
SPATIO-TEMPORAL MODELS FOR 
PLANT EPIDEMICS: ANALYTICAL 

AND SIMULATION STUDIES 

Milena Maria Maule 

Doctor of Philosophy 
University of Edinburgh 

2000 



Declaration 

I declare that this thesis was composed by myself and that the work contained 

therein is my own, except where explicitly stated otherwise in the text. 



Acknowledgements 

I would like to thank my supervisor, João Filipe, for his encouragement, support 
and constructive criticism throughout the course of this work. 

I would also like to thank Gavin Gibson, Ben Hambly and Andreas Kyprianou 
for their valuable advice and many helpful discussions; the EPCC staff, and in 
particular Mario Antonioletti, for the technical support with the use of parallel 
computers; all BioSS students and staff; the Department of Mathematics and 
Statistics of the University of Edinburgh; and David Hill. 

I gratefully acknowledge a research studentship from ICMS. 

1 



Abstract 

In recent years the relation between spatial structure and temporal dynamics has 
become a central issue in population biology. We investigate the effects of dif-
ferent mechanisms of pathogen dispersal on the development of plant epidemics. 
Understanding how these mechanisms operate is useful in helping to predict and 
control epidemics in plant populations. Until recently spatio—temporal models 
often assumed that the transmission of disease occurs independently of the loca-
tion of the individuals or is restricted to local contacts. We are interested in a 
wider range of dispersal processes which include various intermediate situations 
between these two extremes. 

We formulate a stochastic spatio—temporal model for the spread of infectious 
diseases in plants. Studying the behaviour of a model which takes into account 
stochasticity and spatial extension usually involves intractable mathematics and 
requires the use of simulation. A challenging objective is to develop analyti-
cal methods for general application which provide predictions for the expected 
behaviour of the model. 

The individual—based model comprises primary and secondary infection and 
recovery processes. Using stochastic simulation we study the expected behaviour 
and variability of the epidemic size, and characterise the disease patterns through 
spatial correlation. Both stationary and transient behaviour are analysed over 
the parameter space. Simulation is also used to test empirical extensions of non—
spatial models which attempt to account for heterogeneous mixing of susceptibles 
and infecteds. 

Analytical methods based on cluster approximations are commonly used for 
predicting the dynamics of stochastic models characterised by nearest neighbour 
(NN) interactions. On the other hand, for models with more general interactions, 
the rather simplistic and non—spatial Mean Field approximation has been exten-
sively used. We propose an alternative general approach, built on individual—
based ODEs and closure approximations, for predicting the behaviour of spatial 
models in which the individuals interact according to a generic function of their 
distance. The approximations, which take into account the development of corre-
lations in the spatial distribution of the population, are tested against the simula-
tion results showing excellent agreement in most of the parameter space. We also 
test the ability of cluster approximations to capture the effects of the anisotropic 
spread of the disease. To this end, we formulate a generalised NN model in which 
the dispersal of propagules depends on the direction of spread and use simulation 
to assess the performance of different approximations. 
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Chapter 1 

Introduction 

1.1 Mathematical models for biological popula-
tions in space and time 

A mathematical model of a biological or physical process is a representation 

of such a process designed to increase its appreciation and understanding. In 

general a mathematical model is meant to provide a quantitative description of 

the process under study so that predictions can be made about future events. In 

epidemiology, for example, mathematical models are constructed in an attempt 

to understand the way in which diseases are transmitted between individuals, 

to predict patterns of disease occurrence, to evaluate strategies for management 

and control of epidemics, and to provide insight into the design of efficient and 

cost—effective field experiments. 

A variety of population dynamical models exist in the literature (see, for exam-

ple, Renshaw, 1991). Probably the most important distinctions which should be 

made among these models are between deterministic and stochastic and between 

spatial and non—spatial (Mollison et al., 1994). 

Classical, deterministic and non-spatial population dynamical models are based 

on three fundamental assumptions (Bailey, 1975; Czárán, 1998), which are either 

explicit or implicit: 

abundance: populations consist of a large number of individuals; 

uniformity: all individuals of the same population are identical in every 

dynamically relevant respect; 

homogeneity: each individual experiences the same environment around 

it. This assumption refers to perfect spatial mixing between individuals 

and is analogous to the assumption that in ideal gases identical particles 
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move fast and independently from each other and interact with probabilities 

proportional to the product of their densities. 

In statistical physics, using these assumptions it is possible to describe success-

fully the macroscopic behaviour of gases given the microscopic properties of the 

particles of which they consist. In this context, assumptions 1-3 are not very re-

strictive, although they obviously fail to be realistic if applied to most biological 

systems. Nevertheless, by adapting the same approach to population dynamics 

problems, a number of phenomenological models were constructed which yielded 

deep theoretical insights into many aspects of population processes. In these 

models, all individuals belonging to the same species are assumed to be identical, 

forming a homogeneous mass. The basic objects are the categories or species 

of individuals in a population, and the relevant dynamical questions regard the 

abundances of each category or competing species. These models are also called 

"mass—action" (or mass—interaction) models because interactions occur at a rate 

directly proportional to the product of the number or density of the subpopu-

lations involved (de Jong et al., 1995). Some early examples of these models 

are the Maithusian exponential population growth, the Verhuist—Pearl model of 

logistic growth and the predator—prey interaction model by Lotka and Volterra 

(Renshaw, 1991). 

Non—spatial deterministic models fail to describe the behaviour of biologi-

cal populations because assumptions 1-3 are not as appropriate as they are for 

molecule populations. 

The abundance assumption (1) is very often violated in that, even in very 

dense populations, the number of individuals is fewer by tens of orders of magni-

tude than the number of particles in a test tube. This simple example illustrates 

how, if at any time population numbers become small, a stochastic analysis be-

comes vital (Renshaw, 1991). Consider the Maithusian expression for epidemic 

development in a population where individuals develop independently of each 

other, reproduce at a constant rate A and die at a constant rate P. The number 

of individuals N at time t is then given by: 

N(t) = Noe _* , 	 (1.1) 

where No  is the initial size of the population. If births predominate (A > p) the 

population will grow exponentially fast, whilst if deaths predominate (p > A) 

the population will become extinct. For large N0 , and while N(t) is large, this 

description is adequate; however, what happens if No  is small? Suppose No  = 1 

and A = 2p (births are twice as likely as deaths), then the deterministic result 
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predicts exponential growth: 

N(t) = e t 
	

(1.2) 

Yet if the first event to occur is a death (probability: it/(i + )) = 1/3), the 

population becomes extinct: thus the probability of ultimate extinction is at 

least 1/3, which contradicts the deterministic prediction. 

The uniformity assumption (2) is violated in every actual field case, almost 

without exception (Czárán, 1998): individual variation within biological popula-

tions is much greater than that of the particles in a general physical or chemical 

system. In principle, every individual of a community should be regarded as 

unique in terms of its combination of dynamically relevant genetical, physiologi-

cal and environmental properties. 

Unlike particles in a gas, individuals in a living environment move relatively 

slowly and do not mix homogeneously. Although in some relatively small com-

munities some form of homogeneous mixing can be supposed, this assumption is 

completely unrealistic for widely spread populations. If, for example, we think 

about the spread of human diseases, it is easy to imagine that beyond the spatial 

scale of a household or a classroom the assumption that individuals mix homoge-

neously in space is not acceptable (Bailey, 1975). The homogeneity assumption 

(3) is even more evidently violated by plants (Gubbins & Gilligan, 1997 a, b) and 

benthic animals (Pascual & Levin, 1999), which almost do not move throughout 

their lifetime and for which interaction is very often limited to a neighbourhood 

of variable size. 

The violation of the assumption of perfect homogeneous mixing shows the im-

portance of including spatial components in models describing biological systems 

(Liu et al., 1987). An illustrative example of the importance of spatial aspects can 

be found in one of the earliest representations of predator—prey behaviour (see 

Renshaw, 1991). Lotka (1925) and Volterra (1926) independently constructed a 

simple deterministic predator—prey model whose solutions are a family of closed 

curves in phase space, each curve corresponding to a different initial point. Moti-

vated by this result, Gause (1934) made an empirical test of the model by rearing 

two species of protozoans (predators and prey) in an oat medium: in contrast to 

the theoretical prediction, he found that no matter how he altered the circum-

stances of his experiment, the predator always defeated the prey and the predicted 

cyclic behaviour did not occur. Simulations of the stochastic form of the Lotka-

Volterra process confirm Gause's results, always leading to the extinction of one 

of the species. Once again the difference between stochastic and deterministic 

behaviours highlights the danger of making biological judgements based solely on 
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deterministic models. However, Huffaker (1958) questioned Gause's conclusions: 

he recognised that individuals rarely mix homogeneously and, by means of a 

large and complex spatial experiment, showed that the inability of the stochastic 

Lotka-Volterra model to generate sustained cyclic behaviour was only due to the 

absence of a spatial component. Moreover, computer simulations confirm that 

by including a spatial component in the stochastic Lotka-Volterra model, cyclic 

oscillations in the dynamics of the two populations may be restored. 

Including spatial aspects in population dynamics enables the relaxation of at 

least the last of the three biologically unrealistic assumptions above, the homo-

geneity assumption (3). In spatial population models, the global spatial mixing 

of individuals is replaced by some spatially constraining mechanisms. There are 

in fact various ways to construct spatial mathematical models. 

Durrett and Levin (1994 a) in their paper "The Importance of Being Dis-

crete (and Spatial)" compare four different approaches to modelling the dynam-

ics of spatially distributed systems. They consider non-spatial (Mean Field) ap-

proaches, where interaction between individuals is independent of their locations; 

patch models, where individuals are grouped in patches within which individuals 

interact homogeneously and between which there is migration independent of the 

distances between patches; reaction-diffusion equations, in which infinitesimal 

individuals are distributed in space and undergo purely local interactions; and 

interacting particle systems, in which individuals are discrete and space is treated 

explicitly. 
Patch models, also known as pseudo-spatial models (Chesson, 1981), incor -

porate local (within patches) and global (between patches) dispersals, but inter-

actions are typically independent of the distance between individuals or patches. 

Diffusion and reaction-diffusion equations (Okubo, 1980; Murray, 1989) are spa-

tial but not discrete; the absence of discrete individuals, and hence of demographic 

stochasticity, makes them unable to predict fluctuations caused by the occurrence 

of random events in a finite population. 

On the basis of these considerations, it is not surprising that in recent years 

one of the most successful and widely used approaches to spatio-temporal mod-

elling has been that of interacting particle systems (IPSs) (Czárán, 1998). Much 

effort has been spent on demonstrating the importance of stochasticity, spatial 

extension and discreteness in models designed to represent real systems, where 

individuals do interact according to their relative locations in space and the pro-

cesses occurring at the level of individuals are inherently stochastic (Jeger, 1989; 

Durrett & Levin, 1994 a; Shaw, 1994, 1995; Russell, 1996; Bolker & Pacala, 1997; 

Filipe & Gibson, 1998, 2000; Filipe at al., 2000; Filipe & Maule, 2000 a, b). 
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The name "interacting particle systems" originates from the application of 

stochastic discrete—event models in physics (e.g. spin—glass models) to systems in 

which the interacting units were spatially fixed particles distributed on a regular 

lattice. The correspondence between lattice site and particle might be exact for 

many physical systems, but it is fuzzier in ecological and biological applications. 

For example, it may change with time, or the spatial scale of individuals and sites 

may not be the same. Five components are necessary to define the structure of 

an IPS model (Czárán, 1998): 

a regular lattice of sites; 

a finite set of possible cell states; 

the size and the shape of the neighbourhood of each site, i.e. the set of sites 

affecting the state(s) of each site; 

a transition rule defining how the state(s) of a site is changing; 

an initial state configuration. 

With simple local rules, IPSs are capable of generating very complex patterns at 

the lattice level, sometimes comparable to those produced by natural processes. 

Sometimes IPS models are also called Cellular Automata (CA) models. Strictly 

speaking however, CA are a special case of IPSs where the rules of local interaction 

are deterministic (Wolfram, 1986). 

The problem with these types of models is that in general the only method for 

studying their behaviour is numerical simulation. Simulation of spatio—temporal 

stochastic models provides insights into the underlying mechanisms, possibly 

highlighting unforeseen features of a process and thereby suggesting further prof-

itable lines of biological investigation. Computer simulations must be regarded as 

experimental mathematics, and simulation studies should be designed carefully 

and results analysed thoroughly (see Ripley, 1987). However, it is only possi-

ble to sample parts of the space of stochastic realisations of a simulated model. 

Moreover, this is computationally intensive. It is therefore desirable to develop 

mathematical and statistical approaches, providing complementary explanation 

and valuable guidance in how and what to investigate in simulations. Under cer-

tain assumptions, the dynamics of IPSs can be put in the form of difference or 

differential equations. Typically, these are not analytically solvable but can be 

simplified to approximated systems (Czárán, 1998; Filipe & Maule, 2000 b), lead-

ing to solutions which can then be compared to simulation of the full stochastic 

model. 
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1.2 Epidemic processes 

Epidemiology is one of the most important areas of application of spatio—temporal 

modelling (Bailey, 1975; Mollison, 1995). The influence of infectious diseases on 

human history has repeatedly stimulated large—scale efforts to prevent, limit and 

eradicate the diffusion of epidemics. Mathematical and statistical models help 

to deepen our understanding of the processes involved in the spread of infectious 

diseases by providing insights into the mechanisms of transmission, the life—cycle 

of parasites and the effects of different control strategies. Modelling epidemics is 

not an easy task. Typically, epidemics involve processes at all scales, from global 

populations down to the individual level. The resulting dynamical systems are 

usually highly nonlinear and stochastic (Mollison, 1977). 

Epidemiology has important applications not only to human populations but 

also to those of animals and plants. Understanding and controlling the spread of 

infectious diseases in natural and agricultural systems could have strong effects 

on economic, social and environmental aspects of our lives (Leonard & Fry, 1986). 

Modern agriculture faces the difficult challenge of finding a compromise between 

the necessity of increasing production to meet the growing demand for food and, 

at the same time, reducing the unsustainable impact such an increase has on the 

environment. The growth of the world population (at the present rate of increase, 

estimated to double in the next 50 years), the loss of productivity of crops due to 

reduction in the natural fertility of the soil, the emergence of pesticide—resistant 

pathogens, and the impact of modern agricultural methods on the environment 

are all problems that will have to be tackled. This will require a lot of progress in 

our understanding of a large number of different processes, among which are the 

spread of infectious diseases in plant populations and the design and evaluation 

of possible strategies for control. 

A disease is said to be infectious (Bailey, 1975) if transmission occurs, at some 

stage in the life—cycle of the pathogenic organism, from an infected host to an 

uninfected susceptible, with or without the mediation of an intermediate vector. 

The biological process underlying the spread of many infectious diseases consists 

of a regular cycle of events. Consider an individual which has been exposed to 

infection, for example through physical contact with infectious individuals or ma-

terial. The individual may be resistant to the disease to some extent because of 

its own biological defences (which could have been acquired in response to previ-

ous exposure) and not become ill. If it is not immune to the disease, the invading 

parasites develop and the individual undergoes a latent period in which it is con-

tracting the disease but does not discharge any infectious material. After this 
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latent period, the individual is capable of communicating infectious organisms to 

other susceptibles. At this stage the infected individual is infective, and the time 

during which it communicates infecting organisms is called the infectious period. 

At some stage in the individual's history of infection, recognizable symptoms of 

the disease appear. The time from the receipt of the infection and the occur-

rence of the symptoms is called the incubation period, and the time from the 

observation of symptoms in one case to the observation of symptoms in a second 

case is called the serial interval. More complicated cycles of infection processes 

can occur, for example in the presence of carriers (apparently healthy individuals 

capable of transmitting infection to others) or vectors (when the infective agent 

spends part of its life—cycle inhabiting an intermediate host). 

A common way to represent the infection process described above is the con-

struction of a compartment model where each compartment (or class) represents 

a category of individuals (Mollison, 1995). In the most generic model there are 

four classes of individuals: 

S: Susceptible. Individuals capable of contracting the disease. 

E: Exposed. Individuals which are infected but not infectious. 

• I: Infective. Individuals capable of transmitting the disease. 

• R: Recovered (or Removed). Individuals immune from the disease. 

Fig. 1.1 shows a schematic visualisation of the model. 5, E, I, R represent the 

SEHIRHS 

Figure 1.1: Visualisation of the SEIRS compartment model. 

fractions of the population (or numbers of individuals) belonging to each of the 

categories listed above and satisfy S + E + I + R = 1 (or S + E + I + R = N, with 

N the total number of individuals). Susceptible individuals become exposed at 

rate ), then infective at rate c, then recovered with temporary immunity at rate 

'y, and then susceptible again, when immunity is lost, at rate a. 
Once a population has been divided into various compartments with differ-

ent properties, deterministic and stochastic versions of an epidemic model can 

be formulated. In the context of deterministic models, given knowledge of the 
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relations between the various sub—populations, a system of equations can be set 

up to model the dynamics of the whole population. Using discrete time intervals, 

the model would take the form of a set of difference equations, whilst if instan-

taneous rates were used, the model would form a set of differential equations. A 

stochastic model, instead, treats the population variables as being random vari-

ables. In this case, differential equations could be used to model the evolution of 

the probability densities of the system variables (Bailey, 1975). Systems of differ-

ential equations corresponding to the stochastic and the deterministic versions of 

nonlinear models are therefore different and usually lead to different conclusions 

(Mollison, 1977; Gibson et al., 1999). In order to illustrate this point we may 

consider the following simple example. A population consists of N individuals. 

At any given time t there are 1(t) infected individuals and S(t) susceptibles, and 

N = 1(t) + S(t). Infecteds transmit the disease to susceptibles at a constant rate 

A. Hence, the occurrence of new infections is governed by the probabilistic rule 

P[I(t + dt) = 1(t) + 1] = A I(t)S(t) dt. (1.3) 

Using (..•) to denote expectation, we can write the equation for the time evolu-

tion of the expectation of 1(t) in the previous equation as 

d(I(t)) 
= A N (1(t)) - A (1(t) 2 ), 	 (1.4) 

dt 

where we used S(t) = N - 1(t). The dynamic equation corresponding to the 

deterministic version of the model is 

dI(t) - 
A N 1(t) - A 1(t) 2 . 	 ( 1.5) 

dt - 

Since (12 ) 
=A  (1) 2 ,  the dynamics of equations (1.4) and (1.5) are distinct, so 

that the deterministic version of the model cannot be interpreted to describe the 

expectation of disease levels. 

A number of special cases of the general SEIRS compartment model illustrated 

in Fig. 1.1 should be considered (see, for example, Liu et al., 1987): 

if there is no latent period (no exposed class E), we obtain the SIRS model 

where infected individuals are infective (this corresponds to the limiting case 

where the expectation of the latent period 1/€ tends to 0 in the stochastic 

model); 

if there is no immunity (no recovered class R), we obtain the SETS model 

(limiting case where the expectation of the period of immunity 1/8 -+ 0 in 

the stochastic model); 
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if immunity is permanent, then the average period of immunity 115 is in-

finite, so the SEIRS model is reduced to the SEIR model and the SIRS to 

the SIR; 

if there is no latent period and no immunity upon recovery, we obtain the 

SIS model (limiting case of the SIRS model as 1/5 -+ 0, or limiting case of 

the SETS model as 11€ -+ 0); 

finally, if there is no latent period and no recovery, we obtain the SI model 

(limiting case of the SIS model when 'y  is infinite). 

1.3 Spatio—temporal models for the spread and 
control of infectious diseases in plant popu-
lations 

The objective of this PhD research project is the investigation of spatio—temporal 

models for the propagation and control of plant disease epidemics. 

We consider spatio—temporal stochastic models which fall into the class of IPS 

models. Our primary intention is to gain understanding of the spatial properties 

of the spread of infectious diseases. Traditionally, many epidemiological models 

have considered interactions between individuals which are either independent of 

their relative locations (Mean Field models) or restricted to local contacts, for 

which the probability of disease transmission decays exponentially with distance 

or only occurs between nearest neighbours (Harris, 1974; Levin & Durrett, 1997). 

It is likely that the behaviour of real dispersal processes lies between these two 

extremes. In fact, while infection may be a fairly localised process well described 

by rapidly decaying interactions, for many diseases the dispersal of propagules 

such as airborne spores or viruses carried by vectors can occur over large dis-

tances (Minogue, 1989; Gibson, 1997). There is evidence to support the use 

of long—tailed distribution functions (dispersal functions or contact distributions 

(Mollison, 1977)) such as power—laws for describing the dispersal of pathogens 

(Fitt & McCartney, 1986; Shaw, 1995). 

Motivated by a paper by Gibson (1997), where stochastic models were fitted to 

observations of aphid—borne virus (citrus tristeza virus) epidemics in orchards, we 

construct simple SI and SIS models in which the contact distributions decay with 

distance as power—laws and cover a spectrum of possible dispersal scenarios. In 

particular, we concentrate on cases of long, medium and short distance dispersal 

and investigate the corresponding differences in the development and pattern of 

disease (Filipeet al., 2000; Filipe & Maule, 2000 a). 
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The relevance of these models is not restricted to plant epidemiology. One of 

the reasons for considering general and biologically simple models resides in the 

possibility of extending the findings of this study to other areas of interest, such 

as the dispersal of plant genetic material (Mollison, 1977; Lewis, 1997). 

Despite their simplicity, these models incorporate significantly realistic fea-

tures, such as spatial components, discreteness of individuals and stochasticity. 

Such characteristics make them appropriate for describing processes at the small 

spatial and temporal scales of many agricultural crops and natural systems. How-

ever, the introduction of spatial components leads to intractable mathematics 

whose solution requires the use of approximations. 

We begin by investigating the model behaviour through computer simulations. 

Here we look at the number and spatial distribution of infectives and how they 

vary with the model parameters, system size and boundary conditions. 

The stochastic nature of events and the type of dispersal processes, which 

allow each individual to interact with every other, make simulation of the model 

computationally very intensive. It is therefore desirable to develop simpler an-

alytical descriptions for examining the behaviour of the model. Semi—spatial 

approaches are in general limited to lattice models with very restricted interac-

tion neighbourhoods (e.g. Sato et al., 1994; Filipe & Gibson, 1998, 2000). On the 

other hand, Mean Field approaches have been extensively used for representing 

all other forms of interaction. We develop analytical methods for the dynamics 

of models with general interactions and test the accuracy of their predictions 

against simulation. The method is based on a set of deterministic differential 

equations which describe the essential dynamics of the stochastic model, and on 

closure approximations. Moment-closure approximations, recently proposed by 

Bolker and Pacala (1997) and Bolker (1999) in the context of SI, SIS and SIR 

models, are found to be inadequate when interaction rates are not small compared 

to birth-death rates. More robust closure schemes are investigated and found to 

give predictions in very good qualitative and quantitative agreement with the 

simulation of the full stochastic model over most of the parameter space (Filipe 

& Maule, 2000 b). 
The potential of this analytical approach goes beyond the mere purpose of 

predicting the behaviour of the stochastic models so far considered. The same 

method can in principle be applied to any lattice based stochastic model with 

spatial interactions of any type. Moreover, provided that the set of relative dis-

tances between individuals (or particles) is known, the model need not be based 

on a regular lattice. In addition, the mathematical clarity of the approach makes 

it very flexible for accommodating modifications of the model needed to represent 
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other systems. 
Motivated further by interest in the spatial properties of dispersal processes (of 

infectious propagules or other vegetation material, such as pollen or genes), we 

consider a generalisation of the nearest neighbour (NN) model which includes 

spatial anisotropy in the interaction between individuals. Here the dispersal 

of propagules from infectives to neighbouring sites depends on the direction of 

spread. Anisotropy can occur in a variety of real situations; examples include 

the effect of wind on the dispersal of airborne spores (Zawolek, 1993), the spread 

of soil—borne diseases in fields whose morphology affects the flow of water (Hick-

man, 1940), and the effect of rectangular rather than square plots where distances 

between columns and rows of plants are different, favouring interactions in one 

particular direction (Aylor & Ferrandino, 1989). The behaviour of the anisotropic 

NN model is investigated using computer simulation and various cluster approxi-

mations aimed at obtaining analytical predictions (Bethe, 1935; ben Avraham & 

Köhler, 1992; Filipe & Gibson, 1998, 2000). The ability of the different approxi-

mations to capture anisotropic behaviour is assessed. 

The final model which we consider is also aimed at accounting for spatial 

components of epidemics, but it does so in implicit rather than explicit form. 

Standard deterministic epidemiological models rely on the mass—action princi-

ple which ignores the spatial dimension. There the incidence rate of infection is 

assumed to be bilinear in the fraction of infectives and susceptibles of the popu-

lation (Bailey, 1975). This assumption implies that there is homogeneous mixing 

between all individuals in the population (see assumption (3) at the beginning 

of this chapter). One possible way to relax this assumption without explicitly 

including space is to modify the incidence rate so that the fractions of infectives 

and susceptibles appear raised to a power different from 1, thereby introducing 

additional nonlinearities (Liu et al., 1987; Gubbins & Gilligan, 1997 a, b). This 

model is found to improve the fit to experimental observations. However, it is 

not clear whether the goodness of fit is a mere consequence of the extra param-

eters or whether there is a deeper relation between these parameters and spatial 

heterogeneity. We attempt to address this question in the context of our simple 

but spatially explicit model, and derive a formal relation between the parameters 

in the nonlinear incidence rate model and the autocorrelation functions of the 

spatial model. This relation is then tested using simulation. 

17 



1.4 Overview 

This chapter has introduced the topics of the work of this thesis and the motiva-

tions that led us to them. 

In chapter 2 the stochastic spatial model for epidemic spread and control is 

defined. Some definitions and terminology are introduced. A set of ordinary dif-

ferential deterministic equations describing the essential dynamics of the model 

are derived. Although these ODEs are given specifically for the model under con-

sideration, they have general application and form the basis for deriving analytical 

approaches for different types of IPS models. 

Chapter 3 investigates the behaviour of the stochastic model using computer 

simulation. Both SI and SIS models are considered and the parameter space 

is explored thoroughly. In particular, cases of short, medium and long range 

dispersal are considered. The variation of observables of interest with different 

parameter values, system sizes, initial conditions and boundaries is analysed. 

Chapter 4 reviews analytical methods for models with NN interactions. Clus-

ter approximations of different orders are presented and their predictions com-

pared to simulation. 

In chapter 5 the NN model is extended to include spatial anisotropy in disease 

spread. The effects of anisotropy on epidemic development are studied using 

computer simulation. In addition, the approximation techniques for the isotropic 

NN model (chapter 4) are generalised to the current model, and their ability in 

capturing the new features of behaviour is assessed. 

In chapter 6 analytical methods are developed in order to predict the expected 

behaviour of stochastic population models with general spatial interactions. The 

performance of various approximations is evaluated through comparison with the 

simulated data studied in chapter 3. In particular, the moment—closure approx-

imation of Bolker & Pacala (1997, 1999) is shown to be less appropriate than 

others proposed by us. 

Chapter 7 considers an empirical model for heterogeneous mixing of infectives 

and susceptibles proposed by other authors (Liu et al., 1987; Gubbins & Gilligan, 

1997 a, b). The model is tested in the context of the model from chapter 2 and 

the relation between the empirical parameters and spatial correlations is studied. 

Chapter 8 summarises the main findings and discusses possible further devel-

opments of this work. 

IM 



Chapter 2 

A model for the spread and 
control of infectious diseases in 

plants 

2.1 Introduction 

This chapter introduces a stochastic spatio—temporal model for the propagation 

and control of plant disease epidemics. We discuss and interpret the salient char-

acteristics of the model and explain the meaning of the parameters which deter-

mine is behaviour. Finally, we derive a system of ordinary differential equations 

which describes the model dynamics. 

The epidemic model considered is very simple: susceptible individuals can 

acquire the disease from external sources of infection or through transmission 

from infected individuals within the population; at the same time, infecteds are -

replaced by healthy individuals at a constant rate (Filipe at al., 2000; Filipe 

& Maule, 2000 a). Although simple, the model comprises two important and 

realistic features, namely stochasticity and spatial extension. Stochasticity is 

essential when dealing with biological systems at small geographical or short 

temporal scales, or with populations consisting of a small number of individuals. 

The importance of spatial extension becomes evident if we think that individuals 

interact according to their relative location in space. In recent years a great effort 

has been made to emphasise the importance of both these aspects (Mollison, 1977; 

Durrett & Levin, 1994 a, b; Shaw, 1995; Gibson, 1997; Gibson et al., 1999). 

One of the main objectives of this thesis is to study the relation between the 

mechanisms of pathogen dispersal and the disease patterns which they generate. 

The dispersal of infectious propagules in plant populations determines the spatial 

distribution of disease. This in turn affects the development of epidemics and their 

persistence. Traditionally, epidemiological models have considered two contrast- 
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ing situations: interactions independent of the location of hosts, and interactions 

restricted to contact between neighbours (Harris, 1974; Durrett & Levin, 1994 b). 

Since it is plausible that real dispersal processes lie between these two extremes, 

our model comprises a whole range of possible interactions. 

In order to characterise the model behaviour we define a number of observ -

ables of interest, such as epidemic size and spatial correlations, and describe the 

sampling methods we shall use to estimate them by means of stochastic simula-

tion. 
An alternative and complementary approach to lengthy simulation studies is 

the development of analytical methods for exploring and predicting the behaviour 

of the model. We derive a set of ordinary differential equations (ODEs) describing 

the dynamics of our epidemic model. Approximation techniques for closing and 

solving such a system of equations will be the subject of chapter 6. From the 

analysis of these individual—based dynamic equations some characteristic features 

of the model behaviour can be predicted. The formulation of an analytical method 

capable of providing approximate solutions has much wider application than the 

example of plant epidemics considered here. Any individual—based population 

model characterised by general spatial interactions can be studied using a similar 

approach in order to obtain evolution equations for expectations, whose solution 

might require the use of approximation techniques. 

2.2 Spatio—temporal stochastic model 

We consider a population of plants distributed on a square lattice of linear size 

L. Each lattice site is occupied by one individual that is either susceptible or 

infected. The state of the individual located at site x is specified by a binary 

variable S, (t) which depends on time t and is equal to 0 if the individual is 

susceptible and 1 if it is infected: 

S(t) 
- { 0 Susceptible 
- 	1 Infected. 

Two types of lattice systems are considered: unbounded, with toroidal periodic 

boundary conditions (PBC), and bounded, with fixed boundary conditions (FBC) 

on a square with no infecteds outside the boundary. 

The population dynamics are defined as follows. At a given time t, a suscep-

tible x can acquire the disease through background (or primary) infection from 

external sources at a constant rate J1 , or through secondary transmission from 

an infected y inside the population at a rate J2f(Ix - y, where  f(Ix - I) is 

a monotonically decreasing function of the distance Ix - y. The probability of 
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infection of x in a small time interval dt is 

P [S(t ± dt) = 11S(t) = 01 = I 1 ± 2 	f(Ix_YI)SY(t)] dt 
yo- 

(2.1) 

In addition, each infected recovers (or is replaced by a susceptible) with proba-

bility 

P [S(t + dt) = 0IS(t) = 1] = R dt, 	 (2.2) 

thus 11R is the mean infectious time. In this model, since there is no latent 

period, infected also means infectious. 

2.2.1 Parameters of the model 

Recovery is a common process in models with local contacts (Harris, 1974). It 

can be regarded as a strategy for control through the replacement of diseased 

individuals with healthy ones (such as in Filipe & Gibson, 1998; Filipe et al., 

2000). It can also represent the death of infecteds quickly followed by the birth 

of healthy offspring. A similar process was considered, for example, by Shaw 

(1995). We studied the model with and without recovery. When recovery is 

present (R > 0), the model falls into the class of SIS (Susceptible—Infected-

Susceptible) models; without recovery (R = 0), the model belongs to the class of 

SI (Susceptible—Infected) models. 

