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Abstract 

Mutations in the tumour suppressor genes SMAD4 (or DPC4, deleted in pancreatic 

cancer locus 4), APC (adenomatous polyposis coli) and p53 have been implicated in 

pancreatic cancer in humans. This thesis firstly documents the in vivo effects of 

mutations in these genes singly and in combination through spontaneous and 

carcinogen- induced murine models of pancreatic tumourigenesis. Second, it 

examines the in vitro effects of TGF -ß signalling, of which SMAD4 is the central 

mediator, on murine primary cultured pancreatic acinar cells. 

Previously p53 ApcM "i+ mice have been shown to develop pancreatic tumours. To 

examine the effect of Smad4 heterozygous mutation on the development of these 

tumours, Smad4 +i mutation was introduced into p534- and p531- ApcM "v+ mice. No 

pancreatic phenotype was found in p534- Smad4 +i - animals. p53 4-ApcM1 Smad4 +i 

animals did not exhibit promotion of tumourigenesis in any tissues compared to the 

p53í- ApcM"+ mice. Immunohistochemical studies revealed loss of SMAD4 protein 

within the majority of the lesions arising in p53 - ApcM "i+Smad4 + / animals. 

Furthermore, microdissection and mutational analysis revealed LOH for Apc and 

Smad4. 

Treatment of wild -type (WT) Smad4 +i, ApcM "l+ or ApcM "i+Smade- mice with N- 

Nitroso-N- Methyl Urea (NMU) resulted in abnormal foci in pancreatic acinar cells, 

characterised by (3- catenin stabilisation. Previously these foci have been shown to be 

the precursors of pancreatic neoplasia. Only NMU- treated ApcM "i+Smad4 + / mice 

exhibited a significant increase in abnormal pancreas, which was found to be due to 

an increased number of abnormal foci rather than increased focus size. A range of 

foci sizes were analysed, but only smaller abnormal foci were characterised by 

morphological nuclear atypia. These studies suggest functional co- operation 

between TGF -(3 and Wnt signalling pathways in the suppression of pancreatic 

tumourigenesis in the mouse. 
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In order to investigate TGF -ß signalling in WT murine primary pancreatic acinar 

cells TGF -3 was given to these cells under different conditions. Two main 

conclusions were drawn from these experiments. First that TGF -13 in conjunction 

with EGF could accentuate acinar cell attachment and motility in the presence of 

serum. This effect was not associated with changes in cell proliferation. Others 

working on primary culture of rat hepatocytes have also reported synergy between 

EGF and TGF -13 resulting in increased motility suggesting this interaction may be 

common among different cell types. Second, in serum free conditions, TGF -13 

caused reduced BrdU incorporation and increased apoptosis. Immunofluorescent 

studies, analysed by confocal microscopy, revealed that these cellular behaviours 

were associated with changes in the cyclin dependent kinase inhibitor, p27, but not 

p21. Whether these effects are mediated by SMAD4 remains unconfirmed as 

immunoblotting revealed SMAD4 to be present in the nucleus of these cells in the 

absence and presence of TGF -ß. This investigation into the effect of TGF -ß on 

primary pancreatic acinar cells reflects the multi -functional nature of TGF -13 

signalling, highlighting interaction between TGF -13 and EGF signalling pathways and 

suggesting a mechanism of TGF -ß- induced growth suppression via p27 in these 

cells. 

These studies provide insight into the combined effects of mutation in p53, Apc and 

Smad4 in the development of pancreatic cancer and suggest possible cellular 

mechanisms through which Smad4 mutation and disrupted TGF -ß signalling could 

promote pancreatic cancer in humans. 
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Chapter 1 - Introduction 

1.1 Tumourigenesis in the pancreas 

Cancers of the pancreas are particularly aggressive and the average survival time 

after diagnosis is 4 -6 months. Strategies for early detection of pancreatic 

adenocarcinomas have not yet been developed, and most pancreatic 

adenocarcinomas present with metastatic or locally advanced disease at the time of 

diagnosis. Chemotherapy and irradiation are largely ineffective and metastatic 

disease often develops after potential curative surgery (Cohen et al., 1996; Staley et 

al., 1996; Parker et al., 1997). In the past few years much work has led to a closer 

understanding of the genetic alterations in adenocarcinomas of the pancreas (Hahn 

and Schmeigel, 1998), however the molecular events behind this aggressiveness 

remain largely unknown. Table 1.1 contains a summary of those genes so far 

thought to be involved in pancreatic tumourigenesis. This work focuses on three 

tumour suppressor genes (TSG), deleted in pancreatic cancer locus 4 (DPC4 or 

SMAD4), adenomatous polyposis coli (APC) and p.53. Each of these has been linked 

with pancreatic cancer and in certain cases with each other. The work contained in 

this thesis has used mice with mutations in these genes. Throughout the course of 

this thesis, italics will be used to denote genes and regular font will be used to denote 

proteins. Human genes will be in capitals however murine genes will have the first 

letter only capitalised. All protein abbreviations regardless of species will be 

capitalised. 
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Table 1.1 - Genes thought to be involved in pancreatic cancer 

Gene Function Role in pancreatic 

cancer 

Proportion of 

pancreatic 

neoplasms 

with 

mutation 

Chr. locus 

in human 

References 

p16 Role in cell cycle control 

as Cyclin Dependent 

Kinase inhibitor, present in 

same pathway as RB. 

Inactivation 80 -100% 9p21 Caldas et al., 

1994; Okamoto 

et al., 1994; 

Huang et al., 

1996; Schutte et 

al., 1997 

K -RAS Integration of growth 

factor signalling into the 

cell cycle. 

Activation 75 -90% 12q12 Reviewed in 

Howe and 

Conlon, 1997 

p53 Cell cycle arrest, apoptosis 

induction, DNA damage 

repair, cell senescence and 

stress responses. 

Inactivated -.50% 17p13 Reviewed in 

Howe and 

Conlon, 1997 

DPC4/ 

SMAD4 

Central mediator of TGF -f3 

family signal transduction. 

Inactivation 50% 18q21 Hahn et al., 

1996; Schutte et 

al., 1996 

APC Downstream effector of 

Wnt signalling pathway, 

modulator of (3- catenin. 

Also involved in 

chromosome stability and 

cytoskeletal organisation. 

Inactivation <40% 5q21 Hahn et al., 

1995; Fodde et 

al., Näthke et 

al., 1996. 

Reviewed in 

Howe and 

Conlon, 1997 

BRCA2 Maintenance of genome 

integrity. 

Inactivation 9.8% 13(112 Goggins et al., 

1996; Hahn and 

Schmeigel, 

1998 

RB Cell cycle control. 

Participates in same 

pathway as p16. 

Inactivation 6 -23% 13q12 Huang et al., 

1996; Howe and 

Conlon, 1997 
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1.2 The pancreas 

1.2.1 Physiology of the pancreas 

The pancreas is a dual function organ with roles in digestion and maintenance of 

glucose homeostasis. Thus the pancreas has an exocrine compartment involved in 

the production and delivery of digestive enzymes to the digestive tract and an 

endocrine compartment which synthesises and secretes hormones into the 

bloodstream. The exocrine compartment comprises approximately 95 -99% of 

pancreas and consists of two cell types, the acinar cells (which manufacture digestive 

enzymes such as proteases, nucleases and amylases) and the duct cells which form a 

network of ducts that transport the enzymes into the small intestine. The endocrine 

compartment of the pancreas is found in structures called the islets of Langerhans 

which are aggregates scattered throughout the exocrine pancreas: they are composed 

of four cell types: a, 13, y and PP cells. These four cell types are involved in the 

manufacture of the hormones glucagon, insulin, somatostatin and pancreatic 

polypeptide respectively. The majority of the cells in the islets of Langerhans are 13- 

cells (reviewed in Ogami and Otsuki, 1998). 

1.2.2 Development of the pancreas 

In the mouse embryo, the first induction of pancreatic morphogenesis occurs around 

9.5 dpc (days post coitum). The dorsal mesenchyme condenses and the underlying 

endoderm of the foregut evaginates. From this evagination arises first a dorsal 

epithelial bud followed by a ventral epithelial bud. Through a series of epithelial - 

mesenchymal interactions the cells in each bud proliferate and begin tissue 

organisation through the formation of epithelial branches. By 14.5 dpc distinct 

exocrine acinar and ductal cells are present, and by 18 dpc islets of Langerhans can 

be found. Finally, the two buds fuse together to form the functional organ (reviewed 

in Slack, 1995). 

1.2.3 Acinar to ductal transdifferentiation in the pancreas 

All the cell types present in the pancreas are thought to differentiate from a common 

pluripotent progenitor cell type. However the existence of a pancreatic stem cell in 
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adult tissue is still under debate, in humans it has been suggested that the 

centroacinar cell could be a possible stem cell (Jamieson et al., 1981; Longnecker, 

1990). The possible existence of a pancreatic stem cell is of particular interest to this 

work as cells in the exocrine portion of the pancreas retain the ability to 

dedifferentiate or transdifferentiate once the organ is fully formed. Most human 

pancreatic cancers are ductal in composition, however the possibility that a lineage of 

the acinar cells or a pancreatic stem cell which de- or transdifferentiates into a 

tumourigenic ductal like cell cannot be ruled out. Most mouse models of pancreatic 

cancer are acinar in composition (Longnecker et al., 1992), highlighting an intriguing 

species difference which can be utilised to further investigate this phenomenon. 

Therefore investigations into transdifferentiation in the pancreas are of particular 

interest to those investigating pancreatic tumourigenesis in humans. 

Previous work using both murine and human primary pancreatic acinar cell cultures 

has revealed that acinar cells can transdifferentiate under certain conditions and that 

this differentiation was associated with an increased proliferative capacity. De Lisle 

et al. (1990) investigated the expression of acinar and ductal antigens in acinar cells 

held in culture for a period of 21 days. Previously they had shown that acinar cells 

lost their differentiated morphology in culture which coincided with decreased 

expression of secretory proteins. When the expression of the acinar and ductal 

antigens was analysed it was found that the acinar cells initially expressed the acinar 

antigen but that this rapidly decreased by day 7 of culture. Conversely, no ductal 

antigen was observed until day 5. In culture this ductal antigen expression increased 

until day 9 when virtually the whole population of cells were positive for the ductal 

antigen. Day 9 was also the found to be the time when the cells reached their peak of 

proliferation. Vitally, a stage of dual expression in some cells was reported 

suggesting that the acinar cells were indeed transdifferentiating. As the cells reached 

confluency the ductal antigen expression decreased and the acinar antigen was again 

found to be present and indeed increased to be expressed in 97% of the population. 

The proliferation rates decreased steadily after confluency was reached. The 

differences in antigen expression were also found to be correlated with changes in 

cellular morphology. Expression of the acinar antigen was associated with polarised 
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cells that had well organised rough endoplasmic reticulum and small apical vesicles. 

The ductal antigen was associated with cells which were undifferentiated in 

appearance. This work demonstrated reversible acinar to ductal transdifferentiation, 

with associated changes in proliferation. Similarly, Hall and Lemoine (1992) 

published work using human primary acinar cell cultures where acinar cells (as 

characterised by amylase positivity and keratin 19 and mucin negativity) appeared to 

transdifferentiate into ductal -like cells (amylase negative and keratin 19 and mucin 

positive). 

1.3 The genetic basis of tumourigenesis 

In tumourigenesis, cells which have altered rate -limiting regulatory pathways are 

positively selected because the mutations have provided the cancerous cell with a 

growth advantage compared to the surrounding cells. This leads to clonal 

populations of tumour cells all possessing this selective growth advantage 

(Rozenblum et al.,1997). The ensuing development of neoplasia however involves a 

serial accumulation of other genetic changes, not just one. The order in which these 

mutations occur is also important in that for a specific tissue certain gene mutations 

instigate tumour initiation, in others tumour progression and still others induce 

invasiveness (Kinzler and Vogelstein, 1996). This has been illustrated through work 

in colorectal cancer and Figure 1.1 summarises the genes found to be mutated at 

specific stages in colorectal cancer. 

The growth advantage gained by tumour cells reflects changes in signalling pathways 

in which the products of these mutated genes normally act. Therefore where clonal 

expansion of a population of cells occurs via multiple genetic alterations, multiple 

signalling pathways must be affected. As Rozenblum et al., (1997) hypothesise the 

mutation of one gene in a pathway nullifies the need for another mutation in the same 

pathway. So coexistence of mutations in different genes in a tumourigenic 

population of cells implies that these genes are involved in separate tumour 

suppressor pathways, although communication between pathways must occur. For 
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example, p21 is implicated as a downstream target of SMAD4 in TGF -13 

responsiveness as well as p53 mediated G1 /S growth arrest (Ewen et al., 1993). 
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Figure 1.1 - Summary of genes thought to be involved in colorectal cancer 

progression. 

Normal Epithelium 

4 C 
Dysplasic aberrant Crypt Foci 

APC 

Early Adenoma 

4 

p53 

Smad 3 

Figure 1.1 - Diagram of histologically identifiable stages in the progression of 

colorectal cancer. Also shown are genes which, when mutated, have been found to 

be associated with progression from one stage to the next (Kinzler and Vogelstein, 

1996; Zhu et al., 1998). 
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1.4 Mouse models of tumourigenesis 

Animal models are frequently used in the study of cancer and its development. 

Mouse models of human diseases allow examination and manipulation of the 

pathology of the disease before death and provide a means whereby treatments can 

be tried and tested before use in humans. Mice are often used due to a wealth of 

anatomical, embryological and genetic data held on them coupled to a short 

reproductive cycle and their small size. Recently with progress in experimental 

techniques, such as transgenic insertions, embryonic stem cell knockouts and 

conditional gene targeting (for example, Cre /LoxP technology, Sauer, 1993), many 

mice containing homologous mutations to the human situation have been 

constructed. Also chemical mutagens have also been used to generate genetically 

modified mice, for example the ApcM "il+ mouse (Moser et al., 1990; Su et al., 1992). 

Most work in generating transgenic mice through which to investigate 

tumourigenesis has involved making animals with tissue -specific activating 

mutations in oncogenes or inactivating mutations in TSGs. The production of mice 

predisposed to cancer which (similar to the human situation) progress through a 

defined set of histological changes allows correlation between specific gene mutation 

and changes in cell behaviours. For example dissection of the histological and 

genetic changes occurring during pancreatic islet cell tumourigenesis in the RIP -Tag 

mouse, (in which the SV40 T- antigen is expressed under the control of the rat insulin 

promoter) has provided information regarding the relative importance of apoptosis, 

angiogenesis and cell adhesion in tumour development (Hanahan, 1985). For a good 

review on the utility of mouse models in the study of cancer see Macleod and Jacks, 

(1999). 

1.5 TGF-f3 superfamily signalling 

1.5.1 The TGF -ß superfamily 

The transforming growth factor-13 (TGF -ß) superfamily consists of a large number of 

structurally related growth factors which are remarkably conserved between 

organisms. Four subfamilies exist which are grouped according to structural or 
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functional similarity: the TGF -I3 family; the inhibin /activin family; the 

decapentaplegic (dpp) and Vegetal (Vgl) related group (DVR group) containing 

bone morphogenetic proteins (BMP) and growth and differentiation factor (GDF) 

and other members in none of these groups such as nodal, glial derived neurotrophic 

factor (GDNF) and mullerian inhibiting substance (MIS) (Kingsley, 1994). 

Members of this superfamily control a vast range of cellular activities discussed 

below (reviewed in Barnard et al., 1990; Sporn and Roberts, 1990). They act on 

many diverse cell types and are fundamentally involved in the development and 

patterning of a multicellular organism and the maintenance of homeostasis within 

that organism. 

This thesis is primarily concerned with the TGF -13 subfamily, of which there are 

three members, TGF -131, TGF -132 and TGF -ß3, each possessing a conserved seven 

exon structure (Derynck et al., 1988). Whilst TGF -131, 2 and 3 are located on 

different chromosomes in both man and mouse (Fujii et al., 1986; Barton et al., 

1988; ten Dijke et al., 1988; Dickenson et al., 1990) and differentially expressed in 

development, it has been shown that these three highly conserved polypeptides can 

have similar activity and potency on cultured cells (Cheifetz et al., 1987; Seyedin et 

al., 1987; Graycar et al., 1989). Unless otherwise specified the majority of work 

reviewed here has focused on TGF -131, however many do not specifically state that 

they are referring to TGF -131, thus this thesis simply uses the term TGF -ß. 

1.5.2 Structure of TGF -13 

TGF -(3 is a dimer consisting of two identical 112 amino acid (a.a.) chains linked by 

disulphide bonds. The individual chains are secreted as a precursor (390 a.a. in 

length) containing a hydrophobic NH2 terminal signal sequence, a glycosylated pro - 

region (to allow translocation across the endoplasmic reticulum) and a COOH 

terminal bioactive domain containing 9 cysteines (Massague, 1990). After secretion 

TGF -(3 exists in a latent form consisting of a dimer of the two bioactive regions. 

Whilst the N- terminal signal sequence and pro- region domain has been cleaved off, 

the proactive domain remains associated with the dimer. A large secretory 
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glycoprotein called latent TGF -ß- binding protein (LTBP) is involved with the TGF -(3 

complex where it functions in the secretion, storage in the extracellular matrix and 

activation of latent TGF -13 (Miyazono et al., 1993; Taipale et al., 1994; Nunes et al., 

1997). The dissociation of this complex allows activation of the TGF -13 dimer. Once 

released from the latent complex TGF -ß can by bound by various extracellular 

matrix (ECM) components and certain serum proteins which could be a mechanism 

of clearance or may function as a reservoir. 

1.5.3 Functional consequences of TGF -ß signalling on cell behaviour 

The TGF -13 subfamily has varied and often conflicting functional consequences on 

cell behaviours depending on cell type and environmental conditions. TGF -ß has 

been shown to be involved in the positive and negative regulation of cell 

proliferation, cell differentiation, ECM deposition and degradation, cell migration, 

immunological and inflammatory responses and developmental organisation 

(Massague et al., 1990; Barnard et al., 1990; see Table 1.2). The actual effect of 

TGF -ß on a particular cell is a result of the integration of many different variables 

such as cell type, differentiation state, environment (particularly ECM) and the 

actions of other cytokines. Thus an in vitro response may not accurately predict an 

in vivo response to TGF -(3 signalling. Of particular relevance to this thesis is the 

function of TGF -ß in the control of the cell cycle and of cellular adhesion and matrix 

interactions. 
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1.5.4 TGF -ß signalling - control of the cell cycle 

Cell cycle progression is regulated by Cyclins and Cyclin dependent kinases (CDK) 

which control an ordered series of checkpoints (see Figure 1.2). The action of the 

CDKs is further modulated by CDK inhibitors. p21 and p27 are structurally related 

CDK inhibitors which bind and inhibit a variety of CDK/Cyclin complexes. They 

are involved in the negative control of cell growth and are associated particularly 

with G1 /S phase arrest via interaction with Cyclin E /CDK2 and Cyclin D /CDK4 /6 

complexes. p21 and p27 are up- regulated by factors such as cell contact, serum 

deprivation, differentiation and various growth inhibitory cytokines. Their expression 

is regulated both transcriptionally and by modulation of protein stability. p21 is also 

induced by p53 in response to DNA damage and its interactions with proliferating 

nuclear antigen (PCNA) and growth and DNA damage (GADD45) imply that p21 is 

involved in DNA damage checkpoint control. Nuclear p21 is associated with cell 

cycle inhibition whereas a C- terminal truncated form of p21 localises to the 

cytoplasm and inhibits apoptosis (for reviews see Ball, 1997 and Sgambato, 2000). 

The induction of growth arrest by TGF -ß predominantly occurs at the G1 stage of the 

cell cycle. Various molecular mechanisms for this growth arrest have been 

suggested. First, as a result of TGF -13 signalling proteins such as c -Myc, CyclinD1 

and CDK4 are downregulated (Ewen et al., 1993; Malliri et al., 1996; Sandhu et al., 

1997; Ko et al., 1998). Second, TGF -13 causes an increase in expression of the CDK 

inhibitors p21, p27 and p15 (Sandhu et al., 1997; Kamesaki et al., 1998; Hunt et al., 

1998; Feng et al., 2000). TGF -ß induction of p21 and p15 is linked with SMAD 

nuclear translocation as well as growth arrest but thus far p27 has not been associated 

with SMAD- mediated TGF -ß signalling (discussed in section 1.6, Grau et al., 1997; 

Feng et al., 2000). p21 induction by TGF -ß has been shown to be p53 independent 

(Moustakas et al., 1998). Increases in p21 and p27 leads to their binding to the cell 

cycle regulatory Cyclin D /CDK4 and Cyclin E /CDK2 complexes which decreases 

the complex activity. Increased p15 causes sequestration of CDK4 and CDK6 

removing them from their regulatory Cyclin partners (Sandhu et al., 1997). 
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1.5.5 TGF -f3 signalling - control of cellular adhesion and matrix interactions 

TGF -f3 has three effects on cellular adhesion and ECM remodelling. First, TGF -ß 

has been shown to increase ECM production in cells of various types. For example, 

TGF -(3 has been shown to induce fibronectin, collagens, vitronectin, tenascin, 

thrombospondin and proteoglycans (Ignoz et al., 1987; Raghow et al., 1987; Pearson 

et al., 1988, Penttinen et al., 1988; Bassols and Massague, 1988; Koli et al., 1991;). 

This TGF -f3- induced production of ECM has been related to motility in a migration 

model of colorectal carcinoma cells. Here TGF -f3 synergistically stimulated 

hepatocyte growth factor (HGF)- induced migration of the colorectal carcinoma cell 

line L -10. This effect was associated with increased production of fibronectin and 

the synergistic promotion of migration was ablated when a fibronectin blocking 

antibody was added (Shimao et al., 1999). Second, TGF -ß can modulate cellular 

adhesion to the matrix by influencing cellular recognition of the ECM via differential 

expression of integrin subunits. For example, the promotion of migration by TGF -(3 

in glioma cells by induction of avß5 integrin subunits. This motility was ablated by 

an RGD (Arg -Gly -Asp) peptide antagonist of avf35 integrins and by an avß5 

integrin neutralising antibody (Platten et al., 2000). Finally, TGF -ß suppresses 

matrix degradation by down -regulating the expression of proteases such as 

plasminogen activators, collagenase and stromelysin and by inducing proteinase 

inhibitors such as type 1 inhibitor of plasminogen activator (PAI -1) and Tissue 

inhibitor of metalloproteinase -1 (TIMP -1) (Laiho et al., 1986 and 1987; Edwards et 

al., 1987; Kerr et al., 1990). It is generally assumed that these functions of TGF -f3 

are involved in the promotion of tumour cell invasion, angiogenesis and metastasis. 

1.6 TGF -ß signalling via the SMADs 

1.6.1 TGF -f3 receptors 

TGF -f3 interacts with two transmembrane serine /threonine kinase receptors, TGF -3 

receptor type I and type II (TGF - f3RI and TGF -í3R11, 55KDa and 70 KDa 

respectively). These proteins have three main domains, an extracellular domain, a 

highly conserved glycine /serine domain (GS domain, containing a characteristic 

SGSGSG sequence essential for activation of signalling) and a kinase domain 
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consisting of a serine /threonine protein kinase. Other residues on these proteins 

include the regulatory T Loop region on TGF- (3RII, which when phosphorylated may 

modulate signalling from the receptor and the L45 loop which appears to be involved 

in substrate recognition (Massague et al., 1998). TGF -3 activates signalling by 

binding to TGF -(3RII (Figure 1.3), followed by a subsequent interaction of the 

ligand/TGF -13RII complex with TGF -ßRI, as such type I receptors can only 

recognise TGF -(3 when it is bound to TGF -3RII. The TGF -13 dimer, type I and type 

II receptors therefore form a heterotetramic complex. The type II receptors 

transphosphorylate the type I receptors on the GS domain which activates the 

receptor complex (Wrana et al., 1994; Attisano et al., 1996). TGF -ßRI is the effector 

molecule in this receptor complex as mutations which confer constitutive activation 

on TGF -13RI result in the induction of TGF -(3- specific responses (Wieser et al., 

1995). It is therefore the activated type I receptor which mediates both the binding 

of an R -SMAD to the receptor complex and the subsequent phosphorylation of that 

R -SMAD (Macias -Silva et al., 1996, Zhang et al., 1996). It is thought that TGF -I3RII 

cannot act independently of TGF -ßRI, as cells lacking TGF -ßRI cannot effect TGF -3 

responses (Wieser et al., 1993; Brand and Schneider, 1995). 

1.6.2 The Smad family 

The Drosophila melanogaster gene Mad (mothers against decapentaplegic) was the 

first discovered member of the Smad Family (Sekelsky et al., 1995; Raftery et al., 

1996) and its discovery led to identification of three related genes in Caenorhabditis 

elegans named sma -2, sma -3 and sma -4 due to the fact that mutation in them caused 

small body size (Savage et al., 1996). This was closely followed by the discovery of 

vertebrate homologues which were named Smads as a combination of sma and Mad 

titles which already existed. The vertebrate Smadsl -8 were then quickly identified by 

a variety of methods including screening of expressed sequence tag databases and 

cDNA libraries for Mad homologues. As is often the case, work carried out on 

invertebrates regarding gene function can be utilised when the function of a 

homologous vertebrate gene is being investigated. MAD proteins had been linked to 

the TGF -13 family of signalling molecules (Hoodless et al., 1996; Graff et al., 1996; 
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Zhang et al., 1996) and the function of the SMADs was derived from this work on 

invertebrates revealing that they also participated in the TGF -ß signalling pathway 

(Figure 1.3). 
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1.6.3 The SMAD proteins 

The SMAD proteins can be divided into three functional groups, the receptor 

activated SMADs (R- SMADs, SMADs1,2,3,5 and 8), the common SMADs (Co- 

SMAD, SMAD4) and inhibitory SMADs (I -SMAD, SMADs 6 and 7). Upon 

receptor activation the R -SMAD binds to the receptor complex and becomes 

activated itself. This allows the binding of the R -SMAD with the Co -SMAD. The 

R- SMAD /Co -SMAD complex then translocates to the nucleus where it activates 

transcription. 

1.6.3.1 Structure of SMAD proteins 

Conserved structural similarities between all the SMAD proteins have been shown in 

the NH2- terminal, Mad Homology 1 (MH1) domain and the COOH -terminal, Mad 

Homology 2 (MH2) domain (Figure 1.4; Attisano and Wrana, 2000). The two 

domains are separated by a more variable linker region which varies in amino acid 

sequence and in length. This linker region contributes to the formation of the SMAD 

homo- oligomers (Hata et al., 1997; Wu et al., 1997). Also in R -SMADs the linker 

region contains MAP -kinase phosphorylation sites which, when phosphorylated, 

inhibit nuclear translocation of the SMADs (Kretschmar et al., 1997). 

The MH1 domain is approximately 130 a.a. and is highly conserved in the R -SMADs 

and Co -SMADs but not I- SMADs. In its basal state, the MH1 domain has been 

shown to inhibit the activities of the MH2 domain through physical interaction 

(Figure 1.4; Hata et al., 1997). It is presumed that receptor phosphorylation of the 

SMADs results in the dissociation of the MH1 /MH2 inhibitory interaction. The 

MH1 domain of R -SMADs has sequence- specific DNA binding properties (Liu et 

al., 1997) and the MH1 domain of Co -SMAD is thought to contribute to the DNA 

binding of the R- SMAD /Co -SMAD complex (Derynck et al., 1998). The I -SMADs 

either lack an MH1 domain or have an altered MH1 domain that no longer confers 

the ability to bind DNA (Imamura et al., 1997; Hayashi et al., 1997; Tsuneizumi et 

al., 1997; Nakao et al., 1997; Hata et al., 1998). 
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The C- terminal MH2 domain (about 200 a.a.) contains the receptor phosphorylation 

sites and physically interacts with type I receptors (Macias -Silva et al., 1996; 

Kretzschmar et al., 1997). Following phosphorylation it is involved in mediating 

interaction between SMAD (R -SMADs and Co- SMADs) proteins, nuclear 

localisation and transcriptional activation (Hata et al., 1997). The MH2 domain also 

mediates interactions with other transcription factors, coactivators and repressors 

(Lui et al., 1997; Chen et al., 1997). The MH2 domain is inactive unless an agonist 

of the pathway is present, however the presence of SMAD4 and isolated MH2 

domains of SMAD1 and SMAD2 is sufficient to activate transcription (Lui et al., 

1996; 1997). The MH2 domain is therefore the effector domain and the MH1 

domain is the regulatory domain. 

40 



SSxS 

Figure 1.4 - Protein structure of R -SMADs and Co -SMADs 

(a) 

NH2 
Terminal 

(b) 

DNA Binding 

Linker 

In Basal State: 
1) R -SMAD /receptor 
interaction 
2)SMAD homodimerisation 

MH2 Domain 

MAP kinase 
phosphorylation 

Autoinhibition 

. 
o 

Linker 

COON 
Terminal 

In Active State: 
1) R- SMAD /Co -SMAD 
interaction 
2) Interaction with DNA 
binding proteins 
3) Activation of transcription 

Figure 1.4 - (a) Representation of conserved protein structure of R- 

SMADs and Co- SMADs, showing functional domains. (b) Physical 

interaction between the MH1 and MH2 domains is thought to retain the 

proteins in their basal state. 
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1.6.3.2 R -SMADs 

The transient binding of the R- SMADs, SMAD2 and SMAD3 in the case of TGF -ß 

and activin (Zhang et al., 1996; Graff et al., 1996; Macias -Silva et al., 1996; Baker 

and Harland, 1997) and SMADs 1, 5 and 8 in the case of BMP signalling (Hoodless 

et al., 1996; Lui et al., 1996; Kretschmar et al., 1997; Suzuki et al., 1997) to the 

activated receptor complex allows the phosphorylation of the R -SMAD. Notably 

SMAD2 mutants which are unable to bind to the receptor activated complex cannot 

be phosphorylated in response to TGF -ß (Macias -Silva et al., 1996; Lui et al., 1997). 

Analysis using various SMAD1 and 2 mutants has revealed that the L3 loops within 

the MH2 domain are critical for R -SMAD binding to the receptor complex. 

Switching of the L3 loops between BMP- activated R -SMAD1 and TGF -ß- activated 

R -SMAD2 results in SMAD2 being activated by BMPs and SMAD1 by TGF -ß (Lo 

et al., 1998). Once the R -SMAD has bound to the activated receptor complex, it is 

the type I receptor which then phosphorylates the R -SMADs on serine residues 

contained within a conserved SSXS motif at the C- terminus (MH2 domain) of the 

protein (Macias -Silva et al., 1996; Abdollah et al., 1997; Kretzchmar et al., 1997). 

The SSXS motif is present in all the R -SMADs (SMADs 1, 2, 3, 5 and 8) but not in 

SMAD4 or either of the I -SMADs consistent with the fact that these SMADs do not 

exhibit agonist- induced phosphorylation (Hayashi et al., 1997; Imamura et al., 1997; 

Nakao et al., 1997; Hata et al., 1998). Mutations of the serines contained within the 

SSXS motif completely ablates signalling: R -SMADs are not phosphorylated; they 

do not associate with SMAD4; the R -SMAD /SMAD4 complex is not found in the 

nucleus and transcriptional responses are not affected (Macias -Silva et al., 1996; 

Kretschmar et al., 1997). 

The dissociation of the R -SMAD from the receptor complex appears to be facilitated 

by receptor phosphorylation of the SSXS motif, as studies involving Smad2 mutants 

which could not be phosphorylated and TGF -3RI mutants which were defective in 

their kinase action showed that the R -SMAD remained receptor bound (Macias - 
Silva et al., 1996; Lui et al., 1997). 
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1.6.3.3 Co -SMADs 

Phosphorylation and activation of the R -SMADs allows heteromeric complex 

formation with the Co -SMAD, SMAD4, the central mediator on which all TGF -ß 

signalling via the SMADs hinges (Lagna et al., 1996; Wu et al., 1997; Zhang et al., 
1997). SMAD4 is a shared partner between both the BMP activated and the TGF - 

(3 /activin activated R -SMADs (Lagna et al., 1996; Zhang et al., 1997). This complex 

of R -SMAD and Co -SMAD has been shown to exist as heterodimers or 

heterotrimers and interestingly receptor activation can also cause SMAD3 homomers 

that have DNA binding activity (Kawabata et al., 1998). Again the L3 loop plays an 

important role here, as mutations in the SMAD4 L3 loop inhibit the association of 

SMAD4 to SMAD2 (Shi et al., 1997). Thus in the case of R -SMADs the L3 loop 

mediates interaction with the receptor complex and in the case of the SMAD4 it 

mediates interaction with the R -SMAD. 

1.6.4 Nuclear translocation of SMAD proteins 

The MH2 domain of R -SMADs confers an intrinsic nuclear import activity. In 

SMAD4 defective cells both SMAD1 and SMAD2 were shown to possess the ability 

to translocate to the nucleus (Lui et al., 1997). SMAD4, was shown to 

only translocate into the nucleus in the presence of SMAD1 and SMAD2 in response 

to the TGF -(3 or BMP signalling (Lui et al., 1997). Mostly however these SMADs 

are retained in the cytoplasm in their basal state to allow prompt response to receptor 

activation. This retention in the cytoplasm is mediated in part by binding to a protein 

called SMAD anchor for receptor activation (SARA) which appears to effect three 

functions: first it anchors the R -SMAD in the cytoplasm; second by occluding the 

nuclear import signal on the MH2 domain it inhibits nuclear import and third it 

facilitates binding of the R -SMAD to the activated receptor complex (Tsukazaki et 

al., 1998). Phosphorylation of the R -SMAD by the activated receptor complex then 

unmasks the nuclear import signal (Tsukazaki et al., 1998; Xu et al., 2000). 

As mentioned above regulation of nuclear translocation occurs by MAP -kinase 

phosphorylation on PXSP motifs in the linker region of R -SMADs (Kretzschmar et 

al., 1997). Agonists which activate ERK -MAP kinases such as EGF and HGF 
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appear to result in the phosphorylation of this linker region that then inhibits nuclear 

translocation of the complex. This phosphorylation does not however inhibit 

association of the R -SMAD with the Co -SMAD. Whilst this has been elucidated 

from work on BMP signalling via SMAD1, it is thought that this regulation may be 

possible in SMADs2, 3, 5 and 8, as they also contain this MAP kinase 

phosphorylation site (Kretzschmar et al., 1997;1999). 

1.6.5 SMADs as regulators of transcription 

Once the R- SMAD /Co -SMAD complex has translocated to the nucleus it then 

activates transcription. Lui et al., (1996) originally showed that SMADs can activate 

transcription utilising GAL4 -SMAD1 and GAL4 -SMAD2 fusion constructs that 

activated a GAL4 reporter gene. Work with these constructs in SMAD4 deficient 

cells revealed that SMAD4 was essential to this transcriptional activation. 

Furthermore the R- SMAD /Co -SMAD complex binds DNA during this 

transcriptional activation. SMAD4 is itself essential to the transcriptional complex 

promoting both DNA binding and stabilising the SMAD complex (Lui et al., 1997). 

The optimal sequence of SMAD3 and SMAD4 binding is a palindromic sequence 

consisting of two copies of GTCT and its reverse complement AGAC on the 

opposite DNA strand. Tandem repeats of this sequence confer TGF -ß- inducible 

transcriptional activation (Zawel et al., 1998) and has been termed the SMAD- 

binding element (SBE). Le Dai et al., (1998) found that mutations in the MH1 

domain of SMAD4 affecting DNA binding activity resulted in an inability of 

SMAD4 to bind to the SBE. 

Transcriptional activation by the SMADs is greatly modified by transcriptional co- 

activators and co- repressors. For example, in response to receptor bound activin, 

SMAD2 /4 has been shown to bind to an activin response element (ARE) in the 

promoter of the Xenopus Mix.2 gene. This binding occurs in conjunction with a 

transcription factor, FAST -1 (forkhead activin signal transducer) that also binds to 

the ARE of Mix.2 (Chen et al., 1996; 1997). It has been shown that FAST -1, which 

resides in the nucleus actually interacts with the MH2 domain of SMAD2 rather than 

both SMAD proteins. SMAD4 is therefore involved in the transcriptional complex 
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due to its interaction with SMAD2. (Chen et al., 1997; Lui et al., 1997). However 
SMAD4 is thought to be vital to transcriptional activation, firstly by promoting the 

binding of SMAD2 /SMAD4 /FAST -1 complex to the DNA perhaps by stabilising the 

complex (MH1 domain), and secondly, by actually activating transcription through 

its MH2 domain. Cells which express FAST -1 and SMAD2, but not SMAD4 are 

unable to activate transcription of a reporter gene (Lui et al., 1997). Whilst FAST -1 

may only be a DNA binding adaptor, the activity of other transcription factors such 

as activator protein -1 (AP -1) and Spl have been shown to be enhanced by SMAD3 

binding (Moustakas and Kardassis, 1998; Zhang et al., 1998). 

A second important molecule in SMAD transcription activation is the cAMP 

response element binding protein/ p300 (CBP /p300). This transcriptional co- 

activator physically interacts with the MH2 domain of SMAD2 and 3 (Feng et al., 

1998, Janknecht et al., 1998, Pouponnot et al., 1998, Topper et al., 1998). In 

SMAD3 it has been shown that this association is aided by TGF -ß- induced 

phosphorylation of the MH2 domain. A number of pieces of evidence support the 

hypothesis that CBP /p300 is essential for the transcriptional activity of SMAD3. 

Deletions within the C- terminal domain of SMAD3 abolish CBP /p300 binding and 

inhibit transcription. Similarly functional inhibition of CBP /p300 inhibits TGF -f3 

induced transcription via SMAD3 /SMAD4. Overexpression of CBP /p300 increases 

transcriptional activity of SMAD3 /SMAD4. SMAD4 is an essential partner in 

transcriptional coactivation by CBP /p300, as in the absence of SMAD4, CBP /p300 

does not act as a coactivator. Again this could be attributed to a role of SMAD4 in 

stabilising the SMAD3 /CBP /p300 complex (Feng et al., 1998). Examples of 

transcriptional co- repressors include TG- interacting factor (TGIF), c -Ski, SnoN and 

SMAD nuclear interacting protein (SNIP1) (Wotton et al., 1999; Sun et al., 1999; 

Stroschein et al., 1999; Akiyoshi et al., 1999; Luo et al., 1999; Kim et al., 2000). 

Thus for a given promoter to be responsive to TGF-13-induced SMAD complexes it 

must first contain a specific SBE that allows direct interaction with the SMAD 

complex. Second, it must contain a sequence which allows binding of other 

transcription factors or coactivators that cooperate with the SMAD complex via a 
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direct or indirect interaction. Therefore whilst many promoters may, for example, 

bind AP -1, only those with specificity for the SMAD complex would be activated in 

response to TGF -(3 signalling. Importantly this model of transcriptional activation by 

the SMADs also allows a mechanism whereby signalling from two separate 

pathways may be integrated onto one target gene. Thus stimuli which induces AP -1, 

such as mitogens or UV irradiation, and TGF -ß signalling can converge on a single 

AP -1 binding/ SBE containing promoter (Zhang et al., 1998). The range of SMAD 

responses is therefore open to great modification by other signalling pathways which 

affect the cooperating transcription factors. 

1.6.6 -Regulation of TGF -13 signalling pathway 

1.6.6.1- Inhibitory SMADs 

The I- SMADs, SMAD6 and SMAD7, have a negative effect on SMAD- mediated 

TGF - 3 and BMP signalling. SMAD6 preferentially inhibits BMP signalling and 

SMAD7 can inhibit both TGF -ß and BMP signalling (Hayashi et al., 1997; Imamura 

et al., 1997; Nakao et al., 1997; Tsuneizumi et al., 1997; Hata et al., 1998). I- 

SMADs lack the C- terminal SSXS motif (receptor phosphorylation site on the R- 

SMADs) and the N- terminal region contains only short sequences of MH1 domain 

homology (Tsuneizumi et al., 1997; Hata et al., 1998). These I -SMADs form part of 

a negative feedback loop that could regulate both the duration and the intensity of the 

TGF -13 response. Both SMAD6 and SMAD7 respond to multiple signals including 

TGF -13, Activin and BMP7 (Afrakhet et al., 1998), and appear to act by binding to 

TGF -13RI and specifically blocking the phosphorylation of the R -SMADs by the 

activated receptor complex. (Hayashi et al., 1997; Imamura et al., 1997; Nakao et al., 

1997). A further mechanism of inhibition by SMAD6 has been shown by its ability 

to bind SMAD1 and competitively block its interaction with SMAD4 (Hata et al., 

1998). 
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1.6.6.2 Extracellular components and other ligand/receptors 

TGF -ß ligand can be modulated either via regulation of expression or by binding 

within an inactive complex with other proteins. Two cell surface associated proteins, 

betaglycan and endoglin (originally thought to be TGF- I3RIII) have been shown to 

bind TGF -f3. However, as these proteins cannot activate signalling, it has been 

suggested that they act as regulatory components (Cheifetz et al., 1987; Gougos and 

Letarte 1990; Lopez -Casillas et al., 1991; Wang et al., 1991). Their mechanism of 

regulation has both positive and negative aspects. The extracellular region of 

betaglycan, when released, is thought to act as an antagonist to TGF -ß signalling by 

inhibiting binding to receptors (Andres et al., 1989 Lopez -Casillas, 1994). 

