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Abstract 
The use of a single design fire in a performance based fire design code typically fails to 
account for the inherent uncertainty in knowledge of the future use of the space.  
Uncertainties in knowledge of intended use and the implications in terms of fuel loading 
and potential heat release rate can be bounded using probabilistic methods.  Use of a 
cumulative distribution function (CDF) and the related probability density function (PDF) 
specify the best available estimate of the probability (likelihood) of a fire of given size to 
take place in a compartment.  Monte Carlo simulation is a widely used computational 
method for treating uncertainty that might be described by a PDF . In this technique, one 
samples the uncertain variables from their underlying PDFs and runs a fire model for 
each sample. For complex fire models, this approach may be computationally intractable. 
In this work we present a computationally efficient technique called the Quadrature 
Method of Moments (QMOM) for propagating uncertainty bound in distributions. In 
QMOM one solves for only the moments of a relevant uncertain parameter. The 
cumulative distribution function (CDF) of the uncertain parameter provides all the 
statistical information required for risk assessments. We consider a simplified 
propagation of uncertainty problem. Results using both the ASET and CFAST fire 
models indicate that computation of the moments of the PDF using QMOM and the 
reconstruction of the CDF by matching the moments with those of a 4-parameter 
Generalized Lambda Distribution (GLD) give accurate results at a significantly smaller 
computational cost. 
 
Keywords: Design fire; uncertainty; Monte Carlo simulation; Quadrature Method of 
Moments; Generalized Lambda Distribution. 
 
1. Introduction 
 

Performance based fire design (PBFD) stipulates that a building must satisfy 
some performance requirement. That is, the fire safety of the building must be evaluated 
before the building can be deemed fit for occupancy (e.g. [1]). This is normally done by 
simulating fire evolution in a structure and evaluating safety criteria, such as the height of 
the smoke layer at some critical time after the start of the fire. The fire model typically 
consists of a design fire, i.e. a typical fire with a typical rate of heat release. However, the 
use of a single design fire while simulating a fire scenario may be inadequate. The type of 
combustible materials in a room, their arrangement and the point and source of ignition 
are unpredictable. To account for this variability, the use of a single representative fuel 
has been proposed in [2]. This is a single fuel source, located at a center of the room, 
having the same heat release rate characteristics as the actual distribution of combustible 
material in the room. The single representative fuel source may be considered to be an 
average of the actual distribution of fuel sources. Due to the extreme variability in the 
type of fire that can occur in any modern building compartment, a single average 
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representative fuel source may not be sufficient to characterize all the possible fire 
scenarios, and therefore one may have to consider a distribution of fire sizes. 
Furthermore, there are many other uncertainties such as operation of safety devices such 
as smoke detectors and sprinklers, opening or closing of vents etc. An early discussion of 
the uncertainties inherent in fire safety design is given by [3]. In recent years there have 
been systematic studies to incorporate the uncertainty inherent in the variables relevant to 
any given design fire. A thorough discussion of existing techniques is discussed in [4]. In 
this study, we investigate a very general mathematical technique that can be used to 
simulate the propagation of uncertainty of any variable that is used in a fire model.  To 
this point our discussion of the use of probabilistic methods for performance based design 
analysis has been quite abstract.  A more physically based example is provided to explore 
the use of the techniques and the value of the outputs. 
 
