tree is layered by complexity of derivation in order that
simple refutations may be found before more complex ones, However,
all refuta*ions of a given complexity can be generated without
generating all derivations of that complexity. Tor a given com-
plexity, diagonal search generates only those derivations which

could be extended to & refutation of that complexity.

Let the cost of a chain C be the complexity of the derivation
of C. Let the gxpectation of C be any lower round on the cost of

deriving a null chain from C,. (Kowalski calls the expectation of

- 102 =

C the heuristic value of C.) Tor instance, if the cost of C is the
rou-3ize Of the derivation of C, then the expectatiun of C could be
*he number of B-literals in C, the leng%h of C. (The prim-size of a
derivation of rm-gize (r,m) is r%m.) This expectation is clearly

a lower bound on the cost of deriving a null chain from C.

Consider 21l derived chains to be stored in a rectangular
array, with all chains of cost g in the g-th row, snd all chains
with expectation h in the h«th column. Le% the n~th diagonal of
this array be the set of 2ll cells of the array the sum of whose row

number and column number is n. Diagonal search first generates

all chains in diagonal O, If all chains in diagonel k have been
gererated, then the search next generates all chains in diagonal
k+1, Thus diagonal search saturates the diagonals of the storage

array.

éince h is a lower bound on the cost of deriving & null
chain from C, it follows that g+h is the complexity of the simplest
refutation obtainable by extending the derivation of C. Therefore,
to find a refutation of complexity k, it is sufficient to generate
all chains on diagonals less than or equal to k. Complexity
saturation search to complexity k generates all chains generated
by diagonal search to diagonal k, but complexity saturation also
generates all those chains of cost less than k which are on
diagonals greater than k. Thus diagonal search is always more

efficient than complexity saturation search.

Diagonal search is a merit saturation search if merit is

defined as g+h where g is the cost and h is the expectation.

w 103 -

For the case where complexity is defined as ar+bm for coefficients
g and b, the merit should be defined as artbmt+bh Oor possibly
ar+bm§ah4+bh2 where h.2 is the number of B-literals in the rightmost

cell, and h1 is t+he number of B-literais not in the rightmost cell.

In any search, it is often the case that several chains have
equal merit. It is then necessary to have a tie-breaking rule since
chains are generated one at a time., A good tie-breaking ruie for
diagonal search is Kowalski's upper diagonal search [11]. If there
are several candidates for generation on the same diagonal, then

upper diagonal search generates a chain with the smallest expectation.

Such a preference for small expectation should decrease the diffi-

culty of the search.

For instunce, let the cost of o chain be the r+m-size of its
derivatioh, and let its expectation be the length of the chain., Let
C be the chain most recently gensrated by upper diagonal search, and
let C have merit g+h. Then, immediately before the generation of
C, all other candidates for generation must have had merit greater
than g+h, or if they had merit gt+h, then thelr length must have been
greater than or equal to h. If C can be acted upon by the reduct-
ion rule or by the extension rule with & unit operator, then the
immediate descendant C' has cost g+l and expectation h-i. This
resolvent is on the same diagonal as C, but is shorter than C, It
follows that C' will be generated next after C. Thus, with these
measures of cost and expectation, when a chain is generated, all of
its descendants on the same diagonal are generated before any other

chains are generatede.

i
o
AN

i

Upper diagonal search is a merit saturation search with merit
h +-% (g+h)(g+h+1). The second term of this merit is the sum of
the number of cells in diagonals shorter than the one being searched.
This merit ordering can be considered to be & refinement of the
diagonal search merit ordering., Each of the diagonal search meric¢
levels is subdivided to provide upper diagoral search merit levels.
Mogt tie-~breaking rules can be considered as refinements of the
merit ordering for which they break ties. The following table com-
pares the number of derivations generated by complexity saturation
and diagonal search for the example and refinements in the tabls of

section %.3%. For both strategies, the complexity is r+m.

linear | s-lin. § m-lin. § ms-lin, §t-lin. | SL(1) | su(2)

Couplexity :
Saturaiion 282 224 3BT § 357

\Q
Ul

13 14

Diagonal \
Scarch 42 42 171 171 40 11 12

~ 105 «

6.4 HMeasures of Complexity

With a computer, the difficulty of a search for a refutation
is some function of elapsed time and storage facilities used. " In
order to do theoretical calculations, some simpler estimate of
difficulty must be used. The simplest estimate is the gize of the
search, (the numver of chains generzted before an empty chain is
generated). This estimate is quite inaccurate if some searches
attempt many unifications which fail. The use of an operator
classification tree should substantially reduce the number of uri-

fications which feil.

