

This thesis has been submitted in fulfilment of the requirements for a postgraduate degree

(e.g. PhD, MPhil, DClinPsychol) at the University of Edinburgh. Please note the following

terms and conditions of use:

• This work is protected by copyright and other intellectual property rights, which are

retained by the thesis author, unless otherwise stated.

• A copy can be downloaded for personal non-commercial research or study, without

prior permission or charge.

• This thesis cannot be reproduced or quoted extensively from without first obtaining

permission in writing from the author.

• The content must not be changed in any way or sold commercially in any format or

medium without the formal permission of the author.

• When referring to this work, full bibliographic details including the author, title,

awarding institution and date of the thesis must be given.

STRATEGIES FOR IMPROVING THE EFFICIENCY

OP AUTOX TIC THEOREM! PROVING

by

Donall Kuehner

Ph.D. Thesis

University of Edinburgh

July, 1971.

!Ba TF CT

In an attempt to overcome the great inefficiency of theorem-

proving methods, several existing methods are studied, and several

now ones are proposed. A concentrated attempt is made to devise a

unified proof procedure whose inference rules are designed for the

efficient use by a search strategy.

For unsatisfiable sets of Horn clauses, it is shown that

p1-resolution and selective linear negative (SLN) resolution can be

altoriatca heuristically to conduct a bi-directional search. This

bi-directional search is shown to be more efficient than oithev of

P. -resollution and SLN-resolution.

The extreme sparseness of the SLN-search spaces lead to the

extension of SLN-resolution to a more general and more powerful

resolution rule, selective linear (SL) resolution, which resembles

ioveland's model elimination strategy. With SL-resolution, all

immediate descendants of a clause are obtained by resolving upon a

single selected literal of that clause.

Linear resolution, s-linear resolution and t-linear resolution

are shown to be as powerful as the most powerful resolution systems.

By slightly decreasing the power, considerable increase in the

sparseness of search spaces is obtained by using SL-resolution. The

amenability of SL-resolution to applications of heuristic methods

suggest that, on these grounds alone, it is at least competitive with

theorem-proving procedures designed solely from heuristic consider-

ations.

Considerable attention is devoted to various anticipation

procedures which allow an estimate of the sparseness of search trees

before their generation. Unlimited anticipation takes the form of

p;$eudo-search trees which construct outlines of possible proofs.

Anticipation procedures together with a number of heuristic meas-

ures are suggested for the implementation of an exhaustive search

strategy for SL-resolution.

ACKNOWLEDGMENTS

This resoarch has been supported during 1970-71 by an

IBM fellowship awarded by Imperial College.

I am indeb+ud to my supervisor, Dr. Bernard Meltzer, for

his encouragement and suggestions, and for the free and stimulating

atmosphere of his Metamathomatics Unit. I am thankful for the

illuminating and constructive discussions with my colleagues of

the Unit, Bob ''owalski, Pat Hayes and J Moore. I am particularly

indebtod to Bob IKowalski, who co-authored Chapters 3 and 4 of this

thesis, as well as offering suggestions for the other chapters.

TABLE OF CON-TUTS

Chapter 1. Basic Concepts

1.1 Introduction oe e. e.. .e C

1.2 Derivations and Search Spaces ... 3

Parents of a resolvent, R-derivation, clause
at a node, immediate descendant node, immed-
iate subderivation, input clause of a
derivation, R-refutation, ancestor of a clause,
descendant of a clause, immediate descendant of
a. clause, R-search space, immediate descendant
node, clause of a search space.

1e3 Search Strategies and Layered Search Spares .. 5

Proof procedure, search strategy, exhaustive
search strategy, difficulty, merit of a clause,
merit levels.

1e4 Efficient Search Spaces e.. 7

Size of derivation, simplest refutation4
cost of a clause, sparse search space,
refinement, powerfuj- inference rule,
branching rate of a clause.

Chapter 2. SLN-Resolution

2.1 Introduction too .ee e.. .00 11

Transformational system, unit clause, trans-
formation clause, P1-resolution, purely
linear resolution, N1-resolution, Horn clause,

pcjitive Horn clause, mixed Horn clause,
negat-.ve Horn clause.

2.2 The Definition of SLN-resolutione 16

Factor of a clause, basic factor, factoring
operation, m-factoring, ordered Horn clause,
ordered N1-resolution, literal resolved upon,

new literal, ordered factor, factored out
literal, factoring operation, merge literals,
merged out literal, merging operation, SLN-
derivation, initial clause, near parent,
input parent, support set.

2.3 The Completeness and Power of SLN-resolution 22

Ordered P1-derivation, size of a derivation,
Lemma 1, ordered instance, lifts, Lemma 2,
Theorem 1.

2.4 Bi-directional Refutations 28

Stage k meeting between derivations, meet,
stage k bi-directional refutation, pseudo-
derivations, Lemma 3, Lemma 4, Theorem 2.

2.5 A 3i-directional Search Strategy ... 33 .00

Merit, imported units, unit refutation.

Chapter 3. Linear Resolution Systems

3.1 Introduction D O 0

3.2 Linear Derivations . 0 0 . .

Linear derivation, near parent, input parent,
far parent, initial clause, input resolution,
ancestor resolution, linear refutation,
search tree, root.

30 Refinements of Linear Resolution
Desee.ads, 1:-ancestor, A-literal, t-linear
derivation, s--linear restriction, absorption
restriction.

3.4 Minimal Derivations and rm-size
Branch of a derivation, resolved upon, minimal
refutation, minimal derivation, rm-size.

38

40

47

3.5 The Completeness and Power of Linear Resolution 51

Lemma 5, Lemma 6, Lemma 7, Theorem 3,
Lemma 8, Lemma 9, Theorem 4.

Chapter 4. SL-Resolution

4.t Informal Definition

4.2 Formal Definition

...

.. .

Input chain, chain, status, B-literal, cell,
equivalent chains, selection function,
selected literal, SL-derivation, admissibility
restriction, truncation, reduction, extension.

56

60

40, The Completeness and Power of SL-resolution ... 67

Lemma 10, Lemma 11, instance of a chain,
Theorem 5.

Chapter 5. Selection Function and Support Set

5.1 Introduction* coo 75

5.2 The Uses of a Selection Function

Branching rate of a chain, operator literal,
operator clause, mate literal.

5.3 Estimating Brancning Rates

Predicate mate, outer function clash, tutor
function mato, outer function branching rate.

5.4 Operator Classification Trees o..

5.5 Punctio.ial Lgreemont for Tie Breaking .. .

77

79

81

84

5.6 A Two Stage Anticipation Proceduro P. 600 86

Residue of an operator, residual outer
function branching rate, second stage outer
function bran chaig rate.

5.7 Unlimited Anticipation and Pseudo--Search Trees 89

Pseudo-resolvent, pseudo-factoring, pseudo-
ancestor resolution pseudo-search tree.

5.8 The Choice of Support Set ... 0e. 00* 96

Chapter 6. A Search Strategy for SL-Resolution

6.1 Introduction 0.0 ft.. 99

6.2 An Expediency Tactic

6.3 Complexity Saturation and Diagonal Soarch

Merit saturation, complexity saturation,
cost, expectation, length, r+m size,
diagonal search, upper diagonal search.

6.4 Measures of Complexity

.. .

. Q .

.. .

1'00

101,

t05

Difficulty, size of search, intricacy
number, size of a substitution.

6.5 Heuristic Merit Functions 108

Local intricacy t, functional agreements

number f, branching number n.

6.6 Anticipation Strategies

Anticipated difficulty.

6.7 A Deletion Strategy ...

Equivalent chains.

6.8 Generation of Subgoals and Lemmas ...

...

.. .

. 0 .

113

1t5

111

Goal of a. search, immediate subgoal,
analogous immediate subgoals,
completely decomposed goal, lemns.

Chapter I. Basic Concepts

1 .1 Introduction

Since the publication of Herbrand's theorem in 1930 [8], it

has been theoretically possible to prove theorems by using an

algorithm. However, there has been considerable difficulty in

finding an automatic procedure which is efficient. The work of

Prawitz [24], Davis [5] and Robinson [28] first suggested that

efficiency is possible.

This thesis develops several related strategies in an attempt

to form a unified proof procedure for efficient .-heorem proving,

The desire for efficiency has motivated every step, so that an

efficient and detailed search strategy was conceived of from the

beginning. Thus the form of the inference rules was dictated in

part by an awareness of a complementary search strategy.

In all of the following, attention is restricted to derivat-

ions obtainable by the resolution rule [28]. Several other infer-

ence rules, inclul.i.ng Loveland's model elimia tion [16] and the

Maslov inverse method [20] have been shown to be equivalent to

resolution by Loveland [18] and Kuehner [13]. Other arguments in

favour of resolution are supplied by Kowalski [12].

The unrestricted use of the resolution rule generates far

more derivations than are needed for obtaining a proof. An

increase in the efficiency of obtaining a proof car only be achieved

by a selective search strategy together with a restricted use of

the resolution rule. Thus the achievement of an efficient proof

2

procedure involves the devising of suitable restrictions for the

resolution rule.

12 Derivations and Search Spaces

A familiarity with the basic terminology of resolution

theory is assumed. Robinson [30] provides an excellent back-

ground. The resolution rule will be treated as having only two

clauses as input, the S,arents of the resolvent. For any restriction

R of the resold-ion rule and any finite set S of input clauses, an

R-derivation D of the clause C from S is a tree of nodes, each node

being labelled by a clause which is at the node. D has the follow-

ing properties. If C e S, then D is a single node labelled by C.

If C S, then there exist R-derivations D1 and
D

of C1 and C2

from S, such that C is an R-resolvent of C 1 and (:2. Then D is
composed of the labelled nodes of D1 and D2 together with the node

labelled by C which is the immediate descendant of the nodes

labelled by C, and C2. The immediate descendant :elationship

between nodes of D and of D is inherited by the nodes of D. The

derivations DA and D. are the immediate subderivations of D. Any

clause C' e S which labels a node of D is an input clause of D.

If D is an R-derivation of the null clause, , from S, then D is an

R-refutation of S. The clauses, other than C, at the nodes of D

are the ancestors of C, and C is the descendant of each of its
ancestors.' C is the izunediate descendant of its parents. Note

that the same clause may occur at different nodes of a derivation.

For any finite set S of input clauses, and any restriction R

of the resolution rule, a graph GR(S) of labelled nodes is the

RR-search space for S, iff for each R-derivation of a clause C from

S there is a node of GR(S) which is labelled by C. The node N of

4

GR(S) is an immediate descendant of the nodes N1 and N2 of GR(S)

iff the R-derivations of the clauses at Ni and N2 are the immediate

subderivations of the R-derivation of the clause at N. The clauses

labelling nodes of GR(S) are referred to as the clauses of GR(S).

For any clause C of GR(S), the portion of GR(S) whose nodes are

labelled by the ancestors of C is the derivation of "e It follows

that for any R-derivation D of C from S, D is isomorphic to a

descendancy related subset of the labelled nodes of GR(S).,

Kowalski's thesis [12] contains an extended examination of resolut-
ion graphs.

5

1.3 Search Strateg,,es and Layered Search Spaces

A resolution proof procedure is a rest-fiction R of the

resolution rule together with a search strategy. A search strate 7

is an algorithm which determines, for any finite set S of input

clauses, the order of generation of the clauses of GR(S). This

distinction between the inference rule and the search strategy of a

proof procedure has been investigated in detail by Kowalski [12]

and has been elucidated by Meltzer [22].

I search strategy is exhaustive iff for any clause C of

GR(S), it generates only m finite number of clauses before generat-

ing C. Ix S is an unsatisfiable set of input clauses, and R is a

complete inference rule, then the null clause is a clause of GR(S).

If E is an exhaustive search strategy, then E generates only a

finite number of clauses of GR(S) before generating a null clause.

Let GR(S) be the descendancy related subset of the labelled nodes

of GR(S") corresponding to the clauses of GR(S) generated by E when

first generates a null clause. Thus GR(S) is finite if S is

unsatisfiable, R Is complete and E is exhaustive. The difficult1

of finding a refutation of S may be measured by the number of nodes

of GR(S) which are not labelled by input clauses. The efficiency

of a proof procedure is improved by choosing R and E in such a way

as to decrease the difficulty of finding a refutation of any

unsatisfiable set S.

It seems impossible to ensure that GR(S) is finite for all
unsatisfiable S and all complete R unless E is exhaustive. This

thesis will consider only exhaustive search strategies. In order

to ensure that E is exhaustive, it is convenient to subdivide

GR(6) into a denumerable collection of layers, each layer having

only a finite number of nodes. The search space is thought of as

being layered from the top down, the first layer being at the top

of the search tree, the second layer just below it, and so on. In

order that E be exhaustive, it is then necessary on_'-y that z

generate all clauses in one layer before generating any clauses in

the next lower layer.

Clearly, any algorithm for layering search spaces partially

specifies the seaTch strategy. Certain methods of layering are so

easy and so natural that they should be considered dhen designing an

inference rule. In this way, it is possible to design a unified

proof procedure for theorem-proving.

in Chapter C, several methods for layering search spaces are

considered. For each of these, a detailed search strategy uses

heuristic criteria for determining the order of generating clauses

within layers of the search space.

The requirement that a search strategy generate all clauses

of one layer before generating any of the next layer implies that

the ancestors of &t clause C must be-in the same layer as C or in

higher layers. Let the merit of a clause be the number of the

layer in which it occurs. Thus each layer of a search space is a

set of clauses of equal merit. The layers are the merit levels of

the search space. Thus the merit of each ancestor of a clause is

less than or equal to the merit of the clause itself.

-7--

11.4 Efficient Search Spaces

i search space should be layered so that null clauses with

simple derivations occur at higher levels than null clauses with

more complex derivations. The measure of complexity which is easiest

to work with is the size of the derivation, the number of resolvents

in the derivation. lC sim lest R-refutation of S is then one such

that no other R-refutation of 5 has fewer resolvents. In Chapter 6,

there is a thorough discussion of alternate measures of the complex-

ity of a derivation, and tneir relation to the difficulty of fi.ding

a; refutation. It is argued that size is the best of the easy

measures of complexity.

The most straightforward method of ensuring that simple

refutations are on higher layers than more complex refutations is to

assign all clauses with simp?te derivations to layers which we higher

than clauses with more complex derivations. The merit of a clause

is then the complexity of its derivation. A more efficient layer-

ing defines the merit of a clause C to be 2, lower bound on the com-

plexity of the simplest refutation obtainable: from C. If the cost

of a clause C is the complexity of its derivation, then the merit

of C is an upper bound on the cost of the least costly null clause

which could be a descendant of C. This is the merit used by

Kowalski's diagonal search [i1].

Let R be the unrestricted resolution rule, and let R' be any

restriction of R. Let GR(S) and GR,(S) be layered in some way com-

patible with the preceding discussion. There are two factors to

consider when designing the resolution rule R'. One is that

GR,(S) should have fewer clauses on each layer than does GR(S).

The other is that the highest null clause of GR,(S) should not be

much lower than the highest null clause of GR(S). The rule R' is

more efficient than R if GRr(S) has fewer clauses on each level, and

its highest null clause is as high as the highest null clause of

GR(S). One may consider that GRr(S) is obtained by pruning the

search space GR(S) without pruning out all highest null clauses.

For any resolution rules R' and R, GRr(S) is more sparse

than GR(S) if each layer of GRr(S) has fewer clauses than the

corresponding layer of GR(S). R' is a refinement of R if the

clauses on each layer of GRI(S) is a subset of the clauses on the

corresponding layer of GR(S). Rt is as powerful as R if the high-

est null clause of GRr(S) is as high as the highest null clause of

GR(S). Thus, in designing a proof procedure, one tries to con-

struct a resolution rule whose search spaces are as sparse as

possible with very little if any loss in power.

The construction of a sparse search space without loss of

power may be considered to be the process of pruning away clauses

which are irrelevant to the derivation of the highest null clauses.

Furthermore, all redundant rederivations of the same clause should

be pruned out. This pruning of redundant derivations should extend

to all but one of the highest null clauses. If all redundant and

irrelevant clauses were pruned out, then there would remain exactly

one derivation of the null clause.

The SLN-resolution rule of Chapter 2 produces extremely

sparse search spaces, but only for certain types of input sets. It

- g -

is proved to be at least as powerful as P1-resolution. By combin-

ing SLN- with P,-resolution in a bi-directional search, the result-

ing search space is more sparse than the search space for either

rule alone, and +he corresponding rule is at least as powerful as

P1-resolution.

The s-linear and t-linear rules of Chapter 3 produce very

sparse search spaces, and are proved to be as powerful as unrestrict-

ed resolution. The t-linear rule is a refinement of the s-linear

rule so the t-linedr search spaces are always at least as sparse. as

the s-linear search spaces.

The branching rate of a nlause C i.1 aR(a) is the number of

clauses of GR(S) which are immeaiate descendants of C. If the

branching rate of a clause C is reduced, then there are fewer

descendants of C. Thus there are fewer clauses either in the layer

that C is in or in some layers below that. It follows that a

resolution rule which uniformly decreases the branching rate of

clauses produces sparser search spaces. That is, if R' differs

from R only in tht any clause C has a lower a'-branching rate than

an R-branching rate, then GR,(S) is more sparse than GR(S).

