
The development and application of a 

new algorithm for ocean geoid 

recovery. 

Jonathan Frank Kirby 

A thesis submitted in fulfilment of the requirements 

for the degree of Doctor of Philosophy 

to the 

University of Edinburgh 

1996 



Declaration 

This thesis has been composed .by myself and it has not been submitted in any 

previous application for a degree. The work reported within was executed by 

myself, unless otherwise stated. 



Abstract 

The thesis describes and tests a method to combine satellite measurements of the 

geoid height with shipboard and terrestrial measurements of the freeair gravity 

anomaly using Fourier transform techniques. Fast Fourier transforms enable very 

large data sets to be processed quickly, but require the data to be available on 

a complete and regular grid. New methods were devised that grid altimeter and 

marine gravity data, and which remove the long-wavelength errors associated 

with these measurements. 

Satellite altimeter data distributed along widely spaced groundtracks were 

differenced along track to reduce long-wavelength orbit errors (acknowledging 

that this underestimates the true slope), and any repeat track observations were 

averaged to reduce time-dependent oceanographic noise. The ascending and de-

scending along-track slopes were then gridded separately, using a kernel designed 

to extrapolate the observations smoothly into the gaps between tracks, at maxi-

mum computer efficiency. The spectral properties of the gridding operation were 

analysed by calculation of a transfer function. Then, using linear vector geom-

etry, grids of along-track slopes were transformed to grid-easting and -northing 

deflections of the vertical. Vertical deflection grids from any number of satellite 

missions can then be combined, and converted using Fourier techniques to give a 

grid of the geoid height. A grid of the freeair anomaly was also generated. 

The effect of datum errors in the shipboard gravity data was reduced by 

processing not gravity but along-track gravity gradient. An incomplete grid of 

freeair gravity anomalies was generated from the observed along-track gravity 

slopes, constrained by and improving the altimeter-derived freeair anomaly grid. 

This method produces a smoothed field, owing to the nature of the interpolation 

algorithm. Land gravity measurements were interpolated directly onto a separate 

grid as there was no similar long-wavelength error in the data. 

The combination algorithm performed a weighted superposition of the geoid 

11 



height and freeair anomaly grids in an iterative process, until the solution con-

verged and self-consistency was achieved. 

The algorithms were first tested on a simulated dataset, extracted from ac-

curate, high-resolution and self-consistent geoid and freeair anomaly models of 

the British Isles and North Sea. The geometry of real altimeter tracks from an 

area of equal size in the North Atlantic were superimposed on the British geoid, 

and simulated readings interpolated. A simulated shipboard dataset was created 

in a similar fashion, using the British freeair anomaly. These track data were 

then gridded and combined using the algorithms. The accuracy of the gridding 

and combination algorithms were assessed by comparing the simulated data with 

values interpolated from the generated grids at the equivalent spatial location. 

The standard deviation between the simulated ship freeair anomalies and the 

values interpolated from the altimeter-only freeair anomaly grid was 10.50 mgal; 

that between the simulated freeair anomalies and the values interpolated from 

the combined freeair anomaly grid was 4.54 mgal, showing an improvement upon 

the altimeter-only solution. 

A 5 km gridded model of the gravity field of the North Atlantic was then 

created from Geosat/ERM and Topex/Poseidon altimeter data, and marine and 

land freeair anomaly datasets. The accuracy of the gridding and combination 

algorithms were assessed by comparing the along-track slopes of the altimeter 

data with the slope values interpolated from the generated grid. This removed 

the effect of orbit error. The standard deviation between the Geosat data and 

the altimeter geoid grid was 6.95 irad; that for the Topex data was 6.75 irad. 

Comparing the satellite data with the combined geoid, the standard deviations 

were 6.81 arad for Geosat and 6.56 prad for Topex. The standard deviation 

between the ship data and the altimeter freeair anomaly field was 13.4 mgal; 

that between the ship data and the combined field was 10.2 mgal, showing a 

slight improvement in accuracy. This field also compared favourably with a field 

generated by Sandwell et al. (1995), using very densely distributed ERS-1 data. 

Analyses of the isostatic admittance and coherence were made on four areas 

extracted from the North Atlantic study area. Estimates of the elastic plate 

thickness and Moho depth were found from the generated gravity field and the 

Sandwell field, using the ETOPO5 relief model. Neither gravity model gave esti-

mates that agreed with the values obtained from previous studies. Furthermore, 

the results returned from a one-dimensional admittance analysis upon gravity 

and bathymetry data collected by a ship did not show agreement with the values 
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in the literature either. While this suggests a fault in the admittance algorithm, 

it could also be due to inaccurate data or faults in the theoretical isostasy models. 

Estimates of the elastic plate thickness from the coherence analysis generally 

did not agree with the values from previous studies. I suggest that a bathymetry 

grid that is partially derived from satellite altimeter data should not be used to 

calculate admittances, as a degree of correlation exists between the bathymetry 

and gravity field. Furthermore, I would propose the investigation of non-radially -

symmetric theoretical isostasy models to enable a thorough two-dimensional anal-

ysis 
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Chapter 1 

Introduction 

1.1 The gravity field of the Earth 

Geodesy, the study of the figure of the Earth, and gravimetry, the study of its 

gravity field, are intrinsically related disciplines. Determination of the shape and 

size of the Earth can, given its density distribution, provide information on its 

gravity field. Conversely, measurements of the gravity field can improve models 

of both the internal density distribution and the the physical shape of the Earth. 

The Earth's gravity field is highly variable from place to place: the largest 

difference in the acceleration due to gravity is between the equator and the poles, 

with the field over 5100 mgal larger at the latter. The regional perturbations to 

this field are considerably less than this and arise from irregular density distri-

butions within the body of the Earth. 

The force acting on a body at rest on the Earth's surface is the resultant 

of the gravitational force arising from the mass distribution, and the centripetal 

force due to the Earth's rotation. This system can be expressed in terms of a 

total potential, W, that satisfies the generalised Poisson equation: 

V 2 W =-4irGp + 2w , 	 (1.1) 

where V 2  is the Laplacian operator, p is the local density of the Earth, W, its 

angular velocity of rotation, and G is the gravitational constant. The aim of 

physical geodesy is determination of the function W. The surfaces W = WO , 

where W0  is a constant, are called equipotential surfaces. To a good approxima-

tion, the ocean surface follows an equipotential surface. This particular surface 

was proposed as the mathematical figure of the Earth by Gauss, and was later 
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Chapter 1. Introduction 	 2 

termed the geoid [Heiskanen and Moritz (1967)]. 

A model Earth can be represented as an oblate ellipsoid rotating about its 

minor axis. This is the reference ellipsoid. The external potential of this figure, 

the normal potential U, is completely determined by the shape of the ellipsoid, 

its total mass, and angular velocity [ibid.]. The total potential, W, can now be 

expressed in terms of perturbations to the normal potential by a small disturbing 

potential, T: 

	

W = U + T . 	 (1.2) 

T is the potential due to anomalous densities within the Earth, and is not depen-

dent upon its rotation. Therefore, as U can be determined mathematically, it is 

necessary only to measure T to determine W completely. This can be achieved 

through geodetic and gravimetric methods.. 

A useful property of T, and one which assists its computation, is that out-

side the attracting masses of the solid Earth, where p 0, T satisfies Laplace's 

equation, 

V2   = 0 . 	 (1.3) 

The solutions to eq.1.3 are called harmonic functions. These functions are ana-

lytic, i.e. they are continuous and have continuous derivatives of any order, but 

only outside the attracting masses. Within the body of the Earth T satisfies 

Poisson's equation. 

The gravity field at any point is defined as the gradient vector of the potential 

W, 

(1.4) 

It is the total acceleration (gravitational plus centripetal) experienced by a unit 

mass, and is normal to the equipotential surface passing through the point. The 

direction of the gravity vector is the direction a plumb line would hang, the 

vertical; thus equipotential surfaces are, by definition, horizontal everywhere. 

The orthometric height, H, of a point above sea level is the distance measured 

along the vertical from the geoid to the point. 

Similarly to eq.1.4, the gradient vector of the normal potential is the normal 

gravity: 

	

= —1U . 	 (1.5) 

Consider the situation in fig 1.1, where the geoid is compared with a reference 

ellipsoid of the same potential, Wo . The distance from a point P on the geoid 
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geoid 

Figure 1.1. The geoid and reference ellipsoid, showing the geoid height, N, and 
deflection of the vertical, e. 

projected along the ellipsoidal normal to a point Q on the ellipsoid is called the 

geoid height, N. The gravity anomaly is defined as the difference in magnitude of 

the gravity vector at P and the normal gravity at Q: 

(1.6) 

The angle € in fig 1.1 is the deflection of the vertical, discussed later. 

The first of two important formulae in physical geodesy is Bruns formula, 

which relates the geoid height to the disturbing potential [Heiskanen and Moritz 

(1967)]: 

N = 
ly 
	 (1.7) 

The second is the geodetic boundary condition, the so-called fundamental equa-

tion of physical geodesy [ibid]: 

(1.8) 
A yOh 
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where h is measured along the ellipsoidal normal. The equation relates the un-

known potential, T, to the measured quantity Lg, with 

=-2yJ-2w 
	

(1.9) 

where J is a function of the principal radii of curvature of the Earth [see Heiskanen 

and Moritz (1967), p  70]. 

Since Lg is known only on the geoid, eq.1.8 is a boundary condition, but can 

be used to determine T everywhere outside the Earth. [In fact Ag is known only 

on the topographic surface of the Earth: corrections such as the freeair or Bouguer 

correction must be applied to determine its value on the geoid (sea level).] Once 

the disturbing potential, T, is known, the geoid height can be computed using 

Bruns' formula (eq.1.7). 

The deflection of the vertical 

The deflection of the vertical, shown in fig 1.1 as e, is the negative of the geoid 

slope in the direction of s: 	
dN 

= _ 	. 	 (1.10) 
ds 

It is often resolved into north-south and east-west components: 

1 oN 	 ON 	1 a 
= Ox = RcosOA 	 = --- = 

 

where x and y are the local rectangular coordinates in the plane approximation, 

(A, q) are the geodetic longitude and latitude, and Re  is the mean Earth radius 

[Heiskanen and Moritz (1967)]. It is often quoted as an angle in micro-radians 

(jirad). 

1.2 The Fourier method 

In Fourier analysis, well-behaved, non-periodic functions are represented by com-

binations of sine and cosine functions of many different frequencies [Kanasewich 

(1981)]. This method is particularly suited to solving partial differential equa-

tions, such as the geodetic boundary condition. 

With the advent of the fast Fourier transform (FFT), it is now possible to 

process large datasets very quickly, provided they exist on a regular grid. 
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1.2.1 The Fourier transform and techniques for calculation 

The Fourier analysis of a potential field involves the use of two-dimensional 

Fourier transforms, and calculates the spectrum as a function of wavenumber 

(spatial frequency). Throughout this work k = (kr , k) will denote the circular 

wavenumber vector (unless otherwise indicated), where: 

k 	
2-7r 	

(1.12) 

where A is wavelength, with: 

(1.13) 

To calculate the two-dimensional forward Fourier transform of a function a(), 

let 

kx  = 2iru , 	 = 27rv 	 (1.14) 

in eq.1.13. Then 

P00 

F{a(x,y)} 	a(u,v)= / 1 a(x,y)e 2 	+vl4dxdy . 	( 1.15) 
J J-00 

The inverse Fourier transform of the function Zi returns the original function: 

11 0.  

	

aF ' {a(u,v) } 	a(x,y) = 	(u,v ) e2 t'du dv. 	(1.16) 

The above are continuous Fourier transforms. When dealing with finite arrays 

of data, the discrete Fourier transform (DFT) must be used. For a function a 

known only at a finite number of points (M in the x direction and N in the y 

direction) on a regular grid with sampling intervals Ax, Ay, the forward DFT is 

written: 

M-1 N-i "mj nl 1  
.(mu,nv)= xy 	a(jx,ly)exp [_2i 	-)j (1.17) 

j=O 1=0 

and the inverse DFT: 

M-1 N-i frnj nl\l 

	

a(j Ax, 1 Ay) = uAv 	(m Au, nv)exP I2i 	)j . ( 1.18) 
m=O n=O 
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The spectrum is also discrete with wavenumber spacings: 

2ir 
MLXx 

up to the Nyquist wavenumbers: 

2ir 
UN = + 

2Lx 

Lv= 27r
NLy 	

(1.19) 

2ir 
= + 	. 	 (1.20) 

2  A 

The Nyquist wavenumbers are the highest wavenumbers that can be resolved by 

the data [Schwarz et al. (1990), Bracewell (1965)]. 

The FFT utilizes a very fast form of eqs 1.17 & 1.18 [Kanasewich (1981)], and 

can compute Fourier transforms in times of the order of MN ln(MN), compared 

to (MN )2  for the conventional DFT. 

When using any discrete transform however, the finite extent of datasets 

causes 'spectral leakage'. This arises from the inability of the transform to resolve 

wavelengths longer than the dataset side length, and from discontinuities arising 

at the dataset edges due to its periodicity [Schwarz et al. (1990)]. The errors 

caused by this leakage may be reduced by certain techniques; those used in this 

study are discussed in Appendix D. 

1.2.2 Fourier techniques in gravity field calculations 

Given measurements of the gravity anomaly reduced to the geoid, we wish to find 

the disturbing potential and thus the geoid height. This involves the solution of 

the geodetic boundary condition (eq.1.8) over the area where measurements of 

the gravity anomaly exist. 

Consider an area small enough (of side of the order of a few thousand kilo-

metres) to reduce coordinate distortion due to the curvature of the Earth, and 

project the ellipsoidal surface onto a plane (, z) (x, y, z). This is the flat-Earth 

approximation. The coordinates x and y are grid eastings and northings respec-

tively; the z coordinate is a good approximation to the ellipsoidal normal h, taken 

to be positive upwards from the surface. An example of such a projection is the 

Lambert conical conformal, used in this thesis and described in Appendix A. 

Now, the disturbing potential, T, is a harmonic function satisfying Laplace's 
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equation (eq.1.3), which in rectangular Cartesian coordinates is 

Ô2T 8 2T 52 T 
(1.21) 

(9X 2 	9y2 	aZ2 

The solution to this equation may be written 

rrOO_. 	 -. 

	

T(x, z) = 
1 

- J j T(k, 0) e _kz e  - .Zd2k 	 (1.22) 

for all mass sources below the plane z = 0. 

Now take the Fourier transform of the geodetic boundary condition (eq.1.8), 

at the surface of the Earth with h along the plane normal, z. The transform of 

the derivative term is obtained from eq.1.22, giving after rearrangement: 

Eg- = 
( - 

2J 
- 	 -) 

T . 	 (1.23)  ~we 

Now, despite -y and J having a spatial dependence, this is only weak and they can 

be treatedas constants in the Fourier transformation; and as We 7.29 x 10 5 s 1 , 

this term can be omitted from eq.1.23 without significant errors occurring. Fur-

thermore, 2J 2/Re 3 x 10 7m 1 , and if there are no very long wavelengths 

present in the data (greater than a couple of thousand kilometres), then this term 

can be left out as well, giving, with the substitution of Bruns' formula (eq.1.7): 

	

Lg=ykN . 	 (1.24) 

This formula allows a fast and simple transformation between freeair anomaly 

and geoid height, and is central to the heterogeneous gravity data conversion 

method in this thesis. 

Fourier analysis also yields simple relationships between the gravity anomaly, 

the disturbing potential and all their derivatives. For example, the Fourier-

domain relationship between freeair anomaly and the components of the deflec-

tion of the vertical is: 

(1.25) 

while that between the freeair anomaly and its vertical gradient is 

= —k 	. 	 (1.26) 
19Z J 
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The equations can also be used in the Fourier combination of heterogeneous 

gravity data. For the implementation of FFTs, all data must be available on a 

regular grid. 

1.3 Geopotential models 

While computation of the normal potential must be performed in ellipsoidal co-

ordinates if high accuracy is required, it is often convenient to work in a spherical 

coordinate system and sometimes sufficient when solving for the disturbing po-

tential to make a spherical approximation. Here, the ellipsoidal normal, h, is 

approximated to the spherical radius vector, r. This generates errors of the order 

of the ellipsoid flattening ( 1/298) only. The spherical approximation to the 

geodetic boundary condition (eq.1.8) is: 

OT 2 
(1.27) 

Or r 

If we wish to solve Laplace's equation for the Earth as a whole, it is simplest 

to use spherical polar coordinates. Eq.1.3 becomes: 

	

2 02T 	OT 0 2 T 	OT 	1 02T 
r +2r—+ 

	

&2 	Or 	
(1.28) 

where r is the geocentric distance, 6 the geocentric colatitude, and A the longitude. 

This equation can be solved by separating the radial and angular parts. This gives 

a series of radial solutions, called solid spherical harmonics: 

R(r) = r' and 	. 	 (1.29) 

The rn  solutions represent functions that are harmonic inside a certain sphere, 

while the 1/r solutions represent functions that are harmonic outside the 

sphere. The angular solutions form a series of surface spherical harmonics: 

n 
Y(O,A) = E P,(cos6)(a, m  Cos mA + bnm  sin mA) 	(1.30) 

m=O 

where (n, m) are the harmonic degree and order respectively, P,(cos 6) are asso-

ciated Legendre functions, and amm, bnm are harmonic coefficients. 

For the particular instance of the Earth, several adjustments to the general 
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harmonic solutions may be made. First, we are only concerned with the exterior 

solid harmonics (eq.1.29). Second, an .analysis of the lower degree harmonics 

implies that there are no first degree terms in the expansion of the potential T 

if the origin r = 0 is the centre of the Earth [Heiskanen and Moritz (1967)]. 

Furthermore, the (0,0) term is equal to GM,, and the n = 2 harmonics can be 

expressed as functions of the Earth's moments and products of inertia [ibid.]. 

Thus, the spherical harmonic expansion of the disturbing potential is written 

	

T(r,6,A) = GM 
	

(' Y(0,A) 	 (1.31) 
r , 2 r) 

where the surface harmonics Yn  are given by eq.1.30. Then, using Bruns formula 

(eq.1.7) and the approximate relation y  GM/r', the geoid height is given from 

eq.1.31, for r > Re as 
00 

	

N(r,9,A) = r>Yn(6,A) . 	 ( 1.32) 

The geodetic boundary condition (eq.1.27) may now be used to determine the 

expansion of the gravity anomaly: 

	

GM, 00 	

) ( y(o,A) . 	( 1.33) Ag(r, 	
= r2 	- 1 \. r / 

The gravity anomaly, Lg, is not a harmonic function, but rLg is in the space 

outside the generating masses of the potential [Rapp and Pavlis (1990)]. 

The values of N(R e , 0, A) and ig(R, 0, A) around the Earth depend upon 

the values of the harmonic coefficients anm , bnm. These may be determined from 

satellite measurements of the geoid height, perturbations of satellite orbits, and 

all surface gravity data. However, the calculation of the coefficients requires 

gravity data to be available globally [ibid.]. The maximum degree and order of 

expansion of a particular geopotential model will depend upon the data density. 

The smallest resolvable wavelength of a harmonic model is given by 

Arnin
2irRe  

= flm(flm 	1) 	
(1.34) 

+  

where ma  is the maximum degree of the model [Cazenave et al. (1992)]. 

The use of Fourier transform techniques in converting between heterogeneous 

data can generate errors if very long wavelengths are present in the data [Schwarz 

et al. (1990)]. These are typically reduced using the remove-restore method, 
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Figure 1.2. The sea surface topography in the North Atlantic Ocean as given 
by the osu91A model to degree and order 15. Contours in metres. 

whereby a spherical harmonic expansion of the geoid height or freeair anomaly 

is subtracted from the observed data before Fourier operations occur. After the 

data manipulation, the corresponding geopotential model may be added back to 

recover the total field. Spherical harmonic expansions are particularly suited to 

this approach, as they define both geoid height and gravity anomaly at all points 

on the surface of the Earth. 

The ostJ91A model 

The geopotential model used in this study is the 0sU91A model to degree and 

order 360 [Rapp et al. (1991)]. The harmonic coefficients for degrees 2 to 50 were 

calculated from a combination of global 0.5° mean gravity anomaly data and the 

coefficients from the GEM-T2 geopotential model. The coefficients from degree 

51 to 360 were calculated from a global set of adjusted gravity anomalies. 

The coefficients for a harmonic expansion of the sea surface topography (the 

deviation of the sea level from the geoid, see §1.5.2) up to degree and order 15 
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(approximately 2600 km wavelength) have also been calculated. This surface is 

shown in fig 1.2. 

The cumulative undulation commission errors for the geoid model to degree 

10, 50, and 360 were 5 cm, 25 cm, and 49 cm respectively. The largest error was 

4.3 cm at degree 30 (A 1300 km). The errors show the accuracy of the geoid 

model at certain wavelengths. The RMS difference with Geosat geoid undulation 

(after orbit and sea surface topography correction) was 34 cm. 

1.4 Isostasy and the gravity field 

1.4.1 Gravity anomalies 

Anomalies in the gravity field reflect the presence of density contrasts at all 

depths within the Earth. Marine geophysicists often study the topography of the 

geoid to determine subsurface structure, grouping anomalies according to their 

wavelength. 

The longest wavelength geoid anomalies (>3000 km) largely reflect dynamic 

processes in the mantle, such as the density differences between rising and sinking 

convective cells. It is suggested though that the geoid anomalies in this range are 

not systematically correlated with the part of mantle convection which is cou-

pled to plate motions [Vogt (1986)]. Exceptions do exist, such as the large geoid 

high in the northeast Atlantic, which corresponds to a large area of anomalously 

shallow ocean crust associated with the Azores, Iceland and interlying hotspots. 

Modelling has suggested this high arises from sources at the core/mantle bound-

ary [ibid.]. 

Intermediate wavelength anomalies (300-3000 km) generally correlate with 

thermal anomalies in the lithosphere and asthenosphere. These might arise at 

mid-ocean ridges, subduction zones, or be due to differences in crustal age (and 

thus density) within a plate [ibid.]. 

The short wavelength geoid anomalies (<300 km) are strongly correlated with 

seafloor topography, due to the large density contrast between the ocean and 

seabed [Sandwell (1992)]. Also present in this part of the geoid spectrum are 

anomalies arising from localised differences in crustal density and sediment load-

ing. As the freeair anomaly is a derivative of the geoid height, this field highlights 

the short and intermediate wavelength anomalies. The correlation between the 

gravity fields and surface topography, and the relation of both to deep structure 
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leads to the concept of isostasy: isostasy provides a physical model which re-

lates topographic loads to the compensating buoyancy of the subsurface density 

distribution. 

1.4.2 Isostasy 

Isostasy was first postulated in the 19th Century, when it was observed that the 

deflection of the vertical in the Himalayas was less than would be generated by 

the visible topographic masses. Furthermore, the Bouguer anomaly over moun-

tain ranges was found to be systematically large and negative: if the effect of the 

topographic masses had been properly removed, the Bouguer anomaly should ex-

hibit only small fluctuations about zero. These observations suggest that beneath 

the mountains there exists a region of reduced density that supports their load 

in a state of hydrostatic equilibrium. 

Two hypotheses were proposed to explain this isostatic compensation: the 

Airy model postulated a thickening of a constant density crust, displacing a higher 

density substratum, the mantle; while Pratt's hypothesis proposed lateral changes 

in crustal density and a constant depth to the fluid substratum [e.g. Fowler 

(1990)]. These models though are idealised extremes, and in reality isostatic 

compensation mechanisms are most probably a combination of the two, together 

with a model of regional compensation. 

In contrast to the local compensation mechanisms of Airy and Pratt, regional 

compensation [Vening Meinesz (1931)] is described by a mechanically strong litho-

sphere 'floating' on a viscous, higher density asthenosphere. This later became 

the central element in plate tectonics. 

The difference between the lithosphere and asthenosphere is rheological rather 

than compositional, largely dependent upon the temperature and pressure regimes 

present in the mantle. The asthenosphere comprises materials made up of min-

erals close to their melting point, so that they are easily deformable without 

being completely molten. The lithosphere consists of elastic material, generally 

about 80-100 km thick, but decreasing to zero thickness at mid-ocean ridges. 

The boundary between lithosphere and asthenosphere is marked approximately 

by the 1400°C isotherm [Cox and Hart (1986)]. 

The upper part of the lithosphere can contain both oceanic and continental 

crust, the continents having slightly lower densities but greater thicknesses than 
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the oceanic crust. Below the crust is the mantle, which includes the lower litho-

sphere and the asthenosphere. While the lithosphere/asthenosphere boundary 

is marked by a change in rheology allowing relative motion, the crust/mantle 

boundary is compositional, marked by a large density contrast (from 2.8 to 3.3 

Mg.m 3  average) at the Mohorovilié discontinuity (Moho). There is no rela-

tive motion between crust and mantle. Thus, plate motion is determined by the 

generation and subduction of lithosphere at plate boundaries. 

The lithosphere responds to long term loads by bending and displacing a 

volume of asthenosphere below it. The lateral and vertical scale (wavelength and 

amplitude) of the bending is determined by the lithosphere's flexural rigidity, D, 

a measure of its stiffness. The flexural rigidity is usually expressed in terms of an 

elastic thickness, T e , 
in kilometres. The relationship between the two is given by 

ET 
D = 12(1 - o) 	

(1.35) 

where E is Young's modulus, and o, is Poisson's ratio. The elastic thickness 

corresponds to the depth to which materials behave elastically on long timescales; 

it is much less than the thermal or seismic lithosphere thicknesses. 

The lithosphere also increases its strength with age. This is borne out by 

the relationship between elastic thickness and the depth to the 450°C isotherm, 

which increases with lithosphere age [Watts (1992)]. The elastic thickness is 

'frozen in' at the time of loading, and does not significantly change with time. 

This accounts for the low Te  associated with features formed at a mid-ocean ridge 

many millions of years ago, that are now emplaced in old, strong lithosphere with 

a comparatively high elastic thickness. 

Loading can also occur within the interior of the plate, or at its bottom. 

This might be due to temperature changes in the lithosphere or asthenosphere, 

metamorphism, volcanic intrusions, or underplating. The strength of the litho-

sphere is also very susceptible to re-heating by thermal anomalies in the mantle, 

and there appears to be no empirical relationship between elastic thickness and 

general loading models [ibid.]. 
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Figure 1.3. Theoretical admittance curves for Zm = 30 km. Curves for Airy 
isostasy (solid line), surface loading models (below Airy curve), and Moho loading 
models (above Airy curve). Elastic thicknesses are 5 km (dashed), 10 km (faint), 
20 km (dotted) and 40 km (dot/dash). 

admittance function becomes 

	

QB(k) = _ 2 rGpoe _ 1 m/ 	 (1.37) 

where 
(1.38) 

APg 

Here, D is the flexural rigidity, given by eq.1.35, and Lp is the density contrast 

at the Moho. 