 Consider a design problem in which a designer requires an active fire protection 
system if a smoke layer descends below some critical height at a critical time as might be 
found from an egress model.  Clearly, the layer height is strongly dependent on the fire 
size that would be assumed to take place in the compartment.  As previously noted, the 
designer does not know a-priori the range of use of the compartment.  One means of 
clarifying the likely hazard associated with a range of potential fires is through the use of 
probabilistic assumptions about the fire size and fire models used to propagate the 
uncertainty in the fire size into a layer height distribution.  The problem is shown 
schematically in Figure 1.  We have a deterministic fire model that takes as input the heat 
release rate of the fire and provides as output the height of the smoke layer. Any 
uncertainty in the input variables is propagated in time by the fire model and gives rise to 
the uncertainty of the output parameter. The uncertainty in input variable, the heat release 
rate, is represented using a probability distribution function (PDF). For the output 
variable, the smoke layer height, the cumulative distribution function (CDF) is desired. 
While the PDF and CDF contain the same statistical information and are directly related 
by the fundamental theorem of calculus, the CDF is more convenient for displaying 
useful statistical information that can be used in risk assessment studies, such as the 
probability of the smoke layer height to be below some critical value at different 
instances after the occurrence of a fire. The two models that we have considered are the 
Available Safe Egress Time (ASET) Model [5] and the Consolidated Fire and Smoke 
Transport (CFAST) model [6]. These are both deterministic fire models that require other 
input parameters such as the height and area of the enclosure, the location of the vents, 
windows etc. In this study, these parameters are assumed to be known to a high level of 
certainty. The only uncertain variable is the heat release rate that is usually sampled from 
a statistical distribution of known/historical data. Problems of this type in which one has 
uncertain inputs in a deterministic fire model have been discussed by Magnusson et al. 
[7]. In the same article, the authors discuss the use of Monte Carlo simulation as an 
attractive technique for solving these problems. Monte Carlo simulations although easy to 
use can be extremely costly in terms of computational requirements. These methods work 
by sampling from the PDF of the input variable and running the fire model for each 
sample. A large number of random samples may be needed for accurate representation of 
the PDF. If the fire model is sufficiently complex then each run of the fire model involves 
considerable computational cost and Monte Carlo simulations become prohibitively 
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expensive. To address these issues, we look at an alternative approach involving the 
method of moments and reconstruction of the CDF using the moments of the PDF. The 
discussion of this method follows. 
 
2. Mathematical representation of the propagation of uncertainty and the 
quadrature method of moments 
 

We have a system where the dynamics depends on a random input variable such 
as the heat release rate. Let S&  be the fire heat release rate, assumed to be stochastic, and 
let )(Sm &  be its PDF. The output of the model will be the PDF of the smoke layer height 

)(Zn  at some critical time, crt , where )( crtZ  is the smoke layer height from the floor at 

the critical instant. The mathematical representation then consists of the transformation 
from ),( 0ttSm =&  to ),( crttZn =  which is given by the change in variable rule for PDFs, 

dZZnSdSm )()( =&&          2.1 

 The actual mapping between )( 0ttS =&  and )( crttZ =  is given by 
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 is provided by the fire model discussed later. 

 
 A widely used technique for obtaining the statistical properties of the layer height 
is through Monte Carlo Simulations. In this technique, S&  is randomly sampled form its 
known distribution and the fire model is integrated for each S&  to build up an ensemble of 
Z . As discussed earlier, this can be a computationally intensive procedure since a large 
number of samples of S&  need to be taken to obtain good statistics. If the fire model is 
sufficiently complex, each run of the fire model can be very expensive. In this study we 
attempt to solve the problem using the method of moments. We seek only the moments of 
the PDF of Z , )(Zn  and then attempt to reconstruct the CDF of Z  using the moments. 

The moments of )(Zn  can be written in terms of the initial PDF of S& , )(Sm &  using 2.1 
and 2.2. 
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where )(Z
kM  is the kth moment of )(Zn . Hence the problem reduces to the task of 

finding an accurate approximation of )(Z
kM  given the moments of the initial distribution 

)(Sm & . The approximation is carried out using the Gaussian quadrature rule with 
unknown weight function that is used in the quadrature method of moments ([8]). 
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Here nS&  are the quadrature points and nW  are the quadrature weights that are obtained 

from the moments of )(Sm & . Further details on how the quadrature points and weights can 
be computed from the moments can be found in [8]. It is seen that this technique requires 
only QN  samples of nS&  determined from QN2  moments of )(Sm & . The fire model is run 

for only the QN  heat release rates (nS& ) to get ),( crn tSZ & . If  QN  is small, typically 3 or 