The aim of a search strategy is to find a refutation with as
little difficulty as possible. 4An indirect way of altempting to do
this is t0 search for refutations which are least difficult to con~

struch. In constructing @ derivation, no chains are gonerated

except those in the derivation. The complexity of a derivation
should be & measure of the difficulty of constructing the deriv-

ation, and not a measure of elegance or conceptual clarity.

Corresponding to the simplest measure of the difficulty of a
search, the simplest measure of the complexity of a derivation is
its size. The simplest measure of size would count only the number
of extension operations in & derivation. Since both extension and
reduction operations meke substantial contributions to the difficulty
of a search, both should bLe used when measuring the complexity of &
derivation. A size of r+m is the simplest to caleulate, but it is
somewhat inaccurate since the generation of a chain by extensiom is

more difficult than the generation of a chain by reduction. This

~ 106 -

suggests the use of ar+bm where & > b, a>o0 and b > 0. Since one
extension gets rid of two literals, while reduction gets rid of only
one, 2r+m might be a good measure of complexity. It should be
noted that a refutation has 2rim input literals. We have con~
sidered values for a and b of (1,0), (1,1) and (2,1). There
seems to be 1little theoretical justification for usirg any other

Talues,

L literal such as P(f(x,g{¥)), h(z)) is structurally mors
intricate than P(u,%), and is more difficult to process. A derive
ation containing more intricate literals is more difficult to con-
struct than an isomorphic derivation whose literals are less inbtric-
ate. Thus the intricacy of the literals of a derivation contribute

to its complexity.

Since a literal with distinct variables in each argument place
is in its least intricate form, such & literal should be assigned an
intricacy number of zero. The intricacy numbcr of a literal is the
number of symbols in its argument places less the number of distinct
variables. (This measure is used by Reynolds in [27].) Using
this measure, P(x,x), P(x,a) and P(x,f(y)) each have an intricacy
number of one, while P(f(x,g(y)), h(z)) has intricacy number three.
Measuring intricacy by counting the total number of symbola in &
literal is easier, but seems too naive in that it discriminates

against literals with many argument places.

If k is the sum of the intricacy numbcrs of all of the B~

literals in a derivation, then ar+bmick could be used to measure

-~ 107 -

the complexity of the derivation. Since k would usually be &
larger number than r or m, and because k makes a smaller con-
tribution to the difficulty of a derivation, ¢ should be consider-

ably smaller thar a& or b.

A fourth possible contribution to the difficulty of con-
structing a derivation is the number and intricacy of the substit-
ution components in the unification substitutiong. This contrib-
ution to the difficulty is most evident when a ground derivation is

compared with a general level derivation.

If a substitution component replaces a variable x with &
term t and t is composed of n symbols. then define the gize
of the substitution component to be n-f. The gize of a substitution
is the sum of the sizes of its components. Let s be the sum of
the sizes of the urification substitutions used in constructing &
derivgtion., Then art+bm+ck+ds could be a measure of the complexity
of the derivation. As with ¢, the coefficient d should be con-

siderably smaller than & or b.

- 108 -

6,5 Heuristic Merit Functioms

In a diagonal search, g has been considered to be some meas~
ure of the complexity of the derivation of the chain and h to be
some measure of the complexity of getting a refutation. However,
in the search, the merit is only used to choose which chain to
generate next. There ara heuristic criteria which could help in the
choice of a chain but which are not direct estimates of complexity

or expected difficulty.