SL-resolution of Chapter 4 has a markedly lower branching

rate for all non-unit clauses than does t-linear resolution, but

SL-resolution is not quite as powerful as t-linear resolution, and

thus is not as powerful as unrestricted resolution. However, it is

proved that SL-resolution is as powerful as the rule for obtaining

minimal-derivations. With this bound on the power of SL-resol-

ution, it is felt that the advantage of its increased sparseness

outweighs the loss of power. This feeling is supported by

experimental evidence.

As well as being relatively powerful and having notably

sparse search spaces, s-linear, t-linear and SL-resolution have the

added advantage of determining search spaces which are exceptionally

amenable to a variety of methods for heuristic search.

Chapters 4 and 5 which investigate t-linear and SL-resolution

are extracted from papers [14 and 15] written in conjunction with

Robert Howalski, Since the completion of the original paper, we

have learned of the related investigations of Donald Loveland [18]

and Raymond Reiter [261. Loveland investlgates in detail the

relationship between model elimination and linear resolution, and

includes ani interesting comparison of these systems with the

Prawitz matrix reduction method [25]. Reiter investigates -h*o

ordering restrictions and establishes their compatibility with

linear resolution and the merging restriction [2]. Reiter's second

ordering restriction coincides with the selection function restrict-

ion for ground derivations.

In SL-resolution, we have attempted to construct the best

inference system possible and have borrowed freely from what seems,

to us, the best in other systems. The resulting system can be

regarded as a form of either model elimination or linear resolution.

When compared with the systems investigated by Loveland and Reiter,

it bears the greatest resemblance to model elimination.

- 11

jh te,r 2. SLN Resolution

2., Introduction

Although bi-directional search has been investigated as a

general problem-solving technique by Pohl [23] and others, there are

difficulties in applying it to theorem-proving. However, bi-

directional search is feasible for certain kinds of sets of input

clauses, the simplest of which are Reynolds' transformational

systems [29].

A transfoi tional system is any finite set of ciaa.ses such

that each clause is either a one literal clause (a =D, or it
ccntairis exactly one negative and one positive literal (a transforn

a :ion) . Any uxzsatisfiable transformational s,,,-Stem has a P1,

refutation which is purely linear. (A P1-resoluion [29] has one

parent all of whose literals are positive. A purely linear resol-

ution has one parent which is an input clause. Chang [3] calls

purely linear resolution, input resolution.)

Let S {{L}, fY,M), tM,N), (N9P), IT))

represent a ground-level (no variables) transformational system. In

all examples of clauses, set theoretical brackets will be omitted

together with the commas which separate elements of a set. Using

this notation,

S

Then figure 1 illustrates a purely linear P1-refutation of S.

-. 12

Figure I.

One remarkable property of purely linear P1-refutations is than

they are reversible. Figure 'illustrates the reversal of the

refutation of figure I. Here again the refutation is lineEc, but

uses N .resolution, in which all of the literals of one parent are

negative.

Figure 2.

Figure 3 illustrates a bi-directional refutation combining both

P1- and N1--resolution.

- 13 -

LM L

Figure 3.

The fact that the refutations of figures 1 and 2 can be com-

bined to form awbi-directional refutation suggests that two searches

may be conducted simultaneously, and their results combined to form

a refutation?. The advantage of conducting a search in this way is

that a search to level n is usually less than half as difficult as

a search to level 2n. It follows that the sum of the difficulties

of the simultaneous searches should be less than the difficulty of

either search alone.

Bob Kowalski and Pat Hayes have suggested that some properties

of transformational systems might apply to Horn clauses [9]. A

clause is a Fo. clause iff it has at most one positive literal.
Thus, a positive Horn clause is a unit clause, and a mi$ed Horn

clause has any number of negative literals and one positive literal.
A ne ative Horn clause has any number of negative literals and no

positive literdls. There are many problems which can be expressed

using only Horn clauses. Such problems are chara:terised by

Cohn [4] and include many theorems of group therapy.

As with transformational systems, a P1-refutation of a set

- fi4 --

of'Horn clauses is reversible as an N1-refutation. However, in

this case only the N1--refutation is purely linear. For the

unsatisfiable set

S - { f , Q R S T, T, S, R, M NP, P, N, L}

of ground-level Horn clauses, figure 4 illustrates a Pi-refutation

D, and figure 5 illustrates its linear NI-reversal D*.

Q,RST9

L M Q L M

Figure A.

L El

Note that for every resolvent C* of D*, there are subderiv-

ations of D which derive units complementary to each literal in C*. ti
For L M R of D*, there are subderivations of L, M and R of D. The

derivation of L M R has size 3, and the derivations of L, M and N

have sizes 0, 2 and 0. The number k of resolutions needed to

obtain the null clause from these clauses is 3. The total number

of resolutions involved is 3+0+2+0+3 = S. The same total is obtain-

ed for every resolvent of D* as is shown by the table following

figure 5.

In section 2.4, it will be shown that analogous results hold

for any unsatisfiable set of Horn clauses.

- 15

L N P V P

LN N

Figure 5.

derived
by D* size

derived
by D sizes k total

L M 0 L,M,Q 0,2,3 3 8

L M R S T I L,M,R,S,T 0,2,0,0,0 5 8

L M R S 2 L,M,R,S 0,2,0,0 4 8

L M R 3 L,M,R 0,2,0 3 8

L M 4 L,M 0,2 2 8

L N P 5 L,N,P 0,0,0 3 8

L N 6 L,N 0,0 2 8

L 7 L 0 1 8

- 16 -

2.62 The Definition of SLN-resolution

The example of the preceding section suggests that there is

a linear N1-refutation of any unsatisfiable set of Horn clauses.

In figure 5 only the rightmost literal of each negative clause is

resolved upon. That is, the clauses may be considered to be order-

ed. An extension of the concept of ordering allows a selection

function to choose which literal is to be resolved upon. SLN-

resolution is selective linear negative resolution.

For notational convenience and for efficient computer

implementation, it is useful to treat resolution as a sequence of

two operations, factoring folloued by resolution of factored clauses.

If C is a clause and E a^unifiable partition of the literals of C.

having most general unifier (m.g.u.) 6 , then CO is a factcr of C.

If exactly one component of E contains two literals and every other

component exactly one, then C 0 is a basic factor of C, and. C 0 is

obtained from C by one factoring operation. The resolution of

factored clauses unifies one literal from one parent with the

complement of one literal from the other parent. Although other

factoring methods are compatible with SLN-resolution, only Kowalski°s

m-factoring [12] is considered in the following discussion. The

method of implementing m-factoring is to factor input clauses in all

possible ways, and to factor resolvents in all possible ways

provided that the literals which are unified in the factoring

descend from different input parents. This last restriction

ensures against redundant factoring. This form of factoring is

built into the definition of SLN-resolution.

-17-

For any Horn clause C, an'.ordered Horn clause C* is a

sequence consisting of the literals of C written in some fixed

order. If C contains a positive literal, then that positive

literal is the leftmost literal of C*. For any set S of Horn

clauses, the set S* is the set of all ordered Horn clauses obtain-

able from factors of clauses of S. That is, if

a = {P(a,x) P(x,y)} then S* = {P(a,m) P(x,y), P(x,y) P(a:x), P(a,:x)}

For any ordered Horn clause C* and C'*, let C*C'* bc, the ordered

clause beginning with the literals in C* in the order they appear

in C*, fullowed on the right by the literals of C'* in the order that

they appear in C'*. Thus C*L is the ordered Horn clause whose

rightmost literal is L.

An ordered N1-resclution has as one parent an ordered negat-

ive Horn clause of the form C*L and as the other parent a mixed or

unit Horn clause of the form KC'* where C'* may be empty. Neither

parent contains two literals which have the same atom. If L and K

-resol vent is are unifiable with m.g.u. 6, then the ordered NI

C*C ,* 6 . Th literal resolved Mon in C*L is L, and in KC t* it
is K. if C t* is not empty, -then the literals of C 4* which are to

the right of the literals of C* 0 in C*Ct*'6 are the new literals

of C*C'* e

Let C* be an ordered N1-resolvent, and let K occur as a new

literal of C*. If there is a non-new literal L occurring in C*

such that L and K are unifiable with m.g0u. 6, then an ordered

factor of C* is C*. 6, where C* is obtained by deleting the given

occurrence of L from C*. The literal L is factored out of C*.

The factoring operation is said to have been applied to C*. If

-1g-

the n rightmost literals of C* are new in C*, then define the n

rightmost literalsof C*() to be new in C* 0. With this extension to

the definition of a new literal, the preceding definition of ai

ordered factor also applies when C* itself is an ordered factor.

The definition of an ordered factor in terms of new literals avoid;

redundant factoring. If the mgu 0 is the null substitution, then

L : K. In this case L and.K are said to mere, and L is merged out

of C*. The merin operation is an instance of the factoring

operation.

An SLN-derivation from a set S of Horn clauses is E. sequence

..., r*) of ordered clauses satisfying the following conditions.

(1) The i ial, clause C= E S* and is negative.

(2) 0!
1

is an or4ered N1--resolvent of C* (the near
1-1 L

.rent and an ordered clause (the input parent

from S*,or
Ci+1 is an ordered factor of Ct.

It should be noted that factoring must precede resolution if
it is to be done at all. That is, if a new literal can be factored

out of a clause, this factoring must be done before any other new

literal is resolved upon. This is because only new literals can

be factored out, while all of the new literals of a resolvent

descend from the input parent.

SLN-derivations are not represented in the standard deriv-

ation format. Together with other linear derivations, SLN-derivat-

ions are conceived of as being vine-like trees consisting of an

initial node together with a sequence of its descendants. The input

parent of an ordered clause may be attached to the are joining the

m. 19 -

clause to its near parent. This device is particularly useful in

simplifying the appearance of SLN-search spaces. Using this

representation in figure 6 produces an illustration of an SLN-

refutation of a familiar group theory problem. The sequence of

ordered clauses at the nodes is the SLN-refutation.

o P(k(x), x, k(x))

P(u,z,w) P(Y,z,v) P(x,y,u) P(xv,w)

P(y,z,v) P(x,Y,k(z)) P(x,v,k(z))

P(g(x, Y) , x, Y)

P(g(v,k(z)), y, k(z))

60

Figure 6.

The implementation of SLN-resolution is more efficient if
there is a retroactive ordering of factors of input clauses.

Ordered N1-resolution could be redefined so that the literal resolv-

ed on in the negative parent is any literal selected from those

literals most recently introduced into the deduction. Thus, if
L M N has near parent L P and input parent P M N, then M and N are

the literals in L M N which have been most recently introduced.

20 -

If L M N resolves with M, then M is the selected literal of L M N

and N is the literal in L N which has been most recently introduced.

M and N are new in L M N, but N is not new in L N. The selection of

M can be thought of as rewriting L M N as L N M and then performing

the previously defined ordered N1-resolution. Resolving on some

selected most recent literal is a retroactive choice of ordered

input clause. Thus, resolving on M rather than N in the preceding

example is a retroactive choice of using the input parent P N M

instead of P M N. In order to use this dynamic ordering, some

marker should be inserted between the residues of the two parents

when forming a resolvent. Thus resolvents become sequences of cells

of literals separated by markers. Such sequences of cells corres-

pond to the chains of SL-resolution (Chapter 4) and model eliminat-

ion ! 6]o However, the use of ordered clauses rather than a3

selection function simplifies the following discussion.

It should be noted that since every SLN-resolvent is negative,

no resolvent can be a tautology. Thus, if tautologies are deleted

from the fact`'rs of the input set, then no further deletion of taut-

ologies need be done.

A subset S' of a set S of clauses is a sugDort set (Wos et

al [31])for S iff S-S' is satisfiable. In common with other linear

resolution systems, the initial clause of an SLN-derivation may be

restricted to belong to a given support set of the input set S.

In this case, the support set must be a subset of the set of all
factors of negative clauses in S.

SLN-resolution can be extended to non-Horn clauses, but it

- 21 -

must then be weakened to SL-resolution. For SL-resolution (Chapter

4) there is no longer a requirement that one parent be negative,

and resolution must be allowed with an ancestor C* where j < i. It
is also possible to extend SLN-resolution to SN-resolution, by no

longer requiring linearity, but this weakens the selection function..

- 22 -

2.3 The Completeness and Power of SLN-Resolution

The existence of an SLN-refutation for any unsatisfiable set

of Horn clauses is proved by permuting the resolutions of a P1-

refutation of S. In order to do this, it is necessary to examine

the structure of a P1-refutation of a set of Horn clauses.

Let S be any set of Horn clauses. Clearly, any P1-resolution

between members of S must have a Horn clause as a xesolvent. Thus,

in any P1-derivation from S. one parent of each resolution must be

a positive unit. If the other parent is a mixed Horn clause, then

the resolvent is either a shorter mixed Horn clause or a positive

unit. If the other parent is a negative Horn clause, then the

resolvent is either a shorter negative clause or a null clause. It

follows that any P1-refutation of a set of Horn clauses has one and

only one negative input clause.

Since every P1-resolution has a positive unit clause as one

parent, all resolvents are instances of subsets of input clauses.

It follows th^t in every P1-derivation, the input clauses may be

replaced by appropriately ordered Horn clauses, with the positive

literal on the left, and with the rightmost literal the literal

resolved upon. A P1-derivation, all of whose clauses are ordered

Horn clauses, is an ordered P1-derivation. Clearly, there is a one-

one correspondence between P1-derivations and isomorphic ordered

P1-derivations.

In order to compare the complexity of P1--derivations and

SLN-derivations, it is necessary to have an appropriate definition

_23-

of the complexity. The refutations of figures 4 and 5 are felt to

have the same intuitive complexity although the P1 refutation is of

level 6 and the SLN-refutation is of level 8. Thus, for the pur-

pose of comparing linear and non-linear derivations, the measure of

complexity to be used is the size of the derivation, the number of

resolutions performed in the derivation. In figure3 4 and 5, both

refutations have size 8.

In calculating the size of either an ordered P1-derivation

or ar.SLN-derivation, it is assumed that the input clauses of the

derivations are ordered factors of the clauses in the input set.

This is implemented by constructing the set S* of all ordered

clauses constructible from all the factors of the clauses in the

input set S. Any clause or variant of a clau..rs is considered to

be a factor of itself. Since all ordered P1-reso'vents are

instances of subsets of ordered input clauses, P1-resolution for

Horn clauses is complete with no factoring other than the factoring

of input clauses. For this reason, ordered P1--search is more

efficient if no parent of an ordered P1-resolvent has two identical

literals.

Lemma. 1. Let S be any unsatisfiable set of ground-level

Horn clauses. Let L be any P1-refutation of S. Then there exists

an SLN-refutation D* of S which is at least as simple as D.

Proof (by induction on the size of D). Without loss of

generality, D can be assumed to be an ordered P1-refutation, and S

can be assumed to be the set of ordered input clauses of D. The

proof is for the stronger lemma which also proves that the ordered

- 24 -

negative input clause of D is the initial ordered clause of D*.

If D has size one, then D* and D are the same derivation, so

in this case the theorem is trivially true.

Otherwise, let D have size n > 1, and assume that the theorem
ti

holds for all ordered P1-refutations of size less than n. Let LC*

be the ordered negative input clause of D. Then the immediate sub-

derivations of D derive L and L. Let D be obtailed by replacing w -1

LC* with C* in the immediate subderivation which derives L, Then

D1 is an ordered P1-refutation cf the set
S.

of ordered input 'clauses

of D1. Also D1 is isomorphic to the derivation of L and it has C*

as its negative input clause. Since the size of D1 is less than n,

then by the induction hypothesis there exists an SLN-refutation.

of S1 which is at least as simple as D1, and whose initial ordered
ti

clause is C*.

if Dj is (C*, C , ..., Ck) and Ci is the first ordered clause

of D* which contains L, then let D* be obtained from D* by concaten-

ating L onto he left of each of C*, C*1 , ..., Ci_19 and inserting

LCi between LCi_1 and C. Then Ci is obtained from LCi by merging

out L. (L must be new in the first clause of in which it
occurs.) Then D* is an SLN-refutation of S with size less than n,

and initial ordered clause LC*.

Otherwise, none of the ordered clauses in D contain L. Let

D1 be obtained from Df by concatenating L onto the left of each

ordered chain of Dt. Then P1 is an SLN-derivation of L, of the

same size as D*, and with initial ordered clause LC*, N

-25-

Let D'be the immediate subderivation of D which derives L.

Let LC'*' be the ordered input clause of D' from which L descends.

(That is, L occurs in all descendants of LCI* which are ancestors

of L.) Let D he obtained by replacing LC'* in D' by Ct*. Then

D2 is an ordered P1-refutation of the set S2 of ordered input clauses

of Dom Also D12 is isomorphic to the derivation of I and has C'*

as its negative input clause. Since the size of D2 is less than n,

then by the induction hypothesis there exists an SLN-refutation D2

of S2 which is at least as simple as D, and whose initial ordered

clLuse is C'*.

Let, be obtained from D2 by adding L onto the beginning of

the refutation D2. Then the second ordered chain C'* of 172 is

obtained from L by the ordered N1-resolution with parents L and

LC'D'.

Let D* be obtained by identifying the last ordered clause of

with the initial clause of D*2 to form a refutation of S, which

is at least as simple as D and which has initial ordered clause

LC*. Q.E.D.

It should be noted that if there is no merging in D* or if
the use of the merging operation is suppressed in constructing D*,

then D and D* hare exactly the same size.

