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ABSTRACT

A theoretical and experimental study of laminar
fully-developed flow iﬁ a curved tube under the influence
of a sinusoidal pressure gradient is presented. Several
unexpected flow features were found and explanations are
given for these.

The governing equations areilinearised by expansions
in terms of an amplitude parameter G = 2 K’lga3 where a

RV
is the radius of the tube, R the radius of curvature, })
the kinematic viscosity and K and (W are the amplitude
and -frequency of the pressure gradient respectively.
Mumerical solutions are found using the finite Hankel
trensform technique and these are valid for arbitary
values of the frequency parameters= aJw/ V. Closed form
solutions are then found in the limits o — 0 and ok —» &
and agreement with the work of previous studies is found.

A photon-correlation system is described which has
successfully been employed to measure oscillatory air flow
in glass tubes down to 3.6 m.m. in diameter. A sampled
version of the signal from a laser Doppler optical arrance-
ment has been used to construct velocity profiles at
different phase positions in both fully-developed and
developing curved tube flows. Peak Reynolds numbers were
VN 100 and the oL range concerned was U\ 0,5 - 5,

General agreement between theory and experiment is
found to be good and it is shown that the frequency para-

meter has the greatest influence on flow distribution.
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CHAPTERA"1

REVIEY OF PREVICUS RESEALZRCH INTOC OSCILLATCRY AND

CURVED TUBE FLOVS

INTRODUCTICN

This chapter will present a review of the work which
has played a significant role in the understanding of
both oscillatory and curved tube flows. Both theorectical
and experimental work will be discussed in each sub-~
section, leading finally to a survey of work done on
oscillatory flow in curved tubes, the topic of this

study.

1.1 OSCILLATORY FLOW IN A STRAIGHT PIPGZ

Oscillatory flow in a straight pipe is well under-
stood gnd there have been several theoretical and
experimental studies which are in agreement. Sexl (1930)
solved the Navier-Stokes equations for a long straight
pipe with periodic pressure gradient and no radieal flow.
The solutions he obtained explained the "annular effect"
found in the experiments of Richardson and Tyler (1929)
in which‘at certain frequencies higher axial velocity
components were found off the axis of the tube.

The flow is controlled by the frequency parameter
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A = g;f? Womersley (1957), where a is the radius of

T~ . _
the tube, (vis the radial frequency of the applied
preséure gradient, and V is the kinematic viscosity.
For low values of this parameter the flow is quasi-
steady and each profile is Poiseulle in form. As A
increases, the fluid in the centre of the pipe begins
to behave inviscidly lagging behind the applied pressure
gradient, giving rise to complex velocity profiles, (see
Uchida (1956) for details). At values ofd. 7 10, the
fluid can be considered as an inviscid central core with
thin boundary layers along the walls as the oscillation
time of the flow is now much shorter than the time for
vorticity to diffuse from thé wall.

Experimental studies range from the hot wire work
of Richardson and Tyler to more recent studies of Denison
and Stevenson (1970) who used laser anemometry in a
water/glycerine mixture, and obtained good agreement with
theory. Thus oscillatory flow in a straight pipe, which
is one of the flow situatiohs where an exact solution
to the Navier-Stokes equations is found, has been under-

stood for some time,

1.2 STEADY FLOW IN A-CURVED TUBE

From a theoretical standpoint, fully developed
steady flow in a curved tube has been extensively

studied by both analytical and numerical techniques.



The classic work of Dean (1927, 1928) was the first
approach to the problem and although several other
workers using similar methods have studied the problem,
it was not until the work of lMcConalogue and Srivastava
(1968) that any real progress was made analytically.
Recently, Collins and Dennis (1975) solved the Navier-
Stokes equations for this case using a finite-difference
scheme, providing solutions covering a great deal of the
practical range of interest.,

The generally accepted physical explanation of the
events occurring as fluid flows in a curved pipe are as
follows. When a fluid flows in a curved pipe it
experiences a centrifugal force due to the curvature.

A pressure gradient is set up across the pipe to balance
this centrifugal force, the pressure being greatest at
the outside of the curve, lower. at the top and bottom of
the tube and least at the inner side of the curve. This
has the effect of producing a secondary flow in the plane
of the tube at right angles.to the axial flow, which has
the familiar D -~ type formation predicted by Dean. The
secondary flow, acting outwards in the centre of the
tube, modifies the axial velocity such that the higher
velocity components move towards the outside of the curve,

The Navier-Stokes equations for this problem are
véry complex, however Dean showed that by assuming the
curvature of the pipe to be small, then the equations

can be greatly simplified. The centrifugal terms are
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retained in the. approximate eqguations and it is these
approximate equations which are used for many of the
studies of curved tube flow.

Dean then employed a perturbation scheme about

straight pipe flow in terms of K = 2 wg a3 where wo

RV?2

is a typical velocity, a is the radius of the tube, R
the radius of curvature and V) the kinematic viscosity,
and obtained solutions for the secondary flow eguation
and the axial velocity to order K. He continued his
expansioﬁ of the axial velocity equation up to order K5
considering only the terms affecting the volume flow rate,

The main~effect of the secondary flow is to reduce
the volume flow rate compared with a straight pipe with
the same applied pressure gradient. Using this friction :
factor loss comparison, Dean showed that his expansion
was valid for K £ 576. White (1929) showed experi-
mentally that flows of the same Reynolds number but
different K values had friction coefficients which lay on
a single curve. Thus K is a dynamical similarity co-
efficient and the small curvature assumption made by
Dean is justified. .

Dean and Hurst(1959) used a simplified ﬁwo-dimensional
scheme to investigate primarily the axial flow equation.
They made the crude assumption that the main effects of

the secondary flow are concentrated in the centre of the
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tube and in this region it can.be replaced by a uniform
-8tream. This simplifies the axial velocity equation to
a form of Bessel's equation and produced results for the
loss in flow rate which agree with the experiments of White.
McConalogue and Srivastava extended fhe original
work of Dean solving the small curvature equations by
reducing them to ordinery differential equations, using
Fourier enalysis. The range of validity of this work
was for their parameter D £ 605.72 where D = 96
corresponds to the upper limit of Deaﬂs'work. They
found good agreement with earlier experimental work.
The experiments of White indicate that the laminar
flow range of practical interest may be up to Dw5000.
In order to investigate the higher Dean number flows, the
small curvature equations have been treated by numerical
methods Greenspan (1973), Collins and Dennis (1975) and
boundary layer techniques, Barua (1963). The work of
Collins and Dennis is in good agreement with experiment,
with McConalogue and Srivastava and also agrees with the
theory of Barua for values of D 7 2000. Greenspan, on
the other hand, has used a coarse grid in his finite
difference approximation and the'scheme breaks down for
D w5000, Collins and Dennis showed the importance of
using a fine mesh and as a result do not agree with the
results of Greenspan over most of the Dean number range.
The experimental work on fully developed curved
tube flow is mainly that of White (1929) and Adler (1934).

White investigated the friction coefficient for various
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curved pipes coiled in a helix and showed that all co-
efficients lay on a unique curve for varying Dean number.
The coefficients departed from this curve at points where
it was assumed turbulence had set in. This assumption
was later confirmed experimentally by G. I. Taylor
(1929), who injected dye into curved glass tubes and
observed the transition to turbulence.

Adler confirmed the work of White and thus the small
curvature approximation of Dean was shown to be a good
one for, at least, curvatures up to uf\1/15. He also
made detailed axial velocity measurements which were of
very good quality and were made using a pitot tube,

Thus fully developed steady flow has been thoroughly
investigated from both a theéretical and experimental

point of view, although there is room for more experi-~

mental work using modern non-intrusive measuring techniques

such as the laser-Doppler-velocimeter.

1.3 ENTRY FLCwW INTO A CURVED TUBE

The problem of entry flow of a steady, incompressible
viscous fluid into a curved tube has received little
attention, much of it being only in the last eight years.
There appears to be no generally accepted theory as yet,
although some detailed experimental work has been done,

Smith (1976) considered the case of a fully
developed straight pipe flow entering a uniformly curved

section. The conditions imposed on the flow were those
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of large but finite Reynolds number and very small
curvature. The flow was considered as consisting of
two regions in the curved section, a central core and
a. boundary layer region along the walls.

The wall shear maximum was found to occur initially
at the inside of the curve and in fact even upstream of
the bend, the shear distribution was found to be governed
by the downstream conditions. The secondary flow, induced
by centrifugal effects, eventually overtakes the assumed
two region state and streamlines become closed, moving
the peak in the axial-shear to the outside of the curve.
The cross-over is predicted to be 1.51 radii downstream
of the start of the curve and found to be indepehdent
of -Reynolds number. The peak in the axial velocity in
the core,'drifts straight across the bend to the outside
of the curve under the action of the secondary flow and

the fully developed state is finally reached.

Another study of developing flow was méde by Yao
and Berger (1975) who considered the case of a uniform
entry profile. The Reynolds number was again assumed
large so that the boundary layer method of Barua could
be used and his fully developed solution was assumed
as the final state. It was found that the central core
remained uniform until the thickening inner boundary
layer displaced the axial velocity peak towards the out-

side of the curve and the fully developed state reached.
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Perhaps the most important conclusion of the work was
that the entrance length, at least for high Reynolds
numbers, is shorter for a curved pipe than it is.for a
corresponding strailght pipe. The entrance length was
found to be inversely proportional to the square root
of the Dean number. |

Finally Singh (1974) considered the cases of (1)
constant dynamic pressure at the entrance and (II)
uniform entry. However; curvature does not play an
important part in the solution and is only valid for
2.5 tube radii downstream of the start of the bend. The
main conclusions reached are that the shear maximum is
initially towards the inside of the curve, the cross-
over occurring at 1.9 radii for the entry condition (1)
and 0,95 radii for condition (II)

Thus the theoretical work is still in its infancy,
probably the extensions suggested by Smith to his theory
to encompass other profile shapes would be a good method
to adopt.

The experimental work of Agrawal, Talbot and Gong
(1978) provides an extensive coverage of uniform entry
flow into a curved tube. Using laser anemometry they
measured axial and secondary velocities at 7 stations
around two curved tubes of curvature ratios 1/7 and 1/20.

In order to explain their results they considered
the developing flow to consist of an inviscid core

surrounded by a ring-vortex boundary layer. The ring
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vortex, travelling with the axial velocity, moves
different angular distances around the curve in unit
time giving the boundary layer a second component of
vorticity. This has the effect of establishing a
secondary flow which thickens the boundary layer at
the inner wéll and keeps the boundary layer thin st
the outer wallt_

The core is assumed to initially develop towards
its inviscid fully developed state of axial velocity
peak towards the inside of the curve. This, it is
assumed, would require inward secondary motion within
the core. Unfortunately, none of the measurements were
made in this early stage of development, although the
peak in the axial velocity ié found to persist towards
the inside at the first two measuring stations. This
is explaired as the "fully developed" state of the
inviscid core prior to modification by the secbndary
flow.

The secondary flow measurements- indicate progression
towards the fully developed.state with flow inwards around
the boundary and outwards along the plane of the bend.
However, secondary flow reversals are found to occur as
the fully developed state is approached and this is
interpreted as three-dimensional separation at the inside
edge of the curve. Another interesting feature of the
measurements made is the occurrénce of a double peak in
the axial velocity at higher Dean numbers. This was

also observed by Olsen (1971) who made measurements in
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a similar situation using a pulsed hot-wire technique.

Olsen studied both flat and parabolic entrance
profiles at various Dean numbers in tubes of curvature
1/4.66 and 1/16. The results of the flat entrance
profile are in qualitative agreement with Agrawal et al
in that the peak of the axial velocity goes initially
towards the inside of the curve and also the appearance
of the double peaked profile at higher Dean numbers.
Olsen explains the double peaked profile in terms of an
"overshoot" in the secondary flow causing some of the
higher axial velocity at the outside of the curve to be
moved to the inside of the curve. The results of both
investigators would appear to support this, in that the
occurrence of the double peak is accompanied by an
increase in secondary flow.

The flat entry profile is distorted with a peak
towards the inside of the curve even at 0° round the
bend. This influence of the upstream conditions is not
found in the parabolic case and the distortion is
explained as the potential flow limit, However, the
results would appear to indicate that this is a function
of both the curvature and the Dean number and perhaps
finite curvature is not the only cause of this distortion.

The parabolic inlet profile, on the other hand, has
its peak velocity distorted directly towards the outside
of the curve when the secondary flow takes effect. This

is in agreement with the assumption of Smith but more
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detdled measurement would have to be made close to the
wall to verify the predictions about the shear stresses
in the inlet of the bend.

The work of Olsen has been largely ignored by the
later studies discuésed'above, but it contains many
detailed measurements which are of a high quality.
Along with the work of Agrawal et al this‘coﬁld serve
to guide future theoretical studies which ought to
involve the distortion of the central core. There is
also a need for more detailed experimental work to be
done on the establishment of secondary flow which is

not clear as yet.

1.4 FULLY DEVELOPED OSCILLATORY FLOW IN A CURVED TUBE

The first theoretical study of this problem weas
carried out by Lyne (1970), who considered the high
frequency regime. Here, as discussed earlier, the flow
can be.considered as consisting of a central inviscid
core surrounded by a very thin boundary layer. Thus
the techniques of boundary layer th@ory were applied to
the small curvature equations.

Initially, an expansion was used in terms of the
frequency parameter'/? (=—{§} which is small. Solutions
were found to the boundary layer equations up to order/?
and it was found that the secondary flow consisted of a
steady part plus a component oscilléting at twice the

frequency of the applied pressure gradient.
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In order to progress with the equations for the
secondary flow in the central core, a further expansion
had to be used in terms of Ré, , the Reynolds number of
the steady secondary flow. The secondary flow in the
interior was found fé be steady and flowing in the
opposite direction to that for steady flow in a curved
tube. A further limit RS—9c19 was taken and the
secondary flow was foupd to haﬁe the same form as the
small RS case,

The seéondary flow in the boundary layer proceeds
as in the steady flow case from outer wall to inner
around the wall of the tube but now returns along the
edge of the core. A secondary boundary layer is formed
"as in the case of Stuart (1963) and the central core is
dragged round causing flow in the central plane to be in
the opposite sense to that for steady flow.

Lyne carried out a rather crude experiment to verify
his conclusions. This consisted of bending a plastic
pPipe in a circle and oscillating the water contained in
it in a sinusoidal fashion using a piston pump. By
injecting dye into the pipe he could observe that the
steady component of the secondary flow was reversed
when‘/f = 0,05.

As/é9—9¢0the guasi-steady flow region is approached
with the norﬁal outward secondary flow. The cross-over
point between these regimes can be found from the analysis

‘of Lyne to be £~ 0.11 (¢ = 12.86).
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The next analysis of the problem was carried out
by'Zalosh and Nelson (1973) who attempted to cover the
whole frequency range. They linearised the small
curvature equation by expanding in terms of the curva-
ture and thus essentially they were perturbing the
straight pipe solution. The work relied heavily on the
thesis of Zalosh (1970) which contained a major error
in the derivation of the third momentum equation.

The linearised equations are solved using finite
Hankel integral transforms and theré is an error in the
application of this in the first order secondary flow
equation. The effect of this is to give too low a value
to the transition ok value where reverse secondary flow
occurs. A further expansion is used in the quasi-steady
limit which states that the Dean type solution is
obtained for the first order axial velocity perturbation,
but this is incorrect. |

Finally, the boundary layer approach is tried for
the regionot > 10 and this predicts a transition - .ol
value of 10.7 which is greater than the Hankel transform
value but less than that of Lyne. This is to be expected
since the approximation of Lyne is of a higher order.
Thus most of the work of Zalosh and Nelson is incorrect
although the method used is good and in fact will be
used later in this thesis,

The bulk of the theoretical work to date is thus
due to Lyne who considered mainly the secondary flow

field and found the axial flow field to be undisturbed
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by the curvature.

Bertelsen (1975) carried out experimehts on
oscillating oil in a plexi-glass U-tube. He used a
stroboscopic lamp with aluminium dust particles in
the flow to estimate secondary flow parameters. A4ll
experiments were carried out in a tube of curvature
0.1 at R values 0(1) in the frequency parameter range
A = 12 — 31, |

Agreement betwéen the experiments and the theory
of Lyne was found to be good except that a distortion
of the central core was found for« < 21. This took
the form of a thicker boundary layer at the outside of
the curve, which Bertelsen showed was due to the finite
curvature of the tube used in the experiment. He did
this by expanding the>full Navier-Stokes eguations in
terms of the curvature. Using the solution of Lyne he
obtained a solution for the axial velocity up to 6rder(2()
for both the axial and the secondary velocities.

The results obtained for the secondary flow now gave
good agreement with the theory, but the axial velocity
results indicate that the peak in velocity is displaced
 towards the inside of the curve at all phase positions,.
This point is not discussed by Bertelsen but it would
appear to be similar to the findings of the studies on
entrance flow, Bertelsen also observed the transition
from the two vortex to the four vortex system predicted
by Lyne. He found that this occurred in his system at

an alpha value > 12.% giving some confirmation of the
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value obtained by Lyne.

Other experimental work has been carried out by
Munson (1975) who also used a flow visualisation
technique to estimate secondary flow parcmeters over
the alpha range 0.7-®3%2. In these experiments he timed
the motion of a streak of neutrally buoyant dye moving
across fhe plane of the bend under the saction of the
steady secondary flow component. The results indicate
a steady decline in the steady secondary flow as alpha
increases eventually reversing at o = 13.4, which is
in close agreement with the theory of Lyne. TheARs
value is only quoted for one frequency and it is not
clear if the Ré value was kept constant over the full
frequency range. Further, the small alpha case would
seem to indicate that the steady component becomes
constant asel = 0, which is in agreement with the
quasi-steady work of Zalosh. |

A further experiment was pérformed by rfunson (1976)
in which he considered the case of an oscillating torus
with the enclosed fluid initially stationary. Using a
similar technique to previously, he found that the
' secondary flow was reversed at all frequencies of
oscillation. Expanding the small curvature equations
in terms ofc$~2‘he found that this reverse flow was also
predicted from theory. The explanation given of this
phenomenon is that the "centrifugal force gradient of

the primary flow'" is in the opposite sense to that for
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slowly oscillating fluid in a stationary torus.

K more general approach to the problem was
attempted by Smith (1975), who considered the case of
an oscillating pressure gradient superimposed on a mean.
This introduces a third parameter into the small
curvature equations, viz. the steady flow Dean number.
The interplay between the oscillatory part and the
steady part was found to be complicated. In the
oscillatory limit however, agreement was found with
Lyne in the high frequency limit and with Dean in-the
guasi-steady limit.

Thus the study of oscillatory flow in a curved tube
has been restricted to high and low frequency limits from
a theoretical standpoint. The transition pegion between
these two regions is complex, as is the transition
region in straight pipe ﬁlow. Experimentally, there is
a need for a more detailed study of the problem to be

made at all alpha values.
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CHAPTER 2

THEORETICAL STUDY OF OSCILLATORY FLOW IN A CURVED TUBE

INTRODUCTION

This chapter contains solutions to the Navier-
Stokes equations for laminar flow under the influence
of a sinusoidai~pressure gradient in a circular pipe bent
in an arc of a circle of small curvature. The equations
are derived from the corfesponding steady flow eguations
and are found to be controlled by an amplitude pafameter
G, and a frequency parameter o . Initially, a perturf
bation scheme is employed in terms of G and the resulting
linearised equaticns solved,‘using finite Hankel trans-
forms.

However, it is found that as the frequency parameter
c{ increases, the integrals involved in the transformation
process require large amounts of computer time before
convergence can be assured. This is because they involve
the préducts of Kelvin's functions, which become large
as o\ increases, and Bessel functions, and thus the
integrals are highly oscillatory. It will be shown that
the equations used here reduce to the second order equations
of Lyne (1970) asoL—>€ and that in this limit the
boundary layer method is a good approximation at least
for the secondary flow. |

In order to gain a physical insight into the effect

of each term in the expansion, each linearised eguation
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is further expanded in terms of 2 in the limit o > O.
The results of this expansion are given in sections
2.6.- 2.8,

The Hankel transform solution is therefore most
useful in the iﬁtermediate A range between the quasi-
steady and boundary layer regions where viscosity acts
over varying amounts of the tube depending upon the
phase and frequency parameter. This gives rise to
éomplicated velocity profilés which cannot be approxi-

mated in any obvious simple manner.

2.1 THE EQUATIONS OF MOTION

This study will use the full Nevier-Stokes
equations for the flow situation as the starting
point. The system of co-ordinates to be used are
shown in Fig.(2.1.1.)

l A circular pipe of radius a is coiled in a toroid
around an axis 0Z such that a section of the pipe is
specified by an axial plane through the pipe which
makes an angle 0 to the fixed axial plane. The radius
of the circle in which the pipe is coiled is given by R
and this will be used to specify the non-dimensional
radius of curvature (a/R) used later in the analysis.

Any point P within a plane of the pipe will be
specified by the orthogonal co-ordinates (r',ﬁ,d) and
the components of velocity corresponding to these co-

ordinates will be given by U', V', and W' respectively.
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Thus U' will be in the direction CP, V' perpendicular
to U' and in the plane of the cross-section and W'
perpendicular to this plane.

The steady flow case was first studied by Dean
(1928) and it is his approach that will be folléwed'
here. A fully developed oscillatory flow situation
will be assumed to exist in the plane of interest and
thus U', V' and W' will bé assumed independent of d.
Of course P, the pressure along the pipe, will not be
independent of d but a simple form will be assumed for
P later in the analysise.

