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Abstract—Traditional -gram language models are widely
used in state-of-the-art large vocabulary speech recognition sys-
tems. This simple model suffers from some limitations, such as
overfitting of maximum-likelihood estimation and the lack of
rich contextual knowledge sources. In this paper, we exploit a
hierarchical Bayesian interpretation for language modeling, based
on a nonparametric prior called Pitman–Yor process. This offers
a principled approach to language model smoothing, embedding
the power-law distribution for natural language. Experiments on
the recognition of conversational speech in multiparty meetings
demonstrate that by using hierarchical Bayesian language models,
we are able to achieve significant reductions in perplexity and
word error rate.

Index Terms—AMI corpus, conversational speech recognition,
hierarchical Bayesian model, language model (LM), meetings,
smoothing.

I. INTRODUCTION

A LANGUAGE model (LM), which provides a predictive
probability distribution for the next word based on a his-

tory of previously observed words, is an essential component
of automatic speech recognition (ASR) systems. The dominant
LM for most state-of-the-art large vocabulary ASR systems
is the conventional -gram model, which approximates the
history as the immediately preceding words. Due to
data sparsity, -gram models based on maximum-likelihood
estimation (MLE) severely overfit the training data, resulting in
unseen events being assigned zero probabilities [1]. Assigning
zero probabilities to events observed in a test set which were
not observed in the training set is problematic for applications
such as speech recognition and machine translation. The zero
probability problem is addressed by smoothing, for which a
large number of methods have been proposed in the literature
[2], [3], including Good–Turing [4], Katz back-off [5], deleted
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interpolation [6], interpolated Kneser–Ney [7], and modified
Kneser–Ney [2].

Although the -gram LM has been demonstrated to be a
simple but effective model, the struggle to improve over it
continues. Broadly speaking, such attempts focus on the im-
proved modeling of word sequences, or on the incorporation of
richer knowledge. Approaches which aim to improve on max-
imum-likelihood -gram models of word sequences include
neural network-based models [8], latent variable models [9],
and a Bayesian framework [10]–[12]. The exploitation of richer
knowledge has included the use of morphological information
in factored LMs [13], syntactic knowledge using structured
LMs [14], and semantic knowledge such as topic information
using nonparametric hierarchical Bayesian models [15].

In this paper, we propose the use of hierarchical Bayesian ap-
proaches [16] to better model of word sequences in language
models, in the context of a practical large-vocabulary conver-
sational speech recognition system. Bayesian models have ex-
plicitly declared prior assumptions, and an internally coherent
framework for inference. They also have the advantages of in-
corporating additional knowledge sources and including them-
selves in larger models in a principled manner. More specif-
ically, we present the application of hierarchical Pitman–Yor
process language models (HPYLM) [12] on a large vocabulary
meeting transcription system [17], using large training corpora.
The HPYLM provides an alternative interpretation to language
models in theory [11], [12], and a better smoothing algorithm
for language modeling in practice [18].

The main goal of this paper is to carry out a comprehensive
study on the application of the HPYLM to large vocabulary
ASR. The HPYLM is a theoretically elegant language model
first proposed in the machine learning field [12]. In the speech
community, however, two questions remain interesting and have
not been studied before. First, will the HPYLM work for ASR
tasks, which are normally evaluated in terms of word error rate
(WER)? Second, is it possible to scale up the HPYLMs to work
on large-vocabulary ASR using large training corpora? In the
rest of this paper, we provide our answers to these two questions,
by extending our previous work in [18] including the presenta-
tion of a parallel training algorithm, more detailed descriptions,
more experimental results, and a thorough discussion.

For the first question, we verify the HPYLM in terms of both
perplexity and WER using an efficient computational imple-
mentation. In recent years there has been a growing research
interest in the automatic transcription of multiparty meetings,
which is typically one of the first several essential steps for fur-
ther processing of meetings, such as information retrieval and
summarization. European projects AMI and AMIDA [17] are
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examples of such efforts. This has provided us a well-defined
benchmark on which to evaluate a state-of-the-art large vocab-
ulary ASR system. We present comprehensive experimental
results on multiparty conversational meeting corpora, and
observe consistent and significant reductions in perplexity and
WER in comparison to the interpolated Kneser–Ney language
model (IKNLM) [7] and the modified Kneser–Ney language
model (MKNLM) [2], which are the state-of-the-art smoothing
methods for language modeling.

It is often expensive to do Bayesian inference on large
training data. In order to obtain a sufficiently large language
model for state-of-the-art large-vocabulary ASR systems, we
have developed a parallel algorithm for the estimation of an
HPYLM, enabling the use of a large training corpus. We also
demonstrate that inference of an HPYLM converges quickly,
taking only a few tens of iterations to converge to a language
model of comparable (or better) accuracy than the IKNLM or
the MKNLM.

II. HIERARCHICAL BAYESIAN MODELS

Bayesian analysis explicitly uses probability to quantify de-
grees of belief. Bayes’ theorem (1) explains the relationship be-
tween the prior, the likelihood, and the posterior, where de-
notes the unknown parameters from the sample space , and

denotes the data from some sample space
(continuous or discrete)

(1)

The prior represents the belief in the parameters before
observing the data , and the posterior represents the
updated belief in the parameters after having observed the data

. The likelihood is typically described using an exponential
family distribution, which is mathematically convenient since
conjugate priors exist for exponential family likelihood func-
tions.1 Bayesian modeling differs from MAP (maximum a pos-
teriori) by computing the posterior distribution of rather than
its maximum: this can be computationally challenging, due to
the complexity of integrating over a large sample space .

Hierarchical Bayesian models have been well studied and en-
able the construction of richer statistical models in which the
prior may depend on parameters that are not involved in the
likelihood [16]. The prior distribution is itself a member
of a family of densities with hyperparameters , . The
hierarchical Bayesian framework provides a better modeling of
multi-parameter problems for hierarchical data, where non-hi-
erarchical models usually tend to inappropriately overfit such
data. Hierarchical Bayesian models can have enough parameters
to fit the data well, while using a population distribution to struc-
ture some dependence into the parameters, thereby avoiding
problems of overfitting [16].

A. Bayesian Priors

Bayesian analysis begins with a prior distribution capturing
any available prior knowledge about the process generating

1A prior distribution is conjugate to the likelihood functions if Bayes’ theorem
results in a posterior distribution from the same family as the prior.

the data. We will introduce several popular prior distributions
in Bayesian data analysis, including Dirichlet distributions,
Dirichlet processes, and Pitman–Yor processes.