Since both ordered Pi-resolution and SLN-resolution use

ordered clauses, the concept of lifting must be slightly modified.

For any ordered clause C = Li ... Ln, and for any substitution A ,

the ordered clause C 0 = L1 0 , ..., Ln 9 is .n ordered instance

of C. CO may contain identical literals even though C does not.

- 26 -

The derivation D lifts the derivation D' iff
(1) D is tree isomorphic to D',

(2) for any ordered clause C at a node of D, the

ordered clause CO at the corresponding node of

D' is an ordered instance of C, and

(3) the literal resolved upon in C' is an instance

of the literal resolved upon in C and is in the

same position in both clauses.

Lemma 2. Let D' be an SLN-refutation of a set of ground

instances of clauses in the set S of Horn clauses. Then there

exists an SLN--refutation DD', which lifts D' and has the same size

as D' .

Proof. Let S' be the set of ordered input clauses of D',

and let C,I be the ordered negative clause of S'. Let S* be the

set of ordered factors of clauses of S such that C* a S* if f S' con-

twins an ordered instance C' of C*.

The aui.itial ordered clause C*1 of D* is the ordered clause in

S* which has 0'1 as an ordered instance. Assume that the SLN-

derivation (C*, ..., Ct) lifts the subderivation (Ci, ..., Ci)

of D'= (Cf, ..., C!, ..6,9 C'n). Then Ct is an ordered instance

of C'.
i

If Ci is obtained from C! by merging the i-th and j-th
literalsof C!, then there exists a most general unifier Cr which

unites the i-th and j-th literals of Ci to produce G* If
1+1

C! = C* 8, then e = aA for some A . If the i-th and j-th

- 27 -

literals are the only identical literals of CI!, then they are the

only identical literals of Ci o . Let Ci+1 be the factor of Ci

obtainable by deleting the leftmost of the i-th or J-th literals of

Clearly
C !

is an ordered instance of C +1

Otherwise, let Ci+1 be obtained from Cl by SLN-resolution

with CO e S'. Then there exists C* a S* such that C' is an ordered

instance of C*. By the lifting lemma of [29], there exists an SLN-

resolvent C* such that Ci
1

is an ordered instance of C.
in either case (C*,

Ci+1) is an SLN-derivation which

lifts (C, ..., C!, C!1). It follows that there exists an SLN-

refutation D* which lifts D' and has the same size as D'. Q.E.D.

Theorem 1. For any unsatisfiable set S of Horn clauses,

there is an SLN-refutation D* of S such that D* is at least as

simple as the simplest P1-refutation of S.

Proof. By Lemma 6 (Section 3.5), there is a simplest P1-

refutation D of S which lifts and has the same size as an ordered ti
ground P1-refutation Dt of a set S' of ordered ground instances of

clauses in S. By Lemma-it there is an SLN-refutation D'* of S"

which is at least as simple as D'. By Lemma 2 there is an SLN-

refutation D* which lifts D'* and which has the same size as D'*. N v V

Therefore D* is an SLN-refutation of S which is at least as simple

as the simplest P1-refutation of S. Q.E.D.

-28--

2.4 Bi-directional refutations

As was suggested by the cable of section 2.1, subderivations

of a P1-refutation and an SLN-refutation may be combined to form a

bi-directional refutation.

Let S be an unsatisfiable set of Horn clauses, and let D* be

an SLN-derivation from S. Let
77

be the k-th subderivation of

and let derive Ck - L1, ... L'n. Let D be an ordered P1-deriv- k I-

ation from S with subderivations D1, ..., Dn of K1, ..., Kn res-

pe,,tively. If {L1, K1}, ...s {Ln, Kn} are simultaneously unifiable,

then there is a stage k meeting between D*- and D, where Ck is said

to meet K1, ..., Kn.

if Dk is considered to be in the derivation format of Chapter

1, then it can be combined with the derivations D. ..., Dn to form

a stage k bi-directional refutation of S. Schematically, this

bi-directional refutation has the foci of figure T.

In figure 7, each 0i is the most genera]. simultaneous

unifier of {Ln, Kn}, ..., {Li, Kilo If Dk, D1, ..., Dn have sizes

m, m1, ..., mh then the bi-directional refutation has size

m1
+ 060 +m. +n.

-29-

Figure 7.

It should be noted that a bi-directional refutation may be a

seudo-de. .ovation in that Ck may contain identical literals. The

following discussion is considerably simplified by allowing this.

It is suffic,.A nt to note that for any such pseudo-derivation there

is a derivation which is at least as simple. The identical literals

are merged, and fewer ordered P1-derivations are used to construct

the bi-directional refutation.

Note also that any ordered P1-refutation is a stage 1 bi-

directional refutation, and that any SLN-refutation of size k

is a stage k bi-directional refutation.

It is possible to define a bi-directional refutation in

which ordered P1-resolvents other than units may resolve with SLNa-

30

resolvents, or in which units resolve with several SLN-resolvents

in the same refutation. However, such extensions of the definition

tend to make the search for a meeting more difficult.

Lemma 3. Let D be any ordered P1 --refutation of the

unsatisfiable set S of ground-level Horn clauses, and let D have

size s. Then there exists an SLN-refutation -* of S such that
for every k less than or equal to the size of D*, there is a stage

k meeting between D and D*. The corresponding stage k bi-

directional refutation of S has size less than or equal to s.

Proof. The lemma will be proved by presenting a recursive

method for the construe Lion of D* from D. That is, the lemma to be

proved is that for every positive integer i, either (1) there is

an SLN-refutation D = (C1, ..., C of S for some j< i and there

is a k.-.level meeting between I7 and D for all k < j, or (2) there is

a derivation Di = (Ci, ..., C from S and there is a stage k meet-

ing between D t and D for all k < i. . 1 1%,

If C1 ..., Lr) is the ordered negative input clause of

D, then D = (C1). Since D is a refutation, it has subderivations

D1, ..., Dn of L1, ..., Ln. If these subderivations have size

mil ..., mn then mi + +mn n = s. Thus there is a stage 1

meeting between and D. The resulting bi-directional refutation

is D itself.

Let i be any positive integer and assume that the lemmm

holds for i. If (1) holds, then the lemma is proved.

Otherwise, assume that there is a derivation

31 -

Di = (C1, ..., Ci) such that there is a level k meeting between

and D for every k < i. If Ci is the null clausa, then (1)

holds, and the lemma is proved.

Otherwise, let C. = L1 ... Ln. Then D has subderivations

D1y ..., Dn of L1, ..., Ln such that if these subderivations have

size m1, ..., n then, by assumption, m+m1,+ ... +, n±n < s, where
m is the size of D*.

If Ci contains two identical literals, then let

Dll*I.1, = (C1, 9-9 Ci, Ci,1) where 1;i+1; is obtained from Ci by merging

two identical literals. Since Ci meets L1, ..., Ln it follows that

Ci+1; meets a proper subset of Ls, ..., Ln co that the level i+1'

bi-directional refutation is at least as simple as the level i

bi-directional refutation. Since the latter refutation was assumed

to have size less than s, the lemma is proved.

Otherwise, Ci does not contain identical literals and Ci+1

must be obtained from 0i by SLN-resolution. If Ln is an ordered

input clause, then the only clause of Dn is Ln. In this case, let

D-_'+1: = (C1, 00.0 Ci, Ci+'f) where Ci+1 = L1 ... En-, is obtained from

Ci by SLN-refutation with Ln.

Otherwise, let Ln K1 ... Kr be the ordered input clause of

Dn from which Ln descends. Then Dn has subderivations D,;,,1j ..41 DO

of K1, ..., Kr which have sizes m;, ..., mr where m.+ ... +m'+ r = mn.

Let D+1 = (C1, ...,
Ci' Ci+1) where

Ci+1 = (L1, ..., Ln J,f

K1,) Kr) is obtained from Ci by SLN-resolution with

(Ln, K11 ..., Kr). But D contains subderivations

-.32-

..09 D i, D' , ..., D. of LI, ...9 Ln-1, K1, .--., KZ, whose

sizes are m..., mn_t, ml, ..., Since m+m1+ .. +n +n C a

and m!+ ... -t-m'+r = nit, the size of the (stage i+t bi-directional.

refutation obtainable from D+1, DA, ..., D , ', ..., D is,less tin: i i

than or equal to s,

Since it has been shown that D+1 can be constructed for any

i when D is not a refutation, it follows that D* can be construct-

ed and that for every k less than or equal to the size of D*, there

is a stage k meeting between D' and D, and that the size of the

corresponding stage k bi-directional refutation is less than

s'. Q.F.L.

The following lemma and theorem follow easily from Lemma 3,

using the methods for proving Lemma 2 and Theorem 1.

Lemma . Let D' be a bi-directional refutation of a set of

ground instances of clauses in the set S of Horn clauses. Then

there exists a bi-directional refutation D* of S which lifts D' and ti
has the same ^ize as D'.

Theorem 2. For any unsatisfiable set S of Horn clauses,

there is a bi-directional refutation of S which is at least as

simple as the simplest P1-refutation of S.

33

205 L Bi-directional Search Strata

In the following discussion of a bi-di:L'ectional search

strategy, it is assumed that the strategy should search so that the

first found bi-directional refutations is a simplest bi-directional

refutation obtainable. That is, the search strategy should exhaust

the possibility of finding a refutation of size k before trying to

find a refutation of size k+1a Theorem 2 expresses the power of

bi-directional refutations in the anticipation of this kind of

search strategy.

Let C be an SLN-resolvent of cost g and length h, where

the cost of C is the size of the derivation of C, and the length of

C is its number of literals. 't'here is a bi-directional refutation

of size g* if C meets h P1-resolvent units, the sum m of

whose costs satisfies g+h+m = g*. To ensure that all such units

have been generated, it is necessary that all P1-resolvent units of

cost m or smaller have been generated. It is easy to verify that

all ancestors of a unit of cost m have cost g" and length h9 where

g'+h' < m+1. Let the merit of an ordered clause be defined to be

the sum of its cost and its length. If an SLN-resolvent of merit

g+h has been generated and if the search is attempting to generate

a refutation of size g*, then the search should generate all ordered

P1-resolvents of merit g'+h' < g*+1 - (g+h). If all such P1-

resolvents have been generated, then to exhaust the possibility of

finding a refutation of size g*, it is necessary and sufficient to

generate all SLN-resolvents of merit g+h.

Defining merit in this way layers the SLN- and ordered

- 34 -

p1-search spaces according to Kowalski's strategy of diagonal

search [11]. Most of the strategies of Chapter 6 apply to the

searching of these merit levels.

The meeting of SLN- and ordered P1-derivation has been

defined to use only positive unit P1-resolvents, while any SLN-

resolvent may be used to meet these units. There are three

searches, the ordered P1-search for units, the SLN-search, and the

search for a meeting between ordered P1--reso"Lution units and SLN-

resolvents. It seems most natural to combine the last two of these

searches by usin, the ordered P.1-resolvent units to augment the

SLN-search Call such units the im orted units of the SLN-search0

Since the imported units are intended to be used immediately if they

are to be used at all, they are treated as inpit clauses by the SLN-

search. Because the purpose of the ordered P1-se rch is to pro-

duce positive units, no negative clauses should be used as input

clauses for the P1-search.

For any ordered P1-refutation D of a set S of Horn clauses

there is an SLN-zefutation D* of S such that D and D* meet at any

stage. Since at least one clause of such a D* occurs on each merit

level up to the size of D*, each merit level contains at least one

clause which :aeets ux.ts of D. Because of this, the SLN-search

may be stopped at any merit level, and a meeting will be obtained

by generating ordered P1-resolvents. By generating all ordered

P1-resolvents up to a merit level such that the sum of the merit

levels is the size of the refutation, a meeting is generated. A

similar argument holds for stopping the ordere3 P1-search at any

merit level. Thus the number of merit levels saturated by each

- 35 -

search is immaterial as long as the sum of the merit level reaches

the size of the refutation.

A bi-directional search strategy is most efficient if it

saturates as many merit levels as pcssible while generating as fe'q

clauses as possible. The implementation of a bi-directional search

requires an alternation between searching an ordered P1--search space

and searching an SLN--search space. To be most efficient, the alter-

nation should be controlled by the raative ;lumber of clauses on the

merit levels of the two searches.

On each merit level, the ordered P-search and the SLN-search

count the number of clauses geLerated on that level. One search

generates clauses until its count exceeds that of the other search.

Then the other search begins generating clauses. If search A

saturetes a merit level before its count exceeds that of search B,

then search A begins generating clauses on its next merit level, and

its count becomes the number of clauses generated on the new level.

In this way, one search may generate all the clauses on one merit

level while the ether search is inactive. In doing this, the

bi-directional search is saturating as many merit levels as possible

while generating as few clauses as possible. This also ensures

that the difficulty of the bi-directional search is less than or

equal to the difficulty of either search by itself. This method

resembles the bi-directional search procedure suggested by

Pohl [23].

This alternating procedure is interrupted whenever a unit

positive clause is generated by the P1-search and imported to the

-36-

E:N-search. The SLN-search uses such a newly imported clause in

all possible ways up to its current merit level. This interruption

is necessary since the bi-directional search can be terminated only

by finding a refutation during the SLN-search.

Apart from the efficiency gained by alternating between search

spaces, the effi^iency of bi-directional search is based on the

assumption that the number of clauses on a merit level increases as

the merit increases. It follows that the number of clauses gener-

ated in the search up to merit level n is less than half the

number generated ?n the search up to merit level 2n. If an ordered

P1.-search and an SLN-search produce a meeting aftar searching m

and n levels respectively, then the bi-directional search generates

fewer clauses than if either search were to go +o level m+n.

One example of bi-directional search uses the following set

of Horn clauses.

P(x,e,x)

P(x,g(x),e)

P(g(a)^e)

P(x,y,u) P(Y,z,v) P(u,z,w) P(x,v,w)

P(x,Y,u) P(y'z,v) P(x,roe,w) P(u,L,w)

The ordered P1-search program of Isobel Smith generated 35

clauses and retained 21. When SLN-search was done by hand, 24

clauses were generated and 16 retained. Hand-done bi-directional,

search generated 17 clauses and retained 14. In each case, the

refutation had size 7.

- 37 -

With some care with the details of the search, the efficiency

of bi-directional search can be improved. For instance, if all
clauses up to and including merit levels m and n have been

generated by the pI- and SLN--searches, and no meeting has occurred,

then there is no bi-directional refutation of size m+n+1 or less.

In this case, no imported unit of merit m:+1 should be used to meet

an SLY-resolvent of merit lass than n, for that would be an attempt

to find a b4-directional refutation of size m+n+1 or less.

It is interesting to note that Chang [3] proved that fo. ° any

purely linear refutation, which he calls an input clause refutation,

there exists a unit refutation. A unit refutation is one all of

whose resolutions have a unit as one parent. Any P1-refutation

with Horn clauses is a unit refutation, and any SLN-refutation with

Horn clauses is an input; clause refutation. It is an open question

whether the class of unsatisfiable sets with purely linear refutat-

ions includes more than Horn clauses, or clauses which can be

renamed as Horn clauses.

- 38 -

Chapter . Linear Resolution Systems

3.1 Introduction

The bi-directional search techniques of Chapter 2 can be

tended to input sets which contain non-Horn clauses. But the

search for a meeting becomes so difficult that a bi-directional

search is less efficient than either of the two searches by itself.

However, the search spaces for SLN-resolution are so sparse that an

extension of SLN-resolution to non Horn clauses seems worth invest-

igating.

In order to extend SLN-resolution, its restrictions must be

weakened. That is, if every resolution must have one negative

parent, one input parent, and have both parents ordered then, for

some unsatisfiable sets of non-Morn clausee, no refutation car be

constructed. If the restrictions of SLN-resolution are weakened,

then the resulting search spaces are not as sparse as the correspond-

ing SLN-search spaces. However, when the restrictions of an infer-

ence rule are weakened, its power generally increases. This would

be an advantage because it seems difficult to prove that SLN-

resolution is any more powerful than P1-resolution. It is proposed

to consider first linear resolution. The linear resolution rule is

a weakening of the restrictions of SLN-resolution which is as power-

ful as the most powerful resolution rule.

This chapter considers linear resolution and certain restrict-

ions to linear resolution which can be applied without decreasing

the power of the rule. Chapter 4 considers a further restriction

to linear resolution which somewhat decreases its power but for

,&lich there is a great gain in the sparseness of the search spaces.

Most of Chapters 3 and 4 were written with Robert Kowalski

and have appeared separately in [15]. I have tried to indicate

portions which are due solely to Kowalski, but we worked in such

close collaboration that most of these chapters must be considered

to be a join: achievement. Kowalski's contribution is particularly

evident in the careful reasoning of the proofs, and in the elegance

of the very strong admissibility restriction on SL-resolution.

3,2 Lineax Derivations

Linear resolution was independently discovered by Loveland

[17], Luckham [19] and Zamov and Sharonov [33]. It is a refine-

ment of unrestricted resolution whose search spaces are significant-

3,y more sparse than the corresponding search spaces for u: 'estricted

resolution. Fo:.^ certain measures of complexity, such as size,

linear resolution can be proved. to be as powerful as unrestricted

resolution. That is, no form of resolution is more powerful than

linear resolution. Linear resolution has the particular advantage

that it offers exceptional opportunities for the application of

heuristic search because of the relatively uncomplicated structure

of its uearch spaces.

