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ABSTRACT 

The hypoxanthine guanine phosphoribosyltransferase (HPRT) gene is a 

housekeeping gene, located on the X chromosome in both human and mouse. In 

humans, HPRT deficiency causes Lesch-Nyhan syndrome which is characterised by 

behavioural alterations, including self-injurious behaviour and mental retardation, 

while partial deficiency causes gouty arthritis. The use of homologous recombination 

to delete specific parts of the HPRT gene with the aim of studying the control of gene 

expression has been investigated. The size of the deletion that could be made using 

a simple procedure of homologous recombination was limited and there was a 

preference for an insertion mechanism if the targeting vectors were designed to delete 

more than 20 kb. However, combined with intrachromosomal recombination, the 

deletion size could be enlarged to at least 30 kb. Using this deletion targeting 

strategy, a mouse embryonic stem (ES) cell clone with a targeted deletion of the 

promoter and exons 1-2 in one allele of the adenine phosphoribosyltransferase (APRT) 

gene was also constructed. This deletion targeted ES clone provides the opportunity 

to generate APRT knock-out and HPRT/APRT double knock-out animal models for 

Lesch-Nyhan syndrome. Until recently no spontaneous behavioural abnormalities had 

been reported in HPRT-deficient mice generated using the embryonic stem cell 

system. To resolve the asymptomatic ambiguity of HPRT-deficient mice, a hypothesis 

that mice were more tolerant of HPRT deficiency because they were more reliant on 

APRT than HPRT for their purine salvage was proposed. The administration of an 

APRT inhibitor to HPRT-deficient mice induced persistent self-injurious behaviour. 

This combined genetic and biochemical model will facilitate the study of Lesch-Nyhan 

syndrome and the evaluation of novel therapies. A novel therapeutic strategy 

involving the intracerebral transplantation of ES cells was evaluated. HPRT activity 

was observed in the brain of HPRT-deficient mice which had received intracerebral 

ES cell transplantation. Some of the implanted ES cells were committed to 

differentiate down the neural pathway into either neurons or glial cells. 
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CHAPTER 1. INTRODUCTION 



1.1 Foreword 

Remarkable discoveries over the last few years in biological sciences have 

made a major impact on clinical practice. It is now apparent that new methods in 

recombinant DNA technology and cell biology are going to play an increasingly 

important role in medicine, and that medical research may well be moving into the 

most exciting phase of its development. Over the next few years there will be a 

change of emphasis in clinical research from whole patient physiology and pathology 

to the definition of disease at the cellular and molecular level. More and more 

diseases are being identified which are due to either single gene or multiple gene 

disorders. Animal models for these diseases are being created, which provide either 

an understanding of the pathogenesis of disease itself or the opportunity to evaluate 

therapeutic strategies. As befits the position of purines and pyrimidines at the centre 

of biochemistry, there has been steady scientific investigation suggesting their 

involvement in many human diseases. 

1.2 Purine nucleotide metabolism 

Nucleotides play an important role in a variety of metabolic functions in all 

living organisms, including (1) energy metabolism (2) as monomeric units of nucleic 

acids (3) as physiological mediators such as cAMP (4) as components of coenzymes 

and (5) as activated intermediates. Nucleotide metabolism therefore has an influence 

on most cellular reactions, even in non-dividing cells and in consequence, many 

clinical symptoms result from disorders of nucleotide metabolism (Wada, 1988). 

Nucleotides are divided into two classes-purines and pyrimidines. These nucleotides 

may be synthesized either by de novo biosynthesis or by a salvage pathway (Figure 

1.1). In humans, all the enzymes of purine metabolism are found in the cytoplasm. 

The commitment step in purine nucleotide de novo biosynthesis is the formation of 

5-phosphoribosylamine. The PRPP (phosphoribosyl pyrophosphate) amidotransferase, 

which catalyses this reaction, appears to be controlled through an allosteric mechanism 

that depends on the interaction of PRPP concentration. The pyrophosphate group of 

PRPP is displaced by the amide group of glutamine with an inversion to yield the f-D 

configuration found in all nucleotides. PRPP also functions in several other 

kA 



Figure 1.1 The metabolic pathway of purine nucleotides. 5'-NT, 5'-nucleotidase; 

AK, adenosine kinase; AMP, adenosine 5'-monophosphate; APRT, adenine 

phosphoribosyltransferase; AS, adenylosuccinate; AS-L, adenylosuccinate lyase; AS-S, 

adenylosuccinate synthetase; DA, deaminase; DH, dehydrogenase; FH2, dihydrofolate; 

FH41  tetrahydrofolate; GMP, guanosine 5'-monophosphate; HPRT, hypoxanthine 

phosphoribosyltransferase; IMP, inosine 5-monophosphate; PNP, purine nucleoside 

phosphorylase; PRPP, phosphoribosyl pyrophosphate; R-5-P, ribose 5-phosphate; S, 

synthetase; XMP, xanthosine 5'-monophosphate; XO, xanthine oxidase. Blocking of 

xanthine oxidase by allopurinol and de novo biosynthesis by aminopterin is indicated 

by the parallel broken lines. 

3 



ppp —+ 5-phosphoribosylarnine 

1, FH 

j( 	
:::::::: Aminopterin 

1" FHJ 

denovo synthesis 	I 
AMP-DA 

salvage pathway 

GMP-S 	 IMP-OH 	AS-S 	 AS-L 
GMP 	 XMP 4 	IMP 	w AS 	 AMP 

I,,  4 	 ______ I 	 (in 	
Aioskie-a4 

	

Guanosine 	
osine __________ Adenosine 

	

Guanine 	 Hypoxanthine 	 Adenine 

Ailopurinol 

Xanthine 

I 
AllOpurinol 

Unso 
Uric acid 	 Allantoin 

NOT IN HUMANS 



ribosylating reactions, including pyrimidine nucleotide synthesis, NAD synthesis, 

histidine biosynthesis, and the conversion of purines to purine nucleotides via the 

purine salvage pathway. The first atoms incorporated into the purine ring are derived 

from glycine. The enzyme glycinamide ribotide synthetase catalyses the addition of 

glycine to 5-phosphoribosylamine. ATP provides the driving force, probably by 

forming a high-energy glycyl phosphate intermediate. The reaction is reversible, 

however, since the product, glycine amide ribotide, is a high-energy compound. 

Glycine amide ribotide is formylated at the expense of 5, 10-methenyl tetrahydrofo late, 

which can in turn be formed from formic acid by way of 10-formyl tetrahydrofolate. 

Another amination reaction with glutamine as the nitrogen donor allows the imidazole 

portion of the purine ring to be closed by an enzymatic reaction driven by ATP. The 

subsequent carboxylation reaction occurs on an enzyme that does not appear to contain 

biotin, even though the precursor, 5-aminoimidazole ribotide, accumulates in biotin-

deficient animals. The amination of this carboxyl group occurs in two steps in which 

aspartate is the nitrogen donor. The aspartate carbon atoms are released as fumarate, 

and 5-aminoimidazole-4-carboxamide ribotide is formed. Following the formylation 

of 5-aminoimidazole-4-carboxamide ribotide, the formylated intermediate, 5-

formy lam idoim idazole-4-carboxamide ribotide, undergoes enzymatic ring closure with 

the formation of IMP. Between the formation of 5-phosphoribosylamine and IMP, 

there is no known regulation step. However, regulation is present at the branch point 

of IMP to GMP and IMP to AMP. The two enzymes which utilise IMP at this branch 

point, IMP dehydrogenase and adenylosuccinate synthetase, have similar Km's for 

IMP. AMP is a competitive inhibitor of adenylosuccinate synthetase, while GMP is 

a competitive inhibitor of IMP dehydrogenase. Two levels of control are therefore in 

effect at the IMP branch point. GTP serves as an energy source for the 

adenylosuccinate synthetase reaction, while AMP is a competitive inhibitor of this 

step; and ATP serves as the energy source in conversion of XMP to GMP, while GMP 

acts as an inhibitor of XMP formation. 

The ribonucleotides and deoxyribonucleotides derived from the hydrolysis of 

nucleic acids are catabolised to form the corresponding sugar, phosphate, and purine 

El 



and pyrimidine bases. In humans and other primates the purine bases are catabolised 

to uric acid. AMP deaminase catalyses the synthesis of inosine 5-monophosphate, 

and 5-nucleotidase converts IMP and GMP to their respective ribonucleosides or 

deoxyribonucleosides. These in turn are converted to the free bases by the enzyme 

purine nucleoside phosphorylase. Mechanistically, this enzyme acts like glycogen 

phosphorylase, as it removes a sugar 1-phosphate derivative through a phosphorolytic 

reaction utilising inorganic phosphate. The bases guanine and hypoxanthine have two 

fates; they may be reconverted to their 5'-ribonucleotides or they may be converted 

to xanthine. The oxidation of hypoxanthine to xanthine and subsequent oxidation to 

uric acid are catalysed by xanthine oxidase. 

From a quantitative point of view, the most important pathways for the 

generation of nucleotides are the de novo synthesis of purine and pyrimidine rings. 

Cellular metabolism, under normal conditions, is also influenced by the presence of 

the so-called "salvage pathways" for bases. Free purines can react directly with PRPP 

to yield nucleoside 5-monophosphates resulting in salvage of pre-synthesized purines. 

There are several well-known enzymes that play this role in salvage pathways, such 

as adenine phosphoribosyl transferase (APRT), and hypoxanthine-guanine 

phosphoribosyl transferase (HPRT). 

13 Hypoxanthine guanine phosphoribosyl transferase 

1.3.1 Enzyme and gene 

Hypoxanthine guanine phosphoribosyl transferase (HPRT; IMP pyrophosphate 

phosphoribosyltransferase; EC 2.4.2.8) is the key enzyme in the purine salvage 

pathway. It is expressed in all mammalian cells as a "housekeeping enzyme" and 

occurs at an elevated level in the basal ganglia of the brain. The enzyme occurs in 

low abundance, constituting between 0.005 and 0.04% of total cellular protein in the 

cytoplasm and is composed of four identical subunits of 217 amino acids with a 

molecular weight of 24,500 (Wilson et al., 1982). HPRT cDNA sequences were first 

isolated from a mouse neuroblastoma HPRT revertant cell line, NBR4 that had 

amplified the HPRT locus (Melton, 1981), and were analysed by Brennand et al. 
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(1982) and Konecki et al. (1982). Using mouse HPRT cDNA as probes, the HPRT 

cDNA sequences of Chinese hamster and human have been isolated and published 

(Konecki et al., 1982; Brennand et al., 1983). The coding sequences of mouse, human 

and Chinese hamster have greater than 90% homology at the nucleic acid level. There 

are only seven positions where the amino acid sequences of mouse and human HPRT 

differ. A high level of nucleotide sequence conservation between species is also found 

in the 3 untranslated regions of the HPRT cDNA, suggesting a role in gene 

expression for this region. HPRT cDNAs have been used as hybridisation probes to 

isolate the HPRT genes which consist of nine exons spanning 33 kb in the mouse 

(Melton et al., 1984), and 42 kb humans (Kim et al., 1986; Patel et al., 1986)(Figure 

1.2). Although the human gene is larger than the mouse gene, the exon sizes are the 

same except for exons 1 and 9 (Melton, 1987). The complete sequence of the 57-kb-

human HPRT locus including 1676 bp 5' to exon 1 and 15,238 bp 3 to exon 9 has 

been determined using automated fluorescent DNA sequencing (Edwards et al., 1990). 

13.2 Promoter and its divergent characteristics 

The use of Si nuclease protection and primer extension analyses have located 

the promoter of the mouse HPRT gene (Melton et al., 1984). Like many other 

housekeeping genes, HPRT has its 5' end located in a GC-rich area of the genome and 

produces transcripts with heterogeneous initiation sites. The first 100 bp upstream of 

the major transcription initiation site, designed +1, in the mouse are 80% GC rich. 

There are no sequence matches for either the TATA box, usually located 20 to 30 bp 

upstream of the transcription initiation site and thought to be responsible for 

positioning of transcription initiation (Corden et al., 1980), or the CAAT box, 

typically located at around -80 and believed to play a role in the frequency of 

initiation (Benoist et al., 1980). Analysis of the nucleotide sequence of the promoter 

region revealed a complex pattern of direct repeats. There are two imperfect direct 

18 bp repeats and a third incomplete repeat between nucleotide positions -80 and -15. 

In the region between 30 and 60 bp upstream of the major transcription initiation site, 

there are two 12 bp perfect repeats in tandem (Melton, 1987) (Figure 1.3). HPRT 

minigenes have been constructed to study HPRT expression in cultured cells. The 



Figure 1.2 Organisation and restriction maps of the human and mouse HPRT genes. 

The human and mouse genes are drawn to the same scale, with the exons depicted as 

numbered vertical bars. The size of each intervening sequence (in kb) is also 

indicated. Selected restriction sites within the two genes are shown and for the 

mouse, the size of each restriction fragment is given. (Adapted from Melton, 1987) 
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Figure 1.3 Structure of the mouse HPRT promoter region. The sequence is 

numbered from the main transcription initiation site (+1). The 145 bp first exon is 

underlined and within it the transcription initiation sites at +28 and +34 are indicated. 

Three asterisks indicate the translation initiating codon. The 18 bp imperfect direct 

repeats and the third repeat of part of central section are boxed. The 12 bp direct 

repeats are underlined. Three matches to the consensus Spi binding site are heavily 

underlined. The sequence enclosed by the square bracket has been used as a synthetic 

promoter. The end points of 5 deletions used to map functional elements are 

indicated by a dot over the position of the first base present. The arrow indicates the 

5 boundary of the GC-rich region. (Adapted from Melton, 1987) 
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first HPRT minigene consisted of 845 bp of 5' flanking sequence fused onto the wild-

type human HPRT eDNA sequence and Chinese hamster 3' untranslated region 

(Melton et al., 1984). Other constructs derived from this were published later (Melton 

et al., 1986). The essential elements of the HPRT promoter have been characterised 

either by 5' deletional analysis of the minigene (Melton et al., 1986) or 3 deletional 

analysis of fusions with the neomycin phosphotransferase (neo) gene (Melton, 1987). 

It was shown from the 5' deletional analysis that it is possible to delete as far as 

nucleotide -39 and still retain greater than 30% activity assayed as [3H]-hypoxanthine 

incorporation and expressed relative to the undeleted minigene. Incorporation however 

decreased to 2.5% of the original value for the construct that was deleted to -27, 

suggesting that the 5' boundary of the mouse HPRT promoter is located between -39 

and -27. Deletions from the 3' end of the promoter region fused to a neo gene 

lacking its own promoter were assayed for the ability to transform cells to G418 

resistance. Deletion to -38 gave 40% survival in a colony forming assay compared 

to that of a construction containing HPRT sequences from -638 to +113 fused to the 

neo gene. The survival rate was reduced to 5% if the construct was deleted to -44 

from the 3' end of the HPRT promoter region. Thus the 5' boundary of the mouse 

HPRT promoter is located between -39 and -27 and the 3' boundary of the promoter 

is located between -38 and -44. That is, a region defined as essential by deletional 

analysis in one direction can be lost, without detrimental effect, in deletions 

proceeding from the opposite direction. Consequently, it is believed that the mouse 

HPRT promoter is functionally duplicated (Melton, 1987). For this reason, the 34-bp 

'core '  promoter sequence between position -49 to -16, was synthesized (termed the 

synthetic promoter) and used for further studies. 

RNA polymerase II is responsible for mRNA synthesis. Transcription factor 

Spi is a protein that binds to specific sequences and activates RNA synthesis. It 

enhances transcription by RNA polymerase II 10- to 50-fold from a select group of 

promoters that contain at least one properly positioned Spl motif, GGGCGG 

(Kadonaga et al., 1986). Several cellular Spi-responsive promoters, such as those of 

the mouse dihydrofolate reductase (DFHR) gene and human metallothionein gene, 



have been studied by assaying transcription in vitro and by DNase foot-printing 

experiments. There are three good matches to the Spi consensus-binding site in the 

region 100 bp immediately upstream of the main initiation site of the mouse HPRT 

gene (Melton et al., 1986). One of these three matches is located between -36 and - 

44, a region demonstrated to be part of the promoter by 3' deletion analysis. Another 

Spi site, located in the region of -24 to -33 may also play a significant role as 

indicated in the 5' deletion studies. A similar situation was also found in the human 

HPRT promoter region which contains six Spi recognition sites (Patel et al., 1986; 

Kim et al., 1986). Housekeeping genes are usually defined as genes that are 

expressed in all cell types. In conclusion, the HPRT gene displays many typical 

characteristics of housekeeping genes such as an upstream GC-rich region and lacking 

TATA and CA11I' boxes. 

Bidirectional transcription is a property that has been demonstrated for some 

housekeeping promoters. That is, a single promoter directing the transcription of two 

RNA's in opposite direction to each other and on opposite DNA strands. Two groups 

independently demonstrated that sequences upstream of the DFHR promoter were 

transcribed. The DFHR gene has two classes of divergent transcripts, one is a 

polyadenylated mRNA and the other is a non-polyadenylated small nuclear RNA 

(Crouse et al., 1985; Farnham et al., 1985). More recently, Linton et al. (1989) have 

cloned cDNAs corresponding to the divergent transcripts of the DHFR gene, which 

they noted have sequence similarity with bacterial genes involved in mismatch repair. 

Furthermore, studies of CpG rich islands surrounding the 5' ends of housekeeping 

genes and of several tissue specific genes, have identified HpaII tiny fragments (HTF) 

that mediate divergent transcription (Lavia et aL, 1987). 

The similarities between the HPRT gene promoter and the DHFR gene 

promoter suggest that the promoter of the HPRT gene may also mediate bidirectional 

transcription. 	Functional duplication within the HPRT promoter has been 

demonstrated by deletional and linker-substitution analysis (McKnight and Kingsbury, 

1982; Melton et al., 1986). Melton (1987) showed that a 34-bp fragment, consisting 
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of the sequence between -49 and -16 of the mouse HPRT promoter, can act 

bidirectionally and proposed a model by which housekeeping promoters may initiate 

transcription in both directions. When the 34-bp synthetic promoter element was 

linked to a promoterless HPRT minigene or neo gene, it directed transcription which 

initiated from the normal sites and was unaffected by a subtle change in spacing 

between the promoter and initiation sites. The same results were obtained irrespective 

of the orientation of the synthetic promoter element to the adjacent gene. Further 

evidence is derived from the effective transfection of a construct consisting of the 34-

bp synthetic promoter sandwiched between a promoterless HPRT minigene and a 

promoterless neo gene, into a HPRT-deficient cell line (Figure 1.4). These cells were 

effectively G418 and HAT resistant, indicating the expression of both neo and HPRT 

genes (Melton et al., unpublished observation). The bidirectional function of the 

HPRT promoter was also demonstrated by Johnson and Friedmann (1990) by the 

expression of luciferase reporter genes in cells transfected with constructs controlled 

by a human 376-bp HPRT promoter fragment in both orientations. Since a naturally 

occurring divergent transcript from the HPRT promoter has not been detected, the 

significance of this bidirectional promoter activity remains unclear. 

1.3.3 Introns as regulation elements 

It has been demonstrated in transgenic mice that intron-containing constructs 

of several genes result in higher levels of mRNA production compared to 

corresponding intron-deficient constructions, suggesting that introns play a regulatory 

role (Brinster et al., 1988). HPRT minigene expression in HPRT deficient cells or 

antisense sequence inhibition may allow us to identify the role played by introns in 

the regulation of HPRT expression. Ao et al. (1988) demonstrated that negation of 

HPRT expression from injected HPRT minigene DNA is mediated by simultaneous 

injection of HPRT antisense DNA. More recently, it has been demonstrated that 

antisense mouse HPRT RNA leads to an inhibition of HPRT synthesis in human and 

in mouse cells (Stout and Caskey, 1990). Reid et aL (1990) have constructed a series 

of human HPRT minigenes to address this question. They claimed that there are two 

elements which influence HPRT minigene expression in mouse HPRT-deficient 
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Figure 1.4 Constructions used for mouse HPRT gene expression studies. The 

structure of the mouse HPRT gene, with the nine exons depicted as vertical bars, is 

shown for comparison with the basic mouse HPRT minigene, pDWM1, which is 

cloned in plasmid pUC8. Note the different scales used for gene and minigene. Open 

boxes, HPRT coding sequence; closed boxes, untranslated regions; thick lines, HPRT 

flanking and intervening sequences; thin lines, vector sequence. Restriction sites: B, 

BamHI; Bg, BglII; H, Hindlil; P, PstI; R, EcoRI; S, Sal!; X, XhoI. 5' deletional 

derivatives of pDWM1 were assayed directly by measuring HPRT expression 

following introduction of the constructions into cultured cells. The effect of 3' 

deletions was analysed in constructions containing the neo transcription unit, under the 

control of 3' deleted HPRT promoter segments. The constructions containing the 

synthetic promoter element (Pr) are not drawn to scale and the restriction sites within 

minigene and neo modules are omitted. In the pDWM20 series the synthetic promoter 

is in its natural orientation (indicated by the arrow), with respect to the downstream 

gene; the element is inverted in pDWM21 constructions. The bidirectional promoter 

construct was derived from the pDWM1 by inserting the BamHI-BamHI fragment of 

neo coding region into its BglII-BamHI site. (Adapted from Melton, 1987 and 

unpublished data) 
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embryonic stem (ES) cells. An element located in intron 1 and another in intron 2 

were both indispensable for gene expression. This demonstration might not address 

the regulation of the human HPRT gene in vivo because the authentic HPRT promoter 

was replaced with the TK promoter and a mutant polyoma enhancer. Stout and 

Caskey (1990) suggested that a stretch of 373-bp from the junction of exon 1 and 

intron 1 was important in the antisense RNA inhibition assay. Furthermore, a 420-bp 

element from the first intron is required for efficient HPRT expression in ES cells 

(Figure 1.5). It has also been demonstrated that the intron 1 element plays a position-

and orientation-dependent role in stimulating HPRT mRNA synthesis in ES cells 

(Magin et al., 1992a). Based on the necessity of HPRT expression, a vector 

containing an HPRT minigene with the intron 1 element was constructed and served 

as a negative selection module to target the murine ERCC-1 gene in HPRT-deficient 

ES cells (Selfridge et al., 1992). 

13.4 X-chromosome inactivation and DNA methylation 

HPRT is located on the long arm of the mammalian X chromosome. Due to 

X-chromosome inactivation which occurs early in embryogenesis, only one copy of 

the HPRT gene is expressed in female mammalian cells. With the exception of the 

extraembryonic membranes, the decision of which of the two X-chromosomes to 

inactivate is made at random in individual cells and, once made, is stably transmitted 

to clonal descendants. In cells of the germ line, reactivation of the inactive X 

precedes meiosis. A discrete locus on the X-chromosome is responsible for the 

initiation of inactivation (Brown et al., 1991). Several reports indicated that DNA 

from the active X-chromosome was much more efficient in transforming HPRT 

deficient cells to HPRT expressing cells than that from the inactivated X-chromosome 

(Liskay and Evans, 1980; Chapman et al., 1982; Lester et al., 1982; Venolia and 

Gartler, 1983). DNA methylation, which results in modified cytosine residues in CG 

couplets, is considered to be part of the inactivation process. The region around the 

5 end of both the mouse and human HPRT genes is GC-rich and it was shown that 

methylation occurred at an Aval site in this region in female mouse DNA (Melton, 

1987). Using methylation sensitive enzymes, such as MspI, it has also been 
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Figure 1.5 Defining the role of the HPRT intron 1 element in ES cells. The position 

(closed bar) and orientation (arrowhead) of the 420-bp AvaI-PstI fragment from intron 

1 in a series of HPRT minigenes is shown. Numbered boxes, exon elements; open 

boxes, coding regions; closed boxes, untranslated regions; shaded box, promoter 

region; open bars, intervening and flanking sequences; closed bar, control element 

within intron 1. Notes. a  Plasmid pDWM110 was derived by removing a PstI-PvuII 

fragment from the intron 1 region and a PvuII-EcoRI fragment from the intron 2 

region of plasmid pDWM100 (Thompson et al., 1989). Plasmid pDWM111 was 

constructed in the same way except that the intron 2 region was further reduced in 

size. Plasmid pDWM112 was constructed in the same way as pDWM110, except that 

the exon 1 module only extended to the Aval site and lacked the 420-bp AvaI-PstI 

fragment. The 420-hp AvaI-PstI fragment from intron 1 was inserted into the unique 

BamHI site in the 5 polylinker sequence of pDWM112 to produce plasmids 

pDWM117 and pDWM118. The 420-bp AvaI-PstI fragment was cloned into the 

unique NcoI site within intron 8 of pDWM112 to produce plasmids pDWM121 and 

pDWM122. Plasmid pDWM120 was constructed by removing the 420-hp AvaI-PstI 

fragment from pDWM111 leaving a BglII linker in its place and then reinserting the 

fragment, in the opposite orientation, into the unique BglII site. b  [3H]-hypoxanthine 

incorporated/2.5 x 106  HPRT-deficient ES cells electroporated/8.5 nM DNA expressed 

as % of the value with pDWM111 DNA. Values shown are the average from two 

separate determinations or, where n > 2, the standard deviation, is also shown. 

(Adapted from Magin et al., 1992) 

14 



MINIGENE a EXPRESSION 

1 	2 	3-78 	9 ES(%)b 
pDWM110 85±8 

UIKJ=LII1=rJ=LI 	pDWM112 3±2 

pDWM117 4 

L[J=LII=rYI 	pDWM118 5 

pDWM121 2 

pDWM122 3 

I}III1HJHII 	pDWM111 100 

Ih}IIIIH}I1 	pDWM120 45±10 

POSITION AND ORIENTATION DEPENDENCE 

OF INTRON 1 ELEMENT 



demonstrated that several CpGs around the HPRT promoter are methylated on the 

inactive but not on the active X-chromosome (Yen et al., 1984; Lock et al., 1986; 

Wolf et al., 1984). A female patient with Lesch-Nyhan syndrome was demonstrated 

with a wild-type HPRT on the non-random inactive paternal X-chromosome and an 

HPRT mutation on the active X-chromosome (Ogasawara et al., 1989). Therefore, the 

HPRT gene provides a suitable system to study X-chromosome inactivation during 

development. 5-azacytidine, a potent inhibitor of DNA methylation (Mohandas et al., 

1981; Lester et al., 1982; Graves, 1982), has been used to induce reactivation of the 

selectable HPRT gene on the inactive chromosome in a diploid female cell line. 

Using methylation-sensitive restriction enzymes, Driscol and Migeon (1990) found that 

the MspI sites in CpG islands of the HPRT gene were unmethylated in germ-cell 

fractions of fetal ovary and adult testis and suggested that the reversibility of X 

inactivation occurred in those tissues. In the process of mouse embryonic 

development, it was found that the inactivation of the HPRT gene on the inactive X-

chromosome occurred several days before methylation was detectable in the GC-rich 

island (Lock et al., 1987). Kratzer et al. (1983) claimed that inactivation was not 

strongly associated with methylation in the early extra-embryonic tissue. Recently, 

it was suggested that the female germ cells remain unmethylated, but that methylation 

in male germ cells occurs postnatally, prior to or during the early stages of 

spermatogenesis (Driscol and Migeon, 1990). Hence HPRT has proved to be useful 

and will continue to be of use in addressing the complex question of methylation and 

its role in controlling gene transcription. In addition, the HPRT gene also acts as a 

model in studies of mutagenesis rate (Grant and Worton, 1989) and DNA synthesis 

asynchronism (Schmidt and Migeon, 1990) between the active and inactive X-

chromosome. 

1.3.5. HPRT as a tool for screening mutagens and carcinogens 

Purine analogues, such as 8-azaguanine, 8-azahypoxanthine and 6-thioguanine, 

have been used for isolating HPRT-deficient cells for 3 decades (Szybalski and Smith, 

1959; Szybalski, 1992). Analogues of folic acid such as aminopterin and methotrexate 

are powerful inhibitors of dihydrofolate reductase which converts folic acid to 
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dihydrofolate and subsequently to tetrahydrofolate. The inhibition of dihydrofolate 

reductase would be expected to affect every reaction requiring folate coenzyme. 

Purine nucleotide biosynthesis and thymidylate synthetase requiring 5,10-methylene 

tetrahydrofolate as a coenzyme are inhibited by aminopterin. The hypoxanthine-

aminopterin-thymidine (HAY) selective medium was designed to select for HPRT 

dependence by blocking the purine de novo synthesis and for thymidine kinase 

dependence by blocking thymidylate synthetase (Szybalska and Szybalski, 1962). 

HAT medium and 6-thioguanine respectively allow selection both for and against 

HPRT. X-linkage means that in male (XY) and X-inactivated female (XX) cells, 

selection depends on a single gene copy. Thus, HPRT provides the most convenient 

system for somatic cell genetics. 

To avoid exposure to carcinogens, it is necessary to examine the carcinogenic 

properties of compounds or drugs. The identification of carcinogens is time-

consuming, costly and usually requires animal experiments. The close correlation 

between carcinogen and mutagen is well known (Temin, 1988). It is therefore 

sensible to screen first by using mutagen tests and confirm by a carcinogen test if 

required. A mutagen test system has been developed by using Salmonella 

typhimurium as the test organism (Ames et al., 1973; Maron and Ames, 1983). 

Although the incubation of rat liver extracts was included in this test system to 

simulate the condition of mammalian metabolism, incorrect classification is possible 

due to the different metabolism of prokaryotes and eucaryotes. For example, a 

potential antidepressant drug, U-48753, was subjected to genetic toxicity assays and 

found negative in the Ames test but positive in the CHO/HPRT assay (Aaron et al., 

1989a). Therefore, another system using eukaryotes as test organisms would be a 

better alternative. Taking advantage of bidirectional selection and X-linkage, a 

quantitative assay of mutation induction at the HPRT locus in Chinese hamster ovary 

(CHO) cells has been introduced and routinely used in some pharmaceutical 

companies for the screening of drugs before marketing (O'Neill et al., 1977; Aaron 

et al., 1989b). 
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1.4 Inborn errors of purine metabolism 

1.4.1 Inborn errors of metabolism 

Elucidation of an inherited defect in an enzyme which is part of a 

well-understood metabolic pathway, often allows a clear description of how the 

genetic defect produces its manifold clinical effects. At its simplest, the clinical 

manifestations of an enzyme defect can be seen as a combination of deficiency of 

substances beyond the block in the metabolic pathway and accumulation of substances 

prior to the block. Sometimes alternative metabolic pathways will allow the block to 

be bypassed, however, this compensatory mechanism may fail under conditions of 

stress. Inborn errors of purine metabolism can be divided into 3 types according to 

their pathways, (1) the defects in biosynthesis, such as PRPP synthesis abnormality 

and adenylosuccinase deficiency, (2) the defects in catabolic pathway including AMP 

deaminase deficiency, adenosine deaminase (ADA) deficiency, purine nucleoside 

phosphorylase (PNP) deficiency, and xanthine oxidase deficiency and, (3) defects in 

the salvage pathway, such as HPRT deficiency and APRT deficiency (van der Berghe, 

1990). (see Table 1.1.) 

PRPP synthetase converts a-ribose-5-phosphate to 5-phospho-ct-ribosyl-1-

pyrophosphate, which is the start of purine de novo synthesis. A defect in regulation 

of PRPP synthesis leads to the superactivity of PRPP synthetase and an increase in 

purine de novo synthesis, and uric acid precipitation leading to gouty arthritis is 

observed subsequently. Adenylosuccinase cleaves the C-N bond of adenylosuccinate, 

yielding AMP and fumarate. Adenylosuccinase deficiency results in the accumulation 

in cerebrospinal fluid, plasma and urine of two normally undetectable compounds, 

succinylaminoimidazole carboxamide riboside and succinyladenosine. 	These 

succinylpurines are the products of the dephosphorylation, by cytosolic 5-nucleotidase 

of the two substrates of the enzyme. Patients with adenylosuccinase deficiency suffer 

from psychomotor retardation, in severe cases displaying autistic features such as 

failure to make eye-to-eye contact, repetitive movements and manipulations of objects, 

and occurrence of temper tantrums upon interference with repetitive behaviour. 
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Table 1.1 Clinical disorders of purine metabolism. 

Biochemical disorder 

PRPP synthetase superactivity 

Adenylosuccinase deficiency 

AMP deaminase deficiency 

Adenosine deaminase deficiency 

PNPb deficiency 

Xanthine oxidase deficiency 

HPRT partial deficiency 

HPRT deficiency 

APRT deficiency 

Primary symptom 

Gouty arthritis 

Mental retardation 

Muscular weakness 

SCID 

Immunodeficiency 

Mental retardation 

Gouty arthritis 

Self mutilation 

Kidney stone 

Reference 

Becker et al. 1986 

Jaeken & Berghe 1984 

Fishbein et al. 1978 

Giblett et al. 1972 

Giblett et al. 1975 

Dent & Philpot 1954 

Kelley et al. 1969 

Lesch & Nyhan 1964 

Van Acker et al. 1977 

Severe combined immunodeficiency disease 

Purine nucleoside phosphorylase 



AMP deaminase hydrolyses AMP into IMP and NH3. By removing 

AMP,which was formed during exercise, the reconversion of ADP into ATP is 

stimulated and glycolysis is promoted in the presence of IMP and NH3. The 

symptoms of AMP deaminase deficiency are muscular weakness, fatigue, cramps, or 

myalgias following moderate to vigorous exercise. Adenosine deaminase catalyses the 

conversion of adenosine to inosine and deoxyadenosine to deoxyinosine. Purine 

nucleoside phosphorylase catalyses a phosphorylytic cleavage of inosine and 

deoxyinosine to yield hypoxanthine and either ribose 1-phosphate or deoxyribose 1-

phosphate. Defects in these enzymes should result in the accumulation of adenosine, 

deoxyadenosine, and, in the case of purine nucleoside phosphorylase, inosine. Patients 

with ADA or PNP deficiency suffer from a profound impairment of both humoral and 

cellular immunity, known as severe combined immunodeficiency disease. Xanthine 

oxidase converts hypoxanthine to xanthine and subsequently to uric acid. Xanthine 

oxidase deficiency can be completely asymptomatic and is discovered fortuitously by 

routine measurement of plasma uric acid. However, in about one-third of the cases, 

xanthine stones are formed. Abnormalities of the purine salvage pathway including 

Lesch-Nyhan syndrome and gouty arthritis are discussed below. 

1.4.2 Gouty arthritis 

Gout is associated with either increased formation of uric acid or its decreased 

renal excretion. Its incidence is relatively high, occurring in about 0.3 % of the 

population. Gout is classified into two broad types: primary and secondary. Primary 

gout, of which there are several subtypes, is inherited. The familial incidence of all 

cases of gout may be as high as 75 % to 80 %. Secondary gout is brought on by a 

variety of disorders such as leukaemia and polycythemia (increase in RBC mass) or 

by antimetabolites used in the treatment of cancer. Primary gout is most often found 

in men over 30 years of age. When women are affected, the onset is usually 

postmenopausal. Secondary gout occurs in both sexes and at younger ages. It is 

believed that most cases of primary gout are caused by excessive purine synthesis 

rather than increased purine nucleotide breakdown. Consistent with this view is the 

observation that some patients with gout have PRPP amidotransferase that is resistant 

19 



to feedback inhibition by purine nucleotides. The regulatory sites on this enzyme are 

similar to those of other allosteric enzymes in that they are separate from the catalytic 

sites. Consequently, a defect in a regulatory site as a result of a mutation could lead 

to the overproduction of purines as seen in gout. Snyder et al. (1989) examined 3 

brothers who developed acute gouty arthritis at ages 16,20, and 26 years and found 

increased levels of plasma urate. Erythrocyte HPRT activity was less than 1% of 

normal and adenine phosphoribosyltransferase activity increased 2-3 fold. 

Lymphoblasts from these patients had 0.9-1.6% of control HPRT activity which was 

8-fold more labile than control activity at 75 °C but had normal amounts of the 

expected 1.6-kb mRNA by Northern blot analysis. A better genetic basis of HPRT 

deficiency correlating to gout has been identified by nucleotide sequence analysis of 

HPRT cDNAs cloned from patients with gout (Davidson et al., 1989a). 

1.4.3 Lesch-Nyhan syndrome 

Lesch-Nyhan syndrome, first described by Lesch and Nyhan in 1964, is a rare 

sex-linked recessive disease with an incidence rate of about 1 in 100,000. The 

syndrome is usually manifest in young boys displaying delayed mental retardation at 

three to four months of age. The specific character of Lesch-Nyhan syndrome is 

compulsive self-injurious behaviour, and onset of this can be as early as 1 year or as 

late as 16 years of age. It has been demonstrated that all patients lack HPRT activity 

in their cells by both biochemical and molecular biological analyses (Davidson et al., 

1988a,b,c; 1989b; Fujimori et al., 1989; Gibbs et al., 1989; Keough et al., 1988; 

Sinnett et al., 1988). 