1) Dirichlet Distribution: The Dirichlet distribution [19], a
multivariate generalization of the beta distribution, is a density
over a -simplex, i.e., -dimensional vectors whose
components are all non-negative and sum to 1. The Dirichlet
distribution is parameterized by a -dimensional measure

where is a normalized measure over components
and is a positive scalar. The Dirichlet distri-

bution with parameters has a probability density function
given by

(2)

with normalization constant
where is the gamma function. The vector represents the
mean of the Dirichlet distribution, and is a concentration pa-
rameter with larger values of drawing samples away from the
corners of the simplex to the centre, peaking around the mean

. One reason why the Dirichlet distribution is selected as a
prior is because it is conjugate to the multinomial distribution:
i.e., the posterior is also a Dirichlet distribution when the prior is
a Dirichlet distribution and the likelihood is a multinomial. We
use to denote a Dirichlet density with hyperparame-
ters . When , the Dirichlet distribution is equivalent
to the beta distribution.

2) Dirichlet Process: The Dirichlet process (DP) is a sto-
chastic process, first formalized in [20] for general Bayesian
modeling, which has become an important prior distribution
for nonparametric models. Nonparametric models are charac-
terized by allowing the number of model parameters to grow
with the amount of training data. This helps to alleviate over- or
under-fitting problems, and provides an alternative approach to
parametric model selection or averaging.

A random distribution over a space is called a Dirichlet
process distributed with base distribution and strength or con-
centration parameter , if

(3)

for every finite measurable partition of [20]. We
write this as , and it may be interpreted as a dis-
tribution over distributions. The parameter , a measure over ,
is intuitively the mean of the DP. The parameter , on the other
hand, can be regarded as an inverse variance of its mass around
the mean , with larger values of for smaller variances. More
importantly in infinite mixture models, controls the expected
number of mixture components in a direct manner, with a larger

implying a larger number of mixture components a priori.
Draws from an DP are composed as a weighted sum of point

masses located at the previous draws . This leads to a
constructive definition of the DP called the stick-breaking con-
struction [21]. If we construct as follows:

(4)
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Then . is a unique value among ,
and denotes a point mass at . The construction of can
be understood as follows [22]. Starting with a stick of length
1, first break it at , assign to be the length of stick just
broken off. Then recursively break the other portion to obtain

, and so forth. The stick-breaking distribution over sat-
isfies with probability one. This definition is im-
portant for inference of a DP.

Given observed values of , the posterior distribu-
tion of is again distributed according to another DP with up-
dated hyperparameters, with the following form [22]:

(5)
where the posterior base distribution is a weighted average be-
tween the prior base distribution and the empirical distribu-
tion .

3) Pitman–Yor Process: The Pitman–Yor process or the two-
parameter Poisson–Dirichlet process [23], [24]
is a three-parameter distribution over distributions, where is
a discount parameter, a strength parameter, and a base
distribution that can be understood as a mean of draws from

. When , the Pitman–Yor process reverts to
the Dirichlet process . In this sense, the Pitman–Yor
process is a generalization of the Dirichlet process.

The procedure for generating draws
from a Pitman–Yor process can be described using the “Chi-
nese Restaurant” metaphor [24], [25]. Imagine a Chinese restau-
rant containing an infinite number of tables, each with infinite
seating capacity. Customers enter the restaurant and seat them-
selves. The first customer sits at the first available table, while
each of the subsequent customers sits at an occupied table with
probability proportional to the number of customers already sit-
ting there , or at a new unoccupied table with probability
proportional to , where is the current number of oc-
cupied tables. That is, if is the index of the table chosen by
the customer, then the customer sits at table given
the seating arrangement of the previous customers

with probability

(6)

where is the number of customers sitting at table and
is the total number of customers. The Pitman–Yor

process with parameters produces a power-law distri-
bution with index over the number of customers seated at
each table [11]. The power-law distribution—a few outcomes
have very high probability and most outcomes occur with low
probability—has been found to be one of the most striking
statistical properties of word frequencies in natural language.

B. Bayesian Inference

In general, there are two types of approximate inference al-
gorithms in Bayesian analysis for the estimation of posterior
distributions of interest: Monte Carlo methods and variational

methods. Monte Carlo methods [16], [26] use random samples
to simulate probabilistic models. They are guaranteed to give ar-
bitrarily precise estimates with sufficient computation. Markov
chain Monte Carlo (MCMC) methods are a family of itera-
tive Monte Carlo algorithms that draw samples from an other-
wise intractable target density via a first-order Markov process.
Gibbs sampling, a special case of the Metropolis–Hastings al-
gorithm [26], is one of the most widely used MCMC methods
for Bayesian inference. It assumes that it is tractable to sample
from the conditional distribution of one of these variables given
the other ones. We will use Gibbs sampling methods
for inference in this paper.

Variational methods [27], [28], on the other hand, are a class
of deterministic approximations to the problems of learning and
inference for Bayesian inference. A variational method begins
by expressing a statistical inference task as the solution to a
mathematical optimization problem [29]. By approximating or
relaxing the objective function, one can derive computationally
tractable algorithms which bound or approximate the statistics
of interest. Sudderth [29] gives a good review and comparison
of various Bayesian inference algorithms.

III. SMOOTHING N-GRAM LANGUAGE MODELS

The goal of an -gram model is to estimate the conditional
probability distribution over next words given the context (ap-
proximated by the immediately preceding words) from a
training corpus:

(7)

The simplest way to estimate the required -gram probabilities
is maximum-likelihood estimation, which uses the frequencies
of co-occurrences of word following the context , and
maximizes the likelihood over the training data. This has
a poor generalization ability because -gram training data
is sparse, leading to zero probability estimates for -grams
not observed in the training corpus. In order to alleviate
this problem, a number of smoothing techniques have been
proposed for -gram models estimated using maximum like-
lihood. Good–Turing smoothing [4], [5], which is based on
leave-one-out estimation, re-estimates the probability mass
assigned to -grams with zero counts by making use of the
frequency of -grams occurring only once. Absolute dis-
counting [30], the root of Kneser–Ney smoothing [7], subtracts
a fixed absolute discount from each nonzero count, and
redistributes the unallocated probability mass to those unseen
events. In general, it is also useful to take advantage of the

-gram hierarchy for smoothing methods through back-off [5]
or interpolation [6]. Back-off relies on only the lower order

-grams when smoothing unseen events, while interpolation
linearly interpolates higher order -gram models with lower
order -gram models. To obtain a smoother LM, interpolated
Kneser–Ney smoothing [7] utilizes absolute discounting, mod-
ified counts for lower order -gram probabilities ,
and interpolation with low order -gram probabilities

(8)
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where is the total number of word tokens fol-
lowing the context , is the context one word shorter than

, is the number of distinct words
occurring after , and the discount is dependent on the

length of the context. Modified Kneser–Ney smoothing extends
interpolated Kneser–Ney smoothing by allowing three different
discount parameters, , , and for -grams with
one, two, and three or more counts, respectively [2]. Counts
of counts statistics are used to estimate the optimal values for
average discounts in the MKNLM. As an alternative to these
smoothing schemes, class-based -gram language models [31]
have been used, in which word classes or clusters (either hand-
designed or automatically induced) help to address the data spar-
sity problem.