Betaglycan has also been shown to facilitate binding of TGF -ß1, 2 and 3 to TGF - 

WII and has a particularly high affinity for TGF -ß2 (Wang et al., 1991; Lopez - 

Casillas et al., 1993; Moustakas et al., 1993; Sankar et al., 1995). Endoglin can only 

bind TGF -131 and 3. Whilst endoglin /TGF -ß /TGF -13RII complexes have been found 

in monocytes in which endoglin is thought to promote ligand binding, it was also 

shown that overexpression of endoglin can inhibit TGF -f3 responses (Lastres et al., 

1996). Other proteins which act extracellularly to inhibit ligand binding include 

Noggin, Caronte and LTBP (Massague, 1998). 

1.6.6.3 Intracellular components 

Intracellular components which have been shown to modulate TGF -ß signalling 

include extracellular regulated kinase (ERK), which has been linked with both 

positive and negative regulation of TGF -(3 signalling (discussed later), SMURF1, 

which induces ubiquitination of the BMP- activated SMAD1 and SMAD5, and 

SMURF2, which is thought to act predominantly on TGF -I3 activated SMAD2 and 

SMAD3 (Zhu et al., 1999). Other intracellular control elements include forkhead 

binding protein (FKBP), a negative regulator of receptor signalling, which acts by 

inhibiting the phosphorylation of TGF -3RI by TGF -(3RII (Wang et al., 1994) and 

BAMBI, a truncated type I receptor which disrupts ligand- induced TGF -(3RI and 

TGF -13RII heteromers (Onichtchouk et al., 1999). 
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1.6.6.4 Degradation 

In addition to the methods described above ubiquitin- mediated degradation of R- 

SMADs and Co -SMADs is an important method through which TGF -ß signalling is 

restricted. This degradation has been shown to occur both in the cytoplasm via 

interaction with E3 Ubiquitin ligase SMURF proteins (see above) and of activated R- 

SMAD /Co -SMAD complexes in the nucleus (Lo et al., 1999). Another method 

through which degradation modulates the effect of TGF -ß signalling is ubiquitination 

of SMAD partners. For example, the antagonists of TGF -0- induced transcription c- 

Ski and SnoN have been shown to be degraded in response to TGF -13 signalling (Sun 

et al., 1999), suggesting that removal of these proteins is vital in the initiation of 

TGF -ß induced transcription. 

1.6.7 Targets of TGF -0 signalling via the SMADs 

The functional consequences of TGF -13 signalling (outlined in 1.5.3 -5) depend 

largely on the transcriptional regulation of target genes. Table 1.2 outlines known 

targets of TGF -13 signalling. 
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Table 1.2 - TGF -ß target genes involved in regulation of cellular proliferation 

TGF -I3 target genes Regulation by TGF -ß Reference 

TGF -ß pathway components 

TGF -ß1 Induction Kim et al., 1990 

TGFß -RI, TGF -JRII Induction /repression Kleeff et al., 1998 Piek et 

al., 1999 

Smad3 Repression Yanagisawa et al., 1998 

Smad6 Induction Afrakhte et al., 1998 

Smad7 Induction Nakao et al., 1997; 

Afrakhte et al., 1998 

Transcriptional regulators 

c -Jun Induction Pertavaara et al., 1989 

Jun -B Induction Pertavaara et al., 1989; 

Beauchamp et al., 1992 

c -Myc Repression Pietenpol et al., 1990; 

Warner et al., 1999 

B -Myb Repression Satterwhite et al., 1994 

c -Fos Induction Pertavaara et al., 1989 

Fos -B Induction Beauchamp et al., 1992 

Cell cycle regulators 

p15 Induction Hannon et al., 1994 

p21 Induction Grau et al., 1997 

Cdc25A Repression Iavarone and Massague 

1997 

Cyclin D1 Induction /repression Kornmann et al., 1999;Ko 

et al., 1998 

Cyclin A Repression Satterwhite et al., 1994 

Taken from de Caestecker et al., 2000. 
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1.7 Dysregulation of TGF-13 signalling in 

tumourigenesis 

1.7.1 -Functional Effects of dysregulation 

TGF -(3 appears to play a dual role in tumourigensis. First, as a tumour suppressor, 

TGF -ß inhibits the proliferation of normal epithelial, endothelial or haematopoietic 

cells (Sporn and Roberts, 1990; Alexandrow and Moses, 1995). Many tumours 

exhibit TGF -ß unresponsiveness leading to loss of the anti -proliferative effects of 

TGF -13, this has been linked to tumourigenic progression (Fynan and Reiss, 1993; 

Markowitz and Roberts, 1996; Polyak, 1996). Various mechanisms for this 

unresponsiveness are outlined below. Second, TGF -13 can also accentuate the 

malignant phenotype at later stages of tumourigenesis. TGF -ß is abundantly 

expressed in various tumours of epithelial origin in which it functions to suppress 

immune surveillance, foster tumour invasion and promote angiogenesis and the 

development of metastasis (Torre -Amione et al., 1990; Fontans et al., 1992; Oft et 

al., 1998; Akhurst and Balmain, 1999; Yu and Stamenkovic, 2000). Interestingly 

pancreatic cancers are among those that often over express TGF -f3 (Friess et al., 

1993). 

1.7.2 TGF -f3 as a repressor of tumourigenesis 

Work with colon cancer exemplifies this phenomenon. Intestinal crypt cell 

proliferation is inhibited by TGF -13 (Kurokowa et al., 1987) and this inhibition is 

associated with mid/late GI growth arrest with downregulation of CyclinD1 (Ko et 

al., 1995) and blocking of the CDK4 bound RB (Ko et al., 1998). Human colon 

adenoma cells retain their response to TGF 43, however human colon 

adenocarcinoma cells partially lose this anti -proliferative response to TGF -(3 

(Manning et al., 1991). Hoosein et al. (1989) have shown that responsiveness to 

TGF -13- induced growth inhibition is linked to the differentiation state of human colon 

cell lines. This loss of TGF -(3- induced growth inhibition is also seen in other 

epithelial tumour cells including breast (Sun et al., 1994) and pancreatic (Beauchamp 
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et al., 1990) cells, suggesting that loss of TGF -ß- induced growth arrest is not only an 

important event in cell transformation but also a common event between different 

carcinomas. Various mechanisms to effect this TGF -f3 unresponsiveness have been 

suggested, including inactivation of receptors, R -SMADs or Co- SMADs, 

overexpression of antagonists of the pathway, for example I -SMADs or even 

mutations in the SBE. 

1.7.2.1 Inactivation of TGF -ß receptors 

In human disease, mutations in the TGF -ßRII gene have been shown to make cells 

resistant to TGF -f3 leading to increased tumourigenicity (Markowitz and Roberts, 

1996). Several groups have reported loss of TGF -/3RI1 as an important step in the 

transformation of epithelial cells (Park et al., 1994; Sun et al., 1994; Freeman et al., 

1995). For example, inactivation of TGF -ßRII has been reported in all microsatellite 

unstable colorectal carcinomas (about 13% of all colorectal carcinomas) (Markowitz 

et al., 1995). In microsatellite stable colorectal carcinoma cells however TGF -ßRII 

mutations are rare. Wang et al., (1995) found that transfection of TGF -f3RII back 

into receptor negative colorectal carcinoma cells effectively suppressed the 

tumourigenicity of these cells and restored TGF -( signalling. 

Downregulation rather than mutation of TGF -ORII has also been highlighted as a 

possible mechanism for TGF - 3 unresponsiveness. Work involving rat intestinal 

epithelial cells showed that activated H -ras caused a downregulation of TGF -f3RII 

which resulted in insensitivity to TGF -f3- induced growth inhibition (Filmus et al., 

1992; Zhao and Buick, 1995). Also Zhang et al., (1997) observed that increased 

Cyclin D1 and CDK4 was associated with downregulation of TGF -3RII in ApcM,,,i+ 

intestinal adenomas (discussed later). 

1.7.2.2 Overexpression of inhibitory SMADs 

SMAD6 mRNA overexpression has been seen in pancreatic cancer cells within the 

tumour mass in vivo. Also overexpression of Smad6 in COLO357 pancreatic cancer 

cells (TGF -ß responsive and SMAD4 active) blocks TGF -ß- mediated growth 
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inhibition and enhances anchorage independent growth in these cells (Kleeff et al., 

1999). Further work by Kleeff et al., (1999) has shown that Smad7 overexpression 

also enhances tumourigenicity in pancreatic cancer, thus providing another 

mechanism whereby cells could acquire TGF -ß unresponsiveness. 

1.7.2.3 Inactivation of R -SMADs 

Only two of the R -SMADs have so far been linked to cancer. Inactivating mutations 

in SMAD2 (also located at 18q21) have been found in 6% of colon cancers and less 

frequently in lung cancers (Eppert et al., 1996, Uchida et al., 1996, Riggins et al., 

1997). Besides large deletions, screening of tumours and cancer cell lines has 

revealed that mutations in SMAD2 are predominantly contained in the MH2 domain, 

where they disrupt R- SMAD /Co -SMAD binding and affect protein stability (Shi et 

al., 1997; Eppert et al., 1996; Riggins et al., 1997). Recently it was discovered that 

Smad34- mice (unlike Smad2-1 or Smad4 " mice) were viable and developed 

colorectal cancer that had progressed to a metastatic state after 4 -6 months (Zhu et 

al., 1998). However, as of yet SMAD3 mutation has not been linked to human 

tumour types (Riggins et al., 1997) though Padgett et al. (1998) hypothesise that the 

likelihood of alterations of other Smad genes in other cancer types is quite high. 

1.7.2.4 Inactivation of SMAD4 

Only human pancreatic tumours have been shown to have SMAD4 significantly 

(50 %) biallelically deleted or existing in a mutated functionally inactive form (Hahn 

et al., 1996; Schutte et al., 1996). However SMAD4 is also deleted in other tumour 

types at a low frequency, for example 20 -30% in colorectal cancers, or perhaps 

totally in a specific subset of colorectal cancers (Riggins et al., 1997 and MacGrogan 

et al., 1997) and 10% in lung cancer (Schutte et al., 1996; Riggins et al., 1997). 

Although infrequent, SMAD4 has also been found to be mutated in breast (Schutte et 

al., 1996), ovarian (Schutte et al., 1996) head and neck (Kim et al., 1996), prostatic 

(MacGrogan et al., 1997) oesophageal and gastric cancers (Lei et al., 1996). Again 

the majority of tumour -associated mutations in SMAD4 have been found in the MH2 

domain however MH1 and linker region mutations have also been reported (Schutte 

et al., 1996; Jonson et al., 1999). MH1 mutations have been found to increase the 
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affinity of the MH1 domain for the MH2 domain thus locking the protein in its 

basal /inactive state (Hata et al., 1997) 

Around 5 -10% of patients with pancreatic carcinoma have a first degree relative who 

has had pancreatic cancer. Moskaluk et al, (1997) have investigated the possiblity 

that SMAD4 is the gene responsible for this familial pancreatic carcinoma. However 

whereas p16 (a tumour suppressor) has been highlighted as mutated in 5% of familial 

pancreatic carcinomas, SMAD4 mutation does not appear to account for familial 

pancreatic carcinoma. Functionally inactivating germline mutations of the SMAD4 

locus have been described in families with Familial Juvenile Polyposis (FJP), an 

autosomal dominant, inherited syndrome associated with harmartomatous polyps and 

increased risk of gastrointestinal cancer (Howe et al., 1998; Friedl et al., 1999). It is 

not known if the truncated SMAD4 associated most commonly with FJP has a 

dominant negative activity on TGF -ß signalling, however biallelic inactivation of the 

SMAD4 gene is rare. 

1.7.3 Does SMAD4 mutation cause TGF -ß unresponsiveness? 

Several pieces of evidence support the hypothesis that SMAD4 mutation causes TGF - 

f3 unresponsiveness. First, some TGF -ß unresponsive tumour cell lines have also 

been found to be SMAD4 null (de Winter et al., 1997; Verbeek et al., 1997) and work 

using human carcinoma cell lines has shown that a functional SMAD4 allele is 

necessary for TGF -f3- mediated growth inhibition (Grau et al., 1997; Hunt et al., 

1998). Second, SMAD4 null cell lines are TGF -f3 unresponsive, as determined by a 

lack of TGF -f3- mediated induction of 3TP -lux reporter transgene in these cells. The 

3TP -lux reporter transgene contains the TGF -ß inducible PAI -1 promoter and a 

luciferase reporter gene. Transfection of these cells with SMAD4 restores the TGF -f3 

mediated induction of 3TP -lux (Grau et al., 1997). Finally TGF -ß has a known 

regulatory affect on p21 (a CDK inhibitor) as an inducer of expression and as an 

activator of this protein leading to cell cycle arrest (Malliri et al., 1996). Loss of 

SMAD4 correlates to a loss of this TGF -13- induced p21 expression (Grau et al., 

1997). 
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Whilst this points towards SMAD4 mutation as a mediator of TGF -ß resistance, the 

fact that other tumour types (in which SMAD4 deletion has not been implicated) 

exhibit this resistance highlights the fact that TGF -(3 unresponsiveness can be 

achieved through many different mechanisms. It is surprising therefore to note that 

whilst SMAD4 mutations are prevalent in pancreatic cancer, SMAD2 and TGF -ß3RII 

mutations are not (Vincent et al., 1996; Jonson et al., 1999). It has been suggested 

that this is because SMAD4 loss of function results in selection for resistance to an 

endogenous factor other than TGF-13 itself (Massague, 1998). TGF -(3 

unresponsiveness in human pancreatic cancers is therefore a complex scenario which 

is, as yet, poorly understood. 

1.7.4 TGF -f3 as a promoter of tumourigenesis 

Whilst much work focuses on TGF -ß signalling as a repressor of tumourigenesis, 

evidence also exists to suggest that it can promote tumourigenesis in a variety of 

ways (see section 1.7.1). This dual role of TGF-13 has been found in a variety of 

systems. Cui et al., (1996) found these opposing roles of TGF-13 in a model system 

involving mouse keratinocytes. In this system TGF-13 inhibited the formation of 

benign skin tumours. However in tumours which had progressed further, TGF -(3 

overexpression promoted a malignant spindle cell phenotype. Also whilst TGF-13 

induces growth arrest in well- differentiated primary colon carcinoma cells, it has the 

opposite effect of stimulating proliferation in poorly differentiated and metastatic 

colon carcinomas (Schroy et al., 1990; Hafez et al., 1992). Finally, Sheng et al., 

(1999) exposed RIE -1 non transformed intestinal cells to TGF -13 continuously. They 

found that these cells firstly lost TGF -ß responsiveness. Continued exposure after 

this resulted in morphological changes and cells became resistant to the induction of 

apoptosis by sodium butyrate. When these cells were implanted into nude mice they 

caused adenomas. Thus the authors concluded that, through overexpression of TGF - 

ß, the cells had gained a tumourigenic phenotype. 
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One possible mechanism of TGF -13 overexpression was revealed when it was found 

that transformation of cells with oncogenes such as Ha -ras and v -src resulted in 

transcriptional activation of TGF -ß (Birchenall- Roberts et al., 1990; Geiser et al., 

1991), furthermore this increase in TGF -13 did not cause growth inhibition. Oft et al., 

(1996) reported that RAS transformed mammary cells, when treated with TGF -13, 

became able to invade stroma and obtained a malignant phenotype. This 

tumourigenic phenotype was associated with upregulation of Cox -2 and 

downregulation of TGF -13RII. 

1.8 The tumour suppressor APC 

Familial adenomatous polyposis (FAP), an inherited disorder characterised by the 

formation of numerous precancerous polyps in the colon (Cannon -Albright et al., 

1991), has been shown to be caused by germline mutations in the APC gene 

(Nishisho et al., 1991, Groden et al., 1991, Kinzler et al., 1991). Mutations in the 

APC (adenomatous polyposis coli) tumour suppressor gene have since been found in 

80% of spontaneously arising intestinal tumours (Miyoshi et al., 1992). APC 

mutation has also been linked to pancreatic cancer (Horii et al., 1992; McKie et al., 

1993). Furthermore ApcM "i+ mutant mice exhibited pancreatic preneoplastic lesions 

which had LOH for Apc and stabilised 13- catenin (Kongkanuntn et al., 1999) (see 

below). In the human adult pancreas APC is expressed in the ducts, islets and 

occasionally in the acinar cells (Sieber et al., 2000). In foetal pancreas, however, 

APC is only expressed in the ducts. Whilst this thesis is predominantly concerned 

with pancreatic tumourigenesis, most of the research into APC as a TSG is carried 

out in the context of intestinal tumourigenesis. As the formation of pancreatic and 

colorectal cancer has been linked to mutations in many of the same genes (p53, APC, 

SMAD4, K -RAS) work carried out in one tissue provides evidence that may be useful 

for work being conducted in other tissues. 
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1.8.1 Structure of APC protein 

The APC gene is situated at 5q21 in humans and 18q21 in mice (Kinzler et al., 1991; 

Luongo et al., 1993). It contains 16 translated exons, although the actual protein can 

occur in many forms due alternative splice isoforms (Groden, 1991; Oshima et al., 

1993; Santoro and Groden, 1997). The most common APC transcript lacks exon 

l0A and encodes a 2843 a.a. protein. It is this protein which is most commonly 

studied. The mouse APC protein is a large (approximately 2844 a.a.) multi- domain 

protein with 90% a.a. homology to human APC (Groden et al., 1991; Kinzler et al., 

1991; Su et al., 1992). It contains many motifs which are involved in interactions 

with other proteins and DNA (see Figure 1.5). Starting from the amino terminus, the 

first functional domain encountered is the oligomerisation domain containing three 

heptad repeats which mediate homodimer formation. The armadillo repeats between 

amino acids 453 and 767 exhibit homology with the Drosophila protein armadillo, 

the homologue of human 13- catenin (Hatzfeld, 1999). This area is thought to be 

involved in modulation of the actin cytoskeleton because it binds to APC -stimulated 

guanine nucleotide exchange factor (ASEF). The binding of APC to ASEF enhances 

the interaction of ASEF with a member of the cell adhesion and motility controlling 

Rho GTPases, RAC. The armadillo repeats are also thought to help mediate protein 

to protein interactions with 13- catenin and perhaps E- cadherin. Also within the 

armadillo repeats are sites of caspase cleavage. The 15 a.a. repeats have been shown 

to interact with (3- catenin and E- cadherin. The interaction of APC with E- cadherin is 

thought to be in competition to ß- catenin binding (Hulsken et al., 1994). Next are 

seven 20 a.a. repeats, and these are also thought to possess the ability to bind 3- 

catenin and may mediate its degradation. This region also contains Axin binding 

sites, a protein involved in the Wnt signalling pathway. Each of these 20 a.a. repeats 

contains a SXXXS consensus site that is a substrate for glycogen synthase kinase 30 

(GSK -30) phosphorylation. The beginning of these repeats has been found to be a 

site of many mutations in colorectal cancer and has been named the mutational 

cluster region. Also within the 20 a.a. repeat regions are DNA binding motifs which 

mainly bind AT rich DNA sequences (Deka et al., 1999). The basic domain is the 

site of microtubule association through which APC triggers tubulin polymerisation. 
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At the C- terminus, APC contains two further DNA interacting sequences. It also 

contains areas which can interact with two proteins, EB 1, a microtubule associated 

protein and HDLG, a homologue of the Drosphilia discs large tumour suppressor. 

The structure of APC and its functional domains is reviewed in Sieber et al., 2000. 
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1.8.2 Non -Wnt related functions of APC 

APC predominantly functions within the canonical Wnt signalling pathway 

(discussed in detail below) however non -Wnt related functions have been elucidated. 

These include cytoskeleton organisation, control of cell cycle and induction of 

apoptosis. 

APC can bind to microtubules in vitro and can trigger tubulin polymerisation. 

(Munemitsu et al., 1994). It is thought that the C- terminal domain mediates this 

interaction (Deka et al., 1998). APC is found in clusters at the growing ends of 

microtubules contained in membrane extensions (Näthke et al., 1996). When 

microtubule formation is disrupted by a depolymerising agent, such as nocodazole, 

the localisation of APC moves from being clustered at the growing edge of the 

microtubules to a diffuse cytoplasmic staining (Näthke et al., 1996). This 

stabilisation of microtubules by APC suggests that APC is intimately involved with 

the microtubule network highlighting a possible mechanism for interaction with the 

cell cycle, particularly within the cytokinesis stage. 

monolayers or treatment with scatter factor leads to accumulation 

of APC at the migrating edges of the cell membrane, implicating APC in cell 

migration. Furthermore migratory cells expressing APC at the leading edges are 

rendered immobile upon the addition of an N- terminal truncated form of ß- catenin 

which binds APC more stably than wild -type 13- catenin (Barth et al., 1997). The 

interaction of APC with ASEF provides another mechanism through which APC can 

indirectly affect cell migration. ASEF interacts with RAC, a protein which regulates 

the actin cytoskeleton during migration (Kawasaki et al., 2000). 

The most commonly documented method of APC's involvement in the cell cycle is 

through the regulation of (3- catenin within the Wnt signalling pathway (see below). 

Some in vitro studies have highlighted other mechanisms of control of the cell cycle 

by APC. First, the APC -HDLG complex has been shown to effect G1 /S growth 

arrest (Ishidate et al., 2000). Second, APC is a substrate for CDKs (Trzepacz et al., 

1997) and Baeg et al., (1995) reported that overexpression of APC could effect GUS 
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growth arrest via reducing Cyclin /CDK activity. Finally the association of APC with 

EB 1, a protein which localises to the interphase and mitotic microtubules, suggests 

another mechanism whereby APC could be involved in cell cycle control (Su et al., 

1995; Berrueta et al., 1998. 

Conflicting results have been obtained from investigations into the role of APC in the 

control of apoptosis. Overexpression of APC in a human colon cancer cell line (HT- 

29) resulted in loss of cell adhesion and an increase in apoptosis (Morin et al., 1996). 

Conversely, overexpression of APC in normal intestinal epithelia resulted in 

disordered cell migration but no change in either proliferation or apoptosis (Wong et 

al., 1996). 

1.8.3 APC as a component of the canonical Wnt signalling pathway 

The Wnt family of proteins are secreted glycoproteins that have essential roles in 

development as signalling molecules. In vertebrates there are known to be 19 Wnt 

ligands which have been categorised according to their ability to promote 

tumourigenesis (reviewed in Wodarz and Nusse, 1998). Whilst this can occur 

through various mutational defects in members of the signalling pathway, this thesis 

is concerned mainly with the regulation of 13- catenin by APC and how this regulation 

is affected in tumourigenesis. 
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Figure 1.6 shows a simplified overview of the canonical Wnt signalling pathway as 

outlined below. Signalling is initiated upon the binding of a Wnt protein to the 

extracellular domain of a transmembrane receptor called Frizzled (Bhanot et al., 

1996; Yang- Snyder et al., 1996; He et al., 1997). At least 11 vertebrate Frizzled 

genes have been identified, but the exact ligand specificity remains to be elucidated. 

Other proteins which have been found to bind Wnt molecules include a family of 

secreted proteins called the secreted frizzled related proteins (sFRPs). FRPs are not 

membrane anchored and are homologous to the extracellular domain of the Frizzled 

receptors. Thus they are antagonistic to activation of the Wnt signalling pathway 

(Leyns et al., 1997). Upon activation of the Wnt/Frizzled receptor complex, the 

protein Dishevelled (DSH) is hyperphosphorylated by casein kinase II (CKII) 

(Willert et al., 1997). Once activated, DSH, via its association with the scaffold 

protein, Axin, stops GSK -313 from forming a complex with Axin, APC and 13- 

catenin. Thus 13- catenin remains unphosphorylated (Itoh et al., 1998, Kishida et al., 

1999; Lee et al., 1999; Smalley et al., 1999). The unphosphorylated 13- catenin 

escapes degradation as it is not recognised by ß- transducin repeat containing protein 

(13 -TRCP, a component of E3 ubiquitin ligase). This leads to increased intracellular 

f3- catenin levels (due to reduced degradation). 13- catenin is then translocated into the 

nucleus where it interacts with LEF /TCF, an HMG box transcription factor, to 

activate transcription (Behrens et al., 1996; Molenaar et al., 1996; Brown and Moon, 

1998; Hart et al., 1999). A second mechanism of inactivation of GSK -30 has also 

been found in vertebrates whereby FRAT -1 interacts with GSK -313 thereby 

inactivating it (Thomas et al., 1999). 

In the absence of Wnt ligand, DSH remains inactive and therefore GSK -313 remains 

active. ß- catenin is bound by the APC /Axin complex. The active GSK -3[3 has 

various roles: first, it phosphorylates APC and Axin which increases their affinity for 

(3- catenin; second, it phosphorylates (3- catenin itself and, third, the phosphorylation 

of Axin by GSK -313 decreases the degradation of Axin, so that Axin is available for 

the Axin /APC /(3- catenin complex. This binding of 13- catenin to the APC /Axin 

complex allows the binding of GSK -3ß to 13- catenin and facilitates the subsequent 
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phosphorylation of 13- catenin. This then allows recognition of the phosphorylated ß- 

catenin by 13 -TRCP and 13- catenin is targeted for degradation (Hart et al., 1999; Liu 

et al., 1999). 

Korinek et al., (1997) provided clear evidence supporting this role of APC as a vital 

regulator of 13- catenin. Experiments using APC-' colon carcinoma cells showed that 

in the absence of APC, (3- catenin was found in complex with the transcription factor 

TCF in the nucleus. The complex was constitutively active as revealed by activation 

of a TCF reporter gene. Addition of APC into this system resulted in the breakdown 

of the 13- catenin /TCF complex and the cessation of TCF reporter gene transcription. 

Thus by preventing (3- catenin accumulation, APC is involved in the control of gene 

transcription. 

Targets of ß- catenin- mediated signalling include the proto- oncogenes Cyclin DI and 

c -Myc (He et al., 1998; Brown and Moon, 1998; Tetsu and McCormick, 1999;). 

Whilst some TCF/LEF target genes have been identified, many remain unknown. 

Those TCF/LEF target genes described so far promote proliferation. In support of 

this Tcf -4 -/- mice have defective proliferation in the stem cell compartment of the 

small intestine and as a result of this they die shortly after birth (Korinek et al., 

1998). 

1.9. Dysregulation of the Wnt signalling pathway in 

tumourigenesis 

1.9.1 Evidence of dysregulated Wnt signalling 

Wnt promotes the development of tumours in mouse mammary epithelium and Wnt 

genes are activated during MMTV- induced carcinogenesis (Nurse and Varmus 1982; 

Lee et al., 1995). In human breast lesions WNT2, WNT5a, WNT7b and WNT10b 

exhibit elevated expression patterns (Huguet et al., 1994; Lejeune et al., 1995; Dale 

et al., 1996; Bui et al., 1997) and in vitro several different Wnt genes transformed 

epithelial cells (Wong et al., 1994). It appears therefore that Wnt signalling or a 
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downstream consequence of it is important in mammary gland tumourigenesis and 

possibly tumourigenesis in other tissues. An important outcome of Wnt signalling is 

the stabilisation and accumulation of 13- catenin. 

1.9.2 Mutation of APC 

Loss of functional APC also leads to 13- catenin stabilisation and is thought to be an 

early event in colorectal tumourigenesis. The smallest detectable intestinal 

adenomas in Apcd716+ knockout mice have lost the remaining WT Apc allele 

(Oshima et al., 1995). In humans too LOH for APC has been shown in most small 

colorectal adenomas examined (Kinzler and Vogelstein, 1996). The majority of APC 

mutations are found in the central domain of APC, which has therefore been called 

the mutation cluster region (MCR, see Figure 1.5) (Nagase and Nakamura, 1993). 

Mutations in the MCR typically result in protein truncations that ablate APC /Axin 

binding and therefore the subsequent binding of 0- catenin to the complex and GSK- 

313 phosphorylation of 13- catenin. Thus mutations in APC result in 13- catenin 

stabilisation as is evidenced by high 13- catenin levels in colon cancer cells containing 

mutant APC (Munemitsu et al., 1995). 

Functionally, loss of APC results in transcriptional changes such as overexpression 

of Cyclin Dl or c -Myc. Cyclin D1 expression has been found to be increased in 30% 

of human adenomas and adenocarcinomas in the colon but the actual Cyclin Dl gene 

is not amplified (Bartnova et al., 1994; Arber et al., 1996). Cyclin D1 functions in 

the regulation of the G1 to S phase transition of the cell cycle and has a proliferative 

effect on cells. It is suggested that overexpression of Cyclin Dl by 13- catenin- 

mediated transcription could promote tumourigenesis via increased cell proliferation. 

Similarly He et al. (1998) postulate that APC mutation within colorectal tumours 

leads to stabilised 13- catenin and overexpression of c -Myc. Due to its oncogenic 

nature and roles in cell growth and differentiation this overexpression of c -Myc could 

promote neoplasia. 
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1.9.3 Mutation of ß- catenin 

Point or missense mutations in ß- catenin itself have been found within colon, 

hepatocellular carcinomas and melanomas (Rubinfeld et al., 1997; Polakis 2000), 
which predominantly affect the N- terminal serine /threonine residues (Morin et al., 

1997). Thus 13- catenin remains unbound by the scaffold protein Axin and 

unphosphorylated by GSK -313 on these serine /threonine substrates. As a 

consequence of this (3- catenin is not targeted for destruction (Aberle et al., 1997; 

Orford et al., 1997). This mechanism of dysregulated Wnt signalling was confirmed 

by knock -in mice containing an N- terminal lacking 3- catenin. These mice developed 

adenomas and polyps in the intestine, mammary gland and hair follicles (Harada et 

al., 1999; Gat et al., 1998). 

Work by Sparks et al., (1998) has also highlighted the importance of f3- catenin in 

colorectal tumourigenesis. The authors searched for mutation in genes thought to be 

involved in the APC /(3- catenin /TCF/LEF pathway. Of the human colorectal tumours 

screened 48% had mutations in the ß- catenin gene and none of these had mutation in 

the APC gene. The ß- catenin gene mutations occurred in the early adenomatous 

stage of colorectal neoplasia, like APC mutations. It was also observed that ß- 

catenin and APC mutations were mutually exclusive. They concluded that in human 

colorectal tumours oncogenic ß- catenin mutations can uniquely substitute for APC 

loss of function in colorectal tumourigenesis. However whilst APC and ß- catenin 

mutations result in the accumulation of 3- catenin and are equally potent regarding 

transcriptional activation, they appear not to be equally potent in promoting 

tumourigenesis (Morin et al., 1997). This is reflected in the fact that ß- catenin 

mutations tend to be associated with MSI +, small, non invasive adenomas and very 

rarely with invasive carcinomas. APC mutations, whilst present in the small, non- 

invasive adenomas, are also found to be present in invasive carcinomas (Samowitz et 

al., 1999). Also ß- catenin mutations are only found in 25% of colorectal carcinomas 

whereas APC mutations are found in 80 %. Thus it appears that ß- catenin mutation 

can substitute for APC mutation but that ß- catenin mutation alone cannot lead to the 

progression from adenoma to carcinoma. 
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1.9.4 Mice containing mutations in the Apc gene 

Much work investigating the tumour suppressive role of APC as part of the Wnt 

signalling pathway has been carried out on genetically modified mice. Various Apc 

mutant animals have been generated (Figure 1.5). Apcd716 heterozygous knockout 

mice have been generated by Oshima et al., (1995). These animals have a truncation 

mutation at codon 716 (affecting the armadillo repeat region of APC) which results 

in an N- terminal truncated protein and it should be noted that most FAP individuals 

carry truncation mutations in the N- terminal half of APC. These animals develop 

intestinal adenomas at a high frequency and LOH of Apc is seen in these adenomas. 

Alternative Apc mutants are Apc 1638N mice which exhibit intestinal adenomas. 

These animals have an insertion mutation which results in unstable truncated APC 

mRNA being produced from the mutant allele (Yang et al., 1997; Smits et al., 1998). 

However, Apc 1638T, containing an alteration in the same codon as Apc 1638N 

produces a stable truncated protein. This stable truncated protein still contains some 

(3- catenin binding motifs and notably no intestinal abnormalities are found in these 

mice ( Smits et al., 1999). 

1.9.4.1 The Min mouse 

The Min mutation at codon 850 in the mouse Apc gene (Moser et al., 1990, Su et al., 

1992) results in a truncated protein being produced. This truncated APC protein 

lacks functional binding sites, including the ß- catenin binding sites. It was not 

caused by gene targeting but by random mutagenesis with ethynitrosourea (ENU), a 

mutagen which causes point mutations. Mice homozygous for the Min mutation die 

in utero, and fail to gastrulate (Moser et al., 1995). Heterozygous mice are viable 

and exhibit numerous preneoplastic and neoplastic lesions, hence the name multiple 

intestinal neoplasia (Min). The Min mouse also exhibits mammary carcinomas in 

approximately 10% of female mice. The intestinal lesions were found to have lost 

the remaining WT copy of Apc and progressed to carcinomas (Luongo et al., 1994). 

Thus due to the presence of APC mutations in both the Min mouse and FAP patients, 

the Min mouse has been of great use to researchers investigating FAP. 
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1.10 The tumour suppressor p53 

p53 was originally discovered as a protein that co- precipitates with SV40 large T 

antigen (Lane and Crawford, 1979; Linzer and Levine 1979). The finding of high 

levels of p53 protein in transformed cell lines (De Leo et al., 1979) and that p53 

cDNAs immortalise cells in culture (Jenkins et al., 1984) resulted in p53 at first 

being wrongly classified as an oncogene. Subsequently however it was found that 

this work was being carried out using a mutant p53 gene and that the WT p53 gene 

was actually a tumour suppressor (Hinds et al., 1989). Since then p53 has been 

found to be the most commonly mutated gene in human cancer with approximately 

50% of all human cancers showing mutation and evidence exists to support the 

notion that the pathway is dysregulated in all cancers due to loss or upregulation of 

other members of the pathway (Hollstein et al., 1994). Fundamentally p53 allows 

cells to respond appropriately to many different kinds of stress, such as DNA damage 

(caused by ionising radiation, UV irradiation or chemotherapeutics), telomere 

attrition, oncogene activation, hypoxia, heat shock, abnormal cytokine or growth 

factor environment. Many of these stress signals are at the heart of the tumourigenic 

process, thus p53 is a vital tumour suppressor at many stages of tumourigenesis and 

loss of p53 function promotes tumourigenesis. Individuals with Li- Fraumeni 

syndrome have been found to have germline mutations in p.53 and display a 

predisposition to cancer (Malkin et al., 1990; Srivastava et al., 1990). 

p53 appears to function in many pathways that when dysregulated are fundamental to 

tumourigenesis. The roles of p53 include cell cycle regulation, induction of 

apoptosis in response to DNA damage, DNA repair, cell senescence and stress 

responses. I will write briefly on three of these functions and their relation to tumour 

progression, although it is hard to do this subject justice due to the enormous amount 

of work that has been done on p53. 
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1.10.1- Structure of p53 

The p.53 gene is situated on human chromosome 17 and mouse chromosome 11. It is 

approximately 20kb in size and contains 11 exons, only 10 of which are translated. 

Exon 1 encodes a 5' untranslated sequence (Bienz et al., 1984). The p53 protein 

consists of 393 a.a. and has four main functional domains. The first is N- terminal 

and is the transactivational domain. This area is also the site of MDM2 and 

acetyltransferase (such as p300 /CBP) binding. Phosphorylation at this region 

enhances p53 activity by increasing the affinity of p53 for acetyltransferases. 

Following this is the proline rich domain, that does not modulate the transactivation 

function of p53 but is necessary in some way to mediate p53- dependent apoptosis 

(Walker and Levine, 1996; Sakamuro et al., 1997). The central domain is the DNA 

binding domain. The majority of p.53 mutations in tumours have been found to be 

within this area of the p53 gene, thus affecting the sequence- specific binding (Cho et 

al., 1994; Hollstein et al., 1994). The C- terminal end of the protein is the 

oligomerisation domain and the p53 protein exists primarily as a tetramer (Friedman 

et al., 1993). This domain also contains the nuclear localisation and nuclear export 

signals and is the site of ubiquitination by MDM2. The last 30 a.a. of C- terminal p53 

also form an autoinhibitory domain which is involved in the regulation of latent p53 

(see Figure 1.7). 
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1.10.2 Functions of p53 

Primarily p53 is a transcription factor that binds to DNA in a sequence- specific 

manner to activate or repress transcription. Most of its downstream functions are 

thought to be mediated by this activation or repression of target genes. Other non - 

transcriptional functions of p53 are thought to include relocalisation of death 

receptors to the cell membrane (Owen- Schaub et al., 1995) and a promotion of 

apoptosis via the relocalisation of p53 to mitochondria (Marchenko et al., 2000). 

The main cellular responses which are elicited by p53 activation are cell cycle arrest 

and apoptosis. An overview of p53- mediated signalling in the cell is shown in 

Figure 1.8. 
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1.10.2.1 Cell cycle arrest 

p53 exerts control of the cell cycle via its transcriptional control of p21 after DNA 
damage (Waldman et al., 1995). As a Cyclin dependent kinase inhibitor, p21 leads 

to growth arrest at the G1 /S boundary and is also expressed in high levels in 

senescent cells. Deletion of the p21 gene has been shown to reduce p53 mediated 

cell cycle arrest (El Deiry, 1998). Other cell cycle control genes found to be targets 

of p53 include Cyclin D1, proliferating cell nuclear antigen (PCNA) and RB 

(Osifchin et al., 1994; Chen et al., 1995; Morris et al., 1996). Another target of p53 

which acts to induce growth arrest is GADD45 (growth arrest and DNA damage). 

Together p21 and GADD45 have been found to bind to and modulate PCNA, thus 

Smith et al., (1994) suggest a mechanism whereby GADD45 bound PCNA inhibits 

entry into S phase. As both GADD45 and PCNA are involved in DNA repair, it has 

also been suggested that this p53- initiated transcription of both p21 and GADD45 

allows DNA damaged cells to stop cycling until the damage has been repaired (Waga 

et al., 1994; Kazantsev et al., 1995). Following successful DNA repair MDM2 

(another p53 target gene) then binds p53 and inactivates it thus allowing cells to re- 

enter the cell cycle (Chen et al., 1994). p53 has also been tentatively linked to G2/M 

arrest through the finding that Cyclin G is a target gene of p53 (Shimizu et al., 1998), 

however, p.53 null cells still exhibit G2 /M arrest after irradiation. Mutant p53 

proteins which are defective in transcriptional activation have been shown to initiate 

growth arrest, suggesting that p53 also has a non -transcriptional function causing 

growth arrest (Mowat, 1998). 

1.10.2.2 Apoptosis 

p53- dependent apoptosis has been shown to be vital to the tumour suppressor 

activities of p53. It can suppress the transformation of oncogene- expressing cells 

and inhibit tumour growth and progression in vivo (Symonds et al., 1994). p53 has 

been shown to induce the transcription of many genes involved in both mitochondrial 

and death receptor mediated apoptotic pathways. Notably target genes include the 

pro -apoptotic Bax (Miyashita and Reed, 1995). Altered p53- dependent apoptosis has 

been reported in p53 mutants which retain the capability to activate transcription of 

p21 but are unable to activate Bax transcription. Bax facilitates apoptosis via 
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depolarisation of mitochondrial membranes, cytochrome c release and activation of 
caspases. Other target genes which act to effect mitochondrial mediated apoptosis 

shown to be required for the p53- mediated apoptotic response include Noxa which 

interacts with the anti -apoptotic Bc12 and p53AIP1 (Oda et al., 2000). p53 also 

induces the expression of death receptors such as FAS /APO -1, Killer/DR5 and PIDD 

(Owen- Schaub et al., 1995; Wu et al., 1997; Lin et al., 2000). An apoptotic signal is 

transmitted upon ligand binding to these death receptors. 