The unsteady Navier~Stokes equations follow

directly from those of Dean as:-

U, U yw, vy v Wl sing
ot or’ v og ‘r’ R +r' sin @

Y ) V[E L . e
ér'(ﬁ v’ 0¢g R+r' sin ¢

v BV' U )V' + g've W'2 cos @
r’ og or' r' R+r'sin ¢

NE _p_Qz_____) VAN

or! R+r'sing@ or' r'

1 %g) _______________ (2.1.2)
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+ +
ot or' ' 9¢ Rir' sin ¥ R+r' sin ¢

- i 1 Bw'
R+r' sin ¢ sa< \)[K T 'Er

A sin¢¢>+1 i(ﬂ ﬂ'_FW' cos¢¢>_ - - (2.1.3)

BW' UL QW' V' QW' U'W' sin @ V'W' cos & _
r

R+r' sin vt g\ r' oF R+r' sin

For an incompressible fluid In this situation, the

equation of continuity is given by:-

' »
);H.' + g' + U!_sin ¢ + 1 éz'.g. V.-:—.S:.g?_g. =0 - _(2.104)
or! r' -R+r' sin ¢ r' o0 R+r' sin ¢

In order to make some progress with these equations'
the simplifying assumption that the curvature is very
small i.e. (]/R)c ¢ 1 will be made. Whilst greatly
simplifying the equations, the main effects of curva-
ture are retained in termsAsuch as Y'?, although the
effects of finite curvature.may playran important role
as shown by Bertelsen (1975). The following equations

now result :-

QU U dU’ VU vl _ w'é W' sin @ _ (_ )
ot or' r' 2¢ ' R T o \&

- (2.1.5)

|
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1



-2.5-

A, UtV v v, v _ufcosg 2 '_9_(12)
ot or' r' ¥ r' R r'3gle
+\)D (M' A ag'> - - - - (2.1.6)
dr! r' - ' ¢
W, U QN T a&:f'z_z_a_(I:)+ 2%, 1
3t or' r' 3¢ R d6\e 3r'2 r'Jr'
2
1 L
*;.22'3—‘32> - = - = = (2.1.7)
2u! + 2. LA O - - « (2.1.8)
or' r' r' 9@

From equation (2.1.8) the stream function

5( r, @) can be introduced such that:-

vt =1 of :V' 2 L L L (2.1.9)

The pressure terms in equations (2.1.5) and
(2.1.6)_can be eliminated by differentiating (2.1.5)
w.r.t. @, (2.1.6) w.r.t. r' plus multiplication by
-r' and adding the resulting equations. This process
plus substitution for U! and V' using (2.1.9) leads to

the vorticity equation:-

S REF a})vg fe

(r' cOS ¢ aa_z{: - sin g g__;“) = —\)I“' VL" f - _ (2.1.10)
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The third momentum equation becomes:-

PUAN (‘af- a2 )L L1 2 (2) Ly
R

% ' \Jr'og  of or' Y

2
where: - V2 EE + 1 -a— + 1-2 .-3-2
Jet2 T or' 'S 3g

the ordinary Laplacian operator.in polar co-ordinates.
A sinusoidal pressure gradient which has no mean

~part is imposed on the flow such that:-

_B_(P> _Keoswt - = - - (2.1.12)

e \e

22
R
where K is the amplitude of the eapplied pressure
gradient and @ is the angulaf frequency.
Using the following non-dimensionalisation.

rrocedure on the two equations a more convenient

form is obtained.

o
L

r ='£' R \r= u)‘t 3 \_l): ’ W = E,L(_‘?)
Kl

20 2 (y) - gg»_a_-a_q)_a_)vanp

—{)— S =7 \og dr Or ¢
_;gg'?a5 }»_;(r cos @ Jw _sin¢9_W>.-.V4qJ

- = = (2.1.13)
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and equation (2.1.11) becomes:—~

?L_-Z.QBE L W aw _ Y :3_‘*_’): gig cosT+V%% = = (2.1.14)
Y O r\or Jg O¢ or y

This gives rise to two parameters which will be
called the control parameters of the equations. The
first of these is & = a ME%;as defined by Womersley
(1955), which may be interpreted in the following way.
Schlichting (1932) argued that the oscillatory boundary
layer will have thickness of order (\)/UJ)% due to the
diffusion of vorticity with period 2T7/w and thus ot is
the ratio of this to the characteristic length, in this
case the radius of the tube. -

For low frequencies, the flow is thus dominated
by viscous effects while for large frequencies
oscillatory effects become important, leaving viscosity
to act only along the walls of the pipe. Therefore,
there is a low fregquency quasi-steady regime, a high
frequency boundary-layer flow regime and a transition
stage between the two.

The second control parameter is G _ 2 Kz a3

R’V2L02

If the pressure gradient amplitude is re-written as Woto,

©

where wo is the mean velocity along the centre line of
the pipe, then G is seen to reduce to the same expansion
parameter as used by Dean., However, Wo is itself a
function of A for a fixed value of K(but is almost
independent of A in the quasi-steady limit, Thei

relationship becomes more complicated as KAincreases,
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as shown by Uchida,(1956). G may also be written as

22 R_ vhere R, = K°a as defined by Smith (1976)
RVW’
and Lyne (1970). Ry is in fact the Reynold's number

of the steady component of the secondary flow. The

equations are now expanded in terms of & and since the

expansion is valid for allXvalues this implies that

the expansion is only valid for Rg, 0(1). Thus equating

equal powers of G the following approximate equations

result..

The expansions:-

W _ Vi + G, + G2 Wy + - = = -

| 2
Wa qu]+ G W2'* - . e e e -
Give:-
'0423_.!"5_ _(;__2.‘_"%- + 2 ?_2_\’6) =°L2 cos'T - - - (2.
o or r or
“2 3R _gyr 2o M o
R dr
2 2
o TRWy N Wy L3 WM, L L L
8\9 1 T agq aro (2.1.19)

<2 2_672\!)2) ..V4k|/2 ) H()(r cos g dw, _ sin g Jw
o T or og

L Wqcos Bw A/, 3 _ Jw, -Q-)V‘?q),‘
or r\og or or J¢ -

- - = = (2.1.20)

1.17)

18)

)
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The zeroth order equation corresponds to the
straight pipe equation for which there is a well known
exact solution. The other equaticns do'not have a'ciosed
form solution and will be evaluated using the Hankel
integral transform method of Sneddon (1946). Unfor-
tunately, this method presented many practical problems
since it required the numerical evaluation of highly
oscillatory integrals. .

However, at small valﬁes of thelfrequency para-

meter a further expansion in<x~2

on the approximate
equation will be used to obtain closed form solutions
which are valid up to«K n1,0, At values of A > 10
it will be shown that the boundary layer technique of
Lyne is probably:a good method and reasonabl¢ agreement
petween the Hankel transform solutions and those of the
boundary layer method is found. Therefore the Hankel
transform method will be shown to be a most useful
method of dealing with the equations in the transition

region between quasi-steady -and boundary layer type

flows.

2.2 STRAIGHT PIPE SOLUTION

The equation for w_ is given by:-

o

< 2 Bwo _ P 2W‘O . 2 DY, =4°<2 cos T = =-(2.2.1)
0 ? r2 r Oor |
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A solution of this equation is sought of the form:-~

W, (ry ) = Re ( g () ei‘T)

where Re means real part of.

Substitution of this expression into (2.2.1) leads

tos- .
32 = . .2 2
&g (r) 2 dg(x) _ia" (e | _o&” L - _(2.2.2)
dre r dr

This equation has a solution, as given by Uchida

(1956)
3/5

AL 1)

. 3/
Jo (i = K )

gx) = -1 b 129 G _ - - (2.2.3)

with the boundary condition w_ and thus g(r) must remain

o
finite in the centre of the tube and zero at the walls.

The more useful form of the solution can be found
dsing the relationship:-~

5 (1 3/5

o Xx ) =Dber x + i bei x

where ber and bei are Kelvin's functions. Writing the

solution in real part only the following is obtained:-

W, = Bcos'Y + (1-4) sin'T- - - - (2.2.4)
where:=-
B = beict beroLr -~ berotbeiotr
2 2

bei"t + ber o~
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A beioabeiAAr + berbercr

bei2°L + bereok

2.3 FIRST ORDER SECONDARY FLOW EQUATION

From equation (2.1.18)

2 4
ok'a_%.(vzk[}q) -V LV,] = Y gwo cos @ - = = (2.3.1)
r

Using the results of the previous section the R.H.S.

may now be evaluated as:-

R.H.S. = cos Qfg( B cos'T+ (1-4) sin‘r) dB cos'T
' : dr

_da sin~r>3- - - (2.3.2)
dr

where: -~

' ’ '
dB _ <>((beioL ber A r - bers bei r)

dr bei%( + bergoL

t : Al
da '= d(beio&bei < I + ber ber dr)
dr

beigeL + berzoL

This leads to:-

» (1= A) dA‘J cos 2T [('I—A) a8 _ B dAj sin 27’}

- - = - (2.3.3)
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The boundary conditions which must be obeyed by
any solution to (2.3.1) are the usual no-slip conditions

i.e. QHH and Q&H are both zero at the edge of the
or . oF

pipe and also remain finite in the centre.
From equation (2.3.3.) it would seem to be appro-

priate to seek a solution of equation (2.3.1) of the form:-
\Y'l = L-qu (I‘, ¢) + q)/le (PQ ¢) 912\1’\

This can be interpreted as a steady secondary
flow componeht plus a component at twice the frequency
of the applied pressure gradient. This is a well
known phenomenon in other oscillatory flow problems
(see e.g. J. T. Stuart (1963) )

Substitution of this formulation of the secondary

flow into (2.3%3.1) leads to the following equations:-

Vo - {(m) as _ B 923 258 - - (23.4)
. dr dr 2 |
2 ia2V2W12 “V4W12 = {B aB , (1-A) da
dr dr
.1 [3 an _ (1-8) d_B] s ® | . _(2.3.5)
dar dr 2

The only variation with ¢ on-the R.H.S. of these
equations which appears is the factor cos @ and so now

separable solutions are assumed of the form:-

\qu = C° (r) cos @
2
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and: -

\V12 = C, (r) cos &
2

and the following equations for Co (r) and 02 (r) result:-

2 2
a 1 4 1 dA B aB -
S, + - = C, = (1-4) = - 7 = - - (2.3.6)
dr2 r dr r2) ° ar dr
2 i [ g2 ,14a 1 c i 14
2 T T T2 2 (T2t - —
dr dr T dr- .. r dr
2 .
L)%, . B@, -0 T
dr dr dr
- (=A)aB L (2.3.7)
dr X

The new boundary conditions for these equations can

be obtained from the original boundary conditions and

these are:-
Co = ng =0 at r= 1
. dr
and: -

02 =dC, = 0 at r = 1
dr

The form of the L.H.S. of the above equations
would suggest that the Hankel integral transform may be
appropriate to aid a solution. The form of the finite

Hankel transform is given by Sneddon (1946) as:-
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'F({j,) = 1_F(r)J/”({J.r)rd1;~

o
with the inversion formula:-

o |

F (r) = 2Z F(f ) 30(f 1)
/. : 5
Y [J/UI({J)._J

where «+ is the order of the Bessel function and E’j

is the jth eigen. value of the equation:-

Tranter (1951) has shown that the finite Hankel

transform of the Laplacian in polar co-ordinates is

given by:

@ 14 /’2>F_ CF(MI (e D= F (¢ ) §i°
(G228 5)7 - 3702277 o b

and it is readily found that the Hankel transform of

the bi-harmonic operator is:-

a° 19__/»2> F = - .(d2F 1 aF
(=15 % Bl e
e T e -)+gl‘—
2 g JF(fJ>
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Applying the second of these formulas to equation

(2.3.6) and using the relevant boundary conditions gives:-

g‘a’ Eo(fj) =.11-I2+gj§§go'} I, (fa')

- = - = (2.3.8)

whereﬁy
1
I, = (1-4) 44 J4 (g j r) rdr
(o} dr .
and:-
t]
I, = B dB J, (2 3 r) rdr
o dr

The second derivative appearing on the R.H.S.of eq.(2.3.8)
cannot be evaluated directly.since it is not specified
in the ‘boundary conditions. However, it may be
determined using the boundary condition on the first
derivative in the following way:-

From the inversion formula:-

L _
dc, _ 2 Cs (? j) ad, (r§ j) =0atr-=1

dr [Jnr(fa):le o
1

J=
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Therefore:-
o0 -

- 2 Qo(j)j=o

J°(§j)

r="1
=1

Substituting for C, from (2.3.8.) leads to:-

- L '
| - gl g o)
r=1 :

SES D
DI

3=1

= (2'509)

In practice, the summations can only be taken over
a finite number of terms and by using up to 20 terms
in the summation series, convergence was assured for
values of oL in the range'o - 10. (See Appendix B for
details..) The integrals were evaluated using the
" Gaussian quadrature formula of Stroud (1966), as were

all the integrals in this study.

The transformed equation (2.3.7.) is given by:-

. 2,27 2 . 4
R RGN L Tl Y IR KL £ L
- r="1

= 12 + 11 + 1 ( 15 - I4 ) - - - -~ (2.3.10)
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/'
where I3 = g. B dA J1 ( zjr) r dr
° dr

t]
I, = g ( 1-A ) 4B Jq (Z J.r) r dr
(o} dr

Therefore:-

a2c
02 (z ) = TyrIpr i(I- fa i r[q Jo(g,j)

A _,”4§3JE):'

2 . 2 2
-Z’j (23*-rz;j)

If now the R.H.S. is rationalised into its real

and imaginary parts and a form assumed for C2 such that:-

Cop = Cop +1 Cpp

where C2R is the real part and C2I is the imaginary part

of C2 then the following expressions result:-

a%0.p }
Cop {J) -[:(I +12)§ 4 2d.(1 -I,)- { are 1Jo(Zj)

%

fuo

- - — = = = (2.3.12)
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p 2 2 2 d2czn
C21 (%j) =[-Zj (15—14) - 2 (I,|+I2)+20L Zj 5;2
r=1
3 a%¢c
Jo (zj)-éd 5221
—?? ( 4&4 +Z§ )
B - - - - - - (2.3.13)

Again the second derivatives on the R.H.S. of the

equations may be determined in the same way as for Co’

2 2
T
r=1 8,2 + 4ok 352 |
- = = (2.3.14)
and
d2021 - 22 5. 4%
2T 5 95r -5, |/ 5,
= “dr
- - = (2.3.15)
where: -
o
2 2
81 = ( 11 + 12 ){ j + 2ot (I3 - I4 )
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L 2
52 = z.
4<*4 + g
J=1
' P
S5 = 'Z .
4 ot -+Z -
J
J=1
and:- “
L
Sy _Eg (I5-1,) = 2e<® (I,+Ip)
) 4 4
J=1

Thus the stream function Y can be obtained by

combining the solutions of equations (2.3.4) and (2.3.5)

Therefore:-
_ - - " "r‘
%)1 = cos @ [: C,+ Cop cos 2 Cop sin 2 J
2 .

- - - - - - (2.3.16)

where Co’ C2R and C2I are given by their respective

inversion formulae.
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2.4 FIRST ORDER AXIAL VELOCITY PERTURBATION

From equation (2.1.19):-

2 2 '

AL oW 1-V Y1 = 10V _ﬁiﬂo - = = (2.4.1)
DT r 9¢ O

with boundary conditions W,y = O at r =1. The R.H.S.

of this equation is obtained from equations (2.3.16)

and (2.2.4). Thus:-

R.H.S. = - sin ¢ <2Co g_B + Cop 4B | Chg d_A)cos"’r

4 dr dr dr
_( 2C, dA _ Cop dA | Coy 91_3) sinT + (C2R 3B
dr dr dr dr

_Cop g_§_> cos 3T _ (C2R dA | Coy gg)sin 3T
dr dr

- - = = (2.4.2)
Thus a solution of (2.4.1) is suggested of the form:-
w, = Const. x Re.ZLDq(r) el DB(r) eiaw:?sin g

which would imply a perturbation at the applied frequency

plus a third harmonic. This leads to the following

equations:-~
a°D 1 4ap, D 2ip =1|(2c + cC,.) aB
1+____1__1_°L 15 o 2R/ T~
> >

dr r dr T T dr
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- = = = = (2.4.3)
a®>, 1 ap, Dy _ 32 iDy =1 4B  C.. dA
05,1 25 D5, - 3 Cop 4B _ Cpp a4
dr T dr r Tr dr ar
+ 1 [ Copdh Copp dB - — = = (2.4.4)
T dr dr .

Now using Hankel integral transforms in a manner
similar to that described in the previous section
together with the appropriate’ boundary conditions the

equations become:-

D1 (é_j) = - I5 - 1i I6

a. + 1
D, == I,-11
5 (za) 7Z,..8 - = - - (2.4.6)
(Z’j + 3 1)

1
I (zj) - [( 20, + Cop) 4B , COpy y{]J,‘( jo) ar
dr dr

t]
IG(Zj)a go (2C°-C2R>§—A+Celdr J(er) dr
T
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1
I (4 =S [ch B _ Cop 44 |3, (er) ar
o L- ar dr

1
Ig (zj) =S [C2R dd , Cor 4B |94 ({jr) dr

o dr dr

Using a similar technique to6 that used in the
previous sectiéa and writing the transformed solutions

in real and imaginary form then:-

2
D.p (ij) = - Ig95 - IgoL — - = (2.4.7)
b
{3
D (g.)= 1 T o s
a1 5T tst T e - - - (2.4.8)
T % | ~
23
- . 2 2
, . - - - (2.4.9)
3
Dor (g ) = 3® I, -g21
31 Zg = tp~f;-8 4 - = (2.4.10)
” n
+ 9 o4
J

Using the inversion formula:;

L .
D (r) = 2 D (g3) 3y (egy)

[ % L ):]2

3=



2,23

then the functions D1R ’ D1I ’ D3R and DBI may be
computed and thus a solution for w found. Wwhen
this solution is combined with the straight pipe

solution the following form of the axial velocity

results:-~-

w=23BcosT+ (1-4) sinT+ G sin ¢ [:;Dqﬁ cos T
o 4

- Dy sin'T + D3R cos 31— D5I sin BWi]

- = = = (2.4.17)

2.5 SECOND ORDER SECONDARY FLOW EGUATION

The secondary flow results presented so far, do
not take into account the influence of the redistributed
velocity field arising.from the curvature. 1In order to
ihclude this the next higher order perturbation must be
calculated. Thus from eguation (2.1.20)
22D (VPyp) -V, = w, Cx cos 9 2,
T r dr

- sin @ Jw,
og

dw_ 1
o+ - Yy I _ 3wy 3

) + W, cos ]

Vey, - - - (2.5.1)
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The. R.H.S. of this equation may be evaluated using
the results of the preceding sections., However, as can
be seen, the algebra is very long and involved and
therefore only the results will be presented here. The
details of the calculations may be found in Appendix A,

The result is:—

q)21=:sin 2 ¢ [:H?O + Hysp coOS 2Y - Hysy sin 2T
8

+ Hyyp cOS 4°r—-H24I sin 4“{]-» - = (2.5.2)

The functions H20 etc. are obtained in the usual
manner from the appropriate Hankel inversion formulae,
the only difference being thé use of a second order
Hankel transform due to the presence of sin 2 @.

The boundary conditions used are the same as for q)q
since they are homogeneous,

The solution shows that there is a further contri-
bution to the steady component of the secondary flow,
together with a second and now a fourth order harmonic
component. The full solution for secondary flow is

given by:-
V=G cos ¢ [:Co + Cyp c0s 27~ Cyp sin Z‘Tz]
2

2 . RS (e .
+ G sin 2 @ H20 + H22RAcos 2‘1"--»H22I sin 2T
8

+ H24R cos 4T - H24I sin 47i] - = = (2.5.3)
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‘The stream line patterns were created on a Calcomp
graph plotter by generating an array of points over the
tube, using the above equation for Y . A fixed value
for the stream function was then chosén and fitted to
these poiﬁts using linear interpolation along the radii.
The subsequent data points in r and @ were split into
two parts and plotted using a cubic spline interpolation

routine,

SMALL of APPROXIMATION

2.6 STRAIGHT PIPE EQUATION

Using equation (2.2.1) and employing an expansion
scheme in terms of K« 2 since now o is considered

small, the following equations arise for a fourth order

approximation i~
2\1l 2 | w
(<)) %Moo, 2 _3 %00 | _ gosr - - (2.6.1)
dr? r dr ’
. 232 2
(%)%= Y w v ol
R P r dr

(=

| >
2)3|- %1, d Wop g dWen
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2
() -gwog . Dwg} gw05 =0 - - = (2.6.4)
D 2r° r or

The solution of (2.6.1) can be obtained using the
steady solution of Dean (1928) as a guide, only now
including a time-dependency in the form cos ‘T. Thus

the solution is:-
[-} ( 122 )-__]cos"f\ - - = = (2.6.5)

This represents the truly quasi-steady approximation
given by e.g. Schlicting (1955) and shows that for very
small oL the flow distribution is Poiséulle and in phase
with the applied pressure gradient.

Substitution of (2.6.3%) into (2.6.2) gives:-

g2w 3&
01 1 01 ! 4 2 ’ :
+ - = - (1-r°) |sin T - - (2.6.6)

The solution of this eqﬁation is found by the
méthod of undetermined co-efficients using the homogeneous
boundary conditions, w_ ; =O whenr =1 (i =1, 2,.....)
It is gi#en by:-

Woq = 1 ( 3f4r2 + ot ) sin T- - - (2.6.7)
64

This represents the first order effects of inertia

in the equations, and shows that in the central area of

the tube, the flow moves out of phase with the applied

pressure gradient as o& increases.
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Substitution of this solution into (2.6.3) gives:«

V2, 1w, 1 (3-4r° + ©7) | cos T-.(2.6.8)
— = = | —
dr r Jdr | 64

Again using the method of undetermined co-efficients

and the appropriate boundary conditions, the solution is

found.
) 4 6
Wy, = — cosT 19 _3r+1r -1 ~ = —(2.6.9)
64 36 4 4 36

This solution represents a component of velocity
180° out of phase with the applied pressure gradient
which becomes an important term when «< v~ 2,

Finally the solution to (2.6.4) is found using
(2.6.9) and is given by:-

2 4 6 8

wo3 = = gin T 5 _ 19 r + 3. r -1 + =
. 256 148 . 36 16 36 576

- - - - (2.69"0)

(2.6.10) is a component 180° .out of phase with the
inertia component (2.6.7) and again becomes important
when < W 2, |

Thus the full solution for LA is given by:-



Figure (2.6.1) Graph showing breakdown of small ol approximation.
A comparison was made between the velocity along the centre line
given by equation (2.6.11) and the exact solution (2.2.4). The graph

shows the % difference between the two as a function of &,
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_ 4 6 8 { 4o§
Wo= ot "W o+ s W dot W ot wo3 + 0§ oL

+E£§ sin'r[;-éz__* 12»;3 34 +-r6 8
144 36 16_ ;é - ;7g (296.11);

Fig. (2.6.1) shows a graph of the comparison
between the exact straight pipe solution and the approxi-
mate solution given above for various alpha values. It
is seen that the closed form solution given above breaks
down rapidly for alpha 77 1.5 and this will be taken as

the limit of this approximation.