In the Bayesian framework for language modeling, a prior
distribution is placed over the predictive distribution of interest
for LMs in (7), and the posterior distribution is inferred from
the observed training data. The final predictive probability can
then be estimated from the posterior by marginalizing out the
latent variables and hyperparameters. The Bayesian interpreta-
tion essentially avoids the zero-probability problem to estimate
smoother LMs by taking advantage of knowledge expressed by
the priors.

There has been considerable prior work in which prior
distributions are placed over LM parameters. Nádas [32] used
a beta-binomial model (the beta distribution is the conjugate
prior to the binomial) in which the so-called “empirical Bayes”
method was used to obtain point estimates of the hyperparam-
eters of the prior distribution, by maximizing the likelihood
on the training data rather than by full Bayesian inference.
More recently Yaman et al. [33] proposed a structural Bayesian
language modeling and adaptation framework, employing a
Dirichlet prior density on -grams assembled in a tree structure.
In this case MAP estimation was employed to estimate the
language model parameters.

Goodman [34] analyzed back-off Kneser–Ney smoothing in
a Bayesian manner, in which an exponential prior distribution
is used in conjunction with a maximum entropy model. This
analysis provides a justification for Kneser–Ney smoothing, in
terms of the discounting procedure and the satisfaction of mar-
ginal constraints when estimating lower order -grams.

A full Bayesian approach to language modeling was in-
troduced by MacKay and Peto [10], which extended Nádas’
empirical Bayes framework to a hierarchical Dirichlet LM, by
using Dirichlet distributions as the priors. The predictions of
hierarchical Dirichlet LMs are similar to those of a traditionally
smoothed LM. MacKay and Peto demonstrated in this way, on
a small corpus, that a hierarchical Dirichlet language model
had comparable performance to a bigram model smoothed
by deleted interpolation with specific values of interpolation
weight.

It was argued by Goldwater et al. [11] that a Pitman–Yor
process is more suitable as a prior distribution than a Dirichlet
distribution to applications in natural language processing, as
the power-law distributions of word frequencies produced by
Pitman–Yor processes more closely resemble the heavy-tailed
distributions observed in natural language. The hierarchical ex-
tension of the Pitman–Yor process—HPYLM—was indepen-

dently proposed for language modelling by Goldwater et al.
[11] and by Teh [12]. The HPYLM can be considered as a nat-
ural generalization of the hierarchical Dirichlet language model
[10], by using a Pitman–Yor process rather than the Dirichlet
distribution. Experiments on the AP News corpus showed that
the novel hierarchical Pitman–Yor process language model pro-
duces results superior to hierarchical Dirichlet language models
and -gram LMs smoothed by interpolated Kneser–Ney (IKN),
and comparable to those smoothed by modified Kneser–Ney
(MKN) [12]. Wood and Teh [35] additionally extended the hi-
erarchical Hierarchical Bayesian Language Models for Conver-
sational Speech Recognition language model for domain adap-
tation of language models.

IV. HIERARCHICAL BAYESIAN LANGUAGE MODELS

BASED ON PITMAN–YOR PROCESSES

We introduce a Bayesian language model based on
Pitman–Yor processes using a hierarchical framework. This
section briefly summarizes the original work on the HPYLM
[11], [12], and refers to our previous work [18].

A. Hierarchical Pitman–Yor Process Language Models

The Pitman–Yor process can be used to create a two-stage
language modeling framework [11]. Following the Chinese
restaurant metaphor discussed in Section II-A3, a language
model can be viewed as a restaurant in which each table has a
label of a word generated by . Each customer repre-
sents a word token, so that the number of customers at a table
corresponds to the frequency of the lexical word labeling that
table. A customer may only be assigned to a table whose label
matches that word token.

Consider a vocabulary with word types. Let
be the unigram probability of , and

represents the
vector of word probability estimates for unigrams. A
Pitman–Yor process prior is placed over
with an uninformative base distribution for all

. According to the Chinese restaurant metaphor, cus-
tomers (word tokens) enter the restaurant and seat themselves
at either an occupied table or a new one, with probabilities
expressed in (6). Each table has a label initialized by the
first customer seated on it, and the next customer can only sit
on those tables with the same label. Those customers that
correspond to the same word label , can sit at different tables,
with denoting the number of tables with labels . Given the
seating arrangement of customers, and the hyperparameters

and , the predictive probability of a new word is given
in (9), by collecting probabilities in (6) corresponding to each
label for tables

(9)

where equals to 1 if table has the label of , and 0 oth-
erwise, is the total number of customers, and

is the total number of tables, in the restaurant for
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Fig. 1. Hierarchy of Pitman–Yor process priors for �-gram LMs. Pitman–Yor
processes are placed recursively as priors over the �-order predictive distribu-
tions until we reach the unigram model � . ���� denotes the back-off context
of �.

unigrams. Averaging over seating arrangements and hyperpa-
rameters, we can obtain the probability for a unigram LM.
When , the Pitman–Yor process reduces to a Dirichlet
distribution , and (9) becomes the predictive distri-
bution in a Bayesian language model using the Dirichlet distri-
bution as the prior [10]

(10)

This can be regarded as an additive smoothing of the empir-
ical probability , by balancing the empirical counts

with the additive pseudo-counts of the prior
Dirichlet distribution.