Other transcriptional targets of p53 that may act as inducers of apoptosis includes 

insulin growth factor binding protein 3 (IGF -BP3), which binds insulin growth factor 

(IGF1) thus preventing binding to IGF1 receptor and inducing apoptosis. In 

response to oncogene activation (for example, c -Myc) IGF1 is thought to repress 

apoptosis. The Fas /APO -1 receptor is also upregulated by p53. Occupation of the 

Fas /APO -1 receptor results in apoptosis in T- lymphocytes. This has been suggested 

as a mechanism tumours use in response to infiltrating cytotoxic T- lymphocytes 

(Mowat, 1998). finally, work carried out by Polyak et al., (1997) screening 

expression of p53- activated transcripts that led to apoptosis induction found that p53 

transcriptionally induced redox genes. They postulate that this leads to the formation 

of reactive oxygen species that degrade the mitochondria leading to apoptosis. 

1.10.2.3 DNA repair and inhibition of angiogenesis 

Chemical and physical agents are constantly subjecting the genome to damage. 

Failure to repair this damage can lead to gene mutations, which, depending on the 

gene affected, can lead to changes in cell behaviours such as those found in cancer. 

Cells have various DNA repair mechanisms including repair by alkytransferases 

(Pegg et al., 1990), base excision repair (Seeberg et al., 1995), nucleotide excision 

repair (NER; Satoh et al., 1993; Reardon et al., 1997), mismatch repair (Kolodner, 

1995; Modrich and Lahue, 1996) and double strand break repair (Kanaar and 

Hoeijmakers, 1997). The suggestion that p53 can not only effect changes in the cell 

cycle and cell survival but also modulate DNA repair has tentative experimental 

support. First, p53 has been shown to bind NER proteins such as XPB and XPD 

(Wang et al., 1996). Second, work with p534- mice has shown that whilst these 
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animals are predisposed to cancer, this is increased following exposure to genotoxic 
chemicals (Tennant et al., 1996), indicating that the cellular functions dysregulated 
by loss of p53 and DNA damage are related. It is thought that in response to DNA 

damage p53 functions to initiate cell cycle arrest, allowing the cell to repair its 

damage. If the damage is too severe, p53 accumulation is thought to then initiate 

apoptosis. 

1.10.3 Control of p53 activity 

In normal conditions the short half life of p53 (approximately 15 minutes) means that 

levels are low (Kamijo et al., 1998). In response to various stimuli, p53 is rapidly 

induced through mechanisms which do not involve increased transcription of the p53 

gene. 

1.10.3.1 Latent p53 

p53 is synthesised in a latent, oligomerised form. Phosphorylation of the 

autoinhibitory domain results in the release of active p53 from the latent form (Hupp 

et al., 1992). Latent p53 is not protected from MDM2- dependent ubiquitination, 

however, once activated, it undergoes a conformational change and is less efficiently 

targeted for protease- mediated degradation (Haupt et al., 1997). 

1.10.3.2 MDM2 

MDM2 was first identified as a gene amplified in transformed cell lines and human 

tumours (Fakhararzadeh et al., 1991; Oliner et al., 1992). The finding that MDM2 

could bind p53 in vitro and in vivo and inhibit the sequence- specific binding activity 

of p53 (Oliner et al., 1992, 1993) led to the discovery that MDM2 negatively 

regulates p53 activity. It was later found that MDM2 could function as a ubiquitin 

ligase and thus regulated p53 through the induction of degradation by ubiquitination 

(Honda et al., 1997; Haupt et al., 1997). A negative feedback model has been 

suggested since MDM2 is in fact a transcriptional target of p53 (Barak et al., 1993; 

Zauberman et al., 1995). Ubiquitination of p53 on lysine residues in the C- terminus 

by MDM2 is also thought to mediate translocation of p53 from the nucleus into the 

cytoplasm (Geyer et al., 2000). MDM2 can also negatively regulate p53 via the 

78 



inhibition of p53 acetylation, which normally results in amplified p53 activity (Kobet 
et al., 2000). Thus in order for p53 stabilisation in response to a stress factor to 

occur, MDM2 negative regulation of p53 must be blocked. For example, CHK1 and 

CHK2 phosphorylate an N- terminal residue which inhibits the interaction of MDM2 
with p53 and p53 degradation is prevented (Chehab et al., 2000; Shieh et al., 2000). 

Unlike p534- mice, Mdm -2I- mice are embryonic lethal, though when these animals 

were crossed to p531- mice the lethality was rescued (Jones et al., 1995). This 

suggests that for proper development to occur MDM2- mediated control of p53 

functions is vital. 

1.10.3.3 ARF 

p19ARF has also been found to be a tumour suppressor gene. p19ARF_/ mice have been 

generated and are predisposed to tumour formation (Sherr and Weber, 2000). ARF 

functions to induce the stability of p53 by inhibiting the actions of MDM2. To effect 

this ARF binds MDM2 thus inhibiting ubiquitination of p53 and allowing p53 to 

accumulate in the nucleus (Zhang et al., 1998; Weber et al., 1999; Tao and Levine, 

1999). The expression of ARF is thought to be one of the main ways in which cells 

respond to abnormal oncogene activation. Thus ARF is readily induced by 

oncogenes such as c -Myc, RAS, and E2F1 and as such p53 is stabilised and can effect 

its tumour suppressive function (Vousden, 2000). Proteins which can negatively 

regulate ARF include RAS and JunD (Weitzman et al., 2000; Ries et al., 2000). 

1.10.3.4 Control of stability 

The phosphorylation of p53 in response to DNA damage has been shown to inhibit 

the association of p53 with MDM2 thus protecting p53 from degradation (Unger et 

al., 1999; Bottger et al., 1999; Ashcroft et al., 1999). Phosphorylation of MDM2 is 

another mechanism whereby MDM2 /p53 interactions are reduced and p53 is 

stabilised (Mayo et al., 1997). 

1.10.3.5 Localisation of p53 

The function of p53 depends on both its nuclear import and nuclear export. The 

nuclear localisation signals of p53 are situated on the C- terminal. These interact with 
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the microtubule network and dynein (a molecular motor) to facilitate the nuclear 

accumulation of p53 (Giannakakou et al., 2000). As mentioned previously one of 
the roles of MDM2 is to mediate the nuclear export of p53. This is of particular 

importance as not only does removal of p53 inhibit its action as a transcriptional 

activator but it also promotes the ubiquitination of p53. It is suggested that the 

absence of nuclear p53 in tumours is due to degradation of nuclear p53 by MDM2 

(Lu et al., 2000). Conversely, mutations in the C- terminus of p53 have been shown 

to result in the nuclear accumulation of p53 due to defective MDM2- mediated 

nuclear export and degradation (Buschmann et al., 2000; Lu et al., 2000). 

1.10.3.6 Post translational modifications 

One final mechanism of control of p53 activity is post translational modification 

within the N and C- termini of p53. The effect of these is to augment sequence - 

specific DNA binding and transcriptional activation. These modifications include 

phosphorylation, sumoylation and acetylation. An example of this is N- terminal 

phosphorylation of p53 by p38, a member of the MAP kinase signalling pathway. In 

response to UV radiation p38 phosphorylates p53 providing a mechanism whereby 

p53 can respond to the damage caused by the radiation (Huang et al., 1999). 

Furthermore, PML (promyelocytic leukaemia), a protein induced by stress signals 

localises with both p53 and p300 leading to N- terminal phosphorylation followed by 

C- terminal acetylation. Loss of PML is associated with loss of p53 functional 

responses (Guo et al., 2000; Fogal et al., 2000). 

1.11 p53 in tumourigenesis 

The effects of loss of p53- mediated activities on tumourigenesis are diverse. Tumour 

progression can be linked to a loss of negative control and a gain of positive control 

on growth or by tumour cells responding differently to, for example, factors that 

would normally promote apoptosis. 
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1.11.1 Loss of the apoptotic response 

Hypoxie conditions are present particularly within large tumours and hypoxia is one 

of the stimuli which promote p53- dependent apoptosis. Thus when WT p53 is 

present high levels of apoptosis are observed in the hypoxic areas of tumours, and 

conversely when tumours have lost p53 function apoptosis levels are not elevated 

(Graeber et al., 1996). Another example highlighting the importance of p53- 

dependent apoptosis in the reduction of tumour progression includes an in vivo 

model of choroid plexus tumours. Here a mutant SV40 T antigen which bound and 

sequestered RB, but not p53, resulted in reduced tumour formation when compared 

with WT SV40 T antigen. The mutant SV40 T antigen -bound RB still inhibited the 

proto -oncogene E2F. When this experiment was carried out on a p53 null 

background the tumour outgrowths from both the mutant SV40 T antigen and the 

WT SV40 T antigen were aggressive and exhibited attenuated apoptosis (Symonds et 

al., 1994). Similarly when the experiment was repeated but with Bax-/- mice rather 

that p534- mice, tumour progression rate was increased. On comparison of the 

apoptotic index in these tumours it was observed that it was reduced by 90% in the 

p534- mice and 50% in the Bax-l- mice (Yin et al., 1997; Mowat, 1998). This 

highlights the fact that p53 induces apoptosis by more than just inducing the 

transcription of Bax and that whilst p53 is not essential for tumour growth, its loss 

results in a more aggressive tumour progression due to the loss of p53 dependent 

apoptosis. 

A good human example highlighting the role of p53 inactivation in tumour 

progression is Wilms' Tumour. Some of these tumours exhibit areas of anaplastic 

morphology which show loss of p53 and a reduction of apoptosis in comparison with 

other areas of the tumour. Importantly, Wilms' Tumour patients with these 

anaplastic areas have a worse prognosis than those without (Bardeesy et al., 1994). 

It should be pointed out however, that this role in the suppression of carcinogenesis 

by p53- dependent apoptosis is hard to differentiate from other roles of p53- mediated 

tumour suppression. 
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1.11.2 Increased proliferation 

Loss of G1 growth arrest usually mediated by p53 may contribute to increased cell 

proliferation in tumourigenesis. For example, Moll et al., (1996) demonstrated that 

mutant p53 present in neuroblastoma- derived cell lines was unable to undergo 

nuclear translocation following DNA damage. This was coupled with impaired p53- 

mediated G1 growth arrest. Also, p531- murine embryonic fibroblasts in vitro exhibit 

a shorter cell cycle duration and increased proliferation (Harvey et al., 1993). 

1.11.3 Increased genomic instability 

p53 mutation in human tumours has been associated with nuclear abnormalities such 

as aneuploidy and genetic instability both in vivo and in vitro (Blount et al., 1994; 

Cross et al., 1995). Genomic instability is the fundamental factor in all stages of 

tumourigenesis. The inability of a cell to repair DNA damage can result in gene 

mutation, and when this gene mutation occurs in a target gene essential for the 

regulation of processes such as cell growth, death or DNA repair, the integrity of the 

genome in that cell is seriously challenged. Thus the mutation rate within cells 

increases and the accumulation of genetic alterations results in changes in cell 

behaviours, the appropriate cell cycle check points are circumvented, cells which 

should die, do not, and abnormal cells survive and proliferate. The end result is the 

neoplastic transformation of cells. 

Two specific types of genomic instability are polyploidy, defined as a state in which 

nuclei contain multiple copies of a full complement of chromosomes for example 4n 

or 8n and aneuploidy, defined as a state in which nuclei contain a chromosome 

complement that is not a multiple of haploid, for example 2n +1 or 4n -3. 

Polyploidy or aneuploidy can occur via a variety of mechanisms such as mitotic non - 

disjunction, defects in centrosome organisation, abnormal regulation of cell cycle 

checkpoints and faulty DNA repair mechanisms. Changes in ploidy have been 

shown to be associated with the progression of tumourigenesis and the analysis of 

ploidy within human cancers has been shown to be of great prognostic value. For 

example, the DNA content of lung adenocarcinomas has been shown to increase in 

less differentiated more advanced carcinomas, furthermore this abnormal DNA 
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content as analysed by cytofluorometry was reflected histologically as nuclear atypia 
(Asamura et al., 1989). Histologically abnormal nuclei could occur for a variety of 
reasons; due to polyploidy or aneuploidy, because of a diploid cell in a different 

stage of the cell cycle or due to changes in histones, RNA or chromatin folding. 

It is suggested that the fundamental role of p53 is in the maintenance of genome 

integrity, thus explaining in part the loss of p53 in 50% of all human cancers (Howe 

and Conlon, 1997). For example, p53 -1 cells in culture exhibit increased aneuploidy, 

gene amplification, point mutations and homologous recombination (Yin et al., 1992; 

Havre et al., 1995; Fukasawa et al., 1996). Cultured p53 murine embryonic 

fibroblasts have been found to produce multiple centrosomes which resulted in 

unequal segregation of chromosomes, suggesting a novel mechanism through which 

loss of p53 promotes genetic instability (Fukasawa et al., 1996). Premalignant 

thymocytes in p53-1- mice exhibit increased aneuploidy and increased LOH compared 

to WT counterparts (Guidon et al., 1996; Shao et al., 2000), highlighting the fact that 

genetic instability early on in tumourigenesis can be initiated by loss of p53 and 

perhaps even suggesting that loss of p53 could initiate tumourigenesis. 

The majority of p.53 mutations in human cancers are missense mutations within the 

DNA binding domain (Levine, 1997). Thus cells tend to maintain expression of the 

protein but it lacks functional capabilities. This has led to speculations about 

whether mutations in the p53 protein not only abrogate its tumour suppressive 

activity but may indeed have an oncogenic effect on cells. For example the mutant 

p53His175 (which is altered in conformation rather than in DNA binding) has been 

shown to contribute to genomic instability resulting in the generation of aneuploid 

cells and appears to confer resistance of cells to etoposide ( Gualberto et al., 1998; 

Blandino et al., 1999; Murphy et al., 2000). Other mutations in p53 are simple nulls 

caused by large deletions, LOH or other mechanisms such as premature degradation. 

Also loss of function that is associated with p53 heterozygosity is thought to be due 

to a dominant negative mutation. Here, the mutant protein subunit drives the p53 

tetramer (consisting of mutant and WT subunits) into the mutant conformation in a 

dominant negative manner. 
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1.11.4 Increased invasiveness 

Whether p53 mutation promotes invasiveness in tumourigenesis by direct or indirect 
mechanisms remains unknown. In prostate cancer p.53 mutation is associated with 
metastatic rather than benign tumours (Bookstein, 1994). Furthermore Kemp et al. 

(1993) showed that chemically- induced skin tumours on p534- mice occurred more 

rapidly and exhibited an increased number of malignant carcinomas compared to 

those arising on WT mice. Whether this was due to a direct effect of loss of p53 

function on the promotion of invasiveness, or whether loss of p53 results in the 

increased survival of cells with genomic instability and in the accumulation of 

further mutations, which then act to promote invasiveness, remains unknown. 

1.11.5 Increased angiogenesis 

The ability to develop new blood supply is a means whereby tumour cells survive 

and proliferate. Gain of an angiogenic phenotype in tumour cells can be 

accompanied by loss of p53 function. Three anti -angiogenesis factors, 

thrombospondin -1, BAI1 and the tissue remodeller matrix metalloprotease 2 

(MMP2) have been found to be transcriptionally regulated by p53 (Dameron et al., 

1994; Nishimori et al., 1997; Bian and Sun, 1997). 

1.11.6 p53 null transgenic mice 

Whilst clinical and in vitro studies have highlighted p53 as a putative tumour 

suppressor gene, the generation of p534- mice provided clear evidence that p53 was 

in fact a tumour suppressor. These mice die from lymphomas at approximately 6 

months but can also develop sarcomas (Purdie et al., 1994; Jacks et al., 1994). p53+/- 

mice develop osteosarcoma, lymphomas and soft tissue sarcomas, however the p53 

heterozygotes develop these diseases later than p534- mice with 50% of animals 

succumbing to tumours by 18 months. A similar spectrum of tumours is seen in Li- 

Fraumeni patients (Srivastava et al., 1990) who carry germ line heterozygous 

mutation in the p.53 gene. 
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1.12 The integration of signalling pathways 
The integration of signalling pathways is vital to allow modulation of cellular 
behaviour in response to changes in environment. The work detailed in each of the 

results chapters in this thesis includes investigation into the effect of altering multiple 

signalling pathways. The following section outlines examples of interaction between 

TGF -13 signalling, Wnt signalling and p53- mediated pathways. In addition, and 

particularly in relation to chapter 5, an overview of interaction between TGF -13 

signalling and mitogen activated protein kinase (MAPK) signalling is included. 

1.12.1 Interaction of p53 and TGF -I3 signalling 

Several pieces of work confirm interaction between the p53 and TGF -13 signalling 

pathways. CDK4, when associated with Cyclin D1, phosphorylates RB which then 

releases the transcription factor, E2F, to initiate the transcription of cell cycle 

promoting genes. Both p53 and TGF -13 elicit negative control of the cell cycle by 

repressing CDK4 translation or transcription and inducing p21, a CDK inhibitor 

involved in G1 growth arrest (Munger et al., 1992; Li et al., 1994; Datto et al., 1995; 

Ewen et al., 1995). How these two pathways functionally interact is still under 

investigation. Induction of p21 by TGF -13 has been shown to be p53- independent 

(Datto et al., 1995), however CDK4 repression by TGF -3 has been shown to be p53- 

dependent (Ewen et al., 1995; Miller et al., 2000). Experiments involving the 

transfection of murine keratinocytes with mutant p.53 resulted in loss of TGF -ß- 

mediated downregulation of CDK4. Thus CDK levels become abnormally high and 

cells become resistant to G1 growth arrest (Reiss et al., 1993). Another example of 

interaction between TGF -ß and p53 was revealed when a member of the TGF -ß 

superfamily, PTGF -/3 was shown to be a target gene of p53. Furthermore, PTGF -ß 

can inhibit tumour cell growth through a signalling pathway involving SMAD4 (Tan 

et al., 2000). 

1.12.2 Interaction of p53 and Wnt signalling 

Several studies have implied that p53 can result in antagonism of the Wnt signalling 

pathway. Dickkopf -1, (DKK -1), a protein which specifically inhibits canonical Wnt 
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signalling by binding to the low -density -lipoprotein- receptor (LRP6) component of 
the receptor complex (Bafico et al., 2001), has been shown to be transcriptionally 
induced by p53. Furthermore, p53- induction of DKK -1 occurs in response to DNA 
damage suggesting that DKK -1 could be mediating p53 tumour suppression by 

antagonising the Wnt signalling pathway (Glinka et al., 1998; Fedi et al., 1999). ß- 

catenin has also been shown to be downregulated by activated p53 (Sadot et al., 
2001). Finally work involving p53- /ApcMi'v+ mice has suggested co- operation 

between Apc and p.53 mutation in the promotion of murine pancreatic tumourigenesis 

(Clarke et al., 1995). 

1.12.3 Interaction of TGF -ß and Wnt signalling 

Studies highlighting a co- operation between the Wnt and TGF -13 signalling pathways 

include work with the Xenopus Spemann organiser which showed that activins 

(TGF -(3 superfamily member) and Wnts co- operate to control gene transcription 

(Crease et al., 1998). In Drosophila, signals from wingless (Wnt homologue) and 

DPP (decapentaplegic, TGF -ß superfamily member) both coincide on the 

developmental vestigial and ultrabithorax genes. Furthermore Labbe et al., (2000) 

have shown that SMADs and LEF /TCF physically interact to synergistically activate 

transcription of a Xenopus gene (Xtwn). They suggest that this synergistic activation 

will only occur where there is an SBE adjacent to the LEF binding site and that both 

Wnt and TGF -ß can independently regulate LEF target genes (Letamendia et al., 

2001). Axin, a negative regulator of the Wnt pathway has been shown to bind 

SMAD3, facilitate efficient SMAD3 activation by TGF-13 receptors and enhance 

TGF -ß transcriptional activity (Furuhashi et al., 2001). Finally, it has been found 

that SMAD4 can bind ß- catenin in a TGF -ß- independent manner and that this 

SMAD4 /13- catenin activation results in nuclear translocation of both proteins (Nishita 

et al., 2000). 

1.12.4 Interaction of TGF -ß and MAP kinase signalling 

TGF-13 signalling can be greatly modified by numerous interactions with other 

signalling pathways. At present it is not clear whether the SMAD proteins are 
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involved in all aspects of TGF -(3 signalling. Some aspects of TGF -ß signalling could 

be mediated by a MAP -kinase type pathway. In this model, TGF -ß activates TAB -1 

which binds to and activates the MAPKKK, TGF -(3 activated kinasae (TAK1). 

TAK1 activation in turn induces transcription of, for example, the PAI -1 promoter by 

an unknown mechanism (Shibuya et al., 1996; Yamaguchi et al., 1995). It could be 

the case that this MAP kinase pathway acts independently or it could function in the 

regulation of SMAD protein phosphorylation. 

1.12.4.1 TGF -ß and MAPK signalling 

The RAS -RAF -ERK/MAPK cascade is involved in regulating cell proliferation in 

many cell types (for review see Chang and Karin, 2001). Growth factors such as 

epidermal growth factor (EGF), fibroblast growth factor (FGF) or hepatocyte growth 

factor (HGF) bind to corresponding receptor tyrosine kinases, resulting in the adaptor 

proteins GRB2 and SOS associating with the ligand bound receptor. This is 

followed by activation of RAS. The GTP -bound RAS then catalyses the 

translocation of RAF (MAPKKK) to the plasma membrane. RAF is phosphorylated 

there and in turn phosphorylates the MAP kinase kinase (MAPKK), MEK. MEK 

then phosphorylates a MAP kinase. There are three subgroups of MAP kinases: 

extracellular signal -regulated kinases (ERKs), which are stimulated by growth 

factors and can induced cell proliferation and differentiation; JNK and p38, both of 

which are involved in separate pathways activated for the most part by cellular 

stresses, UV irradiation and cytokines. Activated ERKs translocate to the nucleus 

and stimulate gene expression by triggering transcriptional factors like ELK1 and 

ATF -2 (Zheng and Guan, 1994; Brunet et al., 1999; Clerk et al., 1999). How TGF -ß 

and the MAP kinase signalling pathway interact is complex with the pathways 

sometimes co- operating with each other and at other times being antagonist. 

1.12.4.2 Antagonist MAPK and TGF -(3 signalling. 

An example of antagonism between the TGF -(3 and MAPK signalling pathways was 

demonstrated by Kretzschmar et al., (1997) who showed that the ERK family of 

MAP kinases phosphorylate SMAD1 in response to EGF and inhibit its nuclear 
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translocation. Kretzchmar et al., (1997; 1999), have also reported that activated RAS 
phosphorylates the linker region in SMAD1 and SMAD3, thus opposing the C- 
terminal phosphorylation by receptors, and thereby inhibiting SMAD /TGF -ß 
transcriptional responses, SMAD nuclear translocation and growth inhibition. Lo et 
al., (2001) reported SMAD and RAS pathway antagonism at the transcriptional level. 
They reported that EGF signalling via the RAS -MEK pathway caused the 
phosphorylation of TGIF, a SMAD transcriptional co- repressor, at two ERK MAP 
kinase sites. This resulted in TGIF stabilisation and formation of SMAD2 /TGIF 

complex. Work by Giehl et al. (2000), demonstrated that TGF -ß- induced growth 

inhibition in a pancreatic carcinoma cell line can be mediated in a SMAD4 

independent fashion by the prevention of ERK2 activation, suggesting that the 

SMADs are not the only target of antagonism by the MAPK pathway. Finally, work 

with keratinocytes and hepatocytes has shown that TGF -13 can antagonise the 

mitogenic effect of EGF (Russel, 1988, Zendegui et al., 1988). 

1.12.4.3 Co- operative MAPK and TGF -13 signalling 

MAPK and TGF -ß signalling have been shown to co- operate both functionally and at 

a transcriptional level. In TGF -(3 sensitive untransformed cells, the growth inhibitory 

activity of TGF -(3 was associated with MAPK activation (Hartsough and Mulder, 

1995). In human breast cancer cells, stimulation with TGF -ß caused activation of 

both ERK2 and SAPK/JNKs (Stress Activated Protein Kinases /c -Jun N- terminal 

kinases). This activation was directly correlated with growth inhibition in these cells 

(Frey and Mulder, 1997). Furthermore a dominant negative RAS mutant (RasNl7) 

inhibited both the decrease of CDK2 and CyclinA and increase in p21 and p27, 

usually seen upon TGF -(3 stimulation, and blocked ERK1 activation (Hartsough et 

al., 1996, Yue et al., 1998). At a transcriptional level de Caestecker et al., (1998) 

found that EGF- mediated MEK1 activation resulted in phosphorylation, nuclear 

translocation and transcriptional activation by SMAD2 /4. Also treatment of rat 

hepatocytes with EGF and TGF -13 potentiates SMAD3 transactivational activity. It 

was shown that this occurs through the physical interaction of c -Jun with SMAD3 

and that phosphorylation of c -Jun occurs via a p38 (but not JNK) dependent 
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mechanism (Peron et al., 2000). Finally, Blanchette et al. (2001) demonstrated a 

parallel stimulation of the SMAD pathway and the p42/p44 MAPK pathway by 

TGF -ß that resulted in increased gene transcription. 

Another functional consequence of TGF -ß- induced MAP kinase activation includes 

actin polymerisation and chemotaxis. TGF -ß- stimulated activation of p38 in human 

neutrophils is necessary for TGF - 3- induced actin polymerisation and chemotaxis 

(Hannigan et al., 1998). In a human fibrosarcoma derived line, TGF -ß induction of 

fibronectin expression is dependent on JNK activity and independent of SMAD4 

(Hocevar et al., 1999). 

1.12.4.4 Altered TGF -13 and MAPK interactions in response to oncogenic RAS 

RAS- activating mitogens (including EGF) have a proliferative effect on normal 

epithelial cells, and this can be overridden by TGF -ß. Cells transformed by 

oncogenic RAS are liberated from the anti -proliferative response to TGF -ß. 

Activating mutations in K -RAS occur at a high frequency in pancreatic 

adenocarcinomas (for review of K -RAS mutations in pancreatic cancer see Howe and 

Conlon, 1997). Besides inactivation of members of TGF - 3 signalling, other possible 

mechanisms of release from the TGF -ß anti -proliferative response have been 

suggested in relation to MAPK signalling. First, Saha et al. (2001) showed that 

oncogenic RAS inhibited TGF -(3- mediated SMAD4 complex formation and 

transcriptional responses. In parallel reduced levels of endogenous SMAD4 were 

present due to increased degradation. The addition of proteasome inhibitors, reversal 

of RAS activation and overexpression of SMAD4 all restored TGF -0- mediated 

SMAD4 complex formation and transcriptional responses. Second, blockade of 

SMAD4 activity in transformed keratinocytes containing oncogenic RAS leads to 

hyperactivation of the RAS- dependent ERK signalling pathway (Iglesias et al., 

2000). Thus it can be seen that TGF -13 and MAPK signalling interact in diverse and 

sometimes contradictory ways. Furthermore, activation of oncogenic RAS is an 

important mechanism through which TGF -13 signalling via the SMADs can be 

blocked. 
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1.13 Outline of project 

The three TSGs principally discussed here (DPC4 /SMAD4, APC and p53) are 

implicated in the development of neoplasia in the pancreas. SMAD4, as the central 

mediator of TGF -13 signalling, clearly has a tumour suppressive function but the 

exact mechanism of this in the pancreas remains unknown. APC, via its regulation of 

cellular 13- catenin levels and p53, with its multiple roles including apoptosis, DNA 

damage repair, genome stability and cell cycle arrest, also act as tumour suppressors 

in the murine pancreas. The central focus of the work contained in this thesis is to 

investigate the effect of Smad4 mutation on pancreatic tumourigenesis. This has 

been approached by various in vivo and in vitro methods. First, mice containing 

combinations of mutations in each of these genes, have been used to analyse the co- 

operative effect of gene mutation in p.53, ApcM"' and Smad4 on pancreatic 

tumourigenesis. Second, the effect of single and combined mutations in each of 

these genes has been explored in carcinogen- induced pancreatic tumourigenesis. 

Finally, in an attempt to further elucidate the cellular role of TGF -13 signalling 

through the SMADs specifically in the pancreas, primary culture of murine 

pancreatic acinar cells has been employed to assess the effect of TGF -13 signalling in 

the normal pancreas. 
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Chapter 2 - Materials and methods 

All solutions and reagents contained in this chapter are detailed in appendix A. 

2.1 In vivo studies 

2.1.1 Transgenic mouse strains 

Various mutamt mouse strains were used in these studies. Table 2.1 summarises the 

animals used, the genetic alteration they contained and the consequences of that 

alteration. 

Table 2.1 - Transgenic mice used 

Alteration Consequence Reference 

p53 -/- Exons 2 -6 deleted and 

replaced with a neo gene. 

Complete absence of p53 

protein. 

Clark et al., 

1993; Purdie 

et al., 1994 

Apc M`ni+ ENU induced germline 

mutation (Stop codon at 

codon 850) in Apc allele. 

Truncation of APC. Su et al., 

1992; Moser 

et al., 1990 

Smade. Whole of exon 8 and part 

of exon 9 was replaced by 

a neo gene. 

No SMAD4 Protein 

produced from the targeted 

allele. 

Sirard et al., 

1998 

ß- globin/+ 1000 tandem repeats of 

mouse (3- globin coding 

sequence inserted near 

telomere of chromosome 

3. 

No apparent phenotype, 

inert. 

Lo., 1986 

Smad4t1"+ Exon 1 (containing ATG 

start codon) flanked by 

two LoxP sites. 

No functional consequences 

until Cre- mediated 

recombination at LoxP sites 

removes exon 1, then no 

SMAD4 protein is predicted 

from this allele 

Appendix B 

All mice used were maintained in an outbred background (p53-1 and ApcMi,il+ animals 

were predominantly C57BL/6 and the Smad4 
+i - animals were CD1). Single animals 
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bearing multiple mutations were generated by a series of appropriate crosses. 
Animals were routinely fed on a standard breeding diet (Harlan), given water ad 
libitum and maintained in non -barrier conditions. Health screening of these animals 

found them positive for the bacteria Pasteurella spp. and trichomona, an intestinal 

protozoa. 

2.1.2 DNA extraction from mouse tails 

Tail biopsies were taken from mice of 3 weeks of age and DNA extracted using the 

Puregene DNA extraction method (Puregene). This involved lysing tail tips 

overnight at 37 °C in cell lysis solution (Puregene), containing 1 tg/ml Proteinase K 

(Sigma). After samples had been allowed to cool to room temperature (RT), protein 

precipitation solution (200111; Puregene) was added and the contents mixed by 

vortexing and centrifuged at 13,000 rpm (revolutions per minute) for 5 minutes. The 

supernatant was then removed to a fresh Eppendorf containing 500µ1 isopropanol to 

precipitate the DNA. The samples were mixed vigorously and centrifuged for 5 

minutes at 13,000 rpm. The supernatant was poured off leaving the DNA pellet, 

which was left to air -dry overnight. The following day the DNA was resuspended in 

500 pi DNA hydration solution (Puregene), aided by vortexing, and incubation at 

37 °C overnight. 

2.1.3 Genotyping of transgenic mice using the polymerase chain reaction 

(PCR) 

PCR to determine the various genotypes was carried out on the extracted DNA 

samples (2.1.2) in Omnigene Thermal Cyclers (Hybaid) using Gibco PCR kit 

containing PCR buffer, 1% W1 detergent (used to improve thermostability of 

enzyme), MgC12 (50mM) and Taq polymerase (5units /111: a unit is defined as the 

amount of Taq polymerase which incorporates lOnmol of dNTPs into acid - 

precipitable material in 30 minutes at 74 °C). Other reagents used were PCR primers 

(lOpM/µl, OSWEL) and dNTP's (50mM, Gibco). Conditions and product sizes are 

summarised in Tables 2.2 and 2.3. 
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Table 2.2 - Composition of PCR reaction mixes 

Reagent p53 ApcM`n Smad4+1" Smade+ 
ddw (autoclaved) 27.45111 37.85µ1 25.25111 41 .2111 

PCR buffer 5p1 5µ1 5p1 51.11 

MgC12 (50mM) 2t1 2.5µ1 2.5µ1 2111 

dNTP's (50mM) 0.8µ1 0.4µ1 1t1 2111 

PCR Primers 

(IOpM/d1) 

2.5p1 of 

each 

1111 of 

each 

21.11 of each 2t1 

1% W1 detergent 2.5 t1 0 0 0 

DMSO 2.5111 0 0 0 

Taq Polymerase 

(5U /111) 

0.25111 0.25µ1 0.25µ1 0.8.1 

Genomic DNA 2t1 2µl 21.1.l 2t1 
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Table 2.3 - Primers used, thermocycler conditions and products sizes obtained 
from various polymerase chain reactions 

Primers Conditions Product 

Sizes 

p53 Purdie 

et al., 

(1994) 

5'-GTGGTGGTACCTTATGAGCC 

5'-CATCGCCTTCTATCGCCTTC 

5'-CAAAGAGCGTTGGGCATGTG 

1 X 94°C - 2mins 

30 X 

{94°C - lmin 

(denaturing), 

62°C - lmin 

(annealing), 

72°C - 1 min 

(extension)} 

1 X 72°C - 10 mins 

WT - 

642bp 

Targeted - 

510bp 

ApcM`" 

Luongo et 

al., (1994) 

5'-TCTCGTTCTGAGAAAGACAGAAGCT 

5'-TGATACTTCTTCCAAAGCTTTGGCTAT 

1 X 94°C - 2mins 

35 X 

{94°C - 1min, 

60°C - lmin, 

72°C - lmin} 

1 X 72°C - 10mins 

After Hind 

III 

digestion 

WT-123 

bp 

Targeted- 

144óp 

Smad4 

mutant 

Sirard et 

al., (1998) 

5'-CGAAGGGGCCACCAAAGAACG 

5'-TACTTTGCCGTGGTGGTGCTC 

1 X 94°C - 2mins 

30 X 

{94°C - lmin, 

65°C - lmin, 

72°C - lmin} 

1 X 72°C - 10mins 

Targeted 

allele- 

650bp 

Smad4 

WT Sirard 

et al., 

(1998) 

5'-CCTGTGGCCTGCTCTCTTCTC 

5'-GGACAGGCAGTGGAGGATAGG 

1 X 94°C - 2mins 

30 X 

{94°C- 1min, 

65°C- lmin, 

72°C- lmin} 

1 X 72°C - 10mins 

WT allele - 

711bp 
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Smad4 5' 

LoxP site. 

See 

appendix 

B. 

5' - ATACTGAGCACTGGTGGT 
5'- AAGGCTGAACGGCCCTTC 

1 X 95 °C - 5mins 

30 X 

{95°C - lmin, 

58 °C - lmin, 

68 °C- lmin} 

1 X 68 °C - 10min 

WT - 
220bp 

Targeted 

allele - 
280bp 

Smad4 3' 

LoxP site. 

See 

appendix 

B. 

5' - GTAGTAAGTCATGCAAGG 
5' - CAATTCCAGGTGAGACAA 

1 X 95 °C - 5mins 

30 X 

{95°C - lmin, 

58 °C - lmin, 

68 °C - lmin } 

1 X 68 °C - 10min 

WT - 
230bp 

Targeted 

allele - 
300óp 

The Hind III digestion after the ApcM11 PCR was carried out by incubation of 17111 of 

product with 2µl reaction buffer 2 (10x Gibco) and 11.11 (20 units) Hind III enzyme 

(Gibco) for 2 hours at 37 °C. 

The products of these reactions were visualised by gel electrophoresis on Tris- borate 

EDTA (TBE) 2% (or 4% only in case of ApcM"') agarose gels containing ethidium 

bromide (0.005 %) and visualised by UV illumination. This technique of using gel 

electrophoresis to separate DNA fragments is detailed in Sambrook et al. (1989). 

Agarose gels were submerged in electrophoresis buffer (TBE) and 171.11 of samples 

were loaded into wells after the addition of 3111 of loading buffer containing 

bromophenol blue. Appropriate DNA ladders (Life Technologies, Boehringer- 

Manheim) were used to estimate PCR product sizes. 

2.1.4 Monitoring of cohorts for illness 

Daily monitoring of mice bearing single or multiple genetic mutations was carried 

out. Table 2.4 details the predominant cause of death and symptoms of illness for 

mutant mice. 
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2.1.5 Fixation of tissues 

At the appropriate time point (in case of NMU studies) or upon signs of illness (for 
studies of spontaneous neoplasia) animals were injected with BrdU (2.1.7) and culled 
by cervical dislocation (schedule 1). Dissected organs and tumours were fixed in 4% 

formalin overnight. Large and small intestine were flushed with water and fixed in 

methacarn (4 parts methanol, 2 parts chloroform, 1 part glacial acetic acid) for 2 

hours before they were removed into 70% ethanol. Following fixation, tissues were 

dehydrated through a series of 2 X 20 minute incubations in increasing alcohol 

concentrations (50 %, 70 %, 85 %, 90 %, 100 %). They were then incubated for 3 X 40 

minutes in xylene and 3 X 40 minutes in 56 °C wax before being embedded in 

paraffin wax. 31,tm sections on vectabond (Vector Laboratories) coated slides were 

used for all histological and immunohistochemical staining. 7 -101.1m sections baked 

onto plain slides were used for laser microdissection. Haematoxylin and eosin (H +E) 

staining was carried out routinely for all tissues harvested. Paraffin embedding, 

sectioning and H +E staining was carried out by the Department of Pathology 

histology service. 

2.1.6 Administration of N- Nitroso -N- Methyl -Urea 

33mg N- Methyl -N- Nitroso -Urea (NMU) (Sigma, isopac) was diluted in 5m1 sterile 

PBS (phosphate buffered saline) containing 0.05% acetic acid in a class I hood 

reserved for work with toxic compounds. Pups weighed on average 3g by day 4. 

Using an insulin syringe, 2511,1 of 6.6mg/m1 NMU was injected subcutaneously into 

the flap of skin (`scruff ) behind the head of the pups corresponding to a dose of 

55µg/g body weight of NMU. Pups were returned to their mothers and held in a 

class I hood, before the bedding was changed and the animals were returned to 

experimental holding rooms. Bedding was incinerated. NMU- treated cohorts were 

weaned as normal and checked daily for signs of illness. Animals which became 

moribund before the end of the experiment were culled. Littermates were sacrificed 

at age 65 days after treatment with BrdU (2.1.8). Tissues were harvested as detailed 

in 2.1.5 and paraffin wax embedded. 
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2.1.7 Administration of dietary aspirin 

Cohorts of NMU- treated and control mutant and WT mice were fed a diet containing 
400mg/Kg aspirin (Harlan /Tekad). This level of exposure to aspirin is comparable 
with the highest doses used in previous studies (Mahmoud et al., 1998, Barnes and 

Lee, 1998, Williamson et al., 1999, Chiu et al., 2000). At 4 days of age litters were 

first treated with NMU and then parents and litters were immediately moved onto the 

aspirin diet until administration of BrdU (2.1.8), culling and harvesting of tissues at 

age 65 days (2.1.5). 

2.1.8 Administration of BrdU intraperitoneally 

Animals were injected intraperitoneally with 10m1 /kg body weight BrdU 

(Amersham, final concentration 3mg/100g body weight) 2 hours prior to culling. 

2.1.9 Immunohistochemical techniques 

All immunohistochemistry was carried out utilising a standard immunohistochemical 

protocol, however the specific conditions for each individual antibody are detailed in 

Table 2.5. All immunohistochemistry was carried out on 3µm thick paraffin 

embedded sections on vectabond- coated slides. As the 3 dimensional structure of 

proteins within tissues that have been formalin fixed and paraffin wax embedded is 

altered, some epitopes lose their immunoreactivity. Therefore for some 

immunohistochemical labelling an antigen retrieval step is needed. To enable 

antigen retrieval, slides fixed in formalin or methacarn were microwaved in 500m1 

citrate buffer (10mM, pH 7.6) for three 5 minute incubations (700 Watts). 

