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Abstract 

 

Eccentric discharge of granular solids is widely considered one of the most serious 

design conditions for thin-walled metal silos, and one which has been the cause of very 

many silo disasters in the past. Yet the reasons for these consequences have not been 

very well understood, given the serious difficulties inherent in measuring or modelling 

flow patterns of granular solids, wall pressures and the associated structural response. 

 

To this end, this thesis presents a programme of theoretical and computational analyses 

which investigate the effects of a very wide range of different discharge flow patterns 

from silos, including both concentric and eccentric flows. The critical effects of changes 

of flow channel geometry, silo aspect ratio, changes of plate thickness and geometric 

and material nonlinearity are explored in detail.  

 

The codified procedures and pressure distributions for concentric and eccentric 

discharge of the EN 1991-4 (2007) European Standard are analysed first on a number of 

example silos custom-designed according to EN 1993-1-6 (2007) and EN 1993-4-1 

(2007), followed by the development and investigation of a more complete mixed flow 

pressure theory. The computational analyses presented in this thesis are thought to be 

the first of their kind. 
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Chapter 1 – Introduction and literature review 
 
1.1 Introduction 

Silos are storage structures, capable of retaining tens of thousand of tonnes of different 

granular materials, and are vital to industry and the economy. They are, in many 

respects, under-appreciated by the general public due to their absence from city 

landscapes, usually banished to bleak industrial complexes or farms. Yet a silo disaster 

is a significant financial burden, both in terms of the destruction of the structure, the 

loss of the material stored inside and the halt in productivity at the facility. This field, 

therefore, merits considerable study.  

 

The aim of this thesis is to develop an improved understanding of the structural 

behaviour of a silo and its contents during discharge, especially under non-axisymmetric 

(eccentric) flow patterns. Eccentric flows have been directly responsible for a great 

number of catastrophic silo failures leading to high economic, material and, regrettably, 

sometimes human losses. Progress in understanding these structural failures has been 

slow due to the highly unpredictable nature of eccentric discharge and the complexity of 

the mechanics involved. 

 

Silos are built either of reinforced concrete or sheet metal, the two different methods of 

construction greatly influencing the behaviour of the silo. A concrete silo will not 

buckle in the same way as a metal silo, nor will a metal silo burst or suffer the same 

cracking effects as a concrete one under bending and tensile forces. A concrete silo is, 

however, significantly more resistant to abrasive materials, such as coal and iron ore, 

but a metal silo is much more efficient in terms of material use for storing smaller-

particle granular solids, such as cereals. Only thin-wall metal silos, specifically steel, are 

considered in this thesis since these are usually more common and have suffered 

numerous catastrophic buckling failures under eccentric flows in the past. An example 

of buckling failure in a full-scale and model silo is shown in Fig. 1.1. 
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a) Progressive catastrophic collapse of a steel silo due to eccentric discharge (courtesy 

of J.M. Rotter) 

 

 
b) Global overturning collapse of a model silo under fully eccentric discharge (after 

Watson, 2010) 

Fig. 1.1 – Examples of collapse under eccentric discharge 

 

Classical design of silo structures is based on the assumption that the normal pressure 

and frictional traction exerted by the granular solid on the silo wall are both 
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axisymmetric, resulting in a relatively simple linear behaviour of the structure. The 

critical failure mechanism of concrete silos has generally been assumed to be by 

bursting of the wall due to fracture or yielding of the reinforcement under high uniform 

internal pressure, while that of metal silos has generally been assumed to be through 

buckling due to high uniform axial compression (Rotter, 2001a). However, true pressure 

patterns in silos usually possess a significant degree of axial asymmetry, even under 

supposedly concentric filling or discharge procedures (Ooi et al., 1990). Up to the 

release of the current European Standard on silo pressure (EN 1991-4, 2007), the only 

treatment of such asymmetries in silo loadings was the linear superposition of simple 

rectangular patches of additional normal pressure at arbitrary locations (e.g. DIN 1055-

6, 1987; ISO 11697, 1995; AS 3774, 1996). It will be shown in this thesis that this 

approach is not at all satisfactory at emulating both the realistc behaviour of the granular 

solid and its effect on the structure. 

 

To this end, the following literature review is split to follow two different, but related, 

areas of research. The first part introduces the literature on the discharge of granular 

solids in silos and hoppers, including flow patterns, wall pressures and structural effects. 

The second part covers the literature on the subject of structural analysis and design of 

shell structures for stability and plasticity, including computational analysis and the 

finite element method. Both of these topics are extremely broad and contain a 

voluminous range of publications. However, not all are relevant to the current thesis and 

there is no room to list them all. The focus will be on the most important ones which in 

some way have influenced the current work. 

 

1.2 Literature on granular solids pressures in silos and structural 

consequences 

1.2.1 Silo pressure theory 

Contrary to the familiar frictionless hydrostatic pressure distribution of fluids, whereby 

the normal pressure exerted on a fluid-filled container depends uniquely on the head, 

pressures in silos are dominated by complex frictional phenomena (Rotter, 2007a) 

which are difficult to quantify. Similarly, where the Navier-Stokes equations have been 

around for nearly two hundred years (starting with Navier, 1822) to describe viscous 

heat-conducting fluid flow precisely, no corresponding set of complete equations yet 

exists for granular solid flow. 
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The foremost piece of work in the field of silo pressures in a uniformly-filled 

axisymmetric cylindrical vessel is the theory of Janssen (1895), a German engineer 

working on square wooden silos containing wheat, corn and dry sand. The fundamental 

assumptions in that theory have been used in all serious work of this nature ever since, 

and a summary of the derivation is appropriate here.  

 

Consider an infinitesimally thin slice of a solid of bulk density γ at a depth z below the 

equivalent solid surface, shown in Fig. 1.2. The analysis presented here follows that of 

Rotter (2007a). 

Geometry: 
A = πR2 

U = 2πR 
V = πR2dz 

z dz

Key assumptions of 
Janssen’s theory: 
τ = μp 
p = Kq 

 

2R 

Equivalent  

z = Hc 

Surface  
(z = 0) 

 

q 

R 

γ 

Axisymmetric  
granular solid τ

p

τ 

p 

q + dq 

 
Fig. 1.2 – Derivation diagram for silo pressures, after Rotter (2007a) 

 

The original assumptions made by Janssen are as follows. Firstly, the vertical stress q 

through the cross-section and the normal p and shear τ stresses on the circumferential 

boundary are taken to be the mean values at any level. Secondly, the mean normal wall 

pressure p is related to the mean vertical stress q through a lateral pressure ratio K which 

is deemed to be constant throughout the whole silo. Thirdly, full wall friction is 

assumed to have developed between the solid and the wall so that the mean frictional 

shear τ is related to the mean normal pressure p by the fully-developed wall friction 

coefficient μ, assumed to be constant throughout the silo. Lastly, the bulk solid density γ 

is also assumed to be constant. 

 

Vertical equilibrium of the slice leads to the following differential equation: 

( ) ( )dq z
A U z A

dz
τ γ+ =         (1.1) 
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Applying the boundary condition such that the vertical pressure is zero at the top surface 

q(0) = 0 and incorporating the above assumptions, the solution to Eq. 1.1 yields the 

famous Janssen equation for normal pressure on the silo wall: 

( ) 0
0 1

z
zp z p e

−⎛ ⎞
⎜= −
⎜ ⎟
⎝ ⎠

⎟  where 0 0p K zγ=  and 0 2
A Rz
KU Kμ μ

= =    (1.2) 

Close to the surface (z → 0), and thus p(z) ≈ Kγz0 which is analogous to hydrostatic 

pressure though reduced by the factor K. At great depth, z → ∞ and hence p(z) → p0 

meaning that the pressure tends to a single asymptotic value dependent only on the solid 

density, the silo radius and the frictional contact between the solid and the wall (i.e. the 

weight of the granular solid is being carried by friction). A typical shape of the Janssen 

distribution for a slender silo is shown in Fig. 1.3a. Replacing the expressions for the 

area and circumference of a circle in Eq. 1.2, A and U respectively, with those of a 

square yields instead the Janssen equation for silos of square cross-section. 

 

The fact that the vertical pressures in the solid do not increase hydrostatically but tend 

to an asymptotic value at a certain depth had been known some years before Janssen. 

Indeed, the English engineer Roberts (1882, 1884) had reported that the pressure at the 

base of a grain silo did not increase any further when the height of the grain exceeded 

twice the width of the silo. 

 
Fig. 1.3 – Variants of the Janssen and modified Reimbert pressure distribution 
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The origin of z in the Janssen equation is assumed to be at the top surface of the 

granular solid. Since these surfaces are almost always uneven, an equivalent surface 

usually needs to be defined to account for any variations from a perfectly level surface, 

an assumption that is more suitable for slender silos. For squat silos, there may be 

differences of several metres between the actual level of the solid-wall contact and the 

equivalent surface, so that the Janssen distribution would predict high pressures against 

the wall where there are none at all (Rotter, 2001a). A solution for this is found in the 

semi-empirical theory of M. and A. Reimbert (1976), modified by Rotter (1983b) to be 

in a more accessible form in line with Eq. 1.2, which is given in EN 1991-4 (2007) as: 

( ) 0
0

0 0
1

n
z hp z p
z h

⎛ ⎞⎧ ⎫⎛ ⎞−⎪⎜= − +⎨⎜ ⎟⎜ ⎟−⎪ ⎪⎝ ⎠⎩ ⎭⎝ ⎠
1⎪ ⎟⎬         (1.3) 

where 0 tan
3 r
Rh φ= , ( )

0

0

1 tan

1

rn
h
z

φ− +
=

⎛ ⎞
−⎜ ⎟

⎝ ⎠

 and φr is the angle of repose of the granular solid 

while p0 and z0 are defined as before. A typical shape is shown in Fig. 1.3b. 

 

The Janssen equation is usually a remarkably good approximation to the filling 

pressures in a silo and early experimental studies reported wall pressures that apparently 

correlated very closely with its predictions (e.g. Jamieson, 1903; Tolz, 1903; Bovey, 

1904; Pleißner, 1906; Hoppe, 1979). However, Janssen’s equation is naturally unable to 

capture many phenomena, such as the manner and eccentricity of filling and the packing 

of the granular material, which have been found to have a significant influence on the 

filling pressures within a silo. Early evidence of this was found by Takhtamishev (1953) 

during his experiments on model concrete silos who related lower wall pressures to a 

more tightly packed granular solid and higher wall pressures to a more loosely packed 

one. Other studies, including Otis and Pomroy (1957) and Aldrich (1963), have also 

shed doubt on the validity of assuming a constant bulk solid density throughout the silo. 

Many further studies by researchers, including Reimbert M. and Reimbert A. (1961), 

Borcz and Marcinkowski (1974), Nielsen and Kristiansen (1980), Kamiński (1981) and 

Kamiński and Zubrzycki (1981), have reported significantly higher filling pressures 

than those predicted by Janssen.  
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1.2.2 Hopper pressure theory 

An analogous but more complex derivation exists for the normal pressures against the 

wall of a uniformly-loaded axisymmetric conical hopper, shown in Fig. 1.4 below. First 

thought to have been carried out by the Polish engineer Dąbrowski (1957), it is more 

commonly attributed to Walker (1966) and its derivation is presented in Arnold et al. 

(1980), Drescher (1991), Rotter (2007a) and many others. The assumptions are almost 

the same to those of the Janssen derivation, and the notation presented here follows that 

of Rotter (2007a).  

 

The mean normal pressure p on the inclined wall is assumed to be related to the mean 

vertical stress q through a hopper pressure ratio F, and the mean frictional shear τ is 

related to the mean normal pressure p by the fully-developed wall friction coefficient 

for the hopper μh. Once again, F and μh are assumed to be constant throughout the 

hopper. The vertical coordinate of the hopper x is defined as upwards positive starting 

from the apex of the hopper cone which occurs below the outlet and is thus not 

physically a part of the hopper. 

 

q 

R 

γ Geometry: 
Atop = π(x+dx)2tan2β 
Abot = πx2tan2β 
U = 2πxtanβsecβ 
V = πx2tan2βdx  

p

τ 
Axisymmetric  
granular solid τ

p

2R Key assumptions of 
Walker’s theory: 
τ = μhp 
p = Fq 

β

x dx

x = Hh

β

Hopper apex (x = 0) q + dq  
Fig. 1.4 – Derivation diagram for hopper pressures, after Rotter (2007a) 

 
Vertical equilibrium leads to: 

( ) ( ) ( )2 1 cot 1h

dq x
x q x F x

dx
μ β− + − =⎡⎣ γ−⎤⎦      (1.4) 

The solution to Eq. 1.4 assumes a top boundary condition of q(Hh) = qvft which is the 

vertical stress in the solid at the bottom of the silo. If there is no silo above the hopper, 

the top surface of the granular solid may be assumed to be free from stress, i.e. qvft = 0. 

Thus, incorporating all of the above assumptions yields the equation for the normal wall 

pressure in the hopper: 
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( )
1

n n
h

vft
h h

Hx x xp x F q
H n H H

γ⎡ ⎤⎧ ⎫⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎪⎢= + −⎨⎜ ⎟ ⎜ ⎟ ⎜ ⎟−⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎪ ⎪⎩ ⎭⎣ ⎦h

⎪⎥⎬       (1.5)  

where n is the power of the distribution. 

 

The above equation identifies two components of the hopper pressure; the weight of the 

solid in the hopper itself and the weight of the overlying solid in the silo, if present. The 

weight from the silo is maximised when the wall friction coefficient of the silo wall is 

lower, since less of the load will then be carried by friction. Steep or rough-wall hoppers 

usually have a high value of n which may result in a pressure distribution peaking 

sharply at the transition (x = Hh).  

 

The EN 1991-4 (2007) standard differentiates between hoppers in which the wall 

friction is fully mobilised and those in which it is not. These are termed ‘steep’ and 

‘shallow’ hoppers respectively. A hopper is deemed to be shallow if tanβ > ½(1 – K)/μh 

(Rotter, 1999a; 2000). Steep hoppers thus use the fully-developed wall friction 

coefficient μh, while shallow hoppers use an effective wall friction coefficient based on 

the lateral pressure ratio of the solid and the hopper apex half-angle: μeff = ½(1 – K)cotβ. 

The typical shapes of steep and shallow hopper normal pressure distributions are shown 

in Fig. 1.5. 

 

 
Fig. 1.5 – Normal wall pressure distributions for a steep and shallow hopper 
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1.2.3 The lateral pressure ratio 

In both the Janssen and Dąbrowski/Walker theories, four specific granular solid 

parameters are required: γ, μ, K and F, the latter two usually being the most problematic 

to define. Though Janssen introduced the concept of the lateral pressure ratio in his 

derivation, he did not suggest any way of obtaining it. Koenen (1895) was the first to 

suggest a value based on the theory of Rankine (1857) for pressures in soils at failure. 

An in-depth discussion of K may be found in Blight (2006), though it is rather difficult 

to generalise his conclusions. 

 

Rankine’s theory defines two limiting values of K at which the solid is at plastic failure. 

These are the Rankine active (smallest, Ka) and passive (largest, Kp) limits, one the 

inverse of the other. Derivation of the two limits is based on the assumption that the 

solid is in a state of plastic failure dependent on the mean vertical and horizontal 

stresses alone. These are assumed to be principal stresses, which is not strictly true due 

to the friction acting on the wall (Blight, 2006). From a Mohr’s circle analysis assuming 

fully-developed wall friction, one obtains: 

1 sin
1 sin

i
a

i
K φ

φ
−

=
+

 and 1 sin
1 sin

i
p

i
K φ

φ
+

=
−

       (1.6) 

where φi is the angle of internal friction of the solid. 

In the first application of Janssen’s theory, Koenen (1895) used the Rankine definitions 

to assume that the solid in a silo after filling was in a Rankine active state, and hence 

had higher vertical pressures than horizontal.  

 

The two Rankine states are reached when the solid can deform plastically, requiring the 

silo wall to move in (passive limit) or out (active limit). However, silo walls have 

significant rigidity and thus a different solid state referred to as K0 exists during storage. 

This is significantly higher than the Rankine active limit, giving rise to higher filling 

pressures. The value of K0 has long been approximated by (Jaky, 1948; Muir-Wood, 

1990; Blight, 2006) as: 

0 1 sin iK φ= −           (1.7) 

More flexible walls, undergoing outward deformation, lead to slightly lower values than 

K0, but still not as low as Ka. The value is based on soil mechanics theory and K0 is 

often known as the coefficient of earth pressure at rest. 
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A more sophisticated treatment of the lateral pressure ratio came from Walker (1966), 

extended by Walters (1973), who recognised that the solid adjacent to the wall must be 

in a stress state corresponding to the wall friction shearing against its boundary with 

fully-mobilised friction. A similar Mohr’s circle analysis yields a different relation, 

presented here in the form given in the Australian Standard for Loads in Bulk Solids 

Containers, AS 3774 (1996): 

2 2 2

2 2
1 sin 2 sin cos

4 cos
i i w

w i
K

2
iφ φ μ φ

μ φ
+ − −

=
+

      (1.8) 

where μw is the fully-developed wall friction coefficient of the solid. 

 

This equation has two limiting values. As μw → 0 (perfectly smooth wall), K → Ka 

(Rankine Active state), and as μw → tanφi (perfectly rough wall), K tends to the value: 
2

2
1 sin
1 sin

i

i
K φ

φ
−

=
+

         (1.9) 

The distribution of K with μw according to Eq. 1.8 is shown in Fig. 1.6. The lateral 

pressure ratio increases with the friction coefficient, gradually at first and then more 

steeply as μw → tanφi. In the Rankine active state, rough solids are predicted to have 

very low values of K indicating very low pressures near the surface, which is not true, 

and it was recognised that the Rankine active limit was an underestimate of filling 

pressures after extensive damage to many silos.  

 

The current European Standard for loadings on silos, EN 1991-4 (2007), follows a 

different procedure and instead tabulates various mean values of Km for different 

granular solids under different conditions. A conversion factor is also given, aK (greater 

than unity), and through division or multiplication of Km by aK respectively one obtains 

the upper or lower characteristic design value of K. This semi-empirical approach 

attempts to accommodate the large statistical variations in granular solids’ properties. 

The same method is also used to obtain characteristic design values of γ, μ and φi. 
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Fig. 1.6 – Variation of the lateral pressure ratio with the wall friction coefficient 

 

It should finally be reminded that the Janssen and Walker pressure theories, on which 

all silo design is essentially based, assume constant values of K (however it is 

calculated) down the entire silo height. This is very unlikely to be the case in reality, 

and results from experimental studies (e.g. Reimbert, 1961; Blight, 2006) suggest that 

the lateral pressure ratio is dependent on the depth within the solid and on the height and 

cross-section of the silo. Other early researchers, including Ketchum (1907), Amundson 

(1945) and Saul (1953) also found considerable variations in K with depth, while others 

still, including Jaky, (1948) and Zakrzewski (1959) found very little. The experimental 

field of silo pressures is notoriously difficult and very many different authors often get 

conflicting results for the same apparent phenomenon. More research is needed to 

improve the understanding of the variation of the lateral pressure ratio in the silo. 

 

1.2.4 The hopper wall pressure ratio 

For the hopper wall pressure ratio under filling conditions, Ff, the empirical value of 

Rotter (1990), based on the experimental data of Motzkus (1974), is prescribed in EN 

1991-4: 

1 0.8 cot
1 cot

h
f

h
F μ β

μ β
+

=
+

         (1.10) 
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where μh is the lower characteristic value of the wall friction coefficient (fully or 

partially-mobilised, depending on hopper steepness) of the hopper, and β is the hopper 

apex half-angle. 

 

For the corresponding value of under discharge conditions, Fe, the theoretical value of 

Walker (1966), also based on a Mohr’s circle analysis, is prescribed in EN 1991-4: 

( )
1 sin cos

1 sin cos 2
i

e
i

F φ ε
φ β ε
+

=
− +

 where 
2

1 1
2

1tan sin
sin 1

h
h

i h

μ
ε μ

φ μ
− −

⎧ ⎫⎪ ⎪= + ⎨ ⎬
+⎪ ⎪⎩ ⎭

  (1.11) 

Neither of the above equations are used in the analyses presented in this thesis, and are 

thus not pursued further here. 

 

1.2.5 Concentric discharge in silos 

It was discovered early that the normal pressures may increase significantly during 

discharge (Prante, 1896; Jamieson, 1903; Bovey, 1904; Pleißner, 1906; Ketchum, 

1907), yet it was not clear how large these increases were or for how long they 

persisted. Long term pressure rises were of the order of 30%, whilst very short term 

local rises were of the order of 300% (Rotter, 2007a). A significant attempt to explain 

these large increases was made by Nanninga (1956) who proposed, developing the idea 

of Koenen (1895), that in addition to a solid after filling being in a Rankine active state, 

during discharge it is in a Rankine passive state. The change from active to passive 

states during discharge was originally proposed to be gradual resulting in a much lower 

pressure increase (Fig. 1.7b), but this idea was adopted by others (Walker, 1966; 

Walters, 1973; Jenike et al., 1973; Arnold and McLean, 1976; Arnold et al., 1980) who 

postulated that this effect was quite sudden (Fig. 1.7c), leading to what become known 

as the ‘switch’ theory. 
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Fig. 1.7 – Illustration of the switch in Janssen normal wall pressure 

 

For a typical solid, Kp/Ka is of the order of 10, yet such huge pressure jumps have never 

been reported during discharge (e.g. Frese, 1977), nor do many steel silos fail by 

bursting which is what one would expect if such an axisymmetric jump in pressure were 

present. Jenike et al. (1973) addressed this discrepancy by devising the ‘minimum strain 

energy theory’ which used the calculus of variations and the assumption of an elastic 

stored solid to deduce rather smaller pressure increases. This idea was followed by 

Arnold and McLean (1976) and Arnold et al. (1980), the results of which were adopted 

into the AS 3774 Standard. However, the basis of this theory is weak and it fails to 

address the problem of unsymmetrical pressures.  

 

The ‘switch’ theory is now largely discredited (Rotter, 2007a). In design, the increase in 

pressures for concentric flow is normally accounted for by simple multiplication factors 

of the order of 1.8. However, these are also based on concepts from quite simple 

theories (Jenike et al., 1973; Drescher, 1991; Nedderman, 1992), including that of the 

‘switch’. Other experimental studies which explored flow patterns during concentric 

discharge include Deutsch and Clyde (1967), McCabe (1974) and Chatlynne and 

Resnick (1973). An alternative and more robust theory, which predicts more modest and 

realistic pressure increases during discharge without relying on making questionable 

alterations to the lateral pressure ratio, is presented in this thesis. 
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1.2.6 The patch load concept 

Since the Janssen derivation assumes axisymmetric pressures, it was naturally first 

thought that measured pressures would be axisymmetric too, and experimenters 

originally placed a single pressure cell at any vertical location (Pieper and Wenzel, 

1964; Rotter, 2007a). Later experiments which included more pressure cells around the 

circumference revealed that even during storage there are significant differences in 

normal pressures at any level, and during discharge the pressures fluctuate wildly (Fig. 

1.8). These variations are difficult to characterise with simple equations (Nielsen and 

Kristiansen, 1980; Gale et al., 1986; Ooi et al., 1990; 2005; Nielsen, 1998), and show 

that even concentric discharge is not very ‘concentric’ at all.  
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Fig. 1.8 – Example of the erratic variation of measured normal pressures during 

discharge (F0 – F5 are pressure cells around the circumference), after Rotter (2007a) 

 

In older design standards (e.g. DIN 1005-6, 1987; ISO 11697, 1995; PN-B-03202, 

1996), the effect of unsymmetrical pressures arising under notionally-symmetrical 

conditions of both filling and discharge was treated as an additional unsymmetrical 

component to the axisymmetric solid pressures. This attempted to account somewhat for 

the structural consequences of unsymmetrical loads on silos, as such loads are known to 

be highly damaging on shells (Calladine, 1983; Yamaki, 1984). The influence of this 

additional component was expressed through the application of a ‘patch’ of continuous 
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normal pressure with a prescribed magnitude and distribution at a location where its 

presence was thought to be most damaging (Fig. 1.9). 

 

2R = D 
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DIN & ISO 
(patch load) 

EN  
(patch load) 

Symmetrical 
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Unsymmetrical  
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Standard-specific unsymmetrical normal 
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+ 

 
Fig. 1.9 – Schematics of normal pressure components for patch loads as defined by DIN 

1055-6 (1987), ISO11697 (1995) and EN 1991-4 (2007) 

 
Codified representations of patch loads differ considerably from one standard to 

another. For example, the German and ISO Standards (DIN 1055-6, 1987; ISO11697, 

1995) define two rectangular patches of size s×s (s being a function of D, the silo 

diameter) of increased pressure at a prescribed height, both opposite each other. The 

patch load treatment in the new European Standard (EN 1991-4, 2007) is required if the 

outlet eccentricity ec is considered to be less than 0.25D, but the calculation must 

always be carried out except for the smallest of silos. A patch of normal pressure with a 

sinusoidal distribution is defined around the full circumference, with a pressure 

reduction nearest the outlet (if any) and a corresponding increase on the opposite side, 

both at a prescribed height and spanning a vertical distance of s. None of these 

Standards define an associated increase in frictional tractions for the patch load. 
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It may be argued that these are acceptable for use where minor eccentricities are 

expected, but unfortunately in all cases except EN 1991-4 (2007) and AS 3774 (1996) 

these are the only prescribed distributions to account for non-uniform pressures. The 

patch treatment, though rudimentary and not rigorously representative of a realistic 

pressure pattern (e.g. Hartlén et al., 1984; Ooi et al., 1990; Nielsen, 1998), did however 

correctly identify unsymmetrical normal pressures, rather than frictional tractions, as the 

main catalyst for failure of the silo.  

 

In the earlier standards (DIN and ISO), the patch pressures were applied going outwards 

with the implication that failure would be through circumferential bending. This was 

based on the common misconception that failure in all silos is governed by material 

yielding due to circumferential bending and tension (Jenike, 1967; Emanuel et al., 1983; 

Roberts and Ooms 1983; Wood, 1983) which influenced designers to treat the shell as a 

simple planar ring. This may be appropriate for thick-walled reinforced-concrete silos, 

but thin-walled metal silos behave entire differently. Bursting failure in metal silos is 

uncommon except where inadequate bolted joints are used (Rotter, 2006). By contrast, 

the single-harmonic patch load distribution of EN 1991-4 (2007) is designed to create a 

global overturning moment and an increase in axial compression on one side of the silo, 

with buckling of metal silos in mind. 

 

Some research has since been done to investigate the effect of these patches of normal 

pressure on silo stability using both linear elastic and more sophisticated computational 

analyses. Gillie and Rotter (2002) and Song (2004) found that the size, magnitude and 

location of a patch may each have a deleterious effect on both the linear elastic 

membrane and bending stresses in the silo wall. Song and Teng (2003) and Song (2004) 

also showed, however, that although the patch load is indeed very detrimental in linear 

elastic and linear bifurcation finite element analyses of the structure, in geometrically 

nonlinear analyses the bifurcation loads were little different to those with no patch load. 

Geometric nonlinearity was found to make the influence of such patch loads negligibly 

small, and may therefore be said to have a beneficial effect. This, combined with the 

lack of consistency throughout these Standards with regard to the definitions of the 

unsymmetrical pressure distributions, strongly suggests that the patch load treatment is 

not satisfactory. 
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1.2.7 Flow patterns in silos 

Many different types of flow patterns may occur in silos, each one constituting its own 

design condition with significantly different pressure distributions. The three basic flow 

patterns introduced in EN 1991-4 (2007) for the initial discharge of solids from a silo in 

the full condition are ‘mass flow’, ‘mixed flow’ and ‘pipe flow’, (Fig. 1.10). The 

following descriptions follow those found in Rotter (2001a), while a similar overview 

may also be found in Hampe (1987). 

 

Mass flow occurs when the entire body of stored solid discharges simultaneously, with a 

‘first in-first out’ flow order: there are no ‘dead’ zones of solid which fail to discharge. 

It is advantageous where prolonged storage of material is to be avoided, or a 

homogenous, non-segregated, well-controlled outflow stream is desired. However, a 

relatively steep hopper is required to ensure such flows, potentially raising the energy 

cost of elevating the solid to a higher level. Additionally, there is significant wear of the 

silo wall under full mass flow, exacerbated by more abrasive materials such as coal and 

metal ores. The solid itself may also become damaged after discharge due to a large 

drop height. Mass flow is most common for loosely-packed solids. 

 

Funnel flow occurs when only a limited portion of the cross-section actually discharges, 

the remainder being initially stationary. The flow pattern thus follows a ‘first in-last out’ 

order. Such discharge often commences as an unstable narrow channel (‘pipe flow’) 

surrounded by stationary material which may extend all the way to the surface (‘internal 

pipe flow’), and consequently spreads out into a wider, more stable form (‘mixed 

flow’). In the later stages of the discharge, the surrounding stationary solid eventually 

also begins to move. Funnel flow significantly reduces abrasion against the silo wall and 

is easier on the stored material, but unless the solid is sufficiently free-flowing or the 

outlet is sufficiently large, it may fail to discharge completely leaving dead zones that 

must be removed manually, a dangerous process. This type of flow is very likely to 

occur for densely-packed solids, which require extensive dilation to flow that only a 

vertical free-fall through an outlet can provide (Zhong et al., 1996; 2001). Conversely, 

flow of a loosely-packed granular solid does not require high dilation and wider 

channels are possible.  
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Flow patterns are influenced by a multitude of complex factors including granular solid 

solid properties (e.g. internal and wall friction, elasticity, dilation, cohesion, particle size 

distribution, moisture content and temperature), the filling process (e.g. segregation, 

packing, non-uniformities and eccentricities) and silo geometry (e.g. aspect ratio, 

presence of hopper and internal structures). The conditions under which mass flow 

occurs are relatively well understood and may be ensured through adequate hopper 

steepness, low wall friction and outlet size, but other flow patterns are significantly 

more difficult to guarantee. Additionally, it is known that the initial packing of some 

solids may have a radical effect on the flow pattern (e.g. Wright, 1979; Sugden, 1980; 

Munch-Andersen and Nielsen, 1990; Zhong et al., 1996; 2001). Specifically, the 

development of mass or pipe flow is suggested to be closely dependent on the manner 

(distributed or concentrated) and eccentricity of the initial filling (e.g. Takhtamisev, 

1953; Nielsen and Kristiansen, 1980). 

 

Primary 
flow zone

Secondary  
(stationary) 
flow zone 

a) Mass flow b) Mixed flow c) Pipe flow d) Internal pipe flow 
 

Fig. 1.10 – A selection of typical axisymmetric flow patterns, after EN 1991-4 (2007)  

 

Unsymmetrical flow patterns are present under notionally concentric conditions more 

often than they are absent, leading to patterns akin to Fig. 1.11a, and are the justification 

behind the patch load treatment presented previously. Granular solids flows which can 

no longer be idealised as concentric are named ‘eccentric’, and are the central focus of 

this thesis. Highly eccentric discharge in dense solids leads to a much more clearly 
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differentiated pressure pattern associated with the formation of an unsymmetrical pipe 

flow channel, shown in Fig. 1.11b, c and d below. Such flows may occur either 

accidentally, or may be a design feature of the silo for operational reasons. 

 

Primary 
flow zone

Secondary  
(stationary) 
flow zone 

c) Eccentric parallel
pipe flow 

d) Eccentric tapering 
pipe flow 

a) Unsymmetrical 
concentric mixed 

flow 

b) Eccentric 
mixed flow 

 
Fig. 1.11 – A selection of typical unsymmetrical flow patterns, after EN 1991-4 (2007)  

 
1.2.8 Eccentric discharge in silos  

The first known experiment dealing with eccentric unloading of grain bins was 

performed by the German engineer Prante (1896) who determined that the lateral 

pressures on the silo wall opposite the outlet increased by 2 to 4 times the static lateral 

pressures. Though Prante’s results were apparently considered unreliable at the time 

(Bucklin et al., 1990), they provided an early indication of the problems associated with 

eccentric discharge. One of the first recommendations warning against the practice of 

eccentric discharge, by Ketchum (1907), was based on Prante’s work. 

 

Very many experiments and some computational studies have since been conducted on 

silos under eccentric discharge, e.g. Pieper and Wenzel (1964), Pieper and Wagner 

(1969), Ravanet (1976), Nielsen and Kristiansen (1979), Ross et al. (1980), Nielsen and 

Andersen (1981), Britton and Hawthorne (1984), Hampe and Kamiński (1984a,b), 

Hartlén et al. (1984), McLean and Bravin (1985), Gale et al. (1986), Carson et al. 

(1991), Chen (1996), Chen et al. (1998), Ayuga et al. (2001), Vidal et al. (2006) and 
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many more. These studies produced highly varied outcomes which are extremely 

difficult to generalise. This is not an unexpected outcome given the difficult nature of 

the problem. Other authors, including Jenike (1967), NRCC (1969), Colijn and Peschl 

(1981), FBIC (1981), Wood (1983), Roberts and Ooms (1983), Emanuel et al. (1983), 

Rotter (1985a), Safarian and Harris (1985), Gorenc et al. (1986), Ooms and Roberts 

(1986), DIN 1055-6 (1987), ACI 313-77 (1983), ACI ADP (1989) and Blight (2006), 

proposed a vast array of different pressure distributions or failure criterions under 

eccentric discharge. However, most of these were generally not successful in closely 

reproducing what had been observed in experiments or in the field. 

 

An important step in understanding came some twenty years ago with Rotter’s theory 

(1986) for the pressures in a silo with a parallel-sided flow channel developing adjacent 

to a crescent-shaped body of stationary solid. The derivation follows the same structure 

and assumptions of mean pressure values as Janssen’s slice analysis, but with more 

complex boundary conditions. A marginally-simplified version (Rotter, 2001b) is 

summarised in Fig. 1.12. The assumption of a parallel-sided flow channel allows the 

solution to be written in closed form. 
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Fig. 1.12 – Derivation diagram for Rotter’s original eccentric discharge theory (1986) 

 

The respective expressions for the areas of the flowing and stationary solids, Ac and As, 

as well as the perimeters, may be derived using basic geometry. Vertical equilibrium of 

a slice through the truncated flow channel circle leads to the following ordinary 

differential equation: 

( ) ( ) (c
c c w wc sc sc

dq z
A q z K U U

dz
) cAμ μ+ + γ=      (1.12) 
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The solution to Eq. 1.12 assumes the boundary condition of zero stress at the solid 

surface qc(0) = 0, and yields the equation for the pressure normal to the silo wall within 

the flow channel: 

( ) 0
0 1 c

z
z

c cp z p e
−⎛ ⎞

⎜ ⎟= −
⎜ ⎟
⎝ ⎠

where 0 0c cp K zγ= and 0
1 c

c
w wc sc sc

Az
K U Uμ μ
⎛ ⎞

= ⎜ +⎝ ⎠
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Similarly, vertical equilibrium of a slice through the crescent-shaped stationary solid, 

with the condition that the shears on the perimeter with the flow channel must be in 

equilibrium with those in the flow channel (Eq. 1.13), leads to the following ordinary 

differential equation: 
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The solution to Eq. 1.14 also assumes the boundary condition of zero vertical stress at 

the solid surface qs(0) = 0. The equation for the pressure normal to the silo wall in the 

stationary solid is thus: 
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It is clear that as Ac → 0, w → 0, zc0 → 0, u → 0 and therefore ps → Janssen Eq. 1.2. 

 

Rotter’s original working of this theory (1986) continued with further assumptions 

about the lateral pressure ratio based on the Walker and Rankine theories, but these are 

not critical to the derivation. A more powerful version of this theory is developed in this 

thesis assuming curved parabolic flow channel sides, rather than parallel sides. The 

resulting differential equations may only be solved by numerical integration, but the 

range of flow channel geometries which may be modelled is almost unlimited. The first 

investigation of a similar theory was only made in the relatively unknown 

undergraduate thesis of Barry (1988). 

 

The vertical pressure in the flow channel is always predicted to be significantly lower 

than in the stationary solid and, consequently, so are the normal pressure and frictional 
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traction exerted by this low pressure on the silo wall. An example of typical pressure 

distributions predicted by Rotter’s (1986) eccentric discharge pressure theory is shown 

in Fig. 1.13 below.  

 

 
Fig. 1.13 – Example of typical vertical solid pressures according to Rotter (1986) 

 

The evidence about whether the pressure in the flow channel should be lower or higher 

than that in the stationary solid is conflicting. The experiments of Pieper and Wagner 

(1969) on model bins containing sand reported apparent increases in lateral pressure on 

the side of the outlet, while Thompson et al. (1986) determined that the largest vertical 

loads during eccentric discharge of wheat from corrugated model steel bins also 

occurred adjacent to the outlet. An equivalent conclusion was reached by Horabik et al. 

(1987), based on observations of eccentric discharge of wheat from a smooth-walled 

model bin, and by Gopalakrishnan (1978) in his experiments on eccentric discharge of 

rice (but not wheat, which found pressure decreases adjacent to the outlet) from square 

silos. Bucklin et al. (1980), Colijn and Peschl (1981) and Safarian and Harris (1985) all 

proposed design models based on the assumption of increased pressures in the flow 

channel and a failure mode through circumferential plastic collapse. However, it is 

difficult to rely on the accuracy on many of these findings given the relatively crude 

experimental techniques and philosophies that were often employed, including the use 

of a single pressure cell at any level and the focus on the highest recorded pressure 

values, regardless of location or duration. As noted at the start of this section, pressure 
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models based on observations made from unwise experimental procedures are rarely 

founded on sound mechanics and generally unsuccessful in analytically reproducing 

observations in the field. 

 

Experimental evidence that directly supports reduced flow channel pressures may be 

found in the full-scale Swedish grain silo tests at Karpalund which are widely reported 

in, amongst others, Nielsen and Askegaard (1977), Nielsen and Kristiansen (1980), 

Nielsen and Andersen (1980; 1982), Nielsen (1983; 1998), Hartlén et al. (1984) and Ooi 

et al. (1990; 2005). This experimental program was pioneering in its use of multiple 

pressure cells down at least four meridional generators, all at different circumferential 

positions. The results and conclusions derived from these tests may therefore be 

considered more reliable than much of what came before. Other experimental studies 

which found a reduction in wall pressures adjacent to an eccentric outlet include 

Jamieson (1904), Ravenet (1976), Frese (1977), Gale et al. (1986), Ooms and Roberts 

(1986) and Blight (2006). However, where the Rotter (1986) theory predicts a 

progressive growth in flow channel pressures with depth down to an asymptotic value 

(Fig. 1.13 and Eq. 1.13), the results of the Karpalund tests, and both Ravenet (1976) and 

Gale et al. (1986) suggest the reverse whereby the channel pressures start at zero at the 

outlet and grow progressively with height.  

 

A cruder version of Rotter’s 1986 work has been adopted, for the first time as a codified 

procedure, into the Section 5.2.4.3 of EN 1991-4 (2007) for Action Assessment Class 3 

silos with large anticipated eccentricities or very slender aspect ratios. This Standard 

uses the Janssen distribution, Eq. 1.2, rather than the significantly more complex 

distribution from Eq. 1.15, for the pressure in the stationary solid. This purposeful 

simplification is not based on sound mechanics and was made because the theory was 

being introduced into a Standard for the first time. The Janssen values (Eq. 1.2 and Fig. 

1.13), are quite a bit lower than what Eq. 1.15 predicts and it is not yet known what 

structural effect this change may have. 

 

An additional consideration in the original theory was the possibility that high normal 

pressures might develop against the wall in the zone immediately inside the static solid 

(Jenike, 1967; Wood, 1983; Rotter, 1986; Chrisp et al., 1988; Chen, 1996). Such a rise 

occurs due to the arching effect of the ring of static material immediately adjacent to the 
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flowing material (Fig. 1.14a). It is required in order to maintain horizontal pressure 

equilibrium at any level, since it must counter the drop in pressures that occurs in the 

wall against the flow channel, but the form that it must take is not yet understood.  

 

Due to the strive for a universally conservative design procedure for this dangerous and 

poorly-understood phenomenon, the zones of high pressures in the stationary solid 

immediately adjacent to the channel were assigned an almost belligerently severe form 

by EN 1991-4, illustrated in Fig. 1.14b below. This form does indeed respect horizontal 

equilibrium, but is very damaging to the structure. An study of more realistic 

circumferential distributions of normal pressures (Fig. 1.14c), based on a stricter 

analytical derivation using elasticity theory of Timoshenko and Goodier (1970), is 

presented in Appendix B of this thesis. 
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Fig. 1.14 – Suggestions for the form of normal pressures against the wall of an 

eccentrically discharging silo 

 

Aside from Rotter’s initial studies (1986, 2001b) which probed the structural effects of 

the original form of the pressure distribution using a linear elastic finite element 

analysis with encouraging results, and a very short discussion by Kaldenhoff (2008), no 

other related studies of this pressure model are known. The author’s own work to date 

has explored the structural consequences of the EN 1991-4 implementation of this 

theory (Sadowski and Rotter, 2008; 2009; 2010), and has revealed many crucial aspects 

of silo behaviour under eccentric discharge which correspond very closely to 

observations made in practice. These are explored in full in this thesis. 
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1.3 Literature on shell structures, stability, computational analysis and 

design 

1.3.1 Shell theory 

A cylindrical metal silo is a highly efficient shell structure. Stresses in thin-walled shells 

of revolution may be calculated by two different methods. Firstly, a simpler treatment is 

given by shell membrane theory, which uses local static equilibrium to consider only in-

plane ‘membrane’ stresses constant through the shell thickness (Rotter, 1987a). The 

theory ignores out-of-plane stresses, bending or twisting moments, material stiffness or 

changes of geometry. Secondly, a complete but significantly more complex treatment is 

given by shell bending theory, which includes all of the above omissions (Rotter, 

1987b).  

 

Both theories are treated in considerable depth by texts such as Timoshenko and 

Woinowsky-Krieger (1959), Flügge (1960), Budiansky and Sanders (1963), Kraus 

(1967), Seide (1975), Gould (1977), Calladine (1983) and many others. These classical 

texts present very meticulous and mathematically complicated derivations of the 

governing equations, giving several helpful examples for load patterns and geometries 

which have some form of symmetry. Such load patterns include uniform axial 

compression, torsion, internal pressure and external pressure. These are applied 

predominantly to uniform thickness shells in the form of spheres, hemispheres, cones, 

cylinders, plates and other such axisymmetric shapes. It is usually due to assumptions of 

axisymmetry that the governing differential equations may be solved, and this makes 

the above theoretical treatments of limited use when attempting to solve algebraically 

for the highly complex, but more realistic, load patterns and varying-thickness shell 

designs.  

 

The treatment of non-uniform loads is mostly limited to membrane theory treatments of 

the ‘simpler’ cases, also due to the mathematical complexity. These include local 

supports at regular intervals, axisymmetric bands of pressure, axisymmetric hydrostatic 

loads and so on. For localised or wind loads, a Fourier series expansion is usually used 

(e.g. Rotter, 1987a; 1987b; Ansourian, 2004).  

 

Algebraic bending theory solutions for problems on non-axisymmetric systems are 

rarely available. Indeed, bending theory is usually avoided even for axisymmetric 
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systems except at locations where localised bending is anticipated to occur and to be of 

significance, such as near certain boundary conditions. The difference between the two 

shell theories is illustrated in Fig. 1.15 below, which shows the bending and membrane 

theory solution for axial stresses in two silos: a slender silo (H/D = 3) under Janssen 

pressures and a squat silo (H/D = 0.5) under modified Reimbert pressures. The shell 

wall bends to satisfy a restrained boundary condition and in doing so introduces high 

local bending stresses, an effect not captured by membrane theory. For squatter silos, 

bending effects protrude significantly further into the shell and a membrane theory 

solution may become significantly less accurate.  

 

 
Fig. 1.15 – Comparison of membrane and bending theory solutions for the axial stresses 

in the silo under Janssen and modified Reimbert silo pressures 

 

For thick-walled shells such as pipes, where shear strains and stresses acting normal to 

the plane of the shell may no longer be ignored or assumed constant throughout the 

thickness of the shell, it is necessary to perform an elastic solid analysis. This results in 

different phenomena and is beyond the scope of this thesis. Elasticity theory is treated in 

many classical texts including Muskhelishvili (1953), Timoshenko and Goodier (1970) 

and Ugural and Fenster (1977). 
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1.3.2 Stability of silo shell structures 

Shells are three-dimensional structures which exhibit extremely complex buckling 

behaviour in the form of snap-through and bifurcation buckling, usually with highly 

unstable post-buckling paths. This behaviour is significantly more complex than the 

‘simpler’ (usually two-dimensional) lateral-torsional buckling of beams, columns or 

plates which exhibit stable or neutral post-buckling paths. The latter are covered in 

depth by many university course texts, the definitive reference being perhaps 

Timoshenko and Gere (1963). 

 

Silos are slender, thin-walled shell structures and are very susceptible to stability 

failures (i.e. buckling) at stresses and load levels well below those which would cause 

plastic collapse. The first theoretical shell buckling problem to be solved was the 

uniform-thickness cylinder under axial compression, the load case associated with the 

most common silo failure mode (Rotter, 2004). This was solved independently and 

almost simultaneously by three authors (Lorenz, 1908; Timoshenko, 1910; Southwell, 

1914), which led to the theoretical ‘classical elastic critical buckling stress’. It is usually 

denoted as σcl or σcr, depending on the source, but is presented in Eq. 1.16 using the 

notation σcl. This equation has been used as a reference benchmark for the analysis of 

cylindrical shells ever since. 

( )2
0.605

3 1
cl

Et Et
RR

σ
ν

= ≈
−

       (1.16) 

However, early experiments on axially compressed isotropic cylinders have shown that 

their strengths fall far below this theoretical value and are very scattered (Harris et al., 

1957), as shown on Fig. 1.16 below. Though many factors contribute to the discrepancy 

between the ideal and actual buckling strengths, including the effect of pre-buckling 

deformations (e.g. Donnell, 1934; Yamaki, 1984) and local inelastic bending near 

boundary conditions (e.g. Rotter; 1983a; 1985b), by far the most important cause of this 

loss of strength was found to be due to geometric imperfections.  

 

Imperfections are deviations from the perfect shell surface. Their effect on the buckling 

strength of axially compressed cylinders was first investigated by Koiter (1945), then 

subsequently by many others including Donnell and Wan (1950), Koiter 1963, 

Hutchinson (1965), Hutchinson and Koiter (1970), Cohen (1971), Hutchinson et al. 

(1971), Arbocz and Sechler (1974), Singer (1980, 1982) and Yamaki (1984). It was 
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found that increasing the amplitude of these deviations resulted in a disproportionately 

detrimental effect on the buckling strength of an axially compressed cylinder (Almroth, 

1963; 1966; Yamaki 1984). A detailed discussion of the historic development of this 

topic may be found in Rotter et al. (1986) and, more recently, in Rotter (2004). 
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Fig. 1.16 – Experimental strength of isotropic axially compressed cylinders (after Harris 

et al., 1957) 

 

Imperfections are ubiquitous in real silos but it would be extremely difficult to quantify 

and to take account of every possible form. It is equally difficult to investigate the 

nonlinear behaviour of imperfect and more realistic shell structures without resorting to 

computational finite element analyses, which are discussed shortly. The most 

deleterious imperfection form should be therefore identified to ensure a conservative 

structural design, but this depends on every aspect of the system including the 

geometry, boundary conditions and loading. The exact form that the most deleterious 

imperfection should assume is thus open to serious debate. Furthermore, the 

imperfection that is most damaging at one particular amplitude may not necessarily be 

the most damaging at another (Song et al., 2004), so a search for the most deleterious 

form is far from simple. An overview of common imperfection forms in shells is, 

however, central to any discussion about shell buckling.  
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Lastly, the effect of internal pressure has generally been found to be beneficial to the 

buckling strength of a silo. It has been shown that internal pressure may significantly 

reduce the effect of geometric imperfections (e.g. Lo et al., 1951; Harris et al., 1957; 

Hutchinson, 1965; Weingarten et al., 1965; Steinhardt and Schulz, 1971; Baker et al., 

1972; Saal et al., 1979; Galambos, 1988; Rotter and Teng, 1989a; Trahair et al., 1983; 

Li, 1994; Greiner and Guggenberger, 1998; Rotter, 2001a). However, very high internal 

pressure is likely to lead to yielding of the wall, reducing the buckling strength thus 

causing plastic buckling. The most common failure mode of this type is elephant’s foot 

buckling (Rotter, 1985b; 1989; 1990; 2006) which forms at the base of the silo or at 

critical locations of changes of thickness or stiffness. The behaviour of local supports 

has also been investigated (e.g. Knödel & Ummenhofer, 1998; Guggenberger et al., 

2004; Doerich, 2007; 2008) which have been found to introduce localised compressive 

stresses near the supports which contribute to early yielding and buckling. The 

beneficial effect of low internal pressure and the deleterious effect of high internal 

pressure on the buckling load of shell structures  have both been incorporated into the 

European Standard for shell structures, EN 1993-1-6 (2007). 

 

1.3.3 Shell imperfection forms 

Historically, eigenmode-affine imperfections were the first obvious choice for study 

following their importance as imperfection forms in columns, beams and plates. These 

were initially taken only as linear bifurcation modes (e.g. Koiter, 1945, 1963; Yamaki, 

1984; EN 1993-1-6, 2007). In addition, nonlinear (incremental) buckling modes (e.g. 

Guggenberger et al., 2004) and pre- and post-buckling deformations (e.g. Esslinger and 

Geier, 1972; Song et al., 2004; Doerich, 2008) may also be critical for buckling. The 

application of these to example shell structures yields a vast array of different results, 

and it is not possible to come to a definitive conclusion about which one is the most 

detrimental. The effects of these idealised imperfection forms are thus highly dependent 

on the context and, additionally, few of them are in any way particularly realistic.  

 

A wiser choice of imperfection form attempts to emulate realistic features found in 

existing shell structures, typically as a result of the manufacturing or construction 

process. One of the more successful of such ‘realistic’ imperfection forms is the 

axisymmetric weld imperfection of Rotter and Teng (1989a), also found in Teng and 

Rotter (1992). Their work recognised the idea of Hutchinson (1965) who established 
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that axisymmetric imperfections may be more detrimental to the buckling strength 

under axial compression than eigenmode-affine imperfections at the same amplitude. 

Indeed, surveys of civil engineering shells (Bornscheuer and Hafner, 1983; Bornscheuer 

et al., 1984; Clarke, 1987; Clarke and Rotter, 1988; Rotter, 1988; Rotter tl al., 1992; 

Ding et al., 1996; Knödel & Ummenhofer, 1996; Ummenhofer & Knödel, 1996; Teng 

et al., 2005) have shown that the imperfections found therein are predominantly 

axisymmetric and often directly attributable to the welding process. The axisymmetric 

weld imperfection form is thus an idealised simulation of the curving of sheet metal 

panels during the rolling process and their subsequent welding during construction. It 

has been found to be an almost universally detrimental imperfection form in a wide 

range of studies (Rotter and Zhang, 1990; Knödel et al., 1994; 1995; Berry and Rotter, 

1996; Ummenhofer, 1996; Berry et al., 1997; 2000; Pircher et al., 2001; Song et al., 

2004; Hübner et al., 2006; Rotter, 1996; 1997; 2008), and has also been reported to be a 

damaging imperfection under local axial compression (Cai et al., 2002; Song et al., 

2004; Schmidt and Winterstetter, 2004a; 2004b). 

 

Residual stresses or strains are another type of realistic imperfection, though they have 

not received a lot of attention apart from a handful of publications due to the difficulty 

in carrying out a rigorous treatment of these (Rotter, 1997). Hübner et al. (2006), Holst 

et al. (1996; 2000) and Holst and Rotter (2002), amongst others, investigated the effect 

of a dimpling of a shell subject to biaxial membrane shrinkage and swelling effects, and 

generally found that a shrinkage strain is detrimental to the buckling strength of a 

uniformly compressed silo. Darcourt et al. (2004), Josserand et al. (2007) and Jullien et 

al. (2008) performed complex heat transfer analyses and computer simulations to 

predict the residual stresses due to laser-beam welding of thin sheets of aluminium for 

aircraft construction, though they did not do a structural analysis. These are, however, 

highly specialised applications which are very difficult to generalise.  

 

Additional realistic imperfection forms include local settlement (e.g. Greiner, 1980; 

Holst and Rotter, 2003; 2004), geometric misfits during construction (e.g. Holst et al., 

1999; Holst, 2008), dents (e.g. Rotter and Teng, 1989b), lap-joints (e.g. Esslinger, 1973; 

Essligner and Geier, 1977), out-of-round global deformations (e.g. Hübner et al., 2007) 

and many others. The choice of imperfection form and the required imperfection 

amplitudes for design are specified for the first time in the EN 1993-1-6 (2007) 
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European Standard, where the amplitudes are related directly to the fabrication tolerance 

requirements of the silo structure (Rotter, 2004). Furthermore, it will be shown in this 

thesis a slender silo under eccentric discharge exhibits a very unusual imperfection-

sensitivity behaviour, with many imperfection forms actually having a beneficial effect 

on its predicted buckling strength. A proposal will be made for a novel imperfection 

form that results in consistent buckling strength reductions under eccentric discharge. 

 

1.3.4 Computational analysis 

The analysis of structures has received an incomparable boost with the invention of the 

computer and the parallel development of the finite element method for structural 

analysis. A finite element formulation of a curved shell element with appropriate stress-

strain relations, shape functions and nonlinear strain-displacement relations allows 

complex nonlinear problems to be solved, including those of stability and dynamics, for 

virtually any geometry and loading. 

 

There is a very large volume of literature on the finite element method spanning almost 

three-quarters of a century, but some of the more relevant for structural analysis include 

Przemieniecki (1967), Zienkiewicz and Taylor (2006; 1st ed. 1967) and Cook et al. 

(2002; 1st ed. 1974). The finite element method has been implemented in several 

powerful commercial packages, including ABAQUS (2009), ANSYS (2009) and, 

NASA’s original FEA solver from the 1960s that has been used ever since in several 

reincarnations, NASTRAN (2009).  

 

The most trusted commercial package in the nonlinear and shell buckling community is 

ABAQUS, and all finite element analyses in this thesis were carried out with this 

program. The ABAQUS software offers various shell elements, ranging from 3 nodes to 

9, and an efficient nonlinear solver. The two best elements for nonlinear shell analysis 

are the doubly-curved reduced-integration S8R5 and S9R5 rectangular elements. The 

former, having eight nodes, is usually more economic, but the lack of an interior node 

makes it more sensitive to element shape distortion (MacNeal, 1994; Song et al., 2004). 

Since the author had access to a powerful machine, there was no reason not to use the 

best available S9R5 element in most FEA analyses. ABAQUS is very well suited to the 

nonlinear bifurcation analysis of shells with its implementation of the modified Riks 

algorithm (Riks, 1979), which allows the tracking of the nonlinear load-displacement 
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path and identification of negative eigenvalues in the tangent stiffness matrix with 

considerable accuracy. 

 

1.3.5 Current structural design 

1.3.5.1 The Eurocodes 

The standards most relevant to the design of steel silos are the Eurocodes EN 1993-1-6 

(2007) and EN 1993-4-1 (2007). Aside from both being the most current pan-European 

design standards, these documents offer numerous useful results for common load cases 

and geometries derived from shell theory. The EN 1993-1-6 (2007) Standard on the 

Strength and Stability of Steel Structures, however, is special in that it pioneers a state-

of-the-art novel framework for both direct (by hand) and computer-aided design (with 

the implicit assumption of the finite element method).  

 

Six distinct types of computational analysis, each with an increasing level of 

sophistication, are introduced depending on which ultimate limit state the design is 

being made for: plastic limit (LS1), cyclic plasticity (LS2), buckling (LS3) and fatigue 

(LS4). Each such type of analysis can, in principle, be used to address every one of the 

defined limit states, but each type of analysis produces a different result, so the criteria 

of failure in each limit state must be defined differently according to which analysis is 

used. The strength assessments are, however, effectively based only on three calculation 

processes: linear-elastic analysis (LA), linear bifurcation with plastic collapse (LBA and 

MNA), and complete geometrically and materially nonlinear analysis including explicit 

incorporation of geometric imperfections (GMNIA). Combined, these serve to calculate 

a series of buckling interaction parameters, based on the concept of the capacity curve 

of Rotter (2002; 2006; 2008), which characterise the buckling strength of the shell.  

 

The most sophisticated numerical design procedure is that of the geometrically and 

materially non-linear analysis with explicit modelling of geometric imperfections 

(GMNIA). This requires the results of LBA and MNA above, and additionally the 

computation of the geometrically nonlinear elastic factors for the perfect (GNA) and 

imperfect shells (GNIA), and the geometrically nonlinear plastic limit load (GMNA). 

The GMNIA analysis thus allows the buckling strength of the structure to be found 

directly, but the result is highly dependent on the chosen form and amplitude of 
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imperfection (see previous discussion in Section 1.3.3). The different computational 

shell buckling calculations are summarised in full in Table 1.1. 

 

Table 1.1 – Computational shell buckling calculations, after EN 1993-1-6 (2007) 

Acronym Description of 

Analysis 

Geometry 

Law 

Material 

Law 

Geometric 

Imperfections 

Objective of 

Analysis 

LA Linear Elastic  Linear Linear None Reference  

stresses 

LBA Linear Bifurcation  Linear Linear None First buckling 

eigenvalue & mode 

MNA Materially Nonlinear  Linear Nonlinear None Reference plastic 

collapse load 

GNA Geometrically 

Nonlinear  

Nonlinear Linear None Lowest buckling 

load & mode 

GMNA Geometrically & 

Materially Nonlinear 

Nonlinear Nonlinear None Lowest buckling 

load & mode 

GNIA  Geometrically 

Nonlinear with 

Imperfections 

Nonlinear Linear Yes Lowest buckling 

load & mode 

GMNIA Geometrically & 

Materially Nonlinear 

with Imperfections 

Nonlinear Nonlinear Yes Lowest buckling 

load & mode 

 

1.3.5.2 Quality-based direct structural design 

The European Standard EN 1993-1-6 defines three different Fabrication Tolerance 

Quality Classes ranging from ‘Excellent’ (best) to ‘Normal’ (worst). These influence the 

prescribed amplitudes of the imperfections in the silo and therefore the design buckling 

strength, but the onus is on the builder to meet the relevant construction tolerances 

specified by EN 1993-1-6 if it is to be permitted to employ the full design buckling 

strength of the silo during operation. Thus the three Quality Classes define 

corresponding Quality Parameters Q for meridional buckling which in turn influence the 

prescribed imperfection amplitudes for use in the hand design procedure through an 

‘elastic imperfection reduction factor’ αx. The Quality Classes and the Q parameter are 

summarised in Table 1.2.  
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The focus in this discussion is on the Quality Parameter for meridional (axial) buckling 

Q because buckling under axial compression is possibly the single most common and 

important design consideration. This is mainly due to the frictional tractions exerted by 

the granular solid, but also due to the much higher magnitudes of local axial 

compression which may arise from other causes including discrete supports (e.g Greiner 

and Guggenberger, 1998; Guggenberger et al., 2004; Doerich, 2008), differential 

settlement (e.g. Holst and Rotter, 2003; 2004) and eccentric discharge (Rotter, 1986). 

However, Annex D of EN 1993-1-6 also defines corresponding elastic imperfection 

reduction factors for circumferential and shear buckling, αθ and ατ respectively, which 

should be used in design if required. These are not discussed further here. 

 

The prescribed imperfection amplitude decreases as the construction quality increases, 

thus allowing one to be rewarded for good construction with a more economical 

structure. This is a superior treatment to the traditional uniformly lower bound approach 

which assigned the same low strength to all shells irrespective of quality, a procedure 

used in all structural design rules before EN 1993-1-6 which may be traced back to at 

least Robertson (1928) and Wilson and Newmark (1933). An interesting historical 

account may be found in Bornscheuer (1982) and Rotter (2004). 

 

Table 1.2 – Recommended values for the meridional buckling quality parameter from 

EN 1993-1-6 (2007) Annex D 

Fabrication Tolerance 

Quality Class 

Description Quality Parameter 

Q 

Class A Excellent 40 

Class B High 25 

Class C Normal 16 

 

The Quality Parameter Q for meridional buckling is thus dependent on the Fabrication 

Tolerance Quality Class chosen by the designer (Table 1.2) and, together with the radius 

to thickness ratio of the silo wall, defines a characteristic imperfection amplitude for 

meridional buckling design by hand calculation, Δѡx. This amplitude is in turn 

incorporated into an empirical expression for the elastic imperfection reduction factor 

for meridional buckling αx, shown in Eq. 1.17 below (source: EN 1993-1-6, Eqs D.14 & 

D.15): 
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The development of this expression is described in Rotter (1999b; 2004). It is illustrated 

in Fig. 1.17 as function of the characteristic imperfection amplitude Δѡx, which shows 

that even the buckling strength of a perfect shell under axial compression is allowed to 

be only 62% of the classical value σcl (Eq. 1.16). In conjunction with other buckling 

parameters and partial safety factors it serves to calculate the design buckling strength 

of the shell when designing by hand. It may be noted that the low value of 0.62 arises 

from matching Eq. 1.17 (Rotter, 1998) to the shell buckling prediction of ECCS EDR4 

(1988), where the factor 0.83 appeared in the basic strength formula due to Pflueger 

(source not known), and an ‘additional safety factor’ of 0.75 was imposed on all axial 

compression buckling because of the unstable post-buckling behaviour of axially-

compressed cylinders, thus giving 0.83 × 0.75 = 0.62. This is a slight anomaly that 

should be remedied in future modifications to the shell buckling standard. 
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Fig. 1.17 – Reduction in elastic buckling strength with the characteristic imperfection 

amplitude (after EN 1993-1-6, 2007) 

 

The EN 1993-4-1 (2007) standard that is specific to the design of silos (as opposed to 

EN 1993-1-6 which is the general standard for shells) prescribes a slightly modified 
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version of αx in Eq. 1.17. Assigned the notation α0, the equation includes a parameter ψ 

(Rotter, 1986) to assess the non-uniformity of the axial compression used when 

designing for high local axial compression: 

0 1.44
0

0.62

1 1.91 w
t

α
ψ

=
Δ⎛ ⎞+ ⎜ ⎟

⎝ ⎠

 where 0 1w R
t Q t

Δ
=      (1.18) 

The reason for placing ψ in the denominator of Eq. 1.18 is that the imperfection 

sensitivity of the buckling strength can be changed from the worst case of uniform 

compression when ψ = 1 (the default conservative recommendation in EN 1993-4-1), to 

no imperfection sensitivity at all when ψ = 0. This is because, under highly local axial 

compression, the elastic buckling resistance is unaffected by geometric imperfections, 

and the shell can attain the classical elastic critical stress locally before a buckle forms 

(Libai and Durban, 1973; 1977). The evaluation of the stress non-uniformity parameter 

ψ is described in detail in Chapter 9 in the specific context of a failure criterion for 

buckling under the highly-localised axial compression that arises under eccentric 

discharge (Rotter, 1986). 

 

Closely related to the imperfection sensitivity is the incorporation of the effect of local 

internal pressure, and allows the elastic unpressurised factor αx to be upgraded to a 

pressurised factor which takes account of the dual nature of internal pressure, αxp. Low 

internal pressure is beneficial and leads to an elastic strength gain because of its 

stabilising effect that counters the detrimental geometric imperfections (see previous 

discussion in Section 1.3.2). This effect is implemented in Eq. D.41 of EN 1993-1-6 

through an elastic stabilisation factor, αxpe (Eq. 1.19). This equation was derived by 

Rotter (1997) from the analysis of a weld depression that is far removed from any 

boundary or change of thickness. It adjusts the rate of strength gain to the initial 

imperfection sensitivity of the shell resulting in more rapid strength rises in imperfect 

shells, especially with axisymmetric imperfections (Rotter, 2004). 

( ) 0.51
0.3xpe x x

x

p
p

α α α
α−

⎡ ⎤
= + − ⎢ ⎥

+⎣ ⎦
 where ,local fill

cr

p R
p

tσ
=     (1.19) 

 

By contrast, high internal pressure has a destabilising effect as it leads to a local 

plasticity and thus a reduction in strength that is not associated with the imperfections 

(Rotter, 1990; 1996; 2001a; 2006). This effect is implemented in Eq. D.42 of EN 1993-
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1-6 through a plastic destabilisation factor, αxpp (Eq. 1.20). The original equation may be 

found in Rotter (1990). The strength reduction is due to the axisymmetric plastic 

elephant’s foot stability phenomenon, most severe at a boundary but also possible at 

major changes of plate thickness. 

( )

2 2 2
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1 1.21 1

11.12xpp
p s

s ss
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Although the elastic stabilisation and plastic destabilisation phenomena are clearly very 

different, the final pressurised elastic imperfection factor in design according αxp is 

simply taken as the smaller of αxpe and αxpp. This leads to a simplified relationship 

between the internal pressure and strength gain or reduction, demonstrated in Fig. 1.18 

for a typical value of αx of 0.21 (Δwk/t = 1.0). According to this relationship, internal 

pressure is greatly beneficial up to a certain point, but beyond this point it causes the 

shell to yield locally. Thus the behaviour changes from elastic bifurcation to plastic 

buckling.  

 

The final value of αxp (lowest of Eqs 1.19 and 1.20) is incorporated into a series of 

expressions which ultimately give the characteristic buckling resistance of the shell σx,Rk 

as a function of its relative slenderness λ , which itself is given by the square root of the 

ratio of the characteristic yield strength fyk and the elastic critical buckling stress σx,Rcr 

(given by the classical relation, Eq. 1.16). For shells where the behaviour is fully-elastic, 

the characteristic buckling resistance is given directly as σx,Rk = αx σx,Rcr using Eq. 1.17, 

without considering either the beneficial or detrimental effect of internal pressure. 
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Fig. 1.18 – Effect of internal pressure on buckling strength of cylinders for a typical 

characteristic imperfection amplitude, after EN 1993-1-6 (2007) and Rotter (2001) 

 

1.3.5.3 Quality-based computer-aided (GMNIA) structural design and tolerances 

If a full GMNIA computational analysis is used as the basis for structural design, EN 

1993-1-6 Section 8.7 prescribes a different set of imperfection amplitudes, founded on a 

different concept than the effective lower bound approach of the previous hand-based 

design procedure. The required imperfection amplitude for GMNIA-based design is 

related to a dimple parameter Un which itself depends on the Fabrication Tolerance 

Quality Class. Thus the imperfection amplitude for the given imperfection form Δѡ0,eq 

should be taken as the larger of Δѡ0,eq,1 and Δѡ0,eq,2, given in Eqs 1.21 and 1.22. 

0, ,1 1eq g nwΔ = U          (1.21) 

0, ,2 2eq i nw n tUΔ =          (1.22) 

where ℓg is a dimple measurement gauge length for the relevant design condition (see 

below), t is the local shell wall thickness and ni is a multiplier to achieve an appropriate 

tolerance level (EN 1993-1-6 recommends this to be 25, though it can be different in a 

National Annex) and Un1 and Un2 are two versions of the dimple imperfection amplitude 

parameter. 

 

The gauge length ℓg refers to a physical measuring stick of a certain length which should 

be placed at different positions and in different directions after construction to verify 
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that the maximum permissible dimple tolerance U0,max has been met. The parameter 

U0,max is thus different from Un which refers to imperfection amplitudes which are to be 

used before construction in a GMNIA-based design calculation, but it is also dependent 

on the Fabrication Tolerance Quality Class that the builder is required to achieve. The 

recommended values for U0,max and Un are summarised in Table 1.3. Furthermore, EN 

1993-1-6 notionally recommends the same value for both Un1 and Un2 (Eqs 1.21 and 

1.22), though these may be different in a National Annex.  

 

Table 1.3 – Recommended values for the dimple tolerance and imperfection amplitude 

parameters from EN 1993-1-6 (2007) Sections 8.4 and 8.7 

Fabrication Tolerance  

Quality Class 

Description Dimple tolerance  

parameter 

U0,max  

Dimple imperfection 

amplitudes  

Un1 and Un2 

Class A Excellent 0.006 0.010 

Class B High 0.010 0.016 

Class C Normal 0.016 0.025 

 

The application of measurement gauges ℓg is illustrated in Fig. 1.19. Section 8.4 of EN 

1993-1-6 defines three different gauge measurements, each based on a different 

buckling consideration (Rotter, 2004). The most important is the meridional gauge ℓgx, 

which is straight and has a length 4(Rt)½; it is supposed to test for the square eigenmode 

of the perfect shell under uniform axial compression (Koiter, 1945; Calladine, 1983) 

which has a critical wavelength in each direction of approximately 3.5(Rt)½. Next comes 

the much shorter gauge ℓgw for measurements across meridional and circumferential 

welds, equal to a length of 25t ≤ 500 mm; this gauge is applied in view of the possibility 

of local plastic failure due to deep local deviations. Finally, there is the long 

circumferential gauge ℓgθ of length 2.3(ℓ2Rt)¼
 ≤ R (where ℓ is the meridional length of 

the shell segment); this gauge tests for long-wave circumferential buckling. Thus, for 

the purposes of Eq. 1.21, the gauge length ℓg corresponds to the condition which is 

being designed for, i.e. if the design is for axial compression, ℓg = ℓgx = 4(Rt)½. Note that 

any gauge used for measurement in the circumferential direction should have a radius of 

curvature R equal that of the outer surface of the silo (EN 1993-1-6 actually mentions 

the middle surface, but this is clearly a mistake since only outer and inner surfaces are 

practically reachable in a real silo). 
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The dimple tolerances were described in detail in this chapter because they are central to 

the imperfection requirement for GMNIA-based structural design and are used in the 

analyses presented in this thesis. For completeness, it should be noted that Section 8 of 

EN 1993-1-6 specifies other geometric tolerances which are known to have a large 

impact on the safety on the structure and that the builder is also required to meet, 

including out-of-roundness (Ur,max) and accidental eccentricity of shell joints (Ue,max). 

These are not pursued further here. 

 

Finally, Section 8.7 of EN 1993-1-6 requires the shell analyst to find the worst 

imperfection form and the standard recognises that this may or may not occur at the 

prescribed imperfection amplitudes. The analyst is therefore required to run an 

additional GMNIA analysis at an imperfection amplitude 10% lower than Δѡ0,eq. If the 

resulting load factor is higher at 90% of the amplitude than at 100% of the amplitude, an 

iterative procedure should be adopted to find the lowest GMNIA load factor and 

corresponding imperfection amplitude. This is a careful, though onerous, procedure. 
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Fig. 1.19 – Dimple imperfection measurements to satisfy the dimple tolerance 

requirement of EN 1993-1-6 (2007) Section 8.4  
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1.4 Conventions used in this thesis 

The final section of this chapter briefly defines the conventions used in this thesis. 

Stresses are assumed to be positive when in tension, while positive bending moments 

are assumed to produce tension on the inner surface of the shell. The first vertical 

coordinate y is defined as upwards-positive, with its origin at the base of the silo 

(assuming no hopper). The second vertical coordinate z, used more extensively due to 

the nature of the equations governing the pressure in the granular solid, is defined as 

downwards-positive with the origin at the top of the silo wall. There is a plane of 

symmetry present in analyses of eccentric discharge, and the flow channel is assumed to 

be centred on this plane. The circumferential coordinate θ is equal to 0 and π adjacent to 

and opposite the outlet respectively on the symmetry plane. These conventions are 

illustrated in Fig. 1.20, and are valid throughout unless stated otherwise. 
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Fig. 1.20 – Definition of sign conventions used in this thesis 
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Chapter 2 – A preliminary study of failure modes in steel silos under 

EN 1991-4-defined concentric and eccentric discharge pressures 

 

2.1 Introduction 

The most serious loading condition for slender thin-walled metal silos has long been 

recognised to be the condition of discharge, with eccentric discharge causing more 

catastrophic failures than any other. Two key reasons for this high failure rate are the 

difficulties in characterising the pressure distribution caused by eccentric solids flow 

and in understanding the associated unsymmetrical stresses in the silo wall. Few studies 

have addressed either the linear elastic behaviour of such a silo or its buckling failure 

under eccentric discharge. 