We can generalize the above unigram example to the -gram
case. An -gram LM defines a probability distribution over the
current word given a context consisting of words. Let

be the probability of the current word and
be the target probability distribution given the con-

text . A Pitman–Yor process is served as the prior over ,
with discounting parameter and strength parameter spe-
cific to the length of the context . The base distribution is

, the lower order model of probabilities of the current
word given all but the earliest word in the context. That is,

(11)

Since is still an unknown probability distribution, a
Pitman–Yor process is recursively placed over it with parame-
ters specific to , .
This is repeated until we reach for a unigram model dis-
cussed above. This results in a hierarchical prior (Fig. 1),
enabling us to generalize from the unigram to the -gram
case. There are multiple restaurants (Pitman–Yor processes)
in the prior hierarchy, with each corresponding to one context.
By using the hierarchical framework of Pitman–Yor priors,
different orders of -gram can thus share information with each
other, similar to the traditional interpolation of higher order

-grams with lower order -grams.
Based on this overall framework for an HPYLM, a central

task is the inference of seating arrangements in each restaurant
and the estimation of the context-specific parameters from the

training data. Given training data , we know the number of
co-occurrences of a word after a context of length ,

. This is the only information we need to train an HPYLM.
An MCMC algorithm can be used to infer the posterior distri-
bution of seating arrangements. We use Gibbs sampling to keep
track of which table each customer sits at, by iterating over all
customers present in each restaurant—first removing a customer

from the restaurant , and then adding the customer back
to the restaurant by resampling the table at which that cus-
tomer sits. After a sufficient number of iterations, the states of
variables of interest in the seating arrangements will converge
to the required samples from the posterior distribution. In the
HPYLM the more frequent a word token, the more likely it is
there are more tables corresponding to that word token.

For an -gram LM, there are parameters
to be estimated in total. We use a sampling

method based on auxiliary variables [36].
Under a particular setting of seating arrangements and hy-

perparameters , the predictive probability can
be obtained similarly to the case for unigram in (9) for each
context

(12)

in which if we set the discounting parameters for all ,
we resort to a hierarchical Dirichlet language model (HDLM)
[10], similar to (10). The HDLM and the HPYLM share the
same idea of interpolation with the lower order -grams. The
difference is that the HPYLM explores discounts from empirical
counts, while the HDLM does not.

The overall predictive probability can be approximately
obtained by collecting samples from the posterior over
and , and then averaging (12) to approximate the integral
with samples

(13)

If we assume that the strength parameters for all
, and restrict to be at most 1 (i.e., all customers repre-

senting the same word token should only sit on the same table
together), then the predictive probability in (12) directly reduces
to the predictive probability given by the IKNLM in (8). We can
thus interpret IKN as an approximate inference scheme for the
hierarchical Pitman–Yor process language model [12].

B. Inference

In the HPYLM, we are interested in the posterior distri-
bution over the latent predictive probabilities

and the hyperparameters
, given the training data . The hierarchical Chi-

nese restaurant process represents it as the seating arrangement,
denoted by all contexts , in the corresponding
restaurant, by marginalizing out each . The central task for
the inference is thus to infer the posterior distribution over
the seating arrangements and the
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Fig. 2. Partition of an HPYLM into sub-HPYLMs, denoted by dotted rectangles, for the parallel inference. The dotted circles represent pseudo� � to complete a
Pitman–Yor process hierarchy, and collect additional insertion/deletion information. Each circle corresponds to a context, or a restaurant in the Chinese restaurant
metaphor.

hyperparameters given
the training data . With
the posterior, we can calculate the predictive probabilities
according to (12) and (13) by further integrating out and .
We follow inference schemes based on MCMC for the HPYLM
[12], [36], depicted in algorithm 1.

Algorithm 1 InferHpylm : An Algorithm for the Inference
of an HPYLM, Where is the Order of LMs, is the Context
(Restaurant), is the Word Token (Customer), is the
Number of Occurrences of After Context . , and are
the Discount and Strength Parameters of Pitman–Yor Processes
for -Grams of Order .

procedure INFERHPYLM (order )

input: the order of -gram with

1 for each order to do

2 for each context of order do

3 for each word appearing after context do

4 for to do iterations for times

5 if REMOVECUSTOMER then

6 ADDCUSTOMER ;

7 endif

8 endfor

9 endfor

10 endfor

11 SAMPLEPARAMS ; /* sampling

hyperparameters for order */

12 endfor

For ADDCUSTOMER , we use (6) to sample a
new seating table in restaurant for customer . For

REMOVECUSTOMER , we simply remove a customer
from table according to the probability proportional to
the number of customers already seated there . For
SAMPLEPARAMS , a sampling method based on auxiliary
variables is used for sampling the hyperparameters and ,
which assumes that each discount parameter has a prior beta
distribution while each strength parameter

has a prior gamma distribution
[12], [36].

C. Parallelization

It is computationally expensive in terms of computing time
and memory requirements to infer an HPYLM from a large
corpus. This motivated us to design a divide-and-conquer
algorithm to efficiently estimate an HPYLM. The algorithm
has two steps: data partition and model combination. Generally
speaking, we divide the inference task, which is normally
infeasible or expensive using a single machine, into sub-tasks
that fit well to the computational capacity of a single com-
puting node—alleviating the memory requirement and allowing
sub-tasks to be run in parallel.

In the data partition step, we first divide word types in the
vocabulary into subsets . For each subset , we then
compose those bigrams beginning with words , and their
corresponding child -grams with , as a sub-HPYLM
(dotted rectangles), and put a pseudo (dotted circles) as the
Pitman–Yor process for unigrams of the sub-HPYLM, as shown
in Fig. 2. Each sub-HPYLM can be inferred separately using
the same routines as those for a normal HPYLM, except that the
pseudo now additionally collects the number of insertion and
deletion for customer . The inference of sub-HPYLMs
can be executed in parallel.

In the model combination step, we combine all the
sub-HPYLM models level-by-level in the HPY hierarchy.
For each level, we accumulate auxiliary parameters, and
sample the hyperparameters and . For the global for
unigrams, we infer the seating arrangements by using the in-
sertion and deletion statistics accumulated by each pseudo ,
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TABLE I
STATISTICS OF THE TRAINING AND TESTING DATA SETS

FOR LANGUAGE MODELS IN THE RT06S TASK

to make sure the HPYLM is consistent regarding the modified
counts for lower order -grams [7], [12].

One approximation we made during this parallelism is the
inference for unigram , which is inferred based on pseudo

of sub-HPYLMs and not globally optimized. However, in
Section VI-C we show experimentally that this approximation
does not significantly affect the performance in terms of per-
plexity or WER.

The parallel training algorithm enables us to estimate an
HPYLM on a large corpus using a large vocabulary. We de-
scribe the parallel training algorithm for the HPYLM in more
detail in [37].

