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ABSTRACT 

In an attempt to clarify some of the conflicting data on growth 

and division in rod-shaped bacteria, two aspects of the growth of a 

Gram-positive rod (B. subtilis) were chosen for study: autolysins and 

minicells. 

Several properties of the two autolytic enzymes, an amidase and a 

glycosidase, were examined. Neither enzyme could be assayed using a 

synthetic substrate, so that the only specific routine assay which was 

found, was for glycosidase, using M. lysodeikticus walls at pH 6.0. 

Total lytic activity at various stages of growth was measured, and it 

was concluded that active enzyme was always present, but with increasing 

age, cells became more resistant to lysis. Stationary phase cultures 

excreted enzyme into the medium. Walls which were free of teichoic acid 

were more resistant to degradation by lytic enzymes than walls contain-

ing teichoic acid, which probably resulted from the fact that rebinding -

of autolytic enzymes was much weaIer when walls did not contain teichoic 

acid. Some structural alteration of the wall may also have been in-

volved. A purification procedure for the amidase was develoned. using 

Sephadex chromatogra:hy and gel electrophoresis. Crude enzyme extracted 

from cell walls by 3 L1C1, and also purified lytic enzyme were used to 

raise antibodies for ferritin labelling experiments to localise amidase 

on the cell wall by electron microscopy. Preliminary labelling experi-

ments with ferritin-conjugated antibody to crude enzyme arid the lytic 

fractioii indicated labelling all over the wall. 

Crude enzyme extracted fror minicelis (which represent cell poles) 

was compared to that from normal cells, and found to be very similar, 

containing both enzyme activities. Thus it was concluded that both 

lytic enzymes wore present at the cell poles. 
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Sections of cells autolysing under conditions optimal for each 

enzyme (pH 6.0 and pH 8.6), showed very similar degradation patterns, 

although at the optimum for glycosidase activity (pH 6.0) the effect 

was much slower. Either degradation by glycosidase activity was 

similar to that by amidase activity, or amidase was the major activity 

at both pH's. A cycle of lytic activity appeared to operate at cross- 

walls. Under normal conditions, no degradation occurred until the cross-

wall was complete, then 'V-shaped' notches were removed from the outside 

wall, and the cells separated from the outside towards the centre. 

Once formed, the ends became resistant to further degradation. Electron 

microscopic evidence suggested a structure for the wall where sheets of 

peptidoglycan were arranged with glycan chains running perpendicular to 

the axis. A model was proposed for the growth of the wall by insertion 

of material all over the inner surface,' and loss of old material from 

the outer surface. 

A study of the growth and division of a minicell-producing mutant 

in exponential phase, indicated that this strain might well fit the 

model proposed by Teather et al. ( J. 3act. 118, 407-413) for an E. coil 

minicell-producing strain. 
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CHAPTER I 

INTRODUCTION 



Inspite of a great deal of work published, very little is yet 

known about the actual process of bacterial growth and division. Some 

areas, however, are well documented with 'the evidence in good agree-

ment, whereas in others exists a mass of confusing and conflicting 

data; Still other areas have been little investigated. 

In the work to be discussed, an attempt has been made to gain 

some further information about the growth and 'division 'Of a Gram-posi- 

tive organism,' Bacillus subtilis.' This has been-done by' 'analysing its. - ' 

autolytic enzymes biochemically, looking at the effects of their action 

by electron microscopy,, and by using minicells both for enzyme localis-

ation and for growth and division studies. As a background to these 

aspects of biochemistry and morphol9gy, the, following topics are dis-

cussed; biochemistry of the cell wall, lytic enzymes associated with 

the wall and possible roles for these enzymes. Several models for 

three-dimensional peptidoglycan structure and for wall growth of both 

cocci and rods are considered. An outline of minicell production and 

characteristics is also given. 
 

Biochemistry of the Cell Wall  

The biochemistry of the cell wall is one of the better documented 

areas. The wall exists outside the plasma membrane and is considered 

to maintain the rigidity and osmotic stability of the cell. However, 

i's' póibl for 

 

an organism to survive and even grow and divide 

without a wall, as with protoplasts, L-forms and some marine organisms, 

although often these require special conditions for growth. Bacteria 

with walls may be divided into two classes on the basis of their over-

all wall structure, namely Gram-positive and Gram-negative organisms. 

Gram-positive walls appear fairly homogeneous in the electron micro-

scope, and contain predominantly peptidoglycan and teichoic acids, 
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with other molecules, e.g. polysaccharides, peptidoglycolipids and 

external protein layers in smaller and varying amounts. Gram-negative 

walls, on the other hand, consist of an outer membrane of organised 

lipopolysaccharide-protein complex, and an inner layer of peptidoglycan, 

which is much thinner than the peptidoglycan of Grain-positive walls. 

Together with the plasma membrane, these layers are collectively known 

as the cell envelope. 

Gram-positive organisms were used in the work to be discussed, 

and so the wall structure of this class is considered in more detail. 

The polysaccharide backbone of the peptidoglycan consists of repeating 

disaccharide units of 2-acetamido-2-deoxy-D-glucose ( N-acetylglucos-

amine, NAG ) linked by a 01-4 bond to 2-acetamido-2-deoxy-O-(D-1-

carboxyethyl)-D-glucose ( N-acetylmüramic acid, NAM ). This basic 

unit is present universally in walls of both Gram-positive and Gram-

negative organisms. The disaccharide units, formed from uridine 

nucleotide precursors of NAG and NAM, are transferred from a membrane 

lipid carrier to the wall. Polymerisation occurs at the non-reducing 

end of an NAG residue already present in the wall. At the time of 

transfer, the disaccharide units already, have a pentapeptide attached, 

which is subsequently used in cross-linking adjacent polysaccharide 

chains. These peptides are strikingly constant throughout different 

species, consisting in most cases of L-alanine linked through its 

N-terminus to the lactyl group on the rnurainic acid, D-glutamic acid, 

a diamino acid and two D-alanine residues. During the cross-linking 

process in the wall, the terminal D-alanine is lost. The diamino acid 

is usually meso-diaminopimelic acid ( DAP ) or L-lysine, the former 

being found in many species of Gram-positive and some Gram-negative 

rods, and the latter in cocci. The carboxyl groups on residues not 

involved in peptide bonds may be amidated. In B. subtilis the carboxyl 



groups on the D carbon of DAP of some peptide subunits are amidated 

( Ghuysen, 1968 ). Varying the amounts of amidated side groups there-

fore, can significantly alter the net charge of peptidoglycans of 

otherwise similar composition ( Hughes, Pavlik, Rogers & Tanner, 1968). 

The other major constituent of Grain-positive walls are the teichoic 

acids. These are linear polyolphosphate polymers of glycerophosphate 

or ribitoiphosphate carrying sugar or D-alanine substituents, and as 

such are negatively charged. They are linked to NAM residues through 

phosphodiester bonds. Because teichoic acids are not found in Gram-

negative or even all Gram-positive bacteria, it is difficult to assess 

the importance of these molecules. But as Baddiley (1972) suggested, 

the lipopolysaccharide of Gram-negative bacteria is structurally 

similar and may serve the same function. Some Gram-positive -walls 

contain acidic polysaccharide containing uronic acid residues in place 

of, or as well as, teichoic acids. Teichoic acids do not appear to 

contribute much to the rigidity of the cell wall ( Archibald, Baddiley, 

& Blumsom, 1968 ), as isolated walls retain their shape after teichoic 

acids are removed, and as stated above, some walls lack them entirely. 

But they are thought to play a role in magnesium binding and uptake by 

the cell, as phage receptors ( Doyle, Birdsell & Young,1973; Burger, 

1966 ), and as antigenic determinants ( Burger, 1966 ). There is 

evidence that the teichoic acid biosynthesis is closely linked to that 

of the peptidoglycan ( Mauck & Glaser, 1972 ). Watkinson, Hussey and 

Baddiley (1971) suggested that the synthesis of teichoic acids is 

coupled to that of peptidoglycan by sharing the membrane lipid carrier, 

undecaprenol phosphate. B. subtilis walls contain a polyglucosyl 

glycerol phosphate teichoic acid and it appears to be bound to approxi-

mately 50% of the glycan polymers ( Hughes et al., 1968 ). 	- 

Cross-linking gives rise to the characteristic rigid outer layer .  
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of the cell. Again this process is species specific, varying in the 

degree of cross-linking and also in the actual amino acids involved. 

In general, cell walls with L-lysine as the diamino acid are more 

cross-linked than those with DAP. B. subtilis belongs to the latter 

group and the bond in this organism is formed directly between the 

terminal D-alanine of one peptide chain and the DAP of another (Ghuysen, 

1968 ). In more complicated types of cross-linking, an extra bridge 

of amino acids is involved, such as a pentaglycine bridge in 

Staphylococcus aureus strain Copenhagen ( Ghuysen, 1968 ). 

Especially useful in the studies of cell wall biosynthesis have 

been antibiotics and enzymes. Each of the three stages of biosynthesis 

a) synthesis of the uridine nucleotide precursors, b) utilisation of 

these to form linear peptidoglycan chains, and c) cross-linking-of 

these strands, is susceptible to inhibition by specific antibiotics. 

For example, the most commonly used antibiotic in cell wall studies, 

penicillin, is known to inhibit the cross-linking reaction, although 

the manner in which it does this is not understood. Penicillin has no 

effect on material which is already cross-linked, and so is only 

active on growing bacteria. At sub-inhibitory concentrations it has 

been shown to give rise to an accumulation of three nucleotides, 

UDP-NAM, UDP-NAM-L-alanine, and UDP-NAM-tripeptide. Bacitracin in-

hibits the dephosphorylation of the lipid pyrophosphate to lipid mono- 

phosphate, thus preventing the lipid carrier from re-entering the cycle 

of wall synthesis ( Siewert & Strominger, 1967 ). Vancomycin and 

ristocetin also inhibit a reaction in the second stage, namely release 

of disaccharide units from the lipid carrier to endogenous acceptors 

( Anderson, Haskiri, Meadow & Strominger, 1966 ). Bacitracin and vanco-

mycin were the two antibiotics used by Watkinson et al. (1971), to 

show the interdependence of teichoic acid and peptidoglycan synthesis. 

5 . 



Lytic Enzymes Associated with the Wall 

Ghuysen (1968) has reviewed the extensive use of enzymes in the 

studies of walls. Many enzymes of known specificity from bacteria and 

other sources have been purified, and because it is known exactly which 

bond they break in the intact wall, this greatly simplifies analysis 

of the resulting fragments. And analysis of the reverse process sheds 

light on how the cell wall is put together. Lysozyme is one of the best 

characterised of these enzymes- its three-dimensional structure has 

been worked out to the extent of fitting the substrate into a cleft in 

the molecule (Blake, Koenig, Mair, North, Philips & Sarma, 1965; 

Johnson & Philips, 1965; Philips, 1966 and 1967). This enzyme 

attacks the peptidoglycan backbone of the wail, breaking the bond 

between NAM and NAG, releasing fragments with NAM residues at the reduc-

ing end. Eventually most of the wall is broken down into disaccharide 

units with the peptides still in place, so analysis of these fragments 

can give information on the peptide chains and cross-linking. Since 

the substrate has to fit into a cleft in the enzyme molecule, this 

also might give some clue as to how the peptidoglycan is arranged in 

the wall. This will be discussed more fully later. Lysôzyme is an 

example of a group of enzymes known as endo-N-acetylmuramidases. A 

similar group of enzymes are the endo-N-acetylglucosaniinidases, which 

hydrolyse the glycosidic bonds between NAG and NAM, leaving NAG at the 

reducing end. 

A third group of enzymes are the N-acetylnturamyl-L-alanine 

amidases. As their name describes, they hydrolyse the linkages between 

the NA2 lactyl group and the L-alanine of the peptide side chain, re-

leasing an N-terminal rroup  on the L-alanine. By attacking the wall 

specifically with an enzyme of this type, it should be possible to 

answer such cuestions as - how long are the glycan chains and what % 

6. 



of the peptide side chains are involved in cross-linking? Lastly there 

are the endopeptidases, most of which hydrolyse linkages involving the 

C-terminal D-alanine of the peptide subunits. 

Lytic enzymes of all four specificities have been found in 

bacteria, associated with the wall,, in the membrane or cytoplasm, or 

excreted into the growth medium. As such they are known as autolytic 

enzymes. Marty have now been partially or wholly purified and 

characterised ( Ghuysen, Leyh-Bouille & Dierickx, 1962; Ghuysen, 

Tipper-& Strominger, 1966; Shockuian Thompson & Conover, 1967b; Brown, 

Fraser & Young, 1970; Huff, Silverman,. Adams & Awkard, 1970; Chart & 

Glaser, 1972; Fan & Beckman, 1972; Ortiz, Gillespie & Berkeley, 1972; 

and Herbold & Glaser, 1975 ). A few bacteria have been reported to 

contain only one autolytic activity; Streptococcus faecalis ATCC 9790 

( Shock-man & Cheney, 1969 ), Lactobacillus acidophilus strain 63 AM 

Gasser ( Coyette & Ghuysen, 1970 ) and Ar.throbacter crystallopoietes 

( Krulwich & Ensign, 1968 ). In all these the enzyme identified was 

an N-acetylmuramidase. In many others, more than one activity has been 

identified, for example, in some Gram-positive rods, including 

B. subtilis ( Fan & Beckman, 1972 ), an amidase and a glycosidase have 

been found, and of these the amidase is the major activity. Still 

others, such as Escherichia coil ( Weidel & Peizer, 1964 ) and 

S, aureus ( Tipper, 1969; Huff et al., 1970 ), have been shown to have 

a number of activities including N-acetyigiucosaminidases, amidases 

and cross-bridge splitting peptidases. 

Roles for Autolytic Enzymes 

Because these enzymes are potentially damaging to the cells in 

which they occur, the idea arose that they had some specific function 

in the normal process of growth and division. Clues as to their - 

possible role have been obtained from studies of mutants deficient in 
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one or more of their lytic activities, and also from inhibition of 

peptidoglycan synthesis by addition of penicillin , or deprivation of 

a necessary wall component. Under these last two conditions, autolytic 

activity in the absence of normal growth, eventually causes lysis of 

the cell ( Shockman, 1965); 

One requirement in many of the growth models for bacterial walls 

which have been put forward, is that newly synthesised material is 

added to existing wall, but for growth to occur by insertion of new 

material into a covalently linked, fairly rigid structure, bonds must 

be broken. So it has been suggested that this may be a possible role 

for lytic enzymes. The disaccharide-pentapeotjde unit being trans-

ferred from the membrane lipid carrier requires a non-reducing terminus 

of NAG as an acceptor. This will be present at the growing end of a 

glycan chain and would also arise from the action of an N-acetyl--

muramidase. However this type of enzyme activity has only been 

detected in a few species, S. faecalis, L. acidophilus and 

A. crystallopoietes (as mentioned above), and Bacillus thuringiensis 

(Kingan & Ensign, 1968 ). Thus it does not seem likely that this is a 

major site of incorporation in most species. Another effective means 

of breaking the existing covalent network would be lytic action on the 

peptide cross-links. In order for this to result in formation of new 

cross-links at the site where old ones have been broken, it would seem 

necessary to break the bond between the D-alanine and the diamino acid, 

to which it is linked, in the other chain, or between the D-alanine 

and the cross-bridge linking two peptide chains. An endopeptidase 

would fulfil either role. Even then the result would be a tetrapeptide 

linked to a muramic acid in the glycan chain, lacking the second D-

alanine which was lost in the original cross-linking, and so, any one 

peptide chain may only be capable of forming one cross-link during 
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its lifetime. The peptidoglycan may be broken in the above manner to 

allow formation of completely new cross-links. Thus two groups of 

lytic enzymes, the two most common in Bacilli, N-acetylglucosaminidases 

and amidases, do not seem to produce suitable acceptor or cross-linking 

sites. Also, in species producing relatively large amounts of amidase, 

the product of such action in the peptidoglycan, namely unsubstituted 

NAN residues and. N-terminal L-alanine peptides have not been detected 

( Warth & Strominger, 1971). In S. aureus, the number of N-terminal 

L-alanine residues is only about 67o of the L-alanine of the wall 

( Tipper, 1969). 

A related role for these enzymes has been postulated in remodel-

ling ( Rogers, 1970), which to some extent has the same difficulties 

with bond specificities discussed above. Rogers suggested that one 

way in which the autolysin may ensure that new wall Is added at an 

appropriate site could be by breaking bonds to allow rearrangement of 

existing peptidoglycan. This could provide a suitable site for cross-

wall formation for instance. Rearrangement of H-bonds as well as 

covalent bonds could be important. In A. crystallopoletes a change in 

morphology from rods to spheres was observed accompanied by a transient 

increase in N-acetylmuramidase activity ( Krulwich & Ensign, 1968). 

Consistent with this enzyme action, the average chain length of the 

glycari appeared to decrease during the conversion ( Krulwich, Ensign, 

Tipper & Strorninger, 1967 ). Another aspect of remodelling is the 

change in shape of cell poles, especially in rods, which occurs during 

division of the cells ( Figure 1 ). 

A widely supported role for the autolytic enzymes is in the actual 

process of cell separation. The length of this stage of the growth 

cycle varies between species and even with growth conditions in one 

organism. If it happens rapidly after septum formation is completed, 
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Fig . j 	Stages in cross-wall formation and cell separation in a 
typical rod. The change in cell shape may require re-
modelling. 
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the result is single cells. However, if the separation is slow, such 

that new septa are initiated before others are completed, the result 

is filament formation. Paulton (1970) showed for B. subtilis that the 

average time between production of a septum and cell separation, 

regardless of growth rate, was 133--minutes. Fan (1970I reported that 

a strain of B. subtilis grew as single cells at 30 0C and as filaments 

at 48 0 C. 1n the light of Paulton's results discussed above, filament-

ation could be due partly to an increased growth rate at the higher 

temperature, but Fan has attributed it to a temperature sensitive 

autolytic activity which is ineffective at 48 0C. He showed that after 

addition of egg white lysozyme or partially purified autolysin ( of 

which ainidase was the major activity ) from the cells themselves, 

considerable filament shortening was achieved. However, as he pointed 

out, the results did not prove that the autolysin acts similarly in 

vivo, but preliminary experiments with mutants indicated that as the 

level of autolysins decreased, filament formation became more pro-

nounced. An interesting point arising from Fan's work is that two 

enzymes with completely different specificities appear able to do the 

same job. 

Forsberg and Rogers (1971 and 1974) isolated mutants of Bacillus 

licheniformis deficient in autolysin activity. The cells appeared to 

contain a normal low amount of glycosidase activity, but the amidase 

activity was greatly reduced. Two of the mutants with least lytic 

activity grew as very long chains. The walls of these mutants, how-

ever, also differed in chemical composition from the wild type. In 

E. coli subjected to low levels of penicillin, which caused inhibition 

of septum formation, splitting of the cell has been seen to occur at 

one particular site. This was due to the action of lytic enzymes and 

appeared to be associated with a division site or a potential division 
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site ( Schwarz, Asmus & Frank, 1969; Donachie & Begg, 1970 ). This 

effect could have resulted from localisation of enzymes at this point 

for septum formation and/or cell separation. Inhibition of septum 

formation might have resulted in disorganised lysis giving rise to the 

split observed. 

It has now been shown that for a number of species,, wall turnover 

occurs. Mauck, Chan & Glaser (1971), in studies on B. subtilis W23 

during exponential phase, concluded that freshly synthesised wall did 

not become available for turnover for one half to one generation, the 

turnover rates for peptidoglycan and teichoic acids were 507o per 

generation, and the products of turnover isolated and characterised, 

resulted from cleavage by an N-acetylmuramyl-L-alanine amidase. A 

peptidoglycan turnover rate of 30% per generation was also observed in 

Bacillus megaterium strain KM in exponential phase. S. aureus 

exhibited a turnover rate of approximately 15% per generation for both 

peptidoglycan and teichoic acids, but both new and old wall material 

showed similar rates and no significant portion of the walls appeared 

to be resistant to turnover ( Wong, Young & Chatterjee, 1974 ). It is 

likely that here also an amidase was involved, as this is the major 

activity in this strain, and the walls of a mutant.deficient in auto-

lytic enzyme did not turn over. Wall turnover has also been shown in 

L. acidophilus but not in S. faecalis ( Boothby, Daneo-Moore, Higgins, 

Coyette & Shockman, 1973 ) or E.coli ( Van Tubergen & Setlow, 1961 ). 

These results suggest that wall turnover is not essential for normal 

growth, but when it occurs, lytic enzymes, especially the amidase, are 

involved. 

Another more specialised role for autolysins has been suggested 

by competence studies. Akrigg and Ayad (1970) demonstrated that in 

competent cells of B. subtilis 168 the competence inducing factor 
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exhibited a powerful lytic effect on. isolated walls of 168, and 

analysis of lysates suggested that the enzyme.. might be N-acetyimuramyl--

L-alanine amidase. Stewart and Marmur (1970) found that the extract-

able lytic activity of B. subtilis 168 was markedly  increased after 

uptake of DNA. No such effect was observed in B. subtilis W23 and non-

competent cells of 168, neither of which take up DNA. Young and co-

workers also presented data suggesting that the autolytic enzyme of 

B. subtilis might have a role in DNA uptake during transformation, 

perhaps by hydrolysing a portion of the wall to provide a path of entry 

for DNA ( Young & Spizizen, 1963a and 1963b; Young, Tipper & Strominger, 

1964). 

From the evidence sited, it seems almost certain that autolytic 

enzymes play a part in the normal cell cycle, perhaps most clearly in 

the processes of turnover and cell separation. But it is far from 

established why some species appear to have multiple activities, while 

others can survive with only one detectable autolysin. It is possible 

that in some species one enzyme may have multiple roles, whereas in 

others, more than one enzyme may effectively do the same job. 

Three-Dimensional Arrangement of Peptidoglycan. 

There is little biophysical evidence to support or discount any 

molecular models of cell walls, and studies which might have been 

particularly useful for the determination of three-dimensional structure, 

such as X-ray crystallography, have so far had little success. How- 

ever a number of models have been constructed to explain the available 

data and cuite a lot of work has been done on specific parts of the 

problem. 

The bulk of evidence now suggests that the glycan chains are 

fairly short, in contrast to the very long strands envisaged by Weidel 

and Pelzer (1964). Estimates vary and great care must be taken during 
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preparation of fragments for analysis to ensure that in vitro action 

of N-acetylglucosaminidases or N-acetylmurainidases does not make the 

chains smaller. Also the oligosaccharides obtained are often poly-

disperse and there is no means of knowing the distribution of lengths 

in different cells of a culture, or in different parts of a cell wall. 

In S. aureus estimates of 12 to 16 disaccharide units per glycan chain 

were made ( Tipper, Strominger & Ensign, 1967; Ghuysen & Strominger, 

1963a ). Walls of A. crystallopoietes'grown as spheres contained 

glycan strands which averaged 17 units in length, while from the same 

organism grown as rods, they averaged 65 units ( Krulwich et al.,, 1967). 

Kolenbrander and Ensign (1968) investigated the spiral shaped Spirilluin 

serpens and results indicated that the chain length was about 50 units. 

B. licheniformis 6346 was found to have an average chain length of 11 

units and B. subtilis 168 md a range of 5 to 21 units with an 

average chain length of 10 units ( Hughes et al., 1968 ). There is no 

real evidence to suggest that a relationship exists between cell shape 

and the average chain length of the wall peptidoglycan ( Ghuysen, 1968), 

although it is possible that the localisation of long and short chains 

within a wall could be important. 

Cross-linking of the peptide subunits is necessary to maintain an 

intact structure. However, the degree of cross-linking varies greatly. 