 

Design criteria for metallic silos are therefore dominated by their susceptibility to 

buckling failures. The condition of discharge from a silo causes an significant increase 

in normal wall pressure, and this is the condition for which most silos are designed. 

Furthermore, the unsymmetrical pressure regime occurring during eccentric discharge 

of the stored granular material frequently leads to catastrophic buckling failures, and 

slender metal silos are particularly susceptible to this failure mode. The commonest 

failure mode in a slender thin-walled steel silo under eccentric discharge is by serious 

damage on the side adjacent to the flowing solid often leading to catastrophic collapse 

(Fig. 1.1), but the mechanics of such failures have not been widely appreciated in the 

past. 

 

In this initial study of the phenomenon, the eccentric discharge pressures are 

characterised using the new rules of the European Standard EN 1991-4 on Silos and 

Tanks. This novel description of unsymmetrical pressures permits a study of the 

structural behaviour leading to buckling during eccentric discharge, including the 

critical effects of geometric nonlinearity and imperfection sensitivity. The study is 

undertaken using geometrically and materially nonlinear computational analyses within 

the framework of the EN 1993-1-6 (2007) standard. The mechanics of the behaviour are 

found to be quite complicated. A silo which is safe under axisymmetric loading is found 

to be susceptible to catastrophic stability failure under eccentric discharge.  
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It will be shown that the failure mode is clearly by buckling under local axial 

compressive membrane stresses induced by unsymmetrical normal pressures exerted by 

the solid on the wall. This explanation follows that of Rotter (1986, 2001a, 2001b) but 

runs counter to those previously offered by Jenike (1967), Wood (1983), Roberts and 

Ooms (1983) and others. The buckling failure in the example structure occurs well 

before the material yields and is thus an elastic failure in which the strength of the 

material plays no role.  

 

The low pressures where the flow channel is in contact with the silo wall were shown by 

Rotter (1986) to lead to dangerous stress patterns in the silo wall, which can easily 

become catastrophic for structural stability. Despite this risk, eccentric discharge may 

be necessary for the effective operation of the silo, or it may occur accidentally due to 

segregation or agglomeration of the contents, partial blockage of an outlet or a feeder 

malfunction (Rotter, 2001a). 

 

2.2 Investigation of the effects of the EN 1991-4 eccentric discharge pressure 

distribution  

The unsymmetrical pressures caused by eccentric discharge are investigated in this 

chapter using the new rules of the European Standard EN 1991-4 (2007) for highly 

eccentric discharge (usually where the outlet eccentricity is greater than 0.25D), based 

on a simplified version of the theory of Rotter (1986, 2001a, 2001b). This theory 

proposes a distribution for the pressures resulting from a parallel-sided circular flow 

channel forming against the wall, shown in  

Fig. 2.1.  

 

In the EN 1991-4 version, the solid exerts Janssen pressures outside the channel, 

elevated pressures at the edges and decreased pressures within the flow channel, thus 

radically simplifying what has been observed in experiments (e.g. Wood, 1983; Rotter, 

1986; Chen 1996). The relationship between the pressure drop and increase is such that 

horizontal equilibrium is satisfied and the mean pressure is maintained at the Janssen 

filling value, though it does lead to a small global overturning moment on the silo. EN 

1991-4 requires this distribution to be used in the design of silos where eccentric 

discharge is expected and if the silo is in Action Assessment Class 2 or 3. 
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Fig. 2.1 – Circumferential cross-section of eccentric flow channel horizontal pressures, 

after EN 1991-4 (2007) 
 

The horizontal static pressure, phse, at any depth far from the flow channel is taken as 

equal to the Janssen silo pressure: 

0/
0 (1 )z z

hsep Kz eγ −= − where 0
Az

KUμ
=       (2.1) 

The original derivation of the eccentric discharge pressure model (Rotter, 1986) 

employed a different distribution for the pressure in the stationary solid, based on 

considerations of static equilibrium and continuity on the static-flowing solid interface. 

In EN 1991-4, however, the above simplification was adopted. 

 

The horizontal pressure within the flowing zone is treated as circumferentially constant 

and is given by: 

0/
0 (1 )cz z

hce cp Kz eγ −= −  where 0
1

tan
c

c
wc sc i

Az
K U Uμ φ
⎛ ⎞

= ⎜ +⎝ ⎠
⎟     (2.2) 

Here K is the upper characteristic value of the lateral pressure ratio, γ is the upper 

characteristic value of the unit solid weight, μ upper characteristic value of the wall 

friction coefficient, φi is the upper characteristic value of the internal friction angle of 

the granular solid, A is the cross-sectional area of the silo, Ac is the cross-sectional area 

of the channel, U is the full silo perimeter, Uwc is the perimeter between the silo wall 

and the channel, and Usc is the perimeter between the static solid and the channel. 

 

The pressure at the edges of the channel is increased by the same extent as the channel 

pressure drop over the same circumferential range: 
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2hae hse hcep p p= −          (2.3) 

The associated frictional tractions at discharge, pwse, pwce and pwae, are based on the 

assumption of fully-developed wall friction: 

w hp pμ=           (2.4) 

 

The magnitude of the flow channel pressure additionally depends on the size of the 

channel, defined by its radius and eccentricity, rc and ec, respectively. EN 1991-4 

recommends at least three different values of rc to be tested to find the most destructive 

flow channel geometry. These values are suggested as equal to kcR where kc is 0.25, 

0.40 or 0.60. The focus in this chapter is on the kc value of 0.60, as it was provisionally 

expected to be the most deleterious. Detailed parametric studies of the effects of flow 

channel size, where the value of kc is varied from 0.0 to 0.9 (a value of 1.0 

corresponding to mass flow), may be found in Chapter 5. 
 

2.3 Design of an example slender silo 

The novel pressure distribution of  

Fig. 2.1 for highly eccentric discharge appears for the first time in the European 

Standard EN 1991-4 (2007) and few existing silos would have so far been designed 

according to it. It is therefore important to explore the structural behaviour of a silo 

under eccentric discharge as defined by EN 1991-4 when it has not been specifically 

designed for it. To this end, a traditional design was produced for a simple example silo 

subjected to axisymmetric loads only (no patch loads), and its behaviour under both 

concentric and eccentric discharge conditions (i.e. axisymmetric and unsymmetrical 

loads) was investigated using the finite element method.  

 
A simple cylindrical steel silo with a vertical wall and flat bottom was designed for 

symmetrical loads only, resulting from the storage of 680 tonnes (510m3) of cement, as 

shown in Fig. 2.2. The structural design was performed according to the EN 1993-1-6 

(2007) hand calculation procedure, described in Section 1.3.5 of the literature review. 

The properties for cement were taken from EN 1991-4 using the maximum friction case, 

since buckling resistance dominates in such a design. The friction properties of the D2 

‘smooth’ wall were adopted. 
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The cylinder wall height was 26 m and radius 2.5 m, giving an aspect ratio of 5.2 

(classed as ‘Slender’). The requirement for an unsymmetrical patch load was omitted to 

simplify the interpretation of the outcome of the calculations. Action Assessment Class 

2 was assumed, based on the storage capacity. The beneficial effect of internal pressure 

was included when designing against buckling. The discharge factors for normal 

pressures and frictional tractions, Ch and Cw, were taken as 1.15 and 1.1 respectively. 

The partial safety factor for unfavourable structural actions and the resistance partial 

safety factor for stability, γF and γM1, were taken as 1.5 and 1.1 respectively (EN 1993-4-

1, 2007), thus separating the characteristic values by a factor of 1.5 × 1.1 = 1.65. This 

value is important in the context of the outcome of later nonlinear computational 

calculations against which it may be assessed.  
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a) overall dimensions b) eccentric discharge flow channel  

Fig. 2.2 – Illustration of geometry of the example design silo and eccentric flow channel 

 

The buckling strength assessment according to EN 1993-1-6 requires that the expected 

quality of construction be considered at the design stage. A Fabrication Tolerance 

Quality Class of C (i.e. ‘Normal’) was therefore adopted, making the shell more 

imperfect and thus requiring a thicker wall. The material of the shell was assumed to be 

isotropic steel with an elastic modulus E = 200 GPa, a Poisson’s ratio v = 0.3 and a 

yield stress σy = 250 MPa.  

 

To thoroughly investigate the structural consequences of the EN 1991-4 eccentric 

discharge distribution, two silo designs were produced: one with a uniform wall 

thickness (9 mm) for clarity of understanding and one with a stepwise varying wall 

thickness (changing from 3 mm at the top to 9 mm at the base) to follow normal 

engineering practice for silo design. This made the wall just thick enough at the base of 
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each strake and at the silo base. To ensure that the design was just critical at the base of 

each strake, the strakes were permitted to have any length and were not constrained by 

practical steel sheet widths. The beneficial effect of internal pressure was considered in 

design (αxpe dominates, Eq. 1.19). The design axial membrane stress resultants are 

shown in Fig. 2.3, while Fig. 2.4 shows the corresponding design thicknesses as well as 

those required to withstand simple bursting failure.  

 
Fig. 2.3 – Axial distribution of the design axial membrane stress resultants 

 

 
Fig. 2.4 – Axial distribution of design thicknesses to resist bursting and buckling 
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2.4 Numerical model 

To investigate the behaviour of the design silo under different conditions, many 

different computational analyses were undertaken with different load cases. The two 

design silos were thus analysed using the commercial finite-element package ABAQUS 

(2009). This software is considered to be the most reliable for nonlinear stability 

analyses in the shell buckling research community. A pinned based was assumed, as 

well as a thin conical roof of inclination 15º to the horizontal to realistically restrict out 

of round displacements at the upper boundary. Such displacements would strongly 

affect the stress patterns in silos under unsymmetrical loads (Rotter, 1987b; Calladine 

1983).  

 

Using symmetry boundary conditions, only half of the silo was modelled with nine-

node reduced-integration S9R5 elements when eccentric discharge was being 

investigated. For concentric discharge, only a quarter of the silo was modelled with 

appropriate symmetry and anti-symmetry boundary conditions. The conical roof, which 

had a high thickness of 9 mm to prevent it from participating in any buckling modes, 

was modelled with a sufficient number of four-node S4R5 elements. After careful 

verification, the mesh resolution was increased near changes of wall thickness, the base 

of the silo, weld depressions, flow channel and edge pressures and at locations of 

expected buckles. Typical model mesh details are shown in Fig. 2.5 for the perfect 

uniform thickness silo and the imperfect varying thickness silo. The geometrically 

nonlinear load-deflection path was followed using the modified Riks procedure (Riks, 

1979). An ideal elastic-plastic material law with no hardening was assumed where 

applicable. This was thought to be sufficient in this study, as plasticity was expected to 

be highly localised. This exact same procedure for computational analyses was 

employed in every finite element study presented in this thesis. 
 

The full suite of computational shell buckling calculations were performed according to 

EN 1993-1-6 (2007), summarised in Table 1.1: linear elastic analysis (LA), linear 

bifurcation analysis (LBA), materially nonlinear analysis (MNA), geometrically 

nonlinear analysis assuming a linear and nonlinear material law (GNA and GMNA) and 

imperfections (GNIA and GMNIA).  
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Fig. 2.5 – FEA mesh details – left) base of perfect uniform thickness silo; right) – base 

of imperfect varying thickness silo 

 

Characteristic values of loads were adopted in all calculations so that the outcome of the 

calculation could be used to explore the remaining safety margin between the required 

and characteristic resistances. The stored solid was assumed to have no stiffness in both 

the static and flowing zones. 

 

Axisymmetric imperfections representing modified Type A weld depressions as defined 

by Rotter and Teng (1989a), given in Eq. 2.5 below, were introduced at evenly-spaced 

intervals up the silo wall and at changes of wall thickness so that the silo had many local 

imperfections. This imperfection form was initially developed as a realistic simulation 

of the joints created during welding of metal sheets, and has been widely used in 

numerical studies of imperfection sensitivity in cylinders because it is one of the most 

damaging credible imperfection forms for a uniformly compressed cylinder (e.g. Teng 

& Rotter, 1992; Rotter and Zhang, 1990; Knödel et al., 1995; Berry et al., 1997; 2000; 

Rotter, 2004; Song et al., 2004).  

 

The purpose of these GNIA and GMNIA analyses is to obtain a realistic estimate of the 

effects of this commonly found axisymmetric imperfection form (Ding et al., 1996; 

Pircher et al., 2001; Teng et al., 2005) under the highly unsymmetrical eccentric 

discharge distribution, which has not been investigated before. This contrasts with the 

EN 1993-1-6 requirement that the analyst should seek out the most damaging 

imperfection form, as many of the most damaging forms are not very realistic in most 

conditions (e.g. pre-buckling deformations, post-buckling deformations or the linear 

bifurcation mode). 
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The adopted imperfection form (Eq. 2.5) includes an additional tiny non-symmetric 

perturbation to help identify the correct first bifurcation point in the load-deflection path 

(visible change of slope and/or first negative eigenvalue in the tangent stiffness matrix) 

by introducing a small asymmetry. This is especially important where the silo is 

analysed under axisymmetric loads where very many eigenmodes may be critical within 

1% of the same load factor (Koiter, 1945; Rotter, 2004), and the numerical analysis may 

run into problems in detecting the lowest one (Riks et al., 1996). The perturbation 

factor, k, is of the order of 10-2 and n is the integer circumferential mode number, 

usually a value between 10 and 30, both of which are arbitrarily chosen in order to 

achieve bifurcation. The outcome of all calculations, however, was found to be 

insensitive to the choice of either k or n. 

0 (cos sin )(1 cos )
z z ze

π
λ π π k nδ δ

λ λ

−

= + + θ       (2.5) 

where 0.2523(1 )
Rtπλ

ν
=
⎡ ⎤−⎣ ⎦

 is the linear meridional bending half-wavelength 

The depression amplitude δ0 was chosen to be identical, in each strake, to the value 

from the hand design process according to Equation D.15 of EN 1993-1-6 Annex D 

(Δwk), for Fabrication Tolerance Quality Class C. This was done in preference to the 

special requirement of the same standard for GMNIA design as specified in Section 

8.7.2 (i.e. larger of Equations 8.29 and 8.30, Δw0). Both are summarised in Table 2.1. 

This choice was made to produce a design silo that corresponds to typical commercial 

practice and to retain scientific consistency between the design and the calculations for 

the purposes of this initial computational study of a difficult phenomenon. It will be 

shown later in this and other chapters of this thesis that the prescribed imperfection 

amplitude of Annex D is already too high to obtain appropriate buckling behaviour 

when the eccentric discharge pressure pattern is used with certain imperfection forms. 
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Table 2.1 – Summary of selected properties and dimensionless imperfection amplitude 

requirements according to EN 1993-1-6 Annex D and Section 8.7.2 

Dimensionless 

imperfection  

amplitude (δ0/t) 

Wall 

thickness 

(mm) 

Down to 

a depth 

below the 

roof (m) 

Ratio of adjacent 

plate thicknesses 

(i.e. 4/3, 5/4 etc.) 

Local radius 

to thickness 

ratio (R/t) 

Linear meridional 

bending half-

wavelength 

(mm) Eq. D.15 Eq. 8.29 

3 6.4 1.333 833.33 158.94 1.8042 2.8868 

4 8.8 1.250 625.00 183.53 1.5625 2.5000 

5 11.4 1.200 500.00 205.19 1.3975 2.2361 

6 15.0 1.167 416.67 224.78 1.2758 2.0412 

7 18.8 1.143 357.14 242.79 1.1811 1.8898 

8 23.6 1.125 312.50 259.55 1.1049 1.7678 

9 26.0 n/a 277.78 275.30 1.0417 1.6667 
 

Where a cylindrical shell is subjected to non-symmetric pre-buckling components, the 

post-buckling deformations naturally contain components of both the pre-buckling and 

post-buckling modes (Esslinger and Geier, 1972; Rotter, 2004). The mode that 

characterises the bifurcation process is clearly only incremental, and is obtained by 

subtracting the pre-buckling deformation at bifurcation from the complete deformation 

just after bifurcation. This is termed the ‘incremental buckling mode’, and is adopted 

throughout the thesis when describing the ‘buckling modes’ in geometrically nonlinear 

analyses.  
 

2.5 Results and discussion 

2.5.1 Behaviour of the silo under axisymmetric discharge pressures 

The silo was first analysed under axisymmetric loading at characteristic discharge 

pressures and frictional tractions obtained from the hand design calculations. The hand 

design process includes many conservative assumptions, so it is natural to expect that 

the design safety margin (= 1.65) will be exceeded when the silo is analysed using a 

GMNIA analysis with axisymmetric loading.  

 

A summary of the load proportionality factors at failure achieved for the case of 

concentric discharge is given in Table 2.2. The buckling modes for these load factors 

are shown in Fig. 2.6 and Fig. 2.7, while the nonlinear load-axial displacement paths, 
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very typical for shells under axisymmetric loading (Yamaki, 1984), are presented in Fig. 

2.8. In all cases, the axial displacement followed is at a node at the top of the silo above 

the centre of the eccentric flow channel. 
 

Table 2.2 – Summary of load proportionality factors at failure for concentric discharge 

 LBA MNA GNA GMNA GNIA GMNIA 

Uniform 

thickness 

9.15 4.58 7.85 3.80 4.00 3.09 

Varying 

thickness 

7.65 4.54 7.31 3.85 3.41 2.83 

 

For the uniform thickness silo under axisymmetric loading (Fig. 2.6), the critical 

buckling location is naturally always at the base of the silo since the axial compression 

increases monotonically from top to bottom (Fig. 2.3). The high values for the LBA and 

MNA load factors suggest the stability and plasticity will interact, which is confirmed 

by the large difference between the GNA and GMNA load factors. These load factors at 

failure relate to the plastic elephant foot’s mode (Rotter, 1990; 2006).  

 

The critical locations in the stepped wall thickness silo (Fig. 2.7) are at the base of each 

strake. In this case the critical locations are either at the bottom of the thinnest 3 mm or 

8 mm strakes, though in general it is hard to predict with certainty where the critical 

zones will be. It is possible, however, that the base of the 8 mm strake may be critical 

because the ratio of adjacent plate thicknesses is lowest at this point (Table 2.2 and 

Teng and Rotter, 1989). The very base of the silo is not expected to be critical in the 

stepped wall thickness silo because the design axial resistance of the wall far exceeds 

what is required against buckling at this point (Fig. 2.3). 

 

The MNA and GMNA load factors are very similar for both silos and this is reflected in 

the similarity of the type and location of the elephant’s foot plastic buckling modes. 

This is because the critical location at the base of the 8 mm strake in the stepped wall 

thickness silo is little different from that at the base of the uniform thickness silo, given 

the close proximity of these two locations and the essentially constant Janssen pressure 

at great depth. Additionally, the load factor and buckling mode are very similar for the 

LBA and GNA analyses for both silos (with the load-deflection paths overlapping 

significantly, Fig. 2.8), which corresponds to the similarity of the buckling behaviour. 
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Fig. 2.6 – Failure modes for the uniform thickness silo under concentric discharge. The 

geometric scale factors are 200, 2, 100, 750, 100 and 200 respectively. 

 

 

Fig. 2.7 – Failure modes for the stepped thickness silo under concentric discharge. The 

geometric scale factors are 100, 0.1, 700, 700, 30 and 200 respectively. 
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Fig. 2.8 – Nonlinear load-axial displacement paths under concentric discharge 

 

The GNIA and GMNIA factors are quite close to each other for the two silos, 

suggesting that buckling occurs under predominantly elastic conditions leading to 

diamond buckling modes (Fig. 2.6 and Fig. 2.7) in all cases except GMNIA of the 

stepped thickness silo, which instead closely reflects the MNA plastic collapse 

mechanism for that silo. The introduction of axisymmetric weld depressions is clearly 

very detrimental to the silo strength under axisymmetric loads. As more sophisticated 

analyses are used, the load factor progressively falls: hence both geometric and material 

nonlinearity must be included in silo design. Ultimately, the silo with stepped wall 

thickness is slightly weaker than the uniform thickness silo because the wall thickness is 

piecewise optimised. 

 

For the varying thickness silo, the final GMNIA load factor of 2.83 exceeds the hand 

calculation value of 1.65 by almost 72%. If it is accepted that the axisymmetric weld 

depression is close to the most damaging form (Rotter, 2004), then under symmetric 

loads it appears that the assumptions in the hand calculation design process are quite 

conservative, both for elastic stability and plastic collapse mechanisms. This is 

primarily because the EN 1993-1-6 elastic imperfection reduction factor for meridional 

buckling αx was chosen as an empirical lower bound to a very wide scatter of 

experimental data on uniform thickness cylinders (Harris et al., 1957; Rotter, 2004) and 

cannot be reproduced by calculations that use the same imperfection amplitude (Rotter, 
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1997). The calculation of the buckling strength is thus very conservative, which in turn 

leads to a very conservative design. Furthermore, the critical location in any stepped-

wall silo lies in the thinner plate at a change of plate thickness. The thicker plate at this 

change provides considerable restraint against buckling, thus raising the buckling 

resistance (Rotter and Teng, 1989a). These factors combine to make the computed 

strength of the structure much greater than the hand design assessed value. 

 

2.5.2 Behaviour of the silo under eccentric discharge 

The main goal of this chapter is to explore the behaviour of the silo under eccentric 

discharge. Such conditions often precipitate silo failures and may occur accidentally 

when either a feeder malfunctions, an outlet intended for final cleanout is opened when 

the silo is full, a new discharge device is fitted without proper testing and other similar 

conditions (EN 1991-4, 2007). The pattern of pressures arising in this condition is quite 

realistically characterised in EN 1991-4 and the calculations presented here, believed to 

be the first of their kind to use this new pressure model, give a good insight into many 

silo disasters as well as other phenomena. 
 

2.5.2.1 Behaviour of the uniform thickness silo 

Under the set of unsymmetrical pressures associated with a flowing channel of stored 

solid ( 

Fig. 2.1), very high axial compressive membrane stresses develop around the midheight 

of the silo down the centre of the flow channel. By contrast, high axial tensile stresses 

develop at the edges of the channel throughout most of the silo height, becoming 

compressive at the base of the silo. At these key locations, the axial compressive 

membrane stresses are enormously greater than those for which the silo was designed 

(over 3700 N/mm at the base compared to a design value of 830 N/mm, see Fig. 2.3). 

Clearly, either of these two regions of high compressive stresses may become critical 

for buckling failures, depending on the design of the silo and the axial variation of plate 

thicknesses and internal pressure. This stress distribution, originally described by Rotter 

(1986, 2001b), is shown in Fig. 2.9 for the GMNA analysis at the instant before 

bifurcation, along with the LA analysis factored to the GMNA load factor for 

comparison.  

 

In the uniform thickness silo, the compressive stresses at the edge of the flow channel at 

the bottom of the silo are by far the largest and are responsible for the localised modes 
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seen in Fig. 2.10. The silo wall is also vulnerable at midheight at the centre of the flow 

channel and buckling could occur here if the wall were thinner at this location. On the 

opposite side of the silo from the channel, the axial membrane stress resultant is largely 

unaffected by the flow channel pressures and corresponds to the axisymmetric loading 

case, not exceeding 830 N/mm. 

 

 
Fig. 2.9 – Axial membrane stress resultant distribution at the instant before bifurcation 

for the uniform thickness silo under eccentric discharge analysed with LA and GMNA 

at the same load factor 

 

A summary of the load factors achieved for the uniform thickness silo under the 

unsymmetrical pressures caused by eccentric discharge with kc = 0.60 is presented in 

Table 2.3. The incremental buckling modes are shown in Fig. 2.10 and the nonlinear 

load-axial deflection curves are shown in Fig. 2.11. 
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Table 2.3 – Summary of predicted load factors for the uniform thickness silo under 

eccentric discharge 

 LBA MNA GNA GMNA GNIA GMNIA 

Computed load 

factor 

1.47 1.40 4.32 1.31 3.35 1.34 

% of concentric 

discharge value 

16.07 30.57 55.03 34.47 83.75 43.37 

 

All of the load factors in Table 2.3 are significantly below the concentric discharge 

values, especially when only small deformation laws are considered (LBA and MNA). 

This illustrates the damaging effect of unsymmetrical pressures on cylindrical shells, 

though the design in this case is still able to just about withstand them, the lowest load 

factor still being greater than unity. The GNA factor is, remarkably, almost triple the 

LBA factor, suggesting that finite deformations have a significant and positive impact 

on the strength. Indeed, the load-deflection curve of Fig. 2.11 shows the structure 

stiffening significantly as it deforms under the unsymmetrical loads. Since the applied 

pressures induce high circumferential bending, geometric nonlinearity results in a 

considerable change in the pre-buckling stress pattern. Accordingly, Fig. 2.9 shows that 

the LA stresses are significantly bigger (over 100% larger at midheight when scaled to 

the GMNA factor) than the GMNA stresses. As a result, the LBA predicts a much lower 

bifurcation load. This rather unexpected finding illustrates the need for further detailed 

investigation and will be returned to in subsequent chapters. 
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Fig. 2.10 – Failure modes for the uniform thickness silo under eccentric discharge. The 

geometric scale factors are 500, 0.1, 700, 700, 30 and 200 respectively. 

 
Fig. 2.11 – Nonlinear load-axial displacement paths for the uniform thickness silo under 

eccentric discharge 
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Material plasticity (GNA → GMNA) significantly reduces the silo strength and changes 

the buckle shape towards a quite distinct and local elephant’s foot mode. The effect of 

plasticity seems to affect the load-deflection paths very suddenly (Fig. 2.11), but since 

the axial deformations are being followed at a node at the very top of the silo, they are 

somewhat insensitive to the progressive development of a local buckle at the silo base. 

The sharp bifurcation and load path reversal shown for all uniform wall thickness silos 

demonstrates unstable post-buckling behaviour (Yamaki, 1984). The plastic collapse 

MNA calculation relates to a circumferential bending mechanism, which was the 

misguided focus of several previous studies of eccentric discharge (Jenike, 1967; Wood 

1983; Roberts and Ooms, 1983). The GMNIA result is very similar to the GMNA result 

because the critical mode lies near the base and is distant from any of the imposed local 

imperfections.  

 

2.5.2.2 Behaviour of the varying thickness silo 

The uniform thickness silo investigated in the preceding section yielded several 

interesting observations, some of which remain valid in this section. However, practical 

silos are always designed with different wall thicknesses at different location to 

minimise cost. The more realistic stepped wall design was therefore explored next.  

For the varying thickness silo, a summary of the load factors achieved under eccentric 

discharge with kc = 0.60 is given in Table 2.4. The incremental buckling modes are 

shown in Fig. 2.12. The axial membrane stress resultant distributions for the perfect 

shell just before bifurcation are shown in Fig. 2.13. The values in Table 2.4 marked with 

an asterisk (*) represent load factors at the first inflection point on the load-

displacement curve (Fig. 2.14). 
 

Table 2.4 – Summary of predicted load factors for the varying thickness silo under 

eccentric discharge 

 LBA MNA GNA GMNA GNIA GMNIA 

Computed load 

factor 

0.21 0.65 0.37 0.37 0.22* 0.20* 

% of concentric 

discharge value 

2.75 14.32 5.06 9.61 6.45 7.07 

 

 60



PhD Thesis 
Adam Jan Sadowski 

 

Fig. 2.12 – Failure modes for the varying thickness silo under eccentric discharge, and 

an actual example for comparison (courtesy of J.M. Rotter). The geometric scale factors 

are 200, 0.025, 105, 100 and 15 respectively. 

 

The load factors in Table 2.4 are all significantly below unity and each is a small 

fraction of the corresponding value under concentric discharge. The silo with varying 

wall thickness, designed to EN 1991-4 to comfortably withstand axisymmetric loading, 

is now wholly inadequate under eccentric discharge. The buckling modes in Fig. 2.12 

show that failure occurs exclusively at midheight in all analyses. This is a region of high 

axial compressive membrane stresses and the wall is thinner here. The thinner wall 

reduces the linear bifurcation stress and assumes a larger relative imperfection 

amplitude in design according to EN 1993-1-6. Consequently, these buckling stresses 

are lower than they were for the uniform thickness silo (Fig. 2.13). Thus, in changing 

from a uniform to a stepped wall, the critical buckling location moves from the edge of 

the flow channel at the base to the centre of the channel at midheight. The identical 

values of the load factors for the GNA and GMNA analyses, and the very close values 

of the GNIA and GMNIA analyses, show that the buckling is essentially elastic whether 

the silo is perfect or imperfect. This elastic midheight buckle relates well to known 

failures in service (Fig. 2.12). Eccentric discharge clearly leads to a very serious 

stability failure at very low stresses near the midheight of a stepped wall silo. 
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In the stepped wall silo, the GNA factor is 68% higher than the LBA factor. This 

surprising outcome is again caused by geometric nonlinearity which reduces the stresses 

in the critical zone, leading to a lower elastic bifurcation load. The GNA and GMNA 

load-deflection paths (Fig. 2.14) are a good example of unstable post-buckling 

behaviour. The paths descend very steeply before beginning to ascend again, suggesting 

a high imperfection sensitivity. The GNIA and GMNIA paths, however, show a clear 

point of inflection and indefinite geometric hardening with a progressive growth of the 

imperfection mode. With no negative eigenvalues reported at the change of slope, it is 

evident that the bifurcation point has been lost. A smooth transition from the pre- to 

post-buckling stages has occurred with stable post-buckling displacements developing 

strongly after this point, a phenomenon illustrated succinctly in Fig. 2.15. 

 

 
Fig. 2.13 – Axial membrane stress resultant distribution at the instant before bifurcation 

for the uniform thickness silo under eccentric discharge analysed with LA and GMNA 

at the same load factor. 

 

This phenomenon often occurs when imperfection amplitudes are large resulting in a 

blurring of the buckling behaviour (Yamaki, 1984; Rotter, 2007b). It raises the key 

question of what criterion of failure should be used if the transition from pre- to post-

buckling is smooth. It is illustrated further by the imperfection sensitivity curve in Fig. 

2.15. As the imperfection amplitude is increased, the bifurcation point progressively 

disappears and turns into a point of inflection on the load-displacement path. This figure 
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also shows that a smaller imperfection amplitude would have resulted in a bifurcation 

point at a lower load factor of approximately 0.16 instead of the calculated inflection 

point at 0.22. Thus the imperfection sensitivity curve of Fig. 2.15 follows the style of 

Yamaki (1984), but it presents significant problems in terms of the re-drafting of EN 

1993-1-6 (2007) because the analyst exploiting GMNIA calculations cannot be expected 

to generate such a laborious imperfection sensitivity curve to identify this complex 

condition when designing just one structure, whilst the standard currently specifies large 

amplitude imperfections in the expectation that this will lead to low strength 

evaluations. For unsymmetrical loads, this expectation is clearly shown to be at fault. 

 

 
Fig. 2.14 – Nonlinear load-axial displacement paths for the varying thickness silo under 

eccentric discharge 
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Fig. 2.15 – GNA → GNIA imperfection sensitivity curves 

 

The plastic collapse MNA calculation relates to a circumferential bending mechanism, 

which was noted above to be the misguided focus of previous studies of eccentric 

discharge (e.g Jenike, 1967; Wood 1983). The corresponding load factor is very high 

and does not contribute to the behaviour at all. 

 

2.6 Conclusions 

The following conclusions may be drawn based on the results of this study: 

 

A silo designed according to the new rules of EN 1991-4 and EN 1993-1-6 for the 

condition of concentric filling, storage and discharge of contents is found by non-linear 

finite element analysis to have a significant reserve of strength under the design loads 

(GMNIA load factor of 2.83) beyond the value indicated by the partial factors (safety 

factor of 1.65). This is due to the conservatism of the assumptions upon which the hand 

design procedure is founded. The design procedure is thus conservative both for 

stability and plastic collapse calculations under axisymmetric loading. 

 

EN 1991-4 limits the range of silos which must be explicitly designed for eccentric 

discharge to those in which high eccentricities are anticipated. The example silo 

considered in this study, still a large structure (5×26 metres), would not have been 

designed for eccentric discharge. The low load factors obtained in this study indicate 
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that a silo that functions perfectly under normal symmetrical conditions may experience 

a catastrophic stability failure if an accidental eccentric pipe flow channel develops. 

This has often occurred in service.  

 

Under the eccentric discharge pressures of EN 1991-4, the regions of highest 

compressive axial membrane stress are at the centre of the channel at midheight and at 

the edge of the channel at the base of the silo. These are both critical regions where this 

pressure model indicates that the silo may buckle.  

 

At midheight, very high compressive axial membrane stresses develop in the thin wall 

and the buckling mode is elastic. The low internal pressure in the flow channel also 

reduces the strength gain that might have been expected due to internal pressure. This 

midheight buckling mode has often been observed in practice and is responsible for 

many failures. 

 

At the base of the silo, the internal pressures are much higher, so the predicted buckling 

mode becomes plastic. There are two main reasons why this mode is not observed in 

practice: the narrower or absent flow channel in real structures and the elastic restraint 

provided by the stationary solid at this location. 

 

The behaviour of a cylindrical silo under eccentric discharge pressures has been found 

to be rather complicated, with several counter-intuitive phenomena. A clear explanation 

for the enhanced strength caused by geometric nonlinearity when the shell curvature is 

reduced at the centre of the flow channel is still needed.  

 

Geometric nonlinearity, which reduces buckling loads under axisymmetric conditions 

and is commonly thought to be highly detrimental, surprisingly gives additional strength 

under this unsymmetrical load. Geometric imperfections in the form of axisymmetric 

weld depressions were explored and were found to reduce the strength greatly under 

axisymmetric loads, but their effect under unsymmetrical loads is more complex. 

Calculations involving deeper imperfections require very careful interpretation. 

 

At small imperfection amplitudes, dramatic bifurcation buckling was found to occur 

under eccentric discharge. But larger amplitudes may completely remove the bifurcation 
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point, turning it into a point of inflection on the smooth path from pre-buckling to post-

buckling. This provokes the vital question for all computational analysts of imperfect 

shells: what criterion of failure should be used in structures with such a pattern of 

behaviour? 

 

The lowest GMNIA buckling load factor may well occur at imperfection amplitudes 

much lower than those prescribed by EN 1993-1-6 and, although it is required by that 

standard, it is very onerous for the shell analyst to be required to seek out the lowest 

point on the imperfection sensitivity curve for every designed structure. 

 

The provision of the EN 1993-1-6 standard for nonlinear computational analyses of 

imperfect shells may need to be re-drafted. It is clear that they were formulated by 

considering the experimental database, which is dominated by axisymmetric loading. 

When these provisions are applied to shells under non-symmetric loading that leads to 

complex behaviour, the interpretation of the calculations for design purposes may be 

quite difficult. 
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Chapter 3 – The structural consequences of different circumferential 

forms of the EN 1991-4 eccentric discharge pressure distribution 

 

3.1 Introduction 

The EN 1991-4 (2007) eccentric discharge pressure distribution incorporates zones of 

high pressures in the wall immediately adjacent to the flow channel, illustrated in Fig. 

3.1. Though it is known that there should be a small rise in normal wall pressures at this 

location based on experimental observations, it is not known what circumferential form 

the distribution of these pressures should assume (Jenike, 1967; Wood, 1983; Rotter, 

1986; Chrisp et al., 1988; Chen, 1996).  

 

The low pressures exerted by the flow channel on the silo wall already constitutes a 

severe structural action. The inclusion of regions of high wall pressures near the edge of 

the channel, especially in the circumferential form specified in the current European 

Standard, may unnecessarily further exacerbate an already damaging load condition. 

This question was introduced in the wider context of silo pressures in the literature 

review. An analytical study of the circumferential form based on elasticity theory is 

presented in Appendix B.  

 
 
 
 
 
 

Significantly 
increased channel 
edge pressures 

Decreased 
flow 
channel 
pressures 

Static  
material 

Static  
pressures 

Flowing 
channel 

Δθ 

Δθ 

2Δθ Δp Δp 

a) Rotter (1986) version                      b) EN 1991-4 version             
Fig. 3.1 – Limiting cases for the form of normal pressures against the wall of an 

eccentrically discharging silo 
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The circumferential form of the pressure increase at the edges of the flow channel 

specified in EN 1991-4 is rather simplistic and unrealistic, though it has the virtue of 

being conservative for the purposes of structural design. Unfortunately, there is 

insufficient research evidence at this stage to confidently propose a more realistic 

alternative that could be implemented easily in design. This chapter investigates the 

effect of removing these regions of high pressure altogether, to determine how large an 

influence this may have on the load proportionality factors and stresses within the silo, 

and whether any other important observations may be made. The two versions of the 

circumferential distribution of pressure shown in Fig. 3.1 may therefore be thought of as 

limiting cases, with the ‘true’ behaviour lying somewhere in between. 

 

This study employs the derivation of Rotter (1986) for an eccentric flow channel with 

no high channel edge pressures, based on a formulation of the channel geometry 

originally conceived by Jenike (1967). The EN 1991-4 version is directly descended 

from Rotter’s version which has a firmer basis in mechanics but cuts many corners for 

the sake of simplicity in design calculations. The merits of the two versions will be 

compared in this chapter. This study is therefore a natural stepping stone on the path 

from the current code-defined eccentric discharge model towards a potentially more 

powerful and realistic silo pressure theory, which will be presented in Chapter 7. 

 

3.2 Design of example silos  

The ‘very slender cement’ silo (CVS: H = 26, R = 2.5 m, H/D = 5.2) introduced in 

Chapter 2 was employed in this study. To cover a wider range of aspect ratios, a new 

stepped-wall thickness silo was designed according to EN 1993-1-6 (2007) in a manner 

identical to Silo CVS. Named the ‘slender cement’ (CS) silo, it was also designed to 

hold cement but has a lower aspect ratio (H = 18, R = 3 m, H/D = 3.0), though still well 

within the slender range. Silos CS and CVS are both linked by a common volume and 

are thus alternative designs to the same storage requirement. 

 

A comparison of the axial distributions of the design axial membrane stress resultants 

and required shell thicknesses is shown in Fig. 3.2 and Fig. 3.3. For additional 

illustration, these figures also contain data for two silos used elsewhere in this thesis, 

‘slender wheat’ (S) and ‘very slender wheat’ (VS). Sharing the same aspect ratios, Silos 

S and VS are respectively analogous to Silos CS and CVS but were designed to hold 
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wheat rather than cement. The two figures demonstrate the interesting feature that, due 

to the higher unit weight of cement (Table 3.1), Silos CS and CVS are under 

significantly higher compressive axial membrane stresses than Silos S and VS. 

Consequently, they require a much thicker wall throughout their height. A full summary 

of the custom silo designs performed especially for the different studies in this thesis is 

presented in Chapter 4. Granular solids properties, imperfection amplitudes and exact 

wall thickness distributions as required by EN 1991-4 and EN 1993-1-6 may also be 

found in that chapter. 

 

Table 3.1 – Summary of characteristic values of granular solids properties from EN 

1991-4 (2007) Annex E (friction properties for a D2 ‘smooth’ wall) 

Granular 

solid 

name 

 

Upper 

unit 

weight, 

γu 

(kN/m3) 

Lower 

unit  

weight, 

γl 

(kN/m3) 

Angle  

of 

repose,  

φr 

(degrees) 

Upper 

internal 

friction 

angle, φi 

(degrees) 

Upper 

lateral 

pressure 

ratio, K 

Upper  

wall 

friction 

coefficient 

(D2), μu 

Lower 

wall 

friction 

coefficient 

(D2), μl 

Wheat 9 7.5 34 33.6 0.60 0.44 0.33 

Cement 16 13 36 36.6 0.65 0.49 0.43 

 

 
Fig. 3.2 – Comparison of the axial distribution of the design axial membrane stress 

resultants for Silos S, CS, VS and CVS 
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Fig. 3.3 – Comparison of the axial distribution of the design thicknesses for Silos S, CS, 

VS and CVS 

 

3.3 Computational analyses 

Silos CS and CVS were analysed using four of the standard EN 1993-1-6 (2007) types 

of computational analysis, namely LBA, MNA, GNA and GMNA. Material properties 

for mild steel were assumed as before (E = 200 GPa, ν = 0.3 and σy = 250 MPa). Both 

silos were first analysed under concentric discharge with EN 1991-4 pressures to obtain 

a set of reference load factors for this simplest of the present load cases. Next, the silos 

were analysed under the full eccentric discharge pressures of EN 1991-4 for the three 

recommended channel sizes, kc = rc/R = 0.25, 0.40 and 0.60, with the regions of high 

channel edge pressures included. This again yielded a set of reference load factors for 

the eccentric discharge load case exactly as it is prescribed in the Standard.  

 

The silos were then analysed once more using the EN 1991-4 pressures, but this time 

with no regions of high channel edge pressures. The static zone Janssen pressures were 

instead extended right up to the flow channel boundary, after which the reduced flow 

channel pressures were applied. Lastly, the silos were analysed under the set of 

equations for eccentric discharge without high pressure zones as devised by Rotter 

(1986), which prescribes static zone pressures from analysis of the channel interface and 

wall frictions.  
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3.4 Eccentric discharge pressure models 

In his pressure model for a parallel-sided eccentrically-discharging flow channel, Rotter 

(1986) assumed that the flow channel would change its geometry to maximise the 

weight of each slice of material whilst minimising the frictional drag from the channel 

sides. This leads to the condition in Eq. 3.1 which must be solved numerically for the 

angles θc and ψ (it is reproduced here with a different notation). The geometry of the 

system is shown in Fig. 3.4. 
 
 
 
 
 

Increased channel edge 
pressures (EN 1991-4) 

Decreased flow channel 
pressures R 

rc

ec

 
Static pressures 

Section modelled 
with FEA 

R – silo radius 
ec – eccentricity of  
       flow channel 
rc – flow channel  
       radius 
θc – angular extent of 
       wall contact 
ψ – flow channel wall 
       contact angle 

θc

θc

ψ

Extended static  
pressures (Rotter) 

o 
Fig. 3.4 – Notation and geometry of the eccentric flow channel wall pressures, after EN 

1991-4 (2007) 
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 (3.1) 

In the above equation, subscripts w and sc denote the lateral pressure ratios (K) and 

fully-developed wall friction coefficients (μ) of the solid against the wall and of the 

stationary solid against the flow channel respectively. The angles θc and ψ follow the 

simple sine rule relation: 

1 sinsin c

ck
θ

ψ − ⎛ ⎞
= ⎜

⎝ ⎠
⎟          (3.2) 

The eccentricity ec is determined last: 

cos cosc c ce R rθ ψ= −         (3.3) 

The simpler EN 1991-4 model requires the calculation of the eccentricity first through 

the following equation (reproduced here in a different notation): 
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( )1 1 1w w
c c

sc sc
e R k kμ μ

μ μ
⎧ ⎫⎛ ⎞⎪= − + − −⎨ ⎜ ⎟
⎪ ⎪⎝ ⎠⎩ ⎭

c
⎪
⎬       (3.4) 

Equation 3.4 above is an empirical fit (Rotter, 2001a; 2001b) in terms of the parameters 

μw/μsc and (1 - kc) to the results of the original but more onerous Eq. 3.1. The angles θc 

and ψ are then found through Eq. 3.5 below and Eq. 3.2 above. 
2 2 2

1cos
2

c c
c

c

R e r
Re

θ − ⎛ ⎞+ −
= ⎜⎜

⎝ ⎠
⎟⎟         (3.5) 

The choice of the notation presented here differs slightly from what is in both EN 1991-

4 and Rotter’s paper. Furthermore, both of these sources must make further assumptions 

about the values of frictional and lateral pressure ratio parameters. Since these 

assumptions are not based on the geometrical relations of Fig. 3.4, they are not strictly a 

part of the derivations. 

 

In the EN 1991-4 Standard, the friction coefficient of the solid against the wall μw is 

taken as the lower characteristic μ value (thus emphasising the normal pressure 

component, rather than frictional traction), whilst the friction coefficient of the solid 

against itself along the static-flowing interface is taken as the tangent of the upper 

characteristic internal friction angle, tanφi. The lateral pressure ratio within the solid is 

different depending on its position with respect to the flow channel, but the Standard 

suggests a uniform value of K throughout, given by the upper characteristic value, such 

that Kw/Ksc gives unity and hence this ratio is present in Eq. 3.1 but absent in Eq. 3.4 (or 

in Rotter’s reworking of the theory, 2001b). 

 

Rotter (1986) made no assumptions about the friction coefficients, but drew from the 

theory of Rankine (1857) and Walker (1966), discussed in Section 1.2.3 of the literature 

review, to make assumptions about the lateral pressure ratio under these conditions. The 

solid against the wall in the flow channel was assumed to be at active failure while 

sliding and shearing against the wall so that Kw is given by Eq. 1.8. The stationary solid 

adjacent to the channel is assumed to be sliding and at active failure (Eq. 1.9) whilst on 

the other side of the interface the flowing solid is assumed to be sliding and at passive 

failure (inverse of Eq. 1.9). This is contrary to the single value of Ksc assumed in EN 

1991-4 and in this study, and was revised in a later version (Rotter, 2001b). It is clear, 

however, that the appropriate value for each of these parameters remains uncertain at 

the present time. The above comparison is summarised in Table 3.2. 
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Table 3.2 – Comparison of the EN 1991-4 (2007) and original Rotter (1986) eccentric 

discharge pressure models 

 EN 1991-4 (2007) Rotter (1986) 

Pressures in the static 

region, phse 

Janssen pressures, Eq. 2.1 Special derivation, Eq. 

1.15 

Pressures in the flow 

channel, phce 

Special derivation, Eq. 2.2 Eq. 1.13, giving same 

result as Eq. 2.2 

Flow channel wall contact 

angle measured from silo 

centre, θc 

Eq. 3.5, based on the 

eccentricity, ec 

Numerical solution to Eq. 

3.1  

Flow channel wall contact 

angle measured from 

channel centre, ψ 

Eq. 3.2 Eq. 3.2 

Eccentricity of the flow 

channel centre, ec 

Eq. 3.4, empirical fit to 

original Eq. 3.1 

Eq. 3.3, geometrical 

relation to θc and ψ 

Friction coefficient of the 

solid against the wall, μw 

Lower characteristic value 

from Annex E 

No assumption 

Friction coefficient of the 

solid against itself, μsc 

Tangent of the upper 

characteristic value of the 

internal friction angle from 

Annex E 

No assumption 

Lateral pressure ratio of 

the solid against the wall, 

Kw 

Upper characteristic value 

from Annex E 

Sliding, shearing and 

active failure Walker 

value, Eq. 1.8  

Lateral pressure ratio of 

the solid against itself, Ksc 

No distinction from Kw Distinction between the 

two sides of the stationary-

flowing interface (Eq. 1.9 

and its inverse) 

 

When the same set of material property values is used for both models (here it is the EN 

1991-4 Annex E values for cement, summarised in Chapter 4), it is found that they both 

yield very similar values for the different flow channel geometry parameters, as one 

would expect. A comparison using material property values for cement is shown in 

Table 3.3. 
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Table 3.3 – Comparison of flow channel geometries for EN 1991-4 Annex E material 

property values for cement 

 EN 1991-4 (2007) Rotter (1986) 

kc = rc / R 0.25 0.40 0.60 0.25 0.40 0.60 

θc (º) 9.53 16.19 26.92 8.52 15.10 26.59 

ψ (º) 41.47 44.19 48.98 36.36 40.63 48.25 

ec / R 0.80 0.67 0.50 0.79 0.66 0.50 

Ac / Atot (%) 5.90 15.09 33.98 6.01 15.29 34.08 

 

The three-dimensional surface plots in Fig. 3.5 to Fig. 3.7 show the global distributions 

of the normal wall pressures for Silo CS. The corresponding distributions for Silo CVS 

are similar. This allows the components of the pressures to be seen clearly, such as the 

block of high pressures at the edge of the flow channel in Fig. 3.5, or its absence in Fig. 

3.6 and Fig. 3.7.  

 

 
      a) kc = 0.25      b) kc = 0.40   c) kc = 0.60 

Fig. 3.5 – 3D surface plots of EN 1991-4 eccentric discharge wall pressures in Silo CS 

with high pressures zones 
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      a) kc = 0.25      b) kc = 0.40   c) kc = 0.60 

Fig. 3.6 – 3D surface plots of EN 1991-4 eccentric discharge wall pressures in Silo CS 

without high pressures zones 

 

 
      a) kc = 0.25      b) kc = 0.40   c) kc = 0.60 

Fig. 3.7 – 3D surface plots of Rotter eccentric discharge wall pressures in Silo CS 

without high pressures zones 

 

The two sets of wall pressures in Fig. 3.6 and Fig. 3.7 are very similar, since the EN 

1991-4 and Rotter distributions differ only in the equation for the pressures in the static 

solid. As the flow channel gets smaller (kc → 0), the Rotter static wall pressures tend to 

the Janssen value (see accompanying text to Eq. 1.15). The static solid pressures in the 

EN 1991-4 distribution are independent of kc, and are given by the Janssen distribution 

throughout. This is illustrated more clearly for both silos in Fig. 3.8 below. For the 

largest flow channel size of kc = 0.60, the Janssen equation may underestimate the wall 

pressures in the static solid by approximately 12%. 
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Fig. 3.8 – Variation of static solid and flow channel pressures with kc according to the 

EN 1991-4 (2007) and Rotter (1986) models 

 

3.5 Results and analysis of load proportionality factors 

3.5.1 Overview 

The load proportionality factors for the EN 1993-1-6 suite of computational analyses are 

listed in Table 3.4 and Table 3.5. The results are additionally shown on a bar chart in 

Fig. 3.9 in a form which allows a closer comparison of the three distributions for each 

analysis type and flow channel size. 

 

Table 3.4 – Summary of load proportionality factors for Silo CS 

 Concentric 

Janssen 

pressures 

EN 1991-4 (2007) 

with regions of 

high pressures 

EN 1991-4 (2007) 

without regions of 

high pressures 

Rotter (1986)  

without regions of

 high pressures 

kc 0.00 0.25 0.40 0.60 0.25 0.40 0.60 0.25 0.40 0.60

LBA 6.34 0.30 0.18 0.24 0.27 0.28 0.52 0.28 0.24 0.37

MNA 4.98 0.64 0.58 0.76 0.94 1.05 1.69 0.95 0.91 1.22

GNA 6.31 2.69 0.24 0.35 0.26 0.38 0.82 0.28 0.30 0.52

GMNA 3.93 2.35 0.24 0.35 0.26 0.38 0.82 0.28 0.30 0.52
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Table 3.5 – Summary of load proportionality factors for Silo CVS 

 Concentric 

Janssen 

pressures† 

EN 1991-4 (2007) 

with regions of 

high pressures 

EN 1991-4 (2007) 

without regions of 

high pressures 

Rotter (1986)  

without regions of

 high pressures 

kc 0.00 0.25 0.40 0.60 0.25 0.40 0.60 0.25 0.40 0.60

LBA 7.65 0.47 0.25 0.21 0.33 0.29 0.39 0.34 0.26 0.29

MNA 4.54 0.88 0.64 0.65 1.00 0.95 1.17 1.00 0.85 0.94

GNA 7.63 2.55 0.49 0.37 0.34 0.36 0.70 0.35 0.30 0.43

GMNA 3.85 2.55 0.49 0.37 0.34 0.36 0.70 0.35 0.30 0.43

 

The GMNA results for kc = 0.00 correspond to a plastic elephant foot buckling mode at 

the base of the thinnest 3 mm strake in both silos, similar to those in Fig. 2.7. For kc ≠ 

0.00, the LBA, GNA and GMNA load factors correspond to a localised elastic 

midheight buckle within the thinnest strake of both silos, while the MNA all correspond 

to a global circumferential plastic collapse mode. For both types of failure mode, the 

illustrations are similar to those shown in Fig. 2.12.  

 

 
Fig. 3.9 – Bar chart of the LBA, MNA and GNA load proportionality factors 
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3.5.2 Comparison of load proportionality factors under eccentric discharge to the 

reference concentric discharge values  

A simple comparison of the load factors for each silo under eccentric discharge to the 

load factors under concentric discharge suggests that there is little new to discuss 

beyond what was found in Chapter 2, since the load factors are clearly all much lower 

and significantly below unity. The removal of the high edge pressures, or the use of the 

more correct Rotter distribution, does little to change the underlying fact that this load 

condition is extremely serious to the stability of the silo and results in extremely low 

load factors.  

 

The load factors due to the EN 1991-4 pressures for larger values of kc (0.40 and 0.60) 

without high edge pressures are marginally higher than those with these pressures 

included, while the load factors due to Rotter’s pressures lie somewhat between the two 

EN 1991-4 versions. Since the wall pressures in the static zone increase with channel 

size according to Rotter’s model, they appear to have an increasingly deleterious effect 

on the load factor at larger values of kc. 

 

The buckling behaviour under eccentric discharge is completely elastic regardless of 

silo (CS or CVS), flow channel size or pressure distribution, shown by identical GNA 

and GMNA load factors. The single exception to this is kc = 0.25 for Silo CS (but not 

Silo CVS) under full EN 1991-4 pressures. The load factors for GNA and GMNA at kc 

= 0.25 under full EN 1991-4 pressures are significantly higher than at higher values of 

kc, and an explanation for this phenomenon is suggested in the subsequent two chapters. 

For this same reason, all results for kc = 0.25 are considered by the author to be 

unrepresentative of appropriate behaviour of a silo under eccentric discharge. The 

channel appears to be unrealistically small and the behaviour is in transition between the 

typical behaviour under concentric discharge and the typical behaviour under eccentric 

discharge. 

 

3.5.3 Comparison of load proportionality factors under eccentric discharge to each 

other  

A comparison of the load factors under eccentric discharge to each other for the more 

reliable values of kc of 0.40 and 0.60 suggests a more meaningful picture. Table 3.6 

shows the percentage changes in load factor for the corresponding kc value as the 
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regions of high pressures are removed from the applied pressure distributions. 

Removing the high edge pressures from the EN 1991-4 distribution (i.e. Fig. 3.6) leads 

to strength increases of over 85% for the larger channel, a massive rise. Higher values 

of kc result in larger values of θc and hence wider ‘blocks’ of high pressure (Fig. 3.5). 

When these are removed, larger strength gains are found.  

 

An anomalous value appears for the more slender Silo CVS when the high edge 

pressures are removed from the EN 1991-4 distribution at kc = 0.40. This results in a 

decrease in the GNA load factor, while one would clearly expect it to rise. It is currently 

not known why this occurs. 

 

Table 3.6 – Percentage change in load factor for values of kc of 0.4 and 0.6 for 

distributions without regions of high pressures 

  EN 1991-4 change 

from EN 1991-4 with 

high pressures 

Rotter change from 

EN 1991-4 with high 

pressures 

Rotter change from 

EN 1991-4 without  

high pressures 

 kc 0.40 0.60 0.40 0.60 0.40 0.60 

LBA + 55.6% + 116.7% + 33.3% + 54.2% – 14.3% – 28.5% CS  

Silo GNA + 58.3% + 134.29% + 25.0% + 48.6% – 21.1% – 36.6% 

LBA + 16.0% + 85.7% + 4.0% + 38.1% – 10.4% – 25.6% CVS 

Silo GNA – 26.5% + 89.2% – 38.9% + 16.2% – 16.7% – 38.6% 

 

Rotter’s distribution results in an increase in the wall pressures in the static region by 

approximately 7 and 12% for kc = 0.40 and 0.60 respectively (Fig. 3.8), yet this is 

sufficient to cause an average reduction in the GNA load factor of almost 20 and 40% 

respectively. Thus although removing the regions of high pressure results in significant 

strength gains, increasing the static zone pressures with flow channel size results in 

noticeable strength losses for larger channels. The silo modelled under eccentric 

discharge therefore appears to be sensitive to minor increases in the static solid 

pressures. Finally, it is clear that it is the reduction in wall pressures at the centre of the 

flow channel, rather than the large rise in wall pressures at the edge of the flow channel, 

that is the damaging component under eccentric discharge. 
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3.6 Exploration of the mechanics of geometric nonlinearity 

3.6.1 Stress distributions from finite element analyses 

It is evident from this and other studies in this thesis that GNA load factors under 

eccentric discharge are consistently higher than LBA load factors. This finding is 

contrary to the traditional wisdom in shell structures (e.g. Yamaki, 1984; Teng and 

Rotter, 2004; many others), where, based on analytical buckling studies of shells under 

uniform membrane stress states, the exact opposite is the established norm. 

 

The LBA and GNA load factors at kc = 0.25 for the EN 1991-4 and Rotter distributions 

with no high edge pressures, shown in Table 3.4 and Table 3.5, have been quite 

fortuitously found to be equal to one another. This allows a direct comparison to be 

made of the stress distributions under eccentric discharge pressures for both 

geometrically linear and nonlinear analyses and leads to important observations about 

the mechanics involved. Most importantly, it allows the isolation of two opposing 

phenomena, both due to geometric nonlinearity, which are occurring simultaneously and 

seem to balance each other for these particular analyses: the deleterious effect of local 

wall flattening (the buckling strength of a curved panel is reduced as its R/t ratio 

increases; Rotter, 1985a) and the beneficial effect of a greater portion of the shell being 

mobilised to carry the stresses. 

 

The axial distributions of the axial membrane stress resultants in the shell adjacent to 

the centre of the flow channel for Silos CS and CVS are shown in Fig. 3.10. Although 

the Rotter (1986) model predicts a modest 5% increase in static pressures, this appears 

to have a negligible effect on the stresses in the silo since the load factors for both the 

EN 1991-4 and Rotter models are nearly identical for both the LA and GNA analyses.  
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Fig. 3.10 – Vertical distribution of the axial membrane stress resultants at bifurcation 

through the centre of the flow channel for Silos CS and CVS at kc = 0.25 

 

The peak values of the axial membrane stresses in the two silos occur at the base of the 

thinnest 3 mm strake in each. The ratios of the peak compressive LA to GNA axial 

membrane stresses at bifurcation, and the percentage decrease from one to the other, are 

summarised in Table 3.7 below. On average, there is a 55% reduction due to geometric 

nonlinearity in the peak value of the axial compressive stress at buckling. Thus, the 

flattening of the silo wall clearly has a major destabilising effect. 

 

Table 3.7 - Summary of beam analogy section properties (kc = 0.25 data only) 

 Silo CS 

EN 1991-4

Silo CS

Rotter 

Silo CVS 

EN 1991-4

Silo CVS 

Rotter 

Average

Ratio of peak compressive  

σmax-(LA) / σmax-(GNA) 

2.16 2.04 2.37 2.44 2.25 

% decrease 53.66 51.00 57.85 59.01 55.38 

 

The circumferential distributions of the axial membrane stress resultants at bifurcation 

just above the respective 3 mm strake are shown in Fig. 3.11 for the two silos. It is 

evident that the change of geometry causes a greater circumferential portion of the shell 

to be mobilised in carrying the stresses, which leads to an overall reduction in their 

magnitudes. This observation is reinforced in later chapters, but the mechanics through 
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which this occurs are explored here in the novel context of a beam analogy. The stresses 

are again almost identical for both the EN 1991-4 and Rotter distributions. 

 

 
Fig. 3.11 – Circumferential distribution of the axial membrane stress resultants at 

bifurcation just above the base of the respective thinnest 3 mm strake for Silos CS and 

CVS at kc = 0.25 

 

3.6.2 Beam theory analogy 

Appendix A contains a detailed investigation into the behaviour of a silo shell under 

eccentric discharge by analogy with a propped cantilever beam (Fig. 3.12). The 

properties of several complex and unusual shell-like beam sections are derived, and the 

effect of changes of shape on the section modulus Z (ratio of the second moment of area 

about the centroidal axis to the distance from the extreme fibre to the section centroid) 

are investigated. The section modulus is a measure of the strength of a beam in bending, 

on the assumption that plane sections remain plane and no distortion of the cross-section 

occurs. Geometries with higher section moduli will therefore experience lower stresses 

at the same value of the bending moment. 

 

The extreme fibre stresses which develop in a propped cantilever under a uniformly 

distributed transverse load (Fig. 3.12) are analogous to the characteristic distribution of 

axial membrane stresses in the silo under eccentric discharge (compare Fig. 3.12, for 

example, with Fig. 2.9 or Fig. 2.13). The stresses in the top beam fibre, which are 
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tensile near the built-in support and become compressive towards the simple end 

support, correspond to the channel centre stresses. Conversely, bottom fibre stresses 

correspond to the channel edge stresses. 

 

Extreme Fibre Bending Moment 
Diagram 

Propped Free Body 
Stresses cantilever Diagram 

Top fibre (+) RB 

 
Fig. 3.12 – System diagrams for a uniform thickness propped cantilever with a 

uniformly distributed load 

 

An example set of data for the circumferential distribution of axial membrane stresses is 

shown in the top half of Fig. 3.13. The curve oscillates around a reference value, which 

is the unperturbed axial membrane stress opposite the flow channel derived only from 

axisymmetric wall friction. Removing this reference value devides the distribution into 

compressive and tensile components akin to the stress distributions through the cross-

section of a beam. The extreme fibres of the beam lie at θ = 0° (taken as the bottom 

fibre) and some value θ = θc, which must be calculated to make the integral of the 

compressive stresses equal to the integral of the tensile stresses. The elastic neutral axis 

of the beam passes through the point of zero stress at some value θ = θNA which can be 

determined easily from the figure. 
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Fig. 3.13 – Application of a beam analogy to the shell 

 

The simple beam geometry of a circular arc with finite thickness is now considered 

here, shown in Fig. 3.14. The maximum circumferential spread of the section is defined 

by the angle θc from the vertical axis. The angle to the neutral axis, θNA, is known from 

the stress distribution and θc is determined numerically from it through geometrical 

relations (Section A.3.1). The radius and thickness of the circular arc, R and t 

respectively, are taken as those of the silo at the strake where the shell stresses are being 

considered, in this case the 3 mm strake (recall that the Silos CS and CVS have radii 

3000 and 2500 mm respectively). 

 

 
Fig. 3.14 – Circular arc beam geometry and cross-sectional stress distributions 
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Returning to Fig. 3.11 and applying the beam analogy to the comparison of the LA and 

GNA stresses, it is clear that the GNA data will have larger values of both θNA and 

therefore θc. This in turn implies that the location of the centroid will be lower in 

relation to the bottom fibre (making the distance ybot greater) and the larger spread of the 

circular arc will yield a much greater second moment of area. The section modulus for 

the ‘GNA beam’ will therefore be significantly larger than for the ‘LA beam’, causing 

the peak stresses in the former to be lower and thus making it much stronger. 

 

3.6.3 Comparison 

The critical question is whether the rise in the section modulus is sufficiently large to 

support the huge decreases in the buckling strength (up to 55%) that have been found 

with the finite element analyses? The answer is yes. The results of this relatively simple 

yet insightful analysis, summarised in Table 3.8, show that the average rise in section 

modulus is by a factor of two, implying an average reduction in peak stresses of 50%. 

This is in remarkably close agreement to the reductions found previously in the 

nonlinear finite element analysis (Fig. 3.10 and Fig. 3.11).  

 

Table 3.8 – Summary of beam analogy section properties (kc = 0.25 data only) 

Silo Pressure 

distribution 

Analysis 

Type 

θNA 

(°) 

θC 

(°) 

yG 

(mm) 

ZB  

(mm3) 

ZB(GNA) /   

ZB(LA)† 

% 

decrease 

LA @ LBA 17.08 29.57 2867.63 486145.1 EN 1991-4 

(2007) GNA @ Bif. 21.33 37.03 2794.44 951212.3 

1.96 48.89 

LA @ LBA 16.67 28.84 2873.96 451108.6 

CS 

 

Rotter 

(1986) GNA @ Bif. 21.60 37.50 2789.32 987542.0 

2.19 54.32 

LA @ LBA 21.11 36.62 2332.23 638449.2 EN 1991-4 

(2007) GNA @ Bif. 26.21 45.64 2242.89 1226002.0

1.92 47.92 

LA @ LBA 21.00 36.43 2333.90 628766.6 

CVS 

 

Rotter 

(1986) GNA @ Bif. 26.29 45.77 2241.50 1236201.1

1.97 49.14 

† ZB(GNA) /  ZB(LA)  ≡ σmax-(LA) / σmax-(GNA) Average 2.01 50.09

 

The thin circular arc beam is therefore a valid analogy for the silo wall under local 

eccentric discharge pressures. With geometric nonlinearity, a greater portion of the shell 

acts like a beam section which leads to a favourable change in its section properties and 

consequently significantly lower stresses. 
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3.7 Conclusions 

This chapter has presented a detailed comparison of the current EN 1991-4 eccentric 

discharge pressure model with its more complete precursor, the theory of Rotter (1986). 

The former is a stripped-down yet more conservative version of the latter, making it 

marginally simpler in its practical application but resulting in lower silo strength 

predictions. It has the advantage of conservatism, but possibly the disadvantage of too 

much of it. 

 

The effect of removing the region of high normal pressures at the edge of the channel 

for the EN 1991-4 distribution results in slightly higher eccentric discharge load factors. 

By comparison with the concentric discharge values, these are still extremely low, and it 

may be concluded that removing the high local wall pressures has a rather small effect.  

 

Comparing the eccentric discharge buckling predictions to each other, it was found that 

the removal of the high edge pressures in the EN 1991-4 distribution results in 

significant strength increases in the LBA and GNA load factors for kc = 0.40 and 0.60. 

Using the Rotter distribution, strength increases were still found but were much lower. 

This is because, in the Rotter model, the stationary solid pressure increases with channel 

size unlike in the EN 1991-4 version where it is always given by the Janssen filling 

pressure.  

 

An unexpected result of this analysis was that, for the pressure distributions with no 

high edge pressures, the LBA and GNA load factors for the smallest channel of kc = 

0.25 were the same. This allowed a direct comparison of the two sets of stresses which 

lead to an important insight into the mechanics of the geometrically nonlinear behaviour 

in the context of a propped cantilever beam theory analogy.  

 

It was found that, with geometric nonlinearity, a greater circumferential portion of the 

shell acts as an arc-profile beam which consequently has a higher section modulus to the 

extreme fibre corresponding to the centre of the flow channel. The subsequent extreme 

fibre stress reductions are by a factor of approximately 2, and correspond remarkably 

closely to the finite element predictions. 
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Chapter 4 – The structural behaviour of silos of different aspect ratio 

under the EN 1991-4 concentric and eccentric discharge pressures 
 

4.1 Introduction 

In Chapter 2 of this thesis, the pressure distribution of the European Standard EN 1991-

4 (2007) for a eccentric parallel-side pipe flow was introduced. Its effects on an 

example structure were explored in what is thought to be the first computational study 

of its kind, and many revealing observations were made. The model for eccentric 

discharge pressures in this new standard is a giant step forward in the prescriptive 

treatment of such a destructive phenomenon, yet the theory behind the pressure 

distribution has not figured prominently in the silo research literature since its original 

publication by Rotter (1986).  

 

Given the short length of time that has currently passed since the publication of EN 

1991-4, it is currently largely unknown what behaviour can be expected from the 

application of this new pressure distribution. The behaviour is likely to be highly 

dependent on the geometry of the silo, the size and position of the flow channel, the 

material properties of the granular solid and even the type analysis of computational 

analysis, since the presentation of the full suite of linear and nonlinear computational 

calculations in EN 1993-1-6 (2007) is an equally recent and state-of-the-art framework 

for shell analysis.  

 

It is precisely this kind of parametric study that is presented here and in Chapter 5. The 

study in this chapter explores the effect of varying the silo aspect ratio (H/D), under 

both concentric and eccentric discharge, using the three different channel sizes 

specifically recommended by EN 1991-4. Special attention is additionally paid to the 

results of varying the aspect ratio under concentric discharge, as even this application of 

EN 1991-4, EN 1993-1-6 and EN 1993-4-1 (2007) is yet to be fully explored.  

 

4.2 Background 

The classification of silos in the European Standard on actions on silos and tanks, EN 

1991-4, is made on the basis of their aspect ratio (ratio of the height to diameter, H/D). 

The aspect ratio greatly influences the flow pattern of the granular solid in the silo, with 

squat silos having significantly different flow regimes from slender ones (Hampe, 1987; 
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Rotter, 2001a). The effect of the aspect ratio on flow patterns is illustrated succinctly in 

EN 1991-4 (2007), reproduced here in Fig. 4.1. A varying aspect ratio in turn influences 

the pressure exerted by both the static and flowing solid on the silo wall, and the 

behaviour of the silo as a shell structure. The classification criteria according to the silo 

aspect ratio as defined by EN 1991-4 are given in Table 4.1 below. 

 

Table 4.1 – Summary of slenderness categories according to EN 1991-4 (2007) 

Aspect ratio range Pressure law Silo category 

H/D ≥ 2.0 Janssen Slender 

1.0 < H/D < 2.0 Modified Reimbert Intermediate slender 

0.4 < H/D ≤ 1.0 Modified Reimbert Squat 

H/D ≤ 0.4 Hydrostatic Retaining silo, flat bottom 

 

Retaining silo 
(H/D = 0.33)

Squat silo 
(H/D = 0.67)

Slender silo 
(H/D = 2.43)

Very slender silo 

Flowing
Flowing 

Effective
transition

Flow channel 
boundary 

Effective 
transition 

Flow channel 
boundary 

Flow channel 
boundary 

Flow channel 
boundary 

Effective
hopper 

StationaryStationary Stationary StationaryStationary Stationary

Stationary 

(H/D = 3.65)  
Fig. 4.1 – Aspect ratio effects in mixed and pipe flow patterns, after EN 1991-4 (2007) 

 

The range of aspect ratios chosen in this study is such that the volume and capacity of 

each silo is approximately equal (whilst maintaining neat dimensions), so that each silo 

is by itself a plausible alternative design to the same storage requirements. Additionally, 

since the main objective is to investigate the structural behaviour caused by an eccentric 

channel of flowing solid, most aspect ratios were kept within a range where such a flow 

pattern is physically possible. Therefore, although eccentric pipe flow is known to occur 

in slender silos storing densely packed or slightly cohesive solids (Rotter, 2001a), it is 
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really no longer credible for squat silos which are more likely to exhibit internal or 

mixed flow pattern where the channel progressively spreads out from the outlet. The 

precise shape of flow patterns as a function of the aspect ratio, however, cannot yet be 

predicted with any certainty. 

 

Where the EN 1991-4 eccentric pipe flow model is imposed on a silo of a lower aspect 

ratio, the structural behaviour will be shown to be rather different to that of a slender 

silo. Furthermore, unlike the predicted elastic midheight buckling mode for a slender 

silo which is known to have been observed in practice (Fig. 2.12), the predicted 

corresponding buckling modes for squatter silos, shown in this chapter, are not known 

to have been reported. 

 

The EN 1991-4 pattern also assumes that the parallel-sided flow channel covers the 

entire height of the silo, which is unlikely to occur in reality because the channel must 

become smaller as it approaches the outlet and it usually spreads out somewhat near the 

surface (Rotter, 2001a). Nonetheless, the channel has been defined with parallel sides in 

EN 1991-4 in the interests of achieving a simple model for design calculations. Though 

the effects of this error are confined to a small part of the structure in slender silos, in 

squatter silos this error covers a significant part of the structure and results in quite 

unrealistic imposed pressure patterns leading to unreliable predictions in finite element 

studies. 