D. Implementation

We implemented the hierarchical Pitman–Yor process lan-
guage model by extending the SRILM toolkit [38]. We highlight
four characteristics of this implementation. First, it is consistent
and coherent with the existing SRILM software. We inher-
ited the HPYLM classes from the base SRILM classes, and
provided the same interfaces for language modeling. Second,
it has efficient memory management and computational per-
formance by directly using the data structures available in
SRILM. Third, it is a flexible framework for Bayesian language
modeling. We can, for example, train a language model with
Kneser–Ney smoothing for unigrams, modified Kneser–Ney
smoothing for bigrams, and Pitman–Yor process smoothing for
trigrams. Finally, this implementation is extensible for future
developments: e.g., taking into accounts the combination with
multimodal cues for language models via probabilistic topic
models.

This implementation of an HPYLM outputs a standard ARPA
format LM, with an identical format to a conventional -gram
LM. This makes it easy to evaluate the HPYLM in a conven-
tional ASR system.

V. EXPERIMENTS AND RESULTS

A. Experimental Setup

The experiments reported in this paper were performed using
the U.S. National Institute of Standard and Technology (NIST)

TABLE II
STATISTICS OF THE FIVEFOLD CROSS VALIDATION

SETUP OF THE AMI SCENARIO MEETINGS

Rich Transcription (RT) 2006 spring meeting recognition
evaluation data (RT06s).2 We tested only on those audio data
recorded from individual headset microphones (IHM), con-
sisting of meeting data collected by the AMI project, Carnegie
Mellon University (CMU), NIST, and Virginia Tech (VT).

The training data sets for language models used in this paper,
and the test transcription, are listed in Table I. The web-data
for meetings and conversational speech were collected from the
world wide web using strategies described in [39]. We exploited
different combinations of these training data sets for the fol-
lowing experiments.

A second corpus we consider in this paper is a domain-spe-
cific meeting corpus—the AMI Meeting Corpus,3 [40] which
consists of 100 hours of multimodal meeting recordings with
comprehensive annotations at a number of different levels.
About 70% of the corpus was elicited using a design scenario,
in which the participants play the roles of employees—project
manager, marketing expert, user interface designer, and in-
dustrial designer—in an electronics company that decides to
develop a new type of television remote control. We used the
scenario part of the AMI Meeting Corpus for our experiments,
in a fivefold cross validation setup. There are 137 scenario
meetings in total, as shown in Table II.

Most of the following experiments used a common vocabu-
lary with 50 000 word types, unless explicitly indicated other-
wise. For the fivefold cross-validation experiments on the sce-
nario AMI meetings, the vocabulary was slightly tuned for each
fold, while keeping the vocabulary size fixed to 50 000 word
types. These vocabularies were those used in the AMI-ASR
system [41].

The lower discounting cutoffs of the -gram counts (i.e.,
, , and for ngram-count in the

SRILM toolkit [38]) were set to 1 in all the LMs used in the
following experiments.

B. Perplexity Experiments

We took the LM data sets from No.1 to No.5 in Table I as a
core training set, named MTRAIN, which consists of 205 814
sentences and 1 847 201 words. We trained trigram IKN, MKN,
HD, and HPY LMs using this training data. For the HDLM and
the HPYLM, we ran 200 iterations for inference, and collected
100 samples from the posterior over seating arrangements and
hyperparameters.

2http://www.nist.gov/speech/tests/rt/
3http://corpus.amiproject.org
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TABLE III
PERPLEXITY RESULTS ON RT06SEVAL TESTING DATA

TABLE IV
PERPLEXITY RESULTS OF THE FIVEFOLD CROSS VALIDATION

ON THE AMI SCENARIO MEETINGS

The test data for perplexity estimation was extracted from the
reference transcriptions for rt06seval. The final test data con-
sisted of 3597 sentences and 31 810 words. Four different exper-
imental conditions were considered and are shown in Table III:
the combination of whether or not a closed vocabulary (CV/OV)
was used and/or mapping unknown words to a special symbol
“UNK” during training and testing. If the “UNK” symbol
is not included in the vocabulary, all unknown words will be
skipped from the training data for the estimation and from the
testing data for the evaluation.

Table III shows the perplexity results. We can see that in all
four experiment conditions, the HPYLM has a lower perplexity
than both the IKNLM and the MKNLM, and the HDLM has
the highest perplexity, which is as expected and consistent with
the previous results in [12]. We used the CV condition, i.e.,
with a closed vocabulary but without the “UNK” symbol, when
training an LM in all the rest of experiments.

Table IV shows the perplexity results on the fivefold cross val-
idation of the scenario AMI Meeting Corpus, using the CV con-
dition. The HPYLM again has a consistently lower perplexity
than both the IKNLM and the MKNLM, and the HDLM again
is the worst.

C. Word Error Rate Experiments

We used the AMI-ASR system [41] as the baseline plat-
form for our ASR experiments. The feature stream comprised
of 12 MF-PLP features and raw log energy and first– and
second-order derivatives are added. Cepstral mean and variance
normalisation was performed on a per channel basis. The
acoustic models were taken from the second pass of AMI-ASR
system, which were trained on 108 hours speech data from
ICSI, ISL, NIST, and AMI, using vocal tract length normal-
ization, heteroscedastic linear discrimant analysis, speaker
adaptive training, and minimum phone error discriminative
training. They are adapted using the transcripts of the first pass
and a single constrained maximum-likelihood linear regression
transform. We only tested LMs trained using training data
MTRAIN (see Table I) under condition CV in Table III, that

TABLE V
WER (%) RESULTS ON RT06SEVAL TESTING DATA

is, we used a 50 k vocabulary but without mapping unknown
words to “UNK” during training. For the HDLM and the
HPYLM, we output an ARPA format LM. Different LMs were
then used in the first pass decoding using .4

Table V shows the WER results for the RT06s task. Unsur-
prisingly, the HDLM produces the highest WER. The HPYLM,
however, results in a lower WER than both the IKNLM and the
MKNLM. These reductions by the HPYLM from the IKNLM
and the MKNLM are both significant using a matched-pair sig-
nificance test [42], with and , respectively.
This is an encouraging result, since it is the first time that the
HPYLM has been tested using a state-of-the-art large-vocabu-
lary ASR system on standard evaluation data.

Table VI shows the WER results for the fivefold cross-vali-
dation experiments on the scenario AMI meetings. We observed
statistically significant reductions in WER by the
HPYLM, which are consistent among all the five folds and the
scenario AMI meetings as a whole. Our experiments also show
that the HDLM consistently gives highest WERs. We therefore
stop presenting results for the HDLM in the rest of experiments.
We used only the transcriptions of the scenario AMI meetings
to train LMs.

