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Abstract

In many higher eukaryotic organisms, a substantial portion of the genome is comprised 

of noncoding DNA, whose potential contribution to gene functions and genome 

evolution is still relatively unknown. Since the completion and availability of genome 

sequences of numerous species, comparative genomic analysis has become a powerful 

tool to reveal the functional significance of noncoding sequences, by searching for signs 

of sequence conservation. It has been shown that a large fraction of noncoding 

sequences are evolutionary constrained in Drosophila, and transposable elements (TEs) 

are one of the major components of noncoding DNA. To compare and analyze genomic 

sequences within and among species, accurate alignment of orthologous sequences from 

related species is a vital first step.

In this thesis, a fast accurate global pairwise alignment of noncoding DNA sequences, 

MCALIGN2, is developed based on explicit models of indel evolution. A pair-hidden- 

Markov-Model (pair-HMM) of seven states and a Golden-Section-Search algorithm are 

employed in this method to search for the most probable alignment between two 

homologous sequences. MCALIGN2 outperforms other available alignment methods in 

simulations for all combinations of parameter values considered. This method is then 

used to align and analyze noncoding DNA sequences in Drosophila.

Comparative genomic analysis in this thesis shows that INE-1 elements, one of the 

most abundant TEs in Drosophila, along with sites within short introns and fourfold 

degenerate sites are the fastest evolving nucleotides in the genomes of Drosophila 

melanogaster, D. simulans and D. sechellia. Fourfold sites tend to be evolving



(relatively) slightly more slowly than the other two classes of nucleotides, probably due 

to selection acting on protein translation efficiency. The observed substitution rate in 

these fastest evolving sites appears to be strongly influenced by the recombinational 

environment in which they are located. This rate may be influenced by several factors 

including ancestral polymorphisms, variation in mutation rate, natural selection and 

random genetic drift. The relative importance of these factors varies depending on the 

time since speciation.

This thesis also fully investigates the distribution and rates of evolution of three major 

TE classes (LTR, non-LTR retrotransposons and DNA transposons) in the Drosophila 

euchromatic genome using a gene-centric approach. The study demonstrates that LTR 

elements outnumber non-LTR and DNA elements in all intergenic, intronic and exonic 

regions, and LTR elements also show relatively lower mean divergences than the other 

two classes between D. melanogaster and D. yakuba. The roo_I elements, a Pao family 

retrotransposon, appear to be evolving the most slowly among LTR elements. The study 

also shows that there are fewer TE insertions in Drosophila promoter regions than in 

intergenic regions that are not close to coding sequence boundaries. TEs in promoter 

regions were also found to have lower interspecies mean divergences than those in distal 

regions. These findings suggest that some TEs, rather than being "junk" and "selfish", 

may be conserved between species, and therefore, play vital roles in gene regulation and 

host genome evolution.



Chapter 1.

Introduction

1.1. DNA sequence evolution

The emergence of automated DNA sequencing has triggered a massive growth in the 

volume of sequence data deposited in public databases. This allows us to analyse DNA 

sequence data on a very large scale, both within and between species. Meanwhile, 

greater computational power also helps process a huge amount of data in a substantially 

shorter time, compared to a decade ago. DNA sequences are generally comprised of 

protein-coding DNA sequences and non-protein-coding DNA sequences. Protein-coding 

DNA sequences are DNA sequences that are transcribed into mRNA and subsequently 

translated into proteins (amino acid sequences). Translation starts at the translation 

initiation site and proceeds to a stop signal. Every triplet of adjacent nucleotides (i.e., a 

codon) in a protein-coding sequence specifies a single amino acid. Non-protein-coding 

DNA sequences, here referred to as just noncoding DNA, describe DNA which does not 

contain instructions for making proteins. Noncoding DNA sequences include introns that 

are located within coding regions, and intergenic sequences between genes.

1.1.1. Mutation and recombination

Mutations are changes to the nucleotide sequence of the genetic material of an 

organism. Mutations can be caused by copying errors in the genetic material or incorrect 

DNA repair during cell division or by external stimuli, such as exposure to ultraviolet or



ionizing radiation, chemical mutagens, or viruses. Mutations can also occur under 

cellular control during processes such as hypermutation without any impact of external 

factors (Griffiths et al. 1999, Chapter 7). In multicellular organisms, mutations can be 

subdivided into germ line mutations (which can be passed on to descendants) and 

somatic mutations (which are not transmitted to descendants). The former appear to be 

relatively more interesting from the aspect of sequence evolution, since they provide the 

source of heritable variation. Mutations can also be classified into (1) base-pair 

substitutions, the replacement of one nucleotide by another; (2) deletions, the removal of 

one or more nucleotides from the DNA; (3) insertions, the addition of one or more 

nucleotides into the DNA; (4) inversions, the chromosome rearrangement in which a 

segment of a chromosome is reversed end to end (Li 1997, p.23-29).

Base-pair substitutions can be classified into transitions and transversions. Transitions 

are substitutions between A and G (purines) or between C and T (pyrimidines). 

Transversions are substitutions between a purine and a pyrimidine (e.g., A >T and 

A »C). Thus, there are four types of transitions and eight types of transversions. In 

protein-coding regions, a substitution is said to be synonymous or silent if it causes no 

amino acid change, otherwise, it is nonsynonymous. Deletions and insertions are 

collectively referred to as indels (or gaps) in the sequence alignment, because one cannot 

tell whether a deletion occurred in one descendant sequence or an insertion occurred in 

the other descendant sequence in a pairwise sequence alignment without information 

from the ancestral sequence.
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In addition to mutations, recombination can also cause changes to the genetic material. 

It refers to the process by which two chromosomes pair up and exchange their DNA 

content. Recombination includes chromosomal crossover and gene conversion. In 

eukaryotes, chromosomal crossover (or crossing over) generally occurs during the 

formation of gametes or meiosis. It involves two chromosomes of a homologous pair 

exchanging sections of their DNA reciprocally. If one is considering a metaphase in 

meiosis where each chromosome consists of two (initially identical) sister chromatids, 

crossing over can then occur between one chromatid of one of the homologous 

chromosomes and one chromatid of the other homologous chromosome. For example, a 

pair of homologous chromosomes consists of two linked diploid loci. One chromosome 

has two sister chromatids AB, and the other chromosome consists of two other sister 

chromatids (different from the first chromosome) ab. Crossing over between one 

chromatid AB of the first chromosome and one chromatid ab of the second chromosome 

will yield a 1:1:1:1 ratio in the four haploid products of this meiosis, i.e., 

\AB:\Ab:\aB:\ab, instead of2AB:2ab. Gene conversion refers to the process by which 

one section/locus of the genetic material is transferred from one of the paired 

chromosomes to the other, but the donating chromosome stays unchanged. Thus, this is 

a non-reciprocal change (e.g., the B >b change at a locus, but no b >B change). Gene 

conversion also occurs during meiotic division, and, as mentioned, it generally involves 

the breakage of one of the paired chromosomes and the invasion of the genetic content 

from the other chromosome to the homologous DNA strand of the broken chromosome. 

In the case of gene conversion, the segregation at the B locus will be 35:1 b instead of 

2B:2b, while segregation at the A locus will still be 2A:2a. Gene conversion and
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crossing-over are often associated events. For example, the correlation between these 

two events could be 50% or higher in yeast (Borts and Haber 1987; Petes et al. 1991).

Therefore, recombination also creates genetic variation as mutations do. It does so by 

rearranging genetic content based on the existing genetic material, while mutations 

create genetic variation by introducing new genetic material to the organism.

1.1.2. Natural selection and genetic drift

Mutations and recombination create variations in the gene pool of a population, and 

their fates then will be determined by natural selection and/or random genetic drift. 

There has been heated debate between selectionists and neutralists since the neutral 

theory first came out (Kimura 1968). Their relative importance of selection and random 

drift depends on the effects of new mutations (or recombination) on host fitness.

The selectionist hypothesis proposes that most new mutations in a population will 

reduce the host fitness, and are deleterious. Such mutations will be selected against and 

will be eventually eliminated from the population by negative or purifying selection. 

However, it is possible that a new mutation favours its host by introducing a selective 

advantage over other individuals. Such a mutation may eventually become fixed in the 

population through positive selection. It is also possible that mutant type alleles and the 

wild type alleles co-exist at a locus in the population with different frequencies (i.e., 

polymorphism), resulting in selective advantages for the population. This is maintained 

by balancing selection. Natural selection acts on the phenotype, or the observable 

characteristics of an organism, and it leads to changes in allele frequencies over time.

12



The neutralist hypothesis proposes that the vast majority of the changes that take place 

in evolution are selectively neutral or nearly so (i.e., slightly deleterious) (Kimura 1968; 

Ohta 2002). Their fates will be largely determined by random genetic drift. Random 

genetic drift refers to the process of randomly sampling gametes during reproduction of 

a population. If the population has 2N adults, and if the effective population size Ne = N, 

then the population will create a vast number of gametes, of which 2N are sampled to be 

found in the adults of the next generation. The assumption is made here that each 

individual in the population is equal in fitness, and selection and other evolutionary 

forces are absent. Thus, the chance that each allele can be passed down to the next 

generation solely depends on stochastic sampling. During the process of random drift, 

some alleles are lost in each generation by chance, and eventually, each allele at a locus 

will become a copy of just one of the ancestral alleles in generation 0. The probability 

that a particular allele in generation 0 will become fixed in the population is simply the

fraction of that allele in the population initially,   . Considering a simple case of one

locus with two alleles, AI and A2, with frequencies p and q = 1 - p, respectively, the 

probability that Aj will become fixed in the population is equal to the initial allele 

frequency of A], simply just p. According to the neutral hypothesis, polymorphism is a 

temporary state that is still undergoing random genetic drift. Polymorphism is more 

frequent for large populations than for small ones, since random genetic drift tends to be 

a slower process in larger populations.
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Selection will still operate on a new mutation that is nearly neutral, or slightly 

deleterious, but chance effects are a stronger determinant of eventual fixation than is 

selection. The relative importance of natural selection and genetic drift in a population 

varies depending on the strength of the selection and the effective population size Ne, 

defined as the size of an idealized population that would have the same effect of random 

sampling on gene frequency as that in the actual population (Wright 1931).

The neutral theory is widely used as a "null model" of sequence evolution. The 

neutrality test compares the actual/observed number of differences (substitutions) 

between two sequences and the expected number that neutral theory predicts given the 

independently estimated divergence time (e.g., the expected number of differences for 

putatively neutrally evolving sites). If the actual number of differences is (much) less 

than the predicted, the null hypothesis is disproved. We then may reasonably assume 

that selection has acted upon the sequences in question. This is the basis for identifying 

evolutionary constraint (Keightley and Gaffney 2003; Halligan et al. 2004; Andolfatto 

2005; Halligan and Keightley 2006).

1.1.3. The role and survival of noncoding DNA

In eukaryotes, genome sizes (termed the C-value, denoting the total amount of DNA in 

a haploid genome) vary dramatically among species, from ~2.5Mb in Thalassiosira 

pseudonana to ~670,OOOMb in Amoeba dubia (Sparrow et al. 1972; Cavalier-Smith 

1985; Li and Graur 1991; Armbrust et al. 2004). However, there is no clearly established 

relationship between the interspecific variation in genome sizes and organismic
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complexity or the likely number of genes encoded by the organism (Li 1997, p.381; 

Gregory 2005, p.7-10). For example, several unicellular protozoans (e.g., amoebae) 

possess much more DNA than mammals (up to -200-fold) (Li and Graur 1991). 

Moreover, organisms that seem similar in genetic complexity possess vastly different C- 

values. For example, the C-values of flies and locusts are ~180Mb and ~9,300Mb (Li 

and Graur 1991), respectively, although they are thought to have similar amounts of 

"genetic information". This lack of correlation between C-values and the presumed 

amount of genetic information within genomes is known as the C-value paradox or the 

C-value enigma (Thomas 1971; Gregory 2001). It has become clear that the C-value 

enigma appears to be mostly due to the presence of noncoding DNA and its variability in 

quantity among organisms (Gregory 2005, p.9-10 and p.27; Li 1997, p.381-384).

Large proportions of noncoding DNA are made up of transposable elements in most 

eukaryotic genomes. Transposable elements (TEs), also known as "jumping genes", 

could play an important role in accounting for the C-value enigma. One should note that 

much TE DNA is coding, although coding for the proteins required for TE movement. 

The proportion of the genome taken up by TEs also seems to vary widely among taxa. 

For instance, TEs comprise -50% and -40% of human and mouse DNA, respectively 

(International human genome sequencing consortium 2001; Waterston et al. 2002); at 

least 50% of the maize genome (SanMiguel et al. 1996) and approximately 90% of the 

genome of some species of lilies (Flavell 1986). In species with relatively smaller 

genomes, the percentage of TEs in the genome is relatively less, e.g., 6% in C. elegans 

(Waterston and Sulston 1995) and less than 10% in D. melanogaster (Kaminka et al.

15



2002). Generally, it is assumed that TEs are relatively more important determinants of 

genome size (C-value) in large genomes compared to small genomes (Kidwell 2002).

For a long time, scientists believed that noncoding DNA was useless junk (Ohno 1972), 

or "selfish DNA" replicating more efficiently than coding DNA (Orgel and Crick 1980). 

However, there would be some drawbacks for the genome to maintain a large amount of 

"junk" or "selfish" DNA. A large amount of noncoding DNA tends to exhibit greater 

sensitivity to evolutionary changes, although most of the changes may be selectively 

neutral or do not become fixed in the population. Furthermore, maintaining and 

replicating a large amount of DNA may impose a burden on the organism (Li 1997, 

p.399; Lynch 2007, p32-35). Thus, it is possible that some noncoding DNA is 

maintained due to its evolutionary significance.

Indeed, various important roles of noncoding DNA have been discovered in recent 

years. First, there is evidence that some noncoding DNA (e.g., telomeres) is necessary 

for maintaining chromosomal structure and function (Sandell and Zakian 1994; Barinaga 

1997; Harrington et al. 1997). Second, it has been shown that eukaryotic noncoding 

DNA are crutial to maintain the secondary DNA structure (Cavalier-Smith 1985; Beaton 

and Cavalier-Smith 1999). Third, noncoding DNAs may play a vital role in the 

regulation of gene expression during development (Ting 1995; Vandendries et al. 1996; 

Keplinger et al. 1996; Kohler et al. 1996). This is supported by a great body of evidence 

demonstrating the role of noncoding DNA as promoters/enhancers (or silencers) for 

transcription (or suppression of transcription) of proximal genes since several decades 

ago. Recent discovery includes the evidence shown in Nikolajczyk et al. (1996),
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Tanimoto et al. (1996), Tiffany et al. (1996), Bouhassira et al. (1997), Handen and 

Rosenberg (1997) and van de Lagamaat et al. (2003). Fourth, some of the noncoding 

DNA establishes the correct reading frame for translation (Trifonov 1989). Fifth, in 

recent years, there has been growing evidence that noncoding RNA (ncRNA) genes (that 

are transcribed into noncoding RNA) are far more widespread than was expected before, 

e.g., in mammals (Eddy 2002; Huttenhofer et al. 2002), and they may be very important 

in regulating gene expression (acting as molecular switches) (Eddy 2002; Mattick 2004; 

Huttenhofer et al. 2005). In addition, 3' and 5' untranslated regions (UTR) are crucial for 

regulating gene expression. The 3' and 5' UTRs provide the binding sites for certain 

trans-acting binding proteins to regulate gene expression. Well characterized examples 

of this include the lipoprotein lipase gene (Ranganathan et al. 1997), the glucose 

transporter gene (McGowan et al. 1997) and the glutathione peroxidase and 

phospholipid-hydroperoxide glutathione peroxidase genes (Bermano et al. 1996).

More recently, since the completion and availability of genome-scale sequence for 

numerous species, comparative genomic analysis has revealed many highly conserved 

nongenic sequences (CNGs) whose functional significance is still poorly understood, 

particularly in mammals (Frazer et al. 2001; Dermitzakis et al. 2002, 2003, 2004; 

Bejerano et al. 2004). These CNGs are subject to strong negative selection, and are 

highly selectively constrained between related species (Drake et al. 2005; Keightley et 

al. 2005). Noncoding DNA sequences, contrary to the statements of their being "junk" 

or "selfish", are thus not useless, but at least some proportions are, in fact, required for 

genomic functionality.
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1.1.4. Principle of sequence comparison

Comparison is a powerful tool in biological science. As mentioned above, recent 

comparative genomic-based strategies have begun to help identify functional sequences 

based on their high levels of evolutionary conservation, resting on the hypothesis that 

important/functional biological sequences are conserved between species due to 

evolutionary constraints (Nobrega and Pennacchio 2003). In other words, functionally 

important parts of the genome are expected to evolve more slowly than those lacking 

function if newly arising mutations are deleterious to gene function (Shabalina and 

Kondrashov 1999; Andolfatto 2005). Technological progress in DNA sequencing has 

resulted in the generation of a large dataset of genomic sequence information for 

numerous species. This has allowed us to produce genome-wide alignments to compare 

and contrast the evolution and content of genomes of related species. Such comparisons 

are vital to identify blocks of conserved sequences over evolutionary time, and such 

evolutionary conservation has been a powerful guide in revealing functional elements of 

noncoding DNA (Hardison 2000; Pennacchio and Rubin 2001; Nobrega and Pennacchio 

2003). Sequence alignment is the first step in genomic comparison.

1.2. Sequence alignment

Sequence alignment is one of the most important issues in comparative genomic 

analysis. It is the process of lining up homologous bases, which also involves identifying 

the locations for insertions and deletions (indels). Sequence alignment relies on the

18



assumption that the two sequences under study have been derived from a common 

ancestral sequence, and have been evolving independently ever since.

1.2.1. Alignment categories

There are several categories of alignment: pairwise alignment is the comparison of two 

sequences, while multiple alignment is a natural extension of pairwise alignment to 

incorporate more than two sequences at a time. Sequence alignment can also be 

performed globally or locally. Global alignment assumes that the two sequences are 

similar over their entire length, and attempts to match them to each other from end to 

end based on global similarities derived from the ancestral sequence. Local alignment is 

an alignment algorithm to search for regions of local similarity between sequences. The 

most common situation involves a query sequence x that is much shorter than a second 

sequence y, treated as a target database sequence (e.g., the entire genome sequence). 

Local alignment will look for the best alignment between sequence x and subsequences 

of y. It is usually a more sensitive way to detect similarity than global alignment, 

especially when comparing two very highly diverged sequences (Durbin et al. 1998, 

p.22). However, one should not simply compare local alignment with global alignment 

from the aspect of alignment accuracy, since they were designed for different alignment 

tasks. This thesis mainly focuses on the introduction to and implementation of global 

pairwise alignment.

1.2.2. Pairwise alignment

For a given pairwise alignment, there are three types of aligned pairs: (1) matched base
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Sequence* ATTATA    CAGC 
Common ancestor Alignment 1

Sequence >  ATTAGCTAAGCCGC

Sequence* ATTA  TA  CAGC 
Sequence* Sequence;, Alignment 2

Sequence;, ATTAGCTAAGCCGC

4

Figure 1.1. - Sequence x and sequence y have diverged from the common ancestor for 
divergence time tj and t2, respectively. For any two sequences, we can come up with many 
alignments when gaps are included. There are 3 substitutions and 1 gap in alignment 1, and 1 
substitution and 2 gaps in alignment 2. Substitutions (mismatches) are indicated by arrows.

pairs, (2) mismatched base pairs, and (3) pairs consisting of a base from one sequence 

and a gap from the other sequence, denoted by "-" (Figure 1.1). These three types of 

paired events correspond to the three basic evolutionary processes for sequence 

evolution. Matched base pairs suggest that no point substitutions have occurred at the 

target site since the divergence between the two sequences. Mismatched base pairs 

suggest that (at least) one substitution has occurred at the target site in either sequence. 

A gap state implies that an indel has occurred in one of the two sequences.

One should note that when we include gaps in the alignment, there could be many 

possible alignments for any two sequences (e.g., alignment 1 and alignment 2, Figure 

1.1). We are faced with a choice between having more point substitutions and having 

more gap events. We must then find a scoring system with which to compare gaps and 

substitutions. Such a scoring system will include scores for matches/mismatches, and 

scores for gaps (i.e., gap penalty).

20



1.2.3. Available alignment methods

Two famous alignment algorithms have been developed decades ago, to deal with 

global alignment and local alignment, respectively. They are termed the Needleman- 

Wunsch algorithm (1970) and the Smith-Waterman algorithm (1981). They have 

become the basis for the following new algorithms.

The Needleman-Wunsch approach

Needleman and Wunsch (1970) suggested a progressive building of an alignment, 

based on dynamic programming. This algorithm is guaranteed to find the optimal 

alignment for two similar-sized sequences. The dynamic programming procedure can be 

carried out by first constructing a score-based matrix F between the two sequences of 

length x and y, respectively. Matrix F will be a (*+l) x (y+1) matrix, as the score at F(0, 

0) is initialized as 0. Three basic events in a pairwise alignment, 

matches/mismatches/indels, are each given a score or a score scheme. The procedure 

starts from the beginning of each sequence F(0, 0), and then fills the matrix by moving 

to positions next to the previous position from left to right and from top to bottom. The 

score at the target position is based on scores at previous positions plus the transition 

scores between them. The maximum score of them is then chosen to be stored at the 

target position. For example, at the target position F(m, n), the score there is partially 

determined by scores at the three previous positions F(m-\, n-l), F(m-\, ri) and F(m, n- 

1). The transition from F(m-l, n-l) to F(m, ri) is to enter a match state if the mth base of 

one sequence is the same as the wth base of the other sequence, or a mismatch if they are
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different bases. The transition from F(m-\, ri) to F(m, ri) is to enter a gap state of the wth 

base of one sequence aligning to a gap "-" of the other sequence, likewise for the 

transition from F(m, n-l) to F(m, ri), entering the state of the mm base of the other 

sequence aligning to a gap. Thus, the score at position F(m, ri) is,

F(m-\,ri) + d (1.1) 

F(m,n-Y) + d

where s(m, ri) is the score for a match or a mismatch, and d is the score for a gap. Once 

the maximum score is placed, a pointer back to the position from which the maximum 

score was derived is also kept. Therefore, the memory to build the matrix F doubles. The 

building procedure continues filling the rest of the matrix recursively until the last 

position F(x, y) is filled. The second part of the dynamic programming procedure is to 

start from position F(x, y) and to trace back through the path that generated the 

maximum scores for each traceback position. At the end, the traceback procedure 

reaches the start of the matrix. The two sequences can then be aligned according to this 

path. Although the dynamic programming procedure provides a clear instruction of 

searching for the optimal alignment between two sequences, it does not provide any 

guidance of choosing parameters for a match/mismatch/indel.

In the Needleman-Wunsch approach, every match is given a score of 1, every 

mismatch a score of 0 and individual gaps a penalty score (Needleman and Wunsch 

1970; Mount 2004, p. 12). The most commonly used gap penalty models are the linear 

gap model (Equation 1.2) and affine gap penalty model (Equation 1.3),
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"k=bk, (1.2) 

wk =a + b(k-\) (1.3)

where w* is the penalty for a gap of k bases, b is the gap-extension penalty and a is the 

gap-open penalty. The Needleman-Wunsch similarity score S between two aligned 

sequences is then (also shown in Mount 2004, p. 12),

k gk (1.4)

where x is the number of matched pairs and gk is the number of gaps of Abp in length. 

Under the linear/affine gap penalty weight, the choice of a and b is a difficult problem, 

because the optimal alignment can be different for the two sequences, e.g., in Figure 1.1, 

given different sets of a and b. For example, if a = 0.5 and b = 2, the similarity score for 

alignment 1 is S = 0.5, and for alignment 2 is S = 4. Thus, alignment 2 is favoured over 

alignment 1. However, if a = 3 and b = 0.5, then S = 2.5 for alignment 1, whereas 5 = 2 

for alignment 2. Alignment 1 becomes favoured over alignment 2. A quality global 

alignment is vital to infer the actual differences (substitutions) between the two 

homologous sequences.

The Smith-Waterman approach

An alignment is usually comprised of well-aligned subregions and relatively poorly- 

aligned subregions. In sequence comparison, well-aligned regions are usually the most 

biologically significant regions in DNA or protein sequences, while relatively poorly- 

aligned regions are made up of sequences that are less related compared to well-aligned
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regions. Therefore, to locate these well-aligned subregions in a target database sequence 

is crucial for homology study. Smith and Waterman (1981) developed an important 

modification to the Needleman-Wunsch algorithm, now known as the Smith-Waterman 

algorithm, to look for high scoring local alignments. This approach finds the similarity 

between subsequences of a target database sequence and a relatively shorter query 

sequence. There could be many subsequences exhibiting similarity to the query 

sequence if the database sequence is long (e.g., the whole genome sequence), but their 

similarity scores would be different. Note that local alignment is not the focus of this 

project.

Heuristic methods

The Needleman-Wunsch and Smith-Waterman algorithms are guaranteed to find the 

optimal score according to the specified scoring scheme. However, they are not the 

fastest available sequence alignment methods, and to search with many different 

sequences and/or long sequences, time consumption becomes an important issue. 

Heuristic methods were introduced for this reason. However, some sensitivity will be 

sacrificed by heuristic approaches, and the optimal alignment could not be guaranteed, 

in particular when sequences are not closely related.

(1) CLUSTALW

The most widely used program for global sequence alignment is CLUSTALW 

(Thompson et al. 1994). CLUSTALW is a progressive multiple alignment tool based on 

a guide tree. It improves the sensitivity of progressive multiple sequence alignment
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through some carefully designed strategies. For example, it uses different amino 

acid/nucleotide base substitution matrices at different alignment stages according to the 

divergence of the sequences to be aligned. It also dynamically chooses gap penalties in a 

position- and residue-specific manner (Thompson et al. 1994). For positions where gaps 

have been opened in early stages, gap penalties are reduced to encourage new sequences 

to have gaps in such positions. For regions where gaps appear to be relatively more 

frequent than others, residue-specific penalties are used to encourage gaps (Thompson et 

al. 1994). These strategies have been proved to be efficient to align protein sequences 

and simulated noncoding DNA sequences with conserved blocks (Thompson et al 1994; 

Pollard et al. 2004). However, these arbitrary strategies appears to perform poorly in 

aligning distantly related sequences, e.g., many noncoding DNA sequences (Keightley 

and Johnson 2004; Wang et al. 2006)

(2) BLAST and FAST A

The BLAST (Altschul et al. 1990; Altschul et al. 1997) and FASTA (Pearson and 

Lipman 1988) packages are two of the most widely used programs for local alignments 

(based on the Smith and Waterman algorithm), in the scenario of finding local high 

scoring alignments between a query sequence x and a relatively longer target sequence y, 

e.g., the whole genome sequence. The common steps of these two methods involve 

initially looking for short stretches of matched words (sequences), subsequently 

extending to search for good longer matched words and finally identifying gapped 

alignments (Durbin et al. 1998, p.33-34). A series of local similarity scores are 

calculated and ranked corresponding to each identified local alignment. The main
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difference between the two methods is that FASTA realigns the highest scoring 

candidate matches using full dynamic programming (Pearson and Lipman 1988). This 

will give the FASTA package more sensitivity, but relatively slower speed, compared to 

BLAST (Durbin et al. 34).

(3) RepeatMasker

RepeatMasker is a widely used package to screen DNA sequences for interspersed 

repeats and low complexity DNA sequences (http://www.repeatmasker.org). It 

incorporates a sequence comparison program "cross_match", which was developed 

based on the Smith-Waterman-Gotoh algorithm (Smith and Waterman 1981; Gotoh 

1982), to mask repeats in target sequences. The query sequences (i.e., repetitive 

sequences) are stored in the RepeatMasker library, and the newly discovered repeats or 

updated versions of canonical sequences are available at Repbase 

(http://www.girinst.org/). The program outputs annotations of all recognized 

interspersed or simple repeats in the masked database sequence(s), and optionally local 

alignments of the query with the matching repeats within the masked sequence(s). The 

program also provides options to restrict or ease the masking criteria.

