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Treatment of Design Fire Uncertainty using Quadrature M ethod of Moments

Abstract

The use of a single design fire in a performancebdire design code typically fails to
account for the inherent uncertainty in knowleddetle future use of the space.
Uncertainties in knowledge of intended use andriications in terms of fuel loading
and potential heat release rate can be bounded psobabilistic methods. Use of a
cumulative distribution function (CDF) and the telhprobability density function (PDF)
specify the best available estimate of the prolig{likelihood) of a fire of given size to
take place in a compartment. Monte Carlo simutat® a widely used computational
method for treating uncertainty that might be désct by a PDF . In this technique, one
samples the uncertain variables from their undeglyfwDFs and runs a fire model for
each sample. For complex fire models, this approaai be computationally intractable.
In this work we present a computationally efficigethnique called the Quadrature
Method of Moments (QMOM) for propagating uncertgiftound in distributions. In
QMOM one solves for only the moments of a relevantertain parameter. The
cumulative distribution function (CDF) of the unten parameter provides all the
statistical information required for risk assessteenWe consider a simplified
propagation of uncertainty problem. Results usimghbthe ASET and CFAST fire
models indicate that computation of the momentghef PDF using QMOM and the
reconstruction of the CDF by matching the momentth whose of a 4-parameter
Generalized Lambda Distribution (GLD) give accuregsults at a significantly smaller
computational cost.

Keywords. Design fire; uncertainty; Monte Carlo simulationu&rature Method of
Moments; Generalized Lambda Distribution.

1. Introduction

Performance based fire design (PBFD) stipulates ahauilding must satisfy
some performance requirement. That is, the firetgadf the building must be evaluated
before the building can be deemed fit for occupa(ecy. [1]). This is normally done by
simulating fire evolution in a structure and evailig safety criteria, such as the height of
the smoke layer at some critical time after thet sitbthe fire. The fire model typically
consists of a design fire, i.e. a typical fire watltypical rate of heat release. However, the
use of a single design fire while simulating a Soenario may be inadequate. The type of
combustible materials in a room, their arrangenaet the point and source of ignition
are unpredictable. To account for this variabilitye use of a single representative fuel
has been proposed in [2]. This is a single fuekrs®ulocated at a center of the room,
having the same heat release rate characteristitteeaactual distribution of combustible
material in the room. The single representativé foeirce may be considered to be an
average of the actual distribution of fuel sourdese to the extreme variability in the
type of fire that can occur in any modern buildiogmpartment, a single average
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representative fuel source may not be sufficientcharacterize all the possible fire
scenarios, and therefore one may have to considelis@ibution of fire sizes.
Furthermore, there are many other uncertainties ascoperation of safety devices such
as smoke detectors and sprinklers, opening orrgasi vents etc. An early discussion of
the uncertainties inherent in fire safety desiggiien by [3]. In recent years there have
been systematic studies to incorporate the unogytaiherent in the variables relevant to
any given design fire. A thorough discussion osérg techniques is discussed in [4]. In
this study, we investigate a very general matherabtechnique that can be used to
simulate the propagation of uncertainty of anyafale that is used in a fire model. To
this point our discussion of the use of probaldistethods for performance based design
analysis has been quite abstract. A more phygibalted example is provided to explore
the use of the techniques and the value of theutgitp