2.7 THE FIRST ORDER SECONDARY FLOW EQUATION

Using egquation (2.3.1) and employing the following

~ expansion scheme:-

4 .6 8, . 10 12
Y1 =L "Wap * ot "Yqq ¥ oLk "Wap +e W;*Og‘* g

- - = = (2.7.7)

an approximate solution is found for the case when alpha

is small.,
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Substitution of (2.6.11) gives for the R.H.S. of
(2¢3.1):~

R.H.S. = cos @ 2- °_<jr (’I-r2) cose\r+£ sin 2-r
8 256

(1Or5-5r5—7r) + <8 [_(’_7_63 r-10r> + 4 r?
' 4096 9 3

+._2:~r7)+cos.2‘1‘(gggr-54r5+16r5

9 : 9 3

- 24 r7) + dﬁosin‘fcos ] (53 r-76 2
9 4096 16 9

+ é_rB-l_tr7+‘£)_'(ﬁ__5_r6+ 1r4-1_:_6_
2 9

72 36 4 4 36

(r®-2r) + (3 r-r’ + EE) (3-tr2+2) +(4-t2°)

{] - - =~ (2.7.2)

Thus the following approximate equations arise:-

5

S
6

~J

Q"‘i
n

VI‘L\*/,IO = co.s g r (1—1‘2) cos® T - - - (2.7.3)
8
-?—(V2\V’IO)'"V4W'\'1=COS¢ (A’IOrB-'?r-BrS)
0T 256. o

sin 2 T - = - =(2.7.4)
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9 (VPyu) -V¥y,, = cos g {( 76r-1007, 4x”, 2+7)
X | 4096 9 . 3 9

+ cos 21"(§2§r—54r3 + 76r
9 3

an o7
! -égli. r ) - - - (20705)

¢ 432r - 809r2

2 ( V2q142) V4W13 = cos ¢
3y o - 256 x 16 x 36

+ 44727 — 10507 + 1977y
2

sin” cos ‘T - = (2.7.6)

The solution of the first order equation can be

found using the steady solution of Dean as a guide.

This leads to:=~

\'Y’IO = { cos @ r ('1-1'2 2 ("’rz/‘*)j C_‘lse._vr - —(2.'%.7)
144, 16

To the first order approximation, the secondary
flow would appear to be of the form of a steady component
plus an oscillatory part of frequency twice that of

the applied pressure gradient., This seems a reasonable
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conclusion from an intuitive point of view since» at very
low alpha values one would expect the secondary flow to
always flow outwards, no matter what axial direction the
main flow is in. Also the magnitude of the secondary
flow would be expected to follow the central velocity
component, and thus remain in phase with the applied
pressure gradient. This .is indeed what is found experi-
mentally and is shown in Fig. (2.7.1), where the
secondary flow was measured in the central region of the
tube.

Substitution of (2.7.7) into (2.7.4) and re-

arranging terms leads to :-

V4LV'M =cos @ sin 2 (81r - 12617 + 591‘5) - (2.7.8)
2304 ‘

The solution of this equation is found as follows.

Initially, a solution is sought of the form:-

4’14 = F(r) cos @ sin 2 ‘T - = = (2.7.9)

This leadis to an equation for F(r) of the form:-

2
_—2+

b ol

Q

(

2 ' ”
-1 VR |1 (8Ir - 12617 +39r)
2304

o
B
e |
R

N

- = = (2.7.10)

The equation is now solved as follows:-
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F (r) = Fy (r) + Fp (r)

where FH(r) is the solution of the corfespondihg homo~
geneous equation and Fp (r), the pérticular solution
found by the method of variable co-efficients.

The solution of the homogeneous equation which

remains finite at the axis is given by:-
Fg(r) = AT+ B - — = = (2.2.1)
and the particular solution is :-

Fp (r) = 54002 - 1401 + 13r2 - - (2.7.12)

32 x 3840 x 24

The constants A and B may be determined by using

the boundary conditions:-

F(r)= &) . 0 at =1
' ar

Thus the total solution is given by:-

F (r) = 299r - 712r> + S4Or2 = 140! + 143p?

24 x 3840 x 32

L e oo o o - (2u79%)
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This component of secondary flow indicates outward
secondary. flow at some phase positions and reversal of
the secondary flow between 90° and 180° in the pressure
cycle, and also between 270° end 360°. However, the
contribution to the secondéry'flow is small and isu20%
of the first approximation. Thus the secondary flow will
be directed outwards at all phase positions when«L w1,
the limit of the first order expansion.

Now using this solution for 4’11 to substitute
into equation (2.7.5), the following equation for‘q/12

is obtained:~

- Va'qjqe = COS ¢é ( 76r - ’10r3 + 4 I‘5+<_? I‘7) 1
9 - 3 9 4096

+ cos 2 (1086r - 2940 3 o4 1385r5
92160 - 4

-150r7)3 e e — = (2.7.98)

-

The equation is solved in the same way as the
previous one, this time looking for a: solution of the

form:-
Yaz = Waog + Yagy c0s 2T

After a considerable amount of algebra, the following

solution results -

q’12 =-[:F1(r) + F2(n) cos 2“5:] cos @ - — = (2.7.15)



where F, (r) = (—1199 r 683 > _ 28 r5+ 2 r7__£2_
4800 120 %6 o4 320
r11 1

4800 4096 x 9

and Fa(r) = (.- 2.192 T, e 127 r3- 5 21 r5+ q 2__r7
128 128 32 128
9 11
- 2%rt Ly x A
128 o4 92160

The effect of the term q112 is thus to produce
inward streaming of both the. steady and the oscillatory
contribution. However, the total secondary flow remains
outwards at all phase positions until L wn 2, which is
beyond the limit of this expansion.

Substitution of (2.&.15) into (2.7.6) and re-

arranging terms leads to :-

V4W45 - [61'1 r - 12432/500 4+ 717 12 - 174p7 +15"/2ri_)

sin 2\rcos ¢ - = = = (2.7.16)
256 x 32 x %6

A solution is found in the same way as previous

equations to be:-

\V15 = Fj (r) sin 2Tcos ¢ - = = (2.7.17)
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where Fy (r) = [-290 13 T + 726 3 17611 2 + 207 7 ©7

50 5 : 30
- 35 47 r9 + 321 r11— 1 rTi]
20 50 7
/]

T 256 x 192 x 36 x 32

This term produces secondary flow which is 180°
out of phase with Y14 and thus acts as a. correction
term as -alpha incréases.

The final approximate solution fbr LV1 is thus

given by :-

Y, = g 0441?0 (r) cosor + oL Op (r) sin o 4 o8
4 4

[TF1 (r) + Fy (r) cos 2T |+ °410F3 (r) éin 2T
+ 0 io(]gg cos ¢ - - - ’('2.7.18)

where F_ (r) = r (1-2%)% (1-r8/4 )
144 x 16

The functions Fo (r), F (), Fq(r), F2 (r) and
F3 (r) are shown in Fig. (2.7.2) and the appropriate
time dependent functions are shown in Fig. (2.7.3).
It shéuld be noted that theée are not plotted to scale

but are given only to indicate the form of the function.
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All these functions except Fy (r) have a peak at
0.4 - 0.45r indicating that this is the region of peak
secondary flow. This is in good agreement with the
Hankel transform solution for alpha values up to 1.5.
The function F2 has a peak nearer to the axis of
the tube énd in fact, it reverses sign near the wall.
This 18 in agreement with the flow pattern obtained at
much higher alpha values where the core secondary flow
is reversed while the boundary layer flow remains
directed in the normal way.
Finally, Fig. (2.7.4) shows a plot of the non-
dimensionalised function q/1 for alpha value 1.5 as
a function of time at position 0.05r, ¢ = 0°. It can
be seen that the secondary flow is directed outwards at
all phase positions and a comparison with the plot of
central axial velocity drawn below it indicates that

the secondary flow is in phase with this.

2.8 AXIAL FLOW PERTURBATION

The first order axial flow equation (2.4.1) can
be solved in the same appfoximate manner as used in the
preceding two sections. Using an expansion scheme ino(_2

the'following equations result:-

v2w10 = __1cosavr F, (r) sin@ - - - (2.8.1)
2
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Dw,}o _ V2w1'l z[;:'é (2-r2) F.o(r) + F (r)] sin ‘T

cose"l‘ sin @ - - - (2.8.2)

V44 ng’l2 = sin ¢‘[cos-‘1‘ ( F,](r) + F2(r) cos 2°T)

d T B 2
+ F(r) (2-r2) sin2-1~ COS ‘T~
16
cos F,(r) (3 -r° 4 r_4 j] (2.8.3)
64 - 2 6
})\412 V2w15 = sin ¢[sin‘rcos.2"r (- 19 . 3 r2
3 T - ' 36 4
4 6
—L Iy B (™
6 72

-~ cos'Tsin 2\ F(r) (r2 -3 -
64 2

K
ol '+
./

— sinT (2%-2) (F,(r) + Fo(x) cos 2°T)
16

- sin‘T cos25/r F5 (r).] - = (2.8.4)

Again using the relevant equations of Dean as a

guide, the solution of (2.8.’!) is:i—
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Y10 sin ¢ ( 19r _ r3+ 3 rs_ EZ + g? cosO
32 x 576 40 4 4 40

- - - - | (2.8.5)

Thus the first-order approximation in the quasi-
steady regime'ﬁndicates that the higher axial velocity
components feature towards the outside of the curve at
all phase positions. This is as one would expect
intuitively since the situation should be realisable
using different steady flow Dean numbers.

This solution is substituted into (2.8.2) and the

following equation results:-,

vgw,l , = (-6871 + 163207 - 132002 + 420r/-45rY)

sin%‘cosgw" sin ¢ - = = (2.8.6)
2949120

A'solution of this equation is sought which is of

the form:-

W4 = F) (r) sin'tT cosa~f sing - - (2.8.7)
The function Em:(r) is found.by the method of un-
determined co-efficients and using the no-slip boundary

condition:-
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and the condition that w11 must remain finite when r=0.

Thus -
F, (). = 1 (20 fr - 854r7+ 68r°- 274r’
2949120
+ 5% r) - grﬂ)r — — - - (2.8.8)

This component will have the effect of reversing
the direction of the shift in peak of the axial velocity
between 90° and 110° and 270%° and 290° in the pressure
cycle. t these times the Wag term is small since it
is multiplied by oosaT and the effect of Waq term can
become appreciable. This acts in the opposite direction
and thus the first order effects of inertia can change
Athe axial velocity distribution from #the quési—steady
position.

' Substitution of (2.8.7) into (2.8.3) leads to the

following equation for Wase

~

V 25 = - sin g] {B,(0) % By(2) - Fp(x) + EC)

2 2 32
(2-r2)3 cos'T - cosat’r£BF4(r) - F(x)
16

(2-x%) + F () (3 _x°+ ?_4)]-~(2.8.9)
o4 2 3
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A solution for W40 is found which has the form:-

Wi = [:Fs(r) cos ‘T + F6(r) cosavi:}sin g -~ —(2.8.10)

where ¢=—

Fo(r) -.-[213..791'.- 459 12 13 4 268 #1125 453 2 47
. 90 42 9

e 33300 - 30 1, 253 13 1

X
12 105 24x32x32x3840

Fe(r) =E— 197,126 v + 3792 ro- 305 g r2+ 136 ‘9-* v’

~ 35% vov 4.82 1= 133 T3] 1
S04 2Ux16x32x3840

The effect of the PP term will be to reverse the
axial velocity shift at phase positions where cosa*ﬁ*
is comparable with cos “T, e.g. 0° in the pressure cycle.
Substitution of (2.8.10) into (2.8.4) and re-—

afranging terms leads to:-

V445 = = sin ¢[€ Fo(r) + (2=12) (F,(x) ~F2<r>3 sin'l
» 16

+ cos® sin T - g Fy(r) (2-r° 2=x7) , Pz (r) + 3Fg(r)
8



Fo(r) :1_2 —é r2+ :_C'_L_t _I_'E ) - F(r) ( _3_ _ T+ i )
256 18 4 6 72 32 2 6

A solution to this equation is found such that:-
Waz = sin ¢ [:F7(r) sin1'+-F8(r) sin'T cos® T (2.8,12)
where -

F,(r) =[é1,6029 r - 56£fr5 £ 54.778 12 — 27.54 1!
0

4 8558 10 — 1.34 r 14 0.126 © 12 —0.0069 ri{]

1
24 x 32 x 32 x 3840

X

Fg(x) =[}-24.876 I + 51.03 17— 41.9% 12+ 19.95 p!

- 4.98 r2+ 0.89 r'1- 0.09 12, 0.006 ri%]

/‘

< ,
8 x 16 x 32 x 3840

The main effgct of Wiz yill thus be to produce a
perturbation on the axial velocity at 90° in the pressure
cycle. Whenotwl there is an axial velocity component at
90° and from the Hankel transform solution it can be seen

that the axial velocity peak is displaced from the centre



Figure (2.8.1) Functions F4(r) —-Fg(r) associated with
small X axial velocity perturbation approximation,
-plotted to show radial dependence.

3.85 x 107 - e

- T~ F, (r)
- -~
,/’ = S 4 .
,/., \\\\ L
7 ~
v ~
’/ \\\
- . . ’ ° S~
. . L — T T T \J T T T T T l
A -
6.32 x 1077 - el
S P ~o
T . : L d \\ . B
- . . " ,/ : . - . \\
. ) : - / .. - \\ F5 (r)
s/ ’ . N i g EAEN
. ,l . . . \\
,/, . \‘\\\..
s .
6 v v ¥ L L L L] 1] L] \‘l
- s " - . B _——
1,05 x 10 I . ’/,,-——— el '
. . // .\\\ . . ,
-7 SN "F6 (r)
P o .
7 // .\\\ ’
~
// \\‘
8 N 4 Y 4 T T T T T T ¢ a)
5.90 x 107" U
. -~ N
g N
’c \\ .
’ . N p .
Vi \\ F? (r)
'l' \\
PR 4\\\
"l x\\‘“‘
T ¥ T v T ¥ T Y T z)
4.50 x' 107 4 . I ~
. ,,/ S~ -
. . : ,I’ . Lt ) \\\ -F8 (r)
4 . ~ .
s \
B 4 SN
I’ \\
7/ N
/s hN
/’ \\
. \\
II \
’ Y
) T T T v T T T T T ]
o -6 - ‘
7.‘23 X "O - P il PN .
" -
- . Cal - " .
. ’,I' \\\ F9 (I‘)
.’ e
I” “\
’ -
’ SO
’I . \\
X4 \\\‘
T T v L Y — r

Non-dimensional radius



Figure (2.8.2) . Time devendent functions associated

with small ol axial flow perturbation.
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Figure (2.8.3%) Normalised velocity time diagrams for

straight pipe flow ‘and first ordex
perturbation due to curvature - — — - - for radial

~ positions 0.1r and 0.9r with OC = 0.99.
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of the tube. Since the term w15 is the first in the
series to indicate this, then oL = 1 will be taken as
the upper limit of this expansion.
The full approximate expansion for W4 is thus given
by:- ‘ .
_ 46 _. : 3 2 Sn T 2
wy =L sin ¢ F9 (r) cos 7y X F4(r) sin T cos“1

+{6Z4(F5(r) cos ‘T + F6(r) cos 37‘)

+oL® (F7(r) sin W‘+<F8(r) sin'f cos® ‘T )

. 030485] C - - - - - (2.8.13)

The functions Fg(r) - Fg(r) are shown in Fig.(2.8.1)
and the time dependent functions are shown in Fig.
(2.8.2). All functions except Foy are similar in shape
having peaks v\ 0.45 - 0.5 r from the axis of the tube.

F7 however, has a peak \\» 0.4 r and has a smaller gradient
than the other functions towards the wall of the tube.
This indicates that the effect of this ineftia defived
component is small towards the wall of the tube.

Eihally, the function Qq is plotted as a function
of time at two radial positions, 0.9 r and 0.4 r, and is
shown in Fig. (2.8.3). Also shown are veloéity—time
diagrams for the corresponding positions in a straight
pipe.

At 0.9 r it can be.seen that the perturbation is

almost in phase with the straight pipe flow and thus



will act in the same direction at nearly all phase
positions. However, at 0.1 r there is a larger phase
lag between the perbturbation and the straight pipe flow,
causing the perturbation to act in the opposite
direction at 105 -110° and 285 - 290o in the pressure
cycle. The term which causes this, is the sin T term
in w,]3 which has little effect near the edge of the
tube. Therefore, it would seem that reversal of the
axial flow perturbation is initiated at the region in
the cycle whefe the flow in thé centre of the tube changes

direction.

LARGE ALPHA APPROXIMATION

2.9 STRAIGHT PIPE EQUATICHN

The theory of oscillatory flow in a straight pipe
in the limit oL—> & is well understood, (Sechlichting,

1955).. The flow can be considered as consisting of two

regions, an inviscid core plus thin boundary layers along

the walls. Re-writing equation (2.2.1) one obtains =

‘éwo 1 ‘72w0 = cos ‘T - - = = (2.9.1)'
G | |

Thus in the central core where viscosity is neglected

the following approximate equation arises:-—
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%o _ cos T - - = = = (2.9.2)
2 '
whence
woo = Sinbr - e = —- (20905)

In the boundary layer where viscosity is important
only the highest order derivative in the Laplacian is

retained. Thus:~

'Qewoq 1 32w01 cos'T = o= =~ (2.9.4)
° T £ 2 P r2

The solution of this equation which satisfies the
no-slip boundary conditions and matches with (2.9.3) is

given by Lyne, (1970) as:-

N
Woq = - expz - <4 (’I-r)j sin g‘r— _;.é__(_’l—r)
G iz

-

- - = (2.9.5)

Thus the full solution for W, is given by:-

-X

w. = sintT - e "'sin (1‘-§¢) - = (2.9.6)



2.10 THE SECONDARY FLOW EQUATION

Using the results of the previous section the R.H.S.

of equation (2.3.1) can be written as:-

R.H.S. = - &« ex\/—2_cos ()(— Ty - e-2"><

B »
+ e'ex V2 cos (27 =2X + /4) —e'X J2

cos (2*-:X+ Tr/ﬂ-_)} - = = (2.10.1)

This indicates that.the secondary flow consists of
a steady part plus an oscillatory part. The unsteady
secondafy flow has frequency twice that of the appiied
pressure gradient and thus this form of solution is
consistent with that found at the lower o{ values,

Thus (2.%.1) can be written as:-

2
(v Wq) s VI‘"q),] -1 e"'X J2 cos (- T/4)
D oL 2 <JZ

- ‘e-2>c';+ e'2b< J2 cos (2%

- 22X+ Ty - e'DC J2 cos(er

-X#T/lt)} - - (2.10.2)
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In the central core where viscous effects are ignored:-

(Vw0

5= - - (2.10.3)

whilst in the boundary layer:-

2T 2.9 ;¢2 9K = X

e-2}(+ e-ZXJ2— cos

ol 1=

(2T = 254 /) - eXJ2

cos (2T =X+ Tu)--(2.10.4)

These two equations are similar to those used by
Lyne in his boundary layer analysis. Therefore using
his solutions as a guide the solution for eguation

(2.10.4) is given by:-

1 g_ £X+ 5 J2 e_2>‘-4e_xcos (X-

Y11= 4 sle 8

T/u) b2 e~ V2 Xcos (27 - I'z_x+ T4y
4J2

_1e"2xcos (2"F—2}{+ T4y - e"}{cos er -
5 . . .

X+-TD%D + ( 9 leﬂo) cos (2%‘+iﬁ74) cos_¢
8 J2

- = = = (2.10.5)
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Equation (2.10.3) along with the matching conditions.
given by Lyne implies that:-

quo;"" J (_I", g ) - = = =~ (2.10.6)

Therefore in the limitol ~— O the flow in the
interior is steady.
Now using equation (2.1.20) the next approximation

to the secondary flow in the interior may be obtained..

=V = (¥ 2 _ 2% 9
AT O0¢ Or or o¢

Viwa - — — = = (2.10.7)
Using the following expansion scheme an approximate

solution to (2,.10.7) is found subject to the boundary

~and matching conditions given by Lyne..

- 1 : 1 Y _ - _
Y10 = Y100 * 7o Y101 +y 102 4 - = (2.10.8)
Thus using the solution of Lyne as a guide:-

Yio = - 5;(1—r2) cos @ - 1_ (r ) (1-r )2cos 2 g
8 *2 z072

- = = (201009)
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This result indicates that in the limit £—= @ then
the secondary flow in the interior region of the pipe is
steady and flows in the opposite direction to that of
the lower case. Clearly there must be a transition
region between the small e{ "positive centrifuging" and
the large o case. The exact «« value at which this occurs
is given by Lyné as 12.8 which has been confirmed experi-
mentally by Bertelsen (1974) and Munson (1975). The
value obtained by the Hankel transform technique is« 2211,
which is to be expected as the expansion scheme used by
Lyne is of a higher order and is a better approximatioq?
The boundary layer method will not be pursued here as
much of this work has already been covered by Lyne and
it is sufficient to see that the results agree in the

limit £ -
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CHAPTERS?3

EXPERIMENTAL SYSTEM

INTRODUCTION

This chapter contains a description of the flow
rig and pump developed for this series of experiments
and also a discussion of the measurement technigque used.
The basic requirement of the pump, was that it should
produce a purely oscillatory flow in the low to moderate
frequency parameter range. The working fluid was chosen
to be air since this would enable very low Re. No. flow
to be achieved without many practical difficulties.

| The flow system consisted of a pipe network and
glass models which ranged in diameter from 3.6 - 6.2 m.m
' and thus this precluded the use of measuring probes
which required to be placed in the flow. Laser-Doppler
anemometry was used to measure the flow velocities since
this is a non-intrusive technique which can have very
good spatial resolution. Since the fluid used was air,
and hence the amount of light scattered small, photon-
correlation was chosen for signal-processing. .

All the experiments were run at a room temperature
of 25°C giving a value for\) s, the kinematic viscosity
of air of 1.55 x 10™° n® sec™'. This value was
calculated using Sutherland's law and the tabulated

values given by Batchelor (1967).



53 M0T1F 3O 3nokex

(LoL*g) sansty

RS

xadeys
asIng

| Z971dTITOMOIOU OF e

UOT309s8 Hutansesy (: , A _ i . ]

HBUTPIDS I0F IDTUT PUR DATM I0H




PLATE |
FLOW INDUCER



-3.2=
3.1 FLOW RIG

The flow rig is shown schematically in Fig. (3.1.1)
and also in Plate (1). The pump which is used to push
the air back and forth through the model in a sinusoidal
manner operates on the scotch-yoke principle and is a
development of the type fifst suggested by Reynolds and
Wyett (1974).

The pistons are rigidly inter-connected with a
steel connecting-rod in the centre of which is a slider
guide. The brass slider plate which moves up and down
in the guide has a ball-race mounted in its centre. A
spigot, mounfed off-set on a rotating brass plate fits
into the ball-race and since the locus of the spigot is
a circle, the pistons move back and forth along the
diameter of this circle, and thus purely sinusoidal
motion is achieved. The novel linkage used in this
particular system has incorporated into it a calibrated
traverse which is used to vary the amount of offset of
the spigot. Therefore the stroke length of the piston
can be varied by a predetermined amount, thus chaﬁging
the flow rate for a fixed frequency.

The rotating brass plate was driven round by a
220 V D.C. electric motor via a bearing mounted shaft
and belt and pulley gearing system. The speed of the
electric motor was varied using an electronic speed

control based on the design of Gant (1967). The circuit
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Figure (%3.1.2) Circuit diagram of motor speed control
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diagram is shown in Fig. (3.1.2) and uses the back
e.m.f. generated in the motor coils in a feed-back
loop to control the supply to the motor. This was a
particularly successful design giving good torque
characteristics at low speeas and a motor speed
accuracy of ~/ 2% over a 17 hour operating period.