A linear derivation D, from a set S of clauses, is a' sequence

of clauses (C11 ..., Cn) such that C1 e S and each Ci+1 is a resoly-

ent of Ci (the near parent of Cy+1,) and B, where either

(1) B is in S (the input parent of Ci+r), or

(2) B is some ancestor, Ci of Ci, j < i, (the

far parent of Ci+1).

C1 is the initial clause of D and Cn is the clause derived by D.

In case (1), Ci+1 is obtained by input resolution and, in case (2),

by ancastorresolution. If D derives the null clause from S, then

D is a linear refutation of S.

The sequence D = (PQ, Q, R, S, RT, T, P, G) is a linear

refutation of S = {PQ, P, QR, RS, RST, PT}. Notice that, in this

example, C6 is obtained by resolving the near parent C5 with its
ancestor C3. All other resolvents are obtained by input resolution.

-- 41 -

An example of a general-level linear derivation is the refutation.

(P(x) P(a) , R(a), Q(y), R(y),) of

{P(x)P(a), P(x)R(a), R(x)Q(y), Q(y)R(y))

Note that, in linear derivations, factoring is considered to be part

of the resolution rule.

For any set S of input clauses, the linear derivation search

space for S is a finite set of disjoint search trees. For each

input clause C1 which is an initial clause for linear derivations,

there is a search tree T = T(C1) satisfying the following.

(1) C 1 is at the root node of T.

(2) If Cn is a clause of T, derived by (C1, ..., Cn),

then any clause C,,1 is an immediate descendant

of Cn in T iff the derivation of
C n+1 is

/1 (C1, ..., (! Cn, "n+1

Figure 8 illustrates part of a linear derivation search tree.

Although this search tree is sparse compared to the corresponding

search space or unrestricted resolution, it is evident that there

are many redundant derivations which are admitted by linear resolut-

ion. In the remainder of this chapter and in Chapter 4, refine-

ments of linear resolution are considered which successively remove

most of the redundancies of figure 8.

PR

3
9
8

n
o
d
e
s

J

j
I
\ \

F
ig

ur
e

S
,

S
ea

rc
h

t
r
e
e

f
o
r

l
i
n
e
a
r

re

so
lu

;;i
on

 (
51

3
no

de
s)

.

- 4.`' -

303 Refinements of linear resolution

As with SLN-resolution, it is possible to impose on linear

resolution the restrictions that no resolvent is a tautology and

that the initial clause belongs to a given support set of the input

set S. Both restrictions increase the sparseness of search spaces

without decreasiV the power of linear resolution. The support set

restriction is especially useful because it limits the number of

search trees which need to be investigated in the course of search-

ing for a refutation. The easily recognisable support subsets of

S include the set of all positive clauses, the set of all negative

clauses, and the set of all clauses which come from the negation of

the conclusion of the theorem (when the axioms and special hypo-

theses in S are satisfiable). A more detailed discussion of

support sets occurs in Chapter 7. For the example of figure 8, the

initial clause is the only clause in the support set of positive

clauses, so that in this case the search space consists of a single

search tree. All of the refinements of linear resolution discussed

in this then-is are compatible with both the support set and no-

tautologies restrictions.

Other restrictions which have been investigated for linear

resolution include the s-linear restriction (Loveland [17] and Zamov

and Sharonov [33]) and merging restrictions (Anderson and Bledsoe

[1], Yates et al [32], and Kieburtz and Luokham [10]). The

t-linear and SL-resolution systems investigated in this and the next

chapters are both refinements of s-linear resolution with the support

set and no-tautologies restrictions. The merging restriction does

not seem to be a useful one and is not investigated. The

- 43 -

Wallowing table compares, for various refinements, the size o-' a

simplest proof and the number of derivations of the same or smaller

size for the input set and top clause of the example of figure S.

linear s-lin, m-lin. m$-lin. t°-lin. SL(1) SL(2)

size n of
simplest
refutation 6 6 7 7 6 7 6

Number of
clauses of
sizo c n 193 171 2.24 224 74 13 12

The combination of linear resolution and the merging restriction

defined in [1] is denoted by 'm-linear'; and the combination of

m-linear resolution and the s-linear restriction, by 'ms-linear'.

'SL(1)' and 'SL(2)' denote 31-resolution with different selection

functions. (The selection function chooses and resolves upon the

alphabetically least atom for SL(1) and the alphabetically greatest

stow for STj(2).) The selection function for SL-resolution acts in

much the same way as the choice of the order of input parents in

SLN-resolution. For each choice of order for SLN-resolution, as

with each choice of selection function for SL-resolution, there is a

different search space.

As is justified by Meltzer in [21], the input clauses of this

example can be renamed to be Horn clauses. Rename P to be U, and

P to be U. The corresponding SLN-search space consists of the

side search tree whose root is labelled by U T. The search space

in this case contains no redundant or irrelevant clauses, and con-

sists only of a derivation of the null clause. This is an

K., 44 -

indication of the extreme sparseness of SLN-search spaces.

The three new restrictions incorporated in t-linear resolution

are defined only for derivations from input sets of ground clauses.

The extension of the definition to sets of general clauses is not

difficult, but the complications involved obscure the discussion.

Let D = (C1, ..., Cn) be a ground linear derivation from S.

. literal L in Ci descends from L in an ancestor Ci iff L occurs in

every intermediate clause Ck, J< k < i. An ancestor Ci of Ci is

an I-ancestor of Ci iff Cj+1 has an input parent and all literals in

CY except for the literal K resolved upon in obtaining CJ+1, have

descendants in C.. The literal K is called the A-literal of C.

from the A-ancestor C ..

In the derivation (PW., Q, R, S, RT, T) from the input set

{PQ, P, QR, RS, RST), the derived clause C6 has A-ancestors C29 03

and C4 and A-literals Q from C2, R from C3 and S from C4. C5 is

not an A-ancestor of C6 because C6 is not obtained by input

resolution.

A linear derivation D is t-linear if it satisfies the follow-

ing three restrictions.

(1) If Ci+1 is obtained by ancestor resolution, then

it is obtained by resolution with an A-ancestor

of C..
1

(2) If Ci contains a literal complementary to one of

its A-literals, then Ci+1 is obtained by ancestor

resolution.

-45--

(3) A-laterals of Ci from distinct A-ancestors

have distinct atoms.

It has already been remarked that the no-tautologies and support

set restrictions are compatible with t-linear resolution. Figure 9

illustrates part of the t-linear search space for the example of

figure 8.

Figure 9. Search tree for t-linear resolution (134 nodes).

Notice that the first condition implies that if CI resolves

with an A-ancestor Ci then the literal resolved upon in Ci is the

A-literal of 0. from C1 (for otherwise C. would be a tautology).

Thus the resolvent Ci+1 is contained in its near parent. (This

-46-

last property is Loveland's s-linear restriction [17] and Zamov and

Sharonovts absorption restriction [33].) The second condition

states that ancestor resolution is compulsory in the sense that it

must be performed as soon as it can be performed.

Clearly, for an efficient implementation of the t-linear

restrictions, it would seem desirable to find an efficient way of

associating with each clause Ci a list of its A-ancestors and

A.--literals. In fact, it is cnly necessary to associate A-literals,

since all the other literals in A-ancestors are already contained in

01. Restrictions (1) and (2) can then be implemented by simply

deleting any literal in 01 which is complementary to an associated

A-literal. The implementation of (3) is equally simplified. In

the next chapter, there -J.s defined a chain form<;t for SL-derivations

which provides juFit such a way of associating L'-literals with clauses.

It is instructive to comrare ancestor resolution in linear

derivations with the implicit merging operation. The merging oper-

ation is implicit in the representations of clauses as sets of

literals. If clauses were replaced by ordered clauses, the merging

operation would need to be performed explicitly. So far, for

t-linear resolution, ancestor resolution resembles the merging

operation in that both remove a single literal from a clause and

both are compulsory. For SL-resolution, the resemblance is more

marked and both operations are treated as special cases of a single

rule. For SL-derivations from sets of general clauses, ancestor

resolution resembles factoring.

- 47-

3.4 Minimal Derivations and rm-size

In order to investigate the power of linear and SL-resolution,

their refutations will be compared with minimal refutations. Mini-

mal refutations ;.nolude the simplest obtainable by any resolution

rule. Moreover, every minimal refutation (whether simplest or not)

can be regarded as reasonably simple for the theorem it proves. It
will be shown that for every minimal refutation there exists an

s-linear refutation of the same complexity for the same set of

clauses, and for every unsatisfiable set of clauses there exists an

SL-refuvation as simple as some minimal refutation.

A branch of a non-linear derivation D consis-cs of a node

labelled by an input clause C, together with all nodes of D

labellea by the descendants of C. A. literal i^ resolved upo at a

node if it occurs in the clause at that node and is removed when

obtaining the resolvent at the immediate descendant node. A ground

non-linear refutation is minimal, if, for every branchp the literals

resolved upon at distinct nodes have distinct atoms. A ground nor.

refutation is minimal if it can occur as a subderivation of a mini-

mal ground refutation. That is, it derives a non-tautology and,

for every literal resolved upon at a node, its atom does not occur

in any clause at a descendant node. A general derivation is

minimal if it lifts a minimal ground derivation. (It is tree-

isomorphic, the clause at any node has as an instance the clause at

the corresponding node, etc.)

Figure 10 illustrates minimal and non-minimal refutations of

the same input set. The minimal refutation hus 4 branches, size 3

and level 2. The non-minimal refutation has 5 branches, size 4

-48-

acid level 3. The literal Q is resolved upon twice in the left-most

branch of the non-minimal derivation.

0

PQ

non-mi.iimal

PQ PQ P(

minimal

Figure 10. Non-linear refutations of {Pty, PQ, PQ, PQ

If a s._t S of ground clauses contains exactly n distinct

atoms, then there are only finitely many minimal derivations from S,

none of which has size greater than 2n - I or a branch with more than

n+Tj nodes. Under quite general conditions on S (which apply, in

particular, to the example of figure 10) there are infinitely many

non-minimal derivations and refutations of unbounded size. (The

conditions are that some minimally unsatisfiable subset of S con-

tains at least two clauses containing a literal L and two other

clauses containing L.)

- 49 -

The notion of minimal derivaticns was introdreed by Loveland

[17] and investigated independently by Kowalski [12] in conjunction

with Pat Hayes. Minimal derivaticns are just those derivations

which can be obtained by the construction of semantic trees (Hayes

and Kowalski [6]). Loveland defines a ground derivation to be

minimal if it cannot be 'pruned'. The two definitiors are not

equivalent. Every unprunable derivation is minimal in our sense,

but not ccnversely. It follows from Loveland2s Corollary 2 that

there Exist minimal refutations as simple as the simplest obtainable

by .ny resolution system (Theorem 3 of the next section).

Ancestor resolution in lir_ear derivations resembles the

factoring (and merging) operation more closely than it does the

resclution operation. Fcr this reason, the size of derivations is

not entirely appropriate for comparing the ccmplexities of linear

with non-linear derivations. Ancestor resolution is to be con-

sidered a form of factoring. If this is done, then factoring and

merging must t,, considered to be explicit operations in both linear

and non-linear derivations if their complexities are to be ccmpared.

As with SLN-resolution, Kowalski's m-factoring [12] will be used.

That is, all input clatv.ses are initially factored in all possible

ways. Subsequently, resolvents and factors may be factored, and

must be merged, provided that one of the unified literals is new.

Neither parent of a linear or non-linear resolution, operation may

have two identical literals. These restrictions avoid the redundant

refactoring of clauses. Each factoring operation is considered

to factor out only one literal.

50 -

Define the ran.-size of a non-linear derivation to be the pair

(r,m) where m is the number of factoring operations performed in

the derivation and r the number of resolution (of factors) oper-

ations. For a linear derivation, the rm-size is (r,m) where r is

the number of input resolution operations and m the number of both

ancestor resolution and factoring operations. When factoring is

explicitly displayed, then r+m is the number of non input clauses of

the derivation.

In figure 109 the minimal derivation has rm-size (3,2) and

the non-minimal dcr:.vation has rm-size (4,2) .

For both linear and non-linear der..v-ation$, m does not

include the number of initial factoring operations applied to input

clauses. For linear derivatians, the definition of rm-size is

deliberately ambiguous when a near parent resolves with a top clause,

which can be treated as either en input or far parent.

If complexity is defined as any function of r and m then

two derivations, linear or non-linear, have the same complexity if

they have the same rrn-size. In order to compare the complexities

of derivations having different rm-sizes, we shall assume only that

complexity is non-decreasing with increasing r and m and that an

increase in m does not increase complexity more than the same

increase in r. More precisely, if (r1,m1) < (r2,m2) means that no

derivation of rm-size (r1,m1) is more complex than one of rm-size

(r2,m2) then the assumptions are that r1 < r2 and m., < m2 imply

(r1,m1) < (r2,m2), and that (r,m) < (rHn, m-n)6 Therefore a refut-

ation D is a simplest refutation of S if its rm-size is less than

or equal to the rm-size of all other refutations of S.

51 -

3.5 The Com eteness and Power of Linear Resolution

Linear resolution will be shown to be as powerful as any

.-resolution rule by proving that there is a linear refutation as

simple as the simplest minimal refutation. Thus it is first necess-

ary to prove that there is a minimal refutation which is as simple .9

the simplest obtainable by unrestricted resolution.

Lemma_,. Let D' be a non-linear ground refutation of a set

of ground instances of clauses in S. Then there exists a refutation

D ;,f S which lifts D' and has the same rm-size.
nom.1

The proof is not difficult and is similar co that of

Kowalski's Theorem 4.7.9 in [12].

Lemma 6. For any unsatisfiable set S of clauses, there

exists a simplest non-linear refutation which lifts, and has the

same: rm-size as, a simplest ground refutation of a set of Vound

instances of clauses in S.

Proof Outline. Let D be a simplest non-linear refutation of
10

S and assume it lifts a ground refutation D'. Note that D cannot

be simpler than Dt. By using Lemma 5 and the fact that D is

simplest and lifts D', it is easy to verify that D and D' have the

same rm-size. It follows from a second application of Lemma 5 that

D' is a simplest ground refutation of a set of instances of clauses

in S.

If D is a simplest non-linear refutation which lifts no ground

refutation, then it is necessary to show that there exists another

simplest refutation which does. This can be done by first construct-

52 -

in_g a ground 'pseudo-derivation' isomorphic to and having the same

rm-size as D. (The pseudo-derivation fails to be a derivation,

because certain compulsory merging operations are not performed.)

The pseudo-derivation, in turn, can be 'contracted' to obtain a

ground derivation from instances of clauses in S. The contracted

derivation has fewer resolution operations and, at worst, has no

more merging operation than it has fewer resolution operations.

Therefore it is at least as simple as the pseudo-derivation. By

Lemma 5, the contracted derivation can be lifted to a refutation of

S .;hick has the same rm-size. This derivation is obviously at least

as simple as D and is therefore a simplest refutation of S. Q.E.D.

(The definition of a pseudo-derivation is given in [7] and

the contraction operation fo2 a pseudo-derivatin is the analogue of

the contraction operation for derivations studied in [7] and [12].)

Lemma . For every unsatisfiable set of ground clauses, there

exists a simplest ground refutation which is also minimal.

Proof f.utline. Let D be a simplest ground refutation of the

set, S. By Loveland's Corollary 2 [17], if D is not minimal then

it can be 'pruned' to obtain a minimal refutation D' of S. The

pruning operation removes resolution operations and introduces no

more merging operations than the resolution operation it removes.

Therefore D' is a simplest refutation of S. Q.E.D. ti

Theorem . For every unsatisfiable set of clauses, there

exists a simplest refutation which is also minimal.

Proof. By Lemma 6, there is a simplest refutation of the

- 53-

;ec a which lifts and has the same rm-size as a simplest refutation

D° of a set S' of instances of clauses in S. By Lemma 7, there is

a minimal refutation D" of S' which is as simple as Dt. By Lemma

5, there is a refutation D of S, which lifts D" and has the same

:,u-size as D" . Therefore D is a minimal and simplest refutation

of S. Q.E.D.

The following theorems are proved not for linear resolution

but for s--linear resolution. Since s-linear resolution is a re-

finement of linear resolution, Lemmas 8 and 9, and Theorem 4 apply

to linear. resolution as well. The proofs for t -linear resolution

follow much the same line, but are more complicated.

Lemma 88. Let D be a minimal ground refutation of a set S

of ground clauses. For any input clause C1 of D, there is an

s--linear refutation of S with initial clause C1 and having the same

rm-size as D. N

Proof outline (illustrated in figure 11 and appearing in full

detail in [14]). The proof is by induction on the size n of D.

If n = 0, then the desired refutation is just the one clause

s-linear derivation of e Suppose n > 0.

Let the two immediate subderivations of D derive the unit N

clauses {L} and {L{. Because D is minimal, if we delete from all

clauses at nodes of D the literals L and L, we obtaf.n minimal

refutations D1 of S1, and
D--2

of S21 tree-isomorphic respective]:, to

the subderivations of {L{ and {L}. Suppose that C1 - {L{ occurs as

11

induction
hypo thesis

C1i-.{L}

delete
L

delete

L

C-{L} B--{L}

D2

induction
hypothesis

B-{ L }

I

C -f Ej

P
' r

D2

v

b
replaee L

I

ry

C'

0-1

CU{L}
D'

C. i

replace L

D' w

/

C

,ro { L}

60

Figure It. Outline of the proof of Lemma 8. ' (A broken line, here and in
figure , connects a resolvent with its input or far parent.)