(4) AVID

AVID (Bray et al. 2003 and 2004) is a global pairwise alignment program. The 

program firstly concatenates the two sequences (to be aligned) with the character N 

between them, and finds all maximal repeated substrings (matches) between the two 

sequences using a suffix tree. The program then starts an anchor selection process based
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on the entire maximal match set. Short matches are removed and the rest of the set are 

selected as anchors using a variant of the Smith-Waterman algorithm. The anchors are 

then used to split long sequences into short sequences. Short sequences are then aligned 

by the Needleman-Wunsch algorithm using standard parameters. However, if there are 

still significant matches within any of the short sequences, the anchor selection process 

will be repeated within these sequences and these short sequences are split into even 

shorter ones that will be aligned by dynamic programming. At the end, the program 

orders and orients all aligned short sequences to form a whole global pairwise alignment 

between the two input sequences (Bray et al. 2003). This approach is fast and memory 

efficient, and is practical for sequence alignments of large genomic regions up to 

megabases long (Bray et al. 2003).

1.2.4. Statistical alignment

All of the methods discussed above are score-based methods, including a 

match/mismatch score for nucleotides or amino acids, and a cost function for indels. 

This means that parameters used to align the two sequences are predefined in advance of 

the alignment. This could cause some problems for biological sequence alignments. 

First, as discussed previously, the best alignment can vary, and will be strongly 

influenced by how we choose the parameters. Second, since score-based methods lack a 

proper statistical explanation for all parameters used in the alignment, it is difficult to 

assess the alignment reliability. Thus, there will be no statistical/probabilistic basis to 

compare several different alignments, let alone a biological basis.
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The relevance of statistical approaches to evolutionary inference has long been 

recognized. Time-continuous Markov models for substitution processes were introduced 

more than three decades ago (i.e., the Jukes-Cantor model, Jukes and Cantor 1969). 

Compared to score-based approaches, the statistical (probabilistic) treatment to 

evolutionary processes (insertions/deletions/substitutions) can produce probabilistically 

and biologically meaningful parameters based on explicit models of evolution. These 

parameters are usually estimated by maximum likelihood (ML) or Bayesian techniques, 

in which all uncertainty of known and unknown parameters is accounted for. The 

Bayesian approach allows the assessment of the reliability of the alignment estimates by 

calculating the posterior probability. Furthermore, this also allows the comparison of 

different models of evolution and hypothesis testing (Lunter et al. 2004 and 2005).

The first evolutionary model for pairwise sequence alignment, termed the TKF91 

model, was introduced by Thorne, Kishino and Felsenstein (1991). They proposed a 

time-reversible Markov model for insertions and deletions, as well as for point 

substitutions. This method uses a ML algorithm to estimate the evolutionary distance 

between two sequences and to obtain the most probable alignment. The TKF91 model 

was then modified to model indel events of more than one residue in length, roughly 

according to a geometric length distribution for each single indel event, becoming the 

TKF92 model (Thorne et al. 1992). In general, the advantages of a statistical approach to 

sequence alignment consist of the possibility of parameter inference, assessing 

uncertainty, hypothesis testing and model comparison (Chatfield 1995; Lunter et al. 

2004), which are absent in score-based methods. However, challenges still remain for
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the statistical approaches, e.g., to include more biological realism, and to incorporate 

variable substitution rates and more accurate indel evolutionary models (Lunter et al. 

2004).

1.2.5. Non-coding sequence alignment

Accurate inferences of the function of noncoding DNA from comparative methods 

depend critically on correct alignments of noncoding sequences. However, the alignment 

of noncoding sequences is more difficult than aligning protein-coding sequences. There 

is usually little difficulty in producing convincing alignments of protein-coding 

sequences, because indels are relatively uncommon, usually occurring in multiples of 

three base pairs. Furthermore, protein-coding sequence alignment is also supported by 

the alignment of amino acid sequences that they encode. For noncoding DNA alignment, 

unless sequence divergence is low, indels can cause severe problems, by introducing too 

many gaps but too few nucleotide differences, or too few gaps but too many differences 

into the alignment (Figure 1.1). We must model indel events in noncoding DNA with 

more care, because the length distribution of indels can be quite different not only 

between species, but also between genomic regions. The TKF model, which assumes 

single-base pair indels only, appears to be inaccurate for noncoding DNA alignment, and 

heuristic methods that simply assign penalty scores to indels do not seem to deal with 

complex indel events properly, especially when divergence is high.

Keightley and Johnson (2004) developed a new approach MCALIGN for aligning 

noncoding DNA. The alignment is estimated assuming a model that allows an arbitrary
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distribution of indel lengths. The distribution of indel lengths is first derived empirically 

from data in which unambiguous alignments have been made between closely related 

species (e.g., Drosophila simulans and Drosophila sechellid), as well as indel rate 

relative to nucleotide substitutions. This distribution can then be used to estimate 

alignments of sequences from relatively more distantly related species within the same 

group (e.g., Drosophila melanogaster and Drosophila yakubd). They then used a 

stochastic hill-climbing algorithm that searches for more probable alignments. They 

have compared their method with several widely-used heuristic approaches to global 

pairwise alignment, CLUSTALW (Thompson et al. 1994), AVID (Bray et al. 2003), 

DIALIGN (Morgenstern 1999), LAGAN (Brudno et al. 2003) and HANDEL (Holmes 

and Bruno 2001), using simulations. MCALIGN appeared to outperform other available 

methods (Keightley and Johnson 2004). This approach to modeling the distribution of 

indel lengths will be applied to a new method that this project has developed, but the 

new method will use a different optimizer.

1.3. The Drosophila genome project and searching for functional noncoding DNA

A large portion of the D. melanogaster genome was first sequenced by a consortium 

lead by Celera Genomics using the whole-genome shotgun sequencing method (Adam et 

al. 2000). This initial draft sequence, which contained many gaps and regions of low 

sequence quality, was later refined in the third release (Celniker et al. 2002). This 

assembly still had 44 gaps remaining. The 118.4Mb Release 4 euchromatic sequence
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contained 6 chromosome arms (2L, 2R, 3L, 3R, 4 and X) with a total of 23 sequence 

gaps. The assembly was validated in collaboration with the Genome Science Centre at 

the British Columbia Cancer Agency in Vancouver, Canada, using fingerprint analysis 

of a tiling path of BACs spanning the genome (www.flybase.org). The ~120Mb 

euchromatic portion was thought to include the vast majority of the protein-coding 

genes. This result was built upon by a sequencing project for the euchromatic portion of 

the sister species D. pseudoobscura (Release 2), using a comparative sequence approach 

(Richards et al. 2005).

The genome sequence of A melcmogaster provided one of the first full genome models 

to study gene functions, genome structure and evolution (Misra et al. 2002; Celniker and 

Rubin 2003; Ashburner and Bergman 2005). 10 additional Drosophila genomes have 

also recently been sequenced and assembled (Myers et al. 2000; Drosophila 12 

Genomes Consortium 2007). These species were chosen to span a wide variety of 

evolutionary distances, and the evolutionary divergence spanned among the 12 

Drosophila species exceeds that of the entire mammalian radiation when generation time 

is taken into account (Stark et al. 2007). The wealth of choice of species, as well as 

genomic sequence volume has allowed comparative genomic analysis to be conducted, 

e.g., among 12 Drosophila species, to extensively study the evolution of genes and 

chromosomes on the Drosophila phylogeny and to discover and refine functional 

elements in D. melanogaster (Stark et al. 2007).

There is a growing body of evidence from comparative genomics analysis that a large 

amount of noncoding DNA sequences in Drosophila are under substantial selective
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constraints, and may thus possess some potential functions. For example, Andolfatto 

(2005) has analyzed new and previously published polymorphism data for 35 coding 

fragments and 153 noncoding fragments scattered across the X chromosome of D. 

melanogaster, with a sample size of 12 D. melanogaster alleles and a single D. simulans 

sequence. He estimated that about 40%-70% of nucleotides in intergenic regions, UTRs 

and most intronic DNA are evolutionarily constrained relative to synonymous sites, and 

a substantial fraction of the nucleotide divergence in these regions was driven to fixation 

by positive selection. He then suggested that a large fraction of noncoding DNA is 

functionally important and subject to both purifying selection and adaptive evolution 

(Andolfatto 2005). A recent genome-wide analysis covering the whole euchromatic 

genome of D. melanogaster has indicated that functional constraints in noncoding 

Drosophila DNA are generally surprisingly high, >50% (Halligan and Keightley 2006). 

They also showed that nucleotide sites whose distance from the coding sequence 

boundary is up to 5kb are still under substantial selective constraints (Halligan and 

Keightley 2006). Both analyses used putatively neutrally evolving sites to estimate 

selective constraints, but different candidates, based on the neutral theory.

1.4. Transposable elements and their evolutionary importance

As discussed previously, TEs comprise a large fraction of noncoding DNA sequences 

and could be responsible for the C-value enigma. To unravel and refine the functional 

significance of noncoding DNA, studying the contribution of TEs to the host is an 

important issue. TEs are sequences of DNA that can move around to different positions
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within the genome of a single cell, a process called transposition. They were first 

discovered by Barbara McClintock in the 1940s during her studies in maize (McClintock 

1944,1950 and 1951), but it has taken half a century to begin to understand how they act 

and how they affect the host genome.

TEs are widely distributed in bacteria, yeast, plants and animals, although their 

distributions vary dramatically among organisms. The long-term persistence of a TE 

family depends on the mobility rate of the existing TE copies (rate of new insertions), as 

well as the effects of new TE insertions on host fitness (Lynch 2007, p. 167-168). There 

have been attempts to directly measure the rate of TE insertions using mutation 

accumulation experiments in D. melanogaster (Nuzhdin and Mackay 1995; Maside et al. 

2000 and 2001). They estimated the average TE insertion rate to be 1.0~1.8xlO"4 per 

element per generation and the average excision rate to be 1.8~4.0xlO"6 . If all insertions 

are neutral, this difference between these two rates will force the host to accumulate 

more TEs, of which the consequence is that the host genome will increase its genome 

size. However, most of new TE insertions appear to be deleterious and will not become 

fixed in the population. Furthermore, in Drosophila, the high intrinsic rate of DNA loss 

will also prevent TE insertions from pushing the genome to large size (Petrov et al. 

1996).

Insertions that have slight/mild deleterious effects on host fitness are often of more 

interest, since they still have the ability to persist in the population for generations, or 

even become fixed. In a finite population, once such insertions occur in the host genome, 

the fate of this TE family in the population will depend on the rate of element giving
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rising to new elements (daughter elements), the rate of TE loss by nonselective physical 

forces (that is associated with rate of DNA loss), and the fraction of new insertions that 

are effectively neutral (given the host population size) (Lynch 2007, p. 174-177). Rate of 

new elements is positively correlated with the persistence of a TE family, while rate of 

TE loss is negatively correlated with the persistence. Because both of them are 

determined by intracellular activities, they should not be associated with any of the 

population properties, e.g., population size. The fraction of new insertions that are 

effectively neutral (and hence have the ability to become fixed in the population) is a 

function of population size and selection coefficient s. In general, for a small population, 

drift overwhelms selection; therefore, there will be a large fraction of new insertions that 

are effectively neutral to the host. Thus, this TE family may persist in the population for 

a long term. However, if the population size is large, drift will be a very slow process, 

and selection coefficient becomes the stronger determining factor for the fraction of 

fixable insertions. This TE family may become lost during the drift process, or 

eliminated from the population due to the relatively strong selection efficiency in a large 

population. Thus, the population size must be quite small for a TE family to establish or 

even become fixed in a population (also see Lynch 2007, pi74-177). TEs that persist in 

a population for a long term, or even become fixed, may not only contribute to the 

genetic diversity of the organism via their mutational activities, but also may constitute a 

source of genetic innovation for the host acting as genes or gene regulatory elements 

(Biemont and Vieira 2006).

1.4.1. TE diversity
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There are two main classes of TE: retrotransposons (class I elements), which are first 

transcribed into RNA and then reverse transcribed and reintegrated into the genome, and 

DNA transposons (class II elements), which are generally excised from one genomic site 

and integrated into another by a "cut and paste" mechanism. Retrotransposons are 

further subdivided into those that have "long terminal repeats" at their ends (LTR 

retrotransposons) and those that do not (non-LTR retrotransposons, also known as long 

interspersed nuclear elements, LINEs, in Drosophild). DNA elements are also known as 

terminal inverted repeat elements (TIR elements).

LTR retrotransposons contain gag and pol genes that encode a viral particle coat 

(GAG) and reverse transcriptase (RT), ribonuclease H (RH) and integrase (INT) to 

provide enzymatic activities for transpositions (Figure 1.2) (Kazazian 2004; Gregory 

2005, p.171-175; Biemont and Vieira 2006). GAG specifies the activity of the RNA 

transposition intermediate of LTR retrotransposons. The RT enzyme is responsible for 

the synthesis of the double-stranded DNA (that will be integrated into the genome 

elsewhere) from a complementary single-stranded RNA, which is synthesized from the 

inserted DNA of the TE through the action of RNA polymerase II. The RH enzyme 

degrades the DNA-RNA hybrids obtained during transposition. The INT enzyme splices 

the double-stranded DNA into a new position in the host genome (Kazazian 2004; 

Biemont and Vieira 2006). Some LTR retrotransposons also contain envelope genes 

(env) that encode surface proteins that interact with the host cell membrane. However, 

LTR retrotransposons with env genes are only rarely able to move from one cell to 

another. Examples of TE moving from one cell to another are TEs from the gypsy family
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Figure 1.2. - Classes of mobile elements, DNA transposons, LTR retrotransposons, Non-LTR 
retrotransposons. The time scale is shown alongside. Class I elements are generally younger than 
class II elements. ITR stands for inverted terminal repeats; Tip stands for transposase; RT, RH 
and INT stand for reverse transcriptase, ribonuclease H and integrase, respectively, adapted from 
Figure 1 in Kazazian (2004) and Box 2 in Biemont and Vieira (2006).

(Kazazian 2004). Examples of LTR retrotransposons are the Drosophila roo and gypsy 

families, and the Ty3 element of S. cerevisiae (see Table 3.1 in Gregory 2005).

Non-LTR retrotransposons (LINEs) usually have two open reading frames (ORFs), one 

encoding a nucleic acid binding protein, and the other encoding an endonuclease and an 

RT enzyme (Figure 1.2). The 5'-UTR region contains an internal promoter (Kazazian 

2004). Examples of non-LTR retrotransposons are Mammalian LI elements, and Rl and 

R2 elements of Drosophila (Table 3.1 in Gregory 2005). Non-LTR retrotransposons 

transpose by simply reverse transcribing a complementary DNA (cDNA) copy of their 

RNA transcript directly onto the chromosomal target site (Gregory 2005, p.171-175). 

Because reverse transcription occurs on the target DNA after cleavage, the process is 

called target primed reverse transcription, or TPRT (Luan et al. 1993; Cost et al. 2002).
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TMs process is very different from the process of reverse transcription of LTR 

retrotransposons, which occurs within the viral or virus-like particle in the cytoplasm 

(Voytas and Boeke 2002, p.631-662; Kazazian 2004), and is a complicated, multistep 

process (see Figure 2 in Kazazian 2004 and Figure 3.2 in Gregory 2005).

It is generally believed that class II elements are more ancient than class I elements 

(Figure 1.2) (Biemont and Vieira 2006). Class II elements move about the genome 

through a DNA intermediate, using the transposase (Trp) enzyme to split themselves in 

and out of the DNA (Figure 1.2) (Gregory 2005, p.176-178). Inverted terminal repeats 

(ITRs) are needed to facilitate the movement of DNA transposons. The transposase 

binds at or near the inverted repeats and to the target DNA, cutting the transposon from 

its old site and pasting into its new site in the genome through the breakage and joining 

reactions (Kazazian 2004; Gregory 2005, p.176-178). Examples of DNA transposons are 

the Drosophila INE-1 and P elements, and the fish Tel/mariner elements (see Table 3.1 

in Gregory 2005).

Note that the structure and function of eukaryotic mobile elements are in fact very 

similar to those of bacteria. It is then generally assumed that all eukaryotic TEs, either 

class I or II elements, are descended from bacterial elements (Eickbush and Malik 2001; 

Gregory 2005, p. 179). This evolutionary scenario provides a rational basis for how TEs 

behave in the host, and also, how they co-evolve with the host in the long term.

1.4.2. The distribution of TEs within the genome
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Many aspects of the transposition process are random, and in general, TE insertions 

occur in almost all genomic regions. However, it has been demonstrated that TEs are not 

randomly distributed within the genome (Gregory 2005, p!93). For instance, some TEs 

are more often found in regions distant from host gene sequences, such as 

heterochromatin or regions between genes where recombination is reduced (Kidwell and 

Lisch 1997).

In the D. melanogaster genome, TE abundance tends to be higher in regions that lack 

recombination, but the correlation between element abundance and known differences in 

the recombination rate of various euchromatic regions is yet to be proved (Bartolome et 

al. 2002; Rizzon et al. 2002; Eickbush and Furano 2002). In contrast, in the C. elegans 

genome, the distribution of retroelements is independent of the local recombination rate, 

and transposons tend to reside in regions of high recombination (Duret et al. 2000). This 

also suggests that patterns of TE distribution appear to differ greatly among different 

groups of organisms.

It has been suggested that the non-random distribution of TEs in the genome could be 

the consequence of three main factors: (1) some form of natural selection acting on TE 

insertions that have an impact on host fitness, (2) deleterious ectopic meiotic exchange 

between TEs of the same family, (3) TE target site specificities (Gregory 2005, p. 193).

It has been strongly suggested that TE insertions are generally deleterious to the host, 

and will be eliminated by negative selection (Charlesworth and Charlesworth 1983; 

Kaplan and Brookfield 1983). Meanwhile, negative selection is also expected to act
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against deleterious chromosome rearrangements induced by ectopic exchange between 

TEs of the same family inserted in nonhomologous locations (Langley et al. 1988; 

Montgomery et al. 1991; Charlesworth et al. 1992). These two mechanisms sometimes 

seem indistinguishable, since the selection efficacy is stronger in regions of high 

frequencies of recombination (Hill and Robertson 1966). Despite the mutagenic nature 

of TEs, some TEs do survive for variable lengths of time in coding regions or regions in 

which frequencies of recombination are high. This is because either these TEs have a 

neutral impact on host fitness and become fixed at random, or they benefit host fitness 

by taking part in gene regulation and are co-opted via positive selection. This has been 

supported by a growing body of evidence that TEs may have played important roles in 

host gene regulation and genome evolution in higher eukaryotic organisms (Jordan et al. 

2003; van de Lagemaat et al. 2003; Kazazian 2004; Thornburg et al. 2006).

Within the euchromatic genome of higher organisms, TEs tend to accumulate in the 

pericentromeric and telomeric regions that lack recombination. For example, in the D. 

melanogaster genome, both the pericentromeric regions of the major chromosome arms 

and the entire chromosome 4 have higher densities of TE insertions, relative to non- 

pericentromeric regions (Kaminker et al. 2002; Rizzon et al. 2002; Bergman et al. 2006). 

Bartolome et al. (2002) argue that this pattern is mainly due to the participation of TEs 

in ectopic recombination, which occurs when two TE copies inserted in nonhomologous 

positions in the same or different chromosomes may misalign because of their sequence 

homology. If exchange occurs, this may result in ectopic recombination (Gregory et al. 

2005, p. 194). Such ectopic recombination will result in deleterious chromosomal
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rearrangements. Therefore, TEs in regions where recombination is reduced should be 

less deleterious, and hence more abundant. Note that there has been continuing debate 

about which of the two mechanisms, negative selection against deleterious TE insertion 

reducing host fitness or against deleterious ectopic exchange between TEs, is relatively 

more important in controlling TE abundance within the genome (e.g. Biemont et al. 

1997; Charlesworth et al. 1997; Eickbush and Furano 2002).

In addition to effects of natural selection and ectopic recombination, it is suggested that 

the mechanism of "TE target site specificity" could also have impact on the non-random 

distribution of TEs within the genome (Gregory 2005, p.196-197). Although TEs can 

insert into many different locations in the genome, some TEs appear to have evolved 

strategies to minimize the potentially damaging effects of their inducing mutations on 

host fitness (Gregory 2005, p.196-197). These TEs prefer to insert into certain regions so 

that they would have little/no effect, or even some beneficial effect on host fitness. This 

is supported by the observation that Drosophila P elements exhibit a preference for 

inserting into a particular subset of genes as well as inserting near the 5' end of gene 

transcription units within genes (Spradling et al. 1995; Gregory 2005, p.196-197). 

However, one should note that, although those elements (e.g., P elements) have insertion 

preference, their insertion preference are not such as to minimize the damage done by 

the elements. To distinguish the contribution of these three mechanisms on TE 

distributions is important, but often difficult in practice.

1.4.3. TEs in heterochromatin
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Compared to the euchromatic portions of the genome, the highly condensed 

heterochromatic portions have relatively lower frequencies of recombination, and also 

lower gene density. In many eukaryotic species, TE elements tend to accumulate in 

heterochromatin because inserted elements are less likely to be deleterious, or less likely 

to cause chromosomal rearrangement (ectopic recombination). Indeed, it has been 

observed that TEs make up -60% of the heterochromatic portions in both D. 

melanogaster and Anopheles gambiae genomes, while the proportion of TEs in the 

euchromatin is -6% and 16% in these two species, respectively (Holt et al. 2002; 

Kapitonov and Jurka 2003). A concentration of TEs in heterochromatin is also seen in 

other species (e.g., Arabidopsis thaliana, Tetraodon nigroviridis and maize). It has been 

suggested that TE accumulation in heterochromatin was not caused by the long-term 

selection against euchromatic inserts (Dimitri and Junakovic 1999). Instead, 

heterochromatin may appear as a preferential target for (some) TEs, because TEs might 

be responsible for repairing DNA nicks whose density is high in heterochromatin 

(Labrador and Corces 1997; Dimitri 1997). Furthermore, TEs in heterochromatin may 

also have an impact on the evolution of heterochromatin, e.g., serving as regulatory 

sequences or promoting chromosomal rearrangements (Dimitri and Junakovic 1999). 

Thus, TE accumulation in heterochromatin is likely to reflect the evolutionary 

relationship between TEs and the euchromatic parts of the genome, rather than being 

mere addition of "junk DNA" to the genomic "wasteland" (Dimitri 1997; Dimitri and 

Junakovic 1999).

1.4.4. Possible domestication and application of TEs in the host genome
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There has been continuing debate about the importance of TEs with respect to the host 

genome for the last four decades. TEs were once considered as just "selfish" genes or 

even junk for a long period of time. However, the releases of large-scale genomic 

sequences of different groups of organisms have shed light on the forces operating on 

repetitive sequences, and their potential roles in the host genome have gradually become 

clear. The mutagenic and parasitic characteristics of TEs may have enabled them to 

provide host genomes with the ability to generate new genetic diversity if necessary, and 

these so-called "junk DNAs" may play an important role in enhancing the evolutionary 

potential of their host (Kidwell and Lisch 2000; Lynch 2007, Chapter 7).

Firstly, TEs have the potential to contribute their own regulatory regions to form the 

host regulatory sequences, especially for those located in/near coding regions. Moreover, 

LTR retrotransposons usually carry relatively more regulatory signals than LINE and 

DNA elements, and may be more likely to be co-opted by the host (Fablet et al. 2006). A 

search of the Human Promoter Database has shown that -25% of analyzed promoter 

regions contain a TE-derived sequence (Jordan et al. 2003), and TEs appear to serve as 

alternative promoters of many genes in human and mouse genomes (van de Lagemaat et 

al. 2003). TEs can also serve as enhancer elements for the host (Yang et al. 1998; 

Kidwell and Lisch 2000).

Secondly, TEs could contribute their coding potential to the host gene. For instance, 

Nekrutenko and Li (2001) examined 13,799 human genes and found 533 (-4%) cases of 

TEs within protein-coding regions. The majority of these TEs were first inserted within 

introns and were then recruited into coding regions as novel exons. A recent survey in
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the Bos taunts genome has shown that ~2.37% of examined bovine genes contain TE- 

derived sequences within exons (Almeida et al. 2007). It is suggested that the association 

between TEs and exons may result from the novel alternative transcripts that have 

evolved a beneficial function, while the native transcript still maintains the original gene 

functions (DeBarry et al. 2005). In species where TEs are not as abundant as in 

mammals, it is still possible that TEs were inserted within coding regions and may have 

contributed their coding potential to the host gene (Ganko et al. 2006).

Thirdly, as mentioned above, TEs may play important parts in alternative splicing for 

the host gene. Alternative splicing provides an important mechanism for the host to 

generate the observed proteomic diversity from a relatively small number of protein- 

coding genes in eukaryotes (Gregory 2005, p.207). This mechanism allows the host to 

store the genomic information much more economically, and not to change the DNA 

content for the evolution of a new protein (Brett et al. 2001). Thus, the host will be able 

to adapt to new environments relatively faster, and produce a protein efficiently with 

improved functions under changing environmental conditions (Kreahling and Graveley 

2004). Overall, TEs may have contributed to the host substantially, rather than being 

selfish or even junk.

1.4.5. Lineage-specific TE evolution and the effect of environments

It is suggested that TEs may be among the most lineage-specific elements of eukaryotic 

genomes. For example, a recent comparison among 12 vertebrate species indicated that 

the distribution of different TE types differed within and between these lineages, and
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species-specific TE insertions accounted for the majority of size differences seen 

between lineages (Thomas et al. 2003). Even for close primate species, comparison 

between them revealed that transposition rates vary widely across lineages (Liu et al. 

2003). In Drosophila, there are also great differences in TE distributions among closely 

related species. TEs in the two sibling species, D. melanogaster and D. simulans, differ 

considerably in amount and dynamics, with D. simulans having a smaller amount of TEs 

than D. melanogaster (Biemont and Cizeron 1999; Vieira and Biemont 2004). This 

observation may result from the demographic and geographical differences between the 

two species. Stresses due to changing environmental conditions and crosses between 

migrating populations could result in TE mobilization while a population colonizes 

(Vieira and Biemont 2004).

The influence of environments (e.g., climatic or trophic) could affect the evolution of 

organisms extensively. For instance, the action that the genome takes responding to the 

changing environments (e.g., methylation of certain DNA nucleotides, methylation or 

acetylation of the histone proteins) could create new genomic combinations that have 

better survival ability, increasing the variability of the genome, and allowing rapid 

evolutionary processes to take place within several generations (Arnault and Dufournel 

1994). The behaviour of TEs under stress conditions is thus of particular interest, 

because these sequences are sources of mutations and therefore of genetic variability. In 

many organisms, TE sequences/fragments can control genes epigenetically when 

inserted within or close to them, by inducing genetic modifications including the 

methylation of nearby DNA or disruption of the normal epigenetic state of a nearby gene
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TE insertion in the 
common ancestor

Figure 1.3. - TE insertion occurring in the common ancestor o, which leads to three sibling 
species a, b and c. An example of this is D. melanogaster, D. simulans and D. sechellia. 
Orthologous TEs among these three species are particularly of interest.

(Biemont and Vieira 2006). Thus, TEs may play an important role in population 

adaptation. As organisms tend to live in their preferred environments and have 

developed different ways to deal with changing environmental conditions, patterns of 

evolution of TEs and/or their interaction with hosts may differ (greatly) among 

organisms.

1.4.6. Analysis of orthologous TE elements between close species

When a TE was inserted in the common ancestor ahead of the speciation (Figure 1.3), 

there could be several consequences for this ancestral TE insertion: (1) this TE has 

become unfunctional sequences in the ancestral population since the insertion, 

undergoing structural decay and/or the process of coalescence. This TE may be 

transmitted to daughter species, or be deleted in the ancestral population; (2) this TE did 

get fixed in the ancestral population, and had undergone structural decay without being 

co-opted. Thus, fragments of this TE may still appear in the genomes of descendant
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species, but they became diverged between species; (3) the ancient TE had become co- 

opted in the common ancestor or one/some descendant species (at the same time they 

may still undergo structural decay), and orthologous elements showed some sign of 

conservation among species. TEs under condition (3) are particularly of interest to us. 

Comparative genomics analysis can help reveal those elements conserved between 

closely related species.