D. Scalability

To investigate the scalability of the HPYLM, we gradually
increased the size of training data for the HPYLM, as shown
in Table VII. MTRAIN includes the training data sets No.1–5.

consists of MTRAIN and the No.6 data set
Fisher-p1. Further adding the data set No.7 to we
obtained ALL-WC. Finally, we put together all the data No.1–8
as shown in Table I, named ALL.

For MTRAIN, , and ALL-WC, experiments
were carried out on a machine with dual quad-core Intel Xeon
2.8-GHz processors and 12 GB of memory. Table VII shows
the computational time per iteration and memory requirements
when we change the size of training data, or vary the size of the
vocabulary. From the results in Table VII, we can see that the
training time for each iteration scales linearly with the size of
training data when vocabulary size is constant. The smaller the
size of the vocabulary, the quicker each iteration and the lower
the memory requirement. The observations confirm the neces-
sity of proposing a parallel training algorithm for the HPYLM.
For IKNLM and MKNLM trained on ALL-WC, the memory
requirement is around 1 GB.

For ALL, it would be extremely demanding to train an
HPYLM on this data set using a single machine, due to the
computational time and memory limitations. We instead used
the parallel training algorithm described in Section IV-D. We

4http://htk.eng.cam.ac.uk/
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TABLE VI
WER (%) RESULTS OF FIVEFOLD CROSS VALIDATION ON THE SCENARIO

AMI MEETINGS. ALL THE REDUCTIONS BY THE HPYLM WITH

RESPECT TO THE IKNLM AND THE MKNLM ARE STATISTICALLY

SIGNIFICANT, WITH � � �����

TABLE VII
COMPARISON OF COMPUTATIONAL TIME AND MEMORY REQUIREMENT

OF THE HPYLM ON DIFFERENT TRAINING DATA SETS.
DATA SET NUMBERS REFER TO TABLE I

divided the inference into 50 sub-tasks. It turns out that it is
feasible to train an HPYLM on such a large corpus of more
than 200 million word tokens, using a vocabulary of 50 k
work types in this way. The inference took around one day to
finish 100 iterations, although this was highly dependent on
submission and queueing times of the compute cluster. For
ALL, we evaluated two HPYLM models—one after 32 Gibbs
sampling iterations (HPYLM-iter32), and the other after 100
iterations (HPYLM-iter100).

We again evaluated perplexity performance over these four
data sets to investigate the scalability of perplexity experiments.
The perplexity results in Table VIII indicate that the HPYLM
scales well to larger training data. We obtained consistent re-
ductions in perplexity over both the IKNLM and the MKNLM.
This further strengthens the perplexity results of Section V-B.
For two HPYLM models trained on ALL, we did not observe a
significant difference in perplexity between HPYLM-iter32 and
HPYLM-iter100.

Finally we trained three types of ARPA format trigram
LMs—IKNLM, MKNLM, and HPYLM—on both ALL-WC

TABLE VIII
PERPLEXITY RESULTS ON RT06SEVAL USING DIFFERENT

SCALE SIZES OF TRAINING DATA

TABLE IX
WER (%) RESULTS ON RT06SEVAL USING DIFFERENT

SCALE SIZES OF TRAINING DATA

(a corpus of around 50 million word tokens) and ALL (a corpus
of around 210 million word tokens) training data sets. Table IX
shows the WER results of these three different LMs in the first
decoding using . On ALL-WC, we see the HPYLM
performs slightly better than the IKNLM and the MKNLM.
Significance testing shows the reductions by the HPYLM are
not significant. On ALL, however, we observed significant
reductions in WER by using the HPYLM, with
and for reductions over the IKNLM and MKNLM,
respectively. Once again, there is no significant difference in
WER between HPYLM-iter32 and HPYLM-iter100.

E. Data Combination Versus Model Interpolation

Given several text corpora, i.e., those seven shown in
Table XI, there are two different ways to estimate a language
model. Data combination simply concatenates those seven
corpora and trains a single language model on the combined
corpus, without considering the differences between the cor-
pora. This is the way in which we trained most LMs for
the above experiments. Model interpolation, on the contrary,
estimates seven separate language models on the corpora
respectively, and linearly interpolates these seven LMs using
some development data to optimize the interpolation weights.
We have demonstrated the effectiveness of the HPYLM in the
data combination style. Since model interpolation is commonly
used in most state-of-the-art ASR systems, it is worthwhile for
us to investigate the case of model interpolation.

We first investigated the experiments on rt06seval. We
trained four sets of language models separately on MTRAIN,
FISHER, WEBMEET, and WEBCONV in Table I, with each
set using interpolated Kneser–Ney, modified Kneser–Ney, and
hierarchical Pitman–Yor process smoothing respectively. For
each type of smoothing method, we interpolated the four sepa-
rate language models using a development set of the evaluation
data from NIST RT05s rt05seval (with 2216 sentences, 16 282
word tokens). The final language models were obtained by
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TABLE X
PERPLEXITY (PPL) AND WER (%) RESULTS OF COMPARING DATA

COMBINATION AND MODEL INTERPOLATION ON RT06SEVAL TESTING DATA

TABLE XI
STATISTICS OF CORPORA, AND THE PERPLEXITY RESULTS

ON THE FOLD 1 OF THE SCENARIO AMI MEETINGS

interpolating with the optimal weights. Table X shows the per-
plexity and WER results for model interpolation on rt06seval.
In comparison to data combination results for ALL (perplexity
in Table VIII and WER in Table IX), we find model interpo-
lation has both lower perplexity and lower WER. Considering
the results for model interpolation, the HPYLM has slightly
lower perplexity, but statistically insignificant WER, than the
IKNLM and the MKNLM.

We additionally carried out the experiments on the fivefold
scenario AMI meetings in Table II to compare the two cases,
using fold 2–5 as the training data and fold 1 as the testing data.
We furthermore included six extra corpora in Table XI as the
training data for LMs. For data combination, we reached a com-
bined corpus of 157 million word tokens in total. The parallel
training algorithm was used to infer an HPYLM on this com-
bined corpus, with 100 Gibbs sampling iterations. For model
interpolation, we trained IKNLMs, MKNLMs, and HPYLMs
(with 100 iterations) separately, using the seven training cor-
pora, respectively. Table XI shows the perplexity results, in-
dicating that the HPYLM consistently has a lower perplexity
than the IKNLM and the MKNLM on each LM component. We
used a fourfold cross validation on folds 2–5 of the scenario
AMI meetings to tune the optimal interpolated weights. Each
time we took one fold from 2–5 as the development set, and
the remaining three as the training data on which we trained the
IKNLM, MKNLM, and HPYLM, respectively. The weights for
the seven LM components were then optimized using the devel-
opment set, for the IKNLM, MKNLM, and HPYLM, respec-
tively. We considered the average of the accumulated weights
as the final optimal weights, which were used to estimate an in-
terpolated LM.