Analysis of E. coli walls revealed 507c unlinked monomers and 50% cross-

linked diners ( Weidel & Pelzer, 1964; Van Heijenoort, Elbaz, Dezelee, 

Petit, Bricas & Ghuysen, 1969 ). L. acidophilus had 10 01C. monomers, 375 

diners, and 30% trimers ( Coyette & Ghuysen, 1970 ). S. aureus was 

found to be one of the most cross-linked organisms with about 75% of 

the possible peptide cross-linkages made C Tipper & Berman, 1969 ). 

In S. aureus( Ghuysen, Tipper, Dirge & Stroininger, 1965 ), and 

L. acidophilus the uncross-linked peptides ended in D-alanyl-D-alanine, 
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while in most other species one or both were absent, presumably removed 

by carboxypeptidase. Tipper (1970) quoted 55 to 6576 of possible cross-

links in B. subtilis ( Warth, 1968),Bacillus sphaericus ( Hungerer & 

Tipper, 1969 ), Lactobacillus casei ( Hungerer, Fleck & Tipper, 1969 ) 

and A. crystallopoietes ( Krulwich et al., 1967 ). 

Previc (1970) has produced a theory, which unfortunately has quite .  

a weight of evidence against it, in which he compares coccoid and 

bacilliform bacteria with respect to distinctive biochemical differences 

in their peptidoglycan. He considers that a strong correlation exists 

between morphology and the type of amino acid found in position 3 of 

the peptide subunits, namely lysine in many cocci and DAP in many rod-

shaped cells. He maintains that spherical cells require a radial ex-

pansion which could be accomplished by a relatively simple net of poly-

saccharide chains, linked by linear oligopeptides. The spherical 

shape could result from pressure within. With rods the poles could 

also be moulded under the influence of internal pressure, but he con-

siders the cylindrical part to be more complex, requiring a constant 

diameter and an increase in length. To maintain and propagate the 

cylindrical shape might require a coplex form of cross-linking, which 

could be provided by a tetrafunctional amino acid such as DAP. Reports 

so far are not in favour of this, however, as data suggest that the 

second carboxyl group of DAP is either free or amidated. Also DAP is 

replaced in a number of rod-shaped lactic acid bacilli by lysine or 

ornithine which are linked through their C- or ö- amino group to 

aspartic acid. This latter amino acid , however, has an  extra carboxyl 

group which potentially could cross-link in another dimension, but 

again it appears to be amidated ( Ghuysen, 1968 ). Nor is this type 

of peptide restricted to rods. Nevertheless, Previc has proposed that 

trifunctional lysine provides the simpler form of cross-link, while 
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the more complicated form required for cylinders could be provided by 

a tetrafunctionaLaniino acid such as DAP, with the possibility of this 

forming less complicated cross-links at the rounded poles. He has 

further suggested that if DAP is the key to bacterial shape, a 

transition from tetrafunctional to trifunctional cross-linking could. 

be responsible for rounding off at the division site, or the difference 

between cylinder and pole could depend on the presence of a single 

enzyme capable of cross-linking the c- carboxyl of DAP. 

Attempts have been made to localise teichoic acids within cell 

walls. Hughes et al. (1968), studying wall fragments of 

B. licheniformis, which contains teichoic acid and teichuronic acid, 

ti 
concluded that three possibili,es existed, 1) teichoic and teichuronic 

acid molecules might be clustered together in only part of the peptido-

glycan, 2) they might occur separately as islands in the Wall,  or 3) 

individual cells in a culture might have one or the other. 

Archibald, Baddiley and Heckels (1973) looked at walls of 

Staphylococcus lactis 13, and found nearly 40 11N. of the peptidoglycan 

covalently attached to teichoic acid, and only one teichoic acid chain 

attached to any one glycan chain. All the wall teichoic acid was 

attached to peptidoglycan and the average chain lengths for the poly-

mers were 24 and 9 repeating units respectively. The glycan chains 

without teichoic acid attached were also 9 units in length. This 

suggests that there is a considerable degree of order in wall structure 

and implies restrictions on the location of teichoic acid. If the 

glycan chains are parallel to the surface then the proportion of chains 

to which the teichoic acid is attached is more than would cover the 

outer layer. Thus in this case, teichoic acid would have to be dis-

tributed throughout the layers of the wall. Only if glycan and teichoic 

acid chains lie perpendicular to the surface, presumably in a contracted 
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conformation, could the teichoic acid occupy a discrete region on the 

outer or Inner edge of the wall. 

Concanavalin A binds specifically to the teichoic acid of 

B subtilis 168 and ultrastructural studies were carried out using• 

this as a label ( !3irdsell, Doyle & Morgenstern, 1975 ). Their studies 

showed that at least a portion of the teichoic acid was localised on 

the surface of the cell. Mauck and Glaser (1972) reported that new 

teichoic acid was added to new peptidoglycan which, in a wall several 

layers thick, suggests that teichoic acid should also be found through-

out the wall. So far the exact location of teichoic acids has not been 

deterniined,and is another point for speculation in a model of overall 

peptidoglycañ structure. 

Models 1. Higgins and Shockman (1971) have produced a molecular model 

which they consider applies reasonably well to the variety of peptido-

glycan structures determined. Hydrogen bonding and covalent bonding 

both contribute to structural properties. Their space-filling models 

show the glycan chains to be flat, rather dense, fairly rigid ribbons. 

The peptide folds over one face of the amino sugars, resulting in three 

H-bonds between the peptide side chain and the disaccharide, and 

additional H-bonds within the peptide chain. The configuration of the 

peptide is like a letter 'T'. The two arms of the IT' form an almost 

straight line that runs at 900  to the long axis of the glycan strands. 

The distance between the amino group of lysine at one end of the arms 

and the carboxy terminal of D-alanine at the othe:' end equals the width 

of a glycan chain. The model therefore allows cross-linking between 

parallel glycan strands without extra amino acids in a cross-bridge 

between two tetrapeptides. Bridgin amino acids would only increase 

the distance between parallel glycan strands. The model predicts 

sheets of peptidoglycan in which glycan strands and peptide chains 
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are in two separate planes, one above the other, and run at 900  to 

each other. These sheets stack easily in a parallel or antiparallel 

direction (see later) with H-bonding between the sheets. They claim 

that cross-linking between the sheets is also possible. 

The problem has also been approached by Keleman and Rogers (1971) 

with bacilli-in mind. Their ideas differ quite considerably from those 

discussed above. Again using molecular models, they found that if 

glycan chains are H-bonded as in chitin, all the carboxyl groups ( to 

which peptides are linked ) of 14AAI protrude from the same side of the 

stack of polysaccharide chains, and the 6-hydroxyl groups (to which 

wall polymers other than peptidoglycan are likely to be joined), are. 

exposed on the opposite side of the stack. Two such stacks are cross-

linked by the peptides to give a sheet two layers thick. Keleman and 

Rogers have pointed out the differences between peptides of peptido-

glycan and those of protein, namely - a), some of the amino acids are in 

the D configuration, b) D-glutamic acid and D-aspartic acid, when it 

occurs, have their y- and - (respectively) carboxyls involved in pep-

tide linkage and not their ct— carboxyl groups, c) some of the diarnino 

acids are linked into the peptide by both amino groups, d) the peptides 

linking two glycan chains are made of two parts joined head to tail. 

The effect of these differences on peptide configuration makes CL—

helices and random coil structures unlikely and a pseudo-13-  conformation 

likely, since the latter creates the possibility of multiple interpep-

tide TT-bonding. 

Tipper (1970) has noted that glycan chains of NAG-NAM repeating 

units offer only 'half the intrachain H-bond possibilities between 

adjacent sugar residues available in chitin, but the substitutions on 

NAM may offer other possibilities, such as the bond between the lactyl 

carbonyl group of NAH and the adjacent C6 hydroxyl group of NAG. As 
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in the models discussed above, a flat linear glycan chain is stabilised 

by H-bonds with identically oriented peptides on one side and hydroxyls 

for attachment of other wall polymers protruding on the other side. In 

contrast to the other models, he draws special attention to a structure 

which is common to all known peptidoglycans, the strict DLDLD sequence 

of the peptide chain, including the D-lactyl substitution of the NAM, 

in which the glutamyl linkage is always y, giving a flexibility that 

might allow the chain to double back on itself. A comparison is drawn 

between the repeating structure here and that of some antibiotics, 

whose most striking property is the stability of their folded conform-

ations, which in some cases form a hexadentate co-ordination shell 

around an unhydrated alkali metal ion. Tipper considers it possible 

that appropriate folding of the common peptidoglycan peptide might 

result in a preferred conformation, perhaps stabilised by metal chelat-

ion, which could be important in two ways; a) for binding to the active 

sites of enzymes and b) for structural function since a fixed peptide 

structure along with that of glycan could fix the network in an ex-

panded yet fairly rigid configuration that might be economical in 

material and leave gaps for insertion of other cell wall polymers and 

diffusion of nutrients etc. 

4. 	Braun, Gnirke, Henning and Rehn (1973) have presented a model, 

which they were careful to designate as being for the shape-maintaining-

layer of the E. coil cell envelope. They do not believe that peptido-

glycan is necessarily shape-determining, since peptidoglycan o'--'one and 

the same composition can assume virtually any shape (Henning, Rehn, 

Braun, Hoehn & Schwarz, 1972; Schwarz & Leutgeb, 1971). Braun et al. 

measured the surface area per molecule of DAP and found it to be the 

same for a mutant growing as a sphere as for the rod-shaped parent. 

Their model specifies a monomolecular layer with the polysaccharide 
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chains all parallel and the cross-linking peptides arranged above or 

below the polysaccharide, as proposed by Higgins and Shockman. The 

peptide side chains, according to Braun etal.,, probably have a stable 

conformation because of the steric requirement of peptidoglycan bio-

synthesis, so that the amino group of DAP and the carboxyl of D-alanine 

of a neighbouring chain can come into close contact to allow transpep-

tidation. Within the polysaccharide chain no rotation of the repeating 

units is possible. In a 31-4 linked polysaccharide chain, all peptides 

extend in the same direction. 

The structure of peptidoglycan in all wall models is based on that 

of chitin (Carlström, 1957), with its linear conformation stabilised by 

H-bonds. No substitutions have been found in the glycan chains which 

would alter their conformation. This suggests that the conformation 

may be essential for the survival of the bacteria (Ghuysen & Shockman, 

1973). An ct-helix in the peptide seems unlikely. Keleman and Rogers 

favour the n-pleated sheet for H-bonding, while Tipper suggests flexi-

bility of the peptide chain, and a similarity between some antibiotics 

and the repeating peptide structure of the peptidoglycan. The model 

discussed by Higgins and Shockman differs from the others in that it 

involves extensive H-bonding between peptide chains and glycan chains, 

thus resulting in a more compact structure. However the models of 

Higgins and Shockman and Braun et al. are essentially similar in the 

structure proposed for a sheet of peptidoglycan. They offer the 

possibility of extension by covalent linkage in two dimensions. Keleman 

and Rogers however, propose that both the reactive groups of a peptide 

cross-link to the same glycan chain. Thus only pairs of glycan chains 

can be linked, and a sheet of peptidoglycan must be formed by stacks of 

these H-bonded together. This structure does not make use of the full 

potential of peptide cross-linking, and only allows for extension by 
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covalent linkage in one dimension. The model proposed by Braun and 

co-workers caters for a Gram-negative organism with a very thin layer 

of peptidoglycan, and when expanded to accomodate more than one layer, 

does not allow for binding between the layers to give a stable three-

dimensional peptidoglycan ( of Higgins & Shockman). None of the avail-

able data has been able to establish whether the glycan chains run 

parallel to the surface or perpendicular to the surface, whether if they 

are parallel,they run along the long axis of the cell or round the 

diameter, or whether the sugar rings are parallel or perpendicular to 

the surface. 

5. 	H. Wawra, S. Formanek and H. Formanek presented a three-dimensional. 

model of the murein layer at the Luntern Lectures (1974). This was 

based on model building and preliminary X-ray diffraction patterns of 

murein foils (dried sacculi of Spirillum laid one on top of the other 

with random orientation). The periodicities obtained resembled those 

from chitin, so again this was taken as the basic structure of the 

glycan chains. They preferred to think of the peptides as having 2.2 7  

helical conformation, claiming that a pleated sheet structure did not 

fit according to a Ramachandran Plot s  They pointed out that this 

arrangement of glycan and peptide allowed all modifications and sub- 

stitutions found in peptidoglycan, such as substitution of the C6 of NAM, 

formation of muramic acid lactam in spores, incomplete or omitted pep-

tide subunits and formation of the different interpeptide bridges. In 

their model, they visualised the peptidoglycan as being tightly packed 

and therefore, H-bonded, but with holes in the structure where permeat-

ion and lysozyme digestion could occur. The model allowed for addition 

of teichoic acid, and they considered it most likely that teichoic acid 

would be present in the more crystalline parts of the structure, since 

the more the peptidoglycan is substituted, the more rigid is the struc- 

4' ,--' 
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Cell Wall Growth. 

With regard to the mechanism of cell growth, the problem which has 

received most attention over the years is the number and location of 

growth sites. The problem has been approached by direct and indirect 

techniques such as imniunofluorescent and ferritin antibody labelling, 

incorporation of labelled wall components followed by autoradiography, 

and ultrastructural studies. Some of the techniques are more reliable 

than others, but in all cases great care must be taken in interpreting 

the results. Cole (1965) has discussed the advantages and iim1tation&'-

of immunofluorescent techniques. The main advantage is the availability 

of a specific label to the wall of a living organism. The presence of 

labelled antibodies does not appear to stop or alter growth. When the 

micro-organisms are removed from the label and undergo subsequent growth 

a clear differentiation can be obtained between old and new wall. How-

ever, the technique itself has several limitations, such as progressive 

quenching.of fluorescence on exposure to ultra-violet light, poor 

initial fluorescence under some conditions, and an indirect effect of 

UV during observation preventing further growth without killing the 

cells. But the main disadvantage is the frequently made assumption 

that all the constituents of the cell wall are replicated simultaneously 

and at the same sites. Antibodies are usually produced to specific 

cell surface antigens rather than to the mucopeptide itself, and these 

may be unrepresentative of overall cell growth, especially if they are 

not covalently bonded to the peptidoglycan. A synchronous culture 

would be most useful for ease of interpretation,, but in practice an 

exponentially growing population is satisfactory. In any case careful 

observation of an adequate sample is essential for correct interpre- 

tation. 	 - 

A further complication,to be considered in species where it occurs, 
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is wall turnover. It is difficult to imagine excluding turnover from 

the growing process of the cell, but loss of label from the outer sur-

face due to turnover may not represent the growing process occuring at 

the Inner edge of the wall. Thus, especially in Gram-positive bacteria. 

which have such a thick cell wall, it is Important to look as closely 

as possible at the area where new material must be incorporated, rather 

than at the outer surface where old material may be randomly lost. 

To date it seems that no one model will fit all the species 

studied. Current evidence suggests that rods and cocci represent dif-

ferent systems and should be considered separately. Cocci have been 

considered as representing a more primitive situation, with the cells 

consisting of two hemispherical poles to be separated by a cross-wall. 

Rods, on the other hand, may result from a more sophisticated system, 

evolved to overcome limitations of a coccal form, consisting of a 

cylindrical portion with a hemispherical pole at either end. The 

cross-wall normally develops in the centre of the cylinder to give rise 

to two new hemispherical poles. 

Three possibilities exist for the distribution of growth sites in 

a cell. Wall deposition and thus growth occurs a) at only one site 

per cell, b) at a finite number of sites distributed throughout the 

cell, or c) all over the surface of the cell. The evidence at present 

is still very confused, but indicates that for cocci, one site per cell 

may be involved in growth, whereas at least in some species of rods, 

growth may occur all over the surface. 

Cocci. An extensive study of growth in S. faecalis, a Gram-

positive coccus which divides in only one plane, has been carried out 

by Higgins and Shockman's group and provides convincing evidence that 

this organism has a restricted growth zone. From an electron micro- 

scopic analysis of serial and random sections,(Higgins & Shockman,19 70 , 
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Fig. 2 Model for the growth of S. faecalis (after Higgins & 
Shockman, 1970a) 

New wall is represented by unshaded areas. Between stages B and C, 
centripetal penetration of the cross-wall remains relatively con-
stant, while the wall bands which mark the separation of new wall 
from old, move apart. When the wall band reaches the equator in C, 
cross-wall extension resumes to separate the daughter cells. Often 
initiation of a new cross-wall, before completion of the old one, 
is observed as in D. 
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they have constructed a growth model (Figure 2). This proposes that 

in exponentially growing and dividing cells of S. faecalis, the leading 

edge of the annularly closing cross-wall is the point of extension for 

both cross-wall and peripheral wall. Extension of the latter is thought 

to be produced by separation and splitting of the cross-wall at its 

junction with peripheral wall. This results in movement of the equa-

torial bands, fortuitously found on s. ,faecalis walls, to sub-equatorial 

positions.. Two bands therefore mark the separation of old wall from 

new. Superimposed on the addition of new material at the growing point 

is wall thickening (C in Figure 2). A significant proportion of pre-

cursors are used to thicken the newly extended tip to about twice that 

of the peripheral wall, the most rapid thickening occurring at the lead-

ing edges of the cross-wall. A continuous gradient of peripheral thick-

ness extends to the wall bands, but as the wall becomes older, that is 

farthar and farther from the cross-wall, the thickening process seems to 

decay so that there appears to be little or no thickening at the poles. 

• 	Iminunofluorescent techniques had previously suggested this mode 

of growth in Streptococci,, but lack of resolution and the specificities 

of the antibodies to accessary wall components, rather than to peptido-

glycan, made conclusions less convincing (Cole & Hahn, 1962; Chung, 

Hawirko & Isaac, 1964b). Swanson, Hsu and Gotschlich (1969), using 

electron microscopy and ferritin labelled antibody, provided direct 

evidence that Group A Streptococcal M protein, which had been removed 

by trypsin, was resynthesised primarily at the equatorial region of 

growing cells. Briles and Tomasz (1970), by specifically labelling the 

teichoic acid of DiDlococcus pneumoniae with H3  choline, demonstrated 

the Zonal growth and conservative segregation pattern of teichoic acid 

which is probably covalently linked to the peptidoglycan. 

A further feature of interest arising from the work of Higgins 
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and Shockman was the close association of mesosomes with DNA replication 

and possibly cross-wall initiation. Less apparent was their requirement 

for DNA segregation or completion of the cross-wall. Because of their 

frequent association with cross-wall and DNA in electron micrographs, a 

role for mesosomes in cross-wall growth-and DNA replication and/or seg-

regatiOn has often been postulated. 

Shocl<man, Pooley and Thompson (1967) also showed that in 

S. faecalis the major lytic enzyme, an N-acetylmuramidase, existed in a 

latent and active form. Action of the active wall-bound form caused 

preferential lysis of newly formed wall, while action of trypsin- acti-

vated latent form (about 8576 of which is not wall-bound) led to random 

hydrolysis all over the wall. The effect appeared to be due to 

localisation of the active form. Shockman and Martin (1968) following 

autolysis of S. faecalis, identified initial attack due to active enzyme 

at the leading edges and tip of the growing cross-wall, followed by 

dissolution of the entire cross-wall, ultimately releasing hemispherical 

pieces of wall. Dissolution then continued from the equator toward the 

poles at a decreasing rate, which suggested that either older wall was 

more resistant to autolytic attack, or the activity of the enzyme 

decreased. 

Autolysis of S. faecalis recovering from threonine starvation, 

(Higgins, Pooley & Shockman, 1971) substantiated the results already 

discussed. During starvation the walls became thicker and resistant to 

autolysis. There was also a decrease of active and latent enzyme per 

unit mass of wall. The appearance of recovering cells was consistent 

with the idea that separation of the cross-wall to generate peripheral 

wall, normally requires both linear wall elongation and autolytic 

activity. New, thin, centrally located, periphe -al wall was inserted 

between the old thickened poles. Thickened walls produced during 
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starvation appeared to be conserved and segregated to the poles rather 

than thinned out, implying that in terms of cell age, each new-born 

cell was asymmetric, with one pole at least one generation younger than 

the other. 

Based on the above evidence, and their model for peptidoglycan 

structure discussed previously, Higgins and Shockman (1971) have pro-

posed two possible schemes for peptidoglycan growth in S. faecalis, 

which they have designated parallel and antiparallel (Figure 3). Both 

schemes are based on four assumptions, that 1) peptidoglycan structure 

is non-random, 2) H-bonding as well as occasional inter-layer cross-

bridges are the bonding forces between layers, 3) assembly of the pep-- 

tidoglycan may result from the transfer of soluble linear disaccharide-

peptide oligomers from a membrane site to the wall itself, and that 

4) a mechanism for the location of the site of layer separation, within 

the wall must exist. 

The following points arise from their reasoning. During auto]ysis 

experiments, ribbons of wall 10 to 20nm wide were released from the 

leading edge of hemispherical pieces of cell. These could have resulted 

from the hydrolysis of a few strategically located sensitive 1-4 bonds 

and may represent the rnacromolecular arrangement in the intact wall. 

(A glycan chain off 10 disaccharide units would be about 17nm). The 

direction of enzyme hydrolysis is consistent with glycan chains running 

radially from the centre of the cross-wall and perpendicular to the long 

axis of the cell.  

Since glycan chains in the wall are probably fairly short, it is 

possible that uncross-linked linear oligomers may be transferred from 

the membrane to points of growth in the wall. Accessory wall polymers 

may be added to the oligoiers before incorporation. - 

Incorporation itself could occur by one or more of several 

27. 



(A) 
	

(B) 

ANTIPARALLEL STACKING 
	

PARALLEL STACKING 

Fig 3. Model for peptidoglycan growth in S. faecalis (after Higgins 
& Shockman, 1971). 

Antiparallel and parallel refer to the direction of the glycan 
chains in one sheet relative to another. The glycan chains run in 
the plane of the paper, while the peptide chains are perpendicular to 
the plane of the paper. The peptides would normally link glycan 
strands in the same plane, and the resulting sheet would be held to 
another by H-bonds and an occasional peptide cross-bridge between 
sheets. According to this model, a cross-wall is initiated at the 
equator where old and new wall meet. Initiation in either A or B 
above may require hydrolysis of some existing glycan or peptide link-
ages. B could result in a discontinuity when the centre of the cross-
wall is reached. In A cross-wall could be initiated at any point on 
the wall. The precursors added would be held in place first by 
H-bonds, and later by covalent cross-bridges, and perhaps also by the 
formation of additional glycosidic bonds. 
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mechanisms. Glycosidic bonds to existing wall glycan could be formed 

using the energy in the pyrophosphate linkage of the lipid carrier, or 

by transglycosidation perhaps catalysed by the reversal of an N-acetyl-

muramidase. More important might be transpeptidatjon with formation 

of peptide cross-bridges after the stacking of layers of H-bonded 

oligomers. - 

Cell separation might be a physical phenomenon resulting from the 

presence of a natural shearing plane and internal pressure. However, 

differences in peptide cross-bridging and glycan chain length could 

contribute, as could concentrations of highly charged polymers, e.g. 

teichoic acid, causing a repulsion effect within the cross-wall. The 

occurrence of mutants, deficient in teichoic acid, which fail to divide 

or separate properly (Cole, Popkin, Boylan &-Mendelson, 1970) is con-

sistent with a role for accessory wall polymers in cell division. 

Cross-wall separation may also require the action of autolytic enzymes. 

Activity of the autolysin in S. faecalis is stimulated by the presence 

of teichoic acid. 