Since in most cases plant populations are not completely isolated, it is plau-

sible to imagine that some infectious propagules are transported into the system 

from outside. A model with both primary and secondary infection was found 

to provide a good fit for observations of epidemics of the citrus tristeza virus in 

orchards (Gibson, 1997). Background infection is often present, even if at low lev-

els (small J1 ). This has a randomisation effect on the pattern of disease, because 

individuals may become infected independently of their spatial location. 

J2  measures the strength of the interaction between infecteds and susceptibles. 

It can be thought of as the rate of propagule production by each infected in the 

population. 

2.2.2 Contact distribution 

The function f(Ix - I) describes the interactions within the population and has 

been named the contact distribution (Mollison, 1977) or the dispersal function 

(Minogue, 1986). It represents the probability distribution for the displacement 

between the source and the point of deposition of a propagule. Many spatial 

21 



population models have often assumed that interactions result from local pro-

cesses, such as contacts between neighbours (Harris, 1974; Durrett & Levin, 

1994 b), exponentially decaying dispersal functions (Minogue & Fry, 1983) or 

diffusion (Zadocks & Van den Bosch, 1984). On large enough scales, these mod-

els exhibit qualitatively similar behaviour, such as well—defined spreading clus-

ters (Mollison, 1977). In many cases infection is actually a localised process, 

well—described by such interactions. Nevertheless, for many infectious diseases, 

propagules can travel over large distances to produce new infections which act as 

secondary sources of spread. This is the case of air—borne spores or insect—borne 

viruses, which can be transported over unlimited distances (Fitt & McCartney, 

1986). Both power—law and exponential contact distributions can describe a wide 

range of dispersal processes, from nearest neighbour (NN) to uniform, non—spatial 

interactions. Experimental counts of fungal spores have been successfully fitted 

with power—law dispersal functions (Mundt & Leonard, 1985; Fitt & McCartney, 

1986), although the insufficient number of counts at large distances often implies 

that exponentials can also explain the data (Minogue, 1989). The simulation of 

models reveals that the patterns of disease produced by the two types of disper-

sals are very different (Mollison, 1977; Minogue, 1989; Shaw, 1995). Power—law 

contact distributions generate patchy patterns of diseases with no well—defined 

epidemic fronts, which are more complex and realistic than those produced by 

exponentials (Minogue, 1986; Shaw, 1995). More direct experimental evidence for 

the use of power—laws comes from the statistical analyses of observations of viral 

disease epidemics in citrus trees by Gibson (1997) and Gibson & Austin (1996). 

Motivated by these considerations, we assume that the contact distribution 

decays with the distance r = ri as a power—law: f(r) oc r. The exponent a 

determines the range of the dispersal and reflects the nature of the mechanism 

of dispersal. When a is small, dispersal is long—ranged. In particular, for a = 0 

dispersal is independent of the spatial distribution of individuals and propagules 

are deposited randomly. The range of dispersal decreases as a increases. When a 

is large, dispersal is short—ranged, and in the limit in which a -+ 00 interaction 

is restricted to nearest neighbours. In this limit the model corresponds to the 

Contact Process introduced by Harris (1974) in probability theory to describe 

interactions on a lattice. In the literature relevant to plant disease epidemiology, 

typical values for the exponent a vary from 1.1 to 6 (Minogue, 1986). 

To ensure the conservation of the number of propagules emitted from a source 

and to obtain desirable asymptotic properties, the contact distribution is nor- 
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malised over all possible depositions on a dispersal domain D: 

Iri 
f(IrD=

H 	 rED, 	 (2.3) 
Z(a,D)' 

where 

Z(a, D) = >i: I SI—a' 	 (2.4) 
sED 

so that E f(irI) = 1. We assume that each infected produces the same amount of 
rED 

infectious spores and that the dispersal domain does not depend on the location 

of the source. D must then be the same for periodic and bounded systems. 

Spores can be deposited on a susceptible or infected site within the system, or 

outside the system if there is a boundary. In practice we consider dispersal up 

to a truncation distance rmax from the source. If rmax  is large, this truncation is 

justified because the fraction of propagules deposited beyond a certain distance 

from the source can be considered negligible. We define the dispersal domain 

D as a square centred at the source with side 2L and area four times larger 

than the system, such that D is the set of vectors r with Irl > 0 and Cartesian 

components less than L. With this definition, interaction is possible between all 

sites with either boundary conditions. When a < 2, Z diverges as the size of the 

dispersal domain tends to oo, and truncation is necessary. For a> 2, instead, Z 

has a finite limit and, for the parameter values we considered, there is very little 

difference between this limit and the truncated Z. 

The contact distribution defined in (2.3) does not have a parameter setting 

a dispersal length—scale. A range of dispersal can be defined by the median 

n-i of the distribution (Minogue, 1989; Shaw, 1995). An estimate of m can be 

obtained by approximating the lattice system with a spatially continuous system 

and changing the sums into integrals. With r0  indicating the lattice space unit, 

m is the solution to the equation 

In 

2ir 
F(m) 	

-- f rdr 	, 	 (2.5) 

ro 

which is 

1 

T O  [ 
+ (ro/L)a_2] 	a ~ 2 	 (2.6) 

2 	
a-2 

a=2. 
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The median has the advantage of being finite when the system size L tends to 

oo for a > 2, whilst the mean requires a > 3 to be finite. Fig. 2.1 shows the 

behaviour of the median m for a lattice of size L = 200 and lattice unit r0  = 1 as 

a varies from 0 to 20. 

150 

100 

E 50 

0  
0 
	

5 	10 	15 	20 
power exponent a 

Figure 2.1: Median in vs the exponent a of the contact distribution for a lattice of size 
L = 200 and lattice unit ro = 1. 

2.3 Structure of the lattice 

Lattices are often used in mathematical models to reduce the computational dif-

ficulties of problems formulated in continuous space. Lattice models are straight-

forward to simulate and, by definition, prevent multiple occupancy of the same 

spatial location by several individuals. Moreover, in agricultural systems, plants 

are typically sown along sets of rows which are well described by a lattice. Instead, 

natural systems usually have less regular spatial distributions. Nevertheless, the 

overall effect of lattices on the behaviour of the model should not be important 

on the scale of large systems. 

We measured G(r), the spatial—average number of sites at distance r from 

a given site, both in lattices with and without boundaries. The situation is 

different for the two systems because in the lattice with FBC the distribution of 

sites around a given site x, G(r), depends on the location of x, whilst with PBC 

each site is surrounded by the same lattice environment and G(r) coincides with 

its spatial—average G(r). For example, on a square lattice of linear size L = 200 

and PBC, each of the 40,000 sites is surrounded by 4 neighbours at distance 1 

lattice unit, hence G(1) = 4; on a lattice with FBC, 1982 = 39, 204 sites are 

surrounded by 4 neighbours, 198 x 4 = 792 sites by 3 neighbours and 4 sites (in 

24 



the corners) by 2 neighbours, hence G(1) = 3.98. Fig. 2.2 shows G(r) for lattices 

of linear size L = 200 with each type of boundary condition. 

a) 	 b) 
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Figure 2.2: G(r), the distribution of sites at distance r from a given site averaged over 
all lattice sites. a) PBC; b) FBC. 

The meaning of G(r) is better understood if we plot its histogram 

H(r) = 	 G(s), 	 (2.7) 

sE[r — /2,r+/2[ 

where r varies between the lattice unit (r = 1) and the maximum distance between 

two sites in the system (r = / L). Histograms with windows of width 1 of the 

average radial distribution for both types of lattices are shown in Fig. 2.3. The 

histogram for the unbounded system follows closely the line 27rr, the distribution 

corresponding to a continuous system. 
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Figure 2.3: Histograms of the radial distribution of sites for lattices with PBC (top) and 
FBC (bottom). The straight line with slope 27rr is the continuous radial distribution. 
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2.4 Statistical analyses of model behaviour 

The model comprising both disease transmission and recovery exhibits two dif-

ferent regimes of behaviour. Initially, the fraction of infecteds (or epidemic size) 

is subject to random fluctuations and tends to increase. This stage is called 

the transient regime. In finite systems the probability of extinction is non-zero 

(Liggett, 1985): provided that we wait long enough, a sufficiently large downward 

fluctuation in the epidemic size will occur which drives the epidemic to extinction. 

However, if a long time has to elapse before the probability of extinction becomes 

non-negligible, the system may reach a long-term quasi-stationary regime. In 

this stage, the size of the epidemic fluctuates around a quasi-equilibrium value 

which is close to the corresponding equilibrium epidemic size of an infinite system. 

We shall refer to this phase either as the stationary, or the equilibrium, or the 

long-term, or the asymptotic regime (i.e. we drop the prefix "quasi"), keeping in 

mind that true stationarity can only be reached in infinite systems. 

When recovery is not present, the epidemic grows until the whole population 

is infected, in which case there is no stationary regime. 

Transient and stationary regimes have distinct spatial and temporal charac-

teristics (Filipe et al., 2000; Filipe & Maule, 2000 a). In particular, transient 

regimes are difficult to characterise because they can be highly stochastic and are 

strongly affected by initial conditions, i.e. the initial number and spatial distribu-

tion of infecteds in the system. However, in practice, transient regimes are very 

important. In fact, real systems may never reach stationarity during the relevant 

periods of observation: for example, seasonal crops may be harvested before an 

epidemic reaches its equilibrium level. On the other hand, the non-degenerate 

stationary regime of the model is a unique, ergodic state, independent of the 

initial state of the system, whose existence has been rigorously proven for the 

Contact Process (Harris, 1974; Liggett, 1999). 

We investigate both stationary and transient regimes by means of computer 

simulation. Each stochastic realisation of the process consists of a simulated time 

series {t, S(t)}, with t2  (i = 1. . .) the instants in continuous time when an 

event occurs (i.e. a change in the state of one individual), and S(t 2 ) = { S(t)Ix E 

system} the population of random variables representing the states of all N = 

L2  individuals in the system during the waiting time At i  = t - t2 . At any 

given time t, two levels of statistics are involved: spatial statistics, over the 

population of N individuals, and realisation statistics, over a random sample of 

n time series {t, S(t)} 3  (s = 1,... , n), drawn from the appropriate space of 

stochastic realisations. Samples of realisations are drawn conditional on epidemic 
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survival. 
We describe first the realisation statistics. Consider a random variable A 8  (t), 

where the index s labels one of the ii stochastic realisations (s = 1,... , ri), and 

which depends on some or all the variables S 3 (t). In the transient regime, its 

expectation, (A(t)), is estimated by the average over the sample of realisations: 

n 

(A(t)) 	(A (t)) n = - A 8 (t), 	 (2.8) 
S=1 

where 

	

(A(t)) = lim (A(t)). 	 (2.9) 
n—*oo 

The sample variance is given by 

= (A (t)2) - (A(t)). 	 (2.10) 

Ergodicity implies that, in the stationary regime, conditional on epidemic persis-

tence, it is equivalent to sample either over time in a single random realisation or 

over many realisations. Hence, denoting by A the long—term stationary behaviour 

of A(t), we estimate its expectation over realisations as 

n tmaz 

1 
(A) 	(A) = 	1 	j A s (tl )dt1] 	 (2.11) 

	

S=1 L 	tmaztoba 

where tobs is an observation time during the stationary regime and tmax is the 

maximum duration of each realisation. Since A 8  (t) is a step function, the integral 

equals the sum of A 8 (t) weighted by Ltj/t obs , the relative duration of each state. 

The number of stochastic realisations n needed to estimate the average over the 

realisation space is much larger in the transient regime than in the stationary 

regime. 
For each stochastic realisation at given time t, we considered two spatial statis- 

tics: 

1. the fraction of infecteds (or epidemic size) 

pi  (t) = 
1  E S. 	 (2.12) 

X 

which is the ratio of the number of infecteds to the total number of indi-

viduals; 
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of infecteds. Since in our model the disease is transmitted from infecteds to sus-

ceptibles, each individual can influence the state of the others and, as a result, 

correlations develop. This effect clearly depends on the distance between indi-

viduals and tends to zero when the distance becomes very large, i.e. the spatial 

range of correlations is finite. However, the range of correlations may become 

quite large and even tend to infinity in the proximity of a persistence threshold. 

Correlations should not be confused with interactions. Interactions always 

produce correlations, but correlations can also be produced by other means, such 

as the initial preparation of the system. Short-range interactions may give rise 

to long-range correlations as a result of co-operative effects involving chains of 

consecutive nearest neighbours. 

A spatial autocorrelation function can be defined in different ways. We first 

define the expectation over realisations of the correlation between two sites x and 

y in the lattice at a given time t, 

C (t) 
= ([S(t) - (S(t))] [S(t) - (S(t))]) 

(2.17) 
u[S(t)] a[S(t)] 

where o-[S(t)] = /([S(t) - (S(t))] 2) is the standard deviation of the variable 

S(t). 
Correlations between specific individuals are not very informative. The spa-

tial average of this quantity, however, tells us how correlations decay with the 

distance. To obtain this average we consider all pairs of sites x and y at a given 

distance r, 

C(r,t) = 	
1 	

> 	C,, (t). 	 (2.18) 
N G(r) 

X y:Ix-ylr 

We shall use this estimator to evaluate correlations in bounded, spatially hetero-

geneous lattices. 

In the special case of spatially-homogeneous, unbounded lattices, (2.18) can 

be rewritten in a simpler form. Translational invariance ensures that (S(t)) = 

(Sy  (t)) = P, (t) V x, y e system, and that (S(t)S(t)) = PI , (r, t) only depends 

on the distance r = Ix - YJ between the two sites. Moreover, recalling that S(t) 

is a binary variable which takes values 0 or 1, i.e. S(t) 2  = S(t), (2.18) can be 

written as 

- Pji (r, t) - P1(t)2 	
(2.19) 

C(r,t)_ P1(t)-P1(t)2 

The denominator in (2.19) can be thought of as the limit of the numerator as 

r -+ 0. From (2.19) it is easy to see that the spatial autocorrelation function 
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quantifies how much a pattern of disease deviates from a random pattern. The 

first term in the numerator represents the probability of finding two infecteds 

at distance r at time t. For a random distribution, this probability is given by 

the square of the probability of finding one infected at time t, i.e. P1 (t) 2 . The 

numerator of (2.19) is simply the subtraction of these two terms. 

There are other estimators of the expectation of autocorrelation functions. In 

particular, we compared (2.19) for a stationary system with 
(PI,  (r) - p)/(pi - 

P )) but found very little difference between them. 

Typically, for this model, the empirical measurements of autocorrelations ex-

hibit an initial smooth decay followed by a noisy tail symmetric around the r-axis. 

The main source of noise is the spatial average over pairs at a given distance, 

P1 , (r, t) in (2.19), and the double summation in (2.18). Increasing the linear size 

of the system (for example from L = 100 to 200) reduces noise substantially. 

Noise also originates from the irregular radial distributions G(r) and Gjj (r), a 

lattice effect which can be reduced using histograms (see Fig. 2.3). We therefore 

smoothed (2.19) by replacing Gil-(r) and G(r) in Prj(r) = (Gj (r)/G(r)) with 

histograms (with windows of width 1 or 2), as in (2.7). 

2.5 Analytical approach 

Spatio—temporal stochastic models usually lead to intractable mathematics where 

even approximate solutions can be difficult to obtain. The usual answer to this 

problem is to investigate the model behaviour using computer simulation. How-

ever, the inherent stochasticity of the model introduced in this chapter and the 

long—range nature of the interactions make this task particularly difficult and 

computationally intensive. Moreover, although simulation models are very flex-

ible, they are also very difficult to analyse fully, making it hard to generalise 

results obtained for a particular model. 

We wish to derive dynamic equations which describe the behaviour of the 

stochastic model introduced in the previous sections. The importance of these 

equations goes beyond the sole purpose of devising an alternative description of 

our epidemic model. They are in fact the basis for the development of analytical 

methods capable of dealing with spatial and stochastic aspects of general popu-

lation models where individuals interact according to a generic function of their 

distance. Approximation techniques are used to solve these equations and ob-

tain deterministic predictions for the model behaviour (see chapter 6 and Filipe 

& Maule, 2000 b). These predictions are then compared to simulation results. 

They can be used to test hypotheses or to fit models to observations. 
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In the following sections, dynamic equations describing the evolution of P1 (t) 

and P11 (r, t) are derived. In section 2.5.1 we give a heuristic derivation of the 

equations which provides an intuitive understanding of their relation to the un-

derlying processes. In section 2.5.2 some results regarding the model behaviour 

are obtained through the analysis of the equations. Finally, a more rigorous 

derivation of the equations is given in section 2.5.3. 

2.5.1 Dynamic equations 

We define the following notation. Let x, y, etc. denote the positions of arbitrary 

sites on the lattice, and f, = f(r) denote the interaction between x and y at 

distance r,,y  = Ix - yl. 
We assume that the system is spatially—homogeneous and isotropic at all times 

and has no boundaries, so that all sites are statistically equivalent. This is a 

common simplifying assumption (e.g. Bolker & Pacala, 1997); a more general 

version of these equations, valid also for heterogeneous systems, is given by (2.24) 

and (2.26). Spatial homogeneity implies that the probability that x is infected 

at time t, (S(t)), is the same for all sites in the lattice and coincides with the 

expected fraction of infecteds PI  (t): 

(S. (t)) = (Sy  (t)) = P, (t), V x,y E system, 	 (2.20) 

and that the density (S(t)S(t)), i.e. the probability that sites x and y are both 

infected at time t, only depends on the distance r.,y  between the two sites. 

We shall show that P, (t) and Pii(r, t) obey the following differential equa-

tions: 

dP1 (t) 
= Ji - (Ji - J2  + R) P, (t) - J2 	Pij(r,, t) f(r) 	(2.21) 

dt 
yE lattice 

(yOx) 

and 

1dPjj(r,t) - 
[J1  + J2  f(r)] P1 (t) 

2 	dt 	- 

- 	(J1  + J2  f(rx ) + R) P11(r )  t) 	(2.22) 

+ J2  E [Pjj (r, t) - Piii(r, 	t)] f(r), 
zElattice 
(zx,y) 

	

where x and y are arbitrary sites at distance rxy , and Pjij(r, 	t) is the 

probability that sites x, y and z are all infected at time t. Since the system 

is spatially stationary, this probability only depends on the distances between 
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the sites 	and 	Equation (2.22) actually represents a whole system of 

equations, one for each distance r between sites on the lattice. 

Equations (2.21) and (2.22) show that P1  depends on Pjj, and P11  depends 

on P111 . They are the first of an infinite hierarchy of equations in which the 

nth equation depends on the probability that ri + 1 sites are infected. Any sub-

system of equations is not closed, as a direct consequence of the interactions in 

the system. In order to solve the system (2.21)—(2.22) we need to close it. This 

can be done assuming approximate relations between higher and lower—order 

probabilities. Approaches based on cluster approximations (Matsuda et al., 1992; 

Levin & Durrett, 1997; Filipe & Gibson, 1998, 2000) can be applied to models 

with NN interactions (see chapter 4). Closure approximations suitable for general 

interactions will be the subject of chapter 6 (Filipe & Maule, 2000 b). 

Following similar arguments to Filipe & Gibson (1998), we now show how 

these equations can be derived in a heuristic way. 

We consider a generic site x on the lattice and the density (S(t)), which 

represents the probability that x is infected at time t. The change in (S(t)) 

during a small time interval (t, t + dt) is given by 

d(S(t)) = ([1 - S(t)] Prob[0 -+ 1; x; t, dt]) 	 (2.23) 

- 	(S(t) Prob[1 -+ 0; x; t, dt]), 

since a susceptible individual can acquire the disease with probability given by 

(2.1) and an infected can recover with probability given by (2.2). Substituting 

the conditional probabilities (2.1) and (2.2) in (2.23), we obtain 

d(S(t)) 
= J1 —(J1 +R) (S(t))+ 

dt 

[(S(t)) - (S(t)S(t))] f,,, 	 (2.24) 
YE lattice 

(yOx) 

which reduces to equation (2.21) for a homogeneous unbounded system, for which 

(S(t)) = P1 (t), V x E system. 

We now consider the density (S(t)S(t)). Taking into account the possible 

changes during (t, t + dt), and assuming that dt is sufficiently small to contain at 

most one event, we have 

d(S(t)S(t)) = (S(t)[1 - S(t)] Prob[1 0 - 1 1;x,y;t,dt]) 

+ ([1— S(t)]S(t) Prob[0 1 —+1 1;x,y;t,dt]) 

- (S(t)S(t) Prob[1 1 -+ 10; x, y; t, dt]) (2.25) 

- 	(S(t)S(t) Prob[1 1 —+0 1; x, y; t, dt]), 
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i.e. given a susceptible and an infected, the susceptible acquires the disease either 

from the infected in the pair or from any other infected in the lattice; in a pair 

of infecteds one is recovered. Again we use the transition probabilities (2.1) and 

(2.2) to write 

d(S(t)S(t)) 
= J1[(S(t)) + (Sy  (t)) 	2 (J1  + R) (S(t)S(t)) 

dt 

	

• J2  E [(S,(t)S(t)) - (S(t)S(t)S(t))] 	(2.26) 
Z(OX) 

• J2 E  [(S,(t)S(t)) - (S(t)S(t)S(t))] f, 
z(Oy) 

which reduces to equation (2.22) for a homogeneous unbounded system. 

2.5.2 Analytical results 

Equations (2.21) and (2.22) can be used to study the behaviour of the model. 

We should recall that these equations describe the dynamics of a system which 

is spatially—homogeneous at all times. 

Let us consider equation (2.21) and assume that there is no background source 

of infection (J1  = 0): 

dP1 (t) - 
(J2 - R) P, (t) - 	PI, (r,,t) f,cy. 	 (2.27) 

dt - 
yG lattice 

(yAx) 

From (2.17), we can write 

	

Pjj(r,t) = a[S(t)] a[S(t)]C(t) + (S(t))(S(t)), 	(2.28) 

which, in a spatially—homogeneous system reads 

Pjj(r, t) = (P1  - Pfl C(t) + P. 	 (2.29) 

Equation (2.27) can then be rewritten as (Filipe et al., 2000): 

dP1 (t) - 
—R P1 (t) + J2 P1 (t)[1 - P1 (t)] [1 - F(t)], 	(2.30) 

dt - 

where we have defined 

r 	C(t) fXY 	G(r)C(r,t)f(r), 	(2.31) 

Y(54X) 	 r=1 

and L is the linear size of the lattice. 

This formulation clearly shows how spatial correlations produce a deviation 

of behaviour from the standard Mean Field (MF) approximation (e.g. Filipe & 

33 



Gibson, 1998). MF assumes that individuals are independent of each other and 

hence that there are no correlations (F = 0). The MF approximation exactly 

describes the model in the limit when a = 0, in which interactions are independent 

of the spatial location of individuals and no correlations develop. Within the MF 

approximation, equation (2.30) becomes 

dP1 (t) 
dt 

= P1 (t) [—R + J2  (1 - P1 (t))]. (2.32) 

Equation (2.32) can be solved explicitly (see, for example, Filipe & Gibson (1998) 

and chapter 4). 

From (2.30) and (2.31) it is easy to see that if correlations are large or long—

ranged the deviation, from MF behaviour can be significant. A more detailed 

explanation of the MF approximation can be found in chapter 4. 

In the stationary regime, the expected fraction of infecteds in an infinite sys-

tem is constant, which means that its derivative with respect to time is zero. If 

we set dP1/dt = 0, we can formally solve (2.30) and obtain an expression for the 

size of the epidemic at equilibrium: 

R/ J2  PI 
= 

1— 1— F 
(2.33) 

for J2 1R > 1/(1 - F), and P1  = 0 otherwise. Hence the critical threshold value 

of J2 1R is 1/(1 - F), whereas the MF prediction for the threshold is 1 (Filipe et 

al., 2000). 

We now present the proof, given in Filipe et al. (2000), which demonstrates 

that the behaviour of P1  converges to the MF prediction and that the transition 

threshold is equal to 1 in the limit of an infinite system (L -* oo) for all values 

of a between 0 and 2, where a is the power exponent of the contact distribution. 

In other words, we wish to show that 

urn F = 0, V a : 0 < a < 2, 	 (2.34) 
L—oo 

whilst for a > 2 the limit is positive and constant. The only assumption we need 

to make is that spatial correlations do not decay more slowly than a power—law, 

i.e. 

C(r) :!~ 4 for r -* Do, 	 (2.35) 

where A, b > 0. 

Using (2.31), we write 

lim F = lim 	G(r)C(r,t)f(r). 	 (2.36) 
L—oo 	L—oo 

r=1 
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The contact distribution (2.3) can be rewritten as 

	

f(r) = L 	
' 	 (2.37) 

G(s) S-a 
S=1 

where r and s are lattice distances, i.e. r, s E 11, 'J, 2, 	. . }. We now replace 

sums by integrals, which should be asymptotically accurate for the dominant 

(large r) part of the sums when L -+ oo, use G(r) = 21rr, and substitute (2.37) 

in to (2.36), to give 

L 

f C(r) r'dr 
1 limF=lim 	 (2.38)  

L-*oo 	L-*oo 	L 

f r(')dr 
1 

Using assumption (2.35), we can then write 

L 

f r')dr 

lim F < lim 1 	 (2.39) 
L-oo 	L-+oo L 

f r('z)dr 
1 

To calculate this integral we distinguish three cases. 

Case 1: a 2, a + b 2 

Equation (2.39) reads 

(2 - a)(L( 2_a_ - k 1 ) 
lim F < lim 	 , 	 (2.40) 
L-oo - L-+oo (2 - a - b)(L(2_a) - k 2 ) 

where k 1 , k2  are positive constants. If a> 2 the limit is just a positive constant; 

if a < 2, L(2_t)  tends to infinity, hence we have two cases: 

a+b> 2: 

L(_) 
	 (2.41) 

a+b<2: 

Case 2: a=2,  (a + b> 2) 

Equation (2.39) reads 

(2.42) 

lim F < lim - 
(11b)(L' - Cl) 

= o ; 	 (2.43) 
L- 	L-*oo 	In  
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Case 3: a < 2, a + b = 2 

Equation (2.39) reads 

(2— a)lnL 
urn 11' < urn 	 = 0, 	 (2.44) 

L-oo — L-oo L(2  — c2  

since the denominators diverge more quickly than the numerators (Cl, c2  are con-

stants). 
We have proved that, for an infinite system, F vanishes for all values of a 

smaller than 2, hence MF predictions for the behaviour of P1  and the transition 

threshold become exact (Filipe et al., 2000). This proof easily extends to any 

spatial dimensions d, so that the result can be generalised to F —* 0 for a < 
L-+oo 	— 

d. A similar statement for physical systems has also been conjectured (Cannas 

& Tamarit, 1996; Cannas, 1998). Note that this result does not imply that 

correlations are identically zero for a < 2 (a point supported by the simulation 

results in the next chapter), which means that only some aspects of epidemic 

behaviour are described by the MF limit. 

2.5.3 Formal derivation of dynamic equations 

This section presents a mathematically rigorous derivation of equations (2.21) and 

(2.22). We now consider the more general case in which the system is not assumed 

to be spatially—homogeneous. We shall derive equations for the evolution of the 

expectation of binary variables corresponding to specific sites, i.e. the equation 

for (S(t)S(t)) only refers to the specific individuals located at x and y and not 

to any pair of individuals at distance Ix — YJ apart. Equations (2.21) and (2.22) 

represent a special case which can be obtained by assuming spatial invariance. 

In this section we shall adopt E[... ] to denote expectation over stochastic 

realisations. This is the standard notation used in probability theory (see, for ex-

ample, Grimmet & Stirzaker, 1992) and is equivalent to the one we have adopted 

so far: ( ... ) 

First we derive a differential equation for the evolution in time of the expec-

tation of the binary variable S(t), which describes the state of the individual 

located at site x on the lattice: 

E[S(t)] = 	j P[S(t) = j] = P[S(t) = 11, 	(2.45) 

jE{O,1} 

where P[S(t) = j] is the probability that S. has value j at time t. We consider 

E[S(t + dt)] = E[S(t)] + A dt. 	 (2.46) 
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From (2.45) and (2.46), we can write A dt as 

A dt = P[S(t + dt) = 1] - P[S(t) = 1]. 	 (2.47) 

Using the property 

P[A] = >P[AIBj]P[Bj], 	 (2.48) 

where B1 , B2 ,... , B,, is a partition of the sample space, we can rewrite (2.47) as 

P[S,c (t + dt) = 11S(t) = 1, {S(t) = i',, y $ x}] 
{S1  (t)rriy :yAx} 

x 	 P[S(t) = 1 1  {S(t) = i',, : y 0 x}] + 

P[S,c (t + dt) = 11S(t) = 0, {S(t) = i, : y =A x}] 
{S (t)i :yx} 

P[S(t) = 0 1  {S,,(t) = i,, y =A x}] - 

P[S(t) = 1], 	 (2.49) 

where i,, e 10, 11. In (2.49) we have rewritten P[S(t+dt) = 11 as the probability 

that the individual x is infected at time (t + dt), conditional on the possible states 

of all the other individuals at time t, times the corresponding probabilities. 

We now consider the random variable 

E[(1 - S(t)) P[S(t  + dt) = 1IS(t), {S(t) = iy  : y x}]]. 	(2.50) 

Note that (2.50) is a random variable because the probability is conditional on 

S(t), which is a random variable. For simplicity, in the following we let 

denote {S(t) = iy  : y x}. Then (2.50) is equal to 

1 x P[S,(t + dt) = lS(t) = 0, {},} P[S(t) = 0, {}] + 
{}y 

(S(t)=O) 

0 x P[S(t + dt) = 11S(t) = 1, {}] P[S(t) 	1, 

(S(t)=1) 

Analogously, we consider the random variable 

E[S(t) P[S(t + dt) = 0 IS(t), {}11' 

which is equal to 

P[S(t + dt) = 0IS(t) = 1, {}] P[S(t) = 11 {}] 

{}y 
(S(t)=1) 

(2.51) 

(2.52) 

(2.53) 
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Using the property of conditional probability 

P[AIB] + P[ACIB] = 1, 	 (2.54) 

we can rewrite (2.53) as 

(1 - P[S(t + dt) = 11S(t) = 1, {}]) P[S(t) = 1, {}]. 	(2.55) 

{}y 
(S(t)=1) 

Using (2.50), (2.52) and (2.55), we can write (2.47) as 

A dt = E[(1 - S(t)) P[S(t + dt) = 1S(t), {e}]] 	(2.56) 

-. 	E[S(t) P[S(t + dt) = 0 lS(t), {} ,]J. 

From the stochastic transition rules (2.1) and (2.2), we have 

P [S,, (t + dt) = 1IS(t) = 0, {},] = [J1  + J2  E S(t)f] dt z 1 , 	(2.57) 

Y(OX) 

and 

	

P[S(t+dt) = 0 1S(t) = 1, 161y] = Rdt z2. 	 (2.58) 

Hence: 

P [S. (t + dt) = 1IS(t) = 1, {},] = 1 - z1 	 (2.59) 

and 

P [S,(t + dt) = 0S(t) = 0, {}] = 1 - z2 . 	 ( 2.60) 

We now consider the stochastic variable Z = P [S, (t + dt) = i I S. (t), {},,]. This 
can be written as a linear combination of indicator variables (Grimmet & Stirza-

ker, 1992): 

Z = X{Z=zi} Zl + X{Z=(1-zi)} (1 - z 1 ), 
	 (2.61) 

where 

I 	
' 

i ifZ=z 1  
X{Z=zi} 	0 	Z :A z1. 	