Alternatively, the cost anl expectation of a chain can be
considered from a more pragmatic point of view. When a search is
only partly compieted, the amount of additional search is of more
interest than the amount of comj leted search. For example, if a
chair C has a small expectation, and a chain C'! has a large expect-
ation, then there should be less search if the descendan®s of ¢ are
generated before the descendants of C°'. That is, when & chain has
been generated, its cost can be considered to be irrelevant since the
work has been done and cannot be undone. One way of implementing
this concept would be to use a length saturation strategy. Unfort-
unately, such a seemingly sensible search strategy is incomplete.
Although {P(a), '1-5(x) P(f(x)), -P-(f(f(a))) -f(f(a)) -f(a)} is unsatis~
fiable, the strategy of ignoring the cost of chains can lead along
an infinite branch of the search tree. However, the attraction of
trying for a simplest search does suggest that some multiple of the
expectation should be used so that the cost of a chain contributes
less to its merit. Por & chain with cost g and expectation h,

the merit should be ag +bh where b > a > o.

= 109 =

Rather than use the sum of the intricacy numbers of all B-
literals in a derivation, it is possible to use only the logal
intricacy, the intricacy numbers of the B-literals in the near
parent of a candidate for generation. For some coefficients a,

b and ¢ redefine the merit of a chain as agtbhtct where g and h
are the cost and expectation of a chain to be generated and t is
the sum of the intricacy numbers of the B-literals of its near
parent, Using such a merit with a merit saturaticn search, the
generation of chains with intricate literals is delayed. As has
been mentioned, this delays the difficulty of manipulating such
literals. This delay in generation is preferable to an intricacy

upper bound or a function nesting bound.

Eather than use the sum of the sizes of the unification
substitutions in a derivation as & measure of its complexity, it
is pcssible to estimate the size of the next substitution and use
this as a ccmponent of the merit of a candidate for generation. Let

f be the pumber of functional agreementg (section 5.5) between the

selected literal of the near parent and an operator literal. If
the number of functional agreements is large, then the size of the
unifying substitvtion should be small. The merit would then be
some ag+bh+ct+df. Because high functional agreement should con-
tribute to @& low merit, the coefficient d should be negative.
This may result in a negative merit, but this should cause no

difficulty.

There is a merit component which experiments have shown to be
more useful than g, h or t. This component uses the outer function

branching rate of section 5.3. The branching number of a chain is

- 110 -

the sum of the outer function branching rates of the unselected

B-literals of its near parent.

A chain with e large branching number is likely to resolve
with more operations and so one of iis descendants is more likely to
be the nuil chain. On the other hand, many descendants mean more
search for a null chain. One method of resolving this dilemme is

to test the usefulness of the branching number experimentally.

Let the branching number of a chain be n. Then the merit
could b= agitbhtct+dn, If a large n is helpful to the searck then
d should be negative., If a small n is most helpful, then 4
should be positive. For six examples, thc searches were least
difficult when the merit was g+2h+t-6mn, although two examples had
smalier searches with gth+t-5n. TFor® three of these examples a
gsearch with heuristic merit of g+2h+t-6n was compared with a merit
of gth., The difficultics of the searches are in the following

table:s

Problem gth g+2h+t-6n refutation size

A 26 15 7
B 28 6 4
¢ 50+ 38 7

These results indicate that generating a chain which is likely to
resolve with many operators tends to contribute to a less difficult
search, Not only is & large branching number useful, but it appears

to be more useful than cost, expectation or intricacy.

Some of the components of a many-component merit could be

used for tie~breaking as h is used for tie-breaking in diagonal

- 11 -

search, Unfortunately, many of Kowalski's results [12] cannot be
used because f, t and n are not properly monotonic. Since all
three are zero for the null chain, any or all may be included with
h to form the tie breaking component of an upper diagonal search.
Becanuse n seems to have a greater beneficial effect on the search,
it might be best to use n and h as the tie~breaking components.
However, because there are contributions from several sources, the
ag+bh+cttdn merit numbers are larvger so that a great spread of
merit numbers usually occurs. This means that tie-breaking wvalues

are needed less frequently than with ag+bh.

The intricacy, functional agreement and branching number of
a chain can be ireated purely as heuristic values in that they
indicate which chain is most likely to lead to a solution. With
this treatment, the cost, g, and expectation, h, of a chain are
used to calculate its merit, while the intricacy, functional agree-
ment and branching number are used as tie-~-breaking rules among
chains of equal merit. Tie~breaking rules can be considered to
define new merit levels within the larger merit levels. But
because these heuristic values do not have natural upper bounds, i%

is difficult to define refinements of a merit using these values.