Higgins and Shockman do not present any data to show how peptide 

cross-linking between sheets of glycan is sterically possible. Pre-

sumably it requires a completely different conformation from that 

required for intra-sheet bonding, and Braun et al. have argued that 

more than one steric conformation is unlikely to suit one enzyme. The 

antiparallel scheme as it is drawn, involves addition of new material 

to an acceptor in the wall which is the reducing terminus of NAM, as well 

as the more conventional non-reducing NAG acceptor. The latter involves 

addition of an NA reducing terminus attached to lipid pyrophosphate 

to a non-reducing end of NAG. Addition of the non-reducing terminus 

of 1L-'G to a reducing terminus already in the wall means that the lipid 

pyrophosphate is no longer present on the NAM in the wall and is 
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attached to the wrong end of the disaccharide (or oligosaccharide) 

being transferred from the membrane. Thompson (1971) has commented on 

this problem. He suggested that growth from the MAlI reducing end would 

require an extracellular polymerase which would gradually work its way 

out from the membrane. Growth would presumably become less and less 

efficient as precursors would have farther to diffuse from the membrane 

the farther the chain extended away from it. There would thus be a 

continuing need to start new chains. Higgins and Shockman do not en-

visage these chains growing away from the membrane, but - they would 

still require a different enzyme action. 

Rods. Among the approaches used to localise surface growth in rods are. 

a) labelling of the wall with radioactivity, immunofluorescence, 

flagella or thickened wall, and then looking for the appearance of new 

unlabelled wall, b) direct observation of new cell wall growth with 

respect to fixed external markers, and c) use of penicillin to modify 

sites of transpeptidation. 

Immunofluorescent studies have been carried out on B. cereus and 

D. megaterium by Chung, Hawirko and Isaac (1964a). From their results, 

they concluded that these organism grew by discrete intercalation, 

near the poles or sometimes centrally in B. megaterium. However, ---.this 

work has been strongly critised by Cole (1965) and other workers. For 

exnple, antiserum was prepared to whole CliS and no information was 

available on possible labile antigens which may only be transitory sur-

face components. No control was carried out using the reverse labell-

ing technique. Trypsin and ribonuclease were added to the medium and 

possible effects of these enzymes on wall components were not considered. 

Resolution in the photographs was poor, and no evidence was presented 

to show that the label was actually in the wall, or that single cells 

rather than chains were examined. 
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Also using immunofluorescence, both May (1963) and Cole (1964) 

studying Salmonella concluded that no discrete intercalation was visible 

and the most likely process for wall replication was by diffuse inter-

calation. Beachey and Cole (1966) reached the same conclusions for 

four.strains of E. coiL, The organisms in these three studies were 

young inocula growing in rich medium, leading to rapid regeneration 

times. 

Meynell and Lawn (1965) used the inheritance of capsule in 

Bacillus anthracis to study the possible mechanism of wall replication. 

During growth in broth, this organism became encapsulated towards the 

end of exponential phase, and when the encapsulated cells were inocu--

lated into fresh medium, they grew without formatiOn of new capsule. 

The capsule was inherited in blocks by the daughter cells, so that wall 

growth did not occur by diffuse intercalation if the parental wall and 

its capsule remained joined. 

A more recent study (Hughes & Stokes, 1971) has been carried out 

on B. licheniformis (his lyt). Ideally growth in bacteria should be 

represented by growth of the peptidoglycan matrix, and so these workers 

used antisera to pure peptidoglycan preparations of B. licheniformis 

NCTC 6346. Exponential phase cells were labelled, washed, resuspended 

in fresh medium, and removed at intervals thereafter for analysis. 

Results suggested that mucopeptide synthesis in B. licheniformis 6346 

(his lyt) occurred at very few sites during growth. They also noted 

that in these poorly lytic strains there was very little wall turnover. 

Mauck et al (1970 and 1971) presented evidence for extensive wall 

turnover in B. subtilis and B. megaterium, incompatible with a single 

site of synthesis in these organisms. The growth of the wall in 

B.megaterium KM was examined by Mauck, Chan, Glaser and Williamson 

(1972) by labelling the cells uniformly with tritiated DAP and detecting 
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the distribution of labelled wall material in daughter cells. From 

their observations, they concluded that growth did not occur at a single 

central or polar site in B. megaterium. The results did not indicate 

the number of such sites per cell, but suggested many. Mauck and Glaser 

(1972) produced further evidence for random distribution of new cell 

wall material by carrying out a'nearest neighbour' analysis on walls of 

B. subtilis. During exponential phase this organism synthesised teichoic 

acid,but under conditions of phosphate limitation teichoic acid syn-

thesis was replaced by teichuronic acid synthesis. Exneriments showed 

that both these polymers wore attached only to peptidoglycan synthesised 

at the same time, and so by suitable labelling techniques, they were 

able to demonstrate that glycan chains adjacent to newly inserted 

chains represented a nearly random selection of old and new chains. 

A further observation incompatible with a single site of synthesis 

in many organisms is wall thickening, which occurs uniformly all over 

the surface in the presence of protein synthesis inhibition (Frehel, 

Beaufils & Ryter, 1971). Cultures of B. subtilis and B. megaterium 

grown under such conditions were observed during release of inhibition. 

The outer portion of the wall fragmented into small pieces, while polar 

regions remained thick and smooth for at least 2 generations. The 

results suggested that wall synthesis occurs at a large number of sites 

uniformly distributed along the cylindrical parts of the wall but not 

at polar regions. Frehel et al. suggested that a reason for the dis-

crepancy between their results and those of others for B. megaterium 

might in part be due to the presence of a capsule which could compli-

cate immunouluorescent data. However, this argument does not apply to 

B. licheniformis, a related organism. 

Results obtained by Highton and Hobbs (1972) ,working with B.cereus 

during recovery after exposure to penicillin, were interpreted to mean 
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that elongation occurs by addition of material to a large and con-

tinuously increasing number of growing points unifcnly distributed over 

the cylindrical surface. Cross-walls grow by addition to their inner 

edge, and on completion, the two new rounded ends of the daughter cells 

are formed by splitting at the outer edge and continued addition at the 

centre. The ends are conserved. 

Van Tubergen and Setiow (1961) labelled exponentially growing 

cultures of aDAP-requiring mutant of E. coil with tritiated DAP and 

examined the distribution of label in the progeny by autoradiography. 

The experiments were carefully controlled, and results indicated that 

the wail did not turn over and label was randomly distributed throughout 

the daughter cells. This is consistent with a non-localised synthesis 

of DAP-containing wall peptidoglycan, but resolution was not sufficient 

to localise grain distribution within the wall. 

On the other hand, Chung et al. (1964b), using slightly different 

imniunofluorescent techniques from May (1963) and Beachey and Cole (1966) 

interpreted their results showing localised growth as indicating that 

the first step in wail growth is the formation of cross-wall followed 

by. elongation of the cylindrical wall on either side. Additional 

discret2 sites of wall elongation later develop. 

Penicillin, because it inhibits the cross-bridging reactions in 

wall synthesis, has been used in some studies of cell growth in the 

belief that newly synthesised areas of the wall , which are as yet 

uncross-linked, and are prevented from becoming so by the presence of 

penicillin, will be most susceptible to autolytic attack, and therefore 

represent sites of incorporation of new material. However, caution is 

needed in equating sites of autolysis with sites of wall growth. 

Penicillin also appears to affect the site of wall thickening and the 

lytic effect is due to action of lytic enzymes as well as penicillin 
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inhibition of peptidoglycan synthesis (Higgins & Shockman, 1971). Thus 

under some conditions,it is possible that a site of lysis may be due 

only to action of localised lytic enzymes. Schwarz et al. (1969), in 

a study of E. coli, found that penicillin-induced bulges occurred in the 

sacculi at sites where normally new wall was formed in cell division. 

It was assumed that when synthesis of peptidoglycari was partially in-

hibited by low concentrations of penicillin, more bonds were broken by 

localised action of hydrolases than could be closed by cross-bridging 

of normal peptidoglycan synthesis, leading to a weakening of the wall 

at this point. From their results using different concentrations of 

penicillin, they concluded that the growth of the sacculus is by several 

functionally different systems, one involved in cell elongation, others 

in cell division, as revealed by their different sensitivity to peni-

cillin. The action of localised hydrolases revealed zonal growth of 

the sacculus at least during cell division. Their results do not ex-

clude addition of new material by diffuse intercalation, possibly 

during cell elongation. 

Donachie and Begg (1970) measured growth in E. coli by two indirect 

methods, firstly by measuring the direction of growth of intact living 

cells relative to fixed external markers, and secondly by measuring the 

positionof an internal marker, in this case the point at which the cell 

wall split in the presence of penicillin relative to the ends of the 

cells, Results showed that in cells shorter than a certain critical 

length, growth was asymmetrical, while in longer cells growth was sym-

metrical. The smaller cells had one growth site at or near the pole, 

and grew in one direction; larger cells had more than one growth site, 

the number increasing with increasing length, and these cells grew in 

both directions. 

iyter (1973) has tried to reconcile the seemingly contradictory 

results obtained for E. coli. Van Tubergeri and Setlow (1961) and Lin, 
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Hirota and Jacob (1971), using radioactive DAP, concluded that there 

was a random distribution of growth sites. Schwarz et al. (1969) and 

Donachie and Begg (1970), using penicillin, demonstrated growth in one 

preferential zone. Ryter believes that the complexity of the growth 

process in rods is the cause of contradictory results. She attempted 

to verify this by carrying out two types of experiment.. The first in-

volved labelling with DAP for several generations, followed by growth 

in unlabelled medium for one or two generations, and the second, label-

ling of the peptidoglycan with short pulses. The first type of experi-

ment confirmed results of Van Tubergen and Setlow and Lin et al., while 

the second type was in agreement with Schwarz et al. and Donachie and 

Begg. She concluded that from overall results, insertion of new 

material into the wall takes place essentially in the central part of 

the cell, but that newly formed peptidoglycan is rapidly mixed with old 

and is dispersed over the whole sacculus. In a third type of experi-

ment, attempts were made to find out how quickly new peptidoglycan was 

redistributed. Although not conclusive, results suggested that radio-

active DAP molecules, of which 65 to 75% were located in the central 

portion of the sacculi just after the pulse, were homogeneously dis-

tributed within half a generation. 

These results raise several points of interest. The overall growth 

of E. coli, without separating crosswall formation from cell elongation, 

would show up in labelling studies as diffuse intercalation. Consider-

ing that turnover has not been observed in E. coil, the concept of 

continual rearrangement of peptidoglycan is surprising, although it is 

possible that because the peptidoglycan is between two membrane layers, 

m 
coplete reutilisation of turnover products may occur. Also it is hard 

to imagine how a seemingly rigid and thin structure (peptidoglycan is 

only a few layers thick at most in E. coil) can undergo so much 
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reorganisation and still retain its integrity. Ryter suggests that a 

similar complex process as that discussed here for E. coli could 

account for the conflicting results in Bacillus species, but in this 

case, the process is further complicated by the thickness of the pep-

tidoglycan layer.. 

Reeve and Mendelson (1973 and 1974) have approached the problem 

in a different manner, using mutants of B. subtilis. A temperature 

sensitive rod mutant was isolated which grew as spheres at 45 C and 

as rods at 30 C.. A double mutant carrying the rod mutation in com-

bination with a minicell producing mutation was constructed. Rod 

morphology appeared as a swelling in the filamentous rod-shaped cells 

when they were transferred to 45 C. Data indicated that double mutants 

assembled new surface when transferred to 45 C primarily in the regiOn 

close to one cell pole. Prolonged incubation led to additional regions 

of rod morphology at other locations along the cell length. They have 

compared the initial site of rod morphology to the location of the 

rowth zone proposed by Donachie and Begg (1970), for slow growing 

cells. But Reeve and Mendelson's data differed from Donachie and Begg's 

in three respects; a) Reeve and Mendelson's growth zone was not always 

associated with the youngest pole, b) the sub-terminal growth zone was 

not restricted to short cells similar to the unit cells of E. coil, and 

c) rod morphology sites arose in cells at different locations, suggest-

ing that new growth zones could be initiated in regions not immediately 

ad.jacmt to older growth zones, and thus need not be derived directly 

from old zones. Reeve and Mendelson were careful to point out that 

demonstration of a growth zone does not necessarily imply that the sur-

face is synthesised only in this region. Thus their data are not 

incompatible with findings which suggest wall and membrane synthesis 

all over the surface. Their findings are interpreted strictly as a 
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growth zone; a region in which new material accumulates. Because of the 

dynamic nature of cell surface components, they emphasised the import-

ance of drawing a distinction between synthesis and growth. 

Thus from the conflicting data accumulated, the questions arise 

what is actually being measured and what is it important to measure? 

A distinction has just been made between synthesis and growth. It is 

possible with some techniques, that only growth i. e. elongation which 

occurs in restricted zones can be visualised, and this effect can be 

most clearly seen in organisms which do not exhibit turnover. Obviously 

material must accumulate and be inserted into growing cross-walls; the 

question is whether this zone is only responsible for cross-wall for-

mation or whether itjis also involved in peripheral elongation as looks 

to be the case in Streptococci. It is reasonable to assume that where-

ever turnover is occurring, synthesis is also occurring at the same or 

a closely related site, unless turnover simply involves reorganisation 

of existing wall polymers. Evidence suggests that turnorproducs'-

are released into the medium and not reincorporated (Mauck et al., 1970 

and 1971). It therefore seems reasonable that cell growth involves 

growth at the site of cross-wall formation, peripheral elongation, and 

turnover when it occurs. Workers should perhaps be more careful to 

indicate which aspect(s) they are confident their techniques can demon-

strate. 

The weight of evidence for rod-shaped organisms indicates that 

the overall growth of these cells is not localised at discrete sites. 

It may be that in organisms where there is conflicting data, one tech-

nique has picked up one aspect of growth, while another may have shown 

up a different aspect or more than one aspect. 

Growth Models for Rods. A suitable model for rods should account for 

the following, a) elongation of the peripheral wall to enable the cell 
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to approximately double in length prior to division, b) formation of the 

cross-wall, c) separation of the completed cross-wall giving rise to 

two hemispherical poles, d) turnover where it occurs, e) uniformly 

distributed wall thickening under some conditions, f) the presence of 

autolytic enzymes and g) the number of layers of peptidoglycan. 

One of the main difficulties in postulating a model is the fact 

that practically nothing is known about control of division, for 

instance, how the cell knows where to form a septum, and how it ensures 

that each daughter cell receives a completed copy of the genome. 

Higgins and Shockman (1971) have suggested three alternative methods 

of growth with this in mind. 1. The cell could grow out in both 

directions from its midpoint, and when two half cell lengths have been 

fed out, the midpoint could be converted to a cross-wall. This is what 

seems to happen in Streptococci, and the midpoint is a junction between 

wail from two different generations. 2. There could be multiple sur-

face growth sites, which would mean that the cell must find its next 

division site without the help of envelope markers, which would seem to 

require a much more complicated regulation. 3. Growth could occur at 

the end of the cylindrical part of the cell feeding out an equivalent 

length of new cylinder towards the nearby pole. As cited above, the 

weight of evidence favours 2. However Higgins and Shockman have pre-

sented a model designed for E. coil (Figure 4), based on the third 

alternative, their interpretation of the data on rods, information 

gained from Streptococci and their three-dimensional structure for pep-

tldoglycan (discussed in thelast section). They have also taken into 

consideration the observations of Donachie and Begg, the model which 

suggests that the cellular chromosome is spati'lly oriented via an 

attachment to the cell surface, so that synthesis and partition of 

sister chromosomes is physically coupled to surface extension and cell 
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Fig. 4 Model for cell wall growth in E. coil (after Higgins & 

Shockman, 1971). 
This represents a cell growing with a doubling time of 60 minutes. 
I is the time for accumulation of enough of a hypothetical initiator 
to allow initiation of a round of chromosome replication. C is the 
time required for replication of one chromosome. D is the time from 
completion of replication until division occurs. The cell shown has 
a single growth point. Simultaneously with the initiation of a round 
of chromosome replication, a wall elongation site is initiated (la) at 
the junction of polar and cylindrical wall. The layer of new wall is 
began under the old, and they are linked covalently or by electrostatic 
interaction or H-bonding. The old wall is cleaved to allow elongation, 
eitherjby a closely regulated biosynthetic and hydrolytic sequence, or 
by the shearing of H-bonded layers,, When replication is complete, 
approximately one unit of cell length has been fed out towards the pole, 
and the division trigger 'd' reacts to convert the elongation site to 
a cross-wall site. The membrane, carrying wall synthesising enzymes 
and precursors, envaginates forming an annulus. Precursors are now 
added at this point to both old and new wall. The cross-wall is com-
pleted, strengthened, and the walls separate. At faster growth rates, 
elongation sites can be initiated at the junction of a nascent cross-
wall and cylindrical wall. 
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division (Jacob, Brenner & Cuzin, 1963) and the model for chromosome 

replication (Helmstetter, Cooper, Pierucci & Revelas, 1968). Higgins 

and Shockman's model is the most detailed available for rods. 

This model accounts for elongation of cylindrical wall and format-

ion of the cross-wall, but does not discuss any of the problems at the 

molecular level associated with the change of direction in cross-wall 

formation, except to say that the process is different from cylindrical 

wall growth. The model does not allow for diffuse intercalation: the 

only concession is that in faster growing cells more than one elongation 

site can be present. The model is designed for E. coil which has a very 

thin peptidoglycan layer and parts of the model are not easily trans-

lated to a peptidoglycan structure some 10 to 20 times thicker, such as 

is found in Gram-positive organisms. However, the model does account 

very neatly for the location of the division site, assuming that wail 

and membrane synthesis are closely related. 

Mauck and Glaser (1972) from their data on'nearest neighbour' 

analyses and turnover, have sketched an outline of how rods, especially 

B. subtilis and B. rnegaterium might grow. They, understandably, are in 

favour of diffuse intercalation. According to them, the septum, in-

cluding the aea where it connects to pre-existing wall, is completely 

new. Peripheral wall elongation occurs by random insertion of glycan 

chains into pre-xisting wall. The walls of B. subtilis and 

B megaterium turn ovo:, so that new wall is the sum of wall required 

for growth and that neededito replace material lost by turnover. The 

structure of the wall must enable random excision of material over the 

whole surface without causing cell lyis. Mauck and Glaser consider 

that glycan strands arranged perpendicular to the cell surface rather 

than parallel to it, allow most easily for random insertion and random 

excision of material (Figure 5). This arrangement would allow random 
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Fig. 5 Model of cell wall synthesis (aftexjMauck & Glaser, 
1972). 

It is considered in this model that the peptide cross-links 
can assume different conformations so that the distance between 
glycan chains, and the orientation of the strands are variable. 
For growth, some cross-links must be broken. Cell wall thicken-
ing can occur in the absence of lytic activity. 

cross-linking of nascent glycan chains to pre-existing chains while the 

former are stillattached to the membrane-lipid carrier. Mauck and 

Glaser consider that the evidence for a single growth zone in Gram-

positive bacilli is not nearly so convincing as it is for cocci. They 

suggest that wall growth in cocci may correspond to septum formation 

in bacilli, and that elongation as such does not occur in cocci. 

Highton and Hobbs (1972) also suggested that the poles of B. cereus 

were formed by a process similar to that proposed by Higgins and 

Shockman (1971) for S. faecalis, but that growth of the cylindrical 

walls involved a different process. 
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As well as the rod-shaped B. subtilis 168 used in the work to be 

discussed, a minicell-producing mutant, B. subtilis Cu403 div IV Bi 

has been studied. 

Strains of bacteria producing minicelis have been recognised for 

some time, and have been reported in E. coli, Salmonella, B. subtilis 

and other less well known species. Most of the information to date has 

been summarised by Frazer and Curtiss (1974). Minicells are produced 

continuously in the appropriate mutants and also very rarely in wild 

type strains. They are small non-growing bodies, produced by aberrant 

cell divisions at the poles of rod-shaped bacteria, and as such, they 

lack DNA. (Adler, Fischer, Cohen .& Hardigree, 1967; Reeve, Mendelson, 

Coyne, Hallock & Cole, 1973). They do however, contain RNA and protein 

(Frazer & Curtiss, 1974), and are Capable of transporting amino acids 

across their membranes, although they do not appear to incorporate 

these residues into macromolecules (Reeve & Mendelson, 1974). Minicells 

therefore, provide an opportunity to determine the kinds of functions 

which genoneless cells can perform. Since they represent a compart-

mentalisation of cell pole regions, they can be analysed for the pole-

specific location of cell components, and also for surface composition 

of the poles compared to cylindrical wall. Because of their size, they 

are easily separated from the parental cells. They also offer a unique 

system for studying the expression of transformed genetic material. 

The growth phase of a culture, as well as the growth medium, can 

influence Lninicell production. For example, minicell formation is most 

frequent in late exponential phase and early stationary phase in 

B. subtilis (Reeve, 1974; Mendelson & Reeve, 1973). Various studies 

suggest that the septation process resulting in the formation of mini-

cells is normal in all respects except for placement of the septum. 
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for example, Reeve et al. (1973) found that the ultrastucture of such 

a septum was identical to that of one between two cells undergoing 

normal division, and indistinguishable from the side wall. 

However,.most workers seem to agree that there is a difference 

between cylindrical walls and cross-walls or poles in rods. Evidence 

for this comes from several observations. The cross-wall synthesising 

system of E. coli has been shown to have a preferential sensiti'Vity to 

penicillin (Schwarz et al., 1969). Highton and Hobbs (1971) found that 

the cross-wall region of B. licheniformis also differed in sensitivity 

to penicillin from the cylindrical walls, although their results were 

the reverse of those obtained by Schwarz et al. for E. coli. In 

B. licheniformis the cross-wall synthesising system appeared to be less 

sensitive to penicillin. In B. subtilis the polar regions of the cell 

are much more resistant to the action of autolytic N-acetylmuramyl-

L-alanine amidase (Fan, Pelvit & Cunningham, 1972) although Fan, 

Beckman & Beckman (1974) have subsequently found, by measuring the 

change in wall buoyant density of the cell ends of B. subtilis grown 

in D20 and shifted to H20, that walls from the polar regions turned 

over extensively, similar to the cylindrical wall. Frehel et al.,(1971) 

found that cell ends remained smooth and thickened, while side walls 

started to fragment and become thinner, during recovery from protein - 

synthesis inhibition. Such evidence has led to the idea that cell poles 

once formed are conserved, and indeed it is not obvious why a cell need 

alter its poles once they are completed. 

After consideration of the evidence available, I am in favour of a 

mode of growth for Gram-positive rods which involves peptidoglycan syn-

thesis all over tho cylindrical surface, and it is with this idea in 

mind that I have interpreted the results to be discussed. 
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CHAPTER II 

PROPERTIES OF THE AUTOLYSINS AND PURIFICATION OF THE ANIDASE 
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INTRODUCTION 

It was decided to approach the problem of cell growth and division 

by looking at the lytic enzyme system of B. subtilis, with the intent-

ion of purifying one of the enzymes, and subsequently, localising it 

within the cell. From the distribution in the cell, it was hoped to 

gain some information about the stages in the growth cycle in which 

the enzyme is involved. 

B. subtilis has been reported to contain at least two lytic en-

zymes, an amidase and a glycosidase (Brown & Young, 1970; Fan & 

Beckman, 1972), with the amidase the most active (Fan & Beckman, 1972; 

Herbold & Glaser, 1975). In fact, Fan claimed that he amidase activity 

was ten times greater than that of the glycosidase. Thus amidase was 

chosen for purification. 

At the time this work was initiated, several reports of purifi-

cation of amidase from other species (Singer, Wise & Park, 1972; Chan 

& (!laser, 1972) and three reports of partial purification from 

B. subtilis (Drown,Fraser & Young, 1970; Brown, 1972; Fan & Beckman, 

1972) had been published. Brown et al. used cells from post-exponential 

phase cultures and allowed them to autolyse. Their attempts to purify 

the crude enzyme extract by ammonium sulphate precipitation and gel 

filtration on Sephadex G100 and G200 were unsuccessful. The enzyme 

appeared to be associated with teichoic acid, the bulk of which could 

be removed from the autolysate by precipitation with ethanol, followed 

by gel filtration on agarese columns. The remaining 5 17o of teichoic 

acid persisted through a variety of purification t - chniques. 