(2.62) 

Since Z can take value z1  if, and only if, the variable S is 0 at time t, we have 

X{Z=zi} = X{S x (t)zrO} = 1 S(t) 

X{Z=(1-zi)} = 	X{S(t)=i} = S(t) 	 (2.63) 
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Thus finally we obtain 

Z 	[1 - S(t)] z 1  + S(t) (1 - z i ). 	 (2.64) 

Analogously, 

P [S(t + dt) = oIS(t), {e}] = [1 - S(t)] (1 - z 2 ) + S(t) z 2 . 	( 2.65) 

Substituting (2.64) and (2.65) in (2.56), and recalling that S. is a Bernoulli 

variable (S.2  = Sr), we obtain 

(2.66) J1 —(J1+R)E[S(t)] 

+ J2  E (E[S(t)] - E[S(t)S(t)]) f, , . 
y(Ax) 

From (2.46) we have 

A 
= E[S(t + dt)] - E[S(t)] 

dt 

and in the limit dt -* 0 

A 
= dE[S(t)] 

dt 

hence 

dE[S(t)] =
J, -  (J1  + R) E[S(t)] dt 

+ J2  E (E[S,(t)] - E[S(t)S(t)]) f,. 
Y(54x) 

(2.67) 

(2.68) 

(2.69) 

Equation (2.21) is a particular case of (2.69) for spatially—homogeneous systems. 

The dynamic equation for the density E[S(t)S(t)]  can be derived in an 

analogous way. 

E[S(t)S(t)] = E j P{S,c(t)S,(t) = j} = P[Sx (t) = 1, S(t) = 11 
jE{O,1} 

We consider 

8 = P[S(t + dt) = 1, S(t + dt) = 11 - P[S(t) = 1, S(t) = 11 

Now we let {} denote IS, (t) = i z X, Y}. 

(2.70) 

(2.71) 
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Using the above argument, (2.71) can be written as 

P[S(t + dt) = 1, Sy  (t + dt) = 1IS(t) = 0, Sy  (t) = 1, {e}] 
{} 

P[S(t) = 0 1  S(t) = 11 {}] + 
P[S(t + dt) = 1, S(t + dt) = lIS(t) = 1, S(t) = 0, {}] 

{e} 
P[S(t) = 1 1  S(t) = 0 1  {}] + 

E P[S(t+dt) = i,S(t+dt) = 1IS(t) = 1,S(t) = 1 ,{e}] 
{e} 

P[S(t) = 1 1  S(t) = 11 {}] + (2.72) 

P[S,(t + dt) = 1, S(t + dt) = 11S(t) = 0, Sy (t) = 0, {}] 
{e} 

X 	 P[S(t) = 0 1  S(t) = 0 1  {e}] 
—P[S(t) = 1 1 S(t) = 1]. 

The probability of two events occurring in the time interval (t, t + dt) is of order 

O(dt2 ); hence the fourth summation in (2.72) is negligible as it contains the 

probability of both individuals at x and y being infected at time (t + dt), given 

that they were susceptible at time t. Equation (2.72) can be rewritten in terms 

of conditional expectations: 

E[(1 - S(t))S(t) P[S(t  + dt) = 1, Sy  (t + dt) = 1 IS(t), S y  (t), {e}]] 
+ E[S(t)(1 - Sy  (t)) P[S(t  + dt) = 1, Sy  (t + dt) = 1IS(t), Sy  (t), {e}]] 
- E[S(t)S(t) P[S(t  + dt) = 1, S(t + dt) = 0IS(t), S(t), {}]] 

- 	E[S(t)S(t) P[S(t  + dt) = 0, S(t ± dt) = 1IS(t), S(t), {}]]. (2.73) 

We cannot substitute the stochastic transition rules (2.1) and (2.2) in (2.73) as we 

did before because we are now dealing with joint probabilities for both individuals 

at x and y at time (t + dt). However, using the property 

P[AIG] = P[(A n B) U (An BC) IC] = P[A n BIG] + P[A n B'IC], 	(2.74) 

we can write, for example, 

P[S(t + dt) = 1, S(t + dt) = 11S(t) = 0, S(t) = 11 {}] = 

P[S(t + dt) = 1IS(t) = 0, Sy  (t) = 1, {e}] - 	(2.75) 
P[S(t±dt) = i,S(t+dt) =0IS(t) =O,S(t) = 

in which the last term is of order 0(dt2 ) and hence negligible. This argument 

applies to all the conditional probabilities in (2.73). Note that the transition prob- 

ability from susceptible to infected for individual x, (2.1), given that individual 

40 



y is infected (S(t) = 1), can be rewritten as 

P[S(t + dt) = 11S(t) = 0, S(t) = 1, {e}1 = [J1  

+J2 f. y  + J2 	2 fs(t)} dt. 	 (2.76) 
z(54x,y) 

Taking the limit dt -* 0, and using (2.73), (2.76) and (2.2), we finally obtain 

dE[S(t)S (t)] 
= J1 (E[S(t)] + E[S(t)]) 	 (2.77) 

dt 

- 2 (J1  + J2  f,, + R) E[S(t)S(t)] + J2  (E[S(t)] + E[S(t)]) f,. 

+ 	J2  E (E[S(t)S(t)1 - E[S(t)S(t)S(t)]) f 
z(Ox,y) 

+ 	J2 	(E[S(t)S(t)] - E[S(t)S(t)S(t)]) f. 
z(x,y) 

Equation (2.77) represents a system of equations for each and every pair of lat-

tice sites x and y. Equation (2.22) is a particular case of (2.77) for spatially—

homogeneous systems. 
The same arguments used to derive the second set of equations in the infinite 

hierarchy can be used to derive the nth set of equations of the hierarchy: 

dE[S 1 (t) . . . Sj = (EE[ (1 - S i (t)) fl Sxk 

(k54i) 

X 	[J1  + J2 E f 	+ J2 	fS(t)] 1) 	(2.78) 
j1  
(i:t-i) 

- 	 E[SX1 . . . S,j m R. 

The system of equations (2.69)—(2.78) is not closed for any finite n and there-

fore cannot be solved. The special case represented by spatially—homogeneous 

systems can be recovered by imposing E[SX] = E[S], V x, y E system. 

2.6 Summary 

A lattice model for the development of plant epidemics has been presented. The 

dynamics of the infection process are determined by three parameters: the pri-

mary and secondary infection rates (J1  and J2 ) and the power exponent of the 

contact distribution, a, which specifies the range of disease dispersal. The contact 

distribution decays as a power—law of distance and can describe interactions rang-

ing from local contacts between neighbours to uniform interactions, independent 

of the relative position of individuals. A recovery process, whereby infecteds are 

replaced by susceptibles, can be included, which results in two possible versions 
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of the model, namely the SI model (without recovery) and the SIS model (with 

recovery). The model is simple but incorporates important realistic features, such 

as stochasticity and spatial extension. Moreover, its simplicity allows us to give 

a clear interpretation of the parameters which affect its behaviour. 

Close attention was paid to the spatial characteristics of the model because, 

when studying the model behaviour, we wish to understand how different mech-

anisms of dispersal affect the development of epidemics, what kind of disease 

patterns they produce, and how the resulting spatial distribution of infecteds in 

turn influences the persistence or extinction of epidemics. For this purpose we 

defined the quantities which will be measured in the simulation of the model and 

described how they will be estimated using samples of many stochastic realisa-

tions. In particular, we are interested in the size of the epidemic and the relation 

between the number and the spatial distribution of infecteds. 

We also derived a set of individual—based dynamic equations describing the 

expected dynamics of the spatial and stochastic model. These equations represent 

a valuable alternative to computationally—intensive stochastic simulation and can 

be used to obtain predictions for the expected behaviour. The problem with 

stochastic and spatial models is that they are described by an infinite hierarchy 

of equations which is mathematically intractable. Yet from a simple analysis 

of the first two equations in the hierarchy, we established some properties of 

the model and obtained theoretical predictions for its behaviour in particular 

situations. Closure approximations will be used to close the system and solve 

the equations, and these solutions will be tested against simulation (see chapter 

6, Filipe & Maule, 2000 b). These equations represent the starting point for 

the development of a simple and robust analytical framework for studying the 

behaviour of a wide range of models characterised by general interactions. 

In conclusion, we have two possible formulations for the study of our epi-

demic model, one based on a stochastic approach and the other on an analytical 

approach. The stochastic approach requires the use of simulation; it is realistic, 

since it accounts for the uncertainty affecting natural systems, but leads to find-

ings which are difficult to generalise to other models. The analytical approach 

is less accurate since it relies on approximate methods, but on the other hand 

is very general and can be used for investigating a large variety of interacting 

particle systems. 
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Chapter 3 

Simulation of the 
spatio—temporal stochastic model 

3.1 Introduction 

In recent years, the standard division of subjects such as physics, chemistry and 

biology into "experimental" and "theoretical" has been eclipsed by the advent of 

computer simulations, which represent a third and powerful approach. Computer 

simulations provide a method for investigating the behaviour of models which are 

not analytically solvable and for which experiments or collections of field data 

cannot provide conclusive information (Ripley, 1987; Binder & Heermann, 1992). 

Computer simulations yield exact information (apart from statistical errors, 

which in principle can be made as small as desired) about model systems which 

are precisely characterised. In much the same way as the output from experi-

mental trials may vary, so too can the output from stochastic realisations of a 

simulated process which is aimed at mimicking the variability observed in the 

former. However, computer simulations have the advantage of allowing us to 

control all the variables which may influence the behaviour of the system. More-

over, simulations can provide information that would be very difficult to obtain 

directly from experiments. 

In order to study the average behaviour of a system, a very large number of 

realisations may be needed to obtain a meaningful estimation of quantities subject 

to large stochastic variation. This is easily done using computer simulations, 

whilst repeated realisations of the same experiment under the same conditions 

may prove to be a difficult task. On the other hand, however appealing, the study 

of model behaviour using analytical approaches can also be difficult and, in the 

majority of cases, requires the use of approximations with uncontrollable effects. 

A stochastic spatio—temporal model for the spread of infectious diseases in 

a lattice—distributed population of plants is mathematically intractable. In the 
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previous chapter we saw that the differential equations describing the dynamics 

of an epidemic form an infinite system in which any sub—system is not close. 

Nevertheless, a model which incorporates the discreteness of individuals, spatial 

extension and stochasticity provides a realistic representation of the biological 

mechanisms occurring in real systems. Computer simulations are a valuable tool 

for studying the behaviour of such models. They provide insight into the under-

lying mechanisms, highlight unforeseen features of a process, and suggest further 

profitable lines of biological investigation. 

In this chapter we present the results of a thorough simulation study of the 

stationary and transient behaviour of the model introduced in chapter 2. Some 

of these results are reported in Filipe et al., 2000 and Filipe & Maule, 2000 a. In 

the stationary regime, the relation between epidemic size and disease distribution, 

characterised by spatial auto correlations, and their dependence on dispersal and 

infectiousness parameters, is demonstrated. Special attention is given to bound-

ary effects, which can significantly decrease disease levels relative to standard 

periodic geometries in the cases of long and medium—distance dispersal. In the 

transient regime we attempt to characterise transients in terms of the mean and 

variance of a distribution of disease progress curves, and to identify universal and 

specific features of behaviour. In particular, 'we propose and test a definition of 

average transient duration which captures well the dependence on model param-

eters. The time—evolution of spatial autocorrelations reveals distinctive features 

(such as power—law distance decay) between stationary and transient behaviour. 

The effects of having no recovery or having different initial conditions are also 

examined. 

3.2 Stochastic algorithm 

For a given set of parameters J1 , J2  and a, we simulate a stochastic realisation 

of the model by specifying the time, nature (infection or recovery) and location 

of the events. Let us suppose we know the state of each site in the lattice at 

time t, and let N5 (t) and N1 (t) be the total number of susceptible and infected 

individuals (Ng (t) + N1 (t) = N). The time until next event, s, is simulated 

from an exponential distribution with mean 1/E(t) (Renshaw, 1991; Grimmett 

& Stirzaker, 1992), where 

(3.1) 
X 	 yx 

>(t) dt is the probability that any event occurs in a small time interval (t, t + 

dt). (t) depends only on the actual state of the system at time t and not on 



the previous history of the system, i.e. this is a Markov process (Grimmett & 

Stirzaker, 1992). Thus the current time t is then incremented by s. 

Next, the nature of the event occurring at t + s is determined. With prob-

ability R N1 (t)/E(t), this is selected to be the recovery of an infected site, and 

a particular site is chosen randomly from the set of infecteds and replaced by a 

susceptible. If the selected event is the infection of a susceptible, which has prob-

ability {J1Ns(t) + J2 [1 - S(t)] 1i f(Ix - y ) Sy (t)]/E(t), a site x is chosen from 
X 	 yOx 

the set of all susceptibles with probability proportional to the infective challenge 

experienced by x, that is 

= J1  + J2  Y,  f(Ix - yI)S(t), 	 (3.2) 

y:Ax 

and its state changed to infected. By repeating this procedure from a set of initial 

conditions, we generate a stochastic realisation of the model. 

3.3 Numerical implementation 

Computer simulations were carried out on SUN Ultra 2170 and Ultra 1140 Work-

stations. In situations where a very large number of stochastic realisations were 

necessary, simulations were run in parallel on a 512-alpha Cray Research T3D at 

the Edinburgh Parallel Computing Centre (EPCC), using the Message Passing 

Interface standard, version 1.1 (EPCC, 1995). 

The numerical algorithm was implemented in Fortran 77 and Fortran 90. 

The random number generator used was the intrinsic Fortran routine ran, which 

generates random numbers with a uniform distribution using a multiplicative 

congruential algorithm. Tests were made on the performance of the random 

number generator used (Filipe, private communication), and the results were 

found to be satisfactory for our needs. 

3.4 Parameter choice 

Since each susceptible can interact with any infected in the population, stochastic 

realisations are computationally intensive, especially for large systems, and the 

model behaviour may depend significantly on the size of the system. Real pop-

ulations exhibit system—size effects of two kinds: finite—size statistical variation, 

and edge effects that depend on specific boundaries. In order to make results 

general and informative we wish to minimise these effects. This can be done by 

simulating the model on a relatively large lattice (L = 200, corresponding to 

N = 40,000 individuals) without boundaries, whose average behaviour we expect 
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to be close to that of an infinitely—large system. To have some idea of the differ-

ences between this paradigm and a real system we compared average behaviour in 

lattices of size L = 100 and 200, with and without boundaries (FBC and PBC). 

Finite—size stochastic variation within and between realisations was substantially 

reduced from L = 100 to 200, which facilitated sampling. 

For the stationary, ergodic regime, the size of simulated systems is chosen 

to be L = 200. Typical samples consist of '-' 10 realisations. In order to reduce 

computational cost, smaller systems, of size L = 100, are adopted in the transient 

regime, where samples consist of hundreds of realisations (128 to 256, performed 

on a parallel computer). Large samples are necessary in this case since it is not 

possible to average over time. The choice of a smaller system size is appropriate 

also because part of the transient variability exhibited by biological populations, 

for example in replicate experiments (Kleczkowski et al., 1996), results from their 

relatively small size. L = 100 seems to be small enough to sustain a certain degree 

of variability yet large enough to allow qualitative conclusions to be independent 

of L. 

We focussed on values a = 2, 3.5, 20 for the dispersal exponent, representing 

cases of long—range (LR), medium—range (MR) and short—range (SR) dispersal. 

One effect of background or primary infection on disease progress is to ran-

domise the disease pattern. A much less understood aspect of epidemic develop-

ment is how the self—generated distribution of infecteds conditions disease trans-

mission. In the absence of primary infection the system exhibits a phase transition 

from epidemic persistence to extinction. For clarity, we concentrate on this case 

and set J1  = 0. Some examples of epidemics generated by both sources of in-

fection are shown in later chapters, but even then background infection has low 

levels in order to avoid the dominance of the random process over the interaction 

process. 

A wide range of values of J2  are explored in each dispersal case: from the 

persistence threshold (the value below which the epidemic always becomes ex-

tinct) to values corresponding to large long—term epidemic size ( ~! 80% of hosts 

infected). 

Epidemics are initiated with a small fraction of randomly distributed infect-

eds. Stationary behaviour is independent of the initial condition, provided that 

a sufficiently long time has elapsed from the start of the observation. For the 

study of the transient regimes, the initial number of infecteds is small, typically 

20 infecteds in a population of 10, 000 individuals. 

In this chapter, i Pj  is an abbreviation for the expected epidemic size, and 

/3 J2 1R is the relative rate of secondary infection which we call the infectious- 
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ness 

3.5 Stationary behaviour 

First we analyse the stationary behaviour of the model which includes recovery of 

infecteds. Lattices with and without boundaries (FBC and PBC) are considered. 

3.5.1 Epidemic size 

Fig. 3.1 displays the expected epidemic size .t against infectiousness /3 for dispersal 
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Figure 3.1: Expected stationary epidemic size against infectiousness (phase diagrams). 

PBC. 

exponents a = 1, 2, 3.5, 20, in a PBC lattice of size L = 200; curves corresponding 

to L = 100 differ very little from these. 

The results have the following features. Different interactions exhibit similar 

behaviour, with a threshold value of the infectiousness, 0, separating regions 

of epidemic persistence and extinction. Quantitatively, epidemics are larger and 

the threshold smaller (Fig. 3.2) when the interaction range is larger. This is 

caused by a reduction in the aggregation of infectives with decreasing a (see also 

the epidemic snapshots in Fig. 3.31), which increases the likelihood of pathogens 

being deposited on susceptibles rather than on infecteds. All curves in Fig. 3.1 

are bounded below by the NN model (a = oo), which is closely approached by 

the a = 20 model, and above by the MF model (a = 0). Curves for a = 1 and 
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a = 2 are indistinguishable and nearly coincide with the MF model, in agreement 

with the result (2.34) proven in chapter 2 which states that in the limit L -+ oo 

the behaviour of A is the same as for MF V a < 2. 

1.6 

1.4 
0 

(I, 

.c 
1.2 

1.0 - 

0 5 	10 	15 	20 
power exponent a 

Figure 3.2: Infectiousness threshold for persistence against power exponent a. 

The steepness of the curves near the persistence threshold reveals great sensi-

tivity to variation or uncertainty in 0. Sharp, infinite—slope transitions are typical 

of epidemic models with NN interactions (Levin & Durrett, 1997; Filipe & Gib-

son, 1998) and of critical phenomena in physical systems (Stanley, 1972). Fig. 

3.1 shows that they are a feature of more general interactions. The asymptotic 

result mentioned above implies that, in the limit L -+ oo, the slope of the curves 

(ôji18/3) at the critical threshold is 1 for a < 2 and infinite otherwise. This 

divergence relates to the emergence of long—range correlations near the threshold. 

In the previous chapter, the contact distribution (2.3) was defined as a prob-

ability distribution normalised over all possible deposition sites in a domain D. 

The normalisation factor Z(a, L) could be absorbed into parameter 0, but there 

are reasons for not doing so. First, only with Z is the model mathematically well—

defined in the limit L —p oo for a < 2. Second, we wish to compare behaviour 

corresponding to different values of L and a. Let us suppose that no explicit nor-

malisation Z had been used in (2.3) and that 6' = /3/Z(a, L) is the corresponding 

infection rate. This approach has been used for studying other models with long—

range interactions (Cannas & Tamarit, 1996). Since 6' depends on a and L, it 

cannot be interpreted as the rate of propagule production. Fig. 3.3 displays the 

same curves as Fig. 3.1, but now the stationary epidemic size is plotted against 

16'. The figure shows that the new phase diagrams have undesirable features: 

1. much greater sensitivity to variation in L and a; 
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Figure 3.3: Stationary epidemic size against 0' = 01Z. PBC, L=OO. 

2. for a < 2, in the limit L —* oo (when Z —* oo), they collapse onto a single 

vertical line at /3' = 0 and all the information about behaviour in this region 

is lost. 

3.5.2 Boundary effects on epidemic size 

We now consider a lattice with FBC. Two factors contribute to smaller proba-

bilities of infection in this case. First, some pathogen propagules are deposited 

outside the boundary: pathogens produced at x are dispersed over an area 

but only a fraction p(x) is deposited inside the system (p(x) = 1 with PBC); Fig. 

3.4a depicts how p(x) varies along a diagonal cross—section of the lattice. Second, 

the system is no longer homogeneous: at the lattice centre, interactions with all 

other sites are much the same as in a PBC lattice, but sites nearer the boundary 

are less exposed and thus less likely to become infected. For example, the max-

imum infective challenge -(D 	= J2 E f(x - y) and the density of infecteds 
y7Ax 

vary considerably across the system (Fig. 3.4b), whilst in a PBC lattice there is 

no overall variation. Fig. 3.4c shows the corresponding snapshot. 

Fig. 3.5a compares ji for PBC and FBC lattices (with L = 200) in LR and SR 

dispersal cases. In the LR case, the presence of boundaries significantly reduces 

epidemics and increases the threshold ,B.  The same comparison with L = 100 

(not shown) yields very similar curves but with slightly greater differences between 

PBC and FBC lattices, i.e. edge effects decrease with system size. Fig. 3.5b 

compares y in FBC lattices of different sizes: epidemics are marginally larger in 

the larger system. The corresponding curves in PBC lattices (not shown) are 
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Figure 3.4: FBC. a) Fraction of propagules produced at x which are deposited in the 
system: variation with distance from lattice centre along a diagonal cross-section; b) 
Density of infecteds in a 10 x 10 quadrat and maximum infective challenge along 
the same diagonal (divided by value at the lattice centre; c) Disease snapshot corre-
sponding to b). 

almost identical, i.e. system-size effects are reduced with PBC. In conclusion, 

edge effects (Fig. 3.5a) are more important than size effects (Fig. 3.5b), both 

being more noticeable with LR than SR dispersal. With MR dispersal the effects 

are intermediate. 

Fig. 3.6 is the same as Fig. 3.1 for an FBC lattice. An important difference 

relative to the PBC lattice (also apparent in Fig. 3.5a) is that, for given fi, 
the epidemic level does not grow monotonically with increasing dispersal range 

(decreasing a). In this case, curves cross: a = 2 and a = 20 at 3 2, and a = 2.5 

and a = 3 at 0 1.3 (not shown). Also, a = 2 is below a = 3.5 right from the 

threshold, which is the reverse of Fig. 3.1. The reason for this behaviour is that, 

for any given rate of pathogen production 0, a fraction of the propagules is now 

lost to the outside and does not contribute to infections. This loss increases with 

increasing dispersal range (especially for a < 2) and with increasing 3. 

3.5.3 Variability in epidemic size 

Population behaviour exhibits increasing variability with increasing proximity to 

extinction or decreasing dispersal range (i.e. with increasing spatial aggregation). 

This is illustrated in Fig. 3.7, which shows the variance against the mean of the 

epidemic size, j (each point was estimated, from the long-term behaviour of 

hundreds of realisations, as in the transient behaviour). In the SR dispersal case, 

the variance is larger and it increases faster with decreasing disease level than in 
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Figure 3.5: Expected stationary epidemic size against infectiousness, a) edge effects; 
b) size effects. 

the LR and MR cases. For LR dispersal, the relation between the variance and 

mean of the epidemic size is almost linear. 

3.5.4 Spatial correlations 

We use the spatial autocorrelation function C(r) (see (2.19) in section 2.4) to 

analyse the distribution of disease in the stationary regime. The nature and 

dynamics of spatial correlations and their effect on disease progress is a fascinating 

though not well understood problem which has received increasing attention in 

plant epidemiology in. recent years (Reynolds & Madden, 1988; Xu & Ridout, 

1996; Hughes et al., 1997; Ferrandino, 1996, 1998; Filipe et al., 2000). We consider 

lattices of size L = 200 with i = 4%, 10% and 25% in each of the three dispersal 

cases. Fig. 3.31 shows corresponding patterns of disease. Fig. 3.8 depicts typical 

raw correlation data and the corresponding correlations smoothed through the 

use of histograms (see (2.7) and end of section 2.3). Hereafter only smoothed 

data are shown. 

We distinguish between lattices with (FBC) and without (PBC) boundaries: 

spatial correlations are estimated using definitions (2.17) and (2.18) in the first 

case and (2.19) in the second case. 

3.5.4.1 Spatial correlations in unbounded systems 

We first consider the homogeneous PBC lattice. Figs 3.9 and 3.10 compare C(r) 

for given epidemic levels and given interactions, respectively. The following con- 
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Figure 3.6: Expected stationary epidemic size against infectiousness (phase diagrams). 

FBC. 

clusions can be drawn and related to previous results. 

• Correlations, especially at short distances, increase with decreasing range 

of dispersal (larger a). There is a corresponding increase in local aggrega-

tion (Fig. 3.31) and in the strength of infection 8 needed to reach a given 

epidemic level (Fig. 3.1). The variation of C(1), which may be regarded as 

an index of aggregation between infecteds, is sketched in Table 3.1. 

• Correlations, especially at large distances, increase as extinction is ap-

proached. A corresponding emergence of structure at large scale is observed 

(Fig. 3.31). The high sensitivity of p to variation in 0 near extinction (Fig. 

3.1) is thus explained by the appearance of long-range correlations which 

amplify local fluctuations in disease. Such large-scale behaviour is typical 

of critical phenomena at continuous phase transitions (Stanley, 1972). 

• With LR dispersal, correlations are very small and vary little with the epi-

demic level. This agrees with Figs 3.31 and 3.1 which suggest that infecteds 

and susceptibies are well mixed in this case. 

A more quantitative analysis follows from studying the functional form of the 

correlations, e.g. exponential or power-law. With LR dispersal (a = 2), in-in 

plots of C(r) are nearly linear for distances up to 20 for all values of p (Fig. 3.11). 

52 



	

2.0 
	

[LRl 
MRI 
SR 

Z 1.5 

U 
C 
c 	1.0 
I- 

0.5 

0 	0.1 	0.25 	 0.5 
mean 

Figure 3.7: Variance (times the number of individuals N) against mean of epidemic 

size, p. Samples of 128 or 256 realisations with PBC and L = 100. 

I C(1)  II a=2 1 a=3.5 1a=20 I 
4% 0.033 0.209 0.369 
10% 0.031 0.193 0.338 
25% 0.026 0.147 0.270 

Table 3.1: Measure of aggregation: correlation at lag 1, C(1). 

In order to introduce a length scale, e we fit the data with the in-in transform 

of the function: 

- 	- 	C(1) 
[1+(r-1)/e] 

(3.3) 

Similar results are obtained fitting a straight line ( = 1) or allowing e to vary, 

in which case 	1.1 for all values of i. Exponent b increases, i.e. the range of 

correlations decreases, with increasing ji (Table 3.2; values are similar with either 

= 1.1 or 1). Fig. 3.12 compares correlations for a = 2 and a = 1 and shows 

that there are effectively no correlations with a = 1 (C(1) = i0- ). These results 

tell us something unexpected: while the epidemic size is indistinguishable for all 

a < 2 and behaves as if the disease distribution were random (see Fig. 3.1 and 

section 2.5.2), the correlation analysis suggests a substantial difference between 

disease patterns with a = 2 and a = 1. 

Qualitatively different correlations are found with MR and SR dispersal. Fig. 

3.13 displays the corresponding in-linear plots, which are very well fitted by 
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Figure 3.8: Spatial correlations in the stationary regime for LR dispersal and epidemic 
size 25%. Raw and smoothed data. 

lb 	IIa=21a=3. 5 1a= 20 1 
1.55 0.51 0.59 

10% 11.59 0.66 0.62 
25% 1.81 0.67 0.86 

Table 3.2: Best fit values of exponent b in (3.3) and (3.). 

stretched exponentials, 

fr—i b 

O(r) = C(1) e*T) 	 (3.4) 

where is a correlation length scale. Power—laws and simple exponentials yield 

poorer fits to data (not shown). Fitted values of range from 1.1 to 2.2. Fitted 

values of b are given in Table 3.2. As expected, curves approach simple exponen-

tials (b = 1) and the correlation length decreases as epidemic size p increases. 

Conversely, as I.L tends to zero, a crossover to power—law correlations might be ex-

pected, which is consistent with sequences of In—In plots of C(r) down to ji = 

Fig. 3.14 illustrates this point in the SR dispersal case: in—in plots of correlations 

are nearly linear for /1 = 4%. Sampling behaviour near extinction, however, is 

very difficult because correlations in SR and MR interacting systems develop os-

cillations which reflect the presence of structure at scales comparable to L (Fig. 

3.31). 
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Figure 3.9: Variation of spatial correlations in the stationary regime with the inter-
action (SR, MR and LR), for given epidemic levels, a) t = 4%; b) p = 10%; c) 

=25%. 

3.5.4.2 Spatial correlations in bounded systems 

We now consider a heterogeneous FBC lattice. In this case the density of disease 

patterns is heterogeneous, as demonstrated by Fig. 3.4b which shows the local 

density of infecteds decreasing as the boundary is approached. Naturally, this 

effect is strong with LR dispersal but negligible with SR or NN dispersal (Filipe 

& Gibson, 1998). The autocorrelation C(r) quantifies correlations between local 

variables relative to their local mean (over realisations). Since the lattice is non-

uniform, the local mean is also non—uniform, which is why (2.18) is required 

for estimating the expectation of C(r). Using (2.19) to estimate correlations 

on a lattice with FBC leads to erroneous results, especially for LR dispersal, as 

illustrated in Fig. 3.15. 

Fig. 3.16 compares C(r) in PBC and FBC lattices, with u = 25%, estimated 

using (2.19) and (2.18) respectively. Apart from a greater residual dispersion in 

the FBC case, the two raw—data sets are very similar. Hence, for these (and pos-

sibly most) parameter values there is little difference in the correlation of disease 

patterns of bounded and periodic systems with the same fraction of infecteds. 

The latter condition is essential for a valid comparison since correlations depend 

on pattern density. In fact, by comparing systems with the same stationary level 

of disease, some of the boundary effects on the epidemic process are accounted 

for, so correlations should not be much affected provided their range is smaller 

than L. We recall (see Fig. 3.5) that the same epidemic size is reached for a larger 

value of fi with FBC than with PBC. 

In practice, it is often necessary to analyse a single pattern produced by a 
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Figure 3.10: Variation of spatial correlations in the stationary regime with the epidemic 
level (tt = 4%,10%,25%), for given interactions. Note that in the LR case correlations 
are very small and do not vary much with p. a) SR; b) Ml?; c) LR. 

stochastic process. Equation (2.19) can be applied to a single pattern provided 

that the expectations over realisations (and the average over time) are removed, 

giving C(r) = (p11 (r) — p)/(pi — p), where pjj (r) and Pi  are the spatial averages 

defined by (2.12) and (2.13). In contrast, the averages involved in (2.18) can 

only be evaluated when . a set of realisations is available. In the latter case, other 

estimators of correlations might be applied. Examples can be found in Filipe et 

al. (2000). 

3.5.5 Theoretical prediction for the critical threshold 

In the previous chapter we used the equations for the time evolution of the av -

erage fraction of infecteds (2.30) to predict the critical threshold for epidemic 

persistence, /3  = 1/(1 - Fe), where F is defined by (2.31) and evaluated at the 

threshold. The stationary epidemic size is given by: 

1— 	
(1—F) if>fi 	 (3.5) 

0 	 iffl</3. 

We recall that these results are valid for unbounded homogeneous lattices. 

We tested this simple model by comparing theoretical predictions for p against 

simulated values. To estimate F we substituted in (2.31) the corresponding simu-

lated spatial correlations C(r). Fig. 3.17 shows remarkable agreement, supporting 

the validity of relationship (3.5) between infection level and spatial correlations. 
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Figure 3.11: Ln-ln plots of C(r) for LR dispersal (a = 2). Linear fits have slope b 
given in Table 3.. 