Since the branching number, n, has proved most useful in
experiments, this might be the first tie-breaking rule among chains
of equal upper diagonal merit. If there are several of these
chains which have the same high branching number, then choose from

them the ones with highest function matching number. If there are

-~ 192 -

still several tied chains, then choose those which are least intric-
ate. Iinally, some arbitrary choice must be made if there are still

tied chains.

A final possibility for a tie-breaking rule has been suggest—
ed by Loveiand for model elimination. Of two chains with the same
merit, this rule selects the one with greatest number of A-literals.
The chain containing more A-literals offers more possibilities for
eliminating B-literals by reduction and therefore for eliminating

B-literals in the course of generating an empty chain.

- 113 -

6,6 Anticipation Strategies

Although their significance has not yet been thoroughly in-
vestigated, the anticipation techniques of the preceding chapter
seem to be most promising as tools for efficient search procedures.
Following & suggestion of Kowalski, pseudo-search techniques can be

used to assign numerical values to chains.

Let L be a literal in a factor of an input chain. Consider

the pseudo-search with top chain the unit chain L. Let the

anticipated difficulty of L be g, the size of the smallest psetdo-

refutation of this search. In order to avoid excessively difficult
pseudo~gearches, there might be an upper touand on g. Thus, when
pseudo~diagonal search exhausts the diagonal corresponding to this
upper bound, witiout finding a refutation, then g is arbitrarily
assigred the merit value of the next longer diagonal. The
anticipated difficulty of a chain is the sum of the anticipated diff--
iculties of its literals. The anticipated difficulty of a literal
in a resolvent is the anticipated difficulty of the literal from
which it descends in the near or input parent. This value could

be used as the expectation of a chain. The anticipated difficulty
of a chain is a lower bound on the difficulty of constructing =

derivation of & null chain from it (by extension).

In the case where the anticipated difficulty is the upper bound
on g, then the gize of the pseudo-search could be useful. This
anticipated size could be used either to indicate the likelihood of
a good path when the size is large or to indicate the narrowness of

the real search when the size is small.

- 114 -

More detailed research should reveal highly sophisticated
anticipation methods which will vastly improve the efficiency of
search strategies. A more sophisticated use of anticipation would
employ pseudo-searzh to obtain pseudo. - solutions of the goals and

subgoals of section 6.8.

- 115 -
6.7 A _Deletion Strategy

Lmong the methods most often used in resolution proof pro-~
cedures are strategies for the deletion of subsumed clauses. Corres-
ponding methods can be applied in SL-resolution for the deletion of
subsumed chains. Deletion strategies need to be defined carefully
in order to prescrve completeness and even then cannot always be

guaranteed to increase efficicncy.

Two chains arc said to be gquivalent if either can be obtain-
ed from the other by permuting tbhe order of B-literals in cells. A
chain C* subsumes another C'* if some instance C* ¢ is an initial
subchain of a chain equivalent to C'*, (Thus Q(X) subsunmes

both [P(&)]a(a)R(a) and [P:GLER(&L)Q(&) but not Q=) R(a).)

Let Xbe any search stralegy for SL-resolution, can be
modified to obtain a new strategy Z‘ which step by step generates
the same chaing as 2 y in the same order, but deletes subsumed
chains and does not gererate chains which are descendants of pre-

viously deleted chains.

(1) Both search strotegies generate the same first
chain.

(2) 1f X generstes a chain, then Z' generates the
same chain provided that its near parent has
been generated by Z' and has not been pre-
viously deleted.

(3) 1 Z' generates a chain C* then

(a) C* is deleted if it is subsumed by

some previously generated and undeleted

- 116 -

chain,
(b) otherwise every previously generatad and
undeleted chain, subsumed by C¥, is

deleted.

1 '
The search strategy) is complete relative to X, ie.es &

eventually generates a refutation if }; does.