It was found that autolysins could be extracted from whole cells 

and wails by strong salt solutions (Fan, 197 	Pooley, Porres-Juan . & 

Shockman, 1972). It was also shown that sodium dodecyl sulphate (SDS) 

treated walls bound autolysin ($hockman, Thompson & Conover, 1967; 

Fan, 19709. Brown (1972) used these two facts in his purification 
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technique. He extracted enzymes from whole cells in 5M NaCl, rebound 

them to SDS-treated walls, and then re-extracted them from the latter 

three times with 5?1 NaCl. This resulted in an ii fold purification with 

a 55% yield. 

Fan and Beckman (1972) also used salt extraction in their centri-

fugation technique to separate the amidase and the glycosidase of 

B. subtilis. They centrifuged mid-exponential phase walls through a 

linear gradient of 0 to 2M LiC1 and 1076 to 25% sucrose, which resulted 

in banding of the two autolysins at separate positions in the gradient, 

because they were removed by different coflcentrations of LiC1 (0.511 for 

glycosidase and 1,511 for amidase). Fan and Beckman also separated the 

enzymes by chromatography of 3M LiC1-extracted enzyme mixture through 

a Sephadex G75 column. In both cases , they recovered one third of the 

autolytic activity. The enzymes were characterised with respect to pH 

optima and molecular weights; the glycosidase had a pH optimum between 

5 and 8, was relatively heat sensitive and had a molecular weight of 

60,000 (from a calibrated G75 column), while the amidase had a pH 

optimum around 8, was relatively heat stable, and had a molecular weight 

of 35,000. Because very little protein could be detected in the region 

of lytic activity, they concluded that their enzymes were largely uncon-

taminated by other proteins. 

During the latter stages of the work described in this thesis, a 

report was published by Herhoid and Glaser (1975) of their purification 

of B. subtilis N-acetylmurarnyl-L-alanine amidase. They used a culture 

at the end of exponential phase and the enzyme was extracted from the 

harvested cells with 511 L1C1. After extensive dialysis and treatment 

with DNAase and flNAase, the enzyme was eluted from a hydroxyapatite 

column. Subsequently elution from a Bio-gel A-1.5m column separated the 

enzyme from a modifier protein which was found to stimulate the activity 
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of the amidase. The modifier subunit was highly insoluble at low ionic 

strength, as was the impure enzyme-modifier complex. Therefore, high 

ionic strength was required at all stages of the purification, until 

enzyme and modifier protein were separated. Thus the high salt concen-

tration used to extract the enzyme served both to elute the enzyme from 

the wall and to disocciate the enzyme-modifier complex. The activity of 

the purified enzyme was shown to be that of an amidase, and both the 

enzyme and the modifier ran as single bands on SIDS gels. From these, 

the calculated subunit molecular weight was 51,000 for amidase and 

80,000 for the modifier. Sucrose density gradients showed the enzyme 

to be a monomer with a molecular weight of 47,000. The enzyme bound 

modifier in a 1:1 ratio when the ionic strength was decreased, giving 

a faster sedimenting complex. Herbold and Glaser calculated that about 

1 in 1,000 glycan chains were capable of binding enzyme at any given 

time. They found that the enzyme activity was lower in tris buffers 

than in others and that it required a divalent cation. By using radio-

actively labelled walls, they showed that once the enzyme was bound to 

the walls, these had to be completely hydrolysed before the enzyme was 

released and, was bound to other walls. They suggested that the molecu-

lar weight of the amidase is small enough to allow it to pass easily 

through the wall. But binding of the modifier brings it into a size 

range where it might no longer escape into the growth medium. 
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MATERIALS AND MTH0DS 

Growth of B. subtilis 168. B. subtilis 168 obtained from Dr M. 

Masters, was stored as spores at 4 0 C. Cultures were grown in S broth 

(Evans peptone lOg, Lab lemco powder, Oxoid, 2.4g, NaCl 2.Og in 1 1 

1120) at .37 ° C with shaking. Growth was followed by optical density 

(O.D.) measurements at 675nm, with a 1cm path length, on a Zeiss 

(PM Qil) spectrophotometer. An inoculum from a growing culture showed, 

a lag of less than one hour, compared to three hours for a culture 

inoculated from spores. 

Preparation of Cell Walls. Cultures were harvested in mid-expo-

nential phase in a Sorvall RC2-B centrifuge at room temperature. All 

further operations were carried out at 4 0C. The cells were washed in 

1120  prior to sonication. Since walls were required for enzyme assays 

and electron microscopy, as well as for preparation of the enzyme, a 

compromise was reached between maximum breakage of whole cells and the 

size of wall fragments. The optimum conditions were found to be as 

follows; cells from a 2 1 culture were resusrended in 5m1 of 1190 and 

sonicated (MSE probe sonicator, 220V output) for 3 x 15s. This gave 

between 60 and 70% cell breakage as checked by phase microscopy. Whole 

cells were removed by centrifugation (2 x 5min at 500g) and then walls 

were spun dnwn(15min at 12,000g), and washed 3 times with 1120.  If 

necessary the low speed spin was repeated to reduce the number of whole 

cells to less than 

Buffers. (As per Fan & Beckman, 1972). The following buffers v;ere 

used, T hufer (tris,p1J--:.0), TIC buffer (tris/Cl, p113.6), TM buffer 

(tris/raalei.c anhydride, p116.0) and 7MI3 buffer (tris/maleic anhydride/ 

boric acid, at te required pH). 

Preparation of Autolysin-free Walls (SDS-Walls). Before walls could 

be used as a substrate for enzyme assay, it was necessary to inactivate 
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their endogenous autolysins. It was found that walls which were boiled 

for 10 to 15 min were reduced to 7076 of their original O.D. in 3h. 

Walls treated with 3M LiC1 in TIC buffer (the method used in removing 

enzyme for purification) lost 40% of their O.D. in lh and 90 1'/'0 in 3h. 

However, walls treated with 1% SDS in T bufferlat  100 C for 10mm, lost 

only 517, of their O.D. in 4h. SDS inactivation of both walls and cells 

was tried for various times. It was found that whole cells did not 

form a good suspension in SDS, and the most effective method of inacti-

vation was suspension of washed walls in 1% SD-S overnight at 37 C, 

followed by thorough washing in 1120. After this treatment, walls under-

went virtually no autolysisfwhen incubated in TIC bufferat 45 C. A solu-

tion of B. subtilis walls of concentration 1mg/mi had an O.D. at 540nm 

of approximately 4 (Fan & Beckman, 1973). 

Assay for Autolytic Activity. A sample of fresh, untreated walls 

was suspended in TIC or TM buffer at 45 C or 37 C respectively, and auto-

lysi.s was followed by measuring the decrease in O.D. For comparative 

purposes, lytic activity was expressed in terms of half-life or 

half-life. Half-life was the time required for the O.D. of the wall 

suspension to be reduced by 50% at the initial reaction velocity. 

Crude Autolysin Preparation (Crude Enzyme). The method using high 

salt concentrations discussed in the introduction was used. For small 

preparations, washed walls were resuspended in 3M LiCl in TK buffer in 

an ice bath (Imi solution! 1 original culture). After 15min the walls 

were spun out (27,000g for 10mm) and the extraction repeated twice 

more. Extracts were combined and spun at 27,000g for 20min to bring 

down any remaining pieces of wall, and were stored at -20 C for several 

months without loss of activity. For larger preparations, batches of 

100 or 200 1 were grown on a fermenter and harvested in a continuous 

flow centrifuge. The resulting cell paste was washed in 1-1 20 before 



sonication. And walls were isolated as described in section 2 above, 

except that one or more extra minutes of sonication were usually. 

required, and repetition of the differential centrifugation was 

essential. Extraction of the enzyme was as above. 

Protein Estimation of Enzyme Preparations. Routinely the method 

of Warburg and Christian (1942) was used, but for more accurate deter-

minations or for very low levels the Lowry method was used (Lowry, 

Rosebrough, Farr & Randall, 1951). 

Standard Rebinding Assay for Autolysins extracted with 3M LiCl. 

SDS-walls were resuspended in the appropriate buffer to give an O.D. 

of approximately 0.2 (0.05mg/mi). One ml of wall suspension and 0.1ml 

of extracted enzyme ablution were mixed in a centrifuge tube. The 

mixture was diluted with at least lOmi H20  to allow rebinding (on ice 

for 5mm). The suspension was then spun at 27,000g for 5mm, the walls 

were washed and resuspended in imi of buffer. O.D. decrease was 

followed as described in section 5. One unit of enzyme activity caused 

an O.D. decrease of 0.001 per mm. 

Removal of Teichoic Acid from Walls. The method of Hughes et al., 

1963, where SDS-walls were suspended in 0.IM NaOH, was used. 

Reducing-group Assay for Glycosidase. A modification of the original 

Park and Johnson method was used (Thompson & 3hockman, 1968). 

p-Nitrophenyl Assay for Glycosidase. The method is similar to that 

used by Ortiz, Gillespie and Berkeley (1972), using the substrate 

p-nitrophenyl-2-acetamido-2-deOXY- -D-glucopyranoside (Koch-light). ,  

Enzyme solutions (0.2m1) were incubated with 0.2ml substrate(2100%) in 

0.2ml sodium phosphate buffer (0.IM, pH5.9) at 37 C. After 30mm, the 

reaction was stopped by the addition of 0.8m1 borate buffer (0.2141, pH9.8). 

The absorption of p-nitrophenyl released was measured at 400nm. One 

unit of enzyme activity was defined as that which released luM p-nitro- 
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phenyl per min at pH 5.9 and 37 C. Controls were set up with addition 

of enzyme after the borate buffer. 

12. Glycosidase Assay using Micrococcus lysodeikticus. M. lysodeikticus 

(obtained from the Microbiology Dept., Edinburgh University) was grown 

to exponential phase in nutrient broth(Oxoid No. 2, 25g/1) on a shaker 

at 37 C. Cells were then harvested and whole cells or walls (prepared 

as for B. subtilis, but with longer sonication times) were treated with 

SDS as described in section 4, and washed. Rebinding assays were 	done 	- 

in ri or TX buffer at 37 C. Controls were run containing no enzyme. 

M. lysodeikticus walls also had an O.D. of approximately 4 at a concen-

tration of 1mg/mi (Fan & Beckman, 1973). 

13. Amidase Assay using an Amide Substrate. 

Reagents- a) 0.111 tris buffer pH 7.2 	 09ml 

211 hydroxylamine pH 7.2 (freshly adjusted) 	0.5m1 

enzyme 	 0..1ml 

H70 
	

0.0 to 0.5m1 

0.5M amide substrate 	 0.0 to 0.5m1 

Tubes containing a) to U) above were set up in a water bath  at 37 C, 

and the reaction was started by addition of the amide substrate. The 

reaction was stopped after 15min by addition of colour reagent to each 

tube (FeCL, 6% (w/v)in 1101 2% (w/v)). A series of tubes with the 

enzyme omitted was treated in the same way to estimate chemical reaction. 

After shaking to remove hubbies, the O.D.'s of the reaction mixtures 

were measured at SOOnm. Concentrations of hydroxylamine and substrate 

were varied and different enzyme preparations were used, e.g. crude 

enzyme, whole cells, and walls with enzyme still attached. 

14. Perret Assay for Amidase. 

Reagents- Substrate: 0.0071,1 penicillin G (sodium salt, Glaxo) in 0.114 

phosphate buffer pH 7. Kept on ice. 
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Enzyme: in .0.5% buffered gelatin 

Iodine: 0.0166N in 1.7511 sodium acetate buffer pIT 4 

Thiosuiphate: 0.0166N in H90 

Starch: 1% (for end point of titration) 

Penicillin was first warmed to 30 C, and then 5m1 of substrate, 0.5m1 

of gelatin (0.5%) and Imi of enzyme solution were added to a 50inl 

conical flask, and gently shaken in a water bath at 30 C for 100mm. 

Ten ml of iodine were added and the mixture was allowed to stand for a 

further 10min so that the iodine could react with any penicilloic acid 

formed. Any unreacted iodine was then titrated with thiosuiphate. A 

control flask was set up, to which the enzyme was added after the iodine. 

The enzyme activity was calculated from; 

2 x A x 60 	x I 	 = units/ml 
Time(min) 	Vol(enzyme) 

where A is the difference between the volume of thiosulphate used to 

titrate the control flask and the flask containing enzyme. 

15. Concentration of Large Volumes. Unless otherwise indicated, enzyme 

solutions were first dialysed overnight at 4 C against tris or TK buffer 

to remove high concentrations of LiC1. 

Dialysis against glycerol. The enzyme solution was dialysed - over-

night at 4 C against 50% glycerol (w/v) in TK buffer. 

Dialysis against polyethylene glycol (PEG). The enzyme solution 

was dialysed overnight at 4 C against a 20% solution (w/v) of PEG, M. Vi. 

range 15,000 to 20,000. in TN buffer. 

Sephadex G200. The enzyme solution in a dialysis sack -was laid 

in a petri dish and covered with Sephadex G200 (Pharmacia). This 

method was more rapid than the previous two, requiring only a few hours 

at 4 C. 

Ammonium sulphate precipitation. A saturated solution of ammonium 

sulphate was added dropwise, with stirring in the cold, to give the 
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required saturation in the enzyme solution. After standing in the cold 

for 15min to allow a precipitate to form, the solution was spun at 

27,000g for 15mm. Any precipitate was redissolved in an appropriate 

amount of TK buffer. Protein concentration was estimated by the method 

of Warburg and Christian (1942) and lytic activity of redissolved 

precipitate and supernatant was: tested by the rebinding assay. 

Ethanol precipitation. Absolute alcohol was added to the enzyme 

solution as described in d). The solution was left in the cold for 

30min to allow a precipitate to form s  It was then spun at 27,000g for 

15mm. Any precipitate was redissolved in the appropriate amount of 

TK buffer. 

Amicon filtration. In this case it was unnecessary to dialyse 

out LiC1 before the enzyme solution was concentrated. Filtration was 

done in an Amicon cell, 10 or 50m1 size depending on the volume of 

solution, using a PMIO diaflo membrane, which excluded any molecules of 

molecular weight greater than 10,000. Before use, the membranes were 

soaked for at least lh with frequent changes of H 20, to remove the pro-

tective coating of glycerin. If required for re-use, the membranes were 

washed in 2M NaCl or dilute NaOH, thoroughly rinsed with H20 and stored 

in 10 ethanbl in water (v/v)at 4 C. The Amicon cell was operated at 

4 C under pressure (N2) not exceeding 70psi. 

16. LiCI Sucrose Gradients. Walls were prepared using }I.O instead of 

buffer throughout. Three 1 of original culture provided enough sample 

for 1 gradient. Gradients were made in 34ml tubes using a gradient 

maker (i3uchler Instruments) containing the following solutions; a) 1(Y 

sucrose and b) 257; sucrose/2M LiC1 in TK buffer, giving a gradient of 

0 to 211 L11. Runs were done at 15,000rpm, 10,000rpm or 8,000rpm for 

70mm, in a Beckman L2-50 centrifuge using an 37 25.1 rotor. Fractions 

(2m1) were collected downwards by piercing the tube. Arnidase is 
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released at around 1,5M LIC1 i.e. near the bottom of the tube, whereas 

glycosidase is released at around 0.5.i L1C1, much nearer the top of 

the tube (Fan & Beckman, 1972). 

Sephadex Chromatography. A column (90 x 2.5cm) contained Sephadex 

G75 or G100 equilibrated with 3M .L1C1/TK buffer. The samples were 

loaded in 3M L1C1/TK buffer with a trace amount of 0.5% blue dextran 

when a marker was required. Fractions were collected from the top of 

the column using an LKI3 peristaltic pump and fraction collector. The 

flow rate was approximately 0.5m1/min, and 2m1 fractions were collected. 

Fractions were assayed for protein and lytic activity. 

Acrylamide Gel Electrophoresis. The following solutions were 

required; 

Running buffer (Tris-glycine reservoir buffer). Tris HCl (12g) and 

57.6g glycine were dissolved in 1 1 of 1120 , adjusted to p118.6 with 

N7140H, and diluted x 4 for use, giving 0.0251-1 tris and 0.192M glycine, 

with mercaptoethanol added to a final concentration of 0.1%. 

10% SDS. Ten g of SDS (BDH, specially pure) was dissolved in lOOmi 

H20- 	 - 

Sample buffer. Glycerol (20m1), 2-mercaptoethanol (Sml), 10% SDS 

(30m1) and upper tris (12.5m1) were made up to lOOmi with H20. 

Lower tris. Tris Nd (18.17g) and 4m1 of 10% SDS were made up to 

lOOmi with 1120  and adjusted to pH 8.8 with conc. HC1. 

Upper tris. Tris Rd (6.06g) and 4m1 of 10 170 SDS were made up to 

lOOmi with 1120 and adjusted to pH 6.8. 

Ammonium persulphate. 100m- of amrnonium persuiphate in ml 1120  was 

freshly prepared. 

Temed. N, N, N' ,N'-Tetrainethylethylenediamine (Koch-light). 

Acrylamide. Thirty g acrylamide (recrystalliseci) and 0.3g of N,N-

methylene-bis-acrylamie were made up to lOOrnl with 1120. 
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SDS Slab Gel (15 x 10cm) 

Lower gel 

HoO 16.,6m1 

Lower tris 10.Oml 

Acrylamide 13.3m1 

Ammonium persuiphate 0.12m1 

Temed 15u1 

Upper (Stacking) Gel 

H 
2 
 0 32m1 

Upper tris 1.25ml 

Acrylamide 0.5m1 

Ammonium persuiphate 0.12ml 

Temed 15u1 	 - 

Gel solutions were degassed before use. 	When polymerised, the - gel was 

set up in the tank and the running buffer was poured in. 	Samples were 

heated for 4min at 100 C in sample buffer and were then loaded on to 

the stacking gel with a syringe (up to SOul could be accomodated in 

each well). 	A current of about 15mA was passed until the samples had 

left the stacking gel and entered the lower gel. 	The current was then 

increased to about 20mA. After the run was completed, the gel was 

removed and fixed in 20% suiphosalicylic acid for several hours, 

followed by staining overnight at room temperature or 37 C. 

Stain 

50% TCA (tri-chioro acetic acid) 	lOOmi 

H90 400m1 

5% Coomassie blue. 2m1 

The gel was then destained in 10% TCA. 

Non-SDS Gel. 	These gels were made from the same recipes as SDS gels, 

omitting the SDS, with the amount of ammonium persulphate and temed 
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adjusted to give similar gelling times. These gels were run at 4 C 

and so slight adjustment of the current was also necessary. 
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RESULTS AND DISCUSSION 

Properties of the Autolysins 

Treatment of walls of B. subtilis with 3M LiC1 was known to release 

autolysins, and the only specificities so far detected were those of an 

amidase and a glycosidase. Very little information was available about 

either of these enzymes other than that published by Fan and Beckman, 

(1972). Also there did not appear to exist a specific routine assay to 

measure one enzyme in the presence of the other. Because of this, it 

was decided to attempt to find such an assay and to look at some of the 

properties of the two enzymes. 

Assays for Amidase and Glycosidase. Assays for lytic activity such as 

autolysis of whole cells, and rebinding assays, do not distinguish 

between different specificities, and assays which do, suffer from 

several disadvantages. For example, detection of N-terminal L-alanine 

groups released by amidase (Ghuysen, Tipper & Strominger, 1966) is too 

time-consuming to be used to assay a large number of fractions from a 

Sephadex column. The reducing group release assay is complicated by 

the background readings from other reducing groups already present in 

the wail, and so very small amounts of glycosidase activity may not be 

detected. Several approaches were used in an attempt to find a specific 

assay. 

1. Amidase assay using an amide substrate. This was based on an 

assay for transferase activity (Lipmann & Tuttle, 1945; Brammar, 1965), 

in which estimation of the active enzyme depended on the formation of 

acyihydroxanate from hydroxylamine and an amide substrate in a standard 

time. The acyl hydroxamate formed a red complex with trivalent iron 

and could therefore be measured spectrophotometrically. Bramrnar (1965) 

used this assay for an intracellular amidase (an aliphatic amide amido-

hydrolase) of Pseudomorias aeruginosa. However, with the wall amidase 
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Fig 	Similarity between the structure of lactamide and the 
bond in the cell wall attacked by amidase. 

of B. subtilis, no enzymic reaction took place, and any product formed 

was due only to chemical reaction. A variety of amide substrates were 

tested, acetamide, propionamide, butyramide, hexamide and lactamide. 

Lactamide in particular offered a similar bond to that broken by the 

amidase in the cell wall (Figure 6), but it was not similar enough to 

act as a substrate. Varying concentrations and reaction conditions 

only affected the amotfnt of chemical product formed. To check the 

results, the assay was carried out using a suspension of P. aeruginosa 

C142 and B. subtilis 168. Results obtained were as follows; 

Table 1. 	Substrate Enzyme source Reaction 

acetamide 	C142 

acetamide 	168 	 - 

lactamide 	C142 	 - 

lactamide 	168 	 - 

Lactamide was a good inducer of the enzyme in P. aeruginosa, but a poor 

substrate. 
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2, Perret assay for arnidase. Penicillinase splits a bond in the 

penicillin molecule between a nittogen and a carbon as does the amidase 

in the cell wall. Also the structure of penicillin has been likened to 

that of D-aianyl-Dalanine, and although the bond in the wall involves 

an L-aianine, it was hoped that there might be enough stereochemical 

resemblance -for the amidase to mimic penicillinase when -penicillin was 

used as a substrate. The standard assay for penicillinase is the Perret 

assay in which penicilloic acid, formed as a result of enzyme action, 

is reacted with iodine and any remaining iodine is titrated with thio-

sulphate. The assay was carried out as described and thersults were 

negative in all,but one assay, where-the result was too low to be sig-

nificant. This result was not surprising, since if amidase activity 

gave a positive result with the Perret assay; this would complicate 

penicillinase assays in species which contained both enzymes, and no 

such complication has been reported. A 'further point on-which no data 

could be found was whether the penicillin inhibited or activated the 

lytic enzymes. Thus the following experiment was done; to imi suspen-

sions of SDS-walls (0.D. d .2), were added varying volumes of a crude 

enzyme solution (5m,-,/ml) and a penicillin solution (50mg/mi). The assay 

was carried out at 45 C in TK buffer. Results are shown in Table 2. 

Table 2 	Volume of 	Volume of 	Half-life- I enzyme in ul 	pen, in ul 	-1 in mm 

0 	 0 	 00 

	

- 40 	 0 	0.029 

	

40 	 100 	0.035 

	

40 	 50 	0.037 

	

40 	 40 	0.038 

	

40 	 20 	0.040 

	

40 	 10 	- 	0.042 

	

40 	 2 	0.042 	 -- 

Similar results were found using lysozyme (0.1mg/mi) in place of crude 

enzyme. 
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Thus there was no evidence for inhibition of activity at the con-

centrations used, and all the rates measured in the presence of peni-

cillin were faster than in its absence. However, when the experiment 

was repeated using whole autolysing cells, it was found that at con-

centrations of penicillin of 5mg/mi and above, there was increasing 

inhibition of autolysis. 

These results showed at least that the reason for negative results 

with the Perret assay for amidase was not the inhibition of the enzyme 

by penicillin. 