3.5.6 Patterns of disease 

Fig. 3.31 shows disease patterns in the stationary regime simulated on a 200 x 200 

square lattice. Each pattern refers to one of the three dispersal cases and one of 

the three epidemic sizes (p = 4%, 10% and 25%) corresponding to the spatial 

correlations in Figs 3.9 and 3.10. 

Different forms of dispersal produce very different patterns of disease. The 

effectiveness of a dispersal mechanism in spreading disease (i.e. in producing 

infective-susceptible interactions) is in turn influenced by the type of spatial 

pattern which it generates. In other words, disease progress is conditioned by its 

distribution. 

LR dispersal produces patterns of disease in which the distribution of infecteds 

looks almost random. This is in good agreement with Fig. 3.1, which exhibits 

similarity between the MF model and the LR dispersal model (a = 2). It is also 

in good agreement with Figs 3.9 and 3.10, which show that spatial correlations 

are very small for LR dispersal, although they are not zero, as revealed by Fig. 

3.12. As the range of interaction decreases, aggregation increases. SR dispersal 

generates the most clustered distributions of infecteds, which are the cause of the 

large spatial correlations observed in Figs 3.9 and 3.10. 
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Figure 3.12: Correlation functions for a = 1, a = 2 and a = 3.5. IL = 10%. 

3.6 Transient behaviour 

We now analyse the transient behaviour. First we consider the SIS model which 

includes recovery of infecteds. Epidemics are initiated with 20 randomly dis-

tributed infecteds on a lattice of linear size L = 100 and, as before, we study the 

epidemic size and spatial correlations. We then investigate the effects of different 

sets of initial conditions, and finally we analyse the SI model (no recovery). In 

the following, only unbounded lattices (PBC) are considered. Since transients are 

characterised by wide stochastic variability (Fig. 3.18), we sample behaviour using 

large numbers of stochastic realisations (from 128 to 256); sampling is conditional 

on epidemic survival. 

3.6.1 Epidemic size 

First we look at the distribution of epidemic sizes over the sample of simulated 

stochastic realisations, at three points in time. Times are chosen according to the 

shape of the standard deviation a(t) (Fig. 3.20), and correspond to the half—peak 

(t 1 ) and peak (t 2 ) of ci and to a point in the stationary regime (t). Fig. 3.19 

displays the evolving distribution, after appropriate rescaling of the axes, in the 

case of LR dispersal and 50% long—term infection. Equilibrium distributions are 

nearly normal, as confirmed by logarithmic plots (not shown). The roughness of 

the transient distributions suggests that sample size might not be large enough, so 

we cannot conclude whether the distribution is normal, although we see no reason 

in principle why it should not be. The distribution with the lowest average (time 

t1 ) appears to be skewed towards positive values, which might be explained by 
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Figure 3.13: Ln-lin plots of C(r) for: a) MR, and b) SR dispersal. Lines are stretched 

exponentials fits (see (3.4)  and Table 3.2). 

the increase in the probability of extinction when the epidemic size is small. 

Next, we consider the first moment of the above distribution. Fig. 3.29 shows 

the mean of the epidemic size (t) (pj (t)) for LR, MR and SR dispersal and 

long-term epidemic sizes 10%, 25% and 50%. Also shown are: a few error bars 

± cr[pj (t)], the corresponding Mean Field (MF) predictions, and least square fits 

of the following generalised (asymmetric) logistic function, also known as Richards 

curve (Campbell & Madden, 1990), 

IL00 
tL (t) = [1 + [( 00 /ILo)'I - 1] e/]a' 	

(3.6) 

with fitting parameters a and r, and inflection point /ij = 	[a/(1 + a)]a. MF 

predictions, which are common in epidemiology (e.g. Mollison, 1995), are based 

on the assumption that there are no spatial correlations and thus on expressing 

the growth rate of the mean number of infecteds as proportional to the mean 

number of infecteds multiplied by the mean number of susceptibles (for a more 

detailed explanation of the MF approximation see chapter 4). This assumption 

appears reasonable in the case of LR dispersal but substantially overestimates 

the long-term epidemic size (Filipe et al., 2000) and the rate of epidemic growth 

in the MR and SR dispersal cases. The logistic fit is also good with LR dispersal 

but is much less satisfactory with MR and SR dispersal. The reason for this is 

related to the reason for the failure of the MF prediction. Equation (3.6) is in 
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Figure 3.14: Ln-ln plots of C(r) for SR dispersal (a = 20). Correlations tend to decay 
as power-laws as p tends to 0. The linear fit for p = 4% has slope b = 1.06. Larger 
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fact the solution to the generalised MF equation: 

	

dp(t) - 
p(t) 	

- (p(t)-) 

 

/1 

 (3.7) 
dt 	T 	 70O  

The main features of p(t) are its long-term limit, studied in the previous 

section, and the time scale of the transient. We shall try to define a time scale 

(average "transient duration") below. 

We now concentrate on the standard deviation of the epidemic size, a(t). Fig. 

3.20 shows a against time in the nine cases of dispersal vs long-term infection. 

The main features of u(t) are a well-defined peak (tn , a) during the transient, 

and the long-term value a. For clarity, axes were rescaled as a/a and t/t. 

Note that equilibrium is typically reached by t = 2.5 t,,. The curve features a, a 

and t vary with the epidemic parameters a and 0 (i.e. p), as shown in Fig. 3.21. 

3.6.2 Transient duration 

From Fig. 3.29 it is clear that each mean curve has its own time scale and shape. 

We would like to define a transient duration in order to study its dependence 

on the basic parameters and to establish qualitative differences in the shape of 

disease progress curves. Obvious definitions of a time scale invoke either the 

inflection or the half-height point of p(t), or the same features of its logistic 

fit. We find, however, that none of these curve-descriptive approaches appear to 
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Figure 3.15: Correlations estimated with (2.19) on a bounded lattice for the three 
dispersal cases. 

capture the variation of the time scale with the model parameters. Here we take 

a conceptually different approach by exploiting the observed peak in o(t). This 

peak is a striking feature which can be measured more accurately than inflection 

points. Table 3.3 compares possible time scales associated with the curves 

the peak of a(t), t, the estimated inflection point of p(t), t, and the inflection 

point of the fitted logistic, t. We find that t 1  < tj < t. Times t2  and t 21  

are always very close, while t, and t, are close in the first five cases but differ 

considerably in the others where spatial correlations are known to be important. 

(The half-height time t05  : ji(to . 5 ) = i/2 does slightly better than t j  but also 

lags behind tn .) This reinforces the idea that t captures aspects of the behaviour 

that tj  does not. 

1OO t2 1 (logistic) t 	(p) t 	
] 

2 50% 5.7 5.7 6.1 
2 25% 15.0 15.1 16.3 

72 10% 34.2 35.0 39.0 
3.5 50% 9.0 9.4 10.3 
3.5 25% 28.3 30.0 33.2 
3.5 10% 68.2 73.0 85.6 

O 50% 21.7 24.0 34.7 
20 25% 71.6 82.0 110.8 
20 10% 216.8 229.0 360.4 

Table 3.3: Measures of transient timescale. 
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Figure 3.16: Expected correlations in the stationary regime estimated with (2.19) with 
PBC and (2.18) with FBC (p = 25% for both lattices). a) LR; b) MR. 

For these reasons, we propose to use the peak of a(t) for defining transient 

duration. We also observed that there is a variable degree of asymmetry of a(t) 

around its peak, i.e. the time interval between the peak and some definition of the 

start of the equilibrium plateau varies with a and fi differently than the interval 

between the start of the epidemic and the peak. This probably means that in the 

second stage of the transient the system has reached spatial configurations with 

different properties (i.e. closer to the average long—term configuration) and that 

the spatial processes have a different effect on epidemic progress. It also suggests 

that t does not contain enough information for defining transient duration. 

In order to estimate the duration of the post—peak transient we consider tp+th, 

the time at which or reaches a certain value between a and a,. Specifically, we 

consider t (Fig. 3.22) such that: 

(3.8) 

We then approximate the post—peak relaxation time of a(t) by 2th, which is 

probably a slight underestimation. Finally, we define average "transient duration" 

as: 

ttr = A [t + 2th], 	 (3.9) 

where A = 1.5. The precise value of factor A is somewhat arbitrary and not very 

important as it does not change the relative duration of different transients; the 

value chosen is suggested by examination of a(t) (Fig. 3.22). Fig. 3.23 shows the 
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Figure 3.17: Theoretical prediction for average stationary epidemic size A (3.5), against 
values from simulation on an unbounded L = 200 lattice. The line (slope 1) is for 
reference. 

dependence of ttr  on the epidemic parameters. As expected, transients are longer 

when the dispersal range is shorter. They are also longer when the long—term 

epidemic size is smaller, which might sound counter—intuitive given the initial 

state (P1(0) = 0.2%). An explanation is that when the stationary epidemic 

size is smaller, long—term correlations are larger (see Figs 3.9 and 3.10), and 

consequently the stochastic build—up of such an attractor state takes longer than 

the build—up of a comparatively more random state. 

Our final objective is to use our definition of transient duration for comparing 

disease progress curves with very different time scales. Figs 3.24a and b display 

some of the curves in Fig. 3.29 with axes rescaled in the form [(t) - 1(0)]/[ji - 

i(0)] and t/t,., for given dispersal function (MR) and long—term epidemic ( = 

25%), respectively. Sets of curves corresponding to other parameter values have 

similar appearances. Apart from their effect on dispersal processes can be 

distinguished by the rate of growth of p (Fig. 3.24b): curves are more linear (and 

thus ttr  is larger) when the dispersal range is shorter. In the SR case, spread is 

dominated by peripheral growth of infected clusters within which the stationary 

density is rapidly reached (see Fig. 3.30), hence the growth rate is proportional 

to the perimeter rather than the area of clusters. In the LR case, there is a chain 

reaction yielding initial exponential growth and a sigmoid shape. The qualitative 

difference between curves with different long—term epidemic size (i.e. different 3) 

and given a (Fig. 3.24a) is analogous; as explained above, growth is slower (ttr  is 

larger) when IL., is smaller. 

The fact that all curves closely merge as they approach stationarity (rather 
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Figure 3.18: Stochastically identical disease progress curves and their mean (bold 
curve). Disease spreads on a 100 x 100 square lattice according to a contact distri-
bution with exponent a = 20, from an initial random distribution of 20 infectives. The 
mean long-term level is 25%. 

than saturating at different values of t/ttr ) is in our view an indication that the 

essential dependence of ttr  on the model parameters is being well captured by 

(3.9). Approaches based on the inflection or half-height point of (t) invariably 

lead to curve crossing in the middle region, another indication of how poorly they 

capture the parameter dependence of ttr . Variations on definition (3.9) based 

on different combinations of t and th, e.g. t,,. = 3 t or ttr = 2 [t + th], also 

produced less satisfactory rescaled curves 4t) since they account less effectively 

for the asymmetry of a(t) about its peak. 

3.6.3 Spatial correlations 

The spatial correlation function C(r, t), as defined by (2.19), is used to charac-

terise the spatial structure of disease. C(r, t) was recorded in each of 128 (or 

256) stochastic realisations with ji = 25%, at times when the epidemic reached 

5%, 10%, 15% and 20% levels. The evolution up to the stationary regime of the 

average of correlations over runs for the three dispersal cases is shown in Fig. 

3.25. For each distance lag, up to about r = 20, correlations are quite large at 

early stages and decrease monotonically in time towards long-term values (with 

the exception of the 5% curve in the SR case, which decreases faster and crosses 

the other curves, Fig. 3.25c). Disease patterns with any given disease level in 

the transient stage have larger correlations than disease patterns in the station-

ary stage with the same epidemic size. This behaviour reflects the rich dynamic 
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times t 1 , t2 and t. 4t1 ) = 0.08, 	= 0.26, p(t,,,) ) = 0.50. 

structure generated by the formation, growth and coalescence of secondary foci. 

Some of this complexity gradually fades out in time with increasing pattern den-

sity and random recovery. Complex dynamic structures were also reported in 

other studies (Shaw, 1995) in which a fractal (but not a correlation) analysis was 

carried out in the special case a = 3. Another notable feature of Fig. 3.25 is that 

all curves cross at about the same lag r 30 and are negative onwards. For 

these lags, anticorrelations decrease monotonically in time to zero, the long—term 

value for r > 30. This negative tail may be attributed to the heterogeneity of 

transient disease patterns (Fig. 3.30). Why all curves appear to cross about the 

same r is unclear. 

Ln—In plots corresponding to Fig. 3.25, for lags up to r (C(r) > 0), are shown 

in Fig. 3.26. Transient correlations are very nearly power—laws not only for LR 

dispersal, in which case long—term correlations also decay as power—laws (see Fig. 

3.11), but also for MR and SR dispersal, where long—term correlations decay as 

stretched exponentials (see Fig. 3.13). This supports the above observation about 

the complexity of transient patterns and is related to their fractal properties 

(Shaw, 1995). This behaviour is, of course, bounded by the length scale r. 

The above correlation functions are estimated means of the underlying distri-

butions of C(r, t) for each distance lag and time. We looked at the distribution 

of C(r, t) over realisations at given times for given lags and found it to be fairly 

symmetric and to spread over positive values even when the mean is negative 

(not shown). One striking feature was that the distributions with zero mean (i.e. 

for r = r) had much sharper peaks than the distributions for other lags. 
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Figure 3.21: Variation of the features of or(t) curves with epidemic parameters. a) 

Values at peak (o p) and long-term (a); b) peak time tp. 

applicable in cases with recovery (because p(t) fluctuates with finite sampling). 

Variation in epidemic progress between realisations is at least as large as with 

recovery, as indicated by the values of a (note that, apart from the long-term 

behaviour, i(t) and a(t) resemble the case ,u = 50%). Hence, although (t) is 

smooth, the absence of recovery does not make the process more deterministic. 

3.6.5 Dependence on initial conditions 

The initial number and distribution of infecteds are expected to affect transient 

behaviour (Xu & Ridout, 1998; Filipe & Maule, 2000 a). Results so far were ob-

tained for a single set of initial conditions (IC20r) with 20 randomly distributed 

infecteds (P1(0) = 0.2%). Whilst an apparently natural initial condition would 

be a lattice with a single infected, beginning with 20 rather than 1 or 2 infect-

eds substantially decreases the probability of early extinction. It also decreases 

transient variability, making our samples more representative. 

Here, we analyse the effects of having other initial conditions: 

10 randomly distributed infecteds (IClOr), 

2 randomly distributed infecteds .(IC2r); 

• 20 spatially correlated infecteds (IC20c), obtained by starting the process 

with IC2r and R = 0, and setting R = 1 and t = 0 when 20 hosts are 

infected. 
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Figure 3.22: Peak and post-peak half-height points of a generic standard deviation 
a(t). 

The epidemic died out quite often at early transient stages, especially when ini-

tiated with 2 infecteds only. All expectations shown are conditional on epidemic 

persistence. We illustrate the analysis in the extreme cases of LR and SR disper-

sal, with = 50%. 

Fig. 3.28a compares the average disease progress i(t) resulting from each 

initial condition. Relative to their respective time scales, the effects of the different 

initial conditions appear to be similar in the SR and LR cases: there is a delay in 

disease progress relative to IC20r which grows in the order: IClOr, IC2r. Effects of 

IC20c depend on the dispersal, which determines spatial correlations and thus the 

difference between IC20c and IC20r. In the LR case, IC20c and IC20r yield the 

same curve (indistinguishable in Fig. 3.28a) because initial correlations are very 

small (see above). In the SR case, the IC20c curve lies between the IClOr and IC2r 

curves: although the initial number of infecteds is larger than in IClOr, these are 

distributed in one or two clusters generated from the two initial infecteds; since 

new infections can only occur at the edge of the clusters, the epidemic is slower. 

The standard deviation a(t) is qualitatively similar for different initial condi-

tions (not shown). Its peak time t and width increase relative to IC20r in direct 

relation to the amount of transient delay in Fig. 3.28a. Applying definition (3.9) 

of transient duration, and resealing t(t) and t as in Fig. 3.24, yields the results 

in Fig. 3.28b for the SR case; the curves for IC20r and IClOr coincide. In the 

LR case (not shown), all resealed curves nearly coincide (except for IC2r which, 

as in Fig. 3.28a, has slower growth). Therefore, definition (3.9) of ttr also seems 

to work well for different initial conditions. The magnitude of a(t), i.e. o, was 
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Figure 3.23: Dependence of transient duration (estimated with (3.9)) on model param-
eters. Curves with dark dots correspond to the current case with R = 1 and initial 
condition ICOr (see section 3.6.5); dark dots at p = 1 correspond to the model with 
R = 0; open symbols correspond to the model with R = 1 but different initial conditions 
(IClOr, IC20c, IC2r). 

smallest in the case IC20r and significantly larger in the case IC2r, which was one 

of the reasons for choosing IC20r in the general study. 

3.7 Conclusions 

We have used simple stochastic spatial models to analyse the effects of a range 

of power–law contact distributions and sporulation rates on temporal and spatial 

aspects of plant epidemic development. We have investigated both the stationary 

behaviour (in the presence of a control process) and the transient behaviour (with 

and without a control process). Our main findings and conclusions are made be-

low. 

Stationary behaviour. In periodic systems, the mean epidemic size ,a in-

creases monotonically with 0 and a (which parameterise the infectiousness and 

dispersal range, respectively) in the way expected. The curves /3) vary contin-

uously with a between the nearest neighbour and MF limits. The curves become 

indistinguishable for all a < 2, in agreement with (2.34), which states that for 

a < 2 ,a converges to the MF prediction in the limit of an infinite system. In 

other words, the epidemic size of large systems is accurately predicted by the MF 

model when the dispersal process is sufficiently long–ranged (Fig. 3.1). 

In systems with boundaries, epidemic size is smaller (and the threshold j3  is 
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Figure 3.24: Rescaled mean disease progress curves, a) MR; b) y = 25%. 

larger) than in periodic systems. In addition, p no longer varies monotonically 

with a because some propagules are dispersed beyond the boundary (Fig. 3.6), 

which leads to a decrease in the number of infectives. With LR dispersal, these 

edge effects are substantial (affecting up to 10% of the host population), while 

with SR dispersal they are quite small. Comparison of different system sizes and 

geometries shows that the stationary behaviour is considerably more affected by 

boundaries than by population size (Fig. 3.5). This suggests that epidemics in 

real populations, which are finite and have boundaries, might be smaller than 

predicted by standard models, especially when disease dispersal is long—ranged. 

The results above refer to average behaviour; we also examined the variation 

of the mean epidemic size. The variance was found to increase with proximity to 

extinction, particularly with SR dispersal (Fig. 3.7). 

The behaviour of the epidemic size could be understood in terms of the prop-

erties of the disease patterns (Fig. 3.31), which varied with the parameters in 

expected ways. We demonstrated that these properties are well characterised 

by the spatial autocorrelation function C(r) (Cliff & Ord, 1981), which might 

therefore provide insight about the processes likely to have produced an observed 

disease pattern. The spatial correlation C(r) is well fitted by stretched exponen-

tial functions (Fig. 3.13). The parameters of the fit suggest that C(r) approaches 

a simple exponential for weakly—correlated patterns and a power—law for patterns 

with long—range correlations (i.e. closer to extinction) (Fig. 3.14). The LR disper-

sal case is exceptional in that C(r), albeit much smaller than in the other cases, 

always exhibits a power—law form (Fig. 3.11). This feature might be expected 
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Figure 3.25: Time evolution of the spatial correlation functions towards the stationary 
regime with &(oo) = 25% for LR, MR and SR dispersal cases. Curves correspond to 
times when the epidemic first reached 5%, 10%, 15% and 20% and at equilibrium (top 
to bottom). Note that in the LR case correlations are very small and do not vary much 
with the disease level, a) LR; b) MR; c) SR. 

in the transient regime. However, since in the LR case epidemic size is well de-

scribed by the MF model, which assumes a random pattern of disease, it might 

be thought that removals would destroy large—scale correlations in the stationary 

regime. This apparent contradiction is resolved by the fact that correlations are 

very small (Figs 3.9 and 3.10). 

Transient behaviour. The essential point about transients is their stochastic 

variability, both within single epidemics and between epidemics under identical 

conditions (Kleczkowski et al., 1996). This variability was illustrated in Figs 3.18 

to 3.20 and Fig. 3.29. In practice, only single realisations of stochastic processes 

are usually observed (or multiple observations under variable conditions). How-

ever, due to epidemic variability, the study of a single disease progress curve 

might not be very useful for predicting the future of that epidemic or identical 

ones nor informative about its underlying processes. A more meaningful way of 

characterising transients and ascertaining their relation to underlying processes 

might be to use a large sample of identical realisations. We obtained this sample 

from simulated models, which would be very difficult in field experiments. We 

then used temporal and spatial statistics to identify the following relevant aspects 

of behaviour. 

The time scale and shape of the mean disease progress curves p(t) were found 

to vary considerably with the model parameters (Fig. 3.29). Excluding the case of 

LR dispersal (when disease patterns are fairly random), the curves are neither well 
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Figure 3.26: Time evolution of the spatial correlation functions: ln-ln plots (over the 
range where C(r, t) > 0) corresponding to Fig. 3.25. a) LR; b) MR; c) SR. 

described by Mean Field predictions nor well fitted by standard logistic functions. 

The corresponding standard deviation, o(t) (Fig. 3.20), contains additional 

information about the nature of the dispersal process. The shape of a(t), in par-

ticular its peak, was used for meaningfully defining the average transient duration 

ttr. Whilst the definition has elements of arbitrariness (as do existing methods), it 

does capture the essential dependence on underlying processes (much better than 

standard descriptive methods) over a range of situations, including epidemics 

without recovery and different initial conditions. Definition of this time scale 

allowed rescaling and qualitative comparison of very different disease progress 

curves (Fig. 3.24). 
We also analysed the time evolution of spatial autocorrelations. At any given 

time, their expectation over realisations, C(r, t), splits into two regions sepa-

rated by the same distance lag: a region of large, positive correlations (decaying 

in time to long-term values), indicative of complex, large-scale structure (as in 

Shaw, 1995), and a region of anticorrelations (vanishing in time) resulting from 

heterogeneity (Fig. 3.25). The occurrence of this type of anticorrelations in ob-

served patterns could perhaps indicate a transient state. Transient correlation 

functions were found to have a power-law form in all dispersal cases (at least in 

the first region), even when long-term correlations did not (Fig. 3.26). 

All the results and arguments presented in this chapter are qualitative and 

empirical since they rely on simulated samples. However, given the lack of obser-

vation data, and ambiguity in the information they provide, computer simulation 

is a valuable investigative tool. It enables us to gain insight into the underlying 

72 



0.8 

E w 0.6 

CL 

0.4 

E 0.2 

1.0 

0.0 
0 	20 	40 	60 	 0 	 1 	 2 

t/tjeak 

Figure 3.27: R = 0. a) Mean of epidemic size over stochastic realisations, logistic 
fit and transient time scale (vertical line; as defined in section 3.6.4) for LR, MR and 
SR dispersal cases. Error bars show estimated standard deviations. MF prediction 
coincides with the LR curve. b) Standard deviation a(t) with axes resealed by peak 
values (or/up , t/t). 

EW MR SR 

(5 
C) 
CL 

(5 
E 

0.5 

E 
U) 
(0 

1.0 

fin 

- LR 
/ \'\ 	 MR 

!/I 	
SR 

II 
III 
II 

/ / I 

1/ I 

/ I 	: 

. 1 1  

a) 
	

b) 

mechanisms of epidemic development and provides a notable collection of results 

which can be used to develop and test analytical methods for general application. 

In chapter 6, various approaches designed to obtain deterministic predictions of 

expected behaviour will be tested through comparison with the results presented 

in this chapter. 
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Figure 3.30: Simulated disease patterns on a 200 x 200 square lattice with PBC. LR , 
MR and SR dispersal (left to right); transient states with 5%, 10% and 20% of infected 
hosts (top to bottom). 
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MR and SR dispersal (left to right); stationary states with p = 4%, 10% and 25% of 
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Chapter 4 

The nearest neighbour (NN) 
model 

4.1 Introduction 

In this chapter some of the existing analytical methods for the study of the 

behaviour of nearest neighbour models are reviewed, and their performance is 

assessed in the context of the plant epidemic model. In chapter 5 the method will 

be extended to an anisotropic version of this model. 

The nearest neighbour (NN) model is a special case of the model under consid-

eration, where the exponent a of the contact distribution is infinite and therefore 

interactions are restricted to neighbours at distance 1 (2 in 1-dimensional (1D) 

lattices, 4 in 2-dimensional (2D) square lattices). Models with nearest neighbour 

interactions have been extensively studied and used in many areas, such as math-

ematics, physics, chemistry and biology, to describe different kinds of interacting 

particle systems (Liggett, 1985, 1999; Konno, 1994). A well known example is the 

Contact Process (CP), introduced by Harris (1974) in probability theory, which, 

in our notation, corresponds to an epidemic process without background infec-

tion. NN models are also a special case of the stepping stone models used in 

population genetics (Kimura & Weiss, 1964). 

Despite the simplicity of these models, exact solutions are very rare due to the 

intrinsic nonlinearity of interacting systems, and in particular no exact solutions 

are known for the CF in any spatial dimension. Simulation of stochastic spatio-

temporal models such as the CF is computationally intensive because a large 

number of realisations might be needed to estimate any aspect of the system be-

haviour. It is therefore desirable to develop simpler analytical descriptions based 

on approximation techniques for predicting the model behaviour. Specifically, 

approaches based on cluster approximations have long been applied to studying 

models with NN interactions in statistical physics (e.g. Bethe, 1935; Kikuchi, 
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1951; ben-Avraham & Köhler, 1992) and more recently in population dynamics 

(e.g. Matsuda et al., 1992; Sato et al., 1994; Levin & Durrett, 1997; Filipe & 

Gibson, 1998, 2000). 
We consider a succession of orders of cluster approximations: Mean Field (MF, 

first order), Pairwise Approximation (PA, second order; see: Dickman, 1986; 

Sato et al., 1994; Levin & Durrett, 1997; Filipe & Gibson, 1998) and Hybrid 

Pairwise Approximation (HPA; Filipe, 1999 a), which is a modified version of 

the second order PA. Higher order approximations are commonly used for 1D 

systems (ben-Avraham & Köhler, 1992; Bassler & Browne, 1996, 1998) but they 

have been applied to 2D systems to a much lesser extent because in 2 dimensions 

equations become much more complex with increasing order of approximation 

(Kramers & Wannier, 1941; Hiebeler, 1997; Filipe & Gibson, 2000). We apply 

third and fourth—order approximations (3A, 4A) to the 1D model and the third—

order approximation (Squarewise Approximation, SA) to the 2D model (Filipe 

& Gibson, 2000). Predictions for the model behaviour are then compared to the 

other lower—order approximations and to simulation. 

4.2 NN dynamic equations and cluster approx-
imations 

For interactions restricted to NNs on a generic lattice with z neighbours at each 

site, equations (2.21) and (2.22) become: 

dP[1] - 
J1 - (Ji - zJ + R)P[1] - zJP[11] 	 (4.1) 

dt - 

idP[11] = (J1  + J) P[1] - (J1  + J + R)P[11] + J>(Sx(1 - S)S), (4.2) 
2 dt 

V 1  

where J = J2 /z is the rate at which pathogens are deposited on each NN of an 

infected site, y is a NN of x, and the v'—sum runs over the z - 1 NNs of y distinct 

from x. For clarity, we are now using a slightly different notation from the one 

adopted in chapter 2: here, P[1] indicates the probability that a site is infected at 

time t (P[1] = Pj (t)); P[ab] indicates the probability that two neighbouring sites 

are in the states a and b at time t (e.g. P[11] = P11 (1, t) is the probability that two 

neighbours are infected, assuming a lattice spacing of.1; P[01] is the probability 

that neighbouring sites are in different states, susceptible and infected). The term 

(8(1 - Sy ) S,,) refers to triplets of NN sites. For example, on a square lattice 
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(z=4) 

- s)S1) = P[lol] +2 P 
[1 ], 

	
(4.3) 

where P[abc], p[a ] refer to triplets of adjacent sites, either collinear or at right 

angle, in states a, b, c (a, b, c e 10, 1}), at time t. In order to simplify the notation, 

the dependence on time is not indicated explicitly. We recall that equations (2.21) 

and (2.22), and consequently equations (4.1) and (4.2), describe the dynamics of 

a system which is spatially—homogeneous and isotropic at all times. 

Like equations (2.21) and (2.22), equations (4.1) and (4.2) are the first two 

of an unlimited hierarchy of equations for the densities of consecutively larger 

clusters in which any subsystem is not closed: the equation for P[1] depends on 

P[11], the equation for P[11] involves triplets of adjacent sites, and so on. 

Cluster approximations are used to truncate the system and obtain approx-

imate solutions. The idea is that spatial correlations inside a basic cluster are 

fully accounted for, while simplifying assumptions are made regarding correla-

tions between individuals inside and outside a cluster. In this way, densities of 

clusters larger than the basic cluster can be expressed in terms of densities of 

smaller clusters, thereby closing the system of equations (Filipe & Gibson, 1998). 

The basic cluster is defined by the maximum distance within which full corre-

lations are accounted for. On a 1D linear lattice, the possible distances between 

sites are the non—negative integers, so cluster definition is trivial. On a square 

lattice the distances are: 0, 1, 2, etc. and the corresponding basic clusters are: 

a site, a pair of adjacent sites, a square of side 1, a cross comprising a central site 

and its four NNs, etc. For larger clusters, the number of equations needed and 

the number of terms which they comprise become too large for the analysis to be 

tractable. 

Low—order cluster approximations are relatively straightforward to implement 

and yield good descriptions of behaviour, at least in parameter regions where 

spatial correlations are not too large. It is expected that the accuracy of the ap-

proximation increases as the size of the basic cluster increases. This convergence 

has been demonstrated for cluster approximations up to order 10 in 1D systems 

(ben-Avraham & Köhler, 1992) but only up to the third order in 2D systems 

(Filipe & Gibson, 2000), for which the equations become cumbersome beyond 

the second oder. 

Figs 4.1 and 4.2 compare simulation and predictions of the different cluster 

approximations for the stationary epidemic size. 
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Figure 4.1: Stationary epidemic size obtained from simulation and predicted by cluster 
approximations (MF, PA, 3A, 1A, HPA) on a 1D lattice. 

4.2.1 Mean Field (MF) 

Mean Field (MF) is the simplest and the lowest—order cluster approximation. MF 

assumes that the states of any two individuals in the system are independent of 

each other, i.e. that there are no spatial correlations. This means that 

P[11] = P[1]2 , (4.4) 

and the basic cluster consists of a single site. The first equation of system (4.1)-

(4.2) then becomes 

dP[1] 
= Ji - (J1  + R) P[1] + zJP[1] (1 - P[1]). 	(4.5) 

dt 

This is a logistic equation whose explicit solution is given by (e.g. Filipe & Gibson, 

1998) 

7tanh (. t/2 + C) + A 	
(4.6) P[1](t) 

= 	2 zJ 

where 

A=zJ—R—J 1 , 	 (4.7) 

= \/A2 + 4z Ji J, 	 (4.8) 
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Figure 4.2: Stationary epidemic size obtained from simulation and predicted by cluster 
approximations (MF, PA, SA, HPA) on a 2D lattice. 

( 2 zJ Po  - A "\ 
C = tanh' 	

7 	) , 

	 (4.9) 

and P0  is the initial density of infectives. The long—term, equilibrium level of 

infection is 

= 

	

2 z 
	 (4.10) 

MF predicts that in the absence of background infection (J1  = 0) the system 

undergoes a phase transition from a parameter region where the epidemic persists 

to another where it dies out. When J1  = 0, (4.6) reads (Filipe & Gibson, 1998) 

P[11(t) = 	
P0 	

(4.11) 
exp[(R - zJ) t] + sgn(R - zJ)[exp[(R - zJ) t] - iJP01P[1]' 

and the long—term level of infection is 

P[1](00) = f 
0 	 R> zJ 

 1—R/(zJ) R<zJ 
(4.12) 

Hence, the MF prediction for the epidemic persistence threshold is (J/R), = 1/z 

(see Figs 4.1, 4.2). 