By varyigg the speed of the motor, the frequency
of oscillation of the flow was changed. This also has
the effect of changing the peak veldcity and this could
be compensated for by altering the piston displacement
by the required amount. Also the gearing ratio of the
driving mechanism could be altered to give a new range
of parameters. This was a particularly usefui feature
wheﬁ high frequency flows wére required. Finally, the
pistons and cylinders were made in two different matched
peairs, one had an inside diameter of 2 cms. and the other
was 1 cm. This enabled a reasonable stroke length to be
maintained whilst keeping the flow rate down to the
required level in the high frequency flow regime.

The entire pumping syétem was mounted on a heavy
base-board which was rigid enough to prevent flexions
in the various moving parts. The pump provided a
veréatile flow inducer which cou}d operate satisfactorily
in the range 0.35 - 15 Hz with a peak Re. N°. capability
of v 200. Thus flow parameters of physiological interest
could readily be reproduced.

Connection between the model and the pistons was
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made using thick-walled plastic tubing. The length of
the tube was chosen such that fully-developed flow could
be achieved within the model. However, if the tubes were
made too long this leads to undesirable losses. The peak
Re. N°, (based on mean velocity in the centre of the tube)
waswn\ 100 in these studies, and thus entrance lengths
were not a problem., Also, as shown by Gerrard and Hughes
(1971), the entrance length decreases as the frequency
parameter increases., The argument is given that viscosity
acts over smaller portions of the flow at the higher
frequencies and so the entrance length requirement is
lessened.

The seriés of pipes provided a totally enclosed
system which wés advantageous due to the nature of the
measuring technique employed. The laser-Doppler anemometer
depends upon particles ig the flow, scattering light from
a’ measuring volume. placed at known points in the flow,
The signal processing system used in this study does not
require a continuous signal .from the flow, and thus the
amount of scattered light need only be small,

In conventional operating conditions, naturally
occuring particles in an open-circuit flow, scatter
sufficient light for velocity information to be gathered.
The advantage of the closed-circuit system is that small
quantities of pre-selected scatterers may be added to
the flow and retained within the system for considerable
periods of time., Each measurement made, required an

experimental time of W 4 minutes and thus the retention
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of the light scattering or "seeding" particles was an
important feature of the system. The seeds used were
small quantities of cigarette smoke which have a mean
particle size of 0.1 «#m and are thus efficient
scatterers of He - Ne laser light. The seeds are
eventually lost by adhesion to the walls of the tubes,
the deposits acting as a filter for the larger particles.

The flow in the system was continuously oscillating
back and forth, but as information about the flow at a
pre-selected point in the cycle was required, a means of
sampling thé signal ﬁad to be incorporated into the
measuring system. The cycle is assumed to be repeated
exactly, theréfore if a particular phase point is
selected and the information obtained at that point
averaged over many cycles, then effectively "instant-
aneoﬁs"flow information is achieved.

- The sampling system consisted of a disc with a
notch cut into the edge, attached to the drive shaft of
the pump. A bounce-free, Hall-effect microswitch was
tripped using this device and employing the pulse-~
shaping circuit of_Fig.(3.1.5) a pulse of pre-selected
width was used to gate the output of the photo-multiplier.
The sample width was made short enough to avoid averaging
over too large a portion of a cycle, but long enough to
make experimental time practical. A typical sample time
was ~ 0.5° per cycle.

A . hot wire was initially included in the flow systen



~Figure (3.1.4) Velocity time diagram for the'centre'of
the tube whenﬂwﬁ.=.0.8§. Crosses give the experimental

points.and solid curve gives thecretical result derived

using the results of section (2.6).
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to give a visual display of the flow. The hot-wire could
not detect the direction of the flow and gave a very
distorted picture as the flow passed through zero.
However, it was assumed that the peaks in the flow were
'faithfully reproduced and this was used as a check on

the stability of the sampling system and on the frequency
of the flow. -

Before proceeding with the actual experiments, the
flow in the centre of a straight pipe was measured at
various phase points of equal interval to check if the
flow was truly cosinusoidal and also to calibrate the
sampling system. The result is shown in Fig. (3.1.4)
and it is seeﬁ that agreement between experiment and
theory is good. Once a few sample points had been
checked, others were chosen by attaching a protractor to
the sampling mechanism, _Reliable flow information could
then be obtained at pre-determined phase positions.

The flow rig plus measuring optics were mounted on
a vibration isolating table manufactured by Ealing-
Beck. The table was supported by a piston and tube
arrangement which was pressurised using a nitrogen
supply. Therefore, the experiment was isolated from
both unwanted building vibrations-and those caused by
the pump itself. This was mounted on a separate unit,

connection being provided via flexible tubing.



-3,7-
3.2 MODELS

The basic requirements of the models used were
that they had to be of small diameter and have good
optical properties. The small diameter tubes were
necessary to provide realistic physiological flow
parameter simulation in & simple manner. The optical
quality of the models had to be such that there would
be minimum distortion of the laser beams as they
entered the model, and that most of the scattered light
would be transmitted to the photo-multiplier. |

For these reasons glass ﬁodels were chosen and
these were manufactured from precision bore pyrex
tubing. The models were chemically cleaned before each
series of experiments and this kept signal losses down
to a minimum,

The first series of experiments were carried out
using & straight 5 m.m. inside diameter precision bore
perspex tube of length 15 cmé., with the measurements
being'made in the middle of the length of tubing. This
served as a useful starting point for the experiments in._
that well-proven theories exist for such flows and thus
& reliable check with theory could be made.

The initial curved tube experiments were made using
a 5.6 mem. inside diameter tube of non-dimensional"
radius of curvature 1/50; A.270° section of tube was

used in these experiments, the measurements being made
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at position 180° round the curve, Qhere it was assumed
fully-developed conditions had been reached. This
section of tube was made from a distillation rig and
was manufactured by "cold-drawing'" the tube. This
ensured that the cross-section remains circular during
the bending process.

The main set of experimental measurements were
made using a model of curvature 1/7 which was chosen
because of its physiological significance, i.e. its
common occurrence in the lungs, Olsen (1971). The tube
itself was manufactured in U-tube form from a section
of precision bore 1.5 m.m. walled pyrex tube which had
an inside diameter of 6.2 m.m.. The reason for choosing
such a thick-walled tube was that this greatly reduced
the distortion of the tube in the bending process. The
skill of the glass-bloweg was tested in the manufacture
of this model, and after almost forty rejects, a tube
of circular cross-section with distortion ~~1.5% was

produced.

5.3 OPTICAL ARRANGEMENT

The laser-Doppler anemometer ‘used in all the
experiments to be described was operating in the
differential—Doppler.or "fringe" mode. In this con-
figuration a single laser beam is split into two parts

by a prism arrangement and the beams are then caused to
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intersect in the region of interest in the flow by a
lens system. |

Each particle in the flow scatters light as it
passes through the measuring volume and this light is
Doppler shifted in frequency, depending on the velocity
of the particle. Thus if a number of particles pass
through various™ parts of the measuring volume with a
range of velocities, then the resultant averaged Doppler
frequency will be very complex, and retrieval of useful
velocity information will be difficult if.the distri-
bution of velocities is not of a simple form.

However, if any Velocity gradient across the fringe
volume can bewconsidered as linear, then it will be
shown that the averaged Doppler frequency has the same
value as that bf light scattered by a éingle particle
passing through the centre of the volume. Other velocity
distributions have been considered by Kreid (1974) who
showed that a complicated relationship exists even for
relatively simple forms of-velocity gradient. For this
reason it is highly desirable to keep the measuring
volume as small as possible relative to the size of the
tube used. The most obvious method of achieving this,
is to increase the angle between fhe beams since the
length of the measuring volume is proportional to 1/sin9
& where 2 © is the angle between the beams. The simplest
method of forming the volume is by use of a single lens

to both focus the beams and cause them to intersect. vThe
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large angle requirement means that the lens ié necessarily
used non-paraxially and as has been shown by Hanson (1973)
this can lead to additional broadening of the Doppler
signal,

The laser is operating in the TEMOO mode and has a
Gaussian intensity profile. Kogelnik (1965) investigated
the effect of passing such a beam through a system of
lenses and showed that unless. the waist of the Gaussian
beam was in the back-focal plane of the lens, it would
not coincide with the front focal plane. The beam has
the property that at the Gaussian waist, the wavefront
is truly planar and the "fringes" formed at the inter-
section of two such planar beams would be linearly
spaced.

However, in the system used here the beams inter-
sect in the front focal plane of the lens, but the
Gaussian waists are formed slightly in front of this
position. The fringes formed are not uniformly spaced
over the measuring volume which gives rise to a non-
uniform signal. Therefore corrections for this source
of unwanted broadening had to be made in the system used.

The actual system used as shown in Fig. (3.3%.1)
consisted of a 15 mW He-Ne laser, the beam of which is
split using a Precision Devices beam splitter of fixed
separation 2 cms. This is followed by a phase shifting
device which alters the phase of the plane of polarisation
of each beam in a linear manner using the Pockel's effect.

The method of operation is described by Foord et.al.(1974),
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- The effect of the phase shifter is to give the Doppler
beat frequency a bias of a pre-selected amount in a set
direction. The resultant frequency measured gives the
magnitude of the Doppler frequency and also its direction,
depending upon whether it is greater or less than the bias
frequency. This enables the direction of the flow to be
determined which is useful, particularly near tube walls.

In order to increase the beam separation and thus
increase the angle of intersection, lenses L2 and L3
were used in a telescope manner, which increased the
separation to 4.4 cms. The telescope system also had
the effect of increasing the radius of each beam which
although considerably reducing the size of the measuring
volume, also increased the unwanted broadening. The
relatively fat beam is brought sharply to a focus and
thus the distortion of the "fringes" is  increased.

Lens L4 is an aspheric lens of focal length 3.8
cms. (f.No. 0.55) manufactured by the Oriel Corporation,
U.S.A. .and corrected for spherical aberration. This
gave a final beam intersection cycle of 60.14°, Using
the formulae of Kogelnik (1965) in conjunction with the
analysis of Hanson (1973), the focal length and position
of L1 was calculated. The effect'of L1 is to minimise
the amount of interference phase gradient broadening by
adjusting the position of the Gaussian beam waists, such
that they now almost coincide with the front focal plane
of the lens. This also has the effect of increasing the

length of the measuring volume, as the beam diameters are
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decreased after using the telescope system, but sufficient
spatial resolution was maintained. The details of the
calculations are given in Appendix C,

Therefore the final length of the measuring volume
was 0.145 m.m, defined at thelll/e2 points of the intensity
distribution, with 147 "fringes" contained within the
volume. Thus even in the smallest diameter tube averaging
only tskes place over wn 4% of the‘tube diameter. Also
the fringe distortion broadening can be calculated to be

v 0.3% and hence can be considered negligible.

An attempt was made to measure the actual broadening
of the signal due to the above effects and any other
imperfections in the lens system. This was done using
a rotating perspex disc, mounted on a precision optical
traverse, which was moved in steps of 0.01 m.m. through
the measuring volume. Tpezdisc was driven at constant
speed by a synchronous motor and the volume positioned
so as to be as close to the centre of the disc as was
possible, to minimise disc fluctuations. The results are
shown graphically in Fig.(3.3.2) and indicate that there
is a slight distortion towards one side of the volume
but this is so small as can be considered negligible.

Another optical system has been used by Vlachos
and Whitelaw (1974) using a mirror system and separate
lenses for each beam. Using this method they obtained
very small measuring volumes (L 0.08 m.m, defined at

1/e points), and had the advantage of being able to
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control the position of the Gaussian beam waist precisely.
However; their system has the distinct practical dis-
advantage of being very difficult to align. The method
employed here is much simpler in design and can be
aligned relatively easily whilst still giving good
quality signals from small diameter tubes.

The scattered light was focussed by a collecting
lens onto the face of the photo-multiplier tube. This
particular system used the very good telephoto-lens
arrangement designed by Malvern Instruments, which
enabled precise focussing of the measuring volume onto
the pinhole. One of the main problems encountered in
laser-Doppler measurements in round tubes is the amount
of flare generated at glass walls, but using a 200 micron
pinhole tbis problem was minimised. Also, because of
the mode of operation of the photon-correlator, the back-
ground noise became a pedestal level whilst the Doppler
signal was still faithfully recorded.

The receiving‘optics were aléo used to locate the
precise position of the measuring volume. By introdgcing
a relatively large amount of smoke into the tube, the
intersection of the beams was made clearly visible.

Using a travelling microscope at right angles to the
plane of the beams, and also making use of the receiving
optics telescope, it was possible to determine when the

edge of the fringe volume and the inner edge of the glass

tube coincided. Thus by moving the glass tube and keeping
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the optics in a fixed position for the experiments, it
was possible to measure velocity profiles across the
tubes. The position of the measuring point was known
to within 0.01 m.m.

Thus using the systém described above, measurements
were made of velocity profiles in small diameter tubes
on purely oscillatory flow. The fringe volume size was
kept small, therefore the velocity gradient across the
volume could be considered as linear and as shown in
Appendix D, the actual Doppler frequency measured was
equivalent to that generated by a series of particles
passing through the centre of the fringe volume. The
effect of the linear velocity gradient is merely to
broaden the Doppler spectrum about this central value.

Using the result of Appendix D the velocity gradient
was measured from several spectra and compared with the
value expected for perfect Poiseulle profiles. The
vagreement between theory and experiment was found to be
within_ﬂ% which gives further confirmation that the
"fringes" formed within the measuring volume inside the

tube are linearly spaced,

3.4 SIGNAL PROCESSING -

The signal from the photo-multiplier was processed
using the Malvern-Instruments photon-correlator, the

precise details of the principle of operation are
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described in Pike and Cummins (1977). The frequency of
the auto-correlation function gives a direct measure of
the Doppler difference frequency, and thus velocity

information is obtained through the relationship:-

@, =4 T W sin 6/x — = = (B.4.1)

W'=~velocity
G% = 21TfD where fD is the Doppler-difference frequency
P

= wavelength of laser

Each correlation function when fully formed was

sent through a data link to the Departmental P.D.P. 15
computer where it was stored on a magnetic disc. At the
end of each experimental session, batches of correlation
functions were transferred to an IBM 370 computer where
they were analysed using.a Fourier transform program.

‘ A direct cosine Fourier transformation was used to
obtain the spectra of the correlation functions using

the relationship:-

m

() =R()T+2T Zg R (sT) cos (2TTEsT);
~ =1
££31 - - - = - (3.4.2)

where sT is the lag time for channel number s and
m is the total number of correlation lags.

This method is particularly simple to apply and it
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has been found Daudpota (1976), that it leads to accurate
determination of the peak frequency. The variance may
also be accurately determined provided that the correlo-
gram has decayed to effectively a constant level within
the range of channels available, (in this case 48 which
was later extended to 72). The decay rate may be
controlled using the optical phase shifter since this
effectively imposes a variable mean velocity on the flow.
Thus by choosing a suitable shift the variance of the
spectrum can be found and therefore the velocity gradient
may be accurately determined.

The cosine transformation has been used here in
preference‘to~the more usual F.F.T. methods since it
returns the same number of Fourier co-efficients for
data points. The F.F.T. would require extension of the
correlation function to 2n points (where n is an integer)
resulting in n/2 co-efficients. A4lso since the number
of data points involved here is relatively small, the
computing time saved using F.F.T. would be minimal.

The zero lag value is not available on this correlator
and is thus set in the program such that R(o) Z max

‘ R (sT) I. The: precise value chosen is unimportant
since it only introduces a constant pedestal level
into the spectrum. The value used in this study was
R(o) = 1.1 max‘ R (sT) \.

Using this transformation technique together with
a peak detection and polynomial fitting routine, mean

velocities were computed. Velocity profiles were
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obtained and plotted on a Calcomp graph-plotter using

a cubic spline package.

a mean velocity profile

A typical computation time for

of 20 points was V™45 seconds.



CHAPTER 4

PRESENTATION AND DISCUSSION OF RESULTS

INTRODUCTION

This chapter contains a presentation and discussion
of both the theorectical and experimental results obtained
in this study. Comparisons will be made between the two
sets of results and also with the earlier work of other
researchers, in an attempt to find the range of validity
of -this work.

Firstly, results will be presented for fully
developed oscillatory flow in a straight pipe. These
measurements formed the initial stages of the experi-
mental work and served as a useful system calibration
procedure, since well—prdvén theoretical results are
available.

The next section contains the results of the study
of sec&ndary flow in a curvéd pipe. The bulk of this
work was theoretical in form due to the extreme practical
difficulties involved in experimental measurements.
However, two important sets of measurements were made
‘and it is shown that the theoretical results are in
reasonable agreement with these and also with earlier

experimental studies.

The third part contains the results of measurements
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made on developing oscillatory flow in a curved pipe.
These were used to determine when fully develgped
conditions were acﬁieved round the curve., Also, because
of the wide variety of profile shapes available at the
input to the curve at certain alpha values, different
development procedures were observed. Comparison will
be made between. these results, earlier experimental
studies involving steady flows and also some of the very
limited theoretical work available.

Both theoretical and experimental results will be
given in the next section on axial velocity distribution
in fully developed oscillatory flow in a curved pipe.

In the low frequency or quasi-steady flow region, general
agreement is found between the results of this study

and earlier steady flow work. As the frequency parameter
increases, it is found that the flow has some unexpected
features, However, agreément is found between the experi-~
mental and theoretical results.

. F%nally, an explanation is given for the flow patterns
found in oscillatory flow in a cufved tube in the transition
region between the high and low frequency parameter
regimes. Although precise details of the flow field are
complicated it will be shown that.the main features may

be explained in terms of general trends in the flow.
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4,1 STRAIGHT PIPE FLOW

The full solution to the Navier-Stokes equation for
fully-developed oscillatory flow in a long straight pipe
is given in section (2.2) by equation (2.2.4) in the
form of Kelvin's functions. In order to gain further
physical insight into the flow field for various alpha
values, approximate solutions were found in the limits
ot —> 0 and « — © in sections (2.6) and (2.9)
respectively.

The conclusion of (2.6) is that, to a first order
approximation, when o is small, then the flow can be
considered as quasi-steady, i.e. the velocity profile
is Poiseulle at all phase positions of the pressure
cycle and in phase with the applied pressure gradient.
This flow regime is illustrated by the results given in
Fig. (4.1.1) where velocity profiles were measured at
003 300 and 180° in the pressure cycle. The tube diameter
was 5 m.m. and the frequency of oscillation 0.27 Hz,
giving an alpha value of 0.83%. The results are presented
such that the dashed line in the theoretical curve and
the crosses give the experimental points. It is seen
that agreement between theory and "experiment is good.

As oL increases then as can be seen from section
(2.6), the inertia terms become important and the low
ffeéuency approximation rapidly breaks down. The next

set of experimental results, shown in Fig. (4.1.2), were
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taken at an alpha value of 4,36 and therefore require the
full solution for comparison. Now the freqﬁency of
oscillation was 4.88 and the diameter of the tube 6.2 mm.
Comparison between theory and experiment is again found
to be good for the two phase positions shown (O° and 500).

Whereas in thé quasi-steady case viscosity acts
across the full width of the tube, now the time for
vorticity generated at the walls to diffuse across the
tube becomes.comparable with the oscillation time of the
flow. Thus the flow in the centre of the tube acts in |
an inviscid manner and lags.the applied pressure gradient
by w1 90°, 'The remainder of the flow field is affected
by vorticity ﬁo varying degrees, giving rise to the
complicated flow profiles found.

Another way of picturing the development of the
vorticity field throughout a cycle of the pressure gradient
i's that the slower moving fluid along the walls reacts
first to the rapidly changing pressure gradient. The
relatively faster moving fluid in the central region,
which has a larger amount of momentum associated with it,
takes a longer time to react, and thus there is.a phase
lag between the flow at the wall and that in the centre
of the tube. This is illustrated in Fig. (4.1.3) where
velocity profile measurements are shown for phase positions
120° and 150° in the cycle for oL = 4.36. The flow at
the wall is seen to react fo the reverse pressure gradient

before the central region, Again agreement between theory
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and experiment is found to be good.

Finally, the high aipha region is illustrated in
Fig. (4.1.4). This flow regime is outside the capa-
bilities of this experimental system but a few profiles
are presented, derived from the approximate theoretical
solutions of (2.9) to'illustrate the form of the flow
field. The profiles shown are those of 0° - ’150o in the
cycle at an alpha value of 10. Now it can be seen that
the effects of viscosity are confined to thin boundary
layer regions along the walls of the tube. The uniform
central core, which is 90° out of phase with the applied
pressure'gradient, extends over W\ 80% of the tube.

- All of the profiles measured in the straight pipe
and the curved pipe will be related to each other by their
‘phase positions in the pressure gradient. The piston
velocity, which is the mean velocity, lags behind the
pressure gradient fori-(ﬂLnj}”l;m. The exact relationship
'between the piston phase position and the pressure gradient
phase is given in Fig. (4.1ﬂ5) derived from the results of
Uchida.k1956);. Thus ail measurements made may be related
to the pressure gradient cycle and thus to the relevant
theoretical results,

The sets of measurements reported, confirm thaf the
pumping system is providing fully—developed oscillatory
flow in ‘the measuring regions and that the measuring

system is faithfully reproducing the flow field.
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4,2 SECONDARY FLOW IN A CURVED TUBE

A description of the origin of secondary flow in
curved tubes will first be given using a method similar
to that of K;rﬁén (1934). He derived the flow stability
criterion of Lord Rayleigh (1916) for fluid flowing
between rotating cylinders using a centripetal force,
pressure gradient argument. Since the secondary flow
patterns found theoretically and experimentally by
Taylor (1923) for rotating cylinder‘flow are very similar
to those found in curved tube flow, this seems to be a
good starting point to understand the problem.

Consider'the case of a tube of non-dimensional
radiué r bent in the shape of a toroid of radius R.

Fluid of density (_flows around the tube with velocity w,

which is a function of r, under the action of a pressure

gradient - ELB where Qlis the angular coordinate of
20 )

the system. Since fluid elements are moving in circular

paths, a centripetal force of magnitude ng per unit
- R +r

volume is required for steady motion and this is provided

by a pressure gradient ( - 3p ).
dr

Now consider é fluid element of velocity W at
radius R + T4 and suppose the element is displaced to a
radius R + T, which is greater than R + Tge The éngular

momentum of the fluid element will remain constant and
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thus its new velocity will be given by ( R + rq) Wae
(R + r2)

For this element to be in equilibrium at its new radius

it would require a centripetal force 6_( R + rq)2 2.