1.5. Overview of the thesis

As an attempt to study the functional significance of noncoding DNA sequences (e.g., 

using transposable elements, TEs, as a group of candidates), this project mainly focuses 

on improving the global alignment quality for noncoding sequences and conducting 

comparative genomic analysis on TEs among closely related Drosophila species. One of 

the aims of the improved noncoding sequence alignment method is to develop more 

biologically realistic models consisting of probabilities for matches, mismatches and 

gaps (indels) of different lengths, and transition probability between 

matches/mismatches and indels. Such a method is able to automate noncoding sequence 

alignments solely based on explicit models for point substitutions and indel evolution 

without predefining any parameters. Meanwhile, this method should be able to find the 

most probable alignment with a reasonable speed, in that it can be used to carry out 

genomic analysis. This new method thus seeks for a good balance between alignment
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quality and use of computer time, in particular when (noncoding) sequences under study 

are relatively long and/or distantly related.

Comparative genomic analysis on TEs in Drosophila is conducted based on alignments 

generated or refined by the improved noncoding sequence alignment method discussed 

above. The aims of such analysis include investigating forces operating on the evolution 

of TEs and their potential functions for the host, and detecting heterogeneities among TE 

classes and/or genomic regions in terms of the distribution within the genome and 

interspecies divergence. Such comparative analysis first focuses on finding putatively 

neutrally evolving sites (or the fastest evolving sites), and general forces operating on 

them. It then uses those fastest evolving sites as a neutral standard to investigate the 

functional signature of TEs of different classes or in different regions. Such analysis 

provides a powerful way to reveal the potential functionality of TEs in gene regulation 

and genome evolution.

Chapter 2 focuses on the development of the improved sequence alignment for 

noncoding sequences and benchmarking such a method along with other available 

methods. Chapter 3 focuses on investigating evolutionary patterns of candidates of 

putatively neutrally evolving sites, and Chapter 4 mainly focuses on revealing and 

refining the potential functional significance of some TEs. This will help understand 

more about the evolution of TEs contributing to the host. Chapter 5 discusses/concludes 

some of the main points presented in this thesis, and discusses some ideas for future 

work.
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2.1. Abstract 

Background

Non-coding DNA sequences comprise a very large proportion of the total genomic 

content of mammals, most other vertebrates, many invertebrates, and most plants. 

Unraveling the functional significance of non-coding DNA depends on how well we are 

able to align non-coding DNA sequences. However, the alignment of non-coding DNA 

sequences is more difficult than aligning protein-coding sequences.

Results

Here we present an improved pair-hidden-Markov-Model (pair HMM) based method 

for performing global pairwise alignment of non-coding DNA sequences. The method 

uses an explicit model of indel length frequency distribution which can be specified, and 

allows any time reversible model of nucleotide substitution. The method uses a 

deterministic global optimiser to find the alignment with the highest posterior 

probability. We test MCALIGN2 in simulations, and compare it to a previous Monte 

Carlo based method (MCALIGN), to the pair HMM method of Knudsen and Miyamoto, 

and to a heuristic method (AVID) that performed very well in a previous simulation 

study. We show that the pair HMM methods have excellent performance for all 

combinations of parameter values we have considered. MCALIGN2 is up to ten times 

faster than MCALIGN. MCALIGN2 is more accurate in resolving indels given an 

accurate explicit model than heuristic methods, but is computationally slower.
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Conclusions

MCALIGN2 produces better quality alignments by explicitly using biological 

knowledge about the indel length distribution and time reversible models of nucleotide 

substitution. As a result, it can outperform other available sequence alignment methods 

for the cases we have considered to align non-coding DNA sequences.
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2.2. Background

The advent of automated DNA sequencing methods has resulted in an enormous 

growth in the volume of sequence data deposited in public databases. The increasing 

availability of genome sequence data for many related organisms offers great 

opportunities to study gene function and genome evolution, but it also presents new 

challenges for DNA sequence analysis, especially for non-coding DNA sequences.

For much of the past two decades, research in DNA sequence analysis has focused on 

protein-coding sequences, which account for only a very small proportion of the total 

genomic content in mammals, most other vertebrates, many invertebrates, and most 

plants (Li 1997). For example, protein-coding gene sequences comprise as little as 1-2% 

of the human and mouse genomes (International Human Genome Sequencing 

Consortium 2001; International Mouse Genome Sequencing Consortium 2002). 

However, there is an increasing body of evidence showing that non-coding DNA 

sequences contain many functional sequences involved in gene regulation and 

potentially other unknown functions. For example, it has been estimated that -50% of 

bases in intergenic and intronic sequences of Drosophila melanogaster are selectively 

constrained (Halligan and Keightley 2006). In rodents, it has been inferred that the total 

number of selectively constrained nucleotides in non-coding DNA adjacent to gene 

sequences is similar to that in coding DNA (Keightley and Gaffhey 2003). Evidence for 

the presence of a large number of potentially functional non-coding sequences on human 

chromosome 21 has recently been obtained from a comparative genomics analysis 

(Dermitzakis et al. 2002). Determining the fraction of non-coding DNA that is
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functional and establishing what that function is, is therefore a central problem in 

genome research.

Accurate inferences about the function of non-coding DNA from comparative methods 

depend critically on correct alignments of non-coding sequences. However, the 

alignment of non-coding DNA sequences is more difficult than aligning protein-coding 

sequences. Protein-coding sequences tend to be highly evolutionarily conserved, so 

insertions and deletions (indels) are uncommon, and they usually occur in multiples of 

three base pairs. However, indel events are common in non-coding DNA, and can occur 

at most nucleotide sites. Numerous advances in sequence alignment methods for 

noncoding DNA have been made. Many recently proposed methods are based on 

heuristic alignment algorithms that can be very fast and accurate in cases where 

sequences are similar, but perform less well when sequence divergence is high (Pollard 

et al. 2004). Furthermore, heuristic scoring functions are not guaranteed to use the 

correct relationship between the relative penalties for point substitution and indel events, 

as they have no evolutionary interpretation. Therefore, explicit evolutionary models are 

desired to address this problem.

True evolutionary models of sequence evolution allow both multiple point substitutions 

and multiple indel events to affect any site in the sequence. The first true evolutionary 

model of indel evolution was introduced by Thorne, Kishino, and Felsenstein (1991), the 

TKF91 model, and allows single-residue indel events. This method uses a maximum 

likelihood algorithm to estimate the evolutionary distance between two sequences, 

summing over all possible alignments in the likelihood calculations (Thorne et al. 1991).
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It was subsequently improved by allowing longer indel events with a geometric length 

distribution (Thorne et al. 1992), by assuming that the sequence contains unbreakable 

fragments, and that only whole fragments are inserted and deleted. This assumption 

introduces hidden information in the form of fragment boundaries, and may potentially 

bias multiple alignment (Miklos and Toroczkai 2001). Knudsen and Miyamoto (2003) 

presented a pairwise statistical alignment method based on an explicit evolutionary 

model of indel events. Indel length was assumed to be geometrically distributed, and up 

to two overlapping events were allowed for indels. A good approximation to such a 

model was then made using a pair HMM. The geometric distribution parameter, the 

indel rate, and the evolutionary time were estimated by maximum likelihood. A "long 

indel" evolutionary model has been introduced recently by Miklos et al. (2004), which 

allows multiple-residue indels without hidden information such as fragment boundaries. 

They developed a finite trajectory approximation for computing the likelihood function, 

producing a method that has very good performance (Miklos et al. 2004).

Previously, Keightley and Johnson (2004) proposed a non-coding sequence alignment 

method called MCALIGN. This is based on a simplified evolutionary model that does 

not allow for any multiple hits or interaction between indel events. A key feature of their 

approach is that it uses additional data from "unambiguous" alignments (e.g. between 

sequences from closely related species) to infer the actual distribution of indel lengths, 

and the relative rate of indels to point substitutions. They used a Monte Carlo (MC) hill- 

climbing algorithm to search for the most probable alignments. This method has been 

successfully used for aligning real genomic sequences, such as Drosophila, rodent and
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hominid non-coding DNA (Keightley and Gaffney 2003; Haddrill et al. 2005; Keightley 

et al. 2005), In a simulation study, Keightley and Johnson (2004) found that MCALIGN 

was generally superior to the other alignment methods that it was compared to.

Here, we describe an improved non-coding sequence alignment algorithm based on a 

generalisation of the evolutionary model used by Keightley and Johnson (2004). We 

show how a combination of a dynamic programming (DP) algorithm and a one 

dimensional deterministic optimisation-algorithm can be used to find the most probable 

pairwise sequence alignment. Note that when we assume the Jukes-Cantor model for 

nucleotide substitution (Jukes and Cantor 1969), the present DP method and the previous 

MC method are essentially using two different optimisers to attempt to maximise the 

same "score" function: alignment probability. However, the new optimiser is expected to 

be better and faster.

We have compared our method to the pair HMM method of Knudsen and Miyamoto 

(PairHMM_KM hereafter), which is quite similar to the present method in that it 

explicitly makes use of an evolutionary time parameter (Knudsen and Miyamoto 2003). 

We have also compared our method to the heuristic alignment program AVID of Bray et 

al. (2003) in simulations that assume a general-time-reversible (GTR) model (Lanave et 

al. 1984) that had first been fitted to real Drosophila non-coding DNA sequence data. It 

has been shown that AVID performs very well compared to other heuristic methods 

(Keightley and Johnson 2004, Bray et al. 2003), so here we only compare our method to 

AVID rather than other heuristic methods.
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In our tests, the new DP method (MCALIGN2) is up to ten times faster than the 

previous MC method (MCALKjN), and is also faster than the pairHMM_KM method 

(Knudsen and Miyamoto 2003), although none can compete in speed terms with 

heuristic methods.

For cases of real non-coding sequence data, we also compared MCALIGN2 with AVID 

and CLUSTALW (Thompson et al. 1994), and show that they perform differently for 

some specific cases.

2.3. Implementation

We use a Bayesian statistical framework (Gelman et al. 2003; Durbin et al. 1998) to 

make inference about the pairwise alignment. The aim is to compute the posterior 

probabilities of different possible alignments, using the observed sequences as data and 

eliminating other "nuisance" parameters from the analysis. Here we focus on finding the 

alignment with the highest posterior probability.

Let t be the total divergence time between two sequences, a be an alignment of two 

sequences, and S be the observed data, which is two non-coding DNA sequences. In a 

Bayesian framework, the behaviours of all variables are modelled by probability 

distributions. Joint inference about a and t is accomplished simply via Bayes' theorem

(2.1)
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The probability P(S) that appears in the denominator of Equation (2.1) may be difficult 

to calculate, but because in Bayesian inference the observed data S is held fixed, the 

unconditional probability P(S) is constant. We can therefore make our inference using 

only relative probabilities and P(S) need not be calculated. The other unconditional 

probability that appears in Equation (2.1) is P(t\ which is specified as a prior; our 

method will work for any prior.

To calculate the posterior probability of an alignment, we consider the divergence time 

t as a nuisance parameter. The posterior probability for an alignment is therefore 

marginal to the divergence time t, and is calculated using the integral

(2.2)

We approximate this integral using Laplace's method, described in detail below. 

Probability Model of Sequence Evolution

The most difficult probability to specify in Equation (2.1) is P(a,S\f), which is the joint 

probability of alignment a and sequences S given a divergence time t. This probability is 

specified according to a model. Here, we use the pair hidden Markov model (HMM) 

shown in Figure 2.1. For a comprehensive introduction to pair HMMs, see the books by 

Durbin et al. (1998) and Ewens and Grant (2001). For a given time t, the pair HMM 

shown in Figure 2. 1 generates the sequence alignment by using a series of transitions 

between states, accompanied by emissions. Once in a given state, the transition 

probabilities (shown in Figure 2.1) govern which state the pair HMM will move to next.
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Upon arrival at a new state, the pair HMM emits some observed data according to the 

emission probability distributions (shown in Figure 2.1). For example, state M has 

emission probability distribution pm/«, for emitting an aligned base pair m/:n/, and state Ix 

and Iy have distributions qmi and qnj for emitting nucleotide base m, and «, against a gap, 

in each of the two sequences (labelled x and y respectively).

The transition probabilities for the pair HMM determine the pattern of indels in the 

alignment. The emission probabilities for the pair HMM determine the sequences that 

are observed, given the pattern of indels in the alignment. We specify the transition 

probabilities with an explicit model of insertion and deletion events, and the emission 

probabilities are specified by a model of nucleotide frequencies and of nucleotide 

substitutions. We consider the transition and emission probabilities in turn.

We assume that insertions and deletions occur as independent events over time with a 

total rate 0 per interbase site relative to nucleotide substitutions. As we ignore multiple 

hits for indels, the probability of an indel is 1-e'"8'1 per interbase site, which we 

approximated as 0/, an approximation that should be good for small values oft. An indel 

can correspond to a gap in sequence x or a gap in sequence y. These two events have the 

same probability, so the probability of a gap in either of the two sequences, x and y, is 

then Qt/2. In Figure 2.1, this corresponds to the transition probability from the M state to 

the Ix,i state, or to the Iy,\ state. The pair HMM must move through one of these states 

whatever the length of the indel.
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Figure 2.1. - Pair HMMs assuming an affine gap model. Assume two homologous sequences x 
and y. Let m, be the z'th nucleotide in sequence x and «, be the y'th nucleotide in sequence y. M 
represents the state that m, is aligned to «,, Ix represents the state that w, is aligned to a gap (in an 
insertion with respect to y), and Iy represents the state that «, is in an insertion with respect to x. 
The numbers shown after x or y indicate the positions of w, and «,- in the insertion with respect to 
the other sequence. The transition probability is shown between states.

The standard affine gap model corresponds to assuming that the lengths of indels 

follow a geometric distribution (Durbin et al. 1998; Lunter et al. 2004). Empirical data
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D.simulans and D.sechellia from Keightley and Johnson 2004 (green histogram), the indel 
length frequency distribution assumed by MCALIGN2 (black histogram) and the indel length 
frequency distribution expected under a geometric distribution based on maximum likelihood 
estimation given the observed data (red histogram).

on indel lengths in Drosophila non-coding DNA show an obvious departure from a 

geometric distribution, since 1- or 2-residue indels are more common than expected 

(Figure 2.2). Therefore, our model includes separate parameters for the probabilities of 

indels of length 1-bp and 2-bp, since these can be reliably estimated. Because there are 

less data on the length distribution for longer indels, we assumed a geometric 

distribution. Other more complex distributions are widely preferred for protein sequence
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alignments (Miller and Myers 1988; Miklos et al. 2004), but their large numbers of 

parameters cannot be reliably fitted using available data for noncoding sequences. Let w, 

be the probability of an indel of length i, with vtWwfH =WfH/Wj for f^^ an(j j^Wpi t We

follow the approach of Keightley and Johnson (2004) and estimate these parameters, 

along with the parameter 8 that describes the total rate of indels relative to nucleotide 

substitutions, from additional data, as described below.

As shown in Figure 2.1, given that the pair HMM has arrived in state Ixj or Iyj (for any 

i'^1), the transition probability back to the M state is w, /(l-X'=i wy) anc* me transition

probability to state Ix^.\ or /7>J+i is 1 -w>,/(!-^' w},) , (Here a sum with no terms is

understood to be zero.) This produces the desired distribution of indel lengths. We also 

assume that a gap in sequence x will not be followed directly by a gap in sequence y, and 

therefore there are no transitions from any of the states Ix to any of the states Iy, or vice 

versa. Our approach could be extended to accommodate an indel length distribution that 

is any mixture of geometric distributions (as used by Miklos et al. (2004)) by duplicating 

the nodes in the pair HMM for insertions and deletions, and setting transition 

probabilities according to each component in the mixture. Such an extension may lead to 

increased accuracy, but at the expense of increased computational demands.

In order to make our pair HMMs describe a probability distribution over all possible 

alignments, we need to include a Begin state and an End state. We set the transition 

probability from the Begin state to states M, Ix,\ and Iy,i to be the same as those from the 

M state. We allow all states to make transitions to the End state, with a low transition
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probability B. If e is small enough, we can ignore it in all of our calculations (Durbin et 

al. 1998).

The emission probabilities, which determine the sequences given the pattern of indels, 

are derived from the general time-reversible (GTR) model of nucleotide substitution 

(Lanave et al. 1984). The Jukes-Cantor model (Jukes and Cantor 1969) and the Kimura- 

2-parameter model (Kimura 1980) are two specific cases of the GTR model when 

certain parameters are fixed.

The emission probabilities qwand qnj are the equilibrium frequencies of nucleotides m\ 

and «,-, which are equal for sequences x and y. The emission probabilities pminj are the 

probabilities of starting with an unobserved common ancestor nucleotide o, drawn from 

the equilibrium distribution of nucleotide frequencies, and evolving independently down 

two lineages, to w/ in time t\ along one lineage and to «,- in time h along the other lineage. 

(Under a time reversible model, this is the same as the probability of starting with «/ and 

evolving to m, (or vice versa) in time t\+h.) Since the times t\ and h are individually 

nonindentifiable, we parameterise our model simply by the total divergence time t = 

t\+h. For a given total divergence time, the conditional probability of evolving to m\ 

given starting with njispmi\nj = pminj/qnj, and the matrix of these conditional probabilities, 

Q(f), can be calculated from the fixed instantaneous rate matrix A by matrix 

exponentiation (Felsenstein 2004), that is,

e'A . (2.3)
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which can be calculated using the eigenvalues and eigenvectors of A. Here we estimate 

the rate matrix A from the same external data that is used to estimate the parameters for 

indels, as described below.

Alignment Algorithm

Given that P(a,S\t) has been specified by the model, and that a prior P(t) for the 

divergence time has also been specified, we have developed an algorithm to infer the 

approximate maximum a-posteriori (MAP) alignment a. This is the alignment with 

highest posterior probability given the observed sequences, with the divergence time 

eliminated as a nuisance parameter. Thus, a is the alignment that maximises P(a\S), 

which is given by the integral in Equation (2.2). To approximate this integral, we assume 

that P(a,t\S), when treated as a function of t with both a and S held fixed, is 

approximately Gaussian. Then, using Laplace's method (O'Hagan and Forster 2004), we 

can write

__

P(a | S) * P(a, fa | S)2 Va |* . (2.4)

Here, ia is the mode, or value of t that maximises P(a,t\S) (again, when treated as a 

function of t with a and S held fixed). The quantity

\ V =—————-————— (2-5) 
1 a d2 \nP(a,t\S)

dt2 ' "
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is the modal dispersion, which is the reciprocal of the curvature at the mode . We make a 

further approximation,

P(a\S)*P(a,ia \S)xC(S) (2.6)

where C(5) is a constant that depends on S but not on a or t. This approximation can be 

made when we wish to maximise P(a\S) over a set of a for which | Va \ is approximately 

constant. The goodness of this approximation is discussed below.

Given that our approximations hold, Equation (2.6) shows that a maximises P(a\S) if 

and only if a maximises P(a,ia \ S). Since by definition (a, ?fl ) maximises P(a,t\S), we

see that a can be found by unrestricted optimisation of P(a,t\S). Our algorithm to find a 

exploits the fact that we are free to solve the unrestricted optimisation problem with any 

manner we choose, and specifically that we can "change the order of maximisation". 

The statistical argument we presented above says that we should find ia for each a, and

then maximise P(a, ia S) over all a. An equivalent solution is to find a, for each t (that 

is, the best alignment for a given t) and then maximise P(at ,t \ S) over all t. The second 

solution is much easier in practice, because a, can be found using a standard dynamic 

programming algorithm for pair HMMs (Durbin et al. 1998), and then P(a,,t \ S) can be 

maximised using any standard algorithm for maximising a one dimensional function.

The dynamic programming algorithm guarantees to find the global maximising a, (with 

ties broken arbitrarily). We find a straightforward Golden Section Search (Press et al.
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1992) to be adequate for maximising P(a,,t \ S). This assumes that there is a single 

global optimum to be found. Actually we are able to trap events where local optima are 

detected. However, no local optima have ever been detected. We terminate the search 

when the values of t bracketing the maximum differ by less than 0.001. Moreover, we 

are able to terminate earlier when the optimal alignment is the same at all points within 

the bracketing area.

Parameterization of Models of Sequence Evolution

Our model of noncoding DNA evolution is parameterized according to the empirical 

distribution of indel lengths and their overall rate relative to nucleotide substitutions 

from species for which essentially unambiguous alignments can be made. Here, we 

consider a parameterization by intronic data of D. simulans and D. sechellia (Shown in 

Figure 2.2). For these data, the rate of indels per interbase site, relative to the rate of 

nucleotide substitution, was previously estimated as 0 = 0.225 (Keightley and Johnson 

2004). We fitted the observed frequencies of different indels lengths to our model as 

follows. We directly use the observed frequencies of 1-bp and 2-bp indels, that is, 0.455 

and 0.182, respectively. For indels of >3-bp, the frequencies, Wx, for the model were 

obtained by minimizing the sum over >3-bp indels of the squared differences between 

the observed frequency distribution and wx = P/a*. Here P is a constant. The estimate for 

a was 1.170. Our software performs this curve fitting and in fact the whole analysis with 

a supplied empirical distribution containing any lengths.

A GTR model of nucleotide substitution was fitted to Drosophila data shown in Table
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Table 2.1. Drosophila intronic data that is used to derive a GTR model of DNA evolution.

Sequence 2

Sequence 1 A
G
C
T
total

A
1363
37
21
17
1438

G
45
823
11
11
890

C
18
9
898
27
952

T
54
17
32
1120
1223

total
1480
886
962
1175
4503

Pairs of nucleotide for 4503 sites of sequence that has diverged according to a general-time- 
reversible (GTR) model, from real Drosophila intronic data. The columns are the bases in the 
first sequence. Here, we chose a long intron from D. simulans and D. melanogaster, aligned 
them using AVID, then counted the aligned sites regardless of gaps.

2.1. By assuming the GTR model, we can then symmetrise this matrix by averaging the 

table with its transpose before any of the following calculations were carried out. The 

estimated equilibrium frequencies of each base are obtained from the normalised column 

sums, yielding (qA , qG, qc, qd = (0.324, 0.197, 0.213, 0.266). The estimated rates of each 

type of substitution are obtained by dividing the entries in each column by the respective 

column sums, yielding:

Q =
0.934201 0.0461712 0.0203762 0.029608
0.0281014 0.926802 0.0104493 0.0116764

0.0133653 0.0112613 0.938349 0.0246038

0.0243317 0.0157658 0.0308255 0.934112

(2.7)

Finally, find the matrix A that satisfies Equation (2.3) when time is measured in units of 

expected substitutions, to obtain our estimate of the instantaneous rate matrix:
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-0.995107 0.706988 0.301277 0.446817
0.430299 -1.1037 0.153414 0.17136
0.197616 0.165335 -0.922152 0.373111 '' (2-8)

0.367192 0.231375 0.467461 -0.991288

Performance Evaluation

For non-coding sequences, there are few externally verified alignments available to test 

the performance of alignment methods. As a substitute, we simulate sequence 

divergence in silico, so that sequences are generated that are related by a known, 

"correct" alignment (Pollard et al. 2004). We tested the MCALIGN2 program by 

examining the posterior probability of the best alignment found by the algorithm, the 

fraction of correctly aligned sites, an estimate of divergence time calculated from the 

estimated alignment, and the time taken to compute the alignment.

We compared the dynamic programming approach used here against the Monte-Carlo 

approach proposed previously (Keightley and Johnson 2004) and the pair HMM 

approach of Knudsen and Miyamoto (2003) in simulations assuming the Jukes-Cantor 

model of nucleotide evolution. In comparisons of MCALIGN2 and MCALIGN, for each 

simulated pair of sequences, we compared the posterior probability, P(a\S) ^ P(a, ta \ S), 

of the best alignment found by MCALIGN2 with the best alignments found by 

MCALIGN.

We also compared MCALIGN2 against AVID of Bray et al. (2003) in simulations 

assuming a GTR model, parameterised using the Drosophila intronic data as described
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above. In these comparisons we investigated cases in which the model assumed by 

MCALIGN2 differed from the simulation model, by using the simpler JC and K2P 

models to analyse data simulated under a GTR model.

In all comparisons, we calculated the fraction of correctly aligned sites by counting the 

number of base pairs or bases-to-gaps which were correctly aligned in a comparison to 

the true alignment. As an alternative measure of alignment quality, we considered the 

precision of divergence time estimated from the alignments. The estimator of divergence 

time we used was distance under the GTR model. It is made by estimating the base 

frequencies qt, and the rates a,y, and finding ones that most closely predict the observed 

net transition matrix P (Felsenstein 2004). This estimator of divergence time uses only 

the non-indel regions, and does not use the presence of indels to help estimate 

divergence time. For all the simulations with a given divergence time t and a certain 

evolutionary model, we observed the mean and variance of the estimator of / calculated 

from both the true alignment and the alignments estimated by sequence alignment 

methods we considered here. We express the precision of the estimator as the estimated 

root mean squared error (e.r.m.s.e.), since none of the estimators examined are perfectly 

unbiased. For ?, this is

M^e.r.m.s.e. = J 2/C -'/ J (2.9)

when there are TV simulations.
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Although our program allows any prior for divergence time, for all comparisons we 

used a relatively diffuse or uninformative prior:

---e~*n (2.10)

which has the mean 0.75. Because low divergences are more likely than high ones for 

two homologous sequences, this prior on t seems to be a reasonable one.

2.4. Results

Comparison amongst PairHMMJKM, MCALIGN2(DP) and MCALIGN(MC)

We generated non-coding sequence data using a model of non-coding DNA evolution 

in which gap lengths are parametrized by intronic data ofD. simulans and D. sechellia, 

and point substitutions occur according to the Jukes-Cantor model to compare the 

performances of PairHMMJCM, MCALIGN2 (DP hereafter) and MCALIGN (MC 

hereafter). In this setting, the DP and MC methods aim to find the same most probable 

alignment, since they assume essentially the same model and prior, but use different 

algorithms.

Table 2.2 and 2.3 show the mean and e.r.m.s.e. of estimated divergence time (t), and 

the proportions of correctly aligned sites for combinations of 0 and t. All alignment 

methods perform similarly when the true divergence time is not too great, / < 0.2, and



Table 2.2. Performance of MCALIGN2(DP), MCALIGN(MC) and PairHMMJCM compared 
by the estimator of divergent time corrected by the Jukes-Cantor model.

Simulated Alignment Estimated

t 9 Alignment Known PairHMM_KM MC DP

0.05 0.225 0.0502(0.0107) 0.0496(0.0103) 0.0499(0.0104) 0.0501(0.0103)

0.10 0.225 0.0998(0.0146) 0.0987(0.0152) 0.0994(0.0153) 0.0989(0.0154)

0.15 0.225 0.1493(0.0208) 0.1482(0.0226) 0.1507(0.0230) 0.1487(0.0208)

0.20 0.225 0.2025(0.0241) 0.1994(0.0267) 0.2053(0.0263) 0.2001(0.0256)

0.25 0.225 0.2515(0.0286) 0.2440(0.0348) 0.2593(0.0346) 0.2476(0.0319)

0.30 0.225 0.3003(0.0311) 0.2955(0.0419) 0.3162(0.0525) 0.2981(0.0349)

0.15 0.10 0.1519(0.0198) 0.1503(0.0189) 0.1502(0.0189) 0.1500(0.0188)

0.15 0.30 0.1515(0.0202) 0.1507(0.0226) 0.1566(0.0234) 0.1523(0.0218)

0.15 0.40 0.1512(0.0194) 0.1480(0.0220) 0.1645(0.0263) 0.1516(0.0213)

Estimates of sequence divergence, t, from 200 replicates for each combination of t and 6, with 
sequences of length 500 base pairs. Estimated root mean square error (e.r.m.s.e.) is shown after 
divergence time in parentheses.

the indel rate is not too great, 0 < 0.3. For these parameters, the fraction of correctly 

aligned bases is greater than 90% and is similar for all the three methods. The mean 

estimated divergence time calculated from estimated alignments is close to the true 

values, and the e.r.m.s.e. is not substantially greater than if the true alignment is known. 