Since MF ignores spatial correlations, this approximation can only provide 

good predictions when the distribution of infectives and susceptibles is nearly 
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random; in other words, when there is a high degree of mixing between suscep-

tibles and infectives. When correlations are large or long—ranged we expect the 

system to deviate significantly from the MF ideal; this has been observed in the 

simulation studies of the model (see chapter 3; Filipe & Gibson, 1998; Filipe et 

al., 2000; Filipe & Maule, 2000 a). Substituting the autocorrelation function at 

spatial lag 1 (see (2.19)), 

C 	
- P{11] - P[1 ]2 	

(4.13) (1) 
- P[11(1 - 

into equation (4.1) gives 

dP[l] 
dt = J

1  - (J1  + R)P[1] + zJP[1] (1 - P[1]) (1 - C(1)). 	(4.14) 

Similarly, for a model with general interactions, it was shown in chapter 2 that 

the deviation from MF is given by a convolution of the spatial correlation and 

the contact distribution (2.30). Therefore, when correlations are not negligible, 

MF cannot provide accurate predictions and higher order approximations need 

to be considered. 

4.2.2 Pairwise Approximation (PA) 

The next order of approximation is the Pairwise Approximation (PA), which 

accounts for full correlations between NNs, i.e. the basic cluster is a pair of NN 

sites (Filipe & Gibson, 1998). Specifically, PA assumes that the states of two 

sites x and z with a common NN, y, are independent conditional on the state of 

P[xyz] = P[xyz] P[yz] P[xy] P[yz] = P[xy]P[y] P[yz]. 	(4.15) 

This implies that 

01 	P[10]2  
P[101] = P 	

= P[0] 	
(4.16) 

Since 

P[0] = 1 - P[1] 	and 	P[10] = P[1] - P[11], 	(4.17) 

equations (4.1) and (4.2) can be rewritten as 

dP[1] - 
Ji - (J1  - zJ + R) P[1] - zJ P[11] 	 (4.18) 

dt - 



I dP[11] 
= (J1  + J) P[l] - (J1  + J + R) P[11] 	(4.19) 

2 dt 
+ (z l)J (P[1] - P[1112 ) 

— 

i—P[1] 

It is a straightforward task to solve this system of nonlinear equations numerically 

for given initial conditions. Equilibrium levels of disease are obtained by setting 

time derivatives to zero. From (4.18) we have 

- Ji —(J1  
P[11] 

- 	zJ 
(4.20) 

which, substituted in (4.19), gives an equation in P[1] with a single solution 

satisfying 0 < P[1] < 1 (Filipe & Gibson, 1998). 

In the absence of background infection (J1  = 0), the solution is 

z (z - 1 - R/J) 

z (z - 1) - R/J' 
for J/R > (J/R), 	(4.21) 

and P[1] = 0 otherwise, where (J/R), = 11(z - 1) (Filipe & Gibson, 1998). 

PA significantly improves MF predictions for both stationary and transient 

behaviour (Figs 4.1, 4.2). However, there is still a considerable mismatch between 

PA predictions and simulation, especially near the persistence threshold. This is 

explained by the fact that in the proximity of the phase transition long—range spa-

tial correlations develop in the system which cannot be captured by PA or other 

cluster approximations. In fact, it has been shown (Filipe, 2000, unpublished) 

that PA's assumption of conditional independence implies that correlations decay 

exponentially with distance, i.e. 

C(r) = 
	 (4.22) 

where C(r) is the autocorrelation function at spatial lag r and r is the norm 1 

distance (also known as Manhattan metric) defined as follows. Given two points 

with Cartesian coordinates (x 1 , yi)  and (x2 , y2),  their norm 1 distance r is given 

by 

7- =Ix1 — x21+Iy1 — y21. 
	 (4.23) 

We reproduce the detailed proof of (4.22) here. First we consider a 1D linear 

lattice. In this case, the norm 1 distance and the Euclidean distance coincide. 

We start by proving the result for r = 2, i.e. 

C(2) = C(1)2 . 	 (4.24) 



The probability that two sites at distance r = 2 are infected, P11 (2), can be 

written in the form 

P11 (2) = P[l • 11 = P[111] + P[101], 	 (4.25) 

where • denotes a site in an unspecified state. Applying (4.15) and using (4.17) 

yields 

P11 (2) 
= P[11] 2  (1 - pill) + P[1] (['] - P[11]) 2  

(4.26) 
P[l] (1 - Pill) 

Adding and subtracting P[1]4  from the numerator gives 

- (P[11] - P[1]2)2 + 
P[1]2 . 	 (4.27) P11(2) 

- P[1] (1— P[1]) 

The autocorrelation at spatial lag 2 is given by 

- P11 (2) - P[1] 2 	
(4.28) C(2) 

- P[1] (1— P[1]) 

Substituting (4.27) in (4.28) finally gives 

(__P[11}—P[1]2 
2 

C(2) 
= P{1] (1 - Pill)) = 

C(1) 2 . 	 (4.29) 

We now use induction to prove (4.22) for any spatial lag. We assume that 

C(r) = C(1)' and wish to show that this implies 

C(r + 1) = 
	 (4.30) 

Consider the probability that two sites at distance r + 1 are both infected, re-

gardless of the states of the r sites between them, 

Pij (r + 1) = P[1 .. .1]. 	 (4.31) 
r+2 

This can be rewritten as 

Pii (r + 1) = p 1i . . . 1 11 + P[1 .. .0 11. 	 (4.32) 
r+2 	r+2 

Applying (4.15) to the triplets of non—adjacent sites P[1] and P[j1] 
r+2 	r+2 

yields 

r+1 
- 

pr--'--I1 P[11] 
(4.33) P[1...11] 

- . 	P[1] 
r+2 
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r+1 

[I 	P[l0] 
(4.34) P[1...O1]= 

P[0J 
r+2 

i.e. we assume that the states of the site in the first position and the site in 

position r + 2 (at distance r + 1 from each other) are independent conditional 

on the state of the site in position r + 1. We denote P[9] (the probability 
r+1 

that in a pair of sites at a distance r the first site is infected and the second is 

susceptible) by Pis(r)  and use 

Pjs(r) = P[l] - Pj1 (r). 	 (4.35) 

Substituting (4.33), (4.34) and (4.35) in (4.32), and using (4.17), gives 

Pjj (r + 1) = 
Pjj (r) P[11] 	(P[1] - Pjj (r)) (P[1] - P[11]) 

(4.36) 
P[1] 	

+ 	1—P[1] 

Using this in the definition of C(r + 1), 

- Pii (r + 1) - P[1]2 	
(4.37) C(r+ 1)— 

P[1] (1— P111) 

gives 

C(r + 1) -- 
(Pjj (r) - P[112) (P[11] - P[1]2 ) 

(4.38) 
 (P[11 (1 - P[1])) (P[11 (1 - P[1])) 

which is equal to 

C(r + 1) = C(r) C(1) = c(1)r+ 1 (4.39) 

and completes the proof of (4.22). 

We have shown that on a 1D lattice PA implies exponential decay of spatial 

correlations. The same result holds for the autocorrelations at any integer spatial 

lag on a 2D square lattice. The proof can be extended to non—integer spatial lags 

in 2D systems following an argument analogous to the one given for the 1D case 

(Filipe, 2000, unpublished). 

4.2.3 Higher order approximations 

Approximations above the pairwise order are formulated differently in 1D than 

2D lattices. This is because the basic cluster is defined by the maximum distance 

at which correlations are fully accounted for, and in 2D there are non—integer 

distances between sites. In 1D systems, the third—order approximation involves 



clusters of three sites (at maximum distance 2), the fourth—order approximation 

involves clusters of four sites (at maximum distance 3), and so on. On 2D lattices, 

the relevant distance to the third order of approximation is V2_(not 2) and the 

basic cluster is a square of side 1. 

Higher order approximations have been widely used in statistical physics, 

for example in the context of surface reaction systems for 1D models (e.g. ben-

Avraham & Köhler, 1992; Bassler & Browne, 1996, 1998). Here, we apply third 

and fourth—order approximations (3A and 4A) to our NN epidemic model realised 

on a 1D lattice. Recently, Filipe & Gibson (2000) proposed an approximation for 

2D systems which accounts for correlations up to distance (Squarewise Ap-

proximation, SA). We test the performance of 3A, 4A and SA in the context of 

our NN epidemic model realised on 1D and 2D lattices by comparing their pre-

dictions to other approximations and simulation results. We shall consider the 

1D and 2D cases separately in the following section. 

4.2.3.1 1D lattice. Third and fourth—order approximations (3A, 4A) 

On 1D lattices, the number of neighbours at each site is z = 2. Equation (4.1) is 

unchanged but equation (4.2) reads 

idP[11] 
= (J1  + J) P[1] - (J1  + J + R)P[11] + JP{101]. 	(4.40) 

2 dt 

PA closes this system of equations by assuming the relation (4.16) between P[101] 

and P[11] and P[1]. In order to go one step further, a dynamic equation for the 

density P[101] must be derived. 

This is done by considering all possible infection and recovery events which 

might create or destroy a triplet of adjacent sites [101]. A triplet [101] can be 

created through: 

. primary infection of the first site in the triplet [001] or of the third site in 

the triplet [100], 

. recovery of the central site of the triplet [111], 

. transmission of disease from the first to the second site or from the fourth 

to the third site in the quadruplet [1001]; 

and can be destroyed through: 

. recovery of the first or third site of the triplet [101], 

primary infection of the central site in the triplet [101], 
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• transmission of disease from the first or third site to the central site of the 

triplet [101]. 

This leads to the following equation 

dP[101] - 
2J1 P[l00J + RP[111] + 2JP[1001] - (J1  + 2R + 2J)P[101]. (4.41) 

dt - 

This equation involves the triplet of sites [111] and hence another equation for 

the density P[111] must be derived. This is done along the same lines as above, 

and gives 

dP [111] 
= (J1  ± 2J)P[1011 + 2(J1  + J)P[1101 + 2JP[1011] - 3RP[111]. (4.42) 

dt 

These two equations involve densities of clusters of four sites in different states. 

In order to close the system of equations at the third order, we assume that 

sites at distance larger than 2 are independent, conditional on the states of the 

intermediate sites, i.e. 

- P[abc] P[bcd] 
P[abcd] = P[albcd] P[bcd]  P[albc]  P[bcd] - 

	P[bc] 	
(4.43) 

where a, b, c, d E 10, 11. To close the system at a higher order, equations for the 

densities of 4—site clusters must also be derived, which will in turn involve clusters 

with 5 sites. Then, closure at fourth order assumes conditional independence 

between sites at distance larger than 3, and so on. 

The third order of approximation (3A) leads to the system of equations given 

by (4.1), (4.40)—(4.42), where 

P[100] 
(4.44) P[1001] 	

P[00] 

and 

P[101] P[110] 
P[1011] 	

P[10] 
(4.45) 

In addition we use the exact relations: (4.17), P[00] = P[0] - P[10], P[100] = 

P[10] - P[101] and P[110] = P[11] - P[111]. 

The fourth order of approximation (4A) leads to a system of seven equations: 

the previous four equations plus three equations for the densities P[1001], P[1011] 

and P[1111], which we do not report here since they are cumbersome and can be 

easily derived in much the same way as equation (4.41). 
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Fig. 4.1 shows how cluster approximations of different order (from MF to 

4A) perform in predicting the simulated stationary level of infection for a 1D 

epidemic model. As expected, the higher the order of approximation, the closer 

the prediction is to the simulation curve, though the improvement of each order of 

approximation relative to the previous order decreases as the order increases. PA 

performs much better than MF, while 4A gives only slightly better predictions 

than 3A. However, all approximations fail to predict the infinite slope of the curve 

in the proximity of the persistence threshold. 

4.2.3.2 2D lattice. Squarewise approximation (SA) 

On the plane, the maximum distance at which spatial correlations are accounted 

for in the second order of approximation is hence the basic cluster is the 

square lattice cell (Filipe & Gibson, 2000). 

In this case, there are three additional independent density variables and thus 

three extra equations are needed relative to PA. At second order (PA), it does 

not matter whether the second equation, (4.2), is on P[11], P[10] or P[00] since 

application of the PA closure (4.15) to any equation leads to an equivalent system 

of equations. At third order (or higher), there are different ways of closing the 

system of equations, depending on the choices of independent variables and of 

higher—order densities which are decoupled using the assumption of conditional 

independence. Like Filipe & Gibson (2000), we have considered five equations, 

on either densities of clusters which only contained infected sites or densities of 

clusters which only contained susceptible sites, and some hybrid cases. We have 

verified that, although the corresponding systems of equations are not equivalent 

after decoupling, the numerical solutions they produce are very similar. 

Here, in addition to equation (4.1) and (4.2), we formulate the following equa- 

tions: 

dP[1] = RP[
1] _(J1 +2J+2R)P[ 1] +2J1 P[ 1] 

dt 

P 10 I + P 
[1 	+ 

[ ] - 
	 (4.46) + 2J ( Ii 1 

Lo ij 

dP[I ii = (J1  +2J) 
[ ] 

+2(Ji  + J) P [ ] - 
3R P 

[ ] dt 

+ 2J( 

Iii 
P 110 I +P [i ii 	[ 	

(4.47) 

L ii 	
+ 	

oil 
+ P 

 

1.01,11 



and 

Ii 1 
idP[I] = —R 
4 dt 	

P [ ] +(J1 +2J) P 
[ ] 

+2JP lo ii . 	(4.48) 

The system of equations is closed using the assumption of conditional indepen-

dence between sites at distance larger than (Filipe & Gibson, 2000), which 

translates into: 
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Ii1 	 P[i0]
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In addition, we use the exact relations: (4.17), P[00] = P[O] - P[iO] P 1 ° 1 - [olj - 
P[i0]—P[1], P[10]  =P[ii]—P{I  '1' P[U] = P[11] —P{Iill, P[] = 
ph
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We solved these equations numerically and found, as expected, that SA per-

forms better than PA in all parameter regions, even though the improvement is 

modest, especially in the critical region. Fig. 4.2 compares the phase diagrams 

from the approximation and simulation. As already observed in 1D systems, even 

though higher order approximations seem to converge to the simulated phase di-

agram, the slope of the curves is wrong: cluster approximations are unable to 

predict the infinite slope of the curve at the critical threshold. This is a conse-

quence of their inability to capture large scale fluctuations which develop in the 

proximity of the critical point (Filipe & Gibson, 1998; Filipe et al., 2000). 

4.2.4 Hybrid Pairwise Approximation (HPA) 

Recently, Filipe (1999 a) has devised an elaboration of PA which tries to overcome 

this deficiency and provides very accurate predictions over the whole parameter 

space, including the critical region. The new approach is examines in this section, 

which is a summary of the results in Filipe (1999 a, b) 

The underlying idea for developing this new approach was the observation 

that cluster approximations tend to overestimate the rate of progress and the 

asymptotic size of epidemics. Since the approximations are based on neglecting 

some correlations, we intuitively expect the overestimation of the disease level 

to be a consequence of underestimating the amount of local clustering between 

infecteds. Equation (4.14) confirms this assertion: smaller values of C(1) lead 

to larger values of P[1]. MF, for example, underestimates P[11] by replacing it 

with P[1] 2 ; since P[111 appears in equation (4.1) with a negative sign, the MF 

prediction for P[1] is overestimated. Similarly, PA underestimates the triplet 

terms P[101],P[ in equation (4.2), leading to an underestimation of P[11], 

which in turn causes an overestimation of P[1] in equation (4.1). 

The Hybrid Pairwise Approximation (HPA) is formulated for a more general 

epidemic model than the one considered here (Filipe, 1999 a, b). It requires 

consideration of a model in which the recovery process is as follows: infectives 

are still replaced by susceptibles at rate R but, in addition, all infected NNs 

of a recovered individual are replaced by susceptibles with probability a, where 

0 < a < 1. Our model simply corresponds to the case a = 0. For general a, 

equations (4.1) and (4.2) become 

dP[1] - 
zJ + R)P[1] - z(J + Ra) P[11] 	(4.56) 

dt - 
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I dP[11] 
= (J1  + J) P[1] - (J1  + J + R) P[11] 

2 dt 

+ 	j (Pioii + (z —2) P[ ii) 	(4.57) 

- Ra (P[111]+(z_2)P[ i]). 

PA approximates the triplet terms in (4.57) as 

J (z - 1) (P[1] - P[11])2 /(1 - P[1]) - Ra (z - 1) P[11]2 /P[1]. 	(4.58) 

Since the two triplet terms have different signs and their magnitudes are under-

estimated, it is not obvious what the overall effect of PA on dP[11]/dt (given by 

(4.57)), and thus on dP[1]/dt, is when a > 0. The fact that PA overestimates 

P[1] for a = 0 as well as for a = 1 (Filipe & Gibson, 1998; Filipe, 1999 a) suggests 

that the sum of triplet terms is underestimated for 0 < a < 1. 

The presence of two triplet terms in (4.57) with opposite signs has suggested 

the construction of a variant of PA which underestimates P[l]. This was done by 

approximating the negative triplet term as follows 

—Ra (P[111] + (z —2) p [ 
	

(4.59) 

= —Ra (P[i . 1] + (z - 2) P [
01 
 1]) + Ra (P[lol] + (z - 2) P [ ]) 

—Ra (z - 1) (P[1]2 - (P[1] - p[i1])2\ 

1—P[1] 	)' 

where the second term was approximated using PA, i.e. (4.16), and the first by 

totally ignoring correlations beyond NNs (i.e. P[1.1] = P[1] 2 ). A similar approach 

was previously used in the context of a model for surface deposition by Filipe &. 

Rodgers (1995). The positive triplet term (oc J) in (4.57) was approximated as 

before using PA. Equation (4.59) can be rewritten as 

—Ra (z —1) (P[ii]2 - P[1](1 - P[1]) C(1) 2) , 	(4.60) 

showing that by neglecting correlations more than in (4.16), (4.59) yields a less 

negative estimate of this triplet term, partially compensating for the underestima-

tion of the positive triplet term in (4.57). It was verified that this approximation 

does indeed underestimate P[1] (Filipe, 1999 a, b). 

Having obtained two approximations for the negative triplet (cx Ra) in (4.57) 

leading to opposite errors in the estimates of P[1], the idea was to improve PA 

by using the "mixed" approximation 

8 x [overestimating PA ] + (1 - 6) x [underestimating PA ]' 	(4.61) 
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where S is a mixing parameter. S = 1 corresponds to the original PA and 5 = 0 

to (4.59). This leads to 

(P[iii] + (z —2) P 
[ 	

(4.62) 

—Ra (z —1) [P[11]2 - (1-5) P[1](1 - P[1]) C(1) 2] 
P[1] 

with the other triplet (oc J) approximated as before. The next question was how 

to fix S. Since the approximation given by (4.59) predicts that when J1  = 0 

the stationary state has a discontinuous phase transition, S was chosen to be the 

smallest value for which the transition is continuous (Filipe, 1999 a). This gives 

= z(1 + Aa)[1  + A - z(1 - a)] 	
(463) 

a(z - 1)(z - 

where A is the critical value of A = R/J (when J1  = 0), given by 

A C  = z 
[—c  + 
	+ 1)2 - 2(1 ± za) 2 /(1 + 2za)], 	(4.64) 

with 6 = 41 + za(1 + 2a)]/[2(1 + 2za)]. 

While HPA can only be devised for a > 0, all results are continuous in the 

limit a -+ 0 and better than PA predictions. This is possible because Sa -* 

—z(z-1—A)/[(z-1)(z—A) 2 ] z as a —+0 (Filipe& Gibson, 2000). Therefore, 

the corresponding limit of the equation for P[11] is not obtained by setting a = 0 

in (4.57) but by replacing the term given by (4.62) with the limit 

(P[iii] + (z —2) p[ ii) 	- R (z —1) P[1](1 - P[1]) C(1)2 . 

(4.65) 

The HPA prediction for the persistence threshold of the Contact Process (i.e. 

J1  = 0 and a = 0) is given by 

/i + 4 (z - 1)/z 2  + 1 
(J/R) 

= 	2 (z - 1) 
(4.66) 

Table 4.1 lists the persistence threshold values of J2 1R = zJ/R, as predicted 

by all cluster approximations considered in this chapter and obtained from sim-

ulation for 1D and 2D systems. Figs 4.1 and 4.2 show the phase diagrams as 

predicted by all approximations and obtained from simulation. In 2D systems, 

HPA is definitely superior to the other approximations, especially in the prox-

imity of the persistence threshold. Its improvement is not only quantitative (i.e. 
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providing the smallest mismatch between simulated and predicted threshold val-

ues) but also qualitative, since HPA is able to predict better the slope of the 

curve at the critical point and thus to capture the shape of the phase diagram. 

In 1D systems, HPA is still qualitatively better than all other approximations, 

predicting the correct shape of the simulated phase diagram, but it is only quan-

titatively superior to PA. The HPA threshold prediction coincides with that of 

3A, but 3A provides better quantitative predictions for all other values of J2 . 4A 

is quantitatively superior to the other approximations over the whole parameter 

space. 

MF PA 3A 4A SA HPA simulation 
1D 1 2 2.41 ... 2.63 -  2.41 ... 3.24 
2D 1 1.33••• 1.43 ... 1.54 ... 1.64 

Table 4.1: Persistence threshold values of J2  obtained from simulation and pre-
dicted by cluster approximations. 

4.3 Conclusions 

The NN epidemic model is a particular case of the model introduced in chapter 

2 with interactions restricted to the nearest neighbours of each infective on the 

lattice. 

This chapter has focussed on the analytic description of the expected be-

haviour of that model. It reviewed some of the existing approaches with view 

to further developments in chapters 5 and 6. The dynamics of the model are 

described by an unlimited hierarchy of ordinary differential equations which can 

be solved approximately using closure assumptions to truncate the system. We 

reviewed existing cluster approximations and applied them to the NN epidemic 

model on a 1D linear lattice and on a 2D square lattice and compared their 

predictions to simulation. 

Pairwise Approximation (PA) is the lowest—order improvement to the Mean 

Field approximation (MF), which corresponds to the non—spatial version of the 

model. By accounting for spatial correlations between neighbouring sites, PA 

describes the model behaviour significantly better than MF (Filipe & Gibson, 

1998). Third and fourth—order cluster approximations (3A and 4A) to the model 

on a 1D lattice also yield an improvement relative to PA, as has already been 

shown for similar models in statistical physics (ben-Avraham & Kdhler, 1992). 

When applied to 2D lattices, cluster approximations lead to systems of equations 



which become progressively more complex as the order of the approximation 

increases. We considered a third—order approximation to the 2D lattice model 

which accounts for full spatial correlations between sites up to distance < v' (SA) 

(Filipe & Gibson, 2000). SA, like 3A and 4A, performs better than PA. However, 

close to the persistence threshold (in the absence of background infection, i.e. 

J1  = 0), all orders of approximation give qualitatively wrong predictions in one 

and two spatial dimensions. In the proximity of the threshold, in fact, the model 

develops long—range correlations (Filipe et al., 2000) which these approximations, 

accounting for full correlations only within a finite basic cluster, are unable to 

capture. Cluster approximation assumptions imply that spatial correlations are 

always short—ranged; we showed, for example, that PA implies an exponential 

decay of correlations with the distance (Filipe, 2000, unpublished). 

The inability of cluster approximations to predict the infinite slope of the 

phase diagrams at the persistence threshold affects predictions over a range of 

parameter values because epidemic curves become very steep near the threshold. 

An alternative approximation was recently proposed by Filipe (1999 a, b) in order 

to tackle this problem. The Hybrid Pairwise Approximation (HPA) is an elabo-

ration of PA based on the idea of mixing two approximations, one overestimating 

and one underestimating the effects of local aggregation of infecteds. HPA was 

originally devised for a more general epidemic model of which the one considered 

here is a special case. 

On 2D lattices, HPA substantially improves the other approximations over the 

whole range of parameters, both quantitatively and qualitatively, better predict-

ing the location of the threshold and the slope of the stationary epidemic curve at 

that point. Although technically more complicated than PA, HPA is still simpler 

and more effective than higher—order cluster approximations. 

On 1D lattices, HPA is superior to PA but not to higher—order cluster approx-

imations. Both 3A and 4A give better quantitative predictions of the stationary 

epidemic size over the whole range of parameters considered. However, HPA is 

the approximation which better predicts the shape of the phase diagram. 
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Chapter 5 

The anisotropic NN model 

5.1 Introduction 

Plant pathogens are transported from plant to plant by a large variety of agents, 

including wind, rain, soil, animals and humans. Whatever the vector, the mech-

anisms of propagule dispersal are influenced by a number of factors which might 

prevent a regular, isotropic spread of disease from an infective source. The topo-

graphical, vegetational and meteorological characteristics of the environment in 

which the epidemic develops affect the way in which propagules are transported 

and deposited and consequently influence the progress of the disease. 

Clues about the mode of spread of a disease often come from the observation 

of its spatial patterns and the analysis of the shape of the infected regions (Van 

de Lande & Zadoks, 1999). A preferential direction, such as along rows, could 

indicate mechanical transmission through harvesting implements; on the other 

hand, a directional distribution associated with the prevalent wind might suggest 

airborne dispersal. The effects of wind on plant disease dispersal have been the 

subject of a large number of experimental studies (Gregory, 1973; Aylor, 1987; 

Fitt & McCartney, 1986; Zawolek, 1993). Other reasons for the anisotropic spread 

of plant epidemics are the heterogeneity of the soil and the topography of the 

territory. Soil—borne diseases, such as the "red core root disease" of strawberries, 

are closely related to high soil moisture content. Their spread in fields with 

inclinations which favour the flow of water in a particular direction can be highly 

anisotropic (Hickman, 1940). The transmission of disease along a preferential 

direction may also occur as an effect of rectangular rather than square plots, 

where the distances between rows and columns are different (Aylor & Ferrandino, 

1989, 1990). This latter situation is in fact very common in experimental fields. 

Despite the notable amount of experimental evidence suggesting that plant 

diseases spread anisotropically in space, epidemic models typically assume that 

transmission occurs evenly in all directions. In this chapter we are concerned 



with a generalisation of the NN model (introduced in the previous chapter) which 

assumes anisotropic spread of the disease: the infection would still spread from 

an infected to its four neighbouring sites but with different strengths depending 

on the direction. 

First of all we formulate the model and investigate its behaviour through 

computer simulation. We then derive a system of differential equations which 

describe the dynamics of the model and form an infinite hierarchy of equations, 

as in the case of the isotropic NN model. The closure techniques introduced in 

chapter 4 are extended to this system of equations and approximate solutions are 

obtained and compared to simulation. In this way, we assess whether the closure 

approximations considered can capture the effects of anisotropy on disease spread. 

5.2 Spatial anisotropy 

In the NN epidemic model introduced in the previous chapter, J2 represents the 

rate at which each infected produces pathogens which are spread evenly in all 

directions. The rate of deposition on each NN is given by J = J2 /z and is con-

stant. We include spatial anisotropy in the model by keeping the sporulation 

rate per infected, J2 , constant but making the rate of deposition of propagules J 

dependent on the direction of spread. We restrict our attention to a square lattice 

(z = 4) and consider different rates of deposition of spores along the horizontal 

and vertical axes and, within the horizontal axis, different rates of deposition 

towards East (E) and West (W) (or analogously, within the vertical direction, 

different towards North (N) and South (5)). To summarise, there are four possi-

ble directions for the deposition of propagules and two constraints: 1) the total 

deposition rate of spores dispersed in all directions must equal the sporulation 

rate J2 ; 2) along the vertical (or horizontal) axis the deposition rates of spores 

towards North and South (or East and West) must be equal. Hence two new 

parameters are introduced, PE, Pw E [-1, 1], and the deposition rates are defined 

as: 

. towards East: JE = J(1 + PE) 

. towards West: Jw = J(1 + Pw) 

. towards North: JN = J[1 - (PE + pw)/2] 

. towards South: Js = J[1 - (PE + pw)12]. 
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Graphically the situation, for PE > 0 and pw  <0, is the following: 

J_4 

.1 

IJ 

J 

isotropic model 

JN 

Jw ----. 	 JE 

iis 

anisotropic model 

A more general model with four (rather than three) different deposition rates 

could be formulated (by removing constraint 2) above) but for reasons of simplic-

ity we shall restrict our attention to the case described. 

We now derive dynamic equations for the densities of infecteds and of pairs 

of infecteds corresponding to the anisotropic model. The basic difference relative 

to equations (4.1) and (4.2) is that we must distinguish between vertical and 

horizontal pairs, since in general we expect that P[11] =A P [1], and similarly 

P[111] =A P [ 11].  If, for example, PE = 0 and pw = 1, infected regions will be 

elongated horizontally, and P[11] > P[ ]. In addition, since P[10] = P[1] - P[11] 

and P[] = P[1] - P[I], we also have P[10] <P[]. The same relations apply 

to P[01] and F[?],  hence we still have P[1O] = P[O1], P[] = FE?], P[  'I 
P[?'],andP[1?] =P  [j]. 

The equations can be derived in a similar way to the isotropic case, giving 

dP[1] 
dt =J1 - P[1] (J1  —4J+R) —P[11] J(2+Ph)  —P [] J(2 —ph)  (5.1) 

dP[11]  

dt - 
P[1] [2J1  + J(2 + ph)] - P[11] [2J1  + J(2 + Ph)  + 2R] 

- 

+ P[101] J(2 + ph)  + ( [ 1] + [11 ])   J(2 - Ph) 	(5.2) 

dP{] - P[1] [2J1  + J(2 - ph)] - P [] [2J1  + J(2 Ph) + 2R] 
dt - 

+ 	

[] J(2_ Ph) +(P[ l]+P[l ])J(2+Ph) 	(5.3) 



where Ph = PE + pw• The system of equations (5.1)—(5.3) reduces to (4.1)—(4.2) 

when PE = Pw = 0. 

In particular, if PE = Pw p, there are only two different contact rates, along 

the vertical and horizontal axes. This particular model describes the kind of 

anisotropy which occurs in fields where the distances between rows and columns 

are different. In this case, strictly speaking, if d, is the distance between rows, d 

is the distance between columns and dr  <dr , the anisotropic NN model can only 

describe situations where d < 2d. To model the case d ~! 2dr  we should take 

into account interactions between individuals on the same row at distances larger 

than 1 lattice unit, at least up to d, in which case the model would no longer be 

a NN model. 

In this study we have focussed on the case p = PE = Pw, and this is the model 

to which we shall refer in the rest of the chapter. 

5.3 Simulation results 

First the model behaviour is investigated using simulation. We consider a square 

lattice of linear size L = 100 with toroidal periodic boundary conditions. The 

epidemics are initiated with 0.2% of the hosts randomly selected to be infected. 

Anisotropic effects are expected to be more evident in the absence of background 

infection (J1  = 0), which is a random, non—spatial process; hence we concentrate 

on the case J1  = 0. All the simulation results shown in this section are averaged 

over five stochastic realisations and conditional on epidemic survival. 

We study the epidemic behaviour over a range of values of p. When p = 0, 

the isotropic NN model is recovered; as p increases, the model becomes more and 

more anisotropic, favouring horizontal spread of the disease. As a result, elon-

gated domains of infection are observed (see Fig. 5.8). When p = 1, the model is 

completely anisotropic: the disease can only spread within each horizontal row. 