. . 3

(R+r2)

However, the pressure gradient at radius (R + r2)

provides an inward force of magnitude §w22 where Wo

R+r2

is the velocity at R + Tpe In general this force is not
equal to the centripetal force required for the newly

arrived element.

Therefore if (,wzz e (R + r1)2w12. then the

e - 3
( R+r2) (R + rs )
fluid element will be forced back into its original

position and a stable situation will exist. However if

. 2 _
Q Yo ff(R + r,|)2w,|2 then the fluid element will.
(R +r2) ‘\( R+ 1y ) 5

tend to move further outwards and secondary streaming
directed outwards in the centre of the tube will be
produced.

In the case of a Poisedﬂle type of fiow, one would
expect outward secondary flow. The axiai velocity peak
would thus be moved by this towards the outside of the
curve. The secondary flow returns around the walls of
the tube giving the familiar D-type pattern first found

theoretically by Dean (1928). This type of secondary
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flow will therefore be found in the quasi-steady flow
regime.

In the high frequency flow case the higher velocity
components in the straight tube are positioned off-axis
near the walls of the tube. Applying the same type of
analysis as above, then the flow near the tube walls will
be céntrifugally unstable. Thus one may expect two
counter-rotating vortices in the upper and lower hzlves
of the tube which are confined to the wall regions.,

At the central area of the tube the flow may become
unstable to fluid element translation in the opposite
direction i.e. inward secondary streaming. This can be
considered as similar to the .flow field investigated by
G. I. Taylor where the two cylinders were rotated in
opposite directions. A second vortex was found near the
outer cylinder which rotgted in the opposite sense to
the stronger vortex at the inner cylinder. Thus in high
alpha flow one would expect to find a four vortex system
of secondary flow. The inner vortices will rotate in
opvosite directions to the outer vortices and will be
.weaker than the outer vortices. The effects of viscosity
have been ignored in the above analysis, but as indicated
by Stuart (1963), the main effect -of viscosity is to
stabilise the motion. Thus the transition region between
low and high alpha may not be smooth as viscosity acts

over varying amounts of the tube at different alpha values

in this region.
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Figure (4,2.1) Plot of steady part of secondary flow versus oK for
fixed value of G = 120.. Values are given for the position 0.1 r in

the central plane of the bend.
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From the preceding argument, one wbuld expect the
secondary flow to be directed outwards at all phase
positions in the quasi-steady regime. Thus if the
pressure gradient varies as coskﬁ“ then the secondary
flow wili vary as cosehf and a steady secondary flow
will be produced as well as an oscillatory one. This
has been confirmed experimentally, and the results are
shown in Fig. (2.7.1) for the case when AL = 0.84.

Befbre considering the time dependent part of the
secondary flow further, it is of interest to see how the
steady secondary flow component varies with frequency
parameter for a fixed value of G, the expansion parameter.
This is shown in Fig (4.2.1).and it is clear that the
steady component reaches a peak at« X % before reducing
to zero and reversing atAXR 11. These results may be
compared with the experimental results of Munson (1975)
and Bertelsen (1975). |

The results of Munson are plotted as the non-
dimensionalised secondary flow versus alpha. The non-
dimensionalising parameter -is Rs and thus as & — O
the secondary flow approaches a constant lével. This
would be equivalent to dividing the above results by:# &
and thus the gualitative agreement would be good. The
- secondary flow approaches a constant level aso — O
and approaches 0 as ol increases, changing direction at

A =~15.4.' Munson has already shown that his results

are in agreement with the quasi-steady secondary flow



Figure (4.2.2) Steady component of secondary flow for

various alpha values, with fixed G = 300.

ourT

\y =-o75f~§75
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work of Zalosh and Nelson (1973), which in turn is in
agreement with the results presented here. The cross-
over value found experimentally is higher than the value
predicted here, but it is in agreement with the boundary
layer work of Lyne (1970). This is to be expected as his
approximation is of higher order than the one presented
here in the high frequency limit.

The work of Bertelsen is approximately in agreement
with the previous results, finding the reversal of the
secondary flow to occur between ol = 12.3 and %4,
explaining that the actuzl alpha value where transition
occurred was difficult to observe. This is conceivable
since the secondary flow is very small over this region
making measurements difficult unless Rs is large.
Therefore the results of Munson may be suspect in this
region, although the RS values used are not quoted and .
may have been large.

The steady flow patterns produced for alpha values
2, 4, 6, 8 and 10 are‘éhown in Fig. (4.2.2) for a fixed
value of G, the amplitude parameter. It can be seen that
for «A = 2 and 4 the centres of the vortices are displaced
towards the outside of the bend to produce streamline
patterns similar to those of McConalogue and Srivastava
(ﬂ968). As alpha increases to 6 the centres move towards
thé inside of the bend and remain there until oL = 10.
This thickening of the vortex core on the 4inside of the
curve was found by Bertelsen in his experiment. He found

that whenot <« 20 this phenomenon occurred, and he



Figure (4.2.3) Secondary flow streamlines for the case

A =1, G = 9216,

AlPHA=1

pHASE O°

IN our

l}’ =04-0+0
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explained it in terms of the finite curvature of the tube
used in his experiment. Further, he extended the work of
Lyne by expanding the boundary layer equations in terms
of the curvature and gained reasonable agreement between
theory and experiment. Lyne in fact ignores the effect
of curvature on the axial velocity distribution and this
is probably why the effect does not appear in his results.
From the results presented here, it may be concluded that
the steady vortex core is thicker towards the -inside of
the curve for all curved tubes when & > 6.

Another important feature of these flow patterns is
the development of a stagnation zone in the centre of the
tube. The central inviscid core of the flow grows as
alpha increases and the centrifugal instability is
confined towards the walls of the tube. It would appear
from the results that development of the counter-rotéting
vortex in the centre of the tube occurs over a large oL
range. Therefore it is questionable if the boundary layér
theory and approximations can be applied below the tran-
sition <& value of 12.8 given by Lyne.

The full secondary flow streamlines are shown in
Fig. (4.2.3) for ol = 1 phase position 0° and G = 9216.
The flow pattern is very similar to that produced by .the
Steady flow work of lMcConalogue and Srivastava (1968) for
the same G value. As shown in Appendix E, whefe the range
of validity of this work is discussed, comparison is good

at G = 9216 but falls off as G increases. Other plots



FPigure (4.2.4) Seéondary flow streamline patterns
obtained when J{ = 3 and G = 300 ) )
(a) Phase position 0° Y= 0,07 — 0.09

(v) -fhase position 60° Y = 0.2 — 1.0 . N
(¢c) Phase. position 990 Y= 0.2 = 1.2

(d) Phase position 150° W = 0.04 — 0.24




Figure (4#.,2,5) Secondary flow streamlines for the case
ol = 5, phase positions 0°-150° with G = 300.

'(a) Phase 0° Y = 0.05 — 0.45  (d) Phase 90° Y = 0.1 — 0.6
(b) Phase 30°Y = 0,025-0.225 (e) Phase 120° { = 0.1-0.9
(c) Phase 600 \? = 0005 - 0035 (f) Phase 1500 \i} = 0,14 - 0o&
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obtained at different phase positions indicate similar
shapes as would be expected in the quasi-steady limit.

‘The effect of increasing o« to 3 is now indicated
in the sécondary flow plots shown in Fig. (4.2.4). At
0° phase position, the centre of the vortices are dis-
placed towards the inside of the curve and.there is some
indication of the beginnings of a stagnation region in
the centre of the tube. Later in the cycle at phase
position 60° the centres of the vortices move towards
the outside of the curve and the secondary flow is now
uniform in the centre of the tube, This pattern strongly
resembles those of the quasi-steady patterns found earlier,
Further on in the cycle up to 1500 phase position, the
centre of the vortices remain displaced towards the outside
of the curve with uniform étreamingvin the centre of the
tube. | | |

The result of increasing A further to A = 5 is
shown in Fig. (4.2.5). Now the centre of the vortices
remain .displaced towards the inside of the bend until
phase position 120°. The secondary flow in the centre of
the tube is uniform and small in magnitude at the 500
phase position. The stagnation region expecfed in the
centre of the tube is now indicated at the 60° and 90o
‘phase positions. Further on in the cycle at 120° and 1500
phase positions, the outward streaming becémes uniform in

the centre of the tube with increased strength, compared

with the 30° phase position. Thus this situation is



Figure (4.2.6) Normalised.secondary flow and velocity
plots for the tube centre when < = 4.36. Experimental

secondary flow measurements made at DNo = 42,84,
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Figure (4.2.7) Secondary flow. streamline patterns
obtained when ol = 10 and G = 200 .

" (a) Phase position 120° ¢ = 0.005 - 0.021 .
(b) Phase position 33° Y = 0.005 — 0.035, - 0.0'005
(¢) Phase position 80° Y = 0.01 — 0.04, — 0.005

i

(4) Phase position 0° y

0.01 — 0.08
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similar to the quasi-steady position and the axial flow
distributions will be similar,

An investigation into the nature of the secondary
flow in the central region of the tube in this o range
was attempted with the experimental system. The results
are shown in Fig. (4.2.6) where it can be seen that the
secondary flow appears to remain in phase with the central
axial velocity.

If now the <A value is increased to 10, the patterns
shovn in Fig. (4.2.7) are obtained. The stronger main
vortices are slightly thicker towards the ~inside of the
curve at all phase positions. The stagnation zone in the
centre of the tube is prominent and at a phase position
of 530, twin vortices rotating in the opposite direction
to the main vortices appear. Even at phase position 80°
where the largest inner vortices appear, it is clear that
the¥ only occupy a small area &t the centre of the tube.
Thus the situation portrayed by the boundary layer work
of Lyne (1970) is only reached very gradually as X
increases.

From this theoreticeal study it may therefore be
concluded that the secondary flow is of similar form over
most of the alpha range, until the boundary layer-type
region is reached. There is a very gradual development
of & reverse secondary flow which originates from the
centre of the tube at &L 7 10. The effect of the secondary

flow on the axial velocity distribution will depend on
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the phase relationship between the two, and this gives
rise to a displacement of the vortices towards the
inside of the curve for longer periods of the cycle

as alpha increases.

While the interpretation of the appearance of
secondary flow in terms of centrifugal instability is
attractive from some points of view, as described above,
it also has certain limitations which need to be recog-
nized, Firstly; if the Rayleigh criterion is pushed to
its logical conclusion, the secondary flow should be
concéntrated in the region of the cross-section where
the circulation associated with the basic axial flow

" decreases outwards, i.e. in the half of the éroSs-section
towards the outside of the bend; in fact, the secandary
'flqw is distributed fairly evenly over the whole cross-
secfién. Secondly, in the prototype Taylor instability
problem (flow between rotating cylinders), the flow is
unstable only when the circulation decreases outwards
and the Taylor number exceeds & critical number T of
order 1700. In the flows considered in this thesis, the
Taylor number is invariably less than this critical
value; and the secondary flow may then be better r;garded
as a flow dri;en by Reynolds stresses associated with

the fluctuating axial velocity, rather than as a mani-

festation of instability as normally understood.
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4.3 EXPERIMENTAL INVESTIGATION OF DEVELOPING OSCILLATORY

FLOW IN A CURVED PIPE

The series of measurements presented heré are of
velocity profiles measured in the plane of the bend of
the U-~tube of curvature 1/7th, described in the experi-
mental section.,” Profiles wére measured at various
angular distances around the curve to determine-when
fully-developed conditions had been reached. Velocity
profiles measured in the straight sections of the U-tube
indicated that fully-developed conditions applied there
and some of these results are shown in section (4.1).

The fullf—developed state will be defined here as
the case when two successive profiles are of similar _
shape and the areas under the profiles are within uvn3%
of one another i.e. within the experimental error. Also,
where possible, comparison will be given between the
theoretically predicted fully-developed state and the one
measured in the experiment. -

The first set of profiles, Fig. (4.3.1) show the
case when 4 = 1, phase position 0° corresponding to a
Dean number = 14,63 where DNo = Ré \[%—; Re is the
Reynolds number defined as ﬁg , where w is the mean
velocity along the centre lige of the pipe, d = 2a is
the diameter of the tube, V is the kinematic viscosity
and R is the radius of curvature of the bend. The

dashed curve is a cubic spline drawn through the experi-



Figure (4.3.1) Velocity profiles showing flow development
in the quasi—steady,regipﬁ. Peak DNo = 14,63, L = 1,0,

a/R = 1/7¢° X =~ = —~ - -x profiles measured at stations'300-18c

fully—developed profiles predicted using the result
of section (2.8). ' '
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Figure (4.3.2) Series of velocity profiles measured at
the 0° phase position with ol = 0.99, Profiles measured

at 0° - 90° station ‘show flow development with DNo =
230790' . ' - : o
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Figure (4.3.%) Series of velocity profiles measured at
the 0° phase position with o = 0,99, Profiles measured
at 0° - 900 station show flow development, and comparisor
“with 120° profile shows fully-developed state reached at

90° .ﬁ}th DNo = 64{?.
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mental crosses and the solid line is the theoretical
curve obtained, ﬁsing the steady flow equations of Dean.
Comparison between theory and experiment is seen to be
good at 60° and 90° round the curve.

Other important features of the flow are that at
120° and 1500 there is apparently the development of a
flow reversal at the outer wall., This is probably
because of the Very tightly curved tube used. Lastly
the profilé measured at 180° indicates‘that the flow is
more symmetric, indicating upstream influence., This is
difficﬁlt to explain since the entrance profile does not
exhibit any upstream.influence of the curvature.

The next set of profiles shown in Fig. (4.3.2) were
agaiﬁ measured in the quasi-steady regime, in thisAcase
with a higher DNo = 23.79. Now there is little change
between the profile measured at 60° and 90° and the
'development of a flow reversal at the wall is clearly
observable. The effect of further increasing DNo to
64,2 is shown in the series of profiles displayed in Fig.
(4.%.3). These exhibit the main features previously
found wifh a flow reversal indicated at 60° round the
curve, No measurement was possible at the outer wall at
900 position due to the very high velocity gradient, and
thus it is not known if a flow reversal occurs here.
Comparison is drawn in the last result between the profile
measured at 90° and one measured further round the tube.

Agreement is seen to be good and thus fully-developed
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conditions have been achieved at o 90°.

It is interesting to compare the above measurements
with the results of Olsen (1971). The developing flow
for his steady flow experiment with a parabolic input
profile and DNo = 75 is very similar to that found here

for D o = 64,2, The peak in the axial velocity profile

N
moves immediately to the outside of the bend after the
start of the curve, and fully-developed conditions are
reached wn 5550. Also a more pronounced peak is found

at 60°‘which may be due to the maximum of the secondary
flow occurring here, as explained by Olsen.

The lower DNo results of Olsen appear to have
suffered from some practical experimental problems since
the profiles exhibit some odd characteristics. It is in
this very low flow rate region that probe interference
may become important and thus non-intrusive laser ane-
mometry will give more reliable results and better spatial
resolution than the hot-wires used by Olsen.

The  main features of the.flow development for a
parabolic input profile are that the higher axial velocity
components are directed immediately towards the outside
of the curve, for low DNo flows fully-developed conditions
are reached by u\90° round the'curve, and flow reversals
~develop at the outside of the curve when the velocity
gradient there becomes large.

The next set of measurements presented are those

o
measured at 0%, 10°, 20°, 20°, 60° and 90° angular



Figurg (4.3.4) Velocity .profiles measured at
the O phasec position and at radial positions

0°-90° round the curve,to show flow development
when ol = 4,36, ' :
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Figure (4.3.5) Velocity profiles measured at
the 30 phase position and at radial p051t10ns
0°-90° round the curve, to show flow.development
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Figure (4.3%.6
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Figure (!
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. ase position and at |
0°-90° round - nd at radial
und posit
o d the curve, to show fl nons
when A = 4,36, ow development

.
e
'4"' \\
I“ - ‘\
‘o' \
P4 \ -
P )
. .
x A}
. " ‘ )
’ ‘o ¥
K 5
. 90 \
l' ‘
[ ! :
’ ]
’ \
’ ‘\
. - \\
-~
," - ~~‘< \\
, ~ L
»” .
- F - I" %
’ [}
t' ‘\
e - “
’ (o]
, \
J 60 v
¥ . \ .
’ ‘\
- " X
’ . * Y
K [y
K . Y .
R \
PR Sl Y \\
- '-’ S .
s T
"' ~
s K
Py ) K ’ .
A Y -
’I Y
’ o K
K 30 N\
¢ . Y
’ %\
[}
; X
' Y
, \
7 [y
. .
S .
(N
- - 2
. - -
e Tea -
rd
'd -
X S
» . x
’ -
, .-
/. 0o R
X - 20 ‘\
’
’ \
/ \
’ . s
4 k
/ \
- ’ \
. 3
- . . ]
I}
PP e ok P °
’J“ 'l~~‘
. ’ S
e S~
P N
, BN
S, : “\
’ 0 : . )
A 10 . .
< A : o L \\ :
. ’I . - ‘\
l' N
] - v
1 '
R . \
,{"'.‘---""""-ﬂ- }
-
VEL.SCALE . Sx
) [N
/ ~
(CM/SEC) y . ‘,
I -
. Y
. F ) A
) : (o] -
' 0 .
] )
'
’ .
I' \
[ ‘\
N \
g )
o e \
+ 4 frmeeemfm et . . \\ r
M + -
LsiNg



55

+ VEL SCALE
" (cm/sEec)

Fipgure (4.%.8) Velocity profiles measured av

the 120° phase position and at radial positions

0°-90° round the curve, to show flow developm
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Fig 2
thge;g:f 54,5.9) Velocity profiles measured a't;
oo 9050 phase position and at radial positio

~ round the curve, to s . -
When e » to fhow flow development
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position round the curve at phase positions O°, 300,

600, 900, 120° and 1500 in the pressure cycle when

oo = 4.36. These are shown in Figs (4.3.4 - 4.3.9).
Also shown in Fig. (4.%10) is a series of profiles
measured at 10° and 40° phase positions and up to 180°
around the curve. Thé pfofiles measured at the Ooangular
position for various phase positions have been used to
construct Fig. (4.3.11).

Starting with the series of results shown in Fig,.
(4,3.1M) it is seén that as the amount of vorticity in
the central area of the pipe diminishes so the upstream
effect of curvature at the first measuring station
increases. This is in agreement with the steady flow
measurements of Olsen, and Agrawal, Talbot and Gong (1978)
where a vorticity free flat entrance profile produced the
same effect., )

The development of this tyﬁe of profile for steady
flow appears to proceed as fbllows. Initially the core
of the flow goes towards the inviscid limit of higher
axial velocity towards the inside of the curve. The flow
is later modified by the secondary flow generated in the
wall regions until a fully-developed profile as in the
quasi-steady flow is reached. Although many workers
have commented on the upstream influence effecf there
does not seem to be a simple explanation for it.

If now the development of the flow round the curve
at the 90° phase position is considered, then effects

similar to those described for steady flow are observed.
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The axial velocity distribution is initially distorted
towards the inside of the curve and the effects of
secondary flow are not seen until wn 60° around the bend.
At the 90° measuring station the flow profile has a
similar shape to that found for steady flow with the

same D It is possible that this is not exactly

No*
fully-developed flow but as the DNo is only w»n 39 it

is not expected to be very different from the fully- .
developed state.

The dévelopment at the 0° and 10° phase positions
is now considered. It is clear that there is very little
change in the profile shape around the curve except for
the developmeﬁt of reverse flow towards the outside of
the curve at the 0° phase position. Thus secondary flow '
effects are not appreciable and the higher velocity
components remein at the_inside of the curve. The 500
ahd 40° phase positions indicate the same development
series aé:the previous two, although a very high velocity
gradient is. now found at'the outside of the-curve at the
first two measuring stations of the 500 position.

The first effects of secondary flow are observable
at the 60° phase position, where the peak in the profile
is initially displaced towards the inside of the curve
and is moved to a central position at 60° round the
curve. As in the earlier phase position in the cycle,

a higher velocity gradient is found towards the outside

of the curve at the first flow measuring stations.
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At 120° and 150°'phase positions, the inlet flow is
almost symmetric and viscosity acts over the full width
of the tube. The flow development is very similar to -
that in the quasi-steady regime, the secondary flow taking
effect at v\ 20° round the curve in the case of the 120°
profile, and w10°for the 150o one, The required length
for these profiles to reach their final state is greater
than that for the 0° - 40° phase position profiles and
thus the conclusion may be drawn that the emntrance length
is not a function of DNo only but also of the amount of
vorticity in the flow.

Another interesting feature of the ’150o profile is
the development of a flow reversal at the inner wall of
the curve. This appears to be in anticipation of the
change in sign of the pressure gradient at 180°. Thus
a cycle starting from this phase position may be thought
of as the slower moving fluid at the inside of the curve
reacting first to the changing pressure gradient. The
secondary flow, which gains.in strength as the central
flow develops, modifies the axial velocity distribution
such that the peak is displaced towards the outside of
the curve and so the cycle repeats.

The main conclusions which may be drawn from the
results obtained, are that the general agreement between
these sets of results and previous steady flow measure-
ments is good. For a profile where the vorticity is

confined to regions near the wall, the secondary flow
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has little effect up until 30° - 60° round the curve and
has no effect when the central axial flow is small,

The development process takes lonéer for flows where
vvisc@sity acts over the full width of the tube at the
inlet region. This is in agreement with the steady flow
results of Olsen, Gerrard and Hughes (1979) came to the
same conclusion for the inlet length of oscillatory flow
in a straight pipe. They explained their fiﬁdings by
saying that since viscosity acted over a smallier portion .
of the tube as L increased, therefore the time for it
to act would diminish. The effect here will be compli-
cated by the secondary flow which carries vorticity over
the tube, '

Comparison with the existing theories can only be
made in general terms since there have only been a few
steady flow studies of very limited form. Some comparison
has been tried by Agrawal, Talbot and Gong (1978) with
the theoretical work of Yao and Berger (1975), and is
found to be reasonable for large DNo' For a flat entrance
profile the peak in the axial velocity is found initially
towards the inside of the curve and has the normal velocity
distribution in the fully-developed state. This is in
general agreement with what is found at the 90° phase
position in this study.

From the theoretical work of Smith (1976), one would

expect the shear maximum to occur initially at the inside

of the curve, regardless of the shape of the profile.
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This general conclusion of the somewhat limited theory is
not borne cut by the experimental results, and in fact it
can be seen that the shear maximum appears to occur at
the outside of the curve almost immediately at many of
the phase positions.