When the load is applied at the Moho, the admittance function for the system 

is given by 

	

QB(k) = _ 2irGpoe_m cb 	 (1.39) 

where 
(1.40) 

pog 

Forsyth (1985) also examined a model for varying combinations of uncorre-

lated top and bottom loading. If the ratio of the weight of the applied load at 
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Figure 1.4. Theoretical admittance curves for Zm = 30 km and T = 20 km, and 
loading ratios of 0 (dotted), 0.5 (faint), 1 (dashed), 5 (solid) and 25 (dot/dash). 

the Moho to the weight of the applied load on the surface is f, then 

QB(k) = _ 27rCpoe_kzm 1 X + 1/1 

j 
(1.41) 

x2 +l  

where 

= 
f P0 
	

(1.42) 

Note that eqs 1.37, 1.39 & 1.41 become the admittance function for Airy 

isostasy (eq.-i.36) for a plate with zero flexural rigidity. Plots of In IQBI against 

k for the above admittance functions are shown in figs 1.3 & 1.4. Fig 1.3 shows 

how the admittance varies with elastic thickness at constant depth to Moho, for 

surface loading models (f = 0), and for loading at the Moho (f = 106 ). Fig 1.4 

shows the variation of in IQBI with loading ratio, f. From eq.1.36 the initial slope 

of the curves in figs 1.3 & 1.4 depend only upon the Moho depth: larger values 

of Zm  give a steeper initial gradient. 

For short wavelength loads the admittance approaches zero: this is a result 

of the exponential decay of the Moho gravity signal for high k; and also because 
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wavenumber (km) 

Figure 1.5. Theoretical coherence curves for f = 1 and elastic thicknesses of 
80 km (dot/dash), 40 km (long dash), 20 km (dotted), 10 km (solid) and 5 km 
(short dash). 

small loads can be adequately supported by an elastic plate without flexure oc-

curring. At long wavelengths, both weak and strong plates will undergo flexure, 

and trend towards the Airy model. 

1.4.4 Coherence 

The use of admittance studies alone can, in certain cases, yield inaccurate values 

of the flexural rigidity. This arises from the non-uniqueness of solutions to gravity 

data, resulting in, for example, similar admittances for a weak plate loaded at 

the surface and a strong plate loaded at the Moho, with the top loading model 

giving too low a value of D [Forsyth (1985)]. 

A method that is less biased by the degree of surface and subsurface loading is 

the calculation of the coherence between the Bouguer gravity and the topography. 

Consider an infinitely rigid plate: a load applied at the surface will have no 

compensating root, and a subsurface load will generate no surface topography. In 

the first case, the Bouguer gravity signature is zero and does not correlate with 

the topographic signature; in the second, the Bouguer gravity is negative while 
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Figure 1.6. Theoretical coherence curves for T = 20 km and loading ratios of 

0.1 (solid), 0.5 (dashed), 1 (dot/dash), 2 (dotted) and 5 (larger dotted). 

the surface topography is zero. In both cases the degree of coherence between 

gravity and topography is zero and independent of the load location. 

For a plate with zero flexural rigidity, a surface load generates a compensating 

root and a negative Bouguer anomaly, while a subsurface load creates surface 

topography and a similar gravity anomaly. Both scenarios are indistinguishable 

and the coherence is unity. 

Thus for a plate with finite, non-zero rigidity, and with both surface and 

subsurface loading, the coherence will approach 1 at wavelengths long compared 

to the elastic thickness, and approach zero at short wavelengths (see fig 1.5). 

The transition from coherent to incoherent signatures will occur in the same 

wavelength range as the transition from compensated to uncompensated topog-

raphy. The wavelength of the transition indicates the flexural rigidity of the plate 

[Forsyth (1985)]. 

The coherence calculated from observed data can be compared with a theoret-

ical model, and the flexural rigidity obtained from the best-fitting curve. Forsyth 
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(1985) gives the coherence as 

(1 + 	x 2 ) 2  

= (1 + x 2 )(' + 2e2x2) 	

(1.43) 

where x is given by eq.1.42, and and 0 by eqs 1.38 & 1.40 respectively. Note 

this expression is independent of the depth to the compensating stratum (Zm ). 

Fig 1.5 shows how theoretical coherence varies with plate elastic thickness: 

weaker plates have a shorter wavelength of transition from compensated to un-

compensated topography. Fig 1.6 shows the variation of coherence with loading 

ratio for constant elastic thickness (20 km). Forsyth (1985) has shown that the 

coherence is fairly insensitive to uncertainty in f, also evident from this plot in 

the coincidence of the curves for f = 0.1 and f = 2. 

1.5 Satellite altimetry 

The advent of remote mapping of the ocean's surface in the 1970's through 

satellite altimetry has given geophysicists unprecedented global resolution of the 

Earth's gravity field. This information has been used to make maps of the sea 

bed topography, improve models of the structure of the Earth's lithosphere, and 

investigate the nature of convective processes in the mantle. 

The altimeter indirectly measures the geoid height above a reference ellipsoid 

using a radar altimeter. The altimeter sends a short-pulse microwave signal to 

the sea surface below, which is reflected back to the satellite and the two-way 

traveltime recorded. The footprint diameter of the radar beam at the sea surface 

depends upon the design of the altimeter and the sea state at the reflection site. 

The footprint usually has a diameter of several kilometres. The position of the 

satellite is tracked from either the Earth's surface by laser ranging instruments, 

or through radar tracking, the most recent missions carrying an onboard CPS 

(Global Positioning System) receiver. Using these two pieces of information, the 

height of the satellite and its altimeter measurement, the (uncorrected) height of 

the sea surface above the reference ellipsoid can be deduced. 

Corrections 

There are various sources of error in an altimeter sea level measurement, which 

must be corrected to obtain the true sea surface topography. First there are signal 
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delays in the onboard instrumentation: these can be modelled in the laboratory 

prior to launch. There are path length delays caused by local changes of the speed 

of light in the atmosphere. Models exist that correct for the delays caused by 

free electrons present in the ionosphere, and for the pressure effect of the dry air 

mass in the troposphere [Tapley et al. (1982)]. An onboard microwave radiometer 

measures and provides corrections for the amount of moisture in the troposphere. 

Oceanographic corrections include the electromagnetic (EM) bias correction, 

which arises due to the radar backscatter cross section being larger at wave 

troughs than at the crests, resulting in an altimeter measurement biased towards 

the troughs. The inverse barometer correction accounts for the effect pressure 

systems (depressions and anti-cyclones) have upon sea level. A correction is also 

made for the noise in a measurement dependent upon the significant wave height 

at the ocean surface. Corrections must also be made for the gravitational ef-

fects of the sun and moon distorting the solid shape of the Earth and its oceans. 

[A good analysis of the errors present in Topex/Poseidon data is provided in 

Tsaoussi and Koblinsky (1994).] 

One of the largest sources of error in altimeter measurements is the radial 

orbit error [Sandwell (1992)], the uncertainty in the height of the satellite above 

the reference ellipsoid. Orbits are computed from the satellite tracking data and 

from a long wavelength geopotential model. Uncertainties in these, and in the 

position of the centre of mass of the Earth were found to generate errors in Ceosat 

data of up to 5 in at 40,000 km wavelength, and 1 m at 20,000 km [Sandwell and 

Zhang (1989)]. The use of a better geopotential model can dramatically reduce 

these errors [e.g. McAdoo (1990)]. Using the geoid gradient instead of the geoid 

height in the interpretation of satellite data can also reduce the long wavelength 

errors. This is discussed further in Chapter 3. 

The application of these corrections to the altimeter measurement yields the 

height of the mean sea level above the reference ellipsoid. In order to recover the 

geoid height, corrections for ocean phenomena such as tides and currents must 

be applied (1.5.2). 

1.5.1 Satellite missions 

Table 1.1 summarizes some of the capabilities of the various altimeter missions. 

The measurement precision is most easily evaluated in terms of the vertical de- 

flection along the satellite profiles [Sandwell (1992)]. This precision depends 
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primarily upon short-wavelength (< 100 km) altimeter "noise" and to a lesser 

extent upon mesoscale (100-1000 km) ocean variability. 1 ,arad of deflection error 

translates to 0.98 mgal of gravity anomaly error [ibid.]. The along-track reso-

lution of the profiles is estimated by calculating the spectral coherence between 

independent repeat profiles, taking 50% coherence as the short-wavelength limit 

[Sandwell and McAdoo (1990)]. The overall resolution is of course limited by the 

groundtrack spacing. 

Geos 3 

Although the first spaceborne radar altimeter was used in 1973 (the Skylab space 

station carried an altimeter with an accuracy of a few metres) the first dedicated 

mission to record sea level height was the launch of Geos 3 in 1975, lasting 

for three years. The satellite had an orbit height of 843 km with groundtracks 

separated by 20-400 km at the equator. Marks and Sailor (1986) calculated the 

along-track resolution from repeat profiles to be 110 km, with an overall accuracy 

on its sea surface height measurements of 25 cm [Cheney and Marsh (1981)]. 

Seasat 

The Seasat altimeter became operational in July 1978, but suffered instrument 

failure three months later. It still succeeded in collecting sea height readings 

between latitudes 72° N & S with an 8 cm accuracy [Cheney and Marsh (1981)], 

and a precision of 10 grad [Sandwell (1992)]. The orbit groundtrack separation 

at the equator varied between 80 and 120 km owing to different repeat orbit 

configurations. Data were sampled ten times a second, but were also averaged 

over a second giving an effective distance between readings of 3.4 km. The along-

track resolution was calculated at 50 km [Marks and Sailor (1986)]. 

Geosat 

The Geosat altimeter was launched on 12th  March 1985 to perform two missions: 

the first, lasting 18 months, collected classified military data along groundtracks 

spaced 4 km at the equator, at the same rate as the Seasat altimeter. The orbit 

altitude was 800 km, and the satellite operated between latitudes 72'N & S. The 

data from this Geodetic Mission (GM) south of 30° 5 were declassified by the 

U.S. Navy in 1990. 
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GEOS-3 Seasat Geosat/GM Geosat/ERM ERS-1 Topex/Poseidon 

Launch year 1975 1978 1985 1986 1991 1992 

Orbit altitude 843 km 800 km 800 km 800 km 782 km 1336 km 

Latitude extremes +65 0  +72 0  +720  +720  +820  +66 0  

Equatorial groundtrack spacing 20-400 km 80-120 km 4 km 165 km 8 km 316 km 

Altimeter noise level 60 cm 10 cm 4 cm 4 cm 4 cm 2 cm 

Precision 30 irad 10 trad 6 trad <1 Arad 

Along-track Resolution, A 110 km 50 km 30 km 20 km ? ? 

Table 1.1. Altimeter mission parameters [from Sandwell (1992), Fu et al. (1994), McAdoo and Marks (1992), Marks and 

Sailor (1986), Sandwell et al. (1995)1 (? indicates no information available). 

ND 
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The second of Geosat's missions was the Exact Repeat Mission (ERM), pri-

marily designed to measure oceanographic variations in the sea surface topogra-

phy. It was manoeuvred into an orbit similar to the GM orbit, except ground-

tracks were repeated to within 1 km every 17 days. This gave an equatorial 

spacing of 165 km for adjacent groundtracks, and some 66 repeat orbits, until 

the mission ceased on 51h  January 1990. If repeat orbits are averaged (stacked), 

this removes most of the time-dependent oceanographic signals such as tides, ed-

dies and storm signals. Sandwell and McAdoo (1990) calculated the along-track 

resolution from several pairs of repeat profiles to be 31 km; however when they 

averaged 44 repeats this decreased to 19 km. They also calculated the precision 

of the unstacked profiles at 6 irad, while that for the average of 44 repeats was 

< 1 jtrad at latitudes between 30° N & S, but 2-5 irad at higher latitudes, largely 

due to sea ice contaminating the measurements. 

ERS-1 

The European Remote Sensing satellite, ERS-1, is currently providing unprece-

dented global resolution of the ocean surface topography. It was launched in 

October 1991, embarking on a 3-day repeat mission until April 1992, a 35-day 

repeat mission until December 1993, and is currently in a 176-day repeat orbit. 

With its latitude limits at ±82° , and the 176-day groundtracks spaced by 9 km 

at the equator, it is providing the scientific community with very high resolution 

data. 

Top ex/ Poseidon 

The Topex/Poseidon satellite was launched on 101h  August 1992 and is still op- 

erational. In addition to other instruments, it carries a dual frequency radar 

altimeter, and a single frequency solid-state radar altimeter. The dual frequency 

altimeter, Topex, was designed and built in the USA for NASA. It operates at 

5.3 and 13.6 GHz, thus minimizing the errors caused by ionospheric free electrons 

[Fu et al. (1994)]. The single frequency altimeter, Poseidon, was designed by the 

French space agency (CNES), and operates at 13.65 GHz. The two altimeters 

share the same antenna, so cannot operate at the same time. Verification tests 

were performed in the mission's early stages to cross-check the two altimeters, 

and the Geophysical Data Records (GDR's) then commenced in late May 1993. 

The satellite orbits the Earth at an altitude of 1336 km: this is a relatively high 



Chapter 1. Introduction 	 24 

orbit for an oceanographic satellite, that was chosen to reduce atmospheric drag 

and gravity forces acting on the satellite. The inclination and repeat period of the 

orbit determine how the ocean is sampled by the satellite. The Topex/Poseidon 

satellite has an inclination of 66° to reduce undesirable aliased tidal frequencies, 

yet still provide good global coverage. A repeat period of approximately 10 days 

gives a high temporal resolution but a poorer spatial resolution, resulting in an 

equatorial groundtrack spacing of 316 km. 

The RMS accuracy of a single-pass sea level measurement is 4.7 cm for the 

Topex system, and 5.1 cm for Poseidon. The altimeter noise level is given as 1.7 

cm for Topex, and 2.0 cm for Poseidon. The radial orbit error is quoted as 3 cm. 

[All data Fu et al. (1994).] 

1.5.2 Sea surface topography 

Throughout this thesis the statement that satellite altimeters measure "the de-

parture of the geoid from a reference ellipsoid" is used for simplicity, though this 

is not strictly true. The altimeter measures the height of the sea surface above 

the ellipsoid, and while the geoid signature forms the main part of this departure, 

with amplitudes ranging up to 100 m and anomalies occurring at all wavelengths, 

there is also a substantial signal due to permanent and time-dependent oceano-

graphic effects. These are expressed as a 'dynamic topography', defined as the 

sea surface slope relative to the geoid [Cheney and Marsh (1981)]. 

The time-varying features include western boundary currents and eddies, 

which have wavelengths in the range 100-300 km and amplitudes of up to a 

metre. Also, there are currents, tides and pressure gradients which can distort 

the sea surface by up to 2 m from the geoid in deep ocean regions, with slopes 

greater than 1 irad, but tend to have longer wavelengths [Cheney and Marsh 

(1981)]. These transient features can be reduced in amplitude by averaging re-

peat altimeter tracks [e.g. Sandwell and McAdoo (1990)]. 

However, it is harder to separate the permanent component of the dynamic 

topography from the geoid signal in an altimeter reading. This will not be so 

important in regional studies, as the permanent component has a relatively small 

amplitude (< 1 jirad) and consists primarily of long wavelengths (> 1000 km) 

[Sandwell and McAdoo (1990) and cf fig 1.2]. 

Many of the existing geopotential models, such as osu91A and GEM-T2, in-

corporate a spherical harmonic expansion of the sea surface topography (1.3). 
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The osU91A model includes this information for wavelengths above 2600 km. 

Thus, subtraction of such a model from altimeter readings would remove the 

known long wavelength sea surface topography signal. 

Another method of separation would be to develop a high accuracy geoid by 

independent methods; namely a dedicated satellite gravity mission that would 

measure either the gravity field or gravity gradient at orbit altitude. From up-

ward continuation effects, the calculated geoid would be lacking in short wave-

length information. However this geoid could be used to identify that part of 

the long wavelength spectrum of an altimeter signal that is only gravitational, 

thus indicating the part that is due to the long wavelength sea surface topog-

raphy, assuming all other long wavelength errors are accounted for. Thus the 

combination of a dedicated gravity mission and regular altimetry would provide 

the community with unprecedented geodetic and oceanographic datasets. Such 

dedicated gravity missions have been proposed by the European Space Agency, 

e.g. STEP and ARISTOTELES, but are yet to be implemented. 



Chapter 2 

Data Sources 

2.1 Introduction 

There are many ways of determining the gravity field of the Earth. Direct mea-

surements of the force at the Earth's surface are made using absolute or relative 

gravity meters or pendulum observations, and these can be reduced to give a 

freeair or Bouguer anomaly. The gravitational potential can also be determined 

by measuring the mean height of the sea surface (an approximation to the geoid) 

above a reference ellipsoid, which then can be transformed to gravitational accel-

eration. With the advent of satellite altimetry in the 1970's, this latter method 

has gained importance and is now widely used in constructing both global and 

regional scale gravity field maps over the oceans. 

This thesis uses gravity data over the North Atlantic Ocean to construct a 

two-dimensional gridded geoid. Data from two satellite missions were used in 

the combination algorithm, those from the Geosat/ERM, and those from the 

recently launched Topex/Poseidon mission. Shipboard observations of the freeair 

anomaly were also used where available, as well as all available freeair anomaly 

data measured on land. 

2.2 The study area 

The study area used to demonstrate the gridding and combination algorithms 

is the North Atlantic Ocean. Gravity data were used that fell between 47° N 

and 72° N latitude, and between 68'W and 18'E longitude. Their positions were 

then converted to a Lambert conical conformal coordinate grid with two standard 
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parallels (Appendix A). 

To obtain a rectangular area, data were deleted that lay outside an area 

defined by -1760 km to 1755 km easting, and -1130 km to 1245 km northing. 

The resulting study area had dimensions of 3515 x 2375 km. This area, with 

the meridians and parallels, is shown in, e.g. fig 2.1, with the southwest corner 

assigned the coordinates (0,0). 

All grids throughout this thesis have a 5 km spacing between nodes in both 

easting and northing. 

2.3 Geosat/ERM data 

The Geosat/ERM datasets used in the study were taken from the Gravity CD-

ROM [NGDC (1992)]. The database on the CD consists of two separate files of 

ascending cycles and descending cycles, which were constructed from the average 

of 44 repeat cycles of the Geosat/ERM. Each data record contains the time and 

location of the record in latitude and longitude, and the geoid height, gravity 

anomaly, and uncertainty in the gravity anomaly at the record point. The av-

eraging method and general data processing procedure is described in Sandwell 

and McAdoo (1990), who compiled this dataset. 

Programs to extract areas of interest from the data were supplied with the 

CD-ROM. The data were extracted and their locations converted to the Lambert 

projection according to the area parameters given in §2.2. Two files were created: 

one of ascending cycle data and one of descending cycle data. Each contained 

the easting, northing, geoid height and latitude of the record. The latitude is 

required by the gridding algorithm (Chapter 3), and including it in the data 

record removes the need to convert the Lambert grid coordinates back to degrees 

during program run-time. The records in each of the files were then collated 

into continuous profiles, where the distance between adjacent records was no 

more than 6 km. The number of points in each profile preceded the profile as a 

"header". 

The osu91A geoid height model to harmonic degree and order 360 was then 

subtracted from the data records. The harmonic coefficients were tapered with a 

cosine-squared function between degrees 300 and 360 to reduce the Gibbs' effect, 

arising when spectra are sharply truncated [Kanasewich (1981)]. The osu91A 

harmonic expansion of the sea surface topography was also subtracted from the 

satellite profiles. The coefficients in this model were tapered between degrees 12 
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Figure 2.1. Geosat/ERM groundtracks in the North Atlantic study area. 
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Figure 2.2. Topex/Poseidon groundtracks in the North Atlantic study area. 
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and 15. These models are discussed in 1.3. 

The Geosat/ERM groundtracks in the North Atlantic Ocean study area are 

shown in fig 2.1. 

2.4 Topex/Poseidon data 

The Topex/Poseidon data used in the study were taken from the CD-ROMs sup-

plied by AVISO (1992). The CD-ROMs contain the time, latitude and longitude 

for each data record, the altimeter orbit height and measured height above sea 

level, and a set of atmospheric and other geophysical corrections to be applied to 

the height value. A suite of programs was also supplied to extract the position, 

time and corrected sea surface height reading. 

Unlike the Geosat/ERM dataset, the Topex/Poseidon data were not given in 

the averaged form, so this study used repeat cycles 11 to 40 inclusive (AVISO 

discs 6 to 20). The Topex/Poseidon data are referenced to a slightly different 

ellipsoid [AVISO (1992)] than the GRS80 ellipsoid used in the Ceosat data, so it 

was necessary to convert the data to GRS80. Following the method for sorting the 

Geosat/ERM data, these were separated into ascending and descending passes, 

converted to the Lambert coordinate plane, and divided into continuous profiles. 

Finally, the osu91A geoid height and sea surface topography models were 

subtracted from the data records. 

The Topex/Poseidon groundtracks in the North Atlantic Ocean study area 

are shown in fig 2.2. 

2.5 Marine gravity measurements 

The GEODAS CD-ROM [NGDC (1994)] provided all the available marine gravity 

observations. The CD comes with menu-driven software that extracts the type, 

date, and location of the data, and writes them out in a chronologically ordered 

sequence. 

Most of the ship track freeair anomalies on the CD-ROM were referenced to 

the GRS80 international ellipsoidal gravity formula and the IGSN 71 reference 

system. However, a number of cruises used the International 1930 or JAG System 

1967 ellipsoidal gravity formulae, and/or the Potsdam reference system. As this 

information was provided in the cruise header file, it was a straightforward task 

to reduce the data to GRS80/IGSN 71 [Moritz (1984)]. 
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The data were then projected onto the Lambert conical conformal plane, and 

a rectangular area created as described in §2.2. It is then a simple task to sort the 

data into a series of along-track profiles with a maximum observation separation 

of 10 km; i.e. when the distance between two adjacent points exceeded this value, 

a new profile was started. As with the satellite data, the number of records in each 

profile preceded the profile records as a header, along with the cruise identifier 

and the survey year. 

Finally, the osU91A freeair gravity model to harmonic degree and order 360 

was subtracted from the data records. 

The ship tracks in the North Atlantic Ocean study area are shown in fig 2.3. 

2.6 Land gravity data 

The location of the terrestrial freeair anomaly measurements used in the thesis 

are shown in fig 2.4. The Bureau Gravimetrique International (BGI) supplied 

the data over Iceland (pers. comm. G. Balma, BGI, Toulouse, 1995). The 

Ireland data came from John Davies (pers. comm. J. Davies, Dublin Institute 

for Advanced Studies, Dublin, 1980). 

The data over mainland Britain was taken from the British geoid/freeair grav-

ity map compiled by Stewart and Hipkin (1990). Note from fig 2.4 that data from 

this geoid map extend into the waters surrounding the UK; these were used in 

the combination algorithm. 

The location of each gravity measurement was converted to the Lambert pro-

jection, and a rectangular area created as described in §2.2. Then, the osu91A 

freeair gravity model to harmonic degree and order 360 was subtracted from the 

data records. 

2.7 Relief dataset 

The topographic/ bathymetric relief data were extracted from the ETOP05 dataset 

[NGDC (1993)] on CD-ROM. This provides worldwide 5-minute gridded eleva-

tions/depths, which were easily interpolated onto the 5 km Lambert grid used in 

this study. 

The relief dataset was also used to create a 'land/sea' grid, for use in the 

satellite data gridding algorithm (3.4). Any gridnodes falling over landmasses 

were assigned a value of 1; those nodes falling over the sea were assigned a 
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Figure 2.3. Ship tracks in the North Atlantic study area. 
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Figure 2.4. Land gravity data in the North Atlantic study area. (See text.) 
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Figure 2.5. Tapering the coastline in the gridded land/sea file. 

value of 0. The land/sea interface at the coastline was then tapered to ensure a 

smooth transition important in the Fourier transformation procedure. Adjacent 

gridnodes were identified where a change from 1 to 0 occurred, or vice versa. The 

gridnode with value 1 was then assigned a 0.5 value and deemed the coastline 

node (the • in fig 2.5). The node to its horizontal landward side was then assigned 

a value 0.75, and the node beyond this a value 0.93. The node to its horizontal 

seaward side was assigned a value 0.25, and the node beyond this a value 0.07. 

This procedure was repeated for the four vertically adjacent gridnodes. The four 

gridnodes diagonally adjacent to the coastline node were assigned values 0.75 or 

0.25, depending whether they were landward or seaward. 

2.8 The test dataset 

In order to test the algorithm, a dataset is needed where both freeair gravity 

anomaly and the geoid height are accurately known everywhere, self-consistent, 

and fully interchangeable. Then, with simulated satellite and marine gravity 

measurements "lifted off" these datasets, the ability of the algorithm to interpo-

late between tracks can be tested against the gravity field variation of the real 

Earth. 



Chapter 2. Data Sources 	 33 

The test model used involves freeair gravity and geoid height derived from 

surface gravity measurements made over the British Isles and North Sea, on a 2 

km grid [Stewart and Hipkin (1990)]. The test model is a 500x500 km extract of 

both geoid and freeair anomalies, on a 5 km grid. It contains both short and long 

wavelength features, such as we would expect to find over both shallow marine 

and deep ocean environments. The geoid grid is shown in fig 2.6. The mean value 

of the geoid heights is 0.146 m, with a standard deviation of 0.184 m. The freeair 

grid is shown in fig 2.7. The mean value of the freeair anomalies is 0.360 mgal, 

with a standard deviation of 10.213 mgal. These values will later be compared 

with values calculated from the models derived from the simulated datasets using 

the presented gridding and combination algorithms. 

A simulated altimetry dataset was constructed from the British geoid us-

ing coordinates of ascending and descending Geosat/ERM observations passing 

through a 500x500 km area in the North Atlantic, with the bottom-left corner 

having Lambert coordinates (-1700 km, -1100 km). The geometry of these ob-

servation points was then superimposed upon the British geoid, and the model 

geoid height determined by bicubic interpolation. This gave a simulated dataset 

of fictitious satellite passes over the test model area, which are shown superim-

posed upon the geoid grid in fig 2.6. The mean value of these passes is 0.138 m, 

with a standard deviation of 0.188 m. 

A simulated ship track dataset was created in the same way, using the coor-

dinates of ship tracks in the same North Atlantic area, superimposed upon the 

test model freeair anomaly. These are shown on the freeair anomaly grid in fig 

2.7. The mean value of these track data is 2.878 mgal, with a standard deviation 

of 11.848 mgal. 

Thus, as the two simulated datasets contain accurate information about the 

test model, we would hope to recover the test model geoid (or freeair gravity) 

upon their combination by the presented algorithm. In particular, we can test 

the effectiveness of the algorithm by comparing the model with the known gravity 

field in the unsampled regions between tracks. 