Because of lack of success with amidase, it was decided to try to 

find a specific assay for glycosidase, since this would also facilitate 

separation of the two activities. 

p-Nitrophenyl assay for Glycosidae. p-Nitropheny]._2_acetamjdo_ 

2-deoxy- -D-g1ucopyrafloside is a substrate for an N-acetyl--D-

giucosaminidase. The enzyme reaction releases p-nitrophenol, which can 

be measured sPectrophotometrically. Ortiz et al. (1972) used such a 

system to assay the activity of an exo- _N_acety1glucosamjfljdase from 

B. subtilis B. However, when the assay was applied to the endo-N-acetyl-

glucosamjnjcjase of B. subtilis 168, no activity could be detected. This 

result was also obtained by Fan and Beckman  

M. lysodeiktjus walls as a substrate for glycosidase. Fan and 

Beckman (1973) reported that Al. lysodeiktjcus cells or walls could be 

used to assay specifically the glycosidase of B. subtilis 168 in the 

presence of amidase at pH 6 . They suggested that the inability of the 

amidase to act on these walls could result from the differences in the 

peptide subunits of B. subtiiis (Hughes,1970; Warth S, Strominger, 1971) 

and M. lysodejktjcus (Ghuysen, Bricas, Lache & Leyh-Bouille, 1968). 

The assay was therefore carried out using freshly prepared crude 

enzyme from B. subtilis 168. The rebinding technique was used on 
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M. lysodeikticus walls at pH 8.6 and 6.0, incubated at 37 C, and also 

on B subtiljs walls under the same conditions. Results are shown below; 

Table 3 	 Walls 	pH 	Half-life 
in mm. 

M lysodeikticus 6.0 13 

M. lysodeiktjcus 8,6 21 

B. subtiljs 6.0 70 

B. subtilis 8.6 35 

The optimum pH for activity on M. lysodeikticus walls was 6.0 (that of 

glycosidase), while for B. subtilis it was 8.6 (that of amidase). The 

results indicated that either there was still considerable glycôsidase 

activity at the higher pH, or arnidase was acting on the Micrococcus 

walls at this pH. To distinguish between these, a sample of the crude 

enzyme was heated to 52 C to inactivate the glycosidase. (Fan & Beckman, 

1972), and the assays were repeated as above with enzyme samples removed 

after 5, 15 and * 30min of heating. 

Table 4 	Walls 	pH Inactivation time Half-life 
at 52 C 	(mm) 	(mm) 

	

M. lysodeikticus 6.0 	 0 	 13 

	

6.0 	 5 	 15 

	

6.0 	15 	 00 

	

6.0 	30 	 00 

	

M. lysodeikticus 8.6 	0 	 26 

	

8.6 	5 	 72 

	

8.6 	15 	 73 

	

8.6 	30 	 CO 

B. subtilis 	6.0 	0 	 62 

	

6.0 	 5 	 63 

	

6.0 	15 	 73 

	

6.0 	30 	 85 

B. subtilis 	8.6 	0 	 35 

	

8.6 	5 	 34 

	

8.6 	15 	 38 

	

8.6 	30 	 58 
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These results indicated that the activity attacking M. lysodeikticus 

walls at pH 6.0 was destroyed after heating for 15min at 52 C. At 

pH 8.6 however, loss of activity was slower, suggesting that ainidase 

may also be involved. When B. subtilis walls were used,a small decrease 

in activity was observed at botb pH values, presumably due to the des-

truction of glycosidase. 

The experiment was repeated using two separate extractions from 

3. subtilis walls, one in 1M LiCl which should release mainly glycosi-

dasé(Fan & Beckman, 1972 and 1973), and a second in 311 LiC1 which 

should release mainly amidase. 

Table 5 	Walls 	pH Enzyme Half-life 
(mm) 

M. lysodeikticus 6.0 	IM 	31 

6.0 	1M 	 oo 
20" 52C 

6.0 	3M 	 00 

B. subtilis 	8.6 	1M 	86 

8.6 	31111 	47 

The above results suggest that there was no amidase acting on the 

Micrococcus walls at pH 6.0, thus providing a useful routine assay for 

the glycosidase in the presence of amidase. 

It therefore appeared that neither enzyme would act on a synthetic 

substrate, and that any assay system required bacterial cell walls as a 

substrate. In the case of glycosidase, it was possible to use 

M •  lysodeikticus walls which were apparently resistant to attack by 

the amidase at pH 6.0. It was decided that the most efficient means of 

detecting amidase activity, throughout a purification procedure for 

instance, was to use the rebinding assay on B. subtilis walls at pH 6.6 

and to resort to.a specific amidase assay only in the last stages of 

purification. A suitable substrate for the latter would be the fraction 

of peptidoglycan resulting from lysozyme digestion of the wall, designated 

C6 (Primosigh, Peizer Maass & Weidel, 1961). 
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Fig. 7  pH Optima of the Autolysins. The assays 
were done in TMB buffer at 45 C using whole 
cells (•) and SDS-walls with rebound enzyme (0). 

pH Optima of the Autolys ins. Freshly prepared walls and SDS-walls with 

enzyme rebound were incubated at 45 C in.TMB buffer at various .pH values 

(checked immediately before use, since the. buffer did not store well), 

and the decrease in O.D. was followed. The results are plotted in 

Figure 7, and they indicated two pH optima almost the same for whole 

cells as for walls with rebound enzyme. These were in agreement with 

the results of Fan and Beckman (1972) who identified the enzyme with 

a pH optimum of around 6.0 as glycosidase and that with an optimum 

between 8.0 and 9.0 as amidase. 

ytic Activity during Growth of p Culture. Cultures of strain 168 were 

grown at 37 C for 3h (exponential phase), 4.5h (late exponential-early 

stationary phase) and 15.5h (late stationary phase). In each culture 

the following samples were analysed for autolytic activity; a) autolysing 

whole cells, b) SDS-walls + crude enzyme from walls of the culture, 
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c) walls washed after removal of crude enzyme, d) SOS-walls + super-

natant from sonicated cell suspension (in contact with the walls 

throughout incubation) and e) SDS-walls + supernatant as in d) but 

rebound to the walls which were then washed before incubation. The 

results are shown in Figure 8. It was concluded that 1) as the age 

of the culture increased, autolysis slowed down, 2) the enzyme r&noved 

by LiC1 and rebound to SOS-walls was active at all three times, 3) the 

activity of the enzyme remaining on the wall after L1C1 extraction, 

decreased with increasing cell age, and 4) there was activity in the 

supernatant from the broken cell suspension and this activity was able 

to rebind to SDS-walls. It therefore appeared that there was loss of 

autolytic activity with increasing cell age. This may have been due 

to loss of enzyme or to modification of the wall structure in older 

cells making them more resistant to autolysins, so that only when enzyme 

was removed and rebound to exponential phase SOS-walls, would it exhibit 

normal activity. The latter alternative was supported by the difficulty 

in sonicating older cells. 

A further experiment was carried out to test for activity in the 

culture supernatant. Three h, 4h and 17h cultures were examined. 

Supernatant was added to enough SOS-walls to give an O.D. of 1.0 to 1.2 

and the O.D. followed with time. It was concluded from the results in 

Figure 9 that there was very litl;le, if any, detectable activity in the 

supernatant of exponential phase cultures, bCit considerable activity in 

that of stationary phase cultures. It is not known whether this acti-

vity is the same as that bound to the "a1ls during the earlier stage of 

growth. 

Lytic Activity on Teichoic Acid-Free Walls. Hughes et al. (1968) 

claimed that 0.1M NaOH at 35 C, in the absence of oxygen, removed 

rapidly and completely the teichoic acids from B. subtilis W23 and 168. 
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The assays were done at 45 C in TK buffer, without rebinding enzyme to 
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Negatively stained walls (for method see Chapter III) which had been 

treated with NaOH had a much flimsier appearance than normal walls 

(Plates I and 2). 

SDS-walls and SDS,NaOH-walls were treated with B. subtilis auto-

lysins and lysozyme to find out what effect removal of teichoic acid 

had on degradation of the walls by these enzymes. 

Since autOlytic enzymes can be removed from the wall by high con-

centrations of salt, this suggests that they are ionically bound to the 

wall, and since teichoic acids are negatively charged, they could be 

important in this binding. The results showed that when teichoic acid 

was removed, the walls were more resistant to digestion by autolysin 

and lysozyme. However, with increasing concentrations of lysozyme, the 

effect decreased until at high enough concentrations it disappeared and 

both SDS- and SDS,NaOH-walls were degraded equally rapidly (Figure 10). 

Figure lOa shows that with enzyme rebound to the walls, SDS,NaOH-

walls were digested much more slowly than SDS-walls. In Figure lOb, 

where rebinding was not necessary, since the enzyme was left in contact 

with the walls, the same effect was observed. This might mean that for 

the enzyme to work, it first has to rebind to the walls, rather than 

just be ih close contact with the walls, and the teichoic acid-free walls 

have largely lost this ability; or it may mean that the structure of 

the walls lacking teichoic acid is such that they are more resistant to 

digestion. The lysozyrne results (Figure lOc, d and e) fit more easily 

into the second explanation, since this enzyme does not rebind ionically 

to the walls. 

Similar results were later published by Herbold and Glaser (1975) 

who found that teichoic acid-free B. subtilis walls were hydrolysed at 

a slower rate than walls containing teichoic acid. Also enzyme pre-

bound to these walls could be instantly displaced by teichoic acid-

containing walls. They concluded that binding to teichoic acid-free 
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Plate 1 Negatively stained SDS-walls of B. subtilis. 
Magnification x 40,000. 
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Plate 2 Negatively stained SDS,NaOH-walls of B. subtilis. 

Magnification x 40,000. 
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to SDS- (•) and SDS,NaOH-walls (0) and b) shows that a similar result is obtained when the enzyme was 
left in contact with the walls throughout the experiment, so that rebinding was not required. The 
assays were done at 45 C in TK buffer. z in graph a) represents. - ,an O.D. reading after the samples had 

been left at room temperature overnight. 
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Fig. 10 continued c), d) and e) show the lysis of SDS- (•) and SDS,NaOH-walls (0) with increasing concen-
tration of lysozyme. Lysozyme in c) is 360 units/mg wall, in d) 720 units/mg wall and in e) 3,600 units 

per mg wall. 



walls was much weaker than to walls with teichoic acid. It was also 

found that B. subtilis teichoic acid-free mutants had less autolysin 

than wild-type cells.(Boylan, Mendelson, Brooks & Young, 1972; Fiedler 

& Glaser, 1973; Hughes, 1970). 

It therefore seemed that tight binding of the autolysins was depen-

dent on the presence of teichoic acid. This might represent an electro-

static effect on enzyme binding, but could also reflect the fact that 

in the absence of teichoic acid the wall had a more compact structure. 

Herbold and Glaser (1975) favoured the first alternative because a low 

molecular weight teichoic acid-glycan complex was a good inhibitor of 

enzyme activity. They also pointed out that these observations meant 

that amount of lytic enzymes in a cell could not be estimated from 

isolated walls. Walls lacking teichoic acid would absorb activity 

poorly, and the enzyme would be removed during wall preparation. 

Mutants lacking teichoic acid may still produce the same amount of 

enzyme but release it into the growth medium. 
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Purification of the Axnidase. 

It was decided to use salt extraction rather than autolysis of 

whole cells in the first stage of enzyme purification to avoid con-

tamination with intracellular proteins and other material which absorb 

at 260 and 280nm and could complicate purification. It was also 

desirable to avoid enzyme that might be bound to teichoic acid as 

reported by Brownet al. (1970), since the enzyme was required for 

antibody production. For similar reasons walls were used in preference 

to whole cells, since the latter might lyse during the extraction 	- 

procedure. At the same time it was necessary to extract the maximum 

amount of activity since mg quantities were required to raise anti-

bodies. 

Percentage of Autolytic Activity removed from the Walls. To ensure that-

the maximum amount of enzyme was removed from the walls by salt, three 

extractions were carried out, and the activity of each extract and of 

the walls was measured and compared with the activity o4vaiis before 

extraction. Results showed that after the first extraction, 3570 of the 

enzyme had been removed and 65% remained bound to the wall. However, 

after the second extraction, the total activity removed was 57%. A 

third extraction did not result in a significant release of further 

activity. The result of the first extraction was in agreement with Fan 

(1970' who reported that he was able to remove approximately one third 

of the total lytic activity. He did not attempt a second extraction 

but the above results indicate that this was worthwhile, and for large 

quantities of walls a third extraction was advisable. Plate 3 shows 

samples from three such extractions run on an SDS gel. 

ebinding as a Means of Purification. Fan and Beckman (1972) reported 

that glycosidase could be removed from B. subtilis walls with 0.5M LiC1 

while amidase required 1.5M LiCl. It was therefore probable that other 

72. 



3 	1 	 3 2  

I 
4 

A iWO 
_____ • _- 4 

4 

4 

E 400 

Plate 3 Proteins Extracted from the Wall with L1C1. 
The first, second and third extractions of protein from B. subtilis 
walls are shown by 1, 2 and 3 respectively. It is clear that most of 
the material was reméved during the first two extractions. The samples 
were run on an SDS gel (10% acrylamide) and protein bands which were 
visible in the gel after staining are marked with arrows. Scans of the 
gel showed that samples 1 and 2 contained the same proteins while for 
sample 3, only 4 protein bands could be detected. Standards labelled 
A to E were as follows: 

Protein 	 Molecular Weight 

Bovine serum albumin (Sigma) 	 68,000 

Ovalbumin (Sigma) 	 43,000 

Pepsin (Sigma) 	 35,000 

Myoglobin (Sigma) 	 17,000 

Cytochrome c (horse heart, Sigma) 	12,000 

I 

4 
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proteins could be selectively extracted from the wall with salt. Thus 

rebinding and re-extraction of walls with different concentrations of 

LiCi might. offer a means of purification. 

For rebinding, SDS-walls of B. subtilis 168 were washed twice with 

H 
2 
 0 and twice with 31,,1 L1C1/TK buffer. The amount of walls was equiva-

lent to that from which the enzyme was extracted. A concentrated crude 

enzyme extract was added to the SDS-walls and diluted x 100 to allow 

rebinding to occur for 20min on ice. The walls were then spun out and 

the supernatant retained. Re-extraction of the SDS-walls was then 

carried out as follows; with .) 1M LIC1/TK b) 3111 LiC1/TK and c) 3M 

LiC1/TK. Extractions b) and c) were combined and then the following 

samples were concentrated in an Amicon cell to about 1mg of protein 

per ml, dialysed overnight against 0.111 tris pH 8.0 and run on an SDS 

gel (Plate 4); 

supernatant after initial rebinding (i.e. all proteins which did 

not rebind to the walls) 

1M LIC1/T1( extract 

3M LiC1/TK extract. 

The gel was scanned with a Vitatron TLD 100 densitometer and ajschematic 

representation of the major peaks is show in Figure 11, with the position 

of the standards indicated. Samples I and 2 contained relatively more 

of the higher molecular weight materials than 3 -, which suggested that 

these did not rebind so efficiently to the walls. Peal.: X in particular 

shov,ed that much of this protein did not rebind and most of that which 

did was released by 1M L1C1. All samples showed lytic activity on 

B. subtilis SD.-walls at pH S.f and peak Y which was present in all, 

corresponded to the .W. of arnidase subsequently determined by Herbold 

& Glaser (1975). There was no peal.: corresponding to the value quoted 

by Fan and Beckman (1972). 

It was concluded from this experiment that rebinding of crude 
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Plate 4 Rebindinr and Re-extraction of Crude Enzyme. 

The samples were run on the gel as follows; 1) the supernatant after 
initial rebinding (i.e. all proteins which did not rebind to the walls) 
2) 1M L1C1/TK extract and 3) 3M L1C1/1K extract. The standards label-
led A to E were 

Protein Molecular Weight 

 Bovine serum albumin (Sigma) 136,000 68,000 

 Ovalbumin (Sigma) 86,000 43 9 000 

 Egg white lysozyme (Sigma) 14,000 

 Cytochrome c (horse heart, Sigma) 12,000 

 RNA polymerase (Dr G. Peters) 165,000 155,000 

90,000 40,000 

The scans of this gel are represented in Figure 11. 
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Fiore 11 This is a schematic representation of the scans of the gel 
in Plate 4, shown in order to compare the proteins in each sample. 
1, 2 and 3 are as for Plate 4, and the position of the standards is 
indicated by their molecular weights. Peak X, a high M.W. protein, is 
an example of a protein which does not appear to rebind well to the 
walls. Peak Y is at the expected position for aniidase. 
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enzyme to SDS-walls and subsequent stepwise elution was an effective 

means of reducing the concentration of some of the high M.W. proteins 

in the crude enzyme (Plate 3). However, rebinding of lytic activity 

was not complete and even when more SDS-walls were used, activity was 

still lost. Thus in a purification procedure designed to obtain the 

maximum amount of pure enzyme, the disadvantages of this method were 

considered to outweigh the advantages. 

Fan and Beckman (1973) reported that M. lysodeikticus walls 

bound ainidase less well than glycosidase, so rebinding to these walls 

was tried in an attempt to remove glycosidase from the crude enzyme. 

When the rebound enzyme was extracted from M. lysôdeikticus walls  and 

run on a Sephadex column, it was found that the concentration of 

glycosidase had increased greatly, but the extract also contained 

considerable amidase activity. Thus again this was not a successful 

method for separating the two enzymes, but rather for increasing the 

concentration of glycosidase relative to the amidase. 

Concentration of Large Volumes. Several different techniques were 

examined in the hope that this proces might also serve as a purifi-

cation step. 

Concentration against 50% glycerol was satisfactory for small 

volumes of enzyme solution, but since this method only reduced a 

sample to one half or one third of its original volume, it was not 

suitable for large volumes. 'ihen PEG was used there was up to 7 

loss of activity, a disadvantage which also applied to the Sephadex 

method, which in any case became costly for large volumes. 	ore than 

67% (V/V) ethanol in the enzyme solution caused a precipitate to form. 

The resulting supernatant contained no lytic activity, but the activity 

in the precipitate accounted for less than 50% of that originally 

present. 
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Results obtained by ammonium sulphate precipitation are shown 

qualitatively in the following table: 

% Saturation 	Decrease in total 	Activity in 	Activity in 
protein in supn't. 	supn't 	 ppt 

0 

25  

40 + +±+++ - 

50 ± ++±++ - 

57 + + 

70 ++ + 

79 ++ .++ ++ 

85 .+. ++ ++ 

Table 6. 

From these it could be seen that even at 85' saturation, there was 

still considerable lytic activity in the supernatant, and at this con-

centration of ammonium sulphate, it was not possible to account for all 

the activity present initially. Samples of the active precipitates 

were heated to 52 C for 20min to remove glycosidase activity, but in no 

instance was activity completely destroyed or completely unaffected, 

indicating the precipitates probably all contained a mixture of the two 

enzymes. There was not a significant precipitation of non-active pro-

tein before lytic activity started to be lost from the supernatant. 

Thus this method, which might have been a useful purification step, was 

not effective in separating the lytic activity from other proteins, or 

in separating the two enzymes. 

By 'far the most useful of all the methods was ultrafiltration in 

an Amicon cell. No dialysis to remove LiCl was required, a step which 

led to some loss of activity. Large volumes of enzyme solution could be 

easily dealt with. Measurements of lytic activity showed no detectable 

enzyme passing through the membrane and as much as 80 to 85% of the 

activity was recovered in the concentrated solution. Activity lost was 
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probably due to adsorbtion on to the membrane filter, or to the enzyme 

becoming slightly less stable in very concentrated solutions. This 

method however, was not of much value as a purification step since the 

membrane only excluded molecules of molecular weight less than 10,000. 

LiC1 Sucrose Gradients. In all .cases the separation was unsatisfactory, 

activity being found to some degree in most of the fractions. In a 

graph of protein concentration of the fractions, large peaks were always 

present over the first few and last few fractions collected. A large 

protein peak from the last fractions collected was unexpected because 

this represented the portion of the gradient with little or no LiC1, 

thus not much protein could have been removed from the walls in this 

region. However, it may have been that small pieces of wall with enzyme 

still attached were dragged through with the last of the fractions. 

Assays of pH optima, lytic activity, and reducing group activity failed 

to show any clean separation of the enzymes (as claimed by Fan and 

Beckman, 1972), and also this method was considered unsuitable for 

large scale preparations, since - one gradient could only accomodate 

material from 3 1 of original culture,. 

Sephadex Chromatography. Sephadex 075 was used first (as per Fan & 

Beckman, 1972) in an attempt to purify the amidase in a crude enzyme. 

extract. One of the better separations is illustrated in Figure 12, 

where the peaks are fairly distinct. The reducing group assay indicated 

that glycosidase activity was concentrated in fractions 10 to 21 (shown 

by the arrows in Figure 12), although traces of reducing group activity 

were picked up in later fractions. Otherwise separations were much less 

istinct, and in all cases, the first active fractions came off the 

column very close to the large non-active protein peak which came off 

just after the void volume. Samples of this large peak indicated that 

it contained protein of molecular weight 85,000 and upwards. It was 
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Fig. 12 Separation of the Crude Enzyme on Sephadex G75 
Lytic activity of the fractions is represented by . - and 
protein concentration by.--- . . The arrows indicate the fractions 
in which most of the glycosidase activity was found as measured by 
reducing group release. 

thus decided to use a system which would retain the activity on the 

column longer. 

Therefore Sephadex G100 was substituted for G75. A typical sepa-

ration on this column is shown in Figure 13a. The lytically active 

fractions In this case were more completely separated from the first 

large protein peak. Because of the lack of a routine specific assay 

for the amidase, and because it was important to obtain as much pure 

enzyme as possible, it was decided at this stage to combine all the 

fractions from the column which contained lytic activity. Ltic frac-

tions from several such separations were combined, concentrated in an 

Amicen cell, and re-run on a G100 column. The result of this 
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g.. 13 Separation of the Crude Enzyme on Sephadex G100 
Lytic activity of the fractions is represented by. 	S 	and 
protein concentration byQ - ---  0 	a) shows the aeparation after 
one run through the column and b) the separation obtained when 
pooled lytic activity from the first separation is re-run on the 
column. 
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Separation is shown in Figure 13b. The peak of activity was now free 

Of most of the protein measured in 136L, and by pooling fractions 30 to 

55 in the second separation, it was further purified. The major activ-

ity in this fraction was that of an amidase as measured by activity at 

pH 8.6, lack of reducing group activity and lysis of Micrococcus walls 

at pH 6.0, and relative stability to heat. This fraction was then 

dialysed to remove L1C1, and was used to raise antibodies, and was also 

run on acrylamide gels. When the gels were analysed, a strong band was 

equivalent to a M. W. of 45,000, close to the value obtained for amidase 

by Herbold and Glaser(1975). There was some evidence of other protein 

in the fraction and the antibody production suggested that the enzyme 

was not completely pure (see Chapter III). There was no band corres-

ponding to the value of 35,000 quoted by Fan and Beckman (1972) for 

aniidase. Their estimated M.W. of 60,000 for glycosidase would mean 

that this enzyme would be well separated on the gel from the hand at 

45,000 (Plate 5 and Figure 14). 

This was as far as the purification could be taken in the time 

available, but it was hoped that by running the lytic fraction on 

non-2DS slab gels at 4 C the amidase activity could be recovered pure. 

Purification by Gel Electrophoresis. Preliminary experiments were done 

.to ascertain that activitvCould be recovered from the cels. At the end 

of the run a thin strip, containing standards and a sample of the enzyme 

fraction was cut off the slab, and stained with coomassje blue. Mean-

while the rest of the gel war frozen with dry ice on a perspex sheet and 

stored at -20 C until use The gel was the thawdd out and th section 

containing the activity was cut out and ground up with TK buffer. 