Although there is no clear direct evidence to explain the connection between 

HPRT deficiency and the behavioural abnormality of Lesch-Nyhan syndrome patients, 

some experiments indirectly demonstrated that this correlation is the basis for the 

syndrome. Rats pretreated with low doses of clonidine, an antihypertensive drug has 

been reported to possess marked sedative effects through stimulating central 

noradrenergic receptors, and administered with caffeine produced a high frequency of 

self-biting behaviour. Clonidine was less effective in potentiating amphetamine 
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induced self-biting (Mueller and Nyhan, 1983). The chemical structure of caffeine is 

very similar to purines and it may play an antagonistic role in purine metabolism, 

when administered at high doses, to produce the observed abnormal behaviour. The 

dopamine metabolism of HPRT-deficient variants of PC12 pheochromacytoma cells, 

a dopaminergic cell line, is not affected after regaining HPRT activity by virtue of 

transformation with a recombinant retrovirus containing the human cDNA for HPRT 

(Bitler and Howard, 1986). This in vitro study does not correlate with data from 

patients where levels of the neurotransmitter dopamine in the basal ganglia of Lesch-

Nyhan patients are consistently lower than 30% of normal levels (Rosenbiom et al., 

1967). Biochemical studies found that synthesis of dopamine requires biopterin 

which is a purine derivative. This implies that dopamine synthesis may directly or 

indirectly be linked to purine metabolism. In addition, microinjection of rats with a 

dopamine agonist into the intrastriatal area elicits self-biting behaviour (Goldstein, 

1989). These experiments suggest the imbalance of purine metabolism induced by 

HPRT deficiency would consequently influence the production of the neurotransmitter 

dopamine and hence cause abnormal self-mutilation behaviour. 

Hypoxanthine and xanthine concentrations in plasma, cerebrospinal fluid and 

urine of Lesch-Nyhan syndrome patients with and without allopurinol (a xanthine 

oxidase inhibitor which prevents the accumulation of uric acid) treatment have been 

examined by using high performance liquid chromatography. Accumulation of 

hypoxanthine was more marked in urine and in cerebrospinal fluid than in plasma, this 

was consistent with the most metabolically active tissue for HPRT, brain, showing the 

most marked functional changes in its absence. The function of HPRT was suggested 

to be the recycling of hypoxanthine which is released from tissues in increasing 

quantities as energy use and ATP 'turnover' in the tissue increases (Harkness et al., 

1988). Some laboratories began to use microencapsulated xanthine oxidase as an 

experimental therapy in Lesch-Nyhan disease (Palmour et al., 1989). This attempt to 

decrease the metabolic accumulation of hypoxanthine may have failed due to the 

normal absence of xanthine oxidase in the central nervous system (Lopez et al., 1989). 
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1.4.4 Transgenic animal model for Lesch-Nyhan syndrome 

In an attempt to produce a genetic model for Lesch-Nyhan syndrome, two 

groups independently used the embryonic stem (ES) cell system and HPRT-deficient 

ES cells selected in culture to produce HPRT-deficient mice (Hooper et aL, 1987; 

Kuehn et aL, 1987). These were the first demonstrations that ES cells could be used 

to generate animals with the same genetic alteration associated with a human inherited 

disease. Surprisingly, the HPRT-deficient mice showed no evidence of spontaneous 

self-mutilation, no detectable motor impairments in tests to monitor dysfunction of the 

basal ganglia, and a normal response to apomorphine which is a dopamine receptor 

agonist that could induce stereotyped behaviour (Dunnett et al., 1989; Finger et al., 

1988). Administration of high doses of amphetamine, which stimulates release and 

inhibits uptake of monoamine neurotransmitters, did cause significantly increased 

stereotypic and locomotor behaviour in HPRT-deficient mice compared to control 

animals (Jinnah et al., 1991). In addition, spontaneous behaviour alteration was 

observed in old (22-24 months) HPRT-deficient mice which developed trauma to ears 

and flanks caused by overgrooming (Williamson et al., 1992a). These results 

suggested that HPRT-deficient mice do have the potential to serve as a good animal 

model for Lesch-Nyhan syndrome. 

Differences in purine metabolism between rodents and man could be 

responsible for the different consequences of HPRT deficiency (Figure 1.1). It has 

been suggested that uricase, which is present in rodents, but not in primates, and 

which catabolises uric acid to allantoin, may prevent the accumulation of neurotoxic 

levels of uric acid in HPRT-deficient mice. This explanation for the failure to observe 

self injury behaviour in HPRT-deficient mice is not compatible with the inability of 

allopurinol (a xanthine oxidase inhibitor which prevents the accumulation of uric acid) 

to improve the condition of Lesch-Nyhan syndrome patients. In addition, the 

hypothesis that accumulation of neurotoxic uric acid during brain development does 

not happen in rodents was weakened by the observation of low xanthine oxidase 

activity in brain. A second possibility is that the regulation of the nucleotide pool 

differs between rodents and humans. Compared to man, very little circulating 
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hypoxanthine is salvaged by HPRT in wild-type mice (Moyer and Henderson, 1983), 

suggesting that the mouse is less dependent on HPRT than man to maintain purine 

levels and as a result should be less affected by its loss. The reported ratio of the 

activities of the two key enzymes in the purine salvage pathway, HPRT/APRT, are 

quite different between rodents and humans; 1.86 in whole brain extract from 14-day-

old neonatal mice and 11.66-51.38 in brain tissue of human autopsy (Brosh et at., 

1990; Rosenbloom et al., 1967). 

1.5 APRT and clinical symptoms of its deficiency 

The mammalian adenine phosphoribosyltransferase (APRT; AMP 

pyrophosphate phosphoribosyltransferase; EC 2.4.2.7), which like HPRT is a member 

of a family of phosphoribosyltransferases, is a component of the purine salvage 

pathway that catalyses the magnesium-dependent transfer of the ribose-5-phosphate 

moiety of 5-phosphoribosyl-1-pyrophosphate to the 9 position of purine base adenine 

to form AMP. This occurs in all tissues examined with highest specific activity in 

nucleated cells. Mammalian APRT is found exclusively in the cytoplasm, while in 

bacteria APRT activity appears to be loosely associated with the cell membrane in the 

periplasmic space. The native human APRT enzyme has a molecular weight of 

38,200 and is composed of 3 subunits of 143 aa with molecular weight 18,000 which 

appear to be associated by noncovalent forces (Thomas et al., 1973; Holden et al., 

1979). Cells deficient in APRT can be selected by incubation with 2,6-diaminopurine 

(DAP) that is toxic to cells in the presence of APRT. The antibiotic alanosine has 

been shown to act as an aspartate analog and prevent the formation of AMP from 

IMP, probably by inhibiting adenylosuccinate synthetase. Alanosine interferes to a 

lesser extent with formation of UMP by inhibiting aspartate transcarbamylase. The 

action of alanosine appears specific for reactions involving the condensation of 

aspartate with a carbon atom adjacent to a nitrogen. In the presence of alanosine, 

cells should be dependent upon AMP synthesized either from exogenous adenine via 

APRT, or from exogenous adenosine via adenosine kinase (Kusano et aL, 1971). 

Murine Ltkaprr cells were selected and maintained in medium supplemented with 

diaminopurine at 50 4ug!ml (Wigler et al., 1979b), which provided the demonstration 
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of DNA mediated transfer of the gene coding for APRT against the selection of 

alanosine and adenine (Wigler et al., 1979a). Therefore, by exploiting the capacity 

of a functional APRT gene to transform APRT-deficient recipient cells to an APRT 

phenotype, the Chinese hamster APRT gene in ?. Charon 4A was cloned and 

subsequently subcloned in pBR322 (Lowy et al., 1980). The isolation of human and 

mouse DNA coding for APRT was done by using a fragment of hamster APRT gene 

to screen a genomic library (Sikela et al., 1983; Dush et al., 1985). The functional 

human adenine phosphoribosyl transferase gene is < 2.6 kb in length and contains five 

exons. The amino acid sequence of APRT has been highly conserved throughout 

evolution. The human enzyme is 82% and 90% identical to the mouse and hamster 

respectively (Broderick et al., 1987). By means of somatic genetic methods and 

restriction fragment length polymorphism, the APRT gene was located on chromosome 

16 in man (Murray et al., 1984) and chromosome 8 in the mouse (Nesterova et al., 

1987). 

In APRT deficiency, adenine is oxidised by xanthine oxidase to the highly 

insoluble and nephrotoxic derivative, 2,8-dihydroxyadenine. The accumulation of this 

compound in the kidney can lead to stone formation and eventual renal failure. There 

are two different types of inherited APRT deficiency which have been described. In 

type I APRT deficiency, enzyme activity is practically undetectable either in vivo or 

in vitro. Type I deficiency is seen predominantly in Caucasians but also in Japan. 

Type I patients are homozygotes or compound heterozygotes for a variety of null 

alleles collectively designated APRT*QO.  Type II deficiency, in which there is 

complete enzyme deficiency in vivo but only partial deficiency in cell extracts, has 

been found only in Japan. Type II patients are homozygotes or compound 

heterozygotes for the APRT*J  missense mutation in exon 5 (Sahota et al., 1991a,b). 

1.6 Transgenic mice as animal models 

A transgenic animal is characterised by the presence of foreign DNA sequences 

integrated in the genome by laboratory techniques. The first transgenic mice were 

produced by microinjecting SV40 viral DNA into the blastocoel cavity of early 
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embryos (Jaenisch and Mintz, 1974). Subsequently, transgenic mice were produced 

by exposing early embryos to infectious retroviruses (Jaenisch, 1976). The majority 

of transgenic animals have since been generated by pronuclear injection with linear 

DNA (Gordon et aL, 1980). Another approach involves transfection of DNA into 

totipotent teratocarcinoma cells, followed by injection of selected cells into the 

blastocyst; alternatively, nuclei from such cells can be introduced into fertilised eggs 

from which the pronuclei have been removed (McGrath and Solter, 1983). Foreign 

DNA introduced by one of the above routes integrates into the chromosomal DNA of 

mice and is carried in germ cells as well as somatic cells. The efficiency of producing 

transgenic mice averages about 25% of live births when linear molecules are 

microinjected (Gordon et al., 1980). A comparable efficiency is possible with viral 

vectors when they are used to inject preimplantation embryos. However, although the 

conventional approach of generating transgenic animals has led to important 

conclusions, it suffers from restrictions inherently associated with the methodology. 

Firstly, the copy number of the injected gene and, consequently that of its product 

cannot be controlled which may lead to alterations never observed under the 

appropriate gene dosage. Secondly, the injected gene copies integrate randomly into 

the host genome. This may either cause unexpected mutations in the host or modulate 

the expression of the introduced gene by involving dominant control elements of the 

host chromatin found close to the integration site. The way to improve the control of 

transgene expression is to introduce an opportunity for early selection of transgenic 

phenotypes by manipulating the gene in cultured cells. The main advantages of cell 

lines over embryos as targets for gene transfer are that cells whose genomes have been 

identically altered could be generated by screening and cloning and that the full range 

of somatic cell genetic techniques can be employed. 

Embryologists have been fascinated for a long time with the complex 

mechanism underlying the developmental program of multicellular organisms. In 

mouse embryology, in vitro models have been a prerequisite for understanding the 

molecular processes during development. One major outcome was the establishment 

of embryonic stem (ES) cell lines that retain their embryonic properties when cultured 
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under appropriate conditions (Martin, 1981; Evans and Kaufman, 1981). Embryonic 

stem cells are permanent cell lines established directly from the inner cell mass of the 

preimplantation embryo. These cells represent an ideal link between the situation in 

vitro and that in vivo, since they can develop into a variety of cell types upon in vitro 

differentiation and they participate in the formation of all tissues, including the germ 

line, when introduced into a blastocyst. Martin and Evans (1975) showed that 

pluripotent embryonic stem cells can be maintained in the undifferentiated state only 

by culture on feeder layers of growth-arrested embryonic fibroblasts. However, more 

recent data indicate that totipotency and inhibition of differentiation can be maintained 

in cell culture using medium supplemented with either medium conditioned by 

incubation with Buffalo Rat liver cells (Smith and Hooper, 1987) or leukaemia 

inhibition factor (LIF) (Pease and Williams, 1990). Leukaemia inhibition factor is a 

polypeptide growth factor with a seemingly remarkable range of biological actions in 

different tissue systems and its importance for embryo development has been 

confirmed by gene knock out. Males homozygous for LIF deficiency were fertile and 

able to sire offspring from both wild-type and heterozygous females, while none of 

the females homozygous for LIF deficiency became pregnant after repeated matings 

(Stewart et al., 1992). Hence, the isolation of ES cells from preimplantation embryos 

can also be completed without the cooperation of other cells (Pease et al., 1990; 

Nichols et al., 1990). 

ES cells provide a new alternative method to generate transgenic mice. DNA 

can be introduced into ES cells in culture and the desired transformants can be 

selected in vitro. By implanting the genetically altered pluripotent embryonic stem 

cells into mouse blastocysts where they can colonise all tissues, a chimeric animal is 

obtained. Transgenic animals that carry the transgene in all cells can be produced by 

breeding chimaeric mice which have viable germ cells derived from the injected ES 

cells (Bradley et al., 1984). To distinguish among the offspring derived from ES cell 

and embryo, the genes encoding for different coat colours or isoenzymes (e.g. glucose 

phosphate isomerase) can be used (Bradley, 1987). For example, mouse strain 

129/01a is homozygous for the white bellied agouti (An) allele, at the agouti locus and 
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homozygous for the chinchilla (ca) allele at the albino locus. The chinchilla allele 

confers a modification of the agouti phenotype to give a light brown (chinchilla) coat 

colour. It also carries a homozygous recessive allele known as pink-eyed dilute at a 

third locus (F), resulting in pink eyes. When 129/01a derived ES cells are injected 

into albino Balb/c embryos, this particular genetic constitution allows for easy visual 

identification of chimaeras and of the transmission of ES-derived germ cells from test 

matings of chimaeras. Mouse strain Balb/c is homozygous for the wild-type alleles 

at the A and P loci and for the recessive (c) allele at the albino locus resulting in 

white coat and pink eyes (Jackson, 1991). Chimaeras with chinchilla coat patches are 

easily distinguished from the albino host. If chimaeras are test mated to Balb/c, the 

offspring carrying ES-derived chromosomes (genetic constitution cs/c, p/F, A7A) will 

have grey coat and black eyes. Host embryo-derived pups are distinguished by their 

white coat and pink eyes (Selfridge et al., 1992). Hooper et al. (1987) selected 

spontaneous mutations at the HPRT locus by culturing male ES cells in medium 

containing 6-thioguanine, while Kuehn et al. (1987) obtained an HPRT deficient ES 

cell mutant by retroviral insertion. Both of them successfully constructed transgenic 

mouse strains lacking HPRT activity by blastocyst injection. In combination with the 

recent advances in gene targeting, ES cell techniques open up the possibility of 

making pre-determined alterations in the mouse genome in order to study gene 

function and regulation in vivo. 

1.7 Homologous recombination 

There are various methods, such as viral infection, lipofection, microinjection, 

calcium phosphate precipitation and electroporation, available for introducing 

exogenous DNA into mammalian cells which is then stably incorporated in the 

genome. When DNA molecules are introduced into the nuclei of mammalian cells by 

microinjection, about 20% of these cells stably integrate the exogenous DNA into the 

genome (Capecchi, 1980) and only 0.1% by electroporation under optimal conditions 

(Mansour et al., 1988). The integration sites are apparently distributed randomly over 

the whole genome and this type of DNA integration is called random integration 

(Mumane et al., 1990). The site of incorporation however could not be controlled 
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until Smithies et al. (1985) suggested the utilisation of homologous recombination. 

Uptake of introduced DNA by homologous recombination into the cell genome was 

first demonstrated by transformation of Saccharomyces cerevisiae (Hinnen et al., 

1978). Most transformants (revertants of the Leu2 mutation) were generated as a 

result of integration of the selectable Leu2 gene-plasmid construct at the Leu2 site due 

to homology. Twenty per cent of the revertants were generated as a result of a double 

cross-over event at the site of homology. Microinjection of the herpes simplex virus 

thymidine kinase gene into nuclei of cultured Ltk-  cells led to the formation of 

concatomers via homologous recombination between injected DNA sequences, that 

raised the possibility of recombination between chromosome and incoming DNA 

(Folger et al., 1982). Mouse L cells with truncated H-2 genes produced full H-2 

antigens following transfection with complementing sequences. This demonstrated 

recombination between incoming DNA and chromosomal sequences (Goodenow et al., 

1983). Mammalian cells in which a plasmid carrying globin sequences had integrated 

into the human -globin locus were subsequently isolated (Smithies et al., 1985). The 

great advantage of this approach is that it eliminates position and copy number effects 

which complicate analysis in more conventional studies (Capecchi, 1989). 

As discussed above, the HPRT gene has provided an ideal model system for 

positive and negative selection which makes it ideally suited to gene targeting. A 

series of experiments using the mouse HPRT gene as target locus in ES cells to 

investigate the mechanism of homologous recombination have been described. 

Capecchi and colleagues introduced by electroporation a functional neo gene flanked 

by some parts of the HPRT gene into ES cells to inactivate HPRT (Thomas and 

Capecchi, 1987). In this experiment, G418 resistant clones were obtained at a 

frequency of iO and the majority of the resistant clones exhibited random integration 

( non-homologous recombination ). Only 1 in a 1000 of the G418  colonies were 

targeted as demonstrated by resistance to 6-thioguanine. Further strategies for either 

inactivating the HPRT gene in normal ES cell lines or correcting the HPRT gene in 

HPRT-deficient ES cell lines by gene targeting have been developed (Doetschman et 

A, 1987; Thomas and Capecchi, 1987; Capecchi, 1989). Transgenic mice have been 



successfully produced after correcting a HPRT gene deletion in ES cells by 

homologous recombination, creating a chimaeric mouse that had a contribution to its 

germ line from ES cells, and breeding from this (Thompson et al., 1989; Koller et aL, 

1989). 

A variety of strategies, which have been generated for targeting other genes, 

either in ES cells (Mansour et al., 1988; Joyner et al., 1989; Zimmer and Gruss, 1989; 

DeChiara et al., 1990; Thomas and Capecchi, 1990) or somatic cells (Sedivy and 

Sharp, 1989; Adair et al., 1990; Zheng and Wilson, 1990) are listed in Table 1.2. 

Steeg et at. (1990) have introduced a specific point mutation which results in 

resistance to a-amanitin into the endogenous murine gene that encodes the largest 

subunit of RNA polymerase II. The use of the Escherichia coli lacZ gene as a 

reporter gene provides an excellent system to study embryonic development. Several 

promoters have been studied in vivo using this strategy after gene targeting (Greenberg 

et al., 1990; Le Mouellic et aL, 1990; Mansour et al., 1990). Direct functional 

selection schemes as for HPRT are not available for most genes. In order to detect 

targeting of such genes several procedures have been developed. Apart from the 

positive-negative selection which is widely used in homologous recombination and is 

discussed in detail in Chapter 9, the uses of a promoterless positive selection module 

and screening by the polymerase chain reaction (PCR) method are generally applied. 

Fusion protein studies showed that proteins carboxyl-terminal fused with neo 

protein still conferred kanamycin resistance in bacteria. Several plasmids, in which 

the coding sequence for the amino-terminal region of the neo protein lacking the ATG 

translation initiation codon was fused to foreign DNA sequences coding for 3-300 

amino acids were constructed and examined for the expression of the fusion proteins 

in bacteria. Although the level of kanamycin resistance is varied, all the fusion 

proteins provided some resistance (Reiss et al., 1984). The idea of a functional neo 

fusion protein was applied to enrich for targeted events in the homologous 

recombination procedures. The promoterless neo gene was introduced into the 

targeting construct such that neo could be activated by the target gene promoter or in 
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rare cases, a random promoter. Because activation by cellular promoters occurs in 

only about 1 in 100 random integration events, selection for G418 resistance should 

enrich for homologous recombination events approximately 100 fold (Jasin and Berg, 

1988; Doetschman et al., 1988; Sedivy and Sharp, 1989; Charron et al., 1990; 

Schwartzberg et al., 1990; Jeannotte et al., 1991). PCR provides a quick detection 

method from a very small sample in a very short time (Saiki et al., 1988). Using one 

primer specific for the incoming DNA and another specific to the target locus, the 

targeted events could be diagnosed after PCR amplification (Zimmer and Gruss, 1989; 

Kim et al., 1991; Selfridge et al., 1992; Saga et al., 1992). The major advantage of 

the PCR technique is its sensitivity, allowing the detection of events from less than 

100 cells (McMahon and Bradley, 1990). As a result, tgeted ES cells can be 

injected into blastocysts after only a short period of cell culture to take the advantage 

of avoiding loss of pluripotency by careless culture or generation of unwanted 

spontaneous mutations during extended culture. 

In the last 2 years mice heterozygous and homozygous for targeted mutations 

have been generated from ES cells. Phenotypes have been studied in the hope of 

gaining some insight into the function of mutated genes. Heterozygous mice carrying 

a paternally transmitted null mutation in the insulin-like growth factor II gene were 

found to be 60% normal size (DeChiara et al, 1990). Homozygotes were also 60% 

normal size, while heterozygotes born to female carriers were normal size (DeChiara 

et al., 1991). 	This study demonstrates that insulin-like growth factor II is 

indispensable for normal embryonic growth and is subject to parental imprinting. 

Mutation in the immunoglobulin u gene leads to abnormal B-cell development 

(Kitamura et al., 1991) and mutation in the 32-m gene leads to absence of certain T-

cell populations due to lack of MHC-1 presentation (Zijistra et al., 1990). The 

importance of the transcription factor GATA-1 in erythrocyte development was 

demonstrated in ES cell-derived chimaeric mice. Erythrocytes failed to develop from 

the ES cells, in which the X-linked GATA-1 had been mutated by homologous 

recombination (Pevny et al., 1991). Homozygotes for a null mutation in c-abl 

(Tybulewicz et al., 1991) and a deletion of the C-terminus of c-abl (Schwartzberg et 
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aL, 1991) result in similar phenotypes, demonstrating that the C-terminus is very 

important for c-abl function. Homozygotes die 2-3 weeks after birth. The immune 

system, thymus and B-cell population are severely affected. 

Homozygotes for a disrupted Hox 1.5 gene die neonatally due to pulmonary 

defects (Chisaka and Capecchi, 1991). Absence of thymus and parathyroid, coronary 

defects and throat region abnormalities may be due to the lack of Hox 1.5 in branchial 

arches and pharyngeal pouches prior to migration or mixing of cell derivatives. 

Homozygotes for Wnt-1 (mt-1) mutations have been generated independently by 

Thomas and Capecchi (1990) and McMahon and Bradley (1990). The majority of 

homozygotes die neonatally, though one mouse surviving to adulthood suffered severe 

ataxia (Thomas and Capecchi, 1990). Degrees of penetrance may vary due to mouse 

strain background. The dorsal and ventral caudal mid brain were found to be absent 

at 9.5 days p.c. (McMahon and Bradley 1990). This correlates with a broad band of 

Wnt-1 expression observed on in situ hybridisation. CNS development, especially of 

the cerebellum, is defective. The Hox 1.5 and Wnt-i mutants show severe phenotypes 

in regions that would be predicted to be affected because of the previously observed 

pattern of gene expression. However, the genes are also expressed in regions which 

appear unaffected by the mutation. The gene product may have no role in these areas 

despite its expression. A more likely explanation is that of redundancy of function - 

the gene function may be replaced by similar or related proteins. Functional 

redundancy between 2 highly conserved homeobox-containing genes En-1 and En-2 

in shared regions of expression is the probable explanation for the normal 

development of En-2 null mutation homozygotes (Joyner, 1991). A subtle phenotype 

is observed in the cerebellum, the only region in the developing mouse embryo where 

En-2 is expressed and En-1 is not. En-2 may have developed a special function in 

this region. If redundancy is operating, it may be predicted that upon breeding of En-

1 mutant with En-2 mutant mice to generate mice homozygous for both mutations, a 

more severe phenotype than either mutation alone would be observed. Unfortunately, 

the En-1 gene has not been targeted to generate transgenic mice. Overlap in function 

between other protein kinases may also explain why a null mutation in c-src does not 
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lead to a more extensive phenotype (Soriano et al., 1991). The c-src gene is 

expressed widely in the mouse and yet the mutant phenotype is limited to bone. Other 

widely expressed protein kinases may compensate for the shortage of the c-src-

encoded protein kinase in other tissues. 

1.8 Gene therapy 

Sooner or later, gene replacement therapy should be feasible, at least for a 

number of single gene disorders. So far, the major difficulty has been in transfecting 

'foreign' genes into cells and, once inserted, in persuading them to come under the 

control of the regulatory machinery of the cells. Recently, it has been possible to 

overcome some of the transfection difficulties by attaching genes to viral vectors or 

by utilising physical methods. Gene therapy is a medical intervention based on 

modification of the genetic program of living cells. There are two basic strategies for 

gene therapy. First, cells are modified ex vivo for subsequent administration to 

humans. This may be carried out by using either autologous cells derived from the 

recipient of therapy or cells from other individuals or species. Second, the cells are 

altered in vivo by gene therapy administered directly to the individual. These genetic 

manipulations may be intended to have a therapeutic effect, or they may be used for 

marking cells to gain an understanding for future therapeutic interventions. Several 

proposals for human gene therapy in the United States have been approved by the 

Food and Drug Administration (Anderson, 1992; Miller, 1992). However, there is still 

a long way to go. 

1.8.1 Gene therapy using recombinant virus 

In the past few years, the use of recombinant virus for introducing foreign 

genes into cells, tissues, and whole animals has increasingly been employed. 

Although there are several viral vectors available to transfer genes into mammalian 

cells, the majority of attempts have used retroviruses due to their high efficiency of 

infection and integration (Dick et al., 1985; Bender et al., 1989; Correll et al., 1989; 

Lim et al., 1989; Moore et al., 1989; Roux et al., 1989; Drumm et al., 1990; Li et al., 
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1990; Novak et al., 1990). It has been demonstrated that the human factor IX cDNA 

can be expressed in rabbit hepatocytes after infecting with recombinant virus 

containing human factor IX DNA sequences. This in vitro experiment provided the 

possibility of gene therapy for haemophilia B. Current treatment for haemophilia B 

involves administration of either plasma or crude preparations of plasma fractions 

enriched in prothrombin complex proteins to patients but this has the risk of exposing 

them to viral contamination such as human immunodeficiency virus and hepatitis virus 

(Armentano et aL, 1990). Murine systemic lupus erythematosus (MRL/lpr mouse), 

as an animal model for human systemic lupus erythematosus, a severe abnormal 

immune disease in Caucasians, has been investigated for gene therapy. Gutierrez-

Ramos et aL (1990) demonstrated that the survival rate of MRL/lpr mice was 

increased after infection with an interleukin-2/vaccinia recombinant virus. 

Lesch-Nyhan syndrome is considered as a neurological disease and has been 

suggested as a candidate for initial attempts in somatic cell gene therapy. Retrovirus-

derived vectors capable of expressing the human HPRT cDNA in cultured fibroblasts 

and lymphoblasts have been derived (Miller et al., 1984). Patella et al. (1988) 

claimed that the use of retrovirus-derived vectors to correct the enzyme deficiency in 

lymphoblasts may not result in restoration of neurological function. Hence these 

workers constructed a recombinant herpes simplex virus type 1 vector containing 

human HPRT cDNA sequences and successfully expressed the HPRT mRNA both in 

the cultured HPRT deficient rat neuronal cells (Patella et aL, 1988) and in the brains 

of mice infected with the recombinant virus (Patella et al., 1989). 

1.8.2 Correction by gene targeting 

An HPRT-deficient male ES cell line, E14TG2a, was produced by Hooper et 

al. (1987) and the structure of the HPRT gene in this mutant was analysed by 

Southern hybridisations (Thompson, 1989). By using the HPRT cDNA as a probe and 

2 genomic DNA fragments, Southern hybridisation revealed that E14TG2a carried a 

deletion of the first two exons of the HPRT gene and at least 12 kb of 5' flanking 

sequence compared to its wild-type cell line, E14 (Handyside et aL, 1989). 
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Consequently, 	E14TG2a was used to generate a HPRT-deficient mouse strain, 

hprt 3/hprt. The ability to correct a dysfunctional gene by gene targeting and then 

to introduce this to the germ line and produce healthy offspring was first demonstrated 

by Thompson et aL (1989). Two similar vectors were utilised to correct the HPRT 

mutation in E14TG2a. Thirty corrected clones were recovered from 3 different 

experiments at a frequency of 4 X 10 to 2.2 X 10 7  by using HAT selection. 

Northern hybridisation analysis revealed expression of HPRT mRNA in the corrected 

clones, whereas no expression was observed in the deficient cell line, E14TG2a. Cells 

from one corrected clone have been introduced into mouse blastocysts, and germ line 

transmission of the ES cell-derived corrected gene has been achieved. The corrected 

gene has the same pattern of expression as the wild-type gene, with the characteristic 

elevated level of expression in brain tissue. The feasibility of introducing targeted 

modifications into the mouse germ line by homologous recombination in ES cells has 

been demonstrated. 

Sickle cell anaemia, caused by homozygosity for a point mutation in the f3-

globin gene, is the most common genetic disorder in persons of African descent. 

Homozygotes for the Ps  allele usually have serious clinical problems and a shortened 

lifespan, while the Ps allele is asymptomatic when heterozygous with a normal 

allele. A mouse-human hybrid cell line BSM which was derived from a mouse 

erythroleukaemia cell line and carried a single human chromosome 11 with the P S_ 

globin allele was tested for the possibility of correction by homologous recombination. 

A 	-gIobin targeting construct containing a unique oligomer and a neomycin- 

resistance gene was electroporated into the BSM cells, which were then placed under 

G418 selection. After PCR screening and Southern hybridisation analysis, clones 

where the Ps  allele was corrected to 3A  were detected (Shesely et al., 1991). 

1.8.3 Cell transplantation after gene correction or gene therapy 

Organ transplantation has been widely used as a therapeutic approach for many 

diseases such as kidney transplantation for uraemia. Genetic diseases can be classified 

into those arising from disordered cellular function or from the absence of specific 
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proteins. Organ transplantation can treat disorders of cellular dysfunction by replacing 

the abnormal cells with transplanted normal cells. The abnormal cells may be red cell 

(sickle-cell thalassaemia), liver (tyrosinaemia), or heart (muscular dystrophy). On the 

other hand, abnormalities of specific proteins, specifically enzymes, may be 

successfully treated if cells capable of producing the normal protein are transplanted. 

Transplantation of the normal cells does not require transplantation of the organ in 

which the clinical symptomatology occurs, since the normal proteins derived from the 

transplanted cell may be transported to the non-transplanted organ and result in 

clinical improvement. After birth, blood formation is normally restricted to 

haematopoietic cells of the bone marrow. Displacement bone marrow transplantation 

(DBMT) is a technique that aims to obtain 100% donor-type marrow so that the future 

immune processes of the recipient will be those of the donor. The method has 

reached a stage of practicality that can be applied to many genetic diseases of marrow-

derived cells and not solely to leukaemia or marrow aplasia. Work from many 

laboratories using recombinant retroviruses to infect haematopoietic stem cells 

suggests that (i) it is possible to infect efficiently mouse bone marrow cells and (ii) 

upon reconstitution of the infected bone marrow cells, the expression of foreign genes 

carried by means of the retroviral vectors is generally very poor. Recently, Wong et 

al. (1989) generated a recombinant retroviral vector containing the murine interleukin-

3 (IL-3) gene as a means to create an animal model for myeloproliferative disorder. 

After introducing the IL-3 gene into mouse haematopoietic cells, integration and 

expression of the gene were observed in spleen foci from which could be derived IL-3 

factor-independent, continuously proliferating cell lines. Irradiated or genetically 

anaemic recipient mice transplanted with these haematopoietic cells developed a 

myeloproliferative syndrome characterised by a marked elevation in leucocyte count, 

bone marrow hyperplasia, and enlargement of the liver and spleen. Animal models 

have also been developed for the therapy of disease by bone marrow transplantation. 

The human glucocerebrosidase (GLC) gene has been transferred efficiently into spleen 

colony-forming unit (CFU-S) multipotential haematopoietic progenitor cells by 

recombinant retroviral vectors, and production of human GLC RNA and protein has 

been achieved in transduced CFU-S colonies. Transfected bone marrow cells were 
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transplanted into recipient mice to generate long-term reconstituted mice. Human 

GLC was detected in transduced bone marrow and spleen cells 5 months after 

transplantation (Correll et al., 1989). One 22-year old Lesch-Nyhan syndrome patient 

has had a DBMT from his matched sibling, which completely corrected the metabolic 

derangements, but has appeared to have little effect on his long-standing psychosis. 

Because purine metabolism can be corrected, it would be important to evaluate if 

correction by DBMT at a younger age could avert the psychosis (Hobbs, 1988). This 

clinical trial showed it was possible to correct a defect by bone marrow 

transplantation. If a good animal model of Lesch-Nyhan syndrome was available, then 

in conjunction with DBMT it could be used to assess potential therapies. Bone 

marrow haematopoietic stem cells could be isolated from the limbs of transgenic mice 

after treatment with 5-fluorouracil to remove suppressor cells. The defective HPRT 

gene of the isolated deficient bone marrow cells could then be corrected by gene 

targeting in vitro. Subsequently, the corrected bone marrow stem cells could be used 

as donor cells for DBMT into HPRT deficient mice both with and without prior 

irradiation. The effect of therapy could then be monitored either by enzyme analysis 

or by Northern hybridisation of RNA from peripheral blood lymphocytes. 

1.9 Aims of this study 

When this research project was initiated, homologous recombination was just 

emerging as a powerful tool for the study of gene function in cells and animals. 

There were then few published results and very little was known about the mechanism 

of homologous recombination in mammalian cells (Smithies et al., 1985; Thomas and 

Capecchi, 1987; Doetschman et aL, 1988; Mansour et aL, 1988; Zimmer and Gruss, 

1989; Joyner et al., 1989; Thompson et aL, 1989; Sedivy and Sharp, 1989; Ellis and 

Bernstein, 1989). Homologous recombination technology allows alteration to a gene 

without removing it from its position and sequence context. Instead of the 

conventional replacement and insertion strategies, the first part of these studies is an 

attempt to establish and study targeting deletions using an HPRT gene in ES cells as 

a model. This approach should allow a better understanding of the mechanism of 

homologous recombination and provide a strategy for the inactivation of the APRT 
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gene in the later parts of the studies. 

The unexpected lack of phenotype in both strains of HPRT-deficient mice 

which were the first genetically altered animal models for a human inherited disease, 

was puzzling (Finger et al., 1988; Dunnett et al., 1989). To resolve this enigma, the 

hypothesis that rodents are less dependent on HPRT in their purine salvage pathway 

than humans is proposed. There are two possible ways to increase the dependence on 

HPRT in mice. One is biochemical inhibition of APRT by administration of an APRT 

competitive inhibitor and the other is by using a genetic approach to generate APRT-

deficient mouse. Caffeine, which has been used for generating an animal model for 

Lesch-Nyhan syndrome (Peters, 1967) and a novel more specific inhibitor of APRT, 

are used to test this hypothesis both in cell cultures and in animals. For genetic 

alteration of APRT gene in ES cells, the targeting deletion strategy is applied to delete 

the promoter and exons 1-2. 

HPRT-deficient mice provide not only a system to study the regulation of the 

HPRT gene and Lesch-Nyhan syndrome but also a system to evaluate the strategies 

of gene therapy. Concentrating on establishing the possible therapeutic strategies 

which could be used in Lesch-Nyhan patients, these studies are restricted to the 

neuronal lineage. The use of the techniques of homologous recombination allowed 

me to learn how to produce animal models of human disease. The main objective of 

this project has been to develop an animal model for Lesch-Nyhan syndrome by a 

combined genetic and biochemical approach. 
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Table 1.2 Compilation of published gene targeting experiments in ES and somatic cells. 

Gene 	Mechanism 	Homology 	Introduction 	Cell, Organism 	Remark 	 Reference 

-globin insertion 4.6 kb 

HPRT replacement 4.0 kb 

insertion 9.3 kb 

HPRT replacement 1.3 kb 

HPRT replacement 9.1 kb 

int-2 replacement 10.0 kb 

Hox 1.1 replacement 3.6 kb 

En-2 replacement 4.0 kb 

electroporation fibroblast + 13.1 kb Smithies et al. 1985 

electroporation ES 4.0 kb ==> 5.0 kb Thomas & Capecchi 1987 

+ 9.3 kb 

electroporation ES + 2.0 kb Doetschman et al. 1988 

electroporation ES 4.0 kb ==> 5.0 kb Mansour et al. 1988 

electroporation ES 6.2 kb ==> 7.4 kb Mansour et al. 1988 

microinjection 3T3, P19, ES + 20 bp Zimmer & Gruss 1989 

electroporation ES 1.1 kb ==> 1.5 kb Joyner et al. 1989 



Table 1.2 Compilation of published gene targeting experiments in ES and somatic cells (continued). 

Gene 	Mechanism Homology 	Introduction 	Cell, Organism 	Remark 	 Reference 

HPRT insertion 9.0 kb 

polyoma replacement 4.8 kb 

integration 

retrovirus insertion 0.9 kb 

integration 

Class II MHC 2.6 kb 

E 

c-abl replacement 7.5 kb 

electroporation ES, mice 	correction + 11.7 kb Thompson et al. 1989 

transfection 	MT 1.4 
	

Sedivy & Sharp 1989 

transfection 	DL 22 
	

Ellis & Bernstein 1989 

Microinjection 	fertilised egg 	correction 	 Brinster et aL 1989 

electroporation ES, mice 	6.5 kb ==> 7.1 kb 	Schwartzberg et al. 1989 

viral capsid 
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Table 1.2 Compilation of published gene targeting experiments in ES and somatic cells (continued). 

Gene 	Mechanism Homology 	Introduction 	Cell, Organism 	Remark 	 Reference 

2-microglobulin replacement 10.0 kb electroporation ES, mice 4.0 kb ==> 5.1 kb Zijistra et al. 1989 

HPRT insertion 9.7 kb electroporation ES, mice correction + 12.4 kb Koller et al. 1989 

DHFR replacement 4.6 kb electroporation CHO 4.2 kb ==> 5.1 kb Zheng & Wilson 1990 

APRT insertion & 2.6 kb CaPO4  CHO Adair et al. 1990 

ICRa precipitation 

HPRT replacement 165 bp electroporation correction by cDNA Hunger-Bertling et al. 

of viral capsid 1990 
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Table 1.2 Compilation of published gene targeting experiments in ES and somatic cells (continued). 