However, when the divergence time / became larger (t > 0.2) or the indel rate becomes 

larger (0 = 0.4), the performance of the MC method becomes noticeably inferior, since 

the mean proportion of correctly aligned bases is significantly lower than for the 

alignments estimated by the DP and PairHMMJCM method, and the divergence time 

estimates are more biased and have larger e.r.m.s.e.. For the largest indel ratio we 

considered, 0 = 0.4, the MC method tends to estimate an alignment with many gaps and
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Table 2.3. Performance of MCALIGN2(DP), MCALIGN(MC) and PairHMMJCM compared 
by examining the proportions of correctly aligned sites.

Simulated

t

0.05

0.10

0.15

0.20

0.25

0.30

0.15

0.15

0.15

Proportion of correctly aligned sites

e
0.225

0.225

0.225

0.225

0.225

0.225

0.10

0.30

0.40

PairHMM_KM

0.992 (0.0072)

0.977(0.0133)

0.954(0.0210)

0.920 (0.0300)

0.868(0.0416)

0.810(0.0500)

0.984(0.0116)

0.933 (0.0224)

0.905 (0.0325)

MC

0.992 (0.0078)

0.977(0.0137)

0.951 (0.0235)

0.915(0.0345)

0.850 (0.0596)

0.761 (0.0863)

0.982(0.0102)

0.925 (0.0292)

0.894 (0.0376)

DP

0.993 (0.0074)

0.977 (0.0127)

0.955(0.0186)

0.922 (0.0293)

0.869 (0.0433)

0.813(0.0511)

0.983(0.0108)

0.933 (0.0246)

0.906 (0.0329)

Proportion of matched bases from 200 replicates for each combination oft and 9, with sequences 
of length 500 base pairs. Standard deviation of mean is shown after the proportion of matched 
bases in parentheses.

the estimates of t tend to be higher than the true values. Table 2.3 also shows that the DP 

and PairHMM KM methods both have more stable performances for most of the cases 

we have considered, in the sense of producing lower standard deviations of proportions 

of correctly aligned sites. It is also shown that the efficiency of MCALIGN2 is generally 

slightly better than PairHMM_KM.

For the same simulated datasets, Figure 2.3 compares the log values of alignment 

probability for MCALIGN2 and MCALIGN, since they use essentially the same scoring 

function. For the two methods, the approximation of Equation (2.6) was used to 

calculate alignment probability marginal to divergence time. Both methods perform 

equivalent^ for almost all the simulations when divergence time is very small (/ = 0.05);
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low divergence or/and 
low rate of indels

high divergence or/and 
high rate of indels

-1500
-1500 -1400 -1300 -1200 -1100 -1000 -900

MC(log(probability))

Figure 2.3. - Probability test using the probability function of MCALIGN2(DP), comparing 
the performances of alignments produced by the DP method and the MC method. All the values 
here are log values.

we presume that both methods are able to find the globally most probable alignment. 

However, when divergence time and/or rate of indel events becomes larger, the DP 

method begins to outperform the MC method, in the sense that the alignments produced 

by MCALIGN2 have higher probabilities. For the highest divergence time (t = 0.30) 

and/or rate of indel events (0 = 0.40) we considered, the DP method outperformed the 

MC method for almost all of the replicate simulations. This clearly indicates that the MC 

algorithm of Keightley and Johnson (2004) gets stuck at local optima.

Comparison between MCALIGN2 and AVID
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For each combination of values of t and 0, 200 replicate simulations were performed, 

each simulating a pair of sequences of length 500 base pairs, evolving under an indel 

model and a general time reversible (GTR) model of nucleotide substitution, 

parameterised using real Drosophila data. This model is very different from the simple 

Jukes-Cantor (JC) model, and quite different to Kimura's 2 parameter (K2P) model. In 

addition to comparing MCALIGN2 with AVID, it is interesting to explore the effect of 

the nucleotide substitution model assumed by MCALIGN2. We aligned each simulated 

pair of sequences using MCALIGN2 under the assumptions of the correct GTR model, a 

simple K2P model with the ratio of transition events to transversion events equal to 2, 

and the JC model.

The results in Table 2.4 and 2.5 show that the alignments found by MCALIGN2, when 

the correct GTR model was assumed, are more accurate for almost all combinations of 

parameter values we have considered. In comparison, alignments found by MCALIGN2, 

when the incorrect JC or K2P models were assumed, are only slightly less accurate. 

Alignments found by AVID generally have the lowest accuracy in the cases studied.

Here, lower accuracy is indicated by a lower proportion of correctly aligned bases, and 

estimates of divergence time / that are more biased and have larger e.r.m.s.e.. In 

particular, alignments produced by AVID exhibit consistent upward bias estimates of t, 

and lower mean proportions of correctly aligned bases than alignments produced by 

MCALIGN2. This remains true, for most of the cases we considered here, whether 

MCALIGN2 used the correct GTR model of nucleotide substitution, or the incorrect JC
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Table 2.4. Performance of MCALIGN2 and AVID compared by proportions of correctly 
aligned bases on a GTR model.

Simulated

t

0.05

0.10

0.15

0.20

0.25

0.30

0.15

0.15

0.15

e
0.225

0.225

0.225

0.225

0.225

0.225

0.10

0.30

0.40

AVID

0.991 (0.0085)

0.973(0.0141)

0.946 (0.0283)

0.904 (0.0325)

0.852 (0.0452)

0.795 (0.0566)

0.980(0.0141)

0.913(0.0283)

0.876 (0.0354)

Proportion of matched bases

MCALIGN2(JC)

0.993 (0.0057)

0.978 (0.0127)

0.954(0.0212)

0.916(0.0283)

0.867 (0.0438)

0.811 (0.0495)

0.982(0.0113)

0.935 (0.0226)

0.900(0.0311)

MCALIGN2(K2P)

0.993 (0.0057)

0.979 (0.0127)

0.956 (0.0184)

0.920 (0.0269)

0.873(0.0410)

0.824(0.0481)

0.982(0.0113)

0.936 (0.0212)

0.905 (0.0297)

MCALIGN2(GTR)

0.993 (0.0057)

0.979 (0.0127)

0.958 (0.0184)

0.922 (0.0269)

0.876 (0.0396)

0.831 (0.0481)

0.983(0.0113)

0.941 (0.0212)

0.916 (0.0283)

Proportion of matched bases from 200 replicates for each combination of t and 9, with sequences 
of length 500 base pairs. Standard deviation of mean is shown after the proportion of matched 
bases in parentheses. Here MCALIGN2 is tested by assuming either the correct model of DNA 
evolution (GTR) or the incorrect models (JC and K2P).

or K2P models. The improvement in alignment quality gained by knowing the correct 

model of nucleotide substitution is generally modest, but worthwhile.

Test using real data

We also compared MCALIGN2 with AVID and CLUSTALW using real intronic DNA 

sequences from mouse and rat. Although we do not know the true alignments for real 

sequence data, we can still judge the alignment performances of different methods by 

examining the plausibility of the alignments (e.g. positions of gaps in the alignments and 

proportion of matched bases). Here we show three specific cases in which MCALIGN2
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Table 2.5. Performance of MCALIGN2 and AVID compared by estimator of divergence time 
based on a General Time-Reversible Model.

Simulated

t

0.05

0.10

0.15

0.20

0.25

0.30

0.15

0.15

0.15

0

0.225

0.225

0.225

0.225

0.225

0.225

0.10

0.30

0.40

Alignment
Known
0.0504
(0.0100)
0.0991
(0.0145)
0.1522
(0.0191)
0.2034
(0.0225)
0.2531
(0.0286)
0.3003
(0.0302)
0.1520
(0.0207)
0.1509
(0.0200)
0.1526
(0.0208)

Proportion of matched bases

AVID
0.0523
(0.0181)
0.1023
(0.0159)
0.1575
(0.0226)
0.2131
(0.0283)
0.2699
(0.0383)
0.3222
(0.0420)
0.1528
(0.0219)
0.1634
(0.0301)
0.1794
(0.0398)

MCAI_IGN2(JC)
0.0501
(0.0100)
0.0981
(0.0151)
0.1496
(0.0192)
0.1985
(0.0238)
0.2493
(0.0316)
0.2944
(0.0324)
0.1510
(0.0203)
0.1489
(0.0207)
0.1507
(0.0213)

MCALIGN2(K2P)
0.0500
(0.0100)
0.0976
(0.0149)
0.1494
(0.0192)
0.1978
(0.0239)
0.2453
(0.0308)
0.2914
(0.0311)
0.1508
(0.0203)
0.1470
(0.0208)
0.1477
(0.0203)

MCALIGN2(GTR)
0.0500
(0.0100)
0.0983
(0.0149)
0.1502
(0.0194)
0.2003
(0.0235)
0.2491
(0.0311)
0.2987
(0.0323)
0.1510
(0.0204)
0.1499
(0.0207)
0.1508
(0.0211)

Estimates of sequence divergence, t, from 200 replicates for each combination of t and 0, with 
sequences of length 500 base pairs. Estimated root mean square error (e.r.m.s.e.) is shown after 
divergence time in parentheses. Here MCALIGN2 is tested by assuming either the correct model 
of DNA evolution (GTR) or the incorrect model (JC and K2P).

performed quite differently from AVID and CLUSTALW. The parameters for the rodent 

(mouse and rat) alignment model (9 and w) used in MCALIGN2 were described in 

Keightley and Gaffney (2003). They were estimated from 27 orthologous intron 

sequences of the closely related mouse species Mus domesticus, Mus spretus, and Mus 

caroli, for which nucleotide and indel divergences are sufficiently low as to make 

alignments by heuristic methods practically unambiguous (Keightley and Gaffney 2003).

As shown in Figure 2.4(a), AVID and MCALIGN2 produced similar alignments, 

which include a long gap between ~70bp - ~320bp. However, the alignment produced 

by CLUSTALW has several small gaps, which are separated by small segments of align-
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AVBO

CLUSTALW.

MCAUGN2 .

ruler(bp)

(a)

AVID

CLUSTALW

MCALIGN2

ruler(bp) h

600

(b)

GCCGAGG—————G 

AVID GACTGGGAAATGGG

GCCGAGG 7
CLUSTALW GACTGGGAAATGGG 

GCC——GA——GGG

I I II II
MCAHGN2 GACTGGGAAATGGG

(c)

Proportion of matched bases 

93.33%

69.68% 

93.55%

350

Proportion of matched bases

88.19%

45.93%

91.86%

1200

proportion of matched bases

62.5%

62.5%

87.5%
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Figure 2.4. Alignments of real non-coding DNA sequences from mouse and rat produced by 
AVID, CLUSTALW and MCALIGN2. The scale is shown below the alignments, and proportion 
of matched bases in the alignment is shown on the right. There are three cases (a) alignments of 
intronic DNA sequence from the Fshb gene, (b) alignments of intronic DNA sequences from the 
Omd gene and (c) alignments of small pieces of intronic DNA sequences from Omd, in which 
MCALIGN2 performed quite differently from the others.

ed bases. In this example, 93% of base pairs are matched in alignments produced by 

AVID and MCALIGN2, while only 70% of base pairs are matched in the alignment 

produced by CLUSTALW. Although it is impossible to say which alignment is the true 

alignment, the positions of gaps and proportion of matched bases can give 

someindications of the alignment plausibility. As the gap-open penalty is higher than the 

gap-extension penalty, the cost of having several small gaps is higher than the cost of 

having a long gap, if the total length of gaps is similar among different alignments. 

Meanwhile, as the match state has a positive effect on the alignment probability, the 

alignment with the higher proportion of matched bases is more likely to be correct. 

Therefore, from the point of view of the alignment probability, the alignments produced 

by MCALIGN2 and AVID in this case are more plausible.

Figure 2.4(b) shows a different fragment from alignments produced by AVID, 

CLUSTALW and MCALIGN2. In this case, the alignment produced by MCALIGN2 

also has a long gap from ~300bp - -lOOObp, and it has the highest proportion of matched 

bases compared to other alignments. However, the alignment produced by CLUSTALW 

has several small gaps and a long gap in the terminal portion, and it has the lowest 

proportion of matched bases. Although the alignment produced by AVID looks better
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than the one produced by CLUSTALW, it is still fragmented by several small-length 

gaps.

However, MCALIGN2 does not always produce fewer gaps than other methods. As 

shown in Figure 2.4(c), the alignment produced by MCALIGN2 has more gaps than the 

others, but a smaller number of nucleotide differences. Without other information it is 

impossible to say which is more plausible.

Execution time

Figure 2.5 shows the execution times of the different alignment algorithms tested above, 

as a function of sequence length. Execution times were measured in on a 2.8GHz Intel ® 

Xeon™ processor. Results are shown for divergence time t = 0.2 and 0.3, and ratio of 

indels to point substitutions 9 = 0.225. Figure 2.5 shows that for the DP method 

(MCALIGN2), execution time increases as a quadratic function of sequence length, as 

expected. Similar behaviour is observed for the PairHMM_KM method, since this 

calculates the sum of the probabilities of all alignments for two given sequences using 

the forward algorithm for pair HMMs, and this gives a time and memory complexity on 

the order of L2 (L be the length of the sequence) (Knudsen and Miyamoto 2003). For the 

MC method (MCALIGN) execution time increases with sequence length, and, although 

it does not follow a power law, it is roughly quadratic for long sequences. Although it 

shows a substantial improvement over the previous Monte Carlo method and it is faster 

than the PairHMM_KM method, MCALIGN2 still cannot compare with a heuristic 

alignment method such as AVID. To align two 1000-bp sequences (t = 0.2) takes about
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RairHMM_KM(0.2)

MCALIGN(0.2)

MCALIGN2(0.2)
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MCALIGN2(0.3)

100

o 5B
0 200 400 600 800 1000 1200 

Length(bp)

(a)

• PairHMM_KM
• MCALIGN
A MCALIGN2
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Figure 2.5. Execution time plotted against sequence length for sequence divergence of 0.2 and 
0.3, and ratio of indels of 0.225. Execution times were estimated from the average of ten 
simulations, (a) Execution time of MCALIGN2 comparing to MCALIGN and the pair HMM 
method of Knudsen and Miyamoto (black points and lines for divergence of 0.2; colored points 
and lines for divergence of 0.3). (b) Slope of log(execution time) against log(length) for 
sequence divergence of 0.2. All the numbers are in natural log. The slope of log(time) against 
log(length) is 1.91 for MCALIGN2, which means the program closely follows the expected
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algorithm time operation O(L2). The slope of log(time) against log(length) for PairHMMJCM is 
1.78, not far away from the order L2 . The pattern for MCALIGN is hard to track.

O.ls using AVID, about 80s using MCALIGN2, about 160s using PairHMMJCM and 

about 350s using MCALIGN. Furthermore, it is also shown in Figure 2.5(a) that both 

MCALIGN and PairHMM_KM take longer to align sequences with larger divergence 

times, whereas execution time of MCALIGN2 is unaffected by divergence. However, 

given the pair HMM model used in PairHMM_KM, execution time should not be 

affected by divergence for this method. We suppose that this occurred due to small 

tolerances chosen for ML estimation of divergence time in this program.

2.5. Discussion

The problem of statistical inference of an alignment can be separated into two parts: 

specifying a scoring function, and finding an alignment that optimises that scoring 

function. The scoring function is specified on biological and/or statistical grounds, and 

determines the biological meaningfulness and accuracy of the inferred alignment. The 

choice of optimising algorithm determines the speed of the method, and may hamper 

accuracy if convergence to a global optimum cannot be guaranteed. A useful alignment 

method must produce biologically meaningful and accurate alignments, and also must 

do so quickly. There is a trade-off because the most biologically realistic scoring 

functions are difficult to optimise.
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Many scoring functions can essentially be described by the relative contributions for 

individual nucleotide substitution and indel events, which were traditionally thought of 

as penalty scores for mismatches and for gaps. However, no general theory guides the 

selection of these penalties (Reese and Pearson 2002), unless divergence time is known 

(Durbin et al. 1998). Although almost all scoring functions have a probabilistic 

interpretation (Durbin et al. 1998), only ones in which divergence time is an explicit 

parameter have an evolutionary interpretation. This inclusion of a time parameter is 

crucial in allowing us to train or parameterize our model using closely related sequences, 

in order to improve the accuracy of alignments between more distantly related sequences. 

Although the idea of training a scoring function on known alignments is an old one 

(especially with respect to amino acid substitutions (e.g. PAM250 matrix of Dayhoff et 

al. (1978))), in the past it has generally been necessary to use a training set of sequences 

at similar evolutionary distance as the sequences that are ultimately to be aligned.

Heuristic scoring functions are often chosen because an algorithm exists to optimize 

them efficiently. However, without any underlying evolutionary model, the alignments 

produced by such methods will be biased (at least at some evolutionary distances), in the 

sense that they will exhibit features that depart in a systematic direction from the true 

alignment.

The evolutionary model used in our method strikes a balance between biological 

realism and computational tractability. We ignore multiple hits of indel events, and 

assume a distribution of indel lengths that corresponds to an improved affine gap penalty 

scheme. Our model is therefore quite different from more realistic evolutionary models
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that account properly for multiple hits of indel events (Thorne et al. 1991; Thome et al. 

1992; Knudsen and Miyamoto 2003; Miklos et al. 2004). The TKF91 model is 

particularly unrealistic for non-coding DNA, since it allows only single base indels. 

Keightley and Johnson (2004) suggest that the present model (ignoring multiple hits for 

indels) is a better approximation to their simulation model (which allowed multiple hits 

of multi-base pair indels), for the parameter values used in their simulations. The TKF92 

model allows a geometric distribution of indel lengths, but only allows whole insertions 

to be subsequently deleted, or vice versa. That model has therefore been criticised as 

introducing non-biological "hidden fragment boundaries". Since our model does not 

allow insertions to be deleted at all, or vice versa, it could be seen as also introducing 

"hidden fragment boundaries". Our model allows a more realistic distribution of indel 

lengths than the TKF92 model. The approach of Knudsen and Miyamoto (2003) could 

be seen as an extension of the TKF92 model, assuming a geometric distribution of indel 

lengths and allowing multiple hits involving up to two indel events. Our results suggest 

that this model (approximated using a three state pair HMM), and our model (using a 

seven state HMM) offer approximations of very similar quality. Intuitively, we would 

have expected our model to be superior when multiple hits of indel events were rare, i.e. 

for relatively smaller evolutionary distances and indel rates. However, it seems that in 

such cases the performance of both methods is so good that it is hard to detect any 

difference. The "long indel" model of Miklos et al. (2004) is certainly more realistic 

than either model, since it allows an arbitrary distribution of indel lengths and accounts 

almost exactly for multiple hits of indels. However, the finite trajectory algorithm
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(Miklos et al. 2004) used to account for multiple hits is computationally expensive 

(O(L4)in complexity).

When comparing the present method (MCALIGN2) against a previous Monte Carlo 

approach (MCALIGN (Keightley and Johoson 2004)) we are comparing the 

performance of two different optimisers, with the same scoring function. Generally 

MCALIGN2 has better global optimum finding properties, and is much faster than the 

Monte Carlo method to align the same sequences. There are two major reasons for this 

improvement:

(1) MCALIGN2 uses a dynamic programming algorithm that is guaranteed to find 

the most probable alignment for a given divergence time, whereas the stochastic 

hillclimbing algorithm used in the Monte Carlo method can only search locally 

by making heuristically chosen adjustments to an alignment.

(2) MCALIGN2 stops its search when the maximising divergence time is bracketed 

to high precision, with the bracket length being reduced by a geometric factor at 

each step of the algorithm. In contrast, the Monte Carlo method must search until 

no improvement in alignment probability is found during a predetermined 

number of iterations.

In comparisons of MCALIGN2 against the pair HMM method of Knudsen and 

Miyamoto, a method with an evolutionary time parameter and an affine gap penalty 

(Knudsen and Miyamoto 2003), we found that the two methods performed very 

similarly for almost all cases, but MCALIGN2 is computationally faster. When
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comparing MCALIGN2 against AVID, a time-naive model (Bray et al. 2003), we found 

that MCALIGN2 produced better quality alignments than AVID for almost all 

combinations of parameters. This shows that, when the evolutionary model is known, 

this knowledge can be used in in a model based inference method to estimate alignment 

more accurately.

Despite being substantially faster than our original Monte Carlo approach and the pair 

HMM method of Knudsen and Miyamoto, MCALIGN2 cannot compete with AVID in 

terms of execution time, because of the clever heuristics used by AVID. Its general 

strategy for aligning two sequences is to select anchors using a variant of the Smith- 

Waterman algorithm (Smith and Waterman 1981) to split long sequences into short 

sequences, which are aligned by a dynamic programming algorithm, Needleman- 

Wunsch (Needleman and Wunsch 1970). A set of maximal matches between sequences 

is constructed using a suffix tree. This approach is fast and memory efficient, and 

practical for sequence alignments of large genomic regions up to megabases long (Bray 

et al. 2003). In principle, the fast heuristics used by AVID can be applied for any pair 

HMM, and therefore could be combined with our approach to give faster, high quality 

alignments.

In order to examine the robustness of the MCALIGN2 method, we also investigated 

cases in which the model assumed in the MCALIGN2 analysis was a simpler model (JC 

or K2P) than the model the data were simulated under (GTR). Generally, the 

MCALIGN2 method assuming an incorrect model still has good performance for small 

and medium divergence times, but for larger divergence times and/or higher indel rates,
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performance suffers slightly compared with when the correct GTR model was assumed. 

Therefore, when aligning sequences from distant species, it is desirable to use an 

evolutionary model that is as realistic as possible. However, it is in precisely this 

situation that it may be most difficult to estimate a model, because the assumption that 

the evolutionary process is the same between closely and distantly related species is 

most likely to break down.

When inferring alignment in a Bayesian framework, divergence time is a nuisance 

parameter that must be eliminated by integration (Equation 2.2). The computational 

implementation of our method relies totally on being able to approximate this integral 

(Equations 2.4 and 2.6) rather than having to calculate it numerically using e.g. 

quadrature. The approximations we make will be good when P(t\a,S) is approximately 

normal with constant variance for a certain set of high probability alignments. Because 

P(t\a,S) is a product of multinomial probabilities, the normality approximation will be 

good for long sequences under most models of molecular evolution. The assumption of 

constant variance will be reasonable when high probability alignments differ from each 

other by only a few indels and substitutions, relative to the total sequence length. As a 

concrete check of this assumption, we used the Monte Carlo search algorithm of 

Keightley and Johnson (2004) and retained the set of all alignments visited that had 

probability at least 0.01 as large as the maximum probability. Within this set, the 

correlation between P(a\S) computed "exactly" (using quadrature) and P(a\S) exceeded 

0.98.
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It is worth mentioning that, to our knowledge, no better method has been found for 

eliminating divergence time as a nuisance parameter when estimating alignment. Most 

authors concentrate on finding the true MLE for t, summing over all possible alignments, 

using the EM algorithm (Thome et al. 1991; Thorne et al. 1992; Miklos and Toroczkai 

2001; Holmes and Bruno 2001). The best way to estimate the alignment has not been 

considered in detail, but a common approach is to use the most probable alignment 

conditional on the observed sequences and conditional on the MLE for t. Although our 

method has a more direct Bayesian justification, given the approximations made it is 

likely that the two approaches will give similar results.

2.6. Conclusions

Sequence alignment is a major issue for the evolutionary analysis of non-coding DNA. 

We developed a model-based method, MCALIGN2, as an improvement to the previous 

Monte Carlo method MCALIGN. MCALIGN2 uses a deterministic global optimiser to 

find the alignment with the highest posterior probability. It allows a rich class of 

evolutionary models of indel length along with any time reversible model of nucleotide 

substitution. As shown in the test results, MCALIGN2 outperforms other available non- 

coding DNA sequence alignment methods for all the cases we have considered.

2.7. Availability and requirements
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Project name: MCALIGN2

Project home page: http://homepages.ed.ac.uk/eang33/

Operating system: Platform independent

Programming language: C++

Other requirements: C++ compiler if downloading and compiling the source code

Licence: FSF GENERAL public licence.
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3.1. Abstract

Interspecies divergence of orthologous transposable element remnants is often assumed 

to be simply due to genetic drift of neutral mutations that occurred after the divergence 

of the species. However, divergence may also be affected by other factors, such as 

ancestral polymorphisms, or selection. Moreover, variation in mutation rate may also 

contribute to the difference in the divergence among elements from different regions. 

Here, we attempt to determine the impact of these forces on divergence of three classes 

of sites that are often assumed to be selectively unconstrained (INE-1 TE remnants, sites 

within short introns and four-fold degenerate sites) in two different pairwise 

comparisons of Drosophila (D. melanogaster vs. D. simulans and D. simulans vs. D. 

sechellid). We find that divergence of these three classes of sites is strongly influenced 

by the recombination environment in which they are located, and this is especially true 

for the closer D. simulans vs. D. sechellia comparison. We suggest that this is mainly a 

result of the contribution of ancestral polymorphisms in different recombination regions. 

We also find that intergenic INE-1 elements are significantly more diverged than 

intronic INE-1 in both pairwise comparisons, implying the presence of either negative 

selection or lower mutation rates in introns. Furthermore, we show that substitution rates 

in INE-1 elements are not associated with the length of the noncoding sequence in which 

they are located, suggesting that reduced divergence in long noncoding sequences is not 

due to reduced mutation rates in these regions. Finally, we show that GC content for 

each site within INE-1 sequences has evolved towards an equilibrium value (-33%) 

since insertion.



3.2. Introduction

Transposable elements (TEs) are mobile, repetitive DNA sequences that are major 

components of many host genomes. TEs can be divided in two major classes, Class I 

(RNA mediated) and Class II (DNA mediated) (Berg and Howe 1989; McDonald 1993). 

Class I elements, or retrotransposons, are transcribed into RNA, and then reverse 

transcribed and reintegrated into the genome, thereby duplicating the elements. Class II 

elements, or DNA transposons, are generally excised from one genomic site and 

integrated at another by a "cut and paste" mechanism involving a transposase (see 

review in Kazazian 2004). TEs comprise a large part of many eukaryotic genomes 

including mammals, such as human (-50%) and mouse (-40%) (Venter et al. 2001; 

Deininger and Batzer 2002; Waterston et al. 2002). In contrast, it is estimated that only 

5.3% of the Drosophila melanogaster euchromatic genome is comprised of TE 

insertions (Quesneville et al. 2005).

The most abundant family of TEs in the D. melanogaster subgroup is INE-1 

(Kapitonov and Jurka 1999,2003). Kapitonov and Jurka (2003) speculated that INE-1 is 

a remnant of the D. virilis Penelope retrotransposon, but upon closer inspection it 

appears that INE-1 is more likely to be a family of nonautonomous DNA transposons 

(Pyatkov et al. 2002; Slawson et al. 2006; Yang et al. 2006). Previous analyses of this 

element have indicated that a burst of INE-1 transposition occurred in the ancestor of the 

D. melanogaster species complex -5-10 Myrs ago, and the element is thought to have 

remained inactive ever since, at least in the D. melanogaster lineage (Kapitonov and

89



Jurka 1999; Kapitonov and Jurka 2003; Singh and Petrov 2004; Singh et al. 2005a). 

Thus, it is reasonable to assume that many of these transposable element remnants are 

selectively unconstrained, and their evolution has therefore been used to assess 

substitution rate heterogeneity (i.e., background substitutional patterns) in the D. 

melanogaster genome (Singh et al. 2005a).

In the Drosophila genome, there are several other classes of nucleotide sites that have 

been hypothesized to be evolving close to neutrally. One class are sites in short introns 

(<65bp in total length), outside splice control regions (base pairs 8-30 from the 5' end), 

which have been termed the fastest evolving intronic (FEI) sites (Halligan and Keightley 

2006). A second are four-fold degenerate sites within coding sequences. However, there 

is evidence for weak selection for translational efficiency on at least some four-fold 

degenerate sites, resulting in codon-usage bias in Drosophila (Akashi 1995; McVean 

and Vieira 2001). Although sites within INE-1 elements and the two other classes of 

sites have all been assumed to be evolving close to neutrally in the past, there has been 

no attempt to compare their patterns of evolution.