In the following three chapters, the gridding and combination algorithms will 

he applied to the test model data, illustrating their usage and effectiveness. 
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Figure 2.6. The test model geoid height showing simulated satellite ground-
tracks. 
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Figure 2.7. The test model freeair anomaly showing simulated ship tracks. 



Chapter 3 

Gridding Satellite Data 

3.1 Introduction 

The algorithm combining a satellite geoid with freeair anomalies observed on 

the Earth's surface makes use of fast Fourier transforms (FFTs). Although they 

greatly speed up operations, FFTs require the data to exist on a regular grid. 

Furthermore, in order to avoid the Gibbs' effect caused by sharp cutoffs at data 

boundaries, the data should be complete, with few gaps. 

The almost global coverage provided by satellite altimeter missions gives an 

excellent starting point for the creation of a complete grid of geoid heights (ig-

noring for the time being the gaps occurring when the satellite passes over land-

masses). The method presented here enables the combination of data from more 

than one satellite mission, thus producing a geoid model that has greater reso-

lution, greater accuracy and greater coverage than such a model from only one 

mission. 

The high along-track sampling rate of satellite altimetry data compared with 

the large track separation at the equator (1.5.1) makes gridding these datasets 

a problem. Ideally, we would like to retain the along-track resolution, but also 

interpolate into the spaces between adjacent tracks so that a complete grid can 

be generated. However, as will be discussed later, the generation of a complete 

grid implies a degree of smoothing of the data and thus a loss of resolution 

along track. The gridding kernel chosen to interpolate the data should exhibit a 

"trade-off" between completeness and resolution, but priority should be given to 

the generation of a complete grid. 

The along-track geoid slope is gridded up in preference to the geoid height: 
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the differentiation operation effectively removes the long wavelength radial orbit 

error (see §1.5), removing the large amplitude stripes that arise when a crossover 

analysis is performed [Sandwell (1992)]. Furthermore, the algorithm allows for 

the averaging, or stacking, of repeat profiles. This has the following benefits: 

first, it is much better procedure to average the geoid slope rather than the geoid 

height, as offsets are not introduced at data gaps [McAdoo (1990)]; second, the 

resolution capabilities of the mission are increased [Sandwell and McAdoo (1990)]; 

and third, time-variant oceanographic signals are reduced (1.5.2). 

However, the nature of the data distribution is such as to provide an underes-

timated geoid slope value, due to the strike of the groundtrack across sea surface 

anomalies. Only when the groundtrack lies perpendicular to an anomaly will a 

true value of the geoid slope be determined. In all other cases the slope value will 

be lower, leading to a gridded anomaly with lower amplitude than in reality. As 

this method cannot correct for this phenomenon, it must be acknowledged that 

errors in geoid anomaly amplitude could result. 

Using this method, obtaining a gridded geoid model from along-track altime-

ter data is a two stage process, involving the generation of grids of along-track 

geoid slopes as an intermediate stage. Separate grids of geoid slopes from ascend-

ing passes and from descending passes are calculated for each satellite mission 

considered. These along-track slope grids are then combined using an approach 

similar to that employed by Sandwell (1984) and McAdoo (1990), to give a grid-

ded geoid over the area. 

3.2 The gridding kernel 

The kernel chosen to grid altimeter data distributed on widely spaced ground-

tracks should conform to certain restrictions. 

It should be rotationally symmetric (isotropic), ensuring no bias in any 

direction. 

It should be of sufficient radius to ensure all grid nodes between adjacent 

groundtracks are assigned a slope value. 

Acknowledging that while a complete grid is required, the kernel should 

smooth the altimeter data as little as possible. 
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4. It is not possible, and thus not necessary, to reproduce the short wavelength 

resolution in the areas between adjacent groundtracks. In these areas it 

is reasonable to suggest that the information provided by the altimeter 

measurements can only determine the intermediate and long wavelength 

structure of the gravity field. That is, short wavelength anomalies on the 

satellite track will have relatively little influence upon the short wavelength 

anomalies inter-track. This criterion removes any desire to design a "super-

kernel". 

In processing and interpreting satellite altimetry data, most studies use the 

track profiles without the construction of a grid [e.g. Sandwell and McAdoo 

(1988), Sandwell and McAdoo (1990)]. Other studies have produced 2D grids from 

altimeter profiles using bilinear interpolation [e.g. McAdoo and Marks (1992)], an 

unspecified inverse-squared distance kernel [McAdoo (1990)], and using a method 

known as "projection onto convex sets" [Sandwell (1992)]; these studies have also 

used vertical deflections coupled with a Fourier transform based approach to de-

termine the geoid height, similar to that outlined in this thesis. Another study, 

by Sandwell (1984), used a kernel of the form 1/(1 + ( x/a) 3 ) to grid vertical 

deflections. 

Several designs of kernel satisfying the above requirements were tested on the 

simulated altimeter data. They are described in Appendix B. The kernel chosen 

to grid the altimeter data has the form of the function commonly known as the 

"Witch of Aganissi", or "Witches' Hat". Its formula is 

Sw(x,) = 	
1 	1 	

x <R' 	(3.1) [)1 2 	1+ ()2  

for a point x kilometres from the observation whose geodetic latitude is q. For a 

given observation point, the parameters (q), R', and a' are constants; they are 

discussed later. Cross-sections through various forms of the kernel are shown in 

figs 3.1 & 3.2: the kernel is rotationally symmetrical about the axis x = 0. 

This form was also chosen for its fast calculation by a computer: no intrin-

sic series approximation functions are called, resulting in a relatively fast CPU 

execution time. 

Suppose we need to interpolate a set of values Zj, observed at points (x k ,yk ) 

(k = 1,.. ,M) onto a regular grid, z. For a particular observation point, P, with 

value zp, the kernel is centred on P and an increment is added to all gridnodes 

within a certain distance of P, the search radius R'. The increment is the product 
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of zp with the value of the gridding kernel at the gridnode. Thus the gridnodes 

close to the observation point are weighted higher than those at the edge of the 

search radius. This procedure is carried out in a cumulative fashion for all the 

observation points M, resulting in a grid of cumulative interpolated observations. 

If the sum of the gridding kernel values at each gridnode is also stored, then the 

grid of interpolated observations can be normalised to give a final interpolated 

grid, z 2 , representing the original values zj: 

Z =ZkSW k2 />SW k . 	 ( 3.2) 

Here, Sw ij  represents the value of the kernel at gridnode (i,j) for the particular 

observation /c. 

An additional problem with gridding satellite altimeter data in this way is that 

as the satellites near the turning points of a cycle (±72 0  latitude for Geosat) the 

groundtracks draw closer together and the observation density increases. Thus 

the gridding kernel needs only influence a smaller number of gridnodes than at 

lower latitudes; if this did not happen then over-smoothing of the interpolated 

field would result. Furthermore, as the search radius decreases, the shape of the 

kernel needs to be altered to preserve uniform gridding. The function (q) is 

designed to take this into account. 

(q) is a function included to reflect the gradual decrease in separation of the 

satellite groundtracks with increasing latitude. Its form on a Lambert pro-

jection is 
- 

(3.3) 

where, for a particular study area, 00  is lowest absolute latitude, and & 

is highest absolute latitude. Thus, as latitude increases, 4(q5)  decreases 

proportionally. As shown in fig 3.2, it serves to reduce the search radius of 

the kernel and its halfwidth. It also modifies the overall amplitude of the 

kernel function: tests showed that as the width and search radius of the 

kernel decreased with increasing latitude, the gridnodes in this region of 

closely-spaced groundtracks were assigned too low a weight. Consequently, 

including the 1/42  term in eq.3.1 compensated for this effect and ensured 

a constant, latitude-independent integral (see Appendix C.2 and eq.C.14). 

Care must be taken though, when choosing the value of & to ensure it is 

greater than the maximum possible value of q. If 00  is always taken as the 
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Figure 3.1. Cross-section of the Topex gridding kernel showing variation with 
halfwidth. 
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Figure 3.2. Cross-section of the Topex gridding kernel showing variation with 
latitude. 
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lowest absolute latitude in the survey area, and 0 is the latitude extreme 

of the satellite mission being gridded, then a good value of 0 1  is given by 

01 = &at + (0sat - 	. 	 (3.4) 

Note 	is linear in latitude, whereas the actual separation of satellite 

groundtracks in latitude and longitude is much more complex. A linear 

approximation was found to be adequate when compared with trigonomet-

ric functions, and also to be computationally much faster. The values of 

the parameters Oo  and 0 1  used in the study are given in Appendix E. 

R' is the search radius of the kernel at a particular latitude. If R0  is the maximum 

value of the search radius, then 

= R 0 	 (3.5) 

The dependence of R' on 0 decreases the search radius as the observation 

density increases with increasing latitude. The value of R. should be chosen 

so that it is slightly greater than half the separation between adjacent satel-

lite groundtracks at the lowest latitude. A large value of R0  will smooth 

the resultant grid too much, while a small R0  will leave some gridnodes 

unassigned. The values of R0  used in the study are given in Appendix E. 

a' is a factor determining the halfwidth of the kernel, higher values of a' giving 

a 'broader' shape, as shown in fig 3.1. Again this parameter is latitude 

dependent, 

a' = a0 4 , 	 (3.6) 

the shape of the kernel being maintained as the latitude of the observation 

point changes. The value of a 0  is linked to the search radius, R0 , as 

	

a0  = Q-Ro 	with 	Q = 0.175 . 	 (3.7) 

This value of Q was chosen from a range of values, by studying the shape 

of the kernel and the resulting interpolated grid of geoid slopes. For a fixed 

search radius of R. = 80 km for Geosat data, studies were made for a 0  = 5 

to 36 km: values of a 0  > 18 km had large discontinuities at the edge of the 

kernel, while kernel functions with a 0  < 9 km were too narrow, gridnodes 

near the edge of the search radius not gaining enough weight. The kernel 
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function with a0  = 14 km gave good weight to the inner nodes, while having 

only a small discontinuity at x = R', hence the chosen value of Q. 

3.3 Gridding along-track geoid slopes 

To create a gridded model of the geoid height from satellite altimeter data, the 

first step is to produce separate grids of the ascending and descending along-track 

geoid slopes. The along-track gradient, e, is calculated at the midpoint between 

two observations by the formula: 

Nk+1 - Nk_1 
Ek = 	 ( 3.8) 

At 

where N, is the geoid height at observation k, and Af is the distance between 

observations k - 1 and ?c + 1. 

The flow diagram in fig 3.3 illustrates how altimeter observations are inter-

polated onto a regular grid. The procedure follows the steps described in §3.2, 

with the along-track geoid slope, 6 substituted for z in eq.3.2. Two grids are 

generated by the algorithm: a weighted mean grid of the along-track geoid slope; 

and a grid of the corresponding weights. The values of the weighting grid are 

normalized by the maximum cumulative weight, so that all values lie between 0 

and 1. This removes the bias introduced when previously stacked datasets are 

to be combined with unstacked datasets of many repeat orbits. The gridding al-

gorithm is performed separately on the ascending and descending passes of each 

satellite dataset considered. 

This method of gridding satellite altimeter data also has the advantage of 

filtering the data. The action of differentiation followed by gridding with the 

described kernel adequately suppresses both long wavelength radial orbit errors 

and the short wavelength noise generated by the derivative operator. A study of 

the spectral characteristics of this gridding procedure is described in Appendix 

C.2. 

For easy reference, this gridding procedure will be refered to as the "Witch 

gridding algorithm" throughout the thesis, after the name of the gridding kernel. 

The algorithm is coded in the subroutine GSGRID.F (Appendix E). 
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EEI  
Figure 3.3. Flow diagram for gridding along-track geoid slope. 
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Figure 3.4. Determination of east () and north () vertical deflections from 
the ascending and descending along-track geoid slopes (E a/d). 
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3.4 Production of the altimeter geoid grid 

3.4.1 Production of vertical deflection grids 

Grids of ascending and descending along-track geoid slopes from any number of 

satellite missions may be combined to give one pair of east and north vertical 

deflection grids, as shown following. 

Initially keeping the data from different missions separate, the grids of ascend-

ing (€a)  and descending (Ed) along-track geoid slopes are converted to grids of east 

and north () vertical deflection (see §1.1). Fig 3.4 shows how a geometrical 

analysis of the satellite groundtrack on a map projection grid resolves the along-

track geoid slope into components of the east and north vertical deflections. We 

have, 

= cos a 
ON 
--- + sin a 

(9N
---- 	 (3.9) b  

and 	

E d  = cos /3 (9N— + sin 
DN 
— . 	 (3.10) 

ax 	Dy 

Rearranging and equating these, and remembering that geoid slope is the negative 

of vertical deflection (eq.1.11), we obtain equations for the east and north vertical 

deflections at all grid nodes: 

1 
-17  

cot a -  cot /3 
(E acosecc - edcosecl3) 	 (3.11) 

and 
1 

= tan  - tan/3 
a  sec a - € d sec /3) . 	 ( 3.12) 

a and /3 are the angles made with the positive x-axis by the ascending and 

descending groundtracks respectively. Since not all gridnodes are intersected by 

a groundtrack, values of a and 3 at these nodes may be calculated by bilinear 

interpolation (e.g. UNIRAS). 

Now, any number of the vertical deflection grids from different missions may 

be combined in a weighted linear superposition, using the weighting grids gener-

ated by the Witch gridding algorithm, §3.3. Thus, for the east component, 

- 	71topez'topex + 17geosat"geosat 
 + ... 	 ( 3.13) 77= 

Wtopex + Wgeosat + 
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and similarly for the north component, giving . The weighting grid, W sat e jljt e , 

is obtained by averaging the ascending and descending weights for a particular 

satellite mission at each grid node. 

At this stage, the fields ii and may be multiplied by the tapered landmass 

grid (2.7). This ensures a smooth roll-off onto land areas from the satellite data 

over the sea, leaving minimal edge effects upon Fourier transforming, the basis 

of the next stage. 

3.4.2 Production of the gridded geoid 

The production of a gridded geoid from east and north veitical deflections uses 

the Fourier domain approximation of the inverse Vening-Meinesz transformation 

[McAdoo (1990)]. The forward Vening-Meinesz integrals yield the vertical deflec-

tion components from freeair anomalies [Heiskanen and Moritz (1967)]: a Fourier 

analysis of both forward and inverse transformations shows that they can be 

written in simple form in the wavenumber domain, using the flat-Earth approx-

imation [Schwarz et al. (1990)]. As already described (1.3), the subtraction of 

a long wavelength spherical harmonic model from the data minimizes the errors 

in assuming a plane representation of Laplace's equation. These errors are also 

reduced by the transformation of all data to a plane map projection (Appendix 

A). (See also Appendix D for further techniques for error reduction.) 

The calculation of the gravity anomaly or geoid height now involves taking 

the Fourier transform of the east and north vertical deflections and combining 

them thus: 
i 

N = ---(k+ k) , 	 ( 3.14) 
1k!2 

[after McAdoo (1990)]. A grid of the freeair anomaly can also be obtained without 

leaving the wavenumber domain, using eq.1.24. 

The production of the gridded freeair anomaly or geoid height from grids of the 

along-track geoid slope is implemented in the subroutine GS2GRAV.F (Appendix 

E). 
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3.5 Results on the test dataset 

The algorithm was applied to the test dataset of simulated satellite altimeter 

readings (2.8), and the generated models compared with the test models. 

3.5.1 The algorithm-generated geoid grid 

Fig 3.5 shows the grid of geoid heights generated by the algorithm from the 

simulated satellite profiles of the test dataset. The mean of these gridded values 

is -0.0067 m, with a standard deviation (spread) of 0.124 m. The mean of the 

test model geoid (fig 2.6) is 0.146 in with a standard deviation of 0.184 m, giving 

a mean difference between the grids of 0.153 in and a difference s.d. of 0.153 

(124% of the computed s.d.). The offset between the two grids is due to the 

preparation of the data for Fourier transformation: a least-squares plane is fitted 

to the data and subtracted, removing the residual very long wavelengths which 

are known to corrupt the Fourier transform. 

Comparison of the test model with the generated model shows that while 

the algorithm has not reproduced the short wavelengths of the test model, the 

medium wavelength features are present, albeit with reduced amplitude due to 

the smoothing nature of the kernel (see Appendix C.2), and the method of taking 

along-track slopes (discussed in §3.1). 

Fig 3.6 shows the weighting grid for this dataset. 

Considering the freeair anomaly generated by the algorithm (not shown), the 

mean value of the grid is -0.191 mgal, with a standard deviation of 4.327 mgal. 

The mean and s.d. of the test model freeair anomaly (fig 2.7) are 0.360 mgal and 

10.213 mgal respectively. This indicates a difference s.d. between the two grids 

of 8.723 mgal, or 202% of the computed grid s.d. 

However, a more meaningful comparison of the test and computed fields is 

provided by studying the two at the satellite groundtrack locations, in the fol-

lowing two sections. 

3.5.2 Accuracy of the Witch gridding algorithm 

The accuracy of the gridding procedure (3.3) in mimicking the along-track geoid 

slopes can be tested by comparing the slopes of the simulated profiles with the 

values of the slopes interpolated from the resulting grid at the equivalent spa-

tial location. The lower the mean difference and standard deviation, the more 
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accurate the model. Figs 3.7 & 3.8 show the simulated slopes (light curves), 

plotted against the values interpolated from the generated grid (dark curves), for 

ascending and descending profiles respectively. 

The mean of the computed slopes is 0.375 irad, that of the slopes of the 

simulated profiles is 0.357 .irad. The standard deviation of the computed slopes 

is 4.459 .trad, that of the slopes of the simulated profiles is 7.250 grad, giving a 

difference s.d. of 3.582 fLrad (80% of the computed s.d.). 

Tables 3.1 & 3.2 show the mean differences and standard deviations between 

each pair of profiles in figs 3.7 & 3.8, (a) to (f). The mean differences are con-

sistently less than 0.1 iirad. The highest standard deviation is 5.472 trad for 

profile (c) fig 3.7. The lowest standard deviation is 1.972 trad for profile (f) fig 

3.8. 

Interpolation using the Witch gridding algorithm smooths the data somewhat, 

evident from the profiles in figs 3.7 & 3.8, ard from the power spectra in fig 3.11. 

These spectra are calculated by averaging the power spectra for each of the profiles 

(a) to (f) in figs 3.7 & 3.8 over discrete wavenumber intervals. It can be seen 

from fig 3.11 that application of the kernel in interpolation duplicates wavelengths 

down to approximately 125 km (i.e. light and dark curves are approximately 

coincident up to wavenumber 0.05 km'), whereas shorter wavelengths are not 

as well represented. 
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Figure 3.7. Comparison of ascending along-track geoid slopes from simulated 
satellite tracks (light curves) with values interpolated from the grid of slopes 
(dark curves). Difference values between the profiles in (a) to (f) shown in table 
3.1. 
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Figure 3.8. Comparison of descending along-track geoid slopes from simulated 
satellite tracks (light curves) with values interpolated from the grid of slopes 
(dark curves). Difference values between the profiles in (a) to (f) shown in table 
3.2. 
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Profile mean difference standard deviation 

 -0.091 Arad 4.796 grad 
 0.068 Arad 5.225 Arad 
 -0.031 Arad 5.472 grad 
 0.047 Arad 3.457 Arad 
 0.044 Arad 2.922 grad 
 -0.029 grad 2.302 Arad 

Table 3.1. Differences between the simulated and generated slopes in fig 3.7. 

Profile mean difference standard deviation 
 -0.018 Arad 4.221 Arad 
 -0.006 Arad 4.563 Arad 
 0.023 Arad 3.364 Arad 
 -0.028 Arad 3.846 Arad 
 -0.013 Arad 2.352 Arad 
 -0.049 Arad 1.972 Arad 

Table 3.2. Differences between the simulated and generated slopes in fig 3.8. 

Profile mean difference standard deviation 

 0.167 m 0.102 m 
 0.070 m 0.097 m 
 0.218 m 0.101 m 
 0.257 m 0.101 m 
 0.106 m 0.124 m 
 0.184 m 0.061 m 

Table 3.3. Differences between the simulated and generated geoid heights in fig 

3.9. 

Profile mean difference standard deviation 
 -0.005 m 0.146 m 
 0.209 m 0.076 m 
 0.223 m 0.104 m 
 0.156 m 0.140 m 
 0.170 m 0.088 m 
 0.075 rn 0.049 m 

Table 3.4. Differences between the simulated and generated geoid heights in fig 
3.10. 
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3.5.3 Accuracy of the geoid gridding algorithm 

In the same manner as above, the accuracy of the whole algorithm in generating 

a gridded geoid can be tested by comparing the simulated geoid heights with 

the values interpolated from the resulting grid, fig 3.5. Figs 3.9 & 3.10 show 

the comparisons for ascending and descending tracks respectively. The light 

curves represent the simulated test heights, the dark curves represent the heights 

interpolated from the resultant grid. 

The mean and standard deviation of the computed geoid height profiles are 

-0.013 m, and 0.139 rn respectively (cf 0.138 m and 0.188 in respectively for the 

simulated profiles). Thus, the mean and standard deviation of the differences 

with the simulated profiles are 0.151 m and 0.130 in (94% of the computed s.d.). 

This difference standard deviation is of the order of the s.d. of the simulated 

profiles, suggesting poor accuracy. However, comparisons of the simulated and 

computed profiles in figs 3.9 & 3.10 show that anomaly locations are preserved, 

albeit with a reduced amplitude, expected from this method of calculating and 

gridding the along-track geoid slopes. 

Tables 3.3 & 3.4 show the mean differences and standard deviations between 

each pair of profiles in figs 3.9 & 3.10, (a) to (f). The mean offset between the 

profiles varies between -0.005 in for profile (a) fig 3.10, and 0.257 m for profile 

(d) fig 3.9. The mean offsets have a mean value of 0.153 m, evident from a glance 

at the profiles: with a few exceptions, the simulated profiles consistently have a 

higher bias than the generated profiles. The highest standard deviation is 0.146m 

for profile (a) fig 3.10. The lowest standard deviation is 0.049 m for profile (f) 

fig 3.10. 

The power spectra of the simulated profiles and those interpolated from the 

resultant grid are plotted in fig 3.12. While divergence becomes apparent at 

wavenumbers larger than approximately 0.05 km 1 , as in fig 3.11, the magnitude 

of this difference is not as marked as that for the spectra of the along-track 

slopes. This large difference in the spectra in fig 3.11 is mainly due though to the 

relatively high power of the simulated slopes (light curve) at short wavelengths. 
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Figure 3.9. Comparison of the ascending simulated satellite tracks (light curves) 
with values interpolated from the generated grid, fig 3.5, (dark curves). Difference 
values between the profiles in (a) to (f) shown in table 3.3. 
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Figure 3.10. Comparison of the descending simulated satellite tracks (light 
curves) with values interpolated from the generated grid, fig 3.5, (dark curves). 
Difference values between the profiles in (a) to (f) shown in table 3.4. 
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Figure 3.11. Power spectra of the simulated (light curve) & interpolated slopes 
(dark curve) in figs 3.7 & 3.8. 

Figure 3.12. Power spectra of the simulated (light curve) & interpolated geoid 
height profiles (dark curve) in figs 3.9 & 3.10. 
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3.6 Results on the North Atlantic data 

Fig 3.13 shows the gridded geoid height relative to the osU91A geoid for the North 

Atlantic area, generated from the Geosat/ERM and Topex/Poseidon altimeter 

data. Fig 3.14 shows the equivalent freeair anomaly, again relative to the 0sU91A 

freeair anomaly. A comparison with the combined field will be made in 5.5, with 

the features discussed in Chapter 6. 

These grids are produced from Geosat/ERM along-track geoid slopes grid-

ded using a kernel of maximum search radius 80 km, and Topex/Poseidon slopes 

gridded with a kernel of 150 km maximum search radius. The wavelength reso-

lution of the geoid height grid is defined in Appendix C.2. At 47° N, the Geosat 

resolution is 49 km, and the Topex/Poseidon resolution is 92 km. At higher lati-

tudes the groundtrack convergence increases the resolution of the geoid grid: the 

Geosat resolution at 72° N is 12 km, and the Topex/Poseidon resolution at 66° N 

is 27 km. 

The overall accuracy of the gridded geoid in fig 3.13 can be estimated by 

comparing the along-track geoid slopes of the altimeter profiles with the corre-

sponding slope values interpolated from the geoid grid at the equivalent spatial 

location. This removes the effect of orbit error, yielding a more reliable assess-

ment of the error than would a comparison of geoid heights. 

The mean value of the Geosat/ERM slopes (ascending and descending) is -0.20 

grad; their standard deviation is 10.66 irad. The mean value of the computed 

slopes at the Geosat/ERM groundtrack locations is 0.006 irad, with a standard 

deviation of 5.86 trad. This gives a difference s.d. of 6.95 grad, or 119% of the 

computed slope s.d. 

The mean value of the Topex/Poseidon slopes (ascending and descending) 

is 0.044 irad; their standard deviation is 9.13 grad. The mean value of the 

computed slopes at the Topex/Poseidon groundtrack locations is 0.084 irad, 

with a standard deviation of 3.99 trad. This gives a difference s.d. of 6.75 prad, 

or 169% of the compated slope s.d. 
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Figure 3.14. Atlantic freeair anomaly from Geosat/ERM and Topex/Poseidon 

data, relative to the 0sU91A freeair anomaly. 



Chapter 4 

Gridding Marine & Land 

Gravity Data 

4.1 Introduction 

Large datum shifts are commonly present in compilations of marine gravity data 

due to the accumulation of gravity meter drift at points far from coastal base 

stations. These errors can be over 4 mgal in some older surveys [Armstrong 

(1978)]. They are conventionally reduced by a network analysis to minimise 

cross-over errors, a process which is computationally demanding. A new method 

for the gridding of marine freeair anomalies is presented here which removes the 

need for network adjustment. 

The effect of the uncertain datum is reduced by taking along-track gravity 

gradients. However, due to a random directionality in the ship tracks, the method 

described in Chapter 3 for gridding satellite data cannot be used. Instead, the 

freeair field derived from altimetry measurements is introduced to constrain the 

shipboard observations. With satellite coverage now extending to +82° latitude, 

only the polar regions of the Earth will be unmappable using this technique. 

The algorithm assigns a value of gravity to the three gridnodes nearest to the 

ship observation point, based upon the local amplitude of the observations, the 

long wavelength mean of the altimetry gravity field, and the cross-track gradient 

of this altimetry field. This yields a grid of freeair anomalies containing both 

marine and satellite observations, and a corresponding grid of ship data weights. 

In contrast to the grid of altimeter measurements, it is not necessary for the 

grid of surface marine observations to be complete, due to the nature of the 
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ship track 

[,j+1 

Figure 4.1. Gridding ship-track gravity data. 

combination algorithm discussed in the next chapter. This obviates the difficulty 

in creating such a grid in areas of sparse ship coverage. 