Analogously, as p decreases from 0 to —1, spread increases along the vertical 

direction. Since the two situations are completely symmetrical, we shall restrict 

our attention to the first case. When p = 1, if the initial number of randomly 

distributed infectives is small and there is no background infection, some hori-

zontal rows will contain only healthy individuals. Since the disease cannot spread 

across rows, these rows will remain free from the disease throughout the process. 

Extreme situations, such as p = 1 and p = —1, where. dispersal in one direction 

is completely forbidden, may seem unrealistic. Yet experimental situations can 

exist where some sort of "barrier" is created to avoid between—row interactions 

(e.g. in an experiment to investigate the Lotka—Volterra predator—prey model, 



Huffaker (1958) used barriers of vaseline to prevent migration of predators over 

specific boundaries (Renshaw, 1991)). This limiting case is also interesting from 

a mathematical point of view as it represents a transition between 2D and 1D 

behaviour. 

For a given value of the sporulation rate J2, we examine the transient and 

stationary behaviours as p varies from 0 to 1. There are two possible choices 

for the value of J2, namely lower or higher than the persistence threshold of the 

1D isotropic model. Fig. 5.1 shows the phase diagrams of the (isotropic) NN 

model corresponding to 1 and 2 spatial dimensions. For a given value of J2,  the 

stationary epidemic size in the 2D system is higher than in the 1D system and the 

threshold value is smaller in 2D than in 1D. This is intuitively easy to understand: 
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Figure 5.1: Phase diagrams for epidemic models in 1 and 2 spatial dimensions obtained 
from simulation. 

whilst on a 1D.lattice there is only one possible "path" between a given susceptible 

and an infected, on a 2D lattice there are many, and hence a larger level of 

infection is expected for a given value of J2 . We expect that by varying p from 

0 to 1 the equilibrium size of the 2D epidemic will gradually decrease. If J2  is 

chosen between the two isotropic thresholds (i.e. (J2') > J2 (j22D), case I), 

then as p increases, transmission of the disease across rows becomes increasingly 

unlikely; and since J2  is not large enough to sustain an epidemic on a 1D lattice, 

the epidemic eventually dies out. In this case, epidemics always die out before 

the value p = 1 is reached. On the other hand, if J2  is chosen above the 1D 

2D 

1D 

100 



threshold (i.e. J2  >. (J'3 ), case II), the epidemic has non—zero stationary levels 

for all values of p. We shall consider case I and case II separately. 

5.3.1 Case I: (j1D) 	J2  ~ 
(J2D) 

Fig. 5.2 illustrates the time evolution of the epidemic size for J2  = 2 and values 

of p ranging from 0 to p = 0.77. When p = Pc the epidemic dies out. As 
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Figure 5.2: Case I. Epidemic size vs time; J2 = 2, p  varying from 0 (isotropic model) 

to Pc = 0.77, at which the epidemic becomes extinct. 

expected, the stationary epidemic size decreases and the transient length increases 

as the anisotropy parameter p increases. By plotting the equilibrium epidemic size 

against p for a given J2 , we obtain a "transversal" phase diagram, which is shown 

in Fig. 5.3. This exhibits a sharp continuous transition from epidemic persistence 

to extinction. Fig. 5.4 shows the time evolution of P[11] and P[I]  (indicated 

as P[lllhorizontal  and  P[lllverticai,  respectively, in the figure) for some values of 

p. At any given time t, both densities decrease as p increases; for a given p> 0, 

P [1 ] (t) < P[11] (t). Fig. 5.5 shows their relative difference ([P[11].—P [ 1  ] ]/P[11]) 

at equilibrium. 

5.3.2 Case II: J2 > (Al 
 ) 

Case II is illustrated in Fig. 5.6. We choose J2  = 6 and observe the time evolution 

of P[1], P[11] and P [1].  The effects of anisotropy are very different in this case. 
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Figure 5.3: Case I. Stationary epidemic size at fixed J2 = 2 vs different values of the 
anisotropy parameter p. 

The equilibrium level of infection is high and hardly varies as p increases. For 

p = 0.9999, P[1] is only -' 5% smaller than the isotropic value (not visible in 

Fig. 5.6). Only when p = 1, i.e. in the fully anisotropic case where epidemics 

develop independently in different rows, does the equilibrium epidemic size drop 

dramatically. We note that this value is not the same as that in the 1D limit 

of the model, which is considerably higher and closer to the 2D isotropic value 

(Fig. 5.1). The equilibrium disease level would be the same as the 1D isotropic 

model only if we measured the infection level in each separate row and conditioned 

the measures on epidemic survival rather than considering the whole system. The 

epidemics are initiated by a small number of randomly distributed infecteds (0.2% 

of the hosts): this implies that some rows are completely susceptible at the start 

of the epidemic, and since the disease cannot be transmitted from one row to 

another, they will never become infected throughout the process. In addition, in 

some rows the epidemic might become extinct (note that in this example each row 

consists of only 100 individuals). If we exclude the rows where the epidemic never 

started or died out, we recover the 1D value for the epidemic size at equilibrium 

(-' 79%, see Fig. 5.1). 

In intermediate situations (0 < p < 1), the epidemics grow to an asymptotic 

value between the two isotropic limits (P[1] 82% for 2D and P[1] 79% 

for 1D). However, transients become extremely slow, especially for p near 1. The 
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Figure 5.4: Case I. Time evolution of P[11]horizontal  (thick solid line) and P[1 1]vertical 

(thin broken line) for some values of p (note that for p = 0 the two curves overlap). 

same effect is also observed in case I (J2 = 2) but it is much weaker. This results 

from the fact that, although disease spreads very rapidly within rows which are 

initially infected (because J2 is large), it might take a long time before the disease 

is transmitted to rows which begin without infectives. This also explains why for 

p = 1 the transient is comparatively short: the stationary epidemic size in this 

case corresponds to the stationary epidemic size of separate infected rows. 

Obviously, different sets of initial conditions would lead to completely different 

situations. For example, if the epidemic starts with one infected in each row and 
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P 

Figure 5.5: Case I. Relative difference between P[lllhorizomtal  and  P[11]vertical  at equi-
librium for some values of p. 
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Figure 5.6: Case II. Epidemic size vs time; J2 = 6, p  varying from 0 (isotropic model) 
to 1 (totally anisotropic model). 

the measure of the stationary epidemic size is conditioned on epidemic survival 

in each row, then the behaviour of the 1D model is recovered. 

The transversal phase diagram (Fig. 5.7) for J2 = 6 is therefore very different 

from the one for J2 = 2 (Fig. 5.3). The epidemic size is almost constant for 

most values of p; the sharp, discontinuous transition at p = 1 reflects the initial 

conditions chosen. 

5.3.3 Comments 

Case II does not have great practical relevance since it deals with large long—term 

epidemics where spatial effects are not very important and which can be described 

reasonably well by non—spatial models. The effects of anisotropy on the stationary 

behaviour are irrelevant, except in the limit p = 1, when the system is completely 

anisotropic and the stationary behaviour depends on the initial condition. p = 1 

is a limit case which is unlikely to occur in real systems. The main effect of the 

anisotropic spread on the transient behaviour is to increase the transient duration. 

Case I is more interesting since it describes smaller stationary epidemics where 

spatial aspects of disease transmission and, in particular, anisotropic effects are 

more important. As the spread of the disease becomes more anisotropic, the 

stationary size of the epidemic gradually decreases and the transient length in- 

creases. For a given J2 , there is a threshold value of the anisotropic parameter p 
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Figure 5.7: Case II. Stationary epidemic size at fixed J2 = 6 vs different values of the 

anisotropy parameter p. 

separating regions of epidemic persistence and extinction. 

Fig. 5.8 shows three snapshots of the disease at equilibrium with similar epi- 

demic sizes (.' 10%): in the isotropic case (J2  = 1.688, p = 0), in an intermediate 

situation, where domains of infections start to be elongated (J2  = 2, p = 0.75), 

and in the fully anisotropic case, where the epidemic develops separately in dif-

ferent rows (J2  - 6, p = 1). 

5.4 Approximations 

We now use closure approximations to close the system of equations (5.1)—(5.3) 

and solve it numerically. We wish to compare the predictions of the various ap-

proximations introduced in chapter 4 to simulation of the anisotropic NN model. 

The model we simulated corresponds to a particular case of (5.1)—(5.3) where 

PE pw and P = P ]. The MF approximation performs very poorly 

even in the isotropic case. Since MF assumes that P[11] = P[f] = P[1]2 , it 

cannot capture the effects of anisotropy at all. 

Within PA (Filipe & Gibson, 1998) we close the system (5.1)—(5.3) assuming 

the following relations: 

P[101] 	P[10]2 1P[0] = (P[1] - P[11])2/(1 - P[1]) 	(5.4) 
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Figure 5.8: Snapshots of three epidemics with stationary epidemic size 	10% in a 

100 x 100 isotropic system (left), a system with p = 0.75 (centre), and a completely 

anisotropic system (right). 
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Applying SA (Filipe & Gibson, 2000) to the most general case, where PE  7~ Pw, 

means solving 8 equations, because the densities of differently oriented triplets 

are themselves different. Restricting our attention to the current case, where 

p = PE = Pw, reduces the number of the equations to 6: equations (5.1)—(5.3), 

and 
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Ii 1 
+ J(i+p)P[1 ]+J(1_p)P lou. 

Li ij 

The system of equations is closed using the assumption of conditional indepen-

dence between sites at distance larger than as done for the isotropic model 

(see (4.49)—(4.55); Filipe & Gibson, 2000). Clusters with different orientations 

must now be decoupled in different ways; for example now we have 

po]2 	 p 101
i 

P[101]  (5.10) 

Lu] 	P[0] 

and 

P 1 10  ] 	
P 

[ 0] P[10] 
	i 	P 

[ ] 
P 

111-7
[0] 	 P[0] 

L0  1i 

	(5.11) 
P  

and so on. Similarly, the exact relations used in chapter 4 now depend on the 

orientation of the clusters; for example 

	

[ 0] =i[] _[ 1] 	[ 1] 
	

P[11] — P 
I  ] 	( 5.12) 

and so on. 

HPA (Filipe, 1999 a, b) is applied to (5.2) and (5.3) in a way that is analo-

gous to the isotropic case. First we consider a more general model where infected 

neighbours of recovered individuals recover with probability a. HPA is obtained 

by using a linear combination of overestimating (PA) and underestimating ap-

proximations to the terms proportional to a in the equations for dP[11]/dt and 
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dP[1]/dt (see (4.58) and (4.59)). These terms are: 

P[111]+2P[1] = { 

P[11]2 +2 P[11]p
-

[']   

PUT 	P[1] 

3P[1]2 P[10]2 - P[lO}P[] 
P[0] 	P[0] 

overestimating 

underestimating 

(5.13) 

and 

I P[I]2 +2 P[11]P[I] P[i] + 2P[I ] = 
	

P[1] 	P[l] 

 P[]2 	P[10]P[] 1 	
31D[1]2 - P[0] - 2 	

P[0] 

overestimating 

underestimating 

(5.14) 

We then consider the limit for a - 0 and obtain a version of HPA which we can 

apply to our anisotropic NN model. 

Disease progress curves predicted by the above approximations, for cases II 

and I (section 5.3), are shown and compared to simulation in Figs 5.9 and 5.10, 

respectively. These results are discussed in the next sections. 

5.4.1 Case II: J2 = 6 

For J2  = 6, all approximations give very accurate predictions for the stationary 

epidemic size. Disease progress curves predicted by the spatial approximations 

(PA, SA and HPA) are almost indistinguishable at equilibrium and very close to 

the simulation curve for p < 0.99. Only MF, which is non—spatial and isotropic, 

slightly overestimates the asymptotic disease level (Fig. 5.9). Large values of 

the sporulation rate, such as J2  = 6, generate epidemics in which spatial effects, 

and in particular anisotropy, are not very important. Hence, even non—spatial 

approximations such as MF are able to describe some aspects of the epidemics 

quite accurately. 

None of the approximations are able to predict the rise in the duration of 

transients due to the increase in anisotropy. MF predicts the worst (that is, 

shortest) and HPA the best (i.e. longest) transient, although the difference is 

very small. This inability of the approximations to predict epidemic transients is 

not unexpected. The transient duration depends not only on the initial number 

of infecteds but also on their spatial distribution (see section 5.3); since only 

limited information is contained in the dynamic equations, this aspect of the 

model behaviour is not well captured by any approximation. 
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Figure 5.9: Case H. Epidemic size vs time. Comparison of disease progress curves 
obtained from simulation and predicted by cluster approximations. J2 = 6, p varying 
from 0 (isotropic model) to 1 (totally anisotropic model). Approximation curves from 
left to right (worst to best): p = 0: MF, PA, HPA, SA; p > 0: MF, PA and SA 
(indistinguishable), HPA. 

5.4.2 Case I: J2 = 2 

For J2 = 2, all approximations overestimate asymptotic disease levels, even for 

the isotropic model. As the anisotropic effects increase (p —4 1), this overestima-

tion becomes larger. The predicted stationary epidemic size does decrease as p 

increases (with the exception of MF, which in fact does not depend on the value 

of p), but not as much as in the simulation. In particular, the approximations 

fail to predict the extinction of the epidemic at Pc = 0.77 (Fig. 5.10). 

SA performs better than PA, although the difference between the two pre-

dictions is quite small. HPA still overestimates the stationary epidemic size and 

underestimates the transient length but its predictions are undoubtably the most 

accurate. In the isotropic case (first graph of Fig. 5.10), the HPA prediction for 
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Figure 5.10: Case I. Epidemic size vs time. Comparison of disease progress curves ob-
tained from simulation and predicted by cluster approximations. J2 = 2, p varying from 

0 (isotropic model) to Pc = 0.77, at which the epidemic becomes extinct. Approximation 
curves from left to right (worst to best): MF, PA, SA, HPA. 

the asymptotic disease level is slightly above the SA prediction but the difference 

between the two is almost negligible (see also Fig. 5.11). 

Figs 5.11 and 5.12 show how the equilibrium epidemic size varies with p for 

fixed J2 and with J2  for fixed p, respectively. The approximated phase diagrams 

are compared to simulation. HPA is superior to the other approximations in 

predicting the correct shape and the infinite slope of the curve in the proximity 

of the persistence threshold. Among all the approximations, HPA is the most 

sensitive to the spatial anisotropy of the model. For small values of p ('-S.'  0 <p < 

0.3) HPA remains slightly higher than SA - which explains why in Fig. 5.10, for 

p = 0, SA predicts the equilibrium epidemic size better than HPA - although the 

difference between the two approximations is very small and in no way affects the 

merits of HPA. 
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Figure 5.11: Case I. Stationary epidemic size at fixed J2 = 2 vs different values of the 
anisotropy parameter p as obtained from simulation and predicted by the approxima-
tions. 

5.4.3 Case 1. Model with background infection 

One way of making the model more realistic is to include some form of background 

infection (Gibson, 1997; Filipe & Gibson, 1998). In real systems it is unlikely that 

infectious contacts occur exclusively among NNs. Moreover, fields or plantations 

are never completely isolated and it is plausible that some spores reach the system 

from external sources of infection. 

A background infection with rate 200 times smaller than the total sporulation 

rate (J1 = 0.01, J2 = 2) was included in the model and, once again, approxima-

tions were compared to simulation (Fig. 5.13). In this case the epidemic does not 

die out even in the 1D limit (p = 1). 

As expected, MF performance is again extremely poor (Fig. 5.13). 

PA predictions are better but increasingly overestimate the asymptotic be-

haviour as anisotropy increases. SA performs slightly better than PA, except for 

p = 1 where PA and SA curves are indistinguishable. 

Very good agreement is found between the simulation disease levels at equi-

librium and HPA predictions. HPA is able to capture the effects of anisotropy up 

to the limit value p = 1. 

As before, the approximations are inaccurate in predicting transient behaviour. 
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sporulation rate J2 as obtained from simulation and predicted by the approximations. 

5.4.4 Comments 

Whilst MF cannot describe any aspect of the anisotropic effects, PA seems to 

capture some qualitative features of the anisotropic NN model, although overall 

we find its predictions unsatisfactory; SA provides only a small quantitative im-

provement on PA and does not change the qualitative features which PA cannot 

capture (such as the shape of the phase diagrams). HPA provides the best de-

scriptions of the model behaviour, both qualitatively, yielding the correct slope 

of the phase diagrams near the persistence threshold, and quantitatively, espe-

cially for some choices of parameters. In particular, in models including a small 

amount of background infection (which describe more realistic situations than 

models where the disease is transmitted only between neighbours), HPA gives 

extremely good predictions for the asymptotic behaviour. The description of the 

transient behaviour is more difficult and none of these approximations accurately 

predict the transient duration. HPA is, however, able to predict partially the 

slowing down of transients as anisotropy becomes stronger. 

5.5 Conclusions 

Epidemiological models typically assume that infectious spores are deposited 

isotropically around their source. In reality, a variety of factors affecting the 
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Figure 5.13: Case I. Epidemic size vs time. Comparison of disease progress curves 
obtained from simulation and predicted by cluster approximations. J2 = 2, Ji = 0.01, 
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spread of propagules might determine a preferential direction for the propagation 

of the disease. Prevailing winds, agricultural practices, water flows and field ge-

ometries are all possible causes for spatial anisotropy in the development of an 

epidemic. In this chapter we have formulated a generalisation of the NN model 

which allows for anisotropic spread of disease. We studied the behaviour of the 

model through simulation and analytical descriptions. Cluster approximations 

were tested for their ability to describe the effects of anisotropy. 

In the anisotropic NN model, disease spreads from each infected to its four 

NNs with different strengths depending on the direction. We concentrated on 

the particular case in which there are only two different contact rates, along the 

vertical and the horizontal axes. The model can be thought of as representing 
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rectangular rather than square plots, where distances between rows and columns 

are different. 
Despite the simplicity of the model, changes in behaviour resulting from the 

asymmetry in spread were clearly demonstrated using stochastic simulation. Two 

types of behaviour, corresponding to different values of the sporulation rate J2 , 

were examined. When J2  is above the 1D persistence threshold, epidemics have 

large asymptotic levels and the effects of anisotropy on the stationary behaviour 

are very small. The epidemic size at equilibrium is almost constant, and only 

when the system becomes completely anisotropic (i.e. when disease can only be 

transmitted within each row) does the epidemic curve exhibit a sharp discontin-

uous transition. In this limit, the disease level depends on the initial number and 

spatial distribution of infecteds on the lattice. The duration of transients increases 

with the anisotropy. When J2  is between the 1D and 2D persistence thresholds, 

the epidemic size gradually decreases as the degree of anisotropy increases. How-

ever, the system never becomes fully anisotropic as there is a threshold value of 

the anisotropy parameter above which the epidemic dies out. This case is more 

interesting from a biological point of view because it deals with a more realistic 

range of values for J2 . 

Ordinary differential equations describing the dynamics of the anisotropic NN 

model were derived in an analogous way to the isotropic case. However, in this 

case the densities of differently oriented clusters are different and need to be 

considered as separate variables, therefore there are more equations. The closure 

approximations introduced in the previous chapter were applied to the model and 

compared to simulation. 
MF is by construction non—spatial and isotropic and thus performs very poorly. 

PA and SA capture some qualitative features of the anisotropic behaviour but 

overall perform unsatisfactorily; in particular, SA does not provide a significant 

improvement on PA. On the other hand, HPA captures qualitative and quantita-

tive effects of anisotropy far better than any other approximation. 

All the approximations systematically underestimate the transient duration, 

in both the isotropic and anisotropic models. In particular, the duration of tran-

sients increases as the anisotropic effects increase, making transmission of the 

disease between rows more difficult: the approximations are much less accurate 

in predicting the effects of anisotropy on transients than on stationary disease 

level. The transient behaviour depends not only on the initial number of infect-

eds but also on their spatial distribution on the lattice. Since this information is 

not contained in the dynamic equations, the approximations are not expected to 

capture this aspect of the behaviour. 
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This chapter represents only a preliminary study of the effects of spatial 

anisotropy on disease spread. A deeper understanding could be gained from 

a more thorough simulation of the parameter space. It would be interesting to 

examine how the anisotropy affects the development of spatial correlations and 

how correlations along the horizontal and the vertical axes differ from each other. 

However, the model considered here is not the most general anisotropic NN model 

which could be formulated. The study could be extended to a model with four 

different deposition rates, which would be suitable to describe a larger range of 

spatial anisotropies and would have potentially interesting practical applications. 

Further down the line, it would be interesting to consider anisotropic extensions 

of more general dispersal models, such as those studied in chapters 3 and 6, where 

interactions span over all distances. 
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Chapter 6 

Analytical methods for spatial 
models with general interactions 

6.1 Introduction 

In chapter 2 we derived a system of ODEs which describes the dynamics of a 

spatio—temporal model for the spread of plant epidemics. In this chapter we 

present closure approximations for closing and solving the system of equations. 

Their solutions are tested against the results of the simulation study in chapter 

3. 
The difficulty in obtaining analytical predictions for the behaviour of spatial 

stochastic models lies in the fact that such models are described by an infinite hi-

erarchy of equations which is mathematically intractable. The usual solution is to 

investigate the behaviour using stochastic simulation. However, the simulation of 

models in which interactions are not restricted to local contacts is computation-

ally very intensive and the inherent stochasticity of the model requires a large 

number of realisations in order to estimate the expected behaviour. For these 

reasons it is preferable to develop analytical descriptions offering deterministic 

predictions for the behaviour of the model. 

Approaches based on cluster approximations have long been used in statistical 

physics (Bethe, 1935; ben-Avraham & Köhler, 1992), and more recently in pop-

ulation dynamics (Matsuda et al., 1992; Levin & Durrett, 1997; Filipe & Gibson, 

1998, 2000), for predicting the behaviour of lattice—based models characterised 

by nearest neighbour (NN) interactions. In chapters 4 and 5 we introduced a 

succession of orders of cluster approximations for such models in one and two 

spatial dimensions and tested their ability to capture the dynamics of isotropic 

and anisotropic NN epidemic models. 

On the other hand, the rather simplistic, non—spatial Mean Field approxima-

tion (MF) has been widely used to study models with general interactions not 
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restricted to small neighbourhoods. However, the assumption that individuals 

are independent of each other leads to extremely poor predictions whenever sig-

nificant spatial correlations develop in the distribution of the disease. Recently, 

Bolker & Pacala (1997, 1999) proposed an analytical method based on a spa-

tial moment—closure (MC) approximation for predicting the expected evolution 

of population size. Such an approach is a potentially powerful tool for analysing 

the behaviour of stochastic spatial models. However, we found that its accuracy 

is restricted to situations in which interactions are weak and spatial correlations 

are small. 

We propose a different approach built on individual—based dynamic equations 

and a range of closure approximations for predicting the behaviour of spatial mod-

els in which the individuals interact according to a generic function of their dis-

tance. The approximations, which include MC and more robust closure schemes 

capable of dealing with the development of spatial correlations, are applied to 

the general stochastic epidemic model introduced in chapter 2 and tested against 

some of the simulation results presented in chapter 3. In particular, we identify 

an approximation (the modified Kirkwood approximation, KA2) which provides 

very good predictions over most of the parameter space. This approach is both 

simple and robust and, in principle, can be applied to a broad range of models 

characterised by general interactions. 

Part of the results presented in this chapter are reported in Filipe & Maule 

(2000 b, c). 

6.2 Closure approximations 

In chapter 2 we showed that the dynamics of the stochastic epidemic model 

considered are described by an infinite hierarchy of ODEs with no closed sub-

systems. Equation (2.21) for the time evolution of P1  involves F11 , equation (2.22) 

for PI, involves F111 , and so on. In order to solve the system (2.21)—(2.22) we 

need to close it. We do so by assuming approximate relations between higher and 

lower—order densities. 

The usefulness of closure approximations goes beyond the mere purpose of ob-

taining deterministic predictions for the behaviour of the specific epidemic model 

considered here. Spatial models characterised by interactions between individuals 

invariably lead to nonlinear systems of equations which. are open and therefore not 

solvable exactly. The closure schemes presented in this chapter can in principle 

be used for any spatial model characterised by general interactions. 

The moment—closure approximation (MC) has recently been used to close 
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systems of ODEs describing the dynamics of various biological models. Bolker & 

Pacala (1997, 1999) applied this technique to a model for the growth and com-

petition of plants in continuous and homogeneous space in which interactions 

decay exponentially with distance. Bolker (1999) considered a model describing 

the effects of dynamically—generated spatial heterogeneity on the development of 

plant epidemics. In that model the dispersal function was the modified Bessel 

function of order 0. Pascual & Levin (1999) investigated the consequences of 

density—dependent disturbance on a benthic population model in which interac-

tions are represented by step functions. Those models are mathematically similar 

to the plant epidemic model considered here since they all include linear birth or 

death processes like primary infection and recovery, and nonlinear processes such 

as secondary infection. 
Using the MC approximation, we found that the dynamic equations yield a 

solution only if spatial correlations in the population are weak and the behaviour 

of the model differs little from the corresponding non—spatial model. Hence, 

we investigated more robust approximations capable of dealing with strongly—

correlated systems and applicable to spatial models under more general condi-

tions. 
In the rest of this section we review existing closure schemes, including MC, 

and propose alternatives. These are then applied to the system of dynamic equa-

tions (2.21)—(2.22). 

Equation (2.22) represents a set of equations for P1i (r, t), one for each possible 

distance r between individuals on a lattice. The number of equations is finite if 

the lattice is finite or if interactions are truncated. 

We should recall that these equations describe a spatially—stationary and 

isotropic system with no boundaries in which all sites are statistically equiva-

lent. In order to lighten the notation we shall omit the dependence on time and 

indicate distances in a symbolic way, so that xy represents the distance r xy  be-

tween sites x and y, and xyz represents the relative distances r xyl rxz l  ryz  between 

three sites x, y and z. Hence, 

Pii (xy) = Pjj(r,t) 	 (6.1) 

and 

Pjjj (xyz) = 	 (rXY 	t). 	 (6.2) 

We also denote the correlation function between two sites at distance r xy  by 

CXY = C(r,t) = [Pjj (xy) - P11/a2, 	 (6.3) 
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where a2  = P1  - P1. Analogously to (2.17), we define the correlation function 

between three sites: 

cxyz = 
([S(t) - (S(t))} [S(t) - (S(t))1 [S(t) - (S(t))]) 

(6.4) 
04Sx(t)1 a[S(t)] a[S(t)] 

which, for a spatially—stationary system, becomes 

Pjjj (xyz) - P1  [Pii (xy) + P1j (xz) + Pji (yz)] + 2P 
CXY Z = 	 2 (1— 2P1 ) 

(6.5) 

where Pjij (xyz) = (SSS) and we used definitions (2.18) and (2.19). 

6.2.1 Moment—closure approximation (MC) 

From (6.5) we have 

Pjjj (xyz) = a2  (1 - 2P1) C + Pi  [Pji (xy) + Pii (xz) + P11 (yz)] - 2P. (6.6) 

Within the moment—closure approximation (MC) it is assumed that correlations 

between three sites are zero, i.e. CXYZIMC = 0, hence 

Pjjj (xyz) PJIJ(xyz)IMC = P1  [Pjj (xy) + Pjj (xz) + Pjj (yz)] - 2P. 	(6.7) 

Substitution of (6.7) into (2.21)—(2.22) leads to an approximate closed system of 

equations. 
The results presented by Bolker & Pacala (1997, 1999) were restricted to pa-

rameter regions where the rate of interactions between individuals is rather weak 

in comparison to the rate of linear processes. On the other hand, for the SI model 

in which there are no linear processes, Bolker (1999) considered epidemic models 

in which the initial fraction of randomly distributed infectives is large. Both fea-

tures lead to a significant degree of spatial randomness and force correlations to 

be small. The MC system of equations was tested and found to yield no solution 

unless either the primary infection rate J1  or the initial number of infecteds is 

sufficiently large. 

The reason for the MC failure lies in the systematic underestimation of P111 (xyz) 

in the equation for dPji (xy)/dt (2.22). Since Pjjj (xyz) appears in (2.22) with 

a negative sign, by underestimating Piij (xyz), MC overestimates Pjj (xy). An 

overestimation of Pjj (xy), which appears in the equation for dP1 /dt (2.21) with 

a negative sign, leads to an underestimation of P1 . In parameter regions where 

correlations are important, we verified that MC predicts a very fast increase in 

correlations in the first few steps of the integration, which makes P1  decrease 

without control. However, in parameter regions where MC does yield a solution, 

this solution is a good approximation. 
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6.2.2 Kirkwood approximation (KA) 

The Kirkwood approximation (KA) was proposed by Kirkwood (1935) in the con-

text of microscopic theories of liquids (Hansen & McDonald, 1979). KA assumes 

that 

Pj1j(xyz) PfII(xyz)IKA = 
Pu  (xy) P11  (xz) Pu  (yz) 

P'3  
(6.8) 

which can be thought of as an extension of the usual pairwise approximation (PA, 

see e.g. Filipe & Gibson, 1998) to a situation in which the distances between the 

sites in the triplet are arbitrary. KA is a much more robust approximation than 

MC because it yields sensible solutions over the whole parameter space. However, 

we found that KA has undesirable features: 

it systematically overestimates Pj,i  (xyz); consequently, following conversely 

the argument explained in the previous section, it overestimates Pi , espe-

cially in the case of MR and SR dispersals; 

in the absence of primary infection the predicted phase diagram does not 

exhibit a clear persistence threshold. 

6.2.3 Mixed approximations (KMC, KMix) 

The two approximations considered so far lead to opposite errors in the estimation 

of F1 : MC underestimates the fraction of infecteds whilst KA overestimates it. 

This suggests mixing the two approximations and using a hybrid closure scheme. 

We did so in two different ways which lead to two different approximations. 

The KMC approximation is defined by 

P,j,(xyz) PI,I(xyz)IKMC = A PJ,I(xyz)IKA + ( 1 - A) P,J,(xyz)IMC,  (6.9) 

where 0 < A < 1. We found that KMC with A = 0.5 always yields a better 

solution than KA. Using (6.5) and (6.7), we can in fact write: 

CXYZIKMC = 	
A 	

[P,I,(xyz)IKA - PJ,,(xyz)1Mc] = A CXYZIKA,  (6.10) 
cr2 (1 - 2P1 ) 

which shows that, for 0 < A < 1, KMC predicts a smaller magnitude for the 

three-site correlation Cxy, than KA. From (6.6) it follows that KMC leads to 

smaller predictions for Pii1(xyz) and hence, using the same argument as above 

(see section 6.2.1), to smaller predictions for P1 . 
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From (6.6), (6.7), (6.8) and (6.3), we can also write 

Ki (xyz) + K2(xyz) 	
(6.11) CXYZIKA = 	a2 (1 - 2P1 ) 

where 

Ki (xyz) = (1 - P1 ) 3  CCCyz 	 (6.12) 

and 

K2 (xyz) = P1 (1 - P1 ) 2 	+ 	+ CXZ CYZ]. 	 (6.13) 

The two terms K 1  (xyz) and K2  (xyz) have different effects on the transient and 

stationary behaviour, suggesting another mixing approximation, which we named 

KMix: 

P1ii (xyz) PIII(xyz)jKMX = a2 (1 - 2P1)CXYZIKMiX + PIII(xyz)lMc, (6.14) 

where 

CXYZIKMiX = BK1 (xyz) + (1 - B)K 2 (xyz). 	 (6.15) 

We found that KMix with B = 0.8 yields an optimal mixing approximation which 

always improves the KMC and KA solutions. 

However, like KA, neither of these two mixing approximations exhibit a clear 

persistence threshold. Moreover, the arbitrariness in the choice of the mixing 

parameters A and B may be seen as a weakness of these closure schemes. 

