
 
 
 
 
 
 
 
 
 
 
 

 
 

This thesis has been submitted in fulfilment of the requirements for a postgraduate degree 

(e.g. PhD, MPhil, DClinPsychol) at the University of Edinburgh. Please note the following 

terms and conditions of use: 

 

This work is protected by copyright and other intellectual property rights, which are 

retained by the thesis author, unless otherwise stated. 

A copy can be downloaded for personal non-commercial research or study, without 

prior permission or charge. 

This thesis cannot be reproduced or quoted extensively from without first obtaining 

permission in writing from the author. 

The content must not be changed in any way or sold commercially in any format or 

medium without the formal permission of the author. 

When referring to this work, full bibliographic details including the author, title, 

awarding institution and date of the thesis must be given. 

 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Archive

https://core.ac.uk/display/429702876?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


The Process Algebra for Located Markovian

Agents and Scalable Analysis Techniques for

the Modelling of Collective Adaptive Systems

Cheng Feng

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Doctor of Philosophy

Laboratory for Foundations of Computer Science

School of Informatics

University of Edinburgh

2016





Abstract

Recent advances in information and communications technology have led to a surge

in the popularity of artificial Collective Adaptive Systems (CAS). Such systems, com-

prised by many spatially distributed autonomous entities with decentralised control,

can often achieve discernible characteristics at the global level; a phenomenon some-

times termed emergence. Examples include smart transport systems, smart electricity

power grids, robot swarms, etc. The design and operational management of CAS are

of vital importance because different configurations of CAS may exhibit very large

variability in their performance and the quality of services they offer. However, due to

their complexity caused by varying degrees of behaviour, large system scale and highly

distributed nature, it is often very difficult to understand and predict the behaviour of

CAS under different situations. Novel modelling and quantitative analysis methodolo-

gies are therefore required to address the challenges posed by the complexity of such

systems.

In this thesis, we develop a process algebraic modelling formalism that can be used

to express complex dynamic behaviour of CAS and provide fast and scalable analysis

techniques to investigate the dynamic