4, then this technique enables a dramatic reduction in the computational effort required 
for these types of problems. There are two computational tasks involved in determining 
the feasibility of the QMOM approach. Firstly, one needs to determine the accuracy of 
the moments predicted using QMOM. This is necessary because the set of moments 

)(Z
kM   is given by a quadrature approximation using a limited number of quadrature 

points, QN , and one needs to find the optimum QN  that gives accurate moments. 

Secondly, the moments do not give all the information that is contained in a CDF. 
Therefore, the CDF needs to be reconstructed from a finite number of known moments. 
This is carried out by matching the calculated moments to the moments of a four-
parameter distribution. A large number of distributions are available that can be used for 
CDF reconstruction. In this work we follow the method outlined in [9]. As discussed 
later, we find that the Generalized Lambda Distribution (GLD) is best suited for 
reconstruction of the CDFs that we obtain from our computational models. A schematic 
of the methodology is provided in Fig. 2. 
 
3. Details of input variable distributions and fire models used 
 The methodology outlined in Fig. 1 shows that the computational model requires 
an input PDF of heat release rates and a fire model for evaluating the output parameter 
for each heat release rate. 
 
3.1. Input heat release rate distribution 
 
 We use the generalized beta distribution for the input heat release rate PDF. In 
practice, the PDF needs to be determined from empirical or historical data. The 
generalized beta PDF is a four parameter distribution. It is very versatile because one can 
create different shaped PDFs by varying the four parameters. Further the beta PDF has 
bounded support which means that one can specify the maximum and minimum fire sizes 
that can occur in a compartment. This feature prevents the possibility of unrealistically 
large fires in a room of finite size containing a finite amount of combustible material. The 
generalized beta distribution with parameters 4321 ,,, ββββ  is given by [9]. 
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Here 21,ββ  are the location and scale parameters. β  is the beta function. The beta 
function can be defined in terms of the Gamma function, Γ , that is more widely 
available: 
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We have taken 01 =β  and 2002 =β . This choice defines the range of fire sizes to be 

between 0 and 200 kW. 3β  and 4β  are the shape parameters. Different shaped beta PDFs 

can be obtained by changing 3β  and 4β . The four different PDFs we use are defined by: 

I. 4;1 43 == ββ  

II. 2;0 43 == ββ  

III. 0;2 43 == ββ  

IV. 1;1 43 == ββ  

For all these cases 01 =β  and 2002 =β . Fig. 3 shows the different PDFs. PDFs II and 
III may respectively model situations where small and large sized fires are more likely to 
occur respectively. I and II model situations where mid sized fires may be more likely. 
Next, we consider the fire models used. 
 
3.2. Available Safe Egress Time (ASET) Model 
 
 We use two well characterized zone models for simulating compartment fires. 
The first model is the Available Safe Egress Time Model (ASET) that is described in 
detail in [5]. The governing equation for the smoke layer height is 
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The properties of air are density (aρ = 1 kg/m3) and specific heat capacity (ac = 1.004 

kJ/kgK). cL  and rL  are empirical constants taken to be 0.8 and 0.35 respectively. The 

ambient temperature is (aT = 300 K). g = 9.8 m/s2 is the acceleration due to gravity.  The 

floor area A  is 31.5 m2, fZZZ −=∆ where mZ f 2.0=  is the height of the base of the 

fire and the initial condition )( 0ttZ =  is the ceiling height which is taken as 6.15 m. S&  is 

the heat release rate which is random and whose PDF is given by the generalized beta 
distribution. We assume that S&  does not change with time. The range of fire heat release 
rates, room geometry, empirical constants and the assumption of steady heat release rate 
correspond to the conditions used in the experimental validation of the ASET model 
reported in [10]. 
  