Table XII shows the perplexity and WER results on fold 1.
It is not surprising to find that model interpolation is superior
to data combination, because model interpolation weights the
LM components of different domains to better match the testing
data. Model interpolation provides significantly better results
than data combination in perplexity and WER. We observed

TABLE XII
PERPLEXITY AND WER (%) RESULTS OF COMPARING DATA COMBINATION

AND MODEL INTERPOLATION USING THE FOLD 1 OF THE SCENARIO

AMI MEETINGS IN TABLE II AS THE TESTING DATA

much higher perplexity results from data combination compared
to model interpolation, due to the fact that a large portion of
out-of-domain data (Hub4-lm96) was weighted identically to
the in-domain meeting data in data combination. In either data
combination or model interpolation, however, the HPYLM con-
sistently has a lower perplexity result, and significantly

lower WERs than the IKNLM and the MKNLM (although
the absolute reductions are small for model interpolation). This
suggests that we can train separate HPYLMs on several dif-
ferent corpora, and then use the standard method to interpolate
these separate HPYLMs. This further consolidates our claim
that the HPYLM is a better smoothing method than the IKNLM
and the MKNLM for practical ASR tasks. It is more desirable,
however, for a method to automatically weight and interpolate
several HPYLMs directly within the hierarchical Pitman–Yor
process framework. Wood and Teh [35] have proposed a model
within the hierarchical Pitman–Yor process framework for do-
main adaptation. This approach, however, can only deal with
two components, the in-domain LM and the out-of-domain LM,
respectively. Additionally the computational complexity should
be considered when doing interpolation for large corpora.

VI. ANALYSIS AND DISCUSSIONS

A. Convergence

It is often expensive to train an HPYLM, especially when
working with large training corpora as demonstrated in
Table VII. Therefore, the convergence of HPYLM is an impor-
tant factor. We trained an HPYLM using the data set MTRAIN
in Table I. During each iteration, we collected the log likelihood
over the training data, and the predictive log likelihood over the
testing data rt06seval. Fig. 3 shows the convergence of likeli-
hoods over training and testing data for the first 150 iterations.
From this we can see that after about 20 iterations, the HPYLM
has quickly converged to a lower predictive log likelihood
value on the testing data, which roughly remains the same for
further iterations. On the other hand, although it is slow to train
an HPYLM on large corpora, we only need to train the model
once and output an ARPA format LM, then apply it in an ASR
system as a standard -gram LM. We also observed that the
likelihood over the training data decreases after more and more
iterations, while the likelihood over the testing data increases,
which means the generalization of the HPYLM improves.

The finding is further confirmed by from the experimental
perplexity and WER results in Tables VIII and IX, respectively,
for two HPYLM models, one from the 32nd iteration and the
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Fig. 3. Convergence of the HPYLM. The log likelihood over the training data
MTRAIN (top), and the log likelihood over the testing data rt06seval (bottom),
to investigate the convergence of the HPYLM with iterations.

other from the 100th iteration. There is no significant difference
between these two models, which indicates normally we need
only tens of iterations to infer an HPYLM model, since the pos-
terior of the HPYLM is well-behaved.

B. Average Discounts

For a specific order of an -gram LM, there is only one dis-
count for the IKNLM. The MKNLM, instead, has three dif-
ferent discount parameters, , , and , according to
the counts of -grams. This additional flexibility of discounting
in the MKNLM has been proven to be superior in practice to
the IKNLM [2]. We find from (12) that the HYPLM has a more
relaxed discounting scheme, by allowing each context to use a
different discounting value: . It was noted by Teh [36]
that the expected number of tables in a Pitman–Yor process
scales as where is the number of customers and

is the discount parameter of the Pitman–Yor process. There-
fore, the actual amount of discount, , will grow slowly
as the count grows.

To demonstrate the rich-get-richer property of discounting in
the HPYLM, we investigate an HPYLM trained for 300 itera-
tions using MTRAIN (meeting data) in Table VII, and plot av-
erage discounts as a function of trigram counts in Fig. 4. We
additionally plot on the bottom of Fig. 4 the counts of counts
statistics used to do the averaging over discounts. The counts of
counts histogram exhibits a long-tailed distribution: most words
occur with lower counts, while only a few words occur fre-
quently. We find that the growth of average discounts in the
HPYLM is sublinear, with respect to counts of trigrams. For a
comparison, the IKNLM uses a single disccounting parameter:

, and the MKNLM uses three different discounts:
. It is interesting

to note that discounts in the HPYLM for trigrams with large
values of counts are also surprisingly large, which reminds us
to question whether or not it is enough to use only one discount
parameter in the MKNLM for all -grams with three
or more counts. Finally we note that similar counts may have
substantial differences in average discounts, especially in the
case of larger counts. This may arise from local effects during
the sample-based inference of the seating arrangements—more
likely in a restaurant with more customers (larger counts)—-and
also because discounts for larger counts are averaged over fewer
trigrams (count of counts changes inversely with counts), which
makes it look less smoothed for large counts.

C. Validation of Parallelization Approximation

To measure experimentally the errors introduced by the par-
allel training algorithm, we trained two HPYLMs of order 3
on FISHER shown in Table I for 100 iterations, one without
parallelism, while the other with the parallel training algorithm
introduced in Section IV-C. We evaluated the two HPYLMs
for the transcription of rt06seval, recording the perplexity re-
sults for each iteration. Fig. 5 shows that there is no statisti-
cally significant difference between perplexity results of these
two HPYLMs, which indicates that the error caused by the ap-
proximation in parallel training algorithm can be ignored. We
also find no significant difference in the WER [37].

D. Learning Curve

To further verify that the HPYLM is a suitable choice for
language modeling when there is a large amount of data, we
investigated the learning curve of the HPYLM with respect
to the amount of training data. We considered ALL, a corpus
of 211 million word tokens consisting of data sets No.1–8
in Table I. We first randomly reordered the corpus, and then
varied the training set size between 1 million and 211 million
words by gradual increments to obtained training sets of 1,
10, 25, 50, 100, 200, and 211 million words. We trained the
IKNLM, MKNLM, and HPYLM using the CV condition on
these training sets, respectively, and evaluated the language
models on the RT06s test data (rt06seval), as in Section V-B.
Fig. 6 shows the learning curve of perplexity results as the
amount of training data increases. We see that, although there is
a runtime overhead, the HPYLM consistently outperforms the
IKNLM and the MKNLM as the size of training data increases.
Moreover, the reductions by the HPYLM become larger with
larger amount of training data available.