Molecular evolution is expected to differ between these classes of sites for several 

reasons, and, even if sites are completely selectively unconstrained, there are several 

forces that could affect their interspecies divergence. Firstly, divergence between a pair 

of species is not only affected by the time since speciation but also by the time to 

coalescence (which is subject to stochastic variance) of those differences that are the 

result of polymorphisms in the common ancestor. Since the frequency of recombination 

affects the effective population size (Ne) of a region of the genome via Hill-Robertson
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interference (Hill and Robertson 1966; Felsenstein 1974) or via the action of selective 

sweeps (Maynard-Smith and Haigh 1974; Kaplan et al. 1989), regions of low 

recombination are expected to have lower Ne compared to regions of high 

recombination. There is evidence to suggest that this is indeed the case in Drosophila 

(e.g. Betancourt and Presgraves 2002, Presgraves 2005, Haddrill et al. 2007). This will 

lead to an accelerated rate of genetic drift in regions of low recombination, and thus the 

coalescent time for polymorphic sites in the common ancestor will tend to be shorter, 

leading to lower divergence. This effect is expected to be strongest when the ratio of 

polymorphism (in the ancestor) to fixed differences (between species) is high. Secondly, 

interspecies divergence of unconstrained sequences can be affected by variation in the 

mutation rate. For example, it has been suggested that recombination itself may be 

mutagenic (Lercher and Hurst 2003; Hellmann et al. 2003; Yi et al. 2004). Finally, the 

mutation rate may be affected by transcription-coupled repair. In this case, the mutation 

rate and therefore divergence would be expected to be lower in sections of the genome 

that are transcribed.

If sites are under weak selection, then interspecies divergence can also be affected by 

variation in the recombination rate, since selection acting on these sites is expected to be 

less effective in regions of the genome with lower effective population size (Hill and 

Robertson 1966; Kliman and Hey 1993; Hey and Kliman 2002). This will lead to 

increased divergence in low recombination rate regions, if there is weak negative 

selection, but could produce the opposite pattern if there is a substantial fraction of 

positively selected substitutions. It is often assumed that TE remnants are unconstrained,
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there is mounting evidence that selection acts on at least some TEs. For example, several 

recent studies have indicated that some TEs may cause changes in gene regulation in 

plants (White et al. 1994) and mammals (McDonald 1993; Deininger et al. 2003; Jordan 

et al. 2003; van de Lagemaat et al. 2003). In Drosophila, two classes of non-LTR 

retrotransposons of Drosophila melanogaster, Het-A and TART, integrate at specific 

ribosomal RNA gene locations, and maintain the telomeres of D. melanogaster 

chromosomes (Jakubczak et al. 1990; Pardue and DeBaryshe 2003). Also, the 

expression of the 17.6 retrotransposon in Drosophila has been shown to be crucial for 

the development of some tissues, including the eyes (Mozer and Benzer 1994). 

However, compared to mammals, there are relatively fewer fixed TE insertions in 

Drosophila, and segregating TE insertions appears to be at very low frequencies 

(Charlesworth and Langley 1989), suggesting that most TE insertions are deleterious. 

Thus, in contrast to mammals, it is possible that a relatively high proportion of fixed 

Drosophila TE insertions may be adaptive and it is interesting to test whether TE 

remnants, particularly those that persist for long periods of evolutionary time, are 

functional or not.

Furthermore, examining the molecular evolution of INE-1 elements could also shed 

light on the forces operating on unique noncoding DNA. For example, Haddrill et al. 

(2005) and Halligan and Keightley (2006) have claimed that there is a substantial 

amount of negative selection operating on noncoding DNA in Drosophila, based on 

reduced divergence in long intronic and intergenic sequences compared to synonymous 

sites and short introns. This raises the question of whether this pattern can instead be
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explained by processes other than selection, e.g. lower mutation rates in long noncoding 

sequences. If so, a similar reduction in divergence would be expected to be observed in 

INE-1 elements located within long noncoding sequences.

In this paper, we investigate the molecular evolution of INE-1, and compare it to that of 

FEI and four-fold degenerate sites, by calculating mean divergence between D. 

melanogaster and D. simulans as well as between D. simulans and D. sechellia for 

sections of the genome that have different frequencies of crossing over. We look for 

evidence of variation in the substitution rate by testing for over-dispersion of 

substitutions in INE-1 elements within each recombination category. We investigate 

differences between intergenic and intronic INE-1 elements. We also investigate the 

relationship between divergence of INE-1 elements and the lengths of the noncoding 

sequences in which they reside, to test whether the difference in rates of substitution 

observed between noncoding sequences of different lengths in Drosophila can also be 

observed within the INE-1 elements located in these sequences. Finally, we investigate 

patterns of base composition and point substitution within extant copies of INE-1 in D. 

melanogaster and D. simulans, by comparing them to inferred ancestral sequence and 

calculate the equilibrium GC content in the Drosophila genome.

3.3. Materials and Methods
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Compilation and alignment of sequences

We generated three data sets of pairwise INE-1 alignments. The first (data set 1) was 

derived from D. melanogaster and D. simulans noncoding sequence alignments of 

Halligan and Keightley (2006). These noncoding alignments cover ~80 Mb of genome 

sequence and were initially aligned using MAVID (Bray and Pachter 2004), then refined 

by realigning with MCALIGN2 (Wang et al. 2006). The second data set (data set 2) was 

also comprised of D. melanogaster and D. simulans pairwise alignments, but was 

extracted from independently collected three-way alignments of D. melanogaster, D. 

simulans and D. sechellia. The final set (data set 3) was comprised of D. simulans and 

D. sechellia pairwise alignments obtained from the same three-way alignments used for 

data set 2. The divergence between D. simulans and D. sechellia is much lower than that 

between D. melanogaster and D. simulans, allowing us to make inferences about 

processes whose magnitude of effect depends on divergence time. Data set 2 is a subset 

of data set 1, which provides a control for data set 3, since they are obtained from the 

same three-way alignments and are comprised of the same orthologous INE-1 elements.

We used a similar method to that described by Halligan and Keightley (2006) to obtain 

the three-way noncoding alignments used to derive data sets 2 and 3. We obtained a list 

of all currently annotated D. melanogaster genes from NCBI's Entrez Gene (Release 

4.1) (excluding RNA genes and poorly annotated genes). We then used reciprocal best- 

hits BLAST to identify the locations of orthologous exons in the D. simulans (the April 

2005 consensus assembly from the Genome Sequencing Center WUSTL School of 

Medicine) and D. sechellia (the October 2005 assembly from by the Broad Institute of
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MIT and Harvard) genome sequences. We attempted to remove any genes from the data 

set for which the exon/intron structure may have changed. In order to do this we chose to 

only use genes where we could recover all exons by the reciprocal best-hits BLAST 

method, located in the same order as those in D. melanogaster. This should ensure that 

the exon/intron order in our selected genes is the same between species. Furthermore, we 

removed genes from the data set if the coding sequences (CDS) were invalid (a CDS 

was considered valid if it started/ended with a start/stop codon, had no internal stop 

codons and was a multiple of 3bp in length). The start and end positions of the located 

exons were then used to extract the adjacent intronic and intergenic sequences. 

Noncoding DNA sequences were only extracted if a reciprocal-best hit for the two 

flanking exons was found in both D. simulans and D. sechellia. As a result of this 

stringency, these noncoding sequences cover only ~40Mb of the D. melanogaster 

genome sequence. Finally, we aligned orthologous sections of noncoding DNA using 

MAVID (Bray and Pachter 2004). We removed introns from the data set if they did not 

start or end with a 2bp consensus sequence and/or if the intron sequences in D. 

simulans/D. sechellia started or ended with gaps (these represent incorrectly aligned 

sequences under the assumption that the 2bp consensus should be aligned).

For each of the genomic noncoding sequence alignments (pairwise and three-way), we 

extracted the alignments of FBI sites (base pairs 8-30 from the 5' end of introns <65bp 

in length, see Halligan and Keightley 2006). We also aligned the identified orthologous 

exons between D. melanogaster and D. simulans and orthologous exons in all three
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Drosophila species using the amino-acid alignment obtained from CLUSTALW 

(Thompson et al. 1994). We then extracted the alignments of four-fold degenerate sites.

Identification and extraction of orthologous INE-1 elements

We extracted orthologous INE-1 elements from the noncoding pairwise and three-way 

noncoding alignments as follows:

(1) We removed gaps from the alignments and used the reported consensus sequence 

for INE-1 (Kapitonov and Jurka 2003) in RepeatMasker 

(http://www.repeatmasker.org) to identify INE-1 elements in all species.

(2) We found the locations of the INE-1 elements identified with RepeatMasker 

within the noncoding alignments, and extracted only the sections of the 

alignments identified as INE-1 in all species.

(3) We excluded all alignments with fewer than 50 valid bases (i.e., A, T, G or C) in 

any species or 100 alignment columns.

(4) We attempted to exclude non-homologous sections within the INE-1 alignments 

by masking sections in which there were short lengths of bases surrounded by 

long gaps or in which divergence was above 0.30 (between D. melanogaster and 

D. simulans) or above 0.12 (approximately three times the mean interspecies 

divergence between D. simulans and D. sechellid) within a 50bp sliding window. 

We also excluded alignments altogether if these masked sections comprised 

more than 60% of the alignment.
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For data set 1, we identified 1,657 and 1,581 INE-1 elements in step 1 from D. 

melanogaster and D. simulans, respectively, of which 1,103 remained after step 2. This 

was reduced to 613 and 353 after steps 3 and 4, respectively (312 from intergenic 

regions and 41 from intronic regions). For data sets 2 and 3, step 1 identified 400, 395 

and 381 INE-1 elements from D. melanogaster, D. simulans, and D. sechellia, 

respectively. This was reduced to 161 after step 2. After steps 3 and 4, data set 2 

comprised of 149 D. melanogaster and D. simulans INE-1 alignments (91 intergenic and 

58 intronic) and data set 3 comprised of 161 D. simulans and D. sechellia alignments (99 

intergenic and 62 intronic). Details of the results from this extraction procedure are 

available by request.

Recombination regions

Each data set of INE-1 elements, FBI, and four-fold degenerate sites was sorted 

according to cytological map location, and divided into categories with high, 

intermediate and low frequencies of crossing over, and a group with no crossing over, 

based on the regions described in Charlesworth (1996) and listed in Haddrill et al. 

(2007). These cytological locations are based on the band coding system of 

Charlesworth and Lapid (1989) and Charlesworth et al. (1992), which assigns 

approximate physical positions to loci for which information on DNA variability is 

available. We removed some bands in telomeric and centromeric polytene regions due to 

a lack of experimental recombination data. We attempted to apply estimates of 

recombination rate for D. melanogaster to its sister species, D. simulans and D. sechellia 

with some modification. We have attempted to limit the effects of changes in the
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recombination environment by excluding sequences from a number of cytological bands 

due to uncertainty over changes in the recombinational environment between D. 

melanogaster and D. yakuba (Marais et al. 2004; Haddrill et al. 2007). Furthermore, we 

can be fairly confident that chromosome 4 has remained non-recombining since the split 

of the D. melanogaster species complex (Jensen et al. 2002).

To test the association between crossing-over frequency and divergence, we assigned 

values 4, 3, 2 and 1 to the crossing-over frequency classes, high, intermediate, low and 

no, respectively, and calculated the Spearman rank correlation between divergence and 

crossing-over frequency value.

Estimating divergence and equilibrium GC content ofINE-1 elements

All divergence estimates were corrected for multiple hits (Kimura 1980). Mean 

divergence for pairwise comparisons between species was calculated on a per site basis, 

and 95% confidence intervals were calculated by bootstrapping by TE element. To 

compare mean divergence and GC content between classes of sites, we generated 1,000 

bootstrap estimates of the statistic for each of the classes to be compared and then 

calculated the difference between each of the 1,000 bootstrap estimates from the two 

classes and tested whether the distribution of these differences was significantly 

different from zero.

We inferred the polarity of substitutions along the lineages leading to the extant INE-1 

sequences using the consensus sequence as an outgroup and used this information to 

estimate the expected proportion of bases that are G/C at equilibrium (pGc). Let the
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substitution rates from G:C to A:T pairs and A:T to G:C pairs be rGC and rAT, 

respectively. Under the assumption that the pattern of substitution rates is stable through 

time, at equilibrium, the number of G:C bases replaced by A:T bases will be equal to the 

number of A:T bases replaced by G:C pairs, so rGCpGC = rAT (1 - PGC). Therefore, the 

GC content at equilibriumpGC = r^/(rGC + rAT). For each recombinational category, we 

randomly sampled INE-1 elements with size equal to the number of elements in the 

sampled category with replacement. For each sampled element, we observed the number 

for each type of single nucleotide substitution. We then calculated the total rate of single 

nucleotide substitutions and the expected GC content at equilibrium for these sampled 

elements. We conducted this process 1,000 times, and obtained the mean and 95% 

confidence intervals for rates of different nucleotide substitutions and the expected GC 

content at equilibrium.

Measurement of dispersion of substitutions among INE-1 elements

If substitutions result from independent mutations occurring along each lineage since 

time of speciation without any effect of selection, then each INE-1 element is expected 

to accumulate substitutions at the same rate. The observed number of nucleotide 

differences in each element is then expected to follow the same binomial distribution 

(i.e. the probability of observing a difference at a site will be constant across elements). 

We tested this null hypothesis by assuming that the probability of observing a difference 

at any site was equal to the observed mean divergence (uncorrected for multiple hits). 

For each recombination category in each data set, we generated 1,000 simulated data 

sets consisting of divergence estimates for sequences with the same length distribution
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as the actual data and calculated the variance of divergence between elements for each 

simulation to generate a null distribution of variance of divergence amongst elements. If 

substitutions are over-dispersed, then the observed variance for the given data set will be 

larger than that expected under the null hypothesis of equal rates.

3.4. Results

Evaluation of mean divergence controlled for recombination rate

Previous analysis of INE-1 elements in D. melanogaster (Singh et al. 2005a) has 

suggested that there are differences in rates of substitutions in INE-1 copies amongst 

different recombination environments. To investigate this further, we divided INE-1, 

FBI and four-fold degenerate site alignments into four crossing over frequency 

categories (high, intermediate, low and no crossing over) and compared divergence of 

each site class within and amongst categories. We found that the divergence of four-fold 

degenerate sites is always lower than that of FEI sites (see Figure 3.1). This confirms 

previous observations (Halligan and Keightley 2006) and is consistent with reports that 

some four-fold degenerate sites are under weak selective constraints in Drosophila 

(Akashi 1995; McVean and Vieira 2001).

Interestingly, Spearman rank correlations between the divergence of FEI/four-fold sites 

and crossing over frequency are positive in all three data sets (Table 3.1). These 

correlations are significant for the cases of all sequence categories for data set 3 and FEI 

sites in data set 2. There are several possible explanations for the positive correlation
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Figure 3.1. - Mean divergence (+/- 95% confidence intervals) of INE-1, FEI and four-fold 
sites from A, data set 1; B, data set 2; C, data set 3. Within each data set, the three classes of 
nucleotide sites were sub-divided into categories according to frequency of crossing over: high 
(H), intermediate (I), low (L) and no (N) crossing over. 95% confidence intervals were obtained 
by bootstrapping by element/intron/gene.
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Table 3.1. Spearman correlation between divergence and rate of recombination for INE-1, FBI 
and four-fold degenerate sites. Here, we assigned 4, 3, 2 and 1 to be values for high, intermediate, 
low frequency of crossing over and no crossing over. The sample size is shown in the

Data Set Spearman Correlation Coefficient (/•)

1

2

3

INE-1
-0.171 **
(353)
-0.153
(149)
0.196 *
(161)

FEI
0.032
(3411)
0.054 **
(3226)
0.107 ***
(3226)

Four-fold
0.015
(5130)
0.003
(4955)
0.12**
(4955)

* p < 0.05; ** p < 0.01; *** p < 0.001

between divergence and crossing over frequency, such as stronger positive selection in 

high recombination regions, mutagenic effect of recombination, and differences in the 

level of the ancestral polymorphism (see Discussion for details).

However, divergence patterns of INE-1 elements are quite different (Table 3.1). In data 

sets 1 and 2, there is a negative correlation between divergence and crossing over 

frequency for INE-1 elements (significantly so for the larger data set 1), but a 

significantly positive correlation for INE-1 elements in data set 3. Furthermore, in 

regions of high recombination, INE-1 elements have a lower mean divergence than FEI 

sites (in all three data sets), and this is significant for data sets 2 (p = 0.042) and 3 (p = 

0.01). It is possible to explain this latter result without the need to invoke selection on 

either FEI sites or INE-1 elements, if INE-1 elements were less polymorphic than FEI 

sites in the common ancestor.
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In data set 3, consistent with the results for FBI and four-fold degenerate sites, there is 

a positive correlation between divergence and crossing over frequency for INE-1. This 

result could be explained by the fact these species are so closely related that the effect of 

increased coalescence time in the common ancestor in regions of high crossing over 

frequency dominates any other effects that could potentially cause a negative 

correlation.

It is worth mentioning that GC content and recombination rate are negatively correlated 

for the X chromosome, while the opposite is true for the autosomes (Singh et al. 2005b). 

It is therefore possible that our estimates of the correlation between divergence and 

crossing-over frequency are influenced by grouping X-linked elements and autosomal 

elements together. To investigate this, we divided the 353 INE-1 elements from data set 

1 (since it is the largest) into subsets of X-linked elements (46) and autosomal elements 

(307). We then repeated the analysis on the autosomal elements only, and obtained very 

similar results to those for the grouped autosomal and X-linked elements. Unfortunately, 

there were insufficient X chromosome data to obtain reliable estimates of the correlation 

between divergence and crossing-over frequency, but we did not find any significant 

difference in mean divergence and GC content between X-linked and autosomal 

elements (data not shown).

Over-dispersion of INE-1 substitutions

Variation in the substitution rate can be assessed by testing for over-dispersion of 

substitutions. This variation could be caused by mutation rate variation, positive or 

negative selection that varies between elements or the contribution of polymorphism in
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Table 3.2. Test of over-dispersion of substitutions in INE-1 elements for different crossing 
over categories in data sets 1, 2 and 3. Within each data set, INE-1 elements were subdivided 
according to different recombination environments. We show the null distribution of variance in 
divergence uncorrected for multiple hits with a constant substitution rate and the observed 
variance.

Data Set Category N

1

2

3

H

I 

L

N

H

I

L

N

H

I 

L

N

52

100

127

66

27

43 

60

16

28

47 

67

16

Mean Null Variance 
[95% Range]

0.0007 [0.0004

0.0009 [0.0004 

0.0007 [0.0005

0.0007 [0.0004

0.0015 [0.0006

0.001 5 [0.0007 

0.0014 [0.0008

0.0012 [0.0001

0.0006 [0.0002

0.0005 [0.0003 

0.0003 [0.0002

0.0003 [0.0001

-0.0010]

- 0.0009] 

- 0.0009]

-0.0010]

- 0.0025]

- 0.0023] 

- 0.0020]

-0.0023]

- 0.0009]

- 0.0008] 

- 0.0005]

- 0.0005]

Observed 
Variance

0.0010**

0.0009 * 

0.0011 ***

0.0007

0.0027 *

0.0017 

0.0021 *

0.0008

0.0011 **

0.0019 *** 

0.0006 ***

0.0013 ***

*p<0.05; **p<0.01; ***p<0.001

the ancestor to divergence between species. The latter effect is expected to be strongest 

when the ratio of ancestral polymorphism to divergence is highest. We tested for over- 

dispersion in each crossing over category of each data set by comparing the observed 

variance in divergence across elements to the expected, assuming a constant substitution 

rate and the same alignment length distribution. We found evidence for over-dispersion 

of the substitution rate in 9 out of 12 cases (Table 3.2), the strongest evidence for over-
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dispersion coming from elements in data set 3, on the basis that the ratio of observed to 

expected variance was highest and the p-values were the most significant. Although all 

of the above-mentioned processes could contribute to the patterns observed, only the 

third explanation, i.e. a contribution from ancestral polymorphism, clearly predicts that 

over-dispersion would be strongest in the closer pairwise comparison of D. simulans and 

D. sechellia.

Comparisons between intergenic and intronic INE-1 elements

One possible factor that could explain some over-dispersion of substitutions, either 

because of differences in the mutation rate, or differences in the level of selection, is 

transcription. A recent study in mammals found that transposable elements in introns 

have a slightly lower mean divergence than those in intergenic DNA (Gaffhey and

Table 3.3. Mean divergence and GC content of intergenic and intronic INE-1 elements for data 
sets 1, 2 and 3. 95% confidence intervals for divergence and GC content were calculated by 
bootstrapping 1,000 times by INE-1 element.

Data Set Class

1

2

3

Intergenic

Intronic

Intergenic

Intronic

Intergenic

Intronic

N

312

41

91

58

99

62

Mean Divergence [95% CI]

0

0

0

0

0.

0,

.135

.123

.153

.123

.039

,033

[0.131

[0.122

[0.142

[0.114

[0.034

[0.028

-0

-0

.139]

.135]

-0.163]

-0.132]

- 0.045]

-0..039]

GC Content [95% CI]

0.376

0.371

0

0.

0.

0,

.378

.385

.375

.391

[0.372

[0.361

[0.368

[0.372

[0.363

[0.378

-0.380]

-0.381]

-0.388]

-0.398]

-0.388]

- 0.404]
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Keightley 2006). We tested for differences in substitution rate between intergenic and 

intronic INE-1 alignments in each data set. Consistent with the observations in 

mammals, intergenic INE-1 elements have somewhat higher mean divergence than 

intronic elements, and this is significant for data sets 1 (p < 0.05) and 2 (p < 0.01) but 

not 3 (p = 0.28) (Table 3.3). Furthermore, the difference between intergenic and intronic 

elements is consistent within each recombination category for all data sets (data not 

shown), suggesting that this result is not due to differences in levels of crossing over 

between intronic and intergenic regions. Additionally, there are no significant 

differences in mean GC content or mean length between intergenic and intronic 

elements in all three data sets.

Correlation between INE-1 divergence and length ofnoncoding sequence

It has previously been shown that there is a strong negative correlation between intron 

length and divergence in Drosophila (Haddrill et al. 2005; Halligan and Keightley 2006), 

and a similar pattern has also been found in intergenic sequences (Halligan and 

Keightley 2006). If these length correlations are the result of lower mutation rate in long 

noncoding sequences, or other general factors affecting all sites within long noncoding 

sequences, we would predict that INE-1 elements in long noncoding sequences would 

have lower divergence than those in short noncoding sequences. However, we found no 

significant correlation between INE-1 element divergence and length of the noncoding 

sequence in which the elements are located in any of the data sets (Spearman correlation 

r = 0.061, p = 0.25 for data set 1; r = 0.072, p = 0.18 for data set 2; r = 0.051, p = 0.28 

for data set 3). Note that there is a difference in sequence lengths between intronic and
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intergenic sequences, so we separated intronic sequences from intergenic sequences, and 

calculated the correlation of INE-1 divergence and non-coding sequence length 

separately. However, we did not found any relationship between these two factors for 

data sets 1 (intergenic: Spearman correlation r = -0.001, p - 0.98; intronic: Spearman 

correlation r = 0.25, p = 0.12), 2 (intergenic: Spearman correlation r = 0.01,/? = 0.88; 

intronic: Spearman correlation r = 0.26, p = 0.16) and 3 (intergenic: Spearman 

correlation r = - 0.02, p =0.64; intronic: Spearman correlation r = 0.18, p = 0.34). It is 

worth mentioning that correlation is always close to zero for intergenic sequences, but 

positive and quite strong for intronic sequences (although not significantly). Our results 

suggest that the difference in divergence between short and long noncoding sequences is 

not a result of any factors, such as mutation rate, that have general differential effects on 

long vs. short noncoding sequences, and instead supports the conclusion that the 

difference is due to stronger or more extensive negative selection in long noncoding 

sequences.

Evolution ofGC Content of INE-1

If the ancestral INE-1 sequence were available we would be able to polarize 

substitutions in the D. melanogaster and D. simulans lineages. Although previous 

studies have assumed the reported consensus is a fair approximation to the ancestral 

sequence (Singh and Petrov 2004; Singh et al. 2005a), none have tested this assumption. 

Using data set 1, we reconstructed the consensus sequences of INE-1 from the extant 

copies in D. melanogaster and D. simulans separately. The divergence between these 

two reconstructed consensus sequences is very low (-0.005). None of the four pairwise
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Table 3.4. Mean divergence between extant INE-1 copies in D. melanogaster and D. simulans 
and the consensus sequences constructed from each species.

Consensus Species

D. melanogaster

D. melanogaster

D. simulans

D. simulans

Extant Copy Species

D. melanogaster

D. simulans

D. melanogaster

D. simulans

Mean Divergence [95% CI]

0.1879(0.1831

0.1841 (0.1807

0.1878(0.1830

0.1839(0.1804

-0.1928)

-0.1875)

-0.1927)

-0.1873)

comparisons between the extant sequences of either species and the consensus sequences 

constructed from either species are significantly different from one another (Table 3.4). 

This implies that the consensus sequence of INE-1 is a good approximation to the 

ancestral sequence.

Given the ancestral sequence and the extant copies of INE-1, we were able to 

investigate how GC content has changed in each species. We calculated GC content in 

the consensus and mean GC content in extant sequences in D. melanogaster within 50bp 

sliding windows across each INE-1 element. Figure 3.2 shows these results for high and 

no crossing over categories for elements in D. melanogaster from data set 1 (plots for 

other categories showed very similar patterns, see Supplementary Figure 3.1). Although 

GC content appears to have reduced in the D. melanogaster and D. simulans lineages 

since their common ancestor, there is substantial variation across the INE-1 element. GC 

content in the consensus varies between 10% and 60%, whereas mean GC content of the 

extant copies shows much less variation. By polarizing substitutions in the Drosophila 

melanogaster and D. simulans lineages using parsimony with the consensus sequence as
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consensus sequence

-copies in region of high 
recombination

- copies in region of no 
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Position of nucleotide along the consensus (bp)

Figure 3.2. - Mean GC content of consensus sequence (light gray line with dark dots) and the 
orthologous INE-1 extant remnants in Drosophila for each nucleotide site along the consensus 
sequence in 50bp sliding windows in data set 1 for D. melanogaster. Within the data set, we 
only show results for INE-1 in regions of high (black line) and no (gray line) recombination.

an outgroup, we calculated lineage-specific rates of substitution. We estimated rates for 

each of 6 types of nucleotide substitution (2 transitions and 4 transversions) in the 

different crossing over categories (Figure 3.3) using data set 1 only (since this contains 

the most data). There is no significant heterogeneity in substitution rates across crossing 

over categories (ANOVA: p = 0.99 for both D. melanogaster and D. simulans), 

however, rates of the different types of substitutions do vary significantly. In particular, 

the G:C —> A:T rate is ~2.5-fold higher than any other rate and substitution rates 

generally are biased towards A:T. If we assume that this pattern is stable in both species 

through time, we can estimate the expected GC content at equilibrium for INE-1 

elements. We did not find any difference in expected GC content at equilibrium among 

the four recombinational environments in both species (see Supplementary Table 3.1). 

Combining the data from different recombination environments, the expected GC
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Figure 3.3. - Mean substitution rate (+/- standard error) of six different types of nucleotide 
substitutions for INE-1 elements between D. melanogaster and D. simulans from data set 1. 
Substitution rates were estimated by comparing the ancestral (consensus) sequence to extant 
INE-1 elements in (A) D. melanogaster and in (B) D. simulans. The rates are shown for the four 
different crossing over frequency categories (no, low, intermediate and high crossing over in 
order).

content at equilibrium is estimated to be 32.3% (95% CI, 29% - 35%) for D. 

melanogaster, and 33.7% (95% CI, 31% - 37%) for D. simulans.
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Under the neutral model of nucleotide substitutions and a uniform mutation rate, the 

ratio of transitions (ts) to transversions (tv) is expected to be 1:2 (because there are twice 

as many possible transversions). Combining elements from the four recombinational 

categories, we observed 5, 582 transitions and 5, 711 transversions in D. melanogaster 

lineage, and 5, 653 transitions and 5, 812 transversions in£>. simulans lineage. The ts:tv 

ratios (1:1.02 in D. melanogaster, 1:1.03 in D. simulans) are clearly different from 1:2, 

as expected under a uniform mutation rate (binomial exact test: p « 0.001). They are 

also significantly different from the ts:tv ratio observed for Helena element in 

Drosophila, 1:1.22 (Petrov and Hartl 1999, binomial exact test:/? < 0.001). Transitions 

seem to be more favored in INE-1. This increased transition rate is mainly attributable to 

G:C —> A:T substitutions. However, our estimates of the ts:tv ratio are very close to that 

estimated for synonymous substitutions between D. melanogaster and D. simulans in 

two nuclear genes, Adhr and Adh (roughly 1:1, Moriyama and Powell 1997). They are 

also close to the ts:tv ratio (about 1:1) observed in noncoding polymorphisms in 

Drosophila (Moriyama and Powell 1996). This suggests that transition bias may be a 

general pattern for relatively unconstrained sequences in Drosophila.