The gridding of land gravity data is more straightforward and is discussed in 

§4.3. 

4.2 Gridding marine gravity data 

Interpolation of the ship track gravity data onto a grid is a two-stage process. 

In the first stage, the observations are gridded, while in the second, the Witch 

gridding kernel is employed. The algorithm is coded in subroutine SHIPGRID.F 

(Appendix E). 
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4.2.1 Interpolation onto a grid 

The .marine gravity data must be available as point observations in chronological 

sequence as (xk, yk, Gk), with any gaps in the tracks larger than 10 km indicating 

the start of a new track. The gridding algorithm uses these point freeair anomalies 

together with the gridded altimetric freeair grid g9  to estimate the new freeair 

grid including ship data, g'• 

Consider the situation in fig 4.1, with two consecutive ship observations Gk 

and Gk+l  separated by a distance At The interpolated grid has a cell size of A 

in both east (x) and north (y) directions. The angle between the positive x-axis 

and the ship track is J', with 

cos - 
- Xk+1 - Xk 

Af 
Yk--1Yk 

Take the case where the midpoint between the two observations (marked by a.) 

falls in the lower triangle (L), and define the quantities: 

. mean ship gravity at midpoint: 

= (Gk+l+ Gk) 	 (4.1) 

• along-track ship gravity gradient at midpoint: 

-- Gk 	 (4.2) 

• along-track gridded gravity gradient (n=0 or 1): 

(gn
-3gfl

+1,j 

-r\ 	/ n 

A 	
cos+ 	

A 	
) sin 	(4.3) 

. cross-track gridded gravity gradient (n=0 or 1): 

- 

(,n 	 fl 

 

( ,n,+,—g\ 

 9c - 	A 	
) sinç1' + 	

A 	
) cosi/' . 	(4.4) 

The vector ehas the direction of the part of the ship track between points k and 

k + 1. The vector E is the cross-track vector perpendicular to £. 

In order to determine updated gravity estimates at the three grid points near-

est to the midpoint (g,', 	and g,'+1),  three constraints are needed. 
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(Initially) preserve mean value of ship gravity data: 

(g+ 	+ g+i) 	 (4.5) 

This is only an approximation as the mean value of the new grid, g', should 

of course be weighted by the position of the • relative to the three grid 

nodes. 

At the end of each ship track, the overall mean of all the amended 

values is adjusted to be the same as the overall mean of the same gij 

values, thereby preserving the long wavelength gravity mean of the gravity 

field derived from satellite altimetry. 

Preserve along-track ship gravity gradient: 

(4 . 6 )

-  

Preserve cross track altimetry gravity gradient: 

(4.7) 
- 3c 

These constraints are in effect three simultaneous equations enabling the un-

knowns, g, and to be determined. Substitute eq.4.3 into constraint 

2 (eq.4.6): 
ac 	1 

	

 
= 	 — g)sin 	. 	(4.8) 

Substitute eq.4.4 into constraint 3 (eq.4.7): 

 —g)cos 	. 	(4.9) 
3c 

Substituting 9 1  from constraint 1 (eq.4.5) into eq.4.8, gives 

	

= (2g ' 1  + 	- 3)cos + (2g 31  + g1 - 3G) sin 	(4.10) 
IN 	

i+ 

or, rearranging 

A+3(cos+sin) = 	 . (4.11) 
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Substituting g i  from constraint 1 (eq.4.5) into eq.4.9, gives 

= 
Dc 	

—(2g 1  +g 1  —3C) sin +(2g 1  +g 1  —3G)cos 	(4.12) 

or, upon rearranging 

	

A+3(cos—sin) = 	 . (4.13) 
ac 

Now multiply eq.4.11 by (2 cos ?& - sin) and subtract from this eq.4.13 mul-

tiplied by (2 sin 0 + cos 0). This simplifies to 

. 

= 
C+ LDG 

---(2cos - sin) — 	 +cosi/') . 	(4.14) 

Similarly, if eq.4.13 is multiplied by (2 cos 0 + sin î&) and subtracted from eq.4.11 

multiplied by (cos 0 - 2 sin ), the result simplifies to 

- ADC Aag o  

	

= G+ ----(2sin - cosib)+ --—(2 cos + sin ) . 	(4.15) 

Finally, an expression may be derived for g 1 2  by using eqs 4.14, 4.15, and 

constraint 1 (eq.4.5): 

ADG 	 A ago  
. 	(4.16) 

However, if the midpoint falls in the upper triangle (U in fig 4.1), while the 

philosophy of the three constraints remains the same, the three nearest gridnodes 

are now (i,j+1), (i+1,j), and (i+1,j+1), so new solutions must be derived, 

albeit using the same algebraic technique. These solutions are 

	

ADG 	 A ago  
g 1 ,21  = 	+ -----(cosit' +sinI')+ ----(cos —sin) , 	(4.17) 

3 Dc 

tDG 	 Aag o  
= 	+ -   ----(cos& - 2 sin )— ----(2cos + sin) , 	(4.18) 

z.3G 
(4.19) 

In summary, depending on the position of the midpoint between two adjacent 
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observations on a ship track, eqs 4.14, 4.15 and 4.16, or eqs 4.17, 4.18 and 4.19 

are used to interpolate the marine freeair anomaly observations onto a regular 

grid. 

However, constraint 1 states that initially the two-point mean of the ship mea-

surements () must be used in the interpolation to retain local amplitude changes 

in the measured gravity field. But, to remove the uncertainty in the datum of 

shipboard measurements, at the end of a single ship track the gridnodes just 

amended must be adjusted to have the same overall mean as the corresponding 

nodes on the altimeter freeair anomaly field. This preserves the long wavelength 

gravity mean, more accurately known from the satellite field. 

4.2.2 Using the gridding kernel 

The gridding kernel introduced in §3.2 may be used on the interpolated grid values 

to spread their influence further, and also to generate of a grid of relative weights. 

However it is not necessary in this instance to have the latitude dependence that 

is necessary for gridding satellite data, as the ship track separation obviously 

does not have this dependence. 

The kernel, then, has the form 

8w(x) = 	
1 

1+ (\ 2  
a0  / '  

H < R 0  . 	 (4.20) 

It is applied in turn to each of the gridnodes affected by the interpolation pro-

cedure in the previous subsection, rather than to the original ship data; x is 

therefore the distance between one of these affected gridnodes and the gridnodes 

within the search radius of the kernel, R0 . The relationship between halfwidth, 

a0 , and search radius is the same as for the satellite data kernel, eq.3.7, 

a0  = Q-R. 	with 	Q = 0.175 
	

(4.21) 

For a search radius of 20 km, this gives a halfwidth of 3.5 km. These values were 

used for all ship data on this 5 km grid. 

A grid of weights was produced simultaneously, but in contrast to the satel-

lite procedure, these cumulative weights were not normalized by the maximum 

recorded weight, thus giving the weights an unlimited range. This places a bias 

towards the marine data in the combination algorithm, which is discussed in §5.2. 
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4.3 Gridding land gravity data 

Gravity data collected on land may also be gridded by use of the Witch gridding 

kernel. Land gravity surveys are usually better constrained than their marine 

counterparts. 

The available data can be edited by removal of obvious "spikes" in the freeair 

anomaly values, and then interpolated directly onto a grid, using the kernel in 

eq.4.20. This is applied to each of the observations, using a search radius that 

takes into account the mean station density over the area: gaps in the resultant 

grid are acceptable, so the search radius, R 0 , should be approximately equal 

to half the mean station separation, but no greater than 30 km. The ratio of 

halfwidth to search radius, Q, is the same as for satellite and ship data, eqs 3.7 

& 4.21. 

The gridding procedure is then carried out as in §3.2, with the freeair gravity 

anomaly, Ag, replacing z in eq.3.2. A grid of weights is also generated, to be 

used in the combination algorithm (Chapter 5). As with the marine data, this 

grid of weights is not normalized by the maximum weight, lending more influence 

to the land data over areas where both land and altimeter data are available 

(for example, when the gridding kernel has extended land measurements over the 

coast). 

The result of applying the gridding kernel to freeair anomaly data over Iceland 

is shown in fig 4.2. The kernel search radius was 20 km. The same data gridded 

using a UNIMAP bilinear interpolation routine are shown in fig 4.3. The data 

distribution is shown in fig 4.4. Given that the UNIMAP routine will interpolate 

into areas with no data measurements, the two maps are very similar. Moreover, 

and equally important, the Witch gridding algorithm generates a grid of weights 

for use in the combination algorithm. 

The spectral characteristics of this gridding procedure are analysed in Ap-

pendix C.4, through the study of the transfer function. 

The algorithm to grid land gravity data is coded in the subroutine LAND-

GRID.F (Appendix E). 
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Figure 4.3. Freeair anomaly data over Iceland, gridded using UNIMAP bilinear 
interpolation. 
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4.4 Results on the test dataset 

Fig 4.5 shows the freeair anomaly as calculated by the gridding algorithm from 

the simulated ship gravity data, §2.8. Fig 4.6 shows the accompanying weighting 

grid. Note the absence of assigned grid values in the areas where no tracks are 

present. 

The accuracy of the algorithm in reproducing the original along-track data 

can be assessed by comparing the simulated freeair anomaly profiles with values 

interpolated from the generated grid at the equivalent spatial location. The 

mean value and standard deviation of the simulated ship tracks are 2.878 mgal 

and 11.848 mgal respectively. The mean value and standard deviation of the 

computed profiles are 0.134 mgal and 9.876 mgal respectively. Thus, the mean 

difference between the ship data and the computed values is 2.744 mgal with a 

difference s.d. of 4.065 mgal (41% of the computed profile s.d.). As a comparison, 

profiles computed from the satellite-only freeair anomaly have a mean value of 

0.182 mgal, and a standard deviation of 4.959 mgal, giving a difference s.d. of 

10.500 mgal (212% of the satellite-only computed profile s.d.). 

Fig 4.7 shows comparisons for six profiles, the light curves representing the 

simulated profiles, the dark curves representing the values interpolated from the 

grid in fig 4.5. Table 4.1 lists the mean differences and standard deviations 

between the two profiles in each of (a) to (f), fig 4.7. The mean offset between 

the profile pairs varies between -0.716 mgal for profile (e), and 3.214 mgal for 

profiles (c) and (d). The mean offsets have a mean value of 2.010 mgal. The 

highest standard deviation is 4.626 mgal for profile (d), the lowest is 0.887 mgal 

for profile (f). 

An observation of the profiles reveals very good agreement between the gen-

erated values and the originals. The amplitudes are slightly reduced, but most 

of the short wavelength features, and certainly those of longer wavelength, are 

reproduced accurately in both position and shape. 
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Profile mean difference standard deviation 
 2.400 mgal 1.164 mgal 
 2.286 mgal 2.518 mgal 
 3.214 mgal 3.302 mgal 
 3.214 mgal 4.626 mgal 
 -0.716 mgal 4.117 mgal 
 1.667 mgal 0.887 mgal 

Table 4.1. Differences between the simulated and generated freeair anomalies 
in fig 4.7. 
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Figure 4.7. Comparison of simulated ship tracks (dashed curves) with values 
interpolated from the generated grid, fig 4.5, (solid curves). Difference values 
between the profiles in (a) to (f) shown in table 4.1. 



Chapter 5 

Combination of the 

Heterogeneous Datasets 

5.1 Introduction 

This chapter presents a new method for the combination of heterogeneous gravity 

datasets, improving upon existing methods in having a much reduced computa-

tion time. The algorithm makes use of the wavenumber domain relationship 

between geoid height, freeair anomaly, and other derivatives of the gravity field 

(1.2.2), and can thus employ the fast Fourier transform (FFT) to carry out a 

rapid conversion between these various forms of gravity data. 

A method extensively used today to combine heterogeneous gravity data is 

Least Squares Collocation (LSC). A study by Hwang and Parsons (1995) com-

bined altimeter data with ship gravity data, generating a field with an average 

accuracy of 5.76 mgal. However, LSC is notoriously costly in CPU time. To 

combine N data points, a matrix of size N x N must be inverted; "inversions of 

this size obviously present time problems even on a supercomputer and results 

will suffer from round-off errors" [Schwarz et al. (1990)]. 

Proponents of the LSC method claim that the Fourier method is not easily 

adapted to include more than one type of potential field data [Hwang and Par-

sons (1995)]. It will be demonstrated here that this is not the case, and that the 

accuracy of the combined field is comparable to one generated by LSC. Further-

more, this method uses relatively little CPU time and memory, and can be easily 

implemented on a PC, on board an exploration ship for example. (CPU times 

for various runs of the algorithm are given in Appendix E.) 

71 
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In the presented algorithm (which has been given the name IFC , for Iterative 

Fourier Combination), a provisional gravity model is created, and each different 

dataset integrated by means of a weighted superposition followed by the FFT 

conversion. The procedure is then iterated until the provisional model shows 

stability. Data arrays generated by any gridding algorithm may be used, but 

the gridding methods introduced in Chapters 3 and 4 have the advantage of 

additionally generating the grid of weights required in the combination. 

5.2 The weighting grids 

The IFC routine requires not only a grid of gravity values, but also a grid of 

weights for the dataset. This grid should reflect the relative influence which the 

corresponding gridnode on the gravity grid has in the dataset combination. This 

depends upon the distance of the node from the actual observation points. Due to 

the smooth topology of the Witch gridding kernel that generates the weighting 

grids, the grids themselves are smooth. This reduces the ringing effect of the 

Gibbs' phenomenon during wavenumber-domain operations. 

The satellite data weighting grid is not used in the combination stage. This 

is because the field generated by the satellite gridding algorithm (Chapter 3) 

was generated using the relative weights, and thus already has this information 

included. Furthermore, as the satellite-only fields contain predominantly longer 

wavelength information, their values are deemed representative of the long wave-

length gravity field at all marine locations. This field is then enhanced using the 

ship and land gravity data. 

The ship data weighting grid is not required to be complete. The freeair 

anomaly generated from satellite data is used as the template in the IFC routine, 

to which the ship data is added. It would also be unreasonable to generate 

a complete ship grid in areas where only one ship track passes through many 

hundreds of square kilometres. As mentioned in §4.2.2, the ship data weights are 

not normalized by the maximum weight. This gives a bias towards this dataset 

in the combination with the satellite field, which will hopefully lead to a better 

refinement of the gravity field. 
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Figure 5.1. Flow diagram for the IFC routine, combining altimeter & surface 

data. 
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5.3 The combination procedure 

The IFC algorithm creates a provisional gravity field model, h, which is improved 

upon in successive iterations of a weighted superposition with grids of geoid or 

freeair anomaly measurements. While h always represents the provisional model, 

the * indicates whether the current model is geoid (g) or freeair anomaly (f), 

and also the iteration number in the algorithm. For example, h92  indicates that 

the current provisional model is a geoid height field in the second iteration of the 

combination algorithm. 

The datasets considered here are the geoid and freeair anomaly grids gener-

ated by the satellite data gridding algorithm, Nsat and Ag sat  respectively (3.4); 

the incomplete grid of shipboard freeair anomaly measurements, Ag, hip , and the 

associated weighting grid, w s hjp  (4.2.2); and the gridded land gravity dataset, 

Agd, and its grid of weights, Wi and (4.3). 

The first step in the combination routine is to create a complete grid of freeair 

anomalies, the provisional freeair model, hji : 

hfl = 
W sea gsaj + Wshipgship + W1and19land 

W sea  + Wship + Wiand 
(5.1) 

where Wsea is the tapered landmass grid (2.7). This provisional model now has 

no data gaps, which could generate edge effects through the Gibbs' phenomenon, 

and so can be converted to a grid of geoid heights, h92 , using the FFT operation 

introduced in §1.2.2, eq.1.24: 

h92 = J7-1 	 , 	 ( 5.2) 

where -y is the mean value of the normal gravity field over the grid, and /c the mag-

nitude of wavenumber (see §1.2.2). This new provisional model is then combined 

with the satellite-derived geoid height grid, Nsat,  to give an updated provisional 

geoid model, h 2 : 

	

= (hg2  + Nsat) . 	 ( 5.3) 

This provisional geoid model is then converted back to a freeair anomaly, 

hf3 = T' 	-yic} 	 (5.4) 

and a weighted superposition carried out with the original land and shipboard 
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freeair gravity grids: 

- hf3  + Wshipgship + WlandL\gjand 	
(5.5) f3 - 	1 + W5 hip + Wiand 

This procedure, from eqs 5.2 to 5.5, can be iterated any number of times, with 

h'f3  replacing h 11  in eq.5.2, and so on until the provisional model, h, stabilises. 

Stabilisation occurs at the iteration count when the RMS difference between suc-

cessive like' provisional models (e.g. the RMS of h'f3 —hf l , or h 4 —h 2 ) reaches a 

previously specified value, indicating convergence. Figure 5.1 is a flow diagram 

illustrating the combination procedure. 

The major source of error in tests of the IFC algorithm lay in the divergence 

of successive provisional models. This divergence was found primarily to be due 

to errors occuring during FFT operations; these errors, and procedures to reduce 

them are discussed in Appendix D. 

5.4 Results on the test dataset 

The algorithm to combine the satellite, ship and land gravity grids is coded in 

subroutine IFC.F (Appendix E). 

Grids 

Fig 5.2 shows the geoid height created by combining the grids generated from the 

simulated satellite altimeter data and the simulated ship gravity data. Conver-

gence to less than 1 cm was obtained after only 3 iterations of the IFC algortithm. 

Fig 5.4 shows the RMS difference between successive provisional geoid models in 

the IFC procedure, with an RMS difference at 24 iterations of 6x10 8  m. 

Comparing IFC model with the test model geoid, fig 5.3, good agreement is 

seen in areas where ship tracks are at their most dense, the short wavelength 

features being successfully reproduced. Even in areas with sparse ship data, the 

IFC geoid shows an improvement over the altimeter-only solution. 

The mean of the IFC model is 0.004 m with a standard deviation (spread) 

of 0.143 m (cf the mean and s.d. of the test model geoid are 0.146 m and 

0.184 m respectively). This gives a mean difference of 0.142 m, with a difference 

s.d. of 0.149 m (103% of the computed grid s.d.). This represents a marginal 

improvement upon the 124% difference for the satellite-only solution (3.5.1), but 

is still of the order of the spread of the test model values. 
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Figure 5.2. Geoid height from the simulated satellite and ship data. 
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Figure 5.3. The test model geoid height showing simulated satellite ground-
tracks. 
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Figure 5.4. The logarithm of the RMS difference between successive provisional 

geoid models in the IFC procedure. 

Comparing the IFC freeair anomaly, fig 5.5, with the test model freeair anomaly, 

fig 5.6, shows the ability of the algorithm to reproduce the very short wavelength 

information in the data, geoid maps predominantly highlighting the medium to 

long wavelength anomalies. Again, in areas with no shipboard measurements, the 

short wavelength features are not resolved, the model relying on any satellite in-

formation present. In areas with a high density of ship tracks though, these short 

wavelength anomalies have been successfully resolved, in equivalent locations and 

with a comparable amplitude. 

The mean value of the IFC freeair anomaly is -0.050 mgal, with a standard 

deviation of 6.157 mgal (cf the mean and s.d. of the test model freeair anomaly 

are 0.360 mgal and 10.213 mgal respectively). This gives a mean difference of 

0.410 mgal, with a difference s.d. of 7.309 mgal (119% of the computed grid 

s.d.). This does indicate some degree of improvement upon the satellite-only 

freeair anomaly, where the difference s.d. formed 202% of the computed grid s.d. 

(3.5.1). 
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Figure 5.5. Freeair anomaly from the simulated satellite and ship data, showing 
location of ship tracks. 
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Figure 5.6. The test model freeair anomaly showing simulated ship tracks. 
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Profiles 

The profiles in figs 5.7 & 5.8 show the simulated ascending and descending satel-

lite track geoid heights respectively (light curves), plotted with the geoid height 

interpolated from the IFC model, fig 5.2. This indicates how well the gridding 

and combination algorithms have reproduced the original simulated data. 

The mean and standard deviation of the computed geoid height profiles are 

-0.0029 in and 0.155 m respectively (cf 0.138 m and 0.188 m respectively for the 

simulated profiles). Thus, the mean and standard deviation of the differences with 

the simulated profiles are 0.141 in and 0.139 m (90% of the computed s.d.). This 

actually shows almost no improvement upon the satellite-only computed profiles, 

where the difference s.d. formed 94%; however a visual comparison of the profiles 

in figs 3.9 & 3.10, with figs 5.7 & 5.8 does show an improvement in anomaly 

location and amplitude, even though the computed profiles do not exactly mimic 

the simulated profiles. This improvement will be due to the inclusion of ship 

gravity data. 

Tables 5.1 and 5.2 show the mean differences and standard deviations between 

the profile pairs in each plot. The mean offset between the profile pairs varies 

between 0.024 m for profile (a) fig 5.8, and 0.303 m for profile (b) fig 5.8. The 

highest standard deviation is 0.153 m for profile (a) fig 5.8. The lowest standard 

deviation is 0.060 m for profile (f) fig 5.8. 

As mentioned in §3.5.1, this mean offset between the two datasets is due to 

the preparation of the data for Fourier transformation: a least squares plane is 

removed giving the data a zero mean. 

The profiles in fig 5.9 show six of the longest simulated ship track freeair 

anomaly profiles (light curves), plotted against the profiles interpolated from the 

IFC freeair anomaly model (dark curves), fig 5.5. 

The mean and standard deviation of the computed ship gravity profiles are 

0.379 mgal and 8.992 mgal respectively (cf 2.878 mgal and 11.848 mgal for the 

simulated profiles). This gives the mean and standard deviation of the difference 

profiles as 2.499 mgal and 4.536 mgal (forming 50% of the computed s.d.). As 

a comparison, profiles computed from the satellite-only freeair anomaly have a 

mean value of 0.182 mgal, and a standard deviation of 4.959 mgal, giving a 

difference s.d. of 10.500 mgal (212% of the satellite-only computed profile s.d.). 

This shows that inclusion of the ship data has improved the computed gravity 
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fields without adversely affecting the contribution from the satellite data. This 

accuracy of 4.536 mgal also compares favourably with the accuracy of 5.76 mgal 

quoted for the LSC method [Hwang and Parsons (1995)]. 

Table 5.3 shows the mean differences and standard deviations between the 

profile pairs in each plot. The mean offset between the profile pairs varies between 

-0.990 mgal for profile (e), and 2.863 mgal for profile (c). The mean offsets have 

a mean value of 1.698 mgal. The highest standard deviation is 5.428 mgal for 

profile (d), and the lowest is 1.180 mgal for profile (f). 

The new algorithm could not reproduce the resolution of the real gravity 

field in regions with no observational data, but it very significantly improved the 

representation compared with the satellite only model in those regions with even 

sparse ship track coverage. 
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Figure 5.7. Comparison of the ascending simulated satellite tracks (light curves) 
with values interpolated from the IFC geoid grid, fig 5.2, (dark curves). Difference 
values between the profiles in (a) to (f) shown in table 5.1. 
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Figure 5.8. Comparison of the descending simulated satellite tracks (light 
curves) with values interpolated from the IFC geoid grid, fig 5.2, (dark curves). 
Difference values between the profiles in (a) to (f) shown in table 5.2. 
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Figure 5.9. Comparison of simulated ship tracks (dashed curves) with values 

interpolated from the IFC freeair grid, fig 5.5, (solid curves). Difference values 
between the profiles in (a) to (f) shown in table 5.3. 
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Profile mean difference standard deviation 

 0.289 m 0.129 in 

 0.108 m 0.101 in 

 0.165 m 0.093 in 

 0.198 m 0.117 m 

 0.086 m 0.146 m 

 0.121 m 0.095 in 

Table 5.1. Differences between the simulated satellite and IFC geoid height 

profiles in fig 5.7. 

Profile mean difference standard deviation 

 0.024 m 0.153 m 
 0.303 m 0.129 m 

 0.176 in 0.122 m 

 0.146 m 0.098 m 
 0.141 m 0.091 m 
 0.041 in 0.060 m 

Table 5.2. Differences between the simulated satellite and IFC geoid height 

profiles in fig 5.8. 

Profile mean difference standard deviation 

 2.545 mgal 1.804 mgal 
 1.929 mgal 3.139 mgal 

 2.863 mgal 4.142 mgal 
 2.570 mgal 5.428 mgal 
 -0.990 mgal 4.823 mgal 
 1.270 mgal 1.180 mgal 

Table 5.3. Differences between the simulated ship and IFC freeair anomaly 

profiles in fig 5.9. 



Chapter 5. Combination of the Heterogeneous Datasets 	 85 

5.5 Results on the North Atlantic data 

Fig 5.10 shows the gridded geoid height relative to the 0sU91A geoid for the North 

Atlantic area, generated from the altimeter, shipboard and terrestrial gravity 

measurements. Fig 5.11 shows the equivalent freeair anomaly. Both fields were 

obtained after two iterations of the IFC routine. 

A visual comparison of the satellite-only (fig 3.13) and IFC geoids, shows 

immediately that inclusion of the ship track gravity data has improved the res-

olution of the marine geoid, and that the available land gravity data has been 

combined without discontinuities at the coastlines. The improvement is largely 

in the short wavelength features, though the longer wavelengths in the altimeter 

geoid have been altered too. A spectral comparison of the satellite-only and IFO 

freeair anomaly fields is shown in fig 5.12. 

The short wavelength features stand out more in the freeair anomaly maps. 

Compare the altimeter-only freeair anomaly (fig 3.14) with the wc field. The 

tectonic features will be identified and described in the next chapter, but it is 

evident that the signatures of the Reykjanes Ridge (southwest from Iceland) and 

the fracture zones south of this are much clearer in the IFC field. It is possible 

to see ship tracks in the IFC freeair anomaly. However these are only prominent 

in areas of low track density, such as around coordinates (1500,200) km (see fig 

2.3). This is expected, especially if the shipboard gravity reading is very different 

from the altimeter-only field in the region. In areas with a high density of ship 

tracks, such as the seas off the north, east and south coasts of Iceland, individual 

ship tracks are not visible, and the gravity field has been greatly improved. 

As in §3.6, the overall accuracy of the gridded geoid in fig 5.10 can be es-

timated by comparing the along-track geoid slopes of the altimeter data with 

the corresponding slope values interpolated from the geoid grid at the equivalent 

spatial location. The mean value of the Geosat/ERM slopes (ascending and de-

scending) is -0.20 1irad; their standard deviation is 10.66 tLrad. The mean value 

of the computed slopes at the Geosat/ERM groundtrack locations is 0.03 p.rad, 

with a standard deviation of 6.47 ttrad. This gives a difference s.d. of 6.81 trad, 

or 105% of the computed slope s.d. The mean value of the Topex/Poseidon slopes 

(ascending and descending) is 0.044 jtrad; their standard deviation is 9.13 ,urad. 