- 54 -

an input clause of D1, and B - {L} (where L e B and B e S) is an

input clause of D2m

By the induction hypothesis, there exist s-linear refutations

D'! of S.1 with initial clause C. - {L1, and
22

of S2 with initial

clause B - {L}. D. and D! have the same rm-size.

Let DPbe the s-linear derivation of {L} from S, isomorphic

to with initial clause C, obtained by replacing L in all input

parents from which L was deleted in obtaining S1. (L is inserted

Irto al". resolvents of such parents and into all descendants of such

resolvents.)

Let DL° be obtained from D2 by first inserting {L} as new

initial clause before B - {Ls and by next inserting immediate27 be-

fore any resolvent Ci with near parent of the form C - {L}, where

C e S and L E S, the clause Ci U {L}. It is easy to check that

is an s-linear refutation of S U {{L}}, where {L} occurs only as

initial clause. ({L} is treated as far parent for resolvents Ci in

with near parents C. U {L}.)

The desired s-linear refutation D' of S is obtained by append-

ing ,D °t to D10 and, deleting the duplicated occurrence of {L} . It is

straightforward to verify that D and DI can be constructed so that

they have the same rm-size. Q.E.D.

Lemma . Let D be an s-linear refutation of a set of ground

instances of clauses in S. Then there exists an s-linear refutation

of S which lifts D and has the same rm-size.

55 -

The proof of Lemma 9 is similar to, but much simpler than, the

proof of Lemma 11.

Tho:aa. For any unsatisfiable set S and support subset

SC, there exists an s-linear refutation of S with initial clause in

S
0

such that no non-linear refutation of S is simpler.

Proof. As in the proof of Theorem 3, there is a simplest

non-linear refutation D of S which lifts and has the same rm-size,

as a simplest minimal refutation D' of a set of ground instances SQ

of clauses in S. Some input clause C' of D' is an instance of some

clause in SC. By Lemma 8, there is an s-linear refutation D II of

S' with input clause C1 and having the same rm-size as D'. By

Lemma 9, there exists an s-Linear refutation of S, with top clause

C1 in S0, which has the same rm-size as D" and therefore is as

simple as a simplest non-linear refutation of S. Q.E.D.

-56u-

Cheater . SL Resolution

4,1 Jnfoxma3 Definition

SLN-resolution can be extended and t-linear resolution can be

restricted to SL-resolution. The ordering of clauses of SLN-

resolution can be considered to be a selection of the literal to be

resolved upon. SL-resolution is t-linear resolution with an addit-

ional restriction which calls for a single literal to be selected from

each clause Ci in an SL-derivation. The selected literal is the

only literal in Ci which is ever resolved upon when Ci is used as

near parent for input resolution. The choice of selected literal
is constrained by the condition that it be- a literal most recently

introduced into the derivation of Ci. Thus, in the derivation

(PQ, PR) only It ;nay be selected in C2, and therefore (PQ, PR, R)

corresponds to no SL-derivation for any legitimate way of selecting

literals.

For each derivation D in an SL-search tree, there is only one

literal in the derived clause C, which is resolved upon in obtaining

all immediate descendants by input resolution. If the same deriv-

ation occurs in a t-linear search tree then there are additional

immediate descendants obtained by resolving on all other literals in

C. Thus, if C contains m literals, then there are, on the average,

m times as many immediate descendants of C in t-linear search tree

than there are in the SL-search tree. If m is the average number

of literals in clauses derived by t-linear derivations of size < n,

then there are, on the average, mn more t-linear derivations of size

n than there are SL-derivations of the same size.

!'S -`o PST

PRT

b PT

60

PS

P

60

Figure 12. Search tree for SL-resolution (12 nodes)

Figure 13. Search tree for SL-resolution in chain format.

53

Figure 12 illustrates, for the example of figures 8 and 9,

the entire search tree for SL-resolution with the selection function

which chooses the literal having alphabetically greatest atom. The

SL-search tree has only t2 nodes, which compares favourably with the

134 nodes of the t-linear search tree and the 513 nodes of the

linear search tree.

Notice that when a clause is used as near parent for ancestor

resolution, the literal resolved upon is already constrained by the

compulsory ancestor resolution re9triction on t-linear derivations.

Thus, in the clause 9RT in figure 12, only the literal R may be

resolved upon, even though both R and T are most recently intro-

duced and T is alphabetically greater than R.

In the formal definition of SL-derivations, clauses are

replaced by sequences of literals, called chains. When a near

parent resolves with an input parent, the resolvent is obtained by

concatenating literals from the near parent to the left of literals

from the input parent. Between these two subsequences of literals

is inserted the selected literal resolved upon in the near parent.

This literal is the A-literal of the resolvent from its near parent.

More generally, each resolvent chain contaias all of its A-literals,

A-literals are deleted when they no longer belong to A-ancestors.

Those literals in a chain which are not A-literals are called

B-literals.

Figure 13 illustrates in chain format the SL-search tree of

figure 12. A-literals are enclosed in boxes. Merging operations

are displayed explicitly. Of two identical literals in a chain,

the rightmost is deleted. Literals resolved upon and literals

removed by the merging operation are underlined. The operation of

deleting A-literals is not displayed, although defined explicitly

in the formal defirition.

The definition of SL.-resolution treats chains in the same way

that separate and explicit rules for factoring and resolution of

factors treats clauses. Altogether there are three operations which

can be applied in order to obtain chains in Si-derivations. The

extension operation i input resolution of factored chains. The

reduction operation incorporates, as special cases, both basic

factoring and ancestor resolution of factored chains. The trunc-

ation operation is a bookkeeping device for eliminating. -literals.

4.2 Formal Definition

Let S be a given set of input clauses. For each fa3tor C of

a clause in S and for each literal L in C. choose exactly one

sequence C* ccnsisting of all literals in C, with L leftmost in C*.

C* is an input chain. (Only the leftmost literal in C* is resolved

upon when C* is input parent for an extension operation..) For the

input set of clauses

{P(x)T(a), P(x)R(a), R(x)Q(y), Q(y)R(y)},

tbare is only one corresponding set of input chains. Of the 9

input chains, one is obtained by facGoring. For

S = {PQ, P, QR, RS, RST, PT},

each corresponding set of input chains contains exactly 12 members.

Each such set contains exactly one of RST and RTS, one of SRT and STR,

and one of TRS and TSR. For the purpose of SL-resolution, it is of

no importance which one of these sets is chosen to specify the set

of input chains.

In general, a chain is any sequence of literals, each of

which is assigned the status of either A- or B-literal. All
literals in input chains are B-literals. Two B-literals in a chain

belong to the same cell if they are not separated by an A-literal.

Two chains are equivalent if one can be obtained from the other by

permuting B-literals within the same cell. Thus the chain

P FQ-FR S T has two cells, one containing only the B-literal P and

the other, the rightmost cell, containing the B-literals S and T.

The chains P S T and PIQIRIT S are equivalent.

- 61 -

Let 'f be a function defined on non-empty chains, having

chains as values. '? is a selection function if T(C*) is C* orp

can be obtained from C* by interchanging the rightmost B-literal in

C* with another B-literal in the rightmost cell. Thus, if C' is
s

a S T then
7

(C*) is P RT S or C* itself. The rightmost

literal in r-P(C*) is the selected literal in C*. (The extension

operation applied to C* resolves (C) on its rightmost B-literal

vri-th an input chain on its leftmost literal.) We require, further,

that equivalent chains have the same selected literal. Thus if
(P T) = PR ,T S then P(PT S;= P T S.

For a given set of clauses S, support set S' and selection

fiction an SL-derivation from S is a sequence D* = (C'i, ..., Cn) ti
Of chain: satisfying (1) (3) .

(1) The initial chain C j is an input chain from S'.

(2) Each
Ct+1 is obtained from C by one of

extension, reduction or truncation.

(3) Unless C1+1 is obtained from Ct by reduction,

then no two literals occurring at distinct

positions in Ct, have the same atom
i

(admissibility restriction).

is obtained from C by truncation iff (a) and (b):

(a) The rightmost literal in C# is an A-literal.
(b) C%P1 is the longest initial subsequence of Ci

whose rightmost literal is a B-literal. The

status of a. literal in C +1 is the same as its
status in Ci.

-62-

Ci+1 is obtained from Ci by redaction iff (a) - (e) :

(a) The rightmost literal in Ci is a B-iteralo

(b) C* is not obtained from Ci by truncations

(c) The rightmost cell of Ci contains a B-literal

L and either

(i) C contains a B-literal K, which is not

in the rightmost cell of Cl, (basic

factoring) or

(ii) C contain.- an A-literal K, which is

not the rightmost A--literal of C t. i
(ancestor resolution).

(d) L and K are u nifiable with mgu 0.

(Q) Let Cr be obtained by deleting the given

occurrence of L -.n Ci. Then C 1 = C * A

The status of a literal L 0 in C* is the same

as the status of the literal L from which it

descends in C.
i

Cr.+1 is obtained from C* by ex tension with an input chain B* iff
(a) (d):

(a) The rightmost literal in Ci is a B-literal.

(b) Ct 9nd. B* :hare no variables.

(c) The selected literal L in Ct and the complement K

of the leftmost literal K in B* are unifiable with

mgu e .

(d) Let B** be obtained by deleting the leftmost literal

K from B*. Then Ci,+t is the chain (CQ (C1)B**) e

obtained by applying O to the result

of!

concatenating

-63-
i
If (Clt) and B** in that order. The literal L e in

CZ .}..a descending from the rightmost literal in

T (C1) is an A-literal in Ci}j. Every other

literal in C'A has the same status as the literal
from which it descends in Ci or BN*.

It is not difficult to verify that the admissibility re-

striction, together with (b) in the definition of reduction,

in';orpoxates the three restrictions on t-linear derivations as well

as the compulsory merging and no-tautologies restriction. The effect

of (b) is to guarantee that if a literal can be removed by reduction,

then this is done before any extension operations are performed.

The restrictions (o) (i) and (c) (ii) on redaction are both

concerned with restrictions on the factoring operation. If reduct-

ion were performed with a B-literal IC in the rightmost cell, then

the effect of this factoring operation would be to generate a chain

already derivable by choosing at different factor for the input

chain of the last extension operation. Similarly, if reduction

were performed with the rightmost i-literal R, then a variant chain

could be derived without this reduction operation by using a differ-

ent factor for the most recent input chain.

The factoring restrictions incorporated in the reduction

operation correspond to restrictions which can be imposed on arbit-

rary resolution systems. The factoring method involved (r-factori.n&

imposes no constraints on the generation of factors of input clauses

but allows only those factors of resolvents which do not involve th*

- 64

merging of literals which descend from the same parent. It is

easy to show that m-factoring is the least redundant factoring

method which generates short clauses as soon as possible and does

not increase the complexity of derivations.

The truncation operation can be eliminated and incorporated

into more complicated definitions of extension and reduction.

Nevertheless, there is a good ieason for treating it as a separate

operation. The admissibilit;, restriction applies to the parents

of chains obtained by truncation.

Case (ii) of the reduction operation does not, in fact, com-

pletely correspond to ancestor resolution in linear resolution

systems. It corresponds, rather, to resolution with an instance of

an ancestor. In linear resolution, a clause Ci resolves with an

ancesi;cr C"j which is standardised apart to share no variables. The

corresponding case of reduction in SL-resolution can be int3rpreted

as resolving C with C e where 0 is the result of composing all
3. J

m.g.u,es generated in obtaining the sequence of chains Ctto Ci.

Moreover, the resolvent Ci+, is obtained without renaming the

variables which occur in its parents. This way of defining

ancestor resolution can be applied to linea:? resolution systems in

general and caa be justified by resolution-theoretic arguments.

In the context of SL-resolution, it has several noteworthy

advantages. It provides the most efficient and restrictive way

of implementing ancestor resolution in SL-derivations, without in

any way complicating simplest refutations. Moreover, it reflects

on the general level the relationship between ancestor resolution

and factoring which is the analogue of the relationship between

- 65 -

ancestor resolution and merging for SL-derivations from sets of

ground clauses.

SL-resolution is more closely related to Loveland's model

elimination system [16] than it is to other resolution systems. In

particular, chain foxgnat, A- and B-literals, extension, ancestor

resolution, reduction, and truncation all derive from model elimin-

ation. (We have used Loveland's terminology, except for toontraction'

which we have renamed 'truncation" in order to distinguish it more

easily from 'reduction'.)

SL-resolution differs from model elimination primarily, in that,

for ground derivations, model elimination has no merging operation.

At the general level, a limited amount of factoring is obtained in

model elimination by allowing ancestor resolution with rightmost A-

literals. For these reasons, only a weakened version of the admiss-

ibility restriction holds for model elimination.

Although nct explicitly incorporated in LovelandF original

definition, it is easy to verify that compulsory ancestor resolution

is compatible with model elimination. For certain restricted

selection functions, resolution with selected literals is already

incorporated in model elimination. (The selected literal is the

rightmost literal in a chain and is determined, therefore, by the

initial choice of input chains.) The compatibil.Lty of the more

liberal employment of selection functions can be established for model

elimination by the same method used for SL-resolution.

-66-

It is not difficult to show that, in most cases, SL-resolution

yields simpler refutations and fewer unnecessary derivations than

model elimination. (The anomalous case arises when a simplest SL-

refutation involves no basic factoring reduction operations and these

operations are performed in unnecessarily generated SL-derivations,)

In the next section the power of SL-resolution is compared

with that of other resolution systems. Comparison of these systems

with model elimination will not be investigated beyond that which

is implied by the preceding comparison of SL-resolution with model

elimination. The preliminary investigations reported ii this

paper suggest that the study and implementation of mudel elimination

procedures have been unprofitably neglected in favour of less

efficient resolution procedures.

- 67 -

4.3 The Completeness and Power of SL-resolution

The following lemmas and theorem establish that the simplest

SL-refutation of a set of clauses may be more complex than the

simplest obtainable by t-linear resolution. However, the use of a

selection function causes such an increase in the spareseness of the

search spaces that SL-resolution appears to be considerably more

efficient than t-linear resolution. Theorem 5 establishes that the

complexity of a most complex minimal refutation is a bound on the

complexity of a simplest SL--refutation.

Lemma 10. For every unsatisfiable set S of ground clauses,

support stet S0 and selection function there exist3 an SL-

refutation of S which has the same rm-size as some minimal ground

refutation of S.

Proof Outline (illustrated in figure 14 and appearing in

full detail in [14]). The proof is by induction on the number n

of distinct atoms in S. if n = 0 then the desired SL-refutation

contains just the null chain and has rm-size (0,0). Suppose n > 0.

It suffices to consider the case where S is minimally

unsatisfiable and S0 contains just one clause C1. Choose as

initial chain -.ny inp',t chain Ct formed from this clause. The

selection function (9 determines a unique order in which literals

descending from those in CI are resolved upon in any SL-derivation

with initial chain Ci'. In particular, determines a literal L in

C* whose descendants are the last to be resolved upon, among all
descendants of literals in C.

delete L

S

CT-L

Q

replace L

NV

Ci

4

C
10

V
,

C*
1

0

U (B*-z

{L}

o

D

delete L

on

replace L

L B*
,0

,

L (B*-L)

a

Figure j Outline of the proof of Lemma 1 Q

- 69

It is easy to verify that the set of clauses obtained from S

by deleting all occurrences of L and ignoring clauses containing L is

unsatisfiable and therefore contains a minimally unsatisfiable subset

S1. Obtain the corresponding set of chains S* from the set S* of

input chains by deleting L, ignoring chains containing L and, of the

remaining chains, choosing those which correspond to clauses in S1.

It is easy to check that the chain C1 -- L, obtained by deleting L

from C', belongs to S

Similarly, there exists a minimally unsatisfiable set of

clauses S2 and a corresponding set of chains S2, obtained by delet-

ing L from clauses in S and chains in S*, ignoring clauses and chains

containing L. S2 contains a chain B* - L, obtained by deleting L

.from some chain B*` e S* Which contains f,.

The induction hypothesis is applied to the sets of clause: Si

and S2 with respective support sets {C, - {L}} and {B - {L}}. For

this purpose, we define selection functions for S, and for S2.

Suppose that C* is any chain obtainable by an SL-derivation from S

with top chain Ci for the selection function 1f Let C** be C* with

all occurrences of L and L deleted. If L occurs in C* only as a

B-literal in the leftmost cell then Tl(C**) = T(C*). If L occurs

in C* only as the lef'Lmost A-literal then ?2(C**) . 'f (C*). The

values of (f1 and P2 for other chains may be defined arbitrarily.

By the induction hypothesis, there exist minimal refutations

D . of S, and D2 of S2, and SL-refutations . of Sj for with

initial chain C* - L and DD*` of S2 for 92 with initial chain BW - L.

D. and D* have the same rm-size.

.R, 70 -

The desired SL-refutation D* of S can now be obtained from D*

and D2 as in the similar construction of the s-linear refutation of

Lemma 8. Introduce L as new B-literal in the leftmost cell of all

chains in. D,'. In+roduce L as new initial chain and as a new I,-

literal to the left of all literals in chains of
D*

and insert

Ci L immediately before any chain C obtained by extension in Dt with

a chain C* - L E S where I E C* ar.,d C* E S. D* is then obtained

by appending the second derivation to the first, deleting the

duplicated occurrence of the chain L. It is not difficult to

verify that D* is an SL-refutation of 8*' fo?^ the selection funs rion

with initial chain C7.