Heterogeneity of evolution ofGC content along INE-1

We have shown that GC content varies dramatically along the INE-1 consensus 

sequence, and that regions of high ancestral GC content appear to be evolving towards 

reduced GC content, and vice versa. Thus, it is possible that regions with high ancestral 

GC content will show different substitution patterns compared to regions with low 

ancestral GC content. To investigate this, we divided the INE-1 consensus sequence
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Figure 3.4. - Mean substitution rate (± standard error) of six different types of nucleotide 
substitutions for INE-1 in (A) D. melanogaster and (B) D. simulans from data set 1. Here, INE-1 
consensus sequence is divided into regions with high ancestral GC content (> 40%) and regions 
with low ancestral GC content (< 30%). We compare substitutional patterns between the two 
regions in each species.

(594bp in length) into 12 non-overlapping ~50bp segments and calculated the ancestral 

GC content within each segment. We arbitrarily split these segments into those with high 

GC (>40%), moderate GC (>30%, <40%) and low GC (<30%) content (combining
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elements from the four recombinational environments). We then examined substitution 

patterns in the high and low GC content categories in D. melanogaster and D. simulans 

for data set 1, using the INE-1 consensus sequence as an outgroup.

This analysis revealed no significant differences between the high and low categories 

for the six different substitution rates in both species (Figure 3.4). This is what would be 

expected if the INE-1 sequences were evolving neutrally. However, differences in GC 

content between these two GC content categories lead to differences in the relative 

numbers of GC -»AT and AT —»GC substitutions. For example, inD. melanogaster, we 

observed 1, 981 GC -> AT and 1, 176 AT -» GC substitutions in the high ancestral GC 

content category (leading to a reduction in the number of GC bases), whereas in the low 

GC content category we observed 837 GC -> AT and 955 AT -> GC substitutions 

(leading to an increase in the number of GC bases).

3.5. Discussion

We investigated rates and patterns of substitution in three different classes of sites of 

the Drosophila genome, which previous studies have hypothesized to be evolving close 

to neutrally. We compared evolution of remnants of the most abundant class of TEs in 

the D. melanogaster subgroup (INE-1) with sites within short introns (termed FEI sites) 

and four-fold degenerate synonymous sites. We found strong evidence for varying rates 

of substitution between these site classes, between different recombination 

environments, and between intronic and intergenic sequences. Furthermore, the patterns
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are inconsistent between pairs of species that differ in their divergence times. These 

observations could be attributable to various processes, including time to coalescence in 

the common ancestor of differences resulting from ancestral polymorphisms, mutation 

rate variation and selection. These possible explanations in relation to each finding are 

discussed below.

We found that the mean divergence of four-fold sites is lower than that of FBI sites in 

all data sets and crossing over categories. This supports previous observations that at 

least some four-fold degenerate sites are under weak selection for protein translation 

efficiency (Akashi 1995; McVean and Vieira 2001) and suggests that FBI sites are 

evolving closer to neutrally (Halligan and Keightley 2006).

We found a positive correlation between rate of crossing over and divergence in 

FEI/four-fold sites in all three data sets. A similar pattern has previously been observed 

for the divergence of short introns between D. melanogaster and D. yakuba (Haddrill et 

al. 2007). A positive correlation has also been shown in other organisms for four-fold 

degenerate sites (Lercher and Hurst 2002; Waterston et al. 2002; Hardison et al. 2003; 

Hellmann et al. 2003). In contrast, Shapiro et al. (2007) found no relationship between 

recombination rate and synonymous site divergence between D. melanogaster and D. 

simulans. The correlation observed for FEI/four-fold sites in our data also contrasts with 

the results of Begun and Aquadro (1992), who found no correlation between the 

coefficient of exchange and divergence for 20 genie regions between D. melanogaster 

and D. simulans. It also contrasts with results obtained for amino-acid sites in 

Drosophila (Betancourt and Presgraves 2002; Presgraves 2005; Haddrill et al. 2007), in
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which divergence was highest in regions lacking recombination. It has been suggested 

that these latter results are due to variation in the effectiveness of selection, which is 

expected to be lower in regions with less frequent crossing over due to reduced Ne . This 

would result in a higher rate of substitution for sites under weak negative selection in 

these regions. In contrast, the patterns observed for FEI/four-fold sites in our data sets 

could be explained by weak positive selection on these sequences in regions of no 

crossing over, such that divergence is inflated above the neutral expectation in regions of 

high recombination. Alternatively, the patterns observed could be explained by a 

mutagenic effect of recombination, which has been suggested previously to explain a 

similar pattern observed for four-fold degenerate sites in mice (Lercher and Hurst 2002; 

Waterston et al. 2002; Hardison et al. 2003) and in humans (Hellmann et al. 2003). 

Finally, they may result from differences in the mean coalescence time among 

recombination rate regions. Total divergence between a pair of species reflects the time 

since speciation plus the coalescence time of polymorphisms present in the common 

ancestor. Lack of recombination leads to a lower effective population size because of 

Hill-Robertson interference and therefore increased rates of genetic drift. Therefore, 

regions with a low frequency of crossing over would be expected to have the shortest 

mean coalescence time. All else being equal, this will result in lower apparent 

divergence for sequences in regions lacking recombination. This interpretation is 

supported by the fact that the magnitude of the relative differences between 

recombination rate regions is higher in the D. simulans vs. D. sechellia pairwise 

comparison, for which the ratio of polymorphism in the ancestor to divergence is 

highest. One should note that the ecology of the three species is very different, thus the
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effective population size Ne is likely to be different between them. Indeed, Ne tends to be 

relatively smaller for D. sechellia and larger in D. simulans. But we argue that this could 

only affect the magnitude of the correlation coefficients, but not the general pattern of 

our results.

We observed markedly different patterns of divergence for INE-1 elements among the 

three data sets. In regions of high crossing over frequency, INE-1 elements have a lower 

mean divergence than FBI sites (in all three data sets), and this is significant for data sets 

2 (p = 0.042) and 3 (p = 0.01). This may be a result of weak negative selection acting on 

some/all INE-1 elements in this category, reducing divergence relative to the neutral 

expectation. The lack of difference between intermediate, low and no crossing over 

frequency categories could then be attributed to less effective selection or the lack of any 

selection on these elements at all. However, the result could also be attributable to a 

process whereby the coalescence time of polymorphisms present in the common 

ancestor tends to be shallower for INE-1 elements than for FBI sites. If TE insertions are 

relatively recent, they may not have been at mutation-drift balance in the common 

ancestor. This would reduce the expected coalescence time and therefore apparent 

divergence for these elements. Thus, it is not necessary to invoke selection on INE-1 

elements to explain these results. However, we also found a significantly negative 

correlation between divergence and crossing over frequency in data sets 1 and 2 (not 3). 

This result is not easily explained by differences in coalescence times, which would 

predict the opposite relationship, unless INE-1 elements in the high crossing over 

frequency category tend to be younger. However, INE-1 elements in high crossing over
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frequency categories are not more closely related to the consensus sequence (see Figure 

3.2), which argues against this interpretation. Therefore, there is some weak support for 

negative selection on INE-1 elements in highly recombining regions, at least between D. 

melanogaster and D. simulans.

We found strong evidence for over-dispersion of substitutions for INE-1 remnants in 9 

out of 12 crossing over categories from the three data sets. This could be explained by 

variation in time to coalescence of ancestral polymorphisms, which is subject to 

stochastic variance, but is also, at least, partly explained by differences between 

intergenic and intronic elements. In all three data sets we found that intergenic INE-1 

elements evolve faster than intronic ones. This pattern has also recently been observed in 

rodent TEs (Gaffney and Keightley 2006). Furthermore, this is apparent within crossing 

over categories, suggesting that it is not an artifact of differences in rates of 

recombination between intergenic and intronic regions. There are several possible 

explanations for this result. Firstly, sites in introns may experience a lower mutation 

rate, e.g., as a result of transcription-coupled repair (TCR), since sites in intronic regions 

are transcribed, whereas those in intergenic regions are not. This mechanism has been 

found in bacteria, yeast and mammals (Deaconescu et al. 2006; LePage et al. 2000), but 

not in Drosophila. Secondly, there may be negative selection on transcribed DNA 

generally. For example, it has been shown that selection in introns of the alcohol 

dehydrogenase locus (Adh) of Drosophila pseudoobscura helps maintain secondary 

structure of pre-mRNA (Kirby et al. 1995). Finally, there may be greater negative
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selection acting on intronic INE-1 because, for example, intronic INE-1 elements are 

more likely to be co-opted for a function than intergenic elements.

Finally, we have investigated the pattern of base composition of INE-1 since insertion 

by aligning extant remnants with the consensus sequence (after establishing that this is 

likely to be a reasonable approximation of the true ancestral sequence). We found that 

substitutions since insertion have tended to be biased towards A and T nucleotides in 

both D. melanogaster and D. simulans. Very similar patterns have been observed for 

those putatively neutrally evolving sites in Drosophila (e.g., INE-1 element in Singh et 

al. (2005a); Helena element in Petrov and Hartl (1999)). Under the assumption that this 

is a result of a mutation bias, rather than purifying selection, we estimated the expected 

equilibrium GC content to be 33.1% (95% CI: 30% - 36%, combining crossing over 

regions and data from D. melanogaster and D. simulans). This is consistent with other 

estimates of the equilibrium GC content for putatively neutrally evolving sites (Petrov 

and Hartl 1999), and with an estimate of equilibrium GC content for low recombination 

regions in Drosophila (33.0%), based on substitution rates among paralogous copies of 

INE-1 in D. melanogaster (Singh et al. 2005a). However, we did not find any 

differences in expected GC content at equilibrium among the four recombinational 

environments, which was shown in a previous study (Singh et al. 2005a). This is 

possibly caused by a lack of power due to the small sample size of INE-1 elements in 

regions of no crossing over in our data.

In our data, we have observed differences in interspecies divergence amongst 

nucleotide site types, amongst regions with different frequencies of crossing over.
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Furthermore, in some cases the relative strength and direction of these patterns varies 

depending on species compared. We also found evidence for over-dispersion of 

substitutions between INE-1 elements, especially in the close D. simulans/D. sechellia 

comparison. However, one should note that applying recombination estimates in D. 

melanogaster to other species may bias our results. We conclude that the majority of the 

patterns observed can be explained by differences in time to coalescence of 

polymorphisms in the common ancestor. Furthermore, this process can explain the 

differences observed between species comparisons, since the magnitude of this effect is 

expected to be stronger when species are less diverged (e.g., D. simulans and D. 

sechellia). Although a mutagenic effect of recombination could produce similar patterns 

of evolution, here we argue that it is not necessary to invoke this, given that the process 

described above is likely to be operating. Additionally, a mutagenic effect of 

recombination could not explain the difference in the magnitude of the observed effect 

between the two different pairwise comparisons (D. melanogaster vs. D. simulans and 

D. simulans vs. D. sechellia). However, we argue that some observations, i.e. the faster 

evolutionary rate for intergenic INE-1 elements than intronic elements, the negative 

correlation between divergence and frequency of crossing over for INE-1 between D. 

melanogaster and D. simulans and faster evolution of FBI sites than for four-fold sites, 

are difficult to explain by either variation in time to coalescence resulting from 

polymorphisms in the common ancestor or mutagenic effect of recombination. Instead, 

we suggest that these observations may result from variation in strength of negative or 

positive selection among elements.
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3.7. Supplementary Materials

Supplementary Table 3.1. The expected GC content at equilibrium for INE-1 elements in four 
recombinational categories from High to No in both species, D. melanogaster and D. simulans. 
95% confidence intervals are shown in parentheses. There are no significant differences in the 
expected GC content among the four recombinational categories in both species.

Recombination rate

High

Intermediate

Low

No

D. melanogaster

32.8% (29.7%

30.2% (28.1%

33.5% (30.4%

30.2% (27.0%

- 35.6%)

- 32.4%)

- 36.6%)

- 33.5%)

D. simulans

33.9% (30.3% -

33.2% (30.2% -

33.7% (30.5% -

35.1% (31.4%-

37.5%)

36.2%)

36.0%)

38.5%)

121



intermedia I e reconrtiinallon 
copies in region ol low 
recombination

100 200 300 400 500 
Position of nucleotide along th« consensus (op)

(A)

100 200 300 400 500 600 
'oslUon of nucleotide along the consensus (bp)

(B)
D. simulans

(O

Supplementary Figure 3.1. - Mean GC content of consensus sequence (light gray line with dark dots) and the orthologous INE-1 extant remnants in Drosophila for each nucleotide site along the consensus sequence in 50bp sliding windows in data set 1 for D. melanogaster and D. simulans Here, we show results for, (A) INE-1 in D. melanogaster in regions of intermediate (black lines) and low (gray line) recombination, (B) INE-1 in A simulans in regions of high (black line) and no (gray line) recombination and (C) INE-1 m D. simulans in regions of intermediate (black line) and low (gray line) recombination.
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4.1. Abstract

The evolution of transposable elements (TEs) is one of the central topics of genome 

evolution. We aim to learn the distribution and rates of evolution of three major TE 

classes (LTR, LINE retrotransposons and DNA transposons, also known as TIRs) in 

Drosophila. We first investigate the distribution of TEs in the Drosophila melanogaster 

euchromatic genome using a gene-centric approach. Most of our findings are consistent 

with previous studies. For example, LTR elements appear to outnumber LINE and TIR 

elements in both intergenic and intronic regions. We also show that TEs constitute 

-0.02% of nucleotides of exons (-90% of which are fragments of rooj). We then 

demonstrate that between D. melanogaster and D. yakuba, orthologous TIR fragments 

show a significantly higher mean divergence than orthologous LTRs and LINEs, and of 

them, rooj fragments appear to be evolving the most slowly, indicating that some LTR 

sequences/fragments (especially rooj) may have been co-opted by the host, and have 

become selectively constrained between species. We then investigate TE representation 

in Drosophila promoter regions (l-500bp upstream of start codons), and show that 

promoter regions have significantly fewer TEs than more distal regions, indicating 

stronger selection against TE insertions proximal to coding regions. Furthermore, 

orthologous TEs in promoter regions appear to be evolving more slowly than those in 

distal regions. This result is mainly due to the contribution of LTRs (mostly rooj) in 

promoter regions. Our results suggest that TEs may have contributed substantially to 

gene regulation in Drosophila.
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4.2. Introduction

Transposable elements (TEs) are one of the major components of the genomes of 

many organisms. It has long been assumed that TEs are simply genomic parasites with 

little or no effect on the host genome (Orgel and Crick 1980), and that they can 

compromise gene function through their deleterious mutations in individuals (Deininger 

and Batzer 2002). However, it is possible that some TE-derived sequences could become 

functionally important by donating transcriptional regulatory signals (van de Lagemaat 

et al. 2003; Thornburg et al. 2006; Fablet et al. 2007) or even by encoding protein 

sequences (Nekrutenko and Li 2001; Bejerano et al. 2006) that benefit the host. This 

possibility is supported by a growing body of evidence, especially in species where TEs 

make up a larger proportion of the genomic content, such as mammals. For example, it 

has been shown that ~25% of promoter regions in the human genome contain TE- 

derived sequences (Jordan et al. 2003). Among these TE fragments, some TE classes are 

more likely than others to carry transcription regulating signals, and have an important 

potential to contribute to pre-transcriptional gene regulation (Thornburg et al. 2006). 

Studying the impact of TE insertions on the regulation of gene expression (e.g., as 

promoter or enhancer sequences for the nearby genes) is therefore a fundamental aspect 

of understanding how the genome works.

In species where TEs are relatively uncommon, such as Drosophila, TE-derived 

sequences may still play important roles for the host genome evolution (Kazazian 2004). 

It has been established in the D. melanogaster genome that TEs are not randomly 

distributed, even within regions of high and low TE abundance (Kaminker et al. 2002;
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Bergman et al. 2006). The density of TEs increases in the proximal euchromatin, defined 

as the proximal 2Mb of the assembly of each of the five major chromosome arms (X, 

2L, 2R, 3L and 3R) constituting -10% of the euchromatic sequence (Kaminker et al. 

2002). Furthermore, the distribution of three major TE classes (LTR and LINE elements, 

RNA-mediated; TIR elements, DNA-mediated) tends to differ among chromosomes. 

LTR elements appear to outnumber the other TE classes on the major chromosome 

arms, but LINE (also known as non-LTR) and TIR elements have higher numbers 

relative to LTR elements on chromosome 4 (Kaminker et al. 2002). Although the 

chromosomal positions of TEs have been clarified since Release 3 sequence of D. 

melanogaster, attention still needs to be paid to how these TE classes are represented in 

noncoding (intergenic/intronic) and coding regions (in a gene-centric approach), since 

some TE classes may be overrepresented in some regions due to their different 

transposition mechanisms or their potential to be co-opted by the host.

The most important prospective of TEs being functional is the ability to potentially 

contribute their regulatory regions to form new host regulatory sequences. This is 

supported by evidence from gene promoter regions of mammals (Jordan et al. 2003; 

Fablet et al. 2007). However, TE's roles in gene regulation may be very lineage-specific 

(Marino-Ramirez et al. 2005). First, the proportion of TE-derived sequences in the 

genome differs dramatically between species, e.g. from more than 50% of the human 

genome (International Human Genome Sequencing Consortium 2001) to less than 10% 

of the Drosophila melanogaster genome (Quesneville et al. 2005), and up to 90% of the 

genomes of lilies and wheat (Flavell et al. 1994). Second, the distribution of different
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types of TEs in the genome also differs greatly between lineages (Biemont et al. 1997; 

Kaminker et al. 2002; Thomas et al. 2003; Yang et al. 2006). For example, LINE 

elements are the most abundant TEs in mammals, accounting for 17% of the human 

genome (Bannert and Kurth 2004), and LTR elements comprise -8% of human DNA 

(International Human Genome Sequencing Consortium 2001). In contrast, LINE and 

LTR elements account for only 0.9% and 2.7% of the euchromatin of D. melanogaster, 

respectively (Kaminker et al. 2002). Furthermore, the most abundant Drosophila TEs 

are INE-1 (interspersed elements), a family of nonautonomous DNA transposons, 

comprising more than 1% of the D. melanogaster genome. They are believed to result 

from an ancient transposition event (-5-10 MY A) in the D. melanogaster species 

complex (Kapitonov and Jurka 2003; Singh et al. 2005; Bergman et al. 2006; Slawson et 

al. 2006). INE-1 elements are absent in the human genome. However, human genomes 

contain many copies of other short interspersed elements (SINEs), such as the Alu 

elements (Deininger et al. 2003), which Drosophila genomes lack. When these findings 

are considered with respect to the influence of TEs on gene regulation, patterns of TEs 

serving as regulatory sequences in human (Jordan et al. 2003; Thornburg et al. 2006) 

may deviate from those observed in Drosophila.

Here, we first investigate the distribution and representation of major TE classes in 

intergenic, intronic and exonic regions of the D. melanogaster euchromatic genome. We 

also compare the rate of evolution of fragments among TE classes, since some TE 

fragments may be more likely to be involved in host gene regulation and have become 

selectively constrained between species. This is done by calculating mean divergence of
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orthologous TE elements between D. melanogaster and D. yakuba. We chose this 

species pair (rather than closer species, D. melanogaster and D, simulans) because they 

should show relatively larger differences in mean divergence between TE classes (if 

they exist). Meanwhile, we also consider the effect of crossing over rates, since they 

have an impact on the efficacy of natural selection (Hill and Robertson 1966; Kliman 

and Hey 1993; Hey and Kliman 2002; Haddrill et al. 2007) and impact on the 

coalescence time in the common ancestor (Hudson 1991, p. 1-44; Takahata et al. 1995; 

Yang 1997; Wang et al. 2007). Secondly, we investigate TE insertions in promoter 

regions of Drosophila, and compare their distribution and divergence to distal promoter 

regions immediately adjacent to the 5' end of promoter regions, since their genetic 

background should be very similar. We test whether promoter regions have significantly 

fewer TE insertions than the control regions. We also investigate TE insertions in 3' 

flanking regions of genes, since insertions may be also selectively constrained here. 

Finally, we test whether TE-derived sequences in promoter regions/proximal 3' regions 

evolve more slowly that those in more distal regions based on the comparative analysis 

of orthologous TE fragments between D. melanogaster and D. yakuba. This rests on the 

assumption that TEs in promoter regions are more likely to be functional, and will thus 

evolve more slowly than non-functional TEs.

4.3. Materials and Methods

Definition of some genomic regions for promoter regions investigation
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For each gene, we defined three genomic regions: (1) Proximal 5' region (promoter 

region), which ranges from position 500bp to Ibp upstream from the transcription start 

site of coding sequences (CDS). (2) Distal 5' region, which ranges from position l.OOObp 

to SOlbp upstream from the transcription start site of CDS. (3) Proximal 3' region, which 

ranges from position Ibp to 500bp downstream from the transcription end site of CDS. 

Each region is SOObp in length. The Proximal 5' region contains most (almost all) 

important promoter sequences, such as core promoters (~35bp upstream from the 

transcription start site) and proximal promoters (~250bp upstream), whereas the distal 5' 

region may contain some distal promoters, although they are unlikely to be as important 

as core and proximal promoters (see review by Smale and Kadonaga 2003). The 

proximal 3' region also contains some elements that function as binding sites for proteins 

or miRNAs (e.g., enhancers).

Compilation of sequence data

We used the Ensembl GenBank database file for the genome sequence data of D. 

melanogaster (http://www.ensembl.org/Drosophila_melanogaster/index.html). The 

euchromatic sequence is based on BDGP assembly release 4, whereas the annotations of 

the euchromatic regions displayed in Ensembl are based on data imported from FlyBase 

(release 4.3, dated 2006/01/30). This retrieved a total of 14,387 euchromatic gene 

annotations. Any poorly annotated genes and RNA genes were excluded (this was 

achieved by examining the FlyBase synopsis report for each gene, and excluding genes 

that were based on BLASTX data or gene prediction data only). We also excluded 

-1000 genes that are nested within the other genes. This left us a total of 12,474
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euchromatic nonnested genes. We then extracted intergenic sequences (i.e., from the 

translation end site of the previous gene to the translation start site of the present gene) 

and coding sequences (CDS) from these genes. For genes that are alternatively spliced, 

only the form with the longest CDS was used. For each intergenic sequence and coding 

sequence, we identified TE fragments residing within them using RepeatMasker 

(Http://www.repeatmasker.org). The following parameters were used for this search: 

"cross_match" as the search engine; "nolow" to not mask low complexity DNA or 

simple repeats; "norna" to not mask small RNA (pseudo) genes; "no_is" to skip bacterial 

insertion element check. In addition to the parameters selected from the program, our 

analysis identified a TE insertion as a sequence of at least 80bp in length that also 

possessed at least 75% identity to the canonical (consensus) sequence in the 

RepeatMasker library database. These stringent parameters were set to avoid spurious 

results. Similar strategies have been used to identify TEs in the Bos taurus genome 

(Almeida et al. 2007).

To further test the reliability of RepeatMasker (i.e., it does not just pick up TE matches 

by random in the genome), we also ran RepeatMasker on C. elegans and honey bee 

genomes using the D. melanogaster TEs as query sequences. The same parameters were 

used in RepeatMasker, and the same criteria for TE identification discussed above were 

employed. TEs identified in this way only comprised -0.02% of the total genomic 

content in both C. elegans and honey bee. These figures were much lower than the 

percentage of TEs in the D. melanogaster genome, -5.5%. Furthermore, most of the TEs 

identified in C. elegans and honey bee were from very different TE families. For
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example, most of the TE fragments identified in C. elegans are DNA/HAT and 

DNA/Tcl elements. TEs that are abundant in D. melanogaster are very rare or even 

absent in both C. elegans and honey bee. We thus believed that RepeatMasker is a 

reliable tool for identifying TEs given TE consensus sequences (especially after using 

the criteria for TE identification, 80bp in length and 75% in sequence identity).

We categorized TE fragments identified in coding sequences into those in intronic 

regions and those in exonic regions. For any TEs that overlap an exon and an intron, we 

split them into fragments in exons and fragments in introns. We calculated the 

proportion of TE-derived sequences in each intergenic, intronic and exonic sequence. 

We then calculated the mean proportion of TE-derived sequences for all intergenic, 

intronic and exonic regions, respectively. 95% confidence intervals for the mean 

proportion were obtained by bootstrapping by each sequence for the three genomic 

categories.

We also compared TE fragments in promoter regions with those in distal promoter 

regions, and also with those in proximal 3' regions. Because we tried to avoid the case 

that the proximal 3' region of the previous gene overlaps with the distal 5' region of the 

present gene, we only used genes whose flanking sequences are longer than l,500bp in 

length in both 5' and 3' regions. We then extracted 1,500 nucleotides 

upstream/downstream from the transcription start/end site of CDS of available genes 

(6,763 nonnested euchromatic gene annotations in our final dataset for the investigation 

of TEs in promoter regions). The 5' and 3' flanking sequences of length l,500bp were 

then scanned for occurrence of TEs using RepeatMasker. Note that TE fragments in
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those regions are a small subset of TE fragments in the whole intergenic regions. After 

TEs had been masked, each l,500bp 5' flanking sequence was split into a SOObp 

promoter region and a 500bp distal 5' region as discussed above. Proximal 3' regions 

were extracted from 6,763 3' flanking sequences of length 1,SOObp. Within these three 

regions, we counted the number of nucleotides that are derived from TEs and the 

number of these regions that contain at least one TE-derived sequence or fragment. Here 

we excluded microsatellites and TEs of unknown family.

Analysis of gene overrepresentation

For those 12,474 genes in euchromatin, it is possible that genes associated with some 

particular functional or biochemical process (i.e., Gene Ontology (GO) terms 

information), or clustered in a region of the genome are more likely to have TE-derived 

sequences in their coding sequences, or even exonic sequences. We carried out the 

overrepresentation test using GeneMerge (Castillo-Davis and Hartl 2003), which is a 

program that returns functional and categorical genomic data for a given set of genes 

and provides statistical rank scores for over-representation of particular functions or 

categories in the dataset.

Alignment of orthologous TEs and noncoding sequences between D. melanogaster 

and D.yakuba

For the whole-genome alignment between D. melanogaster and D. yakuba, we used 

that generated by Assembly/Alignment/Annotation of 12 Drosophila Genomes Project 

(AAA 12 genomes alignments, Drosophila 12 Genomes Consortium 2007), in which
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multiple whole-genome alignments of Drosophila species were generated by Mercator 

(an orthology mapping program, http://www.biostat.wisc.edu/~cdewey/mercator) and 

MAVID (a multiple alignment program, Bray and Pachter 2004). The whole-genome 

alignments of D. melanogaster (BDGP assembly release 4) and D. yakuba (Washington 

University Release DroYak2.1 reconciled with Arachne/Celera assemblies) were 

constructed with 112 Mercator assembled orthologous contigs with the average length of 

l,063,528bp for sequences from D. melanogaster. The coordinates for each contig were 

specified with positions in the D. melanogaster genome sequence.

Since we knew the positions of all TE sequences/fragments in the D. melanogaster 

genome, we can identify the orthologous TEs in D. yakuba by searching for the 

corresponding sequences to D. melanogaster TE sequences according to the whole- 

genome orthology alignments. We tried to eliminate the possible noise in our alignments 

introduced by recent transpositional events of LTR in D. melanogaster (Bergman and 

Bensasson 2007) and by those of INE-1 in D. yakuba (Yang et al. 2006), by excluding 

any TE alignment whose lOObp flanking regions contain TE fragments that are from the 

same family, since these TEs may have been newly inserted within or next to older 

remnants (from the same family) and would compromise alignments for real orthologous 

TEs. We also checked the orthology of TEs by examining alignments of flanking 

sequences with 50bp in length at both 5' and 3' ends of TEs manually. We randomly 

selected 50 genes and found that the alignment quality was reasonably good for flanking 

sequences (i.e., mean divergence for flanking sequences of these 50 genes was -0.25, 

and none of divergences of these flanking sequences exceeded 0.50). We then extracted
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the pairwise alignments of orthologous TEs from the whole-genome alignments of D. 

melanogaster and D, yakuba. These alignments were then refined using MCALIGN2, a 

pairwise alignment method with an explicit model for indel evolution (Wang et al. 