The mean value of the computed slopes at the Topex/Poseidon groundtrack loca-

tions is -0.16 jrad, with a standard deviation of 5.33 grad. This gives a difference 

s.d. of 6.56 grad, or 123% of the computed slope s.d. 
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Figure 5.10. Atlantic geoid height from altimeter, ship and land data, relative 
to the osu91A geoid. 

Figure 5.11. Atlantic freeair anomaly from altimeter, ship and land data, rela-
tive to the osu91A freeair anomaly. 
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The accuracy of the gridded freeair anomaly in fig 5.11 can be assessed in a 

similar manner with the original ship track data, but using the gravity anomaly 

rather than its slope. The mean value of the ship gravity profiles was 2.79 mgal; 

their standard deviation was 16.35 mgal. The mean and standard deviation 

of the gravity profiles computed from the IFC field were -0.05 mgal and 10.07 

mgal respectively. Thus the difference s.d. was 10.17 mgal, forming 101% of the 

computed s.d.. 

However, the mean value of the gravity profiles computed from the satellite-

only solution (fig 3.14) was 0.08 mgal, and their standard deviation was 6.63 

mgal, giving a difference s.d. of 13.41 mgal, or 202% of the computed s.d.. This 

indicates that the inclusion of the ship track data has increased the accuracy of 

the satellite field. 

It is interesting to compare the ship gravity data with freeair anomaly fields 

generated using altimeter data that have not been corrected for the osu91A 

sea surface topography model (1.3). As the gravity data do not contain a sea 

surface topography expression, this tests by how much this correction, when ap-

plied to the altimeter data, has improved the resulting model, and whether its 

long- wavelength signature has contaminated the Fourier transformation proce-

dure. Comparing an uncorrected IFC model with the ship track data resulted in 

a mean difference of 2.88 mgal, and a standard deviation of 10.27 mgal. The mean 

difference for the uncorrected satellite-only grid is 2.66 mgal, and the standard 

deviation is 13.41 mgal. These figures do not show any improvement upon those 

above. This suggests that the removal of a long-wavelength sea surface topogra-

phy model from satellite altimeter profiles does not improve the final model. 
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Chapter 6 

The North Atlantic Ocean 

6.1 Introduction 

This chapter presents the freeair anomaly over the North Atlantic generated 

by the algorithm described earlier, and compares it with a field generated by 

Sandwell et al. (1995). Although this thesis is concerned primarily with develop-

ment and application of the IFC combination algorithm, and with the gridding 

of satellite and ship gravity data, a brief description of the tectonic environment 

of the study area follows. However, the North Atlantic Ocean exhibits many 

different tectonic provinces, some with unusual properties, and it is beyond the 

aims of this study to provide models to describe these. 

A method will be introduced that uses two-dimensional gravity maps to in-

vestigate the method of isostatic compensation present in a region, as well as 

providing estimates of the flexural rigidity of the oceanic lithosphere in the area. 

The results obtained will be compared with the findings of previous studies, and 

with a sample one dimensional admittance analysis from a single ship profile. 

6.2 Tectonic setting 

From analysis of the magnetic anomaly stripes in the Atlantic Ocean, the oldest 

recorded geomagnetic anomaly is M25, occurring off the east coast of North 

America and off the northwest coast of Africa. This indicates that the ancient 

continents of west Gondwana and Laurentia started separating to form the central 

Atlantic Ocean around 160 million years ago (Ma), in the mid-Jurassic [Fowler 

(1990)]. In fact, seafloor rocks have been discovered in the central Atlantic that 
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have been dated at 175 Ma, though these probably arise from early Jurassic 

rifting, rather than actual plate spreading [Van der Voo (1993)]. 

Geomagnetic anomaly M11 has been recorded in the South Atlantic, indicat-

ing that Africa and South America started separating around 135 Ma, at the 

Jurassic-Cretaceous boundary. 

In the North Atlantic, anomaly 34 is the oldest recorded anomaly, dated 

at around 84 Ma, occurring off Newfoundland and the U.K. continental shelf. 

However, from 118 to 84 Ma (anomalies MO to 34), the Cretaceous Quiet Zone 

has rendered all palaeomagnetic evidence ambiguous, suggesting that separation 

between North America and Eurasia could have started as early as 118 Ma [Van 

der Voo (1993)]. 

As the spreading ridge gradually migrated northwards, it veered west between 

North America and Greenland, forming the Labrador Sea (see fig 6.1). This ridge 

was probably the main active ridge in the area from about 55 to 43 Ma, with 

magnetic anomalies 24 to 19 identifiable on the seafloor. The Reykjanes Ridge 

must also have been active at this time, as anomaly 24 can be seen off the coast of 

Greenland and off the Rockall Bank. Then in the early Oligocene, the Labrador 

Sea ridge became inactive, and plate spreading became confined to the Reykjanes 

Ridge, as it stands today. 

The Reykjanes Ridge is not typical of slow-spreading mid-ocean ridges, despite 

its 13.4 mm/yr spreading rate [Van der Voo (1993)]. Slow-spreading ridges are 

usually characterised by an axial rift valley, about 1-2 km deep, whereas fast 

spreading ridges (with rates up to 150 mm/yr) have an axial topographic high. 

However the Reykjanes Ridge posesses an axial high from Iceland down to latitude 

590 N, where it changes to an axial valley. This change in the ridge can be 

seen on both gravity and bathymetry, and is due to the presence of convective 

upwelling of the mantle below Iceland enhancing crustal production. Chen and 

Morgan (1990) have developed a model that accounts for this change in structure, 

that is dependent on spreading rates, but also upon mantle temperature and the 

variation of viscosity within the lithosphere. 

Furthermore, the ridge is flanked by a series of "chevrons", also visible on 

bathymetry and gravity maps [e.g. Vogt (1983)]. One model that explains this 

phenomenon, described by Vogt (1971), involves melt material from the Iceland 

mantle plume pulsing down the ridge axis at regular intervals. This would explain 

the convergence of these flanking highs, as points further down the ridge would 

receive these pulses later and diminished in amplitude. Vogt and Johnson (1975) 
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Figure 6.1. Bathymetry of the North Atlantic Ocean, showing major features. 

go on to describe what happens when such material encounters the damming 

effect of a fracture zone (FZ), as occurs at the Bight fracture zone (crossing the 

Reykjanes Ridge at around 57 0  N), and the Tjörnes FZ (crossing the Kolbeinsey 

Ridge just off the north coast of Iceland). 

6.3 The gravity field 

The procedure to grid and combine the various forms of gravity data began 

by subtracting a long-wavelength spherical harmonic model of the geoid/freeair 

anomaly from the original data. The model used was the osu91A geopotential 

model to degree and order 360 (1.3). This was done to reduce errors caused by 

long wavelengths in Fourier transformation. To recover the total gravity field (or 

geoid), this harmonic model must be added back to the combined model field. 

With regard to the dynamic topography, the strong signature of the Gulf 

Stream does not extend into this study area [Cheney and Marsh (1981)], and 

the time-variant effects have been reduced by using repeat cycle averages of the 

altimeter data (1.5.2). 

Fig 6.2 shows the total freeair anomaly over the North Atlantic, obtained by 

combining satellite altimeter measurements of the geoid height, and shipboard 

and terrestrial measurements of the freeair anomaly, using the IFC method, and 
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with the 0sU91A model added back. 

The Sandwell field The accuracy of this model can be tested by comparison 

with a similar gravity field. The gravity field generated by Sandwell et al. (1995) 

is used for this purpose, shown in fig 6.3. This field is a regridded version (5 km 

spacing) of the original, which had a 2' longitude spacing. The original grid was 

generated from the along-track vertical deflections of altimeter profiles, converted 

to geoid height using a previously calculated reference field. This reference field 

was created using a vertical deflection method similar to that used in this thesis 

(Chapter 3), described in Sandwell (1992). The new geoid height profiles were 

then gridded using a minimum curvature algorithm with added tension [Smith 

and Wessel (1990)]. 

The Sandwell field has a much higher resolution than the IFC field: in addition 

to Geosat/ERM and Topex/Poseidon data, Sandwell used ERS-1 altimeter data, 

having an equatorial track spacing of only 8 km. [This high sampling density 

lends itself to the gridding method he used.] Bearing this in mind, the IFC field 

shows very good agreement with the Sandwell field. 

As the Sandwell field does not contain data on land areas, a quantitative 

comparison between the two fields should not include the landmasses. Thus, the 

mean value of the Sandwell field is 15.90 mgal, with a standard deviation of 21.10 

mgal. The mean value of the IFC field is 15.25 mgal, with a standard deviation 

of 19.84 mgal. Therefore, the difference s.d is 8.84 mgal, which forms 45% of the 

IFC field s.d.. 

It is also useful to compare the power spectra of the datasets. These are 

shown in fig 6.4. At long wavelengths the power is similar for both datasets, 

but from wavenumber 0.051 km' (123 km wavelength) to 0.339 km -1  (18.5 km 

wavelength), the Sandwell spectrum holds more power. Then from this point 

the IFC spectrum is considerably larger. It is also interesting to note the abrupt 

decrease in both spectra at approximately 0.63 km' wavenumber. This is a result 

of the grid representation of the data: on a 5 km grid, the Nyquist wavenumber 

in easting and northing is 0.628 km' (10 km wavelength). The fields are unable 

to represent data accurately above this wavenumber. 

The similarities between the IFC and Sandwell gravity fields are striking. One 

of the most interesting features are the "chevrons" flanking the Reykjanes Ridge, 

clearly visible in both fields. These are discussed briefly in §6.2. 
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Figure 6.2. The total freeair anomaly over the North Atlantic from data com-
bined using the IFC method. 
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Figure 6.3. The total freeair anomaly over the North Atlantic, from Sandwell 
et al. (1995). 
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Figure 6.4. Power spectra of IFC (dark curve) and Sandwell (light curve) freeair 

anomalies. 

Moving southwards down the ridge, the chevrons taper together, and the 

axial gravity high changes to an axial valley at coordinates (1400,1000). An 

explanation for this can be found in §6.2. This low is then cut by the Bight FZ at 

approximately (1200,800); this FZ can be seen on the IFC model by the break in 

the axial low, and by the anomaly at (700,900) to the west, with a visible trend 

between the two. The Bight FZ is clearer in the Sandwell field, due to its higher 

resolution, and the low density of ship track data in the IFC field. 

The Reykjanes Ridge then changes direction slightly to meet the Charlie-

Gibbs FZ at (1100,300) (see also fig 6.1). This feature is clearly visible in the 

IFC field, extending from (400,400) to (1600,250), with the area of increased 

thickness of ridge volcanics at (1200,300) postulated by Vogt and Johnson (1975) 

even being resolved. The double-valley nature of this fracture zone, a feature 45 

km across [Whitmarsh and Calvert (1986)], is also resolved in both fields. The 

Mid Atlantic Ridge is offset at the Charlie-Gibbs FZ, and can be seen trending 

south from coordinates (1400,200). The wc field signature of the ridge here is 

slightly 'lumpy'. This is due to the low density of satellite and ship tracks in the 

area (see figs 2.1, 2.2 & 2.3). 

The failed spreading centre in the Labrador Sea can also be resolved on both 
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maps. It can be seen to start at the "doughnut" shaped anomaly at the western 

end of the Bight FZ. The gravity valley, flanked by highs, can be followed trending 

northwest (map reference) along "doglegs", until it straightens and leaves the 

map at (1600,0). Note this feature has been resolved from satellite data only, 

but has a rather weak signature due to the large thickness of overlying sediment 

[Rabinowitz and Jung (1986)]. 

The seas surrounding Iceland have been extensively surveyed by ships (fig 

2.3), and this is reflected in the similarity of the two datasets in this area. The 

Kolbeinsey Ridge gravity high can be seen arcing northwards from the north 

coast of Iceland, where the signature stops at the Spar FZ at (2050,2100). The 

Jan Mayen FZ can just be seen as a west-east trending gravity low at (2200,2400). 

This trends southeastwards to beyond a 'T'-junction with the Aegir Ridge which 

arcs southwest to the eastern tip of Iceland. These features are very clear in both 

datasets. 

Other interesting similarities include the resolution of the passive continental 

margins at the edges of the Rockall Bank and Greenland. The gravity-high shield 

is very prominent off Greenland, and again off the Rockall Bank. Both fields have 

resolved seamounts in the Rockall Trough, and structure in the North Sea. 

The differences between the marine areas of the IFC and Sandwell datasets are 

predominantly in the short wavelength features, as expected from the inclusion 

of ERS-1 data by Sandwell. Most striking are the small fracture zones trending 

almost perpendicular to the Reykjanes Ridge. The IFC field does exhibit some 

localised anomalies coinciding with these fracture zones, but the Geosat/ERM 

and Topex/Poseidon tracks are too sparse to resolve the trends. Also visible 

in the Sandwell field but absent from the IFC map are the northwest-southeast 

trending lows at the western end of the Charlie-Gibbs FZ. 

An obvious difference, in favour of the IFC field, is the inclusion of terrestrial 

gravity data over the British Isles and Iceland. This data merges without dis-

continuities with the surrounding marine data. No gravity data were available 

for Greenland or Scandinavia, so the field shown in fig 6.2 over these areas is the 

osu91A gravity field. 

6.4 Tectonic interpretation 

Some quantitative information about the rheology and density structure of the 

lithosphere in the North Atlantic can be determined by analysis of the isostatic 
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Figure 6.5. Location of the sub-areas for admittance studies. 
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Figure 6.6. Power spectra of Atlantic topography. 
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admittance and coherence, introduced in §1.4.2. 

Calculating the isostatic admittance for the whole of the North Atlantic area 

may not yield a meaningful depth to Moho or elastic thickness value, as there 

are many different tectonic regimes operating. Therefore, four smaller areas of 

different tectonics were chosen to test the admittance. The locations of these 

sub-areas are shown in fig 6.5. The sub-areas were chosen to have uniform in-

ternal tectonics. However, to obtain accurate information from admittance and 

coherence analyses, it is preferable to have large areas with many values of the 

gravity field and topography. Thus a 'trade-off' exists between having enough 

points to gain accurate information, and having an area small enough to ensure 

a good degree of tectonic consistency. 

Area 1 takes in the fossil transform of the Charlie-Gibbs fracture zone, to the 

west of the Reykjanes Ridge intersection. Area 2 includes most of the Reykjanes 

Ridge without including the Iceland hot spot or the Charlie-Gibbs FZ. Area 3 

comprises Iceland and the surrounding ocean; and Area 4 includes the British 

Isles and the continental shelf to the west. 

Of these areas, the British Isles perhaps contains the most varied tectonic 

provinces. This presents problems in that admittances calculated in areas con-

taining both oceanic and continental crust will not reflect the relative proportion 

of these provinces in the area. This arises from eqs 1.41, 1.38 & 1.40: a load em-

placed on oceanic crust will produce a deflection different from the same load on 

continental crust by an amount proportional to combinations of both the fourth 

and inverse fourth power of the load wavelength. This phenomenon is noted but 

not accounted for quantitatively in this thesis. 

IFC gravity data were available for all four sub-areas, taken from the field 

shown in fig 6.2. As a comparison, admittance and coherence analyses were also 

performed on gravity data taken from the Sandwell field in sub-areas 1 and 2, 

the Charlie-Gibbs FZ and Reykjanes Ridge. 

The ETOP05 topographic dataset was used in admittance and coherence stud-

ies (2.7, with bathymetry shown in fig 6.1). A power spectrum for the re-gridded 

data is shown in fig 6.6. As mentioned previously (2.7), the ETOP05 dataset 

was given on a 5-minute grid, thus is limited to this degree of resolution. Fur-

thermore, much of the dataset was complied from grids of the marine freeair 

anomaly derived from satellite altimetry: thus the process of correlating the IFC 

and Sandwell gravity fields with the ETOP05 bathymetry should be treated with 
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caution, and may in fact lead to erroneous results. For this reason, a one dimen-

sional admittance analysis was performed upon gravity and bathymetry data 

from a ship track over the Reykjanes Ridge (6.4.2). 

6.4.1 The isostatic admittance 

Calculation 

Examination of the correlation between the topography and gravity field as a 

function of wavelength indicates the component of the gravity field that is gener-

ated by the sub-surface mass anomalies compensating the applied load [Forsyth 

(1985)]. 

Although the effect of the compensating mass on the gravity field is non-

linear, it is only slightly so, and can be represented by a linear response function 

[Dorman and Lewis (1970)]. If the linear system is the Earth, with response 

function q(±), let the input be the load a due to the topography z: 

=  cr(s) 	
{ 	po z(x) 	: z>0 	

(6.1) 
 

(Po 	 pw )Z() : z<0 

where p0  is the density of the topographic masses on land, and Pw  is the density 

of water. The output from the system is then the component of the Bouguer 

gravity anomaly which is due to the resulting compensation, together with the 

geological "noise", t': that is, the part of the field which is not correlated with 

topography: 

AgB  = qB * a + V 
	

(6.2) 

Because ii does not correlate with the load, it will be eliminated from the cross-

correlation of Lg B  and a. If eq.6.2 is transformed to the wavenumber domain, 

convolution becomes multiplication, giving 

GB(k) = QB(k)>(k) + N(k) 	 (6.3) 

and cross-correlation becomes multiplication with the complex conjugate: 

(GB*) = QB(F) + (N) , 	 ( 6.4) 

where the () denote averaging around annuli in the wavenumber domain. As 

mentioned earlier (1.4.3), q is the response of the Earth's gravity field to the 
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application of a point load on the lithosphere, and is axially symmetric. The 

averaging procedure is performed around annuli for this reason, and is necessary 

to remove the N*  term in eq.6.4, since N, the geological noise spectrum, does 

not correlate with load. This term averages out to zero, and the admittance 

function is thus: 
(GB *) 

QB(k) = (*) 

The admittance may be calculated directly from the freeair anomaly. The 

relationship between freeair and Bouguer anomalies, 

Lg2  = A g, -  27rGa , 	 (6.6) 

may be transformed and substituted into eq.6.5, giving 

(GF *) 

QB = (*) - 2irG . 	 (6.7) 

Admittance values are calculated using a "load", cr, instead of the topogra-

phy, z, as in eq.6.1, with a Bouguer reduction density on land of 2.67 gcm 3 . A 

Bouguer admittance is calculated using eq.6.7, with averaging performed around 

equal area annuli in the wavenumber domain. Outputted graphs are plotted as 

In IQBI versus k. These may then be compared with curves generated from the-

oretical models. Note that these curves (1.4.3) are calculated for a symmetrical 

response function, and may not be used for asymmetrical models. 

An example, for the U.K. area, is shown in fig 6.7. According to the theoreti-

cal curves in fig 1.4, the data should decrease rapidly with increasing wavenumber 

(QB(k) -* 0 as k -p oo) as the correlation between Bouguer anomaly and to-

pography diminishes. However the values in fig 6.7 tend to the value ln(27rG). 

This occurs because, below a certain wavelength related to the track spacing, 

the satellite derived gravity spectrum is negligible, and from eq.6.7, for GF = 0, 

Q B = — 2irG. The wavenumber at which this occurs, k, r , can be found by a 

spectral analysis of te kernel used to generate the gravity field maps. This is 

done in Appendix C. The value of kmax  was chosen to be the highest wavenum-

her at which the transfer functions for Geosat or Topex/Poseidon data fall to 

half their maximum value. Bearing in mind the lower resolution at the south of 

the study area, a conservative value of kmax  = 0.11km 1  (approximately 60 km 

wavelength) was chosen as this limit. Thus, only the small wavenumber part of 

the admittance will contribute usefully to the tectonic interpretation. 

(6.5) 
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Figure 6.7. Admittance of the U.K. area. 

The high wavenumber end of fig 6.7 is typical of plots of spectral data for 

this study, in that a high degree of noise is exhibited above a wavenumber of 

approximately 0.63 km'. This is a result of the Nyquist wavenumber for the 

gridded data, discussed in §6.3. 

Admittance plots 

The admittance data are fitted to the combined model of loading at the surface 

and at the Moho (eq.1.41), in a least-squares sense up to a wavenumber kmar. 

The standard error of the difference between real and theoretical values, ad, is 

calculated for combinations of a range of values of depth to Moho (Z m ), elastic 

thickness (Ta ), and Moho-to-surface loading ratio (f). This was done in a program 

which varied f from 0 to 10 in units of 0.1, then 0 to 100 in units of 1; and varied 

Te  and Zm from 0 to 50 km in 0.5 km steps. Table 6.1 shows the values of the 

three parameters that gave the curve with the best fit (smallest ad)  to the IFC 

and Sandwell admittance data in the four areas. 

Fig 6.8 shows the admittance data up to 	for the four sub-areas (IFc 

and Sandwell data), and the best fitting theoretical curve given by the values in 

table 6.1. The error bars are a formal precision from the procedure of averaging 
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Area mm. ad, log(mgal/m) z,, (km) Te (km) f 
Charlie-Gibbs FZ 
CGFZ (Sandwell) 

0.0273 
0.0388 

24.5 
25.0 

7.0 
4.5 

17 
100 

Reykjanes Ridge 
Reykjanes (Sandwell) 

0.0159 
0.0508 

10.0 
20.0 

3.0 
3.5 

100 
100 

Iceland 0.0171 16.5 4.5 

U.K. 0.0204 22.5 6.0 14 

Table 6.1. Best values of Zm, Te and f from admittance data. 

around annuli in the wavenumber domain. The theoretical curves have the value 

ln(2irG) at zero wavenumber; this fits the data in figs 6.8(b), (e) & (f) very well. 

These plots also show good agreement between the initial gradients of the data 

and curve: recall (1.4.3) that the low wavenumber gradient of the admittance 

data gives the depth to Moho. Therefore the Zm values for the Charlie-Gibbs 

FZ (Sandwell data), Iceland and the U.K. are likely to be more reliable than the 

Moho depth given for the Charlie-Gibbs FZ (IFC data) and Reykjanes Ridge (IFc 

data), which show a poor fit at low wavenumbers (figs 6.8(a) & (c) respectively). 

At higher wavenumbers (0.05 to 0.1 km'), the effects of elastic plate thickness 

and loading ratio dominate the admittance spectrum (figs 1.3 & 1.4). Take the 

U.K. area, fig 6.8(f): comparing this with fig 1.3, it would seem that bottom 

loading models (f > 1) are required to explain the increase in ln IQBI from 

wavenumber 0.05 km'. Then a comparison with fig 1.4 suggests bottom loading 

(f> 1) again to explain the decrease at wavenumber 0.09 km'. 

The problem with this least-squares curve fitting procedure is that outlying 

points contribute to the fit, when in fact they could be erroneous. Therefore, some 

data were deleted from the graphs in fig 6.8 and the curve fitting algorithm was 

re-run. For the Charlie-Gibbs FZ IFC data, fig 6.8(a), the three low-admittance 

points around 0.04 km' wavenumber were deleted, giving a best fit model of 

Zm = 15.0 km, T = 5.0 km and f = 6, with ad = 0.0119. For the Charlie-Gibbs 

FZ Sandwell data, fig 6.8(b), the three low-admittance points around 0.04 km' 

wavenumber were deleted, giving a best fit model of Zm = 20.5 km, Te  = 3.5 

km and f = 100, with ad = 0.0287. For the Reykjanes Ridge Sandwell data, fig 

6.8(d), the five low-admittance points between 0.07 and 0.09 km -1  wavenumber 

were deleted, giving a best fit model of Zm = 19.0 km, Te  = 3.5 km and f = 100, 

with ad = 0.0347. 
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Figure 6.8. Admittance plots for (a) Charlie-Gibbs FZ, (b) Charlie-Gibbs FZ 
(Sandwell data), (c) Reykjanes Ridge, (d) Reykjanes Ridge (Sandwell data), (e) 
Iceland, and (f) U.K. areas. The plots also show the best fit theoretical curve 
given by the parameters in table 6.1. 
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Figure 6.9. Power spectra of the IFC (circles) and Sandwell (crosses) gravity 
fields. 

In short, comparing the above values with their equivalent in table 6.1, except 

for the Moho depth of the Charlie-Gibbs FZ IFC data, the estimates of Zm, Te  

and f were not significantly altered by deleting outlying points. 

Observation of the admittance data in the plots in fig 6.8, show the Sandwell 

data to have much lower admittances over wavenumbers 0.05 to 0.11 km'. This 

can be explained by the power spectra in fig 6.9, which is a blow-up of fig 6.4 over 

wavenumbers 0 to 0.11 km'. The IFC field has less power over wavenumbers 

0.05 to 0.11 km' than the Sandwell field. This results in a comparatively poor 

correlation between gravity and topography, and a value of In IQBI  that is closer 

to ln(27rG), as described earlier. 

f - Zm Te  plots 

Figs 6.10 to 6.15 show the degree of fit of curves generated from all values of 

f, Zm and Te  to the admittance data for the four sub-areas (IFc and Sandwell 



Chapter 6. The North Atlantic Ocean 	 105 

data). The (a) graphs show how ad  varies with Zm and Te , with f fixed at the 

best value. The (b) graphs fix T at its best value, and plot the variation of ad 

for f versus zm; and the (c) graphs fix Zm  and plot ad for f versus Te . This is a 

convenient way of showing how a parameter varies in three dimensions. 

Analysis of the Te - zm  plots shows the best solutions lying either on a straight 

line (e.g. figs 6.11, 6.12 & 6.13), or more localised in a truncated version of a 

straight line (e.g. figs 6.10, 6.14 & 6.15). The former solutions suggest more 

leeway in the elastic thickness and Moho depth values while still preserving the 

linear relationship between the two. The latter plots indicate a more constrained 

set of values. In all cases, the Airy compensation mechanism (T = 0) does not 

provide the best solutions. 

The f—T a  and f — zm  plots show how insensitive the admittance is to variations 

in loading ratio for f > 1. Take fig 6.10(c): at Te  = 7.0 km and f = 17, 

ad = 0.0273, while at T = 7.0 km and f = 100, ad is only 0.0352. Similarly 

in fig 6.12(b), for Zm = 10.0 km and f = 100, ad = 0.01587. But at Zm = 10.0 

km and f = 10, ad  is 0.01590. However, the lowest values of ad lie above the 

line f = 1 for all areas, implying predominantly bottom loading solutions are 

required. 

Note also the differences between the solutions for areas where gravity data 

from the Sandwell field is available. First, table 6.1 shows that the Sandwell 

admittance curves have a poorer fit than the IFC curves. Looking at the Charlie-

Gibbs FZ, the Z m  solutions are almost identical, while the Te  solutions are smaller 

by almost a half for the Sandwell data. The f solutions are radically different, 

but this can be explained by the insensitivity of the solution to any loading ratio 

significantly larger than 1: for the Sandwell data with zm  = 25 km, T = 4.5 km, 

but f = 17, ad = 0.0390 compared to 0.0388 for f = 100. For the Reykjanes 

Ridge, the IFC Moho depth solution is half that of the Sandwell data solution, 

while the elastic thicknesses and loading ratios are virtually the same. 