3.3. Consolidated Fire and Smoke Transport (CFAST) Model 
 
 CFAST is a more sophisticated zone model than ASET that is widely used by 
architects, fire protection engineers, safety officials etc. [6]. It is a two zone model that 
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models the evolution of smoke, combustion gases and temperature in a building 
compartment that is on fire [11]. The details of the software program can be found in 
reference [11]. One can take CFAST to be a fire model that provides, among other things, 
the smoke layer height for a particular fire heat release rate. CFAST simulations are 
performed for two cases. In one case we use exactly the same compartment geometry as 
in ASET. In the second case, we add a window of width 4m, height 2m located 2m above 
the floor as shown in Fig. 4. 
 
4. Computational methods 
 
4.1. Monte Carlo Simulations 
 
 In the Monte Carlo simulations, the fire heat release rates, S& , are sampled from 
the generalized beta distribution (3.1) using the rejection sampling method discussed in 
[12]. ASET and CFAST models are run for each sample of S&  as an input. These models 
return the smoke layer height, Z, at a specified critical time. We have arbitrarily chosen 
the critical time to be 120s. The CDF of Z can then be directly obtained from the output 
of the multiple runs of the fire models. More efficient methods of sampling from a PDF 
have been developed (e.g. as discussed in [7]). Our objective in performing Monte Carlo 
simulations is to determine the accuracy of the results obtained using moment methods 
and therefore we do not consider issues on the computational efficiency of our Monte 
Carlo simulations. 
 
4.2. Quadrature Method of Moments (QMOM)   
 
 The quadrature method of moments is a very general technique for solution of 
equations involving the dynamics of a PDF [8], [13], [14]. In this work we discuss its 
application to an uncertainty propagation problem discussed in section 2. In QMOM, one 
first computes the moments of the beta distribution, )(Sm & , given in 3.1. The moments of 
the beta distribution are given by [9]: 
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kM  is the kth moment of the beta distribution, β  is the beta function and 3β , 4β  are the 

shape parameters. Using a sequence of QN2  moments, one can find QN  quadrature 

points and weights using the method outlined in [8]. This method essentially involves 
computing the eigenvalues and eigenvectors of a tri-diagonal matrix whose elements can 
be computed in terms of the moments. A very efficient algorithm, called the Product 
Difference Algorithm, exists for computing the tri-diagonal matrix from a given moment 
sequence. Details of the method can be found in [8] or [13]. The QN  quadrature points 

BDnS ,
&  correspond to the beta PDF. The corresponding quadrature points for the 

generalized beta distribution (GBD) can be obtained using 

12,, ββ +⋅= BDnGBDn SS &&          4.2 
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where GBDnS ,
&  is the quadrature point for the GBD. 1β  is the location parameter 2β  the 

scale parameter defined earlier. In QMOM, one can choose either an integral moment 
sequence such as { },...,, 210 MMM  or any fractional moment sequence such as 

{ } { },...,, /2/10/ LLLk MMMM = . Upadhyay and Ezekoye [15] have shown that the use of a 

fractional moment sequence can sometimes lead to better quadrature approximations. The 
theoretical details and methods for using fractional moment sequences for QMOM 
applications can be found in [15]. 
 For the moment method, the QN  quadrature points can be considered to be the 

samples of the heat release rate. The fire model is then run for each of these sampled heat 
release rates to get  QN  smoke layer heights at a specified instant. Therefore, the QMOM 

technique can be considered to be an efficient way of sampling from a known PDF.  The 
moments of the layer height can be obtained using equation 2.4. The CDF is then 
reconstructed by matching the computed moments to the moments of the four-parameter 
GLD. 
 QMOM can be used as an alternative to Monte Carlo simulations in many 
applications. To the best of the authors’ knowledge, there have not been many studies 
comparing the computational cost and accuracy of QMOM with Monte Carlo 
Simulations. A rare example is [16] where comparisons of QMOM with Monte Carlo 
simulations for crystal growth and aggregation are carried out. The crystal growth 
problem is mathematically similar to the statistical uncertainty problem considered in this 
work. In [16] the authors demonstrate very low percentage errors for both the lower and 
higher order moments obtained using QMOM. 
 