Gene 	Mechanism 	Homology 	Introduction 	Cell, Organism 	Remark 	 Reference 

N-myc 

c-abl 

IGF-II 

RNA p01. II 

Hox-3. 1 

in t-1 

in 1-2 

replacement 5.0 kb 

replacement 7.5 kb 

replacement 9.7 kb 

replacement 5.8 kb 

replacement 8.3 kb 

replacement 13.5 kb 

electroporation ES, Pre-B 

electroporation ES 

electroporation ES, mice 

electroporation ES 

electroporation ES 

electroporation ES, mice 

3.9 kb ==> 4.6 kb 

6.5 kb ==> 7.1 kb 

8.0 kb ==> 8.9 kb 

4 bp change 

40 bp ==> 7.2 kb 

3.0 kb ==> 4.0 kb 

6.2 kb ==> 11.6 kb 

Charron et al. 1990 

Schwartzberg et al. 1990 

DeChiara et al. 1990 

Steeg et al. 1990 

Le Mouellic et al. 1990 

Thomas & Capecchi 

1990 

Mansour et al. 1990 replacement 	10.0 kb 	electroporation ES 
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Table 1.2 Compilation of published gene targeting experiments in ES and somatic cells (continued). 

Gene Mechanism Homology Introduction Cell, Organism Remark Reference 

c-fyn replacement 6.3 kb electroporation ES 3.7 kb ==> 4.5 kb Yagi et al. 1990 

pim-1 replacement 5.8 kb electroporation ES 3.6 kb ==> 4.1 kb te Riele et at 1990 

CD4 insertion 3.5 kb electroporation T-cell line + Jasin et al. 1990 

GATA-1 replacement 4.7 kb electroporation ES, mice 4.5 kb => 5.6 kb Pevny et at 1991 

Hox-2.6 insertion & 3.1 kb electroporation ES + 14 bp Hasty et at 1991a 

ICR 

HPRT insertion & 5.0 kb electroporation ES + 4 bp Valancius & Smithies 

ICR 1991 

ig-p replacement 9.0 kb electroporation ES, mice 5.2 kb ==> 5.4 kb Kitamura et al. 1991 
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deletion 8.5 kb 

replacement 4.7 kb 

replacement 6.0 kb 

replacement 5.0 kb 

replacement 2.8 kb 

replacement 7.4 kb 

electroporation ES 

electroporation BSM 

electroporation ES, mice 

electroporation ES 

electroporation ES, mice 

electroporation ES 

T-cell receptor 

3S globifl  

IL-2 

G-protein 

CD4 

Hox-1.3 

Table 1.2 Compilation of published gene targeting experiments in ES and somatic cells (continued). 

Gene 	Mechanism 	Homology 	Introduction 	Cell, Organism 	Remark 	 Reference 

14.8 kb ==>16.8 kb Chisaka & Capecchi 

1991 

- 15 kb Mombaerts et al. 1991 

correction Shesely et al. 1991 

6.0 kb ==> 7.1 kb Schorle et al. 1991 

6.5 kb ==> 8.1 kb Mortensen et al. 1991 

8.8 kb ==> 10 kb Rahemtulla et al. 1991 

3.7 kb ==> 11.3 kb Jeannotte et al. 1991 

Hox-1.5 	replacement 	11.5 kb 	electroporation ES, mice 
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Table 1.2 Compilation of published gene targeting experiments in ES and somatic cells (continued). 

Gene 	Mechanism 	Homology 	Introduction 	Cell, Organism 	Remark 	 Reference 

Cflr 

C-1u 

ig-1u 

Hox-1. 6 

p53  

Pm-p 

glucocerebro-

sidase 

replacement 7.8 kb 

insertion 	4.3 kb 

replacement 

replacement 3.9 kb 

replacement 	11.8 kb 

replacement 3.7 kb 

replacement 8.9 kb 

replacement 	6.1 kb 

electroporation ES 

electroporation igm482 

electroporation myeloma 

electroporation ES, mice 

electroporation ES, mice 

electroporation ES, mice 

electroporation ES, mice 

3.0 kb ==> 5.7 kb 

correction + 10.0 kb 

correction 

2.7 kb ==> 4.1 kb 

6.8 kb ==> 8.0 kb 

5.0 kb ==> 6.5 kb 

3.5 kb ==> 4.0 kb 

6.1 kb ==> 7.5 kb 

Koller et al. 1991 

Kang & Shulman 1991 

Smith & Kalogerakis 

1991 

Chisaka et al. 1992 

Donehower et al. 1992 

Büeler et al. 1992 

Tybulewicz et al. 1992 
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Table 1.2 Compilation of published gene targeting experiments in ES and somatic cells (continued). 

Gene 	Mechanism 	Homology 	Introduction 	Cell, Organism 	Remark 	 Reference 

Ren-ID replacement 5.5 kb electroporation ES 6.7 kb ==> 8.7 kb Miller et al. 1992 

apolipoprotein replacement 9.0 kb electroporation ES, mice 12.0 kb ==> 13.1 kb Williamson et al. 1992b 

A-i 

LIF replacement 5.6 kb electroporation ES, mice 3.0 kb ==> 3.8 kb Stewart et al. 1992 

Cftr insertion 3.5 kb electroporation ES, mice + 7.3 kb Dorin et al. 1992 

Rb replacement 8.0kb electroporation ES, mice 10.0 kb ==> 11.5 kb Lee et al. 1992 

Rb replacement 9.6 kb electroporation ES, mice 10.0 kb ==> 11.2 kb Jacks et al. 1992 

Rb replacement 15.0 kb electroporation ES, mice 4.9 kb ==> 7.3 kb Clarke et al. 1992 
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Table 1.2 Compilation of published gene targeting experiments in ES and somatic cells (continued). 

Gene 	Mechanism 	Homology 	Introduction 	Cell, Organism 	Remark 	 Reference 

TGF 1-1 
	replacement 4.0 kb 

	
electroporation ES 
	

3.9 kb ==> 4.8 kb 
	

Shutl et al. 1992 

Tenascin 	replacement 5.5 kb 
	

electroporation ES, mice 
	

5.0 kb ==> 7.0 kb 
	

Saga et al. 1992 

ERCC-1 
	

replacement 2.4 kb 
	

electroporation ES, mice 
	

2.6 kb ==> 5.0 kb 
	

Selfridge et al. 1992 

+, inserted with; -, deleted with; ==>, replaced by 

a, ICR; intrachromosomal recombination 
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CHAPTER 2. MATERIALS AND METHODS 
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2A MATERIALS 

2A.1 Suppliers of laboratory reagents 

Restriction endonucleases: 

Boehringer Mannheim plc: Mannheim, Germany 

GIBCO BRL Life Technologies: Paisley, U.K. 

New England Biolabs Inc.: Beverly, Massachusetts, U.S.A. 

Pharmacia LKB Biotechnology: Milton Keynes, U.K. 

E. coli DNA polymerase I (Kienow large fragment), T4 DNA ligase: 

GIBCO BRL Life Technologies 

Thermus aquaticus (Taq) DNA polymerase: 

Boehringer Mannheim plc 

Standard laboratory reagents: 

BDH Chemicals Ltd: Poole, U.K. 

Calbiochem-Novabiochem Co.: La Jolla, U.S.A. 

Fisons Chemicals: Loughborough, U.K. 

GIBCO BRL Life Technologies 

ICN Flow Limited: Rickmansworth, U.K. 

Sigma Chemical Co.: Poole, U.K. 

Bacterial media reagents: 

Becton-Dickinson U.K. Limited: Oxford, U.K. 

Difco Laboratories: East Moseley, U.K. 

Reagents for mammalian cell culture: 

GIBCO BRL Life Technologies 

ICN Flow Limited 

Sera-lab: Sussex, U.K. 

Sigma Chemical Co. 



Radioactive reagents: 

Amersham International plc.: Aylesbury, U.K. 

[8-3H]-Adenine 

[2-3H]-Adenine 

[U-'4C]-Adenine 

a-32P-dCTP 

[G-3H]-Hypoxanthine 

[methyl-'4C]-L-Methionine 

[methyl-3H]-Thymidine 

[methyl-"C]-Thymidine 

Specific activity 23 Curies/mmole 

22 Curies/mmole 

270 mCuries/mmole 

- 3,000 Curies/mmole 

7.9 Curies/mmole 

57 mCuries/mmole 

5 Curies/mmole 

58 mCuries/mmole 

Antibiotics: 

aminopterin - Sigma Chemical Co. 

ampicillin - Beecham Research Laboratories: Brentford, U.K. 

G418 - GIBCO BRL Life Technologies Ltd. 

gancylovir - Syntex Laboratories Inc.: Palo Alto, U.S.A. 

gentamicin - David Bull Laboratories Pty. Ltd.: Mulgrave, Australia 

penicillin G - Sigma Chemical Co. 

streptomycin - Sigma Chemical Co. 

tetracyclin - Sigma Chemical Co. 

Antisera: 

Amersham International plc. 

Boehringer Mannheim Laboratories 

Scottish Antibody Production Unit (SAPU): Lanarkshire, U.K. 
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2A.2 Media 

2A.2.1 Bacterial media 

Luria Broth: 

Difco Bacto-tryptone, 10 g 

Difco bacto-yeast extract, 5 g 

NaCl, 5 g 

per litre adjusted to pH 7.2. 

Luria Agar: 

As Luria broth with 15 g per litre Difco agar. 

Terrific Broth: 

Difco bacto-tryptone, 12 g 

Difco bacto-yeast extract, 24 g 

glycerol, 4 ml 

per 900 mIs mixed with 100 mIs sterile solution of 0.17 M KH2PO4, 0.72 M 

K2HPO4  after autoclaving 

M9 Minimal Agar: 

Difco Bacto Agar, 15 g 

lox M9 salts, 100 ml 

20% glucose, 20 ml 

1 mg/mi Vitamin B1, 10 ml 

0.1 M MgS041  10 ml 

0.1 M CaC121  10 ml 

per litre. 

lox M9 Salts: 

Na2HPO4, 60 g (0.423 M) 

KH2PO4, 30 g (0.220 M) 

NaCl, 5 g (0.086 M) 

50 



NH4C1, 10 g (0.187 M) 

per litre. 

Antibiotics: 

Ampicillin to a final concentration of 100 1ug/ml or tetracyclin to 10 #g/m1 was 

added to media immediately prior to use when required. 

2A.2.2 Mammalian tissue culture media 

Glasgow Modified Eagles (BHK21) Medium (McPherson and Stoker, 1962; 

with modifications by W. House, Medical Research Council, Institute of 

Virology, University of Glasgow, Scotland, 1964) was supplied by GIBCO 

BRL Life Technologies as lox concentrate medium. The working medium for 

general culture was supplemented with 1X non-essential amino acids, 1 mM 

sodium pyruvate, 2 mM L-glutamine and 5% foetal calf serum (Sera-lab; 

GIBCO BRL) and newborn calf serum (ICN FLOW; GIBCO BRL). 

Medium RPMI-1640 which was used in splenocyte culture, was supplied by 

GIBCO BRL Life Technologies as iox concentrate medium and buffered with 

HEPES at the final concentration of 20 mM. 

2A.3 Solutions 

20X SSC: 3 M NaCl; 0.3 M tn-sodium citrate pH 7.0 

lox TBE: 0.9 M Tris-HCl; 0.9 M boric acid; 20 mM EDTA (pH 8.0) 

50X TAE: 2 M Tris; 1 M glacial acetic acid; 50 mM EDTA (pH 8.0) 

lOX MOPS: 200 mM 3-(N-morpholino) propane-suiphonic acid (MOPS); 50 

mM sodium acetate; 10 mM EDTA; to pH 7.0 with NaOH 

TE: 10 mM Tris-HC1 pH 8.0; 1 mM EDTA 
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STE: 10 mM Tris-HC1 pH 8.0; 1 mM EDTA; 150 mM NaC1 

PBS: 8 mM K2HPO4; 1.5 mM KH2PO4; 150 mM NaCI 

PCA: 25 parts redistilled phenol: 24 parts chloroform: 1 part isoamylalcohol 

CA: 24 parts chloroform: 1 part isoamylalcohol 

Mowiol mounting solution: Added 2.4 g Mowiol 4-88 (Calbiochem) to 6 g 

glycerol and stirred for 1 hr, then added 6 ml distilled water and stirred for 

another 2 hr. Twelve ml of 0.2M Tris-HC1 (pH8.5) was added and incubated 

at 50 °C in a waterbath with occasional stirring. After clarification of the 

mixture by centrifugation at 5,000 x g for 15 mm, the solution was aliquoted 

and stored at -20 °C. (The solution is stable for at least 2 weeks at room 

temperature after thawing). 

52 



2A.4 Bacterial strains 

NAME GENOTYPE REFERENCE 

JM83 ara, L(lac-pro), strA, thi, Vieira & Messing 1982 

lacZz\M15 

DH 5a supE44, Hanahan 1983 

&acUl 69(48O1acZAM15), 

hsdR17, recAl, endAl, 

gyrA96, thi-1 

NM522 hsdA5, E,(lac, pro), supE, Gough & Murray 1983 

thi, F'[proAB, 1acZAM15, 

lacP] 

AG1 recAl, endAl, gyrA96, thi, Bullock et al. 	1987 

hsdR17, supE44, relAl 

XL1B1uer supE44, hsdRl7, recAl, Bullock et al. 	1987 

endAl, gyrA46, thi, relAl 

lac, F fproAB, lad '?, 

1acZAM15, TnlO(tet')j 

TG1 supE, hsdA5, thi, A(lac- Gibson 1984 

proAB), F [traD36, 

proAB, lacP, IacZAM15] 
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2A.5 Plasmids 

NAME DESCRIPTION REFERENCE 

pUC18, pUC8 General cloning vector. Norrander et al. 1983 

pBR322 General cloning vector. Bolivar et al. 1977 

pBluescriptll General cloning vector. Thummel et al. 1988 

pPolyIII General cloning vector. Lathe et al. 1987 

pJ3 Eucaryotic expression vector, Morgenstern & Land 

utilising the SV40 early promoter 1990 

and SV40 T polyA signal. 

pMT142 Eucaryotic expression vector, R. Palmiter (personal 

utilising the metallothionein communication) 

promoter and the human growth 

hormone polyA signal. 

pHPT4 Construct of full-length mouse Konecki et al. 1982 

HPRT cDNA without polyA 

sequences. 

pHPT5 Construct of full-length mouse Konecki et al. 1982 

HPRT cDNA with polyA 

sequences. 

pDWM100 Mouse HPRT-minigene functioning Thompson et al. 1989 

in ES cells. 

pDWM101 HPRT targeting vector for Thompson et al. 1989 

correcting El 4TG2a. 
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NAME DESCRIPTION REFERENCE 

pX1RI, Mouse HPRT genomic DNA Melton et al. 1984 

p?.13R1, subclones, isolated from Balb/c 

p?cl7RI, mouse. 

pX2RI, pX2ORI 

pX23RI, 

pX32RI, pX4RI 

pHygro Hygromycin phosphotransferase T. Magin (personal 

gene driven by rat 13-actin promoter communication) 

with SV40 T antigen polyA signal. 

pSPTK Herpes simplex viral thymidine Colbere-Garapin et al. 

kinase gene driven by its own 1979 

promoter. 

pGKTK Herpes simplex viral thymidine T. Magin (personal 

kinase gene driven by PGK communication) 

promoter and polyA signal. 
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2A.6 Cell lines 

NAME COMMENTS REFERENCE 

BRL Cell line isolated from Buffalo rat Smith & Hooper 

liver and used to produce 1987 

conditioned medium for culturing 

ES cells. 

E14 Wild-type male ES cell line isolated Handyside et al. 

from 129/01a blastocysts. 1989 

E14TG2a An HPRT-deficient mutant ES cell Hooper et al. 1987 

line derived from E14 by selection 

in 6-thioguanine. 

HeLa A human cervical carcinoma cell Puck & Marcus 

line. 1955 

HeLa-TG' An HPRT-deficient mutant HeLa R.T. Johnson 

cell line derived from HeLa cells by (personal 

selection in 6-thioguanine. communication) 

HM-1 An HPRT-deficient mutant ES cell Magin et al. 1992b 

line isolated from blastocysts of 

129/01a HPRT-deficient mice. 

LMTK Thymidine kinase-deficient cell line Kit et al. 1963 

derived from L cells. 

COS-7 Fibroblasts of African green monkey Gluzrnan 1981 

cells transformed with an ori SV40. 
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NAME COMMENTS REFERENCE 

RJKO An HPRT wild-type subclone of Gillin et al. 1972 

Chinese hamster cell line V79. 

RJK88 An HPRT-deficient Chinese hamster Fuscoe et al. 	1983 

lung fibroblast cell line derived from 

RJKO. 

2A.7 Oligonucleotides 

NAME SEQUENCE 5-3 COMMENTS 

PE10 GGG ACT GGC CGT PCR oligonucleotide from 

CGT 'ITT AC base 740 to 721 on pUC8 

sequence. 

PE11 CAG AAG TGG TCC PCR oligonucleotide from 

TGC AAC U base 2151 to 2170 on 

pUC8 sequence. 
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2A.8 Antisera 

Antiserum Description Source 

Anti-neurofilament Rabbit polyclonal antibody to J. Polak 

68 kD neurofilament 68 kD 

Anti-neurofilament Monoclonal antibody to Amersham cat. RPN 

160 kD neurofilament 160 kD from 1104 

mouse-mouse hybrid cells; 

diluted ascites 

Anti-neurofilament Rabbit polyclonal antibody to J. Polak 

160 kD neurofilament 160 kD 

Anti-glial fibrillary Monoclonal antibody to glial Boehringer Mannheim 

acid protein fibrillary acidic protein from cat. 814369 

mouse-mouse hybrid cells; 

mouse IgGi 

Anti-vimentin 1118 Monoclonal antibody to T. Magin 

vimentin from mouse-mouse 

hybrid cells 

FITC anti-rabbit The IgG fraction of donkey SAPU cat. S076-201 

IgG anti-rabbit IgG conjugated to 

FITC 

Texas Red anti- The whole antibody of sheep Amersham cat. N 2031 

mouse IgG anti-mouse IgG conjugated to 

Texas Red 

W. 



2B METHODS 

2B.1 Bacterial culture 

2B.1.1 Growth of E. coli bacterial cultures 

Liquid culture of E. coli was either in Luria broth or Terrific broth by 

inoculating from a single colony. Cultures with volumes greater than 10 ml were 

grown in conical flasks with a total capacity of 5-10 fold to that of the culture volume 

to ensure good aeration. Cultures were shaken at 37 °C for an appropriate length of 

time. 

2B.1.2 Storage of E. coli bacterial cultures 

For long term storage, 900 1ul of fresh overnight or 6 hr culture of bacteria 

grown in Luria broth supplemented with antibiotic if necessary, was mixed with 100 

1u1 of glycerol (autoclaved) or dimethyl sulphoxide (DMSO), and stored in a sterile vial 

at -70 °C. Upon recovery, the surface of frozen culture was scraped with a flame 

sterile inoculating loop and directly streaked out onto a Luria broth agar plate, with 

antibiotic if required. Bacteria strain TG1 was streaked onto minimal agar to maintain 

the F plasmid. After overnight incubation at 37 °C, a single colony was picked to 

propagate a fresh bacterial culture. 

For short-term storage (4-6 weeks), bacteria were restreaked onto agar plates 

and stored at 4 °C after overnight incubation. 

2B.1.3 Transformation of E. coli with DNA 

2B.1.3.1 Calcium chloride method 

This uses the method of Mandel and Higa (1970) with the modifications of 

Dagert and Ehrlich (1979). To 50 ml of LB (supplemented with 1 ml of 1 M MgCl2) 

was added 0.5-1 ml of an overnight culture of the E.coli strain to be transformed. 

Growth was allowed at 37 °C with vigorous shaking to 0.2 OD6001  the cells chilled 

on ice for 5 mm, and pelleted by centrifugation at 3,000 rpm (1,250 x g; Denley 

BR401; Sussex, U.K.) at 4 °C for 15 mm. The cell pellet was resuspended in 20 ml 

ice-cold transformation buffer (50 mM CaCl2, 10 mM Tris-HC1, pH 7.5), and exposed 

to this buffer for 30 min on ice. The cells were repelleted by centrifugation for 15 
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min at 3,000 rpm at 4 °C, and resuspended in 2m1 ice-cold transformation buffer. 

Typically the cells were left overnight (12-16 hr) on ice (or at minimum for 2 hr) 

before use. Cells were transformed by adding 10 ng of DNA (typically a ligation 

mix), in a volume of 5-10 4ul, to 100 1ul of competent cells, mixing and holding on ice 

for 30 mm. Cells were heat shocked for 5 min at 37 °C, 2m1 warm LB (at 37 °C) 

added, and incubated for 1 hr to allow for expression of genes coded by the 

transformed plasmid DNA (i.e. antibiotic resistance). Cells were pelleted by 

centrifugation (3,000 rpm) at 4 °C and resuspended in 250 Itl of LB. Fifty microlitre 

aliquots were then plated to dryness on LB agar, with appropriate antibiotic selection 

and X-gal/IPTG if needed. The X-gal/IPTG allowed recombinants to be identified; 

recombinant colonies appearing white while non-recombinant colonies appeared blue. 

This selection is only suitable for some vectors i.e. pUC8. Cells were incubated 

overnight at 37 °C for growth. 

2B.1.3.2 DMSO method 

This method for transformation of E. coli was initially described by Chung and 

Miller (1988). Cells were grown to the same OD nm  as for the CaCl2  method, kept 

for 10 min on ice, and sedimented from 10 ml of culture by centrifugation (3,000 

rpm) for 5 min at 4 °C. The cell pellet was resuspended in 1 ml of transformation 

buffer, and incubated for 30 min on ice. DNA was added to 100 1u1 of cell 

suspension, and the mixture was left for 30 min on ice. Nine hundred 4u1 of 20 mM 

glucose in transformation buffer was added to the transformed cells, cells were shaken 

for 1 hr at the appropriate temperature to allow for expression of antibiotic resistant 

gene and plated onto selective medium immediately after incubation. 

Transformation buffer: 

10% (w/v) polyethylene glycol, molecular weight 3000 

5% (vlv) dimethylsulphoxide 

10 MM  MgC12  

10 MM  MgSO4  

in L-broth 



2B.2 Nucleic acid isolation 

2B.2.1 Small scale preparation of plasmid DNA 

The method used for small scale preparation of plasmid DNA was a 

modification of that described by Ish-Horowicz and Burke (1981). Five ml of Luria 

broth or Terrific broth, supplemented with ampicillin to a final concentration of 100 

1ug!ml, was inoculated with bacteria from a single colony and incubated at 37 °C 

overnight with aeration. One and a half ml of the culture was pelleted by 

centrifugation in an Eppendorf tube and resuspended in 300 dUl  of Solution P1. Cells 

were lysed by adding 300 dul  of lysis solution P2 and incubated at room temperature 

for 5 mm. Following the lysis 300 1u1 of solution P3 was added and mixed by gentle 

inversion. Precipitated complex of chromosomal DNA, SDS and protein was 

sedimented by centrifugation (17,000 x g) in a microcentrifuge for 12 mm. 

Contaminating proteins in the clarified supernatant were extracted with phenol. The 

upper, aqueous phase was recovered and nucleic acids were precipitated with 600 4ul 

of isopropanol. The DNA was washed twice with 70% ethanol, dried under vacuum, 

and resuspended in 50 1ul sterile distilled water. Plasmid "miniprep' DNA was then 

stored at -20 °C. 

Solution P1: (kept at 4 °C) 

50 mM Tris-HC1 pH 8.0 

10 mM EDTA 

100 ug/ml RNase A 

Solution P2: (Keep in air-tight bottle) 

20 mM NaOH 

1% (w/v) SDS 

Solution P3: 

2.55 M potassium acetate pH 4.8 

2B.2.2 Large scale plasmid preparation 

211.2.2.1 CsCI method 

A 100 ml culture of bacteria carrying the desired plasmid was incubated 

overnight at 37 °C with vigorous shaking in Terrific broth supplemented with 100 
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1ug/ml of ampicillin. The cells were pelleted by centrifugation at 5,000 rpm (4080 x 

g; GSA rotor, Sorvall RC5B; Wilmington, U.S.A.) and resuspended in 10 ml of 

solution 1 . Cells were lysed on ice by adding 10 ml of lysis buffer and left on ice 

for 20 mm. Addition of 10 ml of 5 M potassium acetate pH 5.0 precipitated complex 

of chromosomal DNA, SDS and proteins which was spun down at 15,000 rpm (27,000 

x g; SS34 rotor, Sorvall) for 30 min at 4 °C. To the supernatant 11 ml of isopropanol 

were added and left at room temperature for 30 min to precipitate plasmid DNA. The 

DNA was pelleted by centrifugation at 10,000 rpm (12,000 x g; SS34 rotor) for 20 

min at 4 °C. The pellet was washed with 70% ethanol, dried under vacuum, 

resuspended in 10 ml of TB buffer plus 10 1ug!ml RNase and incubated at 37 °C for 

30 mm. 9.4 ml of plasmid DNA solution was transferred to a fresh tube to which 100 

1u1 of 10 mg/ml ethidium bromide and 9.02 g of CsC1 were added, giving a density of 

1.55 g/ml. The DNA was banded by centrifugation at 38,000 rpm (95,000 x g; 50Ti 

rotor, Sorvall OTD50B) for 40-48 hr at 20 °C. DNA was visualised by side 

illumination with UV light. The lower band containing supercoiled plasmid DNA was 

removed by puncturing the tube with a 21-gauge needle and syringe. A second 21-

gauge needle was inserted at the top of the tube to allow pressure release. The 

ethidium bromide was removed by extraction several times with butanol, and the CsC1 

was removed by dialysis against 2 litres of TB buffer for 8 to 15 hr at 4 °C. The TB 

buffer was changed 3 to 4 times during dialysis. The plasmid solution was then 

phenol extracted, and residual phenol removed by extraction with an equal volume of 

chloroform-isoamyl alcohol solution. Plasmid DNA was precipitated, washed and 

resuspended in sterile distilled water and stored at -20 °C. 

Solution 1: 

25 mM Tris-HC1 pH 8.0 

10 mM EDTA 

50 mM glucose 

Lysis buffer: 

0.2 M NaOH 

1% SDS 
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2B.2.2.2 Column method 

The large scale preparation of plasmid by this method followed the culture 

conditions of the CsCI method and the plasmid isolation procedures of the small scale 

plasmid preparation except using 10 ml of each solution instead of 300 al. The 

chromosomal DNA, SDS and protein complex was sedimented by centrifugation at 

15,000 rpm (27,000 x g, SS34 rotor) for 30 min at 25 °C. The supernatant was 

applied onto the Qiagen-tip 500 column (Diagen; Dusseldorf, Germany) which had 

been equilibrated by 10 ml buffer QBT. After washing three times with 10 ml buffer 

QC, the DNA was eluted with 10 ml buffer QF. DNA was then precipitated with 0.5 

volume of isopropanol and washed twice with 70% ethanol. Dried DNA was 

resuspended for PCA and CA extraction, followed by ethanol precipitation and 

washing. DNA samples were redissolved in sterile distilled water and stored at -20 

°C. 

Buffer QBT: 

750 mM NaCl pH 7.0 

50 mM MOPS 

15% ethanol 

0.15% Triton X-100 

Buffer QC: 

1.0 M NaCl pH 7.0 

50 mM MOPS 

15% ethanol 

Buffer QF: 

1.25 M NaCl pH 8.2 

50 mM MOPS 

15% ethanol 

2B.23 Preparation of genomic DNA from mammalian cultured cells 

The method of DNA extraction is basically that of Pellicer et al. (1978). Tissue 

culture cells were harvested by scraping with a plastic policeman (Costar; Cambridge, 
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U.S.A.), and collected in 10 ml PBS. Typically four 64 cm2  dishes were used, 

yielding some 107108  cells, depending on the cell line. The cells were pelleted by 

centrifugation at 1,300 rpm (304 x g; MSE, Mistral-1000; Crawley, U.K.) and the 

supernatant discarded. The cells were rinsed three times in PBS by pelleting and 

resuspended in 10 ml PBS. After the washes the cells were gently pelleted in 10 ml 

hypotonic solution (10 mM Tris-HC1 pH 8.0, 10 mM NaCl and 3 mM MgCl2). The 

expanded cells were pelleted by centrifugation at 1,300 rpm and resuspended in 10 ml 

hypotonic solution with Triton-X100 (0.2% (v/v)). This caused cell lysis, and the 

intact nuclei were pelleted by centrifugation at 1,300 rpm. The nuclei were 

resuspended in 7.6 ml of 10 mM Tris-HC1 pH 8.0, 400 mM NaCl, 10 mM EDTA. 

Additionally, 0.4 ml 10% SDS was added to the lysate with 100 1u1 proteinase K (30 

mg/ml). This mixture was incubated at 37°C overnight, and RNA degraded by 

addition of 200 ul of RNase (10 mg/ml) with further incubation at 37 °C for 1 hr. 

Residual proteins and RNase were then hydrolysed by addition of 100#1 Proteinase 

K (30 mg/ml) with further incubation at 37 °C for 1 hr. The solution was then phenol 

extracted twice by addition of an equal volume of PCA and mixed by gentle inversion 

for 15 mm. The organic and aqueous phases were separated by centrifugation at 3,600 

rpm (2,300 x g). The aqueous layer was then extracted with an equal volume of CA. 

DNA was precipitated by addition of 0.25 volumes of 5 M NaCl and 2 volumes of 

cold 100% ethanol and was seen to precipitate out of solution as a white globular 

mass. This was recovered by spooling onto a sealed pasteur pipette and rinsed by 

immersing into cold 70% ethanol. The DNA was air dried for 10-20 mm, dissolved 

into 1 ml of sterile distilled water, and stored at 4 °C. This method typically yielded 

1-2 mg of high molecular size DNA. 

2B.2.4 Preparation of RNA from mammalian cells 

RNA was prepared using modifications of methods described by Strohman et 

A (1977) and MacDonald et al. (1987). Tissue culture cells were harvested by 

scraping with a plastic policeman, and collected into 10 ml PBS. Typically four 64 

cm  dishes were used, yielding some 107-108  cells, depending on the cell line. The 

cells were pelleted by centrifugation at 1,300 rpm (304 x g), and the supernatant 
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discarded. The cells were washed three times in PBS by pelleting and resuspension 

in 10 ml PBS. After the final wash the cells were resuspended in 8 ml of a guanidine 

hydrochloride solution (6 M guanidine hydrochloride, 10 mM DTT, 25 mM EDTA, 

pH 7.0). The cell suspension was transferred to a glass homogenizer and the cells 

macerated with 30 strokes of the homogenizer, and the homogenate transferred to a 

centrifuge tube. The homogenizer was rinsed out, and residual homogenate recovered 

with 2 ml of the guanidine hydrochloride solution. One thirtieth volume of 3 M 

potassium acetate (pH 5.0) and 1/2 the volume of 100% ethanol were added to the 

homogenate, mixed and the solution left at -20°C for a minimum of 4 hr, to precipitate 

RNA. The RNA was pelleted by centrifugation at 12,000 rpm (17,300 x g; SS34 

rotor) for 20 min at 4°C. The supernatant was discarded and the pellet resuspended 

in 5 ml of the guanidine hydrochloride solution. The RNA was re-precipitated by 

addition of 1/30 volume of 3 M potassium acetate and 1/2 volumes of 100% ethanol. 

The mixture was incubated at -20°C for a minimum of 4 hr, and the RNA repelleted 

by centrifugation at 12,000rpm for 20 min at 4°C. The pellet was resuspended and 

repelleted again as above. The resulting compact, white pellet was suspended in 3 ml 

of a 0.1 M Tris-HC1 (pH 8.9), 0.1 M NaC1, 1 mM EDTA and 1% SDS solution. To 

this was added an equal volume of PCA and the sample phenol extracted by vigorous 

shaking for 10 min and centrifugation at 3,600 rpm (2,300 x g) for 10 mm. The 

aqueous layer was removed and RNA precipitated from it by addition of 1/5 volume 

of 3M sodium acetate (pH 5.0) and 2 volumes of 100% ethanol. This mixture was 

left at -20°C for 4 hr. The RNA was pelleted by centrifugation at 15,000 rpm (27,000 

x g; SS34 rotor) for 25 mm, and washed twice with 70% ethanol. The pellet was 

suspended in 0.5 ml sterile distilled water, and precipitated by addition of 1/10 volume 

3M sodium acetate (pH 5.0), 2 volumes 100% ethanol, and incubation at -70°C for 15 

min. RNA was pelleted by centrifugation in a microfuge, washed twice with 70% 

ethanol, dried and resuspended in 50-100 1u1 of sterile distilled water. This method 

yielded 50-200 4ug of RNA, depending on the cell line used. 
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2B.2.5 Preparation of high molecular weight DNA from mouse tails 

Tail DNA was prepared by a method modified from that of Laird et al. (1991). 

One to 2 cm of mouse tail was placed in an Eppendorf tube containing 1.5 ml of tail 

buffer (0.3 M sodium acetate, 10 mM Tris-HC1, 1 mM EDTA, 1% SDS, pH 8.0) 

supplemented with 15 1u1 of proteinase K solution (final concentration 0.2 mg/ml) and 

incubated overnight at 37 °C with gentle shaking by drum roller. Subsequently, each 

sample was split into two 0.75 ml aliquots. One aliquot was stored at -20 °C, the 

other was used to prepare DNA. The suspension was mixed thoroughly but gently 

with an equal volume of PCA. Following a 5-min spin in a microcentrifuge the 

aqueous (top) layer was transferred to a fresh tube and the PCA extraction was 

repeated. The aqueous layer was then extracted with an equal volume of CA. One-

thirtieth volume of 3 M sodium acetate pH 5.0 and 1 volume of isopropanol were 

added to the aqueous layer to precipitate DNA, which was then pelleted by spinning 

in a microcentrifuge for 30 seconds. The pellet was washed twice with 70% ethanol, 

dried, resuspended in 0.2 ml distilled water and stored at -20 °C. 

2B.2.6 Quantification of nucleic acids 

2B.2.6.1 Estimation of DNA concentrations 

The DNA sample was diluted in imi of distilled water and the OD of 

absorbance at wavelengths 260nm and 280nm was measured by a spectrophotometre 

(Perkin-Elmer, Lambda 15, UVIVIS Spectrophotometre). An OD260.  value of 1.0 

represents a concentration of 50 jig/ml for DNA. The ratio OD26Ø....JOD28  provides 

an estimate for the purity of the nucleic acid. A value around 1.8 indicates pure 

preparations of DNA. 

2B.2.6.2 Estimation of RNA concentrations 

The quantity of RNA was measured spectrophotometrically at wavelengths of 

260nm and 280nm as for the estimation of DNA concentration. An OD260.  value is 

equivalent to about 40 ug/ml RNA with the value of 2.0 for OD2m/OD 

indicating pure preparations of RNA. 



2B.3 DNA manipulation 

2B.3.1 Digestion of DNA with restriction endonucleases 

Most of DNA restrictions were performed using BRL enzymes and buffers. 

DNA was digested with approximately 5 U of restriction endonuclease per 1ug of DNA 

using buffer and temperature conditions recommended by the manufacturer. For 

double digests involving enzymes with different recommended buffers, the buffers 

were checked individually in double digests to determine which gave most efficient 

digestion. If the optimal digestion conditions varied for buffers, the DNA was 

digested with enzyme at lower salt concentration, the enzyme reaction stopped by heat 

denaturation or phenol extraction, and the buffer concentration altered by addition of 

sufficient salt solution so that the final concentration was appropriate for digestion by 

the next enzyme. Digestion reactions were terminated by heating for 10 min at 65 °C, 

by phenol extraction, or by addition of DNA sample buffer for agarose gel 

electrophoresis. 

213.3.2 Dephosphorylation 

Bacterial alkaline phosphatase is a phosphomonoesterase that hydrolyses 3' and 

5 phosphates from DNA and RNA. It is suitable for removing 5' phosphates prior 

to end labelling and for dephosphorylating vectors prior to insert ligation. The 

enzyme is active at 65 °C for at least 1 hr and can be inactivated by phenol extraction. 

Bacterial alkaline phosphatase is sensitive to inhibition by micromolar amounts of 

inorganic phosphate. Calf intestinal alkaline phosphatase is a phosphomonoesterase 

that hydrolyses 3'and 5 phosphates from DNA and RNA. It can be used to remove 

5'phosphates before end-labelling and to dephosphorylate vectors before insert 

ligation. This enzyme can be inactivated by heating for 15 min at 75 °C in the 

presence of EGTA and 10 mM sodium salt. Phenol extraction is not required. 

The terminal 5' phosphates were removed from DNA (< 5 pmole ) by 

treatment with 0.1 U (1 jul) of calf intestinal alkaline phosphatase (CAP) (Boehringer 

Mannheim) in a reaction mixture containing 5,u1 lox CAP buffer (lOX: 0.5 M Tris-

HCI pH 9.0, 10 mM MgC121  1 mM ZnC12; 10 mM spermidine) and distilled water in 
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a total volume of 49 Au!. After successive incubation at 37 °C for 30 mm, the reaction 

was terminated by inactivating the enzyme at 75 °C for 15 min in a solution 

containing 10 ,ul of lox STE (lOX: 100 mM Tris-HC1 pH 8.0; 1 M NaCl; 10 mM 

EDTA) and 2.54u1 of 20% SDS and distilled water in a total volume of 100 AU1•  The 

dephosphorylated DNA was gene-cleaned (see Section 2B.4.3) and extracted into 10 

1u1 of water. 