Finally, it is clear that essentially fully-
developed conditions are reached by 90o round the curve
with the possible exception of the peak flow in the cycle.
However, the DNo is w» 39 and comparison with the results
of Olsen for a similar input profile and DNo = 45,
indicates that fully-developed conditions are not very
different from those found here. Thus although exact
fully-developéd conditions may take a very long time to
prevail, the main features of this state will be present
at 90° round the curve, which is the main measuring
station for the remainde? of the work presented in this

thesis.
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4,4 FULLY-DEVELOPED OSCILLATORY FLOW IN A CURVED PIPE

Theoretical and experimental results for fully-
developed oscillatory flow in a curved pipe are presented
in this section. The theoretical results were found
using the results of Chapter 2 and the experimental
results presented for both 4/50th and q/?th curvature
pipes. The profiles were mainly measured in the plane
- 0f the bend at 900 round the 1/7th curve and 180° round
the q/50th curve, where it was assumed that essentially
fully-developed conditions occurred.

The first set of results shown in Fig. (4.4.1) are
four velocity~contour msaps, each constructed from 6
velocity profiles measured at 500 iﬁtervals circum-
ferentially round the tube at the fully-developed stations.
The first two maps were gonstructed from measurements
taken at the same peak Dy (6.57) but at phase positions
0° and 600 in the cycle at an alpha value of 0.54 in the
tube of curvature q/50th.

At this small alpha value, the flow may be considered
quasi-steady aﬁd es can be seen from the contour map, at
600 the flow is disturbed minimally by the curvature and
is Poisedﬁle in form. At the maximum of the cycle, the
effect of curvature is noticable, in that the peak of
the profile is displaced towards the outside of the
curve and a flattening occurs at the inner side of the

- 0.9 and 0.8 contour lines.



Figure (4.4.1) Velocity contour maps measured in the quasi-
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Figure (4.4.2) Fully-developed velocity profiles measured in
tube at phase positions 12° ~ 162° ana oL = 0,99,
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The quasi-steady analysis described in section (2.6)
should be valid in this region, and thus the perturbation
will be of the form 0033%‘. Thus the very noticable
difference between the two phase positions illustrated,
nay be attributable to this time dependency of the pertur-
bation. The measurements for the third contour'map were
made at the phase position 180° in the cycle. The map
is found to be very similar in form to that measured at
the 0° position, indicating that the flow pattern is
repeatable.,

The effect of an increase in the peak D to 7.66

No
is seen in the last contour map where now the 0.9 and

0.8 contour}lines have become more concave at the inner
wall and flattened towards the outer wall. The work of
Dean and McConalogue and Srivastava ought to give very

good agreement at these low D However, although the

Nos.
general agreement is good, in that the peak displacement
agrees, the detail of contour flattening does not appear
in McConalogue's results until DNo = 190, an order of
magnitude greater than the results presented here.
Another example of the flow structure in the quasi-
stéady region is shown in Fig. (4.4.2) where a series of
profiles is presented for ol = 0.99 at phase positions
12° to 162° measured at 30° intervals. It is seen that
the axial velocity peak is directed outwards at most
phase positions, but at 720 to 1320 the profile is almost

symmetric, indicating small effects of curvature. These

effects can be explained by examining the straight pipe



Figure (4.4.3) Normalised velocity time diagrams for
and first order pertur-

straight pipe flow
bation due to curvature - - - - - for radial positions

0.1r and 0.9r with ol = 0.99. :
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Figure (4.4.,5) Fully-developed velocity profiles
'measured in 1/7th curved tube at phase positions
30° and 330° with & = 2 and D o = e
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Pigure (4.,4.6) Normalised -velocity time diagrams for
and first order pertur-

straight pipe flow

bation due to curvature - -~ - - - for radial positio:
"0O¢1r and 0,9r with AL = 2, '

. VEL.
. norm,
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axial velocities and perturbations for the two radial
positions 0.1 r and 0.9 r, plotted as functions of time.
These are shown in Fig. (4.4.3),

5

The influence of the cos” Y term is still strong at
A = 0.99 and thus the perturbation has only a small
effect between 70° and 140° and 250° and 320° in the
pressure cycle.. The pefturbation at both radial positions
remains in phase with the applied pressure gradient and
thus the peak of the velocity distribution is displaced
outwards at all phase positions.

A comparison is given for the quasi-steady region
between theory and experiment, and this is shown.in Pig..
(4.4.4)., The experimental measurement was made at O°
phase position, A = 0.99 and Dyo = 12'in the 1/SOth
curved tube, and the theoretical result obtained using
the Hankel transform solution. Since there is.only a
small departure from the.Poiseddle distribution,
comparison is found to be good.

‘Now the case is considered when o is doubled to «
= 2. The profiles shown in Fig. (4.4.5) were measured
in the 1/’7th curved tﬁbe at peak DNo = 24 at phase positibns
BQO and 3500, The main observable effect is that the
higher velocity component is found towérds thé inside of
the. curve at phase positions 5300. The perturbations
and axial velocities for the two radial positions are
shown in Fig. (4.4.6).

3

The cos” term is still an important term in the



Figure (4.,4,7) Comparison between theory and experiment
for axial velocity flow profiles measured in the plane

of the bend with <= 2,56,Péz2k D=9.53, a/R = 1/50 and
phase positions 60° - 180°. NQ, ‘ .
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perturbafion and between phase positionsBOOo - 3500 it
is seen to be small and acting in the opposite direction
to the straight pipe flow. This small reverse effect
may be accentuated by the strong curvature in the experi-
ment, giving the large effects shown.

The perturbation at position 0.9 r is seen to have
a greater phase lag between it and the straiéht pipe
velocity componenﬁ, than the corresponding quantities in
. the centre of the tube. The pertﬁrbations remain in
phase with‘each other while a phase difference develops
across the straight pipe flow. This would mean that as
the main fldw changes direction the perturbation will
initially havé the effect of ‘increasing the velocity at
the inside of the curve. This is bécause the flow near
this wall is perturbed in -the opposite sense to that in
'the central region,.

The effect of a further increaée in o is shown in
Fig. (4.4.7) where the comparison is given between
experimental measurements and theory for the case o« =
2.56. The experiméntal measurements were made in the
tube of curvature 1/50 and the peak DN0 = 9,53, Therefore
the experiments are just(ouside the expected limits of
the theory, but as can be seen, the agreement is found
to bé good. |

-.The results show that between 60° and 1200, the

higher axial velocity components appéar towards the outside

of the curve, whereas at 150° and 180°, the opposite is
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Figure (4.4.8) Normalised velocity time , diagrams for
straight pipe flow ——————— and first order perturbation

due to curvature - - - - -~ for.radial positions O.1r
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the case. Examination of the perturbations and straight
pipe axial.velocities given in Fig. (4.4.8) show that
the perturbation acts in the opposite direction to the
straight pipe flow between 4300 and 200° at the edge of
the tube and W 150° and 200° in the centre.

" The effect of the increased phase lag between the
perturbations and the respective straight pipe flows is
noticable in the profiles measured at 120° and 1500. At
the inner wall of the curve, the velocity is seen to
reverse at the 120° position, and the velocity gradient
is higher at the 1500 position. It is also evident from
the perturbation that the effect of the cos3 term is now
very much smaller at the wall of the tube,

Further results measured in this o{ region are shown

in Fig. (4.4.9) where the followirg parameters apply,

i

Dy, = 33.87, Phase positions 10° and 70°, £

a]R = 1/7r These results confirm the previous findings,

2.79 and

but now the effects become much.iarger due to the increased

D Therefore, the reversal of the direction of shift

No*
of the axial velocify peak occurs in the experiments on
1/50th and 1/7th curved tubes and in the theory which is
only valid for very small curvature.

A further increase in alpha would be expected to
show the change in the direction of the displacement of
the axial velocity peak over a greater portion of the

cycle. When oL is increased to 4.36 then the results of

the experimental measurements made are shown in Fig.



Pigure (;4.4.10) Fully-developed velocity profiles
measured in the 1/7th curved tube at phase positions
= 33,26 and 42.84 with ol = 4,36 «
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Figure (4.4.11) Series of profiles showing the effect of
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(4.4.,10) for two different peak D It can be seen

Nos"®
that the higher axial velocity components are found at

the inside of the curve ﬁp to wn 60° phase position,
thereafter being movéd to the outside of the curve by
secondary flow action,

Comparison of the two sets of profiles indicate
that the shapes of the profiles measured at the same
phase positions for different pezk DNos are similar in
form. Thus the direction of the shift of the axial
velocity peak would appear from these results to be
independent of DNo and depend only on £ . In order to
investigate this point further, a set phase position was
chosen and préfiles mea;ured-for different DNos' The
results are shown in Fig. (4.4.11) for the phase position
90°, & = 4.36.

The results show thgt as the DNo is decreased, the
axial velocity peak moves from the outside of the curve
towards the inside. Thus it can be said that the direction
éf shift of the axial velocity peak is not independent of

Dy., at least for this phase position. A further

No
interesting feature of the profiles measured, is the
occurrence of a flow reversal at the outside of the curve,
which appears to be independent of DNo’

If now prpfiles are measured at thé same alpha value

but at a very small DNo , then the exact>nature of the

decreased DNo effect may be found. The results are shown

in Fig. (4.4.12) and show that the only apparent effect



Figure (4.4.12) Velocity profiles for phase positions 0°-150°

Theoretical

1/7.

9.98 and a/R

with A = 4.36, peak Dy,

profile derived using -equation (2e4.11),
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Figure (4.4,13) Normalised velocity time diagrams for
straight pipe flow —————— and first order perturbation

due to curvature = = = =« - - for radial positions 0.1r
and Oogr With @L = 4.560 .

norm, ’ ' ‘ ) ) o,ir
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of the reduced DNo

which the flow is unaffected by the curvature. A

is to change the phase position at

comparison is made in this series of results between
theory and experiment and the agreement is seen to be
reasonable,

The perturbation and relevant time dependent axial
flow graphs are given in Fig. (4.4.13). The perturbation
at the wall is now acting almost as - cos“! while that
in the centre is more complicated in form, and there is
now also}a slight phase lag between the peaks of the
perturbations. The effect at the wall would be to
produce a flow reversal at the inside of the curve at
150? phase poéition and this.is what is found in the
experimental results.

The perturbation in the centre of the tube acts
in the opposite directiop until wn 1200, and thus the
theory would be inadeguate to explain the experimentally
found DNo dependence. However, the main reason for the
changing shift of the axial.velocity peak appears to be
an oL dependent phase lag which develops between the

perturbation and the straight pipe flow.

The next set of measurements taken were all measured
at a fixed phase position on the piston, but at different
frequencies. Owing to the wide range of frequencies
covered, it was not possible to maintain the same peak
DNo throughout the experiment, but by keeping the D

No
small it is hoped the effect of varying DNo was negligible.



Series of velocity profiles measured at

Fipure (4.4.14)
fixed phase position on the piston with varying alpha values.

All profiles are plotted to the same scale.,

S
‘.a s\‘
K .
; “X=4:45
{ \

- : AN
! \
! A
H wo a=s
‘ = N
" Seo’ .
Y .
e * 2 2.71
. .—*.-
H *s_ o= 4024 e
’ = , Seena
: . _— ’ b 9
: “ 'l \‘\
H N . ;' . ~
] AN K .
. .' . K . \‘
H :' \‘\ "'a---“‘ ": . ‘ \“
A YN, ¥ 5
ST oz 4019 Cols 2.57
: . o;-.---'--..“w
: . ~..
H AN rd ."°‘-‘
l' Tt s .
. ‘. " ..
H . JETN J Y
[] h s ) ¢ .
M ey - b ’” - N
-/ ; / A
’
ﬂ' [ -
PN A= 2.
':' “\ &s 4v°6 -?.34
: - ~~‘ PR iad "\-_‘.-
’ ~ P el 9
. ‘\‘ s A
H . w ¢ .
h 3 . ,' s
. . P . .
: ~. Lo, / \
K cepacal . K . "
. 1 Y / .
= M .Y ‘2 e
seeeeen, A2 390 s . o= 220
- '/ \‘s . . . --‘---.---.‘-
1] - . o e
; . o S VEL.SCALF
] ", * - Sel
; 14 _ ~. (CM[sEC)
'] cegees” . '] Y
.' -“ " ‘.
’ B » - — - 175
- +
Az 336
A= 1.93
n', The. .-""“".’"”"*m.. 1
‘: ..‘\ o=a o" .‘."
l' ..".’,--—'- hS i \ 1
" ) .\ l‘ “
K >\ < N 4 -0
a’ -
-1 0 :l .=l o :l
asINg SsINg



Figure (4.4,15) Velocity profiles for the case ofi= J.0c,

a/R = 1/50 and peak Dy, = 7,39, Theoretical profile obtained

using equation (2.4.11). Profile measured at phase positions
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The results are shown in Fig. (4.4,14), A fixed phase
position of the piston is equivalent to a fixed phase
position on the mean velocity cycle, since the piston
veloéity is equivalent to the mean velocity. It wouldv
be a large task to examine each profile in detail, so
only general observations will be made. A striking
feature of the profiles is the similarity in form between

A = 4.45 and oA = 3,36, This indicates the consistency
of the experiments in addition to showing some features
of the flow found in other experiments. The axial velocity
peak is found towards the inside of the curve down to oA
W 2, which is in agreement with the theory for this phase
position. Thé forﬁ of the profile changes dramatically
at A v\ 2,7, which coincides with the point where the

cos term becomes important, (see Uchida (1956) ), for

the straight pipe flow.

The last measurement to bé presented in this section

was made in the 1/50th curved tube at an o& value of 3,82
at phase positions 3500-500. These- were particularly
difficult profiles to measure because of the large
frequency required to obtain this < value. However,

the result shown in Fig. (4.4.15) indicates qualitatively
the same picture that was found in the 1/7th curve.,
Comparison is also given with theory and although the
experimental measurements are outside the expected range
of validity of the theory, agreement is seen to be

reasonable, Thus the reversal of the shift of the axial
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“Figure (4.4.16) Normalised velocity time.diagrams for

straight pipe flow and first order pertur—

bation due to curvatufe — - = = — for radial positions

0.1 r and 0.9 r with o = 7 and 10,
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velocity peak is found in the theory and in both experi-
mental systems, and cannot be attributed to "finite
curvature effect" alone, as was maintained by Bertelsen
(1975).

The upper limit of the experimental system measure=-
ments was A W\ 4.5 and now using the Hankel transform
results, the axial velocity effects can be predicted up
to 4 = 10. The perturbations and straight pipe flow
diagrams are shown for the cases L = 7 and 10 in Fig.
(4.4.,16). There is very little difference between those
shown for the 0.9 r position. Apart from the 900 - 1500
and 270° - 5500 phase positions, the action of the
perturbation at the wall is to oppose the straight pipe
flow.

In the centre of the tube at & = 7/, the perturbation
is almost in anti-phase with the straight-pipe flow and
nearly returns to be in phase at o = 10. Thus when o<
= 7 , apart from some flow reversals at the inside of the
curve at  150° - 180° and 330° -~ 360°, the profile will
Be ,.éskewed towards the inside of the curve at all phase
positions., At oL = 10 the perturbation in the central
area is w 40° phase behind the main flow and thus there
now seems to be a total change in the flow form. The
velocity distribution in the central area will have its
maximum value towards the outside of the curve at most
phase positions. The flow along the walls will behave in

a similar way to that at oL = 7, and continue to be
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tilted inwards for 2/5 of the cycle, Thus it would appear
that as the effect of viscagity lessens over greater areas
of the tube, the phase lag between the perturbation and
the main flow in the central area increases from wy 100°
at o =5 to 360° at & W 10. The flow in the regions
around the walls of the tube is little changed over this
alpha region. "~ ‘

The perturbation at the wall is an order of magnitude
larger than that in the centre éf the tube and will there-
fore have a greater effect. Thus it follows that the flow
profile will be distorted as if the complete flow was
inviscid, with the peak towards the inside of the curve
at all phase positions. A completely opposite situation

to that found for fully-developed steady flow will exist.



433~

4,5 CONCLUSICNS

In this concluding section an over-all view of the
flow structure of oscillatory flow in a curved tube will
be presented; The theoretical and experimental results
will be used to explain the events occurring in the‘
transition stage between the quasi-steady and boundary-
layer type flows of low and high oA values.

The secondary flow generated by the centrifugal
instability acts outwards across the central area of the
tube, and returns around the walls in the quasi-steady
situation exactly as in the steady flow case. As oL
increases so the characteristic oscillation time for
the flow becomes comparable with thé time for vorticity
to diffuse from the wall across the tube. Thus in the
central area of a straight pipe there develops a small
region of essentially uniform flow which is present
initially over a small portion of the cycle.

When o is LA 5 the uniform central flow persists
over 2 x ¢ parts of the'cycle and a further increase in
o to 10 shows that viscosity effects are now confined
to the wall region and a truly boundary-layer type flow
exists for a complete cycle. This uniform flow in the
centre of the tube would be a stable flow situation
according to the simplified analysis presented earlier.
Thus the secondary motion in oscillatory flow will be
controlled by the development of this region of stability

within a cycle for any fixed o value.



Figure (4.5.1) Straight pipe profiles calculated using
equation (2.2.4) for the case o& = 3,5,10,
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Now the cases oL = 3, 5, and 10 are considered and
the straight pipe profiles derived using equation (2.2.4)
are shown in Fig. (4.5.1). From'the relevant secondary
flow plots given in section (4.3), it can be seen that
the minimum in the secondary flow in the central plane
of the tube corresponds to those phase positions when the
uniform region is of the same order of magnitude as the
flow near the wall and spread over 2, 0.5 of the diameter
of the tube. Therefore the secondary flow is governed by
the relative strength of the central stable region and
the unstable region near the wall.

This simplified picture may be modified by the
encroachment of the vorticity carrying secondary flow into
the central region as the strength of this flow increaéés.
Thus for a large DNo flow there may be some modifications
to the phase .positions at which secondary flow effects
in the central area of the tube become important. The

stable region may be swamped at these larger D and

Nos
this could be a possible explanation for the large DNo
effect found in the experiments.

The peak in the secondary flow in the central area
does not always correspopd to the maximum axial flow in
the central region, but there is a phase lag between the
two which increases as o« increases. The centrifugal
instability has first to overcome the stable situation
and the time for it to do this increases as the stable

region geins strength with increasing o . Thus the

phase lag between peaks increases with increasing o4 .



-4 435~

When oL = 10 and the boundary-layer type flow is
approached, the stable area will persist throughout a
cycle and the normal secondary flow effects will be
confined to regions closer to the wall as the stable
region grows in strength within a cycle. Once the stable
region has reached a certain size it itself becomes un-
- stable. This may be as a result of the boundary-layer
generated secondary flow "dragging the core around" as
postulated by Lyne (1970).

The axial velocity distribution will be radically
different in fully-developed oscillatory flow from the
steady flow picture except in the quasi-steady regime,
If the secondary flow in the: central area of the tube is
small compared with the axial velocity, then the fluid
will behave as if it were ideal and inviscid and adopt
tﬁe "shortest path" around the curve. Thus as oL
increases, the time for which the secondary flow in the
central area of the tube is effective decreases, and the
axial velocity distribution adopts the inviscid position
over more of the cycle.

The conclusion of this thesis is that oscillatory
flow in a curved tube is very different in form from
that of steady flow outside the quasi-steady regime.
There is a complicated interplay between viscous and
inertial effects which results in a total reversal of
the direction of the secondary flow at large values of

the frequency parameter ol . 'The trénsition region
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between quasi-steady and boundary—layér type flows is
explained in terms of a gradual development of a stable
region in the centre of the tube. This slowly becomes
unstable, in the opposite sense to the region along the
walls, when its area grows as J increases. The
resultant modified axial velocity distribution is very
different from the quasi-steady case.

Experimental measurements using a éingle-lens laser
ﬁoppler énemometer system, in conjunction with the sampled
photon-correlation method of signal processing, have beén
shown to give reliable velocity information in the low to
moderate JA range. General agreement between theory and
experiment is found to be reasonable and thus a great
deal of insight into the problem has been gained.

The theoretical work given in this thesis is restricted
to small values of the amplitude parameter G, which is
taken as the expansion parameter. The present numerical
transformation scheme used to solve the linearised
Navier-Stokes equations is cumbersome, and thus a more
efficient scheme may allow additional terms in the
expeansion, extending the upper limit on G. However,
from the experimental results, it can be seen that the
most influential parameter on the flow distribution is o
and that the éignificant effects are found in the first
order term. Therefore because of.the'complex nature of
the linearised equations a numerical solution could be
used to obtain more detailed information with a comparable

amount of computational effort.
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The experimental system developed in this study
could be used in work on more complicated geometries.
However many more axial velocity measurements in the
high A region and secondary flow measurements over all
the o range ought to be made in fully-developed flow
in the curved tube., Such detailed measurements would
show to what extent the limited theory presented here

is correct.
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APPENDIX A

CALCULATION OF SECOND ORDER EFFECTS OF CURVATURE

ON_SECONDARY STREAM LINE DISTRIBUTION

The R.H.S. of equation 2.20.1., is given by:-

R.H.S. = w;méos @ dw, _ W, sing Jw, w, cos & Jw_
or r 8¢ or

S N\? - - — (41)
(%&,Br §%’§i\¥0 u11 _ ‘

Hl—\

Each term will now be evaluated in turn from the

relevant result in thé main thesis,

2_1 cos @ _ sin 2 @ ( B dD,p _ (1-4) ap,;
or dr dr

+ COS 2%”(;B aD,p . QQBR . (1-4) 9211
dr . dr

— (1-4) dD§I> , sin 2%(("1-;&) dD,p _ B dD,;

dr " dr dr

- B dDzy _ (1-4) dDBR) + COs 4‘T"<B 403p
dr dr

+ ("I-A) dDBI , sin 4‘1’((1-;1-)' dD _ B 4D I)
‘ dr dr

Y
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The functions 924R etc. can be evaluated from
dr

the relevant inversion formulae:-

W, dw, sin@ = sin2g | B Dip = (1-4) D g
r o 8r

+ cos 2 ( B Dap + B Dgp + (1-A) Dyy = (1-4) Dyp)

+ sin 249 ( D,IR (1-A) - B D1I - B DBI - (1-4) DBR)
+ cos 4 ( B DBR + (1-4) DBI)
.+ sin 4 1 ( DBR (1-A) - B DEI)j} - = = (4a3)
w, cos @ B__v_:o___sin2¢ Djp 4B , D,y d&
ér_ 8 dr dr
+ cos 2Y<D,]Rc£3+D3Rd_B_D,II£1i\+D3Id_J‘:.
dr dr dr dr
+ sin 2“1"(D5R dh _ D4y dB _ Dyp 4B _ D,p dh
- dr dr ar dr
+ cos 4| Dgp dB _ Dy dA
dr dr
- 8in 4T(D3I§_}_§+ DBRd—A -~ - (AB)
- dr dr .