4.3. GLD reconstruction of the CDF 
 

Karian and Dudewicz [9] detail the basis and development of the Generalized 
Lambda Distribution (GLD) for use in fitting statistical data. The four parameter GLD 
can be represented by 1 2 3 4( , , , )GLD λ λ λ λ . The GLD is most easily specified in terms of 

the percentile function 

2
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with 10 ≤≤ y . The CDF is obtained as an inverse of 4.4, i.e. yyQCDF =))(( . The 

central task of the GLD method is to obtain the four parameters 4321 ,,, λλλλ  from the 

four moments )4,3,2,1;( )( =kM Z
k  of equation 2.4. One computes the skewness 3α  and 

kurtosis 4α  from the raw moments. One can also compute these terms for the GLD 

distribution using the (unknown) parameters 3λ  and 4λ .  
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The iG  are irrational functions of 3λ  and 4λ  and contain beta functions in 3λ  and 4λ . 

The difficulty lies in solving the coupled, nonlinear, bivariate equations in 4.5 to get an 
optimum 3λ , 4λ . In this study we simply use the results for 3λ  and 4λ  presented in 

tabular form in [9]. The table provides 3λ  and 4λ  along with )1,0(),1,0( 21 λλ  for a wide 

range of allowable values of the skewness and kurtosis ( 3α  and 4α ). Linear interpolation 

is used for values in between. There are spaces of ( 3α , 4α ) that are not covered by the 

tables. In some of these cases a nonlinear optimization problem must be solved for 
equation 4.5, while for other cases either the generalized beta distribution (GBD) is a 
better fit or else the reconstruction of the CDF using GLD/GBD is impossible. In all our 
simulations, ( 3α , 4α ) fell in the range covered by the tables. 1λ  and 2λ  can be computed 

from the tabulated )1,0(),1,0( 21 λλ  using 

2221211 /)1,0(;)1,0( αλλααλλ =+=           4.6 

where 2
122 MM −=α  is the variance and 11 M=α  is the mean of the smoke layer height 

distribution obtained from the QMOM solutions. The four lambdas give us the percentile 
function, )(yQ , whose inverse gives the CDF. 
 
5. Results and Discussions 
 
5.1. Comparison of ASET and CFAST results 
 
 We first compare results obtained using CFAST and ASET results. The room 
geometry is the same as used by Hurley [10] for comparison of the ASET predictions of 
the smoke layer height with full-scale test data. We take two particular cases with 
constant fire heat release rates of 195 kW and 33kW (test #1 and test#5 in [10]). These 
cases correspond to some of the tests in which a constant heat release rate was maintained 
and these heat release rates also fall within the range that we consider in this study. Fig. 5 
shows the comparison of ASET and CFAST predictions of the smoke layer height for 
two different heat release rates. ASET results closely match the test data. These results 
agree with those presented by Hurley [10].  However, the CFAST results show smaller 
layer heights for both heat release rates.  
 