Deletion of subsumed cluuses can be defined for other resol-
ution systems in a mammer anaiogous to the preceding definition for
SL-resolution. In the case of Pludeduction, for instance, an in~-
complete deletion sirategy is obtained by interchanging the anal«
ogues of steps (3&) and (3b). In general, if step (Sb), or its
analogue, is omitted, then increased efficiency can be guarenteed
for any search strategy) which generates a firct refutation which
is simplest for its search spacc. The inclusion of (3b) is a poss-
ible source of decrecased efficiency. Although deletion of subsumed
chains and clauses seems to be a desirable addition to proof proced-
ures, there has been no success in searching for modifications of
(3b) or restrictions on L which always guarentee the increased
efficiency of incorporating such deletion rules. A more thorough
investigation of these problems for non=linear rcsolution systens

is conteined in Kowelski's thesis [12].

Lid 117 s

6.8 Generation of Subgoals znd Lemnas

Possibilities for the generation of subgoals and for the pro-
cessing of their solutions in the form of lemmasg are unique to SL-
resolution and model elimination. To avoid various complications,

we shall discuss in detail only the case of ground SL-resolution.

Suppose that a derivation of a chain C¥ has been generated
and that no truncation or reduction operation can he applied to C¥.
It is easy to verify that if 3“(0*) = C¥L then C¥ must occur as &
descendant of C¥ in any SL- refutation containing C*¥., Thus tle
goal (¢* -) of deriving the null chain from C* con be decomposed .
into the immediate subgosl (CXI - C¥) of deriving C¥ from C¥ and
the further goal (C*é‘ -~) of deriving the null chain from CX.

The solution of the immediate subgoal determines a lemma which can

be reused to solve analogous immediate subgoals of the form

(CH*L - c*).

For example, the goal (N[P]aR - [J) can be completely
decompoged to obtain the immediate subgoals (NB_?]QR - NEﬂQ),
(NQ, - NE’:]) and (N - D). The derivation

(v[Elar, N[E]a[R]s, N[EleRISIR, N[E]Q)

is a solution to the immediate subgoal (NLE]Q,R - NE‘]Q). Having
solved such & subgoal, the fact can be recorded and appiied later
for solving analogous immediate subgoals such as (8 R - S[ﬂ)a
In particular, we may generate the lemma R which can be used as
input chain for extension. If the solution to (N|BJaR - N[B]Q)

were

(v[Eler, n[E]alRls, wBle[RISIF, nlEla),

- 118 =

then the corresponding lemma would be RP and could be restricted
in application to those analogous subgoals (CSR-» Cg) where Cg -

contains P as LA-literal or'E as B~literal.

The preceding examples of lemma construction are easy to
generalise (see, for instance, Loveland [16]). The restricted
use of such lemmas can Be shown to increase efficiency by always
leading to the generation of fewer unnecessary derivations before

the generation of a first refutation.

Zowalski in [14] and [15] has extended the use of subgoals
to the and/or tree representation of a search space for

SL-resolutione.

24

4.
5.

8.

9%

100

- 119 -
REFERENCES

Anderson, R., and Bledsoc, W.W., A linear format for resolution
with merging and a now technique for establishing completeness.
J.ACH 17 (July, 1970), 525-534.

Andrews, P.B., Resolution with merging. J.ACM 15 (1968),
367--381.

Chang, C.L., The unit proof and thc input proof in thcorem

proving, Journal of the Association for Computing Machinery, 17,

(1970), 698-708.

Cohn, P.M.,, IUniversal Algebra, Harper and Row, (1965).

Davis, M., Eliminating the irrelevant from mi:clLanical proofs.

Proceedings of Symposia in Applied Mathematics, 15, (1963),

American Mathematical Society.

Hagyes, PoJ., aad Kcwalski, h.A., Semartic trees in automatic
theorem proving. Machine Intelligence 4, Edinburgh University
Press (1969), 87-101.

Hayes, P.J., and Kcwalski, R.A., Lecture notes on automatic
theorem-proving. Metamathematics Unit Memo 40, Uaniversity of
Edinburga, (March, 1971).

Herbrand, J., Recherches sur la theorie de la demonstration,

Travaur de la Societe des Scicnces ct des Lettres de Varsovie,

11T, Vol. 33, (1930), 33~160.
Horn, A., On sentences which are true of direct unions of

algebras, Journal of Symbolic Logic, 16, (1951), 14-21.