2 .
13;%3-‘2(4/1 ="-—_Sln2¢.2cod-‘v-‘o+ch@2R
r d¢ Jr . 16 dr dr
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aM daM daM
4+ Car —2I + cos 2Lf(% C =2R + 2 Crp —O0 | -
2 ar ° 4r 2R gp

- sin 2“(‘(2 c, aMsy 4 2 Cor Mo ) s cos 4T
dr dr

(Cea dMop - Cor 51 ) - sin 4“1”(02R aMs g
ar dr ar

+ dM
SorR C - = = = (a5)
3 21>

The functionsmo, M2R and MEI are found from the

inversion formulae for Co, C2R and C2I respectively in

the following way:-

2

. -
a 1 4 1 - 2

Mo 2 tTon T ;2) Co = -2 ; o J/n({g.r)g-;
j:'] EJO(Zj)J ‘

H

- - = (46)
Finally:-
2 .
a a91 oV Wi = - sin 2 8( » M, ac, Mop dCop
r dr O¢ ' 16r dr dr

acC ac ac
+ M =221 + cos 2Y‘(2 M -0 + 2 M_ =2R
21 o 2R o ° L )

- sin 2\1”(2 - ac, ., oM dCoy
dr dr

+ cos 4‘f(m2R 4Cop _ M. 9Cop
p 21
r dr
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dr

- sin 4Y< Mop 221 + My %—221) - - - (&)

From the form of the terms which arise a solution

is sought such that:-

Y 2 =580 () + 127 4 H,, ei4YjsiJ;i 28 ----(48)

The boundary conditions relevant to these equations are:-

and thus the solution procedure is the same as in

section (2.3.)

The following equation resulté for the steady

component: -

4 . |
‘;7 \V2O = gin 2 ¢ [:(1-A) ab,; _ Dyq (1-A) da
8 r dr
+] Sor Wog _ Mop 2R dMyr _ Moy 4Chy
. er dr 2r 2r ar 2r dr
- Bag - Dig ) - -o gﬂo
ar r r dr

The transform of this equation is given by:-



Iq_ - p >
o Han (3 .) = Tan # Topg + Toe =T, - Top + 4, $Hoo
3.3 20 3‘,3 11 * Lz * Iaz = Iy -~ Iqs ;;.d—r'z
] ’
‘J2 (33) = - = = (A']O)
r=1

where in this case the second order Hankel trans-

form is used and the relevant inversion formula is now:-

&—
F(r) =2 ) F(§) Jy (340)

- [ % (}'a. )]

- - - (a11)

J=

y 2

where 3 3 is the jth eigenvalue of the equation:-

J2(3’d)=o - - - - (812)

The integrals are:-

1 A
11 = S [(’l-A) dD,; ¢ - D,y dA T + (1-A)>jJ2(}'jr)dr
o] dr dr . ’

1
Lz = 5 ( Cop dMop - Mop ‘1923) Je(g'jr) dr
o} ar dr '

dlor - Mor 9921) o (3 jT) ar
dr

Lo
.Y
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M
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n
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—
S
rs
]
N—"""N
(o] -
N

2 .
B dD,p T - Dip (B- dB r>) J2(§jr) dr
dr dr

1
= [
dr dr
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As in other cases the second derivative in (A10)
must be calculated before the inversion formula can
be used. This is done in the same manner as in section

(2.3). This results in:-

2 o
4 = - {I']’I * I+ Iyg = Iy - 1153
dr -
r=1
VAT
Z.‘ I, (Za )
> B - - (413)
P

2r 55

The equation for the second h rmonlc is given by:-

da -a- (Vzl{)ge) _V4LV22 = sin 2 g {cos EYEB dD,p
o - 8

(2 2)) (2 (2 2 )
+<[1‘AJ§11 - D’II(D“AJ' :—i)} (E"*gj—iﬂ

- D51(f"_‘§]+ Qé) -(9 Mor 4+ Cop Wy Mop 4G,
r dr r dr T dr T dr

- P-]:o 3—32R>]+ sin 2‘r[( Dal(f - g) _B (%112‘51)
(E 1-1] & ——5R - R(f"“"] ‘2))-([“"“* gm

- By Dp[1-a], By _ Dip 48 _ Dyp 44
dr r Tr dr dr
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+ So Wor , Cop WM, _ Mpp dC, _ M, 9921) —— = (a14)
r d4r r dr r dr

Using a similar technique as in section (2.3)
the R.H.S. may be divided into real and imaginary

parts and the resulting transformed equations arise:-

= - , 2
Hoogp = l:< Loy * T * Iq =+ Iyg - I18)jé
)3 o J3
r="1
_afy 2x® i | 3 (57y)
3 P j
r=1
5 |
_3' (4o<4+-3’3‘ ) == =- = —(415)

- > .
, ' 2
Hopt = ’j;i ((Ipp = Tgg = Ipq) = 27Ty + Tyg + Iy

> 4
_ ( 4 4+ Y - -=-=-(416)
°§s- 35
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where:-
1 '
Iig = BQQBR 3R B-1r gg) J2 (i jr) dr
dr dr
Ipp = [ _A:) aD,T_ D51< [1-4]) +r aa Jg({ 5T) dr
dr
g =\ [ C i”'.‘zR v Cor Po - Mop 9C, _ M, dop
dr dr - dr
0
’
, Iy ({jr) dr
I = Dsp (B dB r) BADyr *) 5 () ar
dr ZJ
o
L - - '
A
[1-4) apgp r Dyl [1-4), aa r J2(€ 4T ar
dr dr
0
1
(1-4) d@Dyp © - B dD,g r_D,,R([:'l-AJ + dA T
ar dr dr
0

+ D1I <;B - a8 I"> + co 2§2I + C2I gﬁo
dr dr dar

[
= Mpp &G, _ M, A1 4 Jp (g4 ) dr
dr dr

The second derivatives are calculated using the formulae:-

42 2
OB oop - 24" Sy B — S5 5

2 _
ar 2 4 2
S6 + 4L S.7




2 2 2
0y [ 22 5, i 8]
ar® ar?
Se
where:-
L ,2 5
S5 = ( 114 + 116 + Iqq - 118 )‘}J + 2o (120-I19—121)
4 4
o (4™ 4 ) 3,(C )
3=1 33 j'j ! jJ
o0 "2
86 = ; j 3
L|. '
4 oL
5= BE
O
S,7 = E 1
n &
4+ 3
=)
< 5
, 2
g = 43T207T197T2r) =2 MLy Ly e Ty -TymTgg)
i (4o¢‘*+,}’;‘ ) 3, (3,3 )
3=1 3 ° | '

A similar procedure is followed for the fourth

harmonic starting from the full equation:-
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oagﬁj_vet{J% ) _ V4L|)24 _ sin 2 @ ( cos 47@3 dD5p
o T . 8

dr

_ B -DB Dyp ___> ([’I—AJ an, [_—1-gn31 Dyy d_.e_x>

r

Cop dliog _ Mop 4C %) Cor dMpy _ Moy dCoy
2r dr 2r dr 2r dr 2r dr

, sin 4W’[§ELJt~923R _ 5R [ﬁ-g] Dsp E;

+(§ Dsr - 31 dB _ B dD {) (, dMor + Co1 Wog
r 2r dr 2r dr

- Mop 4Csy _ Moy ——2R — - ==~ (4a17)
2r dr 2r dr

The following formulae result for the transformation

functions:-

| 2
¢ ’ L, 2
Hour (33) =[j(116 +I17’I12+I15)?.5 e " (~Inp=I50=T4g)

J1(?3)"§§ 4ot ®
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» |
, , 2
3241(33> =l:%‘122‘120‘119)33 ~4et (TgrTqg=I9p+143)

27 2 ’ 2 /7
+4 £ . d°H J,(g 4)-0. d°H J.(95)
j ——224R 18 3§ =24l 1
? dr ? ?J dr 33
.r:’]

| @ s 4
L , -w%d ( 16 4~%3 )

and the second derivatives are calculated from:-

2 2
dlour = %4 541 512759 510
dr o) 4 2
S + 16« S
10 11
2 2 2.,
a<H [:4¢x S.. d°H S ;:]
24T = 11 28R - 712
are are
810
where:-
(o>
412 >
-, (16t +4 T
- 33 ( "33 ) 4(};19
R 2
S10 = ¥ .
4
160( +}d-
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>
S4q = —
q_ !
1 .
6K ﬁ?a

- Jd=1
£ 2 2
Sqp = %3 (-I5p-Tpp=I4g) = 4ot (T4g+Iqn-1 ‘113)
7
-5’ (167 ) I, G

B J

— {3 it 3

and:-

All the summations were taken over twenty terms to
try to ensure convergence of the integrals. A discussion

of this point will be given in Appendix B.



APPENDIX B

CONVERGENCE of INTEGRALS USED in HANKEL TRANSFORMS

A11 the integrals in this study were evaluated
using the Gaussian quadrature scheme of Stroud (1966),
The integrals are evaluvated using five and six point
approximations and the difference between these approxi-
mations comparéa with a pre-set accuracy requirement.

If the required accuracy is not found then the interval
is halved and the five and six point formulae applied _
to each sub-interval. The accuraéy test is then applied
to the sum of the contributions. The process continues
until the required accuracy is reached, this sometimes
requiring 27 sub-divisions when OX~MMO for some of the
integrals.

Therefore each integral could be evaluated to a
pre-determined accuracy for a fixed number of terms in
&.summation involved in that integral. The effecf of
the inclusion of more terms in the summation is shown
in Fig. (B1) for the integral 115. This‘integral was
chosen as it had the greatest influence on the secondary
flow, particularly for the larger alpha values, and was
the one which caused the most convergence problems.

It can be seen from Fig. (B1) that as X increases
then more and more terms must be included in the
summation, which meant that computation times increased

by a factor of 4 between the case oL = 1 and X = 10,
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Figure (B1) . Graph illustrating the convergence of the integral I,15 for

various oL values. The plot shows the % difference between the final value
and the actual value of the number of terms used in the summation series,’
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The computational time involved in obtaining a'solution
to the secondary flow equations for X = 10, was Y™ 2
hours on an IBM.560 machine. Thus for X values greater
than this, approximate methods of solution are more
appropriate.

Finally, an improved method Qf transforming the
equations may be possible, using the "Quasi fast Hankel
Transform" suggested by Siegman (1977). He has used an
approach very similar to the F.F.T. technique and '
considerably shortened computer times for some appli-~

cations of the finite Hankel transform.
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APPENDIX C

CALCULATION of OPTICAL PARAMETERS

Kogelnik (1966) has shown that the beam waist
radius of a laser. beam passing through a thin lens is
modified by the lens, as shown schematically in Fig. C1.
| The beam radiﬁs Wo at distance Zo from lens of
focal length f,is transformed by the lens to a beam of
waist radius W, at distance Z, from the lens. The

1 ,
relationships between radii and distances are given by:-

Zq = Lo+ (20 - £) fc,‘?/£(z<->-f,,)2 + (Trﬁo/x)a} - =(c1)
1 -z /92 e (Ta /)P /82 - - - (c2)
, =

The laser used was operating in the TEMOO mode and
was of He-Ne type having a wavelength )\ of 63%2.8 x
107 n.
" The beam diameter at the front of the laser defined
at the ’l/e2 points of the intensity distribution is 1.1 m.m
(Spectra Physics Handbook).
Gaussian waist diameter after L, (25 ¢cm f.1.)

= 1.81812 x 10~% u

Position of Gaussian waist = 25.49 cm after lens..
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Figure C3 Interference pattern for two intersecting gaussian beams.
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Lenses L2 and L3 form a telescbpe arrangement and
using the work of Kogelnik, the beam transformation is
shown in Pig. C2.

The telescope in this case was formed using a 13cm
lens followed by a 30 cms lens. For a perfectly aligned
telescope, the relationship between the input and output
beam waists is given by:-

Wy T Wy 2 L L o - (C3)
£

1

The spacing between the lenses was checked by direct
méasurement.and also by checking that the two laser beams
transmitted Qere parallel over a length of approximately
50 metres. Since the spacing of the input beams is
known, the expected output spacing is given by tﬁe ratio
of the focal lengths ofAthe two lenses and this can be
used as a further check on the accuracy of the telescope.
Therefore:- |

Gaussian beam waist diameter after telescope

= 4.1956615 x 10+ m

The position of the beam waist can be calculated
using Kogelnik's formula:-

2
2 = Iy (s,
£

= f

8o ) - = - = (C#)

£,
-
1
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where s, and s, are the distances indicated in Fig.C2.

Thus S5 = 32,609 cms after LB'

Finally, the beam parameters after-the aspheric
lens may be calculated using formulae (C1) and (C2)
to give:- |

Final beam radius = 3.5570190 x 40_5 m

Positioned at 3;7641 cm behind the lens.-

This result shows that the point of intersection
of the two beams does not coincide with their Gaussian
waists. Since the wavefronts are planar at the Gaussian
vaists then, as has been shown by Hanson (1973%), some
distortion of the fringes will occur as illustrated in
Fig.C3., This will give undesirable broadening effects
on the Doppler signal.

The radius of curvature of the wavefront of the

beam can be calculated using the Kogelnik formula:-

2 2
R(z)=z.€4+.-(n—wo /x2) } - — - (C5)

Qhere Z is now the distance between the Gaussian waist
and the point of intersection of the beams. Thus as
" 2—0 (i.e. perfect alignment) then R(Z)—> o< and a
truly planar wévefront exists.

Hanson has shown that the resultant broadening is

given by:-
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ar_ =' - 080 /pizy - = - -; (c6)
£dz °

where £ is the Doppler frequency and 2 © is the angle
between the beams, whiéh are propagating in the 2
direction.

The percgytage broadening over the fringe volume

length is given by:-
% Broadening = (- cos ©/R (Zo) ) d x 100% - ~( C7)

where 3, the fringe volume length, can be calculated
using the formula given by Durrani and Greated (1977)

of:~ ‘

d=20% oo oo o o (B
cos ©
where rsfis the final beam radius defined at the ’l/e2
points of the intensity distribution.
This gives &'= 142.3 fe m
and the resultant broadening " 0.32%' which may be

considered negligible.
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APPENDIX D

CORRELATION FUNCTION in a VELOCITY GRADIENT

For a Gaussian beam system the fringe volume is
an ellipsoid. The case is considered where the optical
axis is perpendicular to the tube wall and the fringes
are aligned in the plane perpendicular to the tube axis.
The distances across the fringe volume, between the e_2
points on the intensity distribution are 2r apd 2 O in
the direction of the tube axis and the optical axis
respectively. These dimensions are related to the radii
Ty of the beams at the intersection point by the
expressions, r =-rs/cos @ and O”‘=»rs/sin 6 where 20
is thé angle between the beams. In order to evaluate
the shape of the count correlation function, it is
first noted that, apart from the origin value, it has
the same shape as the auto-correlation (RI () ) of
the scattered light intensity (Durrani and Greated (1977)).
For a Gaussian beam system the intensity variation

produced by a single particle moving through the fringe

pattern at constant velocity U is:-

-2 (t—to)2 pe

I‘2 S

I (t) = I, exp cos® WUt - - (D1)

Here Io is the peak scattered intensity, to is the

time of arrival of the particle at the centre of the
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measuring volume and s is the fringe spacing. The
resulting intensity auto-correlation function is

Daudpota (1976) :-
! 2 r" 2 2
Ry (*T) = “Q E [:Io;] INTT exp | ~ Uy
4 2U _ r2

14+ % m° cos. (g—“——U—T—) + f E[Ioi]
s 4 .

M 2
oy?

!
|
{
!
N\
=
N
o/

. th

Here 101 is the peak intensity for the i partlcle,

/
\) = B En/T] and \)2 = E En (n—’l)/T] , where n particles

have passed the centre of the measuring region in a total
time- Ty, m is the fringe visibility and E the expectation
operator. The measuring'volume is assumed so small that
the velocity gradient perpendicular to the wall can be

regarded as linear i.e. -

UeU +Cy = — = - (D3)

where Uo is the velocity at the centre of the volume
and C is the véiocity gradient. There are assumed to be
no'appreciable velocity'gradients in the axial and
tangential directions.

For this experimental arrangement exp[:—Uaﬂha/r?:]

M1 in equation D2 since there are a large number of
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fringes within the measuring volume (147 between the e-2
intensity points). Also\jand {f2 are proportional to

U and U2 respectively, for a continuous stream of
particles. The probability distribution of Ioi'is
Gaussian with standard deviation<r/\f§; hence the
probability distribution of Ioi is Gaussian with stan-

dard deviation 0/2. Thus disregarding the pedestal value

- the observed” auto-correlation function isg:-

)
2
E [:R (“r),] = const x e —Ay cos (Uo+ Cy)D'Ywdy
2
- - - - - (D8

where D =.21T7s

‘Infinite limitsAare Justified by the fact that
the Gaussian function dies rapidly to zero and there-
fore the contribution to the integral from regions
outside of fhe flow boundaries are negligible, provided
that the e'2ipoints on the-intensity distribution do
not extend beyond the wall.

Carrying out the integration using standard

integrals (Grobner W. and Hofreiter N.1949):-

E[R (‘T‘)] = const x exp ( —0‘202 D272/16) cos UD“{’_
- = = = = (D5)

and Fourier transforming equation (D5) gives the
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power spectrum for the intensity as:-

~4(DU, - w)e

c2 p°g-°

@ (w) = const x exp - - = (D6)

i.e. the spectrﬁm is a Gaussian with standard
deviation CD o7/2.

It is seen from equations (D5) and (D6) that
increasing the velocity gradient has the effect of
damping the correlation function more rapidly or
alternatively broadening the width of the spectrum,
although the position of the peak of the spectrum is
unaltered. Since D and o-are known constants for a
particular optical configuration, measﬁrement of ‘the
spectrum width gives a direct measure of the velocity

gradient.
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APPENDIX E

RANGE OF VALIDITY OF THE PERTURBATION SCHEME

The theory presented in this thesis ought to be valid
for all values of the frequency parameter oL but in
practice begins_to break down foro 2 11 due to con-
vergence difficulties in the integrals involved in the
transformation procedure. The limitsof the range of
validity of the amplitude parameter G are more difficult
to quantify and the following guidelines vere usea in the
analysis. '

In the low frequency limit, the flow can be considered
as quasi-steady and the firsﬁ order equations in the small
alpha expansions become equivalent to those of Dean (1928)
together with appropriate time dependency. Dean invest-
igated the stability of his scheme by considering terms up

to O('K33 s where K = G was his expansion parameter, in
16

the axial velocity series, which affected the volume flow
rate. By doing this he found that for K <« 576, the flow
" rate was reduced by the curvature and an upper limif on
K was established.

The scheme used in this thesis only considers the
OfiK} term and in fact Dean showed that the effect of
curvature on flow rate was independent of this term.
Further terms would therefore have to be taken to reach

the limit of Dean's expansion but due to the complexity
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of the equations this was considered too great a task
using the present transformation technique. However,
as can be seen from the results presented in Chapter 4,
despite. this severe Iimitation, a reasonable agreement
is found between the general flow features of the theory
and experiment.

The expansion scheme used in this study of the
vorticity equa;;on goes further than the work of Dean and
considers the effect of the redistribution of velocity on

the secondary flow pattern. It is interesting to compare

the value of(y max? the maximum value of the secondary

flow stream function, with that obtained in the steady
flow analysis of McConalogue and Srivastava (1968) and
2lso the numerical work of Collins and Dennis (1976).
The results tsaken here are from the Hankel transform

solution at oL = 1. phase 0°.

G ymax G Y max
McConalogue & Srivastava 9216 0,95 14607 .14 1.36
Collins & Dennis 9216 0.99 —_—
Present 9216 0.968 14607 .14 1.21

'The results indicate that in the quasi-steady limit,
this expansion is probably valid up to the Dean limit.
As the curvature is considered small the flow will

not be expected to differ very much from straight pipe

flow and thus the relationship between’w‘, the instant-
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aneous mean velocity, and the pressure gradient amplitude

can be derived from the results of Uchida (1956).

_— 1 /
Wo=1 2TwWrdr
m
o
=K [ 2D cos'T + (1-2C) sinT| - - - (E1)
W [ ot ' ok
/ ’
where C = ber oL bei ol -~ bei oL ber
,bereek + b812 ol
7/ ¢ 7/
D = beroL ber «« + bei«t bei £
ber2oL + bei2o<
/ /
and berod= 4 ( bere ) beict = d (bei « )

d = i d <

Thus a relationship may be established for the limiting
value of G over the L range of interest, using the quasi-
steady limit as the starting point. This relationship
is displayed graphically in Fig. (E1) and shows that as &L
increases so G decreases, becoming almost constant for
large <L values.

From the graph the expected limiting.value of G when

A = 10 is 176. Putting G in the form 2 o< 2

Rs, this
gives a value for RS = 0.88,-which is well within the

limits imposed in the boundary layer theory of Lyne.
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Abstract A photon correlation system is described which
has successfully been employed to measure pulsating air

- flows in glass tubes down to 5 mm in diameter. A sampled
version of the signal from a laser Doppler optical
arrangement has been used to consiruct velocity profiles at
different phasc positions in fully rcversing flows, and these
agree well with theoretical predictions. Peak Reynolds
numbers were of the order of 100 and the frequency range
was 0-25-4-88 11:-, corresponding to flow parameters in the
physiological range.

1 Introduciion
The purposc of this paper is to describe a system which

has been developed to generate and measure air flow velocities-

in very small tubes where the mean flow rate is pulsating
positive and negative in a sinusoidal fashion. The system
has been constructed 1o enable the authors 10 make detailed
studies of air flow in modcls of the human bronchial system.
The flow generator is in the form of two pistons which
pump the air back and forth through a completely enclosed
series of tuhes. Velocities are measured with a laser Doppler
anemomcter cmploying a gated detector output and a photon
correlation signal analyser. Laser anemometers employing
photon correlation signal analysis are widely used for air
flow measurement (Durrani and Greated 1977) but most
applications have so far been to steady flow situations, since
the correlation Tunction gives time-averaged flow statistics.
However, by pating the photodetecied output so that the
signal is only analysed at some predetermined phase position
in each cycle, it is possible to measure time-dependent mean
velocities and also the magnitudes of any velocity variations.

The flow velocities are measured by recording the frequency
of the count vorrelation function generated by the photon
corrclator. Accurate estimates of this frequency are oblained
by Fouricr-transforming the correlation function and then
noting the frequeney of the spectrum peak.

In this application we are prinntrily concerned with measur-
ing axial velovitics in small tubes under laminar flow condi-
tions. Thus the liser ancmometer is aligned so th the
optical anis is perpendicular to e wall of the tube. At
right angles to the walf there are high velocity gradicnts and

0022-3735/78/0007 -0643 $01.00 «* 1978 The Institute of Physics

so the scattering particle velocities are a function of the
distance from the wall. Velocity gradients along the axis
of the tube and in the tangential dircction are negligible.
To assess the cflectiveness of the system in measuring the
correct velocitics at the centre of the fringe volume under
these conditions, we have evaluated an expression for the
shape of the count correlation as a function of the velocity
gradient perpendicular to the wall. The system has then
been used to measure pulsating velocities profiles in straight
tubes. From the shape of the correlations it has been possible
to estimate the velocity gradients and check them against
the slopes of the measured velocity profiles at the points in
question. A double check is also possible for flow in a straight
tube since theoretical expressions are available for evaluating
the velocity profiles at different values of the parameter
a=a(w/v)!/2 where a is the radius of the tube, o the radial
frequency and v the kinematic viscosity of the fluid.