5.2. Monte Carlo Simulation results for ASET and CFAST models 
 
 Fig. 6 shows the PDF of the smoke layer height obtained from Monte Carlo 
simulations using the ASET model. Four different PDFs of the smoke layer, n(Z), are 
obtained for the four different input heat release rate PDFs, )(Sm & , described in 3.1. 
10,000 Monte Carlo samples of the heat release rates are taken to ensure converged 
results. All the pdfs show positive skewness and kurtosis (i.e. they are asymmetric, have a 
higher peak around the mean and fatter tails compared to a normal distribution). The 
mean smoke layer height depends on the )(Sm & . For instance, PDF III consists of a 
distribution of larger heat release rate fires and consequently the smoke layer heights are 
smaller. PDF II consists of a distribution of smaller heat release rate fires and the smoke 
layer heights are larger (farther from the ground). Fig. 7 shows the corresponding CDFs. 
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The CDFs are more useful for risk assessments since the probability of the layer being 
below any given value is immediately available from the CDF. Despite the variability in 
the shapes of the PDFs, the CDFs are almost of the same shape, only the locations where 
they peak are different. Fig. 8 shows the CDF obtained using Monte Carlo simulations for 
the CFAST model where the compartment is exactly the same as for the ASET model. 
Fig. 9 shows the CDFs obtained using CFAST model for a compartment with a window 
(Fig. 4 shows the compartment geometry for both cases). PDFs for the CFAST models 
show the same qualitative features as the ASET model. As discussed in section 5.1, 
smoke layer heights predicted using CFAST are smaller than those predicted by ASET. 
Differences in the CDFs due to the presence of a window are also apparent. Since the 
window allows smoke to escape, we see that smoke layer height peaks between 2.5 and 3 
m. Due to increased complexity of the CFAST models, only 500 samples are used for the 
heat release rate. Furthermore, the smallest resolution of the smoke layer heights output 
by CFAST is 10cm. For these reasons, both the PDFs and CDFs obtained using CFAST 
are coarser compared to those obtained using ASET.  
 
5.3. QMOM results for ASET and CFAST models 
 
 In the quadrature method of moments, one obtains the moments of the smoke 
layer height PDF, n(Z). The moments required for matching with the GLD moments are 
the mean, variance, skewness and kurtosis. Since the moments of n(Z), )(Z

kM , are 

obtained from a quadrature approximation, it is essential to determine the accuracy in 
their prediction. As shown in equation 4.5, the skewness and kurtosis are functions of the 
moments )(Z

kM . They are important quantities because the GLD parameters 43,λλ  are 

found by matching the skewness and kurtosis (equation 4.5). In Fig. 10 and Fig. 11, we 
compare the skewness and kurtosis predicted using QMOM with those obtained from 
converged Monte Carlo simulations for the ASET model. We see that both skewness and 
kurtosis fail to converge for the choice of an integral moment set (e.g.{ }...,, 210 MMM ). 

However the choice of fractional moment sets such as the k/2, k/3 and k/4 sets (i.e. the 
sets { },...,,, 2/312/10 MMMM ,{ },...,,, 13/23/10 MMMM ,{ },...,,, 4/34/24/10 MMMM ), gives 

faster convergence and more accurate predictions. For instance, just three quadrature (or 
sampling) points determined from a set of 6 k/4 moments gives very accurate results for 
all cases considered. Similar trends are seen for the prediction of means and variances 
although their predictions are much more accurate. 

Fig. 12 shows the reconstructed CDFs using the Generalized Lambda Distribution 
(GLD) compared with CDFs obtained from Monte Carlo simulations. To get the 
moments, )(Z

kM , four quadrature points, GBDnS ,
& , obtained from eight k/4 moments of 

)(Sm &  are used in all cases. The GLD parameters are obtained from appendix B in Karian 
and Dudewicz (2000). Fig. 12 shows that the GLD reconstruction is very accurate for all 
the four CDFs. CDFs are sometimes also plotted on probability paper ([17]). In specially 
designed probability paper or graph, the dependent state variable and the CDF are both 
rescaled to produce a linear plot. For the GLD, it is not possible to analytically derive a 
linear relation between the appropriately rescaled variables. We therefore create an 
arbitrary scale such that the relation between CDF(Z) and Z is linear with slope of unity. 
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Fig. 13 shows the CDF for case I plotted in the rescaled Z-axis. Comparison with Monte 
Carlo simulation results confirms that the fit is accurate in the entire range including the 
extremes. Reasonably accurate fits were found for all the other CDFs shown in fig. 12 
Fig. 14 shows the comparisons for the CFAST model, with and without a window. It is 
seen that the GLD reconstruction is accurate for the CFAST model as well. Only one 
input PDF (PDF I) is shown, but the same effect is seen for all four PDFs. 