Consider a design problem in which a designeriregwan active fire protection
system if a smoke layer descends below some driteight at a critical time as might be
found from an egress model. Clearly, the layegleis strongly dependent on the fire
size that would be assumed to take place in thepadment. As previously noted, the
designer does not know a-priori the range of us¢éhefcompartment. One means of
clarifying the likely hazard associated with a ramj potential fires is through the use of
probabilistic assumptions about the fire size amé Mmodels used to propagate the
uncertainty in the fire size into a layer heighstdbution. The problem is shown
schematically in Figure 1. We have a deterministe&cmodel that takes as input the heat
release rate of the fire and provides as outputhbight of the smoke layer. Any
uncertainty in the input variables is propagatetinre by the fire model and gives rise to
the uncertainty of the output parameter. The uaaast in input variable, the heat release
rate, is represented using a probability distrimutifunction (PDF). For the output
variable, the smoke layer height, the cumulativaritiution function (CDF) is desired.
While the PDF and CDF contain the same statisiidatrmation and are directly related
by the fundamental theorem of calculus, the CDFn@e convenient for displaying
useful statistical information that can be usedigk assessment studies, such as the
probability of the smoke layer height to be beloams critical value at different
instances after the occurrence of a fire. The tvodets that we have considered are the
Available Safe Egress Time (ASET) Model [5] and tBensolidated Fire and Smoke
Transport (CFAST) model [6]. These are both deteistic fire models that require other
input parameters such as the height and area adrttlesure, the location of the vents,
windows etc. In this study, these parameters aenasd to be known to a high level of
certainty. The only uncertain variable is the tregase rate that is usually sampled from
a statistical distribution of known/historical daRroblems of this type in which one has
uncertain inputs in a deterministic fire model hde=n discussed by Magnusson et al.
[7]. In the same article, the authors discuss tbe of Monte Carlo simulation as an
attractive technique for solving these problemsniddCarlo simulations although easy to
use can be extremely costly in terms of computatioequirements. These methods work
by sampling from the PDF of the input variable andning the fire model for each
sample. A large number of random samples may beedefr accurate representation of
the PDF. If the fire model is sufficiently compléhen each run of the fire model involves
considerable computational cost and Monte Carloukitions become prohibitively
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expensive. To address these issues, we look atteimadive approach involving the
method of moments and reconstruction of the CDRguthe moments of the PDF. The
discussion of this method follows.

2. Mathematical representation of the propagation of uncertainty and the
quadrature method of moments

We have a system where the dynamics depends amdamainput variable such
as the heat release rate. [®tbe the fire heat release rate, assumed to beastiichand
let m(S) be its PDF. The output of the model will be theFP@i the smoke layer height
n(Z) at some critical timet_, , whereZ(t, )is the smoke layer height from the floor at
the critical instant. The mathematical represeotathen consists of the transformation
from m(S,t =t,) to n(Z,t =t ) which is given by the change in variable ruleR@Fs,

m(S)dS = n(Z)dz 2.1
The actual mapping betwed{t =t, ahdZ(t =t_ )is given by
Z(St,) = f“’ f(z,8(r))dr 2.2
dz _ :
where{ dt FtSO) is provided by the fire model discussed later.

Z(t=1t,) =Z,

A widely used technique for obtaining the statestiproperties of the layer height
is through Monte Carlo Simulations. In this techr@g$S is randomly sampled form its

known distribution and the fire model is integrafedeachS to build up an ensemble of
Z . As discussed earlier, this can be a computatipivaensive procedure since a large

number of samples 06 need to be taken to obtain good statistics. Ifflteemodel is
sufficiently complex, each run of the fire modehdae very expensive. In this study we
attempt to solve the problem using the method aherds. We seek only the moments of
the PDF ofZ,n(Z) and then attempt to reconstruct the CDFZolusing the moments.
The moments of(Z) can be written in terms of the initial PDF &f, m(S) using 2.1
and 2.2.

M@ = Izm“zkn(Z)dZ = ::*z(s)k m(S)dS 2.3

Zmin
where M? is the kth moment ofn(Z). Hence the problem reduces to the task of
finding an accurate approximation & ” given the moments dhe initial distribution

m(S). The approximation is carried out using the Garssguadrature rule with
unknown weight function that is used in the quadeastnethod of moments ([8]).