Endogenous peroxidases were blocked by incubation in 3% hydrogen peroxide in 

ddw (double deionised water or methanol where stated) before incubation in 20% 

normal serum to block non -specific binding of antibodies. Primary antibodies, 

diluted in 20% normal serum, were applied at an optimal concentration (determined 

empirically) for 1 hour at RT or overnight at 4 °C. After washing sections were 

incubated with biotin- conjugated secondary antibody, again diluted in 20% normal 

serum for 30 minutes. Following further washes, incubation was carried out with 

avidin- biotin (AB) complex either horseradish peroxidase (HRP) - or alkaline 
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phosphatase (AP) -conjugated (Vector Laboratories) for 30 minutes at RT. This was 

an amplification step which results in more HRP or AP enzyme conjugated to each 

epitope, due to an avidin- biotin complex building up on each biotin molecule from 

the secondary antibody. Following a final wash, a chromagen was added. Three 

chromogens were used, DAB and Vector VIP (Vector Laboratories) for HRP- 

mediated reactions and Vector Blue (Vector Laboratories) for AP- mediated 

reactions. The Chromogen DAB (3,3 diaminobenzedene) (DAKO) resulted in a 

brown colour developing, Vector VIP, a burgundy colour and Vector Blue, a blue 

colour. Slides were counterstained with Harris' haematoxylin and mounted using the 

non -aqueous pertex in the case of DAB and Vector VIP. For Vector Blue stained 

sections a methyl green nuclear counterstain (Vector Laboratories) was used and 

sections were mounted in aqueous mounting medium. 
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Table 2.6 - Specific conditions for individual immunohistochemical labelling 

Protein Primary 

Antibody 

Normal 

Serum 

Secondary 

Antibody 

Wash Notes 

SMAD4 SC1909, goat 

polyclonal 

1:200 (Santa 

Cruz) 

Goat Rabbit anti- 

goat- biotin 

linked, 1:400 

TBS 

(Tris 

buffered 

saline) 

H202 block in 

methanol 

13- catenin C19920, 

mouse 

monoclonal 

1:50 

(Transduction 

Labs) 

Rabbit Rabbit anti- 

mouse biotin 

linked, 1:400 

TBS 

BrdU MAS250p, 

Rat 

monoclonal 

1:100 

(Harlan) 

Rabbit Rabbit anti- 

rat -HRP 

conjugated, 

1:100 

PBS Incubation in 5M HC1 

for 45 minutes RT 

prior to endogenous 

peroxidase block. No 

AB complex needed 

13- catenin 

and BrdU 

C19920 

mouse 

monoclonal 

1:50 

(Transduction 

Labs) 

MAS250p, 

Rat 

monoclonal 

1:100 

(Harlan) 

Goat Rabbit anti- 

mouse biotin 

linked, 1:400 

(for 0- 

catenin) and 

Goat anti -rat 

biotin linked, 

1:400 (for 

BrdU) 

TBS Incubation in 5M HC1 

prior to endogenous 

peroxidase block. For 

13- catenin, AB 

complex AP- linked 

was used with Vector 

Blue chromagen. For 

BrdU, AB complex 

HRP- linked with 

DAB chromagen. 
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2.1.10 ß- Globin transgene DNA -DNA in situ hybridisation and ß- catenin 
immunohistochemistry 

To investigate the ploidy status of dysplastic acinar cells in NMU- treated mice 

(chapter 4), a technique was used whereby in situ hybridisation for a ß- globin 

transgene on chromosome 3 and ß- catenin immunohistochemistry were carried out 

on paraffin embedded sections. The pancreata to be used for this techniques were 

fixed in methacarn for 2 hours before being transferred into 100% ethanol. It was 

vital that pancreata were not exposed to formalin during any stage of the fixation or 

embedding process as this could have impeded the in situ hybridisation reaction. 

The DNA -DNA in situ hybridisation was carried out as detailed in Keighren and 

West (1993): briefly, dewaxed sections were incubated in 1mM NaOH at 70 °C (3 

minutes) and prehybridisation solution at 60 °C (15 minutes) before incubation with 

the digoxigenin -labelled ß- globin probe (in hybridisation solution) overnight at 

60 °C. After washing the slides were incubated in anti -digoxigenin HRP- linked 

antibody (Boehringer, 1:100 dilution, 30 minutes). After a further wash, the 

chromogen DAB was added for 10 minutes. Sections were then held in a humid 

chamber for a maximum of 4 hours before the ß- catenin immunohistochemistry was 

carried out as detailed above (2.1.9), but with the use of the purple chromogen 

Vector VIP (Vector Laboratories). 

2.1.11 Terminal deoxynucleotidyl transferase (TdT)- mediated dUTP nick end 

labelling ( TUNEL) staining 

The ApopTag (Intergen) TUNEL kit was used on paraffin embedded sections in 

accordance with the manufacturer's instructions. In summary, the 3' OH- termini 

generated by DNA fragmentation were labelled with digoxigenin- conjugated 

nucleotides by the enzyme TdT. Following the TdT enyzmic step, incorporated 

nucleotides were detected by an anti digoxigennin peroxidase -linked antibody. The 

chromogen DAB was then used to visualise positive nuclei. Haematoxylin was used 

as a nuclear counterstain. 
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2.1.12 Preparation of whole cell protein extracts 

Harvested pancreata were snap frozen in liquid nitrogen. To extract protein, tissue 
was homogenised in RIPA buffer (with freshly added protease inhibitors; 1011g/m1 

aprotinin, 111M pepstatin, 1µM leupeptin, 1mM sodium vanadate, 1mM PMSF) and 

centrifuged at 13000 rpm. The supernatant was collected, samples were removed for 
estimation of protein concentration (2.1.13) and the remainder stored in aliquots at 

-80 °C. 

2.1.13 Estimation of protein concentration 

Nuclear and cytoplasmic extracts (51.11) were diluted with 79511l ddw. 8001,11 of 

appropriate protein standards of BSA were also made (11.1g/1,1 - 251.1g/µ1). 2O0µ1 of 

Biorad assay reagent was added to each of the solutions and incubated at 37 °C for 30 

minutes. The optical density of the samples was measured at 595nm with a 

spectrophotometer. A standard curve was generated and protein concentration of 

experimental samples was estimated to allow equal loading. 

2.1.14 Immunoblotting 

Immunoblotting was carried out using NOVEX (Invitrogen) Immunoblotting 

apparatus and reagents. Protein (10 -20µg) was added to an equal volume of 1 x 

sample buffer and 1 x reducing agent (Invitrogen). Samples were boiled for 5 

minutes and loaded onto a 14% bis- acrylamide tris -glycine gel. Gels were run at 125 

Volts for approximately two hours in running buffer (Invitrogen) before they were 

blotted onto nitrocellulose membrane in transfer buffer (Invitrogen). Blots were 

blocked in milk buffer (TBS, 5% non -fat milk, 0.05% Tween) for 45 minutes at RT 

before primary antibodies to SMAD4 (1:100 dilution, SC1909 Santa Cruz) or 13- 

catenin (1:50, Transduction laboratories) were added overnight at 4 °C. Blots were 

washed and secondary anti -goat HRP- conjugated or anti -mouse HRP- conjugated 

(1:1000, Santa Cruz) antibodies were added for 30 minutes at RT. Blots were then 

visualised with ECL (Amersham) and densitometry carried out. 
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2.1.15 Laser microdissection 

7µm formalin -fixed paraffin embedded sections were cut, H +E stained, dried and 

held in a dehumidified box. Laser microdissection was carried out using the Pix Cell 

II, Arcturus laser microdissection hardware and software as detailed in the users 

manual. The appropriate areas of the section were identified and the laser is used to 

attach tissue to a special Eppendorf lid (CapsureTM). Once all the desired tissue was 

removed from the section and attached to the lid, the DNA was extracted from the 

tissue by incubation with microdissection lysis buffer overnight at 37 °C. The 

following day the presence or absence of the Smad4 or Apc WT allele was 

ascertained by PCR. 

2.1.16 PCR analysis of Smad4 and Apc LOH 

DNA extracted from microdissected samples was subjected to PCR for the Smad4 

mutant and WT alleles or the ApcM "` and WT alleles. Due to small quantities of 

DNA, a second round (30 cycles of denaturing/annealing /extension) of PCR was 

carried out on the amplified DNA before samples were run on a 2% or 4% gel 

(2.1.3). PCR was carried out as detailed in 2.1.3 but high fidelity Taq polymerase 

was used to minimise the introduction of mutations. 

2.1.17 Morphometric analysis and assessment of apoptotic and mitotic index 

2.1.17.1 Measurement of area occupied by dysplastic cells and measurement 

of nuclear area 

Areas occupied by dysplastic pancreas were scored from random sections on ß- 

catenin stained slides using a general morphometry (Structure) program on the 

AxioHOME (Highly Optimised Microscopic Environment) microscope (Zeiss). The 

areas of all lesions in all genotypes were measured and calculated as a percentage of 

total area of pancreas on the section. This information was also used to determine 

the lesion classes (as categorised by area: class I- single cell foci to 0.025mm2; class 

II- 0.025mm2 to 0.05mm2 and class III 0.05mm2 to 0.1mm2). Abnormal foci larger 

than 0.1mm2 were measured and included in the assessment of total abnormal tissue 

but excluded from nuclear area studies as they numbered too few for relevant 
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statistical analysis (2.4). A general morphometry (object) program on the 

AxioHOME microscope (Zeiss) was also used in the assessment of nuclear area. 

The areas of 500 acinar cell nuclei per category (foci classes I, II and III, and normal 

acinar cells from NMU- treated and untreated pancreas) per genotype were scored. 

The areas were categorised into 101.tm2 stages and subjected to statistical analysis 

using the Kolmogorov- Smimov (KS) test (2.4.2). 

2.1.17.2 Assessment of apoptosis 

Apoptosis was measured both by light microscopy of sections stained using the 

TUNEL technique (2.1.11) and by standardised morphological criteria (Kerr et al., 

1972, Wyllie et al., 1980) on ß- catenin stained sections. Apoptotic cells were 

identified by chromatin condensation, the presence of multiple rounded apoptotic 

bodies and the shrinking of cytoplasm. Often due to the chromatin condensation 

nuclear material displays stronger counterstain. A minimum of 1000 cells in sections 

taken from at least three mice were scored per category (genotype and lesion type or 

normal pancreas), with a maximum of 100 cells scored in each individual random 

field. A general morphometry (object) program was used at 400X and 1000X on the 

AxioHOME microscope (Zeiss). The Mann Whitney U test was used for statistical 

analysis (2.4.1). 

2.1.17.3 Assessment of mitotic index 

The mitotic index was measured on the 13- catenin and BrdU double -labelled sections. 

In each genotype, for every lesion type and normal pancreas, 1000 cells in total were 

scored from a minimum of 3 mice of each genotype, with 100 cells being scored in 

each lesion. The scoring was carried using a general morphometry (object) program 

on the AxioHOME microscope (Zeiss). The Mann Whitney U test was used for 

statistical analysis (2.4.1). 
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2.2 In vitro studies 

2.2.1 Preparation of pancreatic acinar cells 

The pancreata from three mice were removed immediately post culling, inflated with 

collagenase (700 units) for 10 minutes (RT) and divided into smaller pieces before 

shaking (86 rpm) in CO2- infused collagenase for 10 minutes at 37 °C. The 

collagenase was then replaced, reinfused with CO2 and pancreata were incubated in 

the shaking water bath for a further 30 minutes at 37 °C. Following digestion with 

the collagenase pancreata were broken up into acini by gentle pipetting through 3 

pipettes of decreasing bore sizes. To ensure preparation of acini which were neither 

too large or too small, acini were passed through a 150µm2 gauze and layered onto 

serum free (SeF) medium containing 4% BSA and spun at 200 rpm for 4 minutes. A 

final wash in SeF medium removed the final traces of BSA. Yields were estimated 

by the volume of packed acini, l001.11 of packed acini would be resuspended in 24ml 

of plating medium containing 15% serum (15% PM) and 5ng/m1 EGF. Acini were 

then plated onto collagen IV- coated (Sigma) sonic seal (Nunc) chamber slides (well 

area 1.54cm2), Iml of resuspended acini were seeded gently in each well. 

2.2.2 Culture of primary pancreatic acinar cells 

Acini were left to attach to the slides in 15% PM containing EGF for the first 3 days 

of culture and every effort was taken not to disturb slides. After 3 days, attached 

acinar cells were either placed in 15% PM with EGF for a further 24 hours or placed 

in Chee's medium containing EGF. To assist with purifying the culture from 

fibroblasts Chee's medium is arginine free. After at least 24 hours in Chee's medium 

attached acinar cells were either placed in Waymouth's/HamF12 medium containing 

EGF or continued in Chee's medium. Medium was changed daily and all 

experiments were conducted on acini which had been in serum containing PM for up 

to 4 days or on attached acinar cells which had been cultured for 6 -8 days as detailed 

above. Appendix A details exactly what these media contained. 
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2.2.3 Culture of NIH3T3 mouse fibroblast cell line 

NIH3T3 cells have been shown to contain endogenous SMAD4. These cells were 
grown to use as a positive control for the SMAD4 immunofluorescence. Frozen 
stocks (in 10 %DMSO, 90% Fetal Bovine serum) were rapidly defrosted, washed in 

warmed feeding medium (10% FBS, 1% antibiotic and 1% L- glutamine), spun down, 

resuspended in media (to remove all traces of DMSO) and plated onto small (25cm2) 

flasks. Experiments were conducted within two passages of defrosting on cells 

which had been grown on uncoated Sonic Seal chamber slides (Nunc). Cells were 

fixed with either methanol or paraformaldehyde (2.2.11) 

2.2.4 Administration of EGF 

EGF (Sigma) was used at final concentration 5ng /ml. A stock solution of 51,1,g/ml 

was made up and diluted 1:1000 at use. EGF was made up in sterile PBS containing 

5% filtered foetal calf serum or BSA. 

2.2.5 Administration of choleocystokinin (CCK) 

CCK (Sigma) was used at a final concentration of 10 -9M in Chee's medium. 

2.2.6 Administration of TGF -(3 

The concentration of TGF -13 (Sigma) to be used was titrated and a final concentration 

of 4ng/ml was decided upon. Lyophilised TGF -ß was rehydrated in filtered 1mM 

HCI, 0.1% BSA and diluted in the appropriate medium before addition to cells. 

2.2.7 Administration of TGF -131, 2 and 3 neutralising antibody 

Studies involving the effect of TGF -13 on acini during the first 4 days of culture 

utilised a TGF -ß neutralising antibody (R &D Systems). TGF -13 neutralising 

antibody (11.1l /ml in 15% PM) was added directly into wells prior to plating of acini. 
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2.2.8 Administration of MEK inhibitor 

Further studies investigating the effect of TGF -13 on acini during the first 4 days of 
culture utilised the MEK1 inhibitor U0126 (Promega). U0126 was diluted in cell 

culture tested DMSO to a stock concentration of 1nM and used immediately. 

Freshly prepared acini were treated with 15pM UO126. This concentration was used 

as preliminary studies using 5pM, 10pM, 15pM and 40pM of the MEK inhibitor 

(data not shown) revealed 15pM to be the optimal concentration for the observed 

effect. As the inhibitor was diluted in DMSO, similar amounts of DMSO were 

added to cells without U0126 to see whether DMSO alone was causing any effect on 

the cells. 

2.2.9 Treatment with bromodeoxyuridine (BrdU) 

BrdU (1:1000 dilution, final concentration 6µg/ml, Amersham) was diluted in culture 

medium and added to the cells 6 hours prior to fixation. 

2.2.10 Treatment with leptomycin B (LMB) 

Leptomycin B inhibits the nuclear export of proteins which utilise a CRM -1 binding 

sequence to exit the nucleus (Kudo et al., 1999). Day 6 -9 attached acinar cells were 

treated with 20ng/ml Leptomycin B for up to 6 hours in the presence and absence of 

TGF -ß (4ng/ml) and fixed in either methanol or paraformaldehyde (2.2.14). 

Leptomycin B must be kept on ice at all times as when the solution heats up a build 

up of pressure within the vial can be a hazard. 

2.2.11 Fixation of cells 

Four methods of fixation were used in the in vitro studies. For immunofluorescence 

cells were either methanol or paraformaldehyde fixed. Methanol fixation involves 

washing of the cells once in PBS before incubation at -20 °C in ice -cold methanol for 

5 minutes. After this the methanol was discarded and the cells were left to air dry for 

at least 30 minutes in a tissue culture hood. Methanol fixed cells were then stored in 

a -20 °C freezer wrapped in foil. For paraformaldehyde fixation, cells were incubated 

in the paraformaldehyde for 15 minutes RT, before 3 washes in PBS. Cells were 
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then stored in PBS at 4 °C until use. Cells which have received BrdU were washed in 

PBS and then fixed in 80% ethanol. The cells remained in the 80% ethanol at 4 °C 

until BrdU immunocytochemistry is carried out. Cells intended for Feulgen staining 

must be fixed in Bouin's fixative (7 parts methanol, 2 parts 40% formaldehyde and 1 

part glacial acetic acid). The cells remained in the Bouin's fixative at 4 °C until 

staining was carried out. 

2.2.12 Immunofluorescence studies 

All immunofluorescence was carried out utilising a general immunofluorescence 

protocol, however the specifics for each individual immunofluorescence are detailed 

in Table 2.6 below. Methanol fixed cells (2.2.11) were defrosted before rehydration 

in PBS for 5 minutes. Paraformaldehyde fixed cells (2.2.11) were pre- incubated in 

0.5% Triton in ddw for 10 minutes and washed well in PBS. For both types of fixed 

cells the same protocol was followed. Non -specific binding was blocked by 

incubation in 1 %BSA/PBS for 1 hour at RT before addition of primary antibody (at 

an optimal concentration), diluted in 1 %BSA/PBS for 1 hour at RT or overnight at 

4 °C. Cells were then washed 3 X in PBS (5 minutes for each wash). The 

fluorophore Alexa 488 (Molecular Probes) was utilised. This particular method uses 

an amplification step whereby cells are incubated with an Alexa 488 -conjugated 

rabbit anti -mouse antibody (diluted in 1 %BSA/PBS) for 30 minutes and then 

incubated with an Alexa 488 -conjugated goat anti -rabbit antibody (diluted in 

1 %BSA/PBS) for 30 minutes. This results in every epitope being labelled with a 

greater number of fluorophores and thus the immunofluorescent signal is stronger 

and more sensitive, but also more prone to background problems. 
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Table 2.6 - Specific conditions used in immunofluorescent labelling. 
Protein Primary 

Antibody 

Secondary 

antibody (1st 

Step) 

Secondary 

antibody (2nd 

step) 

Nuclear 

Counterstain 

Smad4 Mouse 

monoclonal, 

B8 (Santa 

Cruz) 1:50 

Alexa 488- 

conjugated 

rabbit anti- 

mouse 1:200 

Alexa 488- 

conjugated 

goat anti - 

rabbit 1:200 

Topro 3 

p21 Mouse 

monoclonal, 

F5 (Santa 

Cruz) 1:10 

Alexa 488- 

conjugated 

rabbit anti- 

mouse 1:200 

Alexa 488- 

conjugated 

goat anti - 

rabbit 1:200 

Topro 3 

p27 Mouse 

monoclonal 

(Sigma) 1:100 

Alexa 488- 

conjugated 

rabbit anti- 

mouse 1:200 

Alexa 488 - 

conjugated 

goat anti - 

rabbit 1:200 

Topro 3 

2.2.13 Immunocytochemistry for ß- catenin 

Immunocytochemistry for (3- catenin was carried out as detailed in 2.1.9 after 

methanol fixed cells (2.2.11) were defrosted before rehydration in TBS for 5 minutes 

(RT). 

2.2.14 Immunocytochemistry for BrdU 

Immunocytochemistry for BrdU was carried out as detailed in 2.1.9, following a 

wash in PBS to remove the 80% ethanol in which the cells had been fixed (2.2.11). 

2.2.15 Preparation of protein (nuclear and cytoplasmic extracts) for 

immunoblots 

Cells were washed in PBS before they were scraped off in ice cold PBS and spun 

down. They were then resuspensded in ice -cold lysis buffer containing protease 

inhibitors (10pg/ml aprotinin, 1µM pepstatin, 1µM leupeptin, 1mM sodium 
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vanadate, 1mM PMSF, Roche) and 0.5mM DDT added just prior to use. The lysate 
was vortex mixed before it was passed 5 x through a 25G needle and left on ice for 5 

minutes. The lysed cells were spun in a centrifuge in a refrigerated room (4 °C) for 5 

minutes at 2000 rpm before the supernatant was removed and stored at -80 °C 
(cytosolic fraction). The pellet was resuspended in ice -cold high salt buffer (addition 
of protease inhibitors listed above and 0.5mM DDT just prior to use), vortex mixed 
and incubated on ice for 20 minutes. Following this incubation the protein solution 
was spun at 12,000 rpm for 5 minutes at 4 °C. The supernatant (nuclear fraction) was 

then removed and frozen at -80 °C. 51.il samples of both nuclear and cytoplasmic 
extracts were removed to assay for protein concentration. 

2.2.16 Estimation of protein concentration 

As detailed in 2.1.13. 

2.2.17 Immunoblotting 

Immunoblotting with SMAD4 antibody (1:100, B8 Santa Cruz) and 3 -actin (1:200, 

Sigma) was carried out as detailed in 2.1.14. As 3 -actin was a rabbit polyclonal 

antibody, anti -rabbit HRP- conjugated secondary antibody was used (1:1000, Dako). 

2.2.18 Time lapse microscopy 

Time lapse microscopy using the Leica QUIPS hardware and software was used to 

observe acini plated onto collagen IV- coated chamber flasks 24 hours previously. 

Every 30 minutes for a period of 48 hours a digital image was captured through the 

microscope. The images were compiled using Adobe Premier software. 

2.2.19 TRITC- conjugated phalloidin fluorescence 

Phalloidin is a toxin which binds to actin fibres within cells (Dancker et al., 1975). 

Cells were fixed in paraformaldehyde (2.2.11) overnight prior to permeabilisation for 

10 minutes with freshly made up 0.5% Triton. Following washing in TBS and cells 

were incubated in tetra -methyl rhodamine isothiocyanate (TRITC)- conjugated 

phalloidin (1:100 dilution in TBS) for 1 hour in a fume hood . After this cells were 
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washed again in TBS and mounted using fluorescent mounting media containing the 

nuclear stain DAPI (Vector Laboratories). 

2.2.20 Feulgen staining 

Cells were washed in PBS and fixed in Bouin's fixative (2.2.11). Cells were washed 

again in PBS before incubation in 5M HCl at RT for 45 minutes. Following a further 

wash cells were incubated at RT in Schiff's reagent for 1 hour. Following this 

several washes in ddw were carried out until a strong pink staining developed. 

0.01% light green was used as cytoplasmic counterstain before slides were air -dried 

and mounted with cedarwood oil and coverslips. Apoptotic cells are distinguished 

from non -apoptotic cells by the presence of strongly stained apoptotic bodies in 

conjunction with increased light green cytoplasmic staining. 

2.2.21 Measurement of BrdU incorporation and apoptosis 

Measurement of BrdU incorporation and apoptosis levels was carried out on the 

AxioHOME microscope using the general morphometry (object) program. For a 

given experiment each timepoint was carried in duplicate. Within each well 500 

cells from 5 - 9 random fields of 20011m2 were scored, remnants of whole acini 

containing clumps of cells were not scored. The Mann Whitney U statistical test was 

used to analyse data (2.4.1). 

2.2.22 3H- thymidine incorporation 

Acini were prepared and plated as detailed in 2.2.1 in 15% or 2.5% plating media 

alone or medium containing EGF (5ng /ml), TGF -13 (4ng/ml) or EGF and TGF -13. 24 

hours prior to the desired time points (24, 48, 72 and 96 hours), 0.5µCi of 3H- 

thymidine (Amersham) was added to each well. After the incubation with the 3H- 

thymidine for 24 hours the cells were washed twice in PBS and 0.5ml of 10% 

(trichloroacetic acid) TCA was added to each well for 30 minutes at 4 °C. Following 

this incubation, lysed cells were scraped off the slide and transferred onto filter paper 

using a vacuum flask. A further 2 washes with 10% TCA were carried out again 

with contents from individual wells being transferred onto the corresponding filter 

papers. Filter papers were then dried using 100% ethanol and transferred into 3m1 of 
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scintillation fluid. The counts per minute were obtained using a scinti- counter. The 

experiment was performed in triplicate. 

2.3 Image analysis 

All images shown were captured digitally and managed in Adobe photoshop. 

Appropriate contrast, brightness and colour variations were used. Magnification is 

detailed within individual figure legends. 

2.4 Statistical methods (Sokal and Rohlf, 1995) 

Three main statistical methods were employed to analyse data within both the in vivo 

and in vitro studies. As a normal distribution (a symmetrical bell shaped 

distribution in which two standard deviations from the mean accounts for 95% of the 

data set) could not be assumed for any of the data sets non -parametric statistical 

methods were used. Non -parametric methods are not dependent on a given 

distribution but will usually work for a wide range of different distributions. They 

are called non -parametric because their null hypothesis is not concerned with specific 

parameters but only with the distribution of the variates. 

2.4.2 Mann Whitney U test 

This statistical test does not compare the actual values in given datasets but rather 

compares how the values rank in comparison to each other. Thus a similar result 

would be obtained by comparing dataset (A) e.g. 1,2,3,4,5 with dataset (B) e.g. 1000, 

2000, 3000, 4000, 5000 as it would by comparing dataset (A) with dataset (C) 10, 20, 

30, 40, 50, even though datasets (B) and (C) are vastly different. The test compares 

the sum of ranks for each individual dataset, thus if populations are not different 

from one another the rank sums would be approximately the same. The equivalent 

parametric 2 samples tests are the t -test and ANOVA (Analysis of Variance). The 

null hypothesis for the Mann Whitney U test is that the two samples have the same 

location (i.e. rank -ordered position of individual data values). 
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2.4.3 Kolmogorov Smirnov (KS) test 

The Mann Whitney U test is based on comparisons between the sums of ranks of 

individual variates, however the non -parametric KS test compares differences 

between two distributions. The null hypothesis of the KS test is that the two samples 

are distributed identically; thus the test is sensitive to differences in dispersion, 

location and skewness. It is based on the relative cumulative frequency distributions 

of the two samples. Critical values are approximated and compared with the 

maximum difference between the two cumulative frequency distribution of observed 

values. A decision can then be made as to whether the maximum difference between 

two cumulative frequency distribution is significant. 
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Chapter 3 - Characterisation of p53"' Smade 
and p534-ApcMin/ +Smade 

mice. 

3.1 Introduction 

3.1.1 Background 

The work described in this chapter involves combining targeted mutations in the 

tumour suppressor genes p53, Apc and Smad4, which have been linked to 

tumourigenesis either in human or murine pancreas. p53 is a tumour suppressor 

which functions in cell cycle regulation, induction of apoptosis in response to DNA 

damage, DNA repair, cell senescence and stress responses. APC is involved in the 

Wnt signalling pathway where it functions to modulate 13- catenin levels. SMAD4 is 

the central mediator of the TGF -ß signalling pathway and, in particular, has been 

associated with TGF -ß- mediated growth arrest. Detailed descriptions of the function 

of these proteins, the signalling pathways in which they are involved and the effect of 

mutation in the gene on the promotion of tumourigenesis are contained in chapter 1. 

Also, possible areas of interaction between these signalling pathways, which may be 

affected by combining mutations in these genes, are discussed in 1.12. p534- and 

ApcM"il+ mice are described in 1.11.6 and 1.9.4.1 respectively. Smad4- mice die as 

embryos, but Smad4 +i animals develop multiple gastric and duodenal polyps, which 

progress to invasive carcinoma (Takaku et al., 1999; Xu et al., 2000). 

3.1.2 Compound mutant mice in the study of cancer 

In the case of tumourigenesis, whereby progression involves the accumulation of 

multiple genetic mutations, the ability to combine mutations via the intercrossing of 

mice is an important tool. Combining multiple mutations within the same mouse also 

allows researchers to compare the relative importance of different mutations on the 

different stages of tumour progression. Thus, by highlighting the genetic changes 

occurring at each stage, scientists can gain valuable information regarding individual 

gene function and the order in which various genetic events occur (reviewed in Jacks, 

1996 and Macleod and Jacks, 1999). For example, Takaku et al. (1998) generated 
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Apc °7161 +Smad4 +i mice which exhibited an increase in size of intestinal polyps and an 

increase in frequency of adenocarcinomas compared to Apc °7161+ mice. The authors 

conclude that mutations in Smad4 play a significant role in the malignant progression 
of colorectal tumours. Transgenic mice that overexpress Wnt -1 in the mammary 
gland develop mammary tumours (Kwan et al., 1992). When these animals were 

crossed to p53_1- mice, the mammary tumours arose sooner and grew faster than those 

in the p53 +1 
+Wnt -1 overexpressing transgenic animals (Donehower et al., 1995; Jones 

et al., 1997). Assessment of apoptosis and proliferation rates found that apoptosis 

rates were not affected by p53 status however cell proliferation was significantly 

increased in the p53 -' Wnt -1 overexpressing animals compared to the p53 +1 
+Wnt -1 

animals (Jones et al., 1997). This work highlighted the involvement of p53 in cell 

cycle control in mammary tumourigenesis. 

The p53 -/ApcM "i+ mouse is of particular relevance to this thesis. These animals did 

not exhibit any change in the predisposition towards or the aggression of intestinal 

neoplasia, as compared to ApcM "il +mice. However 83% of animals analysed showed 

pancreatic preneoplastic acinar cell foci and cystic adenocarcinomas which exhibited 

LOH for Apc (Clarke et al., 1995). As "i+ small numbers of 

preneoplastic acinar foci and p53-/ mice did not exhibit any pancreatic abnormalities, 

this study suggested co- operation between p.53 and Apc mutation in the promotion of 

murine pancreatic tumourigenesis. This work highlighted three things. First, as p.53 

deficiency has different effects in different tissues, p53 must have cell type specific 

roles such that the loss of a particular pathway has greater effect in some tissues than 

others. This is interesting given that acinar cells in the pancreas normally have low 

levels of apoptosis. Therefore one would not expect loss of apoptosis to exert such a 

strong effect. Second, as human pancreatic neoplasia is predominantly within the 

duct cell compartment, the presence of pancreatic neoplasia in the acinar cell 

compartment in these mice introduces an interesting species difference. Third, loss of 

p53 is thought to be a late event in intestinal tumourigenesis, but the phenotype of 

this mouse suggests that loss of p53- mediated apoptosis does not predispose to 

intestinal neoplasia. 
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3.1.3 Questions addressed in this chapter 

In humans, SMAD4 has been found to be biallelically deleted or mutated in 50% of 

pancreatic ductal adenocarcinomas (Hahn et al., 1996; Schutte et al., 1996). Whilst 

rare, mutant APC has been reported in human pancreatic ductal adenocarcinomas 

(Horii et al., 1992; McKie et al., 1993). Approximately 50% of human pancreatic 

ductal adenocarcinomas show inactivation of p53 (reviewed in Howe and Conlon, 

1997). These works all refer predominantly to pancreatic ductal tumourigenesis, 

however the work by Clarke et al. (1995) showed that mutations in p53 and ApcM"' 

predisposed to mutine pancreatic acinar tumourigenesis. In fact most rodent models 

exhibit acinar cell carcinomas following transgenic manipulation or carcinogen 

treatment (Longnecker, 1992). Whilst acknowledging the discrepancy between 

acinar and ductal pancreatic tumourigenesis in murine and humans, it appears that 

similar gene mutations are involved in the promotion of tumourigenesis in both, 

suggesting that murine models could be informative in the investigation of the genetic 

changes occurring in both ductal and acinar pancreatic adenocarcinomas in humans. 

It was hypothesised therefore that Smad4 mutation may promote pancreatic 

tumourigenesis in p53-1ApcM "i+ mice. Furthermore, since characterisation of p531- 

Apc M "i+ animals by Kongkanuntn et al. (1999) led them to suggest that pancreatic 

adenocarcinomas arising in these mice contained areas of ductal differentiation, the 

question as to whether Smad4 mutation would promote ductal differentiation was also 

addressed. Finally since neither p531" nor Smad4 +i mice exhibit pancreatic 

abnormalities, p53-1 and Smad4 +i - mice were intercrossed to determine whether p.53 

and Smad4 mutation would cooperate in the promotion of murine pancreatic 

tumourigenesis. 
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3.2 Specific aims 
To characterise the pancreatic phenotype of p531-Smad4 +i- and p534- ApcM "d +Smad4 +i 

mice. 

To assess whether addition of Smad4 heterozygosity to p53 ApcM`+ mice increases 

tumourigenicity in the pancreas. 

To assess whether addition of Smad4 heterozygosity to p531- mice would predispose 

to pancreatic tumourigenesis. 

To determine whether Smad4 loss of heterozygosity occurs in pancreatic adenomas. 
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Results 

3.3 The effect of Smad4 heterozygous mutation on 

p534-ApcM'"hv +-and p53 "1 mice. 

3.3.1 Survival of p531-Smad4 +i" and p53- 1ApcM"'4Smade mice 

p.5.3 and Apc mutation have been shown to cooperate in the development of murine 

pancreatic neoplasia (Clarke et al., 1995). The present study addresses two issues: 

first, whether Smad4 heterozygosity can promote pancreatic tumourigenesis in p531- 

ApcM "j+ mice and second, whether p53 and Smad4 mutations can cooperate in the 

promotion of murine pancreatic neoplasia. A three step intercross breeding strategy 

was set up to generate p53- ApcM "lj+Smad4 +i and p534-Smad4 +i animals. This is 

outlined in Table 3.1. 

Table 3.1- 3 step intercross strategy 

Mating Progeny 
(1) P53-/-ApcM"+ X 

Smad4+i- 
p53+1- p53+i-ApcMr,+ p53+Smade. p53+i-ApcM"+Smad4+/- 

(2) p53+/-ApcMl,+Smad4+i 
X 
p53+/-ApcMi,+Smad4+i- 

p53+i+ 
p53+1- 

p534- 

p53+1+ApcM+ 
pS3+i-ApcMr,+ 

p53471pcM"+ 

p53+4Smad4+i- 
p53+1-Smad4+i- 

p53"1-Smad4+i- 

p53+1+ApcmiI,4 Smade 
p53+i-ApcM+Smad4+/" 

p534-ApcM"+Smad4+/- 

(3) p534"ApcM"+ X 
p534 -Smad4+i" 

p534" p534-ApcM"+ p531- Smad4+1- p534-ApcM`"4Smad4+/- 

Both p534-Smad4 +i and p534-ApcM "i+Smad4 +i animals were found to be viable and 

cohorts of these animals along with control cohorts (p53 -, and p53 - ApcM "i+) were 

aged. The animals were injected with BrdU, sacrificed and dissected when they 

became visibly moribund (materials and methods, 2.1.4, 2.1.5 and 2.1.8). p53 

deficiency reduced the life span of both WT and Smad4 +i - animals, as has been 

previously shown (Purdie et al., 1994). Death curves were generated to compare the 

survival of p53 - Smad4 
+i - with p531- mice. It was found that the survival rate of 

p531-Smad4 +i animals was similar to that of p531- animals (see Figure 3.1). 

Similarly, no differences were observed in the survival rate of p53 -1- ApcM` + and 

p53 -ApcM "ll+Smad4 
+1 - animals. The majority of the p53 -ApcM`+ mice, like the 

p534-ApcM`w +Smad4 +' mice, became moribund between 120 and 150 days of age. 
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3.3.2 Histological analysis of p53 "1ApcM`"l +Smad4 +1 and p53 "/ Smad +'" animals 
Histological analysis was carried out on haematoxylin and eosin stained tissue 

samples from p53- 1-ApcM "i+Smad4 +i 
and p53 -1 Smad4 +i animals. The tissues 

collected and analysed were pancreas, large and small intestine, gonads, mammary 

gland, spleen, thymus, kidney, salivary gland, liver, lung and skin. Similar to p53-1 

mice (Purdie et al., 1994), p53-1- Smad4 +i - animals exhibited thymic and extra thymic 

lymphoma (10 out of 10 assessed). All other tissues appeared histologically normal; 

in particular no pancreatic or intestinal tumourigenesis was observed (Figure 3.2 (c)). 

The p53- /-ApcM "l+Smad4 +i - animals exhibited extensive pancreatic acinar cell 

hyperplasia, adenoma, cystic adenoma and adenocarcinomas (Figure 3.2 (a) and (b) 

and Figure 3.3 (a -d)). These definitions were ascribed as outlined in Turusov and 

Mohr, 1994. The hyperplasia was associated with nuclear atypia and the cystic 

adenomas and adenocarcinomas were accompanied by extensive stroma, suggestive 

of acute inflammation. Numerous apoptotic bodies were present in pancreatic acinar 

adenoma and adenocarcinomas but not within the hyperplasias (Figure 3.2 (b)). In 

addition to the pancreatic tumourigenesis, 100% of these animals also exhibited 

intestinal single crypt lesions, compound lesions and small and large adenomas 

(Figure 3.2 (d)). Finally, small salivary gland adenomas were observed in 45% of the 

animals. 

121 



Figure 3.2 - Haemotoxylin and eosin stained tissues from p53-1- 

Apc"1i" +Smad4 + / and p53-1 Smad4 + / mice. (a) Pancreatic acinar 

cystic adenoma from p534-ApcM "'i +Smad4 + / mouse at X200 

magnification. (b) Pancreatic acinar cystic adenoma from p534- 

Apc ini +Smad4 +" mouse showing numerous apoptotic cells (arrows) 

at X400 magnification. (c) Normal pancreatic acinar cells from p53- 

'Smad4 +/ mice. (d) Arrow identifying adenoma in small intestine 
from p53- /-Apcmini +Smad4 + / mouse at X100 magnification. (e) 

Arrow identifying abnormal focus within salivary gland from p534- 

Apc'xini+Smad4 + / mouse at X200 magnification. 
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Figure3.2 - Representative examples of histology of p53-/- 
Apcm"'Smad4 +' and p53-'Smad4 +/+ mice. 
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3.3.3 Immunohistochemical analysis of pancreatic lesions 

As dysregulated 13- catenin has been shown to mark early neoplastic change in the 

murine pancreas (Kongkanuntn et al., 1999), immunohistochemistry for ß- catenin 

was carried out on pancreas from p531-Smad4 +i and p53- 1ApcM "il +Smade- animals. 

Consistent with the histological analysis, no pancreatic dysplasia was found in the 

pancreas from p53-í Smad4 +i - mice as evidenced by an absence of f3-catenin 

dysregulation. As shown in Figure 3.3 (a -c), immunohistochemistry for ß- catenin 

showed that pancreatic hyperplasia, cystic adenoma and adenocarcinomas all 

exhibited increased cytoplasmic (3- catenin levels. Furthermore, nuclear ß- catenin was 

observed in the cystic adenocarcinomas (Figure 3.3 (b)). Immunohistochemistry for 

SMAD4 revealed loss of detectable SMAD4 expression within the majority of 

pancreatic lesions in p53- 1ApcM "il +Smad4 +i mice (Figure 3.3 (d)), suggestive of loss 

of heterozygosity for Smad4 within these cells. Finally, immunohistochemical 

analysis of BrdU incorporation revealed high levels of cell turnover particularly 

within the adenomas, cystic adenomas and adenocarcinomas, indicative of 

dysregulated proliferation in these lesions (Figure 3.3 (e) and (f)). 
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Figure 3.3 - Results of immunohistochemistry for ß- catenin, 

SMAD4 and BrdU on pancreatic abnormal foci and cystic 

adenomas from p53- /-ApcM`ni+Smad4 +/ mice. In all cases the 

chromogen DAB was used with a haematoxylin counterstain. (a)- 

(c) Immunohistochemistry for ß- catenin on (a) pancreatic acinar 
cystic adenoma at X200 magnification and at (b) X400 
magnification (arrows highlight nuclear ß- catenin staining) (c) 

pancreatic acinar abnormal foci exhibiting nuclear atypia. (d) 

Immunohistochemistry for SMAD4 showing loss of SMAD4 
protein within pancreatic abnormal foci at X200 magnification. (e)- 
(f) Immunohistochemistry for BrdU on (e) normal pancreatic acinar 
cells and (f) pancreatic acinar cystic adenoma, both at X200 
magnification. 
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Figure 3.3 - Immunohistochemical analysis of p53- i-Apc"''"" +Smad4+ 
mice. 
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3.3.4 Analysis of LOH for Smad4 and Apc within pancreatic adenomas and 
adenocarcinomas 

Adenocarcinomas arising within p531-ApcM "j+ and ApcM "il+ pancreas exhibited LOH 

for Apc (Clarke et al., 1995; Kongkanuntn et al., 1999). Further, Wagner et al. 