Kieburtz, R., and Luckham, D., Compatibility of Refinements of

the Resolution Principle, (1969).

11,

12,

13.

14,

15,

16,

17,

18,

19.

a 120 o

Kowalski, R.A., Search strategies for theorem-proving.

Machine Intelligence 5, Edinburgh University Press (1970),

181-201.

Kowalski, R.A., Studies in the completeness and efficicncy of
theorem~-proving by resolution., Ph.D. Thesis, University of
Edinburgh, 1970).

Kuehner, D.G., 4 note on the relation between resolution and

Maslov's inverse method. Machine Intelligence 6, Edinburgh

University Press (1971), T3-76.

Kowalski, R.lA., and Kuchner, D.G., Linear resolution wittr
selection function. Metamathematics Unit Memo 34, University
of Edinburgh, (October, 1970).

Kowalski, R.L., and Kuehnere, D.G., Linear resolution with
selcction Tunction. Metamathemaiics Unit Memo 43, University
of Edinburgh, (June, 1971).

Loveland, D.W., A simplified format for the model~elimination
theorem~proving procedure. J.ACM 16 (July, 1969), 349-363.
Loveland, D.We, A linear format for resolution. Symposium on

Automatic Demonstration, Lecture Notes in Mathematics 125,

Springer-Verlag, Berlin and New York (1970), 147-163.
Loveland, D.W., Some linear Herbrand proof procedures: an
zmalysis. Depariment of Computer Science, Carnegie-Mellon
University (December, 1970).

Luckham, D., Refinement theorems in rcsolution theory.

Symposium on Automatic Demonstration, Lecture Notes in Math~

ematics 125, Springer-Verlag, Berlin and New York (1970),

163-191.

21,

22,

24,

25,

26,

27,

28,

29.

- 121 =

Maslov, S.J., Proof-search strategies for methods of the

resolution type. Machine Intelligence g, Ediuburgh University

Press (1971), T77-90.
Meltzer, B., Theorem-Proving for computers: somc results on

resolution and renaming, Computer Journal, 8, (1966), 341-343,

Meltzer, B., Prolegomena to a theory of efficiency of proof
procedures. Proceedirgs of the NATO Advanced Study Institute

on Artificial Intelligence and Heuristic Programming, Edinburgh

University Press (1971), 15-33.

Pohl, I., Bi-directional search, Machine Intelligence 6,

Edinburgh University Press (1971).

Prawitz, D., An improved proof proccdure, Theoriz 26, (1960).

Prawitz, D., Advances and problems in mechanical proof proced-
ures. Machine Intelligencc 4, Edinburgh University Press,
(1969), 59-71.

Reiter, Rs, Two results on ordering for resolution with merg-
ing and linear format. Department of Computer Science,
University of British Columbia (July, 1970).

Reynolds, J.C., Transformational systems and thc algebraic

structure of atomic formulas, Machine Intelligzence 5, Edinburgh

University Press (1969, 135-152,
Robinson, J.A., A machine oriented logic based on the resolut-

ion principle, Journal of the Association for Computing

Machinery, 12, (1965).

Robinson, J.A., Lutomatic deduction with hyper-resolution,

International Journal of Computer Mathematics 1, (1965).

30.

31,

32.

33

Robinson, J.A., 4 review of automatic theorem-proving.

Proceedings of Symposig in Applied Mathematics, 19,

(1967), 1-18.

Wos, L.T., Carson, D.F., and Robinson, G.A., Efficiency énd
completencss of the set of support strategy in theorem-
proving, J.ACM 12 (1965), 687-697.

Yates, R.A., Raphael, B., and Hart, J.P., Resblution Graphs.

Lrtificial Inteliigence 1, (1970), 257-289.

Zamov, N.K., and Sharonov, V.I., On a class of strategies
which can be used to establish decidability by the resoluiion

principle. (In Russian) Igsled, po konstruktivnoye mato-

natikye i matematicheskoic logikve III, 16 (196S), 54~64.

(National Lending Library, Russian Translating Program 5857,

Boston Spa, Yorkshire.

	PhD coversheet April 2012.pdf
	EDI-INF-PHD-71-001