) N
Shax ~ . - EQ -
M|£Z) = J.sﬂin Z(Sytcr)km(s)dsz n:j_Z(Sn’tCT)kWn 24
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Here S, are the quadrature points aié are the quadrature weights that are obtained

from the moments om(S .)Further details on how the quadrature pointsvagights can
be computed from the moments can be found in {8}. deen that this technique requires
only N, samples ofS. determined from2N, moments ofm(S ) The fire model is run

for only the N, heat release rateS() to getZ(S, .t ). If N, is small, typically 3 or

4, then this technique enables a dramatic reduatidhe computational effort required
for these types of problems. There are two compnat tasks involved in determining
the feasibility of the QMOM approach. Firstly, oneeds to determine the accuracy of
the moments predicted using QMOM. This is necestmgause the set of moments

M? is given by a quadrature approximation using datdich number of quadrature
points, N,, and one needs to find the optimuh, that gives accurate moments.

Secondly, the moments do not give all the infororatthat is contained in a CDF.
Therefore, the CDF needs to be reconstructed fréimita number of known moments.
This is carried out by matching the calculated motsid¢o the moments of a four-
parameter distribution. A large number of distribng are available that can be used for
CDF reconstruction. In this work we follow the mathoutlined in [9]. As discussed
later, we find that the Generalized Lambda Distitiu (GLD) is best suited for
reconstruction of the CDFs that we obtain from camputational models. A schematic
of the methodology is provided in Fig. 2.

3. Details of input variable distributions and fire models used

The methodology outlined in Fig. 1 shows that theputational model requires
an input PDF of heat release rates and a fire miodedvaluating the output parameter
for each heat release rate.

3.1. Input heat release rate distribution

We use the generalized beta distribution for thmutrheat release rate PDF. In
practice, the PDF needs to be determined from éerapior historical data. The
generalized beta PDF is a four parameter distobullt is very versatile because one can
create different shaped PDFs by varying the fouampaters. Further the beta PDF has
bounded support which means that one can spe@fyngximum and minimum fire sizes
that can occur in a compartment. This feature prisvéhe possibility of unrealistically
large fires in a room of finite size containing@te amount of combustible material. The
generalized beta distribution with parametg{sg,, 5;, 8, is given by [9].

‘ (S'_lgl)ﬁ3 (:31"',52 _S)'B4 .
m(S) =1 B(B, +1 B, +DBFFT
0; otherwise

Here B,,B, are the location and scale parametgfs.is the beta function. The beta

function can be defined in terms of the Gamma fonc¢tl", that is more widely
available:

forf, <S<p +5

3.1
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_rMrdy)
X, Y) = 3.2
) F(x+y)
We have takeng, = @nd B, = 20Q This choice defines the range of fire sizes to be

between 0 and 200 kW3, and 8, are the shape parameters. Different shaped beta PD
can be obtained by changinf§y and S,. The four different PDFs we use are defined by:
l. B;=LB,=4

. B,=0,5, =2

m. g,=2,06,=0

V. B, =1B,=1

For all these caseg, =0 and S, = 200. Fig. 3 shows the different PDFs. PDFs Il and

Il may respectively model situations where smalll d&arge sized fires are more likely to
occur respectively. | and Il model situations wheriel sized fires may be more likely.
Next, we consider the fire models used.

3.2. Available Safe Egress Time (ASET) Model

We use two well characterized zone models for satingg compartment fires.
The first model is the Available Safe Egress Timedel (ASET) that is described in
detail in [5]. The governing equation for the smddyer height is

dz __m, _(@-L)$
dt P A p.C,TA
m, is the rate of entrainment of the air into thenpduand is given by a correlation for
plume flow.

3.3

1/3

a-L,)s
P.C.T,(90Z)"*AZ*
The properties of air are densityp(= 1 kg/n?) and specific heat capacity (= 1.004
kJ/kgK). L. and L, are empirical constants taken to be 0.8 and (e8pectively. The
ambient temperature i§(= 300 K). g= 9.8 m/$ is the acceleration due to gravity. The
floor areaA is 31.5 M, AZ =Z -7, where Z, = 02m is the height of the base of the

fire and the initial conditiorZ (t =t, )s the ceiling height which is taken as 6.15 $nis
the heat release rate which is random and whosei®Qien by the generalized beta

distribution. We assume th& does not change with time. The range of fire helgase
rates, room geometry, empirical constants and ssaraption of steady heat release rate
correspond to the conditions used in the experiaterdlidation of the ASET model
reported in [10].