6.2.4 Modified Kirkwood approximation (KA2) 

Equations (2.21) and (2.22) can be rewritten as 

dP1  
= Ji - (J + R) Pi  + J2  E Psj (xy) f(r) 	(6.16) 

dt 	 yWx) 

and 

1 dPri(xy) 
2 	dt 	

= [J1  + J2  f(r)] P1  - [J1  + J2  f(r) + R] Pjj (xy) 

+ 	 J2 	I Psii(xyz) f(r), 	 (6.17) 
z(x,y) 

where Psj (xy) = P1  - Pjj (xy) is the probability of finding a susceptible—infected 

(SI) pair at distance rxy  apart, and Psjj(xyz) = Pjj (yz) - Pjjj (xyz) is the prob- 

ability of finding a triplet of sites (susceptible—infected—infected, STI) at relative 
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distances 	and 	Written in this form, the dynamic equations (6.16) 

and (6.17) suggest a modification of KA. 

We noted above that KA can be thought of as an extension of PA. We also 

recall that, for a triplet of adjacent sites where the central site is susceptible 

(denoted by ISI), PA assumes that PISJIPA = PSI/PS (Filipe & Gibson, 1998). A 

natural way of generalising this approximation to a situation in which the three 

sites may be positioned at any distance from each other is to assume that: 

Psr(xy)Pri(yz)Psi(xz) 	
(6.18) Psii(xyz) PsIJ(xyz)IKA2 

= 	Ps P12  

where Ps = 1 - P1 . We call this approximation the modified Kirkwood approxi-

mation (KA2). 

We found that KA2 substantially outperforms all the above approximations 

and most of the existing approximations for NN models (Filipe & Gibson, 2000) 

over the whole parameter space. In addition, KA2 has none of the disadvan-

tages of the other approximations discussed here; in particular, in the absence of 

primary infection, it exhibits a clear persistence threshold. 

Some properties of this closure scheme can be derived analytically. 

Both KA and PA tend to overestimate the fraction of infecteds. We now 

show that the KA2 prediction for P1  is smaller than the KA and PA pre-

dictions (Filipe & Maule, 2000 b). From (6.8) and (6.18) we have 

PJI1(xyz)IKA2 = PIII(xyz)KA - (a/Pj) 2  CCPir(xy), 	(6.19) 

hence PIII(xyz)IKA2 < PIII(xyz)IKA. The same argument explained in 

section 6.2.1 tells us that a smaller prediction for P111  implies a smaller 

prediction for P1  (see equation (2.21)). In the special case of the NN model, 

PA assumes that PIsI(zxy)IPA = PIS  (zx)  PSI  (xy)IFS, provided that x, y, z 

are three adjacent sites. Hence, 

P1sI(zxy)IKA2 = PIsI(zxy)1PA(PII(yz)1P). 	 (6.20) 

Since Pii(yz) ~! P/, then PJsI(zxy)IKA2 ~! PJsI(zxy)IpA, and a larger pre-

diction for Pisi implies a smaller prediction for P1 . Therefore KA2 should 

yield an improvement on KA in the general case and on PA for the NN 

model. 

It can be shown that PIJJ(xyz)1KA2 > 0, at least in the extreme cases 

of maximum and minimum correlations (Filipe & Maule, 2000 b). When 

correlations are zero we have, from (6.19), PIIJ(xyz)IKA2 = PJII(xyz)IKA > 

0. When correlations are maximum, we have P11  = PI; substituting the 

latter expression in (6.8) and (6.19) we obtain PIII(xyz)IKA2 = Pj  > 0. 
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6.3 Algorithm implementation 

In order to solve the system of dynamic equations (2.21)—(2.22) we use a closure 

approximation to truncate the system at a particular order (in this case at the 

second order) and implement an algorithm to obtain a numerical solution. 

We considered two different approaches, namely a lattice and a continuous 

approach. 

In the lattice approach we think of equations (2.21) and (2.22) as representing 

the processes at the level of individuals exactly as in the simulation. In particular, 

(2.22) comprises a set of equations where equals any of the possible distances 

between lattice sites. This approach is different from the one adopted by Bolker 

& Pacala (1997, 1999), who derived and solved an integro—differential system 

of equations in continuous space. In the lattice implementation, the dynamic 

equations are simple, transparent and easy to solve, and preserve the spatial 

discreteness of individuals. Moreover, an approximation which works well on a 

lattice is likely to work well using any other distributions of discrete hosts. A 

drawback to this approach, however, is the number of equations of the system, 

which becomes very large when we consider large lattices. For example, the 

number of distances between 1 and 50 on a square lattice is 761; thus (2.22) 

represents a set of 761 equations. 

We also consider an approach in which the densities Pj  and Pjj (r) are not 

specified at lattice sites but over a mosaic of quadrats defined using polar co-

ordinates, i.e. the densities are assumed to be constant over each quadrat. The 

quadrat structure bears no relation to the lattice; it is used for computational 

convenience and to eliminate the explicit consideration of a lattice. The ap-

proach is analogous to spatial discretisation schemes used to solve numerically 

some continuous—media problems; for this reason we call this quadrat approach 

the "continuous approach". We consider this approach for two reasons: (1) to 

try and reduce the number of equations in the system (2.21)—(2.22), and (2) 

to extend the applicability of the current approach to models in which hosts 

are not distributed on a lattice; this includes both the cases of discrete hosts 

in continuous space and a continuous mass—density of hosts (as assumed in the 

integro—differential approach of Bolker & Pacala (1997, 1999)). In order to reduce 

the number of equations in the system we exploit the fact that, above moderate 

distances between sites on the lattice (e.g. r > 5), there are many pairs of sites at 

very similar distances; since Pij (r) is expected to vary slowly with r, the quadrat 

approach should provide a good approximation at least for these distances. We 

expect this approach to be less accurate for short—range interactions: in this 
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case, most infections occur over short distances and this makes behaviour more 

dependent on the lattice structure, which is ignored in this approach. 

6.4 Lattice approach 
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Figure 6.1: LR dispersal. Phase diagram obtained from simulation and predicted by 
MF, KA and KA2 (note that simulation and approximation curves are indistinguish-
able). 

Within the lattice approach we let r and r in (2.22) be lattice distances be-

tween 1 and L/2, with L the size of the simulated system. When r y., > L/2, we 

apply the MF approximation to the probability Pjj (yz) (i.e. P1i (yz) P1  if ry, > 

L/2); since L is large, this has a negligible effect. We consider a lattice of size 

L = 100; we have verified that using L = 200 produces no visible changes. For 

this L, the system of ODEs (2.21)—(2.22) consists of 762 equations. We solved 

the equations using a basic numerical routine (D02CJF) from the Numerical Al-

gorithms Group (1993) which solves the initial value problem for a first order 

system of equations using a variable—order variable—step Adams method (see, for 

example, Hall & Watt, 1976). CPU performance on a SUN Ultra 2170 worksta-

tion varies between seconds and about one hour, depending on parameter values. 

Despite the large number of equations, convergence to a solution is very rapid 

because many of the lattice distances are very similar. On the other hand, sim-

ulation of single realisations varies between 1 and 48 hours and estimation of 

expectations might require hundreds of realisations (see Filipe & Maule, 2000 a). 

The computational benefits of the analytical approach are thus evident. 
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Figure 6.2: MR dispersal. Phase diagram obtained from simulation and predicted by 
the closure approximations. Approximation curves from left to right (worst to best) 
near the threshold: MF, KA, KMC, KMix, KA2. Note that for some values of J21R 
(away from the threshold) KMC and KMix perform better than KA2. 

The approximation predictions are tested against simulation of the epidemic 

model in cases of LR, MR and SR dispersal and different sporulation rates J2. 

Since closure approximations generally underestimate correlations, the most de-

manding scenarios for testing them correspond to parameter regions where strong 

correlations develop. Maximum correlations occur in the absence of primary in-

fection (J1  = 0). We shall focus first on this situation, which represents a lower 

bound on the performance of the approximations. Since in real systems it is 

likely that the spread of disease is a combination of primary and secondary in-

fection, later we shall consider the presence of a small amount of background 

infection. The two versions of the model (with and without recovery of infecteds) 

are analysed below. 

6.4.1 Results. SIS model 

6.4.1.1 Stationary behaviour 

Figs 6.1, 6.2 and 6.3 show the long—term epidemic size against infectiousness 

J2 1R, with J1 = 0, in LR, MR and SR dispersal cases, respectively. In the SR 

case (Fig. 6.3), curves corresponding to existing cluster approximations for models 

with SR interactions (PA, SA and HPA, see chapter 4) are also shown. Unsur -

prisingly, in the LR case the approximations (including MF) and simulation are 

indistinguishable, whilst in the SR case predictions are less effective. In the MR 
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Figure 6.3: SR dispersal. Phase diagram obtained from simulation and predicted by 
the closure approximations. Approximation curves from left to right (worst to best) 
near the threshold: MF, KA, KMix, KMC, PA, SA, KA2, HPA. Note that KMC and 
KMix perform particularly poorly near the threshold but outperform PA and SA for 
large values of J21R. 

case, which might be the more realistic, predictions are very good. In all dispersal 

cases KA2 performs best whilst KA performs worst. The KMix approximation 

does particularly well in some regions but, like KMC and KA, performs poorly 

at low epidemic levels. In the SR case (Fig. 6.3) KA2 overperforms PA and SA 

(Filipe & Gibson, 2000) and is only inferior to the more elaborate HPA (Filipe, 

1999 a, b). No solutions were obtained with the MC approximation for J1  = 0. 

In chapter 2 we showed that, for infinite systems with LR interactions (a < 2), 

MF represents the exact solution to the model. Fig. 6.1 shows that MF does in 

fact accurately predict the stationary epidemic size. The advantage of using 

spatial approximations rather than MF in the LR case lies in the fact that they 

can also predict spatial correlations, which are completely neglected by MF (Figs 

6.4a and b). 

Figs 6.4, 6.5, 6.6 show simulated and predicted correlations for LR, MR and 

SR and for two levels of infection (10%, 25%). As the epidemic size or the 

range of interaction decrease, correlations become larger and the efficacy of the 

approximations diminishes. Correlations are underestimated both in magnitude 

and range for SR and MR, whilst in the LR case correlations are overestimated 

(note that all approximation curves overlap in Fig. 6.4). Underestimation of spa-

tial correlations results in the observed overestimation of the stationary epidemic 
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Figure 6.4: Equilibrium correlations obtained from simulation and predicted by the 
closure approximations (note that all approximation curves are indistinguishable). LR, 
a) P(oo) = 10%; b) Pj (oc) = 25%. 

interaction Pi(OO) sim  C(1) s im  C(1)KA C(1)KMc C(1)KM S  C(1)KA2 

LR 10% 0.0311 0.0383 0.0388 0.039 0.039 
25% 0.0256 0.0307 0.0310 0.0310 0.0310 

MR 10% 0.1926 0.1381 0.1607 0.1777 0.1705 
25% 0.1470 0.1193 0.1303 0.1394 0.1354 

SR 10% 0.3381 0.1798 0.2100 0.2457 0.2503 
25% 0.2704 1 0.1671 0.1884 0.2116 0.2192 

Table 6.1: Values of C(1) obtained from simulation and predicted by the closure 
approximations for LR, MR and SR interactions and for two stationary epidemic 
levels. 

size (see Figs 6.2, 6.3). Table 6.1 shows the values of the spatial correlation at 

lag 1, C(1), corresponding to the cases illustrated in Figs 6.4, 6.5 and 6.6. 

We noted above that in some parameter regions KMix performs very well 

and provides the best approximations for long-term epidemic size (see Figs 6.2 

and 6.3). Fig. 6.5 shows very good agreement between simulated correlations 

and KMix predictions. However, some problems occur with this approximation 

at lower levels of infection. The spatial correlations predicted by KMix for small 

disease levels do not converge to 0 but to a small positive value. Fig. 6.7 shows an 

example for the MR case with J2  = 1.22, corresponding to a stationary epidemic 

size of .-' 0.001 (the corresponding epidemic size predicted by KMix is 0.055). 

Thus, there are anomalies in the performance of KMix which make it a weaker 

approximation by comparison to the others. 

The same problem occurs with the KMC approximation with values of the 
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Figure 6.5: Equilibrium correlations obtained from simulation and predicted by the 
closure approximations. MR, a) Pi(oo) = 10%; b) Pi(oo) = 25%. Approximation 
curves from left to right (worst to best): KA, KMC, KA2, KMix. 

mixing parameter A <0.5. Lower values of A, in fact, provide better predictions 

for the long–term disease level, but in the proximity of the persistence threshold 

predict correlations which converge to a positive value. 

6.4.1.2 Transient behaviour 

Next we investigate the ability of the closure approximations to capture transient 

behaviour. Fig. 6.1 showed that all the approximations, including MF, give very 

good predictions for the long–term behaviour of the LR dispersal model. They 

also provide good predictions for the transient behaviour of the LR model, so 

we focus here on MR and SR dispersal cases. Figs 6.8 and 6.9 show simulations 

of epidemic transients for three stationary disease levels (10%, 25%, 50%), with 

J1  = 0, and the corresponding predictions by MF, KA, KA2 and, for the SR 

case, PA and HPA. Epidemics are initiated with a small fraction of randomly 

distributed infecteds (P1  = 0.2%), as in chapter 3. 

Conclusions analogous to those above can be drawn: MF always offers very 

poor descriptions, whilst approaches with some spatial information, such as KA 

and PA (in the SR case), capture transient behaviour better, especially in pa-

rameter regions where correlations are not too strong. In the MR case (Fig. 6.8) 

predictions are very reasonable, especially those of KA2. As expected, predic-

tions are less accurate in the SR case. However, even here KA2 outperforms PA 

and SA (not shown) and, in the range of parameters considered, is not inferior to 

HPA (note that in Fig. 6.9b the two curves are indistinguishable). 

A common feature, however, is that all the approximations underestimate the 

duration of transients, especially when long–term values are low and transients 
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Figure 6.6: Equilibrium correlations obtained from simulation and predicted by the 
closure approximations. SR, a) Pi(oo) = 10%; b) Pi(oo) = 25%. Approximation 
curves from left to right (worst to best): KA, KMC, KA, KMix. 

are slow. As already noted in chapter 5 with regard to the performance of cluster 

approximations in the isotropic and anisotropic NN models, closure approxima-

tions are generally more successful in predicting stationary rather than transient 

behaviour (see sections 5.4.1 and 5.5). We believe that the reason for this differ -

ence is the absence of spatial stationarity in the initial states and therefore in the 

transients, whilst the ODEs used to describe the spatially—explicit model assume 

spatial stationarity at all times. 

All the approximations are expected to give better predictions when the model 

includes background infection. In this case the heterogeneity in the distribution 

of the disease is reduced and correlations are smaller. From a biological point of 

view, primary infection makes the model more realistic and, from the point of view 

of testing different approximations, gives us the opportunity to apply and test the 

MC approximation. However, if the rate of primary infection rate is too large, 

this linear process dominates and the spatial component of the model behaviour is 

less important. In this case the use of spatial approximations is not essential since 

even MF may give satisfactory predictions with minimal computational effort. For 

example, in Fig. 6.10 MF, KA and MC are compared to a simulated transient 

in the case of MR dispersal with rates of infection J1  = 0.1, J2  = 1.48 (i.e. the 

linear process is roughly 15 times weaker than the interaction process). For these 

parameter values both KA and MC offer very good predictions, although they 

actually differ very little from the non—spatial MF curve. 

For a given set of initial conditions (defined by P1 (0) = 0.2%) and a given J2, 

there is a threshold value of J1 below which MC produces anomalous solutions 

before breaking down, as explained below. We focus on values of J2  which would 
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Figure 6.7: Approximation predictions for stationary spatial correlations in the proxim-
ity of the critical threshold (MR). Note the anomalous behaviour of KMix by comparison 
to the other curves. 

generate epidemics of size 10% in equilibrium if there were no background infec-

tion (J2 = 1.3 for MR and J2  = 1.688 for SR). We find that the minimum values 

of J1  for which MC yields a solution are J1 = 0.02 and J1 = 0.05 for MR and 

SR, respectively. Hence, the smaller the range of dispersal, the larger the rate 

of the primary infection needed to obtain a MC solution. Figs 6.11a and b show 

the corresponding transients: there is little difference between spatial approxi-

mations and simulation, whilst the non—spatial MF approximation significantly 

overestimates the epidemic size. In the MR case, MC slightly underestimates the 

epidemic size. 

For values of J1  below this threshold, MC first exhibits an inflection, reflecting 

a numerical instability, and then breaks down, as shown by the two bottom 

curves in Fig. 6.11a. For even lower values of J1, (Fig. 6.11c), MC yields no 

solution, while some of the other approximations give good predictions for both 

the epidemic size and the transient duration. KA2 again proves to be the best 

closure scheme. 

6.4.2 Results. SI model 

We now analyse the ability of closure approximations to capture the behaviour of 

epidemic models which do not include the recovery of infecteds. Obviously in this 

case there is no stationary regime. In this section we restrict our attention to the 

case J1  = 0. As before, epidemics are initiated with a small fraction of randomly 

distributed infecteds (P1(0) = 0.2%). Fig. 6.12 compares analytical predictions 

by MF and KA2 to simulation of disease progress curves in the cases of LR, MR 

and SR dispersal. No solutions were obtained with the MC approximation for 
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Figure 6.8: Expected epidemic transients in the MR dispersal case. Long term epidemic 
size: a) 10%, b) 25%, c) 50%. 

this initial condition. 
With LR dispersal, simulation and KA2 prediction are indistinguishable, whilst 

MF slightly overestimates the disease level (Fig. 6.12a). MF strongly underesti-

mates the durations of MR and SR transients, whilst KA2 yields a good prediction 

in the MR case and significantly improves MF and PA in the SR case (Figs 6.12b 

and c). It should be noted that PA and HPA coincide for the SI model (see 

(4.62)). 

In a recent paper, Bolker (1999) used the MC approximation to truncate 

the hierarchy of dynamic equations. That study was made in the context of SI 

and SIR models, and MC predictions were compared to simulation where dis-

crete hosts were distributed at locations in continuous space. Bolker investigated 

both the cases of random and slightly clustered host distributions. We wish to 

compare Bolker's results (concerning the SI model and the non—clustered host 

distribution) to ours. To this end, in addition to the usual power—law contact 

distributions, we shall also consider a dispersal function given by the modified 

Bessel function of order 0, Ko (,1r), where the length scale 11'' is a measure of 

the range of the dispersal. Following Bolker (1999), we set b = 0.5, which cor -

responds to long—range dispersal, as we verified by comparing disease progress 

curves. The asymptotic behaviour of Bessel functions of this type is exponential 

(Ko (r) exp(—r)/27rr)). Since our model is lattice based, the contact 

distribution is normalised over all possible depositions on the dispersal domain, 

as defined in chapter 2 (see (2.3) and (2.4)). 

As already noted, MC yields solutions to the system of equations only when 

spatial correlations in the distribution of the disease are small. In the context 
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Figure 6.9: Expected epidemic transients in the SR dispersal case. Long term epidemic 
size: a) 10%, b) 25%, c) 50%. Approximation curves from left to right (worst to best): 
MF, KA, PA, KA2, HPA. Note that KA2 and HPA curves are very close: they coincide 
for p = 25%, HPA performs better than KA2 for p = 10%, and worse for p = 50%. 

of an SI model with no primary infection (as in Bolker, 1999), we found that 

one requirement for MC to provide a solution is to have a large initial density 

of randomly distributed infecteds. Such an initial condition has a persistent 

randomising effect on the subsequent spatial dynamics. The disease progress 

curves shown by Bolker (1999) (corresponding to Bessel dispersal functions) start 

with a fraction of 5% infected hosts (Figs 2a and 4a in Bolker, 1999). Large 

initial levels of random infection are in general unrealistic, have strong effects 

on the transient behaviour, and noticeably diminish stochastic variability. Given 

that this condition is mathematically necessary for the performance of the MC 

approximation, there are limitations in the range of situations to which MC can be 

applied. Fig. 6.13 shows how two simulated transient epidemics with SR dispersal 

differ when the initial conditions consist of a fraction of 0.2% (right—hand curve) 

and 10% (left—hand curve) randomly distributed infecteds. Since the other closure 

approximations presented in this chapter can be applied to any initial condition 

(Fig. 6.12), they offer valid alternatives to MC. 

Fig. 6.14 compares analytical predictions and simulation for the minimum 

initial levels of infection, corresponding to LR, MR and SR respectively, for which 

MC yields a solution. It should be noted that the LR dispersal case is represented 

by a contact distribution based on the modified Bessel function with parameter 

= 0.5, chosen in order to reproduce the conditions in Bolker's paper (1999) 

as much as possible. The initial fractions of infected are P1 (0) = 10% in the 

SR case and P1 (0) = 5% in the MR and LR cases (although in the LR case 

correlations are quite small and MC yields a solution for initial infections as low 
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Figure 6.10: Comparison between non-spatial (MF) and spatial (KA, MC) approxima-
tion predictions for an epidemic developing according to MR dispersal and large primary 
infection rate (J1 = 0.1, J2 = 1.48). Note that KA and MC curves are very close. 

as 1% of infecteds). KA2 and MC perform quite well in all dispersal cases: these 

predictions are indistinguishable for LR and differ little for MR and SR, although 

MC systematically underestimates the disease level. MF underestimates transient 

durations slightly; nevertheless, with these initial conditions, even MF predictions 

differ little from simulation. 

The lower curves in Fig. 6.14 show the same kind of instability observed in 

the case of the SIS model (Fig. 6.11a), which occurs just before MC breaks down. 

They correspond to the following initial conditions: P1 (0) = 0.6%, 3% and 7.5% 

for LR (Bessel function), MR and SR dispersal, respectively. 

We recall that F (see (2.31)) represents a convolution of the correlation and 

dispersal functions. Fig. 6.15 shows the time evolution of Fo 2  as predicted by 

KA2 and MC and obtained from simulation for LR, MR and SR dispersal cases. 

The initial fraction of infecteds is P1 (0) = 5%, as in Bolker (1999). In Bolker 

(1999) this quantity was denoted by E r, and called average covariance density 

(see Fig. 2c in that paper). As expected, for LR dispersal spatial correlations, 

and hence F, are very small, and both KA2 and MC provide good predictions. 

In the MR case KA2 underestimates the covariance whilst MC overestimates it. 

In the SR case the covariance is maximum and MC does not yield any solution 

(the minimum value of P1 (0) for which a MC solution was obtained is 10%). 

Fig. 6.15a, which shows the evolution of Er, (covariance of infectives), should 

be compared to the plot of ëSS  (covariance of susceptibles) in Fig. 2c of Bolker 

(1999). For our model, defined on a regular lattice, we have c11 = CS5 and 

sI = — ë, whilst with a general spatial distribution of hosts (Bolker, 1999) the 

relation between covariances is given by ëi + css = — 2ësi. This reduces to the 
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Figure 6.11: Expected epidemic transients with a small rate of primary infection. Sec-
ondary infection rate J2 corresponds to 10% long-term disease levels when J1 = 0. 
a) MR, J1 = 0.02, J2  = 1.3. MF overestimates P1, KA2 and simulation curves are 
very close, and MC slightly underestimates P1. The two bottom curves correspond to 
values of Ji for which MC breaks down: J1 = 0.011 and 0.01; b) SR, J1 = 0.05, 
J2 = 1.688. Approximation curves from left to right (worst to best): MF, KA, MC; 
c) MR, Ji = 0.005, J2 = 1.3. Approximation curves from left to right (worst to best): 
MF, KA, KA2. Note that MC yields no solution. 

former expressions for a lattice distribution of hosts (Filipe, 2000, unpublished). 

6.5 Continuous approach 

In this approach continuous space is discretised by considering a mosaic of quadrats 

within which the densities P1 and Pi1 (r) are assumed to be constant. Fig. 6.16 

shows an example of how a portion of space is subdivided into 18 quadrats. 

The system of ODEs (2.21)-(2.22) applies to a population distributed on a 

lattice. In order to solve it within the continuous approach, the equations must 

be reformulated according to this new discretisation of space. 

By using the radial distribution of sites G(r) (see section 2.3), equation (2.21) 

can be rewritten as 

	

dPj 
 = Ji  - (J1 - "2 + R) Pi  - J2 	Pjj (r)G(r)f(r), 	(6.21) 

rEC1 , L/2 

where £1,L12 = 11, 	2, \/,... , L/21 is the set of all lattice distances between 

1 and L/2, with L the size of the simulated system. We now define another set 

of distances, £i,L/2 = 11, 1 + L, 1 + 2z,. . . , L/2}, where A is a small constant 
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interval (see Fig. 6.16). Equation (6.21) can then be rewritten as 

L =J, - ( J1 —J2 +R) P1 J2 	 Pjj(r)G(r)f(r), 	(6.22) 
dt 	

SEC/1,L/2 
rEC3,+ 

where 	is the set of lattice distances in the interval [s, s + z[. Since Pjj(r) 

is expected to be smooth and to vary little in the interval r E [s, s + z[, we 

assume that Pjj (r) is constant over this interval. This approximation depends on 

the length A and is expected to be less accurate for small r and SR interactions. 

Ignoring the variation of Pii(r)f(r) in the interval [s, s + [, we can extract this 

factor from the second sum in (6.22) and write: 

dPj  
Ji - (J - J2 + R) P1 - J2  E Pii (s)f(s)H(s, z), 	(6.23) 

dt 	
,L/2 

where H(s, ) = 	G(r) is the histogram of G(r) with window of width / 
rEC8,3+ 

(see (2.7)). The set of distances 	in (6.23) is much smaller than 1,L/2  in 

(6.21) because the density of points on a lattice increases with r. 

Analogously, we wish to rewrite the equation for the evolution of Pjj (r). We 

use er = { 0, 02,... OG(r) } to denote the set of angular coordinates of the lattice 

sites at distance r from a given site. For example, in Fig. 6.17 the dark dots (.) 
indicate the locations of lattice sites at distance r = 5 from a given site (located 

at the centre of the circle). 01 and 02 are the angular coordinates of two of these 

sites. 
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Figure 6.13: Comparison of simulated disease progress curves with SR dispersals and 
different initial conditions (Pi (0) = 10% and 0.2%). 

Equation (2.22) can be rewritten as 

ldPii (r) 
= [J1  + J2 f(r)] Pj  - [J1  + J2 f(r) + R] Pij(r) 

2 dt 

	

+ 	J2 	>112 	>12 Psii(r) s,u(r,s,O)) f(s), 	(6.24) 
SEC1,L12 0E0 3  

(u(r,s,0)00) 

where u(r, s, 0) = s/r2 + s2 - 2rs cos 0 and Psj1 (r, s, u(r, s, 0)) = Pi1 (u(r, s, 0)) - 

Pjij (r, s, u(r, s, 0)) (see Fig. 6.18). 

The quadrats in Fig. 6.16 are identified by polar coordinates, (ri , 0j. The 

number of quadrats n is the same for each r2 , since all quadrats have the same 

angular amplitude q = 27r/n. The set of angular coordinates of the quadrats is 

denoted by = {, q5,...  , Onj. As a result of the intrinsic anisotropy of the 

lattice, the number of lattice sites in each quadrat is not constant and varies with 

both ri  and çb. For a given r, on average, there are G(r)0/27r = G(r)/m lattice 

sites in each quadrat. Fig. 6.17 illustrates this situation. At distance r = 5 from 

a given site there are G(5) = 12 sites on the lattice. With n = 6 quadrats, there 

are 3 lattice sites in the first quadrat, 1 in the second, and so on (see Figs 6.16 

and 6.17). On average there are 12/6 = 2 lattice sites in each quadrat. Equation 

(6.24) is then approximated by 

ldPij(r) 
- 	[J1  + J2 f(r)] Pj  - [J1  + J2f(r) + R] Pij (r) 

2 dt - 

	

+ J2 	 > Psri(r,v,u(r,v,q)) f(v)G(v). (6.25) 

SEf!1L/2 vEL 3 , 3 + cbEn 
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Figure 6.14: Upper curves show the expected disease progress curves with the smallest 
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Assuming that Psij (r, v, u(r, v, cs)) 1(v) is constant for v E [s, s + L[, we obtain 

ldPjj (r) - 

	

2 dt - 
	[J1  + J2 f(r)] P1  - [J1  + J2f(r) + R] Pij (r) 

	

+ 	 Psn(r, s, u(r, s, q))  f(s)H(s, z), 	(6.26) 
SEC1 L/2 

which together with (6.23) form the set of ODEs for the model. Since the distances 

r and s belong to the discrete set £'1L/2,  equation (6.26) represents a much smaller 

system of equations than (2.22). The total number of ODEs in (6.23)—(6.26) is 

(L/2 - 1)/z +2. Thus, for L = 100 and A = 1, we have 51 equations, compared 

with the 762 equations of the lattice approach for the same L. 

We have chosen to let r vary between 1 and L/2 in (6.23) and (6.26), which 

is the range of distances considered in the lattice approach. 

The discretisation of space into quadrats leads to the introduction of two extra 

parameters: L, the unit of discretisation of r, and n, the number of quadrats at 

given r (discretisation of angles). The choice of appropriate values for Lt and n is 

arbitrary and depends on the host distribution and the type of interactions under 

consideration. In this case, we wish to obtain predictions for the behaviour of a 

model which was simulated on a lattice. Hence we first set A = 1, then let it vary 

and observe the effects of different values. The value of ii is chosen in accordance 
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Figure 6.16: Subdivision of continuous space in quadrats. 

with G(r), which gives the number of lattice sites at distance r from a given point. 

Since G(r) is not a continuous function of r and, on average, increases with r, n 

could be made dependent on r. For example, recalling that the histogram of G(r) 

with window of width 1 behaves approximately as 27rr, we could have n(r) = 27rr. 

However, at present we wish to avoid such a complication. For 1 < r < 50, G(r) 

varies between 4 and 32; we thus set n = 16 and then analyse the effects of 

different values of n on the predicted behaviour. 

The contact distribution must be normalised according to the new spatial 

coordinates. The normalisation factor Z given by (2.4) can be rewritten as 

Z = 	f(r)G(r) = 	> 	f(r)G(r). 	 (6.27) 
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Figure 6.17: Angular coordinates (Oi, 02 ,...)  of lattice sites at distance r = 5 from a 
given site, and angular coordinates (01, 02 .... of quadrats. Dark dots • indicate lattice 
sites. 

r 

Figure 6.18: Distances involved in equation (6.24). 

Assuming that f(r) is constant in the interval [s, s + z[ we obtain 

Z = 11 f(s)H(s, z). 	 (6.28) 
SEC'I,L  

Equation (6.26) for Pij (r) contains the probability Pji(u(r, s, q)),  where u(r, s, q) = 
t/r2 + 82 - 2rs cos q5. Whilst r and s e £1,L121 u(r,s,q5) does not necessarily be- 

long to the same set of distances (Fig. 6.18). If this is so then there is no equation 

for Pij (u(r, s, )) and its value is unknown. In order to address this problem we 

distinguish three situations: (1) u(r, s, ) < 1; (2) 1 < u(r, s, 0) < L/2; (3) 

u(r, s, ) > L/2. In case (1) we set P1i (u(r, s, q)) = 0 to ensure that individuals 

are never at a distance smaller than 1. In case (3) we apply the MF approxima-

tion to the probability Pjj (u(r, s, )) (i.e. Pjj (u(r, s, 0)) = Pfl, which is plausible 

since L is large. In case (2) we interpolate the function P11  from its known values. 

The values of Pji (r) are known for all r e L"L12and both simulation and lattice 

approximations have shown that P11  is a smooth decaying function of distance. 

In order to interpolate Pjj  we employ a numeric routine (EO1AAF, NAG 1993) 
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which uses a technique of successive linear interpolations up to distances at which 

correlations have vanished. For larger distances we use linear interpolation. 