 

4.3 The design silos 

Five steel silos with different aspect ratios were designed for the purposes of the aspect 

ratio study. The designs were all made to support the symmetrical loads arising from the 

storage of 510 m3 of wheat. Structural design was carried out according to EN 1993-1-6 

and EN 1993-4-1 using the design pressures from EN 1991-4 under the maximum 

friction design case, in a manner identical to the design of Silo CVS in Chapter 2. No 

provision was made for eccentric discharge at the design stage, not even with 

unsymmetrical patch loads, and no hopper was included. The design of each silo 

accounted for the effect of internal pressure and this was found in all cases to be in the 

beneficial range. The design was therefore dominated by the elastic stabilisation factor 

αxpe (Eq. 1.19). 
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The new eccentric discharge design rules in EN 1991-4 appear to have been implicitly 

envisaged with slender silos in mind, since this geometry of silo has suffered many 

failures due to eccentric discharge (Rotter, 1986; 2001a). However, for want of more 

accurate information, the standard requires that exactly the same procedure should be 

applied to intermediate slenderness and squat silos. The lowest aspect ratio considered 

in this chapter under eccentric discharge was 1.47, in the middle of the ‘intermediate 

slender’ category (Table 4.1), requiring a modified version of the Reimbert pressures to 

be applied. However, even this results in visibly different behaviour to the higher aspect 

ratio silos, which all used Janssen axisymmetric pressures. A squat silo, with an aspect 

ratio of 0.65, was also designed but analysed only under concentric discharge.  

 

The results of the present study support the application of the EN 1991-4 eccentric 

discharge model to slender silos (or, in general, those assuming Janssen pressures in the 

static zone), but not to intermediate slender and or squat silos. More generally, the EN 

1991-4 model has been found to lead to artificial results where modified Reimbert 

pressures are assumed in the static zone.  

 

The geometries of the designed silos are summarised in Table 4.2. The material 

properties for cement and wheat were taken from EN 1991-4 Annex E for a Class D2 

‘Smooth’ wall. These are listed in Table 4.3. The parameters of other example silos 

used elsewhere in the thesis are also listed for comparison.  
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Table 4.2 – Summary of the parameters of the seven design silos 

Silo name (Acronym) H 

(m) 

D 

(m) 

H/D Material Stored 

Volume 

(m3) 

Steel 

Volume 

(m3) 

Rating†  

capacity 

(t) 

Loading† 

capacity 

(t) 

Pressure 

law 

Cement Very Slender 

(CVS) 

26.0 5.0 5.20 Cement 510.5 2.35 676.5 832.6 Janssen 

Very Slender (VS) 26.0 5.0 5.20 Wheat 510.5 1.91 390.3 468.4 Janssen 

Cement Slender (CS) 18.0 6.0 3.00 Cement 508.9 1.73 674.4 830.1 Janssen 

Slender (S) 18.0 6.0 3.00 Wheat 508.9 1.41 389.1 466.9 Janssen 

Boundary (B) 14.0 6.8 2.06 Wheat 508.4 1.12 388.7 466.5 Janssen 

Intermediate (I) 11.2 7.6 1.47 Wheat 508.1 0.89 388.4 466.1 Modified

Reimbert

Squat (Q) 6.5 10.0 0.65 Wheat 510.5 0.32 390.3 468.4 Modified 

Reimbert

† the lower characteristic value of the unit weight (γl) is used for the rating capacity to 

determine the Action Assessment Class, whilst the respective upper characteristic value 

(γu) is used to calculate the actions (loads) on the silo wall (EN 1991-4, 2007: Annex E) 

 

Table 4.3 – Summary of characteristic values of granular solids properties from EN 

1991-4 (2007) Annex E (friction properties are for a D2 ‘smooth’ wall) 

Granular 

solid 

name 

 

Upper 

unit 

weight, 

γu 

(kN/m3) 

Lower 

unit  

weight, 

γl 

(kN/m3) 

Angle  

of 

repose,  

φr 

(degrees) 

Upper 

internal 

friction 

angle, φi 

(degrees) 

Upper 

lateral 

pressure 

ratio, K 

Upper  

wall 

friction 

coefficient 

(D2), μu 

Lower 

wall 

friction 

coefficient 

(D2), μl 

Wheat 9 7.5 34 33.6 0.60 0.44 0.33 

Cement 16 13 36 36.6 0.65 0.49 0.43 

 

The distribution of wall thicknesses for the silos containing wheat is given in Table 4.4. 

The required imperfection amplitudes according to EN 1993-1-6 Annex D 

(characteristic imperfection amplitude for direct design Δwk) for a ‘Normal’ Fabrication 

Tolerance Quality Class are listed in Table 4.5. The imperfection requirements for 

GMNIA-based design, from Section 8.7.2 of EN 1993-1-6, were not used in the 

numerical analyses in the present chapter, but are included for comparison in Table 4.6 
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as they are used elsewhere. A scaled visualisation of the silos is given in Fig. 4.2. The 

EN 1993-1-6 design procedure is described in detail in Section 1.3.5 of the literature 

review. 

 

Table 4.4 – Summary of design wall thicknesses 

Down to a depth below top of silo (m) Wall 

thickness 

(mm) 

Silo CVS 
(H/D =  

5.20) 

Silo VS 
(H/D = 

5.20) 

Silo CS 
(H/D = 

3.00) 

Silo S 
(H/D =  

3.00) 

Silo B 
(H/D =  

2.06) 

Silo I 
(H/D = 

1.47) 

Silo Q 
(H/D = 

0.65) 
1 n/a n/a n/a n/a n/a n/a 3.3 

2 n/a n/a n/a n/a n/a n/a 6.0 

3 6.4 8.8 6.2 8.2 8.0 8.4 6.5 

4 8.8 12.4 8.0 11.0 10.4 10.4 n/a 

5 11.4 16.8 10.2 14.2 13.0 11.2 n/a 

6 15.0 22.4 12.6 18.0 14.0 n/a n/a 

7 18.8 26.0 15.4 n/a n/a n/a n/a 

8 23.6 n/a 18.0 n/a n/a n/a n/a 

9 26.0  n/a n/a n/a n/a n/a n/a 

 

 S 

3 mm 

4 mm 

5 mm 

6 mm 

B 

3 mm 

4 mm 

5 mm 
6 mm 

VS 

3 mm 

4 mm 

5 mm 

6 mm 

7 mm 

I
5 mm 

3 mm 

4 mm 

3 mm 

5 mm 

6 mm 

7 mm 

8 mm 

9 mm 

CVS CS 

3 mm 

4 mm 

5 mm 

6 mm 

7 mm 

8 mm 

Key: 
Change of strake thickness (+ axisymmetric weld with imperfection amplitude in 
terms of the wall thickness of the overlying strake in GNIA/GMNIA analyses) 
 
Axisymmetric weld for GNIA/GMNIA analyses with imperfection amplitude in 
terms of the wall thickness of the local strake 

CVS – Cement Very Slender – H/D = 5.20 (16 welds) 
VS – Very Slender – H/D = 5.20 (13 welds) 

CS – Cement Slender – H/D = 3.00 (9 welds) 
S – Slender – H/D = 3.00 (9 welds) 

B – Boundary – H/D = 2.06 (8 welds) 
I – Intermediate – H/D = 1.47 (5 welds) 

Q – Squat – H/D = 0.65 (5 welds) 
All hold approx. 510 m3 

(drawn to scale) 

Q 

4 mm 

3 mm 

2 mm 

1 mm 

Fig. 4.2 – Schematics of the seven design silos, drawn to scale 
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In all cases, the silo is constructed from isotropic steel plate with an elastic modulus of 

200 GPa, a Poisson’s ratio of 0.3 and a yield stress of 250 MPa. A Fabrication 

Tolerance Quality Class of C (‘Normal’) was adopted, requiring a thicker wall and 

deeper imperfections.  

 

The squat Silo Q is different in that it alone was designed with a wall thickness of 1 mm 

for over half of its height, which is at the very limit of what may be practicably possible 

to construct. Nonetheless, this is the theoretical thickness which satisfies the required 

design rules, and it was adopted for the purposes of this study. A silo of such squat 

proportions falls outside the range of aspect ratios in which an eccentric pipe flow 

channel of the type being studied here is likely to develop, and it was only investigated 

under the axisymmetric loads occurring during concentric discharge. 

 

Table 4.5 – Summary of the imperfection amplitudes to be adopted in design, according 

to EN 1993-1-6 (2007) Annex D for direct design  

Units of wall local thickness Wall 

thickness 

(mm) 

Silo CVS 
(H/D =  

5.20) 

Silo VS 
(H/D = 

5.20) 

Silo CS 
(H/D = 

3.00) 

Silo S 
(H/D =  

3.00) 

Silo B 
(H/D =  

2.06) 

Silo I 
(H/D = 

1.47) 

Silo Q 
(H/D = 

0.65) 
1 n/a n/a n/a n/a n/a n/a 4.419 

2 n/a n/a n/a n/a n/a n/a 3.125 

3 1.804 1.804 1.976 1.976 2.104 2.224 2.552 

4 1.563 1.563 1.712 1.712 1.822 1.926 n/a 

5 1.398 1.398 1.531 1.531 1.630 1.723 n/a 

6 1.276 1.276 1.398 1.398 1.488 n/a n/a 

7 1.181 1.181 1.294 n/a n/a n/a n/a 

8 1.105 n/a 1.210 n/a n/a n/a n/a 

9 1.042 n/a n/a n/a n/a n/a n/a 
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Table 4.6 – Summary of the imperfection amplitudes to be adopted in design, according 

to te EN 1993-1-6 Section 8.7.2 for GMNIA-based design  

Units of wall local thickness Wall 

thickness 

(mm) 

Silo CVS 
(H/D =  

5.20) 

Silo VS 
(H/D = 

5.20) 

Silo CS 
(H/D = 

3.00) 

Silo S 
(H/D =  

3.00) 

Silo B 
(H/D =  

2.06) 

Silo I 
(H/D = 

1.47) 

Silo Q 
(H/D = 

0.65) 
1 n/a n/a n/a n/a n/a n/a 7.071 

2 n/a n/a n/a n/a n/a n/a 5.000 

3 2.887 2.889 3.162 3.162 3.367 3.559 4.083 

4 2.500 2.500 2.739 2.739 2.912 3.082 n/a 

5 2.236 2.236 2.450 2.450 2.608 2.757 n/a 

6 2.041 2.041 2.236 2.236 2.381 n/a n/a 

7 1.890 1.890 2.070 n/a n/a n/a n/a 

8 1.768 n/a 1.937 n/a n/a n/a n/a 

9 1.667 n/a n/a n/a n/a n/a n/a 

 

The imperfection amplitudes defined in EN 1993-1-6 Section 8.7.2 for GMNIA 

analyses (Table 4.6) are always greater than the hand design values (Table 4.5). In both 

cases, the standard relates the imperfection amplitudes to tolerance requirements 

(Fabrication Tolerance Quality Class) to which the silos are expected to be constructed. 

A silo constructed to stricter tolerances is rewarded with lower imperfection amplitudes 

and hence, in theory, higher buckling loads. Section 1.3.5 of the literautre review 

presents the background to this in greater detail.  

 

It will be shown in this chapter that, for the case of the axisymmetric weld depression 

(Type A from Rotter and Teng, 1989a) under eccentric discharge, neither of the 

imperfection amplitudes for direct or GMNIA-based design leads to a safe assessment 

of the silo strength. Though axisymmetric weld depressions are known to be very 

deleterious under axisymmetric conditions, especially under axial compression (studied 

by very many authors, including Rotter and Zhang, 1990; Teng and Rotter, 1992; 

Knödel et al., 1995; 1996; Knödel & Ummenhofer, 1996; Ummenhofer & Knödel, 

1996; Rotter, 1996), they cannot be relied upon to give conservative strength estimates 

with eccentric discharge since they result in significant strength gains due to the nature 

of the structural response. This is discussed later in this chapter. A different, yet still 
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practically credible, structural imperfection form was conceived for the condition of 

eccentric discharge and is presented in Chapter 6.  

 

Two designs were produced for each silo, one with a uniform wall thickness and the 

other with a more practical stepwise varying wall thickness, though only the latter was 

investigated in the study presented in this chapter. For each silo, the walls are just thick 

enough at the base of each strake to meet the requirements of the standard with respect 

to buckling, regardless of practical steel sheet sizes. The changes of plate thickness 

consequently become the critical locations for buckling, under axisymmetric conditions 

at least. Plots of the axial distributions of the design axial membrane stress resultants 

and design resistances for each silo are presented in Fig. 4.3. The design required 

thicknesses to resist bursting and buckling, together with the chosen plate thicknesses, 

are shown in Fig. 4.4. The EN 1991-4 discharge factors for normal pressures and 

frictional tractions, Ch and Cw, were taken as 1.15 and 1.1 respectively and were applied 

to every silo design, including Silo Q for consistency (EN 1991-4 does not require 

discharge factors for squat silos). 

 

 
Fig. 4.3 – Axial distribution of the design axial membrane stress resultants for the five 

designed silos holding wheat 
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Fig. 4.4 – Axial distribution of required design thicknesses to resist bursting and 

buckling for the five designed silos holding wheat 

 

The maximum axial membrane stress, occurring at the base of the silo, increases 

approximately linearly with the aspect ratio when the silos are linked by a common 

storage volume (Fig. 4.5a). The volume of steel required for each silo cylinder is shown 

as a function of the aspect ratio (Fig. 4.5b) also exhibits a roughly linear relationship.  

 

 
       a) Max. axial membrane stress resultant   b) Required steel volume 

          at the base of the silo  

Fig. 4.5 – Variation of the key parameters of the design with the silo aspect ratio 

 

It will be shown that roughly all the silos except for Silo Q have a significant reserve of 

strength beyond the overall partial safety factor for hand-design of 1.65 required by EN 

1993-4-1 (2007) for concentric discharge. The computed GMNIA load factors are also 

very close to each other, suggesting that Silos VS, S, B and I are essentially equally 
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strong regardless of the different volumes of steel required. Since all of these are 

nonetheless valid designs for the same storage requirements, it would be up to a 

potential client to decide on the amount he would wish to spend on such a structure in 

terms of steel volume, taking into account other factors including the footprint required. 

 

4.4 The EN 1991-4 eccentric discharge pressure regime 

The European Standard EN 1991-4 on actions on silos and tanks requires that the 

eccentric discharge pressures are characterised by the following for silos in Action 

Assessment Classes 2 and 3 where loading and discharge eccentricities greater than 

0.25D are expected to occur. The geometry of the model is reproduced in Fig. 4.6. The 

values of each of the geometric parameters, based on the geometry of the four relevant 

design silos (VS, S, I and B) and the properties of wheat as given in EN 1991-4, are 

summarised in Table 4.7. The Standard explicitly requires three flow channel sizes to be 

investigated, defined by the ratio of the flow channel radius to the silo radius, kc = rc/R. 

The sizes that are recommended are 0.25, 0.40 and 0.60, shown to scale on Fig. 4.7 for 

Silo S. 

 

Increased channel edge 
pressures, phae 

Decreased flow channel 
pressures, phce 

R 

rc

ec

Static Janssen/Reimbert 
pressures, phse 

Section modelled 
with FEA 

R – silo radius 
ec – eccentricity of  
       flow channel 
rc – flow channel  
       radius 
θc – angular extent of 
       wall contact 
ψ – flow channel wall 
       contact angle 

θc

θc

ψ

o 
Fig. 4.6 – Notation and geometry of the eccentric flow channel wall pressures, after EN 

1991-4 (2007) 
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Table 4.7 – Summary of flow channel properties for all silos holding wheat 

kc = rc / R 0.25 0.40 0.60 

θc (º) 10.28 17.40 28.73 

ψ (º) 45.53 48.36 53.25 

ec / R 0.808 0.688 0.517 

Ac / Atot (%) 0.058 0.148 0.334 

 

The flow channel contact angle θc (Eq. 4.1) and the area ratio Ac/Atot (Eq. 4.3) are 

independent of the aspect ratio of the silo. The angle subtended at the flow channel 

centre by the last contact between the flowing solid and the wall ψ (Fig. 4.7 and Eq. 4.2) 

is depends on the eccentricity of the channel, which in turn is governed by the friction 

properties of the solid and the silo wall (Eq. 4.4). The angle ψ approaches 90º when the 

wall is very smooth (Rotter, 1986).  

 
2 2 2

1cos
2

θ − ⎛ ⎞+ −
= ⎜

⎝ ⎠
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⎟
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        (4.1) 
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re R r
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μ μ
φ φ

⎧ ⎫⎛ ⎞⎪ ⎛ ⎞= − + −⎜ ⎟⎨ ⎜ ⎟ ⎜ ⎟⎝ ⎠⎪ ⎪⎝ ⎠⎩ ⎭

⎪− ⎬     (4.4) 

 

The origin of the above equations and a comparison between the EN 1991-4 eccentric 

discharge model and its more complete predecessor (Rotter, 1986) are described in 

Chapter 3. 
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rc = 0.25R 

rc = 0.40R rc = 0.60R 

rc

rc  

ec 

rc

ec

Concentric
ec

θc 
ψ

R 
Centre

 
Fig. 4.7 – Comparison of the geometry of the four different discharge conditions that are 

required by EN 1991-4 to be applied to each design silo, drawn to scale for Silo S 

 

4.5 The numerical model 

The numerical procedure used to analyse the silos under the four discharge conditions 

was the same as that used in Chapter 2. The full suite of computational shell buckling 

calculations was performed according to EN 1993-1-6 (LA, LBA, MNA, GNA, GMNA, 

GNIA & GMNIA). Each calculation was performed on each silo at each discharge 

condition, resulting in a total of 102 different predictions. Many of the nonlinear 

analyses had to be repeated several times to achieve satisfactory convergence or 

behaviour. Nine-node reduced-integration S9R5 shell elements were used, with an 

average model employing between 20,000 and 40,000 elements.  

 

4.6 Global overview of the results of the FEA study 

A set of acronyms has been devised summarising the main characteristics of the 

possible linear bifurcation, incremental buckling or plastic collapse modes. These are 

presented in Table 4.8 and will be used throughout the rest of the thesis to describe the 

predicted failure mode in shorthand, since many of the same failure modes will appear 

repeatedly. The complete summary of load proportionality factors for each discharge 

condition for each silo, with accompanying failure mode acronyms, is presented in 

Tables 4.9 to 4.13.  
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Table 4.8 – Description of short-hand acronyms to describe failure mode types 

Acronym Description 

Axi-EF Axisymmetric plastic elephant’s foot buckling or yielding. 

Axi-DD Diamond pattern of deformation around the entire circumference, limited to 

being within a close distance of a wall strake or other boundary. 

Axi-EL Fully or partially axisymmetric elastic buckle.  

Glb-EF Global deformations, but with the main component of plastic elephant’s 

foot-type buckling or yielding. 

Glb-DD Global diamond buckling mode 

Glb-PL Global plastic circumferential bending mode (the MNA mode). 

Loc-CH The characteristic or ‘classic’ mode associated with an eccentrically flowing 

channel: a local (predominantly) elastic buckle in the centre of the flow 

channel, at approximately midheight. 

Loc-EG This is also associated with this form of eccentric discharge, but seen more 

in squatter or uniform wall thickness silos as it requires a different location 

to be critical. A localised elastic or plastic buckle at the edge of the flow 

channel near the base of the silo.  

Loc-2 This is a rare buckling mode usually found for squatter silos which contains 

features of both critical locations under eccentric discharge. It may be either 

elastic or elastic-plastic. 

 

When referring to a specific result, a notation style is used in this chapter. For example; 

VS00LBA refers to Silo VS with kc = 0.00 (concentric flow) and the LBA result. 

Similarly, VS00 by itself refers to the suite of results for Silo VS with kc = 0.00, while 

VSLBA refers to all LBA results for Silo VS for all channel sizes. Additionally, for the 

purposes of conciseness, the general term ‘failure mode’ will be taken to encompass all 

the possible failure modes, including the linear bifurcation LBA mode, the plastic 

collapse MNA mode and the nonlinear incremental buckling modes of GNA and others 

like it. 

 

The elastic Loc-CH mode is highlighted in bold in Tables 4.9 to 4.13. It indicates the 

mode that has been widely observed in the field where eccentric discharge is the cause 

of buckling failures (e.g. Fig. 2.12). It is thus considered to be the desirable outcome of 

an analysis in the sense that the employed pressure pattern, combined with the 
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imperfection form (or lack thereof), is suitable at this aspect ratio and channel size to 

reproduce the typically observed behaviour associated with eccentric pipe flow. This 

may be seen to be generally case for slender silos, but it is much less common in 

squatter silos.  

 

Failure modes other than Loc-CH are also successful numerical analyses, but 

conceptually they have not captured the behaviour seen in practice, and this lack of 

success is really due to the inadequacy of the pressure model for the given aspect ratio. 

For example, Fig. 4.8 shows two modes that were counted as Loc-CH (S25LBA and 

S60GNIA, elastic midheight buckles), but Fig. 4.9 shows two which were not. In Fig. 

4.9, the failure mode for B25GMNIA is a localised, fully plastic buckle which actually 

occurs at the base of the thinnest 3 mm strake at the centre of the flow channel rather 

than at midheight: it was therefore counted as mode Glb-EF. The failure mode for 

I60GMNIA includes features of both critical locations under eccentric pipe flow (i.e. 

silo base near the edge of the channel, Fig. 2.10, and silo midheight across the channel, 

Fig. 2.12), and was counted as mode Loc-2.  

 

The mode named Loc-2 is an interesting discovery, because it seems that both buckling 

locations associated with eccentric discharge have become critical at the same load 

factor. It may be the case that stable plastic deformations developed in one of the two 

critical locations, but an elastic bifurcation occurred in the other. This mode has only 

been observed in one analysis so far for the intermediate slender Silo I at the largest 

flow channel, kc = 0.60. 
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Fig. 4.8 – Examples of failure modes counted as Loc-CH 

 

 
Fig. 4.9 – Examples of failure modes not counted as Loc-CH (left: Glb-EF and right: 

Loc-2) 
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Table 4.9 – Summary of predicted load factors and failure modes for Silo VS 

 Silo VS load factors Silo VS behaviour acronyms 

kc 0.00 0.25 0.40 0.60 0.00 0.25 0.40 0.60 

LBA 9.07 0.72 0.33 0.28 Axi-EL Loc-CH Loc-CH Loc-CH 

MNA 6.43 0.86 0.75 0.80 Axi-EF Glb-PL Glb-PL Glb-PL 

GNA 8.90 3.64 0.81 0.39 Axi-DD Loc-CH Loc-CH Loc-CH 

GMNA 5.11 2.82 0.81 0.39 Glb-EF Loc-CH Loc-CH Loc-CH 

GNIA 4.40 3.91 3.76 0.24* Glb-DD Glb-DD Glb-DD Loc-CH 

GMNIA 3.77 3.57 2.85 0.22* Glb-DD Glb-DD Glb-DD Loc-CH 

 

Table 4.10 – Summary of predicted load factors and failure modes for Silo S 

 Silo S load factors Silo S behaviour acronyms 

kc 0.00 0.25 0.40 0.60 0.00 0.25 0.40 0.60 

LBA 7.85 0.46 0.25 0.42 Axi-EL Loc-CH Loc-CH Loc-CH 

MNA 6.89 0.83 0.74 1.13 Axi-EF Glb-PL Glb-PL Glb-PL 

GNA 7.77 4.11 0.37 0.66 Axi-DD Loc-CH Loc-CH Loc-CH 

GMNA 4.91 3.37 0.37 0.66 Axi-EF Loc-CH Loc-CH Loc-CH 

GNIA 5.62 5.01 4.28 0.29* Glb-DD Glb-DD Loc-CH Loc-CH 

GMNIA 3.99 3.52 2.28 0.29* Glb-EF Glb-DD Glb-EF Loc-CH 

 

Table 4.11 – Summary of predicted load factors and failure modes for Silo B 

 Silo B load factors Silo B behaviour acronyms 

kc 0.00 0.25 0.40 0.60 0.00 0.25 0.40 0.60 

LBA 6.97 0.34 0.28 0.77 Axi-EL Loc-CH Loc-CH Loc-EG 

MNA 6.64 0.74 0.87 1.63 Axi-EF Glb-PL Glb-PL Glb-PL 

GNA 6.93 0.67 0.38 1.25 Axi-EL Loc-CH Loc-CH Loc-CH 

GMNA 5.55 0.67 0.38 1.25 Axi-EF Loc-CH Loc-CH Loc-CH 

GNIA 4.55 4.39 3.85 0.57 Glb-DD Glb-DD Loc-CH Loc-CH 

GMNIA 3.75 3.46 1.56 0.57 Glb-EF Glb-EF Glb-EF Loc-CH 
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Table 4.12 – Summary of predicted load factors and failure modes for Silo I 

 Silo I load factors Silo I behaviour acronyms 

kc 0.00 0.25 0.40 0.60 0.00 0.25 0.40 0.60 

LBA 5.55 0.32 0.40 0.80 Axi-EL Loc-CH Loc-CH Loc-EG 

MNA 5.65 0.85 1.16 2.05 Axi-EF Glb-PL Glb-PL Glb-PL 

GNA 5.55 0.63 0.70 1.92* Axi-EL Loc-CH Loc-CH Loc-EG 

GMNA 4.70 0.63 0.70 1.58 Axi-EF Loc-CH Loc-CH Loc-EG 

GNIA 4.57 4.37 2.06* 1.56 Axi-DD Loc-EG Loc-EG Loc-CH 

GMNIA 3.09 2.77 1.22* 1.34 Axi-EF Glb-EF Loc-EG Loc-2 

 

Table 4.13 – Summary of predicted load factors and failure modes for Silo Q 

 Silo Q load factors Silo Q behaviour acronyms 

kc 0.00 0.00 

LBA 1.79 Axi-EL 

MNA 2.48 Axi-EF 

GNA 1.76 Axi-EL 

GMNA 1.60 Axi-EF 

GNIA 1.58 Axi-EL 

GMNIA 1.28 Axi-EF 

 

The load factors marked with an asterisk (*) indicate a kink in the load-axial 

displacement curve, followed by geometric hardening. No negative eigenvalues are 

reported and there is no reversal of the load path. This occurs when a high value of the 

imperfection amplitude eliminates the bifurcation point (Yamaki, 1984). An example of 

such behaviour is given in Fig. 4.10 below for the VS60 suite. A similar example may 

be found for Silo CVS in Fig. 2.14. In all figures showing load-axial displacement 

curves, the node whose axial displacement is being followed is located at the top of the 

silo at the centre of the flow channel. If there is no flow channel, as is naturally the case 

for concentric discharge, the exact position of the node at the top of the silo is not 

important. 
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Fig. 4.10 – Load-axial deflection curves for the VS60 suite of analyses, also typical of 

other slender silos under eccentric discharge 

 

4.7 Detailed analysis – Axisymmetric concentric discharge 

In the analyses of Silos VS, S, B and I under concentric discharge, the lowest GMNIA 

load factors were all found to be consistently above 3, which is approximately double 

the EN 1993-4-1 partial safety factor for hand design of 1.65. This was first noticed and 

justified in the preliminary investigation of Chapter 2, but here it is consistent over a 

wider range of aspect ratios for both elastic stability and plastic collapse failure modes, 

thus generally reinforcing the conservatism of the hand design process for axisymmetric 

loads.  

 

Silo Q is an exception due to its very thin wall over much of its height. Even so, the 

final GMNIA value of 1.28 falls troublingly below the strength assessment of 1.65 

guaranteed by EN 1993-1-6 and EN 1993-4-1 (which is however achieved up to and 

including the GMNA analysis). Silo Q is anomalous since it is actually very small for 

its aspect ratio with a volume of only 510 m3¸ imposed on it by the desire to have all 

design silos linked by the same capacity (Table 4.2). Silos are usually designed to be 

squat when they are required to be very large (Rotter, 2001a), and as such would have 

wall thickness values far above 1 mm. Thus the reduction of the GMNIA load factor 

below the 1.65 partial safety factor may be explained by the fact that the relative change 

in wall thickness from 1 to 2 mm is a massive 100%, making the base of the 1 mm 
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strake act like a base boundary condition (critical for elephant’s foot modes), 

exacerbated by the presence of a deep weld imperfection (amplitude of 4.419t, Table 

4.5). 

 

In all of the present analyses of concentric discharge, the LBA and GNA predictions are 

very close, suggesting the silo behaviour has a high degree of geometric linearity. As 

the aspect ratio decreases, the MNA and LBA/GNA load factors become closer to each 

other, eventually intersecting at around H/D = 1.5 (Fig. 4.11). The computational 

analyses thus exclusively predict bursting modes at lower aspect ratios, which is to be 

expected according to EN 1993-1-6 and EN 1993-4-1 because axial forces become 

smaller and wall pressures become higher at lower aspect ratios.  

 

 
Fig. 4.11 – Plot of the LBA, MNA, GNA and GMNA load factors for concentric 

discharge as a function of the silo aspect ratio 

 

It is important for the shell analyst to ascertain whether the failure mode will indeed be 

elastic or plastic, as this will influence the decision on whether to spend money on a 

higher steel grade with a higher yield stress. It can be seen on Fig. 4.11 that slender silos 

under concentric discharge will exhibit plastic buckles as the MNA curve for σy = 250 

MPa is usually the lowest. It may therefore be worthwhile investing in a stronger grade 

of steel, which would place the MNA curve (σy = 375) above those of LBA or GNA. 

 106



PhD Thesis 
Adam Jan Sadowski 

However, for aspect ratios below H/D = 1.5, the LBA and GNA curves are the lowest, 

and increasing the steel grade to σy = 375 MPa may serve no purpose. 

 

The bar charts in Fig. 4.12 show the load factors normalised by the LBA value, and 

show a gradual reduction in strength with the inclusion of material plasticity and 

imperfections. These reductions are clearly greatest for the slender silos. 

 

 
Fig. 4.12 – Bar chart of the concentric discharge load factors normalised with the 

respective LBA factor 

 

The buckling modes for concentric loading for the intermediate and very slender Silos I 

and VS, close to either extreme of the aspect ratio range, are shown in Fig. 4.13 and Fig. 

4.14 respectively. As mentioned previously, the squatter silo exhibits a consistent 

axisymmetric elephant’s foot type mode at the same location if the analysis includes 

material plasticity, and a similarly-shaped bursting mode if the analysis is elastic. This 

reflects the fact that the LBA, MNA and GNA load factors are essentially the same for 

Silo I (Table 4.12). The most likely critical location for squatter silos under concentric 

discharge therefore appears to be the base of the thinnest strake due to the largest ratio 

of adjacent wall strake thicknesses, and the very squat Silo Q exhibits a very similar 

behaviour. 
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Fig. 4.13 – Failure modes for the I00 suite of analyses 

 

 
Fig. 4.14 – Failure modes for the VS00 suite of analyses 
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Silo VS exhibits similar behaviour under concentric discharge to that of Silo CVS 

presented in Chapter 2 (compare Fig. 4.14 and Fig. 2.7). The load factors for the LBA 

and GNA, the MNA and GMNA and the GNIA and GMNIA analyses for these two 

silos are very similar, and each of these pairs of analyses also have very similar 

bifurcation modes. The critical locations are the base of the silo for the plastic analyses 

and the bottom of the 3 mm strake for the elastic analyses, both for the perfect structure. 

The imperfect versions of Silos VS and CVS buckle in an elastic global diamond mode 

Glb-DD. Silo S was found to exhibit very similar behaviour. 

 

The load-axial deflection curves for VS00 are shown in Fig. 4.15. These curves are 

quite typical of shells under axisymmetric loads exhibiting high imperfection sensitivity 

(Yamaki, 1984). The load-deflection curves are very similar for all five silos under 

concentric discharge, and the same general observations may be made. The 

axisymmetric weld imperfection consistently leads to a loss of axial stiffness and a 

significantly reduced buckling strength. 

 

 
Fig. 4.15 – Load-axial deflection curves for the VS00 suite of analyses, typical of shells 

under axisymmetric loads 

 

A schematic showing the complete set of buckling mode locations for each silo under 

concentric loads is shown in Fig. 4.16. It is difficult to predict exactly which one of the 

changes of thickness in any given silo will be most critical in any given computational 

 109



PhD Thesis 
Adam Jan Sadowski 

analysis. However, since the silos were designed according to the EN 1993-1-6 and EN 

1993-4-1 hand design procedure to make each strake equally critical, the scattered set of 

failure modes is entirely to be expected and supports the hand design rules as giving a 

relatively uniform safety factor throughout. The failure modes identified here are, of 

course, simply those that occur at the lowest load factor, and no indication is available 

of their proximity to failure at another location. Consequently, it is not possible to read 

too much into the calculated failure locations. 
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Fig. 4.16 – Schematics of failure mode locations for concentric discharge (to scale) 

 

4.8 Detailed analysis – Unsymmetrical eccentric discharge 

4.8.1 Overview 

The results of the eccentric discharge computations are very complex and by way of 

introduction, Fig. 4.17 shows the variation with aspect ratio of the number of modes 

Loc-CH and Loc-EG obtained per suite of EN 1993-1-6 computations. These two 

modes refer to failure in the two critical regions of the silo which exhibit the highest 

compressive stresses under this pressure pattern of eccentric discharge. In Chapter 2, it 

was shown that the critical regions are the centre of the channel at approximately 

midheight (Loc-CH, Fig. 2.12), and the edge of the channel at the base of the silo (Loc-

EG, Fig. 2.10).  
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It was found that out of a total of 18 computations for each silo that used eccentric 

discharge, on average 11 reproduced mode Loc-CH when the silo was still slender. For 

those that did not, this was caused for reasons other than the features of the pressure 

model (e.g. it was an MNA mode which captured the circumferential bending plastic 

collapse mechanism, or the chosen form of geometric imperfection was found to have a 

beneficial effect). Mode Loc-EG was not found in any analysis of a slender silo. 

Conversely, when the silo was of intermediate slenderness, much squatter and using 

modified Reimbert pressures in the static zone, the number of modes Loc-EG rose 

immediately, replacing most of the modes Loc-CH. Thus the elastic midheight buckle, 

which is the failure mode most strongly associated in field observations with this 

discharge condition, was only found in slender silos. The distribution of EN 1991-4 in 

its current form should perhaps be limited to these. 

 

 
Fig. 4.17 – Plot of the number of predicted modes Loc-CH and Loc-EG per suite of 

eccentric discharge computations as a function of the aspect ratio 

 

Buckling at the base of the silo near the edge of the channel (mode Loc-EG) has not 

been observed in silos in service. In reality, the granular solid at the base of the silo 

offers significant stiffness that enhances the buckling strength (Rotter and Zhong, 

1990). Furthermore, mode Loc-EG is always plastic if the analysis included plasticity, 

and it is very probable that it is caused by the high edge pressures the form of which is 

anyway thought to be questionable and exaggerated, as discussed in Section 1.2.8 of the 
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literature review. Additionally, a parallel-sided flow channel, like that assumed in the 

EN 1991-4 model, requires sufficient height to develop, which is simply not available in 

squatter silos (Rotter, 2001a). The results of the analyses of intermediate slender and 

squat aspect ratio silos (H/D ≤ 2) that were found to predict mode Loc-EG are therefore 

thought to be artificial and not to be trusted. 

 

The load factors for the eccentric discharge computations are presented as bar charts in 

Fig. 4.18 to Fig. 4.20 for the three different flow channel sizes, normalised by the LBA 

factor. It is clearly visible that the traditional hierarchy of LBA > GNA > GMNA > 

GNIA > GMNIA is consistently violated. Geometric nonlinearity increases the strength 

of the structure to many times the LBA value. Additionally, axisymmetric weld 

imperfections lead to massive increases in strength, up to almost 17 times the LBA 

value for the smaller channels with kc of 0.25 and 0.40. This is very unusual and 

unexpected. 

 

 
Fig. 4.18 – Bar chart of the load factors for eccentric discharge with kc = 0.25 

normalised by the LBA factor 
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Fig. 4.19 – Bar chart of the load factors for eccentric discharge with kc = 0.40 

normalised by the LBA factor 

 

 
Fig. 4.20 – Bar chart of the load factors for eccentric discharge with kc = 0.60 

normalised by the LBA factor 
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4.8.2 The effect of geometric nonlinearity 

Geometric nonlinearity has been found to have a consistently beneficial effect on the 

silo as it deforms under the highly non-symmetric pressures arising from eccentric 

discharge. This is illustrated by considering the predictions for Silo S, set out below. 

 

4.8.2.1 The reference case, kc = 0.00 

Contour plots of compressive axial stresses only (hereafter referred to simply as the 

axial ‘stress field’ for the LA and GNA analyses of the S00 suite are presented in Fig. 

4.21. The colourless grey regions in this figure and others like it represent areas under 

tension. The GNA values are shown at the LBA load factor. The LBA and GNA factors 

are actually very similar, the latter slightly lower, and have rather similar stress fields 

and bifurcation modes. These images provide a reference axisymmetric case which 

serves as a comparison with the eccentric discharge results. 

 

 
Fig. 4.21 – Axial stress fields and buckling modes of LBA and GNA for S00 

 

4.8.2.2 The smallest channel, kc = 0.25 

If the smallest flow channel, kc = 0.25, is now imposed on the silo, a different behaviour 

emerges. Recall that the S25LBA, S00GNA and S25GNA load factors are 0.46, 7.77 
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and 4.11 respectively, and that there is a huge increase in strength for S25 from LBA to 

GNA, far more than for S40 or S60. If S25GNA were to give a similar result to 

S25LBA, then its stress field at bifurcation should be similar to the LA stress field at the 

LBA factor. This is very far from the case, as shown in Fig. 4.22.  

 

The stress field at bifurcation outside the flow channel of S25GNA bears a significantly 

closer resemblance to the stress field at bifurcation of S00GNA (Fig. 4.21). There is a 

visible disturbance in the stress field adjacent to the flow channel. At the LBA load 

factor, however, the GNA stress field bears little resemblance to that of S25LBA. This 

shows that the geometrically nonlinear behaviour of S25 is still essentially very similar 

that of S00, i.e. it is dominated by the axisymmetric load component.  

 

The flow channel for kc = 0.25 appears to have a large enough effect to reduce the GNA 

load factor from 7.77 to 4.11, but not to modify the fundamental behaviour and displace 

the buckling mode elsewhere. In a sense, the small flow channel of S25 acts more like 

an imperfection to S00 than as a separate load case. The incremental buckling mode 

predicted by the S25GNA analysis is furthermore very small, requiring a magnification 

of 50,000 to be seen clearly. For consistency it was judged to be mode Loc-CH, since it 

is predominantly elastic and lies within the flow channel. 

 

 
Fig. 4.22 – Axial stress fields and buckling modes of LBA and GNA for S25 
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Although the S25GNA buckling mode was assessed to be Loc-CH, it is a rather odd 

mode because it occurs quite near the bottom rather than at midheight where it would 

usually be expected. The reason for this is illustrated in Fig. 4.23, which shows the 

vertical distribution of axial membrane stress resultants through the centre of the flow 

channel for the SLA and SGNA analyses at the LBA load factor. While the LA analyses 

consistently show a peak compressive stress at approximately midheight, regardless of 

flow channel size, the GNA analyses show a progressive growth and upward movement 

of the peak value, which only really establishes itself in channel sizes bigger than kc = 

0.40. For kc = 0.25, the peak is neither apparent nor significant, and it is clear that a 

buckle could form in several alternative places at the centre of the flow channel. Here a 

slight peak can be seen near a depth of z/H = 0.77, corresponding to the location of the 

buckle on Fig. 4.22.  

 

 
Fig. 4.23 – Axial membrane stress distribution through the centre of the flow channel 

for the SLA and SGNA analyses at the LBA load factor 

 

4.8.2.3 The larger channels, kc = 0.40 and 0.60 

Axial stress fields for the larger flow channels with kc = 0.40 and 0.60 are shown in Fig. 

4.24 and Fig. 4.25. These are closer to the outcome of earlier analyses, with the stress 

field of the GNA at bifurcation beginning to resemble that of the LA at bifurcation. This 

is also reflected in the much closer proximity of the load factors (recall that the 

S40LBA, S40GNA, S60LBA and S60GNA load factors are 0.25, 0.37, 0.42 and 0.66 
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respectively) and in the size, position and shape of the buckles than for kc = 0.25. At kc 

= 0.60, the LBA and GNA analyses predict very similar buckles and stress fields. The 

GNA load factor is still some 60% higher than the LBA, but this is due to the overall 

stiffening effect of geometric nonlinearity. The bifurcation modes are now ‘true’ Loc-

CH. 

 

 
Fig. 4.24 – Axial stress fields and buckling modes of LBA and GNA for S40 

 

 
Fig. 4.25 – Axial stress fields and buckling modes of LBA and GNA for S60 
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One could therefore conclude that small flow channels do not cause buckles at 

midheight at the centre of the channel, but that larger flow channels do. It may, 

however, be wrong to conclude outright that a small flow channel has no significant 

effect on the silo. Given the uncertainty in the pressure model and the complex 

behaviour of the shell under such unsymmetrical loading, the opposite may prove true 

for some aspect ratio or granular solid that has not been explored here.  

 

The rather arbitrary EN 1991-4 recommendation that kc = 0.25 be tested is considered 

by the author to be not only unnecessary, but also potentially misleading. A wiser set of 

flow channel sizes may instead be kc = 0.40, 0.55 and 0.70, to ensure that only mid-

sized channels are tested. Although only Silo S was shown here in detail, the behaviour 

shown by the other silos is very similar and these observations may be applied to them. 

The effect of geometric nonlinearity is investigated in more detail in Chapter 5 where 

the full range of possible flow channel sizes is studied, 0.00 ≤ kc ≤ 0.90. 

 

4.8.3 The effect of plasticity 

The MNA predictions, normalised by both the LBA and GNA, are shown in Fig. 4.26. 

For the case for concentric discharge, in which the silo is under a state of quasi-uniform 

axial compression and internal pressure, plasticity is global and has been found to 

interact closely with the buckling mode (i.e. elastic-plastic buckling dominates). 

However, when the silo is subjected to eccentric discharge, the stress state can be highly 

localised in places and elastic buckling is the most likely outcome. For squatter silos, 

however, both buckling and plastic collapse may occur simultaneously at different 

locations. The analysis of squat silos under eccentric discharge requires further study, 

both in terms of structural consequences and in the conception of an appropriate 

pressure model. 

 

For slender silos under eccentric discharge, the MNA load factors generally exceed the 

LBA and GNA factors by over 100%, confirming that the behaviour will probably be 

predominantly elastic. This is not the case for GNA at kc = 0.25 for the two most slender 

silos, but under these conditions another phenomenon dominates, as explained in the 

previous section. 
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Fig. 4.26 – Comparison of MNA/LBA and MNA/GNA for all four silos 

 

The effect of material plasticity therefore appears to be very limited in the eccentric 

discharge predictions. The buckling phenomenon is generally elastic and occurs at very 

low local stresses. High stresses may occur in the buckled regions that may then yield 

locally, if analysed with a GMNA analysis, which will slightly reduce the predicted 

buckling strength. Similarly, regions immediately adjacent to the axisymmetric weld 

depressions are usually subject to very high local stresses, leading to plasticity in 

GMNIA analyses. The effect is always weakening. 

 

4.8.4 The effect of axisymmetric weld imperfections 

The effect of axisymmetric weld imperfections on the elastic nonlinear analyses (GNIA) 

is discussed next. Previously, it was found that the S25GNA analysis produced a similar 

buckling behaviour to S00GNA, with the small kc = 0.25 flow channel acting as a kind 

of ‘perturbation’ to the concentric discharge condition. This effect becomes even more 

pronounced when the axisymmetric weld imperfection is introduced, as shown in Fig. 

4.27. Previously it was shown that a larger channel size (kc = 0.40) was needed to 

produce mode Loc-CH in a GNA analysis. With the addition of weld depressions, the 

same mode Loc-CH is only produced when the flow channel is significantly larger (kc = 

0.60). 
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Fig. 4.27 – Comparison of GNA and GNIA load factors 

 

The eccentric discharge pressure distribution (Fig. 4.6) results in significant inward 

circumferential bending of the wall due to the large difference in pressures between the 

edge region and the channel region. The weld depression, so deleterious under 

concentric discharge, has the curious property that it increases the second moment of 

area of the shell in circumferential bending, enhanced by an inward displacement of the 

effective section centroid (Fig. 4.28). This is curious in the sense that, according to the 

conceptual basis of EN 1993-1-6, an imperfection is intended to have a detrimental 

effect on the structure.  

 

The increased second moment of area for circumferential bending makes the shell much 

more resistant to the inward bending action in the flow channel region. When combined 

with the stiffening effect of geometric nonlinearity, the shell resists these eccentric 

discharge pressures very well. This causes the elastic midheight buckles to be predicted 

only when the silo is subjected to the largest flow channel of kc = 0.60 (Fig. 4.29). The 

evaluation of the value of kc at which the effect of the axisymmetric weld depression 

changes from being beneficial to detrimental is not yet fully understood. Gillie and 

Holst (2003) report a similar outcome where the axisymmetric weld depression was 

found to be beneficial to the buckling strength of silos supported on discrete, eccentric 

brackets. 
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Fig. 4.28 – Comparison of the behaviour of perfect and imperfect shells with 

axisymmetric weld imperfections 

 

 
Fig. 4.29 – Buckling modes for VSGNIA (black dots represent the centre of the flow 

channel): geometric scale factors are ×100, ×100, ×50 and ×50 respectively 

 

 121



PhD Thesis 
Adam Jan Sadowski 

Clearly, more research is required to determine a realistic, yet still deleterious, 

imperfection mode for the silo under the EN 1991-4 eccentric discharge pressures. This 

issue is explored in Chapter 6. 

 

4.9 Conclusions 

In this chapter, five example silos designed according to the EN 1993-1-6 and EN 1993-

4-1 hand design procedure under the EN 1994-1 concentric discharge loads have been 

studied. These spanned a wide range of aspect ratios: 0.65 ≤ H/D ≤ 5.2. The failure 

modes of these silos under concentric discharge have been explored in detail. 

Additionally, four of these silos, within the range 1.45 ≤ H/D ≤ 5.2, were investigated 

under the EN 1994-1 eccentric discharge pressures. 

 

For four of the design silos analysed by a computational GMNIA analysis, the EN 

1993-1-6 and EN 1993-4-1 hand design procedure was shown to deliver significant 

reserves of strength, by a factor of approximately 2, beyond the inherent 1.65 partial 

safety factor. The reasons for this were presented in Chapter 2.  

 

The exception to this conservatism is the squattest silo of the group, with H/D = 0.65, 

whose GMNIA load factor was predicted to be 1.28 (22% below the 1.65 partial safety 

factor of EN 1993-1-6 and EN 1993-4-1). Though designed strictly according to the EN 

1993-1-6 procedure, this silo has a very thin 1 mm wall over half of its height. In reality, 

a silo with such a relatively small volume would not normally be designed as squat, and 

if it were, it would have been built with a more practical and thicker wall, possibly a 

minimum of 3 mm, which would have raised its buckling strength significantly.  

 

The predictions in this study suggest that the critical locations for buckling under 

concentric discharge are at the base of the silo and, commonly, the base of the thinnest 

strake. The buckling mode for these locations appears to be by elephant’s foot. With the 

inclusion of axisymmetric weld imperfections and geometric nonlinearity, a global 

diamond buckling pattern may develop instead for more slender silos. 

 

Under the eccentric discharge pressures of EN 1994-1, two critical locations for 

buckling failure have been identified. The first is in the silo wall within the centre of the 

flow channel at approximately silo midheight, originally described by Rotter (1986), 
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where the buckling is always elastic. The second is in the silo wall within the edge of 

the flow channel at the base of the silo, where the buckle may be plastic. 

 

The critical location at midheight matches observations of buckling failures of silos in 

service under eccentric discharge. It is reproduced in FEA analyses for slender silos 

designed to Janssen pressures. In squatter silos designed to modified Reimbert 

pressures, the base critical location may dominate instead.  

 

Computational analyses which predict the buckling mode at the edge of the channel at 

the base of the silo are thought to be artificial, since no such buckling modes have ever 

been observed in silos in service. Such modes have only been predicted for intermediate 

slender and squat silos. It is thought that, in reality, the stiffness of the solid at the base 

of the silo offers significant resistance against buckling at this location. An eccentric 

pipe flow channel is also highly unlikely to form all the way up the wall in squatter silos 

as it requires sufficient height to spread radially outwards from the outlet. Additionally, 

a flow channel would not exert such massive high pressures at the edge of its contact 

spread with the wall as the EN 1991-4 provisions would suggest. These regions of high 

pressure certainly contribute to the early formation of the elastic-plastic base edge 

buckling mode in a computational analysis. 

 

The buckling strength of a silo under the EN 1994-1 eccentric discharge pressures is 

higher when analysed with a geometrically nonlinear FEA analysis (i.e. GNA) than with 

a linear analysis (i.e. LBA). The flow channel is additionally required to be quite large 

(kc ≥ 0.40) in order to significantly alter the buckling behaviour from that under 

symmetric loads. Small channels appear to act almost like ‘imperfections’ in the shell, 

which still largely behaves as if under axisymmetric loading. 

 

For smaller channels (kc ≤ 0.40), axisymmetric weld imperfections lead to further 

strength gains. This imperfection form, so deleterious under axisymmetric loading, 

increases the circumferential bending stiffness of the shell. It is evident that significant 

weld depressions enhance the strength of silos under eccentric discharge if the flow 

channel is relatively small. Only very large flow channels still cause buckling across the 

flow channel at midheight when weld depressions are present. If the higher imperfection 

amplitudes of EN 1993-1-6 for GMNIA-based design had been adopted in the present 
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computational analyses, it is very likely that the strengthening effect would have 

increased further. These findings indicate that different imperfection forms are needed 

when studying eccentric discharge, and that the underlying assumption of EN 1993-1-6, 

that deeper imperfections cause lower buckling loads, is seriously in error for this load 

condition. 
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Chapter 5 –  The structural behaviour of silos subject to different flow 

channel sizes under the EN 1991-4 eccentric discharge pressures 

 

5.1 Introduction 

5.1.1 Details of the flow channel size study 

This chapter presents a detailed parametric study into the structural effects of changes in 

the size of an eccentric pipe flow channel according to the EN 1991-4 (2007) model. 

The flow channel size in this pressure model is defined in terms of the ratio of the flow 

channel radius to the silo radius, rc/R, denoted by the symbol kc. 

 

A comprehensive suite of FEA calculations was performed on the very slender cement 

Silo CVS (H/D = 5.2, designed for the storage of cement, Table 4.2) subjected to the 

EN 1991-4 eccentric discharge pressures within the EN 1993-1-6 (2007) and EN 1993-

4-1 (2007) framework. The channel size, defined in terms of the kc value in EN 1991-4, 

was varied from 0.00 to 0.90 in intervals of 0.10. The value of kc = 0.00 corresponds to 

concentric discharge. The channel properties according to the EN 1991-4 model are 

summarised in Table 5.1. The angles θc and ψ defined in Fig. 5.1. 

 
 
 
 
 
 

Increased channel edge 
pressures (EN 1991-4) 

Decreased flow channel 
pressures R 

rc

ec

 
Static pressures 

Section modelled 
with FEA 

R – silo radius 
ec – eccentricity of  
       flow channel 
rc – flow channel  
       radius 
θc – angular extent of 
       wall contact 
ψ – flow channel wall 
       contact angle 

θc

θc

ψ

Extended static  
pressures (Rotter) 

o

Fig. 5.1 – Notation and geometry of the eccentric flow channel wall pressure 

distribution, after EN 1991-4 (2007) 
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Table 5.1 – Summary of eccentric flow channel properties (values in bold are those 

recommended by EN 1991-4) 

kc 0.00 0.10 0.20 0.25 0.30 0.40 0.50 0.60 0.70 0.80 0.90 

rc (m) 0.00 0.25 0.50 0.63 0.75 1.00 1.25 1.50 1.75 2.00 2.25 

ec (m) 0.00 2.30 2.10 2.00 1.89 1.68 1.47 1.25 1.01 0.76 0.48 

θc (º) 0.00 3.62 7.49 9.53 11.65 16.19 21.22 26.92 33.61 41.93 53.65

ψ (º) 0.00 39.20 40.67 41.47 42.31 44.19 46.37 48.98 52.25 56.65 63.49

2θc/π (%) 0.00 4.03 8.32 10.59 12.95 17.99 23.58 29.91 37.34 46.59 59.61

Ac/Atot (%) 0.00 0.94 3.77 7.12 8.56 15.09 23.58 33.98 46.32 60.69 77.34

 

5.1.2 Investigation of the variation of pressure components with channel size 

The value of the relative flow channel size kc is directly related to the channel wall 

contact angle θc (Eq. 3.5), and the combined region of decreased and increased 

pressures associated with the flow channel and its adjacent effects covers a total spread 

of 4θc on the silo wall. The relationship between 2θc/π (the fraction of the silo perimeter 

that is directly adjacent to the pressure changes) and kc is shown in Fig. 5.2a. The 

variation of the ratio of the normal wall pressure in the flow channel to the stationary 

solid phc0/ph0 is shown in Fig. 5.2b. The difference between the normal wall pressure in 

the static and flowing solid, expressed as a percentage of the normal wall pressure in the 

stationary solid 100×(ph0 - phc0)/ph0, is shown in Fig. 5.2c. In all cases, the variation is 

with the relative size of the flow channel kc and the values are taken at great depth 

where they are independent of the height and can be compared directly. 

 

The relationship between 2θc/π and kc is close to linear until kc = 0.7, after which the 

perimeter spread rises rapidly for only small increases in kc. The channel pressures at 

great depth phc0 increase very linearly with channel size over almost the entire range of 

kc. However, it is evident that the EN 1991-4 model predicts huge drops in wall 

pressures, (ph0 - phc0)/ph0, for very small channels that are in contact with only small 

portions of the silo wall. This is by itself not unrealistic, but the EN 1991-4 model also 

predicts a rise in wall pressures at the edges of the channel equal to the fall at its centre, 

and the combined effect leads to very severe loading on the shell for smaller channels. 

Conversely, wall pressures in ever larger flow channels approach the stationary solid 

value, i.e. as θc → ½π, phc0 → ph0 and (ph0 - phc0)/ph0 → 0. 
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Fig. 5.2 – Variation of select entities with relative channel size kc 

 

Very small channels with kc ≤ 0.20 may arise in the form of a rathole, which is common 

for funnel flow silos containing cohesive solids (Rotter, 2001a). In this case the solid 

would have discharged from the flow channel only, leaving an empty hole with zero 

wall pressures running all the way up the silo from the outlet. Such a small channel is 

demonstrated on the left half of Fig. 5.3 for kc = 0.10. The EN 1991-4 model predicts 

that such a channel forms almost internally with a very small contact angle with the 

wall, near-zero pressure at the centre of the contact and a sudden massive rise in 

pressure at the edge of the channel to almost twice the adjacent stationary solid 

pressure. Conversely, a huge flow channel with kc > 0.70 sees oddly thin regions of 

static solid exerting quite high normal pressures on the silo wall, over the entire height 

of the silo. The geometry for kc = 0.90 is shown on the right half of Fig. 5.3. The EN 

1991-4 eccentric discharge pressure model is therefore conceptually uncertain for both 

very small and very large values of the relative flow channel size kc. 
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Fig. 5.3 – Very small and large flow channel according to EN 1991-4 (2007), to scale  

 

Clearly, for these extremes, the results of a flow channel size study using the EN 1991-4 

eccentric discharge model should be treated with care. However, it should be added that, 

since only kc = 0.25, 0.40 and 0.60 are notionally recommended by EN 1991-4, the 

design procedure should be shielded from these extreme values (unless different values 

are recommended in a National Annex).  

 

5.1.3 Investigation of eigenmode-affine imperfections 

According to EN 1993-1-6 (2007), an analyst undertaking a full GMNIA analysis for 

the purposes of design is required to find the most deleterious imperfection form (within 

reason). Traditionally, this has been taken to the first buckling eigenmode of the perfect 

shell (Koiter, 1945; 1963; Deml and Wunderlich, 1997; Teng and Song, 2001; Rotter, 

2004). If he/she can justify it, the analyst is free to choose an imperfection form other 

than the traditional eigenmode-affine pattern, including those which have a practical 

basis such as the axisymmetric weld depression of Rotter and Teng (1989a) investigated 

in Chapter 4. However, it was established in that chapter that the axisymmetric weld 

imperfection is not a suitably deleterious imperfection form under eccentric discharge, 

due to the beneficial effects of such an indentation when the silo wall is subject to 

circumferential bending.  

 

Consequently, this chapter additionally examined whether a return to the more 

‘traditional’ eigenmode-affine imperfection form (i.e. the reference imperfection form 

according to EN 1993-1-6) would result in a more successful outcome. Thus the 

imperfection forms which were investigated include the first LBA mode (as calculated, 

going ‘outwards’), the reversed first LBA mode (in the form actually required by EN 

1993-1-6, with shape deviations unfavourably oriented towards the centre of the shell 
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curvature) and the GNA deformed shape at the instant before bifurcation (Esslinger and 

Geier, 1972).  

 

5.2 Global axial stress fields and buckling modes of the perfect shell 

The results of the parametric flow channel size study are introduced here with the help 

of compression-only axial stress fields, first discussed in Chapter 4. The stress fields for 

the LA and GNA analyses at bifurcation are shown in Fig. 5.4 and Fig. 5.5 respectively. 

Shades of plain grey represent regions of the shell under tensile stress, which are of little 

interest when studying buckling. 

 

It appears to be the case that, with geometric nonlinearity, a very small flow channel 

acts more like a perturbation to the axisymmetric pressures of concentric discharge 

rather than as a separate load case, and the stress field resembling the characteristic strip 

pattern of eccentric discharge does not begin to develop before the relative flow channel 

size kc reaches 0.30. This strip-like pattern of stresses is, in addition, fully elastic 

because the predicted GNA and GMNA load factors are identical for channels with kc ≥ 

0.25. For the LA analysis, however, this characteristic pattern is seen to develop for 

even smaller channels, and is present already at kc = 0.10.  

 

 
Fig. 5.4 – LA axial compressive stress fields for kc from 0.00 to 0.90 
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Fig. 5.5 – GNA axial compressive stress fields at bifurcation for kc from 0.00 to 0.90 

 

The LBA linear bifurcation modes and the GNA incremental bifurcation modes are 

shown in Fig. 5.6 and Fig. 5.7 respectively. The GNA incremental mode for kc = 0.10 is 

found to develop on the side opposite the flow channel, and is therefore not considered 

as a characteristic elastic midheight mode Loc-CH that forms adjacent to the flow 

channel (Table 4.8). However, buckling modes at all other values of kc ≠ 0.00 are Loc-

CH for both LBA and GNA analyses (except at kc = 0.00, where the buckling mode is in 

both cases Axi-EL). 

 

 
Fig. 5.6 – LBA linear bifurcation modes with relative channel size kc (all ×200) 
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Fig. 5.7 – GNA incremental buckling modes with relative channel size kc 

 

The flow channel range 0.00 < kc < 0.20 thus appears to be more of a ‘transition’ range, 

in which the GNA buckling behaviour gradually shifts from characteristic concentric to 

eccentric discharge behaviour. As expected based on Fig. 5.4, the LBA exhibits the 

characteristic midheight buckle already at kc = 0.10. Once the ‘characteristic’ strip-like 

pattern of stresses under eccentric discharge has established itself (kc ≥ 0.10 for LBA or 

kc ≥ 0.30 for GNA), the LBA and GNA buckles become very similar in shape, size and 

location, athough GNA buckles are ‘smoother’ and do not exhibit so many tightly-

spaced indentations like the LBA eigenmode. All buckles in Fig. 5.6 and Fig. 5.7 were 

found to occur at the base of the thinnest 3 mm strake with the exception of kc = 0.20 for 

the GNA analysis, the reason for which is given below. Thus the base of the thinnest 

strake is clearly the critical location in this silo. 

 

For flow channels with kc ≥ 0.70, the region of axial compressive membrane stresses in 

the vicinity of the midheight buckle spreads steadily wider both axially 

circumferentially as the flow channel grows, resulting in an increase in the size of the 

buckle. The LBA and GNA buckles for kc = 0.80 and 0.90, especially, look quite odd. 

Such shapes of buckling modes have so far not yet been encountered in the studies on 

eccentric discharge undertaken for this thesis, though they clearly seem to be possible 

where large circumferential spreads of compressive axial membrane stresses are 

present. 
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5.3 Local stress distributions in the perfect shell 

5.3.1 Axial distribution of axial membrane stress resultants 

In order to understand more fully the patterns of stresses which develop in the silo wall 

under the EN 1991-4 eccentric discharge pressures at various channel sizes, it is 

necessary to look at stress distributions at specific locations. The vertical distributions 

of the axial membrane stress resultants in the silo wall at the centre of the flow channel 

for the LA analyses factored by the LBA values (henceforth termed LA @ LBA) and 

the GNA analyses at the instant before bifurcation (henceforth termed GNA @ 

bifurcation) are shown in Fig. 5.8 and Fig. 5.9 below.  

 

Considering the LA @ LBA stresses (Fig. 5.8), a compressive peak in axial membrane 

stresses at the base of the 3 mm strake (at approximately z/H = 0.25) at the centre of the 

flow channel is established already at a relative channel size of kc = 0.10, as are tensile 

membrane stresses at the base of the silo. Thus, for kc = 0.10, the stress state already 

resembles the characteristic stress distribution for eccentric pipe flow (Rotter, 1986; Fig. 

2.9 and Fig. 2.13). The compressive peak remains near z/H = 0.25 until kc = 0.60, and 

for larger channels the peak descends to approximately z/H = 0.40. The critical buckling 

location in the silo wall, however, remains unchanged because the buckling resistance is 

lowest in the thinner part of the wall. 

 

 
Fig. 5.8 – LA @ LBA axial membrane stress resultants at the channel centre 
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In the GNA analyses (Fig. 5.9), a gradual transition from compressive to tensile axial 

membrane stress resultants at the base can be seen clearly. The change from 

compressive to tensile seems to occur rather suddenly, somewhere in the range 0.20 ≤ kc 

≤ 0.30 (between the pink and red curves). The distributions for kc = 0.00, 0.10 and 0.20 

share similar features, as expected since the behaviour is still similar to that for 

concentric discharge, with each subsequent curve being a ‘corruption’ of the former due 

to the effect of an increasingly large flow channel.  

 

The curves for kc ≤ 0.30 do not exhibit well-defined peaks, but rather several smaller 

ones down the entire height, usually adjacent to a change of wall thickness. Any one of 

these may become critical depending on the local buckling resistance, as was the case in 

the previous chapter (Fig. 4.23). This explains the rather curious GNA buckling mode 

for kc = 0.20 shown in Fig. 5.7 where the buckle was located at z/H = 0.70 rather than 

0.25 (the base of the 3 mm strake). Indeed, for GNA analyses a clear midheight peak in 

the compressive membrane stress resultants does not really develop until the channel 

size exceeds kc = 0.50.  

 

 
Fig. 5.9 – GNA @ bifurcation axial membrane stress resultants at the channel centre 
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5.3.2 Circumferential distribution of axial membrane stress resultants 

The circumferential distributions of the axial membrane stress resultants, starting at the 

centre of the flow channel at the base of the 3 mm strake for both LA @ LBA and GNA 

@ bifurcation suites of analyses, are shown in Fig. 5.10 and Fig. 5.11. This critical axial 

location is common to every computational result, and is close to the location of every 

elastic midheight buckle predicted so far in this chapter. It is therefore an important 

place at which to compare stresses. 

 

The general features of the circumferential distribution for both LA and GNA analyses 

include a region of high compressive membrane stresses in the wall directly adjacent to 

the channel centre, followed by a steep rise to a region of high tensile membrane 

stresses in the wall near the edge of the channel. This in turn gradually decays into the 

axisymmetric value present in the wall opposite the channel. This pattern is consistent 

for all analyses where the characteristic stress pattern has developed under eccentric 

pipe flow.  

 

 
Fig. 5.10 – LA @ LBA axial membrane stress resultants @ base of 3 mm strake 

 

 134



PhD Thesis 
Adam Jan Sadowski 

 
Fig. 5.11 – GNA @ bifurcation axial membrane stress resultants @ base of 3 mm strake 

 

The gradual transition of axial membrane stress resultant patterns from the characteristic 

concentric discharge (single axisymmetric value) to the characteristic eccentric 

discharge pattern is best illustrated by the GNA curves for 0.00 ≤ kc ≤ 0.30 on Fig. 5.11 

(as in Fig. 5.9). Note that the kc = 0.00 curve for GNA is not perfectly constant because 

a small perturbation had been introduced into the finite element mesh in order to ensure 

bifurcation at the correct load factor, which in turn resulted in a slight perturbation in 

the otherwise axisymmetric stress pattern. For the smallest channels of kc = 0.10 and 

0.20, the pattern is still close to constant around the circumference, though clearly 

affected by the flow channel, most noticeably near θ = 0º where there is a local increase 

in compression. The unperturbed axisymmetric membrane stress resultant opposite the 

channel at θ = 180º naturally does not remain constant with kc, but decreases with the 

GNA load factor for larger channels. Eventually the channel becomes large enough (kc ≥ 

0.30) to induce tensile axial membrane stresses near the edge of the flow channel. 

 

5.4 Load proportionality factors for the perfect shell 

The computed load proportionality factors for the flow channel size study of the perfect 

shell (LBA, MNA, GNA and GMNA) are summarised in Table 5.2 and shown in Fig. 

5.12 and Fig. 5.13 as a function of kc. 
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Table 5.2 – Load proportionality factors for the perfect shell (values in bold represent a 

predicted mode Loc-CH) 

kc 0.00 0.10 0.20 0.25 0.30 0.40 0.50 0.60 0.70 0.80 0.90 

LBA 7.65 1.49 1.06 0.47 0.36 0.25 0.20 0.21 0.26 0.44 0.77 

MNA 4.54 2.51 1.14 0.88 0.77 0.64 0.60 0.65 0.75 0.94 1.52 

GNA 7.63 6.77 4.51 2.55 0.81 0.49 0.33 0.37 0.41 0.63 1.18 

GMNA 3.85 3.71 3.60 2.55 0.81 0.49 0.33 0.37 0.41 0.63 1.18 
 

GNA/LBA 0.997 4.54 4.25 5.43 2.25 1.96 1.65 1.76 1.58 1.43 1.53 

GNA/GMNA 1.98 1.82 1.25 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

 

In Section 5.2, it was reported that the LBA and GNA analyses predicted the 

characteristic mode Loc-CH for flow channels starting at kc ≥ 0.10 and kc ≥ 0.25 

respectively. It can be seen now that in each case mode Loc-CH is accompanied by a 

severe drop in the computed load factor from the reference concentric discharge value. 

The LBA load factor, for example, has plummeted from 7.64 to 1.49 (an 80% reduction) 

as a result of a flow channel whose pressure components cover barely 4% of the silo 

wall (Table 5.1).  

 

Flow channels with kc ≥ 0.25 produce an entirely elastic structural response, and 

geometric nonlinearity results in an average rise of 75% in the predicted load factor 

from LBA to GNA in the range of flow channels with 0.30 ≤ kc ≤ 0.90. The MNA 

analyses represent the circumferential plastic collapse modes which do not participate in 

the silo behaviour anymore after mode Loc-CH is established for kc ≥ 0.30, and the 

predicted MNA load factors are consistently higher than both LBA and GNA in this 

range. However, in the transitional range of flow channels, defined for the GNA/GMNA 

analyses as 0.00 ≤ kc ≤ 0.25, plasticity still affects the predicted buckling strength. 
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Fig. 5.12 – Variation of the load proportionality factor for the perfect shell with relative 

flow channel size kc; global view 

 

 
Fig. 5.13 – Variation of the load proportionality factor for the perfect shell with relative 

flow channel size kc; close-up of the region with lower load factors 

 

Taking into account the uncertainties about the EN 1991-4 eccentric discharge model 

near the two extremes of the flow channel size range, supported by the FEA evidence in 

this study, it might be wise to impose a range on the values of kc which should be taken 
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into consideration in design and to revise the default values currently recommended in 

EN 1991-4 (kc = 0.25, 0.40 and 0.60).  

 

The EN 1991-4 Standard has for the first time attempted to make eccentric pipe flow a 

condition which may be reliably designed for. But if it is indeed eccentric pipe flow that 

is the design aim, then it should be ensured that the corresponding characteristic silo 

behaviour, as predicted by FEA analyses, has also developed. This means that there 

should be high compressive axial membrane stresses at the centre of the channel which 

become tensile near the base, and high compressive axial membrane stresses at the edge 

of the channel near the base. The corresponding buckling mode should then be either 

Loc-CH (for stepped wall thickness silos) or Loc-EG (for uniform wall thickness silos 

or those with high buckling resistance in the upper part). Though it is by no means 

implied here that these are the only possible silo responses under eccentric pipe flow, it 

is apparent in this thesis so far that these buckling modes are ubiquitous for this loading 

condition and closely associated with very low predicted load factors. Thus, if these 

buckling modes are obtained from a FEA analysis, one can be confident that one is at or 

near the bottom of the load factor vs. channel size curve (e.g. Fig. 5.12). The predicted 

structural response due to smaller channels may also be considered as genuine, but it 

places the load factor in the transitional range which is nowhere near the base of the 

curve, especially for the more realistic GNA analyses. Given the difficulty inherent in 

accurately predicting flow channel sizes, prescribing mid-sized channels or larger may 

help to obtain a conservative design for this dangerous load case by ensuring that only 

the lowest load factors are considered. 

 

Consequently, it is recommended that the LBA range should be limited to 0.20 ≤ kc ≤ 

0.70. The GNA range should be limited instead to 0.40 ≤ kc ≤ 0.70, since the 

characteristic eccentric discharge pattern requires a larger channel to develop when 

geometric nonlinearity is included. Each of these may then be referred to as a ‘central 

range’. If three suitable values of kc are specifically required, they may be taken as 0.40, 

0.55 and 0.70. 
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5.5 The beneficial effect of geometric nonlinearity based on the EN 1991-4 

flow channel size study  

The features of greatest interest in this structural analysis are the extent to which the 

compressive membrane stresses, which are responsible for buckling, are spread around 

the circumference, how large they become and the differences between their predictions 

by LA or GNA analyses. Considering once again the distributions of Fig. 5.10 and Fig. 

5.11, it may be identified that the compressive region of axial membrane stress 

resultants directly adjacent to the flow channel centre has a maximum value (a 

‘magnitude’) and a maximum circumferential extent (a ‘spread’) before the values 

become tensile. These parameters are extracted from the LA and GNA analyses and 

shown in Fig. 5.14 as a function of kc in the central range. 

 

 
a) Variation of the compressive spread with relative flow channel size kc 
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b) Variation of the peak compressive magnitude with relative flow channel size kc 

Fig. 5.14 – Variation of two measures of the central compressive region of axial 

membrane stresses at the base of the 3 mm strake with relative channel size kc in the 

central range 

 

The general pattern apparent in Fig. 5.14 is that the spread of the compressive region 

increases steadily with the flow channel size while at the same time decreasing in peak 

magnitude. The compressive stresses therefore become lower, but more spread out, as 

the flow channel increases. The compressive stresses from a GNA analysis, however, 

cover a significantly larger spread of the silo wall whilst at the same time attaining a 

lower maximum value than those from a LA analysis.  