(2001) showed that pancreatic adenocarcinomas arising in p53- mice overexpressing 

TGFa from a transgene under the control of the rat elastase promoter exhibited LOH 

for Smad4. To assess whether loss of SMAD4 immunohistochemical staining within 

the pancreatic lesions represented LOH for Smad4 and whether LOH for Apc was 

also a characteristic of pancreatic adenocarcinomas in p53- ApcM`ni+Smad4 
+i mice, 

laser microdissection was carried out. Smaller pancreatic adenomas and hyperplasias 

had to be eliminated from the investigation as they were only readily visible 

following 13- catenin immunohistochemistry, the process of which was detrimental to 

the samples rendering them unusable. Laser microdissection was carried out as 

shown in Figure 3.4 (a -b). This accurate technique of collecting tissue from 

histological sections allowed the collection of only acinar cells and not the 

surrounding stroma. PCR was carried out as described in the materials and methods 

(2.13 and 2.1.16), however, due to the small amounts of DNA extracted from each 

section, two complete rounds of PCR were carried out. (c shows 

representative examples of PCR reactions which show LOH for both Smad4 and Apc 

within pancreatic lesions. A detailed investigation of Smad4 and Apc LOH was not 

carried out, however these results suggest that Smad4 and Apc LOH occurs in at least 

some of these lesions. 
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Figure 3.4 - Laser microdissection of pancreastic cystic adenoma from 

p53- /-ApcM'ni+Smad4 +t mouse with representative pictures before (a) and 

after (b) microdissection at X400 magnification. (c) PCR for Smad4 

showing bands for mutant allele (650 bp) and WT allele (711 bp). 

Three separate reactions were carried out (see materials and methods); 
`M/W' with primers for mutant and WT alleles; `M' with primers only 
for the mutant allele and `W' with primers only for the WT allele. 
Lesions show loss of WT band. (d) PCR for ApcMin showing bands for 
Min (144 bp) and WT alleles (123 bp). 
Lane 1 - normal tissue from mouse heterozygous for ApcMin 

Lane 2 - normal tissue from WT mouse 
Lane 3 - lesion tissue from mouse heterozygous for ApcMin 

Lane 4 - lesion tissue from mouse heterozygous for ApcMin 

Lane 5 - lesion tissue from mouse heterozygous for ApcMin 

Lane 6 - lesion tissue from mouse heterozygous for ApcM`n 

Lanes 5 and 6 show loss of the WT band. 
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Figure 3.4 Microdissection and PCR analysis of pancreatic lesions 
in p53-1-ApcMin1Smad4 +i mice. 
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3.4 Conclusions and discussion 

Characterisation of p531-Smad4 +i compound mutant mice revealed no differences in 

survival rate when compared to p534- single mutants. Histological analysis showed 

that p53-í Smad4 +i animals did not exhibit pancreatic tumourigenesis and had a 

spectrum of lesions similar to that of p53 -1 mice. It was concluded that neither p53 

mutation or Smad4 heterozygous mutation singly, or in combination, could initiate 

pancreatic tumourigenesis within the timescale of this experiment (that is before the 

animals were overcome with lymphoma). Similarly, whilst Smad4 +i mice have been 

shown to develop intestinal adenomas and adenocarcinomas between 12 -24 months 

of age (Takaku et al., 1999; Xu et al., 2000), the effect of loss of p53 could not be 

determined here as the animals became moribund with lymphoma prior to the onset 

of intestinal tumourigenesis. 

Characterisation of p53 -1 ApcM "l+Smad4 +i animals revealed no difference in survival 

rate compared to p53-lApcM "il+ animals. Histological analysis revealed extensive 

pancreatic and intestinal tumourigenesis and, less commonly, salivary gland 

tumourigenesis. Increased 13- catenin levels were found within all types of pancreatic 

lesions. The cystic adenomas and adenocarcinomas exhibited increased apoptosis 

and BrdU incorporation. Finally, LOH for Smad4 and Apc was found within later 

stage pancreatic lesions. 

This study was designed primarily as a histological investigation, to test the 

hypothesis that loss of SMAD4 would alter pancreatic tumourigenesis either in 

cellular composition or through a notable change in the spectrum of lesion types. 

Clarke et al. (1995) found that 17% of p531-ApcM "i+ animals had normal pancreas, 

61% had preneoplastic foci and 22% had adenocarcinomas (values similar to the 

control p534-ApcM "j+ animals generated as part of the investigations detailed here). 

In comparison, 22% of the of p531-ApcM"il +Smade- mice in the present study had 

normal pancreas, 45% had preneoplastic foci and 33% had adenocarcinomas. Thus it 

appears that Smad4 heterozygosity on a p534- ApcMt'1+ background does not promote 

pancreatic tumourigenesis. In retrospect, the design of this study should have 
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included experiments which could investigate more subtle changes in pancreatic 

tumourigenesis, such as changes in protein or RNA expression or markers for the 

differentiation status of pancreatic exocrine cells. Further, the ability to conditionally 

remove p53 in the adult pancreas would have allowed the studies to continue beyond 

the constraints of the lifespan of p531- animals. 

The question as to ductal versus acinar composition of human and murine pancreatic 

cancers remains controversial. Given the importance of animal models in the study 

of cancer, some resolution must be reached. It could be argued that the difference in 

cell type between the two species is fundamental and therefore murine models can 

only be of use in the investigation of the rarely occurring human acinar pancreatic 

carcinoma. Alternatively, perhaps despite the disparities in both genetic make up and 

cell type, the animal models can still provide information, that upon further 

investigation in different model systems, could be vital. Experimental examples of 

this species difference include the fact that activating K -RAS mutations are associated 

with ductal adenocarcinomas in humans (Howe and Conlon, 1997) but not in 

pancreatic tumourigenesis in the mouse (Terhune et al., 1994; Schmid et al., 1999). 

The studies presented here showing that p534- Smad4 +i- mice have normal pancreata 

demonstrates that Apc mutation is fundamentally associated with murine pancreatic 

tumourigenesis, however this is not the case in the development of human ductal 

adenocarcinomas (Yashima et al., 1994). Comparison between human pancreatic 

ductal and acinar carcinomas revealed 9% allelic loss and 9% immunonegativity for 

DPC4 /SMAD4 in ductal carcinomas and 0% allelic loss and 100% immunopositivity 

for DPC4 /SMAD4 in acinar carcinomas (Moore et al., 2001). 

A physiological explanation for the human /murine differences could be the absence 

of the centroacinar cell in the murine pancreas. It has been suggested that human 

ductal pancreatic adenocarcinomas could be initiated in centroacinar cells which then 

differentiate to ductal cells (Hall and Lemoine, 1993). Transdifferentiation between 

acinar and ductal cells has been reported in murine primary cultured acinar cells (Hall 

and Lemoine, 1992). The question of acinar to ductal transdifferentiation is discussed 

further in Chapter 5. Also supporting the viewpoint that murine models are useful in 
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the study of human pancreatic cancer is the involvement of similar gene mutations in 

murine pancreatic tumourigenesis as in humans, such as p53, p16, Smad4, ras and 

Rbl (Howe and Conlon, 1997; Wagner et al., 2001, Quaife et al., 1987). The work 

by Wagner et al. (2001) cited above utilises p531- mice which overexpressed TGF -a 
in the pancreas. The TGF -a overexpressing mice express TGF -a under the control of 

a rat elastase promoter and exhibited transdifferentiation of acinar cells to duct -like 

cells, which represent pancreatic premalignant lesions (Sandgren et al., 1990; Wagner 

et al., 1998). 

In humans Smad4 and Apc are located at 18q21 and 5q21 respectivity. In the mouse 

however these alleles both reside on chromosome 18 approximately 30 centimorgans 

(cM) apart (Takaku et al., 1998). Therefore mice heterozygous for both Smad4 and 

Apc could contain the mutations in either the cis or trans conformation. If the 

mutations reside in the cis conformation then a single event could result in LOH of 

both these genes. Thus LOH for Apc or Smad4 could simply be an epiphenomenon. 

In support of this Takaku et al. (1998) showed LOH of Apc and Smad4 within 

Apcd7166 +Smad4 + / (in the cis conformation) mice due to loss of the entire 

chromosome 18. However if the mutations reside in trans conformation then a single 

event would only result in LOH of either Smad4 or Apc. Whether the mutations 

reside in cis or trans confirmation has not been central to this work, however analysis 

of the intercrossing strategies used suggested that the majority of the compound 

heterozygous mutations reside in the trans conformation. 

3.5 Future work 
It would be informative to perform further investigations into pancreatic 

tumourigenesis in p531-ApcM "i+Smad4 
+i mice. First, it is important to determine 

whether individual lesions exhibit both Apc and Smad4 LOH or simply for one or the 

other. This would allow determination of whether LOH for Apc or Smad4 is an 

epiphenomenon or whether it actively promotes tumourigenesis and would provide 

information as to whether the mutations are in the cis or trans conformation. By 

specific microdissection of hyperplastic foci, adenomas, cystic adenomas and 
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adenocarcinomas and then assessment of LOH for Apc and Smad4 (and perhaps other 

mutations such as activating K -ras mutations) information could be gained as to the 

order in which certain mutations occur within the progression of tumourigenesis. 

Third, direct comparision between the mutation status of lesions arising in p53_1- 

ApcM "i+ mice and those in p53 -, ApcM`n and Smad4 heterozygotes could help 

determine the extent to which LOH for Smad4 is contributing to tumourigenesis. 

Finally, as Apc and Smad4 mutations have been shown to cooperate in intestinal 

tumourigenesis (Takaku et al., 1998) but p53 and Apc mutations have not (Clarke et 

al., 1995) it would be of great interest to analyse the intestinal tumours arising in the 

p53 -ApcM "i+Smad4 +i mice. It is hypothesised that p53 mutation in conjunction with 

both ApcM"d +Smad4 
+i - could result in increased numbers of malignant intestinal 

tumours. 
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Chapter 4 - Carcinogen- induced murine 

pancreatic tumourigenesis: involvement of p53, 

Apc and Smad4 mutation. 

4.1 Introduction 

4.1.1 p53 deficiency and pancreatic tumourigenesis 

As outlined in 1.10.4, loss of p53 is an extremely important step in tumourigenesis and 

this gene is inactivated in approximately 50% of human pancreatic cancers (reviewed in 

Howe and Conlon, 1997). p53 functions primarily to allow cells to respond 

appropriately to stresses such as DNA damage, oncogene activation and hypoxia. p53 

has been associated with DNA repair mechanisms such as nucleotide excision repair, 

base excision repair and recombinational repair (Wang et al., 1995; Offer et al., 1999; 

Sturzbecher et al., 1996). Loss of p53 promotes tumourigenesis through mechanisms 

including loss of G1 checkpoint which normally prevents replication of damaged or 

fragmented DNA (Ko and Prives, 1996), reduced apoptosis, increased gene 

amplification and aneuploidy and increased invasiveness of cells. The phenotype of 

p53_1- mice is discussed in Chapter 1, section 1.11.6. 

4.1.2 Smad4 and Apc mutation in murine tumourigenesis 

As well as intestinal neoplasia, the ApcM "i+ mouse is predisposed to the development of 

abnormal pancreatic acinar foci characterised by high levels of 13- catenin, which in the 

absence of p53 progress to neoplasia (Clarke et al., 1995; Kongkanuntn et al., 1999). 

As a component of the Wnt signalling pathway, APC is thought to mediate its tumour 

suppressive activities predominantly through downregulation of intracellular (3- catenin 

levels (Munemitsu et al., 1995). Loss of functional APC results in increased levels of 

13- catenin, which upon nuclear translocation mediates transcription of target genes, 

including Cyclin Dl and c -Myc (He et al., 1998; Tetsu and McCormick, 1999). 

134 



Whilst SMAD4 has been linked to tumour suppression -related activities in vitro, the 

relevance to pancreatic neoplasia in vivo remains unclear. Smad4 null embryos die 
around day E7.5, whereas heterozygous mice survive and develop intestinal polyps by 

12 months (Sirard et al., 1998; Yang et al., 1998; Xu et al., 2000; Takaku et al., 1999). 

Although Smad4 LOH was reported in later stage intestinal tumours (Miyaki et al., 
1999), Xu et al. (2000) found that Smad4 heterozygosity was sufficient to initiate 

tumourigenesis in the intestine. Mice heterozygous for inactivating mutations in both 

Smad4 and Apc (Apcd716) developed colorectal carcinomas that were larger in size and 

more invasive by 20 weeks of age than those found in Apc °716 heterozygotes alone 

(Takaku et al., 1998). This suggests that Smad4 mutation plays a significant role in the 

malignant progression of colorectal tumours, but the precise biological role of Smad4 

mutation in the progression of pancreatic tumourigenesis in vivo has yet to be 

elucidated. Although Smad4 mutation is linked with 50% of pancreatic tumours in 

humans, to date no pancreatic phenotype has been reported for any murine transgenic 

Smad4 strain. 

4.1.3 Cox -2 inhibitors as suppressors of tumourigenesis 

Cyclo -oxygenase 2 (Cox -2) is an inducible form of prostaglandin H synthase which is 

involved in mediating prostaglandin synthesis during inflammation. Cox -2 has been 

found to be a transcriptional target of the Wnt signalling pathway (Howe et al., 1999; 

2001). Cox -2 is overexpressed in colon tumours (Kargman et al., 1995) and in 

pancreatic tumours (Yip -Scheider et al., 2000). Cox -2 is thought to promote 

tumourigenesis by making cells refractory to apoptosis or by modulating cell adhesion 

(Tsujii and Dubois, 1995). Furthermore Cox -2 is thought to increase invasiveness and 

metastatic potential of human colon cancer cells (Tsujii et al., 1997). Inhibition of Cox - 

2 by pharmacological agents in Apcd716 knockout mice protects against the development 

of intestinal tumours (Oshima et al., 1996). In particular much investigation has gone 

into the action of non -steroidal anti -inflammatory agents (NSAIDs) such as aspirin and 

sulindac, which inhibit Cox -2 activity (Kune, 2000). Work with ApcMt mice found 

that intestinal tumours arising in these animals overexpress Cox -2 (Williams et al., 
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1996) and the NSAID, sulindac, was shown to cause regression of these tumours 
(Giardiello et al., 1996; Chiu et al., 1997). In humans NSAIDs have been found to have 

a chemotherapeutic effect on the colonic polyps arising in FAP patients, causing the 

polyps to regress (Giardiello et al., 1995). Furthermore, a 40 -50% decrease in the risk 

of colorectal cancer has been reported in people who continuously take aspirin 

(Williams et al., 1997). 

The mechanism of chemoprevention of intestinal tumours by NSAIDs remains unclear, 

but is thought to be the induction of apoptosis (Elder et al., 1996). Sulindac decreases ß- 

catenin expression and increases apoptosis in normal intestinal mucosa in ApcMi mice 

and causes at least a 50% reduction of the elevated ß- catenin expression seen in 

intestinal tumours (McEntee et al., 1999). Work by Sheng et al. (1999) found a 

correlation between increased TGF -f3 expression resulting in an upregulation of Cox -2 

and downregulation of TGF(3 -RII. In this study non -tumourigenic intestinal epithelial 

cells (RIE -1) were continuously exposed to TGF -13. The cells first lost responsiveness 

to TGF -13 growth inhibition. Continued exposure after loss of TGF -13 responsiveness 

resulted in the cells acquiring a tumourigenic phenotype associated with Cox -2 

upregulation. This tumourigenic phenotype could in part be inhibited by selective 

pharmacological Cox -2 inhibitors. 

4.1.4 The use of a carcinogen to induce murine pancreatic tumourigenesis 

p53_i mice do not exhibit pancreatic lesions, but since p.53 mutation plays an important 

role in pancreatic tumourigenesis pancreatic tumourigenesis was induced in p53-1 mice 

using a carcinogen. This served two main purposes. First, it allowed the selective 

investigation into the effect of p53-1" deficiency in vivo before the animals became 

moribund due to the onset of lymphoma. Second, the carcinogen was used to address 

the need for additional mutations, which could include the remaining Smad4 or Apc 

wild -type alleles. It was decided to use the carcinogen N- methyl -N nitrosourea (NMU). 

NMU is an alkylating agent and a potent mutagen, exposure to which has been shown to 
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result in pancreatic acinar cell hyperplasia in rats and the development of lymphoma 

and mammary tumours in mice (Monis et al., 1991; Diamond et al., 1987; Barka, 1982). 

NMU has also been shown to cause activating ras mutations in mice (Corominas et al., 

1991). The activation of K -RAS is found in most human pancreatic cancers (Almoguera 

et al., 1988). It was thought that murine pancreatic tumourigenesis was not associated 

with activating K -ras mutation but recent work has shown that this is not the case 

(Wagner et al., 2001). It could be that activation of ras is one of the mechanisms of 

NMU- induced pancreatic dysplasia pertaining here. 

4.1.5 Questions addressed in this study 

p53-1 and wild type (WT) control animals were treated with the carcinogen NMU to 

address the role of p.53 deficiency on pancreatic tumourigenesis. As p.53 mutation has 

been associated with the genetic instability reported in many cancers, investigations 

were also carried out to assess the effect of p53 deficiency on nuclear atypia. 

NMU treatment was also utilised to address the role of Smad4 mutation in the 

development of pancreatic cancer. The NMU susceptibility of WT mice and mice 

heterozygous at either or both ApcM"` and Smad4 loci was compared. Given the 

established synergy between mutant ApcM"` and Smad4 alleles in colorectal cancer 

(Takaku et al., 1998), I also investigated whether mutations in these genes co- operate in 

this system. 

Two pieces of evidence suggest the possibilty that aspirin may suppress NMU- induced 

tumourigenesis in the murine pancreas: first, the ability of Cox -2 inhibitors to reduce 13- 

catenin levels and tumour formation in the intestine in ApcM'+ mice; second, the 

finding by Kongkanuntn et al. (1999) that 13- catenin stabilisation is a marker of 

pancreatic preneoplastic abnormal foci in ApcMt'+ mice. Therefore the effect of dietary 

aspirin on NMU- induced pancreatic tumourigenesis was tested in Smad4 heterozygotes, 

Apc heterozygotes and Apc and Smad4 compound heterozygotes (Smad4 +i ApcM "j+ and 

ApcM "i+Smad4 +i mice). 
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4.2 Specific aims 

To assess the effect of loss of p53 on pancreatic tumourigenesis in NMU- induced 

pancreatic dysplasia. 

To assess the effect of Smad4 heterozygosity, Apc heterozygosity and combined Apc 

and Smad4 heterozygosity on NMU- induced pancreatic dysplasia. 

To characterise nuclear atypia within pancreatic abnormal foci. 

To investigate the chemo -preventative effect of dietary aspirin on NMU- induced 

pancreatic tumourigenesis in Smad4 +, Apcmin/f and ApcM "i+Smade- mice. 
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Results 

4.3 The effect of p53 deficiency upon carcinogen - 

induced pancreatic neoplasia. 

4.3.1 Wnt signalling is dysregulated in pancreatic lesions arising in NMU exposed 

mice 

Age- matched cohorts of WT and p531- mice which had been subcutaneously injected 

with NMU at 4 days post partum were killed at 65 days and tissues collected (carried 

out by Dr A Menke). Histological analysis revealed extensive areas of abnormal acinar 

cells within the pancreas of NMU- treated WT and p534- mice. To identify whether the 

mechanism underlying the formation of these abnormal foci was similar to that 

observed in the ApcM"`i+ mice (Kongkanuntn et al., 1999) these samples were subjected 

to immunohistochemistry for 3- catenin. All morphologically identifiable areas of 

dysplasia were characterised by increased levels of cytoplasmic ß -catenin as shown in 

Figure 4.1. This suggests that dysregulation of the Wnt signalling pathway is a key 

event in the development of abnormal pancreatic foci. 

4.3.2 Effect of p53 deficiency on amount of abnormal pancreatic tissue 

To determine if p53 status influenced the extent of dysplasia, the fact that (3- catenin 

stabilisation marked abnormal foci was exploited to measure the total area occupied by 

abnormal acinar cell foci on random sections in p53 +i+ and p53-/ mice. This was then 

expressed as a percentage of the total area of pancreas in these sections. No significant 

difference in this percentage was identified between WT and p53-/ mice (Figure 4.1, 

Mann Whitney U, p >0.05). No abnormal foci were observed in the pancreas of control, 

untreated mice. 
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Figure 4.1 - Pancreata from NMU- treated WT and p53' mice 

immunohistochemically stained for ß- catenin. (a) Overview at X40 
magnification from NMU- treated p53' mouse, picture shows several 

areas of abnormal pancreas as identified by increased 0- catenin levels. (b) 

Single ß- catenin stabilised acinar cell at X1000 magnification from 
NMU- treated p53' mouse. (c) Focus consisting entirely of acinar cells at 
X400 magnification from NMU- treated WT mouse. (d) Focus containing 
acinar and stromal (S) cells and cystic areas (C) at X400 magnification 
from NMU- treated p534- mouse. (e) Amount abnormal (ß- catenin 
stabilised) pancreas as measured by area and expressed as percentage of 
total pancreas in sections from NMU- treated WT and p53_1- mice. Data 
are expressed as a dot plot with median percentage abnormal pancreas 
shown as a horizontal bar. 
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Figure 4.1 Analysis of abnormal acinar foci within the pancreata of 
NMU- treated WT and p53_i mice. 
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4.3.3 Effect of p53 deficiency on size and composition of foci 

Preliminary examination of the abnormal foci arising in the p53-1 mice indicated that 

these differed morphologically from those arising in the treated wild- types. To further 

characterise this, morphometric analysis was performed on the foci. As stated above, 

whilst the overall percentage of the pancreas defined as dysplastic was similar in p531- 

and p53 +1+ mice, three main differences were observed (Figure 4.2). First, larger 

abnormal foci (classes II and III, see materials and methods) arising in the p534- 

background contained a significantly higher percentage of stromal cells compared to 

those arising on a WT background (Mann Whitney U, p <0.05). Second, many p.53 

deficient foci exhibited cystic areas (Figure 4.1(d)). Figure 4.2 shows bar charts 

comparing the content of lesions in p534- and p53 +1+ mice. Third, analysis of the profile 

of foci size (as scored by area) shows that in the absence of p.53 abnormal foci are 

significantly smaller (Mann Whitney U, p <0.05), thus p.53 deficiency could be leading 

to increased abnormal foci initiation. Several hypothesis are suggested regarding the 

two types of foci. First that the two types represent independent pathways of 

tumourigenesis that are not related. Second that the acinar -only foci progress in 

tumourigenesis to become foci containing stroma and cystic areas. Finally, it could be 

that the focus phenotype of increased stroma and cystic areas reflects an inflammatory 

response being mounted against the abnormal cells. 
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Figure 4.2 - (a) Histograms showing average percentage stromal cells (a) 

and cystic areas (b) within different classes of abnormal foci for a given 

genotype as scored by area on random sections of immunohistochemically 
stained for ß- catenin. Error bars represent +1- Standard error of mean. (c) 
The distribution of foci sizes in WT and p.53 null mice is represented in a 

box plot. A box plot is created as detailed below. 

The top and bottom of the rectangular box represent the Pt and 3td 

Quartiles (Q1 and Q3) and the line within the rectangle is the median. 
The vertical whiskers run to the adjacent values in the upper and lower 
limits. The adjacent values are the lowest and highest observations within 
their respective limits. 

The upper limit is calculated as Q3 + 1.5x the interquartile range (Q3 - 
Q1). 

The lower limit is calculated as Q1 - 1.5 x the interquartile range. 

Any observations outside the upper and lower limits are expressed as 
black dots. 
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Figure 4.2 - Effect of p53 deficiency on size and composition of abnormal 
foci. 
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4.3.4 Effect of p53 deficiency on nuclear atypia within abnormal foci 

As p53 deficiency has been associated with genomic instability and histological 

examination revealed atypic nuclei consistent with dysplasia within abnormal foci 

(Figure 4.3(a)), the effect of p53 status on nuclear atypia was determined. To this end, 

morphometric analysis of the nuclear area (NA) in normal tissue and all classes of foci 

(class I, II and III see Figure 4.3 legend and materials and methods) was carried out and 

analysed using Kolmogorov Smirnov (KS) statistical analysis, Figure 4.3(b). In WT 

mice, all classes of foci exhibited a significant difference in the distribution of NA 

compared to normal nuclei (KS p<0.05). The p53-1 animals exhibited a difference in 

NA in class I and III foci but not in class II foci (KS p <0.05). Comparison between the 

genotypes revealed that all classes of foci and normal tissue in the p531- pancreas 

exhibited a different distribution of NA to the WT pancreas (KS p <0.05). These results 

suggest that loss of p53 results in an increase in morphological nuclear atypia. Whether 

this atypia reflects a change in DNA content was investigated further in later studies, the 

results of which are detailed in 4.4.6. 
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Figure 4.3 - (a) Abnormal foci from p53_í mouse stained 
immunohistochemically for ß- catenin showing atypical nuclei within 
focus. Foci were classified according to size into three classes Class I, 
< 0.025mm2; Class II, 0.025 - 0.05mm2; Class III, 0.05 - 0.01mm2, 
foci larger than Class III were excluded from the analysis of nuclear 
area due to insufficient numbers. (b) Box plot showing distribution of 
nuclear area within individual classes for WT and p534- mice. 
Approximately 500 cells were scored per class from a minimum of 10 

lesions, from at least 4 mice. Results of Kolmogorov Smirnov two - 
sample test (Sokal and Rohlf, 1995) are shown in tables above 
respective genotype. N denotes NA (nuclear area) in normal tissue; I, 

NA in Class I abnormal foci; II, Class II; III, Class III. Key for tables: 
NS, p >0.05 and * p <0.05. Results in a given box correspond to 
statistical comparison between the associated column title and row title 
(in bold). 
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Figure 4.3 - Analysis of nuclear atypia within abnormal foci. 
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4.4 Effect of NMU on WT, Smad4 +', Apcminl+ or 

ApcMin/ +Smade" mice. 

4.4.1 Effect of heterozygosity for Smad4 and Apcmin , singly or in combination, on 

the formation of focal acinar hyperplasia 

NMU was administered subcutaneously to littermate cohorts (6 -10 animals) of 4 day old 

WT, Smad4 +i 
, Apcmw+ or Apcmw +Smad4 +i mice. At 65 days of age the animals were 

sacrificed and tissues harvested. Age- matched (non- injected) control animals from each 

genotype were also examined. Given that pancreatic lesions arising spontaneously in 

mice on an ApcM"il+ background are characterised by ß- catenin stabilisation 

(Kongkanuntn et al., 1999), immunohistochemistry for 3- catenin was performed on 

pancreas from mice of each genotype treated with NMU and control mice. The 

pancreata of control mice were histologically normal. NMU -treated mice of all 

genotypes (including WT) exhibited multiple focal acinar cell hyperplasia which was 

characterised by increased levels of 13- catenin (Figure 4.4(a)). 

4.4.2 Histology of foci and assessment of apoptosis 

Two histologically identifiable types of abnormal foci were found, which may reflect 

different stages or endpoints of the carcinogenic challenge. The majority were 

composed entirely of acinar cells, while a minority contained stromal cells and cystic 

areas (Figure 4.4(a) and 4.4(b)). The proportion of the two types of foci did not differ 

between genotypes. TUNEL staining (Gavrieli et al., 1992) and morphological analysis 

(Kerr et al., 1972) revealed higher levels of apoptosis within foci characterised by 

stroma and cystic areas (2.4% TUNEL positive cells and 1.0% as scored 

morphologically) than the wholly acinar foci ( <0.1% TUNEL positive cells, and 0.2% 

as scored morphologically) (Figure 4.4(c) and 4.4(d)). It is possible that the altered 

content and deregulation of apoptosis in this subset of foci may indicate a progression in 

tumourigenesis. 

148 



4.4.3 Morphometric analysis of focal acinar hyperplasia in WT, Smad4+1 ", ApcM "n+ 

or ApcM`nkSmad4+'- mice 

Using 13- catenin immunohistochemistry, the area of pancreas occupied by abnormal foci 

and focus size was measured by morphometric analysis. Comparison of abnormal 

pancreas expressed as a percentage of total pancreas found no differences between 

Smade ApcM"+ or WT mice (Mann Whitney U, p >0.05), whereas ApcM 'Smade- 
mice showed a significant increase in abnormal pancreas (Figure 4.4, Mann Whitney U 

p <0.05). Increased abnormal pancreas, only when Apc and Smad4 mutation are present 

in conjunction, suggests that the pathways these proteins are involved in converge on a 

common target. This hypothesis is supported by previous work by Nishita et al. (2000) 

and Labbe et al. (2000) where interaction of members of the SMAD family with 

LEF1 /TCF and 13- catenin was reported. 
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Figure 4.4 - (a) Abnormal focus of pancreatic acinar cells from NMU- 
treated WT mouse showing ß- catenin stabilisation at X400 
magnification. (b) Pancreatic abnormal focus from ApcMini+Smad4 +1- 

mouse showing ß- catenin stabilisation and containing stromal cells (S) 
and cystic areas (C) at X400 magnification. (c) H and E stained 
pancreas showing representative example of apoptosis (arrow) as 

defined by morphological criteria at X1000 magnification. (d) TUNEL 
labelled foci counterstained with haematoxylin at X1000 magnification. 
Brown cells (arrow) represent cells positively labelled by the TUNEL 
method. (e) Amount abnormal (13- catenin stabilised) pancreas as 
measured by area and expressed as percentage of total pancreas in 
sections from NMU- treated WT, Smad4 +i 

, ApcMit' +, ApcMit Smad4 +[ 
mice. Data are expressed as a dot plot with median percentage 
abnormal pancreas shown as a horizontal bar. 
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(a) 

(e) 

Figure 4.4 - Histology of foci and assessment of apoptosis 
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4.4.4 SMAD4 expression within abnormal foci 

The observed increase in abnormal pancreas in Smad4 
+"ApcM' mice suggests that 

SMAD4 may act as a tumour suppressor in normal pancreas. To investigate whether 

lesions arising in ApcM " +Smad4 +i pancreas had lost SMAD4 expression, 

immunohistochemical analysis was carried out. Cells in the majority of foci remained 

heterozygous for Smad4 (Figure 4.5(a)) with strong cytoplasmic staining. Decreased 

cytoplasmic levels of SMAD4 expression were observed only within a minority of foci 

(Figure 4.5(b) and 4.5(c)) indicating that loss or downregulation of the remaining wild - 

type Smad4 allele occurs rarely. Thus it appears that the increase in abnormal pancreas 

in the ApcM "i+ Smad4 
+i - mice is associated almost entirely with Smad4 

haploinsufficiency. This suggests that in the presence of other mutations, loss of a 

single Smad4 allele could effect a progression in tumourigenesis. 
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Figure 4.5 - Immunohistochemistry for SMAD4 

(a) 

(b) 

(c) 

Figure 4.5 - (a) Pancreatic acinar cells from ApcMnI+Smad4 +< rmuse 

exhibiting similar staining for SMAD4 within and outside lesion, at X200 

magnification. (b) Reduced cytoplasmic expression of SMAD4 within the 

lesion from ApcM`nl+Smad4 
+i mouse at 200X magnification (b), and 400X 

magnification (c). 
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4.4.5 Effect of WT, Smad4 +1, ApcM`+ or ApcM`ni +Smad4+" genotypes on size of foci 

Statistical analysis comparing focus size between genotypes revealed that abnormal foci 

arising in ApcM ¡n / +Smad4 +1 - mice were not significantly larger than those in Smad4 +1, 

ApcM "i+ or WT mice (Figure 4.6, Mann Whitney U p >0.05). This implies that the 

increase in abnormal pancreas seen in ApcM "i+ Smad4 +i - mice is not due to increased 

focus size but rather increased incidence. Mutations in both these genes therefore 

appear to have an additive effect on the initiation but not growth of abnormal foci 

causing an overall increase in percentage of abnormal pancreas. 
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Figure 4.6- Morphometric analysis of size of abnormal foci 
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Figure 4.6 - Box plots expressing lesion size in NMU- treated WT, 

Smad4 +f ,Apc"`n+ andApcMM +Smad4 +f mice. 
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4.4.6 Investigation into nuclear atypia present in abnormal foci from WT, Smad4 +1 

, ApcMini+ or Apcmin4Smad4 +/" mice 

Histological analysis revealed that a subset of abnormal foci in mice of all genotypes 

examined contained visibly larger nuclei consistent with dysplasia (Figure 4.7(a)). To 

examine whether Smad4 mutation played a role in this dysplastic phenotype, nuclear 

area (NA) was measured in normal acinar cells and acinar cells within abnormal foci 

(denoted class I, class II and class III according to increasing size, see Figure 4.8 legend 

and materials and methods) for each genotype (Figure 4.8). While all three classes of 

lesion in WT, Smad4 +i - and ApcMui+ mice showed a significantly altered distribution of 

nuclear area compared with controls (KS, p<0.05), the greatest increases in NA 

compared to normal nuclei were observed in the smaller foci, class I and II. The 

distribution of NA in the larger abnormal foci (class III) more closely resembled that of 

normal nuclei. Abnormal foci arising in ApcM "il +Smad4 +i pancreas differed in that 

changes in NA distribution were much less pronounced and only class I abnormal foci 

exhibited a significant change in NA distribution (KS, p<0.05). 

Increased NA has been shown to denote a change in DNA content consistent with 

genomic instability (Asamura et al., 1989, Suzuki et al., 2000). To investigate whether 

the nuclear atypia reported above was associated with increased DNA content, NMU 

was administered, using the same method, to WT animals hemizygous for the ß- globin 

transgene Tg(Hbb -bl )83Clo present on chromosome 3 and detectable by DNA -DNA in 

situ hybridisation (Keighren and West, 1993). This method, previously used to identify 

abnormal ploidy (Keighren and West, 1993), provides a visual cue to the ploidy status 

of a cell. This study utilised a double labelling technique involving DNA -DNA in situ 

labelling of the ß- globin transgene and 3- catenin immunohistochemistry. Increases in 

the number of ß- globin hybridisation spots were seen only in abnormal foci (Figure 

4.7(b)), suggesting that in this system increased NA is associated with increased DNA 

content. An increase in the number of ß- globin hybridisation spots could reflect an 

increased proportion of cells blocked in the G2 phase of the cell cycle due to increased 

cell turnover. However, this seems unlikely since ß- globin staining was not present in 
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the doublets characteristic of G2 phase (Lawrence et al., 1990). Furthermore, BrdU 

incorporation studies (Figure 4.7(c) and 4.7(d)) revealed low levels of cell turnover, 

insufficient to account for the increased NA seen in approximately 40% of cells within 

abnormal foci. Thus the increase in nuclear area in the abnormal foci is most likely due 

to polyploidy or aneuploidy affecting chromosome 3. 
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Figure 4.7- (a) ß- catenin stained abnormal focus showing increased 
nuclear area within the lesion. (b) Double labelling of pancreas from 
hemizygous ß- globin transgenic mouse using DNA -DNA in situ 
hybridisation for a ß- globin transgene (brown punctate staining) and faint 
(3- catenin immunohistochemistry (burgundy). The black line divides 
dysplastic cells (bottom right) from normal cells (top left). Each ß- globin 
in situ hybridisation `dot' represents 2n. Cells within the lesion exhibit 
nuclei containing 4n and 6n (arrow). (c) Representative example of BrdU 
staining within abnormal foci, showing atypical nuclei which are not 
BrdU positive (arrows). (d) Histogram showing percentage cells 
incorporating BrdU in non -dysplastic tissue (from uninjected `control 
normal tissue' and injected mice `normal tissue') and abnormal tissue. 
BrdU was delivered 24 hours prior to culling. After processing, 
immunohistochemistry for f3- catenin and BrdU was carried out to enable 
scoring in both abnormal and normal pancreas. Error bars express 
standard error of the mean and in each case sections from a minimum of 3 

mice were scored. 
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(a) 

Figure 4.7 - Assessment of nuclear atypia 
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4.5 Effect of dietary aspirin on NMU- treated WT, 

Smad4 +', ApcMn'+ or ApcM' "I +Smad4 +1 mice. 

4.5.1 Effect of dietary aspirin on NMU- induced pancreatic foci 

Four day old littermates were treated with NMU as before. From the time of NMU 

administration, first the lactating mother, and then following weaning, the NMU treated 

mice themselves were fed with a diet containing 400mg /Kg aspirin. At age 65 days the 

mice were sacrificed and tissues harvested. I refer to these animals below as 

NMU /aspirin- treated animals. It was noted at time of culling that NMU /aspirin- treated 

animals weighed an average 28g whereas NMU- treated animals which had not received 

aspirin (from separate litters to the NMU /aspirin treated animals) weighed on average 

15g. Furthermore animals which had not received aspirin also frequently lost a 

significant amount of body hair. Whether this was due to over grooming (often a 

symptom of stress) or whether it had fallen out in response to the carcinogen was 

unclear. Notably none of the NMU /aspirin- treated animals exhibited this hair loss. As 

Cox -2 inhibitors have been shown to decrease ß- catenin levels in vivo in intestinal 

tumourigenesis, we first performed 13-catenin immunohistochemistry on random 

sections of the pancreata from mice of each genotype. Pancreatic sections from 

NMU /aspirin- treated animals still exhibited numerous abnormal foci which were again 

characterised by ß- catenin stabilisation (Figure 4.9(a)). No histologically identifiable 

foci which did not exhibit ß- catenin stabilisation were observed. Also none of the foci 

exhibited a `mosaic' immunohistochemical pattern, with only some ß- catenin stabilised 

cells within a focus. 

In order to compare the amount of abnormal pancreas in NMU /aspirin- treated mice with 

that in NMU- treated mice, morphometric analysis was again used. The area of 

abnormal pancreas was measured in random sections and expressed as a percentage of 

total pancreas area (Figure 4.9(c)). Statistical analysis by 1 tailed Mann Whitney U test 
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revealed that NMU /aspirin- treated ApcM "/+ and ApcM "v +Smad4 +i mice had significantly 

less abnormal pancreas than animals of the same genotype which had not received 

aspirin (p =0.012 and p= 0.0222 respectively). Thus it appeared that aspirin treatment 

was associated with a reduction of abnormal pancreas in ApcM"` heterozygotes. In 

accordance with the previous work on the effect of aspirin on intestinal tumourigenesis 

this is suggestive of modulation of the Wnt signalling pathway by Cox -2 inhibitors. 

Comparison merely within the different genotypes of NMU /aspirin- treated animals 

revealed no statistical difference in amount of abnormal pancreas. This is in contrast to 

the findings from the NMU- treated animals which had not received aspirin where 

ApcM "v +Smad4 +i mice exhibited an increase in abnormal pancreas compared to WT. 

This suggests a mechanism whereby aspirin negates the additive effect of these 

mutations. 
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Figure 4.9 - (a) Abnormal foci from an NMU /aspirin- treated 

ApcMuni+Smad4 + / mouse exhibiting ß- catenin stabilisation at X400 

magnification. (b) Amount abnormal (ß- catenin stabilised) pancreas as 

measured by area and expressed as percentage of total pancreas in 

sections from NMU- treated WT, Smad4 +i, ApcMinI+, Apcmini +Smad4 +' 

mice (b), and NMU /aspirin- treated WT, Smad4 +1, Apc i +, 

ApcM'ni+Smad4 + / mice (c). Data are expressed as a dot plot with median 

percentage abnormal pancreas shown as a horizontal bar. 
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Figure 4.9 - Analysis of abnormal foci in NMU /aspirin- and NMU- 
treated mice. 
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4.5.2 Effect of dietary aspirin on cell composition within abnormal foci 

As detailed above, NMU- treated animals exhibited two histologically identifiable types 

of foci regardless of genotype. Between 10 -20% of foci in the NMU- treated animals (no 

aspirin) exhibited the increased stroma and cystic areas phenotype. Histological analysis 

of sections of the pancreas from all genotypes of NMU /aspirin -treated mice showed that 

only foci which were entirely acinar in composition were present. This raises the 

possibility that aspirin could be exerting an anti -inflammatory response within the 

pancreas. This would be consistent with the hypothesis that foci containing cystic areas 

and stromal areas are caused by an inflammatory response which aspirin counteracts. 

Alternatively, if these foci represent a more advanced stage in tumourigenesis then 

aspirin appears to suppress this progression. 

4.5.3 SMAD4 expression within abnormal foci 

The foci arising in the non -aspirin- treated mice were predominantly found to have 

retained the WT Smad4 allele. Whether the foci arising in aspirin- treated mice were also 

heterozygous for Smad4 was investigated. Immunohistochemistry for SMAD4 was 

carried out on sections from all genotypes of aspirin treated mice. All foci retained some 

SMAD4 expression consistent with retention of the WT Smad4 allele (Figure 4.10). 

4.5.4 Association of genotype with distribution of focus size 

As morphometric analysis of the foci arising in NMU- treated animals revealed that 

mutation of Apc and Smad4 resulted in an additive effect on the initiation of abnormal 

foci, I investigated whether the same was true for NMU /aspirin- treated animals. It was 

found that abnormal foci arising in WT and ApcM"+ animals were smaller than those 

arising in Smad4 +i - and ApcM "i+Smad4 
+i mice (Figure 4.11(a), Mann Whitney U 

p <0.05). This suggests that in NMU /aspirin- treated mice the combination of ApcM;ni+ 

and Smad4 +i does not result in an additive effect on the initiation of abnormal foci, in 

contrast to the findings on mice which had not received aspirin. Thus it appears that 

aspirin could be causing an inhibitory effect on the initiation of foci in ApcM "i+Smad4+ 

animals. 
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Figure 4.10 - Immunohistochemistry for SMAD4 on NMU /aspirin- 
treated abnormal pancreas. 