6.5.1 Results 

We now apply KA and KA2 to equation (6.26) in order to close the system (6.23)-

(6.26) and obtain predictions for the expected behaviour using the continuous 

approach. Within the continuous approach, KA (equation 6.8) reads 

P11 (r)P11 (s)Pji(u(r, s, 	
(6.29) Pjjj (r,s,u(r,s,q)) 

I 

whereas KA2 (equation 6.18) reads 

Psi(r) PI, (u(r, s, I'Psi(s) 	
(6.30) Psjj(r,s,u(r,s,q)) 	

PsP12 

6.5.1.1 Stationary behaviour 

Since all approximations give very good estimates of the long—term behaviour 

of the LR dispersal model, we concentrate on the results for the MR and SR 

dispersal cases. Fig. 6.19 shows the corresponding long—term epidemic size against 
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Figure 6.19: Phase diagrams obtained from simulation and predicted by KA and KA2 
in the continuous approach. a) MR; b) SR. 

infectiousness J21R with J1 = 0, obtained from simulation of the lattice model 

and predicted by KA and KA2 in the continuous approach. In the MR case 

predictions are in very good agreement with simulation, whilst in the SR case, 
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as expected, the agreement is worse because in this case the effects of the lattice 

structure are stronger and the approximations perform less well for SR, as they do 

also in the lattice approach. KA overestimates the infection level, as it also does 

in the lattice approach, whilst KA2 slightly underestimates the infection level in 

the MR case and overestimates it in the SR case. 

Comparison between the predictions from the lattice (Figs 6.2 and 6.3) and 

continuous approaches yields the following conclusions (at least for the chosen 

values of the quadrat parameters): 

in the MR case, KA overestimates the epidemic size more in the lattice 

approach than in the continuous approach; in the SR case, KA overesti-

mates the epidemic size more in the continuous approach than in the lattice 

approach; 

KA2 systematically overestimates the epidemic size in the lattice approach, 

whilst in the continuous approach it overestimates the epidemic size with 

SR dispersal and underestimates the epidemic size with MR dispersal. This 

underestimation is due to an error introduced by the continuous approxi-

mation which counteracts the systematic error of KA2. 

6.5.1.2 Transient behaviour 

Figs 6.20 and 6.21 show the epidemic transients for three stationary disease levels 
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Figure 6.20: Expected epidemic transients in the MR dispersal case. Long term epi-
demic size: a) 10%, b) 25%, c) 50%. Approximation curves from left to right (worst to 
best): MF, KA, KA2. 

(10%, 25%,50%) with J1 = 0 for the MR and SR dispersal cases, respectively; 

MF, KA and KA2 predictions are compared to simulation. 
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Figure 6.21: Expected epidemic transients in the SR dispersal case. Long term epidemic 
size: a) 10%, b) 25%, c) 50%. Approximation curves from left to right (worst to best): 
ME, KA, KA2. 

As in the lattice approach, KA is able to capture some characteristics of the 

behaviour but KA2 provides better predictions. In addition, predictions are bet-

ter in the MR than in the SR case. In the continuous approach the approximations 

predict the duration of transients better than in the lattice approach, especially 

with MR dispersal. In contrast to the lattice approach, KA2 slightly underesti-

mates the disease level for some parameter values in the MR case (Figs 6.20a and 

b). As for the lattice approach, the improvement provided by one approximation 

relative to another is more modest in the transient than the stationary regime 

(see section 6.4.1.2). 

Since the solution of the equations can be quite sensitive to variations in the 

discretisation parameters ri and Z, the choice of such parameters must be based 

on both common sense and the characteristics of the model under consideration. 

Here, the continuous approach has been used to predict the behaviour of a lattice—

based model: simple consideration of the structure of the lattice led us to a choice 

of parameter values (ii = 16 and i = 1) which turned out to yield very good 

predictions. 

Fig. 6.22 illustrates how KA predictions vary with n and L. 

6.6 Conclusions 

Using individual—based dynamic equations, we have developed an analytical frame- 

work for predicting the expected behaviour of spatially—extended population mod- 

els with general interactions. This approach is computationally much more effi- 
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Figure 6.22: Variation of the theoretical predictions with parameters n (a) and A (b). 
Simulated epidemic corresponds to MR dispersal. a) A = 1; b) n = 16. 

cient than the stochastic simulation of the model and therefore provides a useful 

alternative tool for exploring the behaviour. Moreover, since it is accurate over 

wide and relevant parameter regions, the approach might also be used for fitting 

observations and estimating basic parameters. 

The study was conducted in the context of the plant epidemic model intro-

duced in chapter 2. The dynamics of the model are described by a system of 

ODEs which can only be solved approximately using closure relations. Solutions 

were tested against stochastic simulation. We found that the moment closure ap-

proximation (MC) proposed by Bolker & Pacala (1997, 1999) is inadequate when 

the spatial correlations in the disease pattern are not small. We then proposed 

and tested alternative closure schemes which proved to be more robust and pro-

vide better descriptions of the model behaviour. In particular, we demonstrated 

that the modified Kirkwood approximation (KA2) is superior to all the other ap-

proximations which we considered and is able to offer very accurate predictions 

for both the epidemic size and the spatial correlations over most of the parameter 

space. The approximations perform best for LR and MR interactions, whereas 

they are less effective in the SR case; however, even for SR interaction models, 

KA2 outperforms most of the existing cluster approximations. A common fea-

ture of both types of closure approximations is their greater ability to predict 

accurately stationary behaviour rather than transient behaviour.' 

The system of dynamic equations was solved within lattice and continuous 

formulations. In the lattice approach the equations describe exactly the expected 

simulated dynamics, thus the errors introduced by closure approximations do not 

mix with errors resulting from continuous—media approximations. The continu-

ous approach was devised in order to reduce computational cost and extend the 
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method to models definedin continuous space. It is based on the discretisation of 

continuous space into a mosaic of quadrats within which the densities are assumed 

to be constant. This leads to a significant decrease in the number of equations. 

In this study we have focussed on the lattice approach because it represents 

the most appropriate choice for predicting the behaviour of a lattice—based model 

and because the primary objective was to test the closure approximations as 

accurately as possible. Unsurprisingly, we found that the continuous approach 

is less accurate in the SR case where the lattice structure is more important. 

Nevertheless, the results obtained within this approach are remarkably good in 

some parameter regions. 

This work can be further developed in various ways. Two examples would be: 

the development of a mixed approach that takes into account interactions 

between individuals (as in the lattice approach) up to a given distance 

and beyond this distance uses quadrats (as in the continuous approach); 

such an approach would combine the benefits of the lattice and continuous 

formulations: a smaller number of equations than with the lattice approach 

and more accurate predictions than with the continuous approach; 

the extension of the method to systems which are spatially non—stationary. 

Possible causes of non—stationarity include an irregular spatial distribution 

of hosts, the effect of boundaries on the interaction neighbourhoods of dif-

ferent hosts (Filipe et al., 2000), spatially heterogeneous primary infection 

(Gilligan, 1985), and specific initial conditions. Such an extension should 

improve the ability of the approximations to capture transient behaviour. 
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Chapter 7 

Heterogeneous mixing models 

7.1 Introduction 

In classical epidemiological models (see for example Bailey, 1975), the incidence 

rate, defined as the rate at which new infections occur in a population, is repre-

sented by a term bilinear in the number (or fraction) of susceptibles and infecteds. 

This assumption, implying that susceptibles and infecteds mix homogeneously in 

space, is plausible when dealing with small groups of individuals such as families 

but often inadequate for larger and spatially extended communities. In partic-

ular, the development of epidemics in plant populations, whose individuals are 

unable to move freely, is strongly affected by the dynamically generated spatial 

heterogeneity in disease pattern. When the assumption of homogeneous mixing is 

inappropriate, it would be preferable to introduce the necessary population struc-

ture in the model and represent heterogeneous mixing directly (Liu et al., 1987). 

However, fitting spatially—explicit models to field observations is a difficult task 

because it entails the collection of large samples of temporal and spatial data. 

Spatial heterogeneity and other biological factors have motivated a modifica-

tion of the standard bilinear form of the incidence rate, proportional to IS (where 

I is the number of infectives and S the number of susceptibles). Departures from 

this model were first considered by Severo (1969), who proposed a model in the 

context of human epidemiology in which the incidence rate was proportional to 
1aS1 _b .  His choice was motivated by the following arguments. 

1. Epidemics which develop very slowly even when the number of infectives is 

large can be described by an incidence rate essentially independent of the 

number of infectives, i.e. by small values of a. This might be the case, for 

example, when the rate of physical contact in a community is high but the 

contagion is determined by the susceptibility of healthy individuals rather 

than by the infectiousness of infectives. 
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Fast—developing epidemics, in which nonlinear effects make the presence of 

k infectives more infectious than k times the infectiousness of one infective, 

can be described by large values of a. An example would be epidemics 

where there is a positive co—operativity of infectives. 

The existence of large numbers of susceptibles might lower the transmission 

rate of the disease: if individuals can only transmit the infection at close 

contact, a high population density might inhibit the ability of an infective 

to move around the community. A small value of b would then imply that 

there is greater safety in having many rather than fewer susceptibles, whilst 

b close to unity would mean that the chance of a given susceptible becoming 

infected is almost independent of the total number of susceptibles. 

It has been shown (Liu et al., 1986; Liu et al., 1987; Hethcote & van den 

Driessche, 1991) that the qualitative dynamic behaviour of SEIR and SIRS mod-

els with nonlinear incidence rates can be very different from that of models with 

traditional bilinear incidence. Whilst the latter exhibit a simple pattern of be-

haviour, with epidemic extinction below - and a steady state above - a certain 

transmission threshold, models with nonlinear incidence rates can have multiple 

equilibria and periodic solutions which may have epidemiological significance. 

Recently, Gubbins & Gilligan (1997 a, b) analysed the role of spatial hetero-

geneity in the persistence of a lettuce fungal disease in a host-parasite-hyperparasite 

system where a fungal hyperparasite was used as a biocontrol. Spatial heterogene-

ity was incorporated in their model by relaxing the assumption of homogeneous 

mixing of the populations, i.e. by assuming the response of the hyperparasite to 

changes in parasite density to be nonlinear. The model was fitted to experimental 

data and then used for prediction. It was shown that whilst the homogeneous 

mixing model predicted parasite extinction, the heterogeneous mixing model pre-

vented fade—out and considerably improved the fit of the model. The authors 

identified various mechanisms which could be responsible for the nonlinear func-

tional response. However, since there was no experimental evidence in favour 

of either hypothesis, they concluded that the nonlinearity probably arose from 

spatially—heterogeneous mixing in the population (Gubbins & Gilligan, 1997 a). 

Whilst heterogeneous mixing models might describe effectively the spatial het-

erogeneity which naturally arises in real systems, it remains to be seen how the 

additional mixing parameters relate to the spatial structure. We simulate stochas-

tic spatially—explicit models for plant epidemics in order to relate the parameters 

of the heterogeneous mixing model to the self—generated spatial structure in the 

distribution of the disease. We shall show that the heterogeneous mixing model 
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provides an excellent fit to the simulated data in the transient but not in the sta-

tionary regime, which might relate to differences in the spatial patterns of disease 

in the two stages. The fitted parameters are constant in time but vary with the 

basic parameters of the stochastic model (dispersal exponent and infectiousness). 

7.2 Spatially—heterogeneous mixing model 

In chapter 2 we introduced a spatio—temporal model for the spread of plant epi-

demics and derived a system of deterministic differential equations for describing 

its dynamics. We used the function F(t) (2.31), a convolution of the spatial auto-

correlation function and the contact distribution, to write the first equation of the 

system (2.21)—(2.22) in the form (2.30). This formulation shows that the actual 

incidence rate is modified by the presence of F. The standard bilinear incidence 

rate, P1 (1 - P1 ), is valid only when F = 0 and the model behaves like the Mean 

Field (MF) approximation (chapter 3; Filipe et al., 2000). When correlations are 

large or long-ranged, for example in the proximity of the persistence threshold, 

the deviation from the MF behaviour and from the classical bilinear incidence 

rates can be substantial. 
In the light of the parameterised heterogeneous mixing model introduced by 

Liu et al. (1987) and considered by Gubbins & Gilligan (1997 a, b), the incidence 

rate I, corresponding to the epidemic model considered here, is given by 

1(t) = k P1 (t) [1 - P1 (t)], (7.1) 

where k, a and /3 are real and positive fitting parameters. The kinetic equation 

for the time evolution of P1  (t) is therefore given by 

dP1 (t) 

	

—R P1 (t) + J2 1(t). 	 (7.2) 
dt - 

From (2.30) and (7.2) we obtain an expression for F in terms of the expected 

fraction of infecteds and the fitting parameters 

F(t) = 1 - k P1(t)' [1 - P1 (t)1' 1 . 	 (7.3) 

This expression relates the empirical parameters k, a and 3 to the spatial corre-

lations. 

7.3 Simulation results 

We now wish to test the heterogeneous mixing model (7.2) against simulation of 

the spatially—extended model. This can be done by finding the parameter values 

which best fit the relation (7.3) over the whole epidemic. 
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Stochastic realisations of the spatially explicit model are realised on a lattice 

of linear size L = 100. Epidemics are initiated with 20 randomly distributed 

infecteds in the cases of LR, MR and SR dispersals. The incidence rate 

Isim(t) = P1 (t)[1 - P1 (t)][1 - F(t)] 
	

(7.4) 

is estimated at given points in time using averages of P1 (t) and r(t) over a large 

number of realisations (100 for the SI model, and 20 for the SIS model). 

7.3.1 SI model 

Fig. 7.1 exhibits the simulation incidence rate I 	(7.4) and the fitted curves I 

(7.1), corresponding to the incidence rate of the heterogeneous model, against the 

average fraction of infecteds P1  for the three dispersal cases. The curve corre- 

sponding to the MF model (F = 0) is also shown. The model fits the simulation 
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LR 

MR 

SR 

n  
0.0 	0.2 	0.4 	0.6 	0.8 	1.0 

average fraction of infecteds 

Figure 7.1: Simulation incidence rates and fitted curves (7.1) corresponding to the 
heterogeneous mixing model vs P I (t) for different dispersal cases (LR, MR and SR 
from top to bottom). Also shown: MF bilinear term (top). 

very well, especially for LR and MR, showing that it is capable of capturing the 

behaviour of the spatially explicit model throughout the progress of the epidemic. 

In the SR case, the fit is slightly poorer because of the large stochastic fluctua-

tions typical of this parameter region. In principle, larger samples of realisations 

could lead to a smoother curve 'sim  and hence a better model fit. A measure of 
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the variability of the incidence rate in the SR dispersal case is illustrated in Fig. 

7.2 where —Ti,,, and the curves 

Im(t) = P1(t) [1 - P1(t)] [1 - 17(t) ± a[r(t)]} 	 (7.5) 

are plotted against the average fraction of infecteds. 
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Figure 7.2: Variability of the incidence rate in the SR dispersal case. Sample consists 
of 100 realisations. 

The values of the fitted parameters k, cv and 0, listed in table 7.1, vary with 

the type of dispersal in the expected way. The value of the fitted parameters is 

dispersal range k cv 0 
oo(MF) 1 1 1 
LR 0.967 0.999 0.989 
MR 0.394 0.863 0.790 
SR 0.079 0.546 0.635 

Table 7.1: Values of the fitted parameters of the heterogeneous mixing model for dif-
ferent dispersal cases. 

very close to 1 in the LR case and decreases as the range of dispersal decreases. 

In the SR case it is minimum. 

An argument suggested by McNeil (1972) and reported by Bailey (1975) sheds 

some light on the meaning of the values of the parameters in the SI model. 

Consider an epidemic which spreads deterministically from an infected circular 

area of radius r. The fraction of infecteds is proportional to the area of the circle 

(P1 o irr2 ) and, in the SR case, the rate of spread is proportional to the length 
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of the boundary, i.e. the square root of the fraction of infecteds 

dP1 	drr2 	 1/2 dt ° dt = 2irr oc P1  . 	 (7.6) 

This result agrees well with the estimated value of a for the SR case (a = 0.546, 

see table 7.1). The diffusion process described above can in fact be seen as an 

approximation of an SI model with SR dispersal: an epidemic with no recov-

ery, initiated by one diseased individual which can only infect its neighbouring 

sites, generates infected regions which are approximately circular. Hence, the 

incidence rate does not depend on the density of infecteds inside the cluster but 

on the density of infecteds at the boundary, where susceptible—infected contacts 

occur. The parameter fi is also expected to decrease with the range of dispersal: 

the incidence rate cannot depend linearly on the fraction of susceptibles since in-

fecteds are aggregated, hence the number of possible susceptible—infected contacts 

is limited. 

We now substitute the values of the fitted parameters in model (7.1) into 

the differential equation (7.2) and solve it numerically. Fig. 7.3 compares the 
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Figure 7.3: Disease progress curves for different dispersals. Simulation and heteroge-
neous mixing model curves. 

disease progress curves obtained from simulation with the predictions of the pa-

rameterised heterogeneous mixing model in the three dispersal cases. Model and 

simulation are very close, especially for LR and MR dispersal. Unsurprisingly, in 

the SR case the prediction slightly overestimates the disease level. 

150 



0.3 

C) 
(5. 

0.1 

I- 

C) 
U 
C 
C) 

C) 
C 

LR 

SR 

simul. 
fit 

0.0 
0 0.36 	 0.72 

average fraction of infecteds 

C) 
4.1 
C). 
1 

C) 
U 
C 
C) 

U  0.1 C 

7.3.2 SIS model 

In an infinite system with recovery of infecteds, the epidemic reaches a stationary 

state where the fraction of infecteds is constant in time and given by (2.33). 

Hence the incidence rate is also constant and given by I = RP-/J2 . In a finite 

system, instead, the epidemic reaches a long—term quasi—stationary state in which 

the fraction of infecteds fluctuates around the equilibrium value (2.33). As a 

consequence, the incidence rate also fluctuates, exhibiting behaviour different 

from that in the transient. In order to fit the heterogeneous mixing model to 

simulation, we exclude the stationary regime after arbitrarily defining the end of 

the transient. Moreover, the density of points in the plot of 'sim  vs P1  is greater 

in the stationary regime. In order to avoid giving too much weight in the least 

square fit to this part of the curve, we smooth the data using running averages. 

The simulation curves presented in this section represent averages over 20 

stochastic realisations of the model. Samples are smaller in this case because 

simulation is more time—consuming and stochastic fluctuations are smaller for 

the SIS than the SI model. 

We consider two different stationary epidemic sizes (50% and 72% infecteds) 

in each of the three dispersal cases. Fig. 7.4 shows simulation and fitted incidence 

rate curves against the average fraction of infecteds. The heterogeneous mixing 
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Figure 7.4: Simulation incidence rates and fitted curves (7.1) corresponding to the 
heterogeneous mixing model vs P 1 (t) for different dispersal cases (LR, MR and SR 
from top to bottom). Also shown: MF bilinear term (top). a) P1(oo) = 50%; b) 
Pj(oo) = 72%. 
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model (7.1) provides a good fit to the incidence rate of the stochastic model for 

both stationary states in all dispersal cases, although fits are more accurate in 

the case of 50% infecteds. 

Table 7.2 shows the values of the fitted parameters k, a and 0 corresponding 

to Fig. 7.4. As for the SI model, in the LR case the fitted parameters are close 

[dispersal range I (P1) 	k 	I Ce 	1 0 	II 
oo(MF) 50% 1 1 1 

72% 1 1 1 

LR 	 50% 	0.988 1.002 0.987 
72% 	0.979 1.002 0.984 

MR 50% 0.608 0.961 0.414 
72% 	110.513 10.926 0.518 

TSR 	 50% 	0.428 0.959 0.072 
72% 	0.289 0.908 0.123 

Table 7.2: Values of the fitted parameters of the heterogeneous mixing model for dif-
ferent dispersals and stationary epidemic sizes. 

to 1 and decrease with the range of dispersal. Comparing the two asymptotic 

epidemic sizes, we observe that with 72% infecteds: 

k and a are smaller than with 50% infecteds; 

0 is larger than with 50% infecteds. 

Comparing the SI and the SIS models, we observe that: 

k and a decrease less with decreasing dispersal range in the SIS model than 

in the SI model; 

8 decreases more with decreasing dispersal range in the SIS model than in 

the SI model. 

As before, we use the fitted parameters to solve equation (7.2) and obtain the 

corresponding disease progress curves. These are compared to simulation in Fig. 

7.5, which shows that the heterogeneous model gives reasonably good predictions 

except for the SR case. As expected, the model curves fail to predict the long-

term behaviour of the epidemic, with the exception of the LR case, which is very 

close to MF. In the MR and SR cases, in contrast to the SI case, the model 

systematically underestimates the disease level. 
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Figure 7.5: Disease progress curves for different dispersals. Simulation and heteroge-
neous mixing model curves, a) Pj(oo) = 50%; b) Pi(oo) = 72%. 

7.4 Conclusions 

In this chapter we have used simulation of stochastic, spatially—explicit models to 

test empirical extensions of deterministic, non—spatial models which attempt to 

account for heterogeneous mixing of susceptibles and infecteds. In order to relax 

the assumption of homogeneous spatial mixing, these models consider incidence 

rates which are nonlinear in the number (or fraction) of susceptibles and infecteds. 

It has been shown that such models exhibit a much wider range of dynamic 

behaviour (Liu et al., 1986; Liu et al., 1987; Hethcote & van den Driessche, 1991) 

and provide a considerably better fit to observation data (Gubbins & Gilligan, 

1997 a, b) than models with bilinear incidence rates. We have examined the 

relation between the empirical parameters of the heterogeneous mixing model 

and the correlations in the self—generated spatial structure of the disease. 

We have found that the heterogeneous mixing model describes the incidence 

rate of the spatial model very well throughout the epidemic in the absence of 

recovery (SI model), and in the transient regime in the presence of recovery (SIS 

model). 

Epidemics with different stationary disease levels are characterised by different 

incidence rate curves. Different epidemic sizes, in fact, correspond to different 

values of the infectiousness J2 and therefore to different spatial distributions of 

the infecteds. 
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At least three empirical parameters are required for describing the shape of 

the incidence rate curve of the full model: two parameters describing the slope at 

the initial and final stages of the epidemic, corresponding to P1 (0) and Pi(tmax ), 

and one parameter describing the location of the maximum of the curve. The fact 

that only three parameters are needed to obtain a good fit to simulation seems to 

us striking, especially if we consider the relation (7.3) between a, 0, k and F(t) 

and P1 (t). 

The fit of the heterogeneous model to simulation is particularly good for the 

LR dispersal case: the empirical parameters are very close to 1 and the incidence 

rate differs little from the bilinear incidence rate typical of MF models. The 

values of the fitted parameters decrease with decreasing range of interaction and 

are minimum for SR dispersal. In the SI case, epidemics with SR dispersal can 

be approximated by diffusion processes where the incidence rate is proportional 

to the square root of the fraction of infecteds. In the SIS case, the incidence 

rate curves become almost linear and 0 becomes very small for SR dispersal, 

suggesting that the incidence rate is only slighlty dependent on the fraction of 

susceptibles. Results for the MR case are intermediate. 

The values of the fitted parameters were used to obtain predictions for the 

disease progress curves, which were then compared with simulation. The hetero-

geneous mixing model provides good predictions for all dispersal cases, especially 

LR and MR, in the absence of a recovery process (SI model). In the SIS model, 

predictions are very good for the LR case in both the transient and the stationary 

regime, and for the MR case in the transient regime. Predictions are less good 

for SR dispersal. 

This study suggests that models with nonlinear incidence rates are suitable 

for describing the dynamics of spatially—extended SIS and SI models, provided 

that they comprise at least three empirical parameters. We showed that the 

dependence of the new parameters on the basic parameters of the spatial model 

(the range of dispersal and the infectiousness) takes place through their relation 

with spatial correlations. 
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Chapter 8 

Summary 

The main topic of this research project has been the investigation of the spatial 

components of plant disease epidemics. Although for many years the emphasis of 

research has been on the temporal aspects of plant epidemics (Vanderplank, 1963; 

Leonard & Fry, 1986; Campbell & Madden, 1990), interest in the effects of space 

has grown enormously in the past decade (Jeger, 1989; Durrett & Levin, 1994 a; 

Russell, 1996; Filipe at al., 2000). Great effort has been made to demonstrate 

the limitations and inadequacies of a purely temporal approach to plant disease 

epidemics, whilst a spatial perspective has offered new insights and opened new 

areas of research. 

Various developments have enhanced the ability of modellers to tackle difficult 

spatial problems, including the formulation of analytical methods (e.g. Filipe & 

Gibson, 1998, 2000; Bolker & Pacala, 1997) and the advent of more powerful 

computers which enable the investigation of behaviour through the simulation 

of complex spatial models (e.g. Shaw, 1995; Filipe at al., 2000; Filipe & Maule, 

2000 a). At present, however, current theory suffers from a lack of methodology 

capable of dealing with spatial and stochastic aspects of model behaviour in a 

realistic way, and many important questions still remain unanswered. 

Such considerations regard not only the study of plant epidemiology but all 

the disciplines in the broad field of population biology (Renshaw, 1991). The 

study of the spatial aspects of population dynamics is the subject of the theory of 

biological invasions (Hengeveld, 1989). Invasions can be studied from widely dif-

ferent viewpoints and with different aims, as well as at different spatio—temporal 

scales. In ecology, an invasion corresponds to the migration of a species into a 

territory previously not colonised by that species; instead, in population genetics 

it corresponds to the spatial progression of qualitatively advantageous traits; in 

epidemiology it concerns the spread of diseases; and in biogeography it relates to 

the effect of large—scale phenomena (including species migration, epidemic out-

breaks and spread of genetic material) on broad geographical areas. In principle, 
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progress in the development of techniques and methodologies for the study of 

spatial aspects in any of these disciplines can be fruitfully extended to all the 

others. 
In this thesis we have attempted to address some of the relevant questions 

in the current theory of population dynamics using a simple model for plant 

epidemics. A simple model that comprises important characteristics such as spa-

tial extension and stochasticity represents a convenient framework within which 

mathematical methods for the study of spatial dynamics can be developed and 

tested (chapter 2). The generality of the model considered ensures that the results 

of our investigation and the mathematical approaches developed can be extended 

to a wide range of spatio—temporal models. 

We have investigated the effects of different mechanisms of pathogen dispersals 

on the establishment, development and persistence of plant disease epidemics. In 

order to understand the inter—relation between spatial structure and temporal 

dynamics of the process we adopted a range of techniques which include simulation 

and analytical approaches. The analysis of the nonlinear model considered is very 

difficult because it involves an infinite hierarchy of ordinary differential equations 

which is not solvable (chapter 2). It is here that simulation becomes a valuable 

tool for the study of the model behaviour (chapters 3, 5 and 7). Yet however 

useful simulation may be, an analytical solution is always preferable (Morgan, 

1984). Simulation approaches can be both time—consuming and expensive; above 

all they are, by definition, only concerned with particular models, and hence their 

results are unsuitable to be generalised or used in direct quantitative prediction 

(Jeger, 1986). Thus, approximate analytical solutions are sought; and simulation 

provides a check on the accuracy of the assumptions made (Morgan, 1984; Filipe 

& Maule, 2000 b; chapters 4 and 6). It is precisely this engagement between 

simulation and analytical methods that allows the potential of each approach 

to be explored and exploited in a profitable way (Renshaw, 1991). This is the 

procedure we followed in order to accomplish the research project presented in 

this thesis. 

Summary of results and possible developments 

First of all we considered a general stochastic model in which individuals interact 

according to power—law contact distributions (Mollison, 1977). Using stochastic 

simulation, we addressed a number of fundamental questions regarding the size, 

variability and persistence of epidemics, and in particular their relation to the type 

of dispersal process, the presence of spatial boundaries, the size of the system, 
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and the initial conditions (Filipe et al. 2000; Filipe & Maule, 2000 a). Special 

attention was paid to the structure and dynamics of spatial correlations and to 

their relation to the expectation and variability of epidemic size (chapter 3). 

As an alternative to simulation, we then proposed a general approach for pre-

dicting the behaviour of the model (chapters 2 and 6) built on individual—based 

ordinary differential equations and various closure approximations. The approach 

is mathematically simple, robust and capable of dealing with and predicting the 

development of spatial correlations. Its flexibility and clarity make it suitable for 

genefalisations and applicable to a wide range of interacting particle models. An-

alytical predictions were tested against simulation and found to be very accurate 

in most of the parameter space. Closure approximations performed less well in 

parameter regions where spatial correlations are most important. However, even 

in particularly unfavourable conditions, the approach outperformed existing an-

alytical methods (Filipe & Maule, 2000 b, c), such as moment closure techniques 

(Bolker & Pacala, 1997; Bolker, 1999) and, in the case of short—range interac-

tions, existing cluster approximations (pairwise and squarewise approximations, 

Filipe & Gibson, 1998, 2000; see also chapter 4). The approach was formulated 

in two versions: a lattice approach, designed for discrete distributions of individ-

uals, and a "continuous" approach, in which discrete individuals are located in 

continuous space or in which there is a continuous mass—density of individuals. 

Various, potentially—interesting developments of this work are possible, and some 

examples are: 

• the extension of the method to spatially non—stationary systems: we would 

expect this to improve the ability of the approximations to capture transient 

behaviour; 

• the refinement of the continuous approach through a deeper understanding 

of its dependence on the space—discretisation parameters: this could lead to 

less arbitrary choices of parameter values; 

• the elaboration of a hybrid approach mixing the lattice (for short distances) 

and continuous (for large distances) approaches; 

• the exploration and development of other closure approximations which 

could better capture behaviour in regions where correlations are large. 

• the extension of the method to more general models which include a latent 

period and/or the acquisition of temporary or permanent immunity (SETS, 

SEIR, SEIRS models). 
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Analytical methods based on cluster approximations are commonly used for 

predicting the dynamics of stochastic models characterised by nearest—neighbour 

interactions (Sato et al., 1994; Filipe & Gibson, 1998, 2000), which are a particu-

lar case of the general epidemic model considered here. In chapter 4 we reviewed 

existing approximation techniques and compared their predictions with simula-

tion of the stochastic process. We then formulated a nearest—neighbour model 

for spatially—anisotropic disease spread where the rates of disease transmission 

along the horizontal or vertical axes of the lattice can be different. The effects of 

various degrees of strength of the spatial anisotropy on the size of epidemics and 

the disease distribution were investigated using simulation. Cluster approxima-

tions were then extended to the model and their ability to capture the effects of 

spatial anisotropy was tested against simulation (chapter 5). We found that the 

performance of the approximations worsens as the anisotropic effects increase and 

only the sophisticated hybrid pairwise approximation (Filipe, 1999 a, b) captures 

the behaviour of the model satisfactorily. More general models, which assume 

different rates of infection in all four directions and are able to account for differ-

ent causes of spatial anisotropy (for example, the effect of the wind in the spread 

of airborne propagules), could be formulated and investigated in a similar way. 

The closure schemes developed for models with general interactions could also be 

applied to the anisotropic model. 

Simulation was also used to test empirical extensions of non—spatial determin-

istic models (Liu et al., 1987; Gubbins & Gilligan, 1997 a, b) which attempt to 

account for spatially heterogeneous mixing of susceptibles and infecteds (chap-

ter 7). We derived a relation between the mixing parameters of the models and 

the self—generated spatial structure in the distribution of disease involving spatial 

correlations. Further studies would be needed in order to understand better the 

dependence of the mixing parameters on the parameters of the spatial stochastic 

model. This study suggests that these are plausible models for implicit account 

of heterogeneous mixing provided that they have at least three parameters. 

In this thesis different approaches were developed and their potential for pre-

dicting the behaviour of spatial stochastic models was demonstrated. The meth-

ods presented are not restricted to the specific models to which they were applied 

but could provide a general framework for studying aspects of a large variety of 

IPS models. 
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