Activity in the buffer was detected using the rebinding assay. A fairly 

sensitive method for detecting activity in the gel was later developed, 

using agar plates. Nutrient broth (2.5g) and agar (1.25g) were added 
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1 is a sample of crude enzyme run with 2, the lytic fraction after 
two runs on a Sephadex G100 column. The major band in 2 corresponds 
to a M.W. of 45,000. The standards A to F are as follows; 

Protein 	 Molecular Weight 

Phosphorylase a (Sigma ) 	 92,000 

Bovine serum albumin (Sigma) 	 68,000 

Hexokinase (Sigma) 	 52,000 

Ova].burnin (Sigma) 	 43 9 000 

Penicillinase (Wellcome) 	 28,000 

Lysozyme (Sigma) 	 14,000 
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Fig. 14 This shows a scan of the lytic fraction run on the gel in 
Plate 5. The large peak corresponds to the band with a M.W. of 
45000. Several other very small protein peaks are visible, mainly 
at higher M.W's. Thus this scan gives an idea of the amount of 
Impurities still comtaminating the protein believed to be the amidase. 
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to lOOml of hot TK buffer. When the agar had dissolved, the solution 

was cooled slightly and 5mg of SDS-walls were added. Thin layers of 

agar were poured into petri dishes, which could then be stored at 4 C 

for several weeks. To assay for enzyme activity, a plate was placed 

just above the water level in a covered bath at 45 C. To test the 

sensitvity, a drop of enzyme solution was placed on the surface of the 

agar, and after suitable incubation, activity was detected by a zone 

of clearing. Activity in quantities as small as 5u1 of crude enzyme 

solution (0.02mg protein) could be detected, so that it should be 

possible to detect the active band in a strip of gel laid on top of 

the agar (in this case 50u1 volumes of lytic fraction containing 0.05mg 

of protein, most of which is amidase, would be layered on to the gel). 

If each slab gel will take 0.5mg protein, then by running several gels, 

it ought to be possible to obtain mg quantities of pure enzyme. 

Expected Enzyme Yield. From a 200 1 culture, approximately 200g (wet 

weight) of cells were obtained. After sonication, these yielded 32g 

(wet weight) of walls. L1C1 (3M) released about 30mg protein from the 

walls. Thellytic fraction from the first Sephadex run contained 8 to 

10m- of protein, and after the second column had been run, this was 

reduced to 2 to 3mg. At this stage the enzyme was contaminated with 

several impurities, but all in very low amounts as shown in Plate 5 and 

Figure 14. Thus, providing most of the enzyme could be re-extracted 

from the gel, 200 1 of culture should yild between 0.5 and 1,0mg of 

enzyme. Three or four such cultures ought to prcvir!e enough material 

for antibody production. The results of a typical purification are 

shown in Table 7: 

Eraction 	Voli.me 
mi 

Cell wll extr. 	340 

Conc' eutract 	130 

Lvtic fraction II 	5 
(concentrated) 

Units/mi Total Units 

	

17.8 	3.0 x io 

	

26.1 	3.4 x 10 

135 	.3 x 10 

Speciic Act, Yield 
uni s/m rr 

49 	100% 

	

50.1 	56.6% 

	

260.5 	11 
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This represented a 5 fold purification between the step where the 

crude enzyme was concentrated and the lytic fraction obtained after 

the second Sephadex run. 

When Herbold and Glaser (1975) published their results earlier 

this year, it was possible to look at the above results in a slightly 

different light. They found evidence of a modifier protein which 

enhanced the activity of the arnidase, and which had a M.1. of 80,000 

as compared to the M.W. for ainidase of 47,000 to 51,000. As can be 

seen from Figure 14, most, if not all, of any such protein must have 

been removed from the amidase and so the specific activity for the last 

stage in the purification may be as much as 2 to 2.5 fold too low. 

Herbold and Glaser, starting with the same volume of culture (but har-

vested at an O.D. of 2.0 instead of 0.3 to 0.5), and extracting enzyme 

from whole cells, instead of walls, finished up with a yield of 12 and 

a specific activity of 250 units/mg. However they had almost lOx the 

total number of enzyme units, compared to the above results. 

Surnm ar v 

It was found that neither amidase nor glycosidase could be assayed 

using a synthetic. substrate, so that for routine assays, rebinding had 

to be used. Lytic activity at various stages of growth was examined, 

and it was concluded that active enzyme was always present, but with 

increasing age, the cells became more resistant to lysis. Stationary 

phase cultures excreted enzyme into the medium. Walls which were free 

of teichoic acid were more resistant to degradation by lytic enzymes 

than walls containing teichoic acid, which probably resulted from the 

fact that rebinding of autolytic enzymes was much weaker when walls did 

not contain teichoic acid. Some :tructural alteration of the wall may 

also have been involved. 
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A purification procedure for the amidase is described, using 

Sephadex chromatography and gel electrophoresis. Although the yield 

was not as good as that reported by Herbold and Glaser (1975), the 

specific activity obtained was similar, and during the first steps of 

purification, the volumes handled were considerably smaller. 
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CHAPTER III 

LOCALISATION STUDIES 



INTRODUCTION 

It was hoped that by localising one of the lytic enzymes in the cell 

it would be possible to discover more precisely which stages of the cell 

cycle required the enzymes, and to learn more about the growth and divi-

sion processes. Several approaches were used, purification of the 

amidase to produce ferritin conjugated antibodies, analysis of minicells, 

and autolysis of cells under conditions optimal for each enzyme. 

By labelling cells with ferritin-conjugated antibodies to amidase, 

it should be possible to determine the distribution of the enzyme, for 

instance, whether it is more concentrated along the cylindrical walls, 

or at the ends, whether it is evenly distributed all over the cell, or 

whether it occurs in discrete areas. It might even be possible with a 

good labelling technique, to count the individual ferritin molecules, 

and thus get an idea of the quantity of enzyme present. Because of the 

postulated role of arnidase in cell separation discussed in the intro-

duction, it would be expected that a considerable concentration of 

amidase would he found at ends and associated with developing cross-

walls. 

Jihicells, because they are formed at the poles of parental cells, 

represent polar material which can he easily isolated from cylindrical 

wall material because of the different sedimentation properties of the 

minicells and their parents. Thus isolation of proteins, in particular 

the lytic enzymes, from rninicells, and comparison of these with the 

proteins of the parental cells (representing mostly cylindrical wall 

because the parental cells are unusually long) is another way of examin-

ing which enzymes are present in different parts of the cell. 

The third approach was more indirect, and looked not at the enzymes, 

but at the result of their action on the cells. By comparing autolysis 

patterns under conditions optimal for glycosidase and for amidase, it 
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should be possible to gain information about both the position and the 

function of the enzymes. 
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MATERIALS AND METHODS 

Preparation of Antigen. Crude enzyme and the lytic fraction obtained 

after 2 runs on Sephadex G100 were freeze dried and stored at -20 C. 

Both of these preparations were used to raise antibodies, by injection 

into rabbits. Antigen was dissOlved in sterile distilled H 
2 
 0 at a con-

centration of 2mg/mi, and 0.5m1 was added to 1.5m1 of complete Freunds 

adjuvant, and mixed thoroughly until emulsified. The mixture was then 

stored at 4 C and during the first month, the rabbit was given 2 x 0.25ml 

injections into the thigh muscle. Over the next 4 months, the rabbit 

received intravenous injections (0.2 to 0.5m1) of alum precipitated 

antigen at fortnightly intervals. The precipitate. was prepared by dis-

solving 5mg of antigen in 3.5m1 of sterile 0.01M phosphate buffer., and 

adding 0.2ml of 1% potassium alum. The solution was mixed, and the 

precipitate allowed to form at 4 C. 

Antibody Titre. About 4 months after the first injection, a small 

sample of blood was tested for antibodies. Plates were made in petri 

dishes from 0.876 agarose gel in veronal buffer pH 8.3 (Kwapinski, 1972), 

and wells of 5.5mm diameter were made in the plate with a distance of 

0.8 to 0.9cm between the well containing antibody and those containing 

antigen. Antigen of the following concentrations was made up in veronal 

buffer; 4m,,-/ml, 2mg/ml, 0.5mg/ml and 0.05mg/mi. A fresh crude enzyme 

extract, which had not been freeze dried, was also used. The plates 

were kept at 4 C for several days to allow precipitation lines to form. 

Fractionation of Serum Globulins. (i) A saturated solution of 

ammonium sulphate in water was prepared at room temperature well in 

advance of use. (ii) To a measured amount of undiluted serum in an ice 

bath was added an equal amount of the above solution, dropwise with 

stirring. (iii) The solution containing precipitated globulin was 

allowed to stand overnight at 4 C, and was then centrifuged for 30mm 
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at 3,000g. The supernatant was discarded. (iv) The precipitated 

globulin was dissolved by slowly adding measured amounts of water. 

Usually the volume of water required to dissolve the precipitate was 

less than the original volume of serum s  (v) To the dissolved globulin 

was added an amount of saturated ammonium sulphate equal to the volume 

of water used to dissolve the precipitate as described in step ii). 

The precipitated globulin was centrifuged immediately, and precipitation 

was carried out a third time. (vi) The dissolved globulin was dialysed 

at 4C against 0.85% NaCl, using frequent changes of saline. Dialysis 

was continued until sulphate was no longer detectable in the liquid 

outside the sac following overnight dialysis. This was determined by 

adding a few ml of saturated barium chloride to an equal equal amount 

of dialysate. If the mixture did not become cloudy or opalescent, the 

globulin was considered to be free of sulphate. The globulin fraction 

was stored at -20 C. 

Conjugation of Ferritin to Antibody. Ferritin (horse spleen, 6x 

recrystallised) was obtained from Calbiochem and stored at 4 C. Con-

jugation was carried out according to the method of Sri Ram, Tawde, 

Pierce and Midgley (1963). The ferritin-antibody conjugate was puri-

fied on an agarose column according to the method of 	Nicolson, 

Marchesi and Singer (1971) and was stored at 4 C. 

An alternative to this procedure was to use unlabelled globulin, 

and label it after binding to cell walls, with ferritin-conjugated 

goat anti-rabbit IgG (obtained from Cappel Laboratories. USA.). 

Labelling Cells or Walls with Ferritin Conjugate. Whole cells or 

walls were washed with 1120 and resuspended in O.IM phosphate buffer. 

pH 7.6. To them was added either ferritin-conjugated antibody:or un-

labelled globulin, and the solution was left at room temperature for 

30min or overnight at 4C with gentle stirring. If unlabelled globulin 
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was used, a further period of incubation was carried out after addition 

of ferritin-conjugated goat anti-rabbit globulin. After labelling was 

complete, cells or walls were spun at 1,000g for 20mm, which was not 

sufficient to bring down unbound ferritin, and were washed twice with 

buffer. In order to ensure maximum labelling, saturation experiments 

were done, varying the amounts of ferritin conjugate and serum added. 

Electron microscopy revealed the concentration required for maximum 

binding. 

Negative Staining. Copper grids were coated with a carbon film made 

in a Balzers BA3 vacuum evaporator. A drop of specimen solution was 

placed on the grid and was washed off with several drops of 2% uranyl 

acetate W.A.). The grid was then dried. Often cell walls were not 

truely negatively stained using this technique, and it was found that 

if a film of cytochrome c was first spread over the carbon film, this 

improved the staining. Occasionally less concentrated solutions of U.A. 

were used. 

Embedding and Sectioning. Samples were pre-fixed and fixed with 0s0 4 , 

and post-fixed with U.A. (Ryter & Kellenberger, 1958). CN was added 

to 0s04  (Iighton, 1959). The samples were dehydrated in acetone 

(Glauert, 1965), embedded in araldite (Glauert, Rogers & Glauert, 1956; 

Glauert & Glauert, 1958), and post stained (eynolds, 1963), for 30s. 

Sections were cut on a Reichert Om U2 ultra microtome, using a diamond 

knife. Electron microscopy was done on a Siemens ElmisI'op 101 operating 

at SO kV. 

S. Growth of the Minicell Mutant, B. sub this Cu 403 dlv IV Bi thy, 

met, a minicell producing strain derived from strain 168, was obtained 

from Dr J. Reeve. Cultures were grown at 30 C in L Broth (Difco tryptone 

lOg, yeast extract 5g, NaCl (1%) lOg in I 1 H,,O. pH 7.2) with added 

thvmine (20ug/ml), or in Spizizen minimal salts (SDizien, 1968) with 
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added thyxnine and methionine (20ug/ml) and glucose as a carbon source. 

9. Purification of Minicells. The sucrose gradient method was similar 

to that used by Teather (1974) to purify E. coil miniceils. The culture 

was grown to late log phase in minimal medium to maximise the number of 

miniceils free in solution, and was then harvested by spinning at 

10,000g for 15mm. Large cultures were grown in a fermenter and har-

vested using a continuous flow Sharples centrifuge with a flow rate 

adjusted such that at least 8076 of minicells were retained in the cen-

trifuge. All subsequent operations were carried out at 4 C. The pellet 

was resuspended in cold growth medium, 40m1/1 original culture, and was 

spun at 1,500g for 8min to bring down most of the parental cells. The 

supernatant was set aside, and the pellet was resuspended and spun 

again. The supernatants were then combined, spun at 1,500g for 8min to 

bring down any remaining parental cells, and then spun at 6,000g for 

10min to pellet the minicells. This pellet was resuspended in 5% sucrose 

in 10mM trls (pH 8.0) using lml/l original culture, and was layered on 

to sucrose gradients made from 6ml each of 10%, 2076, 3076, 4076 and 60% 

sucrose in 10mM tris (pH 8.0). The gradients (one/3 to 4 1 original 

culture) were spun at 3000g for 10mm (93 34 rotor. Sorvall RC2B centri-

fuge). The clearly distinguishable minicell band was removed with a 

Pasteur pipette, checked by phase contrast microscopy for homogeneity, 

and if necessary, run again on a gradient. The minicells were then 

washed thoroughly with H20. 

The sonication of minicell cultures, extraction of enzymes from 

minicells and their parents, determination of lytic activity and pH 

optima of the enzymes was carried out as described for strain 168, 

using 168 SDS-walls as a substrate in the assays. 
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RESULTS AND DISCUSSION 

Production of Antibodies 

Pure amidase was not available to prepare antibodies. However, 

antibodies were raised to the crude enzyme fraction and to the lytic 

fraction pooled from the second. Sephadex G100 separation discussed in 

the last chapter. 

After 4 months of injections with antigen, the titre of antibodies 

in the blood was tested by a double diffusion technique. For the rabbit 

injected with crude enzyme the result is shown in Plate 6. Precipi-

tation bands formed between the antibody well in the centre and the 

antigen wells 1 and 2 containing 4mg/mi and 2mg/mi of protein respect-

ively. A very faint precipitation line occurred also at position 6, the 

well containing fresh crude enzyme with a protein concentration of 

about 0.9mg/mi. A series of dilutions was used because antigen-antibody 

precipitation occurs most efficiently when the concentrations of each 

are approximately equal. At positions I and 2 one very strong precipi-

tation band formed with a faint band inside, suggesting the formation 

of more than one antibody. 

When the test was carried out on the blood from the rabbit injected 

with the lytic fraction (Plate 7), it was found that only one precipi-

tation band formed opposite the wells with lytic fraction 0mg/mi), 

whereas 4 bands could be distinguished opposite the wells containing 

crude enzyme (1mg/mi). This suggested that only one protein in the 

lytic fraction was present in sufficient concentration to react with 

its antibody, but the impurities in the lytic fraction acted as antigens 

forming enough antibody to precipitate with their antigens present at 

greater concentrations in the crude enzyme. 

Antibodies were Purified from the serum of both rabbits, and were 

subsequently used in preliminary labelling experiments. 
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Wells 1 and 2 , containing 4mg/mi and 2mg/mi of antigen respectively, 
showed a strong precipitation line, accompanied by a very faint line 
on the side nearest the centre well. Well 6, containing fresh crude 
enzyme (0.9mg/mi), showed a very faint precipitation line. 
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Plate 7. Double Diffusion Technique with Antibody to the Lytic 
Fraction. 

Wells I and 3, containing crude enzyme (1mg/mi), showed 4 precipi-
tation lines, while for wells 2 and 4, containing lytic fraction 
(lmg/ml), only one line was visible. 
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Labelling of Cells and Walls 

Walls of B. subtilis were examined for non-specific binding of 

ferritin by using ferritin-conjugated antibody to B. cereus penicillinase 

and unconjugated ferritin. Results in both cases were negative. 

When walls were negatively stained on carbon-coated grids, it was 

extremely difficult to make out the individual ferritin molecules 

(Plate 8). 

Plate 8 Negatively stained wall labelled with ferritiri-conjugated 
antibody to crude enzyme. a) clearly defined ferritin molecules in 
the background, b) ferritin bound to material loosely attached to the 
wall, c) a clump of ferritin on a single thickness of wall, d) a 
clump on a double thickness of wall and e) a clump on the cell pole. 
Magnification x 100,000. 
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Visibility was enhanced by using carbon-coated grids with a film of 

cytochrome C (Plate 9). 

1701 

Plate 9 Negatively stained wall on a carbon-coated grid covered with 
a film of cytochrome c. a) well defined ferritin molecules bound to 
the edge of the cell, b) a clump of ferritin within the less darkly 
staining edge of the wall, c) and d) clumps on double thickness of 
wall. 	Magnification x 100,000. 

Whole cells were labelled, fixed, and embedded, and sections were 

examined for label. The ferritin molecules showed up more clearly when 

the sections were not post stained with lead citrate (Plate 10). 

Labelling with antibody to crude enzyme and to lytic fraction 

occurred along the cylindrical wall and at the ends, and although neither 

preparation contained antibody only to amidase, results described 

elsewhere in this chapter, suggest that a similar pattern of labelling 
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would be found when antibody to pure amidase was used. From the results 

obtained, it was impossible to say whether the amidase was present in 

discrete areas over the surface rather than randomly distributed. 
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Plate 10 Section of a cell wall, labelled with antibody to lytic frac-
tion. Clumps of ferritin label attached to the wall are indicated by 

	

arrows. 	 Magnification x 100,000. 
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Localisation of Enzymes in Minicells 

A culture of strain Cu 403 was harvested in mid exponential phase, 

and the enzymes extracted from the whole cells. The extract was assayed 

for its rebinding to strain. 168 SDS-walls and subsequent lytic activity. 

Both were efficient making strain 165 SDS-walls a suitable substrate 

for assaying strain Cu 403 enzymes. Similar results were obtained with 

enzyme extracted from cells in late exponential phase. 

A 10 1 culture of strain Cu 403, grown in minimal salts, was har-

vested in late exponential phase, and the minicells separated from the 

parental cells. It was difficult to compare the amount of enzyme 

removed from minicells with that from parental cells, since not all the 

minicells were recovered during harvesting, more minicells were lost on 

the sucrose gradients, and the separation of minicells from parental 

cells was not complete, i.e. some minicells were present in the parent 

cell preparation often still attached to parental cells, and a small 

number of parental cells were present in the minicell preparation. 

However a typical extract produced 31 units of activity from the minis 

and 693 units from the parental cells, but the minicell extract con-

tained more units per mg of protein than the parental extract. A 

possible reason for this is discussed later. 

A pH optimum experiment was carried out on both extracts at 4 C. 

The results are shown in Figure 1. The minicell extract appeared to 

have three peaks so the experiment was repeated with a different extract 

and the same result was obtained. This raised the question as to 

whether a third lytic enzyme was present, whose pH optimum was masked 

in extracts from parental cells where the pH 8.5 to 9.0 peak was so high. 

Apart from this, pH optima at 6.0 to 6.5 and 8.5 to 9.0 were obtained, 

similar to those for strain 163 shown in Figure 7. 

A sample of minicell extract was run beside a sample of crude 
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Fig. 15 pH Optima of Enzyme extracted from strain Cu 403 parental 
cells (•) and minicells (0). 
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enzyme from strain 168 on an SDS gel (Plate 11). Unfortunately, the 

-\ 
minicell extract was not so concentrated as the crude enzyme. However, 

bands were found in the minicell extract corresponding to all but the 

faintest in the crude enzyme extract, and no new bands were found in 

the minicell extract. In the crude enzyme, the highest M.W. band (X) 

(see Figure ii) was the most concentrated, followed by the band (Z) 

between standards B and C. However, in the minicell extract, band X 

2 

A 	 4 	 4 

4 	 4 

B 

4—Z--  4 
4 
4 C. 

4 4 

4 	 4 

4' 

F 	
40 

Plate 11 A crude enzyme extract from strain Cu 403 minicells (1) was 
run alongside an extract from strain 168 cells (2) on an SDS-gel. The 
bands which were visible on the gel are indicated with arrows. X is 
the most concentratd protein band and Z the next most concentrated. 
Standards A to F are as shown in Plate 5. 
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is barely visible while Z is quite distinct. This may account in part 

for the fact that the minicell extract contained more units/mg of 

protein than did the parental extract. 

It was concluded from these experiments on minicells, that the 

proteins of the minicell wall were very similar to those of the parent 

and to those of strain 168, although the proportions differed. Mini-

cells contained considerable lytic activity with the same pH optima as 

the parental cells and strain 168. However an extra peak appeared in 

the pH curve for minicells, which remained unexplained. 

Autolysis of Whole Cells 

As discussed already, Fan and Beckman (1972) showed that glycosi-

dase and aniidase have different pH optima, 6.0 and 8.6 respectively, and 

that glycosidase Is less heat stable. An experiment to follow autolysis 

under these different conditions was carried out , using strain 168 in 

exponential phase. Half of the culture was heated to 52 C for 15min to 

inactivate the glycosidase. The following samples were then incubated 

at 37 C; 	 - 

untreated cells in TIC buffer (pH 8.6) 

untreated cells in TM buffer (pH 6.0) 

heated cells in TK buffer (pH 8.6) 

heated cells in TM buffer (pH 6.0) 

Samples 1 and 3 showed a rapid decrease in O.D.,while samples 2 and 4 

showed a very slow decrease. At the beginning of incubation, all four 

samples had the same appearance, consisting of single cells, pairs and 

chains of up to 10 or more. There was no sign of lysis. However, after 

15mm, samples 1 and 3 contained many light cells indicating that 

autolysis 	occurring, but there were still many chains present. At 

this time samples 2 and 4 showed no change. 
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After 30mm, almost all the cells in 1 and 3 had lysed, and only 

short chains remained, along with an increased number of pairs and 

single cells. Samples 2 and 4 showed the first signs of lysis, but 

only in a few cells, and long chains were still present. 

After 45mm, only pairs,single cells and fragments remained in 

samples i and 3, and 3 appeared to be more degraded than 1. At this 

stage in samples 2 and 4, some of the longer chains were breaking up, 

and more lysis had occurred. 

- At 60mm, samples i and 3 consisted mostly of fragments with very 

few intact cells, while samples 2 and 4 still contained chains of four 

cells (in sample 4 some chains of eight), and little more lysis than 

at 45mm 

By 105mm, nothing was visible in samples 1 and 3 by phase micros-

copy. Samples 2 and 4, on the other hand, still contained many pairs, 

and chains of four cells, although by this stage there was quite exten- 

sive lysis. 

The samples were left overnight at room temperature, and were then 

examined by electron microscopy using negative staining, Samples I and 

3 contained mainly very small fragments of wall, some cell ends and an 

occaisional whole cell. Samples 2 and 4, on the other hand, contained 

as well as many small fragments, many more whole cells, single and in 

pairs, many ends and large pieces of wall, and walls retaining their 

original shape, but with a very 'moth-eaten' appearance. 