 

Geometric nonlinearity therefore reveals that the portion of the shell mobilised to resist 

the effects of the eccentric pipe flow channel is actually greater than that predicted by 

the linear assumption. This in turn results in lower overall magnitudes of compressive 

stresses, and consequently higher buckling loads. The beneficial effect of the change of 

geometry is substantial, and in the central kc range it may lead to an increase in load 

factor by as much as 75%. This phenomenon has been documented previously in 

Chapter 3 and is shown here to be consistent across the entire range of flow channel 

sizes. 
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5.6 The effect of eigenmode-affine imperfections under eccentric discharge 

The results of a suite of elastic computational analyses for the imperfect shell (GNIA) 

are summarised in Table 5.3 and plotted in Fig. 5.15 as a function of the relative flow 

channel size kc. 

 

Table 5.3 – Load proportionality factors for the imperfect shell 
kc 0.00 0.10 0.20 0.25 0.30 0.40 0.50 0.60 0.70 0.80 0.90 

GNA 7.63 6.77 4.51 2.55 0.81 0.49 0.33 0.37 0.41 0.63 1.18 

GNIA#1 † 3.32 6.03 4.51 3.44 2.37 2.66 0.20 1.58 0.16 0.26 0.69 

GNIA#2 ‡ 3.40 6.15 4.58 3.43 2.04 2.55 1.31 1.59 0.17 0.25 0.66 

GNIA#3 * 5.21 4.33 5.93 6.98 3.03 3.43 0.80 0.49 0.41 0.59 0.94 

† - calculated 1st LBA mode (‘outward’) 

‡ - reversed 1st LBA mode (‘inward’ - as required by EN 1993-1-6) 

* - deformed GNA shape just before bifurcation 

 

The LBA eigenmodes are always scaled to deliver a peak value of unity. The amplitude 

of the LBA imperfections was therefore chosen as the EN 1993-1-6 Annex D value for 

direct design (Table 4.5) corresponding the strake in which the peak occurs in the LBA 

mode. In this study this peak always lay within the thinnest 3 mm strake.  

 

In the case of GNA buckling modes, the procedure was similar but the maximum 

absolute radial displacement from a GNA analysis at the increment just before 

bifurcation was first factored to unity, before being factored again to the required EN 

1993-1-6 Annex D direct design value corresponding to the imperfection amplitude of 

the strake in which it occurred. In GNA analyses, the maximum radial displacement did 

not always occur at the base of the 3 mm strake.  
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Fig. 5.15 – Variation of the load proportionality factor for the imperfect shell with flow 

channel size 

 

The first LBA buckling eigenmodes are shown in Fig. 5.6 and it is evident that their 

shape depends directly on the value of kc. The deformed GNA shapes at bifurcation are 

similarly dependent on the channel size. Eigenmode-affine imperfections are always 

dependent on the geometry and the load case in a way that makes them impossible to 

predict in advance, unlike imperfections based directly on structural forms which may 

be expressed by a neat equation (such as the previously-used axisymmetric weld of 

Rotter and Teng, 1989a).  

 

It is evident in Fig. 5.15 that the effect of an eigenmode-affine imperfection on the silo 

strength is variable and may result in either an increase or a decrease in strength in what 

appears to be a random manner. However, in the range of kc values of 0.20 ≤ kc ≤ 0.70, 

the effect of the all three of these imperfection forms seems to be consistently 

beneficial. 

 

All LBA buckling modes consist of a series of tightly-spaced alternating inward and 

outward indentations in the silo wall adjacent to the centre of the flow channel at the 

bottom of the thinnest strake. The GNA pre-buckling deformations similarly include 

significant indentations due to axial bending at the change of plate thickness that are 

amplified by the high axial compression at this location (Brush and Almroth, 1976; 
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Rotter, 1989), which are taken as a part of the imperfection form used in the GNIA 

analysis. It appears that this type of imperfection results in a beneficial stiffening effect 

against the circumferential bending that occurs in the shell adjacent to the flow channel 

as a result of the pressure drop (Fig. 5.16), in a manner almost identical to the 

axisymmetric weld imperfection (Fig. 4.28). This phenomenon is explained in detail in 

Section 6.4. 

 

Increased local 
second moment of 
area for 
circumferential  
bending Perfect shell                  Imperfect shell

Deformations 
associated with 
midheight buckle 
(LBA mode or  
GNA pre-buckling 
deformations) 

Inward circumferential 
bending caused 
by decreased  
pressures 

Eccentric 
flow 
channel 

θc    θc 

Base of 3 
mm wall 
strake 

θc    θc 

 
Fig. 5.16 – Comparison of the behaviour of perfect and imperfect shells with 

eigenmode-affine imperfections 

 

Thus the imperfection forms investigated so far have all had the unfortunate 

characteristic that they produce a specific geometric configuration at the very location 

where it becomes favourable. Given that the elastic midheight buckle is a ubiquitous 

computational prediction for slender silos under eccentric pipe flow, this characteristic 

will be a part of every LBA mode and GNA shape and there is no way to avoid this. 

Eigenmode-affine imperfection forms therefore cannot be relied upon to give strength 

decreases for the silo under eccentric discharge.  

 

An analysis of the GNA deformed radial shape at bifurcation, in the context of a beam 

theory analogy, is presented in Appendix A. The closer study of the GNA deformed 

shape allowed the extraction of a set of detrimental geometric components from which a 

suitable imperfection form was able to be constructed. A parametric study of a novel 

imperfection form that has been found to result in consistent decreases in buckling 

strength of the silo under eccentric discharge is presented in detail in Chapter 6. 
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5.7 Conclusions 

In this chapter, the structural effects of the variation of the size of an eccentric pipe flow 

channel according to the EN 1991-4 eccentric discharge pressure model were 

investigated in greater depth. The smallest channel was taken as kc = 0.10 and the 

largest one as kc = 0.90, thus covering most of the practical range of flow channel sizes. 

The example silo used had been previously designed for concentric discharge pressures 

according to EN 1991-4 and EN 1993-1-6. 

 

The author recommends that the range of values for kc should be limited to 0.20 ≤ kc ≤ 

0.70 for geometrically linear analyses, and to 0.40 ≤ kc ≤ 0.70 for geometrically 

nonlinear analyses. Three suitable values of kc may be taken as 0.40, 0.55 and 0.70. 

 

It has been revealed that, when geometric nonlinearity is included, a greater 

circumferential portion of the silo wall is mobilised to carry a greater portion of the 

compressive stresses which develop in the channel centre during eccentric discharge. 

This in turn reduces their magnitude at the centre, and leads to significant gains in 

buckling strengths. A geometrically linear analysis does not capture this phenomenon, 

resulting in higher stresses and lower predicted buckling strengths. 

 

This study also investigated the effect of eigenmode-affine imperfections in the form of 

variants of the first LBA mode and the GNA deformed shape just before bifurcation. It 

has been found that these imperfections are of a unique form under eccentric discharge 

that provides effective stiffening against circumferential bending in a manner similar to 

the axisymmetric weld imperfection, and hence have a beneficial effect on the structure.  
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Chapter 6 –  Exploration of geometric imperfection forms in buckling 

failures arising from the EN 1991-4 eccentric discharge model 

 

6.1 Introduction 

It was established in Chapter 4 that the axisymmetric weld depression of Rotter and 

Teng (1989a), widely used in many other studies (e.g. Rotter and Zhang, 1990; Knödel 

et al., 1995; 1996; Knödel & Ummenhofer, 1996; Ummenhofer & Knödel, 1996; Song 

et al., 2004; Hübner et al., 2006; Rotter, 2008), is not an appropriately damaging 

imperfection form for silos under eccentric discharge. This was due to the beneficial 

properties of the weld depression under this particular form of loading, as it was found 

to increase the circumferential bending stiffness of the shell and thus result in higher 

predicted buckling strengths. In Chapter 5, the non-symmetric eigenmode-affine 

imperfection forms under eccentric discharge were investigated as an alternative, but the 

results proved equally unsatisfactory, for many of the same reasons. In Chapter 3, 

however, it was shown that flattening of the silo wall adjacent to the flow channel 

causes a reduction in strength in geometrically nonlinear analyses. It was thus realised 

that the flattened wall feature may be exploited as the foundation of a reliable 

imperfection form under eccentric discharge. 

 

6.2 Imperfection amplitudes and tolerances in EN 1993-1-6  

For computational analyses, Section 8 of EN 1993-1-6 (2007) requires a number of 

geometric tolerance limits to be observed for the buckling limit state (LS3). These 

tolerances relate to the maximum allowable extents of various possible geometric 

deficiencies which may be present in the silo upon construction, and the onus is on the 

builders to meet these in accordance with the standard. Such tolerances specifically 

control for out-of-roundness, accidental eccentricity/offset of joints and dimples (axial, 

circumferential and across welds). The maximum allowable tolerance is related directly 

to the assumed Fabrication Tolerance Quality Class of the silo which, as stated 

previously, allows the designer to use lower imperfection amplitudes and thus rewards 

those involved with a higher permissible silo strength if stricter tolerances are met in 

construction. The Classes range from ‘Excellent’ (best) to ‘Normal’ (worst), and all 

silos in this thesis were designed to the ‘Normal’ class, requiring higher imperfection 
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amplitudes and thicker walls, but allowing laxer tolerances. Tolerances were discussed 

in Section 1.3.5 of the literature review. 

 

t 

Δwoθ or Δwox = δ 

ℓgθ or ℓgx 

t 

inward 
Δwox = δ 

ℓgx  

R 

 
        a) Measurement on a     b) First and second measurements on a  

        meridian                      circumferential circle 

Fig. 6.1 − Select dimple tolerance measures from EN 1993-1-6 (2007) 

 

The rules of Section 8 of EN 1993-1-6 (2007) are considered so important in the context 

of the present study that the relevant ones are reproduced here verbatim. Clause 

8.7.2(18) states that: 

“The amplitude of the adopted equivalent geometric imperfection form should be taken 

as dependent on the fabrication tolerance quality class. The maximum deviation of the 

geometry of the equivalent imperfection from the perfect shape Δw0,eq should be the 

larger of Δw0,eq,1 and Δw0,eq,2 where: 

Δw0,eq,1 = ℓg Un1 and Δw0,eq,2 = ni t Un2”  

 

For all the design silos presented in Chapter 4, it was found that that Δw0,eq,1 always 

gave the largest imperfection amplitude. Hence it was considered necessary to analyse 

the rules for this equation only, in which ℓg is the relevant gauge length according to 

Clause 8.4.4(2) and Un1 is the dimple imperfection amplitude parameter for the relevant 

fabrication tolerance quality class. 

 

Further to the present discussion, Clause 8.4.4(2) states that: 

“The depth Δw0 of initial dimples in the shell wall should be measured using gauges of 

length ℓg which should be taken as follows:  
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a) Wherever meridional compressive stresses are present, including across welds, 

measurements should be made in both the meridional and circumferential directions, 

using a gauge of length ℓgx given by 4(Rt)½;  

b) Where circumferential compressive stresses or shear stresses occur, circumferential 

direction measurements should be made using the gauge of length ℓgθ given by 

2.3(ℓ2Rt)¼ but ℓgθ ≤ R where ℓ is the meridional length the shell segment... ”  

 

There is a further part c) on gauge measurements across welds, but this was not 

considered important in the present study. The meridional length of the shell segment ℓ 

may be taken as the distance between ring stiffeners (if present), or the length between a 

boundary and a change of plate thickness The tolerance measurements for meridional 

and circumferential dimples are shown in Fig. 6.1. It has been shown that local axial 

compression is the critical buckling condition in a thin-walled silo under eccentric 

discharge, so part a) of Clause 8.4.4(2) above would strictly apply. 

 

In Chapter 4 of this thesis, the designs of seven silos were introduced together with the 

prescribed imperfection amplitudes for every wall strake (Table 4.6). For example, the 

EN 1993-1-6 GMNIA imperfection amplitude according to Clause 8.7.2(18) for the 3 

mm strake of Silo CS was 3.162t, based on a meridional gauge of length ℓgx = 4(Rt)½ = 

379.5 mm. The meridional gauge was used in accordance with part a) of Clause 8.4.4(2) 

above because the silos were originally designed for concentric discharge and only 

meridional compressive stresses were expected. If it were necessary to consider 

compressive circumferential stresses too, the circumferential gauge length would be ℓgθ 

= 2.3(ℓ2Rt)¼ = 1763.9 mm and the corresponding imperfection amplitude for the 3 mm 

strake would be a much higher value of 14.935t, but extending over a much larger 

surface of the shell. The tolerance-based imperfection amplitudes according to Section 8 

of EN 1993-1-6 for the thinnest strakes of Silos CS and CVS are summarised in Table 

6.1. 

 

It has been discussed extensively so far in this thesis that eccentric discharge results in 

critical meridional compression at the centre of the flow channel, so a strict reading of 

the rules of EN 1993-1-6 leads to a value of 3.162t for the imperfection amplitude. 

However, there is also extensive circumferential bending at the centre of the flow 

channel which results in circumferential dimple-like deformations which, it will be 
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shown in this chapter, are a necessary basis for a consistently deleterious imperfection 

form under eccentric discharge. It is therefore unclear whether the standard should use 

Clause 8.7.2(18), which defines the GMNIA imperfection amplitude, to couple with the 

limitations of Clause 8.4.4(2), which was written in the context of uniform stress states. 

Perhaps long-wave imperfection forms of the type that will be presented here should be 

an additional requirement where the axial compression is localised. However, given the 

rules as they stand, this study is chiefly conducted in the context of the strict EN 1993-

1-6 rules, but with one eye on the possibility that the rule should be amended to require 

control of long circumferential wavelength imperfections under all stress conditions. 

 

Table 6.1 − Translations of selected tolerances into GMNIA imperfection amplitudes 

according to EN 1993-1-6 (2007) Section 8 

Equivalent imperfection 

amplitude δ/t  

Meridional 

dimple 

Δwox/t 

Circumferential 

dimple 

Δwoθ/t 

Fabrication 

tolerance 

quality 

class 

Description Dimple 

imperfection

amplitude 

parameter 

Un1 

Silo 

CS† 

Silo 

CVS‡

Silo 

CS† 

Silo 

CVS‡ 

A Excellent 0.010 1.265 1.155 5.880 5.708 

B High 0.016 2.024 1.878 9.408 9.132 

C Normal 0.025 3.162 2.887 14.700 14.269 

† assuming Silo CS data and the top strake (ℓ = 6.2 m, R = 3 m, t = 3 mm) with ℓgx = 

4(Rt)½ = 379.5 mm and ℓgθ = 2.3(ℓ2Rt)¼ = 1763.9 mm 

‡ assuming Silo CVS data and the top strake (ℓ = 6.4 m, R = 2.5 m, t = 3 mm) with ℓgx = 

4(Rt)½ = 346.4 mm and ℓgθ = 2.3(ℓ2Rt)¼ = 1712.3 mm 

 

6.3 Characteristic features of the deformed radial shape of the silo 

A typical pre-buckling deformed shape of a slender silo under the EN 1991-4 (2007) 

eccentric discharge model is shown in Fig. 6.2. The silo wall undergoes extensive 

inward deformation due to the low pressure in the flow channel which results in 

flattening of the silo wall, and extensive outward deformation due to the rise in normal 

pressure at the edge of the flow channel. The representative circumferential and 

meridional distributions of the deformed radial shape of a slender silo before buckling 
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under eccentric discharge are shown in Fig. 6.3 and Fig. 6.4 respectively. The deformed 

shape at the level through the critical buckling region (Fig. 6.3) is usually near 

midheight in uniform wall thickness silos or near the base of the thinnest wall strake in 

stepped wall thickness silos.  

 

 
Fig. 6.2 – Typical global deformed shape of a slender silo under eccentric pipe flow 

 

Three main radial deformation features at these locations may be identified on Fig. 6.3. 

There is a large primary inward deformation feature adjacent to the low wall pressure in 

the flow channel; a smaller primary outward deformation feature adjacent to the steep 

rise in wall pressure at the edge of the flow channel; and a much smaller secondary 

inward deformation feature further around the shell circumference. The eccentric 

discharge model of Rotter (1986), which does not feature regions of high pressure near 

the edge of the flow channel unlike EN 1991-4 (2007) (e.g. Fig. 3.1), results in a very 

similar deformed shape on which the same radial features may be identified. 
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Fig. 6.3 – Circumferential distribution of typical radial deformations near midheight of a 

slender silo under eccentric pipe flow 

 

 
Fig. 6.4 – Meridional distribution of typical radial deformations of a slender silo under 

eccentric pipe flow 

 

It is known that the buckling strength of a curved panel is reduced as the panel becomes 

flattened and its radius to thickness ratio R/t increases (Rotter, 1985a), and it was noted 

in Chapter 3 that this nonlinear phenomenon does indeed have a deleterious effect on 
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the buckling strength of the silo under eccentric discharge. Thus, a geometric 

imperfection form which reproduces this feature is likely to be successful in causing 

consistent decreases in the predicted buckling strength where other imperfection forms 

have failed to do so. The reader is reminded that the axisymmetric weld and eigenmode-

affine imperfection forms studied in Chapters 4 and 5 were found to be unsuitable for 

this purpose. 

 

6.4 Introduction to the global imperfection forms used in this study 

In the voluminous literature on buckling of imperfect shells, the form of an imperfection 

has traditionally been defined in terms of a local perturbation that is superimposed on 

the perfect shell (e.g. Koiter, 1945; 1963; Yamaki, 1984; Rotter and Teng, 1989a). Thus 

the circumferential and meridional distributions of the imperfection are usually defined 

through some relation in the form δ = f(θ, y), which is then applied to the perfect shell to 

generate the local geometry of the imperfect shell. 

 

In a break from this tradition, the imperfection forms presented in this chapter define the 

total geometry of the entire imperfect shell directly, though still relating the deviation 

from the perfect shell to a reference imperfection amplitude at some point in the 

structure δ0. Considering the deformed shape in Fig. 6.3 and the complexity involved in 

defining a successful imperfection form for a global load condition like eccentric 

discharge, it was felt that a new description is necessary in order to ensure full control 

over the exact shape of the entire imperfect shell. Thus in all analyses of the imperfect 

shell presented in this chapter, the global radial coordinate of the imperfect silo wall r is 

defined by: 

( ) (,r y R yθ δ= − ),θ  such that ( ) ( ) ( ), y u w yδ θ θ=     (6.1) 

where u(θ) and w(y) are, respectively, the independent circumferential and meridional 

distributions of the radial form of the imperfection. The range is, naturally, 0 ≤ θ ≤ 2π 

and 0 ≤ y ≤ H, where H is the height of the silo. 

 

Various different forms for the circumferential component u(θ) were investigated in this 

imperfection study, which will be presented shortly. However, the meridional 

component of the imperfection w(y) was in all cases assigned a two-part sinusoidal 

variation comprised of two sine quarter-waves whose junction (and therefore peak 
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amplitude) occurs at some height y0, illustrated in Fig. 6.5. The form of the meridional 

component is thus given by: 

( )
( )
( )

0
0

0
0

sin for 0
2

sin for 
2

y y y
y

w y
H y

y y H
H y

π

π

⎧ ⎛ ⎞
≤ ≤⎪ ⎜ ⎟

⎝ ⎠⎪= ⎨
⎛ ⎞−⎪ ≤ ≤⎜ ⎟⎪ ⎜ ⎟−⎝ ⎠⎩

     (6.2) 

 

The meridional form of the imperfection is similar to the observed meridional 

distribution of the radial deformation at the centre of the channel (Fig. 6.4). The 

composite function in Eq. 6.2 obeys continuity of displacement and slope at y0, but not 

of curvature. It was thought that this would be satisfactory for the purposes of an 

imperfection form, since y0 usually occurs near midheight (see below) and the error in 

the curvature is thus expected to be small. 

 

r(θ, y0) = δ0 
reference 
global 
imperfection 
amplitude

y = 0

y = y0

y = H Top of silo 

Bottom of silo

Base of 
strake with 
GNA  or 
GMNA 
midheight 
buckle 

δ(y)

Bottom sine 
quarter-wave 

Top sine 
quarter-wave 

 
Fig. 6.5 − Meridional form w(y) of the imperfect shell 

 

In Chapter 5 it was found that the characteristic buckling mode of a stepwise variable 

thickness silo, under the pressures predicted by the EN 1991-4 eccentric discharge 

model, occurs across the channel near midheight (mode Loc-CH, Table 4.8). The buckle 

is predominantly elastic, and is caused by greatly increased axial compressive 

membrane stresses at this location. In order to maximise the effectiveness of the 

imperfection forms presented in this chapter, it is supposed that the base of the strake in 

which the elastic midheight buckle is predicted to occur in a GNA or GMNA analysis 
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should be identified, and that this location defines y0. Thus w(y) may be adjusted so that 

the highest flattening of the shell occurs close to the location where it is likely to be 

most detrimental, notably at the base of the critical strake. If a uniform wall silo is being 

analysed instead, y0 is here proposed as the midheight position unless there is reason to 

do otherwise. In Silos CS and CVS, for example, y0 is given by 0.66H and 0.76H 

respectively. 

 

There have been many proposals to use the deformed shape from a GNA analyis as an 

appropriate imperfection (Esslinger and Geier, 1972; Yamaki, 1984; Guggenberger et 

al., 2004; Rotter, 2004), and this would have been a natural choice for an imperfection 

mode in this study. It is thus important to explain why the deformed shape from a GNA 

analysis cannot be used directly as an imperfection form for the present load case, 

considering that the imperfection forms that are presented in this chapter clearly drew 

on the features of the GNA deformed shape. The most important reason for this is that 

previous studies were all concerned with shells of uniform wall thickness, so they all 

lost the critical feature that arises in a stepped wall shell as a result of the discontinuities 

at changes of plate thickness. 

 

Eigenmode-affine imperfection forms under eccentric discharge were explored in 

Section 5.6, where it was found that the GNA pre-buckling deformations near the 

location of the future buckle may be quite significant and that they form a part of the 

GNA deformed shape both before and after bifurcation. These deformations include a 

significant component that arises from the geometric discontinuity at the change of plate 

thickness at the base of the 3 mm strake. Here, local indentations due to the axial 

bending induced induced by the discontinuity are amplified at the centre of the channel 

by the axial compressive membrane stresses caused by eccentric discharge (e.g Fig. 2.9) 

as they approach the elastic critical stress (Brush and Almroth, 1976; Rotter, 1989). The 

result is that approximately axisymmetric waves develop above the change of plate 

thickness as the buckling condition is approached (Fig. 6.6, similar to Fig. 5.16). These 

wide axially-short waves in the deformed shape lead to a significant increase in the 

incremental value of the circumferential bending stiffness of the shell, leading to an 

increase in its resistance to buckling. 
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Thus when such a deformed shape is used as an imperfection form, these local waves 

are also introduced near the critical location and increase the circumferential bending 

stiffness of the shell in a manner similar to the axisymmetric weld. This has a beneficial 

effect on the buckling strength of the silo. The GNA deformed shape therefore cannot 

be used directly as an imperfection form under eccentric discharge, though its general 

overall geometric features can be. In what follows, these overall geometric features are 

isolated and approximately represented, thus leaving out the local effects associated 

with plate thickness change discontinuities. The necessity of taking this action also has 

significant implications for the more general specification of appropriate imperfection 

forms in cylinders with stepwise variable walls. 
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circumferential  
bending Perfect shell                  Imperfect shell

Indentations near 
the position of the 
future buckle due 
to discontinuity 
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thickness and  
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Base of 3 
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Fig. 6.6 – Comparison of the behaviour of perfect and imperfect shells with an 

imperfection form of the GNA deformed shape before, before and after buckling 

 

6.5 Investigation of an imperfection form with local circular flattening 

6.5.1 Definition of the shape of the imperfect shell  

A relatively simple geometric form of local wall flattening was investigated first. An arc 

of the original circular wall adjacent to the flow channel was replaced with an arc of a 

circle with a larger radius of curvature, thereby making the wall locally flatter up to a 

local maximum imperfection amplitude of δ0 at a height of y0. This effectively omits 

both the secondary inward and primary outward radial features seen in Fig. 6.3, and 

includes only the primary central radial inward feature. The radial geometry of this 

imperfection form is shown in Fig. 6.7. A similar imperfection form has been used 
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previously in studies of the buckling of spherical caps under external pressure (e.g. 

Blachut et al., 1990; Blachut and Galletly, 1987; 1990). 
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Fig. 6.7 − Geometry of local circular flattening imperfection form at height y0 

 

The limiting value of θarc is independent of y and may be chosen by the user as, for 

example, some multiple of the flow channel wall contact angle, θc (e.g. Fig. 5.1). The 

parameters x0, R' and θ'arc may be solved for numerically using the following 

compatibility relations: 

sin sinarc arcR Rθ θ′ ′=          (6.3) 

0 cos cosarc arcx R Rθ θ′+ = ′         (6.4) 

0 0x R Rδ ′= + −          (6.5) 

Alternatively, an algebraic solution is also possible, though messy: 

0 2
bx
a

= , 
2
cR
a

′ =  and -1tanc
d
f

θ
⎛ ⎞′ = ⎜ ⎟
⎝ ⎠

      (6.6) 

where 

( )0 cos arca Rδ θ= + − R ( )0 0 2b Rδ δ= −, , ( )2 2
0 02cos 2 2arc R R R 2

0c Rθ δ δ δ= − − + −  

( )( )02 sin cos 1arc arcd R Rθ δ θ= + − ( ), ( )2
0 0 02 2 cos 1 cosarc arcf R R Rδ δ θ δ θ= − + − −  

 

The arc of the flattened circle is assumed to retain the same sense of curvature, thus the 

following condition should additionally be satisfied: 

(0 1 cos arcRδ < − )θ          (6.7) 
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The coordinates of the circle with the larger radius of curvature are given by: 

( ) ( )0 0cos arc

arc
x R xθ
θ δ θ

θ
⎛ ⎞′

= − ⋅ −⎜ ⎟
⎝ ⎠

 and ( ) sin arc

arc
y R θ
θ θ

θ
⎛ ⎞′

= ⎜
⎝ ⎠

⎟    (6.8) 

Thus the circumferential component of the radial form of the imperfection is given by: 

( ) ( ) ( )2 2 for 

0 elsewh
arc arcR x yu

ere

θ θ θ θθ
⎧⎪ − + − ≤ ≤= ⎨
⎪⎩

θ     (6.9) 

The complete imperfect shell is thus generated by r(θ, y) = R − u(θ)w(y) where u(θ) and 

w(y) are given by Eqs 6.9 and 6.2 respectively. It is important to note that the flattened 

arc length R' × θ'arc is considerably smaller than the undeformed arc length R × θarc. 

Thus this imperfection form results in a shorter silo circumference, an undesirable 

feature which may have an unforeseen influence on the behaviour.  

 

6.5.2 Parametric finite element study 

The stepped wall thickness Silo CS (H/D = 3.0) was analysed under the eccentric 

discharge pressures of the Rotter (1986) model using the medium-sized flow channel (kc 

= rc/R = 0.40). This model does not feature regions of high wall pressure at the edge of 

the flow channel and yields very similar behaviour to the EN 1991-4 eccentric discharge 

model, as discussed in Chapter 3. A number of GNIA analyses were carried out using a 

set of imperfection amplitudes in the range 0 ≤ δ0 ≤ 5t, including the imperfection 

amplitude of the EN 1993-1-6 (2007) Section 8.7 GMNIA requirement of 3.162t (Table 

6.1). 

 

The spread of the flattened arc θarc was taken as several different multiples of the flow 

channel wall contact angle θc (in this case θc = 15.1º, Table 3.3). The values of θarc were 

thus chosen to be θc, 2θc, 4θc and ½π. The resulting imperfection sensitivity curves, 

normalised by the GNA load factor (an already very low value of 0.30, Table 3.4), are 

shown in Fig. 6.8.  
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Fig. 6.8 − GNIA imperfection sensitivity curves for the local circular flattening 

imperfection using Rotter eccentric discharge pressures with kc = 0.40 on Silo CS 

 

Clearly, simply replacing an arc of the original shell with an arc of a shell of a larger 

radius of curvature adjacent to the flow channel does not serve the function of a 

strength-reducing imperfection under eccentric discharge. The localised flattened arc 

appears to have a similar strengthening effect as the axisymmetric weld and eigenmode-

affine imperfection forms (Chapters 4 and 5), though it is not clear exactly why this is. 

This effect becomes significantly reduced as the spread of the arc increases, but does 

not disappear. The local flattened circular arc is therefore not a suitable imperfection 

form under eccentric discharge. 

 

6.6 A novel superelliptical imperfection form 

6.6.1 Lamé curves: the superellipse 

It was found that the circumferential distribution of the radial deformation at midheight 

of the silo, close to the critical region for buckling under eccentric discharge (Fig. 6.3), 

can be expressed algebraically very closely by the generalised equation of the Lamé 

curve (Lamé, 1818; Gridgeman, 1970), otherwise known as the ‘superellipse’. The 

justification for this is presented in the following section, after a brief introduction to 

superelliptical shapes. 
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The general equation of the superellipse in Cartesian coordinates is defined by: 

1
q px y

a b
+ =           (6.10) 

This may also be expressed parametrically in terms of t as: 

( )
2

cosqx t a= t  and ( )
2

sin py t b= t  such that ( ) ( ) ( )2r t x t y t= + 2   (6.11) 

where a, b, p and q are positive numbers, and r(t) is the polar form of the radial 

coordinate. 

 

The formula in Eq. 6.11 defines a closed curve in the range −a ≤ x ≤ +a and −b ≤ y ≤ 

+b, where the parameters a and b are known as the ‘semi-diameters’. The parameters p 

and q are the inverse powers of the sin and cos terms respectively, henceforth referred to 

simply as the ‘powers’. Example curves for the special case of a = b, symmetrical about 

both Cartesian axes, are shown in Fig. 6.9a for p, q ∈ {1, 2, 3, 4} and in Fig. 6.9b for 

slightly more unusual shapes with p, q ∈ {¼, 1, 5, 10}. 

 

Assuming a = b, the powers (p, q) = (1, 1) generate a diamond shape with straight sides 

while (p, q) = (2, 2) generate a perfect circle. Values of either p or q less than unity 

cause the shape to appear squashed, with (p, q) = (⅔, ⅔) resulting in a shape known as 

an ‘astroid’. Curves with (p, q) both less than 2 are known as ‘hypoellipses’, while those 

with (p, q) both greater than 2 they are known as ‘hyperellipses’. As both p and q 

increase, the resulting shape tends to one resembling a square with rounded corners, a 

so-called ‘squircle’.  
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  a) Common shapes     b) More unusual shapes 

Fig. 6.9 – General superellipse shapes as a function of the powers p and q 

 

Clearly, a myriad of different geometries may be expressed with the superelliptical 

formula. A fascinating account of superelliptical forms seen in nature, including an even 

more general form of Eq. 6.11 known as the ‘superformula’, can be found in the 

botanical study of Gielis (2003). 

 

6.6.2 The superellipse as an imperfection form under eccentric discharge 

The radial deformation data of Silo CS (H/D = 3, Table 4.2), analysed under Rotter’s 

(1986) eccentric discharge pressures with kc = rc/R = 0.25, is shown in Fig. 6.10 

normalised by the undeformed silo radius R. The data was extracted from an LA 

analysis at the LBA load factor and a GNA analysis at the instant before bifurcation, in 

both cases at the base of the thinnest 3 mm strake (thus y0 = 0.66H). This location is 

close to midheight and to the critical region for elastic buckling under eccentric 

discharge. The three main features of the radial deformation identified on Fig. 6.3 are 

also shown in Fig. 6.10. 
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Fig. 6.10 – Normalised radial deviation at the base of the thinnest respective strake for 

the kc = 0.25 flow channel in Silo CS with superelliptical fit 

 

It was decided that the parametric form of the superellipse should be chosen in such a 

way as to be able to reproduce all three of the features of the radial deformation 

identified above. A possible form may therefore be given by: 

( ) ( )
2

0 cosq
sx Rθ δ= − θ         (6.12) 

( )
2

sin p
sy Rθ θ=          (6.13) 

The polar equation of the imperfect geometry is thus given by: 

( ) ( ) ( )2
s s sr x y 2θ θ= + θ         (6.14) 

where xs and ys are the Cartesian coordinates of the imperfect shell, R is the original 

perfect radius of the silo, δ0 is the peak inward radial deviation adjacent to the centre of 

the flow channel at θ = 0 (the characteristic imperfection amplitude), and p and q are the 

parameters controlling the shape of the sin and cos components respectively. It was 

assumed here that the centre of the flow channel is positioned on the x-axis. The radial 

component of the imperfection at constant y is thus given by: 

( ) ( ) for 
2

0 elsewhere

s
s

R r
u 2

π πθ θ
θ

⎧ − − ≤⎪= ⎨
⎪⎩

≤
      (6.15) 
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The imperfect shell is thus generated by  

( ) ( ) (, sr y R u w yθ θ= − )          (6.16) 

where us(θ) and w(y) are given by Eqs 6.15 and 6.2 respectively. 

 

A least-squares geometric fit of Eq. 6.14 to the radial data in Fig. 6.10 was performed to 

determine the values of p and q most representative of the deformed shape of Silo CS at 

buckling: these were found to be 2.9 and 1.7 for the LA data and 2.3 and 1.9 for the 

GNA data respectively. Therefore, roughly speaking, the shape of the inward 

deformation is controlled by a decreasing q power, and the shape of the outward 

deformation is controlled by an increasing p power. The LA analysis predicts higher 

magnitudes of the radial deformation than the GNA analysis, consistent with the 

respective predictions of the two analyses types on the magnitudes of the axial 

membrane stresses (Chapter 3). A full account of the geometric fitting procedure may 

be found in Appendix A. 

 

6.6.3 Simple finite element study to probe the feasibility of the superelliptical 

imperfection form 

A generalised version of the deformed shape shown in Fig. 6.3 and Fig. 6.10 could 

clearly form the basis of an imperfection form under eccentric pipe flow. As a first step, 

a preliminary set of finite element analyses was undertaken to probe the feasibility of 

doing a more detailed parametric study involving more elaborate and strictly-defined 

forms of the superellipse to model flattening as an imperfection form for this load 

condition.  

 

The stepped wall Silo CVS was thus analysed under the EN 1991-4 eccentric discharge 

pressures with channel sizes in the range 0.00 ≤ kc = rc/R ≤ 0.90. This was the same silo 

design as that used in the EN 1991-4 flow channel size study of Chapter 5, for the same 

range of flow channels. No specific imperfection amplitude δ0 was defined in this 

preliminary analysis, as at this very early stage in this study the purpose was only to 

investigate whether a flattened shape adjacent to the flow channel, modelled by the 

superellipse, could produce a deleterious imperfection form over the full range of flow 

channel sizes. Further studies naturally included this important feature. 

 

 161



PhD Thesis 
Adam Jan Sadowski 

The geometry of the imperfect shell was thus modelled by Eq. 6.16 assuming δ0 = 0 for 

Eq. 6.12, which generates the primary outward and secondary inward radial features 

only (Fig. 6.10). The two sets of powers (p, q) of (2.9, 1.7) and (2.3, 1.9) reported above 

for the respective LA and GNA analyses of Silo CS were used to model the extent of 

the flattening, as no better guess could be made at the time of the study. The base of the 

thinnest strake of Silo CVS occurs at y0 = 0.75H. The imperfect radial shapes at y0 are 

shown in Fig. 6.11.  

 

 
Fig. 6.11 – Flattened silo wall shapes for two sets of powers p and q at height y0 

 

The predicted GNIA load factors at buckling are summarised in Fig. 6.12, normalised 

by the respective GNA load factor for each value of kc (Table 5.2). These figures show 

that this type of flattened shape may generally result in consistent reductions in 

predicted GNIA load factors from the GNA load factor over a wide range of flow 

channel sizes. The reduction in buckling strength may be as large as 35% for mid-sized 

values of kc. There does, however, appear to be a rise in the predicted buckling strength 

for small channels (0.2 ≤ kc ≤ 0.4) if the powers p and q representing the LA shape are 

used to model the superelliptical flattening, which produce larger deviation amplitudes 

than the powers representing the GNA shape. However, further investigations showed 

that this is the exception rather than the rule. These are presented shortly. 

 

Additionally, a set of values of p and q originally derived for a deformed shape of Silo 

CS which included the central inward radial feature (Fig. 6.10) appear to be as effective 

in causing decreased buckling strengths in the significantly more slender Silo CVS 

which did not include this radial feature (Fig. 6.11). This suggests that an imperfection 

form modelled with the superellipse may have a high degree of robustness, and may be 
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valid over a wide range of imperfection amplitudes, different combinations of radial 

features and silo geometries. 

 

 
Fig. 6.12 − Variation of the GNIA load factor with flow channel size using the EN 

1991-4 eccentric discharge pressures on Silo CVS 

 

6.6.4 Preliminary conclusions 

The initial investigation described in the preceding section suggested that the flattened 

superellipse is potentially a viable imperfection form to cause buckling strength 

reductions under eccentric discharge. It was thus decided that a more comprehensive 

investigation of this type of imperfection form would be worthwhile, and two different 

forms are explored in the following sections, inspired by the features of the deformed 

radial shapes identified in Fig. 6.3 and Fig. 6.10. It is thought that the imperfection 

forms presented in what follows have never been investigated before and because there 

is no precedent, it was therefore not known which combination of the radial features 

may produce significant structural effects and which would be the most deleterious 

circumferential form of the superelliptical imperfection. 
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6.7 First proposed form of the imperfection − Superelliptical flattening with 

central inward deviation 

6.7.1 Circumferential geometry of the first imperfection form 

The first proposed shape of the superelliptical imperfection form incorporates all three 

radial features identified in Fig. 6.10. The shell is allowed to deviate inwards adjacent to 

the flow channel at θ = 0 up to a notional imperfection amplitude of δ0 at the desired 

level of largest flattening y0. The shell then deviates outwards to a peak amplitude of 

naδ0 at some coordinate θ = θa, and the inwards again to an amplitude of nbδ0 at some 

coordinate θ = θb. Thus the amplitudes of the non-central peak deviations were assumed 

to be related to the central inward deviation by two parameters na and nb which may be 

varied to control the flattened shape and to find the most deleterious configuration for 

the imperfection shape. The parameters na and nb should be limited to being greater than 

zero, as otherwise the shape becomes inverted and fundamentally different. The 

geometry of the first superelliptical flattening imperfection form is shown in Fig. 6.13. 
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Fig. 6.13 − Geometry of the first superelliptical imperfection form at height y0 

 

It is important to clarify that δ0 is a notional or reference imperfection amplitude for the 

whole silo. However, δ0 need not define the maximum deviation of the imperfect shell as 

this depends on the choice of the parameters na and nb which produce a deviation naδ0 

and nbδ0 at some coordinates (θa, y0) and (θb, y0) respectively, either of which may be 

greater than δ0 if na or nb are chosen to be greater than unity. Indeed, such values were 

used in the finite element analyses of this imperfection form presented later in this 

chapter to investigate the effect of different flattened shapes on the buckling strength of 

the silo. This choice was made to maintain consistency and full freedom in defining 
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different flattened shapes for the imperfect shell, but in a potential design situation the 

restriction may be made so that 0 ≤ na, nb ≤ 1 to ensure that δ0 defines the maximum 

imperfection amplitude anywhere on the silo. 

 

The Cartesian coordinates of the superelliptical flattening are given by: 

( ) ( )
2

1 0 cosq
sx Rθ δ θ= −  and ( )

2

1 sin p
sy Rθ θ=       (6.17) 

The polar forms of the radius and slope of the imperfect shell are: 

( ) ( ) ( ) ( )

1
4 4 2

22 2 2
1 1 1 0 cos sinq p

s s sr x y R Rθ θ θ δ θ
⎛ ⎞
⎜ ⎟= + = − +
⎜ ⎟
⎝ ⎠

θ  and  (6.18) 

( ) ( )

( )

1
4 4 2

2 21
0

4 422
0

2 cos sin

                                            ... cot sin tan cos

q ps

p q

dr R R
d

RR
p q

θ δ θ θ
θ

δ
θ θ θ

−
⎛ ⎞
⎜ ⎟= − + ×
⎜ ⎟
⎝ ⎠

⎡ ⎤−⎢ ⎥−
⎢ ⎥⎣ ⎦

θ

  (6.19) 

Thus the circumferential component of the radial coordinate of the imperfect shell is 

given by: 

( ) ( )1
1

for 
2

0 elsewher

s
s

R r
u 2

e

π πθ θ
θ

⎧ − − ≤⎪= ⎨
⎪⎩

≤

)

      (6.20) 

and the full imperfect geometry of the silo is generated by: 

( ) ( ) (1, sr y R u w yθ θ= −          (6.21) 

where us1(θ) and w(y) are given by Eqs 6.20 and 6.2 respectively. 

 

The parameters p, q, θa and θb must be solved for numerically from the following four 

boundary conditions: 

( )
( )

( ) ( )1

1

1

1 0s

s a a

s b b

s
a b

r R n

r R n
drdr

d d

θ δ

θ δ

θ θ
θ θ

= +

= −

= =

 

 

Note that if δ0 = 0, p = q = 2 and Eq. 6.21 generates a perfect shell. A flattened shape 

with the features similar to those in Fig. 6.10 is obtained when p > 2, q < 2 and δ0 > 0. 
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The variation of the powers p and q and of the angles θa and θb with the dimensionless 

imperfection amplitude δ0/t for a shell with R/t = 1000 is shown in Fig. 6.14 and Fig. 

6.15 respectively for different combinations of the parameters na and nb equal to 1 and 

0.1. These were chosen simply to show approximately what happens when either 

parameter is made very small compared to the other, and when they are the same.  

 

It appears that the larger the value for either na or nb, the greater the change in both p 

and q from their reference value of 2. The variation of the angles θa and θb with δ0/t 

appears to be very minor and is shown for the purposes of clarification and explanation 

only, as they are not needed to generate the imperfect shell form. The lowest value of 

δ0/t used in Fig. 6.15 was 0.0001 as θa and θb have no meaning for a perfect shell. The 

relationship between the parameters p and q and the imperfection amplitude δ0/t is 

approximately linear in all cases, which is very useful as it may allow a simple 

empirical fit to be devised which may be easily implemented in design as opposed to the 

above numerical procedure. 

 

 
Fig. 6.14 − Typical variation of the powers p and q with δ0/t for the first superelliptical 

imperfection form (R/t = 1000) 
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Fig. 6.15 − Typical variation of the angles θa and θb q with δ0/t (lowest value 0.0001) for 

the first superelliptical imperfection form (R/t = 1000) 

 

An important additional consideration is the change in the arc length of the shell under 

this imperfection form. During construction, the one aspect which builders usually 

cannot get wrong is the total circumference, because even if the strakes are welded 

badly, the sum of their lengths is always fixed. Thus it is necessary to compare the arc 

lengths of the imperfect and perfect shells. The arc length of the imperfect shell may be 

obtained by integrating the following equation: 

2 22
1 1

1
0

s s
s

dx dys
d d

π

dθ
θ θ

⎛ ⎞ ⎛ ⎞= +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠∫        (6.22) 

The powers p and q are applied to trigonometric terms in the equations for xs1 and ys1 

(Eqs. 6.17 and 6.18), hence it was only possible to integrate Eq. 6.22 numerically. The 

arc length of the imperfect shell was then normalised by the perfect circumference 

(½πR), and the result is shown in Fig. 6.16 as a function of δ0/t for the same values of na 

and nb as above. This figure shows that the error in the circumference is of the order of 

1-2% in this range. Over the course of the analyses presented in this chapter that used 

this imperfection form, it was found that the error in the circumference did not go 

beyond 5%.  
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Fig. 6.16 − Typical variation of the normalised arc length of the imperfect shell with δ0/t 

for the first superelliptical imperfection form (R/t = 1000) 

 

6.7.2 Initial GNIA parametric study of the first superelliptical imperfection form 

on a slender silo with the Rotter 1986 eccentric discharge pressure model 

A set of geometrically nonlinear analyses (GNIA) were carried out on Silo CS with the 

first superelliptical imperfection form modelled according to the equations of the 

preceding section. The Rotter (1986) eccentric discharge pressure distribution, which 

does not include regions of high wall pressure adjacent to the flow channel, was used in 

this first set of analyses. This pressure pattern was chosen because it was considered to 

be a more realistic and less severe distribution than that of EN 1991-4 (2007), and was 

thus a good place to start. 

 

Notional imperfection amplitudes in the range 0 ≤ δ0 ≤ 15t were investigated for a 

medium-sized flow channel, kc = rc/R = 0.40. Many combinations of the na and nb 

parameters are clearly possible, though only four different sets were considered here. 

The values of these parameters were generally taken to be greater than unity, thus 

exaggerating the flattened shape to allow a wider range of general trends to be observed. 

The combinations include (na, nb) = (1, 1) where all deviation features are equal, (2, 1) 

where the frontal flattening is more pronounced, (2, ¼) where the secondary inward 

deviation away from the centre of the channel is made very small and (4, 1) where the 

frontal flattening is made even more pronounced. The imperfection sensitivity curves 
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for kc = 0.40, normalised with by GNA load factor (0.30, Table 3.5.1), are shown in Fig. 

6.17. 

 

 
Fig. 6.17 − GNIA imperfection sensitivity curves for the first superelliptical 

imperfection form with kc = 0.40 and Rotter eccentric discharge pressures on Silo CS 

 

The trend for the un-exaggerated shape with (na, nb) = (1, 1) suggests that the first 

superelliptical imperfection form is indeed detrimental to the buckling strength of the 

shell at small and medium imperfection amplitudes, including in the vicinity of the EN 

1993-1-6 Section 8.7 value of 3.162t for meridional compression, but not near the 

amplitude of 14.7t for circumferential compression (Table 6.1). Indeed, at amplitudes 

greater than δ0 = 8t it appears that the trend reverses sharply and the imperfection 

instead produces a beneficial effect. It is currently not clear why this reversal occurs, or 

why it is so sudden. 

 

At small notional imperfection amplitudes, an increasingly deleterious effect is obtained 

when the frontal flattening is made more pronounced by increasing the primary outward 

radial feature with a larger value of na. For example, at δ0 = 3.162t the set of values of 

(na, nb) = (1, 1) results in a 5% decrease from the GNA load factor. Increasing na to 4 

results in a drop of almost 20%. However, though higher values of na give larger 

strength decreases at smaller amplitudes, they also result in significantly more rapid 
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strength gains when these amplitudes become slightly larger. Indeed, the GNIA load 

factor for (na, nb) = (4, 1) at δ0 > 5t goes straight off the scale of the figure, but it should 

be remembered that, for this higher range of notional amplitudes, na = 4 produces a 

large deviation of naδ0 > 20t at some coordinate (θa, y0) on the imperfect shell (Fig. 

6.13). At the same time, the secondary inward radial feature should not be neglected and 

nb should not be taken as lower than unity, since (na, nb) = (2, ¼) produces smaller 

strength reductions at low amplitudes than (2, 1). 

 

6.7.3 Additional GNIA parametric study of the first superelliptical imperfection 

with on a slender silo with the EN 1991-4 eccentric discharge pressure model 

It was shown above that superelliptical flattening adjacent to the flow channel may be a 

suitable imperfection form for the Rotter (1986) eccentric discharge pressure 

distribution, which omits high wall pressure regions adjacent to the edge of the channel. 

The next exploration attempted to verify that it would also be suitable when used with 

the original EN 1991-4 pressure model with all three recommended flow channel sizes 

of kc = rc/R = 0.25, 0.40 and 0.60. 

 

A suite of GNIA analyses was carried out on Silo CS using the first superelliptical 

imperfection form with the set of parameters na and nb that was found previously to 

result in a more severe effect on the buckling behaviour, (4, 1). The range of notional 

imperfection amplitudes was limited to 0 ≤ δ0 ≤ 5t, though at the top value of this range, 

naδ0 produces an actual deviation of 20t at some coordinate (θa, y0). The resulting 

imperfection sensitivity curves, normalised by the respective GNA load factors, are 

shown in Fig. 6.18. The GNA load factors are 2.35, 0.24 and 0.35 for kc = 0.25, 0.40 

and 0.60 respectively (Table 3.4). 
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Fig. 6.18 − GNIA imperfection sensitivity curves for the first superelliptical 

imperfection form with (na, nb) = (4, 1) and EN 1991-4 eccentric discharge pressures on 

Silo CS 

 

These imperfection sensitivity curves suggest that the superelliptical imperfection form 

is similarly deleterious when there are regions of high wall pressure adjacent to the edge 

of the flow channel included in the GNIA analysis. However, for the smallest channel 

with kc = 0.25, the imperfection is predicted to become beneficial at all notional 

imperfection amplitudes. Indeed, beyond 2.5t, the curve goes off the scale to a 

normalised load factor in excess of 2, indicating a gain in buckling strength of over 

100%.  

 

As described in Chapters 4 and 5, the geometrically nonlinear behaviour of the silo at 

small values of kc under the full EN 1991-4 pressures is rather different from the 

expected buckling behaviour under eccentric discharge. The flow channel of kc = 0.25 is 

very small and the midheight compressive axial membrane stresses, which are 

responsible for the elastic midheight buckle at the centre of the flow channel, have not 

yet fully developed in flow channels smaller than kc = 0.40 (e.g. Fig. 4.23, Fig. 5.8 and 

Fig. 5.9). The corresponding behaviour for kc = 0.25 in Fig. 6.18 thus appears to be 

highly anomalous. 
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For kc = 0.40 and 0.60, the imperfection form is predicted to be progressively more 

deleterious up to values of δ0 of approximately 3.2t and 4.4t. Beyond these notional 

amplitudes there is a sudden and steep rise in buckling strength, similar to Fig. 6.17 for 

the Rotter (1986) distribution. This rise in strength is found to occur later for the larger 

flow channel, and does not seem to be so steep.  

 

6.8 Second form of the imperfection − Superelliptical flattening with no 

central inward deviation 

6.8.1 Circumferential geometry of the second imperfection form 

The second proposed shape of the superelliptical imperfection form incorporates only 

the primary outward and secondary inward radial features of Fig. 6.10, relating them to 

a notional imperfection amplitude δ0 that occurs at θ = θa (i.e. not central) at the desired 

level of largest flattening y0. For θ = 0 at the centre of the flow channel, it is assumed in 

this imperfection form that the shell has remained stationary and there is no inward 

central feature. Thus the flattened shape of the silo wall is produced only by an outward 

deviation of the shell near the edge of the flow channel to an amplitude δ0 at some 

coordinate θ = θa, and an inward deviation of the shell away from the channel to an 

amplitude of mδ0 at some coordinate θ = θb. The amplitude of the inward feature was 

assumed to be related to the amplitude of the outward feature by a parameter m > 0, 

which may be varied to control the extent of the flattening. The geometry of the second 

superelliptical flattening imperfection form is shown in Fig. 6.19. 
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Fig. 6.19 − Geometry of the second superelliptical imperfection form at a height of y0 
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The notional or reference imperfection amplitude δ0 was assigned the same meaning for 

second superelliptical imperfection form as it was for the first form in Fig. 6.13. 

Depending on what value has been chosen for m, there may be a deviation of mδ0 at 

some coordinate (θb, y0) that is greater than δ0. This choice was again made for 

consistency and freedom in investigating different flattened shapes of the imperfect 

shell, but in design the restriction may be made so that 0 ≤ m ≤ 1 to ensure that δ0 is 

indeed the maximum imperfection amplitude on the whole silo. 

 

The Cartesian coordinates of the superelliptical flattening are given by: 
2

2 cosq
sx R θ=  and 

2

2 sin p
sy R θ=         (6.23) 

The polar forms of the radius and slope of the imperfect shell are: 

( ) ( ) ( )

1
4 4 2

2 2
2 2 2 cos sinq p

s s sr x y Rθ θ θ θ
⎛ ⎞
⎜= + = +
⎜ ⎟
⎝ ⎠

θ ⎟  and    (6.24) 

( )

1
4 4 4 42

2 1 12 cos sin cot sin tan cosq p p qsdr R
d p q

θ θ θ θ θ θ
θ

−
⎛ ⎞ ⎡
⎜ ⎟ θ

⎤
⎢ ⎥= + −

⎜ ⎟ ⎢ ⎥⎝ ⎠ ⎣ ⎦
  (6.25) 

Thus the circumferential component of the radial coordinate of the imperfect shell is 

given by: 

( ) ( )2
2

for 
2

0 elsewher

s
s

R r
u 2

e

π πθ θ
θ

⎧ − − ≤⎪= ⎨
⎪⎩

≤

)

      (6.26) 

and the full imperfect geometry of the silo is generated by: 

( ) ( ) (2, sr y R u w yθ θ= −          (6.27) 

where us2(θ) and w(y) are given by Eqs 6.27 and 6.2 respectively. 

 

The parameters p, q, θa and θb must similarly be solved for numerically from the 

following four boundary conditions: 
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The arc length of the imperfect shell may be found by integrating the following equation 

numerically: 

2 22
2 2

2
0

s s
s

dx dys
d d

π

dθ
θ θ

⎛ ⎞ ⎛ ⎞= +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠∫        (6.28) 

 

If δ0 = 0, p = q = 2 and Eq. 6.24 generates a perfect shell, similar to Eq. 6.18. A 

flattened shape with the features similar to those in Fig. 6.10 is again obtained when p > 

2, q < 2 and δ0 > 0. The variations of the powers p and q, angles θa and θb and the 

normalised arc length of the imperfect shell with m and the notional imperfection 

amplitude δ0/t are presented in Fig. 6.20 to Fig. 6.22. These show very similar 

approximately linear relationships with δ0/t as the corresponding figures for the first 

superelliptical flattening imperfection, Fig. 6.14 to Fig. 6.16. The error in the arc length 

(after numerical integration of Eq. 6.28) increases with both m and δ0/t, but appears to 

be smaller than for the first imperfection form (Fig. 6.16), usually of the order of 1% or 

less. 

 

 
Fig. 6.20 − Typical variation of the powers p and q with δ0/t for the second 

superelliptical flattening imperfection form (R/t = 1000) 
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Fig. 6.21 − Typical variation of the angles θa and θb q with δ0/t (lowest value 0.0001) for 

the second superelliptical flattening imperfection form (R/t = 1000) 

 

 
Fig. 6.22 − Typical variation of the normalised arc length of the imperfect shell with δ0/t 

for the second superelliptical flattening imperfection form (R/t = 1000) 
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6.8.2 Initial GNIA parametric study of the second superelliptical imperfection 

form on a slender silo with the Rotter 1986 eccentric discharge pressure model 

The effect of the second superelliptical imperfection form on the buckling strength of 

Silo CS was analysed through a series of GNIA analyses using the Rotter (1986) 

eccentric discharge pressure model, in a manner similar to the previous analyses of the 

first superelliptical imperfection form.  

 

According to Fig. 6.19, the parameter m controls the extent of the secondary inward 

radial feature far away from the flow channel. To investigate what effect this feature 

may have on the GNIA load factor, the values of m were chosen to be 0.5, 1 and 2. The 

GNIA analyses were performed in the range of notional imperfection amplitudes of 0 ≤ 

δ0 ≤ 20t using, for consistency, the three recommended flow channel sizes in EN 1991-

4; kc = 0.25 (up to δ0 = 10t only), 0.40 and 0.60. The amplitude of 20t is a very high one 

when compared with the EN 1993-1-6 Section 8.7 imperfection amplitude for both 

meridional and circumferential compression of 3.162t and 14.7t respectively (Table 

6.1), but such high amplitudes were found to be necessary to obtain non-negligible 

strength reductions when analysing long-wave circumferential imperfection forms such 

as those considered here.  

 

The imperfection sensitivity curves, normalised by the respective GNA load factor for 

each of the flow channels (GNA = 0.28, 0.30 and 0.52 for kc = 0.25, 0.40 and 0.60 

respectively, Table 3.4) are shown in Fig. 6.23 to Fig. 6.25.  
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Fig. 6.23 − GNIA imperfection sensitivity curves for the second superelliptical 

imperfection form with kc = 0.25 and Rotter eccentric discharge pressures on Silo CS 

 

 
Fig. 6.24 − GNIA imperfection sensitivity curves for the second superelliptical 

imperfection form with kc = 0.40 and Rotter eccentric discharge pressures on Silo CS 
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Fig. 6.25 − GNIA imperfection sensitivity curves for the second superelliptical 

imperfection form with kc = 0.60 and Rotter eccentric discharge pressures on Silo CS 

 

The trend for m = 1 from these graphs is very similar to that of (na, nb) = (1, 1) for the 

first superelliptical imperfection form in Fig. 6.17. The second superelliptical 

imperfection form results in consistent decreases in the predicted buckling strength for 

both small and medium imperfection amplitudes over a wide range of flow channel 

sizes. At larger imperfection amplitudes of δ0 > 15, comparable with the EN 1993-1-6 

Section 8.7 amplitude of 14.7t for circumferential compression (Table 6.1), there is a 

reversal of the trend and the GNIA factor begins to rise. 

 

The predicted decreases in strength for m = 1 are smaller than those for (na, nb) = (1, 1). 

For example, at an amplitude of 5t, the normalised GNIA load factors for kc = 0.40 for 

the first and second superelliptical imperfection forms with m, na and nb equal to unity 

are 0.86 and 0.92 respectively. Additionally, where the GNIA factor begins to rise 

rather steeply at 8t for the first form, the rise occurs only after 12t for the second form 

and significantly less steeply. Thus the form of the superelliptical imperfection with no 

primary inward radial feature near the centre of the channel (Fig. 6.10 and Fig. 6.19) 

appears to have a significantly milder affect on buckling strength than a form which 

includes this radial feature. 
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The secondary inward radial feature should not be made smaller than the primary 

outward radial feature (Fig. 6.19), i.e. the value of m should not be set to smaller than 

unity, as doing this results in a less deleterious imperfection form (Fig. 6.25). For a 

more serious imperfection which results in lower predicted buckling strengths at low 

and mid-sized imperfection amplitude, though at a cost of causing a rise in the load 

factor at a lower value of δ0, m should be greater than unity. 

 

6.8.3 Additional GNIA parametric study of the second superelliptical imperfection 

form on a slender silo with the EN 1991-4 eccentric discharge pressure model 

The second superelliptical imperfection form was subsequently investigated in a set of 

GNIA analyses under the full EN 1991-4 eccentric discharge pressure model with the 

three recommended flow channel sizes of kc = 0.25, 0.40 and 0.60. This was done in 

order to verify the suitability of the imperfection for use with the original eccentric 

discharge model, similar to the study performed previously on the first superelliptical 

imperfection form (Fig. 6.18).  

 

The more serious of the imperfection forms identified in the previous section (m = 2) 

was analysed in the range of notional imperfection amplitudes of 0 ≤ δ0 ≤ 5t. Thus the 

secondary inward feature was assigned an actual deviation of 2δ0 at some coordinate 

(θb, y0), up to a maximum of 10t, though still below the EN 1993-1-6 Section 8.7 

amplitude of 14.7t for circumferential compression (Table 6.1).  

 

The imperfection sensitivity curves, normalised by the respective GNA load factor, are 

shown in Fig. 6.26. These curves suggest that the second superelliptical form is also 

similarly deleterious under the more serious EN 1991-4 eccentric discharge model. 

However, it also appears to be significantly more reliable when compared with the first 

superelliptical form in Fig. 6.18, as it does not produce any beneficial effect for the 

smallest flow channel of kc = 0.25, nor is there any apparent recovery in the buckling 

strength within the same range of δ0. On the basis of this, the second variant of the 

superelliptical imperfection form, with no inward radial feature near the centre of the 

flow channel, is here considered to be the imperfection form in which most confidence 

can be placed for the analysis of silos under eccentric discharge. A value m ≥ 1 should 

be used with this imperfection form, to increase its effectiveness. 
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Fig. 6.26 − GNIA imperfection sensitivity curves for the first superelliptical 

imperfection form with m = 2 and EN 1991-4 eccentric discharge pressures on Silo CS 

 

6.8.4 Final GNIA study of the second superelliptical imperfection form on a very 

slender silo with the EN 1991-4 eccentric discharge pressure model 

Since the second superelliptical imperfection form with m = 2 was found to be a good 

choice for a deleterious imperfection form under eccentric discharge, an additional 

verification was undertaken to determine whether this was also the case for a silo of a 

larger aspect ratio. Silo CVS (H/D = 5.2) was thus analysed with the full EN 1991-4 

eccentric discharge pressures for kc = 0.25, 0.40 and 0.60 in the range of 0 ≤ δ0 ≤ 4t. The 

imperfection sensitivity curves are shown in Fig. 6.27, normalised with the GNA load 

factor for the three channel sizes (which are 2.55, 0.49 and 0.37 for the three channel 

sizes respectively, Table 3.4).  
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Fig. 6.27 − GNIA imperfection sensitivity curves for the first superelliptical 

imperfection form (m = 2) and EN 1991-4 eccentric discharge pressures on Silo CVS 

 

The results shown in Fig. 6.27 confirm that the second superelliptical imperfection form 

with k = 2 does indeed cause significant strength losses in a silo with a higher aspect 

ratio. For the larger flow channels at, say, δ0 = 2t, kc = 0.40 and 0.60, the reduction in 

GNA load factor is almost 27% and 13% respectively. It may be the case that this 

imperfection form is more deleterious in more slender silos, since Silo CS (H/D = 3.0) 

did not exhibit such large strength reductions for m = 2, which were instead 8% and 2% 

at δ0 = 2t for kc = 0.40 and 0.60 respectively (Fig. 6.26). 

 

The curve for the small channel with kc = 0.25 is again slightly anomalous when 

compared to the others as it predicts an almost parabolic relationship for the GNIA load 

factor with δ0. The reasons for this are likely to be similar to those given in the previous 

section relating to the channel being too small to produce the characteristic eccentric 

discharge behaviour. Despite this, the second superelliptical imperfection form may still 

be considered damaging for kc = 0.25 because although the curve in Fig. 6.27 is seen to 

rise for δ0 > 2t, above the EN 1993-1-6 Section 8.7 design amplitude for meridional 

compression of 2.887t which would be used here in a strict interpretation of the 

standard, EN 1993-1-6 has a special provision in Clause 8.7.2(20) applicable to this 

very case. The analyst is thus required to verify that the load factor at a 10% smaller 

imperfection amplitude is not lower than the load factor at the full design amplitude. If 
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this is found to be the case, the analyst must adopt an iterative procedure to locate the 

base of the imperfection sensitivity curve, and would have done so here, though 

unfortunately this is a very onerous process. 

 

6.9 Conclusions 

In this chapter, proposals have been put forward for a consistently deleterious 

imperfection form for GNIA and GMNIA analyses under the EN 1991-4 eccentric 

discharge pressure distribution. The imperfection form consists of flattening of the silo 

wall adjacent to the flow channel, maximised at the base of the strake where buckling 

was predicted in a corresponding GNA or GMNA analysis. Each circumferential section 

of the imperfect shell geometry was expressed by the equation of a superellipse, the 

specific shape of which is a combination of inward and outward radial deviation 

features that have been extracted from deformed shapes predicted by finite element 

analysis under Rotter (1986) and EN 1991-4 eccentric discharge pressures. It is 

expected that this imperfection form will only be relevant under pressure patterns that 

are similar to those for eccentric pipe flow. The GNA deformed shape could not be used 

as an imperfection form directly due to amplified indentations occuring at the change of 

thickness near the critical buckling region, which were found to beneficial to the 

buckling resistance of the shell. 

 

Of the different shapes conceived for the imperfection form, the best form was decided 

on based on its performance in GNIA analyses. The most suitable superelliptical form 

assumes no departure from the ideal shape at the channel centre, an outward radial 

deviation near the channel edge and an inward radial deviation at larger circumferential 

coordinates. The imperfection form extends to 90° on either side of the centre of 

channel, beyond which the shell is assumed to be perfect. 

 

The inward radial component of the imperfection form, located away from the edge of 

the flow channel, should be emphasised as this was found to lead to lower predicted 

load factors. Curiously, emphasising the outward radial component, which is 

immediately adjacent to the flow channel and is an integral part the flattened portion, 

does not actually produce the desired weakening effect. It is therefore recommended 

that the amplitude of the inward radial component should be at least twice the outward 

radial component.  
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The shell geometries considered in this imperfection form are very complex, and it is 

currently not fully understood what the relationship is between the combinations of 

these radial features and the distributions of axial compressive membrane stresses 

responsible for the reductions in buckling strength. Now that the superellipse has been 

established as a possible imperfection form under eccentric discharge, further research 

is needed to investigate the behaviour in greater detail. 

 

The nature of the imperfection form proposed in this chapter is global, and it can be 

compared to an out-of-roundness or circumferential dimple tolerance. The amplitudes of 

the imperfection should therefore probably be defined in terms of the circumferential 

tolerance gauge, rather than the much shorter meridional gauge. This is currently only 

necessary where compressive circumferential stresses are explicitly being designed for, 

which would not be the case for either concentric or eccentric discharge. Consequently, 

it would require an amendment to the EN 1993-1-6 standard to make the design for 

compressive circumferential stresses mandatory. This may be necessary for long-wave 

circumferential imperfections such as those investigated in this chapter. 

 

The analyses presented in this chapter show that very large imperfection amplitudes are 

generally necessary to produce any significant decreases in the buckling strength under 

eccentric discharge, and that the imperfection form must be of a global nature in order 

to be effective. The silo under eccentric discharge may therefore be considered to have a 

very low imperfection sensitivity. 

 

On a final note, it should be added that eccentric discharge is by itself an extremely 

damaging phenomenon, resulting in predicted load factors that are only a fraction of 

those under concentric discharge. It may therefore be suggested that computational 

analyses of eccentric discharge could be limited to analyses of the perfect shell 

(GMNA). The decreases in buckling strength due to the superelliptical imperfection 

forms presented in this chapter are negligibly small in comparison with the buckling 

strength decreases already caused by eccentric discharge itself. 
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Chapter 7 – A mixed flow theory for the pressure distribution in silos 

during concentric and eccentric discharge 

 

7.1 Introduction 

In the preceding chapters, the pressure models for eccentric discharge relating to a 

parallel-sided truncated circular flow channel adjacent to the cylindrical silo wall have 

been studied. The formulation of this model was pioneered by Rotter (1986) and was 

recently incorporated into the European Standard, EN 1991-4 (2007). In itself, this 

already represents a major advance in this field, and has been shown to yield a wealth of 

information on the predicted behaviour of silos under the eccentric discharge 

phenomenon and, by extension, on the general behaviour of thin-walled shells under 

unsymmetrical non-uniform strip loads. Yet these models are unable to incorporate 

varying geometries or cross-sections, both for the flow channel itself and for the 

container in which the channel forms. Clearly, this poses severe limitations on the range 

of geometries and behaviours which may be investigated, as real flow channels may 

expand considerably from the outlet to cover the entire silo cross-section (Rotter, 

2001a).  

 

A novel mixed flow pressure theory is presented and expanded on here and in the 

remaining chapters of this thesis. It was first developed in the relatively unknown 

undergraduate thesis of Berry (1988) and presented in a conference by Rotter et al. 

(1990), but has not been published further since. It is based on the original application 

of vertical slice equilibrium to hoppers with inclined straight sides (Dąbrowski, 1957; 

Walker, 1966), generalised to varying channel slopes and truncated circular cross-

sections. The strength of the theory lies in the fact that it acknowledges from the outset 

that the resulting differential equations must be solved numerically. Consequently, it 

becomes unnecessary to make many of the habitual crude simplifications in order to 

force the equation to have an analytical solution, making the theory much more 

powerful.  

 

The theory presented here is applicable to flow channels of virtually any geometry and 

eccentricity. Additionally, though it is assumed here that the containing structure has a 

circular cross-section at any given level, the structure itself need not strictly be 
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cylindrical, though clearly cylindrical silos are the most common and will thus be the 

only ones considered here. It is possible to extend the theory to flow channels in conical 

containers (hoppers) and containers with other geometries. Additionally, the theory is 

not limited to a single channel, and it is possible to derive a more general model for 

multiple channels, which may or may not interact with each other, in a similar manner. 

 

7.2 Presentation of a new eccentric discharge vertical pressure theory 

7.2.1 Background 

A detailed introduction to flow patterns in silos may be found in Rotter (2001a) and 

Section 1.2.7 of the literature review. Based on the idealised patterns on Fig. 1.10 and 

Fig. 1.11, one may generalise the vertical profile of the flow channel geometry to follow 

a parabolic-like radial distribution, expressed by a power law in the general form r(y) = 

my(1/n) where m and n are constants and y is the vertical coordinate, centred at some 

radial eccentricity ec. This is demonstrated in Fig. 7.1 for four different flow patterns, 

with both shallow and steep sides. 

 

b) Concentric 
mixed flow 

(ConM) 
n ≈ 2 

y 

r(y) =  
my(1/n) 

R 

ec/R = 0 

a) Concentric 
pipe flow 
(ConP) 
n → ∞  

r(y) 

ec/R = 0 

y 

d) Eccentric 
mixed flow 

(EccM) 
n ≈ 2

r(y) 

ec/R > 0

y 

c) Eccentric 
pipe flow 

(EccP) 

ec/R > 0

r(y) 

y 

n → ∞  

Primary  
flow zone 

Secondary  
(stationary) 
flow zone 

 
Fig. 7.1 – Modelling of idealised flow patterns 

 

Early experimental evidence at the University of Sydney (Fleming, 1985; Fitz-Henry, 

1986), related work (Berry, 1988; Rotter et al., 1990) and more recent experimental 

studies at Edinburgh (Watson, 2010; Zhong et al., 2010) suggest that the power law 

generalisation of the vertical profile is a valid approach to modelling flow channel 

geometries. For the form suggested above, n = 1 generates a conical channel form, n = 2 
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generates a parabolic form while as n → ∞ the channel sides become progressively 

vertical and straight.  

 

Parabolic profile forms were used by Berry (1988) in the first investigations of the new 

pressure theory. Furthermore, it has been observed in the above literature and in other 

studies (e.g. Kvapil, 1959; Deutsch and Clyde, 1967; Kroll, 1975; Leczner, 1963; 

Hampe, 1987; Sielamowicz and Kowalewski, 2007), that an ellipsoidal/parabolic form 

with n ≈ 2 is a very close approximation of a typical flow channel profile, since 

measured flow channels tend to expand away from the outlet to produce a wider profile 

(Fig. 7.2). Profiles with n < 1 are rarely seen (e.g. Martens, 1988) and it is not certain 

whether these descriptions are truly genuine given the difficulties inherent in measuring 

flow channel profiles. Clearly, such a general model allows a high degree of control 

over the shape and position of the channel, and opens up new possibilities for analysis. 

 

 
Fig. 7.2 – Schematics of two observed sets of phases of flow channel development in 

square cross-section silos showing parabolic-like channel profiles, from Kvapil (1959) 

and Hampe (1987) 
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7.2.2 Generalised flow channel geometry 

The mixed flow pressure theory is introduced here with a description and definition of 

the full geometry of both the silo and the profile of the flow channel. The flow channel 

geometry is idealised in terms of three possible flow regions, presented in Fig. 7.3, for 

four distinct or ‘fundamental’ types of flow (Fig. 7.3 is a 3D version of Fig. 7.1): 

concentric pipe flow (ConP), concentric mixed flow (ConM), eccentric parallel or taper 

pipe flow (EccP) and eccentric mixed flow (EccM). It is assumed in this theory that 

both top the surface of the solid and the base of the silo are perfectly flat, and both the 

silo and the outlet cross-sections are circular. If the filling surface is not flat in the 

application, an equivalent surface should be assumed as is currently done for Janssen 

analyses. A plane of axial symmetry is present through the coordinates θ = 0° and 180°. 