m, = 021p,(gAZ)"*AZ? 3.4

3.3. Consolidated Fire and Smoke Transport (CFAST) Model

CFAST is a more sophisticated zone model than AStaT is widely used by
architects, fire protection engineers, safety @fgetc. [6]. It is a two zone model that
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models the evolution of smoke, combustion gases tamaperature in a building
compartment that is on fire [11]. The details of $oftware program can be found in
reference [11]. One can take CFAST to be a fireghttht provides, among other things,
the smoke layer height for a particular fire heslease rate. CFAST simulations are
performed for two cases. In one case we use extidlgame compartment geometry as
in ASET. In the second case, we add a window oftwdan, height 2m located 2m above
the floor as shown in Fig. 4.

4. Computational methods

4.1. Monte Carlo Smulations

In the Monte Carlo simulations, the fire heat reteaates,S, are sampled from
the generalized beta distribution (3.1) using #jeation sampling method discussed in
[12]. ASET and CFAST models are run for each saropl as an input. These models
return the smoke layer height, Z, at a specifieticat time. We have arbitrarily chosen
the critical time to be 120s. The CDF of Z can thendirectly obtained from the output
of the multiple runs of the fire models. More eifict methods of sampling from a PDF
have been developed (e.g. as discussed in [7]) oBjective in performing Monte Carlo
simulations is to determine the accuracy of theltebtained using moment methods
and therefore we do not consider issues on the gtatipnal efficiency of our Monte
Carlo simulations.

4.2. Quadrature Method of Moments (QMOM)

The quadrature method of moments is a very genecainique for solution of
equations involving the dynamics of a PDF [8], [1@H]. In this work we discuss its
application to an uncertainty propagation problastussed in section 2. In QMOM, one

first computes the moments of the beta distribytim(S) , given in 3.1. The moments of
the beta distribution are given by [9]:

. +k+ +
Mk =E(Sk)=ﬁ(ﬁ3 k 1':54 1) 41

B(B;+1 5, +1)

M, is the kth moment of the beta distributigh,is the beta function ang,, 5, are the
shape parameters. Using a sequence€lf moments, one can findN, quadrature
points and weights using the method outlined in T8jis method essentially involves
computing the eigenvalues and eigenvectors ofdidgonal matrix whose elements can
be computed in terms of the moments. A very efficialgorithm, called the Product
Difference Algorithm, exists for computing the tliegonal matrix from a given moment
sequence. Details of the method can be found if§13]. The N, quadrature points

S.eo correspond to the beta PDF. The corresponding rquae points for the
generalized beta distribution (GBD) can be obtainsidg

S Sn,BD (B, + B, 4.2
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where S, o5, is the quadrature point for the GBIB, is the location parametes, the

scale parameter defined earlier. In QMOM, one damose either an integral moment
sequence such afM,,M,,M,,..} or any fractional moment sequence such as

M, }={™M,,M,,.M,, ..}. Upadhyay and Ezekoye [15] have shown that theofise

fractional moment sequence can sometimes leadter loppiadrature approximations. The
theoretical details and methods for using fractiommment sequences for QMOM
applications can be found in [15].

For the moment method, the, quadrature points can be considered to be the

samples of the heat release rate. The fire modeérs run for each of these sampled heat
release rates to gel, smoke layer heights at a specified instant. Tloeegthe QMOM
technigue can be considered to be an efficientefaampling from a known PDF. The
moments of the layer height can be obtained usougaton 2.4. The CDF is then
reconstructed by matching the computed momentsetigrioments of the four-parameter
GLD.

QMOM can be used as an alternative to Monte Camoulations in many
applications. To the best of the authors’ knowledfgere have not been many studies
comparing the computational cost and accuracy of QM with Monte Carlo
Simulations. A rare example is [16] where comparssof QMOM with Monte Carlo
simulations for crystal growth and aggregation asgried out. The crystal growth
problem is mathematically similar to the statidtizacertainty problem considered in this
work. In [16] the authors demonstrate very low patage errors for both the lower and
higher order moments obtained using QMOM.