2B.33 Filling-in 3' recessed termini of DNA 

Overhanging ends, generated by restriction endonuclease were converted to 

blunt ends by 'filling-in' with the Klenow fragment of E.coli DNA polymerase I. 

Typically a reaction consisted of 39,u1  of DNA (- 1  pg),  5,u' of lox Nick translation 

buffer (500 mM Tris-HC1 pH 7.5, 100 mM MgCl,, 10 mM DTT, 500 ug/ml BSA), 

5 Au'  5 mM dNTP's and 1 Au'  Klenow (6 Ulu!).  The reaction mix was incubated for 1 

hr at room temperature and the reaction stopped by phenol extraction. 

2B.3.4 Ligation 

The vector and insert DNA were cut to completion with appropriate restriction 

endonucleases. After restriction and removing the restriction endonuc!eases, DNA was 

ethanol precipitated. Typically, between 100-200 ng insert DNA were ligated in a 

reaction with vector to insert DNA concentration at a 1:3 molar ratio. Ligations were 

carried out in 10,u1  reaction volume containing 50 mM Tris-C! pH 7.6, 10 mM MgCl,, 

1 mM DTT, 1 mM ATP and 5 % polyethylene glycol molecular weight 8000 and 

incubated overnight at 15 °C (for cohesive ends), or room temperature (for blunt ends). 

One unit of T4 DNA ligase was used for blunt end ligations, and 0.1 units for 

cohesive end ligations. Ligation products were then transformed into E. coli. 

2B.4 Electrophoresis of nucleic acids 

2B.4.1 Electrophoresis of DNA in agarose gels 

DNA was separated in 0.7-1.2% (w/v) BRL electrophoresis grade agarose with 



0.5 ug/ml ethidium bromide in 1X TBE buffer (for Southern blotting and routine 

diagnosis gel) or 1X TAE buffer (for band-recovery gels). Prior to loading, DNA 

samples were mixed with 1/10 volume of sample buffer (20% glycerol, 100 mM 

EDTA, 0.1% bromophenol blue). Electrophoresis was carried out horizontally across 

a potential difference of 1-10 v/cm. Bacteriophage A.DNA cut with Hindill and 4x174 

RF DNA cut with HaeIII were used as size markers. DNA was visualised by UV 

illumination and photographed. 

2B.4.2 Electrophoresis of RNA in agarose gels 

Denaturing agarose gels were used for electrophoresis of RNA samples. Gels 

were made up with 1.4% (w/v) agarose in 1X MOPS buffer and 0.66 M formaldehyde 

with 0.5 ug/ml ethidium bromide. To 20 #1 of total RNA (1 1ug/l) was added an 

equal volume of formamide sample buffer (47 mM MOPS, 12 mM sodium acetate pH 

7.0, 2.3X MOPS, 50% deionized formamide, 11% formaldehyde), and 1/4 volume of 

loading buffer (0.2 M EDTA pH 7.0, 30% (w/v) Ficoll type 400, 0.1% (w/v) 

bromophenol blue). Samples were heated for 5 min at 60 °C and snap chilled on ice 

for a few mm. Samples then were loaded onto the gel and run in 1X MOPS buffer 

at 100 V for 3 to 4 hr. 

2B.4.3 Recovery of DNA from agarose gels 

DNA was electrophoresed through 0.8% regular melting point agarose in 1X 

TAE, 0.5 ug/ml ethidium bromide. The desired fragment was visualised by UV 

illumination, cut out, and extracted from the agarose using Geneclean (Bio101; La 

Jolla, U.S.A.). The agarose was weighed and 2-3X volumes of 6 M NaT added. The 

agarose was dissolved by heating to 55 °C for 5 min with occasional mixing, and then 

cooled on ice for 5 mm. Five 1u1 of "glassmilk" (a silica matrix suspended in water) 

was added, and left on ice for 5 min with occasional mixing to allow DNA to bind 

to the silica matrix. The "glassmilk" was pelleted by centrifugation in a microfuge, 

the supernatant discarded and the pellet washed three times with 500 1u1 of NEW wash 

(NaCl/ethanol/water mix). After a final spin all the NEW wash was discarded 

completely and the DNA eluted from the "glassmilk" in 5-10 1ul of TE buffer at 55°C. 



The mixture was spun in a microfuge, and the supernatant, containing the DNA, 

transferred to a fresh Eppendorf tube and stored at -20 °C. Fragments less than 300 

bp long were electrophoresed through 2% ultrapure agarose (Mermaid Biogel; Bio101) 

in 1X TAE, 0.5 1ug/ml ethidium bromide. Agarose containing the DNA fragment was 

cut out, weighed, and mixed with 3X volumes of high salt binding solution 

(concentrated sodium perchiorate) in an Eppendorf tube. Eight 4u1 of 'glassfog' (a 

silica based matrix in water) was added, the agarose melted and DNA bound to the 

'glassfog' by incubation at 55 °C for 5 mm. Adsorption was allowed to continue at 

room temperature for 5 mm, with occasional mixing to keep the 'glassfog' in 

suspension. The 'glassfog' was centrifuged, the supernatant discarded, and the pellet 

washed three times with 300 4u1 of ethanol wash. After the final wash the tube was 

spun again to ensure removal of all residual ethanol. The pellet of 'glassfog' was 

resuspended in 10#1 of distilled water, and the DNA eluted by incubation at room 

temperature for 5 mm. The 'glassfog' was centrifuged and the supernatant containing 

the DNA transferred to a fresh Eppendorf tube. Recovery of DNA using Geneclean 

and Mermaid kits was usually around 80%. 

2B.5 Nucleic acid hybridisation 

2B.5.1 Transfer of DNA from agarose gels to membranes 

The transfer of DNA from agarose gel onto filters for the detection of specific 

sequences among DNA fragments was initially developed by Southern (1975) and 

modified by Smith and Summers (1980). Genomic DNA was digested with the 

appropriate restriction enzyme in a total volume of 50 1u1 for more than 6 hr at 37 °C 

and separated according to size on a 0.8% agarose gel (w/v) in 1X TBE and 0.5 4ug/ml 

ethidium bromide. Routinely genomic DNA was electrophoresed for 12-15 hr at 1 

v/cm then photographed. The gel was then soaked in denaturation buffer (0.5 M 

NaOH, 1.5 M NaC1) with gentle agitation for 30 mm. The DNA was transferred to 

Genescreen Plus nylon membrane (Du Pont; Stevenage, U.K.) by capillary action 

using denaturation buffer as the transfer medium (Reed and Mann, 1985). Transfer 

was allowed to continue for 12-48 hr after which the membrane was neutralised for 

30 min in 3 M NaCl, 0.5 M Tris-HC1 pH 7.0 and air dried before use. 
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Prehybridisation of the membrane was done in 30-50 ml of 6X SSC, 1% SDS, 10% 

dextran sulphate and 100 ug/ml of denatured herring sperm DNA for 2 hr at 65 °C. 

2B.5.2 Transfer of RNA from agarose gels to membranes 

After electrophoresis, the gel was photographed (with short wave UV 

illumination to visualise the EtBr chelated RNA), and then soaked for two 20-mm 

periods in lOX ssc, at room temperature with shaking. The RNA was transferred to 

a nylon membrane (GeneScreen Plus, Dupont), using capillary action, a wick made 

of wet blotting papers was placed on a platform with both ends of the blotting paper 

immersed in lOX ssc in a reservoir underneath the platform. The gel was laid on the 

top of the wick, and a sheet of membrane cut to the same size as the gel was placed 

on the top of the gel. The edges were sealed with plastic films. Three sheets of 

blotting paper soaked in lOX ssc were laid on the top of the membrane, and another 

two sheets of dry blotting paper were placed on the top of the wet blotting papers 

followed by a stack of paper towels. A sheet of glass plate was placed on the top of 

the paper towels, and a weight was laid on the top. When transfer was complete, the 

filter was marked with a pencil for the position of the sample wells. The membrane 

was retrieved and rinsed with 2X SSC, and the formaldehyde reaction reversed by 

baking at 80 °C for 2hr. 

The prehybridisation and hybridisation were as for Southern blot analysis, 

except at 60 °C. Similarly the wash procedure was duplicated, except the temperature 

was lowered to 60 °C. The filter was sealed wet and autoradiographed. 

2B.53 Transfer of DNA from E. coli colonies to membranes 

This procedure used the denaturing/fixing procedure of Buluwela et aL (1989) 

and the hybridisation conditions of Church and Gilbert (1984). Colonies harbouring 

putative plasmids of interest were replica plated by spotting onto two LB plates 

(which had appropriate selection added), and the colonies propagated overnight at 37 

°C. Colonies were lifted, from one plate onto Hybond-N (Amersham International) 

nylon filters by placing dry filters onto plates to contact colonies, and peeling off the 
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filter. The filters were laid, colonies face-up, onto Whatman (Maidstone, U.K.) No. 

1 paper soaked in 2X SSC with 5% SDS (w/v) for 5 mm. The filter was then 

transferred to a microwave oven and irradiated for 2.5 min at full power setting (650 

watts), lysing the cells, and immobilising DNA to the filters. The filter was 

prehybridised in 7% SDS (wlv) in 0.5 M NaHPO4  (pH 7.2), 1 mM EDTA, at 65 °C 

for 1 hr and the radioactive probe added to this prehybridisation mix. The probe was 

left to hybridise at 65 °C for 3 hr, the filter recovered and washed three times in 0.1X 

SSC at 65 °C for 10 mm. The filters were sealed wet in plastic and autoradiographed. 

2B.5.4 Labelling DNA by random priming with hexadeoxyribonucleotide primers 

DNA labelled to high activities was obtained using the randomly primed DNA 

labelling method (Feinberg & Vogelstein, 1983). This method enables the labelling 

of DNA available only in minimal amounts. It is based on the hybridisation of a 

mixture of hexanucleotides to the DNA to be labelled. Many sequence combinations 

are represented in the hexanucleotide primer mixture, which leads to binding of primer 

to template in a statistical manner. The complementary strand is synthesized from the 

3'OH termini of the random hexanucleotide primer using Kienow enzyme during 

which radiolabelled dNTP is incorporated into the newly synthesized DNA strand. 

A reaction buffer, OLB, containing nucleotides and random primers is required 

for this method. It is made by mixing 50 4ul Solution A (1.25 M Tris-HCl pH 8.0, 

0.125 M MgCl2, 25 mM 3-mercaptoethanol, 0.5 mM each of dGTP, dTTP and dATP), 

125 1ul Solution B (2M HEPES buffer adjusted to pH 6.6 with NaOH) and 75#1 

Solution C (random hexanucleotides OD260. = 90 in TE). 

The DNA (100 ng and water to 32 1u1) was denatured by boiling for 5 mm, 

spun and chilled on ice briefly. After that, 12 1ul of OLB buffer, 2 1ul of 10 mg/ml 

BSA, 5, l of [a-32P] dCTP and 2 units of Kienow large fragment DNA polymerase 

were added to the denatured DNA at room temperature. The incubation was 

continued at room temperature overnight. Unincorporated nucleotides were separated 

from labelled DNA by chromatography on a Sephadex G-50 column. 
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213.5.5 Separation of unincorporated nucleotides from labelled DNA 

A Sephadex G-50 (Pharmacia) column was used to remove unincorporated [a-

32P] dNTP from labelled DNA fragment (Sambrook et al., 1989). The column was 

prepared by packing a lml blue-tip with Sephadex G-50 in sterile distilled water. The 

Sephadex was washed with 10 1u1 of the sonicated herring sperm DNA (10 mg/ml) in 

water with centrifugation (800 rpm/4min). The labelling mix was applied to the 

column and eluted into an eppendorf tube by centrifugation. The efficiencies of 

incorporation and recovery were monitored by TCA precipitation assay. The 

percentage incorporation of radiolabelled nucleotides into nucleic acids was estimated 

by comparing acid-precipitable Cerenkov counts to total Cerenkov counts in a given 

reaction. A small aliquot of the reaction was diluted in distilled water, and 1,U1 of the 

dilution was spotted onto a glass fibre disc (GF/C; Whatman). To 49 dul of 2.5 mg/ml 

tRNA was added 1 ul of the same dilution, and then 12.5 4u1 50% (w/v) TCA was 

added. The mixture was incubated on ice for 15 mm. Precipitated nucleic acid was 

collected by vacuum filtration onto a glass fibre disc, and washed with 10 ml ice-cold 

10% (w/v) TCA and 10 ml ice-cold ethanol. The radioactivity of the two glass fibre 

discs was measured in a scintillation counter, and the two values were compared to 

obtain the percentage incorporation. To the eluted probe was added 450 4u1 of 

sonicated herring sperm DNA and it was boiled for 5 min to denature the DNA before 

use in hybridisation. 

2B.5.6 Hybridisation 

By adjusting the stringency of hybridisation, it is possible to distinguish 

between closely- and distantly-related members of a sequence family. In practise, to 

distinguish between the distantly-related members of a family of sequences, 

hybridisation should take place under permissive conditions followed by washing 

under progressively more stringent conditions. To identify closely-related members, 

a stringent hybridisation followed by a stringent wash is better. The stringency of 

hybridisation depends on a number of factors, the most significant ones are listed 

below. 

73 



Definitions: 

Tin (melting temperature): the temperature at which the strands of a DNA 

duplex or an RNA/DNA hybrid are half dissociated or denatured. Tin is dependent 

on ionic strength, base composition and denaturing agents. 

Tin = 81.5 + 16.6(10gM) + 0.41(%G+C) - 0.72(% formamide) 

where M is the molarity of the monovalent cation and (%G+C) is the percentage of 

guanine and cytosine residues in the DNA. 

Temperature: The temperature of reaction affects the rate of hybridisation 

which increases to reach a maximum at 20-25 °C below Tin. Self-hybridisation is 

favoured at higher temperature. At low temperature, a high rate of cross-hybridisation 

is attained. So, ideally, hybridisation should be carried Out at a temperature that is 20-

25 °C below Tin. In practice, for well-matched hybrids, the hybridisation reaction is 

usually carried out at 68 °C in aqueous solution and at 42 °C for solutions containing 

50% formamide. For poorly-matched hybrids, incubation is generally at 35-42 °C in 

formamide containing solutions. 

Formamide: Formamide can be used to alter the stringency of the reaction 

conditions. Formamide destabilises double-stranded nucleic acid. Thus, the 

temperature can be decreased whilst maintaining the stringency of the nucleic acid 

interaction. By including 30-50% formamide in the hybridisation solution, the 

temperature can be reduced to 30-42 °C. 

Ionic strength: High salt concentrations stabilise mismatched duplexes, so to 

detect cross-hybridising species, the salt concentration of hybridisation and washing 

solutions must be kept fairly high. 

Dextran sulphate: Addition of an inert polymer such as dextran sulphate 

increases the rate of hybridisation. The effect is attributed to the exclusion of the 

DNA from the volume occupied by the polymer, effectively increasing the 

concentration of the DNA. This favours the formation of concatenates, i.e. extensive 

networks of reassociated probe which by virtue of single-stranded regions, hybridise 

to filter-bound nucleic acid and so lead to an increase in hybridisation signal. 

74 



Hybridisation with Homologous DNA Probes: 	Hybridisation with 

homologous DNA fragments was performed under stringent conditions in 6X SSC, 1% 

SDS, 10% dextran and 100 ug/ml sonicated herring sperm DNA at 65 °C overnight 

with a 2 hr pre-hybridisation under the same conditions. Non-specifically bound 

nucleotides were removed by washing the membrane stringently, twice for 5 min in 

2X SSC at room temperature followed by twice for 30 min in 2X SSC, 1% SDS at 

65 °C and twice for 30 min in 0.1% SSC at room temperature. Filters were then 

exposed for autoradiography at -70 °C. 

2B.5.7 Autoradiography 

Autoradiography was used to visualise and quantitate, on film, radioactive 

molecules hybridised to membrane. After washing the membrane was sealed in a 

plastic bag to avoid drying. Films were hypersensitised by exposure to a flash of light 

provided by a photographic flash unit as recommended by Laskey and Mills (1975). 

Autoradiography was performed using X-OMAT AR X-ray film (Kodak; Rochester, 

U.S.A.) in a cassette with intensifying screens (Cronex Lightning Plus; Du Pont). The 

cassettes were stored at -70 °C during exposure to slow the reversal of activated 

bromide crystals to their stable form as this results in a sharper signal. 

2B.5.8 Removal of probes and re-use of blots 

The method used to remove radio-labelled DNA probe hybridised to single 

stranded nucleic acid immobilised on a nylon membrane was that described in the 

protocols supplied with Gene Screen Plus Membranes. For Southern blot, this was 

achieved by boiling in 0.1X SSC with 1% SDS for 10 min with gentle shaking. The 

solution was decanted from the membrane, and the boiling procedure was repeated 3 

times. The blots were autoradiographed to confirm that dehybridisation was complete. 

For Northern blot, 0.1X SSC with 0.01% SDS was used as boiling solution. The 

membrane was then incubated in pre-hybridisation solution and hybridised as usual. 
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2B.6 Amplification of DNA using the polymerase chain reaction 

PCR analysis to identify DNA injected into tissues was modified from 

McMahon and Bradley (1990). All reactions were carried out using a Dri-Block 

cycler (Techne PHC-2; Cambridge, U.K.). Tissues were lysed at 55 °C in 100 dul of 

lysis buffer for 12-16 hr. Oligonucleotide primers used to identify the injected mini-

gene were designed such that they share 20 nucleotides homology to pUC8 sequence. 

To lysed tissue extracts were added 250 ng of each primer, 2,u1 of 5 mM dNTP and 

2.5 units of Taq polymerase (Boehringer Mannheim) and the volume was made up to 

50 1u1 with water followed by submersion under 1 drop of mineral oil (Sigma). 

Conditions for PCR were those recommended by the suppliers (Boehringer Mannheim) 

and cycle conditions were 1 min at 93 °C, 1 min at 56 °C and 2 min at 72 °C for 35 

cycles. 

Lysis buffer: 

50 mM KC1 

1.5 mM MgCl2  

1 mM Tris pH 8.5 

0.01% gelatin 

0.45% NP4O 

0.45% Tween 20 

100 ug!ml proteinase K 

2B.7 Cell culture 

211.7.1 Culture cells 

Mammalian cells were cultured in the Glasgow's modified Eagles' minimum 

essential medium supplemented with 5% faetal calf serum and 5% newborn calf 

serum. Embryonic stem cells were cultured in the presence of DIA/LIF (Smith et al., 

1988; Williams et al., 1988) or 60% BRL conditioned medium to prevent their 

differentiation. BRL conditioned medium was prepared as follows: BRL cells were 

grown to confluence in 75 cm2  tissue culture flasks. The medium was discarded and 

15 ml of fresh medium was added. After 2 days this was collected and replaced with 

a further 15 ml of fresh medium. In total 45 ml of conditioned medium was collected 
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from each flask. The conditioned medium was filtered through a 0.22 um membrane 

(Millipore) and stored at -20 °C. To Glasgow's medium supplemented with non-

essential amino acids, sodium pyruvate, glutamine, 5% of newborn calf serum and 5% 

fetal calf serum, was added 60% BRL-conditioned medium and 0.1 mM - 

mercaptoethanol to serve as the culture medium for ES cell culture (Smith and 

Hooper, 1987). Recombinant LIF was prepared as follows: Cos-7 cells were cultured 

to near confluence and transfected with pC106-R by electroporation. The conditioned 

media were collected 3 days post-transfection and replaced with fresh medium. After 

a further 2 day-incubation, media were collected and pooled with the previous 

collection, aliquoted, and store at -20 °C (Smith, 1991). After titration, the 

recombinant LIF was added into complete Glasgow's medium supplemented with 0.1 

mM -mercaptoethanol to culture ES cells. The recombinant LIF was kindly provided 

by Angela Pow. 

2B.7.2 Splenocyte isolation 

Mice were sacrificed by cervical dislocation and their spleens were removed 

aseptically and placed in a 100-mm Petri dish containing 10 ml PBS. After trimming 

off any contaminating tissue, spleen was transferred to another Petri dish containing 

10 ml of culture medium and macerated with the bottom of syringe plunger. To 

ensure a single cell suspension formed, the cell suspension was passed through a 23-

gauge needle twice. Cells were then washed three times and adjusted to a density to 

106 cells/ml and plated into 24-well microtitre plates (1 ml/well). After 3 days 

incubation with or without 4 1ug/ml concanavalin A (ConA) stimulation, splenocytes 

were pulsed with radioactive hypoxanthine and thymidine in an incorporation assay. 

2B.7.3 Brain cell isolation 

Mouse brains were aseptically removed and transferred immediately to a Petri 

dish containing 10 ml cold PBS after sacrifice by cervical dislocation. After trimming 

off any contaminating tissue and blood, the brain was transferred to a new Petri dish 

containing 10 ml cold PBS to wash off the residual blood cells and contaminants. 

Brain was then transferred to another new Petri dish with 10 ml of cold medium and 
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mechanically disrupted by chopping. Brain tissue suspension was obtained by passing 

through a 19-gauge needle several times and washed with medium by centrifugation 

at 200 x g 3 min for 4 times. The cells were then seeded on either 13-mm glass 

coverslips or 100-mm dishes that had been coated with 100 ,ug/ml poly-L-lysine. 

Cultures were maintained in Glasgow's modified minimum essential medium 

containing 10% faetal calf serum. 

213.7.4 Incorporation assays 

2B.7.4.1 Radioactive purine and pyrimidine incorporations in ES cells 

Assays were performed in gelatin-coated 24-well microtitre plates. To assess 

the short term effect of purine analogues, 5 x 104  cells were plated/well and 24 hr 

later the purine analogue, at a final concentration of 10 M, was added together with 

1 4uCi of [3H]-adenine or -thymidine. Cells were harvested after 5 hr-incubation and 

the radioactivity incorporated into cellular nucleic acid (trichloroacetic acid - 

precipitable material) was determined by scintillation counting. To assess the 

cytostatic effect of 9-ethyladenine, 2 x 104  cells were plated/well and 10 M 9-

ethyladenine was added 24 hr later. Cells were incubated for 96 hr in the presence 

of the analogue and then pulsed for 5 hr with [3H-thymidine as described above to 

give a measurement of cell growth. 

2B.7.4.2 [3H]-Adenine incorporation in mouse brain tissue cultures after 

administration of 9-ethyladenine 

Short-term mouse brain tissue cultures were established by sacrificing animals, 

removing the brain and mechanically disrupting by chopping and passing through a 

19-gauge needle. The resulting brain tissue suspension was then distributed into the 

wells of a 24-well microtitre plate with culture medium. For determination of 

hypoxanthine and adenine incorporation, 1 1uCi of [3H]-hypoxanthine and [14C]-adenine 

was added to each well for 20 hr, the incorporation of radioactivity into cellular 

nucleic acid was determined by scintillation counting and the ratio dpm [3H]-

hypoxanthine to dpm [14C]-adenine was calculated. To determine the effect of 9-

ethyladenine on APRT activity in mouse brain, age-matched (6-8 weeks old) wild-type 
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and HPRT-deficient strain 129 male mice were used. Three wild-type and 3 HPRT-

deficient mice were injected intraperitoneally on alternate days with 9-ethyladenine. 

Two wild-type and 3 HPRT-deficient animals were injected in parallel with saline. 

After the fourth injection brain tissue cultures were established from each animal. 

One Ci of [3H]-adenine and ["C]-methionine was added immediately to each well 

and left for 20 hr. The incorporation of radioactivity into cellular nucleic acid and 

protein was determined and the ratio of dpm [3H-adenine to dpm ['4C]-methionine 

was calculated. 

2B.7.4.3 Scintillation counting 

Liquid scintillation counting was used to measure the incorporation activity 

throughout the study. Quenching results in a decreased number of registered light 

pulses or in a decrease in their intensities due to the presence of certain substances in 

the scintillator or in the sample. The quenching leads to inefficiency of both 

transformations of collisions of j3-particles with solvent molecules into light pulses and 

registration of the latter. Thus, the intensity of all the light pulses and the total 

number detected decrease, the latter being due to pulses which were weak even 

without quenching. The amplitude of the energy spectrum of the light pulses 

decreases and spectrum shift to the lower intensities. Quenching affects the counting 

efficiency, especially when dual isotope counting is required. Generally, the counts 

of the lower energy-isotope is artificially higher while that of the higher energy-

isotope is lower. This artefact gives a false ratio of the 2 radioisotopes. To correct 

this, a quench curve was made by simulation of the experimental condition. Two sets 

of 6 glass fibre discs with different dilutions of tissue-TCA precipitate were added 

with 0.1 4uCi [3H]-hypoxanthine or 0.05 1uCi ['4C]-adenine. These 2 sets of discs were 

transferred into counting vials after they were dry and organic scintillation solution 

was added. The vials were used as standards to correct the counting efficiency of the 

liquid scintillation counter (Tri-Carb 2000CA; Packard; U.S.A.). 
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2B.7.5 Calcium phosphate/DNA precipitation 

Cells were trypsinised, washed once, counted and plated out on 70-mm 

diameter dishes at a density of 1.2 X 105  cells! 2m1 / dish on the day before 

transfection. Medium was changed the next morning prior to transfection. To 10-20 

g of DNA (CsC1 prepared) was added 1 ml HBS (lOX HBS: 8% (w/v) NaCl, 0.37% 

(w/v) KC1, 0.126% (w/v) Na2HPO4 dihydrate, 1% (w/v) D-glucose, 5% (w/v) HEPES, 

pH to 7.2 with NaOH), and 62 1ul 2 M CaCl2. The CaCl2  was added slowly, dropwise, 

and the solution left to precipitate for 45 min at room temperature. The medium was 

aspirated off the cells, the DNA precipitate added to the cells, and left at room 

temperature for 20 mm, with frequent agitation of the mix. Ten ml of cell culture 

medium was added to the dishes, and the cells incubated overnight at 37 °C, 5% CO2  

in a humidified incubator, after which time the medium was aspirated and replaced 

with medium containing appropriate selection. For selecting HSV-TK transformed 

LMtk-  cells this was typically HAT selection. 

2B.7.6 Electroporation 

Construct DNA was linearised by the appropriate restriction enzyme, prior to 

electroporation. The DNA was extracted by phenol twice and precipitated by ethanol, 

finally resuspended in water for electroporation. ES cells were electroporated using 

Gene Pulse (BioRad; Richmond, U.S.A.). Cells were suspended in HEPES buffered 

PBS with linearised DNA. For targeting experiments, 0.8 ml cells were pulsed with 

capacitance of 3 uF and voltage of 800 V at path length 0.4 cm (Thompson et al., 

1989). Cells were incubated at room temperature 10 min before plating onto 100-mm 

culture dishes. 

2B.8 Immunohistochemistry 

Cells grown on coverslips were fixed in methanol for 5 min followed by 

acetone for 30 seconds at -20 °C. The air-dried coverslips could be stored at -20 °C 

or -70 °C until staining. Appropriately diluted antibodies in PBS were applied onto 

the prewetted samples and incubated in a humidity chamber overnight. The cells were 

washed with PBS three times and then stained for 30 min with fluorescien- labelled 



anti-rabbit or Texas-Red-labelled anti-mouse IgG which were both diluted 50-fold with 

PBS. Coverslips were washed several times with PBS prior to dipping in water and 

ethanol and then left for air dring. Air-dried coverslips were mounted on glass slides 

using Citifluor embedding medium (Citifluor Ltd.; London, U.K.) or Mowiol mounting 

solution. Fluorescence was viewed on a Zeiss microscope (Axioskop, Germany) 

equipped with phase-contrast and epifluorescence optics. Ilford 400 Delta (400 ASA) 

film (Mobberley, U.K.) was used for all photomicrography. 

2B.9 Animal experiments 

2B.9.1 Behaviour observation 

Strain 129 inbred male mice, 6-8 weeks old, were caged individually and 

maintained on a 12 hr light/dark cycle. Mice received 2.5 x 106  moles of the purine 

analogues (0.25 ml of a 10 2M solution dissolved in sterile normal saline) by 

intraperitoneal injection 3 times a week. To make video recordings mice were 

transferred to a clear cage with bedding but lacking food and water for 10 min before 

treatment. Recording was initiated 10 min after the animals had been returned to the 

cage following injection and the frequency of self injury behaviour was determined 

over a 20 min period. Recordings were made on two mice in each treatment group and 

the behaviour of each animal was determined on three separate occasions. All animals 

were monitored weekly for the appearance of physical injury caused by overgrooming. 

2B.9.2 Intracerebral transplantation 

The microsurgical procedure used to transplant cells into a host was similar to 

that described by Gage et al. (1990). Cells from a near confluent culture were 

trypsinised and washed twice with PBS before being resuspended in 25 mM glucose-

PBS to a desired density. Adult HPRT-deficient mice were anaesthetised with an 

intraperitoneal injection of Hypnorm/Hypnovel solution (10 ul/g body weight). ES 

cells were injected into the cerebral cortex using a Hamilton syringe with a bevelled 

25-gauge needle. Injection (10 dul) was done over a one min interval, and the needle 

was kept in place for another 30 sec prior to twisted removal. Surgery was tolerated 

well by most animals, none of the mice died during anaesthesia. 
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Hypnorm/Hypnovel solution: 

Hypnorm (Janssen; Oxford, U.K.) 

fentanyl citrate (0.315 mg/ml) 

fluanisone (10 mg/ml) 

diluted with 3-fold normal saline before use 

Hypnovel (Roche) 

Solution was made by mixing equal volume of diluted Hypnorm and 

Hypnovel. Therefore, the final dose in animals was 0.5 4ug of fentamyl 

citrate, 17 yg of fluanisone and 8 1ug of Hypnovel per gram body 

weight. 

213.10 Statistical analysis 

Differences in behaviour alteration were analysed according to the Mann-

Whitney U-test (rank sum test) by using BMDP statistic package (BMDP Statistical 

Software Inc.; Los Angeles, U.S.A.; Dixon, 1985). Differences in incorporation assay 

were compared by Student's t-test. 
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CHAPTER 3. GENERATING DELETIONS USING GENE 

TARGETING 



Deletion mutations play important roles in heritable human diseases, in 

tumourigenesis, tumour progression, and in genome evolution. Although there is no 

large deletion of the hypoxanthine phosphoribosyl transferase gene in clinical cases 

reported so far, small deletions are common in both gouty arthritis and Lesch-Nyhan 

syndrome patients. Four of 16 patients with Lesch-Nyhan syndrome or severe gouty 

arthritis carried deletions in the HPRT locus as determined by PCR (Davidson et al., 

1989b; Tarle et al., 1991). A Japanese patient with a deletion of 51 nucleotides 

between nucleotide 747 and 797 of the HPRT gene was also identified (Igarashi etal., 

1989). Molecular analysis of the only female Lesch-Nyhan patient has shown a 

deletion occurred in the maternal HPRT locus while the paternal X chromosome was 

inactivated (Ogasawara et al., 1989). Characterisation of gene mutations occurring 

during fetal development was reported by analysing mutant 6-thioguanine resistant 

T-lymphocytes isolated from placental cord blood samples of 13 normal male 

newborns. Most of the mutants with structural alterations, 85% of all resistant 

mutants, consisted of a deletion of exons 2 and 3 (McGinniss et aL, 1989). 

Furthermore, tumour cells and irradiated cells are more susceptible to spontaneous 

deletion of HPRT (Kaden et al., 1989). Immortalized fibroblasts from a male patient 

with xeroderma pigmentosum from complementation group D were sensitive to 

deletion at the HPRT locus induced by treatment with ethyl methane sulphonate or 

bleomycin (Wood and Moses, 1989). The creation of deletions by gene targeting 

therefore not only served to establish the methodology for construction of animal 

models for diseases with gene deletion but also to produce animal models for studying 

the additional effects of deletion in the HPRT locus apart from Lesch-Nyhan 

syndrome. 

3.1 Vector construction for gene targeting 

Gene targeting relies on the recombination between exogenous and endogenous 

DNA. Homologous recombination can result in a replacement of the endogenous 

sequence by introduced DNA or in insertion of exogenous DNA into the homologous 

chromosomal site leading to duplication. The strategy for deletion, diagrammed in 

Figure. 3.1, was to provide a selectable gene sandwiched by DNA sequences from 
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Figure 3.1 The strategy for gene deletion in the mouse HPRT locus by homologous 

recombination. The structures of (A) the wild-type HPRT gene, (B) the deleting 

vector (pDWMD1), and (C) predicted targeting deletion mutants are shown 

schematically. The number of each exon is shown directly below it. Selected 

restriction sites are shown: R, EcoRI; H, Hindill; B, BamHI. The sizes (in kb) of all 

EcoRI, Hindlil and BamHI restriction fragments containing exon elements are shown 

between the restriction sites. Closed boxes, endogenous exons; thick closed lines, 

endogenous introns; hatched box, promoter regions; open boxes, vector-derived HPRT 

sequence; vertically striped line, HPRT-flanking region; thin line, plasmid pUC8 

sequence; stippled boxes, neo cassette. 
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the flanking regions of the gene to be deleted. As with replacement vectors, double 

homologous recombination in the flanking sequences would result in the replacement 

and the deletion of the gene by the selectable marker. The selectable gene used in 

vectors to delete the HPRT gene was the murine metallothionein promoter driven 

bacterial neomycin phosphorylase gene (neo) with a human growth factor 

polyadenylation sequence. Three vectors were made to delete different regions of the 

mouse HPRT gene: pDWMD1 for deleting 10.1 kb, pDWMD5 for 27.2 kb, and 

pDWMD4 for the entire HPRT 38.6 kb coding region. A 4.3-kb BamHI/HindIII 

fragment of pDWM101 containing exon 2 (Thompson et at., 1989), a 3.9-kb BgIII 

fragment of p)d7RI9.0 containing exon 5, and a 4.4-kb BamHI fragment of pX2RI9.5 

containing the 3' flanking region of the HPRT gene (Melton et al., 1984), were each 

cloned into the 3' end of a 2.4-kb mouse metallothionein-I gene promoter driven neo 

cassette (Selfridge et al., 1992). The same 2.4-kb fragment of pX23RI2.4 containing 

the 5' flanking region of the HPRT gene (Melton et al., 1984) was inserted into the 

EcoRI site at the 5' terminus of the neo cassette (Figure 3.1, B; Figure 3.4, B). 

Hence, the three deletion targeting vectors all contain the same 2.4 kb fragment of 5' 

homologous region and a similar length of 3' homologous region. The design of the 

deletion vectors with similar length of homology was made to avoid the possibility 

that the length of homology may effect targeting frequency (Hasty et al., 1991b). 

3.2 Production of HPRT deficient clones 

Deletion vectors were linearised at a unique Hindul site in the pUC8 

polylinker before being introduced into wild-type ES cells which had been incubated 

in HAT medium. This pre-selection avoids spontaneous mutants being picked up in 

the 6-thioguanine selection for targeting induced deletions. In the first experiment, 4 

X 107  E14 ES cells were electroporated in the presence of 200 ug Hindill-digested 

pDWMD1 DNA. After 24 hr, the treated cells were selected with G418 for 7 days 

to generate clonal colonies and thus avert toxicity to the targeted cells by intercellular 

cooperation from surrounding wild-type cells when selection against HPRT was 

eventually applied. This period also allowed for degradation of active HPRT protein 

in targeted clones. About 300 G418-resistant colonies were obtained from each dish 

M. 



plated with 5 X 106  cells. On day 7 after electroporation, cells were treated with 

G418 and 6-thioguanine to select HPRT deficient clones, resulting in eighteen resistant 

clones from 6 dishes. The frequency of HPRT inactivated clones per cell 

electroporated was 6 X 10 while the targeting frequency was 0.92% of G418 resistant 

clones (Table 3.1). One of these clones, DWMD1-16, was assayed for [3H]-

hypoxanthine incorporation. As indicated in Table 3.2, the incorporation of [3H]-

hypoxanthine into nucleic acid in DWMD1-16 during a 5-hr incubation was 0.2 % of 

that of its parental cell line, E14. The incorporation ratio to wild-type cells was 

similar to that of the spontaneous HPRT-deficient cell line E14-TG2a which lacks both 

the HPRT promoter and exons 1 and 2 (Thompson, 1989). The results of the 

incorporation assay suggest that the DWMD1-16 clone, like E14-TG2a is functionally 

deficient in HPRT. 

Electroporations have been done in an attempt to delete different sized 

fragments from the HPRT locus and the results are summarised in Table 3.1. These 

results show the generation of HPRT targeted clones was highest with the deletion 

vector pDWMD1. The frequency of doubly resistant clones against both G418 and 

6-thioguanine is lowest using pDWMD4 as the targeting deletion vector. In one case 

there were no resistant clones following G418 and 6-thioguanine selection from an 

electroporation that generated a typical colony number under single selection for G418 

only. The number of colonies resistant to both G418 and 6-thioguanine generated 

with pDWMD5 in E14 cells was about 1 colony on average, i.e. 17 colonies on 16 

dishes, each from 5 X 106  electroporated cells. The targeting index is highest using 

pDWMD1 as the targeting vector and lowest from pDWMD4. 

33 Southern hybridisation analysis of HPRT deficient clones 

33.1 Demonstration of targeting deletion using vector pDWMD1 

The predicted outcome of deletion from homologous recombination between 

the vector pDWMD1 and the wild-type E14 target locus, as well as the restriction 

enzyme sites of the wild-type HPRT gene are shown in Figure 3.1 . The deleted gene 

should lose a 10.1-kb fragment which includes the promoter region and exon 1, and 
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Table 3.1 Gene deletion at the HPRT locus by homologous recombination. 

Expected deletion 	Average resistant colony numbers' 

Vector 	length 	Targeting index 

(kb) 	G418 	G418 + 6-TG 

pDWMD1 10.1 	325 	 3.00 

141 	 3.13 	 2.22% 

pDWMD5 27.2 	282 	 1.04 	 0.36% 

pDWMD4 38.6 	157 	 0.00 	 0 

157 	 0.07 	 0.04% 

Average resistant colonies from 5x106  cells/plate. 