These results suggested that under conditions optima], for glycosi-

dase activity, a much slower, but similar process to that under condi-

tions optimal for amidase is taking place. If glycosidase was localised 

at the polar regions and involved in cell separation, then at pH 6.0 it 

would be expected that chains of cells would be rapidly broken down, with 

little lysis. This did not occur, and the maximum rate of cell 
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separation was achieved under conditions optimal for amidase activity, 

in agreement with evidence for amidase involvement in cell separation 

discussed in the introduction. Thus the results did not agree with the 

idea that, since Cocci have been found containing only one demonstrable 

lytic activity, an N-acetyl muramidase (ShocIman & Cheney, 1969), 

whereas Bacillus species have both an arnidase and a glycosidase activity 

(Fan and Beckman, 1972), then the amidase might be associated with the 

cylindrical wall and the glycosidase with the polar regions. 

The only difference between samples 2 and 4 (glycosidase inactivated) 

was that the degradation pattern in 4 was slightly slower. This seemed 

to indicate that, even here, most of the degradation was due to amidase 

acting slowly at the lower pH. There was no apparent slowing up of the 

degradation rate at p1-1 8.6 when glycosidase was inactivated, indicating 

that under these conditions, the latter contributed very little to the 

autolytic process. Thus amidase appeared to be responsible for cell 

separ;tion, degradation of the cylindrical wall and ultimately degrad-

ation of the polar region. 

These results-were confirmec 4  and extended by exaining sections 

of autolysing cells in the electron microscope. An exponential phase 

culture of strain 168 was allowed to autolyse at 37 C  in TK buffer, 

pH 8.6. The following samples were removed, and immediately pre-fixed, 

spun down and fixed; cells growing in culture medium (control 1), and 

cells resuspended in TK buffer for 0mm (control 2), 15, 30, 45, 60, 

and 75mm. A similar experiment was carried out in TM buffer. pH 6.0, 

and samples were taken at 0, 20, 40, 60, 80, 100, 120 and 165mm. 

A typical control 1 cell is shown in Plate 12. The walls were 

about 50nm thick, and the sides often thickerlthan the ends and not so 

smooth. All round the wall, a trilayered structure was visible, con-

sisting of an inner dark layer, an intermediate light layer, and an 
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Plate 12 Section of a control 1 cell, used as a standard for com-
parison throughout the autolysis experiment. The side walls are 50nm 
'X:de and thicker and smoother than the ends. There is no sign of 
degradation at the developing cross-wall, but the completed cross-wall 
is undergoing separation. The tn-layered structure is visible all 
round the wall. Magnification x 40,000. 
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Plate 13 Section of control 2 (pH 8.6). a) shows shrinkage of the 
cytoplasm away from the wall. The walls are thinner than in Plate 12, 
and degradation is occurring within the completed cross-wall. 
Magnification x 50,000. 
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irregular dark layer on the outside. Where cross-walls were forming, 

there was no sign of indentation of the side wall. When the cross-wall 

was complete, it appeared to separate from the outside towards the 

centre, forming rounded ends. As can be seen from Plate 12, the fini-

shed cross-wall was less than twice the width of the side walls, imply-

ing that ends once formed, required to be thickened if they were to 

reach the width of the side walls. Some ends were found which were as 

thick, if not thicker than the side walls. 

Control 2 (pH 8.6) was already considerably altered from control 1. 

Some shrinkage of the cytoplasm away from the wall had occurred, and the 

walls themselves were generally thinner. Degradation was now visible 

within completed cross-walls, instead of separation occurring in a con-

trolled manner from the outside (Plate 13). There was however, no evi-

dence of degradation of incomplete cross-walls. The appearance of cells 

in control 2 is assumed to have resulted from the continued action of 

lytic enzymes in the absence of wall synthesis. 

Plate 14 shows stages in cross-wall formation which might be con-

sidered in terms of a lytic cycle, a and e represent the oldest cross-

walls formed, followed by c, then d, and then b, (the cross-wall d 

divided cell c-e, and cross-wall b, the newest, was just beginning to 

divide cell a-c). In b and d there is no sign of autolysis, which might 

indicate that the autolytic enzymes were not yet present, or were in-

active. However, at position c the normal separation process had 

started, and under the experimental conditions, considerable autolysis 

had occurred inside the cross-wall, indicating that at this stage, the 

enzymes were present and active right across. Position e represents a 

later stage of this process, and position a the last. If such a cycle 

existed, it could be due to variation either in the amount of enzyme 

present, or the activity of the enzyme. Other evidence discussed in 

this chapter and the last, for example, the presence of autolytic 
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Figure 14 Sections of cells from control 2 (p11 8.6), showing stages in cross-wall formation. 
a to e were consecutive cross-walls in a chain of cells, a and e represent the oldest cross-
walls, followed by c, then d, and then b. Magnification x 100,000. 
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enzymes in minicells, which are resistant to autolysis, does not 

support the first alternative. Therefore it is more likely that the 

enzyme is always present, but its activity varies (perhaps according 

to the wall structure). Since amidase is the major lytic activity 

under the experimental condition used, it follows that no activity will 

be evident until after cross-linking has taken place. Under normal 

growth conditions, it seems reasonable that cross-linking should occur 

from the outside of the cross-wall towards the centre, probably some 

distance behind the leading edge of the cross-wall where new peptido-

glycan units are being inserted. This could explain why b and d showed 

no sign of attack, although to differentiate between d and c would still 

require some control of amidase activity, which could involve the modi-

fier described by Herbold and Glaser (1975). Otherwise one would 

expect to see some signs of degradation from the outside, unless no 

crosslinking occurs until the cross-wall is completed. This could 

also explain the difference between the results of these experiments 

and those of Higgins, Pooley and Shockman (1970), who found that the 

primary site of autolytic activity in S. faccalis was the leading edge 

of the nascent cross-wall. Here the major lytic activity was an 

N-acetylrnurarnide glycanhydrolase, which could presumably attack peptido-

glycan chains as soon as they were formed. Infact, chains which were 

not cross-linked eight be more susceptible to attack. However, the 

explanation does not fit the results obtained by Higgins, Coyette and 

Shockean (1973) for L. acidophilus. The major lytic activity in this 

case was also an N-acetylmuramide glycanhydrolase. but the pattern of 

autolysis was more similar to that obtained in B. subtilis. 

Since minicells are resistant to-the autolytic enzymes on their 

walls, and ends are much more resistant to autolysis than cylindrical 

walls in strain 168, this suggests that once the end is formed, it 
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fication (see Chapter IV for further discussion). 

Plate 15 (15min incubation at pH 8.6) shows another feature of 

the separation process, nainely'V-shaped' pieces of wall removed from 

the outer edge of the cross-wall. The cylindrical walls are ragged in 

comparison to the smooth thinner poles. In places the inner dense 

layer of the wall has disappeared, and occasionally a break can be 

seen extending right through the wall. 
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Plate 15 	Section of a cell after 15min incubation at pH 8.6. 
V-shaped notches of wall were removed from the outer edge of the cross-
wall (a), in places the inner dense layer had disappeared (b), and a 
break can be seen extending right through the wall (c). 
Magnification x 40,000. 

After 30min incubation, it was very obvious that autolytic activity 

varied from cell to cell. Some cells were completely lysed at this 

stage, while others showed little difference from control 2. Lysis was 

not closely correlated with wall thickness, for in many cells, the 

point of lysis was not at the thinnest part, and some thin-walled cells 

were not lysed. However, the inner dense layer was always absent at 

points of lysis. Plate 16 shows the cytoplasm about to burst through 

the wall. 
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Plate 16 Section of a cell after 30min incubation at pH 8,6. 
It shows the cytoplasm about to burst through the wall. 
Magnification x 100,000. 

Plate 17 (45min incubation at pH 8.6) illustrates clearly the 

greater resistance to lysis of the poles. This cell was at an advanced 

stage of autolysis, and the unfinished cross-walls had been eaten away. 

Many points of lysis occurred, indicating that the amidase was still 

active after the cell contents were lost. In contrast, Plate 18, taken 

from the same sample, showed signs of degradation right across the cross-

wall, but little evidence of any enzyme action on the side walls. 

After 60 and 75min of incubation, most of the cells were lysed. 

Plate 19 illustrates just how fragile some of the walls had become. 

Thus it appeared that in the normal process of division and sepa-

ration, the cross-walls were completed before separation began, and that 

when this occurred, it began at the outer edge from two directions, 

cutting out a 'V-shaped' piece of wall, and then continued on down the 

centre of the cross-wall (Figure 16). Sometimes a small bump was visible 

on one of the ends where the'V-shaped' piece had not been completely 

remSved. In three-dimensional terms, this meant that a ring of material 

of roughly wedged shape cross-section must have been removed from the 

outside of the cross-wall, although this may have occurred in many 
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Plate 17 Section of a cell after 45min incubation at pH 8.6. 

The ends are more resistant to autolysis than sides, and there has been 
degradation of an unfinished cross-wall (a). 	Magnification x 50,000. 
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Plate 18 Section of a cell also after 45min at pH 8.6, showing very 
little degradation of the sides. 	Magnification x 50,000 
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Plate 19 Section of a cell after 75min at p 8.. The walls have 
become very fragile. 	Magnification x 50,000. 

112. 



x 

V 

Fig. 16 The first stages of cell separation 
The first signs of degradation appear to occur as indicated by the 
dotted line in a),. 'V-shaped' notches are removed as shown in b) and 
then separation continues towards the centre of the cross-wall. 
X indicates the position of the bump which appears to result from the 
incomplete removal of the 'V-shaped' notch 0  

small fragments. There must be some very precise means of controlling 

where the cross-wall splits, since even under the abnormal conditions 

of autolysis, the splitting occurred in the same place, and the ends were 

not degraded before the sides. Ends produced from cross-walls were 

thinner and smoother than sides, and were probably thickened sub- 

sequent to their formation, as ends of various thickness were normally 

seen. 

Under conditions of autolysis at pH 8.6, where amidase was the 

major activity, separation of the cells was no longer under such strict 

control, and enzyme right across the cross-wall was able to act, so that 

often the cells were separated in the middle but still joined nearer the 

outside. And a point was reached in autolysis where even unfinished 

cross-walls were degraded from the outside. Aniidase was also acting on 

the sides, making them progressively thinner, but at some places attack-

ing the wall in such a way as to form a split right through, resulting 
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in lysis. Before lysis occurred., the inner dense layer was lost. 

When the experiment was repeated under conditions optimal for gly-

cosidase activity (pH 6.0), no such immediate degradation of cross-

walls and thinning of sides was visible. The most noticeable effect 

in control 2 and the first two incubation samples, was breakage of the 

wall near poles and cross-walls, which appeared to have been caused by 

a structural weakness. In some cells a thin split was visible, in 

others, parts of the wall had been completely dislodged; and in one 

instance the fracture lines could be seen in transverse section (Plate 20). 

Not until after 40min was much degradation of the cross-walls evident. 

Again the 'V-shaped' notches removed from the outside of the-cross-wall 

were visible (Plate 21). After 80 or 100mm, degradation of developing 

cross-walls occurred, as had happened at - pH 8.6 after only 45mm. As 

before, the sides were more ragged and often thicker than the ends, which 

remained smooth and more resistant to attack. There was no obvious 

degradation of nascent cross-walls at their inner edge, as might be ex-

pected if the glycosidase were acting like the N-acetyl muramidase in 

S. faccalis. 

Thus under conditions optimal for glycosidase activity, the main 

difference from the arnidase results was the appearance early in the in-

cubation of an apparent structural weakness next to poles and cross-

walls. This occurred to a very limited extent in control 1, but was 

more evident once the cells were resuspended in TM buffer. Otherwise, 

the pattern of autolysis was similar to that where amidase was acting, 

but at a greatly reduced rate. In fact results in the previous section 

showed lysis at pH 6.0 even after heating to inactivateglycosidase, 

suggesting amidase activity at this pH. The appearance of the 'V-shaped' 

notches was no less marked than previously. 	 - 

if the activity at pH 6.0 is from glycosidase, these results could 
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Plate 	-ctions of cT1; fro: coi'o1 i at p (,.O. 
Fractures in tho wl1 are indicated by arrows. d) shows them as seen 

in transverse section. 	Magnification x 100,000. 
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Plate 21 Sections of cells after 80min incubation at p11 6.0. 
V-shaped notches are visible at the outside edges of cross-walls. 
Magnification x 100,000. 

indicate that by breaking different bonds, glycosidase can achieve the 

same results as amidase, as far as can be detected at the resolution 

of the electron microscope, but requires a much longer period of time, 

perhaps because it is present in very small amounts. This means that 

glycosidase is situated at the poles and along the cylindrical walls, 

and is in agreement with the results of Fan (197(*, who found that both 

the 'ainidase' and lysozyme could act as dechaining enzymes, and with 

the presence of glycosidase in minicells. 
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CHAPTER IV 

STRUCTURE AND GROWTH OF B. SUBTILIS 

117. 



RESULTS AND DISCUSSION 

In this chapter, I have attempted to summarise the information on 

B. subtilis, and using this, to put forward some ideas about the 

structure and growth of this organism. 

B. subtilis is a Gram-positive rod, requiring many layers of pep-

tidoglycan to make up its thick wall. Much evidence suggests that 

there is a difference, probably structural, between the cylindrical 

side wall and the ends (Frehel et al., 1971; Highton & Hobbs, 1971 and 

1972; Fan, Pelvit & Cunningham, 1972). The only difference which can 

be seen in sections of cells is that the ends are often thinner than 

the sides, and are always smoother on their outer edge. But they do 

have the same trilayered structure as the side walls. In negatively 

stained preparations, the sides appear more granular and uneven than 

the ends. During autolysis, or on the addition of autolytic enzymes 

to SDS-walls, the ends are always more resistant to attack. (Fan et al., 

1972). During autolysis the O.D. fell steadily to about 101"0 of its 

original value, and then much more slowly (Figure 17). Negatively 

stained preparations made at various times during the autolysis 

(Plate 22a, b and c), showed that the persistence of ends was respon-

sible for this residual absorption. Very little other wall material 

remained. Eventually the ends developed holes and were gradually 

degraded. 

considerable wall turnover occurs in B. subtilis. Mauck and 

Glaser (1970) reported about 50% per generation, although newly 

synthesised material did not bcome available for turnover for at 

least one half of a generation. It has usually been assumed that cell 

ends are conserved, while turnover occurs in the cylindrical portion. 

If turnover is a feature of growth, then there is no reason for it to 
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Figure 17 O.D. curve for autolysing B. subtilis cell walls. Samples 
were taken at 0, 30 and 80mm (indicated by arrows), negatively 
stained and photographed in the electron microscope (Plate 22). The 
autolysis was done at 45 C at pH 8.6. The remaining material after 
60min is predominantly from cell ends. 

occur in ends since once formed, they need not grow. However Fan, 

Beckman and Beckman (1974) have reported turnover to occur in 

B. subtilis ends. 

Results presented in this thesis, indicate 'that amidase and gly-

cosidase are present in both the cylindrical wall and the poles, 

although exact distribution has not been determined. However, amidase 

is the major activity, and appears responsible for the separation of 

cells after completion 'of the cross-wall, and also for dissolution of 
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Plate 2 0-a 	 B. subtilis wall-(15 C, pH S.) at zero time. 
(se(, 	'• I 	 Magnification x 40,000. 
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1/ 

Plate 22b Auto1ysin, . 	:i walls ( i 5 C, p11 8.) at 30ui. 
Magnification x 30,000. 
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Plate 22c Autolysing B. subtilis walls (45 C at pH 8.6) at 80mm. 
Magnification x 30,000. 

cylindrical walls during autolysis. This could well indicate that 

amidase is the enzyme involved in turnover during normal growth. The 

reason for the existence of glycosidase has not become clear during 

these studies. No specific site of activity could be attributed to it 

in the presence of amidase, and under conditions optimal for its 

activity a similar, although much slower pattern of events to that with 

amidase occurred, except perhaps for some localised weakening of the 

wall close to the ends and cross-walls. Glycosidase activity does not 

provide a suitable acceptor site for addition of new material, so it is 

unlikely to be involved directly in growth. However, it could still be 

important for breaking glycan chains in the process of end formation. 

If glycosidase can achieve the same results as amidase by breaking 

different bonds, e.g. cell separation and degradation of outer layers, 
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it might be useful to the cell under adverse conditions when the 

arnidase cannot work so efficiently, such as in an acid pH environment. 

It is not known whether the glycan strands are arranged parallel 

to the surface of the wall or perpendicular to it. If they were 

parallel to the surface, they could be perpendicular or parallel to the 

cylinder axis. However, the fact that the wall is such a good substrate 

for lysozyme may give a clue as to the arrangement of the peptidoglycan. 

It has been shown by Philips et al. that a hexasaccharide substrate of 

NAG fits into the cleft in the lysozyme molecule with the plane of the 

sugar rings such that one edge of the rings is buried in the cleft, 

while the other edge is exposed. The bulky lactyl groups of NAM would 

be attached to the exposed surface. This suggests that peptidoglycan 

might be arranged in the wall with the glycan chains lying parallel to 

the surface of the cell, with the plane of the sugar rings perpendicular 

to the surface, and with the peptide subunits extending towards the 

inside. 

With regard to whether the glycan chains are arranged parallel or 

perpendicular to the cell axis, it is difficult to equate structural 

changes at the resolution of the electron microscope with what is 

actually happening at the molecular level. However, several structural 

features became apparent from electron micrographs taken during the 

course of my work. 

1. Cells, which were sonicated, always split perpendicular to their 

long axis, and most of the initial splits occurred near an end or a 

developing cross-wall, or in the centre of the cell. Central splits 

became more common in older, shorter cells i.e. as they ap - roached 

stationary phase. Also, when cells or walls were fragmenting due to 

amidae activity, ribbons of wall were very often lost from around the 

diameter of the cell (Plate 23). This may result from the reported 
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plate 23 Negatively stained wall of 3. subtilis showing character-
istic degradation pattern. 	 Magnification x 50,000. 
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behaviour of amidase, namely that once it binds to the wall, it breaks 

all the bonds in the vicinity, before moving on to attack another piece 

of wall (Herbold & Glaser, 1975). This pattern of degradation sug-

gested that the glycan chains were perpendicular to the cylinder axis. 

On the other hand, wall being degraded by lysozyme, and also 

(although not so clearly) by glycosidase, had a much more 'moth-eaten' 

Appearance (Plate 24a and b), indicating a more random type of degra-

dation. 

Cell ends also often showed a characteristic pattern, In many 

negatively stained preparations, they appeared to have a circular 

pattern (Plate 25), and degradation usually took place in a circular 

manner (Plate 26), with ribbons of material being lost from around the 

circumference. Also areas of apparent weakness were often seen in the 

centre of the end, such as the hole in Plate 27. Fan and Beckman, 

(1973) found that walls from partial septa of B. subtilis were more 

sensitive to digestion by amidase than completed ends. This they 

interpreted as indicating that septal walls were modified to an atnidase 

resistant form after completion. The hole in Plate 27 could thus be 

the result of amidase action. 

Walls in negatively stained preparations often showed some kind 

of surface pattern. The 'honeycombs' shown in Plate 28 a and b 

occurred in many samples. They were thought at first to be an arti-

fact due to drying down of stain, but on closer inspection, the struc-

ture of the surface inside the 'honeycombs' was seen to be the same as 

outside, indicating that perhaps the lines of the pattern were due to 

genuine irregularities on the surface of the wall. 

Another more generalised surface pattern is shown in Plate 29, 

where a--, , in the ends appear much smoother than the sides. 

While examining sections of cells, one transverse section was found 

which appeared to have a defiriitn layered structure in its wall (Plate 30). 
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Plate 24 Negatively stained walls of B. subtilis. a) shows the walls 
before addition of lysozyme, and b) shows the same walls after the 
grid had been floated on lysozyme (1mg/mi, p11 6.0, 37 C) for 5mm. 

Magnification x 15,000. 
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after removal of crude enzyme with 3M LIC1. :ilagnification x 120,000. 
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Plate 26 as abovt. 	.agnhfication 	120,000. 
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Plate 27 	caLively stained 3U6-walls of B. subtills. 
Magnification x 50,000. 

Plate 28 Negatively stained walls of B, subtilis showing a typical 
'honeycomb' pattern. 	Magnification x 150,000. 
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Plate 29 Negatively stained cells of B. subtilis after treatment with 
SDS and incubation at pH 8.6 for l5miD at. 	C rnagn].ij lcation x 20,000. 

114 

Plate 30 Transverse section of a B subtilis cell from control 2 
pH 8.6, showing a layered structure( arrows) in the wall. 

Magnification x 120,000. 
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Subsequently, many other sections were examined, but none were found 

which demonstrated the effect so convincingly. 

The above observations have been taken into account when consider-

ing possible models for structure and growth. 

Peptidoglycan is probably a linear polymer (analogous to chitin. 

Carlstr&i, 1957), with the repeating disaccharide-peptide units related 

simply by a translation along the chain, and if all the peptide sub-

units have the same shape, there is only one possible form of bond 

between them, cross-linking the glycan chains. Thus the only covalently 

bonded, extended structure would be a sheet with the glycan chains 

parallel to one another in the plane of the sheet, and the peptides all 

on the same side. Curvature in one direction would produce a covalently 

bonded, open-ended cylinder. But the thickness of a Gram-positive wall 

would require some 10 to 20 such cylinders. If the sheets were all in 

the same orientation, covalent bonding between them would only be 

possible if some of the peptide subunits were arranged in a different 

orientation from that required for intra-sheet bonding. This would be 

necessary even if some glycan chains were reversed to bring their pep-

tides on to the other side. }{owever,there is the further possibility 

of H-bonding between the sheets. The glycan chains have been reported 

to be only 5 to 21 units long with an average length of 10 (Hughes et al. 

1963) and 55 0/10 to 65% of the possible cross-links are formed (Tipper, 1970). 

If the degradation patterns observed are representative of what is 

occurring at the molecular level, then the results of amidase action 

cn be explained by considering the glycan chains either parallel or 

perpendicular to the cylindrical axis. If the chains were perpendicular 

to the axis, then as the amidase split the bonds between the chains, the 

latter could move apart causing a split to be seen around the diameter 

of the cell. The same action on 'ehains running parallel to the axis would 
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be expected to result in splitting of the wall parallel to the axis, 

which was never observed. However, if the amidase only broke the 

bonds at the ends of glycan chains which attached them to neighbouring 

chains, then it is possible. that chains could have moved apart, giving 

the appearance of a split perpendicular to the axis. Higgins and 

Shockman (1971) have discussed observed degradation patterns in 

S. faecalis in terms of orientation of glycan chains. 

One of the difficulties when considering glycan chains parallel 

to the cylindrical axis, is to visualise what happens during formation 

of a cross-wall. One possibility is that at the start of division, 

the glycan chains are laid down perpendicular to the surface of the cell 

and grow inwards towards the centre (as in Figure 3). When visualised 

in transverse section, the chains would then no longer be growing 

parallel to each other and would eventually reach a point where they 

could extend no further. Thus to prevent a hole remaining in the 

centre of the cross-wall, a less regular array would have to be postul-

ated. Another problem with this mod2l is direction of chain exten- 

sion discussed by Higgins and Shockman (1971). Also it does not easily 

exolain the observed pattern of lytic activity during cell separation. 

'V-shaped' notches of material are often seen in the process of being 

removed in sections of completed cross-walls (Plate 21). This would 

suggest that glycosdase activity was required to break the glycan 

chains in the outer layers, since they are unlikely to be aligned 

suitably to produce this shape from amidase action alone. Although 

the model provides a definite site for separati 

amidase if the peptide cross-bridges are within 

sheets are only H-bonded together. However, if 

between sheets, then amidase would be required. 