4.3. GLD reconstruction of the CDF

Karian and Dudewicz [9] detail the basis and dgwalent of the Generalized
Lambda Distribution (GLD) for use in fitting statisal data. The four parameter GLD
can be represented I6.D(A,,4,,4;,4,). The GLD is most easily specified in terms of
the percentile function

A _M1_ Ay
Q) = QU As Ay A1) = Ay + =8I 44
2

with 0<y<1. The CDF is obtained as an inverse of 4.4, CBF(Q(y))=y. The
central task of the GLD method is to obtain ther fparametersi;, A,,4,,4, from the
four moments(M (*;k = 1234) of equation 2.4. One computes the skewnessand
kurtosis a, from the raw moments. One can also compute thesestfor the GLD
distribution using the (unknown) parametegsand A, .

M, -3M,M, +2Mm°

- 2 \3/2 =GS(A3’/14)
(Mz_Ml) 45
M, —4M.M. +6M.°M, —3M*
4= . 2 ;2 2 : =G, (A5, 4,)
(Mz_Ml)
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The G, are irrational functions ofl, and A, and contain beta functions i, and A,.

The difficulty lies in solving the coupled, nonleme bivariate equations in 4.5 to get an
optimum A;,A,. In this study we simply use the results f&y and A, presented in

tabular form in [9]. The table provided, and A, along with A, (01,4, (01) for a wide
range of allowable values of the skewness and &isr{ar, and a,). Linear interpolation
is used for values in between. There are spac¢sgtr,) that are not covered by the

tables. In some of these cases a nonlinear optimizgroblem must be solved for
equation 4.5, while for other cases either the gdized beta distribution (GBD) is a
better fit or else the reconstruction of the CDkhgSGLD/GBD is impossible. In all our
simulations, @,,a,) fell in the range covered by the tablés.and A, can be computed

from the tabulatedl, (01),1, (0) using

A=A 0D a, +ay;A, =4, 0D/ a, 4.6
wherea, =M, —M/ is the variance and, = M, is the mean of the smoke layer height

distribution obtained from the QMOM solutions. Tloair lambdas give us the percentile
function, Q(y) , whose inverse gives the CDF.

5. Results and Discussions
5.1. Comparison of ASET and CFAST results

We first compare results obtained using CFAST ASET results. The room
geometry is the same as used by Hurley [10] forpammson of the ASET predictions of
the smoke layer height with full-scale test datae Wdke two particular cases with
constant fire heat release rates of 195 kW and 38k #1 and test#5 in [10]). These
cases correspond to some of the tests in whicmstaot heat release rate was maintained
and these heat release rates also fall withinahge that we consider in this study. Fig. 5
shows the comparison of ASET and CFAST predictiohthe smoke layer height for
two different heat release rates. ASET resultsetyomatch the test data. These results
agree with those presented by Hurley [10]. Howetlee CFAST results show smaller
layer heights for both heat release rates.