Targeting index: ratio of the targeted colony number against the colony 

number of effective transfection, i.e. the number of G418 and 6-

thioguanine (6-TG) resistant colonies/ the number of G418 resistant 

colonies only. 



Table 3.2 Incorporation activities of [3H]-hypoxanthine and [3H]-adenine in wild-type 

and mutant cells. 

Incorporation (cpm) 

Cells 

[3H]-hypoxanthine 	 [3H]-adenine 

E14 	273,679 ± 12,185 (1  00%)b 	147,786 ± 501 

E14TG2a 	366 ± 47 (0.1%) 	 96,254 ± 4,590 

DWMD1-16 	526 ± 115 (0.2%) 	 113,464 ± 4,521 

Incorporation (cpm) of [3H]-hypoxanthine or -adenine into cellular 

nucleic acid during a 5-hour incubation. 

Percentage incorporation relative to the incorporation of parental cell 

line E14. 



the deleted allele has a different restriction pattern from that of the wild-type gene. 

Hence, deletion mutants can be distinguished from the wild type by Southern analysis. 

In EcoRI restricted DNA from HPRT wild-type cells, 5 different fragments, 6.3, 5.5, 

1.3, 5.0 and 9.3 kb, containing exon 1, exon 2, exon 3, exons 4-5, and exons 6-9 

respectively hybridise with the pHPT5 cDNA probe in Southern blots. In a deletion 

mutant generated with pDWMD1, the 6.3-kb fragment is lost and a novel 7.4-kb 

fragment containing exon 2 replaces the 5.5-kb fragment. The targeted deletion can 

also be demonstrated using BamHI or Hindlil restriction mapping. In the BamHI 

restriction map, the 11.5-kb fragment containing exon 1 is missing in the targeted 

deletion allele, whereas the 7.0-kb, 4.9-kb and 11.9-kb fragments remain unchanged. 

The 10.2-kb fragment which includes exon 1 is lost and the 4.5-kb fragment 

containing exon 2 is extended to 14.5 kb in the Hindill restriction when probed with 

mouse HPRT cDNA. Two gene targeting experiments have been performed using 

pDWMD1. Eighteen colonies were resistant against the selection by both G418 and 

6-thioguanine in the first experiment while 20 colonies were generated in the second 

experiment. Southern analysis suggested that only one from 6 analysed HPRT-

deficient clones had a different structure at the HPRT locus to that predicted. Two 

novel bands, 7.4-kb and 8.2-kb, are visible while the 5.5-kb band is missing in the 

EcoRI restricted Southern blots from this particular clone. With Hindlil restriction, 

a 12.1-kb band is noticed without any alteration of the wild-type bands (Figure 3.2). 

These two restriction enzyme patterns suggest an insertion at the 3 end of the region 

of homology. The 5.5-kb EcoRI fragment containing exon 2 has been extended to 

8.2-kb by inserting pUC8 sequences and a novel 7.4-kb fragment by inserting both the 

neo cassette and exon 2 is generated in this insertion event. The insertion mutation 

was confirmed by Southern analysis of Hindill restricted DNA, which generated a 

novel 12.1-kb fragment from the insertion of the pDWMD1 sequence directly from 

the cutting site of vector into the 3' end of homology with the target locus (Figure 

3.3). 



Figure 3.2 Southern hybridisation analysis of clones resistant to G418 and 6-

thioguanine generated by electroporation with pDWMD1 and pDWMD5. Genomic 

DNA samples from wild-type parental E14 cells (lanes 1,5), targeting deletion by 

pDWMD1 (lanes 2,6) and insertion mutants generated with pDWMD5 (lanes 3,7) or 

with pDWMD1 (lanes 4,8) were restricted with EcoRI (panel A) or Hindlil (panel B), 

electrophoresed, transferred and hybridised with a full-length HPRT cDNA probe. 

The sizes (in kb) of hybridising bands from the wild-type gene are shown adjacent to 

each panel. The fragments containing the HPRT pseudogene sequences are indicated 

by PG. The exon elements present in each band can be determined by consulting 

Figures 3.1, 3.3, and 3.5. 
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Figure 3.3 The insertion mutant generated by electroporating pDWMD1 into E14 

cells. The structures of (A) the wild-type HPRT gene, (B) the vector (pDWMD1), and 

(C) the insertion mutant generated by electroporating pDWMD1 are shown 

schematically. The number of each exon is shown directly below it. Selected 

restriction sites are shown: R, EcoRI; H, Hindlil; B, BamHI. The sizes (in kb) of all 

EcoRI, Hindlil and BamHI restriction fragments containing exon elements are shown 

between the restriction sites. Closed boxes, endogenous exons; thick closed lines, 

endogenous introns; hatched box, promoter regions; open boxes, vector-derived HPRT 

sequence; vertically striped line, HPRT-flanking region; thin line, plasmid pUC8 

sequence; stippled boxes, neo cassette. 
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33.2 Gene targeting using pDWMD4 and pDWMD5 

The vectors pDWMD5 (designed for 27.2-kb deletion) and pDWMD4 (38.6-kb 

deletion; see Figure 3.4), were electroporated into E14 cells. Clones resistant to G418 

and 6-thioguanine were picked and analysed as described. The Southern patterns 

obtained from all 3 resistant colonies generated in 2 different experiments with 

pDWMD4 were unexpected and disparate from each other (data not shown). The 

confusing pattern and rare incidence of doubly resistant colonies suggest that the 

attempt to delete a large (38.6 kb) fragment by targeting , is much more difficult. 

Although the targeting index from the electroporation of pDWMD5 into E14 cells, 

measured by the frequency of HPRT inactivation, is much less than that from 

pDWMD1, homologous recombination did occur (Table 3.1). All HPRT inactivated 

clones generated from the electroporation of pDWMD5 showed an identical pattern 

in the Southern analysis. In the blot with EcoRI restriction, 2 novel bands, 9.9 kb and 

8.5 kb, are visible with the 9.3-kb band missing from the wild-type pattern. This 

result suggests that the inactivated clones generated from the electroporation of 

pDWMD5 are insertion mutants rather than deletion mutants. The 8.5-kb EcoRI 

fragment containing exon 6 was generated by insertion of the pUC8 sequence in the 

intron 6 region. The 9.9-kb fragment which contains neo sequences, is an extension 

of the 9.3-kb EcoRI fragment containing exons 5-9 (Figure 3.2 and 3.5). These 

insertion phenomena were also confirmed by Southern analysis of Hindlil (Figure 3.2) 

and BamHI (data not shown) digests. The 23.4-kb Hindlil fragment containing exons 

6-9 and pDWMD5 sequence replaces the 11.7-kb fragment in insertion inactivation 

mutants. 

3.4 Positive-negative selection for HPRT deletion 

The use of a well-established cell selection system makes the study of the 

HPRT gene very convenient. For most genes of interest a direct selection system as 

described for HPRT does not exist and hence it is impossible to isolate directly a 

targeted clone with the low frequency of gene targeting currently achieved. Mansour 

et al. (1988) described a general method, termed positive-negative selection, for 

isolation of cells containing targeted mutations in any gene, regardless of its function. 
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Figure 3.4 Schematic diagram of strategies for deletion in the mouse HPRT locus 

using the vectors pDWMD5 and pDWMD4. The structures of (A) the wild-type 

HPRT gene, (B) the deletion vectors (pDWMD5 and pDWMD4), and (C,D) predicted 

targeting deletion mutants are shown schematically. The number of each exon is 

shown directly below it. Restriction sites for EcoRI in the HPRT locus are shown as 

"R" and the sizes (in kb) of EcoRI restriction fragments containing exon elements are 

shown between the restriction sites. Closed boxes, endogenous exons; thick closed 

lines, endogenous introns; hatched box, promoter regions; open boxes, vector-derived 

HPRT sequence; vertically striped line, HPRT-flanking region; thin line, plasmid 

pUC8 sequence; stippled boxes, neo cassette. 
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Figure 3.5 The insertion which occurred after electroporation with the vector 

pDWMD5. The structures of (A) the wild-type HPRT gene, (B) the vector-pDWMD5, 

and (C) insertion mutant generated by electroporating pDWMD5 are shown 

schematically. The number of each exon is shown directly below it. Selected 

restriction sites are shown: R, EcoRI; H, Hindill. The sizes (in kb) of all EcoRI and 

Hindill restriction fragments containing exon elements are shown between the 

restriction sites. Closed boxes, endogenous exons; thick closed lines, endogenous 

introns; hatched box, promoter regions; open boxes, vector-derived HPRT sequence; 

vertically striped line, HPRT-flanking region; thin line, plasmid pUC8 sequence; 

stippled boxes, neo cassette. 
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A marker gene (e.g. neo or the hygromycin resistance gene) containing all the 

necessary control signals for efficient expression acts as positive selection and is used 

to disrupt the target locus. Random integrations of the targeting vector are eliminated 

by negative selection since these cells retain a second, negatively selectable, marker 

gene, included in the vector, after the recombination process. The thymidine kinase 

gene from herpes simplex virus (HSV-TK) is used as the second marker gene, and its 

presence can be selected against due to its higher enzymatic activity for thymidine 

analogues such as gancyclovir compared to its mammalian counterpart (Figure 3.6). 

This method has been successfully used in many different homologous recombination 

experiments and indicated that up to 2000-fold enrichment can be achieved for those 

cells that contain a targeted mutation (Mansour et al., 1988; DeChiara et al., 1990). 

To determine the possibility of using positive-negative selection to facilitate 

targeting deletion experiments, the deletion vector pDWMD3 was constructed and 

introduced into E14 cells. The structure of pDWMD3 is identical to pDWMD1 except 

for the addition of a gene cassette containing the herpes simplex virus thymidine 

kinase gene driven by its own promoter to provide a negative selection marker for 

homologous recombination. Hindlil linearised pDWMD3 DNA was electroporated 

into E14 cells. The electroporated cells were divided into 4 groups. Cells treated 

with G418 only were analysed to examine the efficiency of electroporation. The 

second group was incubated with G418 and gancyclovir for testing the possibility of 

positive-negative selection. The groups with 6-thioguanine treatment were to select 

HPRT-deficient clones directly after electroporation. Numbers of resistant colonies 

selected with G418 and gancyclovir however, were not greatly different from those 

selected in G418 alone, suggesting that in this case positive-negative selection was not 

working efficiently to reduce the number of surviving random integrants (Table 3.3). 

Using homologous recombination techniques, a novel strategy to introduce 

predesigned deletion mutations into the HPRT locus in ES cells was proposed. A 10-

kb deletion including promoter and exon 1 region was constructed, although the 

positive-negative selection scheme did not function efficiently. This approach 



Figure 3.6 The strategy for positive-negative selection in deletion targeting the HPRT 

gene (A). The deletion targeting vector (B) carries a positively selectable neo gene 

(dotted box), flanked by 5 and 3' regions of homology. The HSV-TK gene 

(crosshatched box) lies 3 to the 3' region of homology. Homologous recombination 

between the vector pDWMD3 and HPRT locus results in replacement of target gene 

sequences by incoming vector and loss of the flanking TK sequences. Targeting 

HPRT deletion cells (C) are neo and HSV-TK. (D) as a result of random integration 

the entire targeting vector integrates into the genome. Such cells are not only neo 

but also HSV-TK which render them sensitive to gancyclovir. 
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Table 33 The effect of positive-negative selection on targeting events with the 

deletion vector, pDWMD3. 

Colony number' 

Selection  

Experiment 1 	 Experiment 2 

G418 	 1095 (100%)" 	 378 (100%) 

G418+GANCC 	 585 (53.42%) 	 143 (37.83%) 

G418+6-TG' 	 1.25 (0.114%) 	 3.00 (0.797%) 

G418+GANC+6-TG 	2.00 (0.183%) 	 1.25 (0.307%) 

Average resistant colonies from 5x106  cells/plate. 

Percentage of surviving colony number against the colony number of 

effective transformation. 

C. 	GANC, gancyclovir. 

d. 	6-TG, 6-thioguanine. 
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CHAPTER 4. DELETION MECHANISMS CREATED BY 

GENE TARGETING 
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4.1 Sequence effect on deletion by gene targeting 

Results described in Chapter 3 showed that it was not difficult to perform 

targeting deletions of the 10.1-kb containing promoter region and exon 1 of the HPRT 

locus. Nevertheless, an attempt to delete a 27.2-kb sequence containing promoter 

region and exons 1 to 5 failed. Because both vectors, pDWMD1 and pDWMD5, 

designed to make deletions of 10.1-kb and 27.2-kb respectively, shared identical 5' 

homology and had a similar length of 3' homology, failure to make the longer deletion 

might be due to either 3' sequence differences or the deletion size. To investigate 

whether the sequence-specificity is important for the targeting deletion, a targeting 

deletion vector, pDWMD7, was constructed to delete a similar length to that deleted 

by pDWMD1, but from a different region of the HPRT locus. The 2.4-kb EcoRI 

fragment holding the upstream flanking region in the targeting deleting vector, 

pDWMD5, was replaced by the 1.3-kb EcoRI fragment containing exon 3 to build a 

vector for the deletion of an 11.4-kb sequence encompassing exons 4-5 (Figure 4.1). 

Targeting vectors pDWMD5 and pDWMD7 share the same 3' homology but differ by 

15.8 kb in the length of DNA to be deleted. 

Southern hybridisations were carried out to analyse the structure of the HPRT 

gene in clones surviving both G418 and 6-thioguanine selection after electroporating 

with linearised pDWMD7 DNA. Two clones with different patterns were obtained 

from 1 electroporation of 4 x 107  cells. One shows the predicted deletion targeting 

pattern. The deletion mutant was designed to be diagnosed by loss of a 5.0-kb EcoRI 

fragment and alteration of the 9.3 kb-fragment to 9.9 kb. The deletion created by 

pDWMD7 should result in the loss of 11.4-kb containing exons 4 and 5. This leads 

to loss of a 1.0-kb Hindill fragment and modifications of the 7.1-kb Hindlil fragment 

containing exon 3 and the 11.7-kb Hindlil fragment. The 7.1-kb fragment containing 

exon 3 would lose the 3' HindIll site and generate a new 11.8-kb fragment containing 

exons 3 and 6-9 extending to the 3' HindIll site of the wild type 11.7-kb fragment. 

The Southern blot of mutant DNA restricted with Hindul and probed with pHPT5 

shows 4 bands of 11.8, 10.2, 4.5 and 0.8 kb. Compared to the pattern of wild-type 

DNA which generates 6 bands with 11.7, 10.2, 7.1, 4.5, 1.0 and 0.8 kb in length, this 
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Figure 4.1 Strategy for deletion targeting in the mouse HPRT locus using pDWMD7. 

The structures of (A) the wild-type HPRT gene, (B) the deleting vector (pDWMD7), 

and targeting mutants are shown schematically. The number of each exon is shown 

directly below it. Selected restriction sites are shown: R, EcoRI; H, Hindu!; B, 

BamHI. The sizes (in kb) of all EcoRI, Hindu! and BamHI restriction fragments 

containing exon elements are shown between the restriction sites. The pattern of 

targeting mutants are shown as (C) predicted deletion mutant, and (D) 3' insertion 

mutant. Closed boxes, endogenous exons; thick closed lines, endogenous introns; 

hatched boxes, promoter regions; open boxes, vector-derived HPRT sequence; 

vertically striped line, HPRT-flanking region; thin line, plasmid pUC8 sequence; 

dotted boxes, neo cassette. 
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result fits the predicted pattern of deletion targeting (Figure 4.2). 

The other pattern shows that clones resistant to G418 and 6-thioguanine are 

insertion mutants containing an insertion at the 3' end of the homologous region. The 

3' insertion mutant should have 2 duplicate regions, one containing exon 3 and the 

other containing exon 6. Therefore, the restriction mapping by EcoRI digestion should 

identify a novel 8.5-kb fragment holding exon 6 and a repeat 1.3-kb fragment 

containing exon 3 as well as a modified the 9.3-kb fragment containing exons 6-9 now 

9.9 kb in size (Figure 4.1). An EcoRI digest probed with HPRT cDNA shows 7 

bands of 9.9, 8.5, 6.3, 5.5, 5.0, 3.5 and 1.3 kb in length in the mutant. There are three 

differences between the wild-type and mutant restriction patterns. Due to the insertion 

of an extra 1.3-kb fragment containing exon 3, a 1.3-kb fragment with double density 

relative to its wild-type counterpart is noticed. Insertion of pUC8 sequences, neo 

module and exon 6 region leads to novel 8.5-kb band and the extension of the 9.3-kb 

fragment to 9.9 kb. This clone fits the pattern predicted for insertion into the HPRT 

locus within the region of 3 homology (Figure 4.3). The insertion event was also 

confirmed by restriction with Hindill which showed modification of the wild-type 

11.7-kb fragment holding exons 5-9 to 22.1 kb due to insertion of vector sequences. 

4.2 Effect of deletion size on efficiency of deletion targeting 

Although the attempt to delete more than 20 kb from the HPRT locus by gene 

targeting using pDWMD5 did not succeed, this could have been due to sequence-

specific difficulty. To find out whether sequence-specificity or length-limitation 

influences the feasibility of deletion targeting more than 20 kb in the HPRT locus, a 

vector, pDWMD8, was constructed. The vector pDWMD8 was designed to delete 21 

kb including the 10.1-kb region which was successfully deleted by gene targeting with 

pDWMD1. Successful targeting deletion by pDWMD8 would give the same EcoRI 

restriction pattern as the targeting deletion established by pDWMD1 when probed with 

HPRT cDNA. The construction of the deletion vector, pDWMD8, was performed by 

inserting a 3.0-kb EcoRI fragment of pX23RI3.0 into the unique EcoRI site of the 

intermediate plasmid used in construction of pDWMD8. Plasmid pX23RI3.0 is a 
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Figure 4.2 Southern analysis of clones resistant to G418 and 6-thioguanine generated 

by electroporation with pDWMD1 or pDWMD7 into E14 embryonic stem cells. 

Genomic DNA samples from wild-type E14 cells (lane 1, 4, 7) and targeting deletion 

mutants by pDWMD1 (lane 2, 5, 8) or by pDWMD7 (lane 3, 6, 9) were restricted 

with EcoRI (panel A), Hindill (panel B), or BamHI (panel C), electrophoresed, 

transferred and hybridised with full-length HPRT cDNA as probe. The sizes (in kb) 

of hybridising bands from the wild-type gene are shown adjacent to each panel. The 

fragments containing the HPRT pseudogene sequences are indicated by PG. The exon 

elements present in each band can be determined by consulting Figures 3.1 and 4.1. 
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Figure 4.3 Southern analysis of insertional inactivation clones resistant to G418 and 

6-thioguanine generated by electroporation with pDWMD7 or pDWMD8 into E14 

embryonic stem cells. Genomic DNA samples from E14 cells (lane 1) and 3' insertion 

mutants produced by pDWMD8 (lane 2) and pDWMD7 (lane 3) were restricted with 

EcoRI or Hindlil, electrophoresed, transferred and hybridised with full length HPRT 

cDNA as probe. The sizes (in kb) of hybridising bands from the wild-type gene are 

shown adjacent to each panel. The fragments containing the HPRT pseudogene 

sequences are indicated by PG. The exon elements present in each band can be 

determined by consulting Figures 4.1 and 4.5. 
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subclone of mouse HPRT genomic sequences, located about 11 kb upstream of the 

HPRT promoter region (Melton et aL, 1984). 

In a successfully targeted event the 6.3-kb and 5.5-kb EcoRI fragments should 

be replaced by a novel 7.4-kb fragment due to loss of exon 1 in the targeted deletion 

mutant (Figure 4.4). Both pDWMD1 and pDWMD8 share the same 3' homologous 

region. Two electroporations were carried out to introduce the Hindlil linearised 

pDWMD8 DNA into E14 murine embryonic stem cells. Five clones in total were 

obtained after selection with G418 and 6-thioguanine in 2 different electroporations. 

None of the 5 resistant clones fits the expected deletion pattern involving loss of the 

6.3-kb EcoRI fragment, suggesting that the attempt to delete 20 kb from the HPRT 

locus had failed again. Similar to the results with pDWMD5, only insertion events 

have occurred. In addition to the missing 5.5-kb fragment, the predicted insertion 

should generate two fragments of 8.2 kb and 7.2 kb in mutant DNA which are not 

present in wild-type DNA (Figure 4.5). This alteration is caused by the insertion of 

vector sequences into the 3 end of the homology. The predicted insertion event 

should also modify the 4.5-kb Hindlil fragment to 14.4 kb by inserting vector 

sequences. The HindIH digest shown in Figure 4.3 fits the prediction. In the EcoRI 

digest the 5.5-kb fragment is missing, the 6.3-kb fragment is barely detectable due to 

underloading, but two novel bands are present. Although their size does not fit the 

prediction (8.2 and 7.2 kb) particularly well, these results are more compatible with 

insertion rather than deletion again having occurred in gene targeted mutants. 

4.3 Achieving large deletion by intrachromosomal recombination 

Until recently, the largest genomic deletion performed by gene targeting 

techniques in ES cells is about 15 kb (Mombaerts et al., 1991). Some spontaneous 

mutants as well as human genetic disorders were reported to contain large deletions 

(Yunis and Ramsay, 1978). It would be useful to develop a method that could create 

large deletions by gene targeting, so that animal models with such large deletions 

could be constructed and studied. The capability to generate deletions is limited in 

size as suggested by results with both pDWMDS and pDWMD8. There is no simple 
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Figure 4.4 Strategy for generating deletions in the mouse HPRT locus by 

homologous recombination. The structures of (A) the wild-type HPRT gene, (B) the 

deletion vector (pDWMD8), and (C) predicted targeting deletion mutant are shown 

schematically. The number of each exon is shown directly below it and EcoRI 

restriction sites are presented as "R". The sizes (in kb) of EcoRI restriction fragments 

containing exon elements are shown between the restriction sites. Closed boxes, 

endogenous exons; thick closed lines, endogenous introns; hatched boxes, promoter 

regions; open boxes, vector-derived HPRT sequence; vertically striped line, HPRT-

flanking region; thin line, plasmid pUC8 sequence; dotted boxes, neo cassette. 
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Figure 4.5 The mechanism of generation of insertion mutants by electroporation with 

pDWMD8 DNA. The structures of (A) the wild-type HPRT gene, (B) the pDWMD8 

vector, and (C) insertion mutant generated by electroporating pDWMD8 are shown 

schematically. The number of each exon is shown directly below it. Selected 

restriction sites are shown: R, EcoRI; H, Hindu!. The sizes (in kb) of all EcoRI and 

Hind!!l restriction fragments containing exon elements are shown between the 

restriction sites. Closed boxes, endogenous exons; thick closed lines, endogenous 

introns; hatched boxes, promoter regions; open boxes, vector-derived HPRT sequence; 

vertically striped line, HPRT-flanking region; thin line, plasmid pUC8 sequence; 

dotted boxes, neo cassette. 
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procedure available to delete a larger region of the HPRT locus by homologous 

recombination. A two-step recombination procedure used to delete a large fragment 

is described in Figure 4.6. By the insertion of vector sequences into the 3' end of 

homology in the first step, intermediate clones could be selected with G418 and 6-

thioguanine for the genotype, neo, hprC, HSV-tkt The second step requires 

intrachromosomal recombination in the HPRT locus. 	Clones with the 

intrachromosomal recombination event can be distinguished from those without 

recombination by selection against HSV-TK. All cells which lose HSV-TK by 

intrachromosomal recombination will survive gancyclovir selection. Two different 

gene structures will be generated from the intermediate clones, if the 

intrachromosomal recombination occurred. One type, in which the recombination 

occurred in the 3' homology will generate a wild-type HPRT with loss of the neo 

module. Those cells in which the recombination occurred in the 5' homology will 

produce a mutant with the desired deletion and maintenance of the neo module. 

An insertion event usually occurs instead of deletion when large deletions are 

attempted by the gene replacement protocol. The vector pDWMD5 is the best basic 

design to test the two-step hit and run procedure, as the targeted clones generated from 

electroporation with pDWMD5 are inserted in the 3' end sequences of the vector. A 

negatively selectable gene cassette (P0K promoter driving HSV-TK gene) was cloned 

into the HPRT 3' homology of pDWMD5 to construct the 2-step deleting vector-

pDWMD5-TK. Intermediate clones with insertion of HSV thymidine kinase, 2.4 kb 

5' flanking sequence, neo and a 3.9-kb fragment containing exon 6 would be 

generated. The intrachromosomal recombination which generates the desired deletion 

takes place in the two 2.4-kb 5' flanking regions of the HPRT gene and will delete 

both promoter region and exons 1-5 (Figure 4.7). This deletion mutant is the only one 

which can survive under G418, 6-thioguanine and gancyclovir triple selection. The 

first experiment was performed by electroporating E14 cells with Hindul linearised 

pDWMD5-TK DNA. Only one colony survived after the selection of 0418, 6-

thioguanine and gancyclovir. Southern analysis shows that 4 EcoRl bands containing 

exon 1 to exon 5 were missing and the 9.3-kb fragment holding exon 6 to exon 9 was 
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Figure 4.6 Strategy for targeting deletion by intrachromosomal recombination. (A) 

A vector containing the homologous region, positive selectable gene cassette, and 

negative selectable gene cassette inserted into the 3' end of homology region. 

Thereby, an intermediate genotype (B) with neo hprf HSV-tk was generated. After 

intrachromosomal recombination (C), two genotypes (D) will be created. One is the 

final deletion mutant and the other is the wild type. Both of them can be 

distinguished from the intermediate insertion mutants by using gancyclovir selection. 

Closed boxes, HPRT exons; hatched boxes, promoter regions; thin line, plasmid pUC8 

sequence; stippled boxes, neo cassette; cross-hatched boxes, HSV-TK cassette. 
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Figure 4.7 Restriction pattern of gene targeting deletion in HPRT locus by 

pDWMD5-TK. The structures of (A) the wild-type HPRT gene, (B) the deleting 

vector (pDWMD5-TK), (C) the intermediate insertion mutant and (D) the targeting 

deletion mutant are shown schematically. The number of each exon is shown directly 

below it. Selected restriction sites are shown: R, EcoRI; H, Hindlil. The sizes (in kb) 

of all EcoRI and Hindill restriction fragments containing exon elements are shown 

between the restriction sites. Closed boxes, endogenous exons; thick closed lines, 

endogenous introns; hatched boxes, promoter regions; open boxes, vector-derived 

HPRT sequence; vertically striped line, HPRT-flanking region; thin line, plasmid 

pUC8 sequence; stippled boxes, neo cassette; cross-hatched boxes, HSV-TK cassette. 
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modified to 9.6 kb in length. These results suggest that a deletion mutant was created 

by the two-step intrachromosomal recombination. A second experiment was carried 

out to select the intermediate clones to demonstrate the mechanism of deletion by the 

selection with G418 and 6-thioguanine only. Five clones resistant to G418 and 6-

thioguanine were selected and restriction patterns suggest that 4 clones are 

intermediate products which have the predicted 5.8-kb novel band as well as the 

extension of 9.3 kb to 9.9 kb in the EcoRl restriction digest. The fifth clone from the 

second experiment is identified as a deletion mutant generated by spontaneous 

intrachromosomal recombination. The deletion mutant with 27.2 kb of the HPRT 

locus deleted by pDWMD5-TK and its intermediate insertion clones were also 

confirmed by Southern analysis after Hindlil digestion (Figure 4.8). The extra 14.8-kb 

and 11.4-kb bands with the missing 11.7-kb fragment is shown in the pattern of the 

intermediate clones. An extension of the 11.7-kb fragment to 17.2 kb and the 

disappearance of the 10.2-kb, 4.5-kb, 7.1-kb, and 1.0-kb fragments which contain 

exons 1, 2, 3, and 4 respectively, are also indicated in the Southern blot of deletion 

mutant DNA restricted with Hindill. 

Thus, a 2-step deletion strategy involving targeting insertion and 

intrachromosomal recombination could provide a solution for the size-limited simple 

targeting deletion strategy for inactivating genes by deletion in ES cells. 
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Figure 4.8 Southern analysis of the deletion mutant and intermediate insertion stage 

generated by gene insertion and intrachromosomal recombination with pDWMD5-TK. 

Genomic DNA samples from wild type (lane 1, 5), insertion mutants by pDWMD5 

(lane 2, 6) or by pDWMD5-TK (lane 3, 7), and deletion mutant (lane 4, 8) were 

restricted with EcoRI (panel A) or Hindlil (panel B), electrophoresed, transferred and 

hybridised with full-length HPRT cDNA as probe. The sizes (in kb) of hybridising 

bands from the wild-type gene are shown adjacent to each panel. The fragments 

containing the HPRT pseudogene sequences are indicated by PG. The exon elements 

present in each band can be determined by consulting Figures 4.7 and 3.5. 
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CHAPTER 5. ADENINE DEPENDENCE OF HPRT-

DEFICIENT ES CELLS 
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5.1 The rescue of HPRT-deficient cells by adenine in the presence of HAT 

selection 

HPRT-deficient cells are unable to grow in HAT medium, which is used 

widely to select for HPRT cells (Szybalska and Szybalski, 1962). However, HPRT-

deficient mouse ES cells (E14TG2a) could be rescued efficiently and in a dose 

dependent manner if HAT medium was supplemented with adenine. The dose-

dependent rescue by supplementation of adenine in HAT-treated HPRT deficient cells 

is not only observed in colony forming assays but also in general growth assays. 

Growth is totally recovered when the concentration of adenine supplement reaches 10 

M, which is the same as the concentration of hypoxanthine used in HAT medium 

(Table 5.1). Dose-dependent rescue by adenine did not only occur in HPRT-deficient 

mouse ES cells but also in HPRT-deficient Chinese hamster (CHO) and human (HeLa) 

cells (data not shown). In addition, the rescue of HPRT deficient cells by 

supplementation with adenine also occurred in medium containing aminopterin and 

thymidine only (data not shown). The supply of thymidine in the medium is to 

provide TMP via thymidine kinase in cells because aminopterin also inhibits 

thymidylate synthetase activity. These experiments showed that in HPRT-deficient 

cells where de novo nucleotide synthesis is blocked by aminopterin, adenine can 

provide the purine nucleotide pool, presumably via the action of APRT and AMP 

deaminase. Because APRT-deficient mice were not available to investigate the role 

of this enzyme in preventing self injury behaviour in HPRT-deficient mice, purine 

analogues were used to inhibit APRT activity and the results show that they did 

induce profound self injury behaviour in young HPRT-deficient mice. 

5.2 Inhibition of APRT activity in vitro by the purine analogue, 9-ethyladenine 

Most of the purine analogues that have been used to study purine metabolism 

were inappropriate for this study because they are irreversibly toxic to cells at low 

concentrations. Instead, two analogues, 9-ethyladenine and caffeine which were 

expected from their chemical structures (Figure 5.1) to be less toxic but to still act as 

competitive inhibitors of the purine salvage pathway were used throughout the 

experiments. The recovery effect by supplementation with adenine on HPRT-deficient 
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Table 5.1 Growth of the HPRT-deficient ES cell line, E14TG2a, in HAT selective 

medium supplemented with adenine. 

Cell 	Treatment 	 Growth' 	Colonies number' 

E14TG2a 	Control 	 0.504 	67, 61 

HAT 	 0.005 	0, 0 

HAT + 1.25 x 10 M adenine 	0.077 	30, 28 

HAT + 2.5 x iO M adenine 	0.100 	45, 40 

HAT + 5.0 x 10 M adenine 	0.238 	N.D.0 

HAT + 1.0 x iO M adenine 	0.496 	54, 57 

Growth was the average of two samples measured with 0D575nm• Cells 

were plated into 24-well microtitre plates and cultured in normal 

medium for 48 hr. Media were changed to the treatment media on day 

2 and the microtitre plates were fixed and stained with crystal violet on 

day 6. The retained crystal violet in cells was extracted with 70% 

ethanol and measured by spectrophotometry at 575 nm wavelength. 

Colony numbers were counted after treatment of 300 cells for 5 days 

in 24-well microtitre plate. 

C. 	N.D., Not determined. 
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Figure 5.1 The chemical structure of purines and their analogues. A, hypoxanthine; 

B, adenine; C, 9-ethyladenine; D, caffeine (1,3,7-trimethyixanthine). 
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cells under HAT selection was significantly blocked by treatment with 9-ethyladenine. 

The inhibition of growth by 9-ethyladenine which might be due to interference with 

APRT activity, is dose dependent (Table 5.2). In a short term (5 hr) in vitro assay, 

the incorporation of [3  H]-adenineinto nucleic acids in both wild-type and HPRT-

deficient mouse ES cells was reduced in the presence of 9-ethyladenine to 35% and 

25% of the control value for wild-type and mutant cells respectively. However, the 

analogue had no effect on ['H]-thymidine incorporation (Table 5.3), suggesting that 

it was indeed acting as an APRT inhibitor, rather than having a more general cytotoxic 

effect (Table 5.4). The inhibitor, 9-ethyladenine is shown to have a reversible 

cytostatic effect on wild-type ES cells by plating 50,000 cells/well to a microtitre plate 

in the presence of the analogue. Cells were left for 96 hours, with 9-ethyladenine 

being removed from wells at various times and replaced with ordinary medium, before 

the amount of growth in each well was monitored by [3H]-thymidine incorporation 

into nucleic acids (Figure 5.2). 

The cytostatic effect of 9-ethyladenine in the 96-hour assay was more 

pronounced on HPRT-deficient than wild-type ES cells (Table 5.5). [
3H]-thymidine 

incorporation in wild-type (E14) cells was reduced to 36% of the control value by 

incubation with 9-ethyladenine, while the reductions for two different HPRT-deficient 

ES cell lines, E14TG2a (18%) and DWMD1-16 (10%) were highly significantly lower. 

The data suggest that HPRT-deficient cells are more susceptible to 9-ethyladenine than 

the wild-type cells. 

These results indicated that 9-ethyladenine was suitable for administration to 

mice to block APRT activity without exerting more general toxic effects. Its greater 

effect on HPRT-deficient cells was predicted from the purine metabolic pathway 

where the salvage of adenine by APRT and its subsequent conversion to IMP should 

compensate for the inability to produce IMP from hypoxanthine in HPRT-deficient 

cells. 
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Table 5.2 Inhibition of adenine induced rescue of HPRT-deficient ES cells in HAT 

selection medium by 9-ethyladenine. 

Treatment 
	

Growth' 

Control 	 0.158 

HAT 	 0.002 

HAT + 10 M adenine 	 0.120 

HAT + 10 M adenine + 104 M 9-ethyladenine 0.031 

HAT + 10' M adenine + 10 M 9-ethyladenine 0.059 

HAT + 10' M adenine + 106 M 9-ethyladenine 0.074 

10 M 9-ethyladenine 	 0.123 

10 5  M 9-ethyladenine 	 0.150 

10 M 9-ethyladenine 	 0.162 

a. 	Growth was the average of two samples measured at ODS75flm  for the 

dye uptake by surviving cells. Two thousand cells per ml per well 

were plated into a 24-well microtitre plate and cultured in normal 

media for 48 hr before treatment. After 5 days of treatment, the cells 

were fixed and stained with crystal violet. The 70% ethanol extractions 

of retained dye were measured by spectrophotometry at 575 nm 

wavelength. 
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Table 5.3 The competitive effect of 9-ethyladenine on [3H]-adenine incorporation in 

ES cells. 

Cell line 	9-ethyladenine 	 Incorporation (cpm)a 

[3H]-adenine 	 [3H]-thymidine 

E14 	 - 	 29,460 ± 4,936 (100%) 	33,204 ± 6,859 

E14 	10 M 	 10,291 ± 1,688 (35%)' 	33,130 ± 232 

E14TG2a 	- 	 43,038 ± 6,552 (100%) 	20,106 ± 220 

E14TG2a 	10 M 	 11,071 ± 1,674 (25%)" 	27,225 ± 287 

DWMD1-16 	- 	 N.D.0 	 37,790 ± 886 

DWMD1-16 10 M 	 N.D. 	 38,557 ± 7,270 

Incorporation (cpm) of [3H]-adenine or -thymidine into cellular nucleic 

acid during a 5-hour incubation in the presence or absence of 10 3M 9-

ethyladenine. 

Percentage incorporation in the presence of 9-ethyladenine relative to 

untreated control cells. 

C. 	N.D., Not determined. 
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Table 5.4 The competitive effect of 9-ethyladenine on [3H]-hypoxanthine 

incorporation in ES cells. 

Cell line 	9-ethyladenine 	[3H]-hypoxanthine uptake(cpm) 

E14 	 - 	 122,042 ± 1,904 (100%) 

1 x iO M 	66,135 ± 4,184 (54%) 

2 x 10-'M 	41,369 ± 1,199 (34%) 

Incorporation (cpm) of [3H]-hypoxanthine into cellular nucleic acid 

during a 5-hour incubation in the presence or absence of 9-

ethyladenine. 

Percentage incorporation in the presence of 9-ethyladenine relative to 

untreated control cells. 
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Figure 5.2 Reversible cytostatic effect of 9-ethyladenine on ES cells. E14 cells in 

microtitre plates were incubated in 10 3M 9-ethyladenine for the times indicated and 

then the medium was replaced with control medium. After 96-hr total incubation, 

cells were pulsed for 5 hr with [3H]-thymidine and incorporation into cellular nucleic 

acids was determined. The bars indicate the standard deviation of measurement for 

each time point. 
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Table 5.5 The difference in susceptibility to the cytostatic effect of 9-ethyladenine 

in HPRT-deficient and wild-type ES cells. 