 

 
Fig. 7.3 – Idealised flow patterns and their relation to proposed flow regions  

 

Three possible flow regions are defined as follows, assuming all three are present for a 

particular flow pattern (e.g. EccM on Fig. 7.3). Moving away from the outlet, there is a 

vertical portion of the silo in which the flow channel is assumed to be fully internal and 

has a fully circular cross-section; this is named the ‘Hopper Region’ or Region 1, as the 

internal flow channel may be thought of as an ‘internal’ hopper. As the channel widens 

moving further up the silo, it eventually intersects the wall at θ = 0° where a new region 

is assumed to begin. The new region is named the ‘Transition Region’ or Region 2, and 

the flow channel has a truncated circular cross-section with a partial circumferential 

contact with the silo wall. In Region 2, the axial position of the effective transition 

varies around the circumference. Moving further up the silo, the far side of the channel 
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eventually also intersects the wall at θ = 180°, at which point the channel now extends 

across the entire silo cross-section and there is no longer any stationary solid present; 

this is named the ‘Cylindrical Region’ or Region 3. The silo is under mass flow in this 

region. 

 

Naturally, if the flow is concentric (e.g. ConM on Fig. 7.3), the channel-wall intersect 

and therefore the entire effective transition is located at the same level around the full 

circumference, and there is no Region 2. Alternatively, if the channel is very steep, i.e. a 

rathole or pipe flow, Region 1 may exist over the entire silo height if the flow is 

concentric (e.g. ConP) or, if eccentric, may eventually come into contact with a narrow 

strip of the wall (e.g. EccP) entering into Region 2. If maximum eccentricity is assumed 

instead, the flow enters straight into Region 2 directly above the outlet. 

 

y-coord. 

z = 0 

z-coord. 

z = z23 

z = z12 

z = H 

y = 0; Virtual origin of 
flow channel function

y = y0; Outlet position 
and base of silo 

y = y12 

y = y23 

y = H+y0 

R R

β(y)  
or β(z) 
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Flowing 
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the flow channel 
beyond the boundary 
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Initial value of  
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Initial value of flow 
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qc = 0 
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z = H+y0 
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eC 

θ = 180°                 θ = 0°
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qc = 0 

Cylindrical 
silo wall 

Region 3  
‘Cylindrical’ 

Region 2  
‘Transition’ 

Region 1 
‘Hopper’  

Region 0  
‘Virtual’ 

 
Fig. 7.4 – Silo region and coordinate system definition 

 

A slice through the plane of symmetry identified on Fig. 7.3 is shown in Fig. 7.4. This 

figure is annotated with an algebraic definition of the assumed geometry and coordinate 

systems. The global and local positions of the channel sides, r and rc, are defined in 

terms of the vertical coordinate which itself may be defined as starting from the base of 

the silo, y, or the top, z (Eqs 7.1 and 7.2, following the conventions introduced in Fig. 

1.20). The slope of the flow channel to the vertical is given by β (Eq. 7.3). The vertical 
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pressures in the flow channel and the stationary solid are assigned the notation qc and qs 

respectively.  

 

The required input parameters are the silo height and radius, H and R respectively, the 

outlet eccentricity ec, the steepness of the flow channel profile n and the circular outlet 

radius r0. All other geometric parameters are calculated from these. Additionally, the 

granular solid properties which are required include the fully-developed wall and 

internal friction coefficients, μw and μi = tanφi, the wall pressure ratio K and the unit 

weight γ. In terms of the EN 1991-4 (2007) terminology, these should be the upper 

characteristic granular solid properties. 

 

To ensure that the outlet radius has a non-zero value r0, the y coordinate system was 

arranged so as to place the origin y = 0 of the flow channel curve (the ‘virtual origin’) at 

some distance y0 below the base of the silo. The outlet is thus located at y = y0, and the 

region between the virtual origin and the outlet is named the ‘Virtual Region’ or Region 

0. It is not included in any calculations, as it is assumed that the integration terminates at 

the outlet. The location of the virtual origin is dependent on the assumed granular solid 

properties of the flow channel, the channel steepness n and the desired outlet radius r0. 

Its derivation is presented shortly. The z coordinate system is arranged so that the (flat) 

surface of the solid is at the coordinate z = 0, the outlet at z = H and the virtual origin at 

z = H + y0. This is annotated on Fig. 7.4. 

 

The local radial coordinate rc of the flow channel profile is given by: 

( ) ( )
1
ncr y m y=  or ( ) ( )

1

0 ncr z m y H z= + −       (7.1) 

The global radial coordinate r through the symmetry plane, defined as being zero at θ = 

180° on the wall opposite the outlet (though this is not so important), is thus given by: 

( ) ( )c cr y R e r y= + ±  or ( ) ( )c cr z R e r z= + ±      (7.2) 

The slope of the flow channel is given by: 

( ) ( )
1

1tan
n

n
my y
n

β
−

− ⎡ ⎤
= ⎢ ⎥

⎣ ⎦
 or ( ) ( )

1
1

0tan
n

n
mz y H
n

β
−

− z
⎡ ⎤

= + −⎢ ⎥
⎣ ⎦

   (7.3) 

The parameter m represents the ‘expansivity’ of the flow channel and is dependent on 

the location of the outlet above the virtual origin y0 and on the outlet radius r0. It is 

given by: 
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( )
1

0 0 nm r y −=           (7.4) 

The axial location of the boundary between Regions 1 and 2 is given by: 

 12 0
cR ey y

m
−⎛ ⎞= −⎜ ⎟

⎝ ⎠
 or 12 0

cR ez H y
m
−⎛= + −⎜

⎝ ⎠
⎞
⎟      (7.5) 

Additionally, the axial location of the boundary between Regions 2 and 3 is given by: 

23 0
cR ey y

m
+⎛ ⎞= −⎜ ⎟

⎝ ⎠
 or 23 0

cR ez H y
m
+⎛= + − ⎜

⎝ ⎠
⎞
⎟      (7.6) 

If the flow is concentric, then Region 2 does not exist and Eqs 7.2.5 and 7.2.6 naturally 

give the same result. The coordinate ranges for the flow regions are summarised in 

Table 7.1.  

 

Table 7.1 – Summary of region definitions and description 

Region ↑ +ive, y range ↓ +ive, z range Description 

0 0 ≤ y ≤ y0 H ≤ z ≤ H+y0 Ignored region below channel outlet 

1 y0 ≤ y ≤ y12 z12 ≤ z ≤ H Fully-internal flow channel 

2 y12 ≤ y ≤ y23 z23 ≤ z ≤ z12 Partially-internal flow channel 

3 y23 ≤ y ≤ H+y0 0 ≤ z ≤ z23 Axisymmetric mass flow 

 

7.2.3 Assumptions regarding material properties 

It is assumed that, for vertical solid-wall interfaces, the mean pressure normal to the 

wall is related to the mean vertical pressure in the granular solid through a constant 

lateral pressure ratio, K. This ratio may be different depending on whether the solid is 

stationary (Ksw) or flowing (Kcw). The ratio of the mean horizontal and vertical pressures 

within the flow channel itself was assigned the term Kc. These values are left open here 

and will be decided on during implementation, but it is important to note at this point 

that this is a very basic assumption for the lateral pressure ratio. 

 

All vertical solid-wall interfaces are assumed to carry the same constant wall friction 

coefficient, μw, which relates the frictional traction on the wall to the normal pressure on 

that interface. The wall friction is assumed to be fully-developed in all cases. 

 

For inclined stationary-flowing solid interfaces, it is assumed that mean pressure normal 

to the interface is related to the mean vertical pressure in the flowing solid through a 

normal pressure ratio akin to that for hoppers, F. It will be shown shortly that the value 
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of F is dependent on the local slope of the flow channel profile, β, and is obtained by 

considerations of local equilibrium.  

 

All inclined stationary-flowing solid interfaces are assumed to carry the same internal 

friction coefficient, μi, which relates the frictional traction on the interface to the normal 

pressure on that interface. The internal friction coefficient is obtained from the internal 

friction angle of the granular solid through the usual relation μi = tan φi. 

 

It was assumed in this study that there is no radial variation in pressures within either 

the stationary or flowing solid, regardless of position. This aspect will be explored in 

Appendix B with an elasticity theory solution. 

 

7.2.4 Derivation of geometry components per flow region 

Due to the nature of the calculations involved in this theory, it is significantly easier to 

integrate the differential equations if they are written in terms of the downwards 

positive z coordinate system. Additionally, each of the three flow regions defined in the 

preceding section requires different expressions for the area, perimeter and angular 

components. The flow channel is fully-circular and therefore very simple to define for 

Regions 1 and 3, but it is only partially internal in Region 2, for which a more complex 

truncated circular cross-section is defined in Fig. 7.5. The full set of geometric 

components are summarised in Table 7.2. 

 

The cross-section through Region 2 has the following geometric properties: 

( ) 2 2 sinc c c cA r R e R cπ ψ θ= − + − θ        (7.7) 

2
s cA Rπ= − A           (7.8) 

2 2 2
1cos

2
c c

c
c

R e r
e R

θ − ⎛ ⎞+ −
= ⎜

⎝ ⎠
⎟         (7.9) 

1sin sin c
c

R
r

ψ θ− ⎛ ⎞
= ⎜

⎝ ⎠
⎟          (7.10) 

where rc, ψ, θc (and therefore Ac and As) are functions of z. It is clear that the sine rule 

was used to derive ψ from θc, and care must be taken to ensure that the angle ψ falls into 

the correct quartile. A transformation ψ → π – ψ may be necessary. 
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Fig. 7.5 – Channel geometry definition for Region 2 

 

Table 7.2 – Region-dependent area and perimeter components 

 Description Region 1 Region 2 Region 3 

Uwc Perimeter between silo wall and flow channel 0 2θcR 2πR 

Uws Perimeter between silo wall and stationary solid 2πR 2(π – θc)R 0 

Usc Perimeter between stationary solid and flow channel 2πrc 2(π – ψ)R 0 

Ac Cross-sectional area of flow channel πrc
2 Eq. 7.7 πR2 

As Cross-sectional area of stationary solid always πR2 – Ac 

θc Flow channel wall contact angle w.r.t silo centre 0 Eq. 7.9 2π 

ψ Flow channel wall contact angle w.r.t channel centre 0 Eq. 7.10 2π 

 

7.2.5 Derivation of ordinary differential equations governing the solid pressures 

per flow region 

7.2.5.1 Overview 

The derivations of the ordinary differential equations governing the flow channel and 

stationary solid pressures are presented in the follows sections. Vertical equilibrium of a 

slice of granular material (assumed to be a continuum) with infinitesimally small 

thickness dz is resolved through each of the three different flow regions defined in Fig. 

7.4. Regardless of the form of the flow channel profile, a straight slope is assumed 

between the two meridional boundaries of any elemental slice ztop = z and zbot = z + dz. 

The slope of each slice β(zm) is given by Eq. 7.3 where zm is the z coordinate at the 

middle of the slice, such that zm = ½(ztop + zbot). 
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7.2.5.2 Region 1 - Vertical equilibrium through a slice of the silo cross-section 

The slice equilibrium analysis for the fully-internal channel (Region 1) is summarised in 

Fig. 7.6. 

qs qc 

ecR 

 
Fig. 7.6 – Elemental slice equilibrium and assumptions of Region 1 

 

Resolving the vertical equilibrium of the flow channel component results in: 

:   c c top cq A Vγ−↓ +∑  

( ) ( ):   sin cos
cosc c c bot c i sc

dzq dq A q FUβ μ β
β−↑ + + +∑  

Equating these and incorporating the accompanying assumptions leads to the following 

differential equation governing the vertical pressure in the flow channel in Region 1: 

( )tan
2

c top c bot c top c bot sc
c c c i

c bot c bot c bot

A A A A U dzdq q dz q F
A A

γ β− − − −

− −

− +⎛ ⎞ ⎛ ⎞
= + − +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ A
μ

−

  (7.11) 

 

Resolving the vertical equilibrium of the stationary solid component yields: 

( ):   sin cos
coss s top s c i sc

dzq A V q FUγ β μ β
β−↓ + + +∑  

( ):   s s s bot s w sw wsq dq A q K U dμ−↑ + +∑ z  

The corresponding differential equation governing the vertical pressure in the stationary 

solid in Region 1 is thus obtained in a similar manner: 

( )

...
2

          tan

s top s bot s top s bot
s s

s bot s bot

ws sc
s w sw c i

s bot s bot

A A A A
dq q dz

A A
U dz U dzq K q F
A A

γ

μ β μ

− − − −

− −

− −

− +⎛ ⎞ ⎛
= +⎜ ⎟ ⎜

⎝ ⎠ ⎝

− + +

⎞
⎟
⎠       (7.12) 

 

qs + dqs qc + dqc

ztop = z 

Ksw, μw 

γ γ 

rc(zbot)

Vs Vcps ps

τs τs

F, μiF, μi

Ksw, μw

ptpt

Flowing 
solid 

pn
pt

pn

pt

β(zm)

pnpn

Assumptions: 
τs = μwps 
ps = Kswqs 
pt = μipn 
pn = Fqc 

zbot = z + dz 
zm = ½(ztop+zbot) 
dz → 0 

rc(ztop) Ac-top = πrc(ztop)2 
As-top = πR2 – Ac-top Stationary 

solid 

Vc = ½(Ac-top + Ac-bot)dz
Vs = ½(As-top + As-bot)dz 

Ac-bot = πrc(zbot)2 

As-bot = πR2 – Ac-bot 
β(zm)
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7.2.5.3 Region 1 - Local equilibrium at the interface of the flowing and static solid 

Local equilibrium of a triangular element of the flow channel at the interface to the 

stationary solid is shown in Fig. 7.7. 

 

 
Fig. 7.7 – Local equilibrium within the flowing solid at the stationary solid interface in 

Region 1 with relevant assumptions 

 

Resolving the vertical equilibrium leads to the following equations: 

:   cq dr↓∑  and c:   sin cosn tdz p ds p dsτ β β↑ + +∑  

Resolving the horizontal equilibrium leads to these equations: 

:   cosc ndr p dsτ β→ +∑  and :   sinc tp dz p ds β← +∑  

Equating, incorporating the accompanying assumptions and rearranging leads to the 

following condition for the normal wall pressure ratio within the internal hopper: 

 
2

2

tan
tan 2 tan 1

c

i

KF β
β μ β

−
=

+ −
        (7.13) 

Thus the normal wall pressure ratio is a function of the local flow channel slope, the 

internal friction angle and the lateral pressure ratio of the solid. 

 

7.2.5.4 Region 2 - Vertical equilibrium through a slice of the silo cross-section 

The slice equilibrium analysis for the partially-internal channel (Region 2) is 

summarised in Fig. 7.8. 

β(z)

dz

drqc
ds 

pc
pn 

pt 
τc

Assumptions: τc
τc = μipc 
pc = Kcqc 
pt = μipn 
pn = Fqc 
qc  = qc(z) 
 
dr = ds sin β 
dz = ds cos β 
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qs qc

 
Fig. 7.8 – Elemental slice equilibrium and assumptions of Region 2 

 

Resolving the vertical equilibrium of the flow channel component results in: 

:   c c top cq A Vγ−↓ +∑  

( ) ( ):   sin cos
cosc c c bot c w cw wc c i sc

dzq dq A q K U dz q FUμ β μ β
β−↑ + + + +∑  

Equating and incorporating the accompanying assumptions leads to the ordinary 

differential equation governing the vertical flow channel pressure in Region 2: 

( )

...
2

         tan

c top c bot c top c bot
c c

c bot c bot

wc sc
c w cw c i

c bot c bot

A A A A
dq q dz

A A
U dz U dzq K q F
A A

γ

μ β μ

− − − −

− −

− −

− +⎛ ⎞ ⎛
= +⎜ ⎟ ⎜

⎝ ⎠ ⎝

− − +

⎞
⎟
⎠       (7.14) 

The equation for dqs is the same as for Region 1 (Eq. 7.12) though the expressions for 

the geometric components will be different (Table 7.2). 

 

7.2.5.5 Region 3 - Vertical equilibrium through a slice of the silo cross-section 

The slice equilibrium analysis for the channel covering the full silo cross-section 

(Region 3) is summarised in Fig. 7.9. Note that this is effectively the Janssen derivation. 

qs + dqs qc + dqc

ztop = z 

Ksw, μw 

R ec

γ γ 

rc(ztop) Ac-top = Ac(ztop)  

rc(zbot)

Vs Vc

(Eq. 7.7) 
As-top = πR2 – Ac-top 

Ac-bot = Ac(zbot)  
As-bot = πR2 – Ac-bot 

Vc = ½(Ac1+ Ac2)dz
Vs = ½(As1+ As2)dz ps pc

τs τc

Assumptions: 
τs = μwps 
ps = Kswqs 
pt = μipn 
pn = Fqc 
τc = μwpc 
pc = Kcwqc 

F, μi

Kcw, μw

pn

pn

pt

pt

Stationary 
solid 

Flowing 
solid 

β(zm)zbot = z + dz 
zm = ½(ztop+zbot) 
dz → 0 
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qc

R ztop = z Ac-top = πR2 Flowing 
solid As-top = 0 

 
Fig. 7.9 – Elemental slice equilibrium and assumptions of Region 3 

 

Resolving the vertical equilibrium of the flow channel component results in: 

:   c c top cq A Vγ−↓ +∑  

( ):   c c c bot c w cw wcq dq A q K U dμ−↑ + +∑ z  

Equating and incorporating the accompanying assumptions leads to the ordinary 

differential equation governing the vertical flow channel pressure in Region 3: 

2
c top c bot c top c bot wc

c c c w cw
c bot c bot c bot

A A A A U dzdq q dz q K
A A

γ μ− − − −

− −

− +⎛ ⎞ ⎛ ⎞
= + −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ A −

 

This is a reduced version of Eq. 7.12 without the term describing the shear at the 

interface between the stationary and flowing solids. With the proper substitutions for the 

area and perimeter terms, this equation may be solved analytically to give the Janssen 

equation. As the vertical pressure in the stationary solid is not defined for Region 3, 

there is corresponding equation for dqs. 

 

7.2.6 Specification of boundary conditions 

7.2.6.1 BC1 - top surface condition 

The vertical pressure within the flow channel and stationary solid (if present) are 

assumed to be zero at the top surface, which is also assumed to be flat. Hence: qc(0) = 

qs(0) = 0.  

 

7.2.6.2 BC2 - intersection condition 

Where the stationary solid does not reach the surface, its starting value of vertical 

pressure, qs-23, is a function of the local vertical pressure in the flow channel qc-23 based 

on local equilibrium of a triangular element of stationary solid at the boundary between 

qc + dqc

zbot = z + dz 
dz → 0 

Kcw, μw 

γ Vc

Ac-bot = πR2 
As-bot = 0 

Vc = πR2dz 

Vs = 0 pc pc

τc τcAssumptions: 
τc = μwpc 
pc = Kcwqc 

 

Kcw, μw
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Regions 2 and 3 (Fig. 7.10). For the special case of concentric discharge, Region 2 is 

not present and this will instead be the boundary between Regions 1 and 3. 

 

 
Fig. 7.10 – Local equilibrium within the stationary solid at effective transition: the 

boundary of Regions 1 and 2 or Regions 1 and 3 

 

Resolving the vertical equilibrium of the triangular element leads to: 

23 23:   s sq dr dzτ− −↓ +∑  and 23 23 23 23:   sin cosn tp ds p dsβ β− −↑ +∑  

Therefore:  

( )
( )

23
23 23 23

23

tan
tan

i
s c

w sw

q q F
K

β μ
β μ− −

+
=

+
       (7.15) 

where z23 is the z coordinate of the boundary between Regions 2 and 3, β23 is the 

channel slope at this boundary and F23 = F(β23) is the normal pressure ratio for the 

internal hopper at this boundary. The equation for F(β) is presented in Eq. 7.13. If there 

is no Region 2 in the flow pattern, the values for qc-13, z13, β13 and F13 are used instead to 

give qs-13. 

 

7.2.6.3 BC3 - outlet condition 

It is assumed that the granular solid is in free fall at the base outlet, and it must be 

ensured that the vertical pressure in the flow channel falls to zero at this location. 

Returning to the internal hopper normal wall pressure ratio, Eq. 7.13, it is clear that this 

equation has the potential to lead to a singularity and consequently to a value of zero 

vertical pressure in the flow channel. Setting the denominator of this equation equal to 

zero, solving the resulting quadratic equation and taking only the positive root results in 

the following condition for the critical value of the flow channel slope, β0. 

2
0tan tan 1 tani iβ φ φ= + −  where tani iμ φ=  

β23 
dz 

ds

Assumptions: 
τs-23 = μwps-23 
ps-23 = Kswqs-23 
pt-23 = μipn-23 τs-23 pn-23 pn-23 = Fqc-23 

 ps-23 pt-23  
dr = ds sin β23 
dz = ds cos β23 
 qs-23

dr
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The value may be written in a different form: 0 4 2
iφπβ = −     (7.16) 

The critical flow channel slope is dependent only on the angle of internal friction. The 

height above the flow channel origin at which this value is reached can be derived from 

Eqs 7.3 and 7.4:  

0
0

0tan
ry

n β
=           (7.17) 

At this location, the vertical pressure in the flow channel must fall to zero and this must 

therefore be the location of the outlet. The outlet radius r0 has been incorporated into 

Eq. 7.17 so that the flow channel radius at y = y0 or z = H is ensured to be r0. It was 

mentioned previously that the z coordinate system was defined in relation to the virtual 

origin so that z = 0 is at the top of the silo and z = H is at the outlet (Fig. 1.20 and Fig. 

7.4). 

 

7.2.6.4 BC4 - steepness condition 

A direct consequence of BC 3 above, the entire flow channel assumes the critical slope 

angle of β0 if the channel is conical (n = 1), and the wall pressure ratio of the internal 

hopper becomes infinite everywhere. This is evident from Eqs 7.2 and 7.17: 

1 1 0
0

0

1tan tan
m

ρβ β
ξ

− −= = =   

The power of the flow channel profile n therefore cannot be less than or equal to unity: 

n > 1. Though this is a minor limitation of this theory, in practice it is not known 

whether a channel can genuinely assume a profile with n < 1.  

 

7.2.6.5 Constraint on the maximum eccentricity 

The following is not considered as a boundary condition per se, but should nonetheless 

be satisfied when defining the initial geometry if a fully-circular outlet is desired. In this 

case, the eccentricity ec cannot be such that the outlet circle itself becomes truncated, 

thus the maximum permissible eccentricity must be one outlet radius short of the silo 

radius. In algebraic terms: ec ≤ R – r0. It should be added that, when ec = R – r0, there is 

no Region 1 flow. 

 

7.2.7 Obvious limitations of this theory 

The system has only one degree of freedom and consequently one of the most 

significant limitations of this new theory is the fact that it only considers vertical 
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equilibrium to calculate the vertical pressures in the flow channel and the stationary 

solid. These are then assumed to be constant throughout the given component at any one 

vertical coordinate. This implies, for example, that a narrow strip of stationary solid will 

have the same vertical pressure, and therefore will exert the same normal pressure on 

the wall, as a large concentration of stationary solid at the same level. Additionally, if 

the channel is fully internal, the pressures everywhere will be exactly the same 

regardless of whether the channel is fully concentric or almost touching the wall.  

 

It is not possible to address this limitation without going deeply into the radial and 

circumferential equilibrium considerations of what is a very complex curved planar 

body. Such an analysis, using elasticity theory, is presented in Appendix B for 

completeness. It requires the use of bipolar coordinates and stress functions (complex-

number potentials), and is extremely unwieldy in its application. Instead of broadening 

the range of possible uses that this new pressure theory would have, incorporating an 

additional layer of such complexity would instead most likely limit its appeal.  

 

7.3 Initial analytical investigation: Numerical procedure and assumed 

material properties 

The ramaining sections of this chapter explore some of the vast range of possible 

solutions to the differential equations derived above governing the vertical pressure in 

the stationary and flowing solids. The changes in the vertical solid pressure dqs and dqc 

are effectively controlled by just two equations throughout the entire silo (Eqs 7.12 and 

7.14), with region-specific expressions for the area and perimeter components (Table 

7.2). 

 

The solutions to these differential equations have no discontinuities and hence do not 

require very small step sizes for adequate accuracy. Since computing power is 

inexpensive, a simple Euler integration scheme was assumed, with a relatively modest 

step size dz of 10-4R: 

( ) ( ) (q z dz q z dq z+ = + )         (7.18) 

The results in this section are presented both in terms of the vertical pressure in the flow 

channel and stationary solid, and in terms of the pressure acting normal to the silo wall. 

To this end, the lateral pressure ratio which includes both plastic and shearing failure of 

the granular solid was assumed in all calculations (AS 3774, 1996), given by: 
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2 2 2

2 2

1 sin 2 sin cos
4 cos

i i w
sw cw

w i

K K
2

iφ φ μ φ
μ φ

+ − −
= =

+
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Within the flow channel the solid is essentially shearing on itself, corresponding to a 

silo with ideally rough walls such that μw = tanφi. In this case, the above simplifies to: 
2

2

1 sin
1 sin

i
c

i

K φ
φ

−
=

+
         (7.20) 

A discussion of the origin of the lateral pressure ratio may be found in the literature 

review, Section 1.2.3. 

 

The following set of generic material properties was adopted for the purposes of these 

initial investigations: γ = 9 kN/m3, μw = 0.44 and φi = 33.6º. Though these are clearly the 

upper characteristic values for wheat from Annex E of EN 1991-4 (2007), they are in 

fact reasonably representative of a wider range of solids. Over 70% of the materials 

listed in Annex E have solid properties within one standard deviation of the overall 

mean of that property. The above values may therefore be considered representative of 

at least wheat, sugarbeet pellets, sugar, sand, potatoes, maize, limestone, hydrated lime, 

coke, coal, powdered coal, cement and alumina. The material properties were kept 

constant throughout the analyses presented here, so that the effects of changes in flow 

channel geometry may be isolated and studied with clarity. 

 

It should be noted that the relationship between channel geometry and material 

properties is currently unknown. It seems likely that the internal angle of friction φi may 

play an important role, since it appears in the equation for the critical channel angle β0 

(Eq. 7.15). Additionally, though a higher unit weight and a smoother wall may increase 

the magnitudes of the vertical solid pressures significantly, the actual axial distribution 

of these will not change significantly, especially when normalised by the local Janssen 

value. Furthermore, one may conclude from the initial study of this theory by Berry 

(1988) that variations in material properties have a minimal effect on the forms of the 

pressure distributions when compared to variations in the flow channel geometry, which 

have a radical effect.  
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7.4 Parametric studies of concentric flow patterns in a slender silo 

7.4.1 Fully-internal concentric flow - variation of the outlet size 

A slender silo with H/D = 5.2 was investigated first under fully-internal concentric flow 

(ConP, Fig. 1.1). The power of the channel shape was set constant at n = 2, while the 

outlet size was varied from a value of r0/R = 4×10-4 (which generates a very steep, 

narrow channel) to 8×10-2 (which generates a wider, shallower channel that covers just 

about the whole silo cross-sectional area), which constitutes a representative range. The 

flow channel profiles corresponding to these two outlet sizes are shown in Fig. 7.11, and 

the full suite is shown in three-dimensions in Fig. 7.12. It is clear that the entire range of 

channels is in Region 1 flow only and there is no effective transition anywhere on the 

silo wall. 

 

 
Fig. 7.11 – Profile outlines of the narrowest and widest investigated fully-internal 

concentric channel, with constant power n = 2 

 

It can be seen in Fig. 7.11 that the actual steepness of the channel profile according to 

the mixed flow theory depends not only on the power of the distribution n but also on 

the outlet size r0, since both of these parameters control the location of the virtual origin 

y0. If it is desired that only the power n controls the channel steepness then the outlet 

size must be kept constant throughout. 
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Fig. 7.12 – Three-dimensional channel and silo surfaces for the fully-internal suite of 

concentric channels, with constant power n = 2 

 

The vertical pressures in both the flow channel and stationary solid are shown in Fig. 

7.13 as a function of the outlet size. Clearly, the narrowest channel has a negligible 

influence on the pressure in the stationary solid, which effectively remains at the 

Janssen value (the green curve for r0/R = 4×10-4 for the stationary solid pressure is not 

even visible). As the channel spreads out to cover a wider portion of the cross-sectional 

area of the silo, the vertical pressures in both the flow channel and stationary solid 

increase accordingly. However, in the part of the stationary solid below z/H ≈ 0.65, a 

decrease in pressure is found instead. At the base of the silo, the vertical pressure for the 

widest channel r0/R = 0.08 is predicted to have fallen to 88% of the base Janssen value, 

most likely as a result of the low flow channel pressure near the outlet. The Janssen 

equation by itself cannot predict this fall in vertical pressure near the base. Decreases in 

lateral pressure near the base of the silo under concentric discharge have been reported 

in the studies on square silos of Klopsch (1972), Gopalakrishnan (1978) and Kamiński 

and Zubrzycki (1981), and are of a similar order of magnitude. The results of the latter 

are demonstrated in Fig. 7.14 (based on the interpretation of Hampe, 1987) and show 

the pressure decrease quite clearly, in both model and full-scale silos.  
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The reported results mentioned above, like very many others in this field, should be 

treated with caution as it is difficult to ascertain exactly what it was that these authors 

measured and how they processed the corresponding results. It was mentioned in 

Section 1.2.6 of the literature review that experimenters usually confined their 

measurement to a single circumferential pressure cell and tended to report only on the 

measured peak pressure at that single point (Rotter, 2007a). As a consequence, 

confidently relating the predictions of the mixed flow pressure theory to ‘measured’ 

results is a difficult and risky process.  

 

 
Fig. 7.13 – Vertical pressure in the flow channel and stationary solid under a widening 

internal concentric channel 

 

Although the effect of internal pipe flow on the wall pressures is seen to be relatively 

minor, the actual shape of the axial distribution of the flow channel pressures (Fig. 7.13) 

is significant. It was previous explained that the precursor pressure models of eccentric 

discharge (Rotter, 1986; EN 1991-4, 2007) assumed parallel sides for the flow channel. 

The vertical pressure in the flow channel was therefore predicted to start at zero at the 

solid surface and tend to an asymptotic value with depth as there was no boundary 

condition of zero vertical stress at the base outlet. This is clearly not the case when the 

outlet boundary is incorporated (BC3), and the current mixed flow pressure theory 

instead predicts an expansion of the channel moving up from the outlet and 

consequently a rise in channel pressures with height. A few more detailed experimental 
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studies have reported that this may well be the case in reality (e.g. Ravenet 1976; Ooi et 

al., 2005). 

 

 
Fig. 7.14 – Reported results of an experimental study by Kamiński and Zubrzycki 

(1981), processed by Hampe (1987), showing the normal pressure distribution under 

concentric discharge and decreased pressures above the outlet 

 

Solids which pack very loosely upon filling generally tend to form very wide channels 

during discharge, while densely-packed or slightly cohesive solids tend to form steeper 

flow channels (Rotter, 2001a; Zhong et al., 2001). In funnel flow silos storing cohesive 

solids, steep channels may discharge completely while the adjacent solid remains 

stationary, a condition which arrests the flow entirely and is known as a ‘rathole’. This 
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would lead to a state of zero vertical stress in the now non-existent flowing solid, and it 

is likely that the surrounding stationary solid would retain the shape of a Janssen 

distribution for a silo of a smaller equivalent cross-sectional area (compare with Fig. 

7.13). 

 

A different outlook on the predicted effects of a widening internal flow channel is 

obtained when the normal wall pressure is made dimensionless by the local Janssen 

value, shown in Fig. 7.15. As the channel expands, a bulge is seen to develop near the 

top of the silo, increasing the normal wall pressure by over 50% for the largest channel. 

By contrast, the decrease at the base may be by as much as 15%. Note that this figure is 

based on the assumption of a constant value of K, which is unlikely to be the case in 

practice (e.g. Reimbert, 1961; Blight, 2006). 

 

 
Fig. 7.15 – Dimensionless normal wall pressure under an internal concentric channel 

 

The mixed flow pressure theory suggests that the predicted increases in normal 

pressures due to larger internal channels, though not likely to be very deleterious to the 

strength of the silo, may contribute to early yielding in upper parts of the silo wall due 

to the destabilising effect of high internal pressure (Eq. 1.20), thus exacerbating a 

potential elephant’s foot failure mode at the base of a weaker strake (Rotter, 2006). This 

may be problematic since the wall is usually thinner in the upper region of a silo, having 

been designed for lower local Janssen pressures. 
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7.4.2 Mixed concentric flow - further variation of the outlet size 

This second study investigated the effect of mixed concentric flow (ConM, Fig. 7.1) on 

the same slender silo, H/D = 5.2, as in the previous section. The power of the channel 

shape was set constant at n = 1.2, which generates significantly shallower profiles than 

n = 2. The outlet size was varied from r0/R = 4×10-5 (which generates a fully-internal 

channel, but one covering almost the entire silo cross-section) to 0.2 (where the silo is 

almost completely under mass flow). The profiles of these two channels are shown in 

Fig. 7.16, and the full suite is shown in three-dimensions in Fig. 7.17. The flow patterns 

thus pass from Region 1 to 3 at the axisymmetric effective transition, which is seen to 

gradually descend down the height of the silo as the outlet becomes larger. There is no 

Region 2 flow. 

 

 
Fig. 7.16 – Profile outlines of the narrowest and widest investigated mixed flow 

concentric channel, with constant power n = 1.2 
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Fig. 7.17 – Three-dimensional channel and silo surfaces for the mixed flow suite of 

concentric channels, with constant power n = 1.2 (Note: Eff. Tr. = Effective Transition) 

 

The vertical pressure in the flow channel and stationary solid is shown in Fig. 7.18 and 

Fig. 7.19 respectively as a function of the outlet size. The mixed flow regime starts at 

r0/R = 2×10-4, and the solid adjacent to the wall at the position of the effective transition 

(the boundary of Regions 1 and 3) exhibits a sharp jump in vertical pressure. The 

phenomenon of the rise in normal wall pressure at the effective transition is illustrated 

further on the plot of normal wall pressure made dimensionless by the local Janssen 

value, Fig. 7.20. The pressure increases are up to at least 1.8 times the Janssen ‘filling’ 

value. For a slender silo with H/D = 5.2 under symmetrical discharge loads, the EN 

1991-4 (2007) Standard prescribes a discharge factor for normal pressures of Ch = 1.15 

+ 1.5 (1 + 0.4 × ec/D)Cop = 1.9 (where Cop is the patch load reference factor from Annex 

E, equal to 0.5 for wheat and many other granular materials) for Action Assessment 

Class 1 or Ch = 1.15 for (the less serious) Action Assessment Classes 2 or 3. The present 

predictions therefore suggest a remarkably close correlation with the Action Assessment 

Class 1 discharge factor for slender silos.  

 

It should be noted that, for intermediate slender silos (1.0 < H/D < 2.0), Ch is a function 

of both the filling/outlet eccentricity and the aspect ratio but does not come anywhere 
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close to 1.8 unless quite large eccentricities are accounted for in the calculation. For 

squat silos (H/D ≤ 1.0), a value of unity is prescribed for Ch, presumably because it is 

considered unlikely that significant mixed flows develop in silos of such low aspect 

ratios if to consider the example EN 1991-4 flow patterns (Fig. 4.1). In addition to 

corresponding well to the EN 1991-4 discharge factor for slender silos, the location and 

order of magnitude of the pressure spikes correspond well to those observed elsewhere 

(e.g. Nielsen and Kristiansen, 1980; Gale et al., 1986; Rotter, 1999a). 

 

The abrupt increase in wall pressures is achieved in the mixed flow pressure theory 

without tweaking the lateral pressure ratio in any way. Indeed, the value of the lateral 

pressure ratio was assumed constant throughout the silo, the simplest of assumptions. 

This is contrary to earlier attempts to explain the observed increases in normal wall 

pressures during discharge through sudden and unjustified rises in the lateral pressure 

ratio, most notably the ‘switch’ theory of Nanninga (1956), Walker (1966), Walter 

(1973), Jenike et al. (1973) and others who postulated a sudden switch from an active to 

a passive lateral pressure ratio which would result in a jump in normal pressure up to 10 

times the filling value. However, it is recognised that the lateral pressure ratio need not 

be constant everywhere in the silo, and further experimental research is needed to 

calibrate this parameter for different flow patterns. 

 

 
Fig. 7.18 – Vertical pressure in the flow channel under a widening concentric mixed 

flow regime 
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Fig. 7.19 – Vertical pressure in the stationary solid under a widening concentric mixed 

flow regime 

 

 
Fig. 7.20 – Dimensionless normal wall pressure under a widening concentric mixed 

flow regime 

 

The starting value of vertical pressure in the stationary solid is significantly higher than 

the value of the local vertical pressure in the flow channel, a direct consequence of the 

local equilibrium implemented in BC2 at the effective transition (Fig. 7.10). It may be 

considered that the effective transition, which occurs at the boundary of the mass flow 
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and internal flow channel regions, is analogous to the transition between a silo and a 

hopper. The spike in normal wall pressure at the effective transition predicted by the 

mixed flow theory thus corresponds directly to similar abrupt rises in normal pressures 

at the silo-hopper transition, which have been predicted by application of the Janssen 

and Dąbrowski/Walker solid pressure theories (e.g. Hampe, 1987; Rotter, 2001a; 2007a) 

and widely observed experimentally (e.g. Motzkus, 1974; Nothdurft, 1976; Moriyama 

and Jotaki, 1980).  

 

This analogy is illustrated in Fig. 7.21 and Fig. 7.22 which show, respectively, the 

distributions of normal wall pressure for the current suite of channel sizes and a set of 

curves showing the measured normal wall pressure on a square cross-section silo with 

hoppers of varying steepness under concentric discharge, adapted from Nothdurft 

(1976). A comparison of these two figures shows that the features of the predicted 

normal wall pressure distribution are reproduced qualitatively by experiment: the 

Janssen-like distribution above the effective transition, the spike in wall pressure at the 

transition and the subsequent steep reduction in wall pressure below the transition.  

 

 
Fig. 7.21 – Normal wall pressures under a widening concentric mixed flow regime 
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Fig. 7.22 – Normal wall pressures in a square cross-section silo with hoppers of varying 

steepness under concentric discharge of quartz sand and wheat, from Nothdurft (1976) 

and Hampe (1987) 

 

7.5 Parametric studies of eccentric flow patterns in a slender silo 

7.5.1 Variation of the flow channel eccentricity 

This study investigated the effect of varying the eccentricity of a steep channel with a 

constant power n = 2 and outlet size r0/R = 0.08 on a slender silo with H/D = 5.2. The 

dimensionless eccentricity ec/R was varied between 0.00 (concentric internal pipe flow - 

ConP, Fig. 7.1) and 0.92 (eccentric pipe flow at maximum permissible eccentricity - 

EccP, Fig. 7.1). The outlines of the full set of channels are shown in Fig. 7.23 and in 

three dimensions in Fig. 7.24.  
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Fig. 7.23 – Profile outlines of channels under increasing outlet eccentricity, with 

constant power n = 2 and outlet size r0/R = 0.08 

 

The fully-internal concentric channel is in Region 1 flow throughout. As the eccentricity 

increases and the flow channel makes contact with the wall between ec/R = 0.00 and 

0.20, the flow regime passes from Region 1 to 2 at the lowest point of the 

circumferentially-varying effective transition. There is no abrupt rise within stationary 

solid pressure at this boundary as the lowest point of the effective transition does not 

invoke the implementation of BC2 (Region 3 flow is not present), but it will be shown 

that there is nonetheless an abrupt rise in the normal wall pressure. For the largest outlet 

eccentricity, ec/R = 0.92, the channel is in Region 2 flow throughout. As there is no 

Region 3 flow present in any of the flow patterns, the effective transition does not 

extend around the whole circumference (hence BC2 is actually not implemented 

anywhere). 

 

 212



PhD Thesis 
Adam Jan Sadowski 

 
Fig. 7.24 – Three-dimensional channel and silo surfaces for the pipe-flow suite of 

eccentric channels, with constant power n = 2 and outlet size r0/R = 0.08 

 

The distributions of the vertical pressure in the flow channel as a function of the outlet 

eccentricity are shown in Fig. 7.25. The vertical pressure in the flow channel is 

predicted to be significantly lower than the Janssen value, and there does not appear to 

be any clear relation between the pattern or magnitudes of the channel pressure and the 

outlet eccentricity. Indeed, the variation of the peak vertical flow channel pressure 

appears to be no more than 6 kPa (or approximately 10% of the local Janssen value) 

across the entire range of eccentricities investigated here, with the peak occurring near 

z/H = 0.3. It may be concluded that, for this example, the vertical pressure in the flow 

channel appears largely insensitive to the outlet eccentricity once an eccentric pipe flow 

pattern has formed. The flow channel pressure may be seen to grow progressively with 

height moving away from the outlet, as reported elsewhere (e.g. Ravenet 1976; Ooi et 

al., 2005). A further comment is that the highest vertical pressure does not occur in the 

flow channel of largest eccentricity, but rather at ec/R = 0.40. A similar observation has 

been reported elsewhere, including Pieper (1969) and Gale et al. (1986). However, this 

is unlikely to be of structural consequence, since a lower channel pressure is far more 

likely to be detrimental to the silo in the case of eccentric pipe flow (Rotter, 2004a). 
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Fig. 7.25 – Vertical pressure in the flow channel under increasing outlet eccentricity 

 

The vertical pressure in the stationary solid is shown in Fig. 7.26 as a function of the 

eccentricity, and exhibits a similar pattern to Fig. 7.13 which shows a progressive bulge 

developing near midheight and a decrease in pressure near the base. The stationary solid 

reaches the top surface in all flow patterns investigated here, hence there is no Region 3 

flow present and the distributions of vertical pressure in the stationary solid are free 

from any abrupt rises unlike, for example, Fig. 7.19. However, this is not the case for 

the distributions of normal wall pressure on the side of the outlet, shown in Fig. 7.27. 

 

The normal wall pressure on the side of the outlet (θ = 0°), normalised by the local 

Janssen value, is shown in Fig. 7.27. As the outlet eccentricity increases, the base of the 

effective transition between the flow channel and stationary solid (boundary between 

Region 1 and 2 flow) begins to touch the wall at a progressively lower depth. There is 

an abrupt jump in normal wall pressure at every such location due to the changeover 

from flowing to stationary solid, the magnitude of which increases with depth. 

However, though the effect is sudden, the normal wall pressure after the jump is in this 

case predicted to be not that much greater than the local Janssen pressure, being at most 

up to 1.35 times the Janssen value for ec/R = 0.20, and decreasing with outlet 

eccentricity. 
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Fig. 7.26 – Vertical pressure in the stationary solid under increasing outlet eccentricity 

 

The distributions of the normal wall pressure opposite the outlet (θ = 180° - where there 

is no discontinuity), are shown in Fig. 7.28 normalised by the local Janssen value. These 

patterns are highly similar to those of the normalised stationary solid pressures under 

progressively widening internal pipe flow presented in Fig. 7.14. There is a bulge in 

pressure in the upper part of the silo accompanied by a drop in pressure at the base, the 

magnitudes of which are comparable in both figures. This is due to the fact that the 

cross-sectional area of the eccentric pipe flow channel decreases with eccentricity, 

producing a similar effect on the stationary solid pressures as a progressively narrower 

internal pipe flow channel.  

 

Based only on the above observation, one may expect that highly-eccentric flow 

patterns would be less damaging to the silo. However, as discussed in previous chapters, 

it is not the rise in normal pressure within the static solid that is so destructive for thin-

walled metal silos under eccentric pipe flow, but rather a drop in normal wall pressure 

within the flowing solid. Unsymmetrical regions of low pressure lead to high local 

compressive axial membrane stresses which precipitate early and catastrophic failure 

through buckling (Rotter, 1986; Rotter et al., 2006). It is therefore expected that, for 

ec/R ≥ 0.40, a silo subjected to such wall pressures may begin to exhibit the distinctive 

behaviour of the elastic midheight buckle, with localised strips of interchanging 
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compressive and tensile axial membrane stresses adjacent to the wall channel that was 

the focus of Chapters 2 to 5 (e.g. Fig. 2.9 and Fig. 2.13). 

 

 
Fig. 7.27 – Dimensionless normal wall pressure at the coordinate adjacent to the outlet, 

θ = 0°, under increasing outlet eccentricity 

 

 
Fig. 7.28 – Dimensionless normal wall pressure at the coordinate opposite the outlet, θ 

= 180°, under increasing outlet eccentricity 
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A set of three-dimensional surface plots of the silo normal wall pressure within a 90° 

circumferential spread of the outlet is presented in Fig. 7.29. These allow an 

appreciation of the global state of the pressures which are exerted on the silo by these 

flow patterns and show clearly the sudden drop in wall pressures at the effective 

transition between the flow channel and stationary solid. 

 

It is very difficult to compare the present predictions for eccentric flows with 

experimental results. The primary reason for this is that it is currently very difficult to 

measure even approximately how a solid flows inside a model or full-scale silo, and to 

identify features such as the flow pattern profile or global position of the effective 

transition and at the same time take pressure measurements, without being able to 

physically see through the granular solid, despite techniques developed which attempt to 

overcome this severe limitation (e.g. Chen, 1996). Furthermore, much of the 

voluminous literature on discharge cannot be compared to reliably due to the vast 

differences in measuring and recording techniques used. Most notably, it was discussed 

in Section 1.2.8 of the literature review that most experimentalists either considered a 

single point on every circumference, or reported the highest measured value regardless 

of position or duration (Rotter, 2004a). A new experimental programme designed to 

verify specific aspects of this theory is therefore highly recommended.  

 

 
a) Outlet eccentricity range 0.00 ≤ ec/R ≤ 0.40 
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b) Outlet eccentricity range 0.60 ≤ ec/R ≤ 0.92 

Fig. 7.29 – Three dimensional surface plots of normal wall pressure under increasing 

outlet eccentricity 

 

7.5.2 Variation of the flow channel steepness 

The final parametric study presented here investigated the effect of varying the power of 

the channel profile n on a flow channel with a constant outlet size and maximum 

eccentricity of r0/R = 0.08 and ec/R = 0.92 respectively. The power was varied from n = 

1.2 (eccentric mixed flow pattern - EccM, Fig. 7.1), to n = 100 (eccentric pipe flow, 

with near vertical sides - EccP, Fig. 7.1). The outlines of the flow channel profiles are 

presented in Fig. 7.30 and in three dimensions in Fig. 7.31.  

 

There is no Region 1 flow in any of the flow patterns investigated here since they are all 

located at maximum eccentricity and thus the channel cannot fully internal anywhere 

according to the current model. For n = 1.2, the effective transition starts at the base of 

the silo adjacent to the outlet and extends around the entire circumference. The highest 

point of the effective transition occurs at the boundary of Region 2 and 3 flow. This is 

also the point at which the BC2 boundary condition is invoked (Fig. 7.1), and 

consequently the location of an abrupt rise in the stationary solid and normal wall 

pressures. 
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Fig. 7.30 – Profile outlines of channels under increasing steepness, with constant outlet 

size r0/R = 0.08 and eccentricity ec/R = 0.92 

 

 
Fig. 7.31 – Three-dimensional geometry for the suite of eccentric channels of varying 

steepness, with constant outlet size r0/R = 0.08 and eccentricity ec/R = 0.92  

 

The vertical pressure in the flow channel and stationary solid is shown in Fig. 7.32 and 

Fig. 7.33 respectively. As the outlet size is kept constant throughout, the steepness of 
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the channel profile is controlled solely by the power n. For values of n > 2, the flow 

channel quickly becomes very small due to the very steep sides and, consequently, the 

vertical pressure in the flow channel and its effect on the adjacent stationary solid 

quickly become very low. The distribution of vertical pressure in the stationary solid, 

Fig. 7.33, shows an abrupt change in form from n = 1.2 to n = 2 as the flow pattern 

progresses from eccentric mixed to eccentric pipe flow (EccM to EccP, Fig. 7.1).  

 

 
Fig. 7.32 – Vertical pressure in the flow channel under increasing channel steepness 

 
Fig. 7.33 – Vertical pressure in the stationary solid under increasing channel steepness  
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The dimensionless normal wall pressure acting on the wall adjacent and opposite to the 

outlet is shown in Fig. 7.34 and Fig. 7.35 respectively as a function of the channel 

steepness n. Similarly, a set of global distributions of normal wall pressure acting on the 

silo wall is shown in Fig. 7.36. At the boundary of Region 2 and 3 flow for the n = 1.2 

mixed flow channel, there is a rise in normal wall pressure to over 1.8 times the Janssen 

value, which is present around the entire circumference, comparable with previous 

observations for concentric mixed flow (Fig. 7.20). Conversely, for channels with n ≥ 2, 

it can be seen that there is instead a local drop in normal wall pressure on the side of the 

outlet, covering a progressively narrower portion of the wall as the channel sides 

become steeper. At the same time as the flow channel becomes ever narrower, the 

stationary solid pressure gradually approaches the Janssen value.  

 

 
Fig. 7.34 – Dimensionless normal wall pressure at the coordinate adjacent to the outlet, 

θ = 0°, under increasing outlet eccentricity 
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Fig. 7.35 – Dimensionless normal wall pressure at the coordinate opposite the outlet, θ 

= 180°, under increasing outlet eccentricity 

 

 
a) Channel steepness range 1.2 ≤ n ≤ 2 
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b) Channel steepness range 4 ≤ n ≤ 100 

Fig. 7.36 – Three dimensional surface plots of normal wall pressure under increasing 

channel steepness 

 

Thus a simple variation of the power of the flow channel shape at constant eccentricity 

and outlet size leads to a fundamentally different flow regime and associated set of wall 

pressures. It is expected that the structural response would show significant differences 

between the pressures due to a flow channel with n = 1.2 (eccentric mixed flow) and 

one with n ≥ 2 (eccentric pipe flow). Additionally, although there is a global rise in 

normal wall pressure around the entire circumference for eccentric mixed flow and only 

a localised decrease in normal wall pressure for eccentric pipe flow, it is expected that 

the latter will have by far the more severe structural consequences. The different 

possibilities of this model and their structural effects will be investigated with a series of 

computational analyses in Chapters 8 to 10. 

 

7.6 Approximate comparison of the mixed flow pressure theory with the 

Rotter (1986) eccentric discharge model 

It is relatively straightforward to compare the predictions of the current theory with the 

original work of Rotter (1986), from which the predictions of the EN 1991-4 (2007) 

eccentric discharge pressure model are directly descended. Such a comparison between 

the two previous models had already been made in Chapter 3. Rotter’s model defines a 

truncated circular parallel-sided flow channel throughout the whole silo, which 
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effectively limits a comparison with the mixed flow theory presented in this chapter to 

eccentric pipe flow (EccP - Fig. 7.1) in Region 2 only. 

 

Rotter’s assumption of a truncated circular flow channel geometry and parallel sides 

additionally implies a truncated circular outlet at the base. However, it was stated in this 

chapter that to ensure a fully-circular outlet in the implementation of the mixed flow 

theory, the eccentricity of the outlet should obey the restriction ec ≤ R – r0 where r0 is 

the outlet radius. This restriction was adhered to in the parametric studies presented so 

far, but for the purposes of the current comparison it may be waived.  

 

For the mixed flow theory, the outlet radius r0 corresponds directly to the flow channel 

radius rc from the Rotter and EN 1991-4 models. A steepness value of n = 500 may be 

considered sufficient to ensure near-parallel sides, and the value of the outlet 

eccentricity ec is equivalent in all three models. However, the Rotter and EN 1991-4 

models calculate ec based on rc, while in the mixed flow theory these parameters are 

defined separately.  

 

Adopting a sample set of flow channel geometries for Silo CS (H/D = 3, Table 4.2), a 

comparison was made between the two eccentric discharge theories using rc = r0 = 

0.25R, 0.40R and 0.60R (corresponding to outlet eccentricities ec = 0.79R, 0.66R and 

0.50R, Table 3.3) and material properties for cement: γ = 16 kN/m3, μw = 0.48 and φi = 

36.6º. No discharge factors Ch or Cw were applied. 

 

When comparing the mixed flow and Rotter (1986) pressure theories, it was considered 

more advantageous to return to the original differential equations governing the 

different models, reproduced here with consistent notation. The vertical pressure in the 

flow channel is thus given by Rotter (1986) as: 

wc sc
c c w cw c i c

c c

U dz U dzdq dz q K q K
A A

γ μ μ= − −      (7.21) 

and by the mixed flow theory as: 
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It can be seen that, with the assumption of parallel sides, n → ∞ hence β → 0, tan(β) → 

0, Ac-top → Ac-bot and ( )
2

2

tan0
tan 2 tan 1 1

c c
c

i

K KF Kββ
β μ β

− −
→ = → =

+ − −
 (using Eq. 7.13). 

Consequently, Eq. 7.14 simplifies directly to Eq. 7.21. 

 

In the same manner, the vertical pressure in the stationary solid is given by Rotter 

(1986) as: 
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s s w sw c i c
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U dz U dzdq dz q K q K
A A

γ μ μ= − +      (7.22) 

and by the mixed flow theory as: 
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It can be seen that as n → ∞, Eq. 7.12 also simplifies to Eq. 7.22.  

 

Assuming an Euler integration regime for both sets of equations, dq(z+dz) = q(z) + 

dq(z), the vertical pressures in the flow channel and stationary solid were calculated and 

are presented in Fig. 7.37 for the three example channel sizes. It should come as no 

surprise that the two theories give an almost identical result under the conditions in 

which they are directly comparable, reproducing in both cases the result of increased 

vertical pressure in the flow channel and stationary solid with increased channel size. 
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Fig. 7.37 – Comparison of the results of the Rotter (1986) and mixed flow pressure 

theories for three flow channel sizes, rc = r0 = 0.25R, 0.40R and 0.60R 

 

A final important point about this comparison, which can be seen in Fig. 7.37, is that if 

parallel sides are assumed, the outlet and steepness boundary conditions BC3 and BC4 

become obsolete. 

 

7.7 Conclusions 

A mixed flow pressure theory based on a robust application of vertical slice equilibrium 

to channels with non-straight sides has been presented in this chapter. The theory is 

capable of predicting the wall pressure distributions for flow patterns of a very wide 

range of geometries and eccentricities with reasonable credibility. The profile of the 

channel follows a power-law distribution, which may be adapted to generate flow 

channels of varying steepness, width and outlet size. When the limiting case of near-

parallel channel sides is considered, it is possible to reproduce earlier predictions from 

simpler theories. The theory thus grants freedom to investigate different flow channels 

like never before. 

 

A series of non-structural parametric studies have been presented to explore the pressure 

distributions predicted by the mixed flow theory. These studies included both concentric 

and eccentric flow covering many possible patterns of pipe and mixed flow. The 
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pressures are in all cases highly dependent on changes in the flow channel geometry, 

disproportionately more so than on variations in material properties.  

 

At every interface between the flow channel and stationary solid adjacent to the silo 

wall, the mixed flow theory predicts an abrupt rise in wall pressures. This rise is usually 

up to approximately 1.8 times the local Janssen pressure value, which corresponds well 

to more recent theoretical predictions and experimental observations, and is achieved 

solely through considerations of vertical equilibrium. It was not necessary to make any 

changes to the lateral pressure ratio which followed the simplest possible assumption, 

and consequently the current results do not support the ‘switch’ theory. 

 

However, though there is some experimental evidence to support the flow patterns and 

predicted pressure distributions at least qualitatively, i.e. confirming the general 

predicted features such as decreased flow channel pressures and pressure jumps at the 

effective transition, more experimental confirmation is needed to obtain closer 

correlations and to calibrate and refine the new theory. 
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Chapter 8 –  A preliminary study of the structural consequences of 

mixed flow pressure patterns 

 

8.1 Introduction 

The derivation of a new and potentially powerful discharge pressure theory was 

presented in full in the preceding chapter. The remainder of this thesis is dedicated to 

exploring aspects of the structural consequences of the pressure distributions predicted 

by this theory within the computational analysis framework of EN 1993-1-6 (2007). It is 

thought that such a numerical study has never been undertaken before, and the results 

presented here are the first of their kind. 

 

The mixed flow pressure theory introduced in Chapter 7 is capable of describing a very 

wide range of different pressure patterns depending on the assumed flow channel 

geometry, the eccentricity of the channel, the size of the outlet and the aspect ratio of 

the silo structure. It is therefore not viable to attempt to explore all of these features in 

only a few studies. Instead, this first set of introductory analyses was conducted to 

investigate aspects of the structural consequences of four distinct flow patterns (first 

introduced in Fig. 7.1), using the resulting wall pressures predicted by the mixed flow 

theory. These patterns include concentric pipe flow (ConP), concentric mixed flow 

(ConM), eccentric (taper) pipe flow (EccP) and eccentric mixed flow (EccM), all based 

on idealised patterns commonly referenced in literature (e.g. Rotter, 2001a; EN 1991-4, 

2007). The predicted wall pressures arising from the chosen flow patterns were applied 

to the stepped wall thickness Silo B (H = 14 m, R = 3.4 m, H/D = 2.06; Table 4.2) in a 

series of finite element analyses.   

 

8.2 A preliminary investigation of the mixed flow pressure theory 

8.2.1 Overview 

The geometries of the four flow patterns analysed in this chapter are summarised in 

Table 8.1. Two-dimensional colour contour plots of the predicted vertical pressure 

distributions and geometry are shown in Fig. 8.1 which offer a global overview of the 

full system. The upper characteristic property values of wheat from EN 1991-4 (2007) 

Annex E were assumed in the calculation of the granular solid pressures, consistent with 

the set of granular solid properties used in the initial design of Silo B. 
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Table 8.1 – Flow patterns for the initial study of the mixed flow pressure theory 

Acronym Description Eccentricity

ec / R 

Outlet size

r0 / R 

Channel power 

n 

ConP Concentric pipe flow 

(reference) 

0.00 0.074 

(0.25 m) 

10.0 

ConM Concentric mixed flow 0.00 0.074 1.2 

EccP Eccentric pipe flow 0.74 

(2.5 m) 

0.074 2.0 

EccM Eccentric mixed flow 0.29 

(1.0 m) 

0.074 1.2 

 

 
Fig. 8.1 – Colour contour plots of the vertical pressure distributions of the four flow 

patterns for the initial study of the mixed flow pressure theory 

 

Silo B was designed with an aspect ratio of H/D = 2.06 (H = 14 m, R = 3.4 m) which 

places it on the boundary between the slender and intermediate slender categories (EN 

1991-4, 2007). The choice of a relatively low aspect ratio was made here in order to 

justify the study of a wider range of different flow patterns. It was thought that silos of 

higher slenderness are less likely to develop a comparable range of flow patterns, and 

are more likely to exhibit effective transitions relatively low down the silo wall which 

span the entire circumference. Therefore the use of a more slender silo would probably 

reveal less in the present study. A similar concept was employed in the development of 

the slenderness categories prescribed in EN 1991-4 (2007), Fig. 4.1. 
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8.2.2 Concentric discharge patterns 

The first of the concentric patterns was taken as internal pipe flow (ConP), consisting of 

a fully-internal steep-sided flow channel (n = 10) developing from a concentrically-

located outlet. The effect of such a flow channel on the wall pressures is essentially 

negligible and the stationary solid exerts Janssen pressures throughout. The results for 

this pattern are therefore considered as a reference set, similar to the results for EN 

1991-4 concentric discharge pressures in previous chapters. The flow is in Region 3 

throughout (Fig. 7.3 defines the three regions of flow). 

 

The second concentric pattern was taken as mixed flow (ConM), with an effective 

transition developing at a normalised depth of z13/H = 0.39, at the boundary between 

Region 1 and 3 flow. Local equilibrium (BC2 - Fig. 7.10) predicts a sharp jump in wall 

pressures at the location of the effective transition up to approximately 1.94 times the 

local Janssen value. This may be expected to have a significant effect on the computed 

strength of the silo. The channel profile was assumed to be close to linear, with a value 

of steepness of n = 1.2. The predicted normal wall pressure distributions arising from 

the two concentric flow patterns are shown in Fig. 8.2.  

 

 
Fig. 8.2 – Surface plots of the normal wall pressure distributions of the concentric 

discharge flow patterns for the initial study of the mixed flow pressure theory 
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8.2.3 Eccentric discharge patterns 

The first eccentric pattern was taken as a relatively steep-sided pipe flow channel 

(EccP), situated at a substantial eccentricity of ec/R = 0.74. The value of n = 2 was 

considered sufficiently steep for this flow pattern. The channel is in contact with the silo 

wall for the majority of the silo height but in such a way that its wall contact half-angle 

(θc, Fig. 7.5) at any given level is rather modest, not exceeding 40°. There is a small 

zone below z/H = 0.80 where the flow channel is fully internal, and the stationary solid 

alone is in contact with the wall. Outside the circumferential extent of the flow channel, 

the stationary solid exerts wall pressures which are very close to the Janssen 

distribution. The EccP flow pattern is the closest of the four flow patterns to the EN 

1991-4 parallel-sided eccentric discharge model. 

 

The second of the unsymmetrical flow patterns was taken as eccentric mixed flow 

(EccM) with a rather small eccentricity of ec/R = 0.29 and a profile that is close to linear 

(n = 1.2). This flow pattern exhibits a circumferentially-varying effective transition 

around the entire silo, from a depth of z12/H = 0.61 adjacent to the outlet at θ = 0° 

(boundary between Region 1 and 2 flow) to a depth of z23/H = 0.16 opposite the outlet 

at θ = 180° (boundary between Region 2 and 3 flow). A sharp local jump in wall 

pressures accompanies the circumferentially-varying effective transition, with the 

largest rise being to almost tripe the local value of vertical pressure in the flow channel 

occurring at z12, adjacent to the outlet. The normal wall pressures arising from the 

eccentric flow patterns are shown in Fig. 8.3. 
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Fig. 8.3 – Surface plots of the normal wall pressure distributions of the eccentric 

discharge flow patterns for the initial study of the mixed flow pressure theory 

 

8.3 Computational study 

The standard suite of EN 1993-1-6 (2007) computational analyses were carried out on 

Silo B with the ABAQUS (2009) finite element software, using the predicted wall 

pressures presented in Fig. 8.2 and Fig. 8.3. This included LBA, MNA, GNA, GMNA 

and two different GMNIA analyses. In all cases, the frictional tractions were related to 

the local value of the normal wall pressure by the fully-developed upper characteristic 

value of the wall friction coefficient (EN 1991-4 (2007) Annex E), which for wheat was 

found to be 0.44 (Table 4.3). Both the uniform (6 mm wall throughout) and the more 

realistic stepwise-varying (6 mm wall at the base decreasing to 3 mm in the upper part, 

Fig. 4.2) wall thickness versions of Silo B were investigated to gain a deeper 

understanding of the behaviour of silos of both types of wall designs under the new 

pressure regimes. Material properties of mild steel were assumed to be the same as in all 

previous analyses of this nature (E = 200 GPa, ν = 0.3 and σy = 250 MPa). 

 

In Chapter 4, it was shown that the axisymmetric circumferential weld depression (Type 

A from Rotter and Teng, 1989a) was not a suitable imperfection form for use with the 

EN 1991-4 eccentric discharge model. This was due to the inward depression feature of 

the imperfection resulting in an increased circumferential bending stiffness of the shell. 
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The drop in wall pressures adjacent to the flow channel was found to induce 

circumferential bending and the weld imperfection therefore resulted in significantly 

higher load factors for GMNIA analyses than for GMNA, a phenomenon further 

exacerbated by larger imperfection amplitudes. 

 

The beneficial effect of the axisymmetric weld may well be unique to the pattern of 

pressures arising from a steep-sided flow channel forming against the wall of the silo 

(i.e. for the EN 1991-4 eccentric discharge model or EccP introduced above). However, 

for other flow patterns, including different forms of eccentric flow which do not have 

such localised features, it may be the case that the axisymmetric weld may be as 

damaging as it is for uniform axial compression. Considering that this is a relatively 

popular imperfection form that has been found to be very deleterious in a wide range of 

different studies (e.g. Rotter and Zhang, 1990; Teng and Rotter, 1992; Knödel  & 

Ummenhofer, 1996; Ummenhofer & Knödel, 1996; Berry et al., 1997; 2000; Pircher et 

al., 2001), it was decided to verify its effects more closely under the mixed flow 

pressure theory. The axisymmetric weld depression was therefore employed as an 

imperfection form at 50% (GMNIA#1) and 100% (GMNIA#2) of the EN 1993-1-6 

(2007) Section 8.7 special GMNIA amplitude (summarised in Table 4.6). It was 

intended that the two different amplitudes would act as a basic indicator of imperfection 

sensitivity. The weld depressions were located at numerous locations down the silo 

height including at changes of plate thickness, with the exception of the base or the top 

of the silo. 

 

It should finally be noted that Silo B was originally designed to withstand the factored 

EN 1991-4 concentric discharge pressures for mass flow (with discharge factors Ch = 

1.15 and Cw = 1.1) according to the EN 1993-1-6 (2007) and EN 1993-4-1 (2007) 

structural design procedure. The choice of thicknesses was therefore such that the wall 

was just critical at the base of each strake and should achieve a load factor of 1.65 or 

more. Though the same silo design was maintained here, the pressures predicted by the 

mixed flow theory have not been factored by the Ch or Cw discharge factors since 

factoring is only a conservative design procedure to compensate for uncertainty, not a 

scientific requirement. Indeed, for fully internal pipe flow, EN 1991-4 allows discharge 

pressures to be ignored and the Ch and Cw factors would not have been applied if Silo B 

had been designed for the concentric pipe flow pattern. Consequently, Silo B is 
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significantly overdesigned for concentric non-mixed flows and may be expected to 

exhibit very high load factors for the ConP flow pattern, higher than those for the 

factored EN 1991-4 concentric discharge pressures presented in Chapter 4. 

Additionally, comparisons of the predicted load factors to the 1.65 combined safety 

factor from the Eurocode assessment are no longer meaningful. 

 

Many of the short-hand acronyms introduced in Table 4.8 of Chapter 4 are used 

throughout this chapter to describe the main features of the predicted failure modes. The 

relevant acronyms are reproduced in Table 8.2 below for convenience. The linear 

bifurcation eigenmode (LBA), the plastic collapse mode (MNA) and the incremental 

buckling mode (GNA-based analyses) are referred to in this chapter by the umbrella 

term ‘failure modes’. 

 

Table 8.2 – Description of short-hand acronyms to describe failure mode types 

Acronym Description 

Axi-EF Axisymmetric plastic elephant’s foot buckling or yielding. 

Axi-DD Diamond pattern of deformation around the entire circumference, limited to 

being within a close distance of a wall strake or other boundary. 

Axi-EL Fully or partially axisymmetric elastic buckle.  

Glb-EF Global deformations, but with the main component of plastic elephant’s 

foot-type buckling or yielding. 

Glb-DD Global diamond buckling mode 

Glb-PL Global plastic circumferential bending mode (the MNA mode). 

Loc-CH The characteristic or ‘classic’ mode associated with an eccentrically flowing 

channel: a local (predominantly) elastic buckle in the centre of the flow 

channel, at approximately midheight. 

Loc-EG This is also associated with this form of eccentric discharge, but seen more 

in squatter or uniform wall thickness silos as it requires a different location 

to be critical. A localised elastic or elastic-plastic buckle at or beneath the 

edge of the flow channel near the base of the silo.  
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8.4 Results for the uniform wall silo under the four flow patterns 

8.4.1 Behaviour of the uniform wall silo under the ConP and ConM flow patterns 

The uniform wall Silo B was first analysed under the axisymmetric wall pressures 

predicted by the mixed-flow theory for the concentric ConP and ConM flow patterns 

(Fig. 8.2). The resulting axial distributions of axial membrane stress resultants for the 

LA analyses at the LBA load factor (hereafter termed LA @ LBA) and the GNA or 

GMNA analyses at the instant before bifurcation (hereafter termed GNA or GMNA @ 

bifurcation) are shown in Fig. 8.4. 

 

The ConM mixed flow pressure pattern differs considerably in certain places from the 

ConP pipe flow pattern (Fig. 8.2). There is an effective transition at a depth of z/H = 

0.39 for ConM at which there is a jump in wall pressures up to 1.94 times the local 

Janssen value. Below the effective transition, the wall pressures are significantly higher 

for ConM than for ConP until just above the base of the silo, at which point the ConP 

pressures become higher instead. However, it appears from Fig. 8.4 that this does not 

lead to drastic changes in the axial membrane stress distributions, which would suggest 

that ConM is not predicted to be excessively more damaging to the strength of the silo 

than ConP. There is a noticeable change of slope for the ConM distribution of axial 

membrane stress resultants at a depth corresponding directly to the location of the 

effective transition due to the big increase in frictional tractions at this location. Yet 

beyond this feature, there appears to be little difference between the two predicted stress 

patterns.  
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Fig. 8.4 – Axial distribution of LA, GNA and GMNA axial membrane stress resultants 

at bifurcation for the uniform wall Silo B under both ConP and ConM flow patterns 

 

The sets of failure modes for the ConP and ConM flow patterns, illustrated in Fig. 8.5 

and Fig. 8.6 respectively, show that both flow patterns result in very similar failure 

modes, all occurring at or very close to the base of the silo. For the MNA and GMNIA 

analyses, the failure modes under both concentric flow patterns are by axisymmetric 

plastic elephant’s foot buckling or yielding (Axi-EF). The LBA, GNA and GMNA 

analyses predict instead an elastic axisymmetric buckle (Axi-EL), an elastic diamond 

buckle (Axi-DD) and a localised plastic buckle (Glb-EF) respectively. 

 

 
Fig. 8.5 – Uniform wall Silo B predicted failure modes under the ConP flow pattern 
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Fig. 8.6 – Uniform wall Silo B predicted failure modes under the ConM flow pattern 

 

The load proportionality factors for the uniform wall Silo B under the ConP and ConM 

flow patterns are summarised in Table 8.3. The highest computed load factor is the LBA 

factor for ConP, a very high 15.22, whilst the lowest is GMNIA#2 for ConM, still a 

considerable value of 6.03. The predicted load factors are so high because the wall 

pressures applied in these analyses have not been increased by the discharge factors Ch 

and Cw, unlike the factored concentric EN 1991-4 pressures to which Silo B had been 

originally designed (Chapter 4). Furthermore, since the wall thickness is now uniform 

throughout, the load factors relate to failure modes at locations where the silo is actually 

strongest. As is usual under concentric loads (Rotter, 2004a), the inclusion of geometric 

or material nonlinearity in an analysis results in a lower predicted load factor.  

 

Table 8.3 – Load proportionality factors and failure mode acronyms for the uniform 

wall Silo B under the ConP and ConM flow patterns 

 LBA MNA GNA GMNA GMNIA#1 GMNIA#2

ConP 15.22 10.50 13.70 7.65 7.61 6.82 

Failure mode Axi-EL Axi-EF Axi-DD Glb-EF Axi-EF Axi-EF 

ConM 13.32 10.16 11.98 7.25 7.16 6.03 

Failure mode Axi-EL Axi-EF Axi-DD Glb-EF Axi-EF Axi-EF 

% change from 

ConP to ConM 

− 12.5 − 3.3 − 12.6 − 5.2 − 5.9 − 11.6 

 

The inclusion of axisymmetric weld depressions at 50% amplitude has an effectively 

negligible effect on the predicted silo behaviour, as the GMNIA#1 factor turns out to be 

99% of the GMNA factor for both flow patterns. This was expected after examining 

 237



PhD Thesis 
Adam Jan Sadowski 

Fig. 8.5 and Fig. 8.6, as the buckling mode is in both cases the elephant’s foot mode at 

the very base of the silo, and is thus effectively unaffected by weld imperfections as 

they are not present at this location. However, at 100% amplitude, the GMNIA#2 load 

factor drops noticeably to 89% and 83% of the GMNA load factors for the ConP and 

ConM flow patterns respectively. Considering the failure modes, the GMNIA#2 

elephant’s foot mode for both concentric flow patterns now forms at the lowest weld at 

a depth of z/H = 0.95, a more critical location at higher amplitudes than the base of the 

silo lacking the additional restraint that a boundary condition provides.  