The minimal refutation D of S, with same rm-size as 3*, is

obtained from D and D To each clause C - {T..} at a tip of DI, ,

where L e C and C E S, add the literal L. Also ad.d. L to the clauses

at all nodes in D, which descend from such tips. The resulting

derivation is a minimal derivation of {L} from S. In a similar

manner obtain from D2 a minimal derivation of {L} from S. D is

then the minimal refutation of S, having these two minimal derivations

as immediate subderivations. It is quite straightforward to check

that D* and D can be constructed so that they have the same xm-
AJ

size. Q.F.D.

Lei. For every unsatisfiable set S, support set SC and

selection function
!

, there exists a set S' of ground instances of

clauses in S, a support subset SQ of S' a n d a selection function (P

such that, for every ground SL-refutation of S', for S and
there exists an SL-refutation of S, for SC and which has the

same rm-size.

71 -

Proof Outline (appearing in full detail in [14]). For

simplicity, we may assume that S is i}iinimally unsatisfiable and that

S
0

consists of a single clause C1. Let S' be any minimally un atis-

fiable set of grc;znd instances of clauses in S. S8 contains some

iristanoe C1 of C1. Let S*` be a set of input chains corresponding

to S, let S'* be the corresponding set of input chains for S' and let

C* be any chain in S* corresponding to C1 and 9* be the chain in S'*

corresponding to C1, where C1*is an instance of C'. (The chain C'*

is an instance of the chain C* iff C'* is an ordered instance of C*

and the literals of C'* and C* in corresponding positions have --he

same status.)

We construct a tree T, each node of which is labelled both by

a chain derived by an SL.derivation D* from S* for
1
with initial

chain I and by a chain derived by a ground SL-derkration D'* from

S'* with initial chain To Both derivations have the same rm-size

and D'* derives an instance of the chain derived by D*. The root of

T is labelled by the chains C' and Cl*. Suppose that a node N and

the SL-derivation D* = (Cl, ..., Cn) and D'* = (C*, ..., Cr*) derive

Cn and Cn* at N have been constructed fied to have the

desired erties. We need to spec: immediate descendant

nodes ana the SL-derivations of the clauses labelling them.

If Cri violates the admissibility restriction then N has no

immediate descendants. If truncation can be performed on Cri then

it can be performed on
n

and N has one immediate descendant obtain-

ed'by adding to D* and D'* the chains which result from truncation.

If reduction needs to be performed on Cri then one way of

- 7 -

doing reduction is chosen and performed in order to obtain the single

node which is the immediate descendant of N. The new node is label-

led by the chain which results from this reduction. A similar

reduction operation can be performed on CI and the result also labels

the new node.

Let L be the selected literal in Cn and let L' in Cri be the

corresponding instance of L. Treat L' as the selected literal in

C* . If the preceding cases do not apply and .Zo extension operation

with e chain B'* from S'* can be performed on Cn then N has no

immediate descendant, Otherwise, N has immediate descendants for

each such BEach new node is labelled by add-Ug the chain which

results from extension. A similar extension operation can be per-

formed on Cn with a chain B* from S*. The chair which resultn from

the performance of this extension operation also labels the new node.

In each of the preceding cases, it is straightforward to

verify that all new nodes have the desired properties.

The tree T labelled by its ground derivations may fail to be

as SL-search tree for some selection function T'. There may be

distinct nodes N and N' labelled by the same ground chain C'*, but

by distinct general chains. The selected literals in the general

chains may correspond to different literals in C'*. In such a case,

a single such node N can be selected and all subtrees of T rooted at

nodes N' can be replaced by the subtree rooted at N. It can now be

verified that the modified tree, together with the ground chains

labelling its nodes, constitutes an SL-search tree T for some sel-

ection function T', for the initial chain C'* and for the input

73

set St. It follows that, for every ground SL-refutation D'* of S'

for there is an SL-refutation of S for P with initial chain 01,

having the same rm-size as D'*.

Theorem . For every unsatisfiable set S. support set S0 and

selection function 92, there exists an SL-refutation of S which has

the same rm-size as some minimal refutation of S.

Proof. Let S', S6 and C 1', be as stated in lemma 11. By

Lemma 10, there exists an SL-refutation D'* of S' for ', with

initial chain in SD and D'* has the same rm-size as some minim.31

refutation D' of S'. But, by Lemma 6, there is a minimal refutation

D of S which has the same rm-size as D' arid, by Lemma it, there is

an SL-refutation D* for ? with initial chain in S* which has the

same rm-size as D'*. Therefore, the M,-refutation D* has the same

rm-size as the minimal refutation D. Q.E.D.

Better bounds can be obtained for special cases. We conject-

ure that an improved bound can also be established for the general

case. It is easy to verify that, for every unsatisfiable set of two-

literal ground clauses S, no SL-refutation has rm-size worse than

(2n - 1,2) where n is the number of distinct atoms occurring in S.

On the other hand, for each n there exists an unsatisfiable set

of two-literal clauses S and a minimal refutation of S with rm-size

(2n - 1,2).

We have only found one example of a set S :such that no

selection function or support set yields an SL-refutation as simple

as can be obtained by unrestricted, minimal or s-linear resolution.

For S = {LM, LP, LQ, LR, NMQ, NPR, NT, T}

-74-

a.simplest refutation has rm-size (7,3). The simplest SL-

refutation obtainable has rm-size (9,2),(10,4),(11,3),(12,3),

(14,2) or (15,1) depending on the specification of selection

function and support set.

We have not found any examples where SL-resolution signific-

antly increases the complexity of a simplest proof. For a number

of other systems it is easy to construct refutations which are the

simplest obtainable by those systems and which exceed in complexity

the bound established for SL-refutations. In particular, for

S = {pQ, PQ, PQ;, P1}, P1 - deduction yields as simplest proof no

refutation tree of rm-size better than (4s,2). All minimal and

SL-refutations of S have rm-size (3,2). For the same set of

clauses, resolution with any singleton set of sipport also yields

simplest proofs more complex than minimal refutations. It is an

open question whether the complexity of simplest proofs obtainable

by m-linear resolution exceed the bound of the complexity of minimal

refutations. Our analysis of the completeness proofs for m-linear

resolution yields bounds on complexity which are worse than have

been established for SL-resolution.

75

Chapter 5. Selection Function and Support Set-

5. Introduction

SL-resolution has two parameters which affect the structure

of its search spaces. For each choice of selection function and

each choice of support set, different search spaces are determined.

Various anticipation methods allow some prediction of the structure

of the search trees and thus aid the choice of a selection function

and a support set.

The choice of a selected literal can be deferred until its
chain is gaaerated. Thus heuristic criteria can be employed to

select literals from chains at the time of their genera-`ion. These

heuristics determine the selection function dynamically. Similar

heuristics can be used to determine the support set.

The search trees are asstuaed to be layered from the top down

so that the search strategy generates all chains in higher layers

before generating any on the next lower layer. Provided that the

layering is :,ahauetive, the search trees for any unsatisfiable set

must have a righest layer which contains a null chain. For a given

input set, the best search space is one which has fewest chains on

all layers above the highest one which contains a null chain. A

powerfifi resolution rule has few layers above the layer containing

the null chain. A search space is sparse if it has few chains on

each layer. The choice of a selection function and a support set

affect both the power of SL-resolution and the sparseness of its

search spaces.

- 76 -

Estimating the number of layers above a highest null chain ca

be done by using the unlimited anticipation methods which will be

discussed later. However, if this estimation is done for every

choice of a selection function and support set, the difficulty becomes

so goeat that it seems to outweigh the advantages. Granting this,

the selection function and stippor°t set will be chosen in an attempt

to increase the sparseness of the soarch spaces. Since the choice

of support set and selection function does not affect the bound on

the complexity of simplest SL-refutations, consistent increase in

sparseness results in an overall reduction of the size of the s1ib-

space which needs to be generated before finding a first refutation.

5.2 The Uses of a Selection Function

It is assumed that the number of chains on each layer is an

increasing function of the branching rates of the immediate ancestors

of those chains. (The branching ra+e of a chain is the number of

immediate descendants of that chain.) It follows that choosing a

selection function so as to decrease the branching rate should

increase the sparseness of the search spaces.

It is convenient to consider each literal of each factor of

each input clause as an operator literal. Corresponding to ear,h

operator literal is an aerator, which is the chain constructed from

a. factor of an input clause with the operator literal distinguisheds

The result of using au operator is the resolvent obtained by

using extension with the operator as the ir_put chain, where the dis-

tinguished operator literal is the literal resolved upon. A search

tree2s structure is particularly simple when an operator is consider-

ed to be associated with the arc joining the near parent node with

the resolvent node.

Let C be a chain and L a literal in C. Any literal K such

that L and K are unifiable is a mate for L. The branching rate of

L is the number of operator literals which are mates for L. (The

estimation of branching rates is investigated in the next section.)

To reduce the branching rate of a chain, the most recent literal with

lowest branching rate should be the selected literal.

Let the most recent literals of C by L1 and L2 with brar.;hing

rates n1 and n2, where ni is less than n2. It is not difficult to

-78-

verify that if Lj is selected rather than L2, then in general there

are at least n2 - nj fewer chains generated as descendants of C.

If a solution is found between the selection of LI and L2, then the

ad',,,rantages of selecting Li are even greater.

The branching rate of a literal is defined without reference

to the desirability of the chains of the operator 1ite2als. For

example, operator literals from unit chains are more desirable than

operator literals from longer chains. Later, anticipation pro-

cedures will be used to estimate the difficulty of 'getting rid of'

the literals of ai. &xaput chain other than the operator literal.

79

5.3 Estimating Branching Rates

Rather than actually estimating branching rates, it is simples

to estimate which literal of a chain has the lowest branching rate.

This may be done by selecting the literal which is most instantiated

and is thus likely to resolve with fewer operators. The more general

literals which are not selected in the chain will tend to become more

highly instantiated in the descendants of the chain, and will there-

fore tend to produce fewer imuned.iate descendants when selected later.

The amount of instantiation might be measured by the number of

symbols in its ardent places less the number of distinct variables

there. Thus the simplest selection function which reduces the

branching rate selects the most recent literal with the greatest

measure of instantiation.

An upper limit for the branching rate of a literal is the

number of operator literals whose predicate letters are appropriate

for a mate. The literal K is a Qredicate mate for L if K and L have

the same predicate letters.

A lower upper limit for the branching rate of L is the number

of predicate mates for L which do not have any outer function

clashes with L. Two terms s and t have an outer function clan h
if they begin with different function letters. (A constant is at

function with no arguments.) If s and t do not have an outer

function clash, they may still not be unifiable if there is an inner

function clash or if they both contain the same variable at differ-

ent function nestings. Two literals have an outer function clash

if they contain terms in corresponding argument places which have an

- 80 -

outer function clash. If two literals are predicate mates and

they do not have an outer function clash, then the, are outer

function mates. The outer function branchina rate of a literal is

the number of i'4s outer function mates among operator literals.

To avoid repetious calculations of outer function clashes,

the operators should be classified so as to make the calculations

easy.

- 8.1

5.¢ Operator Classification Trees

For any input set, the number of operators is fixed. Thus

the work involved in their classification need only be done once.

Besides simplifying the estimation of branching rates, the classific-

ation of operators according to outer function clashes avoids attempt-

ing unifications which are bound to fail. Although alternate and

more sophisticated classification trees can be constructed, the

following description indicates the method of construction.

Given any literal L, the operator classification tree fo^ a.

given input set has one and only one branch corresponding to L, and

at the tip of that branch is the set of all operators whose disting-

uished literals are outer function mates for L.

Let P1, .., Pm and el, ..., fn be the predicate and function

letters occufring in a set S of input clauses. The oterator class-

ification tree for S is the tree T(S) composed of all branches of the

form (r, Q, g1, ..., gk) where r is the root of T(S),

Q : {P1, P1, .., ms 1 , gi a {f1, .., fn, v} for 1 i < k and

k is the number of argument places of Q. From the root of T(S)

one may visualise an are for each of P1, P13..., Pmt P. Each

node below the root is either a tip, or from it there is an arc for

each of f1, ..., fn, Sr.

The literal L travels along the branch (r. Q;, g1..., gk) if
L has predicate letter Q. If gi = v then the i-ch argument of L is

a variable. If gi A v then the i-th argument of L is a term

beginning with gi. At the tip of (r, Q, g1, , gn) is the set

of all operator literals which are outer function mates for L.

82

If K is an operator literal at the tip of (r, Q. g1fi ..., gn) then

the predicate letter of K is Q. If gi = r then the i-th argument

of K may be any term. If gi j v then the i-th argument of K is a

variable or is a term beginning with gi.

It may be that several tips of an operator classification

tree have the same set of operators. In this case, the tree may be

condensed. This is done by labelling an are with several functions.

Consider the following list of input clauses

P(x,e,x)

P(x,g(x) ,e)

P(g(a),a,e)

T(xQ y, u) P(y. z, v) P(x, v, w) P (u, z, w)

P(x,y, u) '(Y,z,') P(u,!,w) P(x,v'',w).

Figure 15 is a condensed operator classification tree for these

eleven literals. The literals are represented by an ordered pair

of integers, the first integer being clause number and the second

being literal number in the order they are written above. If
this operator classification tree were not condensed, it would have

128 tips instead of 5.

.- 83 _,

root

(4,1) (3,1) (1,1) (2,1) (4,4)

(4,2) (4,1) (4,4) (4.4) 4)

(4,3) (4,2) (5,4) (5,4)

(5,1) (4,3)

(5,2) (.5,1)

(5,3) (5,2)

(5,3)

Figure 15,

A more sophisticated operator classification tree than the one

described would classify operators by more than the outer function

of each term. The length and intricacy of each operator could also

be indicated. The following sections indicate verious anticipation

techniques whose implementation would depend on a sophisticated

operator classification tree.

®84_.

5.5 Azrtement for Tie-Breaka n

In many cases, there are several most recent literals in a

clause which have the same outer function branching rate. The sel-

ection function must have some sort of tie-breaking rule. One such

rule chooses the literal which has the greatest functional agreement

with operator literals.

If two terms are both variables or they begin with the same

function letter) then they have functional agreement. The number

of functional agreements of two literals which are outer function

mates is the number of terms in corresponding argument places which

have functional agreement.

A functional agreement tie--breaking rule is the type of

heuristic used by mathematicians. To choose to un&_fy literals

because of their similarity has a strong appeal for a mathematician.

It should also be noted that when functional agreement is high, then

the unifying substitution should be simple. The advantages of

this are discussed in the next chapter.

The implementation of functional agreement for tie-breaking

could be achieved by modifying the operator classification tree.

Consider the example of figure 16.

85 --

c7

f v /\V
Pf(x)y Pf(x)y Pf(x)y Pf(x)y

(i) (ii) (iii) (iv)

Figure 16.

If a selected literal is of the foz-m P(f(t),z), for any term

t , then it would follow the tree down to the tip marked (ii). In

this case, there are two functional agreements. Any selected

literal which iolloTs the tree down to tips (i) or (iv) has one

functional agreement. Following the tree down to (iii) indicates

no outer function clash, but also no functional agreement.

i36

56 .A. Two Stage Anticipation Procedure

Using an operator classification tree allows the estimation

of the number of immediate descendants of a chain, This anticip-

ation can be extended a stage further by considering the branching

rates of the immediate descendants of a chain.

Let L and K be outer function mates where K is the distirg

uished literal in the operator C. Let the residue of K be C°,

obtained by deleting K from C.

The outer function branching rate for each literal in C'

can be calculated using the operator classification tree. Let

the minimal outer function branching rate of the literals of C' be

the residual outer function branching rate of K. Let the second

stake outer function branching rate of L be the sum of the residual

outer function branching rates of the outer function mates of Lo

Consider the following minimally unsatisfiable set of

clauses:

P(a,x) P(x,f(x)) = LM

P(asx) P(f(x),x) = NP

P(a,x) P(x,a) = QR

P(a., a) = s

- 87 -

Literal
Literal

branching rate Residue
Residual

Rate

L 3 x i

M 1 L 3

N 3 P i

P 4 N 3

Q 3 3

R 3 3

S 2 none -

If a selected literal were to resolve with L, then the residue

would be the literal M which has a branching rate of 1. Thus the

residual outer function branching rate of L is 1. The literal R

has outer function mates,'L. N and P so that the first stage outer

function branch rate of R is 3. ' Bu.t L, N and P have residual

outer function branching rates of 1, 1 and 3. Thus the second

stage outer function branching rate for R is 1 + 1 + 3 = 5. That

is, using outer function branching rates, it is estimated that in

selecting R, there will be 3 immediate descendants and 5 second

level descendants. In this case, the difficulty of generating all

descendants of R two levels below R is 8. Figure 17 illustrates

the anticipated descendants of R to two levels below R.

By usixlg a two-stage anticipation method, the first and

second level branching rate can be estimated. The selected literal

in a chain should be the most recent literal whose estimated first

and second level branching rate is smallest.

.. 88 -

Second stage anticipation also indicates which operators

contribute to the least branching. This can be used by the search

strategy.

Clearly, the anticipation methou can be extended to estim-

ating third level branching rates. There seems no limit to the

number of levels investigated, but the labour involved and the pro-

gressive inaccuracy of the results will curb too deep an estimate.