Figure 4.10 - Pancreas from NMU /aspirin -treated ApcM "n +Smad4 ' mouse at 
X400 magnification showing similar staining within and outside abnormal 
foci. 

167 



43.5 Effect of dietary aspirin on cell turnover within abnormal foci 

As Cox -2 inhibitors are thought to reduce cell turnover it was hypothesised that the 

reduction in abnormal foci seen in ApcM "i+ and ApcM "i+Smad4 +i mice could be a 

consequence of reduced cell turnover. To test this, the percentage of cells incorporating 

BrdU was scored in normal pancreas from control animals (no NMU and no aspirin) 

and in normal tissue and abnormal foci from NMU /aspirin- treated and NMU- treated 

mice (Figure 4.11(b)). In WT mice comparison of BrdU incorporation in abnormal foci 

from NMU /aspirin- treated and NMU- treated mice revealed no difference, however 

aspirin- treated ApcM "i+ and ApcM "j+Smad4 +i - mice both exhibited a significant decrease 

in BrdU incorporation (Mann Whitney U, p<0.05). The difference was not significant 

at the 5% level in Smad4 +1 mice (Mann Whitney U, p= 0.108). Therefore both ApcMr,i+ 

and ApcM "j+Smad4 +i mice exhibited a significant decrease in abnormal pancreas after 

aspirin treatment, suggesting that this is due to reduced cell turnover. 
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Figure 4.11 - (a) Box plot representing the distribution of foci sizes in 

NMU /aspirin treated WT, Smad4 +i, Apd 'i+ and Apc inl +Smad4 +h' mice. 

(b) Histogram showing percentage cells incorporating BrdU in non - 

dysplatic tissue (from uninjected mice `control normal tissue', NMU- 

treated and NMU /aspirin -treated mice `normal tissue' and `normal 

tissue +aspirin' respectively) and in abnormal tissue from NMU- treated 

and NMU /aspirin -treated mice. Error bars express standard error of the 

mean and in each case sections from a minimum of 3 mice were scored. 

169 



0.1 - 

Figure 4.11- Distribution of abnormal foci sizes and analysis of 
BrdU incorporation studies. 
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4.6 Conclusions and discussion 

In summary, loss of p53 in an NMU- induced pancreatic tumourigenesis does not appear 

to increase overall amounts of abnormal pancreas but leads to the development of 

abnormal foci. Foci arising in p531- mice are smaller than those arising in WT mice and 

have an altered composistion. Furthermore, whilst nuclear atypia is seen in mice of 

both genotypes it is significantly increased in the p534- mice. Thus it appears that the 

foci arising on a p53 background follow a different pathway of tumourigenesis. 

Whether the foci on the p53 deficient background reflect a progression of 

tumourigenesis has not been addressed in this study. 

Treatment of WT, Smad4 +i, ApcM "j+ and ApcM "/+Smade- mice with NMU results in 

the development of abnormal foci in pancreatic acinar cells which are characterised by 

13- catenin stabilisation. Only NMU- treated ApcM " +Smad4 
+i mice exhibit a significant 

increase in amount of abnormal pancreas, associated predominantly with Smad4 

haploinsufficiency. This increase in abnormal pancreas was found to be due to 

increased number of foci rather than increased focus size. The data also showed that 

smaller lesions are characterised by morphological nuclear atypia. These studies 

demonstrate co- operation between Smad4 and Apc mutation and provide a system to 

investigate the chemopreventative effect of the NSAID, aspirin. 

Comparison of the amount of abnormal pancreas in NMU- treated and NMU /aspirin- 

treated WT, Smad4 +1 -, Apc and ApcM "/+Smad4 +1 - mice revealed a reduction in 

abnormal pancreas in the NMU /aspirin- treated ApcM "i+ and ApcM"` +Smad4 
+i - animals. 

No obvious reduction of 13- catenin levels was observed within the abnormal foci which 

persisted in the NMU /aspirin- treated mice. However aspirin did appear to effect a 

reduction in BrdU incorporation within the abnormal foci. Furthermore the altered foci 

phenotype of increased stroma and cystic areas seen in the NMU- treated mice was 

completely absent from the NMU /aspirin- treated mice. 
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ß- catenin stabilisation was present in foci arising in NMU- treated WT, p534-, Smad4 + / -, 

ApcM "i+ and ApcM "i+ Smad4 +i pancreas. As mentioned above, ß- catenin stabilisation is 

also characteristic of preneoplastic pancreatic lesions which arise spontaneously in 

Apc mice. mice. This suggests that by whatever mechanism dysregulation of the Wnt 

pathway is an early event in murine pancreatic acinar cell tumourigenesis. In contrast to 

this is the finding that APC is dysregulated rarely in human pancreatic ductal cancers 

(Horii et al., 1992; McKie et al., 1993). This deregulation of the Wnt signalling 

pathway is either associated more closely with the murine pancreas than in human 

pancreas, or perhaps other mechanisms of Wnt deregulation other than APC mutation 

occur in the human pancreas. Examples of these other mechanism include mutation of 

/j- catenin, reduced levels of the frizzled homologue protein (FRP) and biallelic 

inactivation of Axin (see Figure 1.6, Morin et al., 1997; Zhou et al., 1998; Satoh et al., 

2000) 

Various studies have suggested possible co- operation between dysregulated Wnt 

signalling and other mutations in the promotion of tumourigenesis. Interestingly, c -Myc 

a protein required for G1 /S transition and a target of the Wnt signalling pathway, has 

been shown to co- operate with loss of p53 to promote the survival of cells with severe 

DNA damage (Yin et al., 1999). A diploid myeloid cell line was simultaneously 

depleted of p53 while c -Myc was overexpressed, the result of which was spontaneous 

development of tetraploid cells. The restoration of p53 in the c -Myc overexpressing 

cells resulted in apoptosis. Another study associating p53 loss and dysregulated Wnt 

signalling in the promotion of mammary tumourigenesis was published by Donehower 

et al. (1995) (discussed in chapter 3, section 3.12). 

NMU- induced pancreatic tumourigenesis in Smad4 +i, 
ApcM "v+ or ApcM "l+Smad4 +mice 

demonstrated that ApcM "' and Smad4 mutations co- operate in the promotion of 

tumourigenesis. Takaku et al. (1998) analysed intestinal adenomas occurring in 

Apc47166 +Smad4 +i mice and found a decrease in polyp number, but an increase in polyp 

size and frequency of invasive adenocarcinomas when compared to Apc heterozygotes. 
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This work is therefore in contrast to that of Takaku et al. and may be indicative of 

different pathways of tumourigenesis in the pancreas and intestine, affecting different 

target genes. An example of such tissue -specific differences include SMAD4- 

independent inactivation of TGF -13 signalling (through inactivation of SMAD2 or TGF - 

[3 type II receptors), which occurs more often in colorectal tumourigenesis (Markowitz 

et al., 1995; Takagi et al., 1998). Finally, the absence of pancreatic neoplasia in the 

Apc °7161 +Smad4 +i mice could be because mutation in genes other than Apc or Smad4 is 

necessary to initiate pancreatic tumourigenesis. Such genes could be targeted by NMU 

in this study. In humans, oncogenic K -RAS activation is thought to be a prerequisite for 

pancreatic tumourigenesis (Rozenblum et al., 1997; Almoquera et al., 1988). Notably 

N- nitroso carcinogens have been shown to induce activating mutation in K -ras in mice 

(Corominas et al., 1991). 

It was also found that the co- operative effect of Apc and Smad4 mutation resulting in 

increased abnormal pancreas was associated with haploinsufficiency for Smad4 rather 

than LOH. Others have also reported that haploinsufficiency for Smad4 is sufficient for 

the promotion of tumourigenesis in the murine intestine, with loss of the remaining WT 

allele detected only at later stages of tumour progression (Xu et al., 2000). In p53-I- 

animals overexpressing TGF -a, LOH for Smad4 is associated only with late stage 

pancreatic adenocarcinomas (Wagner et al., 2001). Taken together these works support 

the hypothesis that haploid insufficiency of Smad4 may be sufficient for tumour 

initiation and that loss of even a single allele can have an effect on cell behaviour. 

Investigation into the nuclear atypia present in the WT, ApcMi'v+ and Smad4 +7 - animals 

and to a lesser degree in the ApcM "ll+Smad4 
+i - mice revealed that the nuclear atypia 

present did reflect a change in DNA content of nuclei within abnormal foci. However 

since the greatest increases in NA were not associated with either the largest lesions 

(class III) or the most predisposing genotype (ApcM "/+Smad4 + /), these results suggest 

that the processes leading to nuclear atypia and increased focus size may be 

independent. Although unlikely, it is possible that genomic instability is required in the 

173 



less predisposing genotypes for lesion initiation, but is incompatible with continued 
progression. 

The administration of dietary aspirin revealed that in carcinogen- induced pancreatic 

tumourigenesis aspirin does have a chemopreventative effect. However this effect 

appears predominantly to relieve the effects of Apc mutation rather than Smad4 

mutation. This is evidenced by the fact that reduction in abnormal pancreas following 

aspirin treatment was associated only with the ApcM "/+ and the ApcM "i+Smade- 
genotypes. In the absence of aspirin, ApcM "v +and Smad4 +i mutation in conjunction 

causes an additive increase in abnormal pancreas, an effect not evidenced when aspirin 

has been administered. Thus it appears that in this system aspirin somehow modulates 

the effect of Apc mutation. The work here has not provided any evidence suggesting 

that aspirin can modulate SMAD- mediated TUF -ß signalling. Previous work has 

highlighted a role for NSAIDs in the downregulation of 13- catenin levels as one of the 

molecular mechanism for suppression of tumourigenesis by Cox -2 inhibitors. The 

immunohistochemical studies of this work revealed no modulation of 13- catenin levels. 

The results presented here suggest that aspirin mediates its suppression of 

tumourigenesis through three methods: the reduction of cell turnover; the inhibition of 

abnormal focus initiation and the suppression of the stromal and cystic areas phenotype. 

It is unclear whether the weight gain observed in NMU /aspirin- treated animals was 

symptomatic of, or contributory to, the effects detailed above. The reduction of cell 

turnover and inhibition of focus initiation in NMU /aspirin- treated mice appears to be 

associated with the ApcM "i+ genotype, suggesting again that these cell behaviours are 

under the control of the Wnt signalling pathway. Cox -2 is a transcriptional target of 

Wnt signalling (Howe et al., 1999; 2001) explaining in part the association of tumour 

suppression by aspirin with Apc mutation. However it cannot be ruled out that aspirin is 

modulating the effect of Apc deficiency on some of the non -Wnt related functions of 

APC (see Chapter 1, section 1.8.2). Others have reported an induction of apoptosis in 
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response to NSAID treatment (McEntee et al., 1999; Ding et al., 2000), but this was not 

found in the present study. 

Assuming that the altered subset of foci (containing stromal and cystic areas) represent 

a progression of tumourigenesis, aspirin appears to suppress this progression. This is of 

particular interest in the context of Smad4 mutation, as defective TGF -ß signalling has 

been shown to result in neoangiogenesis and fibrosis in the stromal compartment of the 

pancreas (Bottinger et al., 1997). However this appears not to be the situation here as 

the effect of aspirin was found in animals of all genotypes. It is suggested that these 

altered foci represent an inflammatory response amongst those cells, as shown by the 

infiltrating fibroblasts, cystic areas and increased apoptosis. It could therefore be 

argued that the fact that aspirin prevents this type of focus supports the idea that the 

altered composition of these foci is due to an inflammatory response. Cox -2 inhibitors 

have been shown to decrease intestinal tumourigenesis in ApcM"l+ mice, but Cox -2 

expression in the murine intestine is restricted to the non -neoplastic stromal cells 

(Oshima et al., 1996; Shattuck -Brandt et al., 1999). This highlights the fact that Cox -2 

is not the only target of NSAIDs in the intestine. For example, He et al. (1999) 

identified a target of Wnt signalling, PPAR6 (peroxisome proliferator- activated receptor 

8, usually downregulated by APC regulation of Wnt signalling), which was 

downregulated in the absence of APC by the NSAID and Cox -2 inhibitor, sulindac. It is 

suggested therefore that this general non -genotype dependent effect of aspirin is due to 

Cox -2 inhibition and reduction of an inflammatory response, but that Cox -2 inhibition is 

not the only mechanism whereby aspirin suppresses tumourigenesis. 

In summary, therefore, work involving NMU- induced murine pancreatic tumourigenesis 

revealed that mutation in the tumour suppressors p.53, Apc and Smad4 each play a role 

in the promotion of tumourigenesis. p53 mutation predisposes the animals to the 

increased initiation of foci associated with an altered pathway of tumourigenesis and 

nuclear atypia. Work combining Apc and Smad4 mutation revealed a cooperation 

between these two mutations in the promotion of tumourigenesis. Treatment with 
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dietary aspirin suppressed tumourigenesis predominantly in mice carrying mutation of 

the Apc gene. 

4.7 Future work 

As with any carcinogen- induced tumourigenesis the exact mutational status of other 

genes is largely unknown therefore further work investigating the status of K -ras would 

be informative regarding the actual action of NMU in this system. Also, given the 

association of K -RAS mutation with human pancreatic cancers, if K -ras is mutated in 

this system, it would be informative to investigate the association of spontaneous K -ras 

mutation with the germline mutations present in the animals used here. It has recently 

been shown that a member of the TGF -13 signalling family, PTGF -ß, is a target of p53- 

mediated gene expression and that PTGF -(3 can induce the suppression of tumour cell 

growth in a SMAD4- dependent pathway. Thus it would be of interest to assess the 

effect of combined p.53 and Smad4 mutation in this system. Finally further 

investigation into the status of molecular targets of the Wnt signalling pathway (for 

example c -Myc, Cyclin Dl and Cox -2) would provide insight not only into the 

phenomenon of (3- catenin stabilisation, even in NMU- treated WT animals, but also into 

the possible action of aspirin in the suppression of tumourigenesis. 
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Chapter 5 - In vitro analysis of TGF-f3 

superfamily signalling in the pancreas. 

5.1 Introduction 

5.1.1 Primary culture of pancreatic acinar cells 

An overview of TGF -ß signalling under normal and dysregulated conditions is 

outlined in Chapter 1, section 1.5. Also of particular relevance to this chapter is 

section 1.2.3 on acinar to ductal transdifferentiation in the pancreas. In vivo 

investigations into acinar to ductal transdifferentiation provide researchers with `snap 

shots' of a dynamic process involving a mixed cell population. In addition to this 

embryonic pancreatic explants have been cultured in vitro (Parsa et al., 1980). These 

have provided a tool whereby researchers could monitor the differentiation process 

as it occurs but utilised a mixed cell population where it is relatively difficult to 

distinguish between undifferentiated precursor cells and ductal cells (Richardson and 

Spooner, 1977). As the real question concerns whether adult acinar or ductal cells 

can transdifferentiate, the use of embryonic cells is somewhat limited. This study 

therefore employed a technique whereby acinar cells are isolated from adult mice, 

thereby allowing the specific investigation of acinar cell differentiation in the adult 

pancreas. The cells can be monitored continuously and, vitally, the conditions in 

which the cells are maintained can be defined. 

Human pancreatic cancer is predominantly ductal in composition, however focal 

acinar cell dysplasia has been described in the human pancreas (Longnecker et al., 

1980). Whilst murine pancreatic tumourigenesis is predominantly acinar in 

composition, work with several mouse models has suggested that mutations 

originating within acinar cells can result in premalignant lesions consisting of duct - 

like cells. For example, overexpression of TGF -a within acinar cells results in 

premalignant lesions composed of duct -like cells. Tumour development is 

accelerated when these animals are crossbred with p531- mice (Wagner et al., 2001). 
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Also, transgenic mice overexpressing c -Myc within murine pancreatic acinar cells 

developed tumours with a ductal phenotype (Sandgren et al., 1991). Third, 

expression of a dominant negative TGF -fRII in murine pancreatic acinar cells 

resulted in ductal transformation, neoangiogenesis, fibrosis and adipose replacement 

of acini (Bottinger et al., 1997). Thus murine acinar cells are of use in the ongoing 

investigations into the molecular and biological changes that occur in the human 

pancreas. 

Previous work on has shown that the acinar cells of the exocrine pancreas have a low 

rate of mitosis (Solomon et al., 1981), but that TGF -ß can inhibit the growth of 

primary pancreatic acinar cells (Logsdon et al., 1992). TGF -(3 has also been shown 

to inhibit the proliferation of pancreatic duct cells (Bhattaharyya et al., 1995). EGF 

and CCK are trophic factors for pancreatic acinar cells and both of these factors are 

thought to act by stimulating the MAPK signalling pathway (Logsdon, 1986; 

Dabrowski et al., 1997). Simeone et al. (2001) demonstrated integration of MAPK 

and SMAD signalling in primary cultured rat acinar cells upon stimulation of the 

cells with TGF -ß. 

5.1.2 Questions addressed in this study 

TGF -ß has been shown to have conflicting effects in pancreatic tumourigenesis in 

humans, both promoting and suppressing tumourigenesis. SMAD4 inactivation is an 

important step in the development of human pancreatic cancer (Hahn et al., 1996). 

Work with cell lines has suggested that the biological effect of Smad4 mutation is 

indeed loss of responsiveness to TGF -ß induced growth arrest (Grau et al., 1997; 

Villanueva et al., 1998). My work outlined in chapters 3 and 4, and that of others, 

highlights the fact that murine pancreatic tumourigenesis is also associated with 

Smad4 mutation. However the in vivo studies described in chapters 3 and 4 did not 

fully address either the molecular changes occurring following Smad4 mutation or 

LOH or the changes in cell behaviours as a consequence of Smad 4 mutation. As 

TGF -ß can affect a wide variety of cellular responses that are further dependent on 

cell type, investigation into the intracellular signalling pathways through which TGF- 

13 mediates its cellular actions specifically in normal pancreatic cells is necessary. 
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Therefore to further investigate the effect of TGF -3 signalling on the pancreas, I 

utilised a primary tissue culture system whereby the pancreas was broken up into its 

acinar subunits and cultured in vitro. In order to assess the biological effect of the 

Smad4 LOH seen in pancreas from p53 -1 ApcM "i+Smad4 +i mice, the effect of TGF -13 

signalling on pancreatic acinar cells in the presence and absence of SMAD4 was 

investigated. To this end the effect of TGF -ß on WT and Smad4- primary murine 

pancreatic acinar cells was investigated. As Smad4- animals die as embryos, I 

wished to generate Smad4- acinar cells in vitro by mating Smad4 +i mice with mice 

carrying a conditional allele of Smad4 (Smad4fli+ mice). The acinar cells were to be 

cultured as before and then Cre -LoxP technology was to be utilised to remove the 

remaining conditionally targeted Smad4 allele. These Smad4- cells were then to be 

used to determine to what extent the effect of TGF -3 on murine acinar cells was 

mediated by SMAD4. For reasons detailed in appendix B I was unable to generate 

Smad41- primary acinar cells and therefore this chapter is entirely concerned with the 

effect of TGF -(3 on WT and Smad4 +i - acinar cells. 
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5.2 Specific aims 

To investigate the effect of TGF -ß on primary mutine pancreatic acinar cell culture. 

To use Cre -LoxP technology to create Smad4_' primary mutine acinar cell culture 

(see appendix B). 

To compare the effect of TGF -ß administration on Smad4_[ acinar cells and WT 

acinar cells. 
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Results 

5.3 The effect of TGF -13 on freshly prepared acini - 
day 0 - day 4 of culture. 

5.3.1 Overview of culture method 

Two main areas of investigation into the effect of TGF -ß treatment were pursued 

using primary culture of murine pancreatic acinar cells. First, the effect of TGF -ß on 

freshly prepared acini in serum -containing medium as the cells attached to collagen 

IV- coated slides (section 5.3) and, second, the effect of TGF -ß on cells in extended 

cultured which had already attached to the cell culture slides maintained in serum 

free (or low serum) medium (section 5.4). Figure 5.1 details these two stages of 

culture (early - day 0 to day 4 of culture and late - day 5 onwards) and summarises 

the techniques used to culture the acinar cells. The culture conditions already 

established by Dr N Sphyris dictated that acini be plated with 15% foetal calf serum 

(FCS) on collagen IV- coated Nunc sonicseal slides. Due to variations in the 

dissociation of the pancreas resulting in clumps containing different numbers of 

acinar cells it should be noted that in this system seeding densities cannot be 

accurately controlled. Once in culture these acini, each containing numerous acinar 

cells, attach to the surface of the chamber slide and gradually the clump of cells 

begins to flatten out revealing colonies of acinar cells in a non -confluent monolayer. 

The cells contained within the clumps maintain differentiation features for longer and 

are difficult to visualise by standard light microscopy. Therefore, for most of the 

investigations outlined in 5.4 analysis was restricted to monolayer areas. 
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Figure 5.1- Schematic diagram of method used to culture murine 
primary pancreatic acinar cells. 

Day 0 
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Day 2 
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1 
Cells left 
undisturbed in 
plating medium 
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1 
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into Chee's medium 
(no serum) 

Cells maintained in 
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medium containing 
2% FCS 
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Chee's 
medium (no 
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Figure 5.1 - Acinar cells are prepared as detailed in the materials and 
methods (2.2.1) on day O. The cells are then left undisturbed in an 

incubator (37 °C, 5% CO2) until day 4. Regardless of whether the cells 
will eventually be cultured in Chee's or Waymouth/HamF12 media, the 

acinar cells spend at least 24hrs in Chee's medium to reduce fibroblast 
contamination. The cells are then maintained in either Chee's medium or 

Waymouth/HamF12 medium with the appropriate growth factors. The 

two main investigations outlined in this chapter are the effect of TGF -ß 

early in culture (day 0 - day 4) and the effect of TGF -f3 late in culture 

(day 4 - day 8). 
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5.3.2 Effect of TGF -13 on freshly prepared acini 

As TGF -3 has been reported to be involved in extracellular matrix deposition 

resulting in changes in cell adhesion, motility and tissue remodelling (see section 

1.5.5) as well as a negative regulator of cell growth, the effect of TGF -3 on freshly 

prepared acini as they attached to the chamber slides was investigated. Preliminary 

experiments tested the effect of adding a range of concentrations of TGF -ß. The 

concentration of 160pM was decided upon as the lowest concentration which elicited 

an observable effect. This concentration was maintained throughout all the 

experiments detailed in 5.3 and 5.4 as is in line with published doses used for 

primary murine acinar cells. Cells were cultured in plating medium (materials and 

methods, sections 2.2.1 and 2.2.3 and appendix A) containing 15% FCS with either 

no supplementary growth factor, EGF, TGF -13 or both EGF and TGF -13 added. The 

growth factors were added on day 0 and the cells were monitored daily. Figure 5.2 

shows examples of the cells treated with the different growth factors over the first 4 

days of culture. Summarised under each picture are observations under the headings 

'acini attachment', `first visible attached and spreading cell' and `colony spreading'. 

It was observed that combined treatment with EGF and TGF -13 resulted in an 

acceleration of the time taken until the first visible attached and spreading cell was 

apparent compared to treatment with EGF or TGF -ß alone. Furthermore, an increase 

in acini attachment and colony spreading was observed which resulted in an overall 

increase in the area of acinar cell colonies on the culture slide (Figure 5.3, Mann 

Whitney U P <0.05). Comparison between the cells which received nothing, TGF -13 

or EGF alone revealed that the TGF -13 treated cells also exhibited an overall increase 

in the area of acinar cell colonies (Figure 5.3, Mann Whitney U p <0.05). 
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Figure 5.3 Area of acinar cell colonies on day 4 of culture 
after treatment with EGF and TGF -ß. 

0.5 - 
0.4 - 
0.3 - 
0.2 - 
0.1 - 
0- I 

I 

I 

1 I I 

None EGF TGF-ß EGF, 
TGF-13 

EGF, 
TGF- ß 
and Ab 

Figure 5.3 For each condition the area of 40 colonies chosen 
randomly were measured using the HOME microscope. Cells were 
grown in plating medium containing 15% FCS with no additional 
growth factors, EGF, TGF -13, EGF and TGF -ß or EGF and TGF -ß 
with neutralising antibody. Following methanol fixation, cells 
were H +E stained to allow visualisation of colonies under light 
microscopy. 
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This surprising result of TGF -3 in conjunction with EGF causing increased 

attachment of acinar cells and increased colony size was reproducible (n =12) and 

even occurs if the TGF -3 is added after 24 hours of culture. A number of hypotheses 

were suggested to account for this result. First, that the effect was a result of synergy 

between TGF -13 and EGF signalling as has been shown by others (Stoltz and 

Michalopoulos, 1997 discussed later). Second, that the addition of TGF - 3 with EGF 

was somehow causing an increase in proliferation resulting not in increased 

attachment but rather increased growth of those cells which did attach. Third, that 

TGF -13, in the presence or absence of EGF, was causing the cells to become more 

motile, thus acinar cells which attached were more able to move allowing more cells 

within the whole acinus to contact the chamber slide surface and attach. Fourth, it 

was hypothesised that TGF -(3 was inducing extracellular matrix production which 

was allowing cells to attach more readily to the culture slide surface. Fifth, that the 

culture of the cells with 15% FCS was indirectly affecting the action of TGF -ß and 

EGF and the observations in Figures 5.2 and 5.3 were not directly due to TGF -0- 

mediated response but that of growth factors present in the serum. Lastly, whilst 

each of these possibilities could act in isolation it was also possible that two or more 

of them might be acting together to produce the increased attachment and colony 

area that was observed. 

5.3.3 Control investigations of TGF -f 3 and EGF treated acini 

As the acinar cells which exhibited increased attachment and colony size had been 

cultured in 15% FCS, I wished first to address how much of this effect was 

dependent on the various nutrients present in the serum. Comparisons were made 

between cells cultured in 15% serum and 2.5% serum. As shown in Figure 5.4 (a -d), 

cells cultured with 2.5% serum containing EGF and TGF -ß also exhibit increased 

attachment and colony size in comparison to those cultured in 2.5% serum with only 

EGF. Comparison between acini cultured in 15% FCS or 2.5% FCS showed that the 

acini attach and spread better in 15% serum both in the presence of only EGF or EGF 

and TGF -13. Thus the effect of combined TGF -3 and EGF treatment on acini 

attachment and growth was evident at lower serum concentrations though to a lesser 
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degree. This suggested that the effect was not purely a consequence of 15% serum 

but it was augmented at higher serum concentrations. 

To further investigate how much of the effect was directly attributable to TGF -ß 

rather than factors present in serum, such as insulin, sex hormones or minerals such 

as iron, calcium and sodium, and to investigate the synergistic effect of TGF -ß and 

EGF on the pancreatic acini three qualitative experiments were carried out. The 

acini were cultured in the presence of a TGF -(3 neutralising antibody, a 

pharmaceutical MEK kinase inhibitor which has been shown previously to block 

EGF signalling (Learish et al., 2000), or with Choleocystokinin (CCK) instead of 

EGF. A single addition of TGF -ß neutralising antibody to freshly prepared acini in 

medium containing 15% FCS with EGF and TGF -13 resulted in partial inhibition of 

the increased acini attachment and colony size (Figure 5.4 (h)). Addition of the 

antibody on day 0, day 1, day 2 and day 3 resulted in a similar partial inhibition of 

acini attachment and colony size. Measurement of the area of acinar cell colonies on 

the culture slide showed that the addition of TGF -ß neutralising antibody resulted in 

a significant reduction in colony sizes (Figure 5.3, Mann Whitney U p<0.05) 

compared to acini which had only received EGF and TGF -f3. The addition of a MEK 

kinase inhibitor resulted in complete ablation of acini attachment and cell death 

(Figure 5.4 (g)). 

The hormone and neuropeptide CCK has diverse actions on the pancreas. It leads to 

hypertrophy and hyperplasia, is a secretagogue, stimulates acinar cells protein 

synthesis, the expression of proto- oncogenes, and the expression of a subset of 

digestive enzyme genes and is involved in pancreatic secretion (Kern et al., 1987; 

Dale et al., 1989; Lu and Logsdon, 1992; Williams and Blevins, 1993). Signalling 

pathways and mechanisms of these actions are not well defined, however, CCK can 

activate ERK and JNK in pancreatic acinar cells (Nicke et al., 1999). CCK is 

another mitogen commonly used in the culture of pancreatic acinar cells (Logsdon, 

1986). In order to determine whether this novel effect of TGF -ß occurred only in 

conjunction with EGF or whether it occurred with other growth factors, cells were 

plated in 15% serum with CCK, TGF -13 or CCK and TGF -13. TGF -ß in conjunction 
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with CCK resulted again in increased acini attachment and colony size compared to 

acini cultured in CCK or TGF -ß alone (Figure 5.4 (e -f)). 

190 



Fi
gu

re
 5

.4
 - 

Pr
im

ar
y 

pa
nc

re
at

ic
 a

ci
na

r 
ce

lls
 o

n 
da

y 
4 

cu
ltu

re
d 

in
 p

la
tin

g 
m

ed
iu

m
 w

ith
 1

5%
 o

r 
2.

5%
 F

C
S 

co
nt

ai
ni

ng
 v

ar
io

us
 g

ro
w

th
 

fa
ct

or
s 

an
d 

re
ag

en
ts

. 
Sp

ec
if

ic
 c

on
di

tio
ns

 a
re

 s
ta

te
d 

on
 f

ig
ur

e 
an

d 
ba

rs
 r

ep
re

se
nt

 1
00

µm
. 



Fi
gu

re
 5

.4
 - 

C
om

pa
ri

so
n 

of
 p

an
cr

ea
tic

 a
ci

na
r 

ce
ll 

co
lo

ni
es

 o
n 

da
y4

 o
f 

cu
ltu

re
 a

ft
er

 tr
ea

tm
en

t 
w

ith
 E

G
F,

 C
C

K
, 

T
G

F 
-ß

, M
E

K
 

in
hi

bi
to

r 
(U

01
26

) 
an

d 
T

G
F 

-1
3 

ne
ut

ra
lis

in
g 

an
tib

od
y.

 

(a
)C

el
ls

 c
ul

tu
re

d 
in

 p
la

tin
g 

(b
)C

el
ls

 c
ul

tu
re

d 
in

 p
la

tin
g 

(c
) 

C
el

ls
 c

ul
tu

re
d 

in
 p

la
tin

g 
(d

) 
C

el
ls

 c
ul

tu
re

d 
in

 p
la

tin
g 

m
ed

iu
m

 c
on

ta
in

in
g 
1
5
%
 F
C
S
 

an
d 
E
G
F
 

m
ed

iu
m

 c
on

ta
in

in
g 
1
5
%
 F
C
S
,
 

E
G
F
 a

nd
 T
G
F
 -1

3.
 

m
ed

iu
m

 c
on

ta
in

in
g 

2
.
5
 
%

 F
C
S
 

an
d 
E
G
F
.
 

m
ed

iu
m

 c
on

ta
in

in
g 
2
.
5
%
 F
C
S
,
 

E
G
F
 a

nd
 T
G
F
 -ß

.
 

(e
) 

C
el

ls
 c

ul
tu

re
d 

in
 p

la
tin

g 
m

ed
iu

m
 c

on
ta

in
in

g 
1
5
%
 F
C
S
 

an
d 

C
C

K
 

(f
) 

C
el

ls
 c

ul
tu

re
d 

in
 p

la
tin

g 
m

ed
iu

m
 c

on
ta

in
in

g 
1
5
%
 F
C
S
,
 

C
C

K
 a

nd
 T
G
F
-
1
3
.
 

(g
) 

C
el

ls
 c

ul
tu

re
d 

in
 p

la
tin

g 
m

ed
iu

m
 c

on
ta

in
in

g 
1
5
%
 F
C
S
,
 

E
G
F
,
 T
G
F
 -1

3 
an

d 
U
0
1
2
6
.
 

(h
) 

C
el

ls
 c

ul
tu

re
d 

in
 p

la
tin

g 
m

ed
iu

m
 c

on
ta

in
in

g 
1
5
%
 F
C
S
,
 

E
G
F
,
 T
G
F
 -1

3 
an

d 
T
G
F
 -1

3 

ne
ut

ra
lis

in
g 

an
tib

od
y.

 



Thus from these observations it appears that the effect of TGF -ß on pancreatic acini 

with respect to increased attachment and colony size was not caused by high serum 

concentration. Experiments with a TGF -(3- neutralising antibody supported the 

hypothesis that TGF -13 directly caused the increased attachment and colony size. 

Whilst EGF and TGF -ß appear to act synergistically to promote the effect of TGF -(3, 

it is not associated exclusively with an EGF /TGF - 3 synergy as CCK and TGF -ß 

treated cells also exhibit increased attachment and colony size, albeit to a lesser 

extent. 

5.3.4 Effect of TGF -13 on proliferation 

Previous work investigating the effect of TGF -ß on primary acinar cells has shown 

that TGF -(3 alone causes a 20 % -30% reduction in proliferation compared to cells 

which received no growth factor, when the cells are plated in 2.5% FCS (Logsdon et 

al., 1992). Whilst contrary to this work, it was investigated whether the increased 

colony size of acinar cells which had received TGF -ß and EGF could be caused by 

an increase in proliferation. To examine this, 3H thymidine incorporation studies 

were carried out on acini plated with 15% v/v serum and 2.5% v/v serum containing 

nothing, EGF, TGF -f3 or EGF and TGF -3. Cells were incubated in 3H thymidine for 

24 hours prior to harvesting on day 2, day 3 and day 4 of culture. Cells undergoing 

DNA synthesis incorporated the radio -labelled thymidine as well as normal 

thymidine. Once the unincorporated 3H thymidine was washed away, measurement 

of the remaining 3H thymidine allowed approximate quantification of the 

proliferation rate of cells. Results shown in Figure 5.5 revealed no significant 

increase or decrease of 3H thymidine incorporation in cells grown in either 15% or 

2.5% FCS containing media with EGF and TGF -ß compared to those which had 

received EGF or TGF -(3 only. Comparison between cells treated with either EGF or 

TGF -ß within the different serum concentrations revealed that cells plated in media 

containing 15% serum with TGF -13 did not exhibit a significant reduction in 3H 

thymidine incorporation (Mann Whitney U p >0.05) whereas cells plated in media 

containing 2.5% serum and TGF -13 did (Mann Whitney U p <0.05). This highlighted 

serum concentration as a factor that could protect cells from the antiproliferative 

193 



effects of TGF -13. Overall, it was concluded that whilst TGF -(3 was capable of an 

antiproliferative effect in these cells, this could be due to the absence of EGF and 

lower serum concentrations (2.5 %). This result therefore reflects the multifunctional 

nature of TGF -(3 and highlights again that the actual biological outcome of TGF -ß 

signalling depends on the cell's environment. These results also refuted the 

hypothesis that the increased attachment and colony size seen in EGF and TGF -ß 

treated acini was a consequence of increased proliferation. 
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Figure 5.5 - Effect of EGF and TGF -ß on 3H- thymidine incorporation 
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Figure 5.5 - Dot plots showing 3H thymidine incorporation expressed 
as a percentage of control (no growth factor treatment) in cells which 
had been grown in plating medium containing (a) 15% FCS and (b) 
2.5% FCS. The experiment was conducted ten times however dot 
plots show representative results from one experiment. Horizontal 
lines represent median. 
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BrdU incorporation studies were also conducted on acini grown in plating medium 

containing 15% FCS with nothing added, EGF, TGF -ß or EGF and TGF -ß added. 

BrdU incorporation reflects DNA sythesis similarly to 3H thymidine incorporation 

but relies on immunohistochemical detection of incorporated BrdU. Cells 

undergoing DNA synthesis incorporate the BrdU instead of normal thymidine. 

Following fixation, immunocytochemistry was carried out for BrdU and nuclei 

containing BrdU -incorporated DNA were stained brown and could be quantified 

visually. Immunocytochemical detection of incorporated BrdU was least suited to 

cells days between 0 -4 of culture as the acini have spread to a limited extent and 

retain a three dimensional structure which hinders counting of the cells. BrdU 

negative cells are readily detectable but numbers of unstained cells are difficult to 

ascertain (Figure 5.6). Whilst unquantified, this experiment does provide support for 

the results of the 3H- thymidine incorporation studies in that acini treated with EGF 

and TGF -13 do not exhibit a noticeable increase in BrdU incorporation (Figure 5.6). 
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(a) 

(c) 

Figure 5.6 - Effect of EGF and TGF -ß on BrdU incorporation on 
primary pancreatic acinar cells. 

s 
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(d) 

Figure 5.6 - BrdU incorporation on primary pancreatic acinar cells which 
have been cultured for 4 days in plating medium with 15% FCS with (a) 
nothing added, (b) EGF added, (c) TGF -ß added and (d) EGF and TGF -ß 
added. Nuclei that have incorporated BrdU are brown and images (X200 
magnification) were taken under the phase contrast microscope settings to 
allow clearer visualisation of cells at. 
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5.3.5 Effect of TGF -(3 on motility 

TGF -(3 has previously been shown to promote cell motility in various cell types, for 

example TGF -(3 induced glioma cell motility via a mechanism involving the 

increased expression of integrin subunits (Platten et al., 2000). Also activation of 

RAF -induced invasive growth of NIDCK cells grown in collagen gels and secretion 

of TGF -ß was required to maintain this invasive phenotype (Lehmann et al., 2000). 

Furthermore TGF -ß has been shown to cause morphological changes associated with 

reorganisation of the actin cytoskeleton of primary cultured astrocytes (Gagelin et 

al., 1995). To determine whether TGF -f3 was causing increased motility of primary 

cultured acinar cells two investigations were carried out. First, it was noted that 

when treated with TGF -ß and EGF, cells on the edges of colonies extended 

numerous, pronounced cytoplasmic processes compared to cells maintained in EGF 

alone (Figure 5.7). Fluorescent labelling of these cells with Phalloidin toxin 

conjugated TRITC showed that these processes contained actin filaments suggestive 

of leading edges (Kislauskis et al., 1997). Second, time -lapse video microscopy was 

carried out. It was observed in the time -lapse movie that the processes on cells 

treated with both EGF and TGF -13 were more mobile than those on cells treated with 

EGF only (time -lapse movie on CD 5.1 in appendix D, with annotation in sequential 

stills in Figure 5.8). 

Taken together these studies suggest that combined treatment of TGF -f3 and EGF 

does increase the motility of primary cultured acinar cells as evidenced by 

restructuring of the actin cytoskeleton to produce numerous mobile leading edges. 
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Figure 5.7 - Primary pancreatic acinar cells (day 4 of culture) with 
actin filaments fluorescently labelled with TRITC- conjugated 
phalloidin and countersatined with DAPI (a,b,d and e) and phase 
contrast images (c and f). (a, b and c): acinar cells which have been 
grown in plating medium (containing 15% FCS) with EGF only at 
X100 magnification (a), X200 magnification (b), and X200 
magnification (c). (d, e and f): acinar cells which have been grown in 
plating medium (containing 15% FCS) with EGF and TGF -0 showing 
characteristic cell spreading and prominent processes at X100 
magnification (d), X400 magnification (e) and X200 magnification (f). 
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Figure 5.7 - Fluorescent labelling of actin filaments using 
TRITC- conjugated phalloidin. 
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5.4 The Effect of TGF -13 on adherent primary cultured 

acinar cells - day 5 - day 10 of culture. 

5.4.1 Morphological differences of primary cultured acinar cells when grown in 

Chee's or Waymouth/HamF12 media. 