Cell line 	HPRT 	Treatment 	[3H]-thymidine incorporation 

E14 	 + 	medium 	 75,046 ± 20,988 (100%) 

E14 	 + 	9-ethyladenine 	27,029 ± 4,651 (36%) 

E14TG2a 	- 	medium 	 151,304 ± 8,995 (100%) 

E14TG2a 	- 	9-ethyladenine 	27,152 ± 9,478 (18%)" 

DWMD1-16 	- 	medium 	 219,582 ± 12,798 (100%) 

DWMD1-16 	- 	9-ethyladenine 	22,993 ± 9,985 (10%)- 

a. 	Incorporation of [3H]-thymidine (cpm) into cellular nucleic acids in a 

5-hr pulse following a 96-hr incubation in control medium or medium 

containing 10 3M 9-ethyladenine. For each cell line, the percentage 

incorporation relative to the control culture is also shown. 

p < 0.01 ; ", p < 0.001 compared with E14 cells treated with 

9-ethyladenine by Student's t-test. 
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53 The effect of caffeine on purine salvage 

High doses of caffeine were used to create the first animal model for Lesch-

Nyhan syndrome. Self injury behaviour was observed in rats following oral 

administration of caffeine in a daily dose of 185 mg/kg body weight (Peters, 1967). 

Self injury behaviour was also noticed in rats intraperitoneally injected with another 

methyixanthine, theophylline, at 150 mg/kg body weight daily (Sakata and Fuchimoto, 

1973). In addition, the methylxanthine effect on self injury behaviour could be 

enhanced by combined administration with clonidine (Razzak et al., 1977). Although 

HPRT activity decreased in those rats which received drinking fluid containing 8 g/l 

caffeine, there was no clear explanation of the correlation between caffeine 

administration and self injury behaviour (Ferrer et aL, 1982). Caffeine was used as 

a comparative chemical to 9-ethyladenine for the purine incorporation assay. Caffeine 

caused a smaller reduction in both [3H]-adenine and [3H]-hypoxanthine incorporation, 

67% of control levels for adenine compared to 56% for hypoxanthine (Table 5.6). In 

contrast, 9-ethyladenine inhibited [3H]-adenine incorporation more specifically (35% 

of control levels) than [3H]-hypoxanthine (54% of control levels) (Tables 5.3 and 5.4). 

Both HPRT and APRT activities were suppressed in those cells incubated with 

caffeine, but the inhibitory effect was stronger on HPRT than APRT. The high dose 

injection of caffeine into animals might cause the depletion of HPRT as well as a 

decrease of APRT activity. It has been shown that rodents have higher activity of 

APRT than that of HPRT while man has a higher HPRT activity (Leese et al., 1991; 

Moore and Whittingham, 1992). Thus, the effect of reducing the APRT compensation 

in the purine nucleotide pool in rodent by the administration of caffeine was similar 

to that occurring in patients with Lesch-Nyhan syndrome. In humans, APRT does not 

play an important role in the purine nucleotide salvage pathway. When HPRT activity 

was nearly completely inhibited without adenylate pool compensation in animals by 

treatment with caffeine, then automutilation might be expected. The inhibitory effects 

of caffeine on HPRT and APRT suggest a possible biochemical mechanism for the 

animal model that produced self injury behaviour by administering high doses of 

caffeine to HPRT wild-type animals. In addition, caffeine prompted a smaller 

reduction in [3  H]-adenineincorporation than 9-ethyladenine, 67% of control compared 
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to 35%. The smaller inhibition by caffeine was correlated to the smaller effect on 

behaviour alteration in treated animals (see Chapter 6). 

125 



Table 5.6 The competitive effects of caffeine on the incorporation of [3H]-

hypoxanthine and [3  H]-adeninein E14 ES cells. 

Incorporation (cpm)a 

Caffeine 

[3H]-hypoxanthine 	[3H]-adenine 	[3H]-thymidine 

143,374 ± 25,314 (100%)' 57,893 ± 415 (100%) 123,111 ± 8,461 

io M 
	

80,371 ± 9,848 (56%) 	38,529 ± 5,336 (67%) 141,020 ± 4,431 

Incorporation (cpm) of [3H]-hypoxanthine, -adenine or -thymidine into 

cellular nucleic acid during a 5-hour incubation in the presence or 

absence of 10 3M caffeine. 

Percentage incorporation in the presence of caffeine relative to 

untreated control cells. 
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CHAPTER 6. BEHAVIOURAL ALTERATION IN HPRT-

DEFICIENT MICE 

127 



6.1 Decreased APRT activity in brain after treatment with 9-ethyladenine 

To evaluate the effects of 9-ethyladenine on APRT activity in mouse brain, 6 

HPRT-deficient male mice and 5 age-matched (6-8 week old) male wild-type strain 

129 mice were injected with 9-ethyladenine or saline intraperitoneally. Three mice 

from each genotype were injected with 9-ethyladenine while three mice with HPRT-

deficiency and 2 wild-type mice were treated with saline, intraperitoneally 4 times on 

alternate days. Mice were sacrificed after 7 days to analyse the [3H]-adenine 

incorporation in the brain cells. After cervical dislocation, mouse brain cells were 

isolated immediately for analysis of [3H]-adenine incorporation in vitro. To correct 

for the distribution of cell numbers in each sample, the relative activities were 

calculated as the ratio of the incorporation of [3H]-adenine to the uptake of [14C]-

methionine. The incorporation of adenine in brain cells of HPRT-deficient mice was 

slightly higher than that of wild-type mice although the difference was not statistically 

significant. The results suggested that APRT activity could be slightly higher in 

HPRT-deficient mice to compensate for the effect of loss of HPRT activity on the 

nucleotide pool before drug treatment. This type of compensation has been observed 

in the erythrocytes of patients with Lesch-Nyhan syndrome (Seegmiller et al., 1967). 

However, murine APRT activity in the brain of HPRT-deficient mice as measured by 

Ailsop and Watts (1990) was normal. Thus, normal APRT levels may be sufficient 

to compensate for HPRT deficiency without increased activity in HPRT-deficient 

mice. The APRT activities were significantly decreased in both HPRT-deficient and 

wild-type mice after treatment with 9-ethyladenine (Table 6.1). The results suggest 

that the competitive inhibitor, 9-ethyladenine, of APRT could be used in vivo as well 

as in vitro for the blockage of the adenine salvage pathway. 

6.2 Pilot study of 9-ethyladenine effect on behaviour alteration in outbred HPRT-

deficient mice 

To reduce endogenous APRT activity, 9-ethyladenine was administered initially 

to 5 (2 male and 3 female) outbred HPRT-deficient mice aged 9-12 months. Mice 

received 2.5 x 106  moles of 9-ethyladenine (0.25 ml of a 102  M solution dissolved 

in sterile normal saline). The analogue was given three times a week intraperitoneally 
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Table 6.1 The [3H]-adenine incorporation activities in brains of wild-type and HPRT-

deficient mice after treatment with 9-ethyladenine. 

Strain 	 HPRT 	Treatment 	Relative activity' 

129/Hprt"/Y 	+ 	saline 	 1.5840 ± 0.2647 

129/Hprt1'/Y 	+ 	9-ethyladenine 	1.3055 ± 0.1148' 

129 hprt/Y 	- 	saline 	 1.6460 ± 0.2384 

129 hprt'3/Y 	- 	9-ethyladenine 	1.4016 ± 0.1421' 

a 	Brains were mechanically chopped into small pieces and cultured in 

medium with 1 MCi of [3H]-adenine and [14C]-methionine for 20 hr. 

The relative APRT activity was the ratio of the [3H-adenine 

incorporation to the ['4CJ-methionine incorporation by TCA 

precipitation method. 

* 	p < 0.05, compared with the group treated with saline by Student's t- 

test. 
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between 5 and 20 times in total. All 5 animals developed trauma caused by self 

mutilation from 48 to 130 days after the injections were started. Injury, which was 

principally to the ears, neck, back and flanks (Figure 6.1) was caused by 

overgrooming. These encouraging results provided the confidence to set up more 

control animal experiments to investigate behavioural alteration in HPRT-deficient 

mice. 

63 Administration of purine analogues to mice and measurement of self injury 

behaviour 

Strain 129 inbred wild-type and HPRT-deficient male mice, 6-8 weeks old, 

were caged individually and maintained on a 12 hr light/dark cycle. The same 

injection regime described above was used with animals being given saline, 9-

ethyladenine or caffeine. To make video recordings, mice were transferred to a clear 

cage with bedding but lacking food and water for 10 mins before treatment. 

Recording was initiated 10 mins after the animals had been returned to the cage 

following injection and continued for 1 hr period. There were two mice in each 

treatment group and the behaviour of each animal was determined on three separate 

occasions. All animals were monitored weekly for the appearance of physical injury 

caused by overgrooming. The frequency of self injury behaviour was determined from 

video recordings. The definition of self injury behaviour included grooming carried 

out with fore or hind legs, nibbling and biting (principally of the tail and thorax). One 

piece of self injury behaviour could include all three activities and would be counted 

once only unless the period of self injury behaviour was interrupted by another 

activity such as movement around the cage. Sophisticated observational methods to 

examine the effects of different agents on discrete forms of stereotypic behaviour in 

rodents have been developed (Breese et al., 1984; Fray et al., 1980; Lewis et al., 

1985). The measurements of stereotypic behaviour here were less extensive and were 

restricted to identifying changes in the frequency of the three forms of behaviour, 

grooming, biting and nibbling that were responsible for the self-inflicted injuries 

observed. Of these, grooming of the head and flanks with the hind legs was the major 

cause of injury. It is tempting to equate the compulsive overgrooming observed in 
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Figure 6.1 Injuries to ears and neck caused by self-mutilation behaviour in outbred 

HPRT-deficient mice. Left, animal treated with 9-ethyladenine; right, untreated 

control. 
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these animals with the self-mutilation that is a characteristic of Lesch-Nyhan 

syndrome: all mice groom, just as many humans nibble finger nails and lick their lips. 

In HPRT-deficient mice treated with 9-ethyladenine and Lesch-Nyhan syndrome 

patients, the stereotypic behaviour becomes excessive resulting in physical injury. 

The frequency of self injury behaviour in the pilot group of treated outbred 

animals was up to 4 per minute as averaged from 3 separate observations, with 

individual bouts of self injury behaviour lasting up to 2 minutes. Behavioural 

alteration has also been recorded in the second experiment using younger (6-8 week 

old) wild-type and HPRT-deficient male inbred mice on the strain 129 background 

able 6.2). There was no difference in the frequency of self injury behaviour 

between wild-type and HPRT-deficient mice injected with saline. There is no 

difference in the occurrence of stereotypic behaviour after saline injection both in 

wild-type and HPRT-deficient mice (data not shown). Treatment of wild-type mice 

with caffeine did not cause a significant increase in the frequency of self injury 

behaviour, but 9-ethyladenine did cause a significant increase (0.11 to 0.32/mm, 

p<0.05). The observation that behaviour alteration did not occur in those mice 

administered with low doses of caffeine, is in agreement with the threshold setting of 

caffeine, 140 mg/kg, for the induction of self injury behaviour by clonidine in rats 

(Mueller and Nyhan, 1983). Both purine analogues had a more pronounced effect on 

self injury behaviour in the HPRT-deficient mice: caffeine caused an increase in 

frequency from 0.13 to 0.34/mm (p<O.OS)  and 9-ethyladenine had the greatest effect 

(1.21/mm, p<O.Ol). These increases in the frequency of self injury behaviour were 

observed after the first treatment with the purine analogue and the increased frequency 

was maintained over the treatment period (3 times/week for 5 weeks). Following 

treatment, 4 out of 5 HPRT-deficient animals treated with 9-ethyladenine displayed 

physical signs of overgrooming damage to the ears and neck. None of the other groups 

of animals showed signs of physical injury (Table 6.3). The injury in these young 

HPRT-deficient mice treated with 9-ethyladenine, which was observed from 61-105 

days after treatment was started, was less severe than in the older group of treated 

HPRT-deficient animals. 
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Table 6.2 The occurrence of self-injurious behaviour in wild-type and HPRT-

deficient mice after injection with 9-ethyladenine or caffeine. 

Strain 	 HPRT Treatment SIB/min** 

129/Hprt"/Y 	+ saline 0.11 ± 0.14 

129/Hprt"/Y 	+ caffeine 0.15 ± 0.06 

129/Hprt1'/Y 	+ 9-ethyladenine 0.32 ± 0.18 

129 hprt/Y 	- saline 0.13 ± 0.06 

129 hprt/Y 	- caffeine 0.34 ± 0.11 

129 hprt/Y 	- 9-ethyladenine 1.21 ± 0.42 

* 	p < 0.05; **, p < 0.01 compared with the group treated with saline by 

Mann-Whitney U-test. 

p < 0.001 by Kruskal-Wallis H-test. 
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Table 6.3 Observed injury of mice due to self injury behaviour after injection with 

9-ethyladenine. 

Strain 	 HPRT 	Treatment 	Incidence 

129/Hprt"IY 	+ 	saline 	 0 / 3 

129/Hprtb/Y 	+ 	9-ethyladenine 	0 /5 

129 hprtIY 	- 	saline 	 0/3 

129 hprt/Y 	- 	9-ethyladenine 	4 /5 

* 	p < 0.05 by Kruskal-Wallis H-test. 
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Administration of an APRT inhibitor to HPRT-deficient mice induced 

persistent self-injurious behaviour, providing an animal model for Lesch-Nyhan 

syndrome. This animal model will facilitate better understanding of the pathogenesis 

of Lesch-Nyhan syndrome and provide an evaluation system for its therapy. 
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CHAPTER 7. GENERATION OF APRT-INACTIVATED ES 

CELLS 
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7.1 Spontaneous APRT mutation in ES cells 

The final test of the hypothesis that the effect of HPRT-deficiency on the 

nucleotide pool is compensated by APRT, leading to the unaltered behaviour in 

HPRT-deficient mice, is to create an APRT-deficient animal model. The techniques 

by which embryonic stem cells are used to construct animal models have been well 

established. Like the selective effect of 6-thioguanine for HPRT deficiency, 1,6-

diaminopurine kills those cells with APRT activity by conversion of 1,6-diaminopurine 

to a toxic product. The usage of 1,6-diaminopurine as a selective agent to isolate 

APRT-deficient cells has been widely employed (Turker, 1990). Cloned genomic 

DNA for gene targeting at the APRT locus was not available when this project was 

initiated. The only way to create APRT-deficient mice, therefore, was to select 

spontaneous mutations leading to APRT-deficient ES cells from which chimaeric 

animals could be generated following blastocyst injection. Selection for spontaneous 

mutations was used to avoid mutations in other loci that might be induced by 

mutagens. After gradually increasing the concentration of 1,6-diaminopurine to 50 

ug/ml, 2 resistant clones were selected. These two clones were examined for their 

APRT activity using a [3H]-adenine incorporation assay (Table 7.1). Both clones 

showed only trace incorporation of [3H]-adenine compared to their parental cell line. 

The trace amount of adenine incorporation might be due to the incorporation of [3H]-

hypoxanthine which is generated from {3H]-adenine by adenase. Therefore, these two 

clones were identified as APRT-deficient clones. One of the APRT-deficient ES cell 

clones, DAP1-50, was used in an attempt to produce APRT-deficient mice by making 

chimaeric animals through blastocyst injection and standard breeding procedures. 

Chromosomes of the mutant DAP1-50 cells were counted before undertaking 

blastocyst injection. As the majority of solid stained chromosome preparations 

contained 40 chromosomes, there was no obvious cytogenetic defect (data not shown). 

Southern analysis showed that there was no difference between wild-type and DAP1-

50 mutant DNA in the restriction patterns of Hindu!, PstI, or EcoRV digests probed 

with a BglII/SphI fragment which contains the whole murine APRT genomic sequence 

and 5' region (data not shown). Unfortunately, no chimaeric mice were generated 

from the injection of 63 blastocysts which was kindly carried out by Jim McWhir, 
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Table 7.1 	Hypoxanthine and adenine incorporation activities in wild-type and 

APRT mutant cells. 

Incorporation (cpm) 
	

Corrected 

Cell line 	 adenine uptake 

[3H]-Hypoxanthine [3H]-Adenine 
	

% 

E14 	149,327 (100%) 	68,974 (100%) 	 lOOb 

DAP1-50 	120,943 (81%) 	1,494 (2.1%) 	 2.6 

DAP1-40 	84,512 (57%) 	5,720 (8.3%) 	 14.6 

% of the incorporation of mutant cells to that of E14 cells. Cells were 

plated at 20,000 cells/ml/well and pulsed with {3H]-hypoxanthine or - 

adenine on day 2 for 5 hr. 

Incorporation of [3H]-adenine expressed as a percentage of that of [3H]-

hypoxanthine to correct for differences in cell number. 
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suggesting that this clone had lost the potential to contribute to normal development. 

7.2 Disruption of APRT in ES cells by gene targeting 

7.2.1 Construction of the targeting vector 

A 6.3-kb EcoRI/SalI restriction fragment containing the whole 3.2-kb murine 

APRT gene and 5' flanking region from plasmid pSAM6.3, kindly provided by 

Professor Stambrook (University of Cincinnati, U.S.A.), was subcloned into plasmid 

pUC8 to generate the plasmid pUCSAM6.3. A 2.4-kb neo cassette driven by the 

mouse metaliothionein-I promoter was excised as a KpnIIBamHI fragment to replace 

the region between the KpnI and BgiII sites in pUCSAM6.3 indicated in Figure 7.1 

where it served as a positive selection module. An HPRT mini-gene driven by the 

PGK promoter which had been shown to give good enrichment as a negative marker 

in positive-negative selection (Selfridge et al., 1992), was inserted into the unique 

EcoRI site to form the targeting vector. The final structure of the targeting vector, 

pAPRTneoô101, includes pUC8, HPRT mini-gene cassette, 2.4-kb 5' homology, neo 

cassette, and 1.3-kb 3 homology in order from 5 to 3'. Vector DNA was linearised 

with the restriction enzyme Sail before electroporating into the HPRT-deficient ES 

line, HM-1 (Magin et al., 1992b). 

7.2.2 Gene targeting to knock out APRT 

Two gene targeting experiments using pAPRTneoö101 to inactivate the APRT 

gene in murine ES cells were performed. In the first experiment, 200 4ug of 

pAPRTneoö101 DNA, linearised with Sail were electroporated into HM-1. To avoid 

interference by residual APRT, electroporated cells were selected with G418 and 6-

thioguanine for 10 days before the addition of 1,6-diaminopurine. No resistant clone 

was obtained following selection with 1,6-diaminopurine. This result supports the 

view that it is difficult to generate null mutations at both autosomal loci by 

homologous recombination in one DNA introduction (Cruz et al., 1991). The second 

experiment sought to inactivate only one APRT allele using the HPRT mini-gene for 

negative selection. After introduction of DNA, cells were plated onto dishes and 

dishes were allocated to 3 groups. One group served as the electroporation control 
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Figure 7.1 Strategy for APRT inactivation by homologous recombination. The 

structures of (A) the wild-type APRT gene and flanking region, (B) the APRT 

inactivation vector with positive-negative selection modules, and (C) predicted 

targeting mutant are shown schematically. The number of each exon is shown directly 

below it. Selected restriction sites are shown: B, BamHI; G, BglII; H, Hindu!; K, 

KpnI; P, PstI; R, EcoRl; 5, SphI; V, EcoRV; X, XhoI. Closed boxes, endogenous 

exons; thick closed lines, endogenous introns; hatched boxes, HPRT-minigene cassette; 

open boxes, vector-derived APRT and its flanking sequence; vertically striped line, 

APRT-flanking region; thin line, plasmid pUC8 sequence; dotted boxes, neo cassette; 

bar, BamHI fragment of APRT gene used as a probe for Southern and Northern blots; 

arrow, shows the length of EcoRVIBgIII fragment. 
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under G418 selection alone. The other two groups were also counter-selected with 6-

thioguanine either concomitantly with G418 selection (group 2) or following a 2-day 

time lag (group 3). On average there were 904 G418 resistant colonies obtained from 

5 X 106  cells electroporated with linearised pAPRTneoö 101 DNA. Counter selection 

with 6-thioguanine enriches for the percentage of surviving colonies that have lost the 

HPRT mini-gene through homologous recombination at the target locus. An average 

of 77 resistant colonies were obtained from 5 X 106  electroporated cells after positive 

and negative selection in group 2. The yield of resistant colonies was slightly higher 

in group 3, with 116 surviving clones. The 6-thioguanine selection schemes indicated 

a potential enrichment of between 7.8 and 11.7 fold for homologous recombinants. 

Initially, clones resistant to both G418 and 6-thioguanine were screened for 

adenine/thymidine incorporation ratio by ['4C]-adenine/[3H]-thymidine dual 

incorporation assay. None of the 124 clones analysed showed significant decrease of 

adenine incorporation. Southern analysis was then used to screen for targeted clones. 

After screening 42 clones by Southern hybridisation analysis, one clone, APRT-26 was 

identified as a targeted mutant. 

7.2.3 Characterisation of the targeted ES clone APRT-26 

The predicted outcome of homologous recombination between the vector 

pAPRTneoô101 and wild-type HM-1 DNA is shown in Figure 7.1. In the targeted 

allele, the 5.5-kb Hindlil fragment containing promoter region and exons 1-2 is 

extended to 8.0 kb by insertion of the 2.5-kb neo module and deletion of an Hindlil 

site. The restriction pattern of APRT-26 DNA which was probed with a 1.1-kb 

BamHI fragment containing exons 3-5, fits this prediction, giving a novel 8.0-kb band 

which has the same intensity as the residual 2.7-kb band presumably derived from the 

non-targeted allele. Further confirmation was done by restriction with EcoRV and 

BglII, extending a 6.3-kb fragment to 8.9 kb by loss of 2 EcoRV and 2 BgIII sites in 

the 2.7-kb deletion region (Figure 7.2). These digests, in addition to others, with PstI 

and SphI (data not shown) were all compatible with APRT-26 being a targeted mutant. 

To further characterise this mutant, Northern hybridisation analysis and incorporation 

assays were undertaken. The targeting vector had been constructed with the 
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Figure 7.2 Southern analysis of APRT targeted mutant and wild-type cells. Genomic 

DNA samples from APRT wild-type parental HM-1 cells (lane 1,3), and targeted 

mutant by pAPRTneoô101 (lane 2,4) were restricted with Hindill (lane 1,2) or 

Ec0RV/BglII (lane 3,4), electrophoresed, transferred and hybridised with the BamHI 

genomic fragment containing exons 3-5 as probe. Molecular size markers are 

indicated in kb. Some weak additional bands including pseudogene and unknown 

fragments are also observed. 

142 



kb 1 2 3 4 

9.4  

6.5 

4.3 	;4w 

2.3 
2.0 

1.3 	 _ 
rr 

1.0 



assumption that deletion of promoter and exons 1 and 2 of the APRT gene would 

prevent APRT expression. A Northern blot of wild-type and targeted cell RNA was 

analysed using the same probe used in Southern analysis. RNA samples for the 

Northern hybridisation were kindly prepared by Jim Selfridge. RNA samples were 

standardised by spectrophotometry and confirmed by the presence of equal amounts 

of 18 S and 28 S ribosomal RNA when electrophoresed. As expected, the targeted 

clone shows a decrease in intensity of APRT mRNA compared to HM-1 cells (Figure 

7.3). Surprisingly on reprobing the blot, the targeted mutant APRT-26 also displays 

a reduction of actin transcripts. To make sure that the APRT targeted ES cells had 

lower APRT activity than wild-type cells, the adenine incorporation of these cells was 

analysed. To avoid experimental error due to differences in cell numbers, a dual 

incorporation assay for APRT was used to examine the difference in activity between 

targeted mutant and wild-type cells. Adenine incorporation activity in HPRT-deficient 

cells, HM-1, is not statistically higher than that in wild-type cells, E14. However, the 

adenine uptake in APRT targeted cells (APRT-26) is significantly lower than that in 

HM-1 or E14 cells (Table 7.2). Unfortunately no chimaeric mice were produced 

following repeated blastocyst injection of the APRT-targeted cells, so it was not 

possible to confirm the essential role of APRT in prevailing the appearance of 

symptoms of Lesch-Nyhan syndrome in mice. 
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Figure 7.3 Northern hybridisation analysis comparing APRT mRNA levels in APRT 

targeted (lane 1,3) and wild-type (lane 2,4) ES cells. Total RNA (30,ug) was prepared 

from ES cells, electrophoresed on formaldehyde-agarose gels, transferred, and 

hybridised with the BamHI genomic fragment containing exons 3-5 of the APRT gene, 

and subsequently with the actin eDNA probe. 
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Table 7.2 Dual incorporation to identify gene inactivation. 

Incorporation (dpm) 
	

Relative 

Cell line 	 adenine 

[3H]-Thymidine 	['4C]-Adenine 
	

incorporation' 

E14 	162,252 ± 6,454 	74,895 ± 2,457 	0.4618 ± 0.0056 

HM-1 	245,818 ± 17,531 	113,392 ± 5,115 	0.4622 ± 0.0139 

APRT26 	82,847 ± 6,167 	36,108 ± 2,308 	0.4362 ± 0.0078 

a 	Incorporation of ['4C]-adenine expressed as a proportion of that of [3H]- 

thymidine to correct for differences in cell number. 

* 	p < 0.05, comparing the relative adenine incorporation of APRT26 

with that of its parental cells, HM-1, by Student's t -test. 
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CHAPTER 8. GENE THERAPY IN HPRT-DEFICIENT MICE 

146 



8.1 Establishment and evaluation of assay methodology 

Advances in understanding the molecular basis of inherited disease have made 

it theoretically feasible to develop therapies based on gene transfer. Because HPRT 

is expressed in the brain, HPRT-deficient mice provide a good general animal model 

for human neurological inherited disease. In order to estimate the HPRT activity in 

tissues following gene transfer, a more accurate method providing an internal standard 

was developed to compensate for errors in sampling. The biosynthesis of purine 

nucleotides is important in cells whether they are proliferative or not, a dual 

incorporation assay based on the balance of the requirement for AMP and GMP was 

established. A mouse strain containing a non-X chromosome linked HPRT transgene 

on the HPRT-deficient background was used to test the assay. The transgene is 

expressed at around 5% of the level of the endogenous HPRT gene in most tissues 

examined (Thompson, 1989). Mice heterozygous for the transgene were crossed with 

HPRT-deficient mice and Fl progeny were examined. Half were expected to have 

inherited the transgene. One male and 3 female Fl mice were sacrificed to examine 

the accuracy of the hypoxanthine/adenine dual incorporation assay to identify HPRT 

expression before animals were genotyped by Southern hybridisation from tail biopsy. 

Two of the four mice showed positive HPRT activities in both brain samples and in 

splenocytes stimulated with the lymphocyte mitogen - concanavalin A, whereas the 

other two mice lacked HPRT activities in both tissues (Table 8.1). These results 

suggest that two of the four transgenic mice were HPRT positive due to inheritance 

of the HPRT transgene while the others were HPRT-deficient. Southern analysis 

confirmed this prediction (Figure 8.1). Therefore, these results suggest that the 

hypoxanthine/adenine dual incorporation assay is a suitable functional assay for HPRT 

activity, even for those highly differentiated tissues, such as brain. 

8.2 Gene therapy by direct gene injection 

Gene therapy is a form of medical intervention based on modification of the 

genetic program of living cells. There are two basic strategies for gene therapy. Cells 

may either be altered in vivo by gene therapy administered directly to the individual, 

or alternatively modified ex vivo for subsequent transplantation to humans. The 
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Table 8.1 The incorporation of [3H]-hypoxanthine and ['4C]-adenine in the brains and 

spleens of HPRT deficient mice before genotyping for the presence of the HPRT 

transgene. 

Incorporation ratio of Hypoxanthine to Adenine 

Mouse 

Brain 	 Spleen** 

A 	 0.05 ± 0.00 	 0.05 ± 0.02 

B 	 0.42 ± 0.19 	 0.47 ± 0.01 

C 	 0.42 ± 0.20 	 1.49 ± 0.17 

D 	 0.09 ± 0.02 	 0.02 ± 0.00 

* 	Cells in microtitre plates were pulsed with 2 1uCi [3H]-hypoxanthine 

and 0.5 AUCi [14C]-adenine per ml for 30 hrs. 

** 	Splenocytes were stimulated with 4 ug!ml concanavalin A in vitro. 
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Figure 8.1 Southern analysis to identify mice containing the HPRT transgene on the 

HPRT-deficient background. Genomic DNA obtained by tail biopsy, was digested 

with EcoRI , electrophoresed, transferred and hybridised to a full-length HPRT cDNA 

probe, pHPT5. The sizes (in kb) of endogenous gene fragments and the fragment 

containing the HPRT pseudogene (PG) are indicated to the left of the panel. A 

fragment containing HPRT transgene sequences is indicated (TG). Mouse A, B, C, 

D, progeny from cross, see Table 8.1. 
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simplest strategy would be to introduce desired DNA into the individual directly. 

Several virus vectors have been developed to do this and have been optimised for both 

efficiency and target specificity. Mice were infected with recombinant herpes simplex 

virus type 1 carrying human HPRT cDNA by intracranial inoculation to evaluate the 

expression of human HPRT mRNA. Although HPRT mRNA was detected in infected 

animals, the mortality of the infected mice was very high (Palella et al., 1989). It 

could be less complicated and less time-consuming to introduce DNA directly by 

needle injection (Acsadi et al., 1991), particle bombardment (Yang et al., 1990), or 

jet injection (Furth et al., 1992), compared to the modification of a recombinant virus 

vector to reduce its pathogenicity. Acsadi et al. (1991) successfully detected human 

dystrophin expression in mdx mice after direct intramuscular injection of DNA. Like 

skeletal muscle, brain is highly organised and stable. The nuclei of mature brain cells 

do not undergo division. Three HPRT-deficient mice were therefore injected 

intracerebrally (one side only) with 100 jig of HPRT mini-gene, pDWM100 DNA, 

after anaesthetisation. Seven and ten days later, the brains were isolated for the dual 

incorporation assay and a PCR assay to monitor the fate of the injected DNA. 

Injected brains contained pUC8 sequences as demonstrated by the PCR method (data 

not shown). Unfortunately, the results from the dual incorporation did not show any 

significant increase of [3H]-hypoxanthine incorporation following the injection with 

the HPRT mini-gene (Table 8.2). 

8.3 ES cells as a delivery system for gene therapy 

Many reports have demonstrated the potential of cell transplantation involving 

manipulation of a gene ex vivo followed by reimplantation of the cells back to the 

individual to achieve gene therapy. One of the main targets for gene therapy is the 

haematopoietic system because of well developed procedures for bone marrow 

transplantation, the many types and wide distribution of haematopoietic cells, and the 

existence of many diseases that affect haematopoietic cells. The target for gene 

transfer is haematopoietic stem cells, or long-term repopulating cells, that are present 

at low frequency in bone marrow and give rise to all myeloid and lymphoid cells over 

prolonged periods. The first human gene therapy trial involved treatment of adenosine 
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Table 8.2 [3H]-hypoxanthine and ['4C]-adenine incorporation in the brains and spleens 

of HPRT-deficient mice intracerebrally injected with HPRT minigene DNA. 

Incorporation ratios  

Mice 	Treatments 

Brain 
	

Spleen 

129 hprtb/hprt 	Control 	0.05 ± 0.01 (whole brain) 	0.02 ± 0.00 

129 hprt/hprt 	Injected 	0.06 ± 0.01 (whole brain) 	0.03 ± 0.02 

129 hprt/hprt 	Injected 	0.04 ± 0.02 (injection halt) 	0.02 ± 0.00 

0.04 ± 0.00 (non-injection halt) 

129 hprt/hprt1' 	Injected 	0.06 ± 0.01 (injection halt) 	0.02 ± 0.00 

0.06 ± 0.01 (non-injection halt) 

* 	Cells were pulsed with 2 4uCi [3H]-hypoxanthine and 0.5 uCi [14C]_ 

adenine per ml for 30 hr. Incorporation ratio: uptake of hypoxanthine/ 

uptake of adenine. 

** 	Splenocytes were stimulated with 4 1ug/ml concanavalin A in vitro. 
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deaminase (ADA) deficiency by transfer of the ADA gene into patients's T-cells (the 

cells that are most affected by this disorder). ADA deficiency leads to high levels of 

2'-deoxyadenosine in the circulation which is toxic to both T and B cells and results 

in severe combined immunodeficiency. ADA deficiency is a lethal disorder that can 

be corrected by bone marrow transplantation, but unfortunately only about one third 

of such patients have suitably matched donors. The disease can also be partially 

corrected by weekly injections of bovine ADA that has been conjugated to 

polyethylene glycol to improve stability resulting in increase of the reduced systemic 

2'-deoxyadenosine levels and a marked disease improvement. It is becoming clear, 

in part from this ongoing gene therapy trial, that it is important to produce ADA 

within T cells for more complete correction of the disease phenotype. Fibroblasts 

isolated from skin biopsy of rat were transformed with human growth hormone DNA 

and reimplanted into the donor. Human growth hormone was detectable in the serum 

of rats with autologous transformed fibroblast implants (Chang et aL, 1990). 

Furthermore, normal dystrophin transcripts were detected in Duchenne muscular 

dystrophy patients after myoblast transplantation (Gussoni et al., 1992). 

Unfortunately, the methodology for isolating neuron stem cells from adult brain has 

not been available until recently (Richards et al., 1992). Thus, other vehicle cells are 

needed for gene transfer in neuron-associated diseases. 

Embryonic stem cells are pluripotent cell lines that are isolated from 

blastocysts and maintained in an undifferentiated state. Differentiation of ES cells can 

be prevented either by culturing the ES cells on feeder cells or in the presence of 

leukaemia inhibitory factor which can be provided in BRL conditioned media or by 

supplementation with recombinant protein. The differentiation activity of pluripotent 

embryonic stem cells can be induced either in vitro by some chemicals such as 

dimethylsulphoxide and retinoic acid or in vivo by the contribution to embryogenesis 

after blastocyst injection. In addition, the methodology for genetic manipulation of 

ES cells is well established not only for gene targeting (Thompson et al., 1989) but 

also for transgenesis (Gossler et al., 1986). Provided that differentiation can occur in 

somatic sites other than the blastocoel, ES cells might be used for somatic cell gene 
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therapy much as they are used in germ line correction. 

To investigate this possibility four HPRT-deficient mice were transplanted with 

105  E14 embryonic stem cells in 20 1u1 glucose-PBS by intracerebral injection into the 

brain under anaesthetia. All treated mice recovered from anaesthesia and were 

sacrificed after several days in order to test HPRT activity in their brains. HPRT 

activity was detectable on the 7th day (the first sample point) after ES cell 

transplantation and increased with time (Table 8.3). The increase of HPRT activity 

in the brain of HPRT-deficient mice suggests proliferation of transplanted ES cells 

which express HPRT. However, the mice injected with 105  ES cells died as a result 

of tumourigenesis in their brains after 14 days. Teratoma-like tissue was also found 

in mice after intraperitoneal injection with 5 X 107  ES-D3 embryonic stem cells 

(Sendtner et al., 1992). When 103  ES cells were injected intracerebrally into mice, 2 

out of 3 mice remained healthy for over 2 months after injection. Tumour incidence 

seems to be directly related to injected cell number, suggesting that a proportion of 

injected cells remain undifferentiated rather than differentiating in response to the 

environment in vivo. 

8.4 ES cell derivatives are committed to differentiate into the neural lineage. 

The neuronal and glial elements of the central nervous system are generated 

from precursor cells in the neuroepithelium during early development, see Figure 8.2. 

The fertilised mouse zygote undergoes three indeterminate "cleavage divisions" after 

which cells become closely apposed, compact to form tight junctions, and become 

radially polarised with respect to apical microvilli and ligand binding sites and basal 

nuclei. Concomitant with cavitation, compacted morulae enter the uterus on day 3 and 

very quickly undergo their first differentiation into inner cell mass (1CM) and 

trophectoderm. This yields a vesicular, fluid filled blastocyst. Commitment to the 

1CM lineage is thought to result from an inner location involving complete cell surface 

apposition. Delamination of primary endoderm from the blastocoelic surface of the 

1CM occurs on day 4. The precocious mouse blastocyst forms an egg cylinder by day 

4 (composed of primary ectoderm, proximal endoderm and extraembryonic ectoderm). 
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Table 8.3 [3H-hypoxanthine and ['4C]-adenine incorporation in the brains and spleens 

of mice after intracerebral transplantation with ES cells. 

Incorporation ratio 

Mice 	Treatment 

129 hpr/hprtt' 	HPRT-deficient 

uninjected control 

129 hprt /hprtt 	Injected 7 days" 

129 hprt/hprt1' 	Injected 10 days 

129 hprt"/hprt 	Injected 10 days 

129 hprtm/hprtb 	Injected 14 days 

Brain 	 Spleen" 

0.05 ± 0.01 (whole brain) 0.02 ± 0.01 

0.12 ± 0.04 (injection halt) N.D. 

0.11 ± 0.01(non-injection half) 

0.50 ± 0.16 (injection half) N.D. 

0.57 ± 0.14 (non-injection halt) 

0.48 ± 0.08 (injection halt) N.D. 

0.21 ± 0.05 (non-injection half) 

0.39 ± 0.02 (injection halt) 0.02 ± 0.02 

0.47 ± 0.13 (non-injection halt) 

129 HPRTbIHPRTb  Wild-type uninjected 0.56 ± 0.04 (whole brain) 0.47 ± 0.01 

control 

* 	Cells were pulsed with 2 1uCi [3H-hypoxanthine and 0.5 uCi [14C]_ 

adenine per ml for 30 hr. Incorporation ratio: uptake of hypoxanthine/ 

uptake of adenine. 