5.2. Monte Carlo Smulation results for ASET and CFAST models

Fig. 6 shows the PDF of the smoke layer heightiobtl from Monte Carlo
simulations using the ASET model. Four differentA3Dpf the smoke layer, n(Z), are
obtained for the four different input heat releaate PDFs,m(S ) described in 3.1.
10,000 Monte Carlo samples of the heat release rate taken to ensure converged
results. All the pdfs show positive skewness andoisis (i.e. they are asymmetric, have a
higher peak around the mean and fatter tails comtb&y a normal distribution). The
mean smoke layer height depends on thes). For instance, PDF Ill consists of a
distribution of larger heat release rate fires aodsequently the smoke layer heights are
smaller. PDF Il consists of a distribution of srealheat release rate firaad thesmoke
layer heights are larger (farther from the groumdy. 7 shows the corresponding CDFs.
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The CDFs are more useful for risk assessments sinecerobability of the layer being
below any given value is immediately available frdma CDF. Despite the variability in
the shapes of the PDFs, the CDFs are almost afaime shape, only the locations where
they peak are different. Fig. 8 shows the CDF olgidhiusing Monte Carlo simulations for
the CFAST model where the compartment is exactyshme as for the ASET model.
Fig. 9 shows the CDFs obtained using CFAST modehfoompartment with a window
(Fig. 4 shows the compartment geometry for botlegasPDFs for the CFAST models
show the same qualitative features as the ASET mdédediscussed in section 5.1,
smoke layer heights predicted using CFAST are sam#tlan those predicted by ASET.
Differences in the CDFs due to the presence ofralew are also apparent. Since the
window allows smoke to escape, we see that smglee keight peaks between 2.5 and 3
m. Due to increased complexity of the CFAST modetdy 500 samples are used for the
heat release rate. Furthermore, the smallest rgsolaf the smoke layer heights output
by CFAST is 10cm. For these reasons, both the RDESCDFs obtained using CFAST
are coarser compared to those obtained using ASET.

5.3. QMOM results for ASET and CFAST models

In the quadrature method of moments, one obtaiasnmbments of the smoke
layer height PDF, n(Z). The moments required fotamiag with the GLD moments are

the mean, variance, skewness and kurtosis. Sineemiments of n(Z),M?, are

obtained from a quadrature approximation, it isesesal to determine the accuracy in
their prediction. As shown in equation 4.5, thevakess and kurtosis are functions of the

momentsM (¥, They are important quantities because the GLRupatersi,, A, are

found by matching the skewness and kurtosis (eguati5). In Fig. 10 and Fig. 11, we
compare the skewness and kurtosis predicted usM@I® with those obtained from
converged Monte Carlo simulations for the ASET nodée see that both skewness and
kurtosis fail to converge for the choice of an gra moment set (e.fM,,M,,M,..}).

However the choice of fractional moment sets sigltha k/2, k/3 and k/4 sets (i.e. the
sets {MO'Ml/2’Ml’MB/Z""}’{MO’Ml/S'M2/3'M1"" ’{MO’M1/4'M2/4’M3/4""})’ gives
faster convergence and more accurate predicti@rsinBtance, just three quadrature (or
sampling) points determined from a set of 6 k/4 rapts gives very accurate results for
all cases considered. Similar trends are seenhfoptediction of means and variances
although their predictions are much more accurate.

Fig. 12 shows the reconstructed CDFs using the @éned Lambda Distribution
(GLD) compared with CDFs obtained from Monte Cadonulations. To get the

momentsM ¥, four quadrature pointsSnyGBD, obtained from eight k/4 moments of

m(S) are used in all cases. The GLD parameters arénebtfrom appendix B in Karian

and Dudewicz (2000). Fig. 12 shows that the GLDnstruction is very accurate for all
the four CDFs. CDFs are sometimes also plottedrohgbility paper ([17]). In specially
designed probability paper or graph, the depengté variable and the CDF are both
rescaled to produce a linear plot. For the GLDs mot possible to analytically derive a
linear relation between the appropriately rescaladables. We therefore create an
arbitrary scale such that the relation between @pa(d Z is linear with slope of unity.
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Fig. 13 shows the CDF for case | plotted in theatsd Z-axis. Comparison with Monte
Carlo simulation results confirms that the fit ccarate in the entire range including the
extremes. Reasonably accurate fits were found Ifdh@ other CDFs shown in fig. 12
Fig. 14 shows the comparisons for the CFAST modih and without a window. It is
seen that the GLD reconstruction is accurate fer @rAST model as well. Only one
input PDF (PDF 1) is shown, but the same effesiien for all four PDFs.