2006). We excluded all alignments with fewer than 80 valid bases (i.e., A, G, C or T) in 

any species. We also masked sections within TE alignments in which there were short 

lengths of bases surrounded by long gaps, and/or removed alignments whose divergence 

was >0.50 (approximately twice the divergence between D. melanogaster and D. 

yakuba). In the end, we extracted -2,500 orthologous TE elements/fragments in 

intergenic regions, -500 in intronic regions and 42 in exonic regions. We show the 

procedure of identifying TEs and extracting orthologous elements/fragments in 

Supplementary Figure 4.1. We also show some cases of orthologous TE alignments 

between D. melanogaster and D. yakuba in Supplementary Figure 4.2.

We also extracted whole orthologous noncoding (intergenic/intronic) sequence 

alignments between D. melanogaster and D. yakuba from the AAA 12 genomes 

alignments. Any noncoding sequence in D. melanogaster whose orthologous sequence 

did not exist in D. yakuba was deleted. This left us 9,207 and 35,782 orthologous 

intergenic and intronic sequences in D. melanogaster and D. yakuba, respectively. All 

divergence estimates were corrected for multiple hits (Kimura 1980). Mean divergence 

was calculated on a per site basis, and 95% confidence intervals were calculated by 

bootstrapping by TE element or noncoding sequence.

Using the same strategies, we also extracted 130, 187 and 157 orthologous TE 

fragments in promoter regions, distal 5' regions and proximal 3' regions from pairwise
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orthology alignments between D. melanogaster and D. yakuba, respectively. These TE 

alignments cover 13,306 nucleotides in promoter regions of D. melanogaster (-34% of 

TE sequences identified in these regions). For distal 5' regions and proximal 3' regions, 

25,963 and 14,108 nucleotides in D. melanogaster are covered, making up 31% and 

30% of the total TE- derived nucleotides in each region, respectively. Thus, more than 

65% of TE-derived sequences from these three regions in D. melanogaster do not have 

any ortholog in D. yakuba, or they (orthologs) tend to be too diverged to be recovered. 

Most of these orthologous TEs are LTR and INE-1 fragments, especially in promoter 

and proximal 3' regions. Within LTR orthologous fragments, rooj fragments are the 

most abundant (-70%).

4.4. Results and Discussion

Representation of TEs in intergenic andintronic regions of euchromatin

It has been shown that the centromere-proximal regions of each major chromosome 

arm have a much higher density of TEs (-4.7 times on average) than elsewhere, and 

major TE classes tend to have different distributions between chromosomes (Kaminker 

et al. 2002). Here, we aimed to investigate the distribution of TE-derived sequences in 

euchromatin in a gene-centric approach, by comparing distributions of TE-derived 

sequences amongst intergenic, intronic and exonic regions across the genome.

Consistent with the previous study (Kaminker et al. 2002), we found that the number of 

LTR elements/fragments is much higher than that of LINE and TIR elements/fragments
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Figure 4.1. - Proportion of LTR, LINE and TIR derived nucleotide sites in intergenic, intronic 
and exonic regions in D. melanogaster. Here, we also show proportions of INE-1 (a type of TIR 
elements) and rooj (a type of LTR elements) separately due to their huge abundance. 95% CIs 
are shown by bars.

in both intergenic and intronic regions (i.e., >2 times the number of LINE and TIR 

fragments, Figure 4.1). Major TE classes are very similarly distributed between 

intergenic and intronic regions of euchromatin (Wilcoxon test,/> = 0.82), except that the 

proportion of TIR-derived sequences in intronic regions is significantly higher than that 

in intergenic regions (p < 0.0001). This result is mainly explained by the higher 

proportion of INE-1 elements/fragments in intronic sequences (Figure 4.1). The possible 

explanation for this could be that intergenic sequences are, on average, much longer than 

introns, and it has been demonstrated that long noncoding sequences are selectively 

more constrained than short ones (Haddrill et al. 2005; Halligan and Keightley 2006). 

Thus, many INE-1 insertions in long noncoding sequences may have been removed by 

natural selection and did not become fixed in the population. This would result in
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relatively more fixed INE-1 elements in short noncoding sequences, giving rise to the 

bias towards introns. More INE-1 insertions in introns than in intergenic sequences have 

also been observed in a recent study of evolutionary dynamics of INE-1 in 12 

Drosophila species (Yang and Barbash 2008). In total, TE-derived sequnces account for 

-6% of the nuclear content in noncoding (intergenic/intronic) regions of euchromatin in 

our data, consistent with the previous estimate (Quesneville et al. 2005).

About 40% of LTR elements/fragments in intergenic and intronic regions are rooj 

fragments, a Pao family retrotransposon. Within all 686 and 154 rooj TE 

sequences/fragments in intergenic and intronic DNA sequences, we recovered 50 

(-7.3%) and 19 (-12.3%) elements/fragments whose length is more than 90% of the 

canonical length (>8000bp in length), respectively. Most of the roo_I fragments in 

noncoding regions (~80%) are therefore short ancient remnants (with length of less than 

10% of the canonical length), assuming long fragments are from more recent 

transpositions. Some of these short fragments may result from element nesting (i.e., TEs 

have inserted within another element), and LTR ehnents are believed to be nested more 

often than either LINE or TIR elements (Kaminker et al. 2002; Bergman et al. 2006). 

Furthermore, although it has been demonstrated that the majority of LTR families show 

a pseudogene-like mode of evolution, this has not been established as a general pattern 

for all LTR and LINE families (Bergman and Bensasson 2007). In fact, Bergman and 

Bensasson (2007) have found evidence that purifying selection has operated on the 

terminal branch substitutions inferred to occur since retrotransposon insertion for several
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LTR families. Thus, it is possible that some roo_I elements/fragments may have been 

constrained and co-opted for a function by the host.

Gypsy family retrotransposons (e.g. gypsy, gypsy2, gypsyS, gypsy!2, stalker, stalker2, 

burdock, invader!) are also quite common in intergenic and intronic regions, but most of 

them comprise only -1% of the total LTRs each. More than 50% of TIR elements are 

INE-1 elements/fragments. The distribution of length of these elements/fragments is, 

however, not as skewed as that of roo_I elements/fragments. It has been shown that 

INE-1 elements/fragments are among the fastest evolving sites in the Drosophila 

genome (Singh et al. 2005; Wang et al. 2007).

Representation ofTEs in exonic regions of euchromatin

It has been suggested that TEs may also contribute their coding potential to the host 

gene (Nekrutenko and Li 2001). We identified TE-derived sequences in exonic regions 

by first searching for overlapping sections between positions of identified TEs and 

positions of exons for all 12,474 euchromatic genes in our dataset. To make sure that 

these identified TEs in exons were real protein-coding sequences (due to possible 

incomplete/overlapping ORFs), we revisited their properties using the UCSC D. 

melanogaster Genome Browser Gateway (http://genome.ucsc.edu/cgi-bin/hgGateway). 

We only included those elements that (1) also appeared in exons or crossed intron/exon 

boundaries according to the latest version of FlyBase annotations, and (2) were also 

supported by D. melanogaster ESTs that have been spliced.
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These stringent criteria resulted in just over 30 genes (-0.26%) that contain TE-derived 

sequences in their exons. TEs only accounted for -0.021% of the nuclear content in 

exonic regions. The majority of these TE-derived sequences (-90%) are roo_l 

fragments, whereas the others are just simple repeats and some TART fragments 

(located in telomeres). The rooj fragments in exonic regions are mostly short 

fragments, spanning from position ~500bp to -lOOObp within the canonical sequence 

(>8000bp in length). LTR retrotransposons usually have long terminal repeats and 

slightly overlapping ORFs for gag, prt, pol and env genes that encode a viral particle 

coat (GAG) and a reverse transcriptase (RT), ribonuclease H (RH), and integrase (IN) to 

provide enzymatic activities for making cDNA from RNA and inserting it back into the 

genome (Kazazian 2004). The rooj fragments in exonic regions (length ranging from 

80bp to >400bp) appear to be close to the transcription start sites of the canonical 

sequence, and sites in this region may have more ability for gene regulation and/or 

protein-coding potential for the host genes than those elsewhere.

If these TE-derived sequences are not real protein-coding sequences subject to selective 

constraint, the ratio of point substitution across codon positions of the host exons in 

these TE fragments is expected to be ~ 1:1:1 for first:second:third codon positions. We 

carried out this test by extracting alignments of exonic TEs between D. melanogaster 

and D. yakuba from AAA 12 Drosophila genomes alignments available in the UCSC 

Genome Browser. Annotation for exons in D. melanogaster was obtained from FlyBase 

(release 4.3). We found that the mean divergence of the third codon position was 

significantly higher than that of the first and second codon positions for those TE-
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Table 4.1. Results of gene Ontology (GO) terms overrepresentation test for those 32 genes 
containing TE-derived sequences within their exons in terms of molecular function, biological 
process, cellular component and also chromosome position using GeneMerge.

GMRGJTerm Pop_frac Study_frac Raw_es e-score Description
Molecular function
GO:0003700 0.028085 8/32 2.09E-06 7.30E-05 transcription factor activity 
GO:0043565 0.0142414 4/32 0.001047 0.036658 sequence-specific DNA binding

RNA polymerase II transcription 
GO:0003702 0.0081152 3/32 0.002169 0.075926 factor activity

Biological process
central nervous system

GO:0007417 0.0046941 3/32 0.000442 0.047774 development 
GO:0030154 0.0007956 2/32 0.000279 0.030134 cell differentiation 
GO:0045449 0.0121728 4/32 0.000582 0.062875 regulation of transcription

regulation of transcription, DNA- 
GO:0006355 0.0167078 5/32 0.000173 0.018694 dependent

regulation of transcription from 
GO-.0006357 0.0355637 7/32 0.000107 0.011527 RNA polymerase II promoter

Cellular component
GO:0005634 0.0755828 10/32 8.05E-05 0.000805 Nucleus_____________

GMRGJTerm: the Gene Ontology (GO) terms, which can be found in FlyBase.
Pop_frac: fraction of contributing genes for such GO term in the population genes (12,474 genes in total).
Study_frac: fraction of contributing genes for this GO term in the study genes (214 genes).
Raw_es: raw e-score for the significance test.
e-score: adjusted e-score for the significance test by GeneMerge.
Description: description of the corresponding GO terms

derived sequences in exons (p < 0.0001), with the mean divergence as, codon position 1: 

0.026 [95%CI: 0.015 - 0.036], codon position 2: 0.032 [95%CI: 0.016 - 0.048] and 

codon position 3: 0.126 [95%C1: 0.096 - 0.156]. We also calculated the mean 

divergence of the three codon positions for randomly selected non-TE derived sites of 

exons where TEs were inserted as codon position 1: 0.027 [95%CI: 0.010-0.043], codon 

position 2: 0.042 [95%CI: 0.025 - 0.060], and codon position 3: 0.116 [95%CI: 0.092 - 

0.140]. Patterns of codon position substitutions for exonic TEs are then very similar to 

those of non-TE derived sites from the same exons (Wilcoxon test,/? = 0.75). This result
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suggests that TE-derived sequences in exons appear to be real protein-coding sequences 

for the host gene, rather than false positives.

To further test the role played by these TE fragments in exons, we carried out the Gene 

Ontology (GO) terms overrepresentation test for those 32 genes containing TE-derived 

sequences within their exons in terms of molecular function, biological process and 

cellular component using GeneMerge (Castillo-Davis and Hartl 2003). We list 

significant results in Table 4.1. It is clearly shown that genes associated with 

transcription factor activity and sequence-specific DNA binding are more likely to 

recruit TE fragments, mostly roo_I, as parts of their exons. It is believed that LTR 

elements carry more transcription regulating signals than LINE/TIR elements (van der 

lagemaat et al. 2003; Thornburg et al. 2006); they are therefore rarer in gene regulatory 

regions and protein-coding regions, probably because a high number of regulatory 

signals are more likely to alter gene expression to a greater extent and have deleterious 

effects (Thornburg et al. 2006; Fablet et al. 2007). However, LTR fragments (mainly 

roo_I) strongly dominate TEs in exonic regions in our data. This may appear to be an 

indication of positive selection for some rooj fragments being recruited for a function 

when urgent recruitment is needed to cope with the changes of genetic environment 

(Ludwig et al. 2000; Fablet et al. 2007).

It is also noteworthy that we found genes associated with central nervous system 

development and cell differentiation are more likely to have TE-derived sequences in 

their exonic sequences (Table 4.1). Recruitment of TE-derived sequences in coding 

regions may be important for the neural system development. This is supported by
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previous observations that most of the genes exhibiting TE regulatory regions are 

involved in functions such as the stress response and immunity in Drosophila, and 

response to external stimuli in Escherichia coli (Arnault and Dufournel 1994; Rocha et 

al. 2002; Fablet et al. 2006). Creation of new genetic variability from the increase in TE 

mobility thus can be useful in the face of stressful conditions (Capy et al. 2000), e.g., for 

central nervous system development. We also found that genes associated with 

regulation of transcription (e.g., DNA-dependent or from RNA polymerase II promoter) 

are more likely to recruit TE sequences/fragments. TE-derived sequences may serve as a 

direct source of transcription regulating signals for the host (Thornburg et al. 2006), or 

have impact on the regulation of transcription through their "epigenetic" effect (Biemont 

and Vieira 2006; Slotkin and Martienssen 2007). We also found that retrotransposons 

(mainly rooj) are more likely to localize in the nucleus. However, this localization may 

appear to be element-specific. This is suggested by the observation that element-specific 

localization of Drosophila retrotransposon gag proteins occurs in both nucleus and 

cytoplasm (Rashkova et al. 2002).

Density ofTEs within intergenic and intronic sequences of euchromatin

In this section, we investigated how TE fragments reside within intergenic and intronic 

regions. We knew the start and end coordinates for each intergenic and intronic 

sequence within the D. melanogaster genome. We divided each intergenic and intronic 

sequence into ten non-overlapping length percentage portion sections (e.g. 0%-10%, 

10%-20% of the whole length) from the start to the end. Note that this percentage 

section order (i.e., 0%-10%, 10%-20% to 90%-100%) is not according to any protein

142



30.00%

« 25.00% -

I
•o 20.00% -

1
Tp 15.00% -
111

'o 10.00%

c 5.00% i
« 1Q. 0.00% «J

T A 1 1 _

il

I t 1 [ I 1 I • Intergenic

D Intronic

^

J_

Position (percentage of total length)

Figure 4.2. - TE density within each percentage portion category. The whole 
intergenic/intronic sequences were divided into 10 nonoverlapping percentage sections. Within 
each section, the proportion of TE-derived nucleotide sites was investigated. 95% CIs are shown 
by bars.

translation order, but only the coordinate order within the genome. Within each 

percentage section we investigated the proportion of TE-derived nucleotide sites. We 

carried out this test on 1,879 intergenic and 754 intronic sequences where TE fragments 

were located. Other intergenic and intronic sequences that do not contain TEs were 

excluded from this analysis. As expected, in both intergenic and intronic regions, there 

are significantly more TE-derived sequences in the middle sections (e.g. 40%-50%, 

50%-60%) than in sections that are closer to the edges (Figure 4.2). This is probably 

because the edges of intergenic and intronic sequences are more likely to be involved in 

gene regulation of their adjacent genes, and TE insertions within such regions may cause 

disruption for such functions (e.g. transcription initiation or termination), and will
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eventually be deleted by natural selection (Biemont et al. 1997; Charlesworth et al. 

1997; Duret et al. 2000; Jordan et al. 2003; Thornburg et al. 2006). There is also a clear 

difference in the percentage of TE-derived sequences between section 10%-20% and 

80%-90%, but the direction of this difference is opposite between intergenic and intronic 

sequences (Figure 4.2). Since our definition of percentage sections is merely coordinate- 

based, the reason behind this difference (e.g., from the point view of gene regulation for 

the host gene) is unclear. This difference may just be the artifact of our method dividing 

the sequences. We also found that the density of TE-derived sequences is significantly 

higher in intronic regions than in intergenic regions for percentage sections from 30%- 

40% to 80%-90% (p < 0.001, Figure 4.2). This again may result from the fact that 

intronic sequences are, on average, much shorter than intergenic sequences, and 

selective constraints tend to be lower in short noncoding sequences (Haddrill et al. 2005; 

Halligan and Keightley 2006).

Divergence of orthologous TEs in intergenic, intronic and exonic regions of 

euchromatin

We also wanted to learn whether there are any differences in evolutionary rates 

between major TE classes, and also, we wanted to test whether TE fragments from 

different genomic regions (i.e., intergenic, intronic regions and exons) have different 

divergences. We carried out these tests by calculating interspecies divergence of 

orthologous TE fragments between D. melanogaster and D. yakuba across the 

euchromatic genome.
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Figure 4.3. - Mean divergence of orthologous TEs of D. melanogaster and D. yakuba in 
intergenic, intronic and exonic regions. We show results for three major TE classes (LTR, LINE 
and TIR). We also show results for two abundant TEs, INE-1 and rooj elements separately. We 
then show the mean divergence for all TEs in the three regions. 95% CIs are shown by bars. We 
also show the mean divergence for synonymous (Ks ) and nonsynonymous (KA) sites (Haddrill et 
al. 2007) by solid lines as comparisons. 95% CI are shown by dashed lines.

As shown in Figure 4.3, we found that orthologous LTR and LINE fragments have 

very similar divergences in both noncoding and coding regions. However, their 

divergences are significantly lower than that of TIR fragments (p < 0.001) in both 

intergenic and intronic regions. We failed to recover any orthologous TIR fragments in 

exonic regions. Note that we also did not find any orthologous LTR fragments on 

chromosome 4. Within LTR fragments, rooj fragments tend to be evolving even more 

slowly than other LTR fragments. This is significant for intergenic regions (p < 0.05), 

but not for intronic regions (p = 0.46). We also show the mean divergence for 

synonymous (Ks) and nonsynonymous (KA ) sites between D. melanogaster and D. 

vakuba, calculated by Haddrill et al. (2007). We found that all orthologous LTR, LINE
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and TIR fragments had significantly lower mean divergence than synonymous sites 

(Figure 4.3). This result suggests that TE fragments may be under substantial 

constraints, most of which affect LTR/LINE fragments. Within TIR elements/fragments, 

INE-1 fragments appear to be evolving faster than the average of the other element 

families among TIRs (significantly in intergenic regions, p < 0.05). However, they are 

still evolving significantly more slowly than synonymous sites (Figure 4.3), suggesting 

that some INE-1 fragments may still be selectively constrained. This result contradicts 

the finding that INE-1 elements are the fastest evolving sites between D. melanogaster 

and D. simulans, even evolving marginally faster than synonymous sites (Wang et al. 

2007).

As expected, the total mean divergence for all TE fragments in noncoding 

(intergenic/intronic) regions is significantly higher than that for all TEs in exonic regions 

(p < 0.0001, Figure 4.3). This is because sites within exonic regions are, on average, 

more selectively constrained than those in noncoding regions, although there has been 

mounting evidence that some sites in noncoding regions may be as constrained as sites 

in coding regions (selection coefficients may be very different, Halligan et al. 2004; 

Siepel et al. 2005; Halligan and Keigthley 2006).

Divergence ofortholgous TEs from different crossing over environments

It has been shown that the density of TIR elements is significantly negatively correlated 

with recombination rate, but this tendency is not clear for LTR and LINE elements 

(Rizzon et al. 2002). It is therefore possible that our result of TIR elements/fragments
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Figure 4.4. - Mean divergence of orthologous TEs of D. melanogaster and D. yakuba from 
different crossing over regions (high, intermediate, low frequency of crossing over and no 
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show the mean divergence for synonymous (Syn) and nonsynonymous (Non-sys) sites in each 
crossing over region (Haddrill et al. 2007). 95% CIs are shown by bars.
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evolving faster than LTR and LINE elements/fragments is strongly influenced by the 

distribution of TEs in different crossing over regions for those TE classes. There are 

many more orthologous TIR elements/fragments in regions with low rate of crossing 

over than orthologous LTR and LINE elements/fragments. The difference in the 

coalescence time in the common ancestor and/or in the efficacy of selection on some TE 

fragments (if it exists) between different crossing over regions will affect our divergence 

test (Haddrill et al. 2007; Wang et al. 2007). We therefore divided orthologous TE 

fragments from intergenic and intronic regions of D. melanogaster and D. yakuba into 

four crossing over frequency categories (high, intermediate, low frequencies of crossing 

over and no crossing over) based on the cytologic map location described in 

Charlesworth (1996), and tested the difference in mean divergence within and among 

categories.

We found that orthologous TIR fragments evolve relatively faster than LTR and LINE 

fragments, and this seems to be a general tendency for almost all categories of crossing 

over in both intergenic and intronic regions (Figure 4.4). The difference in mean 

divergence between TIR fragments and LTR, LINE fragments appears to be significant 

for intergenic TEs in regions with high, intermediate and low rate of crossing over (p < 

0.01), but not in regions of no crossing over (p = 0.48 between intergenic TIR and LTR 

fragments, p = 0.76 between intergenic TIR and LINE fragments, Figure 4.4.A). For 

intronic TEs this difference appears to be significant only in regions with high rate of 

crossing over (p < 0.05, Figure 4.4.B). If we assume that all three types of TE fragments 

have similar ancestral population sizes (i.e., the coalescence time in the common
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ancestor contributes on the total divergence time similarly for all three major TE 

classes), our results suggest that orthologous LTR and LINE fragments may have been 

more selectively constrained than orthologous TIR fragments throughout the time since 

the split of D. melanogaster and D. yakuba, especially in regions with high rate of 

crossing over, because the selective efficacy tends to be strongest here. This difference 

becomes less clear in regions that lack crossing over, possibly due to a lack of data 

(Figure 4.4).

It is noteworthy that within each TE class, we found that the mean divergence appeared 

to be negatively correlated with rate of crossing over. This pattern became clearer after 

we grouped different TE fragments from the same crossing over environment together 

(total TEs, Figure 4.4). This is consistent with a previous study of orthologous INE-1 

elements between D. melanogaster and D. simulans (Wang et al. 2007). We argued this 

correlation may result from the some form of selection operating on TE 

elements/fragments, which has higher efficacy in regions with high frequency of 

crossing over. Our results appear to support this argument, and indicate further that 

selection on TEs is possibly prevalent for all major TE classes, and the strength of the 

selection, however, may be stronger for LTR elements/fragments, possibly due to more 

transcriptional regulatory signals in them.

We also compared the mean divergence of all TEs with that of synonymous and 

nonsynonymous sites in each recombinational environment shown by Haddrill et al. 

(2007). We found that the mean divergence of all TEs was significantly lower than that 

of synonymous sites (in high, intermediate and low recombinational regions), but
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significantly higher than that of nonsynonymous sites (in all recombinational regions) 

(Figure 4.4). The difference in mean divergence between TEs and synonymous sites 

increases with the rate of crossing over. This, again, indicates that there may be some 

amount of selection operating on the evolution of TEs (LTR especially) since the 

divergence between D. melanogaster and D. yakuba, at least for those in regions of 

high/intermediate frequencies of crossing over.

Relationship between TE insertions and their host noncoding sequences

It is generally agreed that euchromatic TE insertions are deleterious, mostly due to their 

local effects (e.g. that affect gene activity, or that alter chromatin structure) on the host 

genes. Thus, we wanted to test whether there is a relationship between fixed TE 

fragments and some key features of their host noncoding sequences, such as length and 

divergence.

We found that, as expected, there was a significantly positive correlation between 

length of noncoding sequences and the fraction of sites that are derived from TEs for all 

intergenic sequences and introns (Spearman's correlation r = 0.237, p < 0.0001 for the 

intergenic; Spearman's correlation r = 0.143, p < 0.0001 for the intronic). Short 

noncoding sequences (e.g. most introns) are not long enough to contain long canonical 

TE insertions, especially for LTR and LINE elements/fragments (that usually have very 

long canonical sequences up to ~10,000bp in length). It has been documented that there 

is a negative correlation between divergence and length of noncoding sequences in D. 

melanogaster and D. simulans (Haddrill et al. 2005; Halligan and Keightley 2006). We
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found the same pattern for both intergenic and intronic sequences in D. melanogaster 

and D. yakuba (intergenic: Spearman's correlation r = -0.115, p < 0.0001; intronic: 

Spearman's correlation r = -0.255, p < 0.0001). We then found that there was a 

significantly positive correlation between fraction of TE fragments and divergence of 

orthologous noncoding sequences, although the relationship was not strong (intergenic: 

Spearman's correlation r = 0.078, p < 0.0001; intronic: Spearman's correlation r = 

0.021, p < 0.0001). It is thus possible that high levels of divergences could simply result 

from high levels of fractions of TEs in the same non-coding sequences. However, the 

partial correlation coefficient for divergence versus length of noncoding sequences, 

controlling for the fraction of TEs, was -0.134 (p < 0.0001) for intergenic sequences and 

-0.261 (p < 0.0001) for introns. The partial correlation coefficient for divergence versus 

fraction of TEs (controlling for length) was 0.121 (p < 0.0001) for intergenic sequences 

and 0.060 (p < 0.0001) for introns. The partial correlation coefficient for fraction of TEs 

versus length (controlling for divergence) was 0.188 (p < 0.0001) for intergenic 

sequences and 0.151 (p < 0.0001) for introns. These results suggest that the relationship 

between length of noncoding sequences and divergence is not a confounding effect of 

fraction of TEs, despite the positive relationship between divergence and fraction of 

TEs.

We also wanted to know if any heterogeneity exists in preference of host noncoding 

sequences between TE classes, by correlating divergence of orthologous TEs and length 

of noncoding sequences where they reside. We found that there was a significantly 

negative correlation between divergence of TEs and length of noncoding sequences, and
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this correlation was stronger for introns (intergenic: Spearman's correlation r = -0.046, p 

= 0.0047; intronic: Spearman's correlation r = -0,24, p < 0.0001). Low diverged 

orthologous TEs (e.g., LTR and LINE elements/fragments) tend to reside in relatively 

longer noncoding sequences than highly diverged TEs (TIR elements/fragments) do. For 

example, the mean length of intergenic sequences that contain TIR elements/fragments 

is 31,930bp (95% CI: 30,158bp - 33,704bp), significantly shorter than that of intergenic 

sequences that contain LTR/LINE elements/fragments, 40,122bp (95% CI: 37,84Ibp - 

42,402bp). This is possibly because canonical lengths of LTR/LINE elements/fragments 

are, on average, much longer than those of TIR elements/fragments. However, we still 

found that the number of orthologous TIR elements/fragments was much lower than that 

of orthologous non-TIR (LTR/LINE) elements/fragments in long noncoding sequences. 

Our results suggest that many TIR insertions in long noncoding sequences (with higher 

selective constraints) may have been removed by selection due to their deleterious local 

effects, and did not become fixed. The presence of relatively larger number of non-TIR 

elements/fragments in long noncoding sequences possibly implies that some LTR/LINE 

remnants may have been co-opted for a function as regulatory elements. This may 

contribute partially to lower divergence in long noncoding sequences.

Representation of TEs in promoter regions, distal promoter regions and proximal 3' 

regions

We have shown that TE density tends to be higher in positions farther from protein- 

coding regions (Figure 4.2). We then wanted to investigate the representation of TE 

fragments in gene regulatory regions (low TE density regions), since it is believed that
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TEs may play important roles in regulating gene expression. Here, we compared TE 

insertions in promoter regions, as compared to those in adjacent distal 5' regions and 

proximal 3' regions.