** 	Splenocytes were stimulated with 4 ug/ml concanavalin A in vitro. 

Mouse was sacrificed on the 7th day after transplantation 

approximately 105  ES cells into the brain. 
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Figure 8.2 Diagram of cell lineages in early mouse embryos. 
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Gastrulation, or first appearance of mesoderm, occurs in mice at about day 8. The 

majority of neurons are formed by birth in the mouse. In order to understand the 

development of ES cells after transplantation into the brain, the ES cell derivatives 

were isolated from the brain of injected mice and selected in HAT media. A control 

experiment was done to ensure that the HAT resistant cells were derived from E14 ES 

cells only. The brain cells isolated from HPRT-deficient mice grew in normal media 

however no cells survived in the presence of HAT medium. Morphological 

observation showed that HAT-resistant cells, presumably ES cell derivatives of E14 

cells intracerebrally injected into the brain of HPRT-deficient mice, lost the special 

morphological characteristics of embryonic stem cells, even in medium containing LIF 

which prevents differentiation in vitro. Some of the HAT-resistant cells presented a 

neuron-like axonal morphology with long processes (Figure 8.3). 

Immunohistochemical staining with antibodies against different cell markers 

provides a useful tool to identify the developmental origin and to study the 

differentiation of the cell. Intermediate filaments are morphologically similar in most 

eukaryotic cell types but they show a wide heterogeneity in their polypeptide subunits 

and these have been divided into six classes: types I and II (keratins in epithelial 

cells), type III (vimentin, desmin, glial fibrillary acid protein (GFAP), peripherin), type 

IV (the neurofilaments NF-L, NF-M, and NF-H, and a-internexin), type V (nuclear 

lamins), and type VI (nestin). Since intermediate filament proteins are often 

specifically expressed in particular cell types, they are useful tools in the study of cell 

differentiation as well as in tumour identification (Lendahi et al., 1990; Osborn and 

Weber, 1983). Neuroepithelial stem cells initially coexpress nestin and vimentin, but 

nestin is subsequently down-regulated and the type IV intermediate filament protein 

a-internexin appears. c.t-Internexin is in turn replaced by the type IV proteins NF-L, 

NF-M, and NF-H that are characteristics of mature neurons. The phenomenon of 

sequential intermediate filament protein expression during terminal differentiation is 

also evident in glia. Mature oligodendrocytes lack intermediate filament proteins but 

their progenitors possess vimentin. Similarly, vimentin is the intermediate filament 
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Figure 8.3 Morphological difference between E14 cells differentiated in vitro and in 

mouse brain. (a) E14 cells differentiated in vitro. E14 cells were cultured in the 

absence of LIF and any differentiation stimulating agents. 	(b,c) E14 cells 

differentiated in vivo and cultured in the presence of LIF. E14 cells were transplanted 

into the brain of an HPRT-deficient mouse for 10 days and reisolated to culture under 

HAT selection for 7 days. (b) staining with crystal violet. (c) immunostaining with 

polyclonal rabbit anti-NF-L antibody. 

157 



.5.- 

	

.-;-- 	•00 	
t. 	!, 

. 	.-- 	 . 	

. ) 

.5 	

•. 

- 	 , k 	
: - 

• : 	 - 	*; 	 4. 

' 	 . 	 '4 . • •*t4.• 	
4. * •I_ 	4 1 	4 	 • 	 ''..iai 	 4 

- 	- . 	
I 	4. 	• • 	' 	 .- 	._/_ 	.S 	S 	 • 

5' 	
5, 

 l 	S •• 	 ;"', ' 	.-- 	
i.•5 ' ' -

.: 	
__5_ 	

., .- 
	 5 •. 	

•5 
 

- S. 	 S ' 	 - 	 - 	4 	 '1 	. 	- 
''.•-•'-' 

V 	
• I;', 

.4 	 - 	. 	S •• 	• • • 	,1. ." 	*. 	
4 5 • 

	

4 * 	
_;.144 I. 	

••s' 

4 	 S • 	 • 	i..,.  -. 	. 	- 4- 1' 	 ' 	j454.c 

,• 	 (t_ 	 •f 1 ç 	 ..4• • 
S 	 -- - I 

	
-- 	 : 	 •.. 

4 	 ., w 	• 	- 	 .. 	'#' 	'' '. 	- 

- 	 1• . 	 . 	 •• -, 	sè 	
-.lot 

. 	••. 

--: 	 .5 	
:- . 



protein of immature Schwann cells although, unlike oligodendrocytes, vimentin is 

retained in differentiated cells. A second intermediate filament protein, GFAP, 

appears in Schwann cells at embryonic day 18 (E18) but the expression of GFAP is 

suppressed upon terminal differentiation of myelin-forming Schwann cells, while it is 

retained in non-myelin-forming Schwann cells. The sequential appearance and 

disappearance of different subtypes of neuronal intermediate filament proteins during 

development which are briefly demonstrated in Figure 8.4, can be partly understood 

by considering the changing demands for plasticity and stability of cell shape as 

neurons migrate, elaborate neurites and establish a permanent fibre trajectory. 

The HAT-resistant brain cells isolated from HPRT-deficient mice 

intracerebrally injected with HPRT wild-type ES cells were characterised with 

different intermediate filament antibodies. Due to the availability of intermediate 

filament antibodies, four intermediate filament markers, vimentin, NF-L, NF-M and 

GFAP, were examined. The intermediate filament profile of ES cell derivatives 

isolated from the brain and resistant to HAT selection shows cells positive for NF-L, 

NF-M and GFAP but not for vimentin (Figures 8-8.8). Vimentin filaments, which are 

present in many mesenchymal cell types, are also abundant in most central nervous 

system neuronal precursor cells before they differentiate. These earliest stages of 

development are associated with the events of cell division, which involve nuclear 

rearrangements and changes in cell shape. Vimentin is gradually replaced by 

neurofilament proteins shortly before neuronal precursor cells stop dividing. The 

combinations of markers expressed are listed in Table 8.4. ES cell derivatives are a 

mixture of glia cells, neurons and uncharacterised cells. These immunohistochemical 

findings, as well as the morphology of the HAT resistant neuron-like cells, suggest 

that at least some ES cells are committed to the neuronal lineage after transplantation 

into the brain. 

Primary culture cells isolated from mouse brain examined in parallel were 

positive for the intermediate filament markers, vimentin, NF-L, NF-M and GFAP 

(Figures 8.9-14). Vimentin filaments are abundant in the earliest stage of development 
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Figure 8.4 Generalised developmental profile of intermediate filament species of 

neurons. (Adapted from Nixon and Shea, 1992). 
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Figure 8.5 Immunofluorescence microscopy of ES cell-derived brain cells. Double-

label immunofluorescence microscopy of HAT resistant cells isolated from HPRT-

deficient mice transplanted with wild-type ES cells using a polyclonal rabbit antibody 

against NF-L (a), and a monoclonal murine antibody against NF-M (b). The neuronal 

cell bodies and associated axonal networks express both markers. However, some 

cells show positive for NF-L but not for NF-M (e.g. see bottom right corner of field). 
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Figure 8.6 Immunofluorescence microscopy of HAT resistant cells isolated from the 

brain of HPRT-deficient mice intracerebrally transplanted with wild-type ES cells. 

Double-label immnofluorescence microscopy using (a) polyclonal rabbit antibody 

against NF-L (b) monoclonal murine antibody against GFAP (c) phase contrast only 

of the same field as (a) and (b). Neuronal cell bodies and processes express NF-L but 

not GFAP. 
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Figure 8.7 Immunofluorescence microscopy of ES cell-derived brain cells. Double-

label immunofluorescence microscopy of HAT resistant cells isolated from HPRT-

deficient mice transplanted with wild-type ES cells using a polyclonal rabbit antibody 

against NF-L (a), and a monoclonal murine antibody against GFAP (b). (c) phase 

contrast only of the same field as (a) and (b). Neuronal cell bodies and axons 

expressing NF-L, but not GFAP and glial cells expressing GFAP but not NF-L, are 

shown. 
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Figure 8.8 Immunofluorescence microscopy of HAT resistant cells isolated from the 

brain of HPRT-deficient mice intracerebrally transplanted with wild-type ES cells. 

Double-label immnofluorescence microscopy using (a) polyclonal rabbit antibody 

against NF-L (b) monoclonal murine antibody against vimentin (c) phase contrast only 

of the same field as (a) and (b). The neuronal cell bodies and associated filaments 

shown express NF-L but not vimentin. 
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Table 8.4 The distribution of cell markers in the embryonic stem cell-derived (ES-D) 

brain cells and cells from primary culture of brain. 

Marker 	 Occurrence 	 Cell type 

ES-D 	Brain 

NF-L+ 	 yes 	 yes 	 neuron 

NF-M+ 	 yes 	 yes 	 neuron 

GFAP 	 yes 	 yes 	 glia 

vimentin 	 no 	 yes 

NF-LNF-M yes yes neuron 

NF-LNF-M yes no neuron 

NF-LNF-M no no 

NF-Lvimentin no yes neuronal precursor? 

NF-Lvimentin yes no neuron 

NF-Lvimentin no no 

NF-LGFAP no yes neuronal stem cell ? 

NF-LGFAP yes yes neuron 

NF-LGFAP yes yes glia 
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Figure 8.9 Immunofluorescence microscopy of brain cells in primary culture. Brain 

cells were isolated from HPRT-deficient mice in the absence of HAT selection. 

Immunofluorescence microscopy using (a) polyclonal rabbit antibody against NF-L 

and (b) monoclonal murine antibody against GFAP. Neuronal cell bodies and axons 

express NF-L(a) and glial cells express GFAP (b). 
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Figure 8.10 Immunofluorescence microscopy of primary culture of brain cells. 

Double staining immunofluorescence microscopy using (a) polyclonal rabbit antibody 

against NF-L and (b) monoclonal murine antibody against NF-M. (c) phase contrast 

only of the same field as (a) and (b). Neuronal cell bodies and processing express 

both NF-L and NF-M are shown. 
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Figure 8.11 Immunofluorescence microscopy of primary culture of brain cells. 

Double staining immunofluorescence microscopy using (a) polyclonal rabbit antibody 

against NF-L and (b) monoclonal murine antibody against vimentin. (c) phase 

contrast only of the same field as (a) and (b). Neuronal cells expressing both NF-L 

and vimentin are shown. 

167 



I 

(a) 



Figure 8.12 Immunofluorescence microscopy of brain cells in primary culture. Brain 

cells were isolated from HPRT-deficient mice in the absence of HAT selection. 

Double staining immunofluorescence microscopy using (a) polyclonal rabbit antibody 

against NF-L and (b) monoclonal murine antibody against GFAP. (c) phase contrast 

only of the same field as (a) and (b). Neuronal cells shown express NF-L but not 

GFAP. 
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Figure 8.13 Immunofluorescence microscopy of brain cells in primary culture. Brain 

cells were isolated from HPRT-deficient mice in the absence of HAT selection. 

Double staining immunofluorescence microscopy using (a) polyclonal rabbit antibody 

against NF-L and (b) monoclonal murine antibody against GFAP. (c) phase contrast 

only of the same field as (a) and (b). Neuronal cells expressing both NF-L and GFAP 

are shown. 
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Figure 8.14 Immunofluorescence microscopy of primary culture of brain cells. 

Double staining immunofluorescence microscopy using (a) polyclonal rabbit antibody 

against NF-L and (b) monoclonal murine antibody against GFAP. (c) phase contrast 

only of the same field as (a) and (b). Cells expressing GFAP but not NF-L are 

shown. 
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which is associated with the events of cell division in the central nervous system 

before differentiation. Before vimentin is totally replaced by neurofilament proteins, 

for a time, both filament protein types may coexist (Nixon and Shea, 1992). The 

coexistence of NF-L and vimentin in primary culture brain cells (Figure 8.11) suggests 

the possibility of isolating neuronal precursor cells. In addition, some cultured brain 

cells express both GFAP and NF-L (Figure 8.13) which coexist only in the early stage 

of neuronal development. By using retrovirus-mediated gene transfer for marking cell 

lineages in vivo, the persistence of a common progenitor for neurons and glia has been 

suggested (Turner and Cepko, 1987). Stemple and Anderson (1992) isolated a stem 

cell for neurons and glia from the mouse neural crest suggesting neuronal and glial 

cells share the same progenitor. With the treatment of basic fibroblast growth factor 

and conditioned medium from an astrocyte-like cell line, cells isolated from adult 

mouse brain express both GFAP and NF-M suggesting that neuronal precursors exist 

in the adult mammalian brain (Richards et al., 1992). 

In summary, the increase of HPRT activity in the brain of HPRT-deficient 

mice after transplantation with HPRT wild-type ES cells and the commitment to 

differentiate into the neuronal and glial lineage as well as the use of ES cells for 

homologous recombination suggest the possibility of a gene therapeutic strategy for 

inherited neural diseases using ES cells as vehicles, combined with gene targeting 

techniques. 
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The preceding results are discussed below in 4 sections reflecting, as much as 

possible, the individual objectives and their interdependence. Gene targeting to 

generate a deletion at the HPRT locus in murine ES cells is considered in section 9.1, 

the evaluation and establishment of behaviourally altered mice as an animal model for 

Lesch-Nyhan syndrome, in section 9.2 and the gene targeting knock out of APRT is 

covered in section 9.3. Gene therapy by transplantation of ES cells to HPRT-deficient 

mice is discussed in the final section. 

9.1 Gene targeting deletion at the HPRT locus 

Some specific deletions cause distinct diseases, such as retinoblastoma (RB). 

Cytogenetic studies of lymphocytes or fibroblasts from retinoblastoma patients showed 

a small group of patients were found to share a deletion of chromosomal region 13q14 

(Yunis and Ramsay, 1978). The RB gene has been cloned using esterase D cDNA, 

which is linked to the retinoblastoma susceptibility locus in band 13q14.11 within an 

estimated 1,500 kb range, as a probe for chromosome walking. The RB gene encodes 

a nuclear protein that is a substrate for cdc2 kinase and was found to be composed of 

23 exons scattered over more than 100 kb of DNA (Lee et al., 1987). The cloning 

of the RB gene exemplifies a system for cloning a gene defective in a particular 

disease starting from an observation of cytogenetic deletion. Subsequently, a 

transgenic animal model was constructed using gene targeting in ES cells, although 

the animals did not serve as a tumour susceptibility model (Lee et al., 1992; Jacks et 

al., 1992; Clarke et al., 1992). Homozygous sequence deletions have been reported 

from several different lung cancer cell lines, suggesting the deleted sequences are 

derived from independent genetic loci encoding potential tumour suppressor genes 

other than RB and p53 (Wieland et al., 1992). Homozygous deletions with human 

chromosome band 9p21 were also noticed that have early involvement in development 

of melanoma (Fountain et al., 1992). Furthermore, other clinical cases with genetic 

deletion have been reported recently. A patient with typical clinical features of the 

fragile X syndrome but without cytogenetic expression of the fragile X has been 

characterised with a submicroscopic deletion of the entire FMR1 gene and about 2.5 

megabases of flanking sequences (Gedeon et al., 1992). Seven patients with Kearn- 
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Sayre syndrome have been identified where the muscle pathology is associated with 

mitochondrial DNA deletions, 2.3 to 7.1 kb in size (Moraes et al., 1992). In addition, 

the best way to understand the specific function of one component of a 

multicomponent system is to take it away and to observe any difference. Many 

genomic DNAs of unknown function will be cloned and sequenced in the course of 

efforts to map the human genome. The best way to identify the function of a 

particular sequence is to make a cell line or a knock-out animal in which the sequence 

is deleted or inactivated and to observe the physiological and biochemical alteration. 

Gene targeting in embryonic stem cells is a valuable system for creating 

transgenic animals that provide a powerful system for studying specific gene function. 

The structure of the targeting DNA plays an important role in the efficiency of 

targeting events. Double-stranded circular DNA molecules were unable to recombine 

efficiently with each other in either a prokaryotic system (Chua and Oliver, 1992) or 

a eukaryotic system (Bilang et al., 1992). Targeting efficiency was higher with a 

linearised than with a circular construct in the targeting insertion of the neomycin 

phosphotransferase gene into the tubulin gene cluster (ten Asbroek et aL, 1990). 

Purified supercoiled and nicked circular plasmids as well as restriction enzyme 

linearised DNA were used to determine targeting efficiency in ES cells. It was shown 

that DNA with a double-strand break in the region of homology targeted at a 10-fold-

higher frequency than did nicked circular DNA and a 34-fold-higher frequency than 

did supercoiled DNA (Hasty et al., 1992). To optimise the frequency of targeting 

deletion event, all the deletion vectors built for this project were linearised before 

electroporation. 

There are metabolic cooperation phenomena which occur between mammalian 

cells in culture (Hooper, 1982). This sometimes results in artifacts in the measurement 

of mutation rates of a large cell population. An artificially low isolation ratio of 

HPRT-deficient mutants from high inoculation size had been observed, the number of 

8-azaguanine resistant clones from ethyl methanesulphonate mutagenised V-79 Chinese 

hamster cells decreased by increasing the cell amounts plated on the dishes (Chu and 
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Mailing, 1968). Therefore, it is a technical problem to isolate a mutated clone from 

a large cell population after homologous recombination, especially since this occurs 

at a low frequency. Hence it is convenient to have some positive selection in the 

screening procedure even if the gene is directly selectable. Accordingly, more than 

90% of the experiments involving homologous recombination use marker genes such 

as neo in their targeting constructs. 

When this research project was initiated, only a few reports had been published 

regarding gene targeting either by insertion or replacement. There was no evidence 

to suggest the possibility of deletion of particular sequences from the genome by the 

technique of homologous recombination. The first set of experiments was to test this 

possibility using 3 different vectors sharing the same 5 homology to make different 

size deletions as defined by the 3 homology. The deletion of 10.1 kb containing the 

promoter region and exon 1 of the HPRT locus was easily achieved with both 

pDWMD1 and pDWMD3 at a frequency of about 0.5% G418-resistant clones. The 

overall targeting deletion efficiency is intermediate to levels reported for 15-kb and 

4-kb deletions in the T-cell receptor a subunit gene, 0.4% and 3.3% respectively 

(Mombaerts et al., 1991). A fragment of similar size (12 kb) to the region deleted by 

pDWMD1 and pDWMD3 has been inserted into the HPRT gene using both a 

replacement vector (Mansour et al., 1990) and an insertion vector (Thompson et al., 

1989). The attempt to delete the whole HPRT genome from ES cells with deletion 

vector, pDWMD4, did not succeed. Only one clone resistant to both G418 and 6-

thioguanine was isolated from 2 electroporation experiments, however, no deletion was 

observed from the Southern analysis. Although the attempt to delete 20 kb containing 

the promoter region and exons 1-5 of HPRT by deletion vector, pDWMD5 failed, the 

isolation frequency of double resistant clones was much higher than that with 

pDWMD4. However, the Southern hybridisation patterns show that the mechanism 

of homologous recombination was by insertion rather than deletion. 

The topology of the incoming DNA may play a role, as very different targeting 

frequencies between an insertion and a replacement vector containing identical 
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homologous sequences have recently been observed. Using non-isogenic DNA, 

insertion vectors target at a 5- to 10-fold-higher frequency than replacement vectors 

do with the same homologous sequences (Hasty et al., 1991b). It is easy to 

understand that the achievement of replacement, requiring double reciprocal 

recombination is more difficult than that of insertion which requires only one cross 

over. It has been shown that the single reciprocal recombination of an insertion vector 

occurs 92-fold more frequently than double reciprocal recombination of a replacement 

vector with crossover junctions on both homologous arms. The provision of longer 

uninterrupted homology in insertion vectors than in replacement vectors plays some 

role in the higher homologous recombination frequency (Hasty et al., 1991c). 

However, using isogenic DNA (see later for discussion of isogenic versus non-isogenic 

DNA and targeting frequency) Deng and Capecchi (1992) showed that sequence 

replacement and sequence insertion vectors behaved equivalently with respect to the 

targeting efficiency. The vector used here were derived from non-isogenic DNA. The 

insertion results from the targeting deletion by pDWMD5 and pDWMD8 which were 

designed to integrate via a replacement mechanism support the contention that 

topology of incoming DNA plays a role in homologous recombination frequency. 

To ensure that targeting deletion could be accomplished in another region and 

to clarify whether there were sequence-specific factors leading to the failure of the 

deletion by pDWMD5, the targeting deletion vector, pDWMD7, was constructed. The 

successful deletion by pDWMD7 suggests that there was no particular sequence-

specific difficulty for deletion in the region that was difficult to delete with pDWMD5. 

The only difference between pDWMD5 and pDWMD7 is the deletion size desired. 

Comparing the outcomes of introducing pDWMD1, pDWMD5, or pDWMD7 into ES 

cells, suggests that there was no difficulty in deleting sequences of 10 kb in size from 

the HPRT locus and that there were not sequence-specific effects. The non-existence 

of sequence-specific difficulty was also proved by the achievement of targeting 

deletion with pDWMD5-TK through the two-step recombination procedure. The 

failure of deletion by pDWMD5 might be due to a size limitation on the amount of 

material that could be deleted in a single recombination event. Another targeting 
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deletion vector, pDWMD8, was constructed to confirm that size limitation is the major 

reason for failure of larger deletions by a simple homologous recombination protocol. 

This deletion vector was constructed to delete a 20-kb sequence including the 10-kb 

region which can be deleted with pDWMD1 without any difficulty. As expected, the 

20-kb deletion could not be obtained by the introduction of pDWMD8 into ES cells. 

The Southern hybridisation patterns of the clones resistant to both G418 and 6-

thioguanine isolated from ES cells electroporated with pDWMD8 showed that all the 

clones contained insertions rather than deletions. Both of two different deletion 

vectors devised to delete 20-kb sequences from HPRT locus led to insertion events 

instead of deletions after homologous recombination. This result suggests that there 

is a size limitation for deleting more than 20-kb sequences by simple homologous 

recombination. Vector constructs for deletion are very similar to that of conventional 

replacement vectors rather than that of insertion vectors. The deletion results at both 

the T-cell receptor n-subunit (Mombaerts et al., 1991) and HPRT locus showed that 

deletion of less than 15 kb can be achieved without difficulty. However, when larger 

deletion is desired, the vector recombined by an insertion mechanism instead of 

replacement mechanism as demonstrated in both pDWMD5 and pDWMD8. 

Several studies have illustrated that the targeting frequency in mammalian 

systems is dependent on the length of homology and is unaffected by the length of 

nonhomologous DNA. The targeting frequency at the HPRT locus as a function of 

the extent of homology between the targeting vector and the endogenous target has 

been reported both in insertion and replacement vectors (Capecchi, 1989). A parallel 

phenomenon occurs with extrachromosomal intramolecular recombination where a 

linear increase in the recombination frequency with increased length of homology 

from 0.25 to 5 kb and a steep reduction in the frequency below 0.25 kb, in 

mammalian cells (Rubnitz and Subramani, 1984). More detailed analysis of 

replacement vectors showed that homology of less than 1.7 kb was insufficient to 

generate targeted events. Homology increasing from 1.9 to 4.2 kb and from 4.2 kb 

to 6.0 kb resulted in 16- and 3-fold increases respectively in the targeting frequency 

(Hasty et aL, 1991b). The strong dependency of targeting frequency on the length of 
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homology between the targeting vector and the target locus has been also 

demonstrated with insertion vectors (Deng and Capecchi, 1992). The lower targeting 

frequency with pDWMD7 relative to pDWMD1 might be due to the shorter length of 

homology provided by pDWMD7, 5.2 versus 6.9 kb respectively in the total of 5' 

and 3' homology. 

The targeting frequencies of the insertion vector with different linearisation 

sites indicated that the adjacent homologous ends increased the targeting frequency by 

5- and 12-fold over ends at the homologous-heterologous junction and in the 

heterologous sequences. To determine whether the ends have a rate-limiting role for 

homologous recombination between introduced and chromosomal DNAS, targeting 

frequencies with insertion vectors were compared with a double-stranded break either 

inside the region of homology, at the edge or outside the target homology. The 

highest frequency was found in the vector with a break inside the region of homology. 

In addition, size-dependent reduction of targeting efficiency by attaching heterologous 

sequence to the homologous end was also demonstrated (Hasty et al., 1992). The 

heterologous end in pDWMD3 might contribute to the lower targeting frequency 

compared to pDWMD1. The linearised DNA of pDWMD1 provides an homologous 

end while pDWMD3 has a heterologous end from the HSV-TK module. 

The attempts to delete 20-kb sequences from the HPRT locus by simple 

homologous recombination were disappointing using either pDWMD5 or pDWMD8 

as the deletion vector. It is obvious that there is a size limitation for targeting 

deletions and, as a result, the insertion event takes place. It would be useful to 

establish a methodology for deleting larger fragments. A modified targeting vector, 

pDWMD5-TK was therefore constructed to obtain the 20-kb deletion by 2-step 

homologous recombination at the HPRT locus. This was achieved by a combination 

of homologous insertion and intrachromosomal recombination. The vector was 

initially inserted into the 3' end of the homology. The size of insertion by 

homologous recombination can be as large as 13 kb if the insertion mechanism is 

employed (Smithies et al., 1985). A similar two-step recombination procedure 
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involving intrachromosomal recombination has been used to introduce a subtle 

mutation in the Hox-2.6 locus in embryonic stem cells. The initial event involved 

single reciprocal recombination between the target gene and the insertion vector 

containing a small mutation in the homologous DNA with neo and HSV-TK modules 

located outside the region of homology. The entire vector integrated at the target gene 

and created a duplication of genomic sequences conferring a G418-resistant and HSV-

TK positive phenotype. The intrachromosomal recombination subsequently occurred 

within the duplication to create the final mutant construct with the phenotype of HSV-

TK negative and G418-sensitive phenotype (Hasty et al., 1991a). A single reciprocal 

recombination occurred in the 3 end of homology of pDWMD5-TK to create insertion 

mutants which were G418- and 6-thioguanine-resistant but gancyclovir sensitive. 

Mutants with a 20-kb deletion in the HPRT locus were then generated by 

intrachromosomal recombination in the duplicated region, which could be selected by 

gancylovir and G418. 

In summary, although the generation of deletion by gene targeting is size 

limited, deletions up to 15 kb could be achieved by a simple protocol. Larger 

deletions could be accomplished by more complex procedures involving 

intrachromosomal recombination or by gradual deletion (Table 9.1). The efficiency 

of targeting deletion, like that of replacement and insertion mechanisms in general 

homologous recombination, also depends on length of homology, isogenicity, and 

homology at double-strand breaks. 

9.2 Animal model for Lesch-Nyhan syndrome 

Patients with Lesch-Nyhan syndrome are usually mentally retarded, but the 

most unusual feature of the syndrome is the occurrence of compulsive self-injurious 

behaviour. First attempts to produce an animal model for Lesch-Nyhan syndrome 

involved chronic administration of high doses of the methylxanthines, caffeine and 

theophylline, to induce self-mutilation in mice, rats and rabbits (Mueller et al., 1982; 

Lloyd and Stone, 1981; Peters, 1967). This approach did not produce a useful model 

due to significant mortality and an induced increase in brain HPRT activity (Minana 
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Table 9.1 Summary of targeting deletion by homologous recombination at the HPRT 

locus. 

Expected Experimental results 

Vector  

Remaining exons Deletion size Deletion 	Insertion 

(kb) 

pDWMD1 2-9 10.1 + 

pDWMD4 - 38.6 

pDWMD5 6-9 27.2 + 

pDWMD7 1-3,6-9 11.4 + 	 + 

pDWMD8 2-9 21.1 + 

pDWMD5-TK' 6-9 27.2 + 

pDWMD5TKc 6-9 27.2 + 	 + 

the occurrence of generating targeted clones resistant to G418 and 6-

thioguanine. 

selected with G418, 6-thioguanine and gancylovir. 

C. 	selected with G418 and 6-thioguanine. 



et al., 1984). Caffeine has been used as a comparative agent for studying the 

behavioural alteration and purine salvage pathway. Although the inhibition of APRT 

by caffeine is less than that by 9-ethyladenine, caffeine was found to inhibit both 

HPRT and APRT and it will be discussed later. High doses of clonidine, an agonist 

for the cx-noradrenergic receptor, were able to induce self injurious behaviour in mice 

housed individually in the absence of objects to bite and the self injurious behaviour 

was potentiated by pretreatment with caffeine (Razzak et al., 1977; Ushijima et al., 

1984). In the most direct Lesch-Nyhan syndrome model to demonstrate the 

involvement of central dopaminergic neurons, dopamine agonists were used to create 

lesions in the brain catecholamine pathway of neonatal rats by intracisternal 

administration. Self injurious behaviour was observed when the neonatal ly-lesioned 

rats were challenged as adults with L-dopa, and could be prevented by administration 

of a dopamine antagonist (Breese et al., 1990; Goldsten, 1989). 	Other 

pharmacological models for Lesch-Nyhan syndrome have also been established, but 

have shed little information on the link between HPRT deficiency and abnormalities 

in purine and dopamine systems in the brain (Jinnah et al., 1990). 

Transgenic animal models make a major contribution to understanding the 

pathogenesis of human disease and are likely to become increasingly important in the 

evaluation of novel therapies. It was a particular disappointment, therefore, that the 

first genetic model for a human inherited disease (Lesch-Nyhan syndrome) to be 

produced using the embryonic stem cell system did not develop symptoms of the 

disease spontaneously. Failure to demonstrate the symptoms of Lesch-Nyhan 

syndrome in HPRT-deficient mice may be understood by comparison of the difference 

between mouse and human purine metabolism. The extent of dopamine depletion was 

not as high in the brains of HPRT-deficient mice as in Lesch-Nyhan syndrome 

patients: up to 50% reduction in mice compared to 70-90% in man (Finger et aL, 

1988; Williamson et al., 1991). The reduction of dopamine in HPRT-deficient mice 

could be enhanced by administration of amphetamine. HPRT-deficient mice of either 

the 129/J or C57B1/6J strain were more sensitive than their wild-type littermates to the 

ability of amphetamine to stimulate locomotor or stereotypic behaviours (Jinnah et aL, 
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1991). Amphetamine has been proven to lead to dopamine release in the rat striatum 

(Butcher et al., 1988). Although these experiments implied that dopamine might 

influence the incidence of behavioural alteration, the relationship between dopamine 

levels and HPRT deficiency still remains a puzzle. 

Hypoxanthine is an inefficient precursor of purine nucleotides in mouse tissue. 

In vitro, mouse erythrocytes salvage less than 10% of hypoxanthine added to whole 

blood in 30 min of incubation at 37 °C. In vivo, circulating hypoxanthine is rapidly 

degraded (> 90% in 10 mm) to allantoin and uric acid. It is estimated that < 2% of 

circulating hypoxanthine is salvaged in the mouse, the remainder is catabolised (Moyer 

and Henderson, 1983). In addition, there is no correlation between HPRT activity and 

endogenous dopamine levels, dopamine uptake, dopamine release, or monoamine 

oxidase activity in comparisons of HPRT-wild-type cells with the deficient cell line, 

PC12, which is a clonal pheochromacytoma line from rat adrenal medulla (Bitler and 

Howard, 1986). 

Following the report that HPRT-deficient mice were more susceptible to 

amphetamines and observations on the spontaneous occurrence of severe self injurious 

behaviour in aged HPRT-deficient mice (Williamson etal., 1992a), the hypothesis was 

proposed that mice were more reliant on APRT than HPRT for their purine salvage. 

It may, therefore, also be necessary to block APRT activity in HPRT-deficient mice 

to produce a model for Lesch-Nyhan syndrome. The purine analogue 9-ethyladenine 

reversibly blocked APRT activity both in vitro and in vivo, as shown by adenine 

incorporation assay. 9-Ethyladenine also inhibited HPRT activity. Presumably, 9-

ethyladenine was converted by adenase to 9-ethyihypoxanthine that might be an 

inhibitor of HPRT. However, 9-ethyladenine has a more inhibitory effect on APRT 

than on HPRT. In contrast to HPRT-deficient mice which did not develop self 

injurious behaviour spontaneously, the inhibitory effects on both HPRT and APRT led 

to self mutilation in wild-type mice after administration of 9-ethyladenine. This 

phenomenon indicates that decrease in APRT activity is more important than that of 

HPRT in the incidence of self injurious behaviour in mice. 
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Caffeine also served as an inhibitor of the purine salvage pathway. It inhibited 

hypoxanthine incorporation more strongly than adenine incorporation. When 

compared on the basis of their inhibitory effects on adenine incorporation, caffeine is 

weaker than 9-ethyladenine. Caffeine did not induce self injurious behaviour in wild-

type mice when administered at 0.1 mmole/kg body weight. Reduction of purine 

incorporation in cultured ES cells following caffeine administration at io M was 44% 

and 33% of control for hypoxanthine and adenine respectively. This level of caffeine 

administration is about 10-fold less than the dose required for induction of self 

injurious behaviour in rodents of 185 mg/kg body weight, i.e. 0.95 mmole/kg (Peters, 

1967). It is therefore easy to understand that the dose required to induce self injurious 

behaviour would also result in high mortality. By its effect on APRT, caffeine did 

induce self injurious behaviour after administration to HPRT-deficient mice, although 

the induction was less severe than that with 9-ethyladenine. 	The different 

susceptibility to behaviour alteration with 9-ethyladenine and caffeine did correlate to 

the effects on adenine incorporation in ES cell culture. The greater severity of self 

injurious behaviour induced by 9-ethyladenine than by caffeine in HPRT-deficient 

mice is in agreement with the stronger inhibitory effect on APRT activity by 9-

ethyladenine than by caffeine. 

The administration of a competitive inhibitor of APRT, 9-ethyladenine, to 9-12 

month old HPRT-deficient mice resulted in a high frequency of self injurious 

behaviour and physical injury. It is tempting to equate the compulsive overgrooming 

observed in these animals with the self-mutilation that is characteristic of Lesch-Nyhan 

syndrome. 9-Ethyladenine treatment of 6-8 week old HPRT-deficient animals resulted 

in less severe physical injury, but a significant increase in the frequency of self 

injurious behaviour compared to saline-treated control animals. Confirmation of the 

critical role played by APRT in preventing the appearance of symptoms characteristic 

of Lesch-Nyhan syndrome in the HPRT-deficient mouse awaits the production of 

APRT-deficient animals, by gene targeting in embryonic stem cells. The work with 

9-ethyladenine and earlier observations on 2-year old HPRT-deficient mice 

(Williamson et al., 1992a) indicate that it is more difficult to produce the symptoms 

183 



of Lesch-Nyhan syndrome in young mice. However, the ability to induce self 

injurious behaviour in 6-8 week old animals, resulting in a high incidence (80%) of 

self-mutilation before the mice are 6 months old, indicates that this combined genetic 

and biochemical model will be valuable for the study of Lesch-Nyhan syndrome. In 

particular, it will permit the evaluation of novel therapies involving the introduction 

of functional HPRT genes into the brains of affected animals. 

Animal models for human disease, either transgenic or non-transgenic, have 

provided the opportunity to investigate gene function in vivo. As predicted, a null 

mutation at the immunoglobulin 4u locus leads to abnormal B-cell development 

(Kitamura et aL, 1991) and at the 132-rn locus leads to absence of certain T-cell 

populations due to lack of MHC-1 presentation (Zijlstra et al., 1990). A mouse model 

for Gaucher's disease has a more extreme phenotype than the human condition, with 

mice dying within 24 hours of birth (Tybulewicz et al., 1992). However, some gene 

disruptions appear to have no effect on phenotype. The mdx mouse, just as the patient 

suffering from Duchenne muscular dystrophy, is characterised by a complete absence 

of dystrophin. However, it does not show detectable weakness, nor the progressive 

degeneration of the limb muscles in adulthood (Bulfield et al., 1984). Stedman et al. 

(1991) have recently shown that the mdx mouse diaphragm is more comparable to 

limb muscle in Duchenne muscular dystrophy, thus extending its applicability as an 

animal model. More interestingly, surprising differences have been observed in the 

phenotype of two independent knock-out models for cystic fibrosis. The phenotype 

of one was severe with most mice dying of intestinal obstruction by 40 days 

(Snouwaert et al., 1992), while milder symptoms are reported in the other model, 

including changes in the lung characteristic of the human disease (Dorin et al., 1992). 

Mice homozygous for a null mutation at the retinoblastorna locus die in utero. 

Heterozygotes do not develop eye tumours and are thus not good models for familial 

retinoblastoma (Lee et aL, 1992; Jacks et al., 1992; Clarke et al., 1992). On the other 

hand, mice with a homozygous deficiency for another tumour suppressor gene, p53, 

develop normally, but succumb to neoplasia with 6 months of birth (Donehower et al., 

1992). 
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These results show that it is important to take differences between man and 

mouse into account when designing disease models and that the precise nature of the 

genetic alteration introduced by targeting can have a profound effect on the phenotype. 

The work with HPRT-deficient mice serves to emphasize the former point. In man 

HPRT deficiency results in a devastating neurological disorder, while HPRT-deficient 

mice do not exhibit symptoms of Lesch-Nyhan syndrome spontaneously. In man, 

APRT deficiency causes difficulties with adenine excretion, rather than behavioural 

alteration (Simmonds, 1986). The induction of self-injurious behaviour in HPRT-

deficient mice treated with an adenine analogue indicates that the relative importance 

of these two purine salvage pathway enzymes is reversed in the different species. 

The animal models for Lesch-Nyhan syndrome are summarised in Table 9.2. 

Self injurious behaviour was observed in all animal models except untreated HPRT-

deficient mice. HPRT-deficient mice carry the identical genetic defect to patients with 

Lesch-Nyhan syndrome but have shown an incomplete decrease in dopamine levels. 