Chapter 6. The North Atlantic Ocean 
	 106 

(a) 

AP' 	 de 

— 

— 

	

- 	 39 

39 

— 31 	33 

30 

24- 	27 

21- 	24 

18- 	21 

IS- 	18 

12- 	15 

	

- 	 6- 	12 

8' 	5 

	

-n 	3-6 

881.0W 	3 

(b) 
	

(c) 

Figure 6.10. Charlie-Gibbs FZ (area 1). Plots of ad x 102  from admittance data 
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Figure 6.16. (a) Freeair anomaly and (b) bathymetry for the test ship profile. 

	

(a) 	20W 	 20W 	 (b) 

0.0 	0.02 	0.04 	0.06 	0.08 	0.1 

wavenumber (km) 

Figure 6.17. (a) Location and (b) isostatic admittance of the test ship profile 
(circles) and theoretical admittance curve for Zm = 21.5 km, Te  = 6.5 km, and 
f = 100. 
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6.4.2 One-dimensional admittance 

As the ETOPO5 dataset was partly generated from altimeter gravity data [NGDC 

(1993)], it will correlate with such a field. For this reason, a one-dimensional 

admittance analysis was performed upon gravity and bathymetry data from a 

sample ship profile passing over the Reykjanes Ridge. The ship track is part 

of one leg from the Discovery cruise, D184L1-2, extracted from the GEODAS 

CD-ROM [NGDC (1994)]. The freeair anomaly and bathymetry are shown in 

fig 6.16(a) & (b) respectively. These were re-interpolated along-track at regular 

intervals to enable their Fourier transformation. Fig 6.17(a) shows the location 

of the profile. 

In the 1-D analysis, admittances were calculated using the equation 

QB 
= CF* 

- 27rG , 	 (6.8) 

where CF is here the 1-D Fourier transform of the freeair anomaly profile, and 

the 1-D transform of the load. 

The 1-D analysis yielded a mean depth to Moho of 21.5 km, an elastic thick-

ness of 6.5 km, and a Moho to surface loading ratio of 100. Fig 6.17(b) shows 

the isostatic admittance for the profile (circles), with the best-fit least squares 

theoretical admittance curve for Zm = 21.5 km, Te = 6.5 km, and f = 100. 

6.4.3 Coherence 

Calculation 

The coherence between the Bouguer anomaly and the topography of an area 

reveals the scale at which loading on the Moho (whether from above or below) 

changes from being compensated to being supported without flexure (1.4.4). It 

is calculated in the wavenumber domain by 

= (GB * 
) 

2  

(CBG)(>J>*) 
(6.9) 

where GB is the Fourier transform of the Bouguer anomaly, and E that of the 

load. An example is shown in fig 6.18: this is the coherence for the Reykjanes 

Ridge. Note again the noise above the ordinate/ abscissa Nyquist wavenumber, 

as discussed in §6.3. 
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Figure 6.18. Coherence of the Reykjanes Ridge (IFc data). 

Coherence plots 

Following the method for calculating the best-fit curve to admittance data (6.4.1), 

the standard error of the difference between real and theoretical coherences, ad, 

was calculated for combinations of f varying from 0 to 1 in steps of 0.01, then 

0 to 100 in units of 1; and Te varying from 0 to 50 km in steps of 0.5 km, then 

0 to 100 km in steps of 1 km. The formula for the theoretical curves is given 

by eq.1.43: note they are not dependent upon the depth to compensating layer 

(Zm ). The curves were fitted for three values of kmat : 0.11 km', 0.15 km' and 

0.3 km- '. Table 6.2 shows the results only for k,,,,,,= 0.11km', as surprisingly, 

the Te  and f values for kma  = 0.15 and 0.3 km' were found to be identical, 

only with a lower standard error of fit. 

The elastic thickness and loading ratio figures in table 6.2 show excellent 

consistency in areas with both Sandwell and IFC data, with the IFC data showing 

a slightly better degree of fit. However, the values for the loading ratio are 

consistently around 0.16. This seems unusual considering the supposed tectonic 

differences between the areas, but can be explained by the relative insensitivity 

of the coherence to variations in f (discussed in § 1.4.4, and the next subsection). 

The graphs in fig 6.19 show the coherence data for all areas and datasets, with 
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Area mm. ad I Te  (1cm)] f 
Charlie-Gibbs FZ 
CGFZ (Sandwell) 

0.0293 
0.0432 

26.0 
23.0 

0.17 
0.16 

Reykjanes Ridge 
Reykjanes (Sandwell) 

0.0282 
0.0305 

12.5 
12.5 

0.15 
0.15 

Iceland 0.0311 1 	5.5 	j 0.15 

U.K. 0.0243 1 	9.5 1 0.16 

Table 6.2. Best values of T and f from coherence data. 

the best least-squares fit theoretical curve generated from the values in table 6.2. 

The coherence data for the Charlie-Gibbs FZ, figs 6.19(a) & (b), obviously do 

not match the expected theoretical model. If the data are reliable, this suggests 

that the approach of fitting the model of eq.1.43 by a least-squares method is not 

applicable in this area. Studying the plots by eye, it is difficult to find a curve 

of the form of eq.1.43 that does fit the data. While this suggests that the model 

does not accurately represent the tectonics of the area, this area is the smallest 

of the four sub-areas, and thus contains less power at long wavelengths. This 

would imply poorer resolution at this end of the spectrum, so the low coherence 

exhibited in figs 6.19(a) & (b) could be due to this phenomenon, rather than any 

physical relationship between gravity and topography. 

The fit of the curves to the data in figs 6.19(c) and (d), the Reykjanes Ridge, 

is very good at wavenumbers less than 0.05 km' (approximately 125 km wave-

length). It is also good for the Iceland and U.K. areas, figs (e) and (f), if the 

data below wavenumber 0.05 km -1  and 0.04 km' respectively, are ignored. 

f - Te  plots 

Figs 6.20 to 6.25 show the degree of fit of curves generated from all values of f 

and Te  to the coherence data for the four sub-areas (including Sandwell data). 

The most striking aspects of these plots are the extent of the area over which 

there is very little change in ad, and that ad is very low in this region of the 

plot. These support the observation that coherence is insensitive to variations 

in loading ratio. However, they also suggest that coherence is insensitive to 

variations in plate elastic thickness, a hypothesis seemingly in contradiction with 

the studies of Forsyth (1985). Take the Charlie-Gibbs FZ sub-area for example. 

A curve with a 26 km elastic thickness and 0.17 loading ratio give ad - 0.0293; 
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Figure 6.19. Coherence plots for (a) Charlie-Gibbs FZ, (b) Charlie-Gibbs FZ 
(Sandwell data), (c) Reykjanes Ridge, (d) Reykjanes Ridge (Sandwell data), (e) 
Iceland, and (f) U.K. areas. The plots also show the best fit theoretical curve 
given by the parameters in table 6.2. 
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but a curve with Te - 50 km and f = 10 give ad = 0.0299. The other sub-areas 

show a better degree of constraint on the lowest error solutions, but while the 

lower values of elastic thickness have high errors of fit, there is still considerable 

leeway in fitting curves with high values of Te . 

Another reason for the variations in good solutions could be poor data. How -

ever in the light of the reasonably well-constrained solutions from admittance 

studies, this seems not to be the case. 

It is more likely that this kind of least-squares fit procedure is not the best way 

to calculate elastic thickness from coherence data. Whereas admittance fits are 

constrained only at one point (the ordinate intercept), Forsyth's coherence model 

constrains the curves at both the ordinate intercept and the large-k asymptote. 

Given the distribution of the coherence data in the plots in fig 6.19, it can be 

understood how a least-squares solution can give similar values of fit error for a 

wide range of curves. 
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Figure 6.20. f T e  plot of ad x 102  for Charlie-Gibbs FZ from coherence data. 
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Figure 6.21. f - Te  plot of ad x 102  for Charlie-Gibbs FZ (Sandwell) from 
coherence data. 
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Figure 6.22. f - Te  plot of ad  x 102  for Reykjanes Ridge from coherence data. 
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Figure 6.23. f - Te  plot of ad x 102  for Reykjanes Ridge (Sandwell) from 
coherence data. 

Figure 6.24. f - Te  plot of ad x 102  for Iceland area from coherence data. 
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Figure 6.25. f - T plot of ad  x 102  for U.K. area from coherence data. 

6.5 Discussion 

An initial analysis of tables 6.1 and 6.2 indicate a large difference between the 

values of elastic thickness and loading ratio returned by admittance and coherence 

studies. The estimates of Te  from the coherence analyses are uniformly lower than 

those from admittances. Furthermore, estimates of f from coherences imply 

loading occurs predominantly at the surface in all sub-areas, while admittance 

studies suggest the opposite is true, and give a wider spread of values. It was 

suggested (6.4.3) that the least-squares fitting of a theoretical curve constrained 

at two points to the coherence data is not a good method of determining elastic 

thickness. Furthermore, the degree of fit of the curves to the data was found to 

be very insensitive to variations in the Moho to surface loading ratio, for values 

greater than 1. Thus we would expect the coherence estimates to be less reliable. 

To test the validity of the 2-D approach, and also the use of the ETOPO5 

dataset, a 1-D admittance analysis was performed on a single ship track. This 

track lay at the northern end of the Reykjanes Ridge, extending into the seas 

close to Iceland. The result from this analysis is discussed in the sub-section on 

the Reykjanes Ridge, and in the summary at the end of the chapter. 

The results of Moho depth and elastic thickness from the admittance and co-

herence analyses follow, together with some values measured in previous studies. 

As a prelude, a summary of studies of crustal thicknesses from seismic refraction 

surveys by White et al. (1992), found the mean thickness of normal oceanic crust 

to be 7.1 km. 

Bear in mind that the variable zm  in eq.1.41 is the mean depth to the com-

pensating density contrast over the whole area, as far as this concept is viable. 
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This has been taken as the depth to the Moho, the crust/mantle boundary. Fur-

thermore, Zm is the depth below sea level, which in oceanic areas will be larger 

than the crustal thickness by up to 4 km. Most of the following cited references 

have found the Moho depth using seismic methods, which detect differences in 

the velocity of seismic waves through strata. As this velocity is largely dependent 

upon the rock density, the seismic depth to the Moho will be equivalent to the 

gravitationally determined depth. 

Charlie-Gibbs FZ 

Taking the Charlie-Gibbs FZ IFC data, the admittance method yields an elastic 

thickness of 7 km and a Moho depth of 24.5 km, though if the outlying points are 

deleted (6.4.1), these figures become 5 km and 15 km respectively. The Sandwell 

admittance data return an elastic thickness of 4.5 km and a Moho depth of 25 

km, but omitting the outliers results in values of 3.5 km and 20.5 km respectively. 

The coherence data yield elastic thicknesses of 26 km from the IFC data, and 23 

km from the Sandwell data. The mean ocean depth in this area is approximately 

3.5 km: Moho depth values should be reduced by this figure to obtain a crustal 

thickness. 

A seismic refraction survey of the active transform of the Charlie-Gibbs FZ by 

Whitmarsh and Calvert (1986) yielded crustal thicknesses between 3.5 and 5 km, 

with the crust thickening to 8 km due south of the FZ. However, an admittance 

analysis of gravity and bathymetry profiles across a number of Atlantic FZs by 

Kogan and Kostoglodov (1981), found a best fitting crustal thickness of 28 km 

for an Airy model of compensation, but 5 km for a flexure model with an elastic 

thickness of 6 km. The summary study by White et al. (1992) found the crust 

at fracture zones to be generally thinner than the normal oceanic crust, with a 

mean value of 4.0 km. 

These estimates of crustal thickness differ greatly from the values found in 

this study, both for the IFC and Sandwell data. These latter values, of over 15 

km, are much too high for normal oceanic crust, and especially the anomalous 

crust at a fracture zone. The estimate of elastic thickness from the IFC field 

admittance study does show good agreement with the estimate by Kogan and 

Kostoglodov (1981) however. 
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Reykjanes Ridge 

Admittance studies on the Reykjanes Ridge yield an elastic thickness of 3 km and 

a Moho depth of 10 km, from the IFC field, while the Sandwell field generates 

values of 3.5 km and 20 km respectively. Both datasets indicate the load to 

he almost exclusively applied at the Moho. Coherence studies give an elastic 

thickness of 12.5 km from both fields. The mean ocean depth in this area is 

approximately 2 km. 

The 1-D admittance analysis estimated the mean depth to Moho as 21.5 km, 

with a plate elastic thickness of 6.5 km. These figures show close agreement with 

those from the Sandwell gravity field. 

Estimates of the elastic thickness of the lithosphere at the Reykjanes Ridge, 

from admittance studies by Cochran (1979), found Te  to lie in the range 2-6 km. 

A seismic study of the ridge at 60° N by Bunch and Kennett (1980), gave crustal 

thicknesses of 7 km at the ridge axis, and 10 km at the 9 Ma line (around 80 km 

from the axis). The White et al. (1992) paper quotes a mean crustal thickness 

from seismic studies of 10.3 km for oceanic crust affected by the Iceland mantle 

plume. They state that the influence of this plume can extend up to 1000 km 

from the plume core, thus incorporating all of this sub-area. 

These values for Zm and Te  show fair agreement with the IFC data admittance 

analysis results, but surprisingly do not for the Sandwell data. However, the 

results from the 1-D admittance analysis support the estimates from the Sandwell 

field. This is discussed later. 

Iceland 

Elastic thicknesses from admittance and coherence data are more in agreement, 

being 4.5 km and 5.5 km respectively. Admittance studies give a Moho depth of 

16.5 km, and a Moho to surface loading ratio of 6. 

This depth to Moho might appear to be too low compared to the value ob-

tained in southwest Iceland by Bjarnason and Menke (1993) of 20-24 km. Further 

still, seismic velocity studies by Gebrande et al. (1980) postulated the Moho at 

30 km depth below central Iceland, though they acknowledge the petrology of 

this material (an ultrahasic melt from around 15 to 30 km depth) could imply a 

region of anomalous mantle. 

However, around two-thirds of the Iceland study area is surrounding ocean, 

which White et al. (1992) assign a mean crustal thickness of 10.3 km (and which 
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has a mean depth of 750 m). This would decrease the estimates of Moho depth 

and elastic thickness over the whole area somewhat, but certainly not as much 

as implied by the admittance studies. 

U.K. 

Finally, admittance and coherence analyses of the data over the U.K. area give 

the elastic thickness as 6 km and 9.5 km respectively. The admittance study 

gives the Moho depth as 22.5 km with f = 14. 

Dewey (1982) gives the typical crustal thickness of the British Isles as 31 km. 

Regional seismic surveys give values close to this figure: the LISPB-IV profile 

from Cape Wrath to Derbyshire [Bamford et al. (1978)] found the Moho depth 

to vary between 30 and 35 km; a seismic refraction survey over Cornwall and 

on a profile from Ireland to Brittany by Holder and Bott (1971), found a Moho 

reflector at 27 km; a survey of the North Sea by Barton and Wood (1984) found 

the crust generally to be 32 km thick, thinning to 20 km at the Central Graben; 

and multichannel seismic profiles over the Rockall passive margin by Fowler et 

al. (1989) found the Moho deepening from 15 to 27 km across the margin. 

Barton and Wood (1984) also put an upper limit of the elastic thickness over 

the North Sea of 5 km. And a study by Watts (1992) gives the elastic thickness 

of the Rockall plateau as 5 km. 

All the areas in the above surveys are included in Area 4, rendering any 

estimate of a mean Moho depth or elastic thickness dubious. 

Summary 

In general, the estimates of Moho depth and elastic thickness returned by the 

admittance and coherence studies do not show good agreement with values ob-

tained from previous surveys. Theoretical admittance curves in fig 6.8 show a 

poor fit to the data, especially in the Charlie-Gibbs FZ and Reykjanes Ridge 

sub-areas; while the coherence curves in fig 6.19 show a poor fit for all areas. The 

discrepancy in the coherence method results has been suggested as arising from 

the least-squares method being inappropriate, in that there are two constrained 

points. However, the admittance method should give better results as only one 

point is constrained. 

In the Charlie-Gibbs FZ, the IFC field has a poor resolution due to the large 

separation between satellite groundtracks, and the scarcity of ship track data. 
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Thus, while we would expect a poor result in this case, it is surprising that 

the Sandwell model gives similar estimates of Zm and T from both admittance 

and coherence studies, as this field is of much higher resolution. One possible 

cause of this discrepancy is the presence of an altimeter-derived component in 

the ETOPO5 model contaminating the correlation. Furthermore, this sub-area is 

relatively small, meaning that although the internal tectonics should be uniform, 

there is comparatively little data to perform an accurate analysis. 

Over the Reykjanes Ridge, the Moho depths from admittance analyses of the 

IFC and Sandwell data are very different. The IFC estimates of Zm are too low, 

while those from the Sandwell field are too high. Interestingly, the estimate of 

Moho depth from the 1-D analysis almost exactly agree with the estimate from 

the Sandwell field. As the 1-D gravity is not derived from altimeter data, and 

the 1-D bathymetry is an independent dataset, we would expect estimates from 

this method to be the most accurate, assuming that the admittance algorithms 

are in order. A comparison between 1-D and 2-D methods should be investigated 

further. 

In the Iceland and U.K. sub-areas, it is probably incorrect to compare the 

estimates of Moho depth and elastic thickness from admittance analyses with the 

values from the literature. These sub-areas have large amounts of heterogeneous 

crust, rendering a mean value of z and Te difficult to determine from a spectral 

approach. However, the results are not so inaccurate as to be discarded out of 

hand. A Moho depth of 16.5 km for the Iceland sub-area is reasonable given the 

large amount of oceanic crust in the area. Furthermore, as the U.K. sub-area is 

largely continental crust, the estimated Moho depth of 22.5 km is close to those 

values determined in previous studies. Finally, it should be pointed out that 

there exists no inherent correlation between the gravity and ETOP05 datasets in 

the land areas, as there was at sea. 

The misfits between the admittance and coherence estimates, and those from 

previous studies could suggest incorrect modelling of the loading regimes in cer-

tain provinces. However, as previously mentioned, the discrepancy is most prob-

ably due to the ETOP05 grid, but it is possible that the assumption of a sym-

metrical isostatic response function is generating the errors. This, again, should 

be investigated further. 



Chapter 7 

Summary and conclusions 

The aim of the thesis was to develop an algorithm to combine heterogeneous 

datasets using the fast Fourier transform, and apply the method to data in a 

large, predominantly marine area of the Earth, with the intent, of generating 

accurate geoid and gravity models. 

The requirement of the FFT that input data should exist on a regular grid, 

has resulted in the development of two new gridding routines, for satellite and 

ship gravity data. 

The along-track geoid slope of the altimeter profiles is calculated. This re-

moves the effects of long-wavelength orbit error and sea surface topography, mean-

ing no cross-over error analysis is needed. However, it also underestimates the 

true slope value of the anomaly. The application of a specifically designed grid-

ding kernel spreads out a slope value to create a complete grid, yet retains a 

degree of the along-track resolution. The gridding procedure also allows for the 

averaging of colinear repeat passes, which removes the time-variant oceanographic 

noise. Further still, the spectral characteristics of the gridding routine lead to 

a smoothing of the data, reducing the high amplitude short-wavelength noise 

generated by the along-track differencing. 

An altimeter geoid/freeair anomaly grid was created using a Fourier domain 

representation of the inverse Vening-Meinesz transformation, that allows for the 

combination of data from multiple altimeter missions. 

Interpolating the ship gravity data onto a grid also involves differencing along 

the track profile. This removes the long-wavelength gravity meter drift, and the 

uncertainty in the datum that often arises. It also removes the need to perform 

computationally demanding cross-over error adjustments. The freeair anomaly 

field generated from altimeter data is used to constrain the mean value of gravity 
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along a ship track. 

Previous studies using Fourier domain techniques have tended to use ship 

gravity data as a non-contributing verification of the gravity field from satellite 

data. Here, the ship data are combined with the altimeter gravity field resulting 

in a much improved model. Furthermore, the IFC algorithm is able to include 

terrestrial freeair anomaly data, and, owing to the simple mathematical relation-

ships between the geoid height, gravity anomaly, and their spatial derivatives of 

any order, these data can also be combined in the iteration scheme. 

In comparison, the least squares collocation method of heterogeneous data 

combination, while having proven accuracy, must invert matrices of size N x N, 

for N data points. This requires the use of powerful computers and a long run-

time. In contrast, the IFC algorithm, with its FFT processing, is able to process 

large datasets in a very short time. A new technique was developed to reduce 

the errors arising from the Fourier transformation of a truncated dataset. This 

involved increasing the dataset size by 'mirroring' 10% of the edges and tapering 

this border. 

The intrinsic accuracy of the gridding and IFC algorithms was determined 

by testing the ability of the algorithm to reproduce accurately determined, self -

consitent geoid and freeair anomaly fields, using simulated data extracted from 

the fields. This was assessed by comparing the simulated data with values inter-

polated from the generated grids at the equivalent spatial location. The standard 

deviation between the simulated ship freeair anomalies and the values interpo-

lated from the altimeter-only freeair anomaly grid was 10.50 mgal; that between 

the simulated freeair anomalies and the values interpolated from the combined 

freeair anomaly grid was 4.54 mgal, showing an improvement upon the altimeter-

only solution, and comparing favourably with the 5.76 mgal accuracy of a LSC 

grid. 

A 5 km gridded model of the gravity field of the North Atlantic was then 

created from Geosat/ERM and Topex/Poseidon altimeter data, and marine and 

land freeair anomaly datasets. The accuracy of the altimeter geoid was assessed 

by comparing the along-track slopes of the altimeter profiles with values obtained 

by interpolation of the model grid at the equivalent locations. The standard 

deviation of the difference between Geosat slopes and the altimeter-only slopes 

was 6.95 jtrad; while that for Topex/Poseidon data was 6.75 prad. The standard 

deviation of the difference between Geosat slopes and the IFC geoid slopes was 

6.81 grad; that for Topex/Poseidon data was 6.56 urad. Comparing the freeair 
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anomalies of the ship tracks with values interpolated from the model fields gave 

a standard deviation of 13.4 mgal for the altimeter-only field, and 10.2 mgal for 

the IFC field. While these figures show a slight improvement of the IFC over the 

altimeter-only models, a spectral and visual comparison immediately confirms 

the improvement. 

Finally, the osu91A model was added back to the IFC freeair anomaly grid, 

and this was compared with a grid produced by Sandwell et al. (1995). The 

mean difference between the fields was -0.67 mgal with a standard deviation of 

8.74 mgal. The IFC model compares very well with the Sandwell model, espe-

cially considering the latter was generated from much more densely spaced ERS-1 

altimeter data. 

The isostatic admittance and coherence was calculated for four sub-areas in 

the IFC and Sandwell models: the western fossil transform of the Charlie-Gibbs 

fracture zone, the Reykjanes Ridge, the Iceland hot spot, and the U.K. and its 

continental shelf. The topographic/bathymetric relief data was selected from the 

ETOPO5 dataset. The admittance and coherence studies yielded estimates of the 

Moho depth, lithospheric elastic thickness, and ratio of Moho to surface loading, 

by fitting curves from a range of theoretical models to the data. The model that 

gave the best least-squares fit was deemed to be representative of the actual iso-

static compensation mechanism. The results from the admittance studies showed 

some agreement with values obtained from earlier seismic surveys in the Iceland 

and U.K. regions, but poor agreement for the Reykjanes Ridge, and very poor 

agreement for the Charlie-Gibbs fracture zone from both the IFC gravity data 

and the high-resolution Sandwell data. Except for one case, the Iceland area, 

the coherence estimates of elastic thickness were too large when compared with 

both previous studies and the admittance results. This general lack of correla-

tion between values was proposed as having a variety of sources: errors in the 

topographic model; the failure of least-squares regression to determine the best 

fitting model; the inappropriate use of a symmetrical isostatic response function; 

or incorrect assumptions about the physics of the compensation mechanisms in 

certain regions. 

In conclusion, this thesis has produced algorithms 

1. that grid and combine altimeter measurements of the geoid height from 

many satellite missions; 
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that grid shipboard measurements of the freeair anomaly; and, 

that can combine heterogeneous potential field data, processing large datasets 

very rapidly. 

The resulting gravity field can be used to determine the crustal and elastic 

thicknesses in a region approximately, though it is proposed that the sources 

of error mentioned above must be investigated further. The method can also 

be applied to small areas. Given a satellite mission with a dense groundtrack 

spacing, and many shipboard observations, the algorithms could be applied to 

the data for exploration purposes or local geophysical surveys. 

I suggest that, despite the global availability of high density altimeter datasets 

such as ERS-1 and Geosat/GM, they will never supercede the use of shipboard 

measurements of the gravity field. First, shipboard gravity meters can make 

point observations at very small track spacings, whereas altimeter measurements 

presently have an along-track resolution of at least 20 km. The increasing accu-

racy of marine gravity surveys, and the gridding procedure described here, can 

remove most errors that have been characteristic of marine surveys in the past. 

Second, marine surveys measure the gravity field directly, which of course con-

tains no sea surface topography expression. The accuracy of satellite altimeter 

determinations of the geoid will always be limited by the accuracy to which the 

sea surface topography is known. 



Appendix A 

The Lambert conical conformal 

projection 

When using the flat-Earth approximation to Laplace's equation it is desirable to 

have minimal coordinate scale distortion throughout the area of study. Consider 

data given on a latitude/longitude grid, separated by one degree' in both coordi-

nates. Adjacent gridpoints on the same parallel (line of latitude) at the equator 

have a separation of 111 km, whereas the adjacent gridpoints at 700  N have only 

a 38 km separation. Yet a Fourier analysis of the data would consider this pair 

of adjacent points as though they had an equal separation, thus misinterpreting 

the wavelengths of anomalies present. 

The transformation of the coordinate system from ellipsoidal or spherical to 

planar using map projections can dramatically reduce these distance distortion 

errors. The projection used in this study is the Lambert conical conformal with 

two standard parallels. To quote from Dorman and Lewis (1970): "The difference 

between distances measured on the spherical Earth and those measured on a 

Lambert conformal map are slight; hence we expect little distortion due to using 

the plane approximation in transforming into the frequency domain." 

A conformal projection is one which maintains correct representation of shapes 

(angles); the scale distortion is the same in every direction, an important property 

for the geodesist. The Lambert projection is particularly suited to areas with a 

large east-west extent, such as the North Atlantic. Another useful conformal 

projection is the transverse Mercator, best suited for areas with a large north-

south but limited east-west extent. 

In the Lambert projection, geographical coordinates are mapped onto a cone 

intersecting the reference ellipsoid at two parallels within the study area and with 
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its apex on the rotational axis of the ellipsoid. The resulting coordinates on the 

plane are called 'eastings' and 'northings'. The central meridian of the study 

area forms the zero easting axis. The coordinate scale distortion, a measure of 

the accuracy of the projection, is dependent only upon latitude: at the standard 

parallels the distortion is zero. 