 

Despite the similarities in axial membrane stress distributions and failure modes, the 

predicted load factors are on average 8.8% lower for ConM than for ConP. The reason 

for this may be found in comparing the LA and GNA stresses for both flow patterns at a 

load factor of unity, shown in Fig. 8.7. The axial stresses are the same in the upper part 

of the silo for both patterns until the ConM effective transition at z/H = 0.39. At this 

point, the jump in frictional traction results in a change of slope of the ConM axial 

stresses and increased axial compression in the lower part of the silo. Thus the axial 

compression at the base of the silo is approximately 9% higher for ConM than for 

ConP, which is directly comparable with the average 8.8% reduction in load factor from 

ConM to ConP.  

 

 
Fig. 8.7 – Axial distribution of LA and GNA axial membrane stress resultants at a load 

factor of unity for under both ConP and ConM flow patterns 
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8.4.2 Behaviour of the uniform wall silo under the EccP flow pattern 

The uniform wall Silo B was analysed next under the non-symmetrical wall pressures 

predicted for the eccentric pipe flow pattern, EccP (Fig. 8.3). This flow pattern does not 

exhibit an effective transition around the entire silo circumference unlike ConM and 

EccM, and instead consists of a steep channel adjacent to a relatively narrow portion of 

the wall, covering at most 22% of the circumference over which it exerts very low 

pressures. Outside this zone, the wall pressures due to the stationary solid are very close 

to the Janssen values. The results for this suite of analyses are introduced here with an 

annotated three-dimensional global contour plot of the linear-elastic (LA) axial stresses, 

shown in Fig. 8.8. 

 

 
Fig. 8.8 – LA axial stresses for the uniform wall Silo B under the EccP flow pattern 
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The resulting pattern of axial stresses under EccP flow shares many of the same features 

seen in previous analyses of the EN 1991-4 eccentric discharge model. For example, a 

localised region of axial compressive membrane stresses develops in the silo wall across 

the flow channel at approximately midheight, becoming tensile at the base. These 

compressive membrane stresses are responsible for the elastic buckling mode Loc-CH. 

Additionally, high compressive membrane stresses also develop in the wall at the base 

of the silo slightly away from the centre, and these are responsible for the elastic-plastic 

buckling mode Loc-EG. In the case of EccP, the flow channel does not have parallel 

sides and does not actually reach the very bottom of the silo (Fig. 8.3), thus buckles 

which form in this location can only be described as being ‘beneath’ the edge of the 

flow channel, rather than ‘at’ the edge as was the case for the EN 1991-4 results. 

 

The axial distributions of the axial membrane stress resultants for the GNA and GMNA 

analyses at bifurcation for the uniform wall Silo B under the EccP flow pattern are 

shown in Fig. 8.9 at four circumferential locations. The perturbations observed on some 

of the curves on this figure are due to the close proximity of the buckles. The 

distributions of axial membrane stress resultants at the positions θ = 0° and 45° 

correspond directly to the distributions at the flow channel centre and edge respectively 

from the analyses of the EN 1991-4 eccentric discharge distribution (compare, for 

example, with Fig. 2.9 and Fig. 2.13). However, for θ beyond approximately 60°, the 

distributions of the axial membrane stress resultants are again characteristic of Janssen-

like wall pressures. The portion of the shell influenced by the flow channel is thus 

relatively small, though the structural consequences are very significant. 
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Fig. 8.9 – Axial distribution of the GNA and GMNA axial membrane stress resultants at 

bifurcation at four circumferential locations for the uniform wall Silo B under the EccP 

flow pattern 

 

The predicted failure modes for the uniform wall Silo B under the EccP flow pattern are 

shown in Fig. 8.10 and the computed load proportionality factors are presented in Table 

8.4. It was noted in Fig. 8.8 that two specific regions of high axial compressive 

membrane stresses become critical for buckling under the EccP flow pattern. These are 

the same critical regions as under the EN 1991-4 eccentric discharge model (Chapters 2 

and 4). When the silo has a uniform wall throughout, the region at the base of the silo 

beneath the edge of the channel is most highly stressed and thus critical for buckling, 

especially when combined with the destabilising effect of the high internal pressure at 

this location (αxpp, Eq. 1.20). This is indeed the case as the GMNA and both GMNIA 

analyses all result in the buckling mode Loc-EG. The LBA mode, which naturally does 

not include material plasticity, was nonetheless counted as mode Loc-EG as it is clearly 

caused by the compressive axial membrane stresses at this critical location (Table 8.2). 

The elastic midheight buckling mode Loc-CH (which forms in the silo wall within the 

region of low internal pressure) was obtained in the GNA analysis only, most likely 

because of the high internal pressure at the base providing a stabilising effect (αxpe, Eq. 

1.19) thus preventing a Loc-EG buckle from forming at the same location as for the 

GMNA, but only in the case of an elastic analysis. 
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Material plasticity has a significant influence on the predicted structural behaviour of 

the uniform wall Silo B under the EccP pattern. This is shown by the 13.5% drop in 

load factor from GNA to GMNA and the dominant presence of mode Loc-EG, which is 

accompanied by plasticity as the compressive stresses and internal pressure are usually 

very high at this location (Chapter 4). However, the associated load factor of the MNA 

mode, which corresponds to the circumferential bending plastic collapse mechanism, is 

higher than all the other factors. Thus an MNA analysis of the EccP flow pattern 

captures the plastic collapse mode due to circumferential bending, though however this 

does not reflect the true behaviour of the silo under eccentric discharge.  

 

 
Fig. 8.10 – Uniform wall Silo B predicted failure modes under the EccP flow pattern  

 

Table 8.4 – Load proportionality factors and failure mode acronyms for the uniform 

wall Silo B under the EccP flow pattern 

 LBA MNA GNA GMNA GMNIA#1 GMNIA#2 

ECCP 3.52 5.85 5.56 4.81 4.50 4.10 

Failure mode Loc-EG Glb-PL Loc-CH Loc-EG Loc-EG Loc-EG 

% change from 

ConP to EccP 

− 76.9 − 44.3 − 59.4 − 37.1 − 40.9 − 39.9 

% change from 

ConM to EccP 

− 73.6 − 42.4 − 53.6 − 33.7 − 37.2 − 32.0 
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The load factors for the EccP flow pattern are clearly significantly lower than those for 

the ConP and ConM patterns (Table 8.3). Thus the EccP pattern is likely to be highly 

deleterious to the strength of the silo, and the corresponding structural behaviour 

correlates closely with what had been predicted previously for the EN 1991-4 eccentric 

discharge model which was based on an assumption of a similar flow pattern. 

 

8.4.3 Behaviour of the uniform wall silo under the EccM flow pattern 

The final suite of analyses for the uniform wall Silo B was performed using the non-

symmetrical wall pressures predicted for the eccentric mixed flow pattern, EccM (Fig. 

8.3). A three-dimensional colour contour plot of the resulting LA axial stresses is shown 

in Fig. 8.11 and serves as a useful introduction of the main features of the predicted 

structural response to the eccentric mixed flow which, it will be shown, is significantly 

different to that under eccentric pipe flow. This figure includes the approximate outline 

of the circumferentially-varying effective transition, but its position could actually be 

traced with relative ease by considering the patterns on the axial stress contours.  

 

Examination of the axial stresses reveals that there is a region of high axial compressive 

membrane stress at the base of the silo on the side opposite the outlet at θ = 180°. The 

stress at this location may cause elastic-plastic buckling of the silo which, in turn, may 

additionally cause the silo to overturn in the direction away from the outlet.  
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Fig. 8.11 – LA axial stresses for the uniform wall Silo B under the EccM flow pattern 

 

The axial distributions of the axial membrane stress resultants for LA @ LBA and 

GMNA @ bifurcation are shown in Fig. 8.12. These curves reflect what is seen on Fig. 

8.11, confirming that the magnitude of the compressive stress resultants at the base of 

the silo grows progressively around the circumference from θ = 0° to 180°. The axial 

membrane stresses are tensile at θ = 0°, while at θ = 180° the axial compression is at a 

maximum. A slight perturbation may be seen at the base of the GMNA curve for θ = 

180° due to the presence of a buckle at this location.  
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Fig. 8.12 – Axial distribution of the LA and GMNA axial membrane stress resultants at 

bifurcation at five circumferential locations for the uniform wall Silo B under the EccM 

flow pattern 

 

To illustrate a further aspect of the silo behaviour, the axial distributions of the axial 

bending moments for GMNA @ bifurcation are shown in Fig. 8.13 for five different 

circumferential locations. Although this figure shows clearly that the silo is 

predominantly under axial membrane compression throughout, the bending moment at 

the base of the silo is seen to grow almost threefold from θ = 0° to 180° (it is assumed 

that a positive bending moment produces tension on the inner surface of the shell.). 

Thus the evidence so far suggest that the EccM flow pattern subjects the silo to a global 

overturning moment which in turn precipitates local plastic buckling failure opposite the 

outlet. There is also, interestingly, minor bending around the local circumferential 

position of the effective, but the magnitudes are very small. The predicted load 

proportionality factors are summarised in Table 8.5.  
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Fig. 8.13 – Axial distribution of the GMNA axial bending moments at bifurcation at 

five circumferential locations for the uniform wall Silo B under the EccM flow pattern 

(Note: Eff. Tr. = effective transition)  

 

 
Fig. 8.14 – Uniform wall Silo B predicted failure modes under the EccM flow pattern 
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Table 8.5 – Load proportionality factors and failure mode acronyms for the uniform 

wall Silo B under the EccM flow pattern 

 LBA MNA GNA GMNA GMNIA#1 GMNIA#2 

ECCM 7.84 7.91 7.90 4.86 4.75 3.84 

Failure mode Axi-EL Glb-EF Axi-EL Glb-EF Glb-EF Glb-EF 

% change from 

ConP to EccM 

− 48.5 − 24.7 − 42.3 − 36.5 − 37.6 − 43.7 

% change from 

ConM to EccM 

− 41.1 − 22.2 − 34.1 − 33.0 − 33.7 − 36.3 

% change from 

EccP to EccM 

+ 122.7 + 35.2 + 42.1 + 1.0 + 5.6 − 6.3 

 

The definitions of the four flow patterns in Table 8.1 and Fig. 8.1 suggest that the only 

difference between the ConM and EccM patterns is the position of the central axis of 

the flow channel, placed at 0% and just over 25% eccentricity respectively. The outlet 

size r0, channel steepness n and silo geometry are the same for both flow patterns. Yet 

the change in outlet eccentricity from 0% to just 25% is sufficient to warrant huge 

reductions in silo strength, and the geometrically nonlinear load factors (GNA, GMNA 

and both GMNIAs) are predicted to be on average 34% lower for EccM than for ConM. 

By contrast, the corresponding average reduction from ConP to ConM was a mere 8%. 

In light of the results in the previous section for the EccP pattern, this analysis 

additionally suggests that eccentric flow patterns in general may be disproportionately 

more damaging to silos than concentric patterns and that shell structures are thus rather 

inefficient at resisting unsymmetrical load patterns. 

 

The inclusion of axisymmetric weld imperfections displaces the plastic buckling mode 

to the position of the lowest weld at a depth of z/H = 0.95, though still very close to the 

buckling locations for the LBA, GNA and GMNA analyses which occur at the base of 

the silo. An increased imperfection amplitude results in a 2.3% and 21% drop in load 

factor from GMNA to GMNIA#1 (50% amplitude) and GMNIA#2 (100% amplitude) 

respectively, and the buckling location remains the same at both imperfection 

amplitudes. The axisymmetric weld depression is therefore a deleterious imperfection 

form under eccentric mixed flow, and it is expected that the silo may have significant 

imperfection sensitivity under this flow pattern.  
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8.4.4 Global comparison of the results for the uniform wall silo 

The entire set of computed load proportionality factors for the uniform wall Silo B is 

compared on a bar chart in Fig. 8.15. A schematic summarising the associated failure 

modes is shown in Fig. 8.16. The bar chart illustrates the global trend in terms of what 

the uniform wall silo is predicted to be most efficient at withstanding. It shows that 

concentric mixed flow is more serious than concentric pipe flow, that eccentric flows in 

general are significantly more serious than concentric flows, and that eccentric pipe 

flow is more serious than eccentric mixed flow. In terms of increasing structural 

severity: ConP < ConM < EccM < EccP.  

 

 
Fig. 8.15 – Bar chart comparison of the load factors for the four flow patterns for the 

uniform wall Silo B 

 

The schematic in Fig. 8.16 suggests that, for uniform wall silos under concentric flows, 

the failure mode is likely to be by some form of buckling or yielding spanning the full 

circumference near the base of the silo. For eccentric flows, the failure mode and 

location are much harder to predict given the vast range of possible patterns. However, 

the current results which now span a much wider range of different flow patterns appear 

to confirm that eccentric pipe flow is rightly considered to be one of the most serious 

design conditions rightly meriting its own design scenario in the EN 1991-4 (2007) 

Standard. The critical location for buckling under mixed flow is predicted to be near the 

base of the silo opposite the outlet. 
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Fig. 8.16 – Summary of failure mode locations for the four flow patterns (uniform wall 

Silo B drawn to scale) 

 
8.5 Results for the stepped wall silo under the four flow patterns 

8.5.1 Behaviour of the stepped wall silo under the ConP and ConM flow patterns 

The second half of this chapter is concerned with the analysis of the more realistic 

stepped wall thickness Silo B under the same four flow patterns and with their 

comparison to the results for the uniform wall Silo B. The first computational analyses 

of the stepped wall Silo B were performed using the wall pressures predicted for the 

concentric ConP and ConM flow patterns (Fig. 8.1). The axial distributions of axial 

membrane stress resultants for LA @ LBA, and GNA and GMNA @ bifurcation, are 

presented in Fig. 8.17. The critical values of the stress resultant Ncl at the classical 

buckling stress σcl for uniform axial compression, important in the context of stepped 

thickness designs, are summarised in Table 8.6. 

 

Table 8.6 – Summary of critical Ncl values for each wall strake 

Wall thickness (mm) 3 4 5 6 

Ncl (N/mm)† 320.3 569.4 889.7 1281.2 

† Note: Ncl = tσcl ≈ 0.605Et2R-1
 assuming E = 200 GPa and R = 3400 mm 
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Fig. 8.17 – Axial distribution of LA, GNA and GMNA axial membrane stress resultants 

at bifurcation for the stepped wall Silo B under the ConP and ConM flow patterns 

 

The above distributions of axial membrane stress resultants are very similar to those for 

the uniform wall silo in Fig. 8.5. Indeed, there again appears to be little difference 

between the curves for the ConP and ConM flow patterns, other than a clear change of 

slope at the location of the jump in wall pressures due to the effective transition at z/H = 

0.39 and the rise in frictional tractions at this location. Additionally, the magnitudes of 

the stresses for LA @ LBA and GNA @ bifurcation are very similar for both ConP and 

ConM, suggesting very close load factors and a high degree of linearity in the behaviour 

of the silo under axisymmetric loads.  

 

The failure modes of the stepped wall Silo B for the ConP are shown in Fig. 8.18. 

Similar to the corresponding results for the uniform wall Silo B, the MNA, GMNA and 

GMNIA analyses predict the plastic elephant’s foot mode Axi-EF, while the LBA and 

GNA analyses predict the elastic modes Axi-EL and Axi-DD respectively. However, 

since the wall thickness is now stepped, the base of the silo is no longer exclusively 

critical.  

 

For the ConP flow pattern, the base of every strake becomes critical for at least one of 

the computational analyses, but without exhibiting any obvious preference. Although 

the LA and GNA axial membrane stresses for ConP at the base of the 3 mm strake have 
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reached the critical value of Ncl = 320.3 N/mm (and thus duly buckle at this location, 

Fig. 8.17 and Table 8.6), the stress at the bases of the other strakes are also very close to 

their corresponding critical value of Ncl. Thus the remaining strakes may easily become 

critical for buckling under small changes in the conditions of the analysis, especially 

when plasticity is introduced, and the lack of a single critical location for failure shown 

in Fig. 8.18 seems to reflect this. 

 

 
Fig. 8.18 – Stepped wall Silo B predicted failure modes under the ConP flow pattern 

 

The failure modes for the stepped wall Silo B under the ConM flow pattern are shown 

in Fig. 8.19, where it is clear that the critical location is predicted to be consistently at 

the base of the thinnest 3 mm strake. The base of this strake occurs at z/H = 0.57 and is 

located very close to the axisymmetric effective transition at z13/H = 0.39, at which 

there is a sudden increase in normal wall pressures and frictional tractions to 1.94 times 

the local Janssen value. It was discussed in Chapter 4, as the design of Silo B was being 

introduced, that the effect of internal pressure was included in design through the 

pressurised elastic imperfection factor αxp of EN 1993-1-6 (2007; Eq. 1.17). As the 

internal pressure due to Janssen only was found not to be excessively high, it was 

deemed to be beneficial to the buckling strength and consequently αxp was given by the 

elastic stabilisation factor αxpe (Eq. 1.19). For the case of the effective transition of the 

ConM flow pattern, internal pressure as high as 1.94 times the original Janssen value is 

likely to contribute greatly to early yielding which is clearly no longer beneficial to the 

buckling strength, thus in design αxp would be most likely be given instead by the plastic 

destabilisation factor αxpp (Eq. 1.20). The plastic destabilisation effect of high internal 

pressure exacerbates the lower buckling resistance of the thinnest region of the silo, and 

consequently causes the MNA plastic collapse mode and GMN(I)A buckling modes to 
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shift from the base of the silo to the base of the thinnest strake. For the case of the 

elastic LBA and GNA analyses which cannot suffer from plastic destabilisation, a 

similar effect to that found in Fig. 8.7 sees higher axial compression below the effective 

transition at z13/H = 0.39 firmly establishing the base of the 3 mm strake as the critical 

location for buckling. A full discussion of the design of silos for axial compression and 

the beneficial or detrimental effects of internal pressure may be found in Section 1.3.5 

of the literature review. 

 

 
Fig. 8.19 –  Stepped wall Silo B predicted failure modes under the ConM flow pattern 

 

The computed load proportionality factors for the stepped wall Silo B under the two 

concentric flow patterns are summarised in Table 8.7. A similar pattern emerges as for 

the uniform wall Silo B (Table 8.3), except that the load factors are all significantly 

lower than before because the buckling or plastic collapse failure now occurs sooner in 

a thinner, weaker wall. The LBA and GNA load factors are very close indeed for both 

flow patterns suggesting that stepped wall silos behave in a very linear manner under 

axisymmetric loading and, where the weld imperfections are not explicitly modelled, 

any strength decreases occur as a result of material plasticity alone.  

 

The stepped wall Silo B was originally designed for the EN 1991-4 concentric discharge 

pressures (Chapter 4), which included the Ch and Cw discharge factors which were equal 

to 1.15 and 1.1 respectively. The load factors for the ConP analyses using unfactored 

concentric pressures (Table 8.7) were found to be on average 1.12 times the 

corresponding load factors for the EN 1991-4 concentric discharge analyses (Table 

4.11). This rise in buckling strength corresponds closely with the values of the missing 

discharge factors. 
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For the ConM flow pattern, the introduction of weld imperfections throughout the silo, 

including at all changes of strake thickness, leads to GMNIA load factors that are lower 

than the GMNA value and maintains the critical location at the base of the thinnest 

strake. For the ConP buckling modes, however, there is no such pattern and there does 

not appear to be any specific reason as to why one location becomes critical and not 

another. 

 

Table 8.7 – Load proportionality factors and failure mode acronyms for the stepped wall 

Silo B under the ConP and ConM flow patterns 

 LBA MNA GNA GMNA GMNIA#1 GMNIA#2 

ConP 10.86 9.61 10.82 7.66 6.64 5.74 

Failure mode Axi-EL 

@ base 

of 3 mm 

Axi-EF 

@ base 

of 5 mm 

Axi-DD 

@ base 

of 3 mm 

Axi-EF 

@ base 

of silo 

Axi-EF 

@ base of 4 

mm @ weld 

Axi-EF 

@ base of 5 

mm @ weld 

ConM 8.51 7.22 8.48 6.46 5.10 4.42 

Failure mode† Axi-EL Axi-EF Axi-DD Axi-EF Axi-EF Axi-EF 

EN 1991-4 (2007)‡ 

concentric discharge 

6.97 6.64 6.93 5.55 4.55 3.75 

Failure mode Axi-EL Axi-EF Axi-DD Axi-EF Glb-DD Gbl-EF 

% change from 

ConP to ConM 

− 21.6 − 24.9 − 21.6 − 15.7 − 23.2 − 23.0 

† the failure modes for ConM are all at the base of the 3 mm strake 

‡ from the aspect ratio study of the factored EN 1991-4 concentric discharge pressures, 

Table 4.11, with Ch = 1.15 and Cw = 1.1 

 

8.5.2 Behaviour of the stepped wall silo under the EccP flow pattern 

The stepped wall Silo B was subsequently analysed under the non-symmetrical EccP 

flow pattern (Fig. 8.3). The global pattern of axial stresses was found to be very similar 

as for the uniform wall silo (Fig. 8.8), reproducing the same possible critical locations 

for buckling at the channel centre at midheight and beneath the edge of the channel near 

the base of the silo. The axial distributions of axial membrane stress resultants for LA 

and GNA/GMNA analyses at bifurcation are shown in Fig. 8.20 for four different 

circumferential positions. These curves reflect very closely what has been observed in 

the analyses of EN 1991-4 eccentric discharge model (e.g. Fig. 2.9).  
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The LA @ LBA axial compression consistently reaches the critical buckling value of 

Ncl = 320.3 N/mm just above the base of the 3 mm strake at the centre of the channel 

(Table 8.3 and Fig. 8.20). The GNA axial compression at buckling comes close to Ncl 

but does not reach it, a likely reason being due to the local flattening of the silo wall 

across the flow channel (see Chapters 3 and 6). Thus the corresponding location is 

critical for all buckling modes which are presented in Fig. 8.21 and may be compared 

directly with Fig. 2.13 which shows the elastic midheight buckling modes of Silo CVS 

under the EN 1991-4 eccentric discharge pressure model. The stepped wall Silo B was 

thus found to exhibit the fully-elastic midheight mode Loc-CH in all analyses of the 

EccP flow pattern, with the natural exception of the circumferential bending mode Glb-

PL for the MNA analysis.  

 

 
Fig. 8.20 – Axial distribution of the LA, GNA and GMNA axial membrane stress 

resultants at bifurcation at four circumferential locations for the stepped wall Silo B 

under the EccP flow pattern 

 

The computed load proportionality factors are summarised in Table 8.8. The average 

reduction in geometrically nonlinear load factors from their ConP and ConM 

counterparts is a massive 84% and 79% respectively. Each of the computational 

analyses predicted fully elastic behaviour, with the natural exception of MNA. 

Additionally, all non-MNA load factors are within eyeshot of unity which, considering 
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that Silo B was significantly overdesigned for the reference ConP flow pattern, sees all 

conservatism in the design being wiped out and shows how destructive eccentric pipe 

flow is likely to be. Indeed, the lowest load factor was predicted to be 0.87 for the 

GMNIA#1 analysis, corresponding to the axisymmetric weld depression with an 

amplitude of 50% of the EN 1993-1-6 GMNIA requirement. At 100% amplitude, the 

weld depression exhibits a beneficial effect, raising the GMNIA#2 load factor by 20.7% 

from GMNIA#1 to 1.05. The beneficial effect of the axisymmetric weld depression 

under the EN 1991-4 eccentric discharge pressures has been discussed in the first half of 

this thesis, and it is apparent that the EccP flow pattern produces the same effect.  

 
Fig. 8.21 – Stepped wall Silo B predicted failure modes under the EccP flow pattern 

 

Table 8.8 – Load proportionality factors and failure mode acronyms for the stepped wall 

thickness silo under the EccP flow pattern 

 LBA MNA GNA GMNA GMNIA#1 GMNIA#2 

ECCP 1.07 3.35 1.58 1.58 0.87 1.05 

Failure mode Loc-CH Glb-PL Loc-CH Loc-CH Loc-CH Loc-CH 

% change from 

ConP to EccP 

− 90.2 − 65.1 − 85.4 − 79.4 − 86.9 − 81.7 

% change from 

ConM to EccP 

− 87.4 − 53.6 − 81.4 − 75.5 − 82.9 − 76.2 
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8.5.3 Behaviour of the stepped wall silo under the EccM flow pattern 

The stepped wall Silo B was analysed in this final study under the non-symmetrical wall 

pressures of the eccentric mixed flow pattern, EccM (Fig. 8.3). The three-dimensional 

global state of LA axial stresses is presented in Fig. 8.22 and shows very similar 

features to the corresponding figure for the uniform wall silo, Fig. 8.11. The outline of 

the position of the circumferentially-varying effective transition can be delineated with 

ease from the stress pattern and has not been marked on the figure. 

 

 
Fig. 8.22 – LA axial stresses for the stepped wall Silo B under the EccM flow pattern 

 

The axial distributions of the axial membrane stress resultants and axial bending 

moments for the GMNA analysis at bifurcation are shown in Fig. 8.23 and Fig. 8.24 at 

five different circumferential locations. The magnitudes of axial compressive membrane 

stresses and bending moments at the base of the silo grow progressively from θ = 0° to 

180°, and it is evident that the silo is subject to a global overturning moment which 

causes buckling in the wall opposite the outlet. However, unlike for the uniform wall 

design where the buckles were found to form at the base of the silo (Fig. 8.14), in the 
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case of the stepped wall Silo B buckling is predicted to occur at the base of the thinnest 

3 mm strake due to its lower buckling resistance (Fig. 8.25). Indeed, the GMNA axial 

membrane stresses at buckling have reached the critical value of Ncl = 320.3 N/mm at 

this location (Fig. 8.23). The buckling modes in Fig. 8.25 were classified as according 

to Table 8.2 as modes Glb-EF for the materially nonlinear analyses (MNA, GMNA and 

GMNIA), and as modes Axi-EL for the elastic analyses (LBA and GNA). 

 

 
Fig. 8.23 – Axial distribution of the GMNA axial membrane stress resultants at 

bifurcation at five circumferential locations for the stepped wall Silo B under the EccM 

flow pattern 
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Fig. 8.24 – Axial distribution of the GMNA axial bending moments at bifurcation at 

five circumferential locations for the stepped wall Silo B under the EccM flow pattern 

(Note: Eff. Tr. = effective transition) 

 
Fig. 8.25 – Stepped wall Silo B predicted failure modes under the EccM flow pattern 

 

The predicted load proportionality factors for this suite of analyses are presented in 

Table 8.9. Comparing these to the load factors for the uniform wall silo in Table 8.5, it 

is clear that a stepped wall makes the silo more susceptible to early buckling failure 

under the EccM pattern, evidently due to the thinner wall at the new critical buckling 

location. The average of the geometrically nonlinear load factors is lower by 51% and 

38% for EccM than for ConP and ConM respectively, but higher by a substantial 200% 

than for the EccP pattern. The lowest predicted load factor of 2.76 for GMNIA#2 is not 

as low as those obtained for EccP (Table 8.8), but this is nonetheless a very low result 
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for a silo that had been significantly overdesigned for the reference ConP pattern. Thus, 

for a more realistic stepped wall silo, eccentric mixed flow is predicted to be only a 

slightly less serious design condition than eccentric pipe flow. 

 

The incorporation of axisymmetric weld imperfections results in a progressive reduction 

in the load factor from GMNA to GMNIA. This was expected as the buckling location 

in all analyses on the perfect shell is at the base of the 3 mm strake, and therefore also at 

the location of a weld. It is considered very unlikely that the axisymmetric weld will 

become beneficial at high amplitudes under the EccM pattern in a manner similar to its 

behaviour under the EccP pattern. The reason for this is most likely due to the 

fundamental difference in the structural response of the silo to the EccM and EccP 

patterns, as under EccM there is very little circumferential bending of the shell and thus 

little possibility that the weld depression may increase the bending stiffness of the 

structure. This aspect of the behaviour is explored shortly. 

 

Table 8.9 – Load proportionality factors and failure mode acronyms for the stepped wall 

thickness silo under the EccM flow pattern 

 LBA MNA GNA GMNA GMNIA#1 GMNIA#2 

ECCM 4.54 6.30 4.75 4.31 3.21 2.76 

Failure mode† Glb-EF Glb-EF Glb-EF Glb-EF Glb-EF Glb-EF 

% change from 

ConP to EccM 

− 58.2 − 34.4 − 56.1 − 43.7 − 51.7 − 51.9 

% change from 

ConM to EccM 

− 46.7 − 12.7 − 44.0 − 33.3 − 37.1 − 37.6 

% change from 

EccP to EccM 

+ 325.3 + 88.1 + 200.6 + 172.8 + 269.0 + 162.9 

† the failure modes for EccM are all at the base of the 3 mm strake opposite the outlet at 

θ = 180° 

 

8.5.4 Global comparison of the results for the stepped wall silo 

A summary of the computational results for the stepped wall Silo B is presented on a 

bar chart in Fig. 8.26. The severity of each of the flow patterns follows a more obvious 

trend than for the uniform wall silo (Fig. 8.15) and a distinct hierarchy of ConP > ConM 

> EccM > EccP has clearly emerged. 
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The predicted failure modes for the stepped wall silo are summarised symbolically in 

Fig. 8.27. Under concentric pipe flow, the silo does not appear to exhibit a clear 

preference for a critical region depending on the analysis type. For concentric mixed 

flow, however, the bottom of the strake or weld depression closest to the effective 

transition is most likely to be the critical location for both buckling and plastic collapse, 

for reasons given previously. Although it was not found to be straightforward to predict 

the critical location for buckling of a uniform wall silo under eccentric flows (Fig. 8.16),  

for a stepped wall silo under eccentric pipe flow the critical location is likely to be at 

midheight at the centre of the channel, as discovered previously for the EN 1991-4 

eccentric discharge pattern applied to stepped wall silos. For eccentric mixed flow, the 

critical location for buckling is likely to be the base of one of the thinner strakes 

opposite the outlet. The plastic collapse mechanism does not appear to play any role in 

the silo behaviour under either of the eccentric flow patterns. 

 

 
Fig. 8.26 – Bar chart comparison of the load factors for the four flow patterns for the 

stepped wall Silo B 
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Fig. 8.27 – Summary of failure mode locations for the four flow patterns (stepped wall 

Silo B drawn to scale) 

 

8.6 Comparison of changes of geometry for the stepped wall silo B under the 

EccP and EccM flow patterns  

It was noted previously in this chapter that the structural behaviour of the silo is 

significantly different depending on whether the silo is subjected to eccentric mixed or 

pipe flow. For example, it was found that geometric nonlinearity results in significantly 

smaller buckling strength gains for the EccM flow pattern. Furthermore, although 

axisymmetric weld depressions were found to become beneficial under the EccP pattern 

at higher imperfection amplitudes, this was no longer the case under EccM where the 

weld depression was found to be consistently deleterious. To illustrate the differences in 

the behaviour, two main aspects of the structural response are presented in this section: 

circumferential bending and radial deformation, both closely related to each other. 

 

The circumferential distribution of the circumferential bending moment for the stepped 

wall Silo B at midheight, close to the critical buckling location for both eccentric flow 

patterns, is shown in Fig. 8.28. The data shown is from the GNA analyses of both EccM 

and EccP flow patterns at the instant before buckling, and for the EccM pattern at a load 

factor close to the GNA buckling load factor of the EccP pattern. The convention 

assumes that a positive bending moment produces tension on the inner surface of the 

shell. 
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Fig. 8.28 – Circumferential distributions of the circumferential bending moment for 

both eccentric mixed flow patterns at midheight (GNA data) 

 

Circumferential bending of the silo wall adjacent to the flow channel is a central 

component of the structural response of the silo under eccentric pipe flow (EccP). There 

is a large and sudden jump from positive to negative bending moment at the location of 

the channel wall contact angle θc (Fig. 7.5) which defines the circumferential position of 

the effective transition at which there is a steep rise in normal wall pressure. This 

sudden change in the sign of the bending moment corresponds to the change from 

inward to outward radial deformation of the silo wall adjacent to the flow channel (Fig. 

8.29). Beyond θ > 90°, the silo wall is under membrane action with virtually no bending 

and is no longer as affected by the flow channel.  
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Fig. 8.29 – Circumferential distribution of the normalised radial deformation of the shell 

for both eccentric mixed flow patterns at midheight (GNA data) 

 

Under eccentric mixed flow (EccM), the silo wall instead undergoes bending at the 

circumferential location of the effective transition and also opposite the outlet near θ = 

180°, the critical buckling region for this flow pattern. However, the there is very little 

circumferential bending under EccM compared with EccP at approximately the same 

load factor (Fig. 8.28), as the peak bending moment for EccM is less than a tenth of 

what it is for EccP. Furthermore, the inward radial deformation at θ = 0° under the EccP 

pattern reaches almost 13t at buckling, whereas for EccM at the same load factor this 

appears to be no more than 0.8t at approximately the same load factor (Fig. 8.29).  

 

The above two figures show that the silo undergoes significantly smaller changes of 

geometry under eccentric mixed flow than under eccentric pipe flow. This in turn 

directly affects the extent of circumferential bending caused by both flow patterns and 

therefore also the extent of the beneficial effect of geometric nonlinearity. Furthermore, 

as there is considerably less circumferential bending under EccM, any beneficial 

stiffening effect that may be provided by the axisymmetric weld depression (as was the 

case previously, e.g. Fig. 4.28) to increase the circumferential bending stiffness of the 

shell becomes negligible.  
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8.7 Conclusions 

This chapter has presented the first known introductory finite element analysis of the 

effects of explicitely-defined concentric and eccentric pipe and mixed flow patterns on a 

thin-wall metal silo. The aspect ratio of the silo is on the boundary between the slender 

and intermediate slender EN 1991-4 aspect ratio ranges. 

 

Two alternative designs were analysed, one with a uniform wall thickness and one with 

a stepped wall thickness. The silo was originally designed according to EN 1991-4, EN 

1993-1-6 and EN 1993-4-1 for factored discharge loads arising from axisymmetric mass 

flow where the Janssen pressures were multiplied by a discharge factor of 1.15 for 

normal pressures and 1.1 for frictional tractions, Ch and Cw, respectively. The silo was 

therefore significantly overdesigned for the pressures arising from the reference 

unfactored concentric pipe flow pattern used in the present study. 

 

For both silo designs under both concentric pipe and mixed flow patterns, there is a 

progressive decrease in computed load factor as the analysis becomes more 

sophisticated (LBA → GNA → GMNA → GMNIA, with the exception of MNA). The 

stepped wall silo design is weaker than the uniform design regardless of flow pattern, 

since the wall thicknesses are much lower throughout most of the silo height, and a 

thinner wall has a significantly lower resistance against both buckling and plastic 

collapse. This is in line with observations made previously in this thesis. 

 

A concentric pipe flow channel has a negligible effect on the adjacent stationary solid, 

which basically exerts Janssen filling pressures on the silo wall. However, the effective 

transition present in the concentric mixed flow pattern results in a large and sudden rise 

in wall pressures, in this case to almost double the local Janssen value. This rise does 

not appear to be excessively damaging to either silo design, and results in an average 

decrease in the geometrically nonlinear load factor (GNA, GMNA or GMNIAs) of only 

9% and 21% for the uniform and stepped wall silo designs respectively. 

 

Both the buckling and plastic collapse modes under concentric flow relate to the 

elephant’s foot mode at the base of the uniform wall silo, or, for the stepped wall 

design, usually at the base of the thinnest strake. The silo as a shell structure is therefore 

very efficient at resisting axisymmetric load patterns. 
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The results for the analyses of the eccentric pipe flow pattern closely reflect what has 

been previously reported in this thesis about the EN 1991-4 eccentric discharge pressure 

model. For the uniform wall design, a localised plastic buckle usually forms at the base 

of the silo, approximately 45° away from the axial plane through the outlet. This 

location corresponds loosely to the ‘edge’ of the flow channel in the EN 1991-4 model. 

The results of the stepped wall design, however, consistently reproduce the elastic 

midheight buckle across the flow channel. It has been reported previously that this type 

of buckle has been widely observed in practice. 

 

The finite element analyses of eccentric mixed flow predict a global overturning 

moment on the silo which precipitates local elastic-plastic buckling failure on the side 

of the silo opposite the outlet. For the uniform wall design, this buckle is likely to form 

at the base, while for the stepped wall design, this buckle is likely to form instead at the 

base of the thinnest wall strake where buckling resistance is lowest. 

 

The same overall trend has been identified for both silo designs which states that, in 

terms of increasing structural severity of each flow pattern, ConP < ConM < EccM < 

EccP. 

 

Geometric nonlinearity has been found to have a much smaller beneficial effect on the 

predicted buckling strength under eccentric mixed flow than under eccentric pipe flow. 

The most likely reason for this is that the silo undergoes significantly circumferential 

bending and thus smaller changes of geometry under eccentric mixed flow than under 

eccentric pipe flow. 
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Chapter 9 – The structural consequences of flow channels with 

different steepness under mixed flow pressures 

 

9.1 Introduction 

The first half of this thesis introduced and explored the pressure distribution for 

eccentric discharge presented in the relatively recent European Standard EN 1991-4 

(2007) through a series of parametric finite element studies. A new and more complete 

mixed flow discharge pressure theory was subsequently presented in Chapter 7 of this 

thesis, and a suite of introductory finite element studies was performed in Chapter 8. 

This produced the first set of preliminary predictions from the new theory, and showed 

that a realistic set of structural consequences might arise under a variety of different 

flow patterns. 

 

This chapter presents the results and analysis of a parametric study into the structural 

effects of a range of flow channel profiles with varying degrees of steepness at a 

constant outlet eccentricity. As the steepness of the channel profile changes 

progressively, so does the nature of the discharge pressure pattern and so too does the 

associated structural behaviour of the silo. The results of the present study are compared 

with the results of the previous investigations that were presented in Chapters 4 and 5 

where the flow channel size was varied according to the EN 1991-4 pressure model. 

 

9.2 Predicted pressure distributions 

9.2.1 Overview 

The stepwise variable wall thickness Silo B (H = 14 m, R = 3.4 m, H/D = 2.06, Table 

4.2) was employed in this parametric study. It was noted in Chapter 8 that the aspect 

ratio of Silo B, on the boundary between slender and intermediate slender categories of 

EN 1991-4, was considered to be the most suitable of the design silos presented in 

Chapter 4 for the analysis of a varied range of flow patterns. More slender silos are 

more likely to develop flow patterns that lead to effective transitions relatively low 

down the silo wall and which span the full circumference, a relatively limited range 

(Fig. 4.1). 
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A gradual change in the steepness of the eccentric flow channel profile was achieved by 

maintaining the eccentricity of the centre of the flow channel ec at a constant value of 

80% of the silo radius (2.72 m) while decreasing the power of the profile n gradually 

from 5.0 to 1.05 in intervals of 0.5. A value of n = 5.0 generates a flow channel that is 

only just fully internal, while n = 1.05 generates an eccentric mixed flow pattern with 

near-straight channel sides. Values of n between these limits generate eccentric taper 

pipe flow patterns of varying cross-section. The outlet size was maintained at a constant 

value of r0/R = 0.074 (25 cm). Note that the vertical pressure in both the flow channel 

and stationary solid is independent of the eccentricity for the fully-internal pipe flow 

channel (n = 5.0) which, as discussed in Chapter 7, is a limitation of the mixed flow 

pressure theory because it considers only vertical, but not radial or circumferential, 

equilibrium.  

  

The values of the flow channel steepness n and the cross-sectional areas at the solid 

surface (z/H = 0) are summarised in Table 9.1 as a percentage of the silo cross-sectional 

area. These serve as an initial comparison of the relative sizes of the different flow 

channels and show that the narrowest channels (n ≥ 3.5) actually change very little with 

steepness. This is demonstrated more clearly by the axial distributions of the cross-

sectional flow channel areas, shown in Fig. 9.1. The flow channel profiles are shown in 

Fig. 9.2 as a function of n and demonstrate the rather abrupt change from eccentric 

mixed to pipe flow and the gradual convergence of the channel sides to the vertical as n 

→ ∞. 

 

Table 9.1 – Summary of chosen flow patterns (ec/R = 0.80 and r0/R = 0.074) 

Channel power n 5.0† 4.5* 4.0* 3.5* 3.0* 2.5* 2.0* 1.5* 1.05‡

Max. silo cross-sectional 

area (%) 

4.0 4.7 5.7 7.0 9.2 13.1 21.7 46.4 100.0

† equivalent to concentric pipe flow (ConP) 

* eccentric pipe flow (EccP) 

‡ eccentric mixed flow (EccM) 
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Fig. 9.1 – Flow channel cross-sectional areas as a function of the steepness n 

 

 
Fig. 9.2 – Flow channel geometry profiles as a function of the steepness n 

 

9.2.2 The eccentric pipe flow channels, 5.0 ≥ n ≥ 1.5 

The distributions of vertical pressure in the flow channel and stationary solid are shown 

in Fig. 9.3 and Fig. 9.4 as a function of the steepness n. The pipe flow channels in the 

range 5.0 ≥ n ≥ 2.0 exhibit a gradual and substantial increase in vertical pressure with 

decreased steepness and increased cross-sectional area, starting with a maximum value 
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of approximately 9.2 kPa for n = 5.0 (max. area cover 4.0%) and increasing to 

approximately 19.4 for n = 2.0 (max. area cover 21.7%). Yet the influence of a wider 

eccentric pipe flow channel, even one which covers over five times as large a cross-

sectional area as another, appears to have a virtually negligible effect on the vertical 

pressure in the stationary solid which barely deviates from the local reference Janssen 

value (Fig. 9.4). The widest eccentric taper pipe flow channel of n = 1.5 has the largest 

influence on the adjacent stationary solid pressure, but even here the overpressure is still 

only of the order of 10%. Thus, considerable increases in the stationary solid pressure 

can only be achieved when the effective transition spans the entire circumference, as is 

the case for n = 1.05.  

 

 
Fig. 9.3 – Vertical pressure in the flow channel as a function of the steepness n 
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Fig. 9.4 – Vertical pressure in the stationary solid as a function of the steepness n 

 

A series of three-dimensional surface plots illustrating the patterns of wall pressures 

applied to the silo wall are shown in Fig. 9.5. These focus on a 60º spread of the silo 

wall starting at the circumferential coordinate of the outlet, θ = 0º. The gradual 

widening and descent of the channel-wall contact and of the effective transition can be 

seen clearly. The variation of the lowest position of the effective transition z12/H with n 

is summarised in Table 9.2. These values are important in relation to the location of the 

peak of the compressive axial membrane stress which, it will be shown in this chapter, 

develops in the silo wall adjacent to the centre of the flow channel and is responsible for 

the predicted buckling modes. 

 

Table 9.2 – Variation of the lowest point of the effective transition with steepness n 

Power n 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.05 

Depth (z12/H) n/a 0.339 0.553 0.694 0.788 0.851 0.893 0.923 0.941

Within strake† (mm) n/a 3 3 4 5 5 5 5 6 

† only the stepped wall Silo B was analysed in this study 
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Fig. 9.5 – Three-dimensional surface plots of the normal wall pressure distributions for 

eccentric pipe flow patterns of varying steepness, 5.0 ≥ n ≥ 1.5 

 

9.2.3 The eccentric mixed flow channel, n = 1.05 

The case of n = 1.05 deserves special attention, because the relatively minor change in 

the power of the channel profile from n = 1.5 to 1.05 alters the flow pattern 

fundamentally. The decreased steepness expands the flow channel to cover the entirety 

of the cross-section throughout the upper part of the silo and introduces a 

circumferentially-varying effective transition around the full perimeter, thus changing 

the flow pattern from eccentric taper pipe to eccentric mixed flow (from EccP to EccM, 

using the acronyms from Chapter 7).  
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The global distributions of vertical pressure within the solid and the normal wall 

pressure around the circumference for n = 1.05 are presented in Fig. 9.6 and Fig. 9.7 

respectively. These distributions were additionally present in Fig. 9.3 and Fig. 9.4 where 

they allowed a direct comparison with the corresponding curves for higher values of n. 

 

 
Fig. 9.6 – Two-dimensional contour and line plots of the vertical pressure distributions 

for the eccentric mixed flow pattern, n = 1.05 

 

 
Fig. 9.7 – Three-dimensional surface plot of the normal wall pressure distribution for 

the eccentric mixed flow pattern, n = 1.05 
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The pressure in the stationary solid under eccentric mixed flow (EccM) is much higher 

than under eccentric pipe flow (EccP), where it remains very close to the Janssen value. 

This is a direct result of the boundary condition at the effective transition (BC2, Chapter 

7), which produces a starting value for the stationary solid pressure based on local static 

equilibrium that is significantly higher than the local flow channel (Janssen) value. The 

integration of the equations governing the stationary solid pressure then continues from 

that boundary condition. For pipe flow, there is no effective transition and the starting 

value for the stationary solid pressure is zero due to the surface boundary condition 

(BC1). With no sharp rises in pressure elsewhere in the silo, the stationary solid 

pressure cannot possibly deviate considerably from the reference Janssen value. 

 

It was explained in Chapter 7 that one of the properties of the mixed flow pressure 

theory was that the steepness of the channel introduces a singularity into the pressure 

distribution as n approaches unity. As a result, a steepness condition (BC4) was 

introduced which requires n to be at all times greater than unity. Yet, although a 

perfectly conical channel profile cannot be used, one may approach this limit very 

closely without experiencing the singularity effect, as can be seen for n = 1.05. The 

current theory is thus stable across the entire practical range of flow channel profiles n > 

1. It was also noted in Chapter 7 that profiles with n < 1 do not appear to have been 

reliably measured and are thus not considered further here. 

 

In the previous chapter, it was shown that the structural behaviour of a silo is very 

different depending on whether the granular solid flows in an eccentric mixed or pipe 

flow pattern. Perhaps counter-intuitively, it is the EccP flow pattern with low flow 

channel pressure, a narrow wall contact and barely any change in the stationary solid 

pressure that is often the most deleterious flow pattern that can develop inside a silo 

(Rotter, 1986; 2001a). This condition has the potential to result in elastic buckling of the 

silo (Fig. 9.8), which may develop into catastrophic global overturning in the direction 

of the outlet (Fig. 1.1). Eccentric mixed flow is also very damaging, though less so than 

pipe flow, and it was predicted to lead instead to global overturning in the direction 

opposite the outlet with localised plastic buckling in the silo wall at the base of the silo 

or the thinnest wall strake. It is expected that a similar behaviour will be reproduced in 

this study for both types of flow pattern. 
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Fig. 9.8 – Local elastic buckling of a slender steel silo under fully eccentric discharge 

(courtesy of J.M. Rotter) 

 

9.3 Introduction into the structural behaviour of the silo 

9.3.1 Review of computational analyses undertaken in this study 

The full suite of finite element analyses defined in EN 1993-1-6 (2007) was performed 

on the stepped wall Silo B with the ABAQUS (2009) software: LBA, MNA, GNA, 

GMNA and two GMNIA analyses. The imperfections used were the Type A 

axisymmetric weld depressions of Rotter and Teng (1989a) at 50% and 100% of the EN 

1993-1-6 (2007) Section 8.7 GMNIA imperfection amplitude requirement. Material 

properties for mild steel were used as before (E = 200 GPa, ν = 0.3 and σy = 250 MPa). 

A similar suite of computational analyses was performed in Chapter 8.  

 

No discharge factors Ch and Cw were applied to the wall pressures used in this study. It 

was explained in detail in Chapter 8 that this makes Silo B significantly overdesigned 

for unfactored concentric flow patterns and thus likely to result in higher than normal 

load factors. The short-hand acronyms describing the main features of the predicted 

failure modes obtained in this chapter are summarised in Table 9.3. 
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Table 9.3 – Description of short-hand acronyms to describe failure modes  

Acronym Description 

Axi-EF Axisymmetric plastic elephant’s foot buckling or yielding. 

Axi-DD Diamond pattern of deformation around the entire circumference, limited to 

being within a close distance of a wall strake or other boundary. 

Axi-EL Fully or partially axisymmetric elastic buckle.  

Glb-EF Global deformations, but with the main component of plastic elephant’s 

foot-type buckling or yielding. 

Glb-DD Global diamond buckling mode 

Glb-PL Global plastic circumferential bending mode (the MNA mode). 

Loc-CH The characteristic or ‘classic’ mode associated with an eccentrically flowing 

channel: a local (predominantly) elastic buckle in the centre of the flow 

channel, at approximately midheight. 

 

9.3.2 Summary of the computed load proportionality factors 

The variation of the computed LBA, MNA and G(M)NA load factors with channel 

steepness n is shown in Fig. 9.9. The load factors are additionally summarised in Table 

9.4. The general pattern that emerges from this figure is very similar to that of Fig. 5.12, 

which showed the variation of the load factors with the flow channel size parameter (kc 

= rc/R) for the EN 1991-4 eccentric discharge pressure model.  

 

The LBA load factor falls abruptly by 66% from n = 5.0 to 4.5 merely as a result of a 

flow channel with a very narrow and shallow contact with the wall (lowest point of the 

effective transition occurs at z12/H = 0.339, Fig. 9.5). The LBA analyses predicted the 

characteristic elastic midheight buckling mode Loc-CH throughout the entire pipe flow 

range 4.5 ≥ n ≥ 1.5 (Table 9.3). By contrast, the GNA and GMNA load factors are 

barely effected at n = 4.5, requiring a wider channel with n = 4.0 (z12/H = 0.553) in 

order to fall significantly and produce the elastic midheight mode Loc-CH. At this 

point, the GNA and GMNA load factors also become equal to each another.  

 

The axisymmetric weld depression was found to be beneficial to the buckling strength 

over most of the range of n values, shown by the fact that both GMNIA load factors are 

significantly higher than the perfect shell GMNA factors for steeper channels. Much 

shallower channels wich deeper effective transitions are required (n ≤ 3.5, z12/H ≥ 
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0.694) to cause the imperfect GMNIA factors to fall considerably and for the buckling 

mode Loc-CH to be reproduced in a GMNIA analysis using axisymmetric weld 

depression imperfections. For the internal ‘concentric’ channel (n = 5), the lowest 

GMNIA load factor was found to be the very high value of 5.63, confirming that the 

current design of the stepped wall Silo B is overdesigned when analysed under 

axisymmetric pressures. 

 

 
Fig. 9.9 – Predicted load proportionality factors of the steepness study 

 

Table 9.4 – Summary of load proportionality factors for the steepness study 

Power n 5.00 4.50 4.00 3.50 3.00 2.50 2.00 1.50 1.05 

 Internal 

pipe flow 

(ConP) 

External  

pipe flow 

(EccP) 

External 

mixed flow 

(EccM)

LBA 10.82 3.69† 1.19† 0.77† 0.65† 0.71† 1.12† 2.16† 2.48 

MNA 9.42 9.09 4.02 2.73 2.40 2.46 3.04 4.83 4.34 

GNA 10.60 10.52 2.53† 1.06† 0.80† 0.94† 1.52† 3.33† 2.51 

GMNA 7.50 7.54 2.53† 1.06† 0.80† 0.94† 1.52† 3.33† 2.42 

GMNIA#1 6.50 6.47 6.21 2.83† 2.01† 0.96† 0.83† 2.12† 1.85 

GMNIA#2 5.63 5.54 5.28 2.79† 1.89† 1.53† 0.91† 1.73† 1.51 

† (bold) corresponds to the elastic midheight local buckling mode Loc-CH 
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The new mixed flow pressure theory successfully reproduces many the same nonlinear 

effects that were previously reported in the first half of this thesis for significantly more 

slender silo designs under a different eccentric discharge pressure model. There are 

many further similarities between the results of the current study and those presented in 

Chapters 4 and 5 in particular, where the effects of a varying the flow channel size in 

the EN 1991-4 eccentric discharge pressure model were examined. These will be 

explored shortly. The main reason for these similarities is that these studies effectively 

model the same thing despite any differences in the governing pressure theories: a 

shallower-sided eccentric pipe flow channel (lower n) also has a wider wall contact 

(higher kc = rc/R). However, the fact that the same patterns of behaviour and strength 

predictions may be extracted in both cases helps to support the validity of both theories. 

 

Lastly, it is worth noting that the predictions for n = 5.0 are effectively the same as 

those for the concentric pipe flow channel (ConP) for the stepped wall Silo B in Chapter 

8. The load factors in this study are however very marginally lower (compare with 

Table 8.7) due to the fact that the internal pipe flow channel in Chapter 8 was 

significantly steeper with a value of n = 10.0. Consequently, it was also slightly 

narrower and exerted a smaller influence on the stationary solid pressures, thus leading 

to slightly higher load factors.  

 

9.4 Structural behaviour under eccentric pipe flow channels in the range 4.5 

≥ n ≥ 1.5 

9.4.1 Linear Elastic and Linear Bifurcation Analyses (LA & LBA) 

The axial distributions of axial membrane stress resultants for the LA analyses at the 

LBA load factor are presented in Fig. 9.10 for the circumferential positions at θ = 0º and 

45º. These correspond approximately to the distributions at the ‘centre’ and ‘edge’ of 

the eccentric pipe flow channel respectively. The pattern of stresses at θ = 0º is closely 

reminiscent to that of Fig. 5.8 which showed the variation of the LA @ LBA axial 

membrane stress resultants with the EN 1991-4 flow channel size parameter, kc = rc/R.  
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Fig. 9.10 – Axial distribution of the axial membrane stress resultants at θ = 0º and 45º  

from LA analyses at the LBA load factor 

 

In both Fig. 5.8 and Fig. 9.10, the flow channel with the narrowest wall contact (kc = 

0.10 for the EN 1991-4 model or n = 4.5 here) already produces a pattern of LA stresses 

that is characteristic of eccentric pipe flow at the centre of the flow channel (e.g. Fig. 

2.9). The n = 4.5 channel affects only a very small portion of the upper part of the silo 

wall (z12/H = 0.339, Fig. 9.5), and although this is sufficient to cause a compressive 

peak at approximately z/H = 0.28 which in turn causes the elastic midheight buckle, it is 

insufficient to induce tensile stresses at the base of the silo. By contrast, the very small 

kc = 0.10 channel of Fig. 5.8, which extended throughout the entire silo height, was 

sizeable enough to generate both compressive and tensile features of the characteristic 

stress distribution. Lastly, the peaks of the compressive axial membrane stresses in the 

upper part of the silo for all values of n were found to be limited by a value 

corresponding approximately to the classical buckling stress Ncl = tσcl ≈ 0.605Et2R-1 ≈ 

320.3 N/mm of the 3 mm wall strake. 

 

The distributions at θ = 45º are mostly typical of Janssen-like axial membrane stress 

patterns, since the narrower channels used in this study (n ≥ 2.5) do not approach this 

circumferential coordinate and consequently the stresses here remain largely unaffected. 

Only the wider channels, n = 2.0 and 1.5, produced significant tensile membrane 

stresses near midheight at this location, characteristic of the ‘channel edge’ stress 
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distribution obtained when using the EN 1991-4 eccentric discharge pressure model 

(compare, for example, with Fig. 2.9 and Fig. 2.13). 

 

 
Fig. 9.11 – Circumferential distribution of the axial membrane stress resultants at z/H = 

0.50, 0.75 and 0.99 from LA analyses at the LBA load factor 

 

The circumferential distributions of the axial membrane stress resultants at z/H = 0.50, 

0.75 and 0.99 are shown in Fig. 9.11. The midheight position corresponds closely to the 

critical buckling location at the base of the thinnest 3 mm strake, while the z/H = 0.75 

and 0.99 positions correspond to the the base of the 4 mm strake and just above the base 

of the silo respectively. The circumferential distributions at midheight are very similar 

to those in Fig. 5.10, which showed the circumferential distributions of the axial 
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membrane stress resultant for different values of the EN 1991-4 flow channel size 

parameter kc = rc/R. 

 

The midheight distributions (Fig. 9.11) of compressive axial membrane stresses exhibit 

a circumferential spread and peak magnitude. The spread is the circumferential extent of 

the compressive portion of the stresses and the magnitude is simply the maximum value 

of that compressive portion of the distribution, usually occurring at θ = 0º. Considering 

Fig. 9.11, the compressive region of the midheight distribution grows progressively 

with channel width and depth (decreased n). For the widest and deepest eccentric pipe 

flow channel of n = 1.5, however, the compressive peak appears to moves away from θ 

= 0º to approximately 30º, suggesting that the buckle instead forms away from the 

centre of the flow channel. An informative comparison of different values of the spread 

and magnitude of the compressive region of midheight axial membrane stresses is 

presented shortly in Section 9.4.4 for both LA and GNA analyses as a function of the 

channel steepness n. 

 

 
Fig. 9.12 – Progressive descent and expansion of the first LBA buckling mode with 

decreasing flow channel steepness n (geometric scale factor of 500) 

 

The peak value of the midheight compression again does not go beyond Ncl = tσcl ≈ 

320.3 N/mm. Thus the criterion of buckling failure for all linear elastic analyses in the 
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present study appears to be that the wall of the silo will buckle locally when the local 

axial compression reaches the critical elastic buckling stress Ncl. For the distributions at 

z/H = 0.75 and 0.99 within the 4 mm and 6 mm strakes respecitively, the local 

respective buckling criteria of Ncl = 569.4 N/mm and 1281.2 N/mm have clearly not 

been reached at any point, hence the buckle cannot form within this part of the silo. The 

linear bifurcation eigenmodes in the range 4.5 ≥ n ≥ 1.5 (Fig. 9.12) are thus naturally all 

elastic midheight modes Loc-CH within the 3 mm strake and correspond very closely in 

size, shape and location to previous observations in the EN 1991-4 flow channel size 

study (Fig. 5.6).  

 

The LBA buckle gradually descends and expands both axially and circumferentially as 

n decreases (shallower channels), yet it remains at all times within the thinnest 3 mm 

strake. The buckling mode for n = 1.5 is a type of ‘double buckle’ caused by the non-

central circumferential peak of axial membrane stresses seen in Fig. 9.11, and was 

observed previously for the EN 1991-4 pressure pattern with the widest flow channel 

with kc = 0.90 in Fig. 5.6 and Fig. 5.7. In both cases, the migration of the peak away 

from θ = 0º appears to be characteristic of flow channels with a sufficiently wide 

circumferential wall contact angle at the level of the buckle, greater than approximately 

50º from the symmetry axis. 

 

The change in axial location and size of the LBA buckling mode corresponds directly to 

the varying position of the peak compressive LA axial membrane stress at θ = 0º (which 

has reached Ncl) in the wall adjacent to the flow channel. One may expect that there 

would be a relationship between the axial location of this peak and the lowest point of 

the effective transition z12/H (Table 9.2 and Fig. 9.5). Such a relationship is illustrated in 

Fig. 9.13 and summarised in Table 9.5 for the range of values of n for which the elastic 

midheight mode Loc-CH was predicted in an LBA analysis, excluding the widest 

channel with n = 1.5.  
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Fig. 9.13 – Variation of the axial locations of LA parameters with depth z and channel 

steepness n at θ = 0º 

 

Table 9.5 – Summary of lowest flow channel wall contact, LA axial compressive 

membrane stress peaks and LBA buckle positions† 

Power n 4.5 4.0 3.5 3.0 2.5 2.0 

Lowest point of effective transition (z12/H) 0.339 0.553 0.694 0.788 0.851 0.893 

Within wall strake (mm) 3 3 4 5 5 5 

Compressive peak Ncl depth (z/H) 0.263 0.365 0.460 0.468 0.508 0.593 

Within wall strake (mm) 3 3 3 3 3 4 

LBA buckle depth (z/H) 0.304 0.444 0.518 0.537 0.564 0.571 

Within wall strake (mm) 3 3 3 3 3 3 

† All axial positions refer to the channel centre meridian at θ = 0º 

 

It is likely that the three axial locations are closely correlated (Fig. 9.13). The 

compressive peak in a linear analysis (Ncl) tends to be reached just above the lowest 

point of the effective transition where there is a sudden rise in wall pressure and 

frictional traction. However, it is important to note that this result has been obtained for 

a stepped wall silo design and both the compressive peak and LBA buckle do not 

descend below the boundary of the 3 mm strake, which has the lowest buckling 

resistance. It is likely, though not certain, that if a uniform wall silo design had been 

used, the compressive peaks and associated buckles might well have formed just above 
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the lowest point of the effective transition for a much wider range of n. The position of 

the LBA buckle was assumed here to be at the axial position of the maximum radial 

displacement associated with the LBA mode. 

 

9.4.2 Materially Nonlinear Analyses (MNA) 

The plastic collapse mode does not play any role in the silo behaviour for flow channels 

shallower than n = 4.0, with the predicted MNA load factors being on average 2.2 times 

higher than the GMNA load factors in this range. The plastic deformation modes are 

shown in Fig. 9.14 (all are mode Glb-PL, Table 9.3). These follow the outline of the 

effective transition rather closely (Fig. 9.5), and the gradual axial and circumferential 

growth with n of the portion of the wall which undergoes extensive circumferential 

yielding can be seen clearly. 

 

 
Fig. 9.14 – Progressive expansion of MNA plastic collapse mode with decreasing flow 

channel steepness n (geometric scale factor of 0.5) 

 

It is important to reiterate at this point that a huge portion of the literature on structural 

behaviour under eccentric discharge identifies this plastic collapse mode as the failure 

mechanism. A long list of these may be found in Section 1.2.8 of the literature review 

and includes, amongst others, Jenike (1967), Bucklin et al. (1980), Colijn and Peschl 

(1981), Wood (1983), Roberts and Ooms (1983), Safarian and Harris (1985) and Ooms 

and Roberts (1986). These were all fundamentally wrong. 

 

9.4.3 Geometrically and Materially Nonlinear Analyses (GNA & GMNA) 

The distributions of GNA axial membrane stress resultants at bifurcation are shown in 

Fig. 9.15 for the circumferential positions at θ = 0º and 45º. The overall stress patterns 

are generally similar to their LA equivalents in Fig. 9.10. The GNA axial membrane 
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stresses for the steepest channel for n = 4.5 follow a Janssen-like distribution 

throughout, save for a minor perturbation near z/H = 0.30 where the compression has 

increased locally due to the lowest point of the effective transition at z12/H = 0.339. 

However, this rise in compression is insufficient to cause any significant peak that 

would change the buckling behaviour from the circumferendial diamond buckling mode 

Axi-DD that was predicted for the ‘concentric’ case of n = 5 into the elastic midheight 

mode Loc-CH. Indeed, the axial compression near the base of the 3 mm strake strake 

(z/H = 0.57) is higher than at z12/H = 0.339 by more than a factor of two and has reached 

the elastic critical stress value Ncl = tσcl = 320.3 N/mm. The GNA buckling mode for n 

= 4.5 thus remains at what it was for n = 5 (mode Axi-DD), accompanied by a near-

negligible drop in load factor from 10.60 to 10.52. This was not the case for the LA 

analysis for n = 4.5 (Fig. 9.12), which predicted a well-defined peak near z/H = 0.30 that 

reached the critical value of Ncl and resulted in the corresponding buckling mode Loc-

CH as well as a considerable drop in LBA load factor from 10.82 to 3.69.  

 

The lower portions of the curves for n = 4.5 at both θ = 0º and 45º are furthermore very 

similar to each other, tending almost to the same base value and sharing a similar slope. 

The stresses throughout the vast majority of the silo are thus largely unaffected by very 

small flow channels in a GNA analysis, and geometric nonlinearity seems to limit the 

impact of relatively minor asymmetries in applied pressure patterns to their local contact 

vicinity of the silo wall. A much wider channel with n ≤ 3.5 was thus found to be 

necessary to reduce the axial compressive membrane stresses at the base of the silo to 

the point at which they turned tensile, whereas a linear analysis predicted that this 

would already occur for a steeper channel with n = 4.0. The characteristic stress patterns 

under eccentric pipe flow therefore require significantly wider channels in order to 

develop in a geometrically nonlinear analysis. A similar conclusion was reached in the 

study of the EN 1991-4 flow channel size in Chapter 5. 
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Fig. 9.15 – Axial distribution of the axial membrane stress resultants at θ = 0º and 45º  

from GNA analyses at bifurcation 

 

For the GNA analyses of the wider channels (n ≤ 4.0), the peak values of axial 

compression at buckling failure for no longer attain the critical elastic value of Ncl = 

320.3 N/mm. This value had been reached for the GNA analysis of n = 4.5 only because 

the silo under concentric discharge still behaves in a remarkably linear manner. Under 

eccentric discharge, however, geometric nonlinearity has been found to be beneficial in 

all analyses presented in this thesis so far and the predicted peak values of the GNA 

axial compression are thus significantly below the limiting value of Ncl. This aspect of 

the behaviour is demonstrated in the next section through a comparison of the varying 

circumferential extents and peak magnitudes of the compressive regions at z/H = 0.50 

for both LA and GNA analyses. 

 

The incremental GNA buckling modes are presented in Fig. 9.16 in the range 4.5 ≥ n ≥ 

1.5. The GNA analyses predict the elastic midheight buckling mode Loc-CH across the 

whole range of eccentric pipe flow channels with the exception of the steepest channel 

with n = 4.5 (see above discussion). The GMNA buckling mode for n = 4.5 (not shown) 

is the axisymmetric elephant’s foot mode Axi-EF and occurs at the same location as the 

GNA mode Axi-DD. For all n ≤ 4.0, the GNA and GMNA analyses are the same. 

 

 285



PhD Thesis 
Adam Jan Sadowski 

 
Fig. 9.16 – Progressive descent and expansion of the GNA and GMNA incremental 

buckling modes with decreasing flow channel steepness n (geometric scale factor of 

5000 for all except n = 4.5 which is GNA only × 200) 

 

 
Fig. 9.17 – Variation of the axial locations of LA and GNA parameters with depth z and 

channel steepness n at θ = 0º 
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Table 9.6 – Summary of lowest flow channel wall contact, GNA axial compressive 

membrane stress peaks and GNA buckle positions† 

Power n 4.5 4.0 3.5 3.0 2.5 2.0 

Lowest point of effective transition (z12/H) 0.339 0.553 0.694 0.788 0.851 0.893 

Within wall strake (mm) 3 3 4 5 5 5 

Compressive peak depth (z/H) n/a 0.263 0.365 0.460 0.470 0.537 

Within wall strake (mm) n/a 3 3 3 3 3 

GNA buckle depth (z/H) n/a 0.343 0.522 0.531 0.546 0.547 

Within wall strake (mm) n/a 3 3 3 3 3 

† All axial positions refer to the channel centre meridian at θ = 0º 

 

Both the LA and GNA analyses predict similar buckle locations as a function of the 

channel steepness n (Fig. 9.17 and Table 9.6), regardless of the local position of the 

effective transition. The buckle is thus most likely to form at the base of the thinnest 

wall strake, presumably as long as this is reasonably close to midheight of the silo. Had 

the silo wall been of uniform thickness throughout, there would most likely have been a 

closer correlation between the axial locations of the lowest point of the effective 

transition and the LBA and GNA buckles over more of the silo height, as long as the 

other highly-stressed location at the base of the silo beneath the edge of the flow 

channel did not become critical. 

 

9.4.4 The effect of geometric nonlinearity based on the steepness study of the 

mixed flow pressure theory 

The comparison of the midheight circumferential forms of the LA and GNA axial 

membrane stress distributions presented in this section closely reflects a similar exercise 

performed for the flow channel size study of the EN 1991-4 eccentric discharge model 

(Section 5.5). Returning to the discussion of Fig. 9.11, it was noted that the shape of the 

central compressive feature of a typical circumferential distribution of axial membrane 

stresses at z/H = 0.50 may be characterised in terms of an angular spread from θ = 0º 

and a peak magnitude. The result is shown in Fig. 9.18 for LA analyses @ LBA in the 

range 4.5 ≥ n ≥ 2.0 and for the GNA analyses at bifurcation in the range 4.0 ≥ n ≥ 1.5. 

Both of these correspond to the respective ranges of n where the elastic midheight Loc-

CH mode was predicted (excluding the LBA ‘double buckle’ for n  = 1.5). The 

similarity to Fig. 5.14 is quite striking. 
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a) Variation of the compressive spread with flow channel steepness n 

 

 
b) Variation of the peak compressive magnitude with flow channel steepness n 

Fig. 9.18 – Variation of two measures of the central compressive region of axial 

membrane stresses at midheight with flow channel steepness n for eccentric pipe flows 

 

This comparison confirms once again that a greater circumferential portion of the silo 

wall is mobilised by changes of geometry to resist the eccentric pipe flow channel 
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pressures. In turn, this leads to significantly lower peak axial compressive stresses and 

consequently higher load factors for GNA/GMNA than LBA (Table 9.4). Interestingly, 

the LA stresses quickly reach a plateau that is approximately 20 N/mm above the 

critical value of Ncl = 320.3 N/mm for the 3 mm strake, while the GNA stresses 

approach this limiting value more gradually for shallower channels. An interesting 

direction for future research would be to investigate the changes in local R/t ratio near 

the peak compressive magnitude in a GNA analysis and to relate the low buckling 

stresses to local wall flattening to see how big an influence an increased R/t may have 

(Rotter, 1985a). 

 

The LA stresses in the perfect shell reach a peak compressive value at buckling that is 

slightly higher than Ncl, most likely because of the beneficial stabilising effect of 

internal pressure. The classical elastic critical stress σcl was derived for a state of 

uniform axial compression only, and a gradual increase in internal pressure is known to 

be beneficial to the elastic buckling strength of a silo both with and without geometric 

imperfections (e.g. Harris et al., 1957; Schnell, 1959; Weingarten et al., 1965; Saal et 

al., 1979; Rotter, 2004; EN 1993-1-6, 2007).  

 

Additionally, many numerical studies of linear bifurcation buckling of perfect cylinders 

under circumferentially varying axial loads (e.g. Abir and Nardo, 1958; Bijlaard and 

Gallagher, 1959; Johns, 1966; Libai and Durban, 1973; 1977; Cai, 2003) also suggest 

that the perfect shell buckles at local values of axial membrane stress that are may be 

significantly higher than σcl, especially for circumferentially narrow localisations of 

compressive stresses close to the axial half-wavelength of an axisymmetric buckle λcl ≈ 

1.278(Rt)½
 (Cai et al., 2002; 2003a,b; Rotter, 2004a). However, it should be noted 

concerning Fig. 9.18a that the circumferential arc length of axial compressive stresses 

near the region of the buckle may be several times the relatively small value of λcl which 

corresponds to an equivalent spread of 2.18°, and within this range they are of a 

magnitude that is comparable with Ncl. Therefore, in the vicinity of the buckle, there is a 

condition close to that of uniform compression, and buckling should occur at stresses 

close to Ncl (Cai, 2003). 

 

The above effects of geometric nonlinearity and buckling under local axial compression 

is not limited to the present comparison but has been found to be a recurring feature of 
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the finite element analyses of eccentric discharge presented in this thesis, and is a topic 

for further investigations. 

 

9.4.5 Imperfect shells: the effect of axisymmetric weld depressions (GMNIA) 

The effect of the axisymmetric weld imperfections on the structural behaviour is similar 

to that seen in Section 4.8.4 for the EN 1991-4 study of silos of different aspect ratio. It 

was suggested in that study that the substantial stiffening effect of the axisymmetric 

weld imperfection against circumferential bending, combined with a complementary 

beneficial effect due to geometric nonlinearity, prevented the characteristic elasitc 

midheight buckling mode Loc-CH from developing before the eccentric pipe flow 

channel reached a rather large size, with kc = rc/R = 0.60 being required to achieve this 

(Fig. 4.29).  