A second possibility for the growth of the 

localised thickening, with the chains laid down 

n, it does not require 

a glycan sheet and two 

there were cross-linking 

cross-wall is essentially 

parallel to the wall, 
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as shown in Figure 18. This model is unattractive for a number of 

reasons. Firstly it provides no obvious site for cell separation, 

unless glycan chains are oriented as in b). a) requires predominantly 

glycosidase for separation, both a) and b) would probably require 

glycosidase to split the outer layers of the wall, and unless the 

glycan chains of the cross-wall are staggered to allow cross-linking, 

it is unlikely that amidase will feature prominently in the separation 

process. This model also gives rise to cell ends whose glycan chains 

are arranged perpendicular to the surface. Although this could explain 

some of the observed differences between ends and sides, it is not 

easy to visualise how the ends and sides would be continuous with each 

other. 

Another possibility is that the formation of cross-walls is com-

pletely different from that of side walls, such that, as with the last 

alternative, structural weakness between end and side might be expected. 

Although indications of this were observed in on e experiment under 

conditions optimal for glycosidase activity (see Chapter III), there 

was no other evidence for it. For instance when whole cells were soni-

cated, cell poles were often isolated with a small section of cylin-

drical wall attached, and there was no evidence of discontinuity in 

sections viewed in the electron microscope, 

If the glycan chains are visualised as being arranged perpendicu-

lar to the cylindrical axis, then a model can be proposed in which the 

I ormation of cross-walls is an e:tcnsion of side wall formation. If 

the l:can  chains are short, then many will be required to form the 

circumference of the cylinder, so that each one only requires to be 

bent very slightly. As already discussed, this arrangement explains 

the rsu1ts of anidase activity as seen in electron micrographs. It 

also fits willti the layered structure seen in Plate 30 (which of course 
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Fig, 18 One possible method of laying down glycan chains to form 
the cross-wall. When arranged as in b) they provide an 
obvious site for cell separation. 

7/ 
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Figure 19 A transverse view of the cross-wall when glycan chains 
running perpendicular to the axis of the cell are laid 
down as annular rings one inside the other. It would 
probably be necessary for the glycan chains to become 
progressively shorter as they got nearer the middle in 
order to avoid excessive bending ofz the chains. If 
bonding allowed, it might be possible to reach a hole in 
the centre which was a square with sides the length of a 
disaccharide unit. 
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would also allow glycan chains to be parallel to the axis). In this 

model, cross-walls would be formed by localised wall thickening. At 

the appropriate time and place, presumably determined genetically, 

glycan chains would be laid down inside existing wall, and in transverse 

section would appear as shown in Figure 19. This method of laying 

down cross-walls is consistent with there being no detectable difference 

or discontinuity between cross-walls and cylindrical walls in sections, 

and with the appearance of negatively stained ends( Plates 25 and 20. 

The cross-wall could be made of several rows of glycan chains linked 

into sheets in each annular ring, and amidase would then be required 

for separation. 

As the cells begin to separate, the annular rings could be 

gradually pushed out by internal pressure into the characteristic dome-

shape of the pole (rather like a paper light shade which will fold into 

a flat circle and expand to a sphere). The glycan chains in the end 

would then be running parallel to the surface, but with the plane of the 

sugar rings.parallel to the surface, instead of perpendicular as in the 

side walls, resulting in sheets of glycan perpendicular to the surface. 

Alternatively, the orientation of the glycan chains could be slightly 

altered during expansion, so that after appropriate cross-linking, 

shoots of glycan could he formed over the cell end continuous with the 

sides. Subsequent to their formation, new material could be laid down 

on the inside of ends, making them thicker. 

This type of arrangement for cell poles is consistent with observed 

degradation patterns (Plates 26 and 27), and avoids the difficulty of 

direction of growth of the chains forming the cross-wall. It provides 

a role for both the lytic enzymes found at the pole, and amidase would 

be a suitable enzyme to produce 'V-shaped' notches. The greater resis-

tance of cell poles to autolytic attack, and their smoother appearance, 
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together neighbouring chains in a sheet. But cell separation using 

lysozyme would be expected to be a much more random process. 

In negatively stained preparations of walls, structures were ob-

served which appeared to be developing cross-walls with projections. 

These remain unexplained, but suggest that the cross-wall may not be 

built up evenly all round the cell, but may be fed out from specific 

points. (Plate 31). 

Plate 31 Negatively stained wall of B. subtilis which appears to show 
a developing cross-wall. 	Magnification x 140,000. 
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Growth 

Very little is known about the control mechanisms of cell division, 

for instance, what determines when and whore the cross-wall is formed,. 

or what the diameter of the cell should be. But the most important 

part of the cell is the genetic material, and the essential process for 

survival is the replication of this material, so that information for 

cell division must arise during the replication process, in order that 

one complete genome is passed on to each daughter cell. Minicells are 

an example of what can happen, when there is a flaw in this system. 

However, even without understanding the control mechanism, it is 

possible to suggest a model of cell growth. 

A model for B. subtilis has to be able to account for the following 

observations. The cell doubles in length, while the diameter remains 

constant, and a cross-wall is formed. Under normal conditions, cell 

separation does not begin until the cross-wall is completed. Wall 

material turns over at a rate of 50% per generation (Mauck & Glaser, 

1970) but newly incorporated material does not become available for 

turnover for half a generation. However, wall turnover is not essen-

tial for growth, since some species show no signs of it, and strains 

of B. subtilis have been found with very low rates of turnover. 

Analysis of. sections of peruicillinase negative mutants of 

B. licheniformis and B. cereus (Highton & Hobbs, 1971 and 1972), after 

exposure to penicillin, and during recovery after addition of penicilli-

nase, led to the conclusion that cylindrical walls grew by addition of 

material all over their surface. The same conclusions were reached 

from the appearance of B. subtilis and B. megaterium recovering from 

protein synthesis inhibition (Frehel et al., 1971) and from turnover 

and incorporation of .peptidoglycan in 13. subtilis (Mauck & Glaser, 1972). 

Also it has been found that any lytic enzymes likely to be involved 

Fiedler & Glaser 1973 
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in growth are present all over the cell. 

A model has therefore been proposed which allows for addition of 

new material along the whole length of the cell. Formation of disacc-

haride-peptide units takes place at the plasma membrane, and it is from 

there that new material is inserted into the existing wall. The model 

proposes that new material is added to the innermost layers of the wall. 

This avoids the conceptual problem of transporting subunits of wall 

and all the necessary enzymes through 10 or more layers of peptido-

glycan to - expand the whole thickness of the wall by insertion of new 

material, Instead, new material goes predominantly into the formation 

of new layers, which use as a template the completed layers outside them. 

If the innermost layers are made in a contracted form, then as new 

layers are formed inside them, they can be pushed outward and expanded 

slightly. Eventually they will reach the limit of their expansion, and 

with the help of amidase, could be randomly degraded and gradually lost. 

This would account for the untidy appearance of the cylindrical wall 

in many sections. To fit Mauck and Glaser's data, the time for a layer 

to move through the wall would have to be at least half a generation. 

The percentage of turnover would depend on the frequency of insertion 

of new layers, and on the wall thickness. Incorporation of material 

into existing layers would also influence the rate. This model would 

predict that walls which showed little or no turnover might be slightly 

thinner, since the outermost layer would not have to stretch so far that 

it would be degraded. In this case for the cell to double in length, 

new material may have have to be inserted into more layers than where 

turnover occurs. A feature of this model is that it does not require 

lytic enzyme to provide sites for insertion of new material, but rather 

that lytic enzymes accomodate the new material more indirectly, by 

getting rid of old material. 
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The reason for the differences observed at cell poles may  be that they 

do not turn over, and new material is only added for thickening. The 

model is applicable irrespective of the orientation of glycan chains. 

In summary, the essential features of the model are; 

Growth occurs all over the cylindrical surface and new material is 

added to the inside of the wall. 

The innermost layers of the wall are shape deterrniningand will 

maintain the rigidity of the cell. 

Turnover is explained, and the percentage turnover per generation 

depends on the thickness of the wall, and on the frequency of insertion 

of new layers. 

4 	Lytic enzymes, probably amidase, are involved in degradation of the 

outer layers where turnover occurs, or where new material is inserted 

into existing layers. 

5. The length of the cell increases between insertion of each new 

layer. 

(?art of this work is being published in abstract form for the 

Society of General Microbiology Symposium, 1975.) 
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CHAPTER V 

ANALYSIS OF GROWTH AND DIVISION IN A MINICELL PRODUCING MUTANT OF 

BACILLUS SUBTILIS 
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INTRODUCTION 

During the normal process of division in B. subtilis . the cell 

doubles in length and divides in the. centre. Several lines of evidence 

suggest that the divisions in mutant strains, giving rise to minicells, 

are normal in all respects, except for their location along the axis of 

the cell (Reeve & Mendelson, 1973; Khachatourians, Clark, Adler & 

Hardigree, 1973). However, because minicells are unable to grow and 

divide (Reeve, Mendelson, Coyne, Hallock & Cole, 1973), division 

resulting in a ininicell does not increase the number of viable cells in 

a population. 

Teather, Collins and Donachie (1974) analysed E. coli K12 P678 and 

its minicell producing derivative P678-54, and from their results 

proposed a model to account for the difference in cell size distribution 

which they found between the normally dividing strain and the mutant. 

The model, which applies to an exponential population, proposes that 

i) potential division sites (PDS). arose during cell growth in the same 

way in both wild type and mutant strains, but that such sites were active 

for only one division in the wild type, while they remained active 

indefinitely in the miniceil producing strain, ii) the probability of 

division occurring at any one PDS was equal, and iii) enough 'division 

factor' was produced at each unit cell doubling for one division, and 

this 'division fact:r' was utilised entirely in the formation of a 

single cross-wail. The site where 'division factor' was expressed was 

chosen at random out of all the available PDS. A polar division giving 

rise to a minicell, therefore prevented a normal central division, 

causing an increase in the average cell length in the minicell producing 

strain. Thus the length of a new-born cell in the mutant could be a 

multiple of the new-born coil size (c) of the wild type strain. If 

the length of a particular new-born cell were nc (where n is an integer), 
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then after one generation, the cell would have grown to 2nc and would 

have produced sufficient'djyjsjon factor' to undergo n divisions. The 

number of division sites available would have been the normal number of 

division sites (2n-1), plus the two polar sites, giving 2n+1 PDS. From 

the model they predicted 	the length distribution of an exponentially 

growing population. The distribution of lengths depended on a) the 

distribution of lengths at birth, and b) the pattern of length increase 

during the cell cycle (Collins & Richmond, 1962). The parental strain 

used by Teather et. al. grew with a mean cell size of 1.46c, very close 

to the theoretical value of 1.44c (Powell, 1956) for exponential length 

increase. The theoretical distribution of lengths for the minicell 

producing population, was very close to that measured experimentally, 

with a predicted average cell length of 2.52c and an experimental result 

of 2.46c. Calculations based on the model also predicted that minicells 

would be produced at the rate of 0,75 per nucleated cell per generation. 

From the predicted pattern of daughter cell lengths, it became apparent 

that there was a very high probability that a large cell would give rise 

to smaller progeny, e.g. the probability of a new-born cell of length 

8c giving rise to a minicell was 0.94. Minicells were observed to be 

produced with an approximately equal frequency at both old and new poles. 

electron microscopic analysis gave a minicell production of 0.670.08 

per cell per generation, while observations on nutrient agar brought the 

value closer to the theoretical one, giving 0.72O.11. 

An alternative to the first proposal of this model was put forward 

by Adler and Hardigree (1972), who suggested that the polar division 

sites in the minicell strain were 'immature' sites which, in the normal 

course of events, would be moved to the centre of the cell by wall 

growth before they became available for septum formation. Thus minicell 

formation would result from the premature inactivation of these sites. 

Teather (1974) however, pointed out that there would already be 
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a mature PDS or at least part of one present at the pole from the 

division which gave rise to the pole. 

Coyne and Mendelson, (1974) in a study of a minicell producing 

mutant of B. subtilis, maintained that, although the location of the 

first abnormal division site giving rise to a miniceil appeared to be 

random, thereafter, location became non-random, with new minicells 

being formed preferentially adjacent to those already existing. This 

clustering of abnormal events suggested to them that division site 

location might be related to pole age. They also calculated that the 

probability of production of minicells was 0.31 per nucleated cell. 

However, their studies were carried out on cells newly germinated from 

spores and followed through only a few generations. Thus it is unlikely 

that the clones were in a balanced state of growth, since just after 

germination, shorter cells would predominate, and the number of minicells 

per nucleated cell would be lower than in a steady state of growth. Two 

other difficulties arise with B. subtilis which are not present with 

E. coil, both of which make cell measurements very difficult. OneAs 

the long period of time required to complete division and separation, 

even when the cells are in balanced growth, and the other is the diffi-

culty of identifying nascent cross-wails Mendelson and Coyne (1975) 

also reported that certain rninicell strains of B. subtilis were sup-

pressed in division ability, From their observations, they distin-

guished three phenotypic aspects of minicell producing strains, 

1) division site location, ii) frequency of minicell producing divisions 

and iii) division ability, presumably all resulting from a single 

mutation. On the other hand, Teather et.al . (1974) attribute i) to the 

mutation and consider ii) and iii) to result from the mutation. 

Coyne and Mendelson (1974) noted that any model attempting to 

define th mechanism for selection of division site location in 
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B. subtilis minicell producing mutants should not overlook the fact 

that this species, unlike E. coli, Salmonella and Haemophilus, which 

also produce minicells, contains genetic information regulating events 

similar to the initial stages of division in close proximity to a pole, 

namely during sporulation.(Balasa, 1971) Although normally turned off 

during vegetative growth, the genetic potential for partitioning the 

cell in the polar region always exists'in B. subtilis cells. However, 

unlike minicell formation, the partitioning in spore formation consists 

initially of laying down only a membrane, and enclosure of the nuclear 

material. But it is still possible that minicell formation results from 

the expression of some of the spore informationduring vegetative growth. 

It was decided to study the growth of the minicell producing mutant 

B. subtilis Cu 403 div IV BI, to see if it was similar to E. coli, and 

would fit the model proposed by Teather et. al. (1974). 
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MATERIALS AND MrH0DS 

Organisms. B. subtilis 168 and a minicell producing mutant derived 

from It, Cu 403 div IV Bi thy, met were grown to exponential phase in 

L broth at 30 C (see previously). 

Wall Stains, Crystal violet. A thin film of culture was made on a 

grease-free slide, and was fixed with 1% formalin for lmin The slide 

was then flooded with 107o tannic acid for 20mm, washed carefully with 

H20, and stained with 0.2% crystal violet for 2 to 3mm. The slide was 

washed and dried, and immediately before viewing, a drop of H 2 0 was 

placed under the coverslip. 

Methylene blue. A film was made as above, and fixed in a flame. The 

slide was then flooded with 0.03% methylene blue for 30 to 45s. washed 

and dried. Immediately before viewing, 1 drop ,  of 67% alcohol was 

placed under the coverslip. This had the effect of decolourising the 

cell ends and septal regions. 

Preparation of Unstained Cells for Microscopy, Cells were spread on 

thin layers of 1.2% agar, containing 0.051;'-,sodium azide, on a microscope 

slide, and the cover slip was pressed do'flfirmly. 

Microscopy and Photography. Cells were photographed with a Zeiss 

Ultraphot microscope using phase contrast optics. Measurements were made 

on enlarged projections of the negatives. For electron microscopy, the 

cells wore spun at 10,000g for 5mm, washed with 1120 and resuspended in 

h90, all at 4 C. Negative staining (using 1% uranvl acetate) and 

sectioning were carried out as already described. 
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RESULTS AND DISCUSSION 

Visualisation of Cross-walls 

As mentioned In the introduction, the major problem in analysing 

cultures of Bacilli, was visualising nascent cross-walls. Under the 

growth conditions used, the cells grew in long filaments, and using 

phase co'L - ast microscopy, only Completed and fairly well advanced 

cross-walls could be detected with certainty (Plate 32). Thus various 

wall stains were used in an attempt to clarify positions of cross-walls, 

especially the most recently initiated. The results of these are shown 

in Plates33, 34 and 35. From negatives such as these, it was much 

easier to measure cell lengths and to locate minicells within chains. 

Distribution of Cell Length 

A total of 573 cells of exponential phase strain 168, and 544 cells 

(excluding minis) of strain Cu 403 were measured, and grouped in size 

classes of multiples (n) of the new-born cell length (c) of strain 168, 

The distributions are shown in Figure 20 a and b. 

For strain 168, 76% of the population fell between c and 2c, and 

957o between c and 3c. This was nt so close to the ideal culture as 

E coil P678 used by Teatheret.al ., suggesting a more variable new- 

born cell size or cycle length for B. subtilis. The length distribution 

for strain Cu 403 ranged from c to 6c for 95 10 of the cells, with some 

cells measuring up to 9c. This was similar to E. coli K12 P678-54. 

These results gave an average cell length of 1 .6fc for strain 168 and 

2.39c for strain Cu 403, so that the average cell length for the minicell 

strain was 1.9 times that of the wild type. The minimum cell length 

for both strains was about the same. 

In E. coli the average length of strain P678-54 was 1.68 times that 

of the parent strain, compared with a theoretical value of 1.76 pretictd 

from the model (Teathor et. al., 174). It ought to be possible to 
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Plate 32 Unstained cells of s 
	 103 on an agar f1:. 

Magnification x 1,500. 
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Plate 33 Cells of strain Cu 403 staincc with rnethylcne blue. 
Magnification x 1,500. 
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Plate 34 Cells of strain Cu 403 stained with crystal violet. 
Magnification x 1,500. 

48 

IL 

Plate 35 as above. The different effects were obtained by chance, 
depending on where the cells were lying on the slide. 

Magnification x 1,500. 
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compute a theoretical distribution for strain Cu 403 analogous to that 

produced for E. coli (Teather etal. 1974), but unfortunately this 

was not available for inclusion. However, the results for strains 

Cu 403 and K12 P678-54 were in close agreement, indicating that a 

similar pattern of events may be occurring in both, although the 

B. subtilis populations were less ideal than those of E. coli, that is 

there were fewer cells between c and 2c. 

Frequency of Minicell Production 

The model for E. coli also predicted 0.75 minicells per nucleated 

cell. Given that the average cell length of the minicell strain was 

1.8 times that of the parent strain, the number of ininicells per nuc-

leated cell was calculated for strain Cu 403. Consider a new-born 

cell of length c doubling to length 2c. This cell is then capable of 

undergoing one division. Using the same reasoning, a cell of length 

1.8c doubling to length 3.6c would then be capable of undergoing 1.8 

divisions. For every division giving rise to a daughter nucleated cell, 

0.8 divisions are available to give rise to minicell. Therefore there 

should be 0.8 minicells per nucleated cell per generation. Counts of 

minicell ratios were carried out by several different techniques. 

Countin -  populations on agar using phase microscony, gave a value of 

0.33 + -0.08, very close to the value obtained by Coyne and Mendelson (1974) 

However, when the cells were stained before counting, the number of 

minis per nucleated cell increased to 0.47±0.08. Finally the analysis 

was carried out using negatively stained preparations and electron 

microscopy. This gave the greatest number of minicells per nucleated 

cell, nanely 0.62:0.09. Plate 3S illustrates nascent cross-walls which 

may not have been visible under a light microscope, even 	ter staining. 

There are several possible reasons why the experimental value was 

sorn:?v,'hat lower than the calculated one. Firstly, the latter assumed 
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Plate 36 Negatively stained cells of strain Cu 403 showing nascent 
cross-walls in minicell formation. 	Magnification x 50,000. 
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that all ininicells survived for counting, and secondly, that all 

Possible divisions occurred. In view of the report by Mendelson and 

Coyne (1975) that rninicell producing strains of B. subtilis, including 

Cu 403 div IV Bi, were Suppressed in division ability, it is possible 

that . a few of the divisions , which could result in minicells, are 

absent in this strain (i.e. in preference to those giving rise to 

daughter nucleated cells), although it is unlikely that the number of 

such non-occurring divisions was nearly as high as these workers reported. 

Thirdly, all minicells may not have been counted, even in the electron 

microscope. However, the good agreement obtained between the experi-

mental value and the theoretical value for E. coil, and the calculated 

value for strain Cu 403 suggested that the number of missing minicelis 

for whatever reason, was very low. 

All measurements of cell lengths of Cu 403 were done from negatives 

of stained cells taken with a light microscope, so that all nascent 

cross-walls would not have been detected. It is likely that on average, 

more may have been missed in the minicell strain than in the parent 

strain, since in the latter it was much easier to decide about a doubt-

ful cross-wall, because they were Occurring at approximately regular 

intervals. This would then result in the value for the average length 

of the minjcell strain being slightly too high, which in turn means 

that the ratio of minis to nucleated cells is too high. However, again 

the close agreement suggests that this source of error may not have been 

Significant. 

Randomness of Miniceli Production 

In view of the apparent disparity between the results of Teather 

t. al. and of Mendelson and Coyne about the randomness of minicell 

production, this phenomenon was also studied. Because, under the 

growth conditions used, strain Cu 03 grow as long filaments with the 
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minicells remaining attached, at least during most of the exponential 

phase, this offered an excellent system for studying minicell produc-

tion. Analysis was done with the electron microscope to ensure 

maximum visualisation of nascent cross-walls. Using the predicted 

number (0.8) of minicells per nucleated cell, the probability of 

nearest neighbours was calculated. This study assumed that all cells 

were end to end in one long chain, and in a cluster of minis it did not 

matter from which of two neighbouring parental cells they had arisen. 

Table 8 	 Boundary Probability of 
occurring 

cell-cell 30.9% 

cell-mini 24.687o 

mini-cell 24.68% 

mini-mini 19.75% 

From these values, the probability of increasing numbers of minis in 

clusters was as. follows; 

Table 9 	No of minis 

2 

3 

Li 

6 

Probability 

0.1975 or 19/102 

0.0392 or 3/102 

0.0077 or 7.7/10 

0.0015 or 1.5/10 

0.0003 or 3/10 

An experimental count of minis compared with the theoretical values 

based on the probabilities above is shown in Table 10; 

Table 10 	No of minis Experimental Theoretical 
count 	count 

1 	 220 	 220 

2 	 68 	 44 

3 	 8 	 3.8 

4 	 7 	 1.76 

5 	 2 	 0.35 

6 	 0 	 0.07 

If the suggestion of Coyne and Mendelson (1974) that minicells were 

formed preferentially adjacent to those already existing were true, then 
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it would be expected that, compared to values predicted for random 

distribution, the numbers for 1, 2 and 3 minis would be lower than 

expected, while for 4 or more minis in a cluster, they would be greater. 

This was not true for the results shown above. In fact, the number of 

pairs of minis was higher than expected, and the number of 3 minis-was 

the same as predicted. Although the numbers for 4 and 5 minis were 

slightly higher, they were not high enough to suggest any form of non-

random distribution. The results were not analysed in terms of the age 

of poles where clusters were occurring, except to say that clusters of 

3, 4 and 5 minis were found within long filaments as well as attached 

to the end cell of a filament. 	 - 

The results discussed in this chapter indicate that there is a 

great deal of similarity between the control of division mE. coli 

K12 P678-54 and B. subtilis Cu 403, suggesting that the latter may 

fit a similar, if not the same, model as proposed for E. coli (Teather 

et._al.,1974) The results are not in agreement with those of Mendelson 

and Coyne, who were studying the same strain of B. subtilis. However, 

two differences in experimental procedure of these workers could well 

account for the disagreement. Firstly they studied clones immediately 

after germination from spores, instead of a well established exponen-

tial culture, and secondly, their measurements were done on unstained 

cells, which may imply that a large number of nascent cross-walls were 

undetec ted. 
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In an attempt to clarify some of the conflicting rata on growth and division 

in rodshapod bacteria, two aspects of the grovith of a Gram-positive rod 
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of teichoic acid wore moec resistant to dagradatien by lytic oyrioo than wal1 
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