As detailed in Figure 5.1 and in the materials and methods, after the acini had been 

left to attach for approximately 4 days in plating medium containing 15% serum they 

were transferred into Chee's medium (serum and arginine free but containing 

ornithine) for 24 -48 hours in an attempt to purify the culture from fibroblasts. This 

method was used because acinar cells express ornithine decarboxylase, thus in the 

absence of arginine they can utilise ornithine as an arginine precursor. As fibroblasts 

do not possess ornithine decarboxylase, culturing the cells in arginine free medium 

starves the fibroblasts of this amino acid and causes them to die. Previous to the 

adoption of this method at this stage of culture the cells would have been transferred 

straight into Waymouth /HamF12 media. Upon testing this new method involving 

the Chee's media it was observed that there were morphological differences between 

the acinar cells grown in the different media (Dr N Sphyris personal 

communication). These differences are summarised in Figure 5.9, which includes 

published work by other researchers also outlined in 1.2.3. As previous work has 

suggested that acinar cells cultured in Waymouth /HamFl2 media transdifferentiate 

into ductal cells (Hall and Lemoine, 1992; De Lisle and Logsdon, 1990) it was 

concluded that the Chee's medium allowed cells to retain some of their differentiated 

acinar cells characteristics (such as the presence of zymogen granules), although the 

reason for this remains unclear. 
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Figure 5.9 - Comparison of primary pancreatic acinar cells cultured 
in Chee's or Waymouth/HamF12 media with EGF. Pictures (a) and 
(b) were taken at X100 magnification, (c), (d), (e) and (f) were taken 
at X400 magnification. Antigen expression analysis summary of work 
by Hall and Lemoine, 1992 and De Lisle and Logsdon, 1990. 
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Figure 5.9 - Comparison of primary pancreatic acinar cells grown in 
Chee's or Waymouth/HamF12's culture media with EGF. 
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5.4.2 BrdU incorporation studies on adherent primary acinar cells after 

treatment with TGF -(3 

5.4.2.1 Effect of TGF -ß on WT acinar cells grown in Chee's medium 

As TGF -ß has been shown to be a potent inhibitor of growth in many cells of 

epithelial origin (Roberts and Sporn 1989) the effect of TGF -3 (in the presence and 

absence of EGF) on BrdU incorporation was assessed on primary cultured acinar 

cells. Acinar cells from WT mice were cultured completely in Chee's medium for 6- 

7 days using the method summarised in Figure 5.1. TGF -13 (160pM) was 

administered to cells for 6, 12, 18, 24, 30 or 36 hours and 6 hours prior to fixation of 

the cells BrdU was added to the medium (materials and methods, section, 2.2.9). 

Cells were stained for BrdU by immunocytochemistry and the BrdU labelling index 

was measured using the HOME microscope. For each well five random fields of 

0.04mm2 were scored under a X40 objective, clumps of cells were excluded from the 

analysis. Whilst overall levels of BrdU incorporation were low, some BrdU 

incorporation was seen under all conditions examined. Statistical analysis was 

kindly carried out by Prof M.L. Hooper and involved using a linear model to 

compare the BrdU index between treatments in order to allow for overall differences 

in the index between experiments. Comparison between WT cells grown in EGF or 

EGF and TGF -3 for the various timepoints revealed that TGF -(3 significantly reduced 

BrdU incorporation at all timepoints (p <0.05) except the 24 hours time point 

(p >0.05, Figure 5.10 (a)). As the cells are normally cultured in EGF the effect of 

EGF and TGF -ß compared to EGF alone was the main interest. However, to test 

whether EGF was protecting cells from complete growth arrest by TGF -13 the 

experiment was repeated on cells which received either nothing or TGF -3 for 6, 12, 

18, 24 or 30 hours. In the complete absence of EGF, TGF -13 resulted in nearly 

complete inhibition of DNA synthesis. For example, after 18 hours of treatment with 

TGF -(3 less than 0.2% of cells were incorporating BrdU (Figure 5.10 (c)). 

Comparison between the cells which received no growth factor or TGF -3 only for 

different time points showed a reduction in BrdU incorporation at the 18 and 30 

hours time points (p<0.05). It was therefore concluded that the presence of EGF was 
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capable therefore of partially protecting cells from the growth inhibitory effects of 

TGF -ß. 

5.4.2.2 Effect of TGF -f3 on Smad4 +i" cells in Chee's medium 

As loss of SMAD4 can lead to the loss of TGF -f3 mediated growth arrest, it was 

originally intended to assess the effect of TGF-13 on Smad4 cells. This was not 

possible (see appendix B). I therefore tested whether Smad4 heterozygosity had an 

effect on the ability of TGF -f3 to elicit a reduction of BrdU incorporation as was seen 

in WT cells treated with EGF or EGF and TGF -13. The experiment was repeated for 

24, 30 and 36 hours time points under the same conditions but with acinar cells 

cultured from Smad4 +i mice (Figure 5.10 (b)). Statistical analysis revealed that 

TGF -13 with EGF exerted a significant reduction in BrdU incorporation on acinar 

cells at all timepoints (p <0.05), compared to cells which received EGF alone. It 

appears therefore in this system that Smad4 heterozygosity did not impair the 

function of TGF -f3 to exert growth arrest. 

5.4.2.3 Effect of TGF - 3 on WT cells in Waymouth/Ham F12 medium containing 

2% FCS 

As the cells grown in the Waymouth/Ham F12 media (containing 2% serum) 

exhibited a different phenotype to those grown in Chee's (no serum) (see Figure 5.9 

and section 5.4.1), I investigated firstly whether these `ductal -like' like cells had a 

higher BrdU index when treated just with EGF than cells grown in Chee's medium. 

Analysis showed that the increase in BrdU index in the Waymouth/Ham F12 cells 

was highly significant at the 6, 12, 18 and 24 hours time points (Figure 5.10 (d) 

p <0.05). Secondly, I determined whether the `ductal like' Waymouth/HamF12 cells 

would respond differently to treatment with TGF -f3 than cells which had retained the 

more acinar phenotype and exhibited a reduction in BrdU incorporation in response 

to TGF -ß. The Waymouth/HamF12 cells were treated with EGF or EGF and TGF -13 

for 6, 12, 18 and 24 hours and the BrdU labelling index was measured. Results 

showed that these cells exhibited a reduction of BrdU incorporation in response to 

TGF -f3 and EGF after 12, 18 and 24 hours (p<0.05), however even with this 

reduction, the average percentage of cells incorporating BrdU did not fall below 7 %, 
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a figure still higher than the BrdU labelling index in EGF stimulated cells grown in 

Chee's media (Figure 5.10 (d) and (a)). Thus it appears that TGF -ß can still exert 

growth inhibitory effects in the `ductal -like' Waymouth/HamF12 cells. 

5.4.2.4 Effect of loss of p21 on BrdU index 

Since one of the molecular mechanisms of TGF -ß- mediated growth arrest is through 

p21 induction, preliminary investigations assessing the BrdU labelling index in p211 

cells were also carried out. As p21 is a Cdk inhibitor involved in cell cycle 

regulation it was unsurprising to note that p214- acinar cells maintained in Chee's 

medium exhibited a 6 -7 fold increase in BrdU labelling index compared to WT cells 

(Figure 5.10 (e) and (f)). Had time permitted it would have been of great interest to 

investigate whether p214- cells were refractory to TGF -ß mediated growth arrest. 

TGF - therefore causes a decrease in the proportion of S phase WT or Smad4 +i 

cells. In WT cells this effect is evidenced whether the cells have been grown in 

Chee's or Waymouth/HamF12 media, with or without EGF. 
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Figure 5.10 - BrdU incorporation studies on the effect of no added 
growth factor, EGF and/or TGF 3 on (a) WT cells cultured in Chee's 
medium, (b) Smad4 +i cells in Chee's medium, (c) WT cells in Chee's 
medium and (d) WT cells in Waymouth/Ham's medium. Pictures 
showing BrdU incorporation in (e) p21.1 cells cultured in Chee's 
medium with EGF, X400 magnification and (f) WT cells cultured in 
Chee's medium with EGF at X400 magnification. Results of statistical 
analysis comparing between individual timepoints are shown above 
corresponding bars in histogram. Key: NS, p >0.05; * p <0.05; ** 
p<0.01; * ** p <0.001. Experiment was performed independently three 
times with at least two replicates in each experiment. 
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5.4.3 Assessment of apoptosis of adherent primary acinar cells after treatment 

with TGF -13 

Since TGF -13 signalling mediated by SMAD4 has also been linked with an induction 

of apoptosis (Brodin et al., 1999), I investigated whether TGF -ß could also induce 

apoptosis as well as growth arrest in the primary cultured acinar cells. WT acinar 

cells grown in Chee's medium containing EGF were subjected to a TGF -13 

timecourse (0, 6, 12, 18, 24, 30 and 36 hours) and stained with Feulgen to allow 

distinction of apoptotic cells (See materials and methods and Figure 5.11 (c) and (d)). 

These investigations were not carried out in the absence of EGF since the previous 

BrdU incorporation studies had shown that EGF itself is a mitogenic factor for these 

cells and removal of EGF results in a reduction of BrdU incorporation. As the cells 

were normally cultured with EGF, the effect of TGF -13 on the apoptotic index of 

normal cells was investigated. Analysis of the apoptotic index was carried out using 

the HOME microscope with the same criteria as before, detailed in 5.4.2. 

Comparison at the individual timepoints between acinar cells which received EGF or 

EGF and TGF -ß revealed an increase in the apoptotic index amongst cells which had 

received EGF and TGF -13 for 30 and 36 hours (Figure 5.11 (a) p <0.05). 

Again in the original experimental design it was intended to assess whether Smad4-1 

cells would exhibit any difference in apoptotic index in response to TGF -ß. 

Therefore I investigated whether Smad4 heterozygosity had an effect on the ability of 

TGF -13 to induce apoptosis. Smad4 +i acinar cells grown in Chee's medium 

containing EGF were subjected to a TGF -13 timecourse (24, 30 and 36 hours) and 

Feulgen stained. Analysis of the apoptotic index was carried out with the same 

criteria as before (5.4.2). Comparison at the individual timepoints between acinar 

cells which received EGF or EGF and TGF -ß revealed an increase in the apoptotic 

index amongst cells which had received EGF and TGF -f3 at all timepoints 

investigated (Figure 5.11 (b) p<0.05). It was concluded that even in the presence of 

the mitogenic EGF, TGF -ß causes an increase in apoptosis in both WT and Smad4 +i 

cells grown in Chee's medium. Further work investigating the effect of TGF -ß on 
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the cells grown in Waymouth /HamF12 medium would be of use in the further 

characterisation of these `ductal -like' cells. 
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Figure 5.11- Percentage apoptotic cells as analysed by Feulgen 

staining in (a) WT or (b) Smad4 +1- primary pancreatic acinar cells 

cultured in Chee's medium with EGF or EGF and TGF -ß. (c) and (d) 

Representative pictures of Feulgen stained primary acinar cells 

treated with EGF and TGF -ß for 30 hours at (c) X400 magnification 

and (d) X1000 magnification. Arrows highlight specific examples. 

Results of statistical analysis comparing between individual 

timepoints are shown above corresponding bars in histogram. Key: 

NS, p >0.05; * p <0.05; ** p <0.01; * ** p<0.001. Experiment was 

performed independently three times with at least two replicates in 

each experiment. 
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Figure 5.11- Percentage apoptosis as scored by Feulgen staining on cells 
cultured in serum free Chee's medium with and without TGF -(3. 

(a) WT 

* ** 

4 NS 

3 
NS 

** 
o EGF 

EGF+TGFbeta 

2 
NS NS r- 

i 1 

0 

6hrs 12hrs 18hrs 24hrs 30hrs 36hrs 

6 
(b) Smad4+1 

(c) 

o 

* ** 

24hrs 

* ** 

30hrs 36hrs 

EGF 

EGF +TGFbeta 

215 

(d) 



5.4.4 SMAD4 nuclear translocation following TGF -f3 treatment 

TGF -ß can induce growth arrest and apoptosis through SMAD- dependent and 

independent methods. Nuclear translocation of the R- SMAD /Co -SMAD complex is 

therefore an indication of SMAD4- mediated TGF -ß signalling. To determine 

whether the TGF -ß- induced reduction in BrdU labelling index and increase in 

apoptosis levels in WT cells grown in Chee's medium was mediated by SMAD 

signalling, investigations were carried out into the subcellular localisation of 

SMAD4. Both immunofluorescence and western analyses were utilised. However, 

it was more practical to carry out preliminary investigations using 

immunofluorescence. 

Previous work has shown that newly prepared primary acinar cells in suspension 

cultures exhibit a nuclear translocation of SMAD4 4 hours post TGF -3 treatment 

(Zhang et al., 2001). In this work an effect of TGF -13 was seen after 6 hours in the 

case of growth arrest and 30 hours in the case of apoptosis, therefore initial 

investigations involved immunofluorescence for SMAD4 on cells treated with TGF - 

ß for 0, 0.5, 1, 2, 3, 4, 6, 12, 18, 24 or 30 hours. This was carried out both in the 

presence and absence of EGF, also comparing fixation with paraformaldehyde and 

methanol. In methanol fixed cells, under all the various TGF -(3 timepoints with or 

without EGF, SMAD4 immunoreactivity was seen only in the cytoplasm (Figure 

5.12 (a) and (b)). In contrast, with paraformaldehyde fixed cells SMAD4 

immunoreactivity was exclusively nuclear in localisation regardless of treatment 

(Figure 5.12 (c) and (d)). Methanol fixed cells which had been grown in 

Waymouth/HamF12 media also exhibited entirely cytoplasmic staining (Figure 5.12 

(e) and (f)). 
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Figure 5.12 - Confocal microscopy of SMAD4 

immunofluorescence on primary acinar cells grown in Chee's 

medium (a -d) and Waymouth/HamF12 medium (e -f) and fixed with 

methanol or paraformaldehde. 

(a) methanol fixed, treated with EGF for 18 hours at X630 

magnification (b) methanol fixed, treated with EGF and TGF -13 for 

18 hours at X200 magnification (c) paraformaldehyde fixed, treated 

with EGF for 18 hours at X630 magnification (d) paraformaldehyde 

fixed, treated with EGF and TGF -ß for 18 hours at X630 

magnification (e) methanol fixed treated with EGF for 18 hours at 

X630 magnification (f) methanol fixed treated with EGF and TGF -ß 

for 18 hours at X200 magnification. Cells fixed in methanol 

exhibited entirely cytoplasmic staining for SMAD4 and those fixed 

in paraformaldehyde exhibited entirely nuclear staining for SMAD4. 
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Figure 5.12- Comparison of methanol and parafomaldehyde 
fixation on immunofluorescence for Smad4 

EGF EGF and TGF -ß 
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In order to assess which fixative was more accurately reflecting the subcellular 

localisation of SMAD4, a SMAD4 expressing murine cell line, NIH 3T3, was 

utilised. Previous work with NIH 3T3 cells has shown that treatment with 

Leptomycin B for 1 hour results in a cytoplasmic to nuclear translocation of SMAD4 

(Pierreux et al., 2000). Leptomycin B binds to and inhibits CRM1, a protein 

involved in the export of a number of proteins from the nucleus (Kudo et al., 1998). 

NIH 3T3 cells were treated with Leptomycin B (20ng/m1) for 1 hour, with or without 

TGF -13 for 30 minutes and fixed with either paraformaldehyde or methanol (see 

materials and methods, sections 2.2.10 and 2.2.11). The results are summarised in 

Table 5.1 and Figure 5.13) 

Table 5.1- Summary of SMAD4 immunofluorescence on NIH3T3 cells 

Fixative Leptomycin 

B 

TGF -13 SMAD4 

localisation 

Representative 

example 

Paraformaldehyde ihr 30mins Nuclear Figure 5.13 (a) 

Paraformaldehyde Ihr - Nuclear Figure 5.13 (b) 

Paraformaldehyde - 30mins Nuclear Figure 5.13 (c) 

Paraformaldehyde - - Nuclear Figure 5.13 (d) 

Methanol ihr 30mins Nuclear and 

cytoplasmic 

Figure 5.13 (e) 

Methanol lhr - Nuclear and 

cytoplasmic 

Figure 5.13 (f) 

Methanol - 30mins Cytoplasmic Figure 5.13 (g) 

Methanol - - Cytoplasmic Figure 5.13 (h) 
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Figure 5.13 - Confocal microscopy of SMAD4 

immunofluorescence of NIH3T3 cells. SMAD4 positive cells are 

stained green by the alexa 488 fluorophore and the blue to -pro 3 

nuclear counterstain was used. All photographs were taken at X630 

magnification. 

(a) Cells treated with TGF -ß for 30 minutes and Leptomycin B 

(LMB) for 1 hour and fixed with paraformaldehyde. Nuclear staining 
is observed. 

(b) Cells treated with (LMB) for 1 hour and fixed with 
paraformaldehyde. Nuclear staining is observed. 

(c) Cells treated with TGF -ß for 30 minutes and fixed with 
paraformaldehyde. Nuclear staining is observed. 

(d) Cells treated with nothing and fixed with paraformaldehyde. 
Nuclear staining is observed. 

(e) Cells treated with TGF -ß for 30 minutes and Leptomycin B 

(LMB) for 1 hour and fixed with methanol. Nuclear and 
cytoplasmic staining is observed. 

(f) Cells treated with (LMB) for 1 hour and fixed with methanol. 
Nuclear and cytoplasmic staining is observed. 

(g) Cells treated with TGF -ß for 30 minutes and fixed with 
methanol. Cytoplasmic staining is observed. 

(h) Cells treated with nothing and fixed with methanol. Cytoplasmic 
staining is observed. 
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Given the inconclusive results from the SMAD4 immunofluorescence, SMAD4 

western immunoblotting was carried out on nuclear and cytoplasmic protein extracts 

from cells which had received TGF -13 for 0 or 4 hours. Figure 5.14 shows two blots 

with SMAD4 exclusively localised to the nucleus both in cells with received TGF -ß 

and in those that did not. Comparison with the control 13 -actin blot by densitometry 

however showed an increase in nuclear SMAD4 protein (as a proportion of 13-actin 

protein) following 4 hours of TGF -13 treatment compared to no TGF -ß treatment. 

Studies were undertaken to investigate the hypothesis that either paraformaldehyde 

fixation was inappropriate for immunofluorescence with the SMAD4 B8 antibody, 

due to the fact that no cytoplasmic staining was observed under any conditions, or 

that SMAD4 was present in the nucleus at all times despite stimulation with TGF -ß. 

The results from the NIH3T3 cells showed that a degree of nuclear staining was 

possible with methanol fixation. Previous results from the immunofluorescence for 

SMAD4 on methanol fixed primary acinar cells would therefore suggest that 

SMAD4 was purely cytoplasmic in response to TGF -f3, leading to the conclusion that 

TGF -f3 was not signalling through the SMADs in this system. However as the 

Western blots supported the observation from the paraformaldehyde fixation, it was 

finally concluded that either SMAD4 was present in the nucleus when the TGF -(3 

signalling pathway was unstimulated or that the SMAD signalling pathway was 

activated by one of the other TGF -13 superfamily members in the primary cultured 

acinar cells. In either case the results presented here suggest that in the primary 

cultured acinar cells TGF -13 could be signalling via the SMADs to elicit the 

biological effects observed. 
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Figure 5.14 - SMAD4 western on nuclear and cytoplasmic protein 
extracts following TGF -ß treatment. 
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Figure 5.14 - Two representative examples of SMAD4 westerns on nuclear 
and cytoplasmic protein extracts (101.ig loaded) from primary cultured WT 
acinar cells following TGF -ß treatment for 0 or 4 hours. ß -actin 
immunoblotting was carried out on the same blots to control for unequal 
loading. Densitometry was carried out using the Pro -plus imaging package. 
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5.4.5 p21 and p27 immunofluorescence on TGF -0- treated cells 

As outlined in 1.5.4, p21 and p27 are CDK inhibitors involved in TGF - 3- signalling, 

growth arrest and cell death. They were therefore investigated as possible molecular 

effectors of the decrease in BrdU incorporation and increase in apoptosis seen in 

response to TGF -ß in primary acinar cells. Cells in both the Chee's and 

Waymouth /HamF12 media were treated with TGF -13 for 0, 6, 12, 18 and 24 hours. 

In the Chee's medium cells that received TGF -(3 and those that did not showed 

cytoplasmic expression of p27 (Figure 5.15 (e) and (f)). Immunofluorescence for 

p21 showed heterogeneous nuclear staining in the absence and presence of TGF -ß 

and no differences were evident at the different TGF -13 timepoints (Figure 5.16 (a) 

and (b)). 

Cells in the Waymouth /HamF12 medium responded differently to TGF -13. p27 

immunofluorescence showed cytoplasmic staining after 0, 6 and 12 hours of TGF -ß 

treatment, however by 18 hours, some nuclear expression of p27 was seen 

predominantly in cells exhibiting the `ductal -like' like morphology (Figure (5.15 (a)- 

(d)). Immunofluorescence for p21 again showed heterogeneous nuclear staining in 

all conditions (0, 6, 12, 18 and 24 hours post TGF -13 treatment) with no discernable 

increase or decrease (Figure 5.16 (c) -(f)). Comparison with p21 

immunofluorescence on cells grown in Chee's medium revealed a 5 -6 fold increase 

in nuclear p21 in cells grown in Waymouth /HamF12 medium. 

It was concluded first, that TGF -13 does not appear to effect a change in p21 or p27 

localisation in acinar cells in Chee's medium, however p21 is present in the nucleus 

and presumably active, although its functional significance is unclear. Second, TGF - 

ß does effect a change in p27 localisation in the `ductal -like' like cells grown in 

Waymouth/HamF12 medium. Again p21 is present in these cells and its nuclear 

localisation suggests it is active, however TGF -13 does not appear to effect a change. 

These differences between p21 and p27 localisation in the Chee's and 

Waymouth/Han-iF12 media may reflect differences in differentiation states. 
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Figure 5.15 - Immunofluorescence for p27 using Alexa 488 
fluorophore (green) on acinar cells grown in Chee's or 
Waymouth/HamF12 media as detailed on figure. (a) cells treated 
with EGF for 18 hours, methanol fixed at X200 magnification. (b) 

cells treated with EGF and TGF -13 for 18 hours and methanol fixed, 
X200 magnification. (c) cells treated with EGF for 18 hours, 
methanol fixed at X400 magnification.(d) cells treated with EGF and 
TGF -ß for 18 hours and methanol fixed, X400 magnification. (e) 
cells treated with EGF for 18 hours and methanol fixed, X400 
magnification. (f) cells treated with EGF and TGF -13 for 18 hours 
and methanol fixed, X400 magnification. (g) cells treated with EGF 
for 18 hours and paraformaldehyde fixed, X630 magnification. (h) 
cells treated with EGF and TGF -(3 for 18 hours and 
paraformaldehyde fixed, X630 magnification. 

225 



Figure 5.15 - Effect of TGF- ß on immunofluorescence for p27 
on acinar cells grown in Chee's or Waymouth/HamF12's media 
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Figure 5.16 - Confocal microscope images of immunofluorescence for 
p21. The alexa 488 fluorophore (green) was used to visualise p21 
positive nuclei on methanol fixed acinar cells grown in Chee's or 
Waymouth/HamF12 media, as indicated in the figure. Topro3 (blue) was 
used as a nuclear counterstain. (a), (c) and (e) Cells treated with EGF for 
18 hours and (b), (d) and (f) cells treated with EGF and TGF -ß for 18 

hours. Pictures (c) and (d) were taken at X200 magnification all the 
others were taken at X630 magnification. 
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Figure 5.16 - Confocal microscope images of immunofluorescence for 
p21 on cells grown in Chee's and Waymouth/HamF12 media. 
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5.4 Conclusions, discussion and future work 

In conclusion, investigations revealed a novel effect of TGF -ß (early in culture) in 

conjunction with EGF, of increased attachment and increased acinar cell colony size. 

Characterisation revealed that this effect was not due to increased proliferation or a 

result of relatively high serum concentrations (15%), however high serum 

concentration and the presence of EGF appear to act as survival factors for the cells. 

Time -lapse video microscopy revealed that EGF and TGF -13 treated cells exhibited 

an increase in mobility compared to EGF treated cells alone. Furthermore, 

investigation into the actin cytoskeleton of the EGF and TGF -ß treated cells revealed 

pronounced leading edges consistent with the promotion of motility in these cells. 

This is in accordance with previous work by Boland et al. (1996), who showed that 

TGF -13 promoted actin cytoskeleton reorganisation and a migratory phenotype in 

primary cultured epithelial tracheal cells. 

The effect of TGF -(3 on ECM deposition and acinar cell adhesion molecules was not 

addressed in these studies. It is hypothesised, however, that the increased 

attachment, spreading and colony size in primary cultured acinar cells during the first 

four days of culture could be due to this. The acini have also been cultured on 

matrices other than collagen IV including fibronectin, collagen I, vitronectin and 

laminin and whilst the acini attach to a greater or lesser degree on each of these 

matrices, none of them exhibited the increased spreading, prominent processes and 

increased colony surface area seen in the TGF -13 and EGF treated acini (observations 

by Dr N. Sphyris, personal communication). It would be of great interest therefore to 

examine whether various ECM components such as fibronectin, collagen, and 

laminin are upregulated in response to TGF -ß. 

Work by various other scientists has provided insights into other possible molecular 

mechanisms which could be mediating the effect of EGF and TGF -ß on primary 

acinar cells. Lai et al. (2000) showed that TGF -13 augmented the surface expression 

of av135 integrin subunits on a murine osteoclast cell line via interaction of the 
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nuclear Co- SMAD /R -SMAD complex with Spl, a ubiquitous nuclear transcription 

factor. The higher levels of integrins resulted in increased adhesion of the cells to 

vitronectin. Thus investigation into the expression of integrin subunits on EGF and 

TGF -13 treated acini compared to EGF treated acini would provide insight into 

whether changes in integrin expression are partly responsible for the increased 

attachment, motility and thus colony size seen in EGF and TGF -ß treated acini. 

Furthermore, RGD (Arg -Gly -Asp) peptides competitively bind integrins thus 

inhibiting adhesion. These could be of use in continuing investigation into the 

mechanism behind TGF -13 and EGF mediated attachment and motility. As APC has 

been shown to localise to the edges of migrating epithelial cells (Mimori- Kiyosue et 

al., 2000) it would be of interest here to investigate the localisation of APC in EGF 

and TGF -13 treated acini. 

The question remains as to whether PAI -1 is upregulated in EGF and TGF -13 treated 

acinar cells. PAI -1 is a regulator of ECM homeostasis and cell motility. As 

mentioned previously TGF -13 can induce PAI -1 expression in a SMAD dependent 

pathway (Datta et al., 2000) and work with TGF -ß sensitive renal epithelial cells 

showed that TGF -ß induced both PAI -1 synthesis and cell motility. Use of the MEK 

inhibitor, PD98059, attenuated this effect of TGF - 3 on the renal cells showing that 

MEK was a mediator of TGF -ß dependent PAI -1 expression and increased cell 

motility (Kutz et al., 2001). This work by Kutz et al. suggested that molecular 

interaction of TGF -ß and MAPK signalling could be mediating the effect of EGF and 

TGF -ß on primary acinar cells. Preliminary experiments presented here (Figure 5.4 

(g)) with the MEK inhibitor, U0126, resulted in complete ablation of attachment of 

primary acinar cells when they were treated with no growth factor, EGF, TGF -3 or 

EGF and TGF -ß. This suggests that the MAPK signalling pathway (of which MEK 

is a member) is vital in the attachment of primary cultured acini to culture plates, but 

did not provide evidence that molecular interaction of TGF -ß and MAPK signalling 

was occurring in the EGF and TGF -(3 treated acinar cells. 
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Since neither EGF nor TGF -13 can alone affect the increase in attachment, motility or 

colony size it is suggested that synergy is occurring between these two growth 

factors. Others working on hepatocytes have shown synergy between EGF and TGF - 

13 resulting in a potentiation of SMAD3 transcriptional activation (Peron et al., 2000). 

Stolz and Michalopoulos (1997) found that TGF -ß significantly enhanced the 

chemotactic mobility of EGF stimulated hepatocytes. Furthermore, the cells only 

exhibited a decrease in DNA synthesis when TGF -ß was added without EGF. Work 

with fetal hepatocytes showed first, that EGF and TGF -f3 co- operated to effect 

terminal maturation which involved the morphological changes consistent with a 

migratory phenotype and, second, that EGF could suppress TGF -ß induced apoptosis 

in these cells (Sanchez et al., 1998; Fabregat et al., 1996). Finally research into 

caerulein- induced pancreatitis in rats revealed expression of first TGF -ß mRNA and 

then EGF mRNA, 1 and 5 hours post caerulein infusion respectively, suggesting that 

both TGF -13 and EGF may be needed to stimulate the regeneration of injured 

pancreas (Konturek et al., 1997). Two hypotheses are therefore suggested, first, that 

in pancreatic acinar cells co- operative EGF and TGF -ß signalling could be effecting 

changes in mobility, differentiation and the cell cycle consistent with the biological 

changes that occur in regeneration and wound healing in the pancreas. Second, that 

EGF and TGF -13 act synergistically on primary pancreatic acinar cells to increase the 

invasive potential of these cells through ECM deposition, increased motility, 

enhanced expression of adhesion molecules, such as integrins and altered expression 

of matrix remodellers such as the MMPs and PAI -1. It is suggested that the action of 

EGF is two -fold, first, to augment the action of TGF -ß in promoting cell motility and 

invasiveness and second, as a survival factor, protecting cells from the growth 

inhibitory actions of TGF -ß. The work with CCK suggests that other growth factors 

can substitute EGF as a survival factor. 

The second study involved the investigation of TGF -ß on adherent acinar cells, later 

on in culture (day 5 -10) in predominantly serum free conditions. Results showed 

TGF -ß (in the absence and presence of EGF) decreased BrdU incorporation and 

increased apoptosis levels in both WT and Smade- cells. It was not shown 
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conclusively that this effect was mediated through SMAD4 or that it was associated 

with the induction of p21. However results did reveal that this effect could be 

mediated in part by p27 under certain conditions. TGF -ß treatment of acinar cells in 

the absence of EGF did result in a further decrease in BrdU incorporation compared 

to cells treated with both EGF and TGF - 3. These conclusions are in contrast to 

previous work which showed that EGF completely inhibited the antiproliferative 

activity of TGF -13 (Fabregat et al., 1996). Lastly whilst these studies did not show 

that TGF -(3- induced growth arrest was p21- dependent, future work could include 

investigations into the effect of TGF -(3 treatment on acinar cells from p21 -1 mice. 

Comparison between cells grown in Chee's medium or Waymouth/HamF12 media 

showed morphological and biological differences. Cells in Waymouth/HamF12 

media exhibited giant nuclei, a `tear drop' shape and increased spreading leading to a 

complete monolayer unlike the cells grown in Chee's. These cells had a higher 

proliferation rate in comparison to the cells grown in Chee's medium but TGF -ß 

treatment still resulted in a significant decrease in BrdU incorporation. 

Immunofluorescent characterisation of the Waymouth/HamF12 cells showed (with 

methanol fixation) changes in p27 localisation upon TGF -(3 treatment. It could be 

that this nuclear p27 is indicative of cells entering a terminal quiescent state 

(Alexander and Hinds, 2001), however this is challenged by the fact that BrdU 

incorporation studies show that these TGF -13- treated cells are still undergoing DNA 

synthesis. It is suggested that these cells represent the `ductal -like' cells characterised 

previously by Hall and Lemoine (1992), De Lisle and Logsdon (1990) and De Lisle 

et al. (1990) (see section 1.2.3). 

Finally, investigations into whether the decreased BrdU incorporation and increased 

apoptosis following TGF -13 treatment was associated with a cytoplasmic to nuclear 

translocation of SMAD4 yielded complex results. The unexpected dependency on 

fixation techniques as to the immunofluorescent localisation led to SMAD4 either 

appearing to be entirely cytoplasmic, even following TGF - 3 treatment (methanol 

fixation), or SMAD4 appearing to be constitutively nuclear even in the absence of 

TGF -ß (paraformaldehyde fixation). Methanol fixation acts by disrupting the 
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hydrophobic bonds within proteins, this affects the tertiary structure of proteins but 

not the secondary structure. Paraformaldehyde fixation acts by forming cross -links 

between proteins, creating a gel and thus retaining cellular constituents in their in 

vivo relationships (reviewed in Woods and Ellis, 1994). As the integrity of cellular 

and nuclear membranes is predominantly protected by hydrophobic and hydrophilic 

interactions this would suggest that paraformaldehyde fixation is most appropriate 

for the analysis of nuclear proteins. Western blotting on nuclear and cytoplasmic 

extracts from TGF -ß treated and untreated acinar cells showed that SMAD4 was 

present in the nucleus in both conditions. Densitometry did however suggest a slight 

increase in nuclear SMAD4 following TGF -ß treatment. Work on the nuclear 

localisation and export signals of SMAD1 and SMAD3 showed that these R -SMADs 

were constantly shuttling between the cytoplasm and nucleus whether the TGF -ß 

signalling pathway was activated or not. SMAD4, on the other hand, could only 

translocate to the nucleus when bound to an R -SMAD or when the SMAD4 MH1 

domain was altered to represent the nuclear localisation signal (NLS) of the R- 

SMADs (Xiao et al., 2000; 2001). In contrast to this, work by Pierreux et al., (2000) 

showed that in the absence of TGF -ß, LMB treatment of HaCaT cells resulted in 

nuclear SMAD4 and cytoplasmic SMAD2 and 3. In the presence of TGF -ß, SMAD2 

and 3 in addition to SMAD4 were locked in the nucleus by LMB. They suggest, in 

the absence of TGF -ß, that SMAD4 constantly shuttles between the nucleus and 

cytoplasm and due to a nuclear export signal (NES) within the protein SMAD4 is 

rapidly and constantly exported from the nucleus. In the presence of TGF -ß SMAD2 

and 3 are activated, inhibit the SMAD4 NES and can translocate to the nucleus. 

Thus the complex remains in the nucleus and can activate transcription. Furthermore 

the authors showed that prolonged TGF -ß signalling resulted in the export of 

SMAD2, SMAD3 and SMAD4 from the nucleus. The results presented in this 

chapter appear to support the work by Pierreux et al. in that SMAD4 appears nuclear 

in the absence and presence of TGF-13. The process of methanol fixation appears to 

therefore cause a leaking of SMAD4 protein from the nucleus whereas 

paraformaldehyde locks it in. It is therefore concluded that immunohistochemical 

analysis of SMAD4 nuclear translocation is not an appropriate method through 

which to assess activation of the SMAD signalling pathway by TGF -ß. It would be 
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of great interest to investigate the subcellular localisation of both active and inactive 

R -SMADs (for example, SMAD2 and phospho -SMAD2 respectively) in response to 

TGF -13 and to explore the status of various downstream targets. 

The two studies outlined here highlight interaction between the TGF -13 and EGF 

signalling pathways. The multifunctional nature of TGF -ß signalling is also 

reflected in these studies: first, TGF -(3 was shown to result in increased attachment, 

mobility and colony size in freshly prepared acini with no effect on proliferation; 

second, TGF -13 was shown to result in decreased DNA synthesis and increased 

apoptosis. As outlined in the introduction, in tumourigenesis TGF -ß has also been 

shown to exhibit these divergent behaviours. This system of primary cultured 

pancreatic acinar cells is therefore an interesting tool through which to further 

investigate the dual role of TGF -ß signalling in the pancreas. 
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Chapter 6 - General discussion 

The central focus of this thesis has been investigation into the effect of Smad4 

mutation on pancreatic tumourigenesis. This was approached via three main 

methods using mice containing single or compound mutations in Smad4, ApcM "' and 

p53. First (chapter 3), p53-1ApcM "i+Smad4 +i and p53-í Smad4 +i animals were 

generated to investigate whether Smad4 mutation would promote pancreatic 

tumourigenesis in the previously described p534-ApcM "il+ and p534- mice (Clarke et 

al., 1995; Purdie et al., 1994; Jacks et al., 1994). The majority of abnormal 

pancreatic preneoplastic acinar cell foci, adenomas, cystic adenomas and 

adenocarcinomas were found to exhibit LOH for Smad4 and Apc. However, Smad4 

heterozygous mutation did not appear to lead to differences in the spectrum of 

histologically identifiable lesion types in comparison to p534-ApcM"+ mice. It was 

therefore concluded that Smad4 heterozygous mutation did not lead to a progression 

in pancreatic tumourigenesis. Analysis of NMU- induced pancreatic tumourigenesis 

(chapter 4) in singly mutant Smad4 +i - and ApcM "i+ mice and compound mutant 

ApcM "i+Smade- mice revealed contrasting results. Here, Smad4 heterozygosity in 

conjunction with ApcM`" heterozygosity resulted in increased pancreatic dysplasia, 

whereas Smad4 or ApcM 's' heterozygous mutation alone did not. The abnormal 

pancreatic acinar cell foci arising in the ApcM "j+Smad4 +1 mice were not 

characterised by Smad4 LOH as revealed by the presence of SMAD4 protein in the 

majority of abnormal foci. 

Speculation regarding this contrasting effect of Smad4 heterozygous mutation and 

presence of Smad4 LOH has led to the suggestion that the results of the experiments 

in chapter 3 and in chapter 4 represent two distinct pathways in pancreatic 

tumourigenesis. It is postulated that the first pathway is associated with Smad4 LOH 

in pancreatic adenomas and adenocarcinomas from aged cohorts of p53 -1- 

ApcM"il +Smad4 +i mice whereas the second pathway is associated rather with 

mutation in other genes, for example, mutational targets of NMU, such as K -ras. In 

the latter pathway monoallelic inactivation of Smad4, in conjunction with these other 

hypothesised mutations, elicits an effect on initiation of tumourigenesis. As no 
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adenocarcinomas were observed in the NMU- induced pancreatic tumourigenesis it is 

suggested that monoallelic inactivation of Smad4 in these mice effects the early 

stages of the tumourigenic process. Conversely, in the aged cohorts of p531- 

ApcM"il +Smad4 +i mice, the absence of these additional mutations could mean that 

monoallelic inactivation of Smad4 does not elicit an effect on the early stages of 

tumour initiation, rather there is a selective pressure towards Smad4 LOH. Since the 

p53 -1 ApcM' Smad4 +i mice exhibit large adenomas and adenocarcinomas (absent 

from the NMU- treated mice), Smad4 LOH appears to be associated with the later 

stages of murine pancreatic tumourigenesis. This hypothesis could be tested by 

detailed investigation into pancreas from p534-ApcM`ni+Smad4 +i mice at earlier time 

points, before the animals become moribund. 

An alternative hypothesis could be that loss of p53 is associated with biallelic 

inactivation of Smad4. NMU has not been shown to cause p.53 mutation therefore it 

is reasonable to suggest that the lesions arising in the NMU- treated mice have not 

lost p.53. Perhaps the genetic instability associated with p53 deficiency in the aged 

p534-ApcM "l+Smad4 +i mice was instrumental in the inactivation of the WT Smad4 

allele. No functional effect of Smad4 LOH was revealed in the studies contained in 

this thesis. However, it is logical to suggest that perhaps LOH does elicit a 

functional effect, but that either the animals became moribund before it was 

histologically visible, or that the effect is evidenced at a molecular or cellular level 

that is not reflected in the analyses performed here. Future experiments investigating 

when the Smad4 LOH occurs in the p531- ApcMl? Smad4 + /- mice would help unravel 

the role that it is playing. 

The question as to the relative effect of monoallelic versus biallelic inactivation of 

Smad4 is of importance. Work with Apc47166+ and Smad4 +i compound heterozygotes 

and Smad4 +i - mice (Takaku et al., 1998; Xu et al., 2000, see section 4.1.2) has led to 

the suggestion that haploid insufficiency of Smad4 is sufficient for tumour initiation 

and that biallelic loss of Smad4 is instrumental in the progression of tumourigenesis. 

In accordance with this Wagner et al. (2001) found Smad4 LOH to be a characteristic 

of pancreatic adenocarcinomas in p531-animals which overexpressed TGFa in the 
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pancreas. Human pancreatic cancers have been shown to have SMAD4 biallelically 

inactivated (either through deletion or mutation) in 50% of adenocarcinomas (Hahn 

et al., 1996; Schutte et al., 1996). Furthermore it has been shown in human 

colorectal cancer that SMAD4 LOH occurs as a late event (Miyaki et al., 1999). 

Interestingly, however, biallelic inactivation of SMAD4 is rare in FJP (see 1.7.2.4), 

rather this inherited syndrome is associated with a heterozygous functionally 

inactivating mutation of SMAD4 that results in a truncated SMAD4 protein (Howe et 

al., 1998; Friedl et al., 1999). Whilst the importance of the biallelic inactivation of 

Smad4 observed in the p534-ApcM "l+Smad4 +i - mice is inconclusive and in need of 

further investigation, the work presented in this thesis does support the concept that 

Smad4 LOH is associated with late stage tumours but that haploid insufficiency of 

SMAD4 is sufficient for tumour initiation. 