There remains some difficulty when considering the second

level branching rate when a chain C resolves with a unit operatxr.

The branching of another literal in C determines the second level

branching rate. Although this determination is possible, the

amount and differentness of the calculation makes it attractive to

define the residual branching rate of a unit operator zero.

From this point of view, the first and second level branching rates

are an estima'Ge of the two level difficulty in 'getting rid of' the

selected literal. This in turn suggests an extended anticipation

method which calculates an upper bound on the difficulty of getting

rid of a literal.

.89-

5.7 Unlimited Anticipation and Pseudo-Search Trees

The preceding anticipation methods can be extended without

limit, but then it becomes difficult to keep track of the structure

of the anticipated chains. To overcome this difficulty, it is

convenient to construct pseudo-resolvents corresponding to the

anticipated chains.

Assume that the chains A and B have an SL-resolvent

(A' it ,P') 0 , where L is the literal resolved upon and where At and

B' are the residues of A and B. Then the pseudo-resol vent of 3

and.B is A' [L B' where the unifying substitution a is not applied.

Pseudo-factor ix , and pseudo-ancestor resolution can be defined in

a similai way.

For the exa,nple of tie p2eceding section, figare 17 illus-

trates a pair of 2.-stage anticipation trees using pseudo-resolution.

A. literal may be selected based on the results of construct-

ing an extended anticipating tree which uses all possible selection

functions. If the tree is extended far enokgh a selection function

can be chosen so that the search tree it defines is anticipated to

have the fewest chains above the first null chain, In practice,

the amount of extension of the anticipation tree depends on the size

of the tree. Instead of limiting the number of stages of anticip-

ation as was considered in the preceding section, it is possible to

have some limit on the size of the anticipation tree. Then

selecting a literal would have some constant difficulty.

- 90 -

R

QR

Figure 17.

The possibility of extending an anticipation tree until a null

chain is found suggests a new and very attractive method for con-

ducting a search. If only one selection function is used, then the

size of the anticipation tree is considerably reduced, so that

extending it to a null chain seems more feasible.

For any selection function, a search tree employing pseudo-

resolution, factoring and ancestor resolution is a pseudo-search

t, ree. By applying the appropriate unifying substitutions, and

deleting branches where unification fails, it is clear that a real

- 91 -

search tree may be obtained from the corresponding pseudo-search

tree. Thus any real search tree is an instance of a subtree of

the corresponding pseudo-search tree. For ground chains, a pssudo-

search tree is a real search tree.

Since SL-resolution is complete, at least one pseudo-

refutation of a pseudo-search tree corresponds to a real refutation.

Thus the pseudo-search tree indicates which branches of a real.

search tree are most likely to lead to real refutations. The use

of a pseudo-search tree is not itself a search strategy. Becat.se

the branching rat; of a pseudo-search tree is usually greLter than

that for a real search tree, a search strategy may be more important

in generating a pseudo-search than in generating a real search.

However, each pseudo-resolveut is much easier t' generate than a

real resolvent.

Consider the following example:

Represent P(a,x) P(x,f(x)) by LMy

P(a,x) P(f(x),x) by NP,

P(a, x) P(x, a-) by QR, and

P(&,a) by S.

In the following diagram, mate literals are connected by lines.

S

- 92 -

Using only the relationships represented by this diagram, the pseudo-

search of figure 18 can be constructed. In figure 18, {QR,S} is

chosen as support set. The parenthesised numbers indicate the order

in which chains are generated using upper diagonal search. (n full

description of search strategies appears in the next chapter.) The

operator appears beside the lines, literals to be resolved upon are

underlined, and A-literals appear in boxes.

QR

(5) Qj2P o- (o) QQN (7) Q

PN / PN

ML ML 4.N

(9) "'L N' (o) () L11N

S

S M R

Figure 18.

-93-

The pseudo-refutation of the pseudo-search of figure 18 has

tha refutation of figure 1.9 as gn instance.

P(a,a)

P(a,x) P(x,f(x))

=aa, P(a,f(a))

iax P(x,a)

P a. a P as
P f x t(a,x)

P(f(a),a)

a) P(a,a)

aricestoii
veso].ution

Figure 19,

In more complicated examples, there are pseudo-factorings and

pseudo-admissibility clashes (where the admissibility restriction

fails to hold). It has been observed in several examples that al-

most all pseudo admissibility clashes correspond to real admissibil-

ity clashes or to failure of unification. It has also been found

that almost every branch leading to a null clause in a pseudo--

search corresponds to a branch leading to a null clause in a real

search. Thus, there are indications that pseudo-search gives

fairly accurate information about the corresponding real search.

It should not be difficult to implement a pseudo-search

using far less time and space than a real search. If the conjecture

-94-

about the accuracy of the information of a pseudo-search is correct,

then finding a refutation by using a pseudo-search might be the most

efficient method of searching for a refutation.

If the branch corresponding to a pseudo-refutation fails to

be .refutation, then the literals on this branch could be treated

as the literals in the input set were treated. That is, each is

given a name, and the literals which are mates are noted. In this

way, a pseudo-search can be partly replaced by a real search. The

pseudo-search can be considered to be a look-ahead for the real

search. In easy problems, it is possible to look ahead to possible

solutions. In more difficult problems, where the pseudo-search

becomes very large, the look-ahead might be restricted to some fixed

number of levels, or to some fixed degree of difficulty. When the

look-ahead is limited to one level, then the pseudc.search is

reduced to an estimate of the branching mate.

An alternate unlimited anticipation method has been suggested

by Bob Cowalski. The pseudo-search could be limited to single

literals of the input set. One advantage of this is that several

simpler pseudo-searches are done. Another advantage is that when

trying to prove several theorems from the same axiom set, there should

be some transferal from one problem to the next.

- 96 -

5.3 The Choice of Suport Set

Let S be any unsatisfiable set of clauses, and let S* be the

set of chains corresponding to all factors of clauses of S. Among

all the SL--search trees with top chains in S*, at least one and

usually several contain a refutation of S. It is clearly advantag-

eous to consider as few of these search trees as possible provided

that at least one of those considered contains a refutation. Any

aubset S'* of S* such that S*S'* is satisfiable is a support set

for S*. At least one search tree with top chain in St* contains a

refutation.

One method for choosing S'* depends only on the sign of the

literals in the chains of S. From the completeness of hyper-

resolution, it follows that the set of all negative chains in S*

is a support set for S*. (A chain is negative if all of its

literals are negative.) By renaming every literal in S*, so that

every sign is changed, it is evident that the set of all positive

chains in S* is also a support set for S*. In fact, for any

renaming, the chains of S*-which are renamed to become negative are

a support set for S*. The ground unsatisfiable set

{PQ, P, QR, RS, RST, PT} has 16 support sets identified by noting

which subsets 'an be renamed to contain negative chains.

A seccnd method of choosing a support set depends upon

knowledge of the problem. Many problems are expressed as a number

of axioms and a theorem which follows from the axioms. Assuming

the axioms and conditions of the theorem to be consistent, the

negation of the conclusion of the theorem forms as set of clauses

which is a support set for the clauses

97 -

of the problem. The support set of chains which can be used as

top chains is the set of chains corresponding to factors of the

clauses in the support set of clauses. From a mathematician's

point of view, this choice of support set is particularly attract-

ive. This is because he can check whether resolvents are false

in his model for the axioms. If such checking could be mechanised,

then many irrelevant derivations could be deleted from the search.

It is evident that any unsatisfiable set of clauses contains

several support sets. The support set should be chosen in an

effort to reduce the difficulty of the search. The simplest

criterion for the choice of a support set is that it be the one with

the fewest chains. In this way, the corresponding search space has

fewest search trees. This is a reasonable choice if it is assumed

that there is no difference bet'een search trees or that the differ-

ence cannot be determined by inspecting the root chains.

The number of chains in a support set can be thought of as

its zero level branching rate. The anticipation methods of the

preceding sections can be used to estimate the higher level branching

rates of a support set. For each chain in a support set, the liter-

al with lowest cuter function branching rate is selected. The sum

of these branching rages for all chains in the support set is the

branchi rate of the set. The sparsest search tree should be

obtained by choosing the support set with the lowest branching rate.

Obviously, this method can be extended to estimate second and higher

level branching rates. It should be noted that the chains corres-

ponding to the negation of the conclusion of the theorem tend to be

more highly instantiated and should thus have a lower branching rate.

- 98 d-

Although choosing the support set with the fewest literals

has some intuitive appeal (there are fewer literals to get rid of),

it seems to have no theoretical justification, and examples

indicate that it has no advantages.

-99-

C te6. A Search Strategy for SL Resolution

6®1 Introduction

All of the preceding development has defined an inference

system. For any set of chains, an SL-inference system specifies

a search space composed of one or more search trees. It is now

necessary to investigate a search strategy which specifies an

order in which the chains of the search trees are generated.

There are certain properties of a resolvent which can be

precisely predicted from the properties of its parents. The most

important of these are the complexity of its den ration, and the

nuunber of B-literals it has. Such precise predictions allow a,

discussion of search strategies which consider -oroperties of chains

which have not yet been generated. These candidates for generation

can also be distinguished by properties which belong only to their

parents, L. search strategy compares properties and then selects

one chain to be generated from all candidates for generation.

Although the following is conceived of as being used with

normal SL-resolution, the search strategies also apply to pseudo-

resolution and pseudo-searches.

-100-

&2 An Expedienoy Tactic

In any search for a refutation, the null chain is the best

chain to generate, It should be generated whenever possible and

however possible, even if this overrides other tactics of the search

strategy.

When a unit chain (w .th one B-literal) is generated, there

should be a search for any other unit chain which will resolve with

it. To avoid too much search in the implementation of this tactic,

special storage is needed for unit chains These unit chains deed

not be on the same branch of a search tree nor even on the same

search trey. Thus the resulting refutation may not be SL, nor

least complex, but it should have the easiest search.

Although this tactic sees bound to increase efficiency, it
is very difficult to find an extension of it. One possibility

would be to extend the null chain preference to a unit chain pre-

ference. Another is to have unit chains act as operators. How-

ever, both of these tactics are likely to cause inefficiency.

- 101

603 Complexity Saturation and Dia. onal Sd ch

As was mentioned in Chapter 1, only exhaustive search

strategies are to be considered. Any exhaustive search strategy

enumerates the chains of the search space. This enumeration can

be partially specified by layering the search space. All chains

on the same layer have the same merit. A null chain with a simple

derivation is to have a better merit than a null chain with a more

complex derivation.

A merit saturation search strategy for SL-resolution first

generates all chains of merit zero. After generating all chains

with merit k, the search next generates all chains with merit k+10

Such a search will terminate when it finds the refutation of small-

est merit obtainable by SL-resolution. If the merit of a deriv-

ation is its complexity, then the corresponding saturation search

is a complexity saturation search.

The efficiency of a complexity saturation search is much

improved by using Kowalski's method of diagonal search [11]. A

search tree is layered by complexity of derivation in order that

simple refutations may be found before more complex ones. However,

all refuta+ions of a given complexity can be generated without

generating all aerivations of that complexity. For a given com-

plexity, diagonal search generates only those derivations which

could be extended to a refutation of that complexity.

Let the cost of a chain C be the complexity of the derivation

of C. Let the expectation of C be any lower round on the cost of

deriving a null chain from C. (Kowalski calls the expectation of

102 a-

C the heuristic value of C.) For instance, if the cost of C is the

r+m- ize of the derivation of C, then the expectation of C could be

the number of B-literals in C, the ten ,h of C. (The rjm- ize of a

derivation of rmmsi ze (r,m) is rFm.) This expectation is clearly

a lower bound on the cost of deriving a null chain from C.

Consider all derived chains to be stored in a rectangular

array, with all chains of cost g in the g-th row, and all chains

with expectation h in the h..th column. Let the n-th diagonal of

this array be the set of all cells of the array the sum of whose row

number and column number is n. Dia,-oral search first generates

all chains in diagonal 0. If all chains in diagonal k have been

generated, then the search next generates all chains in diagonal

k+1. Thus diagonal search saturates the diagonals of the storage

array.

Since h is a lower bound on the cost of deriving .null

chain from C, it follows that g+h is the complexity of the simplest

refutation obtainable by extending the derivation of C. Therefore,

to find a refutation of complexity k, it is sufficient to generate

all chains on diagonals less than or equal to k. Complexity

saturation search to complexity k generates all chains generated

by diagonal search to diagonal k, but complexity saturation also

generates all those chains of cost less than k which are on

diagonals greater than k, Thus diagonal search is always more

efficient than complexity saturation search.

Diagonal search is a merit saturation search if merit is

defined as g+h where g is the cost and h is the expectation.

- ;03 -

For the case where complexity is defined as ar+bm for coefficients

a and b, the merit should be defined as ar+bm+bh or possibly

a:c+-bin+ah,+bh2 where h2 is the number of B-literals in the rightmost

cell, and h1 is the number of B-literals not in the rightmost cell.

In any search, it is often the case that several chains have

equal merit. It is then necessary to have a tie-breaking rule since

chains are generated one at a time. A good tie--breaking rule for

diagonal search is Kowalski9s upper diagonal search [11]. If there

are several candidates for generation on the same diagonal, then

I er diagonal search generates a chain with the smallest expectation.

Such a preference for small expectation should decrease the diffi-

culty of the search.

For instance, let the cost of a chain be the r+m-size of its

derivation, and let its expectation be the length of the chain. Let

C be the chain most recently generated by upper diagonal search, and

let C have merit gi-h. Then, immediately before the generation of

C, all other candidates for generation must have had merit greater

than g+h, or if they had merit g+h, then their length must have been

greater than or equal to h. If C can be acted upon by the reduct-

ion rule or by she extension rule with a unit operator, then the

immediate descendant C' has cost g+1 and expectation h-1. This

resolvent is on the same diagonal as C, but is shorter than C. It-

follows that C' will be generated next after C. Thus, with these

measures of cost and expectation, when a chain is generated, all of

its descendants on the same diagonal are generated before any other

chains are generated.

- 104 -

Upper diagonal search is a merit saturation search with merit

h +-I (gfh) (g+h+1) . The second term of this merit is the sum of

the number of cells in diagonals shorter than the one being searched.

This merit ordering can be considered to be a refinement of the

diagonal search merit ordering. Each of the diagonal search merit

levels is subdivided to provide upper diagonal search merit levels.

Most tie-breaking rules can be considered as refinements of the

merit ordering for wh:_ch they break ties. The following table com-

pares the number of derivations generated by complexity saturation

and diagonal search for the exampie and refinements in the table of

section 3.3. Per both strategies, the complexity is r+m.

linear s-lin. m-lin. ms-lin. t-lin. SL(1) SL(2

Complexity
Satura'ion 282 224 357 357 95 13 14

Diagonal
Search 42 42 171 171 40 1 1 12

-105-

6.4 Measures of Complexity

With a computer, the difficulty of a search for a refutation

is some function of elapsed time and storage facilities used In

order to do theoretical calculations, some simpler estimate of

difficulty must be used. The simplest estimate is the size of the

search, (the number of chains generated before an empty chain is

generated). This estimate is quite inaccurate if some searches

attempt many unifications which fail. The use of an operator

classification tree should substantially reduce the number of ur.i-

fications which fnil.

The aim of a search strategy is to find a refutation with as

little difficulty as possible. An indirect way of attempting to do

this is to search for refutations which are least difficult to con-

struct. In constructing a derivation, no chains are generated

except those in the derivation. The complexity of a derivation

should be a measure of the difficulty of constructing the deriv-

ation, and not a measure of elegance or conceptual clarity.

Corresponding to the simplest measure of the difficulty of a

search, the simplest measure of the complexity of a derivation is

its size. The simplest measure of size would count only the number

of extension operations in a derivation. Since both extension and

reduction operations make substantial contributions to the difficulty

of a search, both should be used when measuring the complexity of m

derivation. A size of r+m is the simplest to calculate, but it is

somewhat inaccurate since the generation of a chain by extension is

more difficult than the generation of a chain by reduction. This

- 10 6 -

suggests the use of ar+bm where a.:> b, a > o and b > 0. Since one

extension gets rid of two literals, while reduction gets rid of only

one, 2r+m might be a good measure of complexity. It should be

noted that a refutation has 2r+m input literals. We have con-

sidered values for a and b of (1,0), (1,1) and (2,1). There

seems to be little theoretical justification for usir.g any other

values.

A literal such as P(f(x,g(y)), h(z)) is structurally more

intricate than P(uyv), and is more difficult to process. A deriv-

ation containing more intricate literals is more difficult to con-

struct than an isomorphic derivation whose literals are less intric-

ate. Thus the intricacy of the literals of a derivation contribute

to it complexity.

Since a literal with distinct variables in each argument place

is in its least intricate form, such a literal should be assigned an

intricacy number of zero. The intricacy number of a literal is the

number of symbols in its argument places less the number of distinct

variables. (This measure is used by Reynolds in [27].) Using

this measure, P(xs,x), P(x,a) and P(x,f(y)) each have an intricacy

number of one, while P(f(x,g(y)), h(z)) has intricacy number three.

Measuring intricacy by counting the total number of symbol8 in a

literal is easier, but seems too naive in that it discriminates

against literals with many argument places.