 
6. Conclusions and further work 
 
 As computational models become more widely used for fire safety designs, a 
methodology for incorporating the uncertainties in any fire scenario becomes extremely 
important. Due to the extreme complexity of the physical phenomena involved, the 
occurrence of fire in any building and the chain of events triggered by the fire are very 
uncertain. Designers and fire safety engineers need efficient computational techniques 
that provide statistical information for assessing the risk in any fire event. The quadrature 
method of moments proposed in this work is a general technique that has already been 
used in many other disciplines to solve for the time and space evolution of the moments 
of a PDF. In many cases, one finds that QMOM solutions are much more efficient and 
reasonably accurate when compared to results obtained using Monte Carlo simulations or 
other solution techniques ([13], [14], [15], [16]).  

In this work, we consider the evolution of the smoke layer height given the 
uncertainties in the fire heat release rate. For this problem, we see that the moments of the 
smoke layer height PDF can be accurately predicted using very few quadrature points, 
especially if fractional moments are used to obtain quadrature points and weights. Since 
each quadrature point acts like a sample for the heat release rate, this method also has the 
potential to reduce the computational effort in Monte Carlo simulations. Furthermore, the 
CDF is reconstructed from the moments by matching the moments with those of a four 
parameter GLD. For all cases considered, we see that the reconstruction is accurate.  The 
fire models used in this study are all reasonably simple and computational costs for 
running any given scenario are reasonable.  If these zone fire models were replaced by 
computational fluid dynamics based models, it would be prohibitively expensive to 
perform Monte Carlo type simulations in order to identify probabilistic estimates of risk.  
On the other hand, it would be feasible to run several (six to eight) CFD simulations in 
order to generate an accurate cumulative distribution function of the output variable. 

While the results from the present study appear promising, this method remains to 
be tested for significantly more complex fire scenarios. As discussed earlier, there are a 
large number of uncertain variables in any fire event and one has to simulate the 
interactions among all these uncertain variables. While the QMOM is well suited for 
describing the dynamics of the moments of a univariate PDF (for a single uncertain 
variable), the extension to multivariate PDFs (for multiple uncertain variables) is not 
straightforward. There exists an alternate, related technique called the direct quadrature 
method of moments (DQMOM) [18] that can be used to simulate the dynamics of the 
moments of a multivariate PDF.  For multivariate PDFs, there will be a question on the 
ability to generate meaningful CDFs for the system.  While the QMOM approach appears 
to suitable for the type of problem considered in this work, both QMOM and DQMOM 



DRAFT 

11 

need to be tested on a number of relevant problems in fire science and engineering to 
investigate their computational efficiency and accuracy. 

 
 

Appendix 
Here we present in detail the simplified equations that can be used to calculate the 
quadrature points and weights as well as the GLD parameters for the case of a six 
moment (three quadrature point) calculation.  We use a three-point (six moments) based 
integration of the Z moments.  As previously noted, this requires that we calculate six 
moments of the heat release rate distribution. We consider the example of the Beta 
Distribution as in the text.  The moments of the Beta Distribution as given in equation 4.1 
is 

 
)1,1(

)1,1(

43

43
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=
βββ

βββ k
M k         A.1 

We take the case of II with 2,0,200,0 4321 ==== ββββ and case II with 

0,2,200,0 4321 ==== ββββ . The zeroth moment is 1 and the other 5 moments (for 

the 3 point quadrature scheme) are as below.  
β3 β4 M1 M2 M3 M4 M5 
0 2 0.25 0.1 5.0x10-2 2.9x10-2 1.8x10-2 
2 0 0.75 0.6 0.5 0.43 0.38 
 