6. Conclusions and further work

As computational models become more widely usedfifer safety designs, a
methodology for incorporating the uncertaintiesany fire scenario becomes extremely
important. Due to the extreme complexity of the 9bgl phenomena involved, the
occurrence of fire in any building and the chainegénts triggered by the fire are very
uncertain. Designers and fire safety engineers mégcdent computational techniques
that provide statistical information for assesdimg risk in any fire event. The quadrature
method of moments proposed in this work is a gértechnique that has already been
used in many other disciplines to solve for theetiamd space evolution of the moments
of a PDF. In many cases, one finds that QMOM sohgiare much more efficient and
reasonably accurate when compared to results @otaising Monte Carlo simulations or
other solution techniques ([13], [14], [15], [16]).

In this work, we consider the evolution of the smdlyer height given the
uncertainties in the fire heat release rate. Hergloblem, we see that the moments of the
smoke layer height PDF can be accurately prediggadg very few quadrature points,
especially if fractional moments are used to obtpiadrature points and weights. Since
each quadrature point acts like a sample for tla¢ tetease rate, this method also has the
potential to reduce the computational effort in Mo@arlo simulations. Furthermore, the
CDF is reconstructed from the moments by matchigrhoments with those of a four
parameter GLD. For all cases considered, we sedhthaeconstruction is accurate. The
fire models used in this study are all reasonalotypke and computational costs for
running any given scenario are reasonable. Ifetlzeme fire models were replaced by
computational fluid dynamics based models, it wobkl prohibitively expensive to
perform Monte Carlo type simulations in order tentlfy probabilistic estimates of risk.
On the other hand, it would be feasible to run ssEugsix to eight) CFD simulations in
order to generate an accurate cumulative distobutinction of the output variable.

While the results from the present study appeamggiong, this method remains to
be tested for significantly more complex fire sa@rs As discussed earlier, there are a
large number of uncertain variables in any fire dvand one has to simulate the
interactions among all these uncertain variablekil&®Mhe QMOM is well suited for
describing the dynamics of the moments of a urawariPDF (for a single uncertain
variable), the extension to multivariate PDFs (foultiple uncertain variables) is not
straightforward. There exists an alternate, relagethnique called the direct quadrature
method of moments (DQMOM) [18] that can be useditoulate the dynamics of the
moments of a multivariate PDF. For multivariateF3Dthere will be a question on the
ability to generate meaningful CDFs for the systaivhile the QMOM approach appears
to suitable for the type of problem consideredhis work, both QMOM and DQMOM

10
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need to be tested on a number of relevant problanfise science and engineering to
investigate their computational efficiency and aecy.

Appendix

Here we present in detail the simplified equatioingt can be used to calculate the
guadrature points and weights as well as the GLEarpaters for the case of a six
moment (three quadrature point) calculation. We aishree-point (six moments) based
integration of the Z moments. As previously notdds requires that we calculate six
moments of the heat release rate distribution. \Oesider the example of the Beta
Distribution as in the text. The moments of theaBRistribution as given in equation 4.1
is

_ BBy +k+15,+]) A1
© BB LB+
We take the case of Il with3 =0,5,=2008,=0,6,= dd case Il with

B, =0,8,=2008,=2,,=0. The zeroth moment is 1 and the other 5 moments (f
the 3 point quadrature scheme) are as below.

Bs Ba M1 M> Ms My Ms
0 2 0.25 0.1 5.0x10 2.9x10° 1.8x10°
2 0 0.75 0.6 0.5 0.43 0.38

Quadrature points, ,Sfor the heat release rate distribution are fowsthg a cubic
equation solution that depends on the six momenasrelatively complicated manner.

B Ms—-AM4+BM3 2?4
M4 —2AM 3+ (2B+ A2)M ,— 2ABM ; + B2

[ (M5 —AM 4 +BM ) A My -MM 3]5 Ao

My4—2AM3+(2B+A2)M,— 2ABM +B?> M ,-M?
L(Mg=MM 5)M; (Ms—AM 4+BM 3B
My —M2 M 4= 2AM 3+ (2B+ A%)M ,— 2ABM (+ B?
The constants A and B are given by:
_ M2
_Mj Ml'\gz and B = M3M1 '\gz
Mo -Mj Mo —-Mj