In this study, the standard parallels are at 53° N and 66° N. The central 

meridian is at 25° W. The projection used the Geodetic Reference System 1980 

(GRS80) reference ellipsoid, with a semi-major axis of 6378137.0 m and a flat-

tening of 1/298.257. The scale distortion at the lower latitude limit of the study 

area (47° N) is 1.017343, that at 60° N is 0.993227, while the distortion at the 

higher latitude limit (72° N) is 1.018172. 

The equations used for the coordinate transformation are given in Richardus 

and Adler (1972). 



Appendix B 

Comparison of gridding kernels 

The simulated ascending altimeter profiles (2.8) were gridded using the kernels 

listed below. Profiles were interpolated from the computed slope grids at the 

locations of the simulated satellite tracks ("on-track"), and also at "mid-tracks" 

lying between the simulated tracks (see fig B.1). These were then compared with 

the along-track slopes of the simulated dataset, and of the geoid slope along the 

mid-tracks (interpolated, using a bicubic interpolator, from the test model geoid 

grid, fig 2.6). The standard deviation of the on-track slopes is 7.81 ,urad, that for 

the mid-track simulated slopes is 7.49 grad. 

In all cases the search radius of the kernel was 65 km. Cross-sections through 

the kernels are shown in fig B.2. The distance of an influenced gridnode from the 

observation location is X. 

The "Witch of Aganissi": 

6W(X) = 	
1 
	 (B.1) 
1+() 2  

a0  

with the halfwidth a 0  = 11.375 km. This is shown in fig B.2 as the solid, 

dark curve. Fig B.3(a) and (b) show the resulting slopes (dark curves) when 

this kernel is applied to the simulated profiles. 

An inverse cubic function used by Sandwell (1984): 

8W(X) = 	
1 
	 (B.2) 
1+(-)3  axo  

with the halfwidth a 0  = 11.375 km. This is shown in fig B.2 as the dashed 

curve. Fig B.4(a) and (b) show the resulting slopes (dark curves) when this 
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Figure B.1. Location of the simulated on-track (dark) and the mid-track al-
timeter profiles (light). 

kernel is applied to the simulated profiles. 

Gaussian function: 

	

6w(x) = e 	 , 	 (B.3) 

with c = 13.667 km, chosen so that the kernel has the same halfwidth as 

the above two kernels. This is shown in fig B.2 as the solid, light curve. Fig 

B.5(a) and (b) show the resulting slopes (dark curves) when this kernel is 

applied to the simulated profiles. 

Sinc function: 

Sw(Sx,Sy)= 	
1 

Ax Ay 

sin(ir 8x/Ax) sin(ir 6y/Ay) 

irSx/Lx 	rSy//y 
(B.4) 

from Vermeer (1992), where x = -/Sx 2  + 5y 2 , and Ax, Ay are the target 

grid spacings. This is shown in fig B.2 as the dotted curve. Fig B.6(a) and 

(b) show the resulting slopes (dark curves) when this kernel is applied to 

the simulated profiles. 

UNIMAP bilinear interpolation. The on-track simulated slopes were grid-

ded using the UNIMAP bilinear interpolation package. Fig B.7(a) and (b) 

show the resulting slopes (dark curves) when this kernel is applied to the 
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Kernel 
On-track Mid-track 

computed difference computed difference 
Witch 4.34 4.19 2.21 7.15 

inverse cubic 5.46 3.24 2.39 7.10 
gaussian 6.03 2.87 4.77 7.45 

sinc 9.37 4.09 409 409 
UNIMAP bilinear 6.45 2.79 2.79 7.14 

Table B.I. Standard deviations in jLrad of the slopes interpolated from a grid 
computed using the stated gridding kernels, and the standard deviations of the 
difference between the simulated slopes and the computed slopes, at the on-track 
and mid-track locations. For comparison, the s.d. of the simulated on-track 
slopes is 7.81 grad, that of the simulated mid-track slopes is 7.49 JLrad. 

simulated profiles. 

While the Witch gridding kernel gives the largest difference of computed ver-

sus simulated slopes on-track, it is the only gridding routine that does not involve 

calling external routines, thus saving on computer run-time. The inverse cubic 

kernel calls the square root function, the gaussian kernel calls the exponential 

function, the sinc kernel calls the sine function, while the UNIMAP bilinear inter-

polator requires the user having access to the UNIRAS software. 

Regarding execution time for the kernels, the inverse cubic kernel takes around 

1.1 times longer than the Witch kernel, the gaussian kernel took 1.7 times as long, 

while the sinc kernel took 3.5 times longer. 

Given that the algorithm should be self-contained, the UNIMAP interpolator 

was discarded, also because no weighting grid is produced from this method. 

While the sinc function is theoretically the best interpolator, a conjecture 

borne out by the coincidence of the simulated and computed profiles in fig B.6(a), 

fig (b) shows that it does not reproduce the slope values at all well elsewhere. 

This arises from the truncation of the kernel in the space domain. This kernel 

was therefore discarded also. 

In the mid-track locations, none of the kernels can mimic the slope values. 

From table B.1, the spread of the differences is of the order of the spread of the 

simulated slopes in all cases, except for the sinc function where it is far greater. 

[This appendix was included after the oral examination. With hindsight, the 

gaussian kernel yields the best results with no significant increase in computing 

time. 
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Figure B.2. The gridding kernels used in the comparison: Witch (solid, dark); 
inverse cubic (dashed); Gaussian (solid, light); sinc (dotted). 
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Figure B.3. Slope comparison from simulated satellite tracks (light curves), 
with values interpolated from the grid of slopes (dark curves) computed using 
the Witch kernel (eq.B.1). (a) shows values on-track, (b) the values at the mid-
track. 
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Figure B.4. As fig B.3, for the inverse cubic kernel (eq.B.2). 
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Figure B.5. As fig B.3, for the gaussian kernel (eq.B.3). 
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Figure B.6. As fig B.3, for the sinc kernel (eq.B.4). 
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Figure B.7. As fig B.3, for UNIMAP bilinear interpolation. 



Appendix C 

Transfer function of the gridding 

kernel 

C.1 Introduction 

The gridding kernel introduced in §3.2 can be regarded as a 'filter' in its action of 

transcribing point data onto a regular grid. The effect the gridding procedure has 

upon the altimeter, ship and land data (3.3, §4.2.2, & §4.3 respectively) can be 

analysed by studying the form of the gridding kernel in the wavenumber domain. 

This can be done quantitatively using a transfer function [Bracewell (1965) and 

e.g. Sandwell and Zhang (1989)]. If an input signal with Fourier transform A(k) 

is fed into a linear system which gives an output signal with transform B(lc), the 

transfer function is defined as 

-  
T(k) 

- B(k) 
 A(k) 

(C.1) 

which is a function only of the properties of the system. 

The input and output datasets are normally required to be isotropic, which 

the data considered in this study are not. Satellite data exist on widely spaced 

groundtracks; ship data can be densely collected in some regions, while sparsely, 

or not at all in others, the same being true for land data. Thus, while a rigorous 

calculation of the transfer function cannot be performed, a good estimate can 

he obtained by assuming that the wavenumber content of the point data are an 

accurate representation of the wavenumber content of the field over the whole 

area. 
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The "Witches' Hat" gridding kernel has the basic form 

1 
= (C.2) 

ao  

Its action upon a set of observations, A( 1 ), can be regarded as a convolution in 

the space domain of the kernel with the observations. This is true due to the even 

symmetry of the kernel function, the convolution's 'folding' operation leaving the 

kernel unchanged. The resultant interpolated grid, B(x 2 ), is then given by 

 B(2)= 	 Il 	
(C.3)

ffw( 2 - 1 )d2 i 	12 

The denominator integral, 12,  can be shown to be wavenumber-independent 

(eq.C.14), thus contributing a constant term in eq.C.3, affecting only the am-

plitude. Therefore, the Fourier transform of eq.C.3 can be taken, and using 

the equivalence of convolution in the space domain and multiplication in the 

wavenumber domain [Sheriff and Geldart (1983)], we have 

= 	
. 	 (C.4) 

12 

This equation will be used as the basis for determining the transfer function in 

the following cases. 

C.2 Altimeter data 

The gridding 'filter' for altimeter data is the successive action of derivative and 

interpolation operations upon geoid height data (3.3). Thus if we let the input 

field A() = ), the along-track geoid slope, in eq.C.3, we can use the relation-

ship betwen the Fourier transforms of a function and its horizontal derivative 

[Sheriff and Geldart (1983)]: 

A(J) 	 (C.5) 

Substituting this into eq.C.4, the transfer function for the system becomes (from 

eq. C.1) 

T(k) = 	
k) = ik5w(k') , 
	 (C.6) 

N(k) 	'2 
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for an input N(x), the geoid heights, and output B(s), the new grid of geoid 

heights. 

Now, the Fourier transform of the gridding kernel is 

6w(k,) = 
1 ti'°° 	 - 	

(C.7) 

While convolution integrals (eq.C.3) are normally evaluated over an infinite range, 

the gridding kernel has a finite extent. If a conversion is made to a cylindrical 

coordinate system (r, 9), the r-integral is now evaluated from 0 to R', the latitude-

dependent search radius. However, to account for the variation of the kernel's 

shape with latitude (q), it is convenient to introduce a scaled cylindrical coordi-

nate system (p,0), where 

p = r/ 	. 	 (C.8) 

and 4(0) is given by eq.3.3. That is, instead of the kernel decreasing in size 

with increasing latitude, the kernel retains its shape while the coordinate system 

expands. The kernel function now becomes 

1 
(5(,)(P,= 1 + () 2 	

II < R. 	 (C.9) 
ao  

which is -independent. The wavenumber coordinates transform similarly, 

(C.10) 

Thus, 

R0  2ir 2 
_____ 

1  I f a0 	
e_ipcos(B_9o) pdpdO 

2ir 
P =O 9=0 

R0 	
I 	

2,r 

= 
a + P2 Li cos[kpcos(O—Oo)] - isin[Pcos(9_Oo )]d9} pdp 

27r

(C.11) 

The 9-integrals are standard forms, given in Cradshteyn and Ryzhik (1980) (eqs 

3.715.18 and 3.715.13) as 
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I cos[z cos 0 ] d = 2 -7r Jo (z) 
	

J sin[z cos ]d=O 

where Jo (z) is a Bessel function of zero order. Thus 

R. 

2 ipJo (cp) 
w(,,q5)= a0] 

a+p2 
 dp , 	 (C.12) 

the integral having a numerical solution only. 

The denominator integral 12 in eq.C.6, is solved in the same coordinate space: 

R 0  2ir 

12 = J f 12pdpdO 
p=O 6=0 a. 

R 0  

2 ,7r-  2  I 	. 	( C.13) 

0 

This is solved by the sustitution u = p2  /a to give 

12 = ira 2  ln[1 + (Ro/ao)2] , 	 (C.14) 

which is latitude-independent, indicating that the area under the gridding kernel 

is a constant no matter where its location in a region. 

So in the expanded coordinate space, from eqs C.6, C.12 and C.14, the transfer 

function is 
R0  

T(k) = 	
' / 

pJo(kp) dP/ ln[1 + (Ro/ao)2] . 	(C.15) 
a+p2  

0 

Transforming back to real coordinate space using eqs C.8 & C.10, the transfer 

function of the combined derivative/ kernel filter is 

k'4 
W 

 rJo(kr) 
T(k) = 

i 	
l a/ 2   +r2 dr/ln[1 + (R o /ao ) 2 ] . 	(C.16) 
0 
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Figure C.1. The transfer function for the gridding operations on Geosat/ERM 
data at 47° N (R 0 =80 km, dark curve) and 72° N (R 0 =20 km, light curve). 

Fig C.1 shows the magnitude of this transfer function for the Geosat/ERM 

data at 47° N (R 0 =80 km, dark curve) and 72° N (R 0 =20 km, light curve). 

Fig C.2 shows the magnitude of the transfer function for the Topex/Poseidon 

data at 47° N (R 0 =150 km, dark curve), and at 66° N (R 0 =44 km, light curve). 

These plots show how the resolution of the gridded fields increases as the track 

spacing decreases. If the resolution limit at short wavelength is taken as the 

half-amplitude wavenumber, then the Geosat geoid has a resolution of 49 km at 

47° N, and 12 km at 72° N. The Topex/Poseidon geoid has a resolution of 92 

km at 47° N, and 27 km at 66° N, though reproduces the geoid with a smaller 

amplitude than Geosat. 
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Figure C.2. 	The transfer function for the gridding operations on 
Topex/Poseidon data at 47° N (R,,=150 km, dark curve) and 66° N (R 0 =44 km, 

light curve). 

C.3 Ship data 

A transfer function for the ship data gridding algorithm has not been calculated, 

owing to the complex nature of the gridding equations, eqs 4.14 to 4.19. 

C.4 Land data 

Land gravity data is gridded by the direct application of the kernel 

Sw 	
1

(r) = 	 (C.17) 1+(Z) 2  
ao 
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Figure C.3. The transfer function for the land data gridding operation, R0 =20 
km. 

to the point freeair anomaly data, Ag(). Thus, from eq.C.4, the transfer function 

for this system can be derived from 

= 	12 	
' 	 (C.18) 

where B(s) is the output grid of interpolated freeair anomalies. 

The method of calculating Sw(k) and 12 is similar to the steps in §C.2, but 

without the latitude-dependence and coordinate expansion. It is therefore a 

straightforward task to derive the transfer function 

Ro 
rJo(kr) 

T(k) = 	
a + 

r2 dr/ In + (R o /ao ) 2] . 	 ( C.19) I  
A plot of this function is shown in fig C.3. The short-wavelength resolution of 

the gridded land data, using the definition applied to the satellites (C.2), is 37 

km for a gridding kernel with radius 20 km. 
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Appendix D 

Fourier transform error 

reduction 

It has been shown [e.g. Schwarz et al. (1990)] that taking a discrete Fourier 

transform (DFT) of a dataset introduces 'spectral leakage', which is due to the 

finite length of the dataset. This occurs first, because the DFT cannot resolve 

wavelengths longer than the dataset size; and second, as the dataset is periodic 

in the Fourier domain, any large amplitude anomalies at the dataset edge will 

influence the opposite edge. 

The errors caused by the first effect are commonly reduced by fitting a least-

squares plane through the data and subtracting it. However as this technique 

removes valuable information from the data, a better method is to remove an ac-

curate long wavelength geopotential model before Fourier transformation, which 

is then added back to the grid generated at the end of the program (the 'remove-

restore' technique, §1.3). 

The errors due to the second effect are usually reduced by the application of a 

taper to the edges of the dataset. However, the reduction in data quality caused 

by edge tapering was not deemed acceptable, and other methods were tested. 

The data manipulation techniques listed below were applied to the data im-

mediately before the Fourier transformations in the IFC routine (5.3). 

no manipulation technique applied; 

a border of 100 '< 100 zeros added to the data; 

a least-squares plane subtracted from the data; 

a least-squares plane subtracted and a zero border applied; 
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5% of the dataset edges tapered with a cosine-squared function; 

a least-squares plane subtracted, a 10% cosine-squared taper applied to the 

edges, and a zero border applied; 

extrapolating the dataset by 10% at each side using a cosine-squared func-

tion that falls off from the edge gridnode value to zero; 

a "mirrored" border consisting of 10% of the dataset edges added around 

the dataset; 

a mirrored border added as above, which was then tapered with a cosine-

squared function. 

The datasets used were the simulated altimeter and ship track data (2.8). The 

results after many iterations of the routine for each of the above methods are 

shown in figs D.1 to D.9, together with a graph of the logarithm of the RMS 

difference between successive 'like' provisional models, indicating the degree of 

convergence. 

With no manipulation techniques applied, illustrated in fig Dl, the IFC mod-

els converge to give a reasonable geoid, a somewhat unexpected result. Equally 

surprising was that the conventional technique of adding a zero border (figs D.2, 

D.4 & D.6) led to rapidly diverging solutions. And while detrending the grids on 

each iteration did not produce divergent models, convergence was much slower 

with the solution after 24 iterations showing signs of instability (fig D.3(a)). 

The 5% taper solution exhibited good convergence, but with the sacrifice 

of the data quality at the edges (fig D.5). The cosine-squared extrapolation 

method (fig D.7) yielded a comparitively good geoid model, but had a lower rate 

of convergence than both of the mirroring techniques. These mirrored models 

showed the best results, with a similar degree of convergence and similar resultant 

geoids. Although no difference is apparent from a comparison of figs D.8(a) and 

D.9(a), the tapered mirror technique was chosen as the best method due to the 

good results from the 5% taper technique. 

Thus, the tapered mirror technique was applied to all datasets before their 

Fourier transformation. 
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Figure D.1. (a) Geoid after 24 IFC iterations with no manipulation techniques 
applied. (b) Convergence of provisional model in successive iterations. 
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Figure D.2. (a) Geoid after 24 IFC iterations with border of 100 x 100 zeros 
applied. (h) Convergence of provisional model in successive iterations. 
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Figure D.3. (a) Geoid after 24 IFC iterations with detrending applied. (b) 
Convergence of provisional model in successive iterations. 
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Figure D.4. (a) Geoid after 16 IFC iterations with zero border and detrending 
applied. (b) Convergence of provisional model in successive iterations. 

Figure D.5. (a) Geoid after 24 IFC iterations with 5% taper applied. (b) 
Convergence of provisional model in successive iterations. 
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Figure D.6. (a) Geoid after 15 IFC iterations with zero border, detrending and 
10% taper applied. (b) Convergence of provisional model in successive iterations. 
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Figure D.7. (a) Geoid after 24 IFC iterations with cos 2  extrapolation applied. 
(b) Convergence of provisional model in successive iterations. 
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Figure D.8. (a) Geoid after 24 IFC iterations with mirrored border applied. (b) 
Convergence of provisional model in successive iterations. 
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Figure D.9. (a) Geoid after 24 IFC iterations with tapered mirrored border 
applied. (b) Convergence of provisional model in successive iterations. 



Appendix E 

The FORTRAN program 

TOTAL.F 

The FORTRAN program TOTAL.F is listed. This program incorporates the follow-

ing subroutines, which may be used as individual programs with slight modifica-

tion. 

GSGRID .F This subroutine grids the along-track geoid slope using the Witch grid-

ding kernel, following the procedure in §3.3. Input is one file for all ascend-

ing passes of a mission, one file for all the descending passes, for each 

mission. Input file must be in "track format": 

N 

east1  north1 	geoidi 	lat1  

eastN northN geoidN latN 	
(E.1) 

M 

east1  north1 	geoidi 	lat1  

eastM nOrthM geoidM latM 

The program creates a grid of slopes and a grid of weights for each input 

file. Values for the parameters in the program were: 
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Topex Geosat 

R 150 km 80 km 

o 47°N 47°N 

01  74°N 80°N 

GS2GRAV.F The along-track geoid slope and weighting grids from GSGRID.F are 

passed to this subroutine. External input grids are 

a grid of the angle made by the satellite groundtrack with the positive 

easting axis: one per input slope grid. UNIMAP bilinear interpolation 

was used to grid the angles; 

the tapered landmass grid (2.7). 

From these, grids of the geoid height and freeair anomaly are created (3.4). 

SHIPGRID.F The subroutine grids data according to the procedure described in 

§4.2. The data must be in "track format": 

N cruiseA iyear 

east1  north1  freeairi  

eastN northN freeairN 	
(E.2) 

M cruise B  iyear 

east1  north1  freeair1  

eastM florthM freeairM 

A search radius of 20 km was used in application of the Witch gridding 

kernel. Two grids are created, one of the gridded freeair anomaly, and one 

of the weights. 

LANDGID.F Land gravity data are interpolated directly onto a grid using the 

Witch kernel, with a search radius of 20 km. The data format is 

east 1  north1  freeazri  

east 2  north2  freeair2 	
(E.3) 

eastN northN freeairN 
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Grids of the freeair anomaly and weights are created. 

IFC.F The gravity and weighting grids created by GS2GRAV.F, SHIPGRID.F and 

LANDGRID.F are passed to this subroutine. They are combined iteratively 

according to the procedure in §5.3. The RMS difference between successive 

provisional models is calculated, and the subroutine exited when this begins 

to increase. A grid of either the combined geoid height or freeair anomaly 

can be generated. 

The program was run on a Sun SPARC 1000 with 4 processors and 192 Mbytes 

RAM. It requires 136 kbytes of memory. 

Two datasets were gridded and combined: 

The test dataset (2.8) consisted of 1670 simulated satellite observations, 

and 1853 simulated ship track observations. The working grid within the 

program was 128 x 128 gridnodes, and the program wrote to two files, each 

of 100 x 100 gridnodes. The CPU time was 18 seconds. 

The North Atlantic dataset consisted of 68,391 Geosat/ERM observations, 

483,068 Topex/ Poseidon observations, 133,677 ship gravity observations, 

and 182,292 land gravity readings. The working grid within the program 

was 1024 x 1024 gridnodes, and the program wrote to two files, each of 

704 x 476 gridnodes. The CPU time was 81 minutes. 



* Program total.F 	 - 
* version 16 - 7/12/1995 

* Written by Jonathan Kirby, 
* 	 Department of Geology & Geophysics, 
* 	 University of Edinburgh. 

* Calls the mixed-radix fast fourier transform algorithm by 
* R.C. Singleton, Stanford Research Institute, Sept 1968. 

* Array sizes and no. of satellite missions altered in "total.h" 
* Parameters read in from "total.com  

include "total.h 
character*32 fileout 

open(20,file='total.com') 

* area parameters 

read(20,*) nxO 
read(20, *) nyU 
read(20,*) xO 
read(20,*) yQ 
resd(20,*) delta 
read(20,*) gn 

ibordl=nxO*0 .1 
ibord2=ibordl 
jbordl=nxo*0 .1 
jbord2=jbordl 

nx=nxo+ibordl+ibord2 
ny=ny0+jbordl+jbord2 

xO* x O*1.d3 
yO=yO*1.d3 	 now in metres 
delta=delta*1.d3 

xO= xO_(ibordl*delta ) 
yO=y0- (jbordl*delta) 

write(*,601) nl,n2 
write(*,602) nx,ny 

601 format('nl =',i5,3x, n2 =',i5) 
602 format('nx =' ,i5,3x, ny = ' ,i5) 

if (nx.gt.nl.or.ny.gt .n2) then 
write(*,*) 'nl,n2 too small for data size' 
Stop 

endif 

write(*,*) 'gridding satellite data 

do 10, k=1,2*nsat 
call gsgrid(k) 

10 continue 

write(*,*) producing gridded geoid . 
call gs2grav 

write(*,*) 'gridding ship data . 
call shipgrid 

write(*,*) 'gridding land data . 
call landgrid 

75 	 write(*,*) "combining satellite & ship datasets . 
76 	 call ifc 
77 
78 	* 

79 	* output geoid or freeair field 
80 
81 	 read(20,*) fileout 
82 	 write(*,*) 'writing to ' ,fileout 
83 	 open(1, file=fileout) 
84 
85 	 do 20, j=l,nyo 
86 	 1=j+jbordl 
87 	 do 20, i=l,nx0 
88 	 k*i*ibordl 
89 	 write(1,'(f8.3)') real(h(k,1)) 
90 	20 continue 
91 
92 	 close(l) 
93 	 close(20) 
94 
95 	 stop 
96 	 end 
97 
98 
9************************************************************************ 
100 	* The subroutine gsgrid 
101 	* Constructs 2D grids of ascending and descending along-track geoid 
102 	* slopes for each satellite mission, and their weighting grids. 
103 	* Input is easting, northing, geoid height and latitude for each 
104 	* record in an individual track. 
105 	* Each track must be preceded by the number of records. 
106 	* Interpolation is carried Out by a distance-weighted average 
107 	* method, using the Witch gridding kernel. 
10************************************************************************ 
109 
110 	subroutine gsgrid(iset) 
111 	include "total.h" 
112 	parameter (nmax=2000) 
113 	double precision eest(nmax),north(nmax),geoid(nmsx),lat(nmax), 
114 	8 latt,latb 
115 	character*32 filein 
116 
117 	deltasq=delta*delta 
118 
11------------------------------------------------------------------------- 
120 	* dataset parameters 
121 
122 	read(20,*) filein 
123 	read(20,*) idata 
124 	read(20,*) rsearch0 
125 	read(20,*) latt 
126 	read(20,*) latb 
127 
128 	rsearcho=rsearch0*1.d3 	metres 
129 	aO=rsearch0*ratio 
130 	alphao=aO/dsqrt(log(2.dO) 
131 
132 	fO=latt-latb 
133 
13 _________________________________________________________________________ 
135 	* read in satellite sea-surface height data and form geoid slope 
136 
137 	open(l,file=filein) 
138 
139 	5 read(l, , end=40) npts 
140 	do 10, k=1,npts 
141 	 resd(l,*) east(k),north(k),geoid(k),lat(k) 
142 	 east(k)=east(k)*unjts 	 metres 
143 	 north(k)=north(k)* unit s  
144 	10 continue 
145 
146 	do 30, k=2,npts-1 

1 



149 	 dn=north(k+1)-north(k-1) 
150 
151 	 dl=dsqrt (de*de +dn*dn) 
152 	 gds=(geoid(k+1)-geoid(k-1))/dl 	 gds in radians 
153 
154 	 inodeO=nintUeast(k)-xO)/delta+1.) 	 nearest node 
155 	 jnode0=nint ( (north(k) -yO) /delta+l 
156 
157 	 f*(latt-lat(k))/fO 
158 	 fsq*f*f 
159 
160 	 rsearch=rsearcho*f 
161 	 ksearch=int (rsearch/delta) 
162 	 if (ksearch.1t.1) ksearch=1 
163 	 rsearch2=ksearch*kseerch*deltasq 
164 	 ksearch=ksearch+l 
165 
166 	 asq=aO*aO*fsq 
167 	 alphasq= a lphao*alphao*fsg  
168 
16------------------------------------------------------------------------- 
170 	* interpolation within the search radius 
171 
172 	 do 20, n=-ksearchksearch 
173 	 jO=jnodeo+n 
174 	 y=y O + (jO_l)*delt a  
175 	 do 20, m=-ksearch,ksearch 
176 	 iO=inodeo+m 
177 	 if (iO.lt.1.or.iO.gt.nl.or.j0.lt.1.or.jO.gt.n2)goto20 
178 	 x=xO + (iO_1)*delta 
179 
180 	 distx=x-east(k) 
181 	 disty=y-north(k) 
182 	 distsq=dist x*distx+disty*disty 
183 
184 	 dw=1.dO/(1.dO+distsq/asg) 
105 	C 	 dw=dexp(-distsq/alphasq) 
186 
187 	 dw=dw/fsq 
188 	 if (rsearch2-distsq.1t.l.d-4) dw=zero 
189 	 wt(iset,iO,jO)=wt(iset,iO,jO)+dw 
190 	 slope(iset,iO,jO)=slope(iset,iO,jO) +gds*dw  
191 	20 continue 
192 
193 	30 continue 
194 
195 	goto 5 
196 
197 	40 close(1) 
198 
19-------------------------------------------------------------------------- 
200 	* find maximum weight value to normalise all weights 
201 
202 	wmax=zero 
203 	do 50, j=1,ny 
204 	 do 50, i=1,nx 
205 	 if (wt(iset,i,j).gt.wmax) wmax=wt(iset,i,j) 
206 	50 continue 
207 
208 	* normalize the grid values by the weights 
209 
210 	do 60, j=1,ny 
211 	 do 60, i=1,nx 
212 	 if wt(iset,i,j) .gt.zero) then 
213 	 slope(iset,i,j)=slope(iset,i,j)/wt(iset,i,j) 
214 	 wt(iset,i,j)=wt(iset,i,j)/wmax 
215 	 endif 
216 	60 continue 
217 
21-------------------------------------------------------------------------
219 	return 