Hol-wire ond inlet for seeding

Plee. —»To photomultiplier

Figure 1 Layout of flow apparatus.

2 Flow inducer and sampling mechanism

The overall layout of the flow rig is indicated in figure 1.
A Scotch yoke reciprocating mechanism is linked to two
pistons which pump air back and forth through the modcl.
The airways form a completely enclosed sysiem:, except thai
there is a facility for introducing seeding. The reciprocatiny
mechanism itself is essentially the same as the one described
by Reynolds and Hyett (1974). The frequency and amplitude
of the oscillation may be readily altered by changing ihe
speed of the driving motor and the stroke of the pistons,
respectively. Since the photon correlation signal analysing
system docs not give a direct display of the instantaneous
velocity it was found uscful to have a hot-wire anemomcter
in the circuit to monitor instantancous velocity. Although
the hot-wire was not directionally sensitive, its output proved
useful in determining the frequency of oscillation of the
flow. .

A major problem in measuring air vclocities in glass
tubes using laser ancmometry is that the scattering frem
dust particles naturally present in air is extremely small.
Although the small signals produced by the particles can
easily be handled by the photon detector, they tend to be
swamped by the noisy signal produced by the flare from
the glass walls of the tube. This was simply overcome by’
introducing sceding in the form of small quantities of tobacco
smoke. Since the circuit was completely enclosed, a single
sceding lasted many hours. In this respect totally enclosed
systeis appear 1o olfer a great advantage over open-circuit
arrangements. ’

The optical system itsclf, to be described in §3, was fixed
on a vibration-insulated optical table and the model was
scanned across the laser beam intersection using a calibrated
optical traverse,  Light scattered by the secding particles

- ; 643
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Figure 2 Laser Doppler optical system.
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was collected in the forward direction using a photomultiplicr
fitted wiih a discriminator unit in order to produce a sequence
of individual photon pulscs. A gatc circuit incorporated in
the discriminator was operatcd by trigger pulses from switches
attached to the reciprocating mechanism, so that photon
pulses were only output at predeiermined phase positions
in the cycle. Hall effect microswitches were used for this
purpose, since these produccd bounce-free switching.

3 Optical system

The laser Doppler optical system used for the experiments
is shown in figure 2. Its main feature is that it uses a single
lens to focus the beams to the measuring point but allows a
beam intersection angle in excess of 60°. A large intersection
angle was important in the physiclogical studies in question
since the measuring volume had to be kept to a minimum.
Single-lens focusing is advantageous in that it greatly simplifics
alignment. A Malvern Instruments beam splitter and phase
shifter are employed to produce a moving fringe patiern
within the measuring region, which superimposes a pre-
determined frequency shift on to the Doppler signal; the
manner in which this frequency shift is produced is described
by Foord er al (1974). The arrangement allows both positive
and negative flow velocitics to be measured.

If the Gaussian beam waists do not coincide with the
intersection of the two beams, then an additional Doppler
broadening arises which artificially increases the rate of
damping of the count corrclation function. This effect was
minimised by introducing lens L, in front of the beam splitter.
Since the phase shifter could only be used at a fixed beam
scparation (2 em) and the focusing lens La had a diameter
of 6cm, lenses L2 and Ls were used to increase the beam
separation to 4-6 cm so that the maximum intersection angle
could be obtained. With this arrangement we werc able
to obtain an intersection angle of 60°24° and still obtain
high-quality Doppler signals. The focusing lens L is an
aspheric fens of focal length 3-8 emy, corrected for minimum
spherical aberration (Oricl Corp., USA).

A 15mW He-Ne laser was used for the experiments,
the beam radius at the e-2 points on the intensity distribution
being 0-55 mm. Applying the analysis of Kogelnik and Li

. (1966) we calculated the corresponding beam radii at the
intersection point to be 0-036 mm. For an intersection angle
of 60° 24’ the corresponding fringe volume length along
the optical axis (Durrani and Greated 1977) was 20=0-144
mm. :

Using the results of Hanson (1973), we calculated the
magnitude of the Doppler broadening (i.c. the standard
deviation of the power spectrumfmean Doppler fregquency)
as 0:32°/. In order to have a direct check on the extent of
changes in the fringe spacing within the measuring volume
the system was first used to measure the speed of @ rotating
Perspex dise. This was moved through the measuring volume
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Figure 3 Variation of Doppler frequency across fringe
volume.

with a precision optical traverse and mcasurements of the
Doppler frequency were recorded at different spatial positions.
Figure 3 shows the variation of Doppler frequency across
the mcasuring volume. These results are qualitatively con-
sistent with the predictions of Hanson (1973), since the magni-
tude of the Doppler signal falls rapidly towards the edge
of the volume and effectively disappears beyond the e-?
points on the intensity distribution. However, it appears
from figure 3 that the fringe volume is slightly distoried on
the side closest to the lens.

4 Correlation function in a velocity gradient
For a Gaussian beam system the fringe volume is an eilipsoid.
We consider the case where the optical axis is perpendicular
to the tube wall and the fringes are aligned in the plane
perpendicular to the tube axis. The distances across the
fringe volume, between e~2 points on the intensity distribu-
tion, are 2r and 2o in the directions of the tube axis and
the optical axis, respectively. These dimensions are related
to the radii rs of the beams at the intersection point by the
expressions r=rsfcos 8 and o=ryfsin 6 where 0 is the hall-
anglec between the beams. To evaluate the shape of the
. count correlation function we first notc that, apart from
the origin value, it has the same shape as the autocorrelation
function Ri(7) of the scattcred light intensity (Durraui and
Greated 1977). For a Gaussian beam system the intensity
variation produccd by a particic moving through the {ringe
pattern at constant velocity « is

— 1 — )2 .
K =loexp ( At ’._.-'0)- f’-) cos® -';{"

Here /o is the peak scattered intensity. fo is the time of arrival
of the particle at the centre of the scattering volume and
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s is the fringe spacing. The resulting intensity autocorrelation
function is (Daudpota 1976)

C / — %2 2
R;(7) =; E(lu®) ,—;”? exp ( - :’,_,—T—) (I +4m?* cos —"sgt) ’

2 2
+5 El) 5 m

Here Ios is the peak intensity for the ith particle, v=E(n/T)
and v2=FE[u(n—~1)/T], where n particles have passed the
centre of the measuring region in a total time T, m is the
fringe visibility and £ the expectation operator. The measuring
volume is assumed to be so small that the velocity gradient
perpendicular to the wall can be regarded as linear, i.e.

u=up+ Cy -

where o is the velocity at the centre of the measuring volume
and C is the velocity gradient. There are no velocity gradients
in the axial and tangential directions.

For our experimental arrangement exp (—#272[r?)=1 in
equation (1) since there are a large number of fringes within
the measuring volume (147 between the ¢~2 intensity points).
We also note that » and ¢ are proportional to u and «?,
respectively, for a continuous stream of particles. The proba-
bility distribution of Jy; is Gaussian with standard deviation
of4/2; hence the probabitity distribution of Io® is Gaussian
with standurd dcviation o/2. Thus, disregarding the pedestal
value, the observed autocorrelation function is

«©
E(R(7))==constant x f exp (—4y?{a?) cos [(1o+ Cy)Dr)dy
-
where D=2=/s. Infinitc limits are justificd by the fact that
the Gaussian function dics rapidly to zero and therefore
the contribution to the integral from regions outside the
flow boundarics is negligible, provided that the e-2 point
on the intensity distribution does not extend beyond the
wall.

Carrying out the integration we find (Grobner and Hofreiter

1949)

E(R(7))=constant x exp (— a2C2D2r2/16) cos uDr, (2)

and Fourier-transforming equation (2) gives the power
spectrum for the intensity as

¢(w)=constant x exp (_'ééo‘gag ), (&)

i.e. the spectrum is Gaussian with standard deviation
CDof2.

1t is seen from cquations (2) and (3) that increasing the
velocity gradient has the cffect of damping the correlation
function more rapidly or alternatively broadening the width
of the spectrum, althoush the position of the spectrum peak
is not altered. Since D and ¢ are known constants for a
particular optical configuration, measurement of the spectrum
width gives a dircet measure of the velocity gradient.

§ Analysis of corrclograms

The correlograms oblained in the experiments were analysed
by dircct cosine Fourier transformation, ie. the power
spectras were computed from the relationship

)= ROT+2T X0 R(T) cos 2mfsT

-1

[<AT

where 57 is the time lag for channel number s and m is the
total number of corrclation lags.
This method is particularly simple to apply and it has

been found that it leads to accurate determinations of both
the peak frequency and the variance (Daudpota 1976),
provided that the corrclogram has decayed to effectively
a constant level within the range of the channels available
(in our case 48). A suitable decay rate can casily be achieved
by choosing an appropriate optical phase shift. If a fast
Fourier transform had been employed it would have necessi-
tated extending the correlation function to 64 channels, which
would have yielded 32 Fourier cocfficients. The cosine trans-
formation, on the other hand, yields 48 coeflicients directly.
Since the zero value of the count correlation function is not
proportional to the mecan square intensity, this value is
disregarded in the transformation. Instead, the value of
R(0) is set to be just greater than max | R(sT)|. The precise
value chosen is unimportant since it only introduces a constant
pedestal Ievel into the spectrum.

If the transformation technique just described is used
together with a peak detection routine, computer-constructed
mean velocity plots may readily be obtained. A typical
computation time on the IBM 370 computer for a mean
velocity profile was 45 s.

6 [Lxperimental results

Although the system was intended for the study of flow
in bends and bifurcations, preliminary experiments were
carried out for pulsating flow in straight tubes, since there
are proven theoretical results for the velocity profiles in
this case. The axial velocity profile at any given phase position
is a function of the parameter a® which may be interpreted
cither as an oscillating Reynolds number or as the ratio
of a characteristic diffusion time a?v¢-! to a characteristic
oscillation time w-'. For small «, the flow is quasi-steady
and for large values the flow is frequency-dominated. Two
scts of measurements are presented here for -different glass
tutes and different values of a.

The first set of mecasurements was made in a tube of
internal diameter S mm at a frequency parameter of a=0-83
and a peak Reynolds number of 96. At this low frequency
the velocity profile can be considered quasi-steady and
should therefore be parabolic in form. Figure 4 shows the
experimental profiles at threc phase positions in the cycle,
0, 30 and 180> the O and 180° profiles representing the
maximum velocity in the two directions. The parabolic
form is easily seen. As a double check on the validity of the
results, particularly in regions of high velocity gradient,
the widths of the transformed spectra were measured and tiie
velocity gradients calculated by applving the theoreticai
predictions detailed in section 4. In regions close to the wall
the predicted and mecasured gradients agreed to as close as 1 25,

The second set of measurements was made in a tube of in-
ternal diameter 6-2 mm at a frequency parameter of a=4-36
and a peak Reynolds number of approximatety 100. At this
higher frequency the profiles are expected te deviate consider-
ably from the quasi-stcady parabolic form. An analytical solu-,
tion of the Navicr-Stokes equation has been given by Uchida
(1956) which covers this case. He shows that the axial velocity
u(r, 1) at time ¢ and radial distance r from the centre of the
tube for a pressure gradient K cos wr is

. u(r, 1Yy=(Ka/wv)[B cos wt + (1l — A) sin wr], )
where
B_bci a ber ar—ber « bei «r
T beitat berta
and
A_bor a ber ar + bei « bei ar

bei? a+ ber? «
where a is the tube radius, K the maximum pressure gradient
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and ber and bei arc Kelvin functions. Figure S shows
measured velocity profiles across the tube at phase positions
of 0 and 30° and also the profiles predicted by equation

(4) for comparison. It is scen that the agreement is good.

7 Couclusions

The single-lens laser Doppler system, in conjunction with
the sampled photon correlation method of signal analysis,
is scen to give very reliable velocity profile measurements
for pulsating air flows in glass tubes down to S mmyin diameter.
The arrangement is being used by the authors to study pul-
siating flow patterns in bends and bifurcations and other
geometries of physiological significance. Theoretical predic-
tions of flow patterns are less well established in these cases.
Mcasurements have also been made by the authors in a
tube of 3-5mm diameter and the system appears to work

646

well. It is possible that, with care, velocity profiles in tubes
down to 2 mm diameter could be obtained.
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APPENDIX G

" Measurement of Oscillatory Flow in Small

E.Tubes using the Photon Correlation Technique
] o ’ . by

T. Mullin and C.A. Greated

. Department of Physics, University of Edinburgh, U.K.

ABSTRACT

The applicatioﬁ of photon~correlation methods to the measurement
ofhﬁécillatory air flows in small diameter tubes is described. It is
shown that with a laser Doppler optical arrangement in the forward scatter’
mode; a sampled version of the signai may be used to obtain instantaneous
velocity measurements in fully reversing flows,

With a sipgle aspheric cqﬁverging lens sufficient spatial resolution
is oﬁtained to enable velocity profiles to be méasured in tubes ranging
in diameter from 3.5 mm to 6.0 mm. Peak ReYnold's numbers ~ 100 at a
fxequency of 0.25 Hz which éorrespond'to parameters associated with the
' mi@dle‘airways of the lung, are thus éasily obtaingd.
| Exéeriméntal results are shown f;r both straight and curved tubes
of vary;ng radii of curvature and a description will also be given of

ongoing experimental work.

- PROC. OF "PHOTON CORRELATICN TECHNIQUES IN FLUID

- MECHANICS", CAMBRIDGE 1977.
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1.  INTRODUCTION : , R S

Air flow, in model ﬁronchial‘bifurcations has been sthdied by
Olseﬁ (1971) using large models-and hot-wire instrumentation. However;
the large models used presénted great practical difficulties when
measurements at ¥ealistic Reynolds numbers vere attempted. Also the
measurement§ were all made in steady fléw conditions,

A technique has now been developed,'using photon—correlation
anemometry, which enables studies of §ure oscillatory air motion in
smal} diameter tubes to be made. Using avgated version ¢f the signal
frpm the output of the éhotomultiplier, "instantaneous" velocity
profilés may be obtained at predetermined points in a cycle,

Reynolds numbers in the range O - 200 are readily obtained in
the frequency range 0.25 - 5 Hz and thus bronchial parameters are

satisfactorily simulated.

2. PUMPING ARRANGEMENT

As shéwn in diagram (1)-the basis of £he pumping system is a
scotch yoke which provides a sinusoidal flow. fhe frequency of
oscillation may be readily altered by changing the speed of the motor
driving the system. Also thg amplitude.of oscillation, and thus the

peak Reynolds number, may be changed by adjusting the stroke of the

piston.

An advantage of using this system is that it is totally enclosed

énd'thus any seeding which may be required is directly controlled

and also remains in the system for a considerable amount of time,

This second point is important here since each correlation function

takes 2 - 3 minutes to build up.
"The function of the hot-wire in the system is to indicate the

peaks of the flow cycle and thus give a check on the sample point

position.

Using a simple rotary switch with all contacts removed except one,

—
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a pulse is derived as shown schematically in diagram (1l). This pulse
is used to switch the output of the photomultiplier on for a pre-
determined part of a cycle such that "instantaneous" velocity measurementé

are made.
3." OPTICAL MEASURING SYSTEM

The optical system cbnsis£ed of é 15 mW He-Ne léser with a Malvern
Instruments beam splitter. Thé two beams through.é Malvern type KS023
phase modulapg;;.which has a fixed separation of 2 cm. The beam spacing
was expanded to 4.6'cm using a telescope—type arrangement consisting
of 'a 13 cm foca; lengtﬁ 1ens.followed by a 30 cm focal length lens.

" Compensation for the expansion of each individual-beam wa; obtained
by use pf a 25 cm focal length lens placed in front of the beam splitter.
~ The beams wegé made to interséct by use of a 3.8 cm focal length
aspheric lens (-F/No. 0.55) corrected.for minimum spherical aberration.
fhié gave a beam intersection angle of 600. Using the laser beam
propagation theory of Kogenlik (1966) the measuring volume was calculated
to be 145 pum at the l/e2 intensity points with 147 "fringes" cbntained
in the measuriné volume.
" Scattered light was col}ected iﬁ the forward scattering direction
uéing a collecting lens which focuésed the @easuring volume fegion
on to the fron; of a photomultiplier tube. A 200 ¢m pinhole was placed
in frént of the P.M.T. in order to feducé.flare which occurred especially
inéar side walls of thé measuring tube.

Therptical system was kept stationary throughout each experiment
and the tube was moved relative to this on a precision optical table
graduated in 0.0l mm steps. In thié way velocity profiles could be
" obtained. .

Optical alignment probleﬁs were minimised using the above single
1eps system but several checks had to be made on the system before its

reliability was accepted.
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According to Hanson (1973) if the intersecting beams do not cross
at their Gaussian waists then the "fringes" formed will be unequally.
spaced across the fringe volume. Using the formula he defived, thé
value for the broadeniné in this case came out to bé ~ 0.4%,

.In order to verify this a simple experiment was carried out.which
involved méving a rétating perspex disc through the "frinée" volume
ana noting any changé-in velocity measured. The result was that the

volume appeared to be distorted towards one edge giving an error of

. 0.5% but that was outside the 1/e limits where the signal strength

is low.

4. DATA COLLECTION AND ANALYSIS

-

The correlograms obtained on the Malvern correlator are auto-
matically stored on a PDP 8 computer: At the end of each experimental
session the data is transferred to a IBM 370 computer where each.
correlogram is transferred using a direct coéine Fourier transform
and an interpolation procedure'is used to obtain the mean velocity.
The computation time involved to obtain a mean velocity profile plot
of 20 points is of the order 45 sgconds.

As mentioned previously'the effect of the Qelociﬁy gradient is to
broaden'the spectrum obtained. Thus velocity gradient information
may be obtained from the width of the-spectrum of those correlograms
which have decayed within the 48 channels of the correlation. -The.
velocity gradients measured in this way wefe within the calculated

value to better than 1%, a further indication of the quality of the

"fringes" produced in the measuring volume.

5. RESULTS
A few results are now presented which give an indication of the

typc of information which may be obtained using the above system.

‘The first profiles, Diagram 2, were taken in a straight tube of
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inside diameter 5 mm, at Re. No. 96 (peék) at a f¥equency of.0.25 Hz.
fhe th'préfiles are tgken at the 60° and 90° phase positions in a cfcle
and as predicted by Uchida (1955) the flow is quasie<steady. The dashed
line indicates true Poiseulle flow and the crosses experimental points,
The velocity contour plot,Diagram 3, is constructed from 6 prdfile§
taken a£ 30° intervals aréund the tube. A 3.5 mm curved tube was used
here with radius of curvature 1/50, Re. No. 110, frequency 0.25 Hz and
taken at phase éosition 300, 90o around the‘beﬁd. The'nett effect is
that the contours aré distorted siightly towards the éﬁtside of the
bend as is expected. The odd shape in the centre of the plot is
repeatablevand appears to rotate with.changing pﬁase position.
The final sequénce of profiles, Diagrams 4-6, were taken in at
6 mm diameter cur;ed tube with rad;us of curvature 1/7. The frequency
of oscillation was 5 Hz with Re. No. = 186 (peak). The peak of‘the
profile at 300 phase is at the inside of the curvé working its way
towards £he middle at 90o phasg and finally towards the outside later
.on in the cycle. Inward centrifug;ng effects have been predicted
“theoretically by Lynne (1970) but the frequency parametefs quotéd in
his theory are just outside the range of this experiment.. Further
work is being cafried out in this field. : o

6. CONCLUSIONS

It has been shown that, using a relatively simple single lens
optical system, high quality results may be obtained from the measure-
ment of air velocities in small diameter tubes using photon-correlation

anemometry.
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NOTATION

This section contains a list of notation used

throﬁghout the thesis.

The appendices contain some

additional symbols and these are defined as they are used

within each appendix.

Co1%2r2C21

D D

1R P11 P3R>

D3I

No

bei A bei AL r + berd ber <
2 2
bei o + ber oL

bei ol ber oL r - berL bei L r
c 2
bei « + ber

radial functions associated with the Hankel
transform solution of the first order

secondary flow equation

amplitude paramete: used by McConalogue and

Srivastava (1963) D=L4JK

radial functions associated with the Hankel
transform solution of the first order axial
velocity perturbation equation

Dean number of flow = Re \[Ef; when quoted
as peak DNo this means thatRit is based on
the maximum value of the instantaneous

mean velocity
finite Hankel transform of the function F(r)

radial function number n associated with the

small ol approximation of equations



HooreHoogr s Hoot

HoygrsHoyg

Re.

Re[: :1

R (sT)

R (2)

N2
/123
2K a

Amplitude Parameter = —
RY W

radial'functiqns associated with the Hankel
transform solution of second order

secondary flow equations

definite integreal number n, each one is

defined in the text,

Bessel function of order/pb

§ I (x)
dx

Dean expansion parameter

Anplitude of applied pressure gradient
Pressure

radius of curvature of curved tube

Reynolds number of the steady component of
the secondary flow
w d
Reynolds number of flow = —
real part of function enclosed in brackets

correlation lag value

radius of curvature of wevefront of laser

beam at distance Z from the beam waist

summation number n, each one is defined in

the text
time

r component of secondary flow:



a

ber (x),bei(x)
ber (x),bei(x)

|

Woo W9

N3
¢ component of secondary flow
axial velocity

maximum value of the amplitude of

instantaneous mean velocity

- eme e me e

" radius of the tube

real and imaginary Kelvin's functions
d(ber(x) ) , d(vei(x) )
a x d x

pipe diameter

fringe volume length

Napierian légarithm base

stream function

Doppler difference frequency

focal length of 1ens n

radial function of straight pipe equation

non-dimensional radial co-ordinate =

RN

radial co-ordinate

beam radius defined at the 12 points of
e

the intensity distribution

time
/

W

Id

=

non-dimensional axial velocity =

)

straight pipe and first order axial velocity

component
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<
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[

ke
S ~
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£

N4

mean velocity

frequency parameter of flow = a /%?

frequency parameter of Lyne (1970) = JZ

A
half angle between intersecting laser beams
angular distance around curved tube

wavelength

kinematic viscosity

density -
non-dimensional time = (Pt
angular co-ordinate within pipe

Y . . b
non-dimensional stream function = =

first and second order secondary flow stream

functions
povwer spectral function

angular frequency of flow

angular Doppler difference frequency

scaled variable associated with Stokes layer

in boundary layer approximation = £ (1-1)
Ja'

jth eigen value of the equation J1(z a.)= 0

/
jth eigen value of the equation Ja(z j)=-0
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