—M3:0

A A3

The quadrature weights, \Ware specified to be:
\leMZ_Ml(SS"'SZ)"'SZSS _ M3 -My(S3+S) +SS3
(5-S)(s1i-s9 7 (S-S)(S-S9)
M2 —My($,+Sp) +S5, Ad
(S-%2)(S5-S)

, and

\/\/3:
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Bs Ba Si(kW) | S (kW) | S(kW) | W, W, W
0 2 14.6 69.4 141.0 0.47 0.44 0.08
2 0 59.0 130.6 185.4 0.09 0.44 0.47

Note that while the quadrature points (heat releasesamples) reflect the nature of the
distribution. The PDF in Case | peaks at lower helgase rates and consequently the
lower heat release rate samples are given greaightv The opposite is true for the PDF

in Case IV which peaks at higher heat release.rhlige that this technique is convenient

only upto three point quadrature since simple esgoms exist for the roots of quadratic

and cubic polynomials. For higher order quadratatemes, the more general technique
outlined in [8] is simpler.

To calculate the moments of the Z distribution dymgequires that we solve the fire
model with the heat release rate at three valugSSand S. Given the moments of the
Z distribution as specified by equation 2.4, a G the moments of the Z distribution
is calculated using the GLD. First, the raw moraeot the Z distribution must be
converted to centered moments.

Z max

e j Z n(Z)dz =M, A.6
.
o? = J'(Z—,u)zn(Z)dZ:Mz—,uz A7
2 o
j(z - 10)®n(Z)dz .
g, =2 == (M, -3, +24°) A8
g g
Z max
j (Z - 1)*n(Z)dz .
0, =t :?(M4—4,L1|\/|3+6,L12M2—3,u4) A9

The GLD parameters are then found as discusseedino§ 4.3.
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Figure Captions

Fig. 1. Schematic of the propagation of statistizatertainty problem as applied to a
design fire application.

Fig. 2. Schematic illustrating the sampling progedused in the quadrature method of
moments and the procedure for getting the CDF. Nod¢ the schematic shows three
guadrature points and three weights which wouldespond to six known moments.

Fig. 3. Generalized beta probability density fuoes (PDFs) used for the fire heat
release rates.

Fig. 4. (Left) Compartment geometry for the ASETda@FAST models. (Right)
Compartment geometry for the CFAST model with adein.
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Fig. 5. Comparison of the ASET and CFAST model ltesior the smoke layer height
with experimental data reported in [10].

Fig. 6. PDFs of the smoke layer height at a ciititae t, =120s obtained from Monte

Carlo Simulations using the ASET model. The ladeld, 1ll, IV correspond to the
different heat release rate PDFs in Fig. 3.

Fig. 7. CDFs corresponding to the PDFs in Fig. 6.

Fig. 8. CDFs of the smoke layer height at a crititae t, =120s obtained from Monte

Carlo Simulations using the CFAST model with theneageometry as for the ASET. |,
I, lll, IV correspond to the different heat releaste PDFs in Fig. 3.

Fig. 9. CDFs of the smoke layer height at a crititae t, =120s obtained from Monte

Carlo Simulations using the CFAST model with a hontal vent (window) shown in
Fig. 6. I, II, lll, IV correspond to the differehieat release rate PDFs in Fig. 3.

Fig. 10. Study of the convergence of the skewnasis imcreasing number of quadrature
points. Results of using different moment sequeaceshown.

Fig. 11. Study of the convergence of the kurtosth wcreasing number of quadrature
points. Results of using different moment sequeaceshown.

Fig. 12. Reconstructed CDF using the Generalizedldda Distribution (GLD) compared
with CDF obtained from Monte Carlo simulations foe ASET model.

Fig. 13. CDF for Case | in figure 12 plotted in 8pability paper”.
Fig. 14. Reconstructed CDF using the GLD comparéth the CDF obtained from
Monte Carlo Simulations using the CFAST model, wattd without a window. The

CDFs obtained using the ASET model is also shovaf Pis used for the heat release
rate PDF.
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