222 
223 
224 	* The subroutine gs2grav 
225 	* Converts ascending and descending along-track geoid slope grids 
226 	* into grids of east & north geoid slopes. These are then combined 
227 	* into a single grid of either geoid heights or freeair anomalies. 
228 	* Angles are measured anticlockwise from the positive x-axis, and 
229 	* must have already been gridded. 
230 	* Complex array so doubles up as east deflections and geoid, 
231 	* bOO as north deflections and fraeair. 
23************************************************************************* 
233 
234 	subroutine gs2grav 
235 	include 'total.h" 
236 	complex gtempimag 
237 	character*32 fileangA, fileangD, filesea, filaout,output*l 
238 
239 	twopi=8.dO*daten(l.dO) 
240 	imag*(0. 1.) 
241 
24------------------------------------------------------------------------- 
243 	do 5, i=l,nz 
244 	 za(i)=0. 
245 	5 	zb(i)=0. 
246 
24 - ------------------------------------------------------------------------ 
248 	* form grids of east & north geoid slopes 
249 
250 	do 20, ksat=l,nsat 
251 
252 	 read(20, 	fileangA 
253 	 read(20,*) fileangD 
254 	 open(3,file=fileangA) 
255 	 open(4,file=filesngD) 
256 
257 	 do 10, j=1,ny0 
258 	 l=j+jbordl 
259 	 do 10, i=l,nx0 
260 	 k=i+ibordl 
261 
262 	 atsA=slope(2*ks at_1,k,1) 
263 	 atsD=slope(2*ksat, k, 1) 
264 	 read(3,*) angA 
265 	 read(4,*) angD 
266 
267 	 if (engA.eq.zero.and.angD.ne .zero) then 
268 	 cosD=dcos(angD) 
269 	 sinD=dsin(angD) 
270 	 tanD*sinD/cosp 
271 	 tempe=atsA 
272 	 tempn=(-atsA+(atsD/cosD))/tanD 
273 
274 	 else if (ango.aq.zero.and.angA.na .zero) then 
275 	 cosA*dcos (angA) 
276 	 sinA*dsin(angA) 
277 	 tanA*sinA/cosA 
278 	 tempe=atsD 
279 	 tempn= ( (stsA/cosA) -atsD) /tanA 
280 
281 	 else if (angA.aq.zaro.and.angD.aq .zaro) than 
282 	 tempe=atsA 
283 	 tempn=zero 
284 
285 	 else 
286 	 cosA=dcos(angA) 
287 	 sinA*dsin(angA) 
288 	 coso=dcos(angD) 
289 	 sinD=dsin(angD) 
290 	 tanAD= (sinA/cosA) - (sinD/cosD) 
291 	 cotAD= (cosA/sinA) - )cos]D/sinD) 
292 	 if (tanAD.eq.zero.or.cotAD.eq.zero) than 
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UL) '1* 1  J.L,UL 

ywvn=(j_(]/nyhalf)*n2_1) *dky 
do 40, i=l,nl 
xwvn*(i_)i/nxhalf)* n l_1) *dkx  
wvnsq=xwvn* xwvn+ywvn  *y\avn 
wvn ( i, j ) =dsqrt (wvnsq) 

gtemp=xwvn*a(i, j)+ywvn*b(i, j) 
if (i*j .ne.l) a(i,j)=gtemp*imag/wvnsq 
if (j*j .ne.1) b(i,])=gtemp*imag*gn/wvn(i, j) 

40 continue 

a(1,l)=(0. 0.) 
b)ll)=(0.0.) 

* inverse fourier transform 

call fft(za,za(2) ,n12,nl,nl,-2,ierr) 
call fft(za,za(2) ,n12,n2,n12,-2,ierr) 

call fft(zb,zb(2) ,nl2,nl,nl,-2,ierr) 
call fft(zb,zb(2) ,n12,n2,n12,-2,ierr) 

do 50 j=1,n2 
do 50, i=l,nl 
a (i, ) =a ) i, j ) /n12 
b(i, j)=b(i,j) /nl2 

50 continue 

in )1/m) units 

F(geoid) 
F(freeair) 

geoid 
freeair 

* optional output of satellite geoid 

read)20,*) output 
raad)20, *) fileout 
if )output.eq. 'y') then 
write(*, * ) 'writing to ' , fileout 
open)2, file=fileout) 

do 60, j=l,ny0 
l=j+jbordl 
do 60, i=1,nxo 
k=i+ibordl 
write)2, ' )f9.3) ') real)a)k,1))*sea)i,j) 

60 	continue 
close (2) 

endi f 

return 
end 

• The subroutine shipgrid 
• Input must be a header of no. of points in track, cruise identifier, 
• and cruise year, followed by the records in the track: easting, 
• northing, and freeair anomaly. 
• dimension of dw)) is for ksearch=4 (20 km one 5 km grid). 

subroutine shipgrid 
include "total.h" 
parameter )nmax=70000) 
double precision g2)nl,n2),x)nmax),y)nmax),faa)nmax),dw)9,9) 
integer num)nl,n2),num2)nl,n2) 
character *32 fileship, cr u iae*8 

* read ship track data, and interpolate onto grid 

read)20,*) fileship 
open)1, file=fileship) 

LCILIjJJILCLU SO 

295 	 else 368 
296 	 tempe=((atsA/sinA) - )atsD/sino) ) /cotAD 369 
297 	 tempn=)(atsA/cosA)-(atsD/cosD))/tanAD 370 
298 	 endif 371 
299 372 
300 	 endif 373 
301 374 
302 	 wtA=wt(2*ksat_1,k,l) 375 
303 	 wtD=wt(2*ksat,k,l) 376 
304 	 wtAD=(wtA+wtD)/2.dO 	 combining the asc & desc weights 377 
305 	 wsat(k,l)=wsat)k,1)+wtAD 378 
306 379 
307 	 a(k,1)=a(k,1)*(tempe*wtAD) 	east deflection 380 
308 	 b(k,l)=b)k,1) + (tempn*wtAD) 	north deflection 381 
309 382 
310 	10 	continue 383 
311 384 
312 	 close(3) 385 
313 	 close(4) 306 
314 387 
315 	20 continue 388 
316 389 
317 	read landmass file and multiply deflection grids by Sea)) 	to taper 390 
318 391 
319 	read(20, *) 	filesea 392 
320 	open(1,file=filesea) 393 
321 394 
322 	do 30, 	j=l,nyO 395 
323 	 l=j+jbordl 396 
324 	 do 30, 	i=1,nx0 397 
325 	 k=i+ibordl 398 
326 	 read(l,*) 	riand 399 
327 	 sea(i,j)=1.dO-rland 400 
328 	 if 	(wsat)k,l).gt.zero) 	then 401 
329 	 a(k,l)=a)kl)*sea)i,j)/wsat(k,l) 402 
330 	 b(k,l)=b(k,1)*sea(i,j)/wsat(k,l) 403 
331 	 wsat(k,l)=wsat(k,1)*sea(i,j)/ns a t 404 
332 	 endif 405 
333 	30 continue 406 
334 407 
335 	close(l) 408 
336 409 

410  338 	* interpolation between real data and edge : 411 
339 412 
340 	call mirror(a) 413 
341 	call mirror(b) 414 
342 415 

416  344 	* fourier transform the east & north arrays : 417 
345 418 
346 	ierr=0 419 
347 	call 	fft(za,za(2),n12,nl,nl,2,ierr) 420 
348 	call 	fft(za,za(2),nl2,n2,n12,2,ierr) 421 
349 422 
350 	call 	fft(zb,zb(2),n12,nl,nl,2,ierr) 423 
351 	call 	fft(zb,zb)2),n12,n2,n12,2,ierr) 424 
352 425 

426  354 	* wavenumber parameters : 427 
355 428 
356 	dx=delta 	 metres 429 
357 	dy=delta 430 
358 431 
359 	nxhalf=nl/2+2 432 
360 	nyhalf=n2/2+2 433 
361 	dkx=twopi/(nl*dx ) 434 
362 	dky=twopi/(n2*dy ) 435 
363 436 

437 36------------------------------------------------------------------------- --
365 	* create freeair anomaly & geoid : 438 
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'lea uu 	Is, 	ic=i,LlpLS DII 15 concinue 
441 read(1,*) 	x(k),y(k),faa(k) 514 
442 x (k)= x (k)* units 	 metres 515 * end of track 
443 y (k)=y(k)* units 516 
444 10 continue 517 sumgsbar=sumgsbar/(npts-1) 
445 518 sumgobar=sumgobar/ (npts-1) 
446 do 20 	k=1,npts-1 519 
447 dx=x(k+l)-x(k) 520 do 30. 	j=1,ny 
448 dy=y(k+1)-y(k) 521 do 30, 	i=1,nx 
449 deltal=dsqrt(dx *dx+dy *dy ) 522 if 	(num(i,j).ne.0) 	then 
450 if 	(deltal.le.0.ldO) 	goto 20 523 gshp(i,j)=gshp(i,j)/num(i,j) 
451 cospsi*dx/deltel 524 gshp(i,j)=gshp(i,j)-sumgsbar+sumgobar 
452 sinpsi=dy/deltal 525 g2(i,j)=g2(i,j)+gshp(i,j) 
453 526 num2(i,j)=num2(i,-j)+1 
454 xm*x(k)+dxf2. 	 midpoint coords 527 gshp(i,)=zero 
455 ym=y(k)+dy/2. 528 num(i,j)=0 
456 529 endif 
457 atgred=(fee(k+l)fea(k))*de1ta/(3.*delta1) 530 30 continue 
458 531 
459 gsbar=(faa(k+1)+fae(k))/2. 532 sumgsbar=zero 
460 sumgsbar=sumgsbar+gsbar 533 sumgobar=zero 
461 534 
462 inode*(xm-xO)/delte+1 535 goto 5 	 new ship track 
463 jnode*(ym-yO)/delta+l 536 
464 537 40 close(1) 
465 gOl=real(b(inode,jnode)) 538 
466 g02=real(b(inode+1,jnode) ) 53 _________________________________________________________________________ 
467 g03=real(b(inode,jnode+1)) 540 * construct weighting grid 
468 g04=real(b(inode+1,jnode+1)) 541 
469 542 rsearch=20.dO*1.d3 	metres 
470 * test whether midpoint falls in upper or lower gridpoint triangle 543 ksearch=int(rsearch/delta) 
471 * and calculate the 3 gridpoint values : 544 
472 545 deltasq=delta*delta 
473 if 	(xm_xQ+ym_yQ_(inode+jnode_1)*delte.le.zero) 	then 546 rsearch2=ksearch*ksearch*deltasq 
474 547 
475 ctgrad=_(g02_gol)*sinpsi + (g03_gol)*cospsi 548 aO=rsearch*ratio 
476 ctgrad=ctgrad/3. 549 asq=aO*aO 
477 550 
478 g0bar(g01+g02+g03)/3. 551 do 50 	n=-ksearch,ksearch 
479 552 do 50, m=-kseerch,ksearch 
480 gshpl=gsbar_atgrad*(cospsi + sinpsi)_ctgrad*(cospsi_sinpsi) 553 distsq=(m*m+n*n)*deltasq 
481 gshp2=gsbar*atgrad*(2*cospsi_sinpsi)-ctgrad*(cospsi + 2*sinpsi) 554 dw(m,n)=1.dO/(1.dO+distsq/asq) 
482 gshp3=gsbar_atgrad*(cospsi_2*sinpmi)+ctgrad*(2cospsi+sinpsi) 555 if 	(rsearch2-distsq.1t.l.d-4) 	dw(m,n)=zero 
483 gshp4zero 556 50 continue 
484 557 
485 num(inode,jnode)=num(inode,jnode)+l 55_________________________________________________________________________ 
406 num(inode+1,jnode=num(inode+1,jnode)+1 559 * extend influence of ship track data using weighting grid 
487 num(inode,jnode+l)=num(inode,jnode+l)+1 560 
488 561 do 70, 	j=l,ny 
489 else 562 do 70, 	i=l,nx 
490 ctgrad=_(g04_g03)*sinpsi+(g04_g02)*cospsi 563 if 	(num2(i,j) .eq.0) 	goto 70 
491 ctgrad=ctgrad/3. 564 g2(i,j)=g2(i,j)/num2(i,j) 
492 565 
493 gobar=(g02+g03+g04)/3. 566 do 60, 	n=-ksearch,ksearch 
494 567 jn=j+n 
495 gshpl=zero 568 do 60, 	m=-kaearch,ksearch 
496 gshp2=gsber +atgrad* (cospsi_2*sinpsi) _ctgrad* (2*cospsi+sinpsi) 569 im=i+m 
497 gshp3*gsbar_atgrad*(2*cospsi_sinpsi) +ctgrad*(cospsi + 2*sinpsi) 570 if 	(im.1t.1.or.im.gt.nl.or.jn.1t.1.or.jn.gt,n2) 	goto 	60 
498 gshp4=gsbar I atgrad*(cospsi +sinpsi) +ctgred*(cospsi_sinpsi) 571 wshp(im,jn)=wshp(im,jn)+dw(m,n) 
499 572 gshp(im,jn)*gshp(im,jn)*g2(i,j)*dw(m,n) 
500 num(inode+l,jnode)=num(inode+l,jnode)+l 573 60 continue 
501 num(inode, jnode*l)=num(inode, jnode+1)-4-1 574 
502 num(inode+l,jnode+l)=num(inode+l,jnode+l)+l 575 70 continue 
503 576 
504 endif 577 return 
505 578 end 
506 sumg0bar=sumg0bar+g0bar 579 
507 580 
508 gshp(inode,jnode)=gshp(inode,jnode)+gshpl 58************************************************************************* 
509 gshp(inode+l,jnode)=gshp(inode+1,jnode)+gshp2 582 * The subroutine landgrid 
510 gshp(inode,jnode+1)=gshp(inode,3node+l)+gshp3 583 * Input is series of easting, 	northing, 	and freeair anomaly for 
511 gshp(inode+l, jnode+l)=gshp(inode+1, jnode+l)+gshp4 584 * each record. 
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********* 	* 66 - 
588 661 	* first iteration is to combine the gridded ship dataset with the 
589 	subroutine landgrid 662 	* satellite-derived freeair anomaly 
590 	include 	"total.h 663 
591 	double precision north 664 	do 10 	j=l,ny 
592 	character*32 fileland,data*1 665 	 do 10, 	i*1,nx 
593 666 	 wsum=sea)i,j)+wshp)i,j)+wlnd)i,j) 
594 	rsearch=20.dO*l.d3 	metres 667 	 if 	)wsum.gt.zero) 	then 
595 	aO=rsearch*ratio 668 	 h)i,j) 	= 	b(i,j)*sea)i,j) 	+ 	gshp)i,j) 	+ 	glnd)i,j) 
596 	ksearch=int)rsearch/delta) 669 	 h(i,j)=h)i,j)/wsum 
597 670 	 endif 
598 	deltasq=delta*delta 671 	10 continue 
599 	 rsearch2=ksearch*ksearch*deltasq 672 
600 	asq=aO*aO 67 _________________________________________________________________________ 
601 674 	* iteration loop, 	outputting geoid/freeair grid 
602 	read)20,*) 	data 675 
603 	read)20, *) 	fileland 676 	read)20, *) 	iteration 
604 	if 	)deta.eq. 	n) 	return 677 	if 	(iteration.1t.2) 	goto 	60 
605 678 

679 	itmod=mod)iteration, 2) 
607 	* read gravity data 	: 680 
608 681 	do 50. 	1=2,iteration 
609 	open)l,file=fileland) 682 
610 683 	 write(*,*) 	'iteration 	0,1 
611 	5 read)1,',end=20) 	east,north,faa,boug 684 	 lmod=mod)1,2) 
612 	east=east*units 	 metres 685 
613 	north=north*units 686 	 call mirror(h) 
614 687 
615 	inode=)east-xO)/delta+1 68------------------------------------------------------------------------- 
616 	jnode=)north-yO)/delta+1 689 	* conversion between geoid & freeair gravity anomalies 
617 690 
618 	do 10, 	n=-ksearch,ksearch 691 	 ierr=0 
619 	 jO=jnode+n 692 	 call 	fft(zh,zh)2),n12,n1,n1,2,jerr) 
620 	 y=yO + )jO_l)*delta 693 	 call 	fft)zh,zh)2),n12,n2,n12,2,ierr) 
621 	 do 10, m=-ksearch,ksearch 694 
622 	 iO=inode+m 695 	 wvn)1,1)=1.dO 
623 	 if 	)iO.lt.1.or.iO.gt.nl.or.jO.lt.1.or.jO.gt.n2) 	goto 	10 696 
624 	 x=xO+)iO_l)*delta 697 	 if 	(lmod.eq.0) 	then 	 faa to geoid 
625 	 distsq=)x_east)*)x_east)+)y_north)*)y_north) 698 	 do 20, 	j=1,n2 
626 	 dw=1.dO/)l.dO+distsq/asq) 699 	 do 20, 	i=1,nl 
627 	 if 	)rsearch2-distsq.lt.l.d-4) 	dw=zero 700 	20 	h(i,j)=h(i,j)/( wvn )j,j)* gfl ) 
628 	 wlnd)iO,jO)=wlnd)iO,jO)+dw 701 	 else 	 geoid to faa 
629 	 glnd)iO,jO)=glnd(iO,jO) + faa*dw 702 	 do 25, 	j=1,n2 
630 	10 continue 703 	 do 25, 	i=l,nl 
631 	goto5 704 	25 	h)i,j)=h)i,j)*wvn)i,j)*gn 

60------------------------------------------------------------------------- -- - 

632 705 	 endif 
633 	20 close(l) 706 
634 	return 707 	 wvn)1,1)=zero 
635 	end 708 	 h)1,1)=)0. 	0.) 
636 709 
637 710 	 call 	fft)zh,zh(2),n12,nl,nl,-2,jerr) 
63************************************************************************ *  711 	 call 	fft)zh,zh)2),nl2,n2,nl2,-2,ierr) 
639 	* The subroutine ifc 712 
640 	* Combines grids of satellite, 	ship and land data, 	using their 713 	 do 30, 	j=1,n2 
641 	* weighting grids. 714 	 do 30, 	i=l,nl 
642 	* Subroutine exits upon divergence of provisional model. 715 	 h)i,j)=h)i,j)/n12 
643 	* Commemt Out line 751 	)"rmstemp=rms") 	if full iteration count 716 	30 	continue 
644 	* 	is required. 717 
645 	* Writes the rms differences between successive provisional models 71 _________________________________________________________________________ 
646 	* 	to file rms.dat 719 	 if 	)l.eq.iteration) 	goto 60 
64******************************************************************* *  720 
648 721 	* over-writing the array ho 
649 	subroutine ifc 722 
650 	include 	total.h" 723 	 if 	)lmod.eq.0) 	then 	 adding on satellite data 
651 	complex htemp)nl,n2) 724 	 do 40, 	j=l,ny 
652 725 	 do 40, 	i=1,nx 
653 	open)3,file='rms.dat') 726 	 h)i,j)=(h)i,j)+a)i,j))/2.dQ 
654 	rmstemp=999. 727 	40 	continue 
655 720 	 else 	 adding on freeair data 

729 	 do 45, 	j1,ny 65- - ----------------------------------------------------------------------- --
657 	do 5, 	i=1,nz 730 	 do 45, 	i=l,nx 
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732 
733 
734 
735 

I 736 
737 
738 
739 
740 
741 
742 
743 
744 
745 
746 
747 
748 
749 
750 
751 
752 
753 
754 
755 
756 
757 
758 
759 
760 
761 
762 
763 
764 
765 
766 
767 
768 
769 
770 
771 
772 
773 
774 
775 
776 
777 
778 
779 
780 
781 
782 
783 
784 
785 
786 
787 
788 
789 
790 
791 
792 
793 
794 
795 
796 
797 
798 
799 
800 
801 
802 
803 

h(i, j) =h(i, j ) / (1 .dO+wshp(i, j)+wlnd(i, j 
45 	continue 

endi £ 

if (lmod.eq.itmod) then 
call srms(h,htemp,rms) 
if (rmstemp.le.rms) then 
do 80, j=1,n2 
do 80, i=l,nl 
h(i, j)=htemp(i, j 

80 	continue 
goto 60 

else 

	

write(3, 	1/2,rms 
do 85, j=l,n2 
do 85 i=1,nl 
htemp(i, j) =h(i, j 

85 	continue 
endif 

	

rmstemp=rms 	 comment Out for full iteration count 
endif 

50 continue 

60 close(3) 
return 
end 

• subroutine srms 
• Returns the bias-free rms difference between two gridded datasets. 
• f is the new transformed data fcomp is the original data to be 
• compared with. 

subroutine srms(f, fcomp,stdev) 
include tota1.h 
double precision mean 
complex f(nl,n2),fcomp(nl,n2) 

nptS =nxo*nyo 
sumd=0 . do 
sumd2=0 do 

do 10, j=l,ny0 
l=j+jbordl 
do 10, i=1,nx0 
k=i+ibordl 
d*real(f(k, l)-fcomp(k, 1) 
sumd=sumd+d 
sumd2=sumd2 +d*d 

10 continue 

mean=sumd/npts 
veriance=sumd2 /npts_meen*mean 
stdev=dscjrt (variance) 
stdev=loglO (stdev) 

return 
end 

• subroutine mirror 
• Increases the inputted dateset size by reflecting a number of nodes 
• of the data at the edges in the dataset boundary. 
• ie, it pads out the dataset with semi-real data. 
• This border is then tapered with a cos-squared function. 

805 	include 'total.h 
806 	complex f(nl,n2)ftemp(nl,n2) 
807 	p14*atan(l) 
808 
809 	* mirror edge in border 
810 
811 	nxturn=nxo+ibordl 
812 	nyturn=nyo+jbordl 
813 
814 	do 10, j=0,ny-1 
815 	 1=ebs(j_jbordl_2*(j_nyturn+l)*(j/nyturn))i1 
816 	 l=l+jbordl 
817 	 do 10, i=0,nx-1 
818 	 k=abs(i_ibordl_2*(i_nxturn+l)*(i/nxturn))*1 
819 	 k=k*ibordl 
820 	 ftemp(i+1,j+1)=f(k,l) 
821 	10 continue 
822 
823 	* taper the mirrored borders 
824 
825 	nedgel=ibordl+l 
826 	nedge2*jbordl+1 
827 	pedgel=pi/nedgel 
828 	pedge2=pi/nedge2 
829 
830 	nxl=nx+l 
831 	do 20, j=1,ny 
832 	 do 20, i*l,nedgel 
833 	 temp=(1._cos(pedge1*(i_1)))*0.5 
834 	 ftemp(i. j)=ftemp(i,j)*te mp 
835 	 ftemp(nxl_i,j)=ftemp(nxl_j,j)*temp 
836 	20 continue 
837 
838 	nyl=ny+1 
839 	do 30. j=l,nedge2 
840 	 temp=(1._cos(pedge2*(j_1)))*0.5 
841 	 do 30, i=1,nx 
842 	 ftemp(i, j)=ftemp(i, j)*temp 
843 	 ftemp(i, nyl_j)=ftemp(i,nyl_j)*temp 
844 	30 continue 
845 
846 	do 40. j*1,n2 
847 	 do 40, i=1,nl 
848 	 f(i,j)=(0.,0.) 
849 	 f(i,j)=ftemp(i,j) 
850 	40 continue 
851 
852 	return 
853 	end 

6 



Change 
nln2 = array dimensions (should be greater than 120% of 

appropriate side) 
nsat = the number of satellite missions being gridded. 

• Parameter units is the conversion factor from Lambert projection 
• coordinates to metres. 
• Parameter ratio is the ratio of aD to rsearch for the Witch 
• gridding kernel. 

parameter (nsat=2,nl=1024,n2=1024n12=nl*n2,nz=2*n12) 
parameter (nsat=2,nl=306,n2=306n12=nl*n2nz=2*n12) 
parameter (nsat=l nl=200, n2=200, n12=nl*n2, nz=2*n12) 
parameter (units=l.d4,retio=0.175d0,zero=0.dO) 
implicit double precision (a-ho-z( 
double precision slope)2*nsat nln2), wt(2*nsatnln2) 
double precision gshp)nln2)glnd(nln2)wvn)nln2) 
double precision wsat(nl,n2(wshp(nln2)wlnd(nln2)sea(nln2( 
real za(nz),zb)nz),zh(nz( 
complex a)n1n2) b(nln2) h)nln2) 
equivalence (ze,a(, (zbb(, (zhh( 

common /arrays/abhgshpglndwsat,wshpwlndwvnsea,slope,wt 
common /nodes/nxny,nxonyo, ibordl, ibord2, jbordl, jbord2 
common /area/xOyO,delta,gn 



no. of gridnodes in x-direction 
no. of gridnodes in y-direction 
x origin (km) 
y origin (kin) 
x grid spacing (kin) 
y grid spacing (kin) 
normal gravity value 
ascending satellite track data filename 
1=Topex, 2=Geosat 
search radius )km) 
highest latitude 
lowest latitude 
descending satellite track data filename 
l=Topex, 2=Geoset 
search radius (kin) 
highest latitude 
lowest latitude 

**REPEAT ABOVE 10 LINES FOR EACH SATELLITE MISSION** 
ascending angles filename 
descending angles filename 
**REPEAT ABOVE 2 LINES FOR EACH SATELLITE MISSION* * 
filename of tapered landmass data (l's on land to Os at: sea) 
output satellite geoid (yin) 
filename for satellite geoid (include even if not desired) 
filename for ship track data 
land data exists (yin) 
filename for land gravity data (include even if not desired) 
no. of IFC iterations (even=geoid output, odd=freeair output) 
filename for output combined gaoidifreaair grid 
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