Among 6,763 genes of D. melanogaster analyzed, we found that 268 (-4.0%) contain 

TE-derived sequences in promoter regions, 295 (-4.4%) contain TE fragments in 

proximal 3' regions and 388 (-5.7%) contain TE fragments in distal 5' regions. These 

figures are much lower than the fraction of promoter regions that contain TE-derived 

sequences in human (-25%). Promoter regions also have the lowest total number of 

nucleotides derived from TE sequences (-1.0%), significantly lower than the percentage 

of TE-derived nucleotides in distal 5' regions, -2.2% (p < 0.0001, Figure 4.5). This is 

probably because TE insertions proximal to coding regions are, on average, more likely 

to be deleterious to the host, and are removed by negative selection. Note that these 

figures are still much lower than the percentage of nucleotides derived from TEs in
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Table 4.2. Representation of TE-derived sequence in promoter regions, distal 5' regions and 
proximal 3' regions.

Element class

Promoter regions
LTR
LINE
TIR
INE-1
Total

Distal 5' regions
LTR
LINE
TIR
INE-1
Total

Proximal 3'regions
LTR
LINE
TIR
INE-1
Total

Number of 
elements/fragments

119
34
30
121
304

145
49
64
212
470

121
34
28
138
321

Length of TE-derived 
sequences (bp)

12107
5116
3094
14445
34762

21660
10735
14873
27293
74561

15416
4141
4428
13583
37568

Percent of TE- 
derived sequences

0.36%
0.14%
0.09%
0.43%
1.03%

0.64%
0.32%
0.44%
0.81%
2.21%

0.46%
0.12%
0.13%
0.40%
1.11%

LTR: long terminal repeats; LINE: long interspersed nuclear elements; TIR: DNA transposons; INE-1: 
Drosophila interspersed nuclear elements. We separated INE-1 from other DNA transposons since they 
are the most abundant.

human promoter regions (-8%, Jordan et al. 2003). Note that proximal 3' regions have a 

very similar fraction of nucleotides derived from TEs (-1.1%) to promoter regions. 

However, the proportion of TE-derived sequences of those three regions is still much 

lower than the total proportion of TE-derived sequences of the whole noncoding 

sequences (-6.0%).

All three regions contain all types of common Drosophila TE fragments (Table 4.2), 

and LTR and INE-1 elements/fragments appear to predominate. It is noteworthy that the 

fraction of nucleotides derived from LTR is -2.5 times of that of nucleotides derived
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from LINE in promoter and proximal 3' regions (Table 4.2). This is very similar to the 

ratio of LTR to LINE elements for the whole genome (Figure 4.1). However, since LTR 

elements or fragments carry more transcription regulating signals than LINE 

elements/fragments, they are believed to be rarer in gene promoter regions and other 

regulatory regions (Thornberg et al. 2006; Fablet et al. 2007). This is supported by 

evidence found in human promoter regions that LTR insertions are much rarer than 

LINE insertions. In Drosophila, however, LTR elements still make up relatively more 

nucleotides in promoter regions than LINE elements. It is therefore possible that some 

LTR remnants may have been recruited to be parts of regulatory elements for the host 

via positive selection in Drosophila. Indeed, this is supported by a great body of 

evidence that LTRs serve as important regulatory elements for many genes and drive 

genome evolution in humans and Drosophila (van de Lagemaat et al. 2003; Kazazian 

2004).

However, this does not mean that other classes of TE fragments in promoter regions are 

not important with respect to donating transcription regulatory signals. On the contrary, 

using the Drosophila transcriptional cw-regulatory modules (CDMs) database, REDfly 

(Gallo et al. 2005), we found that a DNA transposon, transib4, overlaps with an 

enhancer sequence for the salivary gland secretion 3 (Sgs3) gene (FBgn0003373), which 

is associated with structural molecule activity and puparial adhesion (Mourrain et al. 

2000). We also found an unknown-typed D. melanogaster inverted repeat, ftz_dm, 

overlaps with a zebra element of the fushi tarazu (ftz) gene, a Drosophila Hox complex 

(HOM-C) gene, which is associated with transcription factor activity, sequence-specific
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DNA binding, and some other important biological processes (Lohr et al. 2001). These 

TE elements may have taken part in regulating gene expression for the local genes.

We also found that there was a strong positive relationship between TE density and 

distance to transcription start/end site in promoter and proximal 3' regions. The extent 

appears to be stronger when the distance is shortest. This again supports our previous 

finding that TE insertions are under stronger negative selection (such that they are 

removed from the population) when they are closest to the transcription start/end site.

Divergence ofTEs among promoter regions, distal 5' regions and proximal 3'regions

In the previous section, we have investigated the differences in representation of major 

TE classes among promoter regions, distal 5' regions and proximal 3' regions. However, 

we also wanted to investigate the differences in interspecies divergence for orthologous 

TE fragments amongst these three genomic regions.

As shown in Figure 4.6.A, orthologous TE fragments in promoter regions have the 

lowest mean divergence 0.147 [95% CI: 0.126 - 0.167], significantly lower than that of 

TE fragments in distal 5' regions, 0.189 [95% CI: 0.167 - 0.21 l,p< 0.05]. TE fragments 

in proximal 3' regions have a similar mean divergence to those in promoter regions. 

These patterns are still true when the factor of crossing over rate was considered (data 

not shown). It is possible that either element nesting or biased gene conversion may 

affect our divergence calculation for the true orthology. But one should note that the 

regions we chose to compare (promoter regions vs. distal promoter regions) are adjacent 

to each other with only 500bp in length (i.e., they should have similar genomic
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Figure 4.6. - Mean divergence of orthologous TEs between D. melanogaster and D. yakuba, 
for (A) TE-derived sequences and non-TE derived sequences in three genomic regions: proximal 
3' regions, promoter regions and distal 5' regions, and (B) TEs only in promoter regions. 95% CI 
were shown by bars.

background), thus there should be no preference for those events to occur in either of the 

two regions. It should not affect the relative difference in mean divergence between TE 

fragments from the two regions greatly, unless genes that contain TE fragments in 

promoter regions are, on average, more likely to have gene conversion or element 

nesting than genes that contain TE fragments in distal promoter regions. However,
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evidence for this preference remains absent. Our findings at least suggest that, compared 

to orthologous TE orthologous in distal promoter regions, those in promoter regions 

(closer to coding sequences) may have a greater potential to donate transcriptional 

regulatory signals to the host, and have become co-opted in one or both species.

The low interspecies divergence in promoter regions is mainly contributed by 

retrotransposons, LTR (rooj fragments mostly) and LINE elements, while INE-1 

fragments and other DNA transposons showed relatively higher mean divergence 

(Figure 4.6.B). This difference is significant between INE-1 and LTR fragments (p < 

0.05). It is noteworthy that orthologous INE-1 fragments in promoter regions also 

showed lower mean divergence than those in distal 5' regions (data not shown). We also 

found that mean divergence of TE fragment in promoter regions was lower than that of 

TE fragments in the whole intergenic regions for each major TE class, although the 

difference was not significant.

We also calculated mean divergence for nucleotides that are not derived from TEs in 

all three regions, and compared it with divergence of TE-derived sequences from the 

same region. Non TE-derived nucleotides always have significantly lower mean 

divergence than TE-derived nucleotides in all three regions (Figure 4.6.A). This suggests 

that, even though some TE remnants may be conserved between species and play some 

regulatory roles, non TE-derived sequences proximal to transcription start/end sites 

could still contribute the most to regulate gene expression (as promoters or enhancers). It 

has been suggested that TE-derived sequences serve as a pool of potential regulatory 

signals that are recruited by the host in response to changes of the genomic environment
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(Ludwig et al. 2000; Fablet et al. 2007). However, it is also possible that, since TEs tend 

to be lineage-specific, TE fragments involved in regulatory functions in D. melanogaster 

may not possess the same functions in D. yakuba, and would then evolve relatively 

faster in D. yakuba, or vice versa. It is noteworthy that, consistent with the pattern of 

TE-derived sequences, non-TE derived sequences in both promoter regions and 

proximal 3' regions also have significantly lower mean divergence than those in distal 5' 

regions (p < 0.05, Figure 4.6.A). This again suggests that mutations proximal to 

transcription start/end sites are, on average, deleterious with respect to gene function, 

and removed by selection.

4.5. Conclusions

The accumulation of genomic sequence data has led to a growing body of research to 

reveal the roles played by TEs in genome evolution and gene regulation. Here, we first 

investigated the distribution of three major TE classes (LTR, LINE and TIR 

elements/fragments) in intergenic, intronic and exonic regions of the D. melanogaster 

euchromatic genome. We found that LTR elements/fragments outnumber the other two 

TE classes in all regions we studied. Among all LTR elements/fragments, roo_I 

elements/fragments appear to be the most abundant; in particular, -90% of TEs we 

recovered from exonic regions are roo_I fragments. Genes exhibiting similarities to 

known TEs in their exons are mostly involved in functions such as transcription factor 

activity and sequence-specific DNA binding, and/or in biological processes such as cell
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differentiation and central nervous system development possibly in response to a 

stressful environment. We also found that orthologous LTR fragments show the lowest 

interspecies divergence between D. melanogaster and D. yakuba compared to 

orthologous LINE and TIR fragments. In addition, roo_I fragments appear to be 

evolving relatively more slowly than other TE families since the split of D. 

melanogaster and D. yakuba, while INE-1 elements/fragments, a family of 

nonautonomous DNA transposons, are evolving faster than the average of the other 

element families among TIRs. However, they all show significantly lower mean 

divergence than synonymous sites, suggesting that TE fragments may be under 

substantial selective constraints. It is possible that some TE fragments (especially LTRs) 

are more likely to be co-opted for a function (e.g. gene regulation) by the host, since 

LTR elements/fragments usually carry more transcriptional regulatory signals than other 

TE fragments. Thus, they have become more selectively constrained between species. 

We also showed that orthologous LTR/LINE elements/fragments tend to reside in longer 

noncoding sequences than orthologous TIR elements/fragments do. Higher selective 

constraint in long noncoding sequences may be partially due to the presence of more 

orthologous LTR/LINE elements/fragments.

The most important application of TE fragments being functional is the ability to 

potentially contribute their regulatory regions to form new host regulatory sequences, 

particularly when changes are needed to cope with changing genomic environments. We 

then investigated TE insertions in Drosophila promoter regions, compared to distal 5' 

regions and proximal 3' regions. We found that there are significantly fewer TE
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insertions in promoter regions than in the regions compared. TE density increases with 

the distance to CDS. This is thought to be due to stronger negative selection on 

deleterious insertions in regions closer to CDS. We also found that TE-derived 

sequences in promoter regions tend to evolve significantly more slowly than those in 

distal promoter regions between D. melanogaster and D. yakuba. TE fragments in 

promoter regions may have a greater potential to be co-opted if necessary in one or both 

species. Our findings indicate that TE fragments may have contributed substantially to 

the gene regulation, and even protein-coding, in Drosophila.
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4.7. Supplementary Materials

Supplementary Figure 4.1. Precedure of identifying TEs in D. melanogaster and extracting 
orthologous elements/fragments between D. melanogaster and D. yakuba.

Consensus 1 Consensus 2 Consensus 3

TE1 TE2 TE3

RepeatMasker

D. met

Step 1: Identifying TEs using RepeatMasker. Criteria include 
length of TE>80bp 
divergence between the consensus sequence and TE < 0.25

TEI TE2 TE3

D. me!

D. vak

Step 2: Identifying orthologous TEs using the AAA 12 Drosophi/a genomes alignments. We carry out 
removing TE alignments whose flanking sequences (lOObp in length) contain TE fragments 
from the same family in D. me/, e.g., distance between TE2 and TE3 > lOObp if they are from 
the same family.
checking alignments of flanking sequences (50bp in length) 
cleaning up the alignments
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Supplementary Figure 4.2. Some examples of orthologous TE alignments. 

Example 1: rooj fragment in the* third exon of the Atx2 gene.

D. melanogaster CCAGCAGCAACAGCAGCAG——CAGCAGCAGCAGCAGCAGCATCAAGTG 
D. yakuba CCAGCAGCAGCAGCAGCAGCCACAGCAGCAGCAG———————CAAGTG

D. melanogaster CAGCAGCAGCAACAGCGAGCGTTGCAGCAATCTGCCTCGCCACCGCAAC 
D. yakuba CAGCAGCAGCAACAGCGAGCGTTGCAGCAATCTGCCTCGCCACCGCAA-

D. melanogaster AGCAGCAGCAGCAGCAGCAACAACAGCAGC 
D. ya kuba ——————— CAACAGCAGCAACAACAGCAAC

Example 2: rooj fragment in one of the short exons of the CG31158 gene.

D. melanogaster CAACAGCAAGAGCAGCAATTCCAACAGCAGCAGCAGCAGCTTCACCAG- 
D. yakuba CAACAGCAAGAGCAGCAATTCCAGCAGCAGCAACAGCAGCTCCACCAG-

D. melanogaster —CAACATCTGCAGCAACAGCAGCAGCTTCAGCAGCAACATCAGCAGCA 
D. yakuba —CAACATCTGCAGCAACAGCAGCAACTCCAGCAGCAGCACCAGCAGCA

D. melanogaster GCAACAACAGCAGCAGC 
D. yakuba GCAACAACAGCA- ——-

Example 3: rooj fragment in the intergenic region in Chromosome 3R.

D. melanogaster ccgactgcagtagcagcaatggcagcagcg--—-ac----gcagcagcg 
D. yakuba ccgactgcagtagcagcaacagcagcagcgcagcaacagcagcagcagcg

D. melanogaster acagcaacacgttgcaatgccggtgcagcagcaacatcggcaggagaagc 
D. yakuba acagcaacacgttgcagtgccggtgcagcagcaacatcggcaggagaagc

D. melanogaster agcagcagcaacagcaacagcagc 
D. yakuba agcagcaacagcagcaacggcagc

Example 4: INE-1 fragment in the intergenic region in Chromosome 3L.

D. melanogaster gattttaggcaattatatataggaaacacgcat-- — ———-— — — 
D. yakuba tattttaagcaatcataaataagatatacatatggtccgataaatttgtt

D. melanogaster ------—---—tccc-ctgaataactaatttaaatttataaacttcta
D. yakuba tagttttagaaactccctttgaataactagcttcaaattggaagtctttg

D. melanogaster caagaattgcaattagtccgcttagaaaagccgtcttggaaactcgagac 
D. yakuba gaagaattgcaattagtc---- — — —— - — —— — - ——— - — — -a

D. melanogaster gcctga————————————————aagttcacctgcctggttatcagt 
D. yakuba gcctgaaagtgcacctgctcttcgagaagttcacctacgtggttatcagt

D. melanogaster ctgccttgcggcttatcggtcatctaaagttgggctggccaaatgccaca
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D. yakuba ctgctttgcggcttatcggtcatctaaagttgggctggccgaatgccaca

D. melanogaster ggttcgcgggacgctcttaagcggaaacatcccttggcgga——gtgcac
D. yakuba ggttcgcgggagactcataagcggaaacatcccttcacagagtggtgcac

D. melanogaster cacgagtgtgccagaaagtgtgctatggtttttcgcacgctggtggaaat
D. yakuba cacgagttcgccggaaagtgtgctatggtttttcgcacgctgttggaaat

D. melanogaster 
D. yakuba

tcgtggcccggacatcgat 
tcgtggcccggacatcgat

Example 5: DM_CR1A fragment (LINE class) in the intergenic region of Chromosome 2R

D. melanogaster 
D. yakuba

D. melanogaster 
D. yakuba

D. melanogaster 
D. yakuba

D. melanogaster 
D. yakuba

D. melanogaster 
D. yakuba

D. melanogaster 
D. yakuba

D. melanogaster 
D. yakuba

D. melanogaster 
D. yakuba

gttgggtacataacggagggagtttttcggcccagttaatgaaagttc— 
gttgcgtacataacggagggagtttttcggcccagttaatgaaagttcaa

— -aaattcgcgtccagaaaaggaaaccggttgattggtt————catc 
gtgaaattcgcgtttaaaaaaggaaaccggttgattgactcaaccgcatc

atcgatttccagatttcgggtccacttatgctcaaggttaaagctgatat 
atcgatttccagatgtcgggtccacttatgcccaaggttaaa-ctgattt

cggcactttgcgtttcttaactgcgtacagttgcacgacttggtctttga 
aggccatttacatttgttaactgcgtacagttgcacgaaatggtcttaga

gccgggaaatctacaggtagatggattttccattgactcagcag-——— 
gtagggaattcggcaggtagatgaatttcc——-actctgaagacatac

———————caggtagtcgaaagccagtttgaactggttttgctaggatt 
atatgtagacaggtagtctgcagccagtttgaactggtttagccagggat

ttatatgtgggaaaagactcaa--------------acccagcaggacac
gtaattgtgggaaaaggctcactgtcgtgtctgcgtacccggcaggacac

taatgttagtttgattggtttattgtttgtcgttcac 
aaatgtcagttggactgttttattatttgtcgtttac

164



Chapter 5.

Discussion and Conclusions

In eukaryotes, a large percentage of the total genome size of many organisms is 

comprised of noncoding DNA, known as the "C-value enigma" (Gregory 2001; Gregory 

2005, p.3-87). The human genome, for example, comprises only about 1.5% protein- 

coding DNA sequences, with the other 98.5% being various types of noncoding DNA 

((International Human Genome Sequencing Consortium 2001). Among these noncoding 

DNA sequences, -50% are constituted by transposable elements (TEs). Comparative 

sequence analysis on a genomic scale has opened the door to the systematic analysis of 

the relationship between noncoding DNA and biological/evolutional meaning. 

Estimating the fraction of noncoding DNA that is functionally important will help solve 

the C-value paradox/enigma, although it has been long thought that most noncoding 

DNA in multicellular eukaryotic genomes is unconstrained.

Interspecies sequence comparisons of noncoding regions reveal conserved features, 

many of which are likely to be cis-regulatory elements (Hardison 2000; Ludwig 2002). 

The recent genome-wide analysis of divergence and selective constraints in the 

noncoding sequences of yeast, Drosophila and mammals has revealed some unexpected 

evolutionary features of non-protein-coding DNA sequences. In yeast, regions of high 

conservation account for -34% of the total 5' upstream sequences analyzed (Chin et al. 

2005). In Drosophila, Halligan and Keightley (2006) have estimated that >50% of point 

substitutions in intergenic and intronic sequences are removed by negative selection.
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Furthermore, 5' and 3' flanking sequences up to 5kb away from coding sequence 

boundaries still appear to be under substantial selective constraints (-0.60) (Halligan and 

Keightley 2006). On the contrary, in murids and hominids, functional non-coding 

elements tend to be clustered mostly within 2kb surrounding protein-coding sequences 

(Keightley et al. 2005). It is likely that many/some TEs in these regions are selectively 

constrained, serving as cw-regulatory elements.

During the study of functional sequence evolution, the process of sequence alignment 

is often unmentioned, since it is a particularly difficult task when noncoding sequences 

are involved. Different alignment schemes can produce very different alignments, and 

produce very different results concerning the rate of substitutions. Comparison of a large 

amount of non-homologous nucleotide bases will make any subsequent analysis 

meaningless. Although numerous alignment tools have been developed to align genomic 

sequences, many of them appear to be inaccurate for aligning noncoding sequences, due 

to the relatively higher frequencies of indels in noncoding sequences than in protein- 

coding sequences. Pollard et al. (2004) have benchmarked eight pairwise alignment tools 

for aligning simulated Drosophila noncoding sequences, and found that AVID (Bray et 

al. 2003) and CLUSTALW (Thompson et al. 1994) have higher sensitivity over entire 

noncoding sequences as well as in constrained sequences, compared to the others. A 

stochastic model-based alignment method, MCALIGN (Keightley and Johnson 2004), 

appears to outperform both AVID (a heuristic method) and CLUSTALW (a score-based 

heuristic scheme), since it incorporates empirical information for distribution of indel
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lengths and rates of imdels in relation to point substitutions, making alignments more 

biologically meaningful.

In this project, an accurate global pairwise alignment method, MCALIGN2, has been 

developed for noncoding DNA sequence alignment. It is based on explicit models of 

indel evolution. The improvement of this method in relation to MCALIGN is that it 

employs a time-continuous pair HMM of seven states, offering a well-performed 

approximation to the "real" evolutionary process. Moreover, the optimizer in 

MCALIGN2 is guaranteed to find the optimal alignment for a given divergence time 

based on dynamic programming, and then to approach to the most probable alignment 

faster than the Monte Carlo method used in MCALIGN. This gives MCALIGN2 

advantages over MCALIGN when aligning relatively diverged/long sequences in terms 

of accuracy/speed.

The common feature of the two methods is that, instead of specifying 

match/mismatch/gap penalty parameters and scoring matrices for all unknown variables 

(e.g. in CLUSTALW), both rest on Bayesian statistics in which all the variables 

(observed data and the unknowns) in an inference problem are treated as random 

variables. There are two unknown variables, divergence time t and alignment a. We 

focus on alignment a, treating time t as a nuisance parameter, and obtain P(one unknown 

'a' | data) by integrating the posterior distribution as shown in Equation 2.2. Following 

this step, we can evaluate the appropriateness of the model and suggest improvements 

for alignment a based on P(a data). Besides the relaxation of the traditional fixed 

parameter settings, the other advantageous feature of Bayesian inference is that it fully
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accounts for the uncertainty of all unknowns in the posterior distribution (Liu and 

Lawrence 1999). It uses the posterior probability as the guiding principle to manipulate 

data and information. This probability-based model has been proved to be coherent and 

efficient for quantifying objective and subjective uncertainties, and has been accepted as 

an appropriate and competent method in almost all information-based technologies (Zhu 

et al. 1998; Liu and Lawrence 1999), such as economic evaluation of projects (Alien 

1991) and quantifying the climate system (Forest et al. 2002).

It has been shown that MCALIGN2 outperforms other available sequence alignment 

methods, using both simulated and real noncoding sequence data. More 

complicated/realistic models have been developed recently (e.g., a "long indel" model), 

but they tend to be extensively computationally expensive, making aligning long 

noncoding DNA sequences (up to several mega base pairs) realistically impossible. 

MCALIGN2 has been used to analyze genomic sequences in Drosophila (Halligan and 

Keightley 2006; Haddrill et al. 2007), rice (Guo et al. 2007) and Arabidopsis (DeRose- 

Wilson and Gaut 2007), and it has been downloaded by more than 500 users.

Comparative genomic analysis has offered a great opportunity to unravel the functional 

importance of noncoding DNA sequences, of which transposable elements are one of the 

major components in many eukaryotic organisms. It has long been thought that TEs are 

just genomic selfish elements, adding new copies of themselves into the genome 

regardless of the consequences (Bushman 2004). This unique feature of TEs may, 

however, help in normal gene regulation. We investigated the distribution and patterns 

of evolution (e.g., interspecies divergence) of TE-derived sequences from three major
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classes (LTR, non-LTR retrotransposons and DNA transposons) in the Drosophila 

euchromatic genome, using a gene-centric approach by comparing TE fragments among 

intergenic, intronic and exonic regions. Our main findings are listed and discussed as 

follow:

(1) As shown in previous studies, TEs are not randomly distributed within the 

genome. LTR elements outnumber LINE and DNA (also called TIR) elements in 

all intergenic, intronic and exonic regions. Among LTR retrotransposon, Pao 

family elements, roo_I, appear to be the most abundant, in particular in exonic 

regions (that is -90% of TEs in these regions are rooj). We also found that 

LTR/LINE fragments tend to reside within relatively longer intergenic and 

intronic sequences than TIR fragments do.

(2) Orthologous LTR/LINE fragments show a significantly lower mean interspecies 

divergence than orthologous TIR fragments between D. melanogaster and D. 

yakuba, and of these, roo_I fragments appear to be evolving the most slowly. We 

also showed that the mean divergence of all TE fragments is significantly lower 

than that of synonymous sites, but higher than that of non-synonymous sites in 

D. melanogaster and D. yakuba. This suggests some TE fragments are 

selectively constrained, and may have been co-opted by the host for a function.

(3) -1.0% of nucleotides in promoter regions of D. melanogaster are derived from 

TE sequences. TE density is relatively higher in regions proximal to coding
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sequences than in distal regions. TEs proximal to CDS also show relatively lower 

mean divergence than those farther from CDS.

(4) INE-1 elements are among the fastest evolving TEs in Drosophila. They appear 

to be evolving the fastest between D. melanogaster and D. simulans, faster than 

all four-fold sites. However, they appear to be evolving significantly more slowly 

than synonymous sites between D. melanogaster and D. yakuba. This may be 

because INE-1 elements have recently become active in the lineage of D. 

yakuba.

(5) Interspecies divergence of orthologous TE remnants is not simply due to genetic 

drift of neutral mutations that occurred after the divergence. Divergence could 

also be affected by ancestral polymorphisms, and some form of natural selection. 

Divergence of some fast evolving TEs and other fast evolving sites (e.g. sites 

within short introns and four-fold degenerate sites) is strongly influenced by the 

recombination environment in which they are located. The positive correlation 

between divergence and crossing over frequency suggests that differences in the 

level of the ancestral polymorphism could be the major force of determining the 

interspecies divergence, whereas the negative correlation between divergence 

and frequency of crossing over could be an indication of some form of natural 

selection operating on sites.

Our findings suggest that the evolution of transposable elements could be a very 

complicated process that is not simply determined by any single evolutionary force.
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Moreover, since TEs are diversely categorized due to the different transpositional 

mechanisms, evolutionary patterns could be quite different among those TE classes. This 

is supported by our findings that the distribution and interspecies divergence are quite 

different among TEs from the three major classes. Furthermore, LTR elements carry 

more transcriptional regulatory signals than LINE/DNA elements, thus, they may have 

more potential to be co-opted by the host when domestication is needed. This is 

supported by the observation that orthologous LTR elements show the lowest mean 

divergence, resting on the hypothesis that functionally important nucleotides tend to be 

conserved between species and show relatively lower interspecies divergence compared 

to relatively unconstrained sites. However, the conservation of the same TEs could differ 

among close species, since TEs tend to be lineage-specific. This is shown by the 

difference in divergence between orthologous INE-1 elements of D. melanogaster and 

D. simulans and those of D, melanogaster and D. yakuba, compared to the same class of 

sites. Overall, our findings suggest that TEs may have contributed substantially to the 

host genome evolution, by donating their own regulatory regions to form host regulatory 

sequences, or even coding for host proteins. This co-option process is possibly 

stimulated by the changing environmental conditions (e.g. caused by migration)

In the future, it will be interesting to develop a multiple alignment algorithm, based on 

the pairwise alignment algorithm and explicit models of indel evolution. Bayesian 

coestimation of phylogeny and sequence alignment has been proved to be the most 

appropriate approach for multiple alignments (Sankoff et al. 1973; Sankoff and 

Cedergren 1983; Lunter et al. 2005), because phylogeny and alignment are
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interdependent, and coestimation accounts for all the variables. However, this method 

tends to be very computationally expensive, with the complexity increasing dramatically 

with numbers and lengths of sequences. The alternative is to use a heuristic method, the 

progressive alignment strategy (Feng and Doolittle 1987; Barton and Sternberg 1987; 

Higgins and Sharp 1989), by aligning the most similar pairs of sequences first and 

aligning subsequent sequences according to a "guide tree". The multiple alignment 

algorithms will help carry out more comprehensive analysis on the evolution of 

noncoding DNA sequences, e.g., to search for conservative blocks within noncoding 

sequences among several related species and to further infer the ancestral structure.

Our findings support previous intuitions that noncoding DNA sequences have played 

very important roles in gene regulation, in particular for TEs, and some of them may 

even contribute their coding potential to the host. Transposable elements have shaped 

both host genes and the host genome, and they have become a useful and powerful tool 

for understanding more about gene regulation/functions and genome evolution. One 

should note that to align homologous/orthologous noncoding sequences carefully and 

correctly is crucial to reveal the true evolutionary signature hidden in the vast amount of 

noncoding DNA. Thus, more attention should be paid to choose proper alignment 

methods and/or to design better evolutionary models for indels and point substitutions 

for particular sequences under study. Any subsequent analysis will then reveal the "true" 

evolutionary patterns based on the quality alignments. More and more attention and 

effort have been paid to study noncoding DNA sequences since the emergence and 

availability of whole genome sequences of many species. Hopefully, more surprising
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and currently unknown evolutionary features of noncoding DNA will be discovered in 

the near future.
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