 

A similar pattern is visible on Fig. 9.10 and Fig. 9.19 which show that the transition in 

characteristic discharge behaviour from concentric to eccentric occurs only at n = 3.5 

for the imperfect shell. At n = 3.5, the flow channel has a significantly deeper and wider 

wall contact than at higher values of n (Fig. 9.5). The GNA analysis predicted that this 

transition in behaviour would occur already at n = 4.0, while the LA/LBA analyses 

exhibited the elastic midheight buckle as soon as n = 4.5. For n = 4.5 and 4.0, both 

GMNIA analyses predicted a local plastic elephant’s foot mode Glb-EF at the base of 

the 3 mm strake, opposite the outlet. For the two imperfection amplitudes chosen in this 

study, the buckling modes are very similar, hence only those for the GMNIA#1 suite of 

analyses at 50% amplitude are shown in Fig. 9.19. The results of this study therefore 

confirm the previous findings in this thesis which suggest that the axisymmetric weld 

imperfection may be beneficial to the buckling strength of the silo under certain channel 

geometries of eccentric pipe flow. 

 

The load factors for the geometrically nonlinear analyses of the imperfect shell are 

higher than those of the perfect shell in the range 4.5 ≥ n ≥ 2.0. Additionally, in the 

range 3.5 ≥ n ≥ 2.0, the two GMNIA load factors are very close to each other, and at n = 

2.0 and 2.5 the load factor for the 100% amplitude imperfection is higher than that for 

the 50% amplitude imperfection. The phenomenon of a deeper imperfection amplitude 

resulting in higher buckling strengths has been documented before (Yamaki, 1984; 

Rotter, 2007b), and the results in this section support previous findings obtained using 
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the EN 1991-4 eccentric discharge pressure model (e.g. Fig. 2.15). However, the 

mechanics of this nonlinear behaviour is highly complex, and merits further study. 

 

 
Fig. 9.19 – Variation of the incremental buckling modes with channel steepness n for 

the GMNIA#1 analyses 

 

9.5 Structural behaviour under eccentric mixed flow channels 

9.5.1 Comparison of geometry and pressure patterns 

The structural behaviour of the stepped wall Silo B under the wide near-conical flow 

channel with n = 1.05 and ec/R = 0.80 has been found to resemble qualitatively the 

behaviour of the eccentric mixed flow pattern analysed in Chapter 8 with n = 1.2 and 

ec/R = 0.29. Both channels share the same outlet size of r0/R = 0.074. The similarity in 

behaviour is plausible, since in both cases Silo B was analysed under a set of wall 

pressures predicted for a similar pattern of eccentric mixed flow (EccM). However, 

these flow patterns are far from being the same, as illustrated by the geometry and 

pressure patterns in Figs 9.20 to 9.22.  
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The three-dimensional geometry of both eccentric mixed flow patterns is shown in Fig. 

9.20. Although in both cases the effective transition begins at approximately the same 

axial location opposite the outlet at θ = 180º, its circumferential variation is significantly 

steeper for n = 1.05 and ec/R = 0.80 than for n = 1.2 and ec/R = 0.29, and also covers a 

much greater portion of the silo height. Values of n = 1.05 and 1.2 generate flow 

channel profiles of similar steepness, thus the main cause of any differences in wall 

pressure and consequent structural behaviour between both flow patterns is likely to be 

due to the different values of the outlet eccentricity. The distributions of vertical 

pressure for both eccentric mixed flow patterns are shown in Fig. 9.21. The three-

dimensional distributions of normal pressure applied on the silo wall are shown in Fig. 

9.22.  

 

 

Region 3 Region 3 

Region 2 

Region 2 

Region 1 

Region 1 

Fig. 9.20 – Comparison of the geometry of two different eccentric mixed flow patterns 

and flow regions 
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Fig. 9.21 – Comparison of vertical pressure distributions for two different eccentric 

mixed flow patterns 

 

 
Fig. 9.22 – Comparison of three dimensional surface plots of the normal wall pressure 

distributions of two different eccentric mixed flow patterns 

 

According to the mixed flow theory presented in Chapter 7, there is an imbalance in 

normal wall pressure for the portion of the silo under Region 2 flow in which the flow 
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channel is partially internal. This imbalance results in a net horizontal force acting 

through the symmetry axis and contributes to a global overturning moment on the silo 

in the direction away from the outlet (Fig. 9.23). There is no such imbalance in Region 

1 because the model assumes that the pressure in the stationary solid is constant around 

the circumference and independent of the outlet eccentricity once the flow channel is 

fully internal. The pressure in Region 3 is balanced as it is under axisymmetirc mass 

flow. In reality, however, it is possible that the drop in pressure in the channel would be 

balanced by a rise in pressure adjacent to the edge of the channel in such a way that 

there would be no net force. 

 

The magnitude of the difference between the vertical pressure in the stationary solid and 

flow channel at any level is significantly higher for n = 1.05 and ec/R = 0.80 than for n = 

1.2 and ec/R = 0.29 (Fig. 9.21). Thus the n = 1.05 and ec/R = 0.80 pattern exhibits a 

higher imbalance in vertical pressure and therefore a larger net horizontal force at any 

level in Region 2 flow. Additionally, the axial range covered by the effective transition, 

and therefore by the jump in normal wall pressure and net horizontal force, is 

significantly greater for n = 1.05 and ec/R = 0.80 than for n = 1.2 and ec/R = 0.29 (Fig. 

9.22). Consequently, the wall pressures exerted by the mixed flow pattern with n = 1.05 

and ec/R = 0.80 lead to a significantly higher overturning moment on the silo and 

therefore constitute a more dangerous load condition. This is illustrated in Fig. 9.24 

through the approximate analogy of the silo under eccentric mixed flow with a 

cantilever beam under a partially-distributed load. 

 

Net 
horizontal 

force 

Stationary 

 
         a) Balanced axisymmetric    b) Unbalanced eccentric flow 

       normal pressures     channel pressures 

Fig. 9.23 – Net horizontal force under eccentric discharge (Region 2 flow only) 

 

Balanced 
normal wall 

pressures 
(causes 
global 

overturning 
moment) 

 solid 

Flow 
channel 
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n = 1.2 and ec/R = 0.29 (Ch. 8) n = 1.05 and ec/R = 0.80 (Ch. 9) 
Silo   Cantilever       Silo        Cantilever 

 
Fig. 9.24 – Illustration of the global overturning moment of the two eccentric mixed 

flow patterns by approximate analogy to a cantilever beam under a partially-distributed 

load 

 

9.5.2 Comparison of axial distributions of axial membrane stresses  

The axial distributions of the axial membrane stress resultants at bifurcation at five 

different circumferential locations are shown in Fig. 9.25 and Fig. 9.26 for n = 1.2 and 

ec/R = 0.29 (GMNA data from Fig. 8.23) and n = 1.05 and ec/R = 0.80 (LA and GMNA 

data) respectively. Both sets of curves exhibit a sudden change in slope due to the large 

increase in normal pressure and frictional traction at the local position of the effective 

transition (Fig. 9.20). Additionally, the critical buckling location for both flow patterns 

occurs opposite the outlet at the base of the 3 mm strake, where the axial compression 

reaches the critical elastic stress Ncl = tσcl = 320.3 N/mm.  

z23/H = 0.12 

z12/H = 0.94

z/H = 0.62 
z/H =  0.47 

qres = 0.45q 

BalancedBalanced 

z23/H = 0.16 q Effective  
Effective  q Transition 
Transition 

qres = 0.82q 

z12/H = 0.61 

Balanced 

Balanced

M = 0.385q  M = 0.279q  
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Fig. 9.25 – Axial distribution of the axial membrane stress resultants from GMNA 

analyses at bifurcation for n = 1.2 and ec/R = 0.29 (from Fig. 8.23) 

 

 
Fig. 9.26 – Axial distribution of the axial membrane stress resultants from LA and 

GMNA analyses at bifurcation for n = 1.05 and ec/R = 0.80 

 

The LA and GMNA stress distributions for n = 1.05 and ec/R = 0.80 are very similar at 

all circumferential positions (Fig. 9.26), and the critical value of Ncl is reached at the 

buckling load factor even in a geometrically nonlinear analysis with plasticity. This was 
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not the case for geometrically nonlinear analyses of eccentric pipe flow, which 

predicted elastic buckling failure at values of local axial compression that were 

significantly below Ncl (Fig. 9.15). Geometric nonlinearity under eccentric mixed flow 

nonetheless results in slight overall reductions in stress magnitudes and marginally 

higher buckling strengths (e.g. 2-5% increase from LBA to GNA), and thus may be 

considered to have a minor beneficial effect. However, this beneficial effect is indeed 

minor when compared to the possible strength gains under eccentric pipe flow, where 

the increase in load factor from LBA to GNA was found to be anything from 50% to 

several hundred percent depending on the flow channel size (Table 9.4). This major 

difference in behaviour is most likely because the structural response to eccentric mixed 

flow includes significantly less circumferential bending, which in turn results in much 

smaller (beneficial) changes of geometry and was explored in Section 8.6. The full set 

of computed load factors illustrates the above discussion (Table 9.7).  

 

Table 9.7 – Comparison of load proportionality factors at failure Silo B under two 

different eccentric mixed flow patterns 

 LBA MNA GNA GMNA GMNIA#1 GMNIA#2 

n = 1.2, ec/R = 0.29 

(from Table 8.8) 

4.54 6.30 4.75 4.31 3.21 2.76 

Failure mode Axi-EL† Glb-EF† Axi-EL† Glb-EF† Glb-EF† Glb-EF† 

n = 1.05, ec/R = 0.80 2.48 4.34 2.51 2.42 1.85 1.51 

Failure mode Axi-EL† Glb-EF† Axi-EL† Glb-EF† Glb-DD Glb-DD 

% change from ec/R = 

0.29 to 0.80 

− 45.4 − 31.1 − 47.2 − 43.9 − 42.4 − 45.3 

† these failure modes are at the base of the 3 mm strake opposite the outlet at θ = 180° 

 

9.5.3 Comparison of failure modes 

The predicted failure modes are shown in Fig. 9.27 and Fig. 9.28 for n = 1.2 and ec/R = 

0.29, and n = 1.05 and ec/R = 0.80 respectively. For the LBA, MNA, GNA and GMNA 

analyses under both eccentric mixed flow patterns, the failure modes are predicted to 

occur opposite the outlet at θ = 180° at the base of the thinnest 3 mm strake. Both 

buckling and plastic collapse at this location are caused by the high magnitudes of axial 

membrane stresses, and by the weaker buckling and yielding resistance of the thinnest 

strake. The buckling mode in both GMNIA analyses is predicted to be a local plastic 
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elephant’s foot mode Glb-EF for n = 1.2 and ec/R = 0.29, however the GMNIA analyses 

of n = 1.05 and ec/R = 0.80 show a more global diamond pattern concentrated near θ = 

180° instead (best described by mode Glb-DD, Table 9.3). 

 

 
Fig. 9.27 – Predicted failure modes for the stepped wall B silo under the eccentric 

mixed flow pattern, n = 1.2 and ec/R = 0.29 (from Fig. 8.25) 

 

 
Fig. 9.28 – Predicted failure modes for the stepped wall B silo under the eccentric 

mixed flow pattern, n = 1.05 and ec/R = 0.80 

 

9.5.4 Comparison of circumferential distributions of axial membrane stresses 

Despite the apparent similarities in axial membrane stress distributions and failure mode 

for both sets of analyses, the load factors are failure were found to be significantly lower 

for n = 1.05 and ec/R = 0.80 than for n = 1.2 and ec/R = 0.29 (Table 9.7). A likely reason 

for this may be found in the circumferential distribution of the axial membrane stress 

resultants at midheight, presented in Fig. 9.29. The data shown here is for both eccentric 

mixed flow patterns at their respective GNA buckling load factors, and for the pattern 
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with n = 1.2 and ec/R = 0.29 at close to the buckling load factor of the pattern with n = 

1.05 and ec/R = 0.80 to allow a comparison of the behaviour of the silo under both flow 

patterns at approximately the same load factor.  

 

 
Fig. 9.29 – Circumferential distribution of axial membrane stresses at midheight for two 

different eccentric mixed flow patterns (GNA-analysis data) 

 

The compressive axial membrane stresses near the buckle are of a very similar 

magnitude for both patterns regardless of the GMNA load factor at buckling, 

corresponding to the familiar value of Ncl = tσcl ≈ 0.605Et2R-1 ≈ 320.3 N/mm (Fig. 9.25, 

Fig. 9.26 and Fig. 9.29). Both flow patterns share almost the same depth of the effective 

transition opposite the outlet at θ = 180° (Fig. 9.20 and Fig. 9.22), occuring 

approximately the same distance above the common critical location for buckling at the 

base of the 3 mm strake. Thus the buckle is caused in both cases by high axial 

membrane stresses which grow progressively with depth due to friction between the 

stationary solid and the wall, and because this growth covers approximately the same 

distance, the axial membrane stresses reach approximately the same critical value at 

buckling which happens to be Ncl. 

 

Both eccentric mixed flow patterns apply a global moment on the silo causing it to 

overturn away from the outlet, but it was noted in Fig. 9.24 that the channel with n = 1.2 

and ec/R = 0.29 applies a significantly lower global moment. Indeed, when considering 
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the circumferential distribution of midheight axial membrane stresses at approximately 

the same load factor (Fig. 9.29), it is clear that the flow pattern with n = 1.2 and ec/R = 

0.29 results in much lower magnitudes of these stresses than the channel with n = 1.05 

and ec/R = 0.80. The flow pattern with n = 1.2 and ec/R = 0.29 therefore requires a 

significantly higher load factor to reach the critical buckling value of axial membrane 

stress Ncl.  

 

9.6 Criterion of failure for high local axial compression 

9.6.1 Background literature 

The discussion in Section 9.4.4 concerning the peak magnitude and circumferential 

spread of the axial compressive membrane stresses near the critical buckling region 

lends itself naturally to the consideration of a criterion of failure, such as the one 

currently in the EN 1993-4-1 (2007) standard. This method of characterising local peaks 

of axial compression and coupling it with a criterion to assess the buckling strength was 

originally devised by Rotter (1986). For the failure criterion, he assembled key items 

relating to different buckling design conditions from Libai and Durban (1973, 1977), the 

ECCS Recommendations 2nd Edition (1983) and Rotter (1985c). 

 

This process was adopted into Section 5.3.2.4 of EN 1993-4-1 to provide a method for 

assessing the buckling resistance of a silo under axial compression. The resistance is 

assessed by using an amended version (Rotter, 1986) of the unpressurised elastic 

imperfection reduction factor α0 (EN 1993-1-6, 2007; Eq. 1.17 introduced in Section 

1.3.5 of the literature review) that includes a stress non-uniformity parameter ψ in the 

denominator: 

0 1.44
0

0.62

1 1.91 w
t

α
ψ

=
Δ⎛ ⎞+ ⎜ ⎟

⎝ ⎠

         (9.1) 

where 0 1w R
t Q t

Δ
=  is the representative imperfection amplitude and Q is the Quality 

Parameter dependent on the Fabrication Tolerance Quality Class of the structure.  

 

The evaluation of the stress non-uniformity parameter ψ is central to the present 

discussion. The design value of the compressive axial membrane stress σx,Ed at the most 

highly stressed point in a linear elastic (LA) analysis is defined as σx0,Ed in the 
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compression-positive convention. Rotter (1986) based the assessment of the localisation 

in the stress distribution on a second value of the axial membrane stress σx1,Ed at a point 

at the same axial coordinate adjacent to the peak stress separated from σx0,Ed by a 

circumferential arc length RΔθg (Fig. 9.30).  

 

σx,Ed σx0,Ed 

σx1,Ed 

 θ0 – Δθ    θ0    θ0 + Δθ θ  
Fig. 9.30 – Representation of the local distribution of axial compressive membrane 

stresses around the circumference, from EN 1993-4-1 (2007) 

 

The best value for Δθg has been chosen somewhat differently in the various 

formulations of the theory (Rotter, 1986; 2001a; 2001b; EN 1993-4-1, 2007; Schmidt 

and Rotter, 2008), but in all cases an equivalent harmonic for the peak of the stress 

pattern is determined as: 

1,1

0,
0.25 cos x Ed

x Ed

Rj
t

σ
σ

− ⎛ ⎞
= ⎜⎜

⎝ ⎠
⎟⎟         (9.2) 

The condition of uniform axial compression is represented by j = 0. A value of j = 1 

represents pure bending. Values of j > 1 represent progressively sharper and more 

localised peaks, so that finally as j → ∞, or 1/j → 0, the buckling stress should rise to 

the classical elastic critical stress. Indeed, the buckling stress should reach this value 

when the local peak in the stress distribution still covers a zone that exceeds the size of 

a typical axial compression buckle (λcl ≈ 1.278(Rt)½, Rotter 2004a), so this condition 

must be attained whilst the value of j is only moderate. 

 

The location of the second stress point, defined by Δθg, was chosen differently in 

different publications, as noted above. In Rotter (2001a), it is defined as RΔθg = 4(Rt)½
 -

with the restriction that 0.2 < σx1,Ed/σx0,Ed < 0.8 to ensure that a reasonable separation in 

the values of σx1,Ed and σx0,Ed  is achieved, though the buckling strength outcome is not 
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sensitive to the chosen value of Δθg. Otherwise, RΔθg should be adjusted so that 

σx1,Ed/σx0,Ed ≈ 0.5. Note that EN 1993-4-1 prescribes instead 0.3 < σx1,Ed/σx0,Ed < 1.0. 

 

The stress non-uniformity parameter was chosen by Rotter (1986) to take the following 

form: 

1

2

1
1

b j
b j

ψ −
=

+
          (9.3) 

where  

1 0.5 tb
R

=            (9.4) 

( )1
2

1
1

b

b
b

ψ
−

= −           (9.5) 

and ψb is the value that yields an appropriate gain in buckling strength from the uniform 

compression value to that for global bending. In Rotter (2001a) and EN 1993-4-1, the 

value of ψb = 0.4 is recommended (based on the assumption of global bending), but this 

value is based on rather limited information. A better value may be obtained from the 

more recent work of Chen et al. (2008). The harmonic localisation at which there is no 

reduction in buckling strength below the classical elastic critical stress as a result of 

imperfections is j∞ = 1/b1. The value given in Eq. 9.4 was chosen by Rotter (1986) 

based on the buckling of longitudinal stiffened shells and the criterion of shell buckling 

(e.g. Schmidt and Samuelsen, 2008). Once again, the relationship for this parameter b1 

could be improved following further research. Whatever the individual components of 

the evaluation, it is clear that this is an effective way of describing the loss of 

imperfection sensitivity under non-uniform axial compressive stress around the 

circumference. 

 

It was discussed in Section 1.3.5 of the literautre review that the factor α0 may 

subsequently be upgraded to αpe (Eq. 1.19) to account for the elastic sabilising effect of 

internal pressure which significantly reduces the effects of geometric imperfections, 

leading to the attainment of the classical elastic critical stress at higher pressures (as has 

been found to be the case in the present analyses, e.g. Fig. 9.11 and Fig. 9.29). 

However, at very high internal pressures, plasticity causes destabilisation that is not 

associated with the geometric imperfections and the α0 must be downgraded to αpp (Eq. 

1.20), but this is not a key aspect in the present discussion. 
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Assuming fully-elastic unpressurised behaviour such that α0 gives the dimensionless 

buckling stress of the imperfect shell directly (α0 = σx,Rk/σx,Rcr where σx,Rcr = σcl ≈ 

0.605EtR-1), the relationship between j and α0 is shown in Fig. 9.31 for different values 

of the R/t ratio. A ‘Normal’ Fabrication Tolerance Quality Class was assumed. The EN 

1993-4-1 (2007) design procedure therefore predicts buckling of the imperfect shell to 

occur at very low stresses under uniform axial compression, at higher stresses under 

global bending where half of the circumference is in tension and half is in compression, 

and at significantly higher stresses if they are very local. In the case of high localisation, 

the stressses approach the classical buckling stress actually rather slowly and, according 

to this relationship, the critical buckling stress (more specifically, α0σcl) is reached when 

j = j∞ = 1/b1.  

 

 
Fig. 9.31 – Effect of compressive stress peak localisation on the buckling stress 

according to EN 1993-4-1 (2007) 

 

9.6.2 Example application of the failure criterion to the present results of eccentric 

pipe and mixed flow  

The EN 1993-4-1 design procedure was applied to the results presented in this chapter 

for the LA analyses under eccentric mixed (EccM) and pipe flow (EccP) assuming n = 

1.05 and 3.0 respectively (Fig. 9.32). The angular separation Δθg = 4(t/R)½ was found to 

be 6.8°. The resulting calculations are summarised in Table 9.8.  
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Fig. 9.32 – Circumferential distribution of (unfactored) LA axial membrane stress 

resultants at midheight for the EccM (n = 1.05) and EccP (n = 3.0) flow patterns 

 

Table 9.8 – Application of the EN 1993-4-1 (2007) failure criterion to the EccM (n = 

1.05) and EccP (n = 3.0) flow patterns 

 Nx0,Ed 

(N/mm)† 

Nx1,Ed 

(N/mm)† 

Nx1,Ed / 

Nx0,Ed 

j ψ α0 Nx,Rk 

(N/mm)† 

N @ LBA 

(N/mm)† 

EccM 121.75 120.75 0.99 1.08 0.381 0.198 63.52 302.17 

EccP 510.17 360.54 0.71 6.62 0.085 0.422 135.02 332.13 

Reference n/a n/a n/a j∞ 0 0.094 30.20 n/a 

† compression positive 

 

For the EccM flow pattern, the equivalent harmonic j = 1.08 was found to be very close 

to the value for pure bending (j = 1) and reflects the fact that the spread of the 

compressive region from the axis of symmetry is approximately 80° at midheight (pure 

bending would give 90°). The unpressurised imperfection factor α0 thus rises from 0.094 

to 0.198, which increases the characteristic value of the axial membrane stress resultant 

at buckling Nx,Rk from 30.20 to 63.52, an increase by a factor of 2.1.  

 

By contrast, the equivalent harmonic for the EccP flow pattern was found to be the 

much higher value of j = 6.62 which reflects the highly localised nature of this 
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compressive peak (Fig. 9.32). The corresponding value of Nx,Rk thus increases from 

30.20 to 135.02 by a factor of 4.5.  

 

The above procedure is highly conservative for four reasons. Firstly, the buckling stress 

can only ever reach approximately 60% of the classical value σcl because of a safety 

factor of 4/3 and low reference strength built into the expression for α0 (ECCS, 1988). 

Secondly, buckling is predicted to occur already when a single point reaches the 

buckling stress. However, considering the circumferential distribution of the axial 

membrane stresses for eccentric mixed flow (Fig. 9.29 and Fig. 9.32), it was found that 

a significant portion of the shell must first reach approximately the same critical stress 

in order for the LBA buckling mode to have enough space to form. Thirdly, the 

characteristic buckling stress resultants Nx,Rk are significantly below the values at which 

both flow patterns were actually predicted to buckle in an LBA analysis, which instead 

found that the LA stress resultants at buckling almost always reached the classical value 

Ncl = tσcl regardless of how localised they are. Lastly, the above conservatism is 

amplified in light of the discovery of the beneficial effect of geometric nonlinearity, 

whereby the predicted GNA buckling loads were often found to be over 50% higher 

than their LBA counterparts. 

 

9.7 Conclusions 

This chapter has provided strong evidence that the new mixed flow pressure theory may 

give credible predictions of silo behaviour. There are close similarities in terms of 

structural consequences predicted for the eccentric pipe flow patterns investigated in 

this study and the previous studies of Chapters 4 and 5 which investigated the structural 

effects of variations in flow channel size using the EN 1991-4 eccentric discharge 

pressure model. The EN 1991-4 model is effectively a special case of the mixed flow 

theory in which an eccentric pipe flow channel is assumed to extend over the entire 

height of the silo and to have parallel sides (i.e. infinitely steep, n → ∞). This is a 

remarkable finding which supports the mixed flow pressure theory, because the two sets 

of flow channel geometries and their associated wall pressures are significantly 

different. 

 

The supporting evidence works both ways. It may also be considered that the great 

simplifications of the EN 1991-4 pressure model are not invalid, since its predicted 
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structural consequences are very closely reproduced by a more complex and complete 

theory. Thus what is already in EN 1991-4 is not inappropriate as an aid to design 

against eccentric discharge. 

 

The results of this study uphold the proposition that changes in geometry are beneficial 

under eccentric discharge. This proposition is supported by the results of a wide range 

of different flow channel geometries in which a relatively narrow strip of low pressure 

acts on the silo wall which is otherwise under a relatively uniform state of high internal 

pressure. However, the extent of this beneficial effect depends strongly on the flow 

pattern. 

 

It was found that, under two mixed flow patterns of similar steepness but different outlet 

eccentricity, the silo buckles at almost the same critical value of the local axial 

membrane stress which corresponds approximately to the elastic critical buckling stress, 

even in a geometrically nonlinear analysis. This is despite the fact that the predicted 

buckling strength under the more eccentric channel is almost double the predicted 

buckling strength under the less eccentric channel. The mixed flow pattern which covers 

a smaller portion of the silo height applies a lower global overturning moment on the 

silo than the one which covers a larger portion and causes significantly lower 

magnitudes of compressive axial membrane stresses in the critical buckling location of 

the silo at the same load factor. Consequently, it requires a higher load factor to reach 

the critical value of the axial membrane stress.  

 

An appropriate failure criterion found in EN 1993-4-1 (2007) based on the work of 

Rotter (1986) and others was explored in the context of providing a design procedure 

for highly localised axial compression, such as that caused by both eccentric pipe and 

mixed flow. The criterion is based on the concept of a significantly decreased elastic 

imperfection sensitivity under progressively more localised axial compression. It was 

found that this innovative procedure is a very conservative assessment of the linear 

buckling stress under high local axial compression, and the reasons for this 

conservatism were discussed. More work needs to be done to calibrate the various 

parameters in this criterion to the results of more recent research. 
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Chapter 10 – The structural consequences of flow channels with 

different eccentricity under mixed flow pressures 

 

10.1 Introduction 

This chapter presents the results of a parametric study into the structural effects of taper 

pipe flow channels with different values of outlet eccentricity. As the eccentricity of 

flow patterns is the central theme of this thesis, this final study sheds some light on the 

direct relationship between the predicted silo strength and the eccentricity of the 

channel, and investigates the associated changes in global pressure and stress patterns. 

The findings are finally discussed in the context of the prescribed rules for eccentric 

discharge present in some of the more common design standards. 

 

10.2 Predicted pressure distributions and analyses 

The stepped wall thickness Silo B (H = 14 m, R = 3.4 m, H/D = 2.06) was analysed 

under the wall pressures predicted by the mixed flow pressure theory presented in 

Chapter 7 for five taper pipe flow channels with different values of outlet eccentricity. 

The channel was assigned a constant outlet size of r0/R = 0.074 (0.25 m) and a constant 

steepness of n = 1.5. The eccentricity of the outlet was varied in intervals of ec/R = 0.25 

from ec/R = 0.00 to a value corresponding to an outlet whose outer edge just touches the 

silo wall, placed at one outlet radius short of the full radius; ec/R = (R – r0)/R = 0.93. 

The granular material was assumed to be wheat, with the relevant material properties 

taken from Annex E of EN 1991-4 (2007). The properties of the stepped wall Silo B and 

wheat are summarised in Table 4.2 and Table 4.3. Both were used previously in the 

parametric finite element studies presented in Chapters 8 and 9. 

 

The three and two-dimensional geometries of the full suite of flow channels are 

presented in Fig. 10.1 and Fig. 10.2 respectively. At zero eccentricity, the flow is 

concentric and fully internal, and therefore in Region 1 only. However, at maximum 

eccentricity, the flow is in Region 2 only. Between these two limits, both Regions 1 and 

2 are present. The lowest depth of the effective transition, on the boundary between 

Regions 1 and 2, decreases progressively with outlet eccentricity (z12/H = 0.30, 0.63 and 

0.88 for ec/R = 0.25, 0.50 and 0.75 respectively) and the channel passes gradually from 

concentric to eccentric taper pipe flow (ConP to EccP, Fig. 7.1). The flow regions are 
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defined in full in Section 7.2.2. The stationary solid is present down the entire height of 

Silo B in all channels investigated in this study, hence there is no Region 3 flow or 

mixed flow anywhere (EccM, Fig. 7.1). 

 

 
Fig. 10.1 – Three-dimensional channel and silo surfaces for Silo B as a function of the 

outlet eccentricity 

 

 
Fig. 10.2 – Colour contour plots of the vertical pressure distributions of the five taper 

pipe flow patterns as a function of the outlet eccentricity 

 

The vertical distributions of the predicted vertical pressure in the flow channel and 

stationary solid as a function of the outlet eccentricity ec/R are presented in Fig. 10.3 

and Fig. 10.4 respectively. As there is no Region 3 present in any of the channels, BC2 

is not invoked at any point (Fig. 7.10) and consequently there are no sudden jumps in 

vertical pressure in the stationary solid. Furthermore, although the channel geometries 

are very different for all five values of ec/R, the predicted vertical pressure in both the 
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static and flowing solid does not vary significantly at all with eccentricity. The peak 

vertical pressure in the flow channel and stationary solid does not vary by more than 

approximately 10% of the local Janssen value (4.5 kPa and 6 kPa respectively) across 

the entire range of investigated eccentricities. 

 

 
Fig. 10.3 – Vertical pressure in the flow channel as a function of the outlet eccentricity 

 

 
Fig. 10.4 – Vertical pressure in the stationary solid as a function of the outlet 

eccentricity 
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Fig. 10.5 – Three-dimensional surface plots of the normal wall pressure distributions for 

eccentric pipe flow patterns as a function of the outlet eccentricity 

 

The global distributions of normal wall pressures for the five flow channels are 

presented in Fig. 10.5, showing the circumferential range within 70° of the outlet. 

Although the patterns of vertical pressure in the both the stationary and flowing solid 

are predicted to be very similar for all values of the outlet eccentricity, the patterns of 

normal wall pressure are not. As the eccentricity increases, a progressively deeper 

portion of the wall comes into contact with the flow channel (higher z12/H) and 

experiences its associated low pressures. However, the contact between the flowing 

solid and the silo wall does not become significantly more circumferentially extensive, 

and the maximum flow channel wall contact angle stays at approximately 60° for all 

eccentricities. It is expected that in the current study a larger outlet eccentricity will 
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become gradually more deleterious to the strength of the silo, though experimental 

studies have shown that the most damaging outlet eccentricities are those near the 

middle of the range; approximately 0.50 ≤ ec/R ≤ 0.80 (Fleming, 1985; Fitz-Henry, 

1986; Rotter, 2001b; Watson, 2010). 

 

The full suite of computational analyses according to the EN 1993-1-6 (2007) 

framework was performed on the stepped wall Silo B for each value of the outlet 

eccentricity. This included the LBA, MNA, GNA, GMNA analyses and two different 

GMNIA analyses, using the same material properties for mild steel as in Chapters 8 and 

9 (E = 200 GPa, ν = 0.3 and σy = 250 MPa). The imperfections used were the Type A 

axisymmetric weld depressions of Rotter and Teng (1989a) at 50% and 100% of the EN 

1993-1-6 Section 8.7 imperfection amplitude for GMNIA analyses (Table 4.6). These 

imperfections were placed at regular intervals down the silo wall, including at changes 

of wall thickness. The frictional tractions were calculated directly from the predicted 

normal wall pressures using the upper characteristic value of the wall friction coefficient 

for wheat. No discharge factors Ch or Cw were applied to the wall pressures. A summary 

of failure mode acronyms used in this chapter is presented in Table 10.1. 

 

Table 10.1 – Description of short-hand acronyms to describe failure modes 

Acronym Description 

Axi-EF Axisymmetric plastic elephant’s foot buckling or yielding. 

Axi-DD Diamond pattern of deformation around the entire circumference, limited to 

being within a close distance of a wall strake or other boundary. 

Axi-EL Fully or partially axisymmetric elastic buckle.  

Glb-EF Global deformations, but with the main component of plastic elephant’s 

foot-type buckling or yielding. 

Glb-DD Global diamond buckling mode 

Glb-PL Global plastic circumferential bending mode (the MNA mode). 

Loc-CH The characteristic or ‘classic’ mode associated with an eccentrically flowing 

channel: a local (predominantly) elastic buckle in the centre of the flow 

channel, at approximately midheight. 
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10.3 Investigation of the elastic buckling behaviour using geometrically 

linear and nonlinear analyses (LA, LBA and GNA) 

10.3.1 Overview 

The eccentric taper pipe flow patterns investigated in this study share many features 

with the EN 1991-4 eccentric discharge pressure model. These include a relatively steep 

flow channel with low pressures, a relatively narrow channel-wall contact, an effective 

transition that does not span the entire circumference, and Janssen-like stationary solid 

pressures applied to the greater majority of the silo wall. Naturally, there are important 

differences too, as the EN 1991-4 flow channel assumes parallel sides and covers the 

entire height of the silo, which is not the case for the present taper pipe flow patterns. 

 

In previous studies presented in this thesis, the predicted failure modes of eccentric pipe 

flow patterns and the EN 1991-4 eccentric discharge model have been found to be 

solely by (predominantly elastic) buckling under compressive axial membrane stresses. 

The other stress components have not been found to be relevant to the same degree, 

hence it was decided that the descriptions presented here should focus on the axial 

membrane stress component. Furthermore, it will be shown that all LBA and GNA 

buckling modes are predicted to occur near the base of the thinnest 3 mm strake at a 

depth of z/H = 0.57 regardless of eccentricity, thus the approximate midheight region 

was considered most important when comparing stresses. 

  

10.3.2 LBA and GNA load proportionality factors at failure 

The computed LBA and GNA load proportionality factors are presented in Table 10.2 

and plotted in Fig. 10.6 and Fig. 10.7. There is a small reduction in buckling strength 

from ec/R = 0.00 to 0.25, followed by a very large drop in strength at an eccentricity of 

ec/R = 0.50, then followed by a further but much smaller decrease in buckling strength 

up to the maximum eccentricity of ec/R = 0.93 (Fig. 10.6). At the same time, the effect 

of geometric nonlinearity becomes progressively more beneficial with increasing outlet 

eccentricity, resulting in buckling strength gains of up to 55% at maximum eccentricity 

according to a GNA analysis (Fig. 10.7). The reported finding that medium values of 

the eccentricity cause the greatest reductions in the buckling strength has not been 

reproduced (Fleming, 1985; Fitz-Henry, 1986; Rotter 2001b; Watson, 2010). This is 

possibly due to the fact that the steepness of the channel n was kept constant at all 

eccentricities, but in reality it is likely that n depends on the the extent of the channel-
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wall contact and is not constant with ec/R. More research is needed to calibrate the 

different parameters in the mixed flow theory presented in Chapter 7. 

 

Table 10.2 – Summary of computed LBA and GNA load proportionality factors as a 

function of the outlet eccentricity 

0.00 0.25 0.50 0.75 0.93 Outlet eccentricity 

ec/R  ConP                                     →                              EccP 

LBA 8.947 8.037 3.305 2.275 1.946 

Failure mode† Axi-EL 

@ all θ 

Axi-EL 

@ θ = 180° 

Loc-CH 

@ θ = 0° 

Loc-CH 

@ θ = 0° 

Loc-CH 

@ θ = 0° 

GNA 8.915 8.280 3.905 3.408 3.027 

Failure mode† Axi-DD

@ all θ 

Axi-DD 

@ θ = 180° 

Loc-CH 

@ θ = 0° 

Loc-CH 

@ θ = 0° 

Loc-CH 

@ θ = 0° 

GNA / LBA 0.996 1.030 1.182 1.498 1.556 

† all failure modes occur at the base of the 3 mm strake 

 

 
Fig. 10.6 – Distribution of computed LBA and GNA load factors with outlet 

eccentricity  
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Fig. 10.7 – Distribution of the GNA load factor normalised by the LBA factor with 

outlet eccentricity; shows the gradual development of the beneficial effect of geometric 

nonlinearity 

 

Each of the LBA and GNA load factors refers to elastic buckling failure at the base of 

the 3 mm strake, though at varying circumferential positions. For concentric flow, the 

LBA analysis predicts an axisymmetric elastic buckling mode (Axi-EL), while the GNA 

analysis predicts a diamond buckling mode (Axi-DD) present around the entire 

circumference. This is consistent with all analyses on concentric discharge performed in 

this thesis. As the eccentricity increases to ec/R = 0.25, the LBA mode turns into a 

partially-axisymmetric elastic buckle opposite the outlet at θ = 180° (also mode Axi-

EL), and similarly the GNA buckling mode predicts a diamond buckling mode that is 

concentrated around θ = 180° (mode Axi-DD). For outlet eccentricities beyond ec/R = 

0.50, the LBA and GNA analyses both predict the elastic midheight buckling mode 

Loc-CH across the channel, which has been shown to be characteristic of eccentric pipe 

flow throughout this thesis. The LBA linear bifurcation modes and GNA incremental 

buckling modes are shown in Fig. 10.8 and Fig. 10.9 respectively. 
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Fig. 10.8 – Predicted LBA buckling modes as a function of the outlet eccentricity (all at 

a geometric scale factor of 200) 

 

 
Fig. 10.9 – Predicted GNA buckling modes as a function of the outlet eccentricity 

 

10.3.3 Linear and nonlinear axial membrane stress distributions at midheight 

The preceding section clearly identifies the base of the 3 mm strake as critical for every 

buckling mode in this study. The base of this strake occurs at a depth of z/H = 0.57, but 

the buckling modes are naturally not confined to just this location, covering a finite 

portion of the wall up to a depth of approximately z/H = 0.45. The circumferential 

distributions of the LA and GNA axial membrane stress resultants at buckling failure 

were thus extracted at midheight (z/H = 0.50), which is very close to the middle of the 
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portion of the silo wall affected by each of the buckling modes. These are presented in 

Fig. 10.10 and Fig. 10.11. 

 

Considering the distributions of LA axial membrane stress resultants at the LBA load 

factor for the five outlet eccentricities (Fig. 10.10), every one of these curves shows that 

buckling occurs when the axial membrane stress resultants have reached approximately 

the same value: ~ 290 N/mm for ec/R ≤ 0.25 and ~ 320 N/mm for ec/R ≥ 0.50. This 

value corresponds very closely to the stress resultant at to classical buckling stress for 

the 3 mm strake, Ncl = tσcl ≈ 0.605Et2R-1 ≈ 320.3 N/mm. Thus it is clear that the buckles 

form where the stresses in the wall reach the classical buckling stress. The 

corresponding distributions of GNA axial membrane stress resultants in Fig. 10.11 show 

almost the same story.  

 

The value of the LA and GNA axial compression is 290 N/mm at z/H = 0.50 for ec/R ≤ 

0.25, slightly less than 320 N/mm. However, since the buckling mode covers a finite 

portion of the silo depth, the slightly higher critical value of Ncl is reached somewhere 

nearby where the largest displacements associated with the buckling mode are predicted 

to occur. The exact location where this does occur is different for every outlet 

eccentricity. Furthermore, the LA stress distribution for ec/R = 0.25 shows that Ncl is 

close to being reached at two locations, both at θ = 0° and 180°, and it seems more due 

to coincidence that θ = 180° became critical first. At a slightly higher value of ec/R, it is 

likely that the location at θ = 0° would instead have become critical. For the 

corresponding GNA stress distribution at ec/R = 0.25, the position at θ = 180° is clearly 

the critical one. The question therefore remains as to why the load factors were so much 

lower for the flow patterns at higher eccentricities if all buckles formed at 

approximately the same value of the critical stress. 

 

It is interesting to note that the compressive peak in an LA analysis occurs 

approximately 25° off-centre, resulting in a type of LBA ‘double buckle’ (Fig. 10.8). A 

similar result was previously reported for kc = rc/R = 0.90 in Fig. 5.6 for the EN 1991-4 

flow channel size study, and for n = 1.5 in Fig. 9.12 for the mixed flow theory channel 

steepness study. It appears to be a recurring finite element prediction for eccentric pipe 

flow channels with wide wall contact angles, but it is not known whether such a buckle 

has been observed in practice. 
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Fig. 10.10 – Circumferential distribution of axial membrane stress resultants at 

midheight within the 3 mm strake for LA @ LBA 

 
Fig. 10.11 – Circumferential distribution of axial membrane stress resultants at 

midheight within the 3 mm strake for GNA @ bifurcation 

 

10.3.4 Investigation of the sudden drop in load factor from ec/R = 0.25 to 0.50 

The LA and GNA axial membrane stresses at z/H = 0.50 are shown in Fig. 10.12 and 

Fig. 10.13, at the same load factor of unity. Both of these sets of distributions suggest 

that the pattern of stresses near the critical buckling location changes drastically with 
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increasing eccentricity as the flow channel comes into contact with a progressively 

deeper portion of the silo wall. The low normal wall pressure associated with the flow 

channel increases the axial compression locally to a progressively higher value. 

Consequently, whichever value of the outlet eccentricity results in the highest 

magnitude of axial compression at the same load factor of unity, the stresses at that 

eccentricity require multiplication by a lower load factor to reach the critical value of 

the elastic buckling stress Ncl.  

 

 
Fig. 10.12 – Circumferential distribution of midheight LA axial membrane stress 

resultants at a load factor of unity 
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Fig. 10.13 – Circumferential distribution of midheight GNA axial membrane stress 

resultants at a load factor of unity 

 

At ec/R = 0.25, the contact of the channel with the wall is too small to cause any 

significant increases in axial compression at z/H = 0.50 because the lowest point of the 

effective transition has not yet reached this level, occurring much higher at z12/H = 0.30 

(Fig. 10.5). But for ec/R ≥ 0.50, z12/H ≥ 0.63 hence the region of the wall near the base 

of the 3 mm strake at z/H = 0.57 is now affected by the low wall pressure, and the local 

axial compression increases accordingly. Thus the rather steep drop in load factor from 

ec/R = 0.25 to 0.50 (Table 10.2) appears to correspond to the change in the location of 

the lowest point of the effective transition z12/H, which descends from being above to 

below the critical buckling region at the base of the 3 mm strake respectively. Thus once 

the effective transition is within the 4 mm strake, any subsequent increase in 

eccentricity only results in relatively minor increases in the magnitude of the drop in 

normal wall pressure from stationary to flowing solid at the critical location, and the 

consequent increase in axial compression and decrease in load factor is small. 

 

10.3.5 The effect of geometric nonlinearity 

Considering again the midheight distributions of LA and GNA axial membrane stresses 

at a load factor of unity (Fig. 10.12 and Fig. 10.13), the peak compressive value was 

extracted as a function of the outlet eccentricity ec/R and compared for both sets of 

analyses. The GNA analyses were found to predict significantly lower peak 
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compressive stresses at the same load factor than the LA analyses, thus supporting the 

finding that geometric nonlinearity has an important beneficial effect. An interesting 

pattern emerges when the ratios of the peak LA to GNA compressive axial membrane 

stresses are plotted against the outlet eccentricity (Fig. 10.14), as it shows that the 

progressive growth of the extent to which the LA analysis overestimates this peak, 

reaching almost 60% for maximum eccentricity. When compared to the variation of the 

GNA/LBA load factor ratio with eccentricity, the relationship is very similar indeed. 

The most likely reason for the beneficial effect of changes of geometry may be found in 

the context of a beam theory analogy in Chapter 3. 

 

 
Fig. 10.14 – Distribution of two dimensionless entities with outlet eccentricity 

 

10.4 Presentation of the geometrically linear and nonlinear axial membrane 

stress distributions at additional circumferential locations 

The evidence presented in the previous section attempted to explain the predicted 

buckling behaviour of the stepped wall Silo B under eccentric taper pipe flow of 

increasing outlet eccentricity. For the purposes of completeness, this section presents 

some of the rather exotic axial distributions of LA and GNA axial membrane stresses 

that occur at various circumferential locations and the progressive development with 

ec/R of the characteristic pattern of axial membrane stresses associated with eccentric 

pipe flow. The characteristic pattern was first introduced in Chapter 2 for the EN 1991-4 

eccentric discharge pressure model (Fig. 2.9 and Fig. 2.13).  
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The axial distributions of axial membrane stress resultants at θ = 0°, 45° and 90° for the 

LA and GNA analyses at buckling are shown in Figs 10.15 to 10.20. These three 

circumferential locations correspond to the flow channel centre, edge and significantly 

away from the flow channel respectively. The curves for ec/R = 0.00 (Fig. 10.15 and 

Fig. 10.16) show the expected response to axisymmetric Janssen-like wall pressures, 

and are naturally independent of the circumferential position. They are thus the same on 

all three figures. These distributions confirm that the classical buckling stress Ncl is only 

ever reached at the base of the 3 mm strake in all analyses, though the LA and GNA 

axial membrane stress resultant for ec/R = 0.00 also appears to be very close to the value 

of Ncl at the base of the 4 mm strake. The values of Ncl for each wall thickness strake are 

summarised in Table 10.3. 

 

Table 10.3 – Summary of critical Ncl values for each wall strake 

Wall thickness (mm) 3 4 5 6 

Ncl (N/mm)† 320.3 569.4 889.7 1281.2 

† Note: Ncl = tσcl ≈ 0.605Et2R-1
 assuming E = 200 GPa and R = 3400 mm 

 

For the LA and GNA analyses at ec/R = 0.25, the compression at the base of the silo has 

decreased significantly from its value at ec/R = 0.00. A compressive peak is also 

beginning to develop at z12/H = 0.30, very close to the local position of the effective 

transition at the boundary between Region 1 and 2. This location corresponds to a 

sudden rise in wall pressures. At higher eccentricities, the location of this compressive 

peak continues to follow the descending z12/H boundary very closely. For ec/R ≥ 0.50, 

the axial membrane stress at the base of the silo has become tensile and becomes more 

so as ec/R increases further. In this range, the distribution of axial membrane stresses 

throughout the silo height becomes similar to the characteristic EN 1991-4 flow channel 

‘centre’ distribution (compare with Fig. 2.9 and Fig. 2.13). 
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Fig. 10.15 – LA @ LBA axial membrane stress resultants at θ = 0° 

 

 
Fig. 10.16 – GNA @ bifurcation axial membrane stress resultants at θ = 0° 

 

The distributions of the LA and GNA axial membrane stress resultants at buckling for 

the circumferential position at θ = 45° are presented in Fig. 10.17 and Fig. 10.18 

respectively. The position θ = 45° is close to the edge of the portion of the silo wall that 

is covered by the flow channel. With increasing outlet eccentricity, tensile peaks 

develop in these curves, rather than compressive peaks as seen for θ = 0° in Fig. 10.15 
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and Fig. 10.16. The positions of these tensile peaks also correspond closely to the local 

positions of the effective transition zEff.Tr/H, as annotated in the figures. For ec/R ≥ 0.50, 

the distribution of axial membrane stresses begins to be very similar to the characteristic 

EN 1991-4 flow channel ‘edge’ distribution (compare again with Fig. 2.9 and Fig. 2.13). 

  

 
Fig. 10.17 – LA @ LBA axial membrane stress resultants at θ = 45° 

 

 
Fig. 10.18 – GNA @ bifurcation axial membrane stress resultants at θ = 45° 
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Lastly, the LA and GNA axial membrane stress resultants for θ = 90° at buckling (Fig. 

10.19 and Fig. 10.20) seem largely unaffected by the flow channel and show Janssen-

like distributions throughout without any apparent anomalies. Thus all five flow 

channels are predicted to have a mostly local influence on the axial membrane stresses 

in the shell. 

 

 
Fig. 10.19 – LA @ LBA axial membrane stress resultants at θ = 90° 

 

 
Fig. 10.20 – GNA @ bifurcation axial membrane stress resultants at θ = 90° 
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10.5 Materially nonlinear analyses (MNA) 

The predicted load proportionality factors for the MNA analyses are listed in Table 10.4 

and plotted in Fig. 10.21, together with the corresponding LBA and GNA load factors 

for comparison. Although the MNA factor is smaller than both the LBA and GNA 

factors for ec/R = 0.00, it becomes larger than all other factors when ec/R ≥ 0.25, 

especially so for ec/R ≥ 0.50 where a significant contact has developed between the 

eccentric taper pipe flow pattern and the silo wall. 

 

Table 10.4 – Summary of computed LBA, MNA and GNA load proportionality factors 

as a function of the outlet eccentricity 

0.00 0.25 0.50 0.75 0.93 Outlet eccentricity 

ec/R     ConP                              →                           EccP 

LBA 8.947 8.037 3.305 2.275 1.946 

GNA 8.915 8.280 3.905 3.408 3.027 

8.591 8.370 7.852 5.487 4.290 MNA & 

Collapse mode Axi-EF† Glb-EF† Glb-PL Glb-PL Glb-PL 

† at the base of the 3 mm strake 

 

 
Fig. 10.21 – Distribution of computed LBA, MNA and GNA load factors with outlet 

eccentricity 
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The predicted MNA plastic collapse modes are presented in Fig. 10.22, showing very 

extensive circumferential bending at higher eccentricities. For ec/R = 0.00 and 0.25, 

both MNA analyses result in an elephant’s foot plastic collapse mode at the base of the 

3 mm strake. This mode is fully axisymmetric for ec/R = 0.00 but locally centred near θ 

= 180° for ec/R = 0.25, and may be classified as Axi-EF and Glb-EF respectively (Table 

10.1). For ec/R ≥ 0.50, the plastic collapse modes may be classified instead as Glb-PL, 

but these are not expected to play any further role in the behaviour of the silo. It has 

been discussed consistently throughout this thesis that the analyses of many authors 

including Jenike (1967), Bucklin et al. (1980), Colijn and Peschl (1981), Wood (1983), 

Roberts and Ooms (1983), Safarian and Harris (1985) and Ooms and Roberts (1986) 

were incorrect in their assumption that the silo under eccentric discharge fails through 

circumferential bending. This is confirmed once again in this set of MNA analyses. 

 

 
Fig. 10.22 – Predicted MNA plastic collapse modes as a function of the outlet 

eccentricity 

 

10.6 Geometrically and materially nonlinear analyses (GMNA) 

Material plasticity was found to have a negligible influence on the buckling behaviour 

for flow patterns with outlet eccentricities greater than ec/R = 0.50, consistent with 

previous findings in this thesis for plasticity under eccentric pipe flow. At eccentricities 

of ec/R ≤ 0.25, where the characteristic concentric discharge behaviour still dominates, 

material plasticity was found to be responsible for reductions in buckling strength of up 

to 17%. The predicted GMNA load factors are thus shown in Table 10.5 and plotted in 

Fig. 10.23 and Fig. 10.24. The buckling modes are shown in Fig. 10.25. 
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Table 10.5 – Summary of computed LBA, GMNA and GNA load proportionality 

factors as a function of the outlet eccentricity 

0.00 0.25 0.50 0.75 0.93 Outlet eccentricity 

ec/R     ConP                              →                           EccP 

LBA 8.947 8.037 3.305 2.275 1.946 

GNA 8.915 8.280 3.905 3.408 3.027 

7.334 6.859 3.905 3.408 3.009 GMNA & 

Buckling mode Axi-EF† 

@ all θ 

Glb-EF‡ 

@ θ = 180° 

Loc-CH‡ 

@ θ = 0° 

Loc-CH‡ 

@ θ = 0° 

Loc-CH‡

@ θ = 0° 

† at the base of the silo 

‡ at the base of the 3 mm strake 

 

 
Fig. 10.23 – Distribution of computed LBA, GNA and GMNA load factors with outlet 

eccentricity 
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Fig. 10.24 – Distribution of the different normalised load factors with outlet eccentricity 

 

 
Fig. 10.25 – Predicted GMNA buckling modes as a function of the outlet eccentricity  

 

The GMNA buckling mode for ec/R = 0.00 is axisymmetric plastic elephant’s foot 

(mode Axi-EF) at the base of the silo, not at the 3 mm strake. At ec/R = 0.25, the 

elephant’s foot buckling mode is predicted to occur more locally, this time opposite the 

outlet but at the base of the same strake (mode Glb-EF). For higher eccentricities, the 

GMNA buckling modes very closely reflect the type, location and overall size of the 

GNA buckling modes shown in Fig. 10.9. Indeed, the GMNA load factors and buckling 
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modes at ec/R = 0.50, 0.75 and 0.93 are almost identical to those of the GNA, suggesting 

fully elastic behaviour once eccentric taper pipe flow has developed.  

 

10.7 Geometrically nonlinear analyses with weld imperfections (GMNIA) 

The full set of load proportionality factors at failure are summarised in Table 10.6 and 

plotted in Fig. 10.26 and Fig. 10.27 as a function of the outlet eccentricity. These results 

include both GMNIA analyses which used the axisymmetric weld imperfection of 

Rotter and Teng (1989a) at 50% and 100% of the EN 1993-1-6 Section 8.7 amplitude 

requirement (Table 4.6). 

 

The two sets of GMNIA load factors were found to be consistently lower than the 

GMNA load factors for all eccentricities, thus the effect of axisymmetric weld 

imperfections was found to be consistently deleterious for all eccentric taper flow 

channels investigated in this study, going against the results of Chapters 8 and 9. At ec/R 

= 0.50 only, the 50%-amplitude GMNIA#1 load factor is actually higher than the 100%-

amplitude GMNIA#2 load factor, suggesting that a deeper imperfection is less 

detrimental to the predicted strength of the silo for this eccentricity, a feature known to 

occur elsewhere (e.g. Yamaki, 1984), but it is not known why this occurs specifically at 

that value of ec/R and not at another. The weld depression is responsible for a reduction 

in the predicted buckling strength of up to 45% for concentric discharge, but this 

reduction becomes progressively smaller at higher eccentricities, and at ec/R = 0.93 it is 

only 21%. Thus where the silo under uniform stress states exhibits very acute 

imperfection sensitivity, this appears to be no longer the case for stress states with more 

localised compressive peaks, a feature exploited in the formulation of a failure criterion 

in Section 9.6 (e.g. Libai and Durban, 1973; 1977; Rotter, 1986). 
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Table 10.6 – Summary of the full set of computed load proportionality factors as a 

function of the outlet eccentricity 

0.00 0.25 0.50 0.75 0.93 Outlet eccentricity 

ec/R  ConP                            →                    EccP 

LBA 8.947 8.037 3.305 2.275 1.946 

MNA 8.591 8.370 7.852 5.487 4.290 

GNA 8.915 8.280 3.905 3.408 3.027 

GMNA 7.334 6.859 3.905 3.408 3.009 

GMNIA#1 5.635 5.205 2.399 2.054 1.720 

GMNIA#2 4.819 4.447 3.826 1.785 1.531 

Buckling mode† Axi-EF Glb-EF Loc-CH 

† at the base of the 3 mm strake for both GMNIA analyses 

 

 
Fig. 10.26 – Distribution of computed load proportionality factors as a function of the 

outlet eccentricity 
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Fig. 10.27 – Distribution of the all normalised GNA-based load factors with outlet 

eccentricity 

 

The predicted incremental buckling modes for both GMNIA analyses (Fig. 10.28 and 

Fig. 10.29) are similar to each other and to the GMNA buckling modes (Fig. 10.25), and 

occur at the same locations in the silo wall. The GMNA analyses predict failure by 

plastic elephant’s foot buckling at the base of the 3 mm strake for ec/R ≤ 0.25, and the 

introduction of a weld imperfection at this same location naturally results in a decreased 

GMNIA load factor. However, once the outlet eccentricity has increased beyond ec/R = 

0.50 and the GMNIA analysis predicts a predominantly elastic midheight buckling 

mode at the centre of the flow channel (with only very local plasticity effects), the 

detrimental effect of the axisymmetric weld depression becomes harder to explain. 
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Fig. 10.28 – Predicted GMNIA#1 buckling modes as a function of the outlet 

eccentricity 

 

 
Fig. 10.29 – Predicted GMNIA#2 buckling modes as a function of the outlet 

eccentricity 

 

The results of this study do not support the previous findings where the axisymmetric 

weld depressions were reported to be beneficial to the predicted buckling strength 

(Chapters 4, 8 and 9). The most likely reason for this may be found by looking in Fig. 

4.29 (reproduced here as Fig. 10.30) which showed that, although the weld depression 

was found to be significantly beneficial for small and medium-sized EN 1991-4 

eccentric discharge flow channels (kc = rc/R = 0.25 and 0.40), this was no longer the 

case for the flow channel with the widest wall contact (kc = 0.60). The contact angle of 

the channel with the wall θc was found to be 28.73° for kc = 0.60 (Table 4.7), whereas in 
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the present study, each eccentric taper pipe flow channel has a wall contact of 

approximately 40° near the critical buckling location at the base of the 3 mm strake. 

Thus the eccentric taper pipe flow channels analysed in this study may simply have too 

wide a contact with the silo wall for the weld depressions to be beneficial, as was the 

case of the study in Chapter 4. However, this is a complicated aspect which merits 

further study. 

 

 
Fig. 10.30 – Reproduction of Fig. 4.29 showing the GNIA buckling modes of silo VS 

(H/D = 5.2) for kc = rc/R = 0.00, 0.25, 0.40 and 0.60 and associated GNA and GNIA 

load factors 

 

10.8 Relationship to the Standards 

The Australian Standard (AS 3774, 1996) specifies that discharge eccentricities smaller 

than 0.2R may be treated as concentric and a special procedure for eccentric flows need 

not be invoked. The European Standard (EN 1991-4, 2007) specifies instead that the 

large outlet eccentricity procedure (the focus of Chapters 2 to 6) does not need to be 

applied where the outlet eccentricity is less than 0.5R. The German and ISO Standards 

(DIN 1055-6, 1987; ISO 11697, 1995) only treat filling and discharge eccentricity 

through ‘patch’ loads (discussed in Section 1.2.6 of the literature review) and no special 

value of eccentricity is defined.  
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The load factors predicted in this study for ec/R = 0.25 (close to 0.2R) have indeed been 

found to be very similar to the concentric values, while a significant drop in buckling 

strength was found for outlet eccentricities greater than ec/R = 0.50 (Table 10.6). Based 

on the results presented in this chapter, it therefore appears that the Australian and 

European Standards were spot on.  

 

10.9 Conclusions 

This chapter has presented the results of a computational study into the structural effects 

of taper pipe flow channels with five different outlet eccentricities, assuming a constant 

outlet size and channel steepness. The wall pressures were predicted by the mixed flow 

pressure theory introduced earlier in this thesis. The analyses were performed on a 

single stepped-wall thickness silo of intermediate slenderness. This is the final study to 

be presented in this thesis. 

 

The mixed flow pressure theory predict very similar distributions of vertical pressure in 

both the flow channel and stationary solid regardless of outlet eccentricity. An 

increasingly eccentric taper pipe flow channel was found to result in a larger vertical, 

but not circumferential, contact with the silo wall over which low wall pressures are 

applied. 

 

The finite element analyses predict a minor fall in buckling strength from 0% to 25% 

eccentricity, followed by a significant fall in the buckling strength from 25% to 50%. 

For even higher eccentricities, the buckling strength continues to fall further, but only 

by very little. The reported result of a rise in buckling strength after a certain middle 

value of the eccentricity (approximately 80%) has not been reproduced. The plastic 

collapse mechanism was not found to play any role in the behaviour of medium and 

high eccentricities.  

 

Axisymmetric weld imperfections were found to be detrimental to the predicted 

buckling strength at all values of outlet eccentricity. This is likely to be due to the 

relatively wide contact between the flow channel and the wall, which seems to negate 

any strengthening effects in terms of the circumferential bending stiffness that a 

narrower channel-wall contact may have. A similar finding was presented in a previous 

study in this thesis, but the mechanics is complex and requires further study. 
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The relationship between the predicted load factors at buckling failure with the outlet 

eccentricity was found to correspond remarkably well to the provisions of the Australian 

and European Standards, AS 3774 and EN 1991-4 respectively. 
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Chapter 11 – Conclusions and further research 

 

11.1 Introduction 

This thesis has presented a series of detailed numerical investigations into the structural 

effects of concentric and eccentric discharge of granular solids in slender and 

intermediate slender metal silos. Seven silos of varying aspect ratio were custom 

designed for this purpose according to the EN 1993-1-6 (2007) and EN 1993-4-1 (2007) 

European Standards using the prescribed concentric discharge loads and material 

properties of EN 1991-4 (2007) for two different granular solids: wheat and cement. 

The custom designs offered full freedom in the control and understanding of the system 

that was being analysed and helped explain the type and location of many of the 

predicted buckling and plastic collapse modes. 

 

The numerical studies were all carried out with the powerful ABAQUS finite element 

software, which is capable of all of the computational analyses within the framework of 

the EN 1993-1-6 Standard. Due to the high complexity involved in preparing and 

programming the finite element models (which was done with custom-written 

software), the long run times of over a thousand nonlinear analyses and the considerable 

effort required to process the resulting output data, there was unfortunately no scope in 

the time available to undertake experimental studies.  

 

11.2 Literature on granular solids flows in silos and on shell structures 

The literature on experimental studies of granular solids flows in silos is vast. It 

includes very extensive measurements of filling, storage and discharge pressures, 

though measurement of flow channel profiles are much rarer due to the difficulties of 

observation. Unfortunately, these studies have been carried out over the course of many 

decades by researchers all over world who naturally used different granular materials 

and measuring techniques, assumed different eccentricities of flow, employed different 

example silos of varying aspect ratios built with different construction techniques (both 

model and full-scale), or simply had a different philosophy within which the 

experiments were carried out, all of which influenced either the focus or the conclusions 

of the research. Consequently, it is extremely difficult to extract any systematic 

conclusions from this vast volume of research other than rather vague qualitative 

generalities such as ‘eccentric discharge is bad’. 
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It has become apparent over the course of this research that the even larger literature on 

shell structures is equally lacking in clarity on the subject of the effects of non-

symmetrical pressures, such as those occurring under eccentric mixed and pipe flows 

and especially so under geometric nonlinearity. This is party due to the algebraic 

character of most texts on shell theory, whose mathematical analyses of linear shell 

behaviour already approach the limit of what can be achieved algebraically. Analytical 

studies of nonlinear shell behaviour under unsymmetrical using algebraic treatments are 

simply too complex. It has really only been possible to begin to unlock the secrets of 

nonlinear shell behaviour in recent years, with the advance of cheap computing power 

and the development of nonlinear finite element software. For many reasons, it would 

not have been possible to carry out the research presented in this thesis even ten years 

ago. 

 

11.3 Analyses of the EN 1991-4 eccentric discharge model 

The natural place to begin an investigation of the effects of eccentric discharge is with 

the provisions of the relatively recent European Standard EN 1991-4. Published only in 

2007, the design procedure for large eccentricities found therein is a milestone in the 

codified treatment of this design condition and its structural effects have not been 

explored in any known study preceding this thesis. The EN 1991-4 eccentric discharge 

model uses an eccentric pipe flow channel with parallel sides and a truncated circular 

cross-section down the entire height of the silo. The necessary change to this shape near 

the outlet is ignored. 

 

The first half of this thesis was dedicated to parametric studies of the EN 1991-4 

eccentric discharge model using the full range of computational analyses introduced in 

EN 1993-1-6. These included an initial study into the structural effects of this model on 

a slender silo, a second study which investigated different circumferential forms of the 

distribution (there are considerable doubts about the magnitudes of high pressures on 

either side of the flow channel), a third study of the suitability of the model for silos of 

different aspect ratios and a final study of the effects of varying the flow channel size. 

 

It was found that there are two critical buckling regions under eccentric pipe flow. At 

the base of the silo near the edge of the flow channel, high compressive axial membrane 

stresses develop which usually result in a plastic buckle. Alternatively, at approximately 
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silo midheight, relatively low magnitudes of axial compressive stresses develop at the 

centre of the flow channel which usually result in an elastic buckle. For silos which 

have a uniformly thick wall and thus the same buckling resistance throughout, the base 

edge buckle mode was found to be the most commonly critical one. However, in a more 

realistic silo with a stepwise varying wall thickness, buckling occurred slightly above 

midheight where the wall was thinner. The predominant buckling under eccentric pipe 

flow for realistic silo wall geometries was thus found to be the elastic midheight buckle. 

 

When analysing slender silos subject to the EN 1991-4 eccentric discharge pressures, it 

was found that the only buckling modes obtained in finite element analyses were the 

two mentioned above. However, since silos with stepwise varying wall thicknesses are 

the only ones used in practice, it is evident that the midheight buckle is the most 

‘representative’ or ‘characteristic’ mode associated with eccentric discharge. Many 

observations of such buckles have been made on silos in service. However, though it is 

uncertain whether in practice this is the only possible mode (an aspect which requires 

verification), the midheight buckle is a valuable concept for the purposes of 

conservative structural design since nevertheless the predicted load factors associated 

with this buckle are always the lowest. Not all channel sizes recommended by EN 1991-

4 resulted in this buckling mode, and it was found that small flow channels should 

probably be omitted for conservative design calculations because the predicted load 

factors are very high. Thus it was suggested that, if a design calculation process leads to 

a predicted midheight buckle, one may be confident that a conservative design for 

eccentric pipe flow may probably be achieved. The most secure way of ensuring this is 

to choose a mid-sized flow channel. 

 

11.4 Development of a new mixed flow eccentric discharge pressure model 

The EN 1991-4 eccentric discharge model is based on the assumption of eccentric pipe 

flow. This is the only simple algebraic model known, and it is thought to be the most 

damaging pattern of pressures for thin-walled silos. However, flow channels of this 

geometry only form in slightly cohesive solids or in tightly packed rough solids (Rotter, 

2001a). Most stored bulk solids develop flow channels that progressively spread out 

from the outlet, though the precise shape of these channels cannot yet be predicted with 

any certainty. These expanding mixed flow channels leads to structural conditions that 

are only slightly less dangerous than those associated with eccentric pipe flow, but the 
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condition is not covered by EN 1991-4 because no simple theory for the associated 

pressure pattern has been available.  

 

To address this issue, and to expand the range of flow patterns which may be analysed 

numerically, a mixed flow pressure theory was developed based on a generalisation of 

the slice equilibrium analyses of hoppers with sloped sides. The basic concepts were 

originally developed by Berry (1988) and Rotter et al. (1990) but have not been used 

again since. Here, the equilibrium concept was applied to channel sides of varying slope 

and outlets of varying eccentricity, making the theory potentially much more powerful 

than any previous treatment, as it can be applied to a vast range of different geometries 

though at the cost of necessitating a numerical solution to the resulting differential 

equations. Such a solution is not a hindrance, however, and may be done with relative 

ease in a spreadsheet. 

 

Subsequent finite element studies of wall pressures predicted by this theory covered a 

wide range of different flow patterns. These included concentric pipe flow, concentric 

mixed flow, eccentric parallel or taper pipe flow and eccentric mixed flow. Concentric 

pipe flow was found to have a negligible effect on the stationary Janssen pressures for 

narrow channels, while concentric mixed flow was found to predict sudden wall 

pressure increases adjacent to the effective transition that were of a realistic order of 

magnitude (discrediting the ‘switch’ theory for the lateral pressure ratio K). Eccentric 

pipe flow expressed with the mixed flow theory was predicted to result in very similar 

structural consequences as the EN 1991-4 eccentric discharge model, reproducing the 

elastic midheight buckle. Finally, eccentric mixed flow was found to be only slightly 

less destructive than eccentric pipe flow, despite a fundamentally different predicted 

structural response. The hierarchy, in terms of increasing structural severity, was found 

to be: concentric pipe flow < concentric mixed flow < eccentric mixed flow < eccentric 

pipe flow.  

 

The mixed flow pressure theory was developed with only the simplest of assumptions 

for the lateral pressure ratio K, which was taken to be constant throughout the silo. 

Indeed, it does not really matter which equation is assumed for K if it is to be constant, 

since the predicted patterns of wall pressure are then effectively independent of it. 

Probably most importantly of all, large and sudden rises in wall pressure at the effective 
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transition between the flowing and stationary solid were found to be caused be local 

equilibrium considerations, and not by a ‘switch’ in K as previously advocated by 

Jenike et al. (1967) and many others. The predicted magnitude of these rises was found 

to be moderate, approximately of the order of 2 (as opposed to almost 10 according to 

the ‘switch’ theory), and has been found to correlate surprisingly closely with reported 

measurements as well as the prescribed concentric discharge factors in EN 1991-4 for 

silos in (the most demanding) Action Assessment Class 1. However, it is recognised 

that K is almost certainly not constant throughout the whole silo, and an experimental 

programme designed specifically to calibrate K depending on flow pattern and location 

is highly recommended. 

 

In addition to an initial probing computational study, two parametric studies were 

carried on sets of flow patterns with pressures predicted the mixed flow pressure theory 

using linear and nonlinear finite element analyses. The first study investigated the effect 

of increasing the steepness of a flow channel of constant eccentricity and outlet size. 

The flow pattern passed from eccentric mixed to pipe flow, resulting in a fundamental 

change in the structural response. The second study investigated the effect of increasing 

the eccentricity of a flow channel of constant steepness and outlet size. The flow 

patterns this time passed from concentric pipe to eccentric taper pipe flow, with a 

progressive decrease in load factor that was found to correspond remarkably well to the 

provisions of the Australian and European Standards, AS 3774 (1996) and EN 1991-4 

(2007), respectively. 

 

11.5 The dual effect of geometric nonlinearity 

It was discovered very early in the research that buckling loads under eccentric pipe 

flow predicted by a geometrically nonlinear analysis were significantly higher than 

those predicted by a linear bifurcation analysis. At first, it was uncertain if beneficial 

geometric nonlinearity was a genuine phenomenon and many of the initial finite 

element analyses were rerun many times using different elements and changing other 

conditions in order to test for errors in the model, but the effect reappeared consistently 

for every single finite element analysis of an eccentric mixed or pipe flow channel.  

 

An initial explanation supporting the above phenomenon was found in the context of a 

propped cantilever analogy, whereby a wider portion of the shell acts like an arc-profile 
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beam with a higher section modulus in a geometrically nonlinear analysis, consequently 

resulting in lower extreme fibre stresses. Thus changes of geometry mobilise a greater 

circumferential portion of the shell to carry the non-symmetrical stresses that occur 

under eccentric discharge, which in turn reduces their peak magnitudes both in tension 

and compression and consequently increases the load factor at buckling. However, there 

is still much to be done to determine why exactly this phenomenon occurs. 

 

Geometric nonlinearity has also been found to cause local circumferential flattening of 

the silo wall adjacent to the low pressure in the flow channel. This increases the local 

radius of curvature of the shell, an affect known to result in lower buckling strengths 

(Rotter, 1985), directly countering the beneficial effect described above. These two 

opposing effects were able to be isolated thanks to the chance discovery of the same 

linear and nonlinear elastic buckling load factor for a slender silo under the same flow 

pattern. 

 

11.6 The minor effect of material nonlinearity 

It was found that the buckling behaviour under eccentric pipe flow occurs 

predominantly in the elastic material range of the silo wall under compressive axial 

membrane stresses. If material plasticity was detected, it was usually very minor. This 

was of course not the case for concentric discharge, where plasticity was found to play a 

central role in the dominant global bursting or elephant’s foot buckling behaviour. 

Additionally, failure under eccentric mixed flow was also found to involve local plastic 

elephant’s foot buckling.  