The animal model in which neonatal lesions of dopamine receptor are generated 

pharmacologically showed a correlation between dopamine levels and behavioural 

alteration. Induction of self injurious behaviour in the 9-ethyladenine-treated HPRT-

deficient mouse model will contribute to a better understanding of the pathogenesis 

of Lesch-Nyhan syndrome. 

93 APRT inactivation by gene targeting 

Although APRT is important in rodents, complete deficiency does not cause 

any severe symptoms in man (Simmonds, 1986). APRT-deficiency may have 

contributed to the failure to generate chimaeric mice after injecting APRT null mutant 

ES cells into blastocysts. HPRT activity is much higher than APRT activity in the 

human embryo -12.1 to 17.3 pmol/embryo/h between day 2 and 4 after fertilisation, 

versus 1.3 to 2.0 pmol/embryo/h on day 2-5 for APRT (Leese et al., 1991). In 

contrast, APRT activity is more important than HPRT activity in mice. HPRT activity 

in wild-type mice was measured as 0.35 to 0.55 pmol/embryo/h while APRT activity 

was 0.62 to 1.06 pmol/embryo/h (Moore and Whittingham, 1992). Failure to generate 
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Table 9.2 Comparison of animal models for Lesch-Nyhan syndrome. 

Animal model 	Mechanism 	 Disadvantage 	Reference 

Administration 

of caffeine 

Inhibition of HPRT 

and APRT 

Unknown, probably 

through adenosine 

receptor 

Self injurious behaviour Peters, 

only occurred at high 	1967 

doses with high 	this thesis 

mortality 

Administration 	Blockade of adenosine No correlation between Razzak 

of clonidine 	receptor 	 HPRT-deficiency and 	et aL, 

adenosine receptor 	1975 

Administration 	Stimulation of 
	

No correlation between Brien 

of amphetamine 	releasing dopamine 
	

HPRT-deficiency and 	et al., 

dopamine levels 	1977 

Neonatal lesion 	Dopamine receptor 	No correlation between Breese 

of dopamine 	alteration 	 HPRT deficiency and 	et al., 

receptor 	 dopamine receptor 	1984 

HPRT-deficient 	Genetic deficiency 	No self injurious 	Finger 

mice 	 behaviour occurred 	et al., 

except after 	 1988 

administration of 

amphetamine 

HPRT-deficient 	Genetic deficiency 	Dopamine level needs 	this thesis 

mice with 9- 	and biochemical 	to be determined 

ethyladenine 	inhibition of adenine 

treatment 	salvage pathway 
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chimaeras with the spontaneous APRT deficient ES cell line, DAP1-50, may be due 

to loss of pluripotency under 1,6-diaminopurine selection. Alternatively, this failure 

might have been due to the inability of APRT-deficient ES cells to compete with cells 

of the host blastocyst. 

Although selection for complete deficiency of APRT is possible, it is difficult 

to isolate heterozygous APRT mutants by diaminopurine selection. Thus, gene 

targeting was used to isolate ES cells heterozygous for APRT deficiency. To enrich 

for targeted over random integration events, the positive-negative selection strategy 

was employed. The thymidine kinase of herpes simplex virus has a much lower Km 

for thymidine than the thymidine kinase of mammalian cells, 0.6 4uM for HSV type 

1 kos strain to 2.6 1uM for Human AML cells. In addition, the Vm  value of 

thymidine kinase in HSV-1 infected BHK cells increased to 26.6 pmole/sec/mg 

protein from 8.0 pmole/sec/mg protein in non-infected cells. The lower Km of herpes 

thymidine kinase for thymidine and the lower Km of the viral DNA polymerase for 

deoxynucleoside-5'-triphosphate compared to the mammalian enzymes can be 

exploited as the therapeutic strategy for herpes simplex virus infections. Acyclovir, 

9-(2-hydroxyethoxymethyl)guanine, was the first clinical trial drug for the HSV 

infection. The positive-negative selection strategy for gene targeting was first 

introduced by Mansour et al. (1988) in their targeting of int-2 in ES cells. The vector 

for positive-negative selection was designed using a replacement mechanism when the 

homologous recombination occurred. It contained homology to the target gene, within 

which was inserted a neomycin resistance gene as a positive selectable marker 

allowing selection with G418. An HSV-TK gene was inserted adjacent to either one 

or both ends of the homology, and was used as a negative selectable marker. When 

replacement of the endogenous sequences by the vector DNA occurred via 

homologous recombination, the HSV-TK gene would not be transferred into the target 

locus while in random integrations the HSV-TK would be retained. Exclusion of the 

HSV-TK gene during homologous recombination occurred because the HSV-TK gene 

represented a discontinuity in the homology between incoming vector and the 

endogenous target sequence. Cells in which the targeting event occurred would 
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therefore be neor  and HSV-TK. On the other hand, random integration of the vector 

into the recipient cell genome should take place in most cases, resulting in cells that 

are neor  and HSV-TK. Those cells with HSV-TK phenotype could be killed by 

selection with gancyclovir or its analogues (Mansour et al., 1988; McMahon and 

Bradley, 1990). Mammalian cells, unlike certain bacteria and fungi, do not contain 

cytosine deaminase and do not ordinarily metabolise cytosine to uracil. Nor do they 

metabolise the innocuous compound 5-fluorocytosine to the highly toxic compound 

5-fluorouracil. As an alternative to HSV-TK, the bacterial cytosine deaminase gene 

has been used as a negative selection module by supplementation with 5-

fluorocytosine in the culture medium (Mullen et al., 1992). The diphtheria toxin A 

module has been also used as a negative marker to inactivate the c-fyn locus of mouse 

ES cells (Yagi et al., 1990). Those eukaryotic cells containing functional diphtheria 

toxin A module would commit suicide by inhibiting ADP-ribosylation of elongation 

factor 2 upon protein synthesis without the requirement of chemical selection. 

Owing to the lack of a proper direct selection scheme, the targeting strategy 

for inactivation of APRT followed the most popular positive-negative selection. 

Instead of HSV-TK, the HPRT mini-gene was used for counter selection in 

electroporated HPRT-deficient ES cells. A HPRT mini-gene functional in ES cells, 

was modified from the original mini-gene which functioned in fibroblasts but not in 

ES cells (Melton et al., 1986) by the addition of an element from the 5' end of intron 

1 (Selfridge et al., 1992). This modified HPRT mini-gene was as effective as the 

conventional herpes simplex virus TK gene in targeting vectors designed to inactivate 

the ERCC-1 gene using the positive-negative selection procedure. The use of the 

neo/HPRT mini-gene for positive-negative selection gave 8- to 12- fold enhancement 

in APRT targeting. Although the targeting efficiency is higher in using insertion 

vectors than replacement vectors, most targeting experiments use replacement vectors 

because of the opportunity for positive-negative selection (Table 9.3). Factors which 

might influence enrichment in positive-negative selection procedures are, marker gene, 

distance between positive and negative markers, length of homology, end protection 

of negative marker, and target locus. No effect on enrichment following positive- 
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negative selection occurs if different positive or negative selection modules are used. 

No difference was noticed between the neo or hygromycin resistance gene modules 

for positive selection when HSV-TK was used as a negative selection module 

(Mortensen et aL, 1991). Similarly, the enrichment was not affected by using HSV-

TK or HPRT mini-gene as a negative selection marker (Selfridge et al., 1992). The 

length of homology and specific locus effects always play important roles in 

homologous recombination and they should also contribute to the success of positive-

negative selection. Keeping the integrity of the negative selection module could also 

optimise the enrichment by positive-negative selection. The abundance of endogenous 

exonuclease in cells will digest some of the incoming DNA to protect the host. This 

mechanism would decrease the efficiency of negative selection by causing loss of 

functional negative selection modules before integration. It has also been suggested 

that the distance between positive and negative gene could be another factor 

interfering with enrichment. Selfridge et al. (1992) showed slight improvement of 

enrichment on ERCC-1 gene targeting by reducing the distance between positive and 

negative markers to reduce the possible loss of negative module spontaneously. 

It has been proven that the homologous recombination machinery is very 

sensitive to base pair mismatches between incoming and target DNAs in prokaryotes 

as well as in mammalian cells. Although there is only a 2% difference in the 

sequences of creatine kinase M between strain 129 and Balb/c, this greatly affected 

the targeting efficiency in 129-derived cells using Balb/c derived vector DNA. Two 

linearised replacement vectors with identical structures but one derived from strain 129 

and the other from Balb/c, were introduced into the mouse strain 129-derived AB-1 

cells to evaluate the targeting efficiency. Although the enrichments with positive-

negative selection were similar, the targeting frequency with isogenic DNA was 12% 

of the double resistant clones while no homologous recombinants were observed with 

non-isogenic DNA (van Deursen and Wieringa, 1992). Different efficiencies of gene 

targeting between isogenic and non-isogenic DNA were also found for the HPRT 

(Deng and Capecchi, 1992) and RB loci (te Reile et at., 1992). Two similar 

constructs, with the neo gene embedded in 10.5 kb of RB sequences around the 19th 
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and 20th exon, from 129 and Balb/c genomic libraries respectively, were 

electroporated into the 129-derived ES cell line, E14. Targeting was 50-fold more 

efficient with the 129-construct than with the Balb/c-construct. The isogenic targeting 

construct allowed the easy recovery of homologous recombinants without the use of 

any enrichment protocol. In addition, a RB targeting construct containing the HPRT 

mini-gene was introduced into E14TG2a, an HPRT-deficient mutant derived from E14, 

to generate HPRT RB inactivated clones that correctly integrated into the 19th exon 

of one of the RB alleles through homologous recombination. One of these clones was 

used as the recipient for a second targeting experiment using constructs derived from 

129 or Balb/c genomic libraries. Double crossing-over at the previously targeted RB 

allele would substitute HPRT for neo and give colonies resistant to G418 and 6-

thioguanine. Random integration would gain the resistance to G418 but retain 

sensitivity to 6-thioguanine. G418 and 6-thioguanine doubly resistant colonies 

represented 1 in 200 of the singly resistant colonies against G418 when the targeting 

construct was derived from Balb/c genomic DNA and 1/10 for the isogenic targeting 

construct. Targeting at the RB locus with isogenic DNA was 20-fold more efficient 

than with non-isogenic DNA (te Reile et al., 1992). The murine APRT gene in the 

vector pAPRTneoö101 is derived from the genomic clone pSAM 6.3 which was 

cloned from Balb/c sperm DNA. Although both 129 and Balb/c strains are Musculus 

domesticus strains, the APRT gene sequence could differ between Balb/c and strain 

129. Differences in genomic sequence between strain 129 and Balb/c have been 

reported in the ERCC-1 gene (Selfridge et al., 1992). Two distinct APRT alleles have 

been reported in the P19 mouse teratocarcinoma cell line which was established from 

an embryo of M. domesticus strain C3H mouse (Turker et al., 1989). The low 

targeting efficiency on APRT by pAPRTneoö101 might therefore, be due to the non-

isogenic origin of the vector. 

Reduced transcript levels in cells with heterozygous targeted genes have been 

demonstrated by Northern analysis, such as G protein ai2 subunit (Mortensen et al., 

1991), glucocerebrosidase (Tybulewicz et al., 1992) and Prp protein (Büeler et al., 

1992). Primary mouse embryo fibroblasts established from heterozygous mice 

190 



generated by gene targeting the LIF gene showed a reduction of the LIF RNA 

transcript by Northern hybridisation. Heterozygous lines of embryo fibroblast also 

supported ES cell colony formation to a lesser extent, with about one-third the number 

of undifferentiated clones obtained compared to the wild-type lines (Stewart et al., 

1992). The growth rate decreased in those heterozygous mice carrying an insulin-like 

growth factor II gene disrupted by gene targeting (DeChiara et al., 1990). 

Heterozygous APRT targeted ES cells show the expected reduction in intensity of the 

APRT mRNA compared to the parental HM-1 cells. [3H]-adenine incorporation was 

also found to be significantly lower in the APRT targeted cells than in parental HPRT-

deficient ES cells and in HPRT wild-type ES cells. Decrease in the levels of 3-actin 

transcript in heterozygous APRT targeted cells relative to wild-type cells was also 

noticed in the Northern blot with well matched 18 S and 28 5 ribosomal RNA signals. 

The reduction of 3-actin transcript might be the result of the decreasing de novo RNA 

synthesis in APRT targeted cells. It has been reported that actin mRNA becomes an 

increasing percentage of total RNA during lymphocyte activation by concanavalin A. 

As early as 3 hr after mitogen addition, the actin mRNA content per equivalent of 

total RNA increased substantially (Degen et al., 1983). Opposite to the mitogen 

activation, the actin transcripts might decrease in the heterozygous APRT mutant 

which lacks complete purine salvage activity both in HPRT and APRT. 

9.4 Gene therapy in HPRT-deficient mice 

Male mice heterozygous for an HPRT transgene in the HPRT-deficient 

background (tgl+; hprt"3/Y) were mated to females homozygous for the null HPRT 

allele (hpr"/hprt"). The offspring could be either heterozygous for the transgene 

or not contain it, but all would be deficient for the endogenous HPRT gene, and could 

be used to evaluate the usefulness of the dual incorporation assay to detect low 

amounts of HPRT activity. High hypoxanthine incorporation activities in the brains 

and concanavalin A-stimulated splenocytes of transgenic mice does not support the 

finding of low transcript levels in HPRT-transgenic mice (Thompson, 1989). The 

homozygous transgenic mice contained 9 copies of the transgene but only 12% of 

normal transcript levels was found. The ratio of hypoxanthine to adenine 
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incorporation in two transgenic mice was as high as that in HPRT wild-type mice. 

To understand how the normal incorporation ratio is produced from a low level of 

RNA transcript, the protein structures of endogenous and transgenic HPRT were 

compared. Protein derived from the transgene has a different amino acid sequence at 

the amino-terminus. The mouse endogenous gene codes for a protein which has the 

amino-terminal amino acid sequence: methionine, proline, threonine, arginine, serine, 

proline, serine. The initiating methionine is post-translationally cleaved from the 

HPRT protein (Wilson et al., 1982). The transgene codes for a protein which has the 

amino-terminal sequence: methionine, proline, threonine, proline, aspartic acid, proline, 

alanine, serine. The three amino acids, arginine, serine and proline in the endogenous 

protein which are basic, polar and non-polar respectively, are substituted with proline, 

aspartic acid, proline and alanine in the transgene which are non-polar, acidic, non-

polar and non-polar respectively. Consequently, the predicted secondary structures 

vary in the amino-terminal region, with one a-helix and n-sheet possibly missing in 

the mutant protein (Figure 9.1 ) (Chou and Fasman, 1978). The different activities 

observed may, therefore, be attributed to their different secondary structures. 

The reliable dual incorporation assay combined with HPRT-deficient mice 

make a good system to evaluate strategies for gene therapy in vivo as well as in vitro. 

The idea that human genetic disease and even some degenerative and infectious 

disease will become amenable to correction at the genetic level has cleared its initial 

conceptual and technical obstacles and has now become widely accepted in most 

molecular genetic, medical and public circles (Friedmann, 1992). In general, there are 

two types of gene therapy depending on the manipulations involved. DNA or a virus 

vector may be injected directly into the target tissue of the recipient, allowing cells 

to be altered in vivo. Alternatively, vehicle cells either autologous or from an other 

individual or species may be manipulated ex vivo by gene transfer and then transferred 

into the target tissue by cell transplantation. The most direct and simple delivery 

system for gene therapy is injection of bare DNA directly into the target tissue. The 

efficiency of direct injection could vary according to injection methods, simple needle, 

jet injections (Furth et al., 1992) or particle bombardment (Friedmann et at., 1989). 
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Figure 9.1 Secondary structure predictions for HPRT wild-type and transgene-

encoded proteins. The secondary structure prediction is based on Chou and Fasman 

(1978) and was computed using an algorithm developed by Jameson and Wolf (1988). 

Both predictions were plotted using the "Peptidestructure" and "Plotstructure" 

programs developed by the University of Wisconsin Genetics Computer Group 

(UWGCG) (Devereux et al., 1984). A: wild-type HPRT protein; B: transgene-encoded 

HPRT protein; Arrow: the site of different predicted secondary structure of transgene-

encoded HPRT protein from that of wild-type HPRT protein. 
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Direct DNA injection was first demonstrated by intramuscular injection of the human 

dystrophin gene into mice. A human 12-kb full-length cDNA or a 6.3-kb cDNA 

encoding a functional version of the dystrophin sequence was inserted into an 

expression vector containing the Rous sarcoma virus promoter. Seven days after 

intramuscular injection of 400 tg  of plasmid DNA containing the dystrophin gene into 

dystrophin deficient mdx mice, human dystrophin immunoreactivity was detected in 

some cells located about 5 mm proximal to the injection site (Acsadi et al., 1991). 

Although expression remained stable one year after injection, the efficiency of this 

procedure is very poor. Injection of 400 g of dystrophin cDNA, equivalent to the 

total number of dystrophin gene copies from several mice, leads to the synthesis of 

detectable dystrophin in only some 50 fibre profiles out of 5,000 in a single muscle. 

Failure to detect functional HPRT activity in mice injected with the HPRT mini-gene 

intracerebrally may result from the same difficulty that arose with intramuscular 

injection. To improve the efficiency of transfection, a soluble, targetable DNA carrier 

system consisting of an asialoglycoprotein covalently coupled to a polycation has been 

developed. A soluble DNA complex was formed by mixing asialoglycoprotein-

polycation conjugate with plasmid DNA containing the structural gene for human 

serum albumin driven by mouse albumin enhancer-rat albumin promoter elements. 

Nagase analbuminemic rats possess a defect in the splicing of serum albumin mRNA 

which results in virtually undetectable levels of circulating serum albumin. The 

DNA/carrier complex was successfully targeted to unique receptors on hepatocytes that 

internalise galactose-terminal glycoproteins. Partial hepatectomy shortly after infusion 

of the DNA complex led to hepatocyte replication and prolonged expression of the 

introduced DNA. Circulating human albumin became measurable at a level of 0.05 

1ug/ml within 24 to 48 hr after injection and increased in concentration to a maximum 

of 34 #g/ml by 2 weeks post-injection. Although the level of expression remained 

stable through 4 weeks after injection and partial hepatectomy, the circulating serum 

albumin was 1,000 times lower than that of normal mice (Wu et al., 1991). In 

general, a therapeutic effect would require the increase of activity to more than 10% 

of the control and there has been no functional recovery following direct gene 

injection. The efficiency of expression by introducing DNA by direct injection still 
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requires improvement. 

Gene transfer mediated by viral vectors may provide higher target specificity 

and efficiency. Two genera of virus have been modified as vectors for direct gene 

transfer in vivo. Recombinant adenovirus has been developed as a delivery system for 

gene transfer to lung tissue in vivo. The major advantages of using adenovirus as the 

vector are that host cell proliferation is not required for expression of adenoviral 

proteins, and adenoviruses are normally trophic for the respiratory epithelium. Unlike 

other viruses, adenovirus preferentially integrates into one region in chromosome 19, 

thus decreasing the risk of unpredictable insertional mutagenesis (Kotin et al., 1990; 

Samulski et al., 1991). Other advantages of adenoviruses as potential vectors for gene 

therapy are as follows: (i) genetic variation is rare in contrast to all RNA viruses for 

the lack of proof-reading repair enzyme activity with reverse transcriptase (Steinhauer 

and Holland, 1987); (ii) there are no known associations of human malignancies with 

adenoviral infections despite common human infection with adenoviruses; (iii) the 

adenovirus genome can be manipulated to accommodate foreign genes of up to 7.0 to 

7.5 kb in length; and (iv) live adenovirus has been safely used as a human vaccine. 

The major disadvantages are the inclusion of many adenovirus genes in current vectors 

that may stimulate immunity or have other adverse effects, and potential instability of 

gene expression because the vector does not integrate into chromosomal DNA. a1-

Antitrypsin (a1-AT) deficiency and cystic fibrosis are the most common hereditary 

disorders of the lung in human (Crystal, 1992). A replication-deficient adenoviral 

vector containing an adenovirus major late promoter and a recombinant human a1AT 

gene was used to infect epithelial cells of the cotton rat respiratory tract in vitro and 

in vivo. Freshly isolated tracheobronchial epithelial cells infected with recombinant 

virus contained human a1AT mRNA transcripts and synthesized and secreted human 

a1AT. After in vivo intratracheal administration of recombinant adenovirus to these 

rats, human a1AT was synthesized and secreted by lung tissue, and human a1AT was 

detected in the epithelial lining fluid for at least 1 week (Rosenfeld et al., 1991). 

Myoblasts have been used to test the possibility of direct efficient gene expression via 

adenovirus as a vector. A recombinant adenovirus containing 3-galactosidase as a 
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reporter gene under the control of muscle-specific regulatory sequence was able to 

direct expression of the -galactosidase in myotubules derived from rodent myogenic 

cell lines as well as in mouse muscle in vivo up to 75 days after injection (Quantin 

et al., 1992). 

Herpes simplex virus type 1 is a neurotropic virus that establishes latent 

infection in neuronal cells and, therefore, can establish a nonlytic relationship with the 

host cells. A recombinant HSV-1 vector containing human HPRT cDNA under the 

regulatory control of the viral thymidine kinase gene promoter has been demonstrated 

to direct HPRT expression both in neuronal cells (Palella et al., 1988) and in the 

brains of mice infected in vivo with this vector by direct intracranial inoculation 

(Palella et al., 1989). The neuropathogenesis of HSV-1 remained the major 

disadvantage of this gene transfer delivery system, since most of the mice infected 

with either recombinant or wild-type virus died of neuroparalysis. The latency of 

HSV-1 infection was then used to develop as a mild transfection route to avoid the 

cytopathogenesis. No herpes simplex viral proteins are detectable in latently infected 

cells because none of the genes characteristic of the acute infectious cycle are 

expressed during latency. Transcription did occur during latency from one region of 

the viral genome, the latency-associated-transcript sequence. An HSV-1 recombinant 

containing the -glucuronidase gene downstream of the latency-associated-transcript 

sequence of herpes simplex virus type 1 was used to infect MPS VII mice (an animal 

model for human Sly disease in which deficiency of f3-glucuronidase causes the 

lysosomal storage disease). Cells expressing 3-glucuronidase activity were present in 

the trigeminal ganglia and brainstems up to 4 months after infection by corneal 

scarification and adsorption (Wolfe et al., 1992). If this procedure were used on 

patients, recurrence of infection could still occur with the risk of pathogenesis when 

the patients were under stress or immunosuppressed. 

Cell-mediated gene transfer followed by transplantation of modified cells into 

target tissue, can be carried out in many types of vehicle cells. One of the most 

promising types of delivery cells for gene therapy is haematopoietic cells because of 
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well developed procedures for bone marrow transplantation, and the wide distribution 

of haematopoietic cell types implicated in many human diseases. The target for gene 

transfer is the haematopoietic stem cell, or long-term repopulating cell, that is present 

at low frequency in bone marrow and gives rise to all myeloid and lymphoid cells 

over prolonged periods. 

Most gene transfer ex vivo trials in humans rely for gene transduction on 

retroviruses from which all virus genes have been removed or altered so that no viral 

proteins are made in infected cells. Viral replication functions are provided by the use 

of retrovirus 'packaging' cells that produce all of the viral proteins but do not produce 

infectious viruses until the modified retroviral vector is introduced. Introduction of 

the DNA form of a retroviral vector into packaging cells results in production of 

virions that carry vector RNA and can infect target cells, but no further virus spread 

occurs after infection. To distinguish this process from a normal viral infection where 

the virus continues to replicate and spread, the term transduction rather than infection 

is often used. 

The major advantages of retroviral vectors for gene therapy are the high 

efficiency of gene transfer into replicating cells, the precise integration of the 

transferred genes into cellular DNA, and the lack of further spread of the sequences 

after gene transduction. The ability to transfer genes efficiently and stably to target 

cells, especially primary somatic cells, is not shared by other gene transfer techniques 

and is the major attraction of retroviral vectors for use in gene therapy. Major 

disadvantages include the apparent inability of retroviral vectors to infect nondividing 

cells, and an inherent inability to characterise completely the retroviral vector 

preparations used for gene transduction because retroviral vectors cannot be made 

synthetically but must be produced by cultured cells. Unlike proteins or other simple 

compounds, retrovirus vectors are complex mixtures of proteins and nucleic acids and 

cannot be purified to homogeneity after production. This disadvantage means that 

vector-producing cell lines must undergo extensive testing for possible adventitious 

microorganisms, including replication-competent retroviruses. Other contaminants 
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such as cellular RNAs that are packaged into retroviral vectors cannot be removed. 

Some of these RNAs can be reverse transcribed and integrated in cells transduced with 

retroviral vectors, and only experience in animal models and in humans will determine 

their possible effects. 

Two other potential problems with retroviral vectors which warrant discussion, 

are insertional mutagenesis and potential replication competent virus production. 

Problems with insertional mutagenesis, such as activation of cellular oncongenes, are 

shared with any gene transfer technique that results in integration of new sequences 

into the cellular genome. Although there are many examples of retroviral activation 

of cellular oncogenes in mice, these events occur in the context of a spreading 

infection by replication-competent viruses. Whether such events can occur at 

appreciable rates after infection by replication-defective retroviral vectors remains to 

be seen. The potential for production of replication-competent virus during the 

production of retroviral vectors remains a concern, although for practical purposes this 

problem has been solved. In the human trials so far, none of the production batches 

of retroviral vectors and none of the human patients have tested positive for 

replication-competent virus. The potential for replication-competent virus production 

depends on viral sequences both in the retroviral vector and in the packaging cells 

used for vector production. The packaging cells contain all sequences necessary for 

viral protein synthesis and the retroviral vector contains the sequences necessary in cis 

for virus transmission, thus recombination between these sequences has the potential 

to generate replication-competent virus. To prevent this problem it is particularly 

important to avoid homologous overlap between helper virus and viral vector (Miller, 

1992). 

Deficiency of the enzyme adenosine deaminase results in a variant of severe 

combined immunodeficiency, a lethal disorder usually treated by allogenic bone 

marrow transplantation. Retroviral vectors can efficiently transduce the human 

adenosine deaminase gene into established lymphoid cell lines that had been derived 

from patients and into haematopoietic progenitors (Bordignon et al., 1989; Kantoff, 
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1986). Retroviral transduced adenosine deaminase restored human peripheral blood 

lymphocytes which were then injected into BNX immunodeficient mice. Restoration 

of immune function, including expression of human immunoglobulin and antigen-

specific I cells was observed (Ferrari et al., 1991). In skeletal muscle injection of 

myoblasts obtained from normal mice into the muscles of mdx mice was far more 

effective than direct transfection at producing dystrophin-positive muscle fibres, 

injection of 100,000 cells gives up to 30-40 per cent dystrophin-positive fibres, 

spreading over large areas (Partridge et aL, 1989). Myoblast injection also has the 

advantage of providing new sources of cells for formation of new normal muscle 

fibres and repair of dystrophic muscle fibre within muscles where the endogenous 

repair processes are failing (Morgan et aL, 1990; Webster et al., 1986). 

Unfortunately, the myoblast cell line used in these experiments was an immortal 

mouse myoblast line that can form tumours in recipient animals. 

The major difficulty of gene therapy for neurological diseases is obtaining 

enough cells of the appropriate type for gene manipulation. Neural cells cannot be 

isolated from adult animals except by supplementation with growth factors. Reynolds 

and Weiss isolated neurons and astrocytes from the brain striata of 3- to 18-month-old 

mice by inducing cell proliferation following supplementation with epidermal growth 

factor. Only about 1% of enzymatically dissociated brain cells survived and 

underwent cell division (Reynolds and Weiss, 1992). In parallel, neurons and 

astrocytes could be isolated from the brain of adult mice by supplementation with 

basic fibroblast growth factor. The efficiency of isolation still remained very low. 

Fewer than 200 cells survived from 6 X 104  cells placed in culture (Richards et al., 

1992). Because the efficiency of cell isolation is so low, it is impossible to establish 

autologous neuron lineage cells for gene manipulation from human biopsy specimens. 

The best alternative cell to be used in gene transfer for neurological disease in a 

mouse model might be ES cells. Embryonic stem cells are permanent cell lines 

established directly from the inner cell mass of the preimplantation embryo. They 

retain the property of totipotency which implies the capacity to differentiate into all 

tissues of zygotic origin. Martin and Evans (1975) indicated that pluripotent 
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embryonic stem cells can be maintained in an undifferentiated state only by culture 

on feeder layers of growth-arrested embryonic fibroblasts. However, more recent data 

indicate that totipotency and inhibition of differentiation can be maintained in cell 

culture supplemented with either conditioned medium (Smith and Hooper, 1987) or 

leukaemia inhibition factor (Pease and Williams, 1990). Hence, the isolation of ES 

cells from preimplantation embryos can also be completed without the cooperation of 

other cells (Pease et aL, 1990; Nichols et aL, 1990). 

Several years ago it was noted that if ES cells were cultured without LIF they 

would begin to differentiate spontaneously. This differentiation was associated with 

aggregation of the cells and the production of fluid filled cystic structures composed 

of many different cell and tissue types. One of the striking findings was that under 

appropriate conditions the differentiating ES cells would produce structures similar to 

yolk sac blood islands that contained immature erythrocytes, suggesting that this was 

an in vitro system in which one could investigate the earliest stages of haematopoietic 

development (Chen, 1992). There is a method for in vitro differentiation of ES cells 

apart from liquid culture system. When ES cells were cultured in methylcellulose, 

there was a strong transcriptional activation of many haematopoietically relevant genes 

(Snodgrass et aL, 1992). Similarly, when cultured in the presence of 0.3 ,UM retinoic 

acid while attached to plastic surfaces, ES cells differentiate into cells resembling 

fibroblasts which do not express any of the markers characteristic of derivatives of the 

extra-embryonic endoderm. When aggregated and exposed to 0.3 1uM retinoic acid, 

the ES cells differentiate and develop large numbers of neurons and astrocytes in 

addition to relatively small numbers of fibroblast-like cells (Jones-Villenuve et al., 

1983). Embryonic stem cells are truly pluripotent since they participate in the normal 

development of all tissues of an animal if implanted back in a developing blastocyst 

(Martin, 1981; Evans and Kaufman, 1981). The use of ES cells as a gene transfer 

delivery system has been reported. An expression vector with neo selection marker 

and mouse ciliary neurotrophic factor (CNTF) driven by the CMV promoter was 

constructed for neurotrophic factor expression , and electroporated into D3 embryonic 

stem cells. 5 x 107  CNTF-secreting D3 cells were intraperitoneally injected into 
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pmnlpmn mice, which is an animal model for human spinal motor neuron disease, 

resulting in prolonged life time. Behaviour and histological studies also showed the 

progress of the treatment, although intraperitoneal growth of teratoma-like tissue was 

also observed (Sendtner et al., 1992). 	In the present study, intracerebral 

transplantation with 105  HPRT wild-type ES cells into HPRT-deficient mice did 

restore the HPRT activity in the brain effectively. 	It was also found that 

transplantation with a smaller number of ES cells could avoid the risk of 

tumourigenesis. 	ES-derived brain cells, which are easily distinguished from 

endogenous brain cells by HAT selection, were committed to differentiate into the 

neuronal lineage in vivo. This phenomenon was proved by both morphological 

observation and by an immunohistochemical assay. These results suggest that 

pluripotent ES cells can be educated by the environment and undergo appropriate 

differentiation in vivo. 

Correction of defective genes by homologous recombination , which can avoid 

unexpected mutations occurring during the gene transfer procedure, is well established. 

In addition to their differentiation ability both in vitro and in vivo, ES cells could 

serve as vehicle cells for somatic gene therapy by gene targeting. The isolation of 

isogenic ES cells for gene manipulation in human is not yet feasible, although there 

is no difficulty if the mouse is used as a model for gene therapy. Alternatively, 

mouse oocytes can be induced to initiate development in the absence of fertilisation. 

Activation of oocytes results in the production of various classes of parthenogenones; 

either haploid or diploid in genetic constitution. The majority of parthenogenetically-

derived embryos will develop normally through the pre-implantation stages of 

development (Robertson, 1987). If parthenogenetically-derived ES cells could be 

established from human, it would be possible to do gene therapy for neurological 

diseases by the manipulation of autologous ES cells ex vivo and transplanting the 

modified ES cells back to the patient, without danger of tissue rejection. 

9.5 Conclusion 

The major objective of this project was to use HPRT as a model to investigate 
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mechanisms of homologous recombination for gene deletion and to study the 

pathogenesis and therapy of HPRT deficiency. The establishment of a method to 

delete genes by homologous recombination was achieved at both the HPRT and the 

APRT loci. The success of targeting deletion in murine embryonic stem cells at the 

APRT locus should lead to the generation of APRT-deficient mice. Subsequently, the 

APRT-deficient and APRT-HPRT-double deficient mice could be used to confirm the 

hypothesis that the lack of behaviour abnormalities in HPRT-deficient mice might be 

due to their greater dependence on APRT than HPRT. Further studies on the 

regulation of the purine salvage pathway and de novo synthesis could be investigated 

by the provision of APRT-, HPRT-, and double knock-out animal models. 

HPRT-deficient mice in conjunction with 9-ethyladenine treatment provides the 

animal model to study the pathogenesis of Lesch-Nyhan syndrome and to evaluate 

therapeutic strategies, especially for gene therapy. In this study, the failure to restore 

the HPRT activity in the brain of HPRT-deficient mice by direct DNA injection has 

been discussed. Instead, the restoration of HPRT activity in brain has been achieved 

by transplantation with HPRT wild-type embryonic stem cells. It has also been 

proven that the ES cells were educated to differentiate along the neural lineage after 

implantation to the brain. Combined with successful correction by homologous 

recombination in ES cells, a novel strategy for gene therapy is proposed. Furthermore, 

wild-type ES cells transplanted into HPRT-deficient mice provides a novel system to 

investigate tissue development in vitro, by making it possible to isolate ES-derived 

neural cells in vitro by HAT selection of explanted brain tissue. 
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Table 9.3 Comparison of enhancement by positive-negative selection on homologous recombination. 

Gene _b Homology(kb) Distance(kb)c Enhancement Reference 

HPRT neo tk 9.1 7.8(+d) 3125 Mansour et al. 1988 

int-2 neo tk 10 6.8(_e) 1975 Mansour et al. 1988 

mt-i neo tk 13.5 10.3(—), 3.2(—) 10000 Thomas & Capecchi 1990 

int-2 neo tk 10 9.5(—) 1130 Mansour et al. 1990 

c-fyn neo DTA 6.3 5.3(—) 9 Yagi et al. 1990 

DFHR neo tk 4.6 3.5(—) 55-333 Zheng et al. 1990 

IGF-II neo tk 9.7 8.7(+) 13 DeChiara et al. 1990 

GATA-1 neo tk 4.7 1.1(—) 23 Pevny et al. 1991 

Hox 1.3 neo tk 7.4 5.5(+) 13 Jeannotte et al. 1991 
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Table 9.3 Comparison of enhancement by positive-negative selection on homologous recombination (continued). 

Gene + - Homology(kb) Distance(kb) Enhancement Reference 

Hox 1.5 neo tk 11.5 4(—), 7.3(—) Chisaka & Capecchi 1991 

G-protein neo, tk 5 2(—) 2(—) 4 Mortensen et al. 1991 

hyg 3 

CFTR neo tk 7.8 0.7(—),7.1(—) 3-8 Koller et al. 1991 

ig-u neo tk 9 8.4(+) 8 Kitamura et al. 1991 

T-cell receptor neo tk 8.5 6(—), 2.5(—) 2 Mombaerts et al. 1991 

Ren-1D neo tk 5.6 1.3(+) 2.7 Miller et al. 1992 

Hoxl.6 neo tk 11.8 7.4(+), 4(—) Chisaka et al. 1992 

p53 neo tk 3.7 1.5(—) 3 Donehower et al. 1992 

apolipoprotein Al neo tk 9 6(+) 2-4 Williamson et al. 1992b 
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Table 9.3 Comparison of enhancement by positive-negative selection on homologous recombination (continued). 

Gene + - Homology(kb) Distance(kb) Enhancement Reference 

LIF neo tk 5.6 4.8(—) Stewart et aL 1992 

RB neo tk 8 1.4(—), 6.2(+) 17 Lee et al. 1992 

RB neo tk 9.6 1.1(?) 10 Jacks et al. 1992 

RB neo tk 15 12.8(+) 15 Clarke et al. 1992 

glucocerebrosidase neo tk 6.1 3.2(+) 8.5 Tybulewicz et al. 1992 

ERCC-1 neo tk 2.4 1.8(—) 1.5 Selfridge et al. 1992 

HPRT 8.0 0.6(+) 15 

1.3(+) 6.2 

5.0(+) 4.5 

5.0(—) 3.8 
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Table 9.3 Comparison of enhancement by positive-negative selection on homologous recombination (continued). 

Gene 	 + - Homology(kb) Distance(kb) Enhancement 	 Reference 

creatine kinase M 	hyg 	tk 	8.3 	 4.8(+) 	2.4 	 van Deursen et al. 1992 

a 	Positive selection module 

b 	Negative selection module 

c 	Distance between positive and negative selection module 

d 	with end protection by other sequences 

e 	without end protection by other sequences 

206 



Table 9.4 Delivery systems for gene therapy. 

Gene delivery 
	

Advantage/Disadvantage 
	

Reference 

Direct DNA transfer 

DNA injection Simple, low expression 

liposome-DNA Simple, low expression 

glycoprotein 	Simple, low expression 

virus-mediated 	high expression, risk of viral 

toxicity 

Acsadi et al. 1991 

Nabel et al. 1990 

Wu et al. 1991 

Rosenfeld et al. 1992 

Cell-mediated gene 

transfer 

haematopoietic 

myob lasts 

ES cells  

Complex, high expression 

Ferrari et al. 1991 

Yao & Kurachi 1992 
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