Quadrature points, Sn, for the heat release rate distribution are found using a cubic 
equation solution that depends on the six moments in a relatively complicated manner.  
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The constants A and B are given by: 
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The quadrature weights, Wn, are specified to be: 
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β3 β4 S1 (kW) S2 (kW) S3 (kW) W1 W2 W3 
0 2 14.6 69.4 141.0 0.47 0.44 0.08 
2 0 59.0 130.6 185.4 0.09 0.44 0.47 
 
Note that while the quadrature points (heat release rate samples) reflect the nature of the 
distribution. The PDF in Case I peaks at lower heat release rates and consequently the 
lower heat release rate samples are given greater weight. The opposite is true for the PDF 
in Case IV which peaks at higher heat release rates. Note that this technique is convenient 
only upto three point quadrature since simple expressions exist for the roots of quadratic 
and cubic polynomials. For higher order quadrature schemes, the more general technique 
outlined in [8] is simpler. 
 
To calculate the moments of the Z distribution simply requires that we solve the fire 
model with the heat release rate at three values: S1, S2, and S3.  Given the moments of the 
Z distribution as specified by equation 2.4, a CDF from the moments of the Z distribution 
is calculated using the GLD.  First, the raw moments of the Z distribution must be 
converted to centered moments. 
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The GLD parameters are then found as discussed in Section 4.3. 
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Figure Captions 
 
Fig. 1. Schematic of the propagation of statistical uncertainty problem as applied to a 
design fire application. 
 
Fig. 2. Schematic illustrating the sampling procedure used in the quadrature method of 
moments and the procedure for getting the CDF. Note that the schematic shows three 
quadrature points and three weights which would correspond to six known moments. 
 
Fig. 3. Generalized beta probability density functions (PDFs) used for the fire heat 
release rates. 
 
Fig. 4. (Left) Compartment geometry for the ASET and CFAST models. (Right) 
Compartment geometry for the CFAST model with a window.   
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Fig. 5. Comparison of the ASET and CFAST model results for the smoke layer height 
with experimental data reported in [10].   
 
Fig. 6. PDFs of the smoke layer height at a critical time stcr 120=  obtained from Monte 

Carlo Simulations using the ASET model. The labels I, II, III, IV correspond to the 
different heat release rate PDFs in Fig. 3.  
 
Fig. 7. CDFs corresponding to the PDFs in Fig. 6.  
 
Fig. 8. CDFs of the smoke layer height at a critical time stcr 120=  obtained from Monte 

Carlo Simulations using the CFAST model with the same geometry as for the ASET. I, 
II, III, IV correspond to the different heat release rate PDFs in Fig. 3.   
 
 
Fig. 9. CDFs of the smoke layer height at a critical time stcr 120=  obtained from Monte 

Carlo Simulations using the CFAST model with a horizontal vent (window) shown in 
Fig. 6. I, II, III, IV correspond to the different heat release rate PDFs in Fig. 3.    
 
Fig. 10. Study of the convergence of the skewness with increasing number of quadrature 
points. Results of using different moment sequences are shown. 
 
Fig. 11. Study of the convergence of the kurtosis with increasing number of quadrature 
points. Results of using different moment sequences are shown.  
 
Fig. 12. Reconstructed CDF using the Generalized Lambda Distribution (GLD) compared 
with CDF obtained from Monte Carlo simulations for the ASET model. 
 
Fig. 13. CDF for Case I in figure 12 plotted in “probability paper”. 
 
Fig. 14. Reconstructed CDF using the GLD compared with the CDF obtained from 
Monte Carlo Simulations using the CFAST model, with and without a window. The 
CDFs obtained using the ASET model is also shown. PDF I is used for the heat release 
rate PDF. 
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Fig. 6. 
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Fig. 7. 
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Fig. 8. 
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Fig. 9. 
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Fig. 10. 
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Fig. 11. 
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Fig. 12. 
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Fig. 14. 