 

The predominantly elastic behaviour of the most serious condition of eccentric pipe 

flow allowed a potential layer of additional complexity to be removed, for now, and 

thus spared the need to investigate plastic hardening, softening or any other nonlinear 

plasticity law beyond ideal elastic-plastic. Naturally, the use of more complex material 

laws for structural analysis under concentric discharge or eccentric mixed flow may be 

considered as a topic for further research. 
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11.7 Those elusive imperfections! 

The popular Type A axisymmetric weld depression of Rotter and Teng (1989a), very 

serious under uniform axial compression and internal pressure, was put through rigorous 

testing. Due to the nature of the deformation response of the silo under eccentric pipe 

flow, it was found that the weld depression consistently enhanced the circumferential 

bending stiffness of the silo for small and medium-sized EN 1991-4 flow channels, 

leading to higher predicted buckling strengths. For larger-sized flow channels with a 

wider circumferential contact with the silo wall, it was still not possible to ascertain 

whether the weld depressions were a reliably deleterious imperfection form because the 

amplitude of the imperfection (as required by EN 1993-1-6) was so deep that it often 

eliminated the bifurcation point. Thus the silo passed from pre- to post-buckling yet the 

deformations remained stable, and the reported load factor corresponded to a change of 

slope on the load-displacement path at which no negative eigenvalues had been reported 

by the finite element software. Similarly conflicting evidence was obtained in studies of 

more realistic flow patterns in the second half of this thesis. Thus the axisymmetric 

weld depression cannot be relied on to give a conservative estimate under eccentric 

parallel and taper pipe flows. For concentric flows and eccentric mixed flows, however, 

the weld depression is reliably deleterious and may probably be the most damaging 

possible imperfection form (Rotter, 2004). 

 

The more traditional eigenmode-affine imperfection forms were found to be equally 

inadequate at predicting consistent decreases in the corresponding load factor. This was 

due to the shape of the linear bifurcation eigenmode or the geometrically nonlinear pre-

buckling deformations. When applied as an imperfection form to the silo, eigenmode-

affine imperfections were found to result in an increased buckling strength. The shape 

of this imperfection form was found to be composed of tightly-packed alternating 

inward and outward indentations located close to the critical buckling location. It is thus 

likely that these indentations increase the circumferential bending stiffness of the shell 

near the critical location in a similar manner to the axisymmetric weld depression for 

small and mid-sized eccentric pipe flow channels. However, the strength gains for the 

eigenmode-affine imperfection were not as large as for the axisymmetric weld 

depression. 
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Thus where the silo under uniform loading conditions exhibits very high imperfection 

sensitivity, responding negatively even to minor perturbations at very low imperfection 

amplitudes of less than one wall thickness, under localised loads this imperfection 

sensitivity has been found to be significantly reduced. Indeed, it was found that a large-

scale deviation from the perfect shape was necessary in order to produce buckling 

strength decreases under eccentric discharge. Thus a novel and rather exotic global 

imperfection form was proposed based on the deformed radial shape of the shell at 

buckling. Dubbed ‘superelliptical flattening’, it exploited the feature of a flattened wall 

adjacent to the centre of the flow channel and achieved consistent predicted decreases in 

buckling strength. This imperfection may be likened to a global out-of-roundness 

deformation or a long-wave circumferential dimple, as the imperfection amplitudes 

required to attain non-trivial buckling strength reductions are comparable to the 

corresponding EN 1993-1-6 tolerance requirements, easily reaching 20 or more wall 

thicknesses. However, even this imperfection form exhibits a strengthening effect above 

a certain imperfection amplitude, and it is not yet understood why this is so. It was 

therefore recommended that the computational calculations required for the design for 

eccentric discharge should be limited to perfect shells, since these already exhibit very 

low predicted buckling strengths under this load condition. 

 

11.8 Further research 

There are many loose ends in the research presented in this thesis and consequently 

many directions in which further work may be taken, an exciting prospect for a 

researcher in this field. Firstly, one of the main features missing from all of the finite 

element models in this thesis is the effect of the stiffness of the stationary solid. This 

may be implemented in a finite element analysis with spring elements, but a 

methodology must be worked out to reliably relate the local normal wall pressure to the 

stiffness constant of every one of these spring elements.  

 

The vast majority of the buckling failures in stepped wall silos analysed in this thesis 

have been predicted to occur in the wall adjacent to the flow channel, where the solid 

may be assumed to have little or no stiffness. It is therefore difficult to say what effect, 

if any, the incorporation of spring elements within the stationary solid may have on the 

elastic midheight buckling mode within the flow channel.  
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However, many experiments were performed in the past on model silos with uniformly 

thick walls, for which the current finite element analyses would predict a (plastic, if the 

analysis allows it) base buckling mode to the edge of the channel. It is not known 

whether this base buckling mode has actually been observed in practice, but it is known 

that the stationary solid at the base of the silo has considerable stiffness and 

consequently provides a high restraint against buckling, which suggests that a buckle is 

unlikely to form anywhere at the base of the silo under eccentric pipe flow. A much 

more likely location for buckling, as suggested by some studies, is at the foot of the 

flow channel in the form of a ‘smile’ buckle, just above the effective transition before 

the channel becomes internal (Fleming, 1985; Fitz-Henry, 1986). However, such a 

buckling mode has not yet been reproduced in any known finite element analysis. 

 

A potentially very powerful mixed flow pressure theory was considered in this thesis, 

one which predicts the vertical pressures in the flow channel and stationary solid for a 

vast range of geometries and material properties. Although the finite element analyses 

on example silos subjected to wall pressures predicted by this theory yielded credible 

results, the theory itself lacks extensive experimental evidence. It is therefore 

considered that an experimental programme tailor-made to verify specific aspects of this 

theory would be of utmost importance.  

 

In addition to the above, there are clearly very many further parametric studies which 

may be undertaken using finite element analyses of the new mixed flow pressure theory. 

These include investigating the structural effects of eccentric mixed flow channels with 

different eccentricities (the focus so far has been mostly on eccentric pipe flow because 

it was considered to be the most dangerous flow pattern) and the consequences of the 

effective transition (axisymmetric or not) on silos of different aspect ratios. 

Furthermore, the EN 1993-4-1 (2007) failure criterion for local axial compression has 

been found to be a very conservative one under eccentric mixed and pipe flow and 

further research is needed to calibrate the various parameters to give a more reasonable 

correlation with predicted buckling strengths, though for a phenomenon as dangerous as 

eccentric discharge a conservative failure criterion may not be such a bad idea. 

 

A final important point is the philosophical question of how to define structural failure. 

Throughout this thesis, the definition of failure of the EN 1993-1-6 Standard was 
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followed consistently. Hence, in all cases, the lowest bifurcation point, limit point or 

inflection point on the load-displacement curve was assumed to be the point of 

structural failure by buckling, and the behaviour beyond this was not considered. This is 

of course a gross simplification, but also an important one, as it offers a consistent 

frame of reference and a conservative assessment of the structural strength. It is 

therefore not known whether the very low load factors predicted in this thesis for 

eccentric pipe flow are indeed those at which the silo would fail catastrophically in 

reality, and it may be possible that the structure is able to sustain significantly higher 

loads in the post-buckling range. 
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Appendix A – Stress patterns in silos subject to eccentric discharge 

using a propped cantilever analogy 

 

A.1 Introduction: the ‘arc-beam’ 

Certain aspects of the mechanics of behaviour of a silo under eccentric pipe flow are 

explored in this appendix through the analogy of the silo with a propped cantilever 

using simple beam theory. The portion of the shell which is most influenced by the flow 

channel may be conceptually isolated and treated as an independent ‘arc-beam’ (Fig. 

A.1), whose cross-section consists of a an arc of finite wall thickness t and a 

circumferential spread 2θc, which may or may not be related to the flow channel wall 

contact angle θc of the Rotter (1986) and EN 1991-4 (2007) eccentric discharge pressure 

models.  

 

 
Fig. A.1 – Silos under eccentric discharge by beam theory analogy 

 

The stress distribution which arises in the silo wall adjacent to the centre and edges of a 

flow channel under eccentric pipe flow using shell theory (e.g. Fig. 2.9 and Fig. 2.13) is 

very similar in form to that which arises in the extreme fibres of a propped cantilever 

under a uniformly distributed load using Euler beam theory, as illustrated in Fig. A.2. 

There are of course paramount limitations to this analogy and the stresses do not 

directly correspond to each other, but the comparison may nonetheless provide useful 

insights into the far more complex behaviour of the silo under eccentric discharge. 

Additionally, the analogy presented here was instrumental to the development of the 

superelliptical flattening imperfection form presented in Chapter 6. 
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Bending Moment Extreme Fibre Propped Free Body 
Diagram Stresses cantilever Diagram 

Top fibre (+) RB 

 
Fig. A.2 – System diagrams for a propped cantilever with uniformly distributed load 

 

The extreme fibre stresses are given by ( ) ( ),
M z

y z
Z

σ
±

±

=     (A.1) 

where Z± is the section modulus for the top (+) or bottom (–) fibres, while I is the second 

moment of area through the centroid of the arc-beam: 
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I IZ
y y+
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= =       (A.2) 

The bending moment distribution is given by the following general expression which 

depends on the form of the distributed load: 

( ) ( 2
resultant 4 5

8B
q )2M z R L q z z zL L= − = − − +  for a uniformly distributed load. (A.3) 

 

More comprehensive ‘Janssen-like’ load distributions may be explored if a closer 

numerical correlation between the two different theories is desired. This may pave the 

way for a short-hand, semi-empirical method to obtain an approximation of the shell 

stresses directly for design purposes, without resorting to an onerous finite element 

analysis or Fourier series-based membrane theory analysis.  

 

If the section modulus on either extreme fibre increases, the stresses on that fibre 

decrease. This is important in the context of determining whether a change in the cross-

sectional geometry of the arc-beam, based on this relatively simple assessment, is likely 

to lead to an increase or reduction in extreme fibre stresses. By analogy, this 

corresponds to the consideration whether a change in geometry the silo wall under 

eccentric discharge leads to a reduction in the membrane stresses. Such an analogy was 
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extremely helpful in Chapter 3 in supporting the finding that GNA load factors have 

been consistently higher than the LBA load factors under eccentric pipe flow throughout 

this thesis. 

 

A.2 Arc-beam segment properties 

 
Fig. A.3 – Circular and elliptical arc segments 

 

Circular and elliptical segments of angular spread 2θc, where θc always ≤ ½π.  

Circular radius: ρ.  

Elliptical major axis: a.  

Elliptical minor axis: b = ρ. 

The coordinates are expressed parametrically in terms of the angle θ, which is taken as 

zero on the vertical y axis and may be taken to go either clockwise or anti-clockwise. 

When considering deformed geometries, the general superellipse equations (Lamé, 

1818; Gridgeman, 1970) allow direct control over the flatness of the geometry through 

variation of the parameters p and q (> 0, = 2 for ellipse). 

Ellipse: 
2 2

1x y
a b
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=  and ( )sin ,  cos ,  1 cosx a y b y bθ θ θ′= = = −  

Superellipse: 1
p qx y

a b
⎛ ⎞ ⎛ ⎞+ =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 and 
2

sin px a θ= , 
2

cosqy b θ= , 
2

1 cosqy b θ
⎛ ⎞

′ = −⎜ ⎟⎜ ⎟
⎝ ⎠

 

The area of a segment is given by A dA xd= = y∫ ∫ . 
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The centroid of a segment about the x-axis is given by G

ydA yxdy
y

dA xdy
= =∫ ∫
∫ ∫

, and about 

the x’-axis by G Gy yρ′ = − . 

The second moment of area about the x-axis is given by 2 2
xI y dA y xdy= =∫ ∫ , about 

the x’-axis by 2 2
xI y dA y xdy′ ′ ′= =∫ ∫

2
G

′  and about the centroidal G-axis by 

2
G x G xI I Ay I ′= − = Ay′−  using the Parallel Axis Theorem. The integrals are computed 

in the range 0 ≤ θ ≤ θc and are multiplied by a factor of 2 to account for symmetry about 

the y axis. 

 

For a circular arc segment as a function of the radius and half-spread angle θc, the 

properties are: 

( ) (21, 2 sin
2c cA )2 cρ θ ρ θ= − θ

)

       (A.4) 

( ) (
34 sin,

3 2 sin 2
c

G c
c c

y ρ θρ θ
θ θ

=
−

        (A.5) 

( ) ( )
34 sin,

3 2 sin 2
c

G c
c c

y ρ θρ θ ρ
θ θ

′ = −
−

       (A.6) 

( ) (
4

, 4 sin
16

)4x c cI ρ
cρ θ θ= − θ        (A.7) 

( )
4 16, 20 16sin 8sin 2 sin 3 sin 4

16 3x c c c c cI ρ
cρ θ θ θ θ θ′

⎛ ⎞= − − + −⎜ ⎟
⎝ ⎠

θ    (A.8) 

Similarly, for an elliptical arc segment as a function of the minor and major axes and 

half-spread angle θc, the properties are: 

( ) (1, , 2 sin 2
2c cA a b ab )cθ θ= − θ

)

       (A.9) 

( ) (
34 sin,

3 2 sin 2
c

G c
c c

by b θθ
θ θ

=
−

        (A.10) 

( ) ( )
34 sin,

3 2 sin 2
c

G c
c c

by b b θθ
θ θ

′ = −
−

       (A.11) 

( ) (
3

, , 4 sin 4
16

)x c c
abI a b cθ θ= − θ        (A.12) 

( )
3 16, , 20 16sin 8sin 2 sin 3 sin 4

16 3x c c c c c
abI a b cθ θ θ θ θ′

⎛ ⎞= − − + −⎜ ⎟
⎝ ⎠

θ   (A.13) 
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When θc is set to ½π, the familiar results for a half-circle and half-ellipse are obtained: 

( )
2

2
A πρρ = , ( ) 4

3Gy ρρ
π

= , ( ) ( )3 4
3Gy

ρ π
ρ

π
−

′ =  and ( )
4

8xI πρρ =   (A.14) 

( ),
2
abA a b π

= , ( ) 4
3G

by b
π

= , ( ) ( )3 4
3G

b
y b

π
π
−

′ =  and ( )
3

,
8x
abI a b π

=   (A.15) 

For superelliptical geometries, a closed-form solution is available only for the integral 

in the range 0 ≤ θ ≤ ½π albeit in terms of the gamma function, Γ(x). Hence, only a full 

semi-superellipse may be considered as a geometrical feature of an arc-beam section. 

The gamma function is defined as ( ) 1

0

t xx e t dt
∞

− −Γ = ∫ . It is evaluated numerically by 

many professional software packages, i.e. Excel, Matlab, Maple etc., and may be easily 

invoked. 

( )

1 1
2, , ,

p
q pabA a b p q

q p pq q
pq

⎛ ⎞ ⎛ ⎞+
Γ Γ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠=
⎛ ⎞+ +

Γ⎜ ⎟
⎝ ⎠

       (A.16) 

( )
1 2

24, ,
22

q

G

q p pq q
q pqby b p q

p pq q
pq

π

⎛ ⎞ ⎛+ + +
Γ Γ⎜ ⎟ ⎜
⎝ ⎠ ⎝=

⎛ ⎞+ +
Γ⎜ ⎟
⎝ ⎠

⎞
⎟
⎠  and ( ) ( ), , , ,G Gy b p q b y b p q′ = −  (A.17) 

( )
3

3 1
2, , ,

3x

p
q pabI a b p q

q p pq q
pq

⎛ ⎞ ⎛ ⎞+
Γ Γ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠=
⎛ ⎞+ +

Γ⎜ ⎟
⎝ ⎠

      (A.18) 

When p = q = 2, Eqs A.16 to A.18 reduces to those in Eq. A.15. The equations 

presented in this section are thus left in the general form f(radius, angle) as this allows 

their direct implementation as functions or subroutines in a computer algorithm. It 

allows the isolation of the contributions of the various geometric components of the 

given cross-sectional geometry to the properties of that geometry (i.e. area, centroid, 

second moment of area), which becomes very important for more complex shapes, as 

presented shortly. 

 

A.3 Proposed arc-beam geometries 

The equations derived in this section are algebraically very protracted. They are left as 

composite functions of the section properties of the individual geometric features which 
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form the given beam geometry, thus allowing them to be as clear as possible and valid 

for finite ‘shell’ thicknesses. Note that in these derivations it is assumed that the inner 

geometric feature (i.e. the inner arc) terminates at the same y coordinate as the outer 

feature, rather than at the same angle θ to the vertical axis. This allows for greater 

freedom in deriving more complex sections, such as semielliptical arcs, full semiellipses 

and elliptical indentations. The section properties derived in this appendix may 

additionally prove useful for structural engineers designing unusually-shaped thin-

walled circular members, usually from cold-formed steel. 

 

A.3.1 Circular arc-beam (undeformed reference case) 

 
Fig. A.4 – Undeformed circular arc-beam of thickness t 

 

Outer circular segment: radius ρ = R; spread 2θc.  

Inner circular segment: radius ρ' = R – t; spread 2θ'c. 

Extreme fibre distances: cos , top G c bot Gy y R y R yθ= − = −  

Relation: 1cos cosc c
R

R t
θ θ− ⎡ ⎤′ = ⎢ ⎥−⎣ ⎦

 

The properties of the shell are as follows: 

( ) ( ), ,shell c cA A R A R tθ θ ′= − −        (A.19) 

( ) ( ) ( ) ( )
,

, , , ,G c c G c c
G shell

shell

y R A R y R t A R t
y

A
θ θ θ θ′ ′− − −

=     (A.20) 

( ) ( ) 2
, , ,G shell x c x c shell G shellI I R I R t A yθ θ ′= − − − ,      (A.21) 
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An alternative treatment, considered for this reference geometry only, may be made in 

terms of a different input parameter, the angle to the elastic neutral axis, here denoted as 

θNA, which gives the location of the section centroid directly. However, this requires 

that the value of θc be deduced numerically through the solution of the following 

transcendental equation: 

( ) ( ) ( ) ( )
,

, , , ,
cos G c c G c c

G shell NA
shell

y R A R y R t A R t
y R

A
θ θ θ

θ
θ′ ′− − −

= =   (A.22) 

The values of Ashell and IG,shell may be found as above using the new values of θc. This 

procedure was employed in Chapter 3. 

 

A.3.2 Elliptical arc-beam 

 
Fig. A.5 – Deformed elliptical arc-beam of thickness t 

 

The point P is on both the circle and the ellipse: (xp,yp) = (Rsin θc,Rcos θc) = (asin 

θc*,bcos θc*). 

Hence: 1cos cosc c
R

R
θ θ

δ
∗ − ⎡ ⎤= ⎢ ⎥−⎣ ⎦

 and sin
sin

c

c

a R θ
θ ∗= . The parametric angle of the ellipse, 

centred at O,  is denoted with a ‘*’, while that of the circle is without this. 

Outer elliptical arc: major axis a; minor axis b = R – δ; spread 2θc*.  

Inner elliptical arc: major axis a' = a - t; minor axis b' = b – t; spread 2θ'c*. 

Extreme fibre distances: cos cos , top G c G c bot Gy y R y b y R yθ θ ∗= − = − = − −δ  

Relations: 1cos cosc c
R

R
θ θ

δ
∗ − ⎡ ⎤= ⎢ ⎥−⎣ ⎦

 and 1cos cosc c
R

R t
θ θ− ⎡ ⎤′ = ⎢ ⎥−⎣ ⎦

 

The properties of the shell are as follows: 
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( ) (, , ', ', 'shell c cA A a b A a b )θ θ∗= − ∗        (A.23) 

( ) ( ) ( ) ( )
,

, , , ', ' ', ', 'G c c G c c
G shell

shell

y b A a b y b A a b
y

A
θ θ θ∗ ∗ ∗−

=
θ ∗

,

    (A.24) 

( ) ( ) 2
, , , ', ', 'G shell x c x c shell G shellI I a b I a b A yθ θ∗ ∗= − −      (A.25) 

 

A.3.3 Semielliptical (or semi-superelliptical) arc-beam 

 
Fig. A.6 – Deformed semielliptical arc-beam of thickness t 

 

Outer semiellipse: major axis a = Rsin θc; minor axis b = R(1 – cos θc) – δ.  

Inner semiellipse: major axis a' = a - t; minor axis b' = b – t. 

Extreme fibre distances: cos , costop G c bot G cy y R y b y Rθ θ= − = − +  

Relation: 1cos cosc c
R

R t
θ θ− ⎡ ⎤′ = ⎢ ⎥−⎣ ⎦

 

Note that although the arc-beam itself only covers a spread of 2θc with respect to the 

global origin O, the semiellipse has a full spread of π with respects to its own origin O'. 

The properties of the shell are therefore as follows: 

( ) ( ), 'shellA A a b A a b= − , '         (A.26) 

( ) ( ) ( ) ( )
,

, ' ', '
cosG G

G shell c
shell

y b A a b y b A a b
y

A
R θ

−
= +      (A.27) 

( ) ( ) ( )2
, , ', ' cosG shell x x shell G shell cI I a b I a b A y R, θ= − − −     (A.28) 

The flatness may be additionally controlled with the p and q parameters using for the 

properties of the superellipse in Eqs A.16 to A.18 instead of Eq. A.15. If this is the case, 

the shape must be extended fully so that θc = θ'c = ½π, and the above equations become: 
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( ) (, , , ', ', ,shellA A a b p q A a b p= − )q        (A.29) 

( ) ( ) ( ) ( )
,

, , , , , ', , ', ', ,G G
G shell

shell

y b p q A a b p q y b p q A a b p q
y

A
−

=    (A.30) 

( ) ( ) 2
, , , , ', ', ,G shell x x shell G shellI I a b p q I a b p q A y= − − ,      (A.31) 

where a = R, b = R – δ, and a' and b' as before. 

 

A.3.4 Circular arc with elliptical indentation and reversal of curvature: Indented 

arc-beam 

 
Fig. A.7 – Deformed circular arc-beam with elliptical indentation of thickness t 

 

The point P is on both the circle and the ellipse: (xp,yp) = (R sin θs1,R cos θs1) = (a sin 

θe*, R – δcos θe*). 

Hence: ( )1
1cos 1 cose s

Rθ θ
δ

∗ − ⎡ ⎤= −⎢ ⎥⎣ ⎦
, ( )1

1' cos 1 cose s
Rθ θ
δ

∗ − ⎡ ⎤′= −⎢ ⎥⎣ ⎦
 and 1sin

sin
s

e

a R θ
θ ∗= .  

The parametric angle of the ellipse about its own origin O' is denoted with a ‘*’, while 

that of the circle is without this symbol. The extent of the indentation is limited to δ ≥ R 

(1 - cos θs1). 

Outer circular segment #1: radius ρ = R; spread 2θc. 

Inner circular segment #1: radius ρ' = R – t; spread 2θc'. 

Outer circular segment #2: radius ρ = R; spread 2θs1. 

Inner circular segment #2: radius ρ' = R – t; spread 2θs1'. 

Outer elliptical arc: major axis a; minor axis b = δ; spread 2θe.  

Inner elliptical arc: major axis a' = a + t; minor axis b' = b + t; spread 2θ'e. 

The angle θs1 may be chosen freely. 
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Extreme fibre distances: 1cos , costop G c bot s Gy y R y R yθ θ= − = −  

Relations: 1cos cosc c
R

R t
θ θ− ⎡ ⎤′ = ⎢ ⎥−⎣ ⎦

 and 1
1 1sin sins s

R
R t

θ θ− ⎡ ⎤′ = ⎢ ⎥−⎣ ⎦
 

The properties of the shell are as follows: 

( ) ( ) ( )1, , ,out c s eA A A A a b,ρ θ ρ θ θ ∗= − −  and ( ) ( ) ( )1, , , ,in c s eA A A A a b 'ρ θ ρ θ θ ∗′ ′ ′ ′ ′ ′= − −  

shell out inA A= − A          (A.32) 

( ) ( ) ( ) ( ) ( )( ) ( )1 1
,

, , , , , , ,G c c G s s G e e
G out

out

y A y A y b A a b
y

A

ρ θ ρ θ ρ θ ρ θ ρ θ θ∗ ∗− − −
=  

( ) ( ) ( ) ( ) ( )( ) ( )1 1
,

, , , , , , ,G c G s s G e
G in

in

y A y A y b A a b
y

A
eρ θ ρ θ ρ θ ρ θ ρ θ θ∗ ∗′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′− − −

=  

, ,
,

G out out G in in
G shell

shell

y A y A
y

A
−

=         (A.33) 

( ) ( ) ( ) ( ) ( )( ) ( )( )2 2

, 1 ', , , , , , , ,x out x c x s x e e G e G eI I I I a b A a b y b y bρ θ ρ θ θ θ ρ θ θ∗ ∗ ∗ ∗⎡ ⎤⎡ ⎤′= − − + − −⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦
 

( ) ( ) ( ) ( ) ( )( ) ( )( )2 2

, 1 ', , , , , , , ' ,x in x c x s x e e G e G eI I I I a b A a b y b y bρ θ ρ θ θ θ ρ θ θ∗ ∗ ∗ ∗⎡ ⎤⎡ ⎤′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′= − − + − −⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦
 

2
, , , ,G shell x out x in shell G shellI I I A y= − −        (A.34) 

 

A.3.5 Circular arc with localised semielliptical flattening: Flattened arc-beam 

 
Fig. A.8 – Deformed circular arc-beam with semielliptical flattening of thickness t 

 

Outer circular segment #1: radius ρ = R; spread 2θc. 

Inner circular segment #1: radius ρ' = R – t; spread 2θc'. 
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Outer circular segment #2: radius ρ = R; spread 2θs2. 

Inner circular segment #2: radius ρ' = R – t; spread 2θs2'. 

Outer semiellipse: major axis a = R sin θs2; minor axis b = R (1 – cos θs2) – δ. 

Inner semiellipse: major axis a' = (R – t) sin θs2'; minor axis b' = b – t. 

Extreme fibre distances: cos , top G c bot Gy y R y R yθ δ= − = − −  

Relation: 1cos cosc c
R

R t
θ θ− ⎡ ⎤′ = ⎢ ⎥−⎣ ⎦

 and 1
2 2cos coss s

R
R t

θ θ− ⎡ ⎤′ = ⎢ ⎥−⎣ ⎦
 

The properties of the shell are as follows: 

( ) (, 2, ,out circ c sA A A )ρ θ ρ θ= −  and ( ) ( ), 2, ,in circ c sA A Aρ θ ρ θ′ ′ ′= − ′

)b

,

 

(, ,out ellA A a=  and  ( ), ,in ellA A a b′ ′=

,circ out circ in circA A A= −  and  , ,ell out ell in ellA A A= −

, , , ,shell out circ out ell in circ in ellA A A A A⎡ ⎤ ⎡= + − +⎣ ⎦ ⎣ ⎤⎦       (A.35) 

( ) ( ) ( ) ( )2 2
, ,

,

, , , ,G c c G s s
G out circ

out circ

y A y A
y

A
ρ θ ρ θ ρ θ ρ θ−

=

( ) ( ) ( ) ( )2 2
, ,

,

, , , ,G c c G s s
G in circ

in circ

y A y A
y

A
ρ θ ρ θ ρ θ ρ θ′ ′ ′ ′ ′ ′ ′ ′−

=  

( ), , 2cosG out ell G sy y b ρ θ= +  and ( ), , 2cosG in ell G sy y b ρ θ′ ′ ′= +  

, , , , , ,
,

G out circ out circ G in circ in circ
G circ

circ

y A y A
y

A
−

=  and , , , , , ,
,

G out ell out ell G in ell in ell
G ell

ell

y A y A
y

A
−

=  

, , , , , , , , , , , ,
,

G out circ out circ G out ell out ell G in circ in circ G in ell in ell
G shell

shell

y A y A y A y A
y

A
⎡ ⎤ ⎡+ − +⎣ ⎦ ⎣=

⎤⎦

)

  (A.36) 

( ) (, , 2, ,x out circ x c x sI I Iρ θ ρ θ= −  and ( ) ( ), , 2, ,x in circ x c x sI I Iρ θ ρ θ′ ′ ′= − ′

)

 

( ) ( )( )2
, , 2, , cosx out ell x sI I a b A a b ρ θ= +  and ( ) ( )( 2

, , 2, , cosx in ell x sI I a b A a b ρ θ′ ′ ′ ′ ′ ′= +  

2
, , , , , ,G circ x out circ x in circ circ G circI I I A y= − −   

and ( ) ( ) ( )2
, ,, , cosG ell x x ell G ell sI I a b I a b A y ρ θ′ ′= − − − 2

) ⎤⎦

 

( ) (2 2

, , , , , , ,G shell G circ circ G shell G circ G ell ell G shell G ellI I A y y I A y y⎡ ⎤ ⎡= + − + + −
⎣ ⎦ ⎣

  (A.37) 

 

Once again, the semielliptical flattening may be generalised to the form of the semi-

superellipse, allowing the exact form of the flattening to be controlled directly. The 

equations are thus modified in a manner similar to those in Section A.3.3. 
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A.3.6 Extension of properties to the full 360 degrees 

For arc-beams which extend to the full half-circumference, θc = ½π, the properties may 

be combined with those of an undeformed semi-circular arc to make a complete 

deformed cylindrical tube. 

 

 
Fig. A.9 – Extension to a fully cylindrical arc-beam 

 

The properties of an undeformed semi-circular shell are as follows: 

( )( )22

2semiA R R tπ
= − −  and ( )

( )

33

22

4
3Gsemi

R R t
y

R R tπ

⎛ ⎞− −
= ⎜ ⎟

⎜ ⎟− −⎝ ⎠
 

( )( )44

8xsemiI R R tπ
= − −  and ( )( ) ( )( )

( )

233
44

22

8
8 9Gsemi

R R t
I R R t

R R t
π

π

− −
= − − −

− −
 (A.38)  

From other geometries: 

def shellA A= , , ,G def G shelly y= , , ,x def x shellI I=  and , ,G def G shellI I=  

Hence: 

full def semiA A A= +          (A.39) 

( ) ( ),
,

def G def semi G semi
G full

full

A y R A R y
y

A
+ + −

= ,       (A.40) 

( ) ( )2 2

, , , , ,G full x def def G full x semi semi G fullI I A R y I A R y⎡ ⎤ ⎡= + − + − −⎢ ⎥ ⎢⎣ ⎦ ⎣
⎤
⎥⎦

  

OR 

( ) ( )2 2

, , , , , , ,G full G def def G def G full G semi semi G full G semiI I A y R y I A y R y⎡ ⎤ ⎡= + + − + + − +⎢ ⎥ ⎢⎣ ⎦ ⎣
⎤
⎥⎦

 (A.41) 

 

 

yGfull = ytop R 

x-axisO 
θc = ½π

centroidal G-axis 

t 
ybot 

y-axis 

δ 

centroidal G1-axis of deformed part 
yGdef 

yGsemi 
centroidal G2-axis of undeformed part 
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A.4 Select investigations 

A.4.1 Overview 

Each one of the different geometries presented in Figs A.5 to A.8 may be considered as 

alternative suggestions for what the deformed radial shape of the silo wall near the 

critical buckling region under eccentric pipe flow may best resemble. The undeformed 

circular arc (Fig. A.4) is naturally the reference geometry. However, it is thought that 

the arc-beam geometry which most accurately corresponds to the deformed radial shape 

of the silo at bifurcation is that of the semi-superellipse (Fig. A.6) or alternatively the 

circular arc with local (super-) elliptical flattening at the tip (Fig. A.8), both assuming 

appropriate values for the set of powers p and q.  

 

It was thought at an early point in the investigation of the beneficial effect of geometric 

nonlinearity under eccentric discharge that the radial deformation of the silo may be 

such that the shell actually inverts inwards near the channel (with a reversal of 

curvature), and thus an arc-beam in the form of a circular arc with an inward indentation 

in the shape of an elliptical arc was conceived (Fig. A.7). According to beam theory 

(presented shortly), this type of deformation would indeed result in noticeable 

reductions in extreme fibre stresses (due to increased section moduli), but this is not a 

true representation of the deformed radial shape of the silo at buckling. 

 

The two following analyses into extreme fibre stresses under changes of beam geometry 

are thus very useful to show what is not the cause of beneficial geometric nonlinearity 

in shells under eccentric discharge. However, over the course of this side study it 

became apparent that a much simpler interpretation of beam theory may help to explain 

what is the cause. This may be found in Chapter 3. 

 

A.4.2 Investigation of the circular arc-beam with superelliptical flattening at the 

tip 

The trigonometric term powers p and q of the superelliptical shape allow excellent 

control of the exact shape, size and flatness of the radial coordinate of the shell, a 

feature exploited in the novel imperfection form for eccentric discharge presented in 

Chapter 6. Using data extracted from ABAQUS and Excel’s nonlinear SOLVER 

functionality, it was possible to deduce the most representative values for p, q and θs2 

(the angular spread of the superellipse with respect to the full circular cross-section if to 
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assume the arc beam of Fig. A.8). Values for δ (the central radial deformation) were 

read directly from the ABAQUS results.  
 

The circumferential deformations for the stepped wall Silo S (H = 18 m, R = 3 m; 

critical buckling location within 3 mm wall strake near midheight) analysed under the 

full EN 1991-4 (2007) eccentric discharge pressures (Chapter 4) were extracted from 

the ABAQUS models at three conditions for the three recommended EN 1991-4 flow 

channel sizes; kc = rc/R = 0.25, 0.40 and 0.60. These are: 1) the LA displacements at the 

LBA load factor, 2) the GNA displacements at the LBA factor and 3) the GNA 

displacements at the instant before bifurcation. Recall that the LBA load factors for the 

three channels were 0.46, 0.25 and 0.42 respectively, while the GNA load factors were 

4.11, 0.37 and 0.66 respectively (Table 4.10). In all cases, geometric nonlinearity was 

beneficial to the structure (respective buckling strength increases of 793%, 48% and 

57% from LBA to GNA), especially for very small flow channels. The values were 

extracted at midheight as this location was close to the base of the thinnest 3 mm strake 

which was found to be critical for buckling. 

 

The typical midheight circumferential deformations of Silo S are shown in Figs A.10 

and A.11 for the GNA analysis at the LBA factor for the flow channel with kc = 0.25. 

The shell remains circular around the majority of the circumference except where it is 

flattened near the flow channel due to the circumferential bending associated with low 

flow channels pressures. The deformed shape is surprisingly well described by the 

general superelliptical equation, applied in the context of the flattened tip arc-beam (Fig. 

A.8).  

 

The radial deviation was identified to have three basic features; a large primary inward 

deformation adjacent to the low pressures of the channel centre, a large primary outward 

deformation adjacent to the high pressures of the channel edge, and a much smaller 

secondary inward deformation which decays around the shell circumference away from 

the channel. These are annotated in Figs A.10 and A.11. The circular arc-beam with 

local tip superelliptical flattening (Fig. A.8) only manages to capture the primary inward 

and outward radial features to any degree, and it will be shown that this is a significant 

limitation.  
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Fig. A.10 – Deformed shape at midheight of Silo S for the GNA analysis at the LBA 

factor for kc = 0.25 in Cartesian coordinates 

 

 
Fig A.11 – Radial deviation at midheight of Silo S for the GNA analysis at the LBA 

factor for kc = 0.25 
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Table A.1 – Summary of the representative values of the p, q, θs2 and δ for the flattened 

superelliptical arc 

Analysis kc p q θs2 (degrees) δ (mm) 

LA @ LBA 2.29 1.06 36.81 19.94 

GNA @ LBA 2.12 1.08 27.21 10.88 

GNA @ Bifurcation 

0.25 

2.15 1.29 27.83 38.29 

LA @ LBA 2.09 2.10 44.68 134.75 

GNA @ LBA 2.02 1.35 43.51 61.53 

GNA @ Bifurcation 

0.40 

1.99 1.43 43.51 74.64 

LA @ LBA 1.54 1.81 61.00 55.68 

GNA @ LBA 1.99 1.46 66.27 39.92 

GNA @ Bifurcation 

0.60 

1.97 1.61 72.24 54.98 

      
Mean for ALL values 

(GNA only) 
0.25 2.19  

(2.13) 

1.14  

(1.19) 

30.61  

( 27.52) 

23.04  

(24.59) 
 0.40 2.03  

(2.00) 

1.63  

(1.39) 

43.90  

(43.50) 

90.31 

(68.08) 
 0.60 1.83 

(1.98) 

1.63  

(1.54) 

66.50  

(69.25) 

50.19  

(47.56) 
Standard deviation  

for ALL values  

(GNA only) 

0.25 0.09  

(0.02) 

0.13  

(0.15) 

5.37  

(0.44) 

13.97  

(19.38) 

 0.40 0.05 

(0.02) 

0.41  

(0.05) 

0.68  

(0.00003) 

39.04  

(9.27) 

 0.60 0.26  

(0.01) 

0.18  

(0.11) 

5.62  

(4.22) 

8.90  

(10.65) 

kc kc Overall mean for ALL 

values (GNA only) 
 2.02 

(2.04) 

1.47 

(1.37) 0.25 0.40 0.60 0.25 0.40 0.60 

Final choice  2.0 1.4 30 45 70 25 70 50 

 

The local superelliptical shape (Fig. A.8) was thus fitted to the circumferential 

distributions of radial displacements for Silo S using the SOLVER functionality in 

Excel. The results are summarised in Table A.1. It appears that the mean powers of p 

and q which best represent the primary features of the deformed shape are 2.0 and 1.4 
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respectively regardless of channel size or analysis type (with surprisingly low standard 

deviations). However, the parameters θs2 and δ, governing the magnitude of the 

flattening, are dependent on the flow channel size 

 

The shapes of an arc-beam with the same values of R and t as Silo S and superelliptical 

flattening at the tip (Fig. A.8) generated with the above fitted values for the parameters 

p, q, θs2 and δ are shown in Fig. A.12 for the three flow channel sizes. The resulting 

section moduli at both extreme fibres are presented in Tables A.2 to A.4, calculated 

according to the corresponding section property equations derived in Section A.3.5 for 

three different circumferential spreads of the arc-beam: partial arc (with, say, θc = 5δ/R 

< ½π), half arc (θc = ½π) and full circle (θc = π). The results for the other arc-beam 

cross-sectional geometries derived in Section A.3, assuming the same spread and 

deformation amplitudes θs2 and δ (if applicable), are included for comparison. The 

section modulus for the bottom fibre (Zbot) corresponds to the centre of the flow 

channel. 
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a) kc = 0.25 

 

 381



PhD Thesis 
Adam Jan Sadowski 

0

500

1000

1500

2000

2500

3000

0 500 1000 1500 2000 2500 3000
x coordinate

y 
co

or
di

na
te

I. Circular Arc (REFERENCE)

III. Semiellipse; (p,q) = (2,2)

V. Circular Arc with Elliptical Flattening; (p,q) = (2,1.4)

 
b) kc = 0.40 
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c) kc = 0.60 

Fig A.12 – Changes of geometry covering an increasing portion of the circumference 

with a larger channel 
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Table A.2 – Section moduli ratios for the partial circumference arc-beam (θc < ½π) 

 kc  = 0.25 kc  = 0.40 kc  = 0.60 
Partial arc 

θc = θs2, 

θs1 = 5δ/R 

Ztop / 

Zref 

Zbot / 

Zref 

% 

change 

in bottom 

fibre 

stresses 

Ztop / 

Zref 

Zbot / 

Zref 

% change 

in bottom 

fibre 

stresses 

Ztop / 

Zref 

Zbot / 

Zref 

% change 

in bottom 

fibre 

stresses 

Circular Arc 

(Fig. A.3.1) 
1 1  1 1  1 1  

Elliptical Arc 

(Fig. A.3.2) 
0.891 0.913 + 9.57 0.817 0.865 + 15.55 0.935 0.955 + 4.68 

Semiellipse 

(p = 2, q = 2) 

(Fig. A.3.3) 

0.568 0.926 + 8.02 0.688 0.966 + 3.47 0.920 1.040 – 3.87 

Indented Arc 

(Fig. A.3.4) 
1.026 1.132 – 11.68 1.013 1.190 – 15.97 1.028 1.115 – 10.31 

Flattened Arc 

(p = 2, q = 1.4) 

(Fig. A.3.5) 

0.583 0.839 + 19.23 0.689 0.867 + 15.34 0.899 0.927 + 7.90 

 

Table A.3 – Section moduli ratios for the half circumference arc-beam (θc = ½π) 

 kc  = 0.25 kc  = 0.40 kc  = 0.60 
Half circle 

θc = ½π 

Ztop / 

Zref 

Zbot / 

Zref 

% 

change 

in bottom 

fibre 

stresses 

Ztop / 

Zref 

Zbot / 

Zref 

% change 

in bottom 

fibre 

stresses 

Ztop / 

Zref 

Zbot / 

Zref 

% change 

in bottom 

fibre 

stresses 

Circular Arc 

(Fig. A.3.1) 
1 1  1 1  1 1  

Semiellipse 

(p = 2, q = 2) & 

Elliptical Arc  

(Figs A.3.2 & 

A.3.3) 

0.985 0.989 + 1.11 0.959 0.969 + 3.16 0.971 0.978 + 2.24 

Indented Arc 

(Fig. A.3.4) 
1.017 1.054 – 5.11 1.027 1.115 – 10.32 1.025 1.093 – 8.50 

Flattened Arc 

(p = 2, q = 1.4) 

(Fig. A.3.5) 

0.978 0.945 + 5.83 0.966 0.969 + 3.16 0.957 0.954 + 4.82 
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Table A.4 – Section moduli ratios for the full circumference arc-beam 

 kc  = 0.25 kc  = 0.40 kc  = 0.60 
Full circle 

θc = π 

Ztop / 

Zref 

Zbot / 

Zref 

% 

change 

in bottom 

fibre 

stresses 

Ztop / 

Zref 

Zbot / 

Zref 

% change 

in bottom 

fibre 

stresses 

Ztop / 

Zref 

Zbot / 

Zref 

% change 

in bottom 

fibre 

stresses 

Circular Arc 

(Fig. A.3.1) 
1 1  1 1  1 1  

Semiellipse 

(p = 2, q = 2) 

&Elliptical Arc 

(Figs A.3.2 & 

A.3.3) 

0.994 0.995 + 0.46 0.984 0.987 + 1.30 0.988 0.991 + 0.92 

Indented Arc 

(Fig. A.3.4) 
1.011 1.042 – 4.00 1.020 1.091 – 8.31 1.017 1.073 – 6.78 

Flattened Arc 

(p = 2, q = 1.4) 

(Fig. A.3.5) 

0.982 0.950 + 5.26 0.979 0.958 + 4.34 0.981 0.958 + 4.40 

 

The above results suggest that, for changes of cross-sectional beam geometry which 

result in the flattening of only the tip of the arc-beam (corresponding to all proposed 

deformed arc-beams except the indented arc-beam in Fig. A.7), the bottom section 

moduli consistently decrease resulting in an increase in bottom extreme fibre stresses. 

By analogy, this corresponds to increased stresses in the silo wall adjacent to the centre 

flow channel under eccentric discharge. Thus the circular arc-beam with tip flattening 

only (Fig. A.8), marked in bold in the above tables, is not a satisfactory analogy to 

approximate the deformed midheight shape of the silo under eccentric discharge. 

 

The indented arc-beam (Fig. A.7), which includes a reversal of in the radius of 

curvature at the tip, does consistently result in increased section moduli and thus a 

decrease in extreme fibre stresses. This may have been an fortunate piece of early 

evidence for beneficial geometric nonlinearity if the indented arc did indeed reflect the 

true deformed shape of the silo under eccentric pipe flow, but this is not the case 

because the shell exhibits no such reversal of curvature. Furthermore, the percentage 

decreases in section modulus predicted for the indented arc-beam are rather modest, 

some 15% at most, which do not explain the much higher reductions of stresses (over 

50%) that have been found to occur with geometric nonlinear finite element analyses. A 

different explanation was therefore required. 
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A.4.3 Investigation of the superellipse to describe the entire arc-beam geometry 

In the previous section, only the primary inward and outward radial deformation 

features (Fig. A.11) could be modelled by the arc-beam geometry with superelliptical 

tip flattening (Fig. A.8). In this section, a superellipse is used instead to model the 

whole arc-beam (Fig. A.6), which manages to capture the smaller secondary inward 

deformation to a much greater extent. The semi-superellipse, however, can only be 

fitted to a maximum spread of ½π of the circumference, and cannot be fitted to 

deformations beyond this. An example of the measured radial deviations from LA and 

GNA analyses of Silo CS and their superelliptical fits (Fig. A.6), extracted from the 

base of the thinnest 3 mm strake at buckling, is shown in Fig. A.13. 
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Fig A.13 – Normalised radial deviation at the base of the thinnest respective strake for 

the kc = 0.25 flow channel in Silo CS 

 

A set of representative values for the parameters p, q and δ were obtained using a 

similar fitting procedure as in the previous section. This was carried out using LA and 

GNA data from Silos CS and CVS extracted at the base of the respective thinnest 3 mm 

strake under the Rotter (1986) model without the regions of high normal wall pressures 

adjacent to the edge of the flow channel (Chapter 3). The value of kc used was 0.25, 

since at this flow channel size the LBA and GNA and load factors were predicted to be 

the same (Table 3.4 and Table 3.5). The analysis is summarised in Table A.5. 
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Table A.5 – Summary of the representative values of the p, q and δ for the 

superelliptical arc-beam 

 LA @ 

LBA 

p q δ 

(mm) 

GNA @ 

Bifurcation 

p q δ (mm) 

Silo CS 2.86 1.64 106.88 Silo CS 2.32 1.86 49.55 EN 

1991-4 

(2007) 

Silo CVS 2.91 1.60 109.49 Silo CVS 2.30 1.86 47.11 

Silo CS 2.93 1.86 142.53 Silo CS 2.32 1.95 63.58 Rotter 

(1986) Silo CVS 2.96 1.85 146.01 Silo CVS 2.31 1.95 61.63 

Mean 2.91 1.73 126.23 2.31 1.90 55.47 

St. 

Deviation 

0.04 0.14 20.91 0.01 0.05 8.34 

 

Final 

Choice 

2.9 1.7 125 

 

2.3 1.9 55 

 

It is clear from Table A.5 that the main feature of the GNA deformations is that they are 

lower in amplitude and extend further into the shell. This is represented by a fall in the 

power of p, a rise in the power of q, and naturally by a lower central deformation δ. The 

resulting section moduli at both extreme fibres for a superellipse with θc = ½π (Fig. 

A.3.3) are shown in Table. A.6, based on the equations derived in Section A.3.3. 

 

Table A.6 – Section moduli ratios for the superelliptical arc-beam 

LA @ 

LBA 

Ztop / 

Zref 
Zbot / 

Zref 
% 

change 

in 

bottom 

fibre 

stresses 

GNA @ 

Bifurcation

Ztop / 

Zref 
Zbot / 

Zref 
% change 

in bottom 

fibre 

stresses 

 

Semicircle 1 1  Semicircle 1 1  

Silo CS 0.977 1.088 – 8.1 Silo CS 0.989 1.038 – 3.7 EN 

1991-4 

(2007) 

Silo CVS 0.976 1.089 – 8.2 Silo CVS 0.990 1.034 – 3.3 

Silo CS 0.965 1.116 – 10.4 Silo CS 0.984 1.045 – 4.3 Rotter 

(1986) Silo CVS 0.964 1.118 – 10.6 Silo CVS 0.985 1.044 – 4.2 
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Clearly, there is some progress. For the LA parameters, which give a ‘more deformed’ 

shape than the GNA parameters, the bottom extreme fibre (analogous to the silo wall at 

the flow channel centre) shows a reduction in stresses of approximately 10%, while for 

the GNA deformed shape this is approximately only 4%. The GNA deformed shape is 

‘less deformed’, thus the stress reductions are predicted to be smaller. 

 

The above analysis certainly seems to support the idea that a change in geometry of the 

arc-beam from a semicircle to a flattened superellipse reduces at least one of the 

extreme fibre stresses, but the scale of the reductions is nothing close to that which is 

expected based on the finite element results (over 55%). However, the importance of 

modelling the secondary inward deformation feature (Fig. A.11) has been shown, since 

without this feature there is no reduction in extreme fibre stresses at all.  

 

A.5 Conclusions 

A flattened arc-beam modelled with the superellipse has not been found to exhibit a 

reduction in extreme fibre stresses of a magnitude that would enable the beam theory 

analogy to support directly the geometrically nonlinear finite element observations of 

the behaviour of the silo under eccentric discharge. 

 

However, the simple beam analogy presented in this appendix has yielded an explicit 

mathematical form (the superellipse) with which to define the deformed shape of a 

flattened silo wall at buckling under eccentric discharge. The superellipse has since 

proved to be instrumental in the development of a global geometric imperfection form 

that has been found to be deleterious for silos under eccentric discharge. A full study of 

the superellipse as an imperfection form was presented in Chapter 6.  
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Appendix B – Elasticity solution for the circumferential distribution of 

stresses in the eccentric flow channel geometry 
 

B.1 Introduction 

It was discussed in Section 1.2.8 of the literature review that the stationary granular 

solid is likely to exert a high normal pressure against the wall due to the arching effect 

of the ring of static material in the region immediately adjacent to the flow channel 

(Jenike, 1967; Rotter, 1986; Wood, 1983; Chrisp et al., 1988; Chen, 1996). This rise in 

normal pressure is necessary to maintain horizontal equilibrium, but there is no 

consensus on what circumferential form this rise should take. The original working of 

the pressure theory for eccentric parallel pipe flow of Rotter (1986) assumed no such 

rise for the purposes of simplicity, while the implementation of this theory in the EN 

1991-4 (2007) standard assumed a form (Fig. B.1b) that is unduly severe on the 

structure. 

 
 
 
 
 
 

Possible high 
pressures (form 

not known) 

Decreased 
flow 

channel 
pressures 

Stationary 
solid 

Static 
pressures 

Flow 
channel 

Δθ 

Δθ 

2Δθ Δp Δp 

a) Original concept, Rotter (1986)             b) EN 1991-4 version           c) Most likely form 
o 

Fig. B.1 – Suggestions for the form of normal pressures against the wall of an 

eccentrically discharging silo 

 

The brief study presented in this appendix attempts to model the static granular solid as 

an elastic planar body under a prescribed unit compressive out-of-plane strain. The mass 

of particulate granular material is naturally not a solid elastic body as it is subject to 

complex phenomena of friction and plasticity. However, an elastic solution may 

nonetheless offer a valuable insight into the elusive response of the stationary solid 

immediately adjacent to a region of low pressure, both fully internal and external. This 
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is a very difficult problem to treat analytically, and it was necessary to make certain 

assumptions in the present study in order to obtain a solution. The resulting algebraic 

form of the solution was unfortunately found to be highly unwieldy and utterly 

impractical for application in any design scenario. 

 

B.2 Presentation of an elasticity theory solution for a curved planar body 

B.2.1 The bipolar coordinate system 

The orthogonal bipolar coordinate system is related to the Cartesian coordinate system 

as follows (Lockwood, 1967; Timoshenko and Goodier, 1970): 

sinh
cosh cos

ax ξ
ξ η

=
−

 and sin
cosh cos

ay η
ξ η

=
−

      (B.1) 

In this system, curves (isosurfaces) of constant ξ represent non-concentric, non-

intersecting circles that share the same focus point F on the Cartesian x axis, while 

curves of constant η represent non-concentric, intersecting circles which intersect at the 

two foci, symmetric about the Cartesian y axis. The x and y axes represent curves with η 

= 0 and ξ = 0 respectively (circles with infinite radii). The ξ coordinate ranges from -∞ 

to ∞ at both foci, whilst the η coordinate ranges from 0 to 2π. Both are periodic and 

symmetric about both Cartesian axes. The fact that one single coordinate represents a 

well-defined circular curve makes this coordinate system very advantageous indeed for 

the study of complex curved geometries with elasticity theory. 

 

In applying this coordinate system to the study of a plane through the stationary and 

flowing solid, a distinction must be made with respects to the positioning of the 

geometric system in the x-y plane. If the flow channel is fully internal (Fig. B.2), the 

system is represented by two ξ isosurfaces and both circles are positioned on the x axis. 

If, however, the flow channel touches the silo wall (Fig. B.3), the system consists of two 

circles truncated at their overlap which occurs at the foci, and is instead represented by 

two η isosurfaces, with both circles positioned on the y axis. The fact that this intersect 

occurs at a focus point F where ξ → ∞ makes this location a sharp edge in the elastic 

body which, as will be shown in this study, has a serious effect on the stress distribution 

at this point. 
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B.2.2 System geometry: internal flow channel 

The first case, that of the fully internal channel (limited to rc + ec < R), is illustrated in 

Fig. B.2. 

 

y axis 

 
Fig. B.2 – System centred on the η = 0 plane in bipolar coordinates for a fully internal 

flow channel 

 

Considering the coordinate relations in Eq. B.1 and the geometry of Fig. B.2, the two 

circles the following radii and centres: 

cosech SR a ξ=  and cosechCr a Cξ=        (B.2) 

cothS SD a ξ=  and cothC CD a ξ=  where C Se D DC= −     (B.3) 

Since the two radii and the distance between the centres (the flow channel eccentricity 

ec) are known, the values of a, ξS and ξC may be found numerically from the above 

relations, taking care that the correct root is found so that the smaller circle ends up 

inside the larger one. The numerical procedure becomes increasingly ill-conditioned as 

rc + ec → R or ec → 0. 
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B.2.3 System geometry: truncated flow channel 

The second, more important case, is that of the truncated flow channel which touches 

the wall (limited to rc + ec > R), is illustrated in Fig. B.3. 

 

y axis 

 
Fig. B.3 – System centred on the ξ = 0 plane in bipolar coordinates for a truncated flow 

channel 

 

From the coordinate relations in Eq. B.1 and the information on Fig. B.3, two points on 

the y axis lead to the following relations: 

sin
1 cos

S
S

S

aD R η
η

+ =
−

and sin
1 cos

C
C C

C

aD r η
η

+ =
−

      (B.4) 

where 
2 2 2

2
C C

S
C

R r eD
e

⎛ ⎞− +
= ⎜ ⎟
⎝ ⎠

 and 
2 2 2

2
C C

C
C

R r eD
e

⎛ ⎞− −
= ⎜ ⎟
⎝ ⎠

 

Additionally, using Pythagoras’s theorem: 

2 2 2 2
S Ca R D r D= − = − C         (B.5) 

Once again the known values of the radii and eccentricity allow the values of a, ηS and 

ηC to be found numerically from the above relations. This procedure again becomes ill-

conditioned as rc + ec → R. 
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An additional useful parameter for the truncated channel is the angle of intersection of 

the two tangent lines at the foci F1 and F2. Used as a measure of the ‘sharpness’ of the 

edge of the truncated elastic body and assigned the notation α, it is derived as follows: 

 

 

L12 L22 

Fig. B.4 – Derivation diagram for the tangent intersection angle 

 

The slopes of lines L11 and L21 are, respectively: 

11 1tan
S

am
D

θ= =  and ( )21 2 2tan tan
C

am
D

π θ θ= − = − = −    

The slopes of the tangent lines L12 and L22 are, therefore: 

12 1 1tan cot
2

SDm
a

πθ θ⎛ ⎞= + = − = −⎜ ⎟
⎝ ⎠

 and 22 2 2tan cot
2

CDm
a

π θ θ⎛ ⎞= − = =⎜ ⎟
⎝ ⎠

 

The angle of intersection is now obtained by the familiar formula: 

( )12 22
2

12 22

tan
1

S C

S C

D D am m
m m D D a

β
+−

= =
+ −

 (taking care to obtain the correct quartile) 

Thus α = π – β.          (B.6) 

 

Note that the above treatment is not defined for an internal channel with zero 

eccentricity (ec = 0) as the two ξ circles cannot be concentric, nor is the treatment 

defined for the boundary between internal and truncated channels where rc + ec = R, as 

no ξ circles may intersect. 

 

B.2.4 Elasticity theory equations 

The analysis of the elastic body was performed according to Chapter 6 of Timoshenko 

and Goodier (1970) on two-dimensional problems in curvilinear coordinates. The stress 

and displacements for a condition of plane strain are given by: 

α

θ1 θ2

eC 

L21 L11 

β

a 

DS DC 
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( )4Re zξ ησ σ ψ ′+ = ⎡⎣ ⎤⎦     

( ) ( )22 2 ii e z z zα
η ξ ξησ σ τ ψ χ′′ ′′− + = +⎡ ⎤⎣ ⎦   

( ) ( ) ( ) ( ) ( )2 3 4iG u iu e z z z zα
ξ η ν ψ ψ χ′ ′− = − − −⎡ ⎤⎣ ⎦     

so that: 

( ) ( ) ( )(2Re 2 iz e z z zα
ησ ψ ψ χ⎡ ′ ′′ ′′= + +⎣ )⎤⎦       (B.7) 

( ) ( ) ( )(2Re 2 iz e z z zα
ξσ ψ ψ χ⎡ ′ ′′ ′= − +⎣ )⎤′ ⎦       (B.8) 

( ) ( )(2Im ie z z zα
ξητ ψ χ⎡ ′′ ′′= +⎣ )⎤⎦        (B.9) 

( ) ( ) ( ) ( )(1 Re 3 4
2

iu e z z z
G

α
ξ ν ψ ψ χ⎡ ′ ′= − − −⎣ )z ⎤⎦      (B.10) 

( ) ( ) ( ) ( )(1 Im 3 4
2

iu e z z z
G

α
η ν ψ ψ χ⎡ ′ ′= − − − −⎣ )z ⎤⎦     (B.11) 

In the above, z is the complex variable x + iy, where i2
 = -1. Re and Im thus correspond 

respectively to the real and imaginary parts of the entities in brackets. The complex 

variable z is defined in bipolar coordinates as follows: 

coth
2

z ia ζ
=  where 12coth zi

ia
ζ ξ η − ⎛ ⎞= + = ⎜ ⎟

⎝ ⎠
     (B.12) 

The exponents in the above are given by: 

(1 sinh sin cosh cos 1
cosh cos

ie iα ξ η ξ η
ξ η

= + )−⎡ ⎤⎣ ⎦−
    (B.13) 
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( )

2 1 cosh
cosh 1

i i
e

i
α ξ η

ξ η
− − +

=
+ −

        (B.14) 

where α is the angle between the tangent to the a curve of constant η in the increasing ξ 

direction and the x axis (not  the ‘sharpness’ angle in Fig. B.4).  

 

Where analytical solutions to difficult problems in elastic bodies are usually solved with 

the help of real-valued stress functions, these are replaced here by two complex 

potentials ψ(z) and χ(z) which, though more difficult to conceptualise, are 

mathematically more advantageous. The rationale may be found in the above reference, 

while the original treatment is given in Muskhelishvili (1953). As per standard complex 

notation, a bar across a symbol denotes its complex conjugate, where i is replaced by –i. 
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The stress components σξ and ση are defined as the stresses normal to the curves of 

constant ξ and η respectively, while τξη is the shear stress on either ξ or η. If the system 

is centred on the Cartesian x axis (internal channel), σξ and ση correspond to the radial 

and circumferential stresses respectively. If, however, the system is centred on the 

Cartesian y axis (truncated channel), it is the other way round. The displacements uξ and 

uη are similarly defined. The entity G is the shear modulus, found only in the 

displacement equations. The complexity of the system requires the boundary conditions 

and the forms of the complex potentials ψ(z) and χ(z) to be chosen with great care. 

 

B.2.5 Boundary conditions and stress functions 

The current problem is that of a two-dimensional plane strain elastic body. It is, 

however, subjected to a prescribed strain ε0 acting normal to the ξ-η (r-θ) plane which 

develops a corresponding ‘vertical’ stress σV and, through Poisson effects, causes the 

material to deform in the ξ-η plane. This effectively turns the problem into a three-

dimensional one, and goes significantly beyond what is covered in the Timoshenko and 

Goodier (1970) and Muskhelishvili (1953) texts. The strain ε0 is assigned a value of 

positive unity, representing a unit compressive strain in the compression-positive 

convention. The applied out-of-plane strain and stress corresponds to the compressive 

loading on a slice of granular solid within a silo. 

 

It is important to ensure that the curved body maintains its shape (i.e. the silo wall is 

assumed to be a rigid boundary), thus the radial displacements on the outer isosurface 

must be clearly constrained. The radial stresses cannot be set to zero at the outer 

boundary because they are of greatest interest, corresponding to the normal pressure 

exerted by the stationary solid on the silo wall. However, the flow channel isosurface 

effectively represents a hole in a body with no restraint, thus the opposite condition of 

zero radial and circumferential shear stress must be enforced here instead. The first 

three boundary conditions were therefore assumed to be as follows: 

 

BC1) Zero radial displacement in the outer isosurface: ( ), 0u R θ =  

Internal flow channel system: ( ), 0Suξ ξ η =  

Truncated flow channel system: ( ), 0Suη ξ η =  
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BC2) Zero shear stress on the inner isosurface: ( ), 0Crτ θ =  

 Internal flow channel system: ( ), 0Cξητ ξ η =  

 Truncated flow channel system: ( ), 0Cξητ ξ η =  

 

BC3) Zero radial stress in the inner isosurface: ( ), 0R Crσ θ =  

 Internal flow channel system: ( ), 0Cξσ ξ η =  

 Truncated flow channel system: ( ), 0Cησ ξ η =  

 

The fourth boundary condition, governing the straining of the body out of its plane, 

requires more care and is the weakest link in this analysis, for reasons given below. This 

boundary condition is effectively a load case. It is assumed that a strain ε0 applied 

throughout the body in the out-of-plane axis is related to the orthogonal in-plane strains 

by Poisson’s ratio, such that εR = εθ = vε0. Generalised Hooke’s Law in cylindrical 

coordinates thus gives: 

( ) 0R R VE θ Eε σ ν σ σ νε= − + =        (B.15) 

( ) 0R VE θ θ Eε σ ν σ σ νε= − + =        (B.16) 

( ) 0V V RE θ Eε σ ν σ σ ε= − + =        (B.17)  

 

Solving the above directly for the axisymmetric case (planar elastic body with no hole) 

gives: 
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( )( )
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2 1
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E
E
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− +
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+ −
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( )( )
0

, ,
2 1.15

1 1 2axi R axi
E Eθ 0

ν εσ σ
ν ν

= = ≈
+ −

ε       (B.19) 

 

The imposition of ε0 is by itself not sufficient to be able to solve for all of the 

unknowns. It was thus further assumed that a uniform compressive out of plane stress 

given by σV (Eq. B.18) also acts throughout the body. Consequently, Eq. B.17 may be 

solved for the sum of σR and σθ, thus giving the fourth boundary condition: 
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BC4) Prescribed out-of-plane strain condition throughout the body (for both systems): 

 ( ) ( ) , 0
0, , 2.3V axi E

Eη ξ

σ ε
σ ξ η σ ξ η ε

ν
−

+ = ≈  

 

However, with only four boundary conditions, there are still not enough degrees of 

freedom in the system to adequately satisfy all three of Hooke’s Law relations, which 

would naturally be satisfied in a finite element analysis. It was thus decided to solve for 

the radial stresses, which are of greatest interest, from the complex potentials by means 

of Eqs B.7 or B.8 so that the chosen boundary conditions were satisfied. The 

circumferential stresses, however, were to be calculated directly from Eq. B.16 so as to 

satisfy Hooke’s Law, otherwise there is no possibility of implementing this relation. 

However, this is clearly not a fully satisfactory treatment.  

 

It was found that an adequate result (free from singularities) was obtained for a 

reasonable range of geometry configurations when the following complex potentials 

were chosen: 

 

Internal flow channel system: 

( ) cosh sinhz iB aC Dzψ ζ ζ= + +        (B.20) 

( ) sinh coshz Az B Cχ ζ= + + ζ        (B.21) 

 

Truncated flow channel system: 

( ) cosh sinhz Aaz B Cψ ζ ζ= + +        (B.22) 

( ) sinh coshz B iC Dχ ζ ζ ζ= + +        (B.23) 

 

In the above, A, B, C and D are integration constants which are dependent on Eq. B.7 

and the boundary conditions. They are solved for numerically in real time for every 

geometric coordinate through the inversion of a matrix in the form: 
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where, for example, f(σR,A_out) is the component of the radial stress that is the coefficient 

of A, calculated at the outer edge. The f coefficients are extremely onerous and take up 

several screens of Maple output, and it is recommended that they be rederived from Eq. 

B.7 with a symbolic computer package should the need arise to reproduce the analysis 

presented here.  

 

B.3 Analytical solution for the radial stresses in a circular elastic body with 

an internal hole 

The select analyses presented in this section correspond to the internal flow channel 

(Fig. B.2). A unit circle was assumed. The hole (i.e. flow channel) was located at a very 

small value of the eccentricity of ec/R = 0.01 within the elastic body. The eccentricity 

cannot be zero because two ξ circles cannot be concentric, hence it was chosen as ec/R = 

0.01. A smaller value was found to cause the complex potentials ψ(z) and χ(z) (Eqs B.20 

and B.21) to exhibit singularities. A cross-section of radial stresses in terms of Eε0 

through the symmetry axis (the x axis, Fig. B.2) is shown in Fig. B.5 for a range of 

internal holes of increasing radius in the range 0.01 ≤ rc/R ≤ 0.95. 

 

 
Fig. B.5 – Distribution of radial stresses through the symmetry axis for a near-

concentric internal hole, ec/R = 0.01 

 

For the smallest hole (rc/R = 0.01), the radial stresses in the body are at mostly at the 

axisymmetric value of 1.15Eε0 (Eq. B.19). There is a very steep drop down to zero 
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approaching the sides of the hole to satisfy the boundary condition (BC3). As the hole 

becomes larger, the drop becomes progressively smoother and the value of 1.15Eε0 is no 

longer reached at the outer boundary. This is because, for larger rc/R, the elastic body 

becomes ever freer to deform radially inwards at the inner boundary which reduces the 

radial stress on the outer rigid boundary. For the largest hole with radius rc/R = 0.95, the 

radial stresses become very small and as rc/R → 1 they are expected to become 

negligible. Thus for a very thin elastic body with an near-concentric internal hole, the 

behaviour approaches that of a thin shell in which radial stresses can be ignored. 

 

A subsequent study investigated the effect of an internal hole of constant size rc/R = 0.4 

placed at varying eccentricities in the range 0.01 ≤ ec/R ≤ 0.55 (i.e. 0 ← ec/R → rc/R), 

shown in Fig. B.6. Values of ec/R close to the boundaries of this range resulted in 

singularities in the solution. The distribution of the radial stress around the 

circumference is shown in Fig. B.7, where θ = 0° starts on the x axis. Thus the elastic 

solution predicts a significant drop in radial pressure on the outer boundary of the solid 

closest to the hole. For the largest value of  ec/R, where the solid body has a thickness of 

0.05R adjacent to the hole, the drop in radial pressure is 84%. Opposite the reduction, 

there is clearly a rise in radial stress. The integral of the rise in radial stresses 

approximately equals the integral of the fall in radial stresses. 

 

 
Fig. B.6 – Geometry of an internal hole of constant size placed at different 

eccentricities, rc/R = 0.4 
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Fig. B.7 – Distribution of radial stresses around the outer circumference of the elastic 

body, rc/R = 0.4 

 

Extending the elastic solution to the context of the internal non-concentric flow channel, 

it is clear that larger flow channel eccentricities cause progressively larger reductions in 

normal wall pressure on the side adjacent to the outlet even when the channel is internal. 

Furthermore, the fall in normal pressure at the outlet is balanced by a rise in normal 

pressure opposite the outlet to maintain horizontal equilibrium. This is an important 

feature that the mixed flow pressure theory presented in Chapter 7 (or indeed any slice-

based granular solid pressure theory) is unable to capture because it considers vertical 

equilibrium only and thus predicts a circumferentially-constant pressure in the static 

solid regardless of the interal position of the flow channel (Region 1, Fig. 7.3 and Fig. 

7.4). However, it is not possible to address this limitation of the mixed flow theory 

without going into a similar onerous level of detail as is done in the present analysis. 

 

The present study supports the observations of many researchers who also reported 

decreased wall pressures adjacent to the outlet, including Ravenet (1976), Frese (1977), 

Nielsen and Askegaard (1977), Gale et al. (1986) and many others. A more 

comprehensive discussion may be found in Section 1.2.8 of the literature review.  
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B.4 Analytical solution for the radial stresses in a crescent-shaped elastic 

body 

The select analyses presented in this section correspond to the truncated circular flow 

channel (Fig. B.3). A unit circle was again assumed. The hole was assigned a constant 

radius rc/R = 0.6 and placed at varying eccentricities in the range 0.9 ≤ ec/R ≤ 1.5, all of 

which result in a non-internal hole in the elastic body (Fig. B.8). As the eccentricity 

increases, the sharpness of the edge decreases, expressed through a higher ‘sharpness 

angle’ α introduced in Fig. B.4 and Eq. B.6. 

 

 
Fig. B.8 – Geometry of an external hole of constant size placed at different 

eccentricities, rc/R = 0.6 (α marked for ec/R = 0.9) 

 

The distribution of radial stresses through the symmetry axis (the y axis, Fig. B.3) is 

shown in Fig B.9. Adjacent to the hole, the radial stress is zero due to the boundary 

condition BC3. Moving away from the hole along the y axis, the radial stress tends to 

the axisymmetric value of 1.15Eε0 (Eq. B.19). Smaller eccentricities of the hole produce 

patterns of radial stress which rise gradually towards 1.15Eε0 but do not exceed it. 

Larger eccentricities, corresponding to a sharper solid edge, exhibit instead a very steep 

initial rise in radial stress to well above 1.15Eε0 (significantly increased compression), 

followed by a gradual descent towards 1.15Eε0. The physical explanation for this is that 

the line of thrust in a compressed steep arch is transmitted almost directly into the 

supports, but a compressed shallow arch is substantially more ill-conditioned and the 
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line of thrust reaches the crown of the arch (thus increasing the local compression) and 

subsequently must be ‘channelled’ outwards into the supports. 

 

 
Fig. B.9 – Distribution of radial stresses through the symmetry axis for the truncated 

elastic body, ec/R = 0.01 

 

The circumferential distribution of radial stress on the outer boundary is shown in Fig. 

B.10, perhaps the most important diagram of the entire analysis. The sharp edge 

corresponds to an asymptote and produces an infinite concentration of radial stress. The 

reason for this, it was noted, is that the sharp edge corresponds to a focus point F where 

ξ → ∞ (Fig. B.3). In their chapter on two-dimensional problems in curvilinear 

coordinates, Timoshenko and Goodier (1970) report an analysis by Green (1945) who 

obtained an elastic solution for a plate with an exactly rectangular hole and similarly 

found infinite stress concentrations at the sharp corners.  

 

There is a significant increase in the magnitude of the radial stress for larger values of 

ec/R. Away from the sharp edge, θ > 5°, the radial stress for ec/R = 1.5 is approximately 

double what it is for ec/R = 0.9. The increased eccentricity corresponds to a larger value 

of the sharpness angle α. The inner circular boundary of the elastic body forms an arch 

of material which becomes progressively shallower with increased α. Since shallow 

arches are known to exhibit higher horizontal thrusts than steeper arches, the radial 

stress near the sharp edge are thus progressively larger at higher values of α.  
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Fig. B.10 – Distribution of radial stresses around the outer circumference of the elastic 

body starting at the sharp edge, rc/R = 0.6 

 

The above result directly supports the finding of increased normal wall pressure 

adjacent to the edge of the flowing solid under eccentric pipe flow. The stationary solid, 

however, cannot exhibit infinite stress concentrations or sharp edges, as material would 

be lost into the flow channel and plasticity effects smooth out the normal pressure peak. 

Thus despite the assumptions inherent to this elastic analysis, the results are physically 

explainable and offer a valuable insight into the possible internal stress states within the 

granular solid under different conditions.  
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