The in vivo studies outlined in chapter 4 revealed that Smad4 heterozygous mutation 

(in conjunction with ApcM "` mutation) could exert a functional effect on pancreatic 

acinar cells. The in vitro studies, however, investigating the biological effect of 

Smad4 heterozygous mutation in pancreatic acinar cells (chapter 5, section 5.4.2 and 

5.4.3) revealed that, like WT cells, Smad4 +i acinar cells were capable of exerting 

TGF - 3- induced decrease in BrdU incorporation and increase in apoptosis. It could 

therefore be concluded that Smad4 heterozygous mutation only has a functional 

effect in conjunction with other mutations. Had time permitted this hypothesis could 

have been tested via the generation of ApcM" +Smad4 +i acinar cells. A second 

hypothesis could be that, functionally, Smad4 heterozygous mutation effects cellular 

activities other than cell turnover and apoptosis. However it seems more likely that 

complete deficiency of Smad4 rather than haploinsufficiency is required for loss of 

TGF -ß- induced SMAD- mediated cell proliferation and apoptosis. Thus from the in 

vitro experiments it appears that Smad4 heterozygosity does not elicit a functional 

effect. Whilst efforts to generate Smade- acinar cells were unsuccessful, future 

work could involve inactivation of the pathway by other means, for example, 

transfection of the cells with a dominant negative SMAD4, the preparation of 

pancreatic acinar cells from Smad3 
"1- 

animals or overexpression of Smad6 or Smad7 

(the I- SMADs). The in vitro investigations in chapter 5 revealed the fact that loss of 
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Smad4 may not only affect cell proliferation and apoptosis but could also effect the 

invasive potential of pancreatic acinar cells. 

The in vivo studies also highlighted dysregulation of the Wnt signalling pathway as a 

common feature in pancreatic acinar tumourigenesis in both the aged cohorts of 

p531-ApcMu1 Smad4 +i - (chapter 3) and the NMU- treated animals (chapter 4). This 

was evidenced by increased levels of ß- catenin within abnormal foci, adenomas and 

adenocarcinomas. The most obvious explanation for this is Apc LOH (as previously 

shown by Kongkanuntn et al., 1999 and Clarke et al., 1995) resulting in loss of APC - 

mediated degradation of ß- catenin. However this effect could also have been the 

result of mutation in other APC- interacting proteins, for example, f3- catenin itself, 

GSK3ß and E- cadherin. 

APC has various other non Wnt related functions (see section 1.8.2). In addition to 

these APC has recently been shown to have a role in the maintenance of 

chromosome stability (Fodde et al., 2001; Kaplan et al., 2001). APC localises to the 

kinetochore of metaphase chromosomes, and this localisation is likely to be 

dependent on the interaction of APC with EB1. Apc deficient mouse cells have 

been shown to have two types of chromosomal abnormalities, quantitative changes 

such as polyploidy and structural rearrangements causing chromosome translocations 

(Fodde et al., 2001). Accordingly similar types of chromosomal instability have 

been found in human colorectal cancers (Thiagalingam et al., 2001). The 

morphological investigations into nuclear atypia (chapter 4, section 4.4.6) did not 

find ApcM" t heterozygous mutation to be associated with prominent changes in the 

distribution of nuclear area. However, this association of Apc mutation with 

increased chromosome instability could provide an additional explanation as to why 

Apc mutation promotes pancreatic tumourigenesis. Perhaps in particular it could 

provide insight into the co- operation between p53 and Apc mutation. 

Whilst Apc LOH has previously been shown to be a characteristic of early human 

and murine colorectal tumourigenesis. The work presented here suggests that this is 

also the case in murine pancreatic tumourigenesis. This appears not to be the case in 
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human ductal pancreatic tumourigenesis where APC is mutated rarely (Horii et al., 

1992; McKie et al., 1993). Recently, however, the APC /13- catenin pathway has been 

found to be mutated in 23% of cases of the rarely occurring human acinar 

adenocarcinoma (Abraham et al., 2002) suggesting that in humans APC mutation is 

associated with both acinar and ductal tumourigenesis. This raises the possibility 

that the chemotherapeutic effect of aspirin reported in chapter 4 could be of more 

relevance to human acinar adenocarcinomas than the more common ductal 

adenocarcinomas. 

The investigations outlined in this thesis have explored the effect of Smad4 mutation 

in a variety of situations. It was found that both Smad4 haploinsufficiency and 

complete deficiency are characteristics of murine pancreatic tumourigenesis. Also it 

was shown that the effect of Smad4 mutation is modulated by the presence of other 

mutations (such as ApcM" ). Furthermore the in vitro investigations demonstrated that 

Smad4 mutation could have a variety of biological effects depending on the cellular 

environment and integration of multiple signalling pathways. Whilst the animals 

used in these experiments may not have been found to provide a model of human 

ductal adenocarcinoma they have provided useful insights into the role of 

Smad4 mutation in the pancreas. 
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Appendix A - Solutions and reagents used 

Agarose gel electrophoresis loading buffer 
0.1% Bromophenol blue 
0.1M EDTA 
50% v/v glycerol 

4% BSA (Bovin Serum Albumin) 
10g cell culture tested BSA (Sigma) 
250m1 Serum free medium (p242) 
Filter sterilise before use and store at 4 °C. 

Collagenase (Lorne Laboratories) 
1000units collagenase 
10m1 Serum free media 
Aliquot into 700111 aliquots, store at -20 °C 
Immediately before use dilute one aliquot with a further 9.3ml of serum 

DAB Buffer 
0.2M Tris 
0.1M HC1 
0.O1M Imidazole 
Add 25mg /m1 of the chromogen DAB upon use 

Denhardt's solution (50X) 

0.5g Polyvinyl pyrollidone 
0.5g Ficoll 
Make up in 50m1 DDW and store aliquoted in freezer 

Dexamethasone (Sigma) 
1mg Dexamethasone is dissolved in 1m1 absolute EtOH 
Add 24.5m1 Serum Free medium or DMEM to give 1001.AM stock. 
Use at 100nM (1:1000 dilution) 

High Salt Buffer 
20mM HEPES 
420mM NaCI 
1.5mM MgC12 
2mM Nat EDTA 

Hybridisation solution for 10 slides(401Wslide) 
10 -20111 labelled probe (20ng/µ1) 
20µ1 Salmon sperm DNA (500µg/ml, stored in TE buffer) 
200p1 20% Dextran sulphate 
100u1 20X SSC 
7Oµ1 DDW 
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IBMX (3- isobutye -1- methylxanthine, Sigma) 
lg IBMX 
8.992ml 1M NaOH 
Store in 100111 aliqouts 

Invitrogen 
10% 
141mM 
106mM 
2% 
0.51mM 
0.22mM 
0.175mM 

Sample Buffer (pH 8.5) 
Glycerol 
Tris base 
Tris -HCI 
LDS 
EDTA 
SERVA Blue G250 
Phenol Red 

Invitrogen NuPAGE MOPS SDS running buffer (pH 7.7) 
50mM MOPS 
50mM Tris Base 
0.1% SDS 
1mM EDTA 

Invitrogen transfer buffer (pH 7.2) 
25mM Bicene 
25mM Bis -tris (free base) 
1mM EDTA 
0.5mM Chlorobutanol 

Lysis Buffer for nuclear and cytoplasmic protein extraction 
10mM HEPES 
10mM MgCl2 
10mM Na Orthovanadate 

Microdissection lysis buffer (pH 8.3) 
lmg/ml 
1% 
34mM 
0.6mM 

Proteinase K 
Tween 
Tris 
EDTA 

Paraformaldehyde (pH 7.4) 
3.7g Prill paraformaldehyde 
100m1 PBS 
Heat at 60 °C in fume hood until dissolved 
Leave to cool 
pH to 7.4 
Aliquot and freeze 
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PBS (phosphate buffered saline) 
120mM NaCI 
2.7mM KC1 

10mM phosphate buffer salts (KH2PO4 and Na2HPO4.7H20) 

PCR Buffer (10X, Gibco) 
200mM Tris -HC1 (pH 8.4) 
500mM KCl 

Prehybridisation solution for 10 slides (35µ1/slide) 
4011l Denhardt's solution (50X) 
180µ1 Deionised formamide (Toxic) 
120µl SCC (20X) 
2011l Salmon sperm DNA 
40111 DDW 

Primary Cell Culture Media - 100mis 

Serum 
free 
medium 
(SeF) 

Plating 
media with 
15% serum 
(15% PM) 

Modified 
Chee's 
medium 

Waymouth/ 
HamF12 
medium 

Fetal Calf Serum (filtered) - 15m1 - 2m1 

DMEM 99ml 83.8m1 - - 

Chee's medium - 97m1 - 

Waymouth's medium - - - 47.9m1 
Ham's F12 medium - - - 47.9m1 
Antibody /Antimycotic 
(100X) 

1m1 1m1 1m1 1m1 

Dexamethasone - 100111 100µ1 100111 

IBMX (in 1M NaOH) 100111 l00111 100111 l001A1 

L- glutamine - - 1m1 - 

SBTI (0.2mg/m1) 2Ong in 

100111 

- - - 

ITS -X (insulin transferrin 
selenium X, Sigma) 

- 1m1 lml 

Puregene cell lysis solution 
100mM Tris (hydroxymethyl) aminomethane 
5mM EDTA 
0.2% SDS 

Puregene protein precipitation solution 
9.5M Ammonium acetate 
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Puregene DNA hydration solution 
100mM Tris (hydroxymethyl) aminomethane 
50mM EDTA 

RIPA Buffer 
50mM Tris HC1 pH 7.5 
150mM NaC1 
1% Nonidet p40 
0.5% Sodium deoxycholate 
0.1% SDS (sodium dodecyl sulfate) 

SBTI (soya bean trypsin inhibitor) (Sigma) 0.2mg/ml 
100mg SBTI 
500m1 DMEM 
Filter sterilise 
Store at -20 °C in aliquots. 

SSC (standard saline- citrate) 20X 
3M NaCl 
0.3M trisodium citrate 
pH 7 -7.4 

TBE (tris- borate EDTA) 
0.089M Tris 
0.089M Boric Acid 
0.0025M EDTA 

TBS (tris buffered saline) pH 7.4 
0.15M NaC1 
0.5M Tris -HC1 

TCA 10% (Highly corrosive) 
10g TCA 
100m1 DDW 

243 



Appendix B - The generation of Smad4 "' acinar 

cells 

B.1 Introduction 

B.1.1 Cre -loxP technology 

The placement of Cre recombination sites (loxP sites) into the genome and targeted or 

controlled expression of Cre recombinase allows researchers to either turn on or off any 

gene of interest in transgenic or gene modified mice. The use of Cre -loxP technology 

has allowed researchers to control the tissue specificity and time of inactivation of genes 

which have been shown to be lethal in a traditional knockout model. Various strategies 

have now been developed to control the expression of Cre, including the delivery of Cre 

coding sequence by viral systems. For example, efficient Adenovirus Cre- mediated 

deletion of DNA ligase] and Rb floxed alleles has been achieved in primary hepatocytes 

(Prost et al., 2001). 

B.1.2 The generation of Smad4 Floxed mice 

Since Smad4 homozygous mutation is embryonic lethal (Sirard et al., 1998) a strategy 

was devised whereby researchers (Dr E.K. Duff and colleagues) would generate a mouse 

containing a floxed (i.e. flanked by loxP sites) Smad4 allele. It was intended to flox 

exon 1 of the Smad4 allele, which contains the ATG start codon. Unlike the Smad4- 

mice this animal would be viable, however controlled Cre- mediated recombination 

would result in the ablation of SMAD4 protein expression in tissues of interest. Figure 

B.1 shows the targeting strategy employed by Dr Duff. A 3' Southern blot was 

consistent with the hypothesis that the targeting vector had indeed recombined with the 

Smad4 allele. However a 5' Southern blot was not successful because of technical 

problems. Two PCR reactions were also devised within the targeting vector to show 

presence of both LoxP sites, these are shown in Figures B.2 and B.3. 
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Figure B.1 - Overall targeting strategy 
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Figure B.1. This figure shows the overall strategy employed to achieve 
conditional deletion of the Smad4 allele. To generate the targetting 
vector uDoxodNoornycin/Ibyzuidinc Kinase cassette was cloned into a 

single Bln site approximately lkb downstream of Exon I and about lúb 
upstream from Exon II of the murine Smad4 gene. A single loxP 
fragment was then cloned into the Nco I site of the 8kb genomic clone, a 

site determined to be 700bp upstream of Exon I. Finally an HPRT 
cassette was introduced outside the 3' region of homology. The rational 
behind this is that if the targeting construct were to integrate randomly 
(that is not through homologous recombination) then the HPRT cassette 
would remain present in the DNA and could be selected against using 
the drug 6-thioguanine (6-TG). The plan is to '^flnz" the ATG within 

exon l of the Smad4 locus such that expression of Cre recombinase will 

result in excision of exon l and a resultant null allele. 

Figure reproduced by kind permission of Dr E.K. Duff (PhD Thesis, 

2000, University of Edinburgh). 
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Figure B.2 - PCR with DPC4 intron and DPC4 (2) 

loxP up 

DPC4 (2) - 
380rev (2) Ei Ell 

Neo 

DPC4 Intron 

TK 

I 

1.29 1.17 1.19 1.11 1.5 1.4 21.20 21.1 21.16 21.16 21.24 WT H20 M 

Figure B.2. 

PCR with DPC4 Intron and DPC4 (2) 

325bp - 
290bp 4- 220bp 

This figure shows the results of a PCR to identify correctly targeted 

ES cell clones which have lost the foxed Neo /TK cassette as a 

result of exposure to Cre recombinase. The primers "DPC4 Intron" 

and "DPC42" are designed to amplify a wild type band of 

approximately 230óp whereas the presence of a single loxP site 

remaining after recombination between the two loxP sites at either 

side of the cassette should increase this band by approximately 

70bp to 300óp. Positive clones will therefore show two bands. 

Figure reproduced by kind permission of Dr E.K. Duff (PhD 

Thesis, 2000, University of Edinburgh). This PCR was used in 

conjunction with the one shown in Figure B.3 to genotype the 

Smad4 foxed animals. 
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Figure B.3 - PCR with IoxP up and 380rev (2) primers 
DPC4 (2) 

4-- 
Ell 380rev (2) El 4- 

Neo 

IoxP up 
DPC4 Intron 

TK 

I 

1.29 1.17 1.19 1.11 1.5 1.4 21.20 21.1 21.16 21.26 21.24 +ve WT H20 M 

Figure B.3 

PCR with loxP up and 380rev (2) primers 

325bp 
290bp - 220bp 

This figure shows the results of a PCR to detect the 5' loxP site within the 

putative targeted allele. ES cell clones 1 and 21 were tested after exposure 

to Ganciclovir to remove the floxed Neo /TK. The primers "loxP up" and 

"380rev (2)" are designed to amplify a band of approximately 220bp with 

wild type DNA and 280óp when a single loxP site is present. Clones 

correctly targeted at the 5' end show two bands. Figure reproduced by kind 

permission from Dr E.K. Duff (PhD Thesis, 2000, University of 

Edinburgh). This PCR was used in conjunction with the one shown in 

Figure B.2 to genotype the Smad4 floxed animals. 
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B.1.3 Experimental design 

A strategy was designed which would allow the generation of Smad4-- acinar cells in 

culture. The Smad4-1 cells would then be used to investigate the effect of loss of Smad- 

mediated TGF -13 signalling within the murine pancreas. The strategy involved 

intercrossing Smad4111+ mice with the viable Smad4 +i mice to generate viable Smad4 tll 

animals, containing one functional foxed Smad4 allele and one null allele. The acinar 

cells from the pancreas of these mice would then be primary cultured. Infection of these 

Smade acinar cells with an Adenovirus vector expressing Cre recombinase 

(Adenovirus Cre) would then result in recombination of the floxed Smad4 exon 1 and 

the generation of Smad4- /- cells. This experimental design is outlined Figure B.4. 
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Figure B.4 - Experimental design for generation of Smad4 acinar 
cells 

Start codon 

- - 

Smad4 -Ii+ 

X Parents 

1 

Smad4 +i 

Progeny of interest 

Smad4 fti+ 

Preparation of 
pancreatic 
acinar cells 

1 

Cre expressing 
adenovirus 

Cre- mediated 
recombination 

Smad4 1 cells 

249 



B.2 Results and conclusions 

B.2.1 Generation of Smad4" and Smad4" animals 

Initially Smad4 +i - and Smade+ (described as mice typed for the presence of the 5' loxP 

site) animals were mated (Figure B.5 (a)), progeny included animals which carried both 

the floxed and the null alleles as determined by PCR for the Smad4 mutant allele and the 

5' loxP site. PCR for the floxed allele and the null allele were carried out on different 

regions of the gene, therefore the presence or absence of the WT allele was not 

determined directly but inferred from the determination of the other alleles present. The 

mice which were typed positive for the presence of 5' loxP site and the null allele were 

then used in a further mating to mice typed for the presence of the 5' loxP site (Figure 

B.5 (b)). The results of this mating are shown in Table 1. Comparison was made 

between the observed genotypes of progeny with the expected genotypes (shown in 

Figure B.5 and on Table 1). The predicted 1:1:1:1 ratio of genotypes in the progeny of 

the Smad4 +i - x Smad4fll+ (mice typed for the presence of the 5' loxP site) mating was 

found to be approximately the same as the observed ratio of genotypes. However two 

main anomalies occurred upon comparison of expected versus observed genotypes of 

progeny of parents assumed to be Smad4fU+ (mice typed for the presence of the 5' loxP 

site) and Smade (typed positive for the presence of 5' loxP site and the null allele). 

First, no Smad4tVul progeny were generated from any of the matings, this absence was 

highly statistically significant (Chi squared, X2 = 21.9 p <0.05). Second, Smad4 +1+ 

animals were also generated from the second cross, indicating that mice typed as 

possessing both a floxed and a null allele also carry a WT allele. It was concluded that 

the floxed construct had not modified the endogenous allele but had integrated 

elsewhere. Thus the gene targeting carried out had not generated Smad4''+ animals. 

Since the 3' end of the vector had been shown to be correctly integrated through the 

Southern blot performed by Dr E.K. Duff and the presence of both loxP sites had been 

shown by PCR it was concluded that a rare recombination event had occurred resulting 

in random integration of the 5' loxP site into another region of the genome. This 

phenomenon has been documented by other researchers (Adair et al., 1989) 
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Figure B.5- Predicted progeny from Smad4 mutant and Floxed mice matings 

(a) Smad4N+ X Smad4+/- 

Smad4 +i+ 

Ratio 1:1:1:1 

(b) 

Smad4+ 

Ratio 1:1:1:1 

Smad4Ju+ Smad4+i 

Smad4N+ X Smad4fll- 

Smad4N- 

Smad4+/- Smad4fl/- 

Figure B.5 - Prediction of progeny from Smad4 mutant mice and 
floxed mice mating showing expected ratios. Note that predictions 
were based on the assumption that the targeting event had occurred 
as predicted. 
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B.2.2 Investigations into Adenovirus Cre infection efficiency 

Preliminary investigations were also carried out on the infection efficiency of primary 

cultured acinar cells. R26R mice contain a ß- galactosidase gene at the ROSA26 locus 

which is not expressed due to the presence of a floxed stop cassette containing a number 

of elements that block expression (Mao et al., 1999). Upon Cre- mediated recombination 

the stop codon is excised and the 13- galactosidase enzyme is produced. When these cells 

are incubated with a substrate for 13- galactosidase the ensuing reaction results in the 

production of a blue colour. Thus cells which turn blue have been successfully infected 

with the Adenovirus Cre and undergone Cre- mediated recombination. Acinar cells were 

prepared from R26R mice (a kind gift from Dr Shirley O'Dea) and preliminary 

optimisation investigations were carried out varying: the number of adenovirus added 

(2.5 x104 - 9.0 x106 plaque forming units or pfu); the incubation time with the 

adenovirus containing media and the time post- infection before fixation. Figure B.6 

shows the result of incubation of these cells with X -gal, the (3- galactosidase substrate. 

Previous work involving infection of primary cultured hepatocytes with Adenovirus Cre 

found that when cells were incubated with adenovirus for 1 hour and then left for 24 

hours, >95% efficiency of infection was obtained (Prost et al., 2001). Results showed 

that these primary cultured acinar cells exhibited very low infection efficiency ( <0.5 %) 

even at high concentrations (9.0 X 106 pfu) when the virus was left on for up to 7 hours. 

As others have shown that primary cultured acinar cells in suspension can be efficiently 

infected with 5 X 10 6 pfu of adenovirus (Padfield et al., 1998), it was concluded that 

either the Adenovirus Cre stock had expired or that the uptake and expression of 

Adenovirus Cre in our system was very poor. 

Therefore due to the low Adenovirus Cre infection efficiency and the discovery that the 

Smade+ mice had been incorrectly generated, it was decided to abandon the initial plan 

of generating Smad41- acinar cells in culture. Investigations were then entirely focused 

on the effect of TGF -(3 on WT and Smade- acinar cells. 
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Figure B.6 - Initial optimisation of Adenovirus Cre treated acinar 
cells containing Flox -stop LacZ alleles. 

(a) (b) 

(c) (d) 

Figure B.6 - Blue staining upon addition of X -Gal substrate on 
Adenovirus Cre -treated primary cultured acinar cells from Flox -stop LacZ 
mice. (a) Cells were treated for 7 hours with Adenovirus Cre (3.0 x 106 

plu) and fixed after 48 hours. X400 magnification (b) Cells were treated 
for 7 hours with Adenovirus Cre (3.0 x 106 plu) and fixed after 72 hours. 
X100 magnification (c) Cells were treated for 2 hours with Adenovirus Cre 
(3.0 x 106 plu) and fixed after 72 hours. X100 magnification (d) Cells 
were treated for 7 hours with Adenovirus Cre (1.5 x 106 plu) and fixed 

after 72 hours. X400 magnification. 
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Mutations in the tumour suppressor genes SMAD4 
(DPC4, deleted in pancreatic cancer locus 4) and 
adenomatous polyposis coli (APC) have been implicated 
in the development of pancreatic cancer in humans. 
Treatment of wild -type, Smad4 +l -, AperMinl + or 
ApcM¡nl +Smad4 +l - mice with N- Nitroso -N- Methyl 
Urea (NMU) results in abnormal foci in pancreatic 
acinar cells characterized by increased levels of ß- 
catenin. Previously such foci have been shown to be the 
precursors of pancreatic neoplasia. Interestingly, only 
NMU- treated ApcM`nl +Smad4 +l - mice exhibit a 
significant increase in abnormal pancreas, which was 
found to be due to increased number of abnormal foci 
rather than increased focus size. A range of foci sizes 
were analysed, but only smaller abnormal foci were 
characterized by morphological nuclear atypia. These 
studies suggest functional co- operation between TGF -ß 
and Wnt signalling pathways in the suppression of 
pancreatic tumorigenesis in the mouse. 
Oncogene (2002) 21, 4696 -4701. doi:10.1038 /sj.onc. 
1205673 

Keywords: pancreas; SMAD4; APC; mouse 

Genes identified as mutated in pancreatic cancer include 
p53, p16, K -RAS, BRCA2, APC and p15 (Abraham et 
al., 2002; Conlon and Howe, 1997; Hahn and 
Schmiegel, 1998; Caldas et al., 1994; Rozenblum et al., 
1997). SMAD4, also known as DPC4, has also been 
implicated in pancreatic neoplasia (Hahn et al., 
1996a,b). SMAD4, situated on the long arm of human 
chromosome 18 (its mouse homologue, designated 
Smad4, is on chromosome 8), is part of a family of 
SMAD genes which together work to transduce TGF -ß 
superfamily signalling (Heldin et al., 1997). Several 
pieces of evidence support the assignment of Smad4 as a 
tumour suppressor gene (TSG) in the pancreas. First, 

*Correspondence: ML Hooper; E -mail: m.hooper @ed.ac.uk 
Received 3 November 2001; revised 14 May 2002; accepted 20 May 
2002 

loss of heterozygosity (LOH) at 18q has been reported 
in 90% of pancreatic carcinomas (Hahn et al, 1996a). 
Second, 50% of human pancreatic carcinomas are 
characterized by either homozygous deletion or biallelic 
mutation of SMAD4 (Hahn et al, 1996a,b; Schutte et 
al., 1996). Third, SMAD4 has been linked to tumour 
suppression- related activities in vitro: Atfi et al. (1997) 
have shown SMAD4- dependent induction of apoptosis 
via integration of TGF -ß and SAPK -JNK pathways 
and others have shown that functional SMAD4 is 
necessary for TGF -ß- mediated induction of p21 result- 
ing in growth inhibition (Grau et al., 1997). Fourth, and 
perhaps most importantly, SMAD4 has been shown to 
be the central mediator of TGF -ß superfamily signal- 
ling, a pathway frequently dysregulated in many cancers 
including pancreatic cancers (Markowitz and Roberts, 
1996; de Caestecker et al., 2000). 

Adenomatous polyposis coli (AFC) has been docu- 
mented as an important TSG in the colon, where 
germline mutations in APC cause Familial Adenoma - 
tous Polyposis (FAP) ( Polakis, 1997; Groden et al., 
1991). An ethylnitrosourea -induced germ line mutation 
within the Apc gene produced a mouse model for FAP, 
the `Min' mouse (ApcMrni 

+) (Moser et al., 1990). As 
well as intestinal neoplasia, the ApcMini+ mouse is 
predisposed to the development of abnormal acinar 
foci characterized by high levels of ß- catenin. In the 
absence of p53, these ß- catenin -overexpressing abnor- 
mal foci progress to adenoma and adenocarcinoma 
(Clarke et al., 1995; Kongkanuntn et al., 1999). APC, a 
component of the Wnt signalling pathway, is thought 
to mediate its tumour suppressive activities predomi- 
nantly through down -regulation of intracellular ß- 
catenin levels (Munemitsu et al., 1995). Loss of 
functional APC results in increased levels of ß- catenin, 
which upon nuclear translocation mediates transcrip- 
tion of target genes, including cyclin DI and c -myc (He 
et al., 1998; Tetsu and McCormick, 1999). 

Whilst SMAD4 has been linked to tumour suppres- 
sion- related activities in vitro, the relevance to 
pancreatic neoplasia in vivo remains unclear. Smad4 
null embryos die around day E7.5, whereas hetero- 
zygous mice survive and develop intestinal polyps by 
12 months (Sirard et al., 1998; Yang et al., 1998; Xu et 
al., 2000; Takaku et al., 1999). Although Smad4 LOH 



was reported in later stage intestinal tumours (Miyaki 
et al., 1999), Xu et al. (2000) found that heterozygosity 
in this model was sufficient to initiate tumorigenesis in 
the intestine. Mice heterozygous for inactivating 
mutations in both Smad4 and Apc (Apc °716) developed 
colorectal carcinomas that were larger in size and more 
invasive by 20 weeks of age than those found in 
Apc °716 heterozygotes alone (Takaku et al., 1998). This 
suggests that SMAD4 plays a significant role in the 
malignant progression of colorectal tumours, but the 
precise biological role of SMAD4 in the progression of 
pancreatic tumorigenesis in vivo remains unclear. 
Although SMAD4 mutation is linked with 50% of 
pancreatic tumours in human, to date no pancreatic 
phenotype has been reported for any murine transgenic 
Smad4 strain. 

To address the role of SMAD4 in the development 
of pancreatic cancer, we therefore compared the 
susceptibility of wild -type mice and mice heterozygous 
for either or both the ApcMm and Smad4 alleles to the 
carcinogen NMU. NMU is an alkylating agent and a 
potent mutagen, exposure to which has been shown to 
result in pancreatic acinar cell hyperplasia in rats and 
the development of lymphoma and mammary tumours 
in mice (Monis et al., 1991; Diamond et al., 1987; 
Barka, 1982). We therefore utilized NMU to address 
the need for additional mutation, that could include 
mutation in the remaining Smad4 or Apc wild -type 
alleles. Given the established synergy between mutant 
Apcmin and Smad4 alleles in colorectal cancer (Takaku 
et al., 1998), we also investigated whether mutations in 
these genes co- operate in pancreatic tumorigenesis. 

NMU was administered subcutaneously to littermate 
cohorts (6 -10 animals) of 4- day -old mice of genotype 
(i) wild -type, (ii) Smad4 +1 -, (iii) ApcMm'+ or (iv) 
ApcMinl +Smad4 +t -. At 65 days of age the animals 
were sacrificed and tissues harvested. Age- matched 
control animals from each genotype were also exam- 
ined. Given that _pancreatic lesions that arise 
spontaneously in Ape zn /+ mice and are characterized 
by high ß- catenin levls have been shown to be 
precursors of pancreatic cancer (Clarke et al., 1995; 
Kongkanuntn et al., 1999), we performed immunohis- 
tochemistry for ß- catenin on pancreas from mice of 
each genotype treated with NMU and control mice. 
The pancreata of control mice were histologically 
normal. NMU -treated mice of all genotypes (including 
WT) exhibited multiple focal acinar cell hyperplasia 
which was characterized by increased levels of ß- 
catenin (Figure la). 

Two histologically identifiable types of abnormal foci 
were found, which we postulate reflect different stages 
or endpoints of the carcinogenic challenge. The 
majority were composed entirely of acinar cells, while 
a minority contained stromal cells and cystic areas 
(Figure la,b). The proportion of the two types of foci 
did not differ between genotypes. TUNEL staining 
(Gavrieli et al., 1992) and morphological analysis (Kerr 
et al., 1972) of these foci revealed higher levels of 
apoptosis within foci characterized by stroma and 
cystic areas (2.4% TUNEL positive cells and 1.0% as 
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scored morphologically) than the wholly acinar foci 
( <0.1% TUNEL positive cells, and 0.2% as scored 

h 

Figure 1 Representative examples of lesion histology and immu- 
nohistochemistry. (a) Abnormal focus of pancreatic acinar cells 
from an NMU- treated (50 mg /kg body weight) wild -type mouse 
showing increased ß- catenin level. (b) Pancreatic abnormal focus 
from ApcMM/ +Smad4 +I - mouse showing increased ß- catenin le- 
vel, containing stromal cells (S) and cystic areas (C). (c) 
SMAD4 -stained pancreas from ApcM' "t +Smad4 +t - mouse show- 
ing strong staining within and outside focus. (d,e) Pancreatic aci- 
nar cells from pancreas of ApcM'"/ +Smad4 +I - mouse exhibiting 
reduced cytoplasmic expression of SMAD4 within the lesion at 
low (d) and high (e) magnification. (f) ß- catenin expression in ab- 
normal focus showing increased nuclear area within the focus. (g) 

Double -labelling of pancreas from a hemizygous ß- globin trans - 
genic mouse using DNA -DNA in situ hybridization for ß- globin 
transgene (brown punctuate dots) and faint ß- catenin immunohis- 
tochemistry (burgundy). The black line divides dysplastic cells 
(bottom right) from normal cells (top left). White arrow indicates 
diploid cell containing one ß- globin hybridization spot, black ar- 
row indicates polyploid cell containing three ß- globin hybridiza- 
tion spots within abnormal focus. (h) Representative example of 
BrdU staining within abnormal focus. Tissues were formalin fixed 
(methacam for DNA -DNA in situ hybridization), paraffin em- 
bedded and sectioned using routine techniques. Immunohisto- 
chemistry for ß- catenin (Transduction Laboratories, C19220), 
BrdU (Harlan, MAS250p) and SMAD4 (Santa Cruz, SC 1909) 

used biotinylated rabbit anti- mouse, rabbit anti -rat or goat anti- 
rabbit secondary antibody in conjunction with Avidin /Biotin 
complex before visualization with DAB (brown) or Vector VIP 
(burgundy). DNA -DNA in situ hybridization was performed as 

detailed in Keighren and West, 1993. Bars represent 50 pm 
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morphologically). It is possible that the altered content 
and deregulation of apoptosis in this subset of foci may 
indicate progression in tumorigenesis. This is of 
particular interest in the context of Smad4 mutation, 
as defective TGFß signalling has been shown to result 
in neo- angiogenesis and fibrosis in the stromal 
compartment of the pancreas (Bottinger et al., 1997). 

Using increased levels of ß- catenin as a marker for 
abnormal pancreatic foci, the area of pancreas 
occupied by abnormal foci and focus size were 
measured by morphometric analysis. Comparison of 
abnormal pancreas expressed as a percentage of total 
pancreas found no differences between Smad4 +1-, 

Apcminl + or WT mice (Mann - Whitney U, P> 0.05), 
whereas ApcM" l+ Smad4 +I - mice showed a significant 
increase in abnormal pancreas (Figure 2a, Mann - 
Whitney U P<0.05). Increased abnormal pancreas 
only when Apc and Smad4 mutation are present in 
conjunction suggests that the pathways these proteins 
are involved in converge on a common target. This 
hypothesis is supported by previous work by Nishita et 
al. (2000) and Labbe et al. (2000) where interaction of 
members of the Smad family with LEF1 /TCF 
(Lymphoid enhancing binding factor /T cell- specific 
factor) and ß- catenin was reported. 

The observed increase in abnormal pancreas in 
Smad4 + ApcMinl+ mice argues that SMAD4 is acting 
as a tumour suppressor in normal pancreas. To 
investigate whether lesions arising in Apcmini+ 
Smad4 +I - pancreas had lost SMAD4 expression, 
immunohistochemical analysis for SMAD4 was carried 
out. The majority of foci remained heterozygous for 
Smad4 (Figure lc) with strong cytoplasmic staining. 
Decreased cytoplasmic levels of SMAD4 expression 
were observed only within a minority of foci (Figure 
ld,e) indicating that loss or down -regulation of the 
remaining wild -type Smad4 allele occurs rarely in this 
model. Thus it appears that the increase in abnormal 
pancreas in the Apcminl + Smad4 +1 - mice is associated 
almost entirely with Smad4 heterozygosity. This 
suggests that in the presence of other mutations loss 
of a single Smad4 allele could effect a progression in 
tumorigenesis. 

Statistical analysis comparing focus size between 
genot es revealed that abnormal foci arising in 
ApcM' +Smad4 +I - mice were not significantly larger 
than those in Smad4 +1 -, Apcmi "I + or wild -type mice 
(Mann-Whitney U P> 0.05), Figure 2b. This implies 
that the increased amount of abnormal pancreas seen 
in Apcmini +Smad4 + /- mice is not due to increased 
focus size but rather increased incidence. Mutations in 
both these genes therefore appear to have an additive 
effect on the initiation but not growth of abnormal foci 
causing a resultant overall increase in percentage 
abnormal pancreas. Takaku et al. (1998) analysed 
intestinal adenomas occurring in Apc°7161 +Smad4 + /- 
mice and found a decrease in polyp number, but an 
increase in polyp size and frequency of invasive 
adenocarcinomas when compared to Apc °716 hetero- 
zygotes. Our work is therefore in contrast to that of 
Takaku et al and may be indicative of different 
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Figure 2 Morphometric analysis of abnormal foci. (a) Amount 
abnormal (with high ß- catenin level) pancreas as measured by 
area and expressed as percentage of total ancreas in sections 
from NMU- treated WT, Smad4 + / -, Apcm' "l +, and ApcMi"/ 
+Smad4 + /- mice. Data are expressed as a dot plot with median 
percentage abnormal pancreas shown as a horizontal bar. (b) Box 
plots (Sokal and Rohlf, 1995) expressing size of individual foci in 
NMU- treated wild type (131), Smad4 /- (172), ApcMi" /+ (97) 
and Apc " 1+Smad4+ - (219) mice (bracketed values denote total 
numbers of foci included in dataset). Box plots express the first 
(Q1) and third (Q3) quartiles within a given data set by the upper 
and lower horizontal lines in a rectangular box, inside which is a 

horizontal line showing the median. The whiskers extend upward 
and downwards to the highest or lowest observation within the 
upper (Q3 + 1.5 X the interquartile range) and lower (Q1 -1.5 
X interquartile range) limits. Values outside the upper and lower 
limits are `outliers' and are shown by individual symbols 

pathways of tumorigenesis in the pancreas and 
intestine, affecting different target genes. An example 
of such tissue -specific differences include Smad4 - 
independent inactivation of TGF -ß signalling (through 
inactivation of Smad2 or TGF -ß type II receptors), 
which occurs more often in colorectal tumorigenesis 
(Heldin et al., 1997). Finally, the absence of pancreatic 
neoplasia in the Apc °7161 

+Smad4 +1 - mice could be 
because mutation in genes other than Apc or Smad4 is 
necessary to initiate pancreatic tumorigenesis. Such 



genes could be targeted by NMU in our study. In 
humans, oncogenic K -RAS activation and p53 inacti- 
vation occur frequently in pancreatic tumorigenesis 
(Rozenblum et al., 1997; Scarpa et al., 1993; 
Almoguera et al., 1988). Notably N- nitroso carcino- 
gens have been shown to induce activating mutations 
in K -ras in mice (Corominas et al., 1991), but they have 
not been shown to cause mutational inactivation of p53 
(Kito et al., 1996). 

Histological analysis revealed that a subset of 
abnormal foci in all genotypes contained visibly larger 
nuclei (Figure 1f) consistent with dysplasia. To 
examine whether SMAD4 played a role in the 
dysplastic phenotype, we measured nuclear area (NA) 
in normal acinar cells and acinar cells within abnormal 
foci (denoted Class I, Class II and Class III according 
to increasing size, see Figure 3 legend) for each 
genotype (Figure 3). In wild -type, Smad4 +1- and 
Apc `" 

+ mice, the distribution of NA in all classes 
of abnormal foci differed significantly from that of 
normal nuclei (P <0.05, Kolmogorov Smirnov or KS), 
but the greatest increases in NA compared to normal 
nuclei were observed in the smaller foci, Class I and II, 
while the distribution of NA in the larger abnormal 
foci (Class III) more closely resembled that of normal 
nuclei. Abnormal foci arising in Apcmin/ +Smad4 +1 - 
pancreas differed in that changes in NA distribution 
were much less pronounced and only Class I abnormal 
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foci exhibited a significant change in NA distribution 
(KS, P <0.05). 

Increased NA has been shown to denote a change in 
DNA content consistent with genomic instability 
(Asamura et al., 1989; Suzuki et al., 2000). To 
investigate whether the nuclear atypia reported above 
was associated with increased DNA content, we 
administered NMU using the same method to WT 
animals hemizygous for the ß- globin transgene 
Tg(Hbb- bl)83Clo present on chromosome 3 and 
detectable by DNA - DNA in situ hybridization 
(Keighren and West, 1993). This method, previously 
used to identify abnormal ploidy (Keighren and West, 
1993), provides a visual cue to the ploidy status of a 
cell. This study utilised a double labelling technique 
involving DNA -DNA in situ labelling of the ß- globin 
transgene and ß- catenin immunohistochemistry. 
Increases in the number of ß- globin hybridization 
spots were seen only in abnormal foci (Figure 1g), 
suggesting that in this system increased NA is 
associated with increased DNA content. An increase 
in the number of ß- globin hybridization spots could 
reflect an increased proportion of cells blocked in the 
G2 phase of the cell cycle due to increased cell 
turnover, but this is unlikely since ß- globin staining 
was not present in doublets characteristic of G2 phase 
(Lawrence et al., 1990). Furthermore, BrdU incorpora- 
tion studies (Figures 1h and 4) revealed low levels of 
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shown in tables above respective genotype. N denotes NA in normal tissue; I, NA in Class I abnormal foci; II, Class II; III, Class 
III. Key for tables: NS, P >0.05 and *P <0.05 
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Figure 4 BrdU incorporation in normal and dysplastic pancreas. 
Histogram showing percentage cells incorporating BrdU in nor- 
mal (from control and treated mice) and abnormal pancreas tis- 
sue. BrdU (Amersham, 3 mg /100 g body weight) was delivered 
24 h prior to culling. After processing, immunohistochemistry 
for ß- catenin and BrdU was carried out to enable scoring in both 
abnormal and normal pancreas. Error bars express standard error 
of the mean and in each case sections from a minimum of three 
mice were scored 

cell turnover, insufficient to account for increased NA 
seen in approximately 40% of cells within abnormal 
foci. Thus the increase in nuclear area in the abnormal 
foci is most likely due to polyploidy or aneuploidy 
affecting chromosome 3. 
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Appendix D - CD 5.1 

CD 5.1 - Timelapse movie of acinar cells grown in either EGF or EGF and 
TGF -ß 

:TDK 
CD R80 
CD-RECORDABLE 

Er,c w 
El 

Recordable 

700MB 
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CD 5.1 - Timelapse video microscopy of cells grown in EGF (first clip) or EGF and 

TGF -ß (second clip, separated by turning page). The acinar colony grown in EGF 

and TGF -ß exhibits mobile processes at the edges of the colony towards the end of 

the movie. Time between each image is 15 minutes and each individual clip shows a 

48 hour period. File is saved in two formats, Timelapse.avi and Timelapse.mov. For 

viewing on Macs use Quick Time to view the Timelapse.mov file. For view on P.C. 

use Windows Media Player to view the Timelapse.avi file. 
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