E. Comparison to Other Models

In our experiments, the HPYLM produces consistently better
perplexity results than the MKNLM. This observation is in con-
trast to the finding in [12], where the HPYLM performs slightly
worse than the MKNLM in terms of perplexity. We argue that
there are two potential reasons for this. First, [12] used conju-
gate gradient descent in the cross-entropy on the validation set
to determine the discounting parameters for the IKNLM and the
MKNLM, which is a different approach to that used in most
standard language model toolkits such as SRILM [38]. We used
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Fig. 4. Average discounts as a function of trigram counts (top), and counts of trigram counts (bottom) in the HPYLM trained on the data set MTRAIN, with
different scales for horizontal axis: first 50 counts (left), first 100 counts (middle), and first 1000 counts(right).

Fig. 5. Perplexity results by iterations, trained on FISHER and tested on RT06s
evaluation data rt06seval for the HPYLM, to validate parallelization approxima-
tion.

Fig. 6. Learning curve of perplexity results on RT06s evaluation data rt06seval
for the HPYLM with respect to the amount of training data.

in this paper the SRILM toolkit to build reasonable baseline re-
sults and evaluate our various LMs. Second, the difference in
the data and the implementation may be another reason. Based
on the discussion in Section VI-B, however, we believe that it

makes sense for the HPYLM to outperform the MKNLM, be-
cause of its more flexible discounting scheme for each different
context.

There are different interpretations for the unusual modified
counts for lower order -grams in the IKNLM. Kneser and Ney
[7], and Chen and Goodman [2], derived the modified counts
for lower order -grams in terms of preserving marginal word
distribution constraints. Goodman [34] justified this from a
Bayesian view of a maximum entropy model with an exponen-
tial prior, and clearly explained why the Kneser–Ney smoothing
has that particular form including the modified counts for lower
order -grams. The maximum entropy model, to which the
back-off version of Kneser–Ney smoothing forms an approxi-
mation, also preserves the marginal constraints. The HPYLM
is a full Bayesian interpretation of interpolated Kneser–Ney as
approximate inference in a hierarchical Bayesian model con-
sisting of Pitman–Yor processes [12]. The modified counts for
lower order -grams, , are derived directly from Chinese
restaurant processes and different from those in the IKNLM,
subject to the following relationships among and
[12]:

if
if

where is the number of tables seated by customers in
the child restaurant of . The value of , and consequently
the modified count , are naturally determined by the seating
arrangements induced from Chinese restaurant processes. If we
constrain , the modified count is the
same as that in the IKNLM. However, the HPYLM also satisfies
marginal constraints when the strength parameter for all

, as proved in [36].
The structural Bayesian language model by Yaman et al.

[33] shares similar ideas to the hierarchical Dirichlet language
model [10] (although it is estimated by a MAP approach),
in that both models assemble -grams in a tree structure and
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use the Dirichlet distribution as the prior to smooth the em-
pirical counts. In comparison to the HPYLM, however, both
models suffer from performance improvements compared to
state-of-the-art smoothing methods such as IKN and MKN, for
lack of one important issue for language model smoothing—ab-
solute discounting.

VII. CONCLUSION

In this paper, we present the application of hierarchical
Pitman–Yor process language models on a large-vocabulary
ASR system for conversational speech, using reasonably large
corpora. We show comprehensive experimental results on
multiparty conversational meeting corpora, with the observa-
tion that the HPYLM outperforms both the IKNLM and the
MKNLM.

Overall, we hope to convey our judgment that it is feasible,
and worthwhile, to use the HPYLM for applications in large-vo-
cabulary ASR systems. In detail, the conclusions we make in
this paper are as follows: 1) the HPYLM provides an alterna-
tive interpretation, Bayesian inference, to language modeling,
which can be reduced to interpolated Kneser–Ney smoothing
[12]; 2) the HPYLM provides a better smoothing algorithm for
language modeling in practice, which has better perplexity and
WER results than both the IKNLM and the MKNLM, consis-
tent and significant; 3) HPYLM training converges in relatively
quickly; 4) a parallel training scheme makes it possible to es-
timate models in the case of large training corpora and large
vocabularies.

The main contributions of the HPYLM work in this paper
include the introduction of a novel Bayesian language mod-
eling technique to the ASR community, and the experimental
verification on the task of large-vocabulary ASR for conver-
sational speech in meetings. We have demonstrated that it is
feasible to infer a hierarchical non-parametric Bayesian lan-
guage model from a large corpus, thus making it practical to use
for large vocabulary speech recognition or machine translation.
Our experimental results have shown that any approximations
resulting from the parallel algorithm have a negligible effect
on performance. Overall, the HPYLM results in significantly
improved accuracy compared with the current state-of-the-art
(IKNLM/MKNLM). The resulting language model may be in-
terpreted as a smoothed -gram model, can be implemented in a
standard way (e.g., using an ARPA format language model file),
and may be used in place of other smoothed -gram language
models.

APPENDIX A
PROGRAM AND SCRIPTS FOR THE HPYLM

The executable program (hpylm), the corresponding Python
scripts, and part of the text data used in this paper to train and test
an HYPLM, are available from http://homepages.inf.ed.ac.uk/
s0562315/.

TABLE XIII
MEETING IDS FOR THE 5 FOLDS OF THE AMI SCENARIO MEETINGS. THE

INITIAL LETTER “S” REPRESENTS THE SCENARIO MEETINGS

APPENDIX B
THE FIVEFOLD CROSS-VALIDATION SPLIT-UP

We include below in the Table XIII the meeting identities
from the scenario AMI Meeting Corpus for the fivefold cross
validation in Section V.

APPENDIX C
MATCHED-PAIR SIGNIFICANCE TEST

We use in this paper the matched-pair significance test
method [42] for significance testing of WER results in the ASR
experiments.

Suppose and are the filtered hypothese
files, generated by the NIST scoring tool . We use the
script from the SRILM toolkit [38] to com-
pute the matched pairs:

Let be the number of times the two systems’ hypotheses
differ, and be the number of times new system improves upon
baseline. We compute the probability that a fair coin would have
come out heads at least times in totally trials:

as the significance p-value, with to be signifi-
cant, and to be significant but weak.
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