If k is the sum of the intricacy numbc,rs of all of the B-

literals in a derivation, then ar+bm+-ck could be used to measure

--107.-

the complexity of the derivation. Since k would usually be a

larger number than r or in, and because k makes a smaller con-

tribution to the difficulty of a derivation, c should be consider-

ably smaller thar a or b.

A fourth possible contribution to the difficulty of con-

strutting a derivation is the number and intricacy of the substit-

ution components in the unification substitutions. This contrib-

ution to the difficulty is most evident when a ground derivation is

compaxed with a general level derivation.

If a substitution component replaces a variable x with a

term t and t is composed of n symbol:: then define the size

of the substitution component to be n-i. The size of a substitution

is the sum of the sizes of its components. Let s be the sum of

the sizes of the unification substitutions used in constructing a

derivation. Then ar+bm-4ck+ds could be a measure of the complexity

of the derivation. As with c, the coefficient d should be con-

siderably smaller than a or b.

-108-

6,,5 Heuristic Merit Functions

In a diagonal search, g has been considered to be some meas-

ure of the complexity of the derivation of the chain and h to be

some measure of the complexity of getting a refutation. However,

in the search, the merit is only used to choose which chain to

generate next. There ara heuristic criteria which could help in the

choice of a chain but which are not direct estimates of complexity

or expected difficulty.

Alternatively, the cost ani expectation of a chain can bs

considered from a more pragmatic point of view. When a search is

only partly completed, the amount of additional search is of more

interest than the amount of comileted search. For example, if a

chair C has a small expectation, and a chain C' has a large expect-

ation, then there should be less search if the descendants of C are

generated before the descendants of C'. That is, when a chain has

been generated, its cost can be considered to be irrelevant since the

work has been done and cannot be undone. One way of implementing

this concept would be to use a length saturation strategy. Unfort-

unately, such a seemingly sensible search strategy is incomplete.

Although {P(a), P(x) P(f(x)), P(f(f(a))) P(f(a)) P(a)} is unsatis-

fiable, the strategy of ignoring the cost of chains can lead along

an infinite branch of the search tree. However, the attraction of

trying for a simplest search does suggest that some multiple of the

expectation should be used so that the cost of a chain contributes

less to its merit. For a chain with cost g and expectation h,

the merit should be ag +bh where b > a.> o.

- 10g -

Rather than use the sum of the intricacy numbers of all B-

literals in a derivation, it is possible to use onl,)r the local

intricacy, the intricacy numbers of the B-literals in the near

parent of a candid-,te for generation. For some coefficients a,

b and c redefine the merit of a chain as ag+bh+ct where g and h

are the cost and expectation of a chain to be genera+ed and t is

the sum of the intricacy numbers of the B-literals of its near

parent. Using such a merit with a merit saturation search, the

generation of chains with intricate literals is delayed. As has

been mentioned, this delays the difficulty of manipulating such

literals. This delay in generation is preferable to an intricacy

upper bound or a function nesting bound.

Father than use the sam of the sizes of the unification

substitutions in a derivation as a measure of its complexity, it

is possible to estimate the size of the next substitution and use

this as a ccmponent of the merit of a candidate for generation. Let

f be the numbe f ctiona agreement, (section 5.5) between the

selected literal of the near parent and an operator literal. if

the number of functional agreements is large, then the size of the

unifying substitution should be small. The merit would then be

some ag-bh- -ct+df. Because high functional agreement should con-

tribute to a: low merit, the coefficient d should be negative.

This may result in a negative merit, but this should cause no

difficulty.

There is a merit component which experiments have shown to be

more useful than g, h or t. This component udies the outer function

branching rate of section 5.3. The branching number of a chain is

- 110 -

the sum of the outer function branching rates of the unselected

B-literals of its near parent.

A chain with a large branching number is likely to resolve

with more operations and so one of its descendants is more likely to

be the null chain. On the other hand, many descendants mean more

search for a null chain. One method of resolving this dilemma is

to test the usefulness of the branching number experimentally.

Let the branching number of a chain be n. Then the merit

could b-, ag++bhtct+dn. If a large n is helpful to the search then

d should be negative. If a small n is most helpful, then d

should be positive. For six examples, the searches were least

difficult when the merit was g+2h+t-6n, although two examples had

smaller searches with g+h+t-5n. For'three of these examples a

search with heuristic merit of g+2h+t-6n was compared with a merit

of g+h. The difficultios of the searches are in the following

table:

Problem Lhh a-2h+t-6n refutation size

4 26 15 7

B 28 6 4

C 50+ 38 7

These results indicate that generating a chain which is likely to

resolve with many operators tends to contribute to a less difficult

search. Not only is a large branching number useful, but it appears

to be more useful than cost, expectation or intricacy.

Some of the components of a many-component merit could be

used for tie-breaking as h is used for tie-breaking in diagonal

--111-

search. Unfortunately, many of Kowalski's results [12] cannot be

used because f, t and n are not properly monotone. Since all

three are zero for the null chain, any or all may be included with

h to form the tie-breaking component of an upper diagonal search.

Because n seems to have a greater beneficial effect on the search,

it might be best to use n and h as the tie-breaking components.

However, because there are contributions from several sources, the

ag+bh+ct+dn merit numbers are larger so that a great spread of

merit numbers usually occurs. This means that tie-breaking values

are needed less frequently than with ag+.bh.

The intricacy, functional agreement and branching number of

a chain can be treated purely as heuristic values in that they

indicate which chain is most likely to lead to a solution. With

this treatment, the cost, g, and expectation, h, of a chain are

used to calculate its merit, while the intricacy, functional agree-

ment and branching number are used as tie-breaking rules among

chains of equal murit. Tie-breaking rules can be considered to

define new merit levels within the larger merit levels. But

because these heuristic values do not have natural upper bounds, it

is difficult to define refinements of a merit using these values.

Since the branching number, n, has proved most useful in

experiments, this might be the first tie-breaking rule among chains

of equal upper diagonal merit. If there are several of these

chains which have the same high branching number, then choose from

them the ones with highest function matching number. If there are

-112-

still several tied chains, then choose those which are least intric-

ate. Finally, some arbitrary choice must be made if there are still

tied chains.

A final possibility for a tie-breaking rule has been suggest-

ed by Loveland for model elimination. Of two chains with the same

merit, this rule selects the one with greatest number of A-literals.

The chain containing more A-literals offers more possibilities for

eliminating B-literals by reduction and therefore for eliminating

B-literals in the course of generating an empty chain.

- 113 -

6A Antici ation Strategies

Although their significance has not yet been thoroughly in-

vestigated, the anticipation techniques of the preceding chapter

seem to be most promising as tools for efficient search procedures.

Following a suggestion of Kowalski, pseudo-search techniques can be

used to assign numerical values to chains.

Let L be a literal in a factor of an input chain. Consider

the pseudo-search with top chain the unit chain L. Lot the

anticipated difficulty of L be g, the size of the smallest pseudo_.

refutation of this search. In order to avoid excessively difficult

pseudo-searches, there might be an upper bound on g. Thus, when

pseudo-diagonal search exhausts the diagonal corresponding to this

upper bound, wlt.iout finding a refutation, then g is arbitrarily

assigned the merit value of the next longer diagonal. The

anticipated difficul of a chain is the sum of the anticipated diff-

iculties of its literals. The anticipated difficulty of a literal

in a resolvent is the anticipated difficulty of the literal from

which it descends in the near or input parent, This value could

be used as the expectation of a chain. The anticipated difficulty

of a chain is a lower bound on the difficulty of constructing a

derivation of a null chain from it (by extension).

In the case where the anticipated difficulty is the upper bound

on g, then the size of tha pseudo-search could be useful. This

anticipated size could be used either to indicate the likelihood of

a good path when the size is large or to indicate the narrowness of

the real search when the size is small.

- 114 -

More detailed research should reveal highly sophisticated

anticipation methods which will vastly improve the efficiency of

search strategies. L; more sophisticated use of anticipation would

employ pseudo-search to obtain pseudo..- solutions of the goals and

subgoals of section 6.8.

-1 5--

6.7 A Deletion Strate .y

Lmong the methods most often used in resolution proof pro-

cedures are strategies for the deletion of subsumed clauses. Corres-

ponding methods can be applied in SL-resolution for the deletion of

subsumed chains. Deletion strategies need to be defined carefully

in order to preserve completeness and even then cannot always be

guaranteed to increase efficiency.

Two chains are said to be euivaient if either can be obtain-

ed from the other by permuting the order of B-literals in cells., .

chain C* subsumes another C'* if some instance C'rt is an initial

subchain of a chain equivalent to C. (Thus

both P Q(a)R(a) and P

P

R(a.)Q(a) but not Q(a)

Q(x) subsumes

P a R(a).)

Let Ebe any search strategy for SL-resolution. can be
9

modified to obtain a new strategy E which step by step generates

the same chains as .E , in the same order, but deletes subsumed

chains and does not generate chains which are descendants of pre-

viously deleted chains.

(1) Both search strategies generate the sans first

chain.

(2) If 7, generates a chain, then E generates the

same chain provided that its near parent has

been generated by E and has not been pre-

viously deleted.

(3) If ,E generates a chain C* then

(a) C*` is deleted if it is subsumed by

some previously generated and undeleted

-,116-

chain,

(b) otherwise every previously generatad and

undeleted chain, subsumed by C*, is

deleted.

The search strategy F, is complete relative to Y, ioe. F4

eventually generates a refutation if Y, does.

Deletion of subsumed clauses can be defined for other resol-

ution systems in a manner analogous to the preceding definition for

SL--resolution. In the case of PI --deduction, for instance, an in-

complete deletion strategy is obtained by interchanging the anal-

ogues of steps (3a) and (3b). In general, if step (3b), or its

analogue, is omitted, then increased efficiency can be guaranteed

for any search strategy which generates a fir;t refutation which

is simplest for its search space. The inclusion of (3b) is a poss-

ible source of decreased efficiency. Although deletion of subsumed

chains and clauses seems to be a desirable addition to proof proced-

ures, there has been no success in searching for modifications of

(3b) or restrictions on E which always guarantee the increased

efficiency of incorporating such deletion rules. A more thorough

investigation of these problems for non-linear resolution systems

is contained in Kowalski's thesis [12].

117

6.8 Generation of SubEoals and Lemmas

Possibilities for the generation of subgoals and for the pro-

cessing of their solutions in the form of lemmas are unique to SL-

resolution and model elimination. To avoid various complications,

we shall discuss in detail only the case of ground SL-resolution.

Suppose that a derivation of a chain C* has been generated

and that no truncation or reduction operation can be applied to C*.

It is easy to verify that if T(C*) COL then CD must occur as a

descendant of C* in any SL- refutation containing C*. Thus the

oai (C*'.') of deriving the null chain from C* can be decomposed

into the immediate subg (C*I - C*) of deriving CD from C* and

the further goal (C* -+ 0) of deriving the null chain from C*06

The solution of the immediate subgoal determines a lemma which can

be reused to solve analogous immediate subgoals of the form

(C0*L -, Ct*).

Pox example, the goal (N P QR -, 0) can be completely

QR °-> N,[JQ), decomposed to obtain the immediate subgoals (N P U6j

(N 11 Q - N02) and (N - Q) . The derivation

._j QR, N (NIP" Q[R]S, N P Q RS

is a solution to the immediate subgoal (N

R, N P Q)

QR --* N 1 7P Q). Having

solved such a subgoal, the fact c&n be recorded and applied later

for solving analogous immediate subgoals such as (S FTI

In particular, we may generate the lemma R which can be used as

input chain for extension. If the solution to (NIPP QR - N

were

R 8, N (NIQR, N®Q if QRSP, NJPQ),

Q)

then the corresponding lemma would be RP and could be restricted

in application to those analogous subgoals (C*R - C*) where CD

contains P as LL-literal or P as B-literal.

The preceding examples of lemma construction are easy to

generalise (see, for instance, Loveland [16]). The restricted

use of such lemmas can be shown to increase efficiency by always

leading to the generation of fewer unnecessary derivations before

the generation of a first refutation.

Kowalski in [14] and [15] has extended the use of subgoels

to the and/or tree representation of a search space for

SL-resolution.

1 9,

REFERENCES

1. Anderson, R., and Bledsoe, W.W., A linear format for resolution

wit'.Ii merging and a new technique for establishing completeness.

VV.ACM,(July, 1970), 525-534.

2. Andrews, P.B., Resolution with merging. J.ACM 15 (1968),

367-381.

3. Chang, C.L., The unit proof and the input proof in theorem

proving, Journal of the Association for Computing Machinery 17,

(1970), 698-708.

4. Cohn, P.M., I_;nttversal Algebra, Harper and Row, (1965).

5. Davis, M., Eliminating the irrelevant from m chanical proofs.

Prooeedings of Symposia in Applied Mathematics. 15, (1963),

ArL,,e?ican Mathematical Society.

6. Haves, P.J., aad Kcwalski, L.A., Semantic trees in automatic

theorem proving. Machine IntelligenceJ, Edinburgh University

Press (1969), 87-101-

7. Hayes, P.J., and Kowalski, R.A., Lecture notes on automatic

theorem-proving. Metamathematics Unit Memo 40, University of

Edinburhi, (March, 1971).

8© Herbrand, J., Recherches sur la theorie de la demonstration,

Travauy de la Societe des Sciences of des Lettres de Varsovie,

III, Vol. 33, (1930), 33--160.

9. Horn, A., On sentences which are true of direct unions of

algebras, Journal of Symbolic Lo is 2 16, (1951), 14-21.

10. Kieburtz, R., and Luckham, D., Compatibility of Refinements of

the Resolution Principle, (1969).

120 -

11, Kowalski, R.A., Search strategies for theorem-proving.

Machine Intelligence-5, Edinburgh University Press (1970),

181-201.

12. Kowalski, R,A., Studios in the completeness and efficiency of

theorem-proving by resolution. Ph.D. Thesis, University of

Edinburgh, 1970).

13. Kuehner, D.G., A note on the relation between resolution and

Maslov's inverse method. Machine Intelli_gonce 6, Edinburgh

University Press (1971), 73--76.

14. Ko*aalski, R,A., and Kuehner, D.G., Linear resolution witr

selection function. Metamathematics Uxiit Memo 34, University

of Edinburgh, (October, 1970).

15. Kowalski, R.1L., and Kuehner, D.G,, Linear resolution with

selection function. Metamathematiics Unit Memo 43, University

of Edinburgh, (June, 1971).

16, Loveland, D,W,, A simplified format for the model-elimination

theorem-proving procedure. J.ACM 16 (July, 1969), 349-363.

17. Loveland, D.W., A linear format for resolution. Symposium on

Automatic Demonstration, Lecture Notes f.n Mathematics 125

Springer Verlag, Berlin and New York (1970), 147-163.

18. Loveland, D.W., Some linear Herbrand proof procedures.- an

analysis, Department of Computer Science, Carnegie-Iellon

University (December, 1970).

19. Luckham, D., Refinement theorems in resolution theory.

S.ymaosium on Automatic Demonstration, Lecture Notes in Math-

ematics 125, Springer-Verlag, Berlin and New York (1970),

163-191.

- 121 -

20. Maslov, S.J., Proof-search strategies for methods of the

resolution type. Machine Intell nce , Edinburgh University

Press (1971), 77-90.

21. Meltzer, B., Theorem-Proving for computers: some results on

resolution and renaming, Computer Journal, 8, (1966), 341--543-

22, Meltzer, B., Prolegomena to a theory of efficiency of proof

procedures. Proceedings of the NATO Advanced Sti L Institute

onArtificial Intelligence and Heuristic Programming, Edinburgh

University Press (1971), 15-33.

23. Pohl, I., Bi-directional search. Machine Intelligence 6,

Edinburgh University Press (1971).

24. Prawitz, D., An improved proof proccd,1re, Theories 26, (1960).

25. Prawitz, D., Advances and problems in mechanical proof proced-

ures. Machine Intelligenco 4, Edinburgh University Press,

(1969), 59-71.

26. Reiter, FR., Two results on ordering for resolution with merg-

ing and linear format. Department of Computer Science,

University of British Columbia (July, 1970).

27. Reynolds, J.C., Transformational systems and the algebraic

structure of atomic formulas, Machine Intelligence 5, Edinburgh

University Press (1969, 135-152.

28. Robinson, J.A., A machine oriented logic based on the resolut-

ion principle. Journal of the Association for Computing

Machinery, 12', (1965)-

29. Robinson, J.A., Automatic deduction with hyper--resolution,

International Journal. of Computer Mathematics 1, (1965).

-122-

30. Robinson, J.A., 1;. review of automatic theorem-proving.

Proceedings of Symposia in Applied Mathematics. 19,

(1967), 1-18.

31. Wos, L.T., Carson, D.F., and Robinson, G.A., Efficiency and

completeness of the set of support strategy in theorem-

proving, J J CM 12 (1965), 687-697.

32. Yates, R.A., Raphael, B., and Hart, J.P., Resolution Graphs.

L.rti.ficial Intelligence 1, (1970), 257-289.

33. Zamov, N.K., and Sharonov, V.I., On a class of strategies

which can be used to establish decidability by the resolution

principle. (In Russian) Issled.vo konstruktivnoyemate-

ma.tikre i matematicheskoie lon_ikve III, 16 (1969), 54-64-

(National Lending Library, Russian Translating Program 5857,

Boston Spa, Yorkshire.

	PhD coversheet April 2012.pdf
	EDI-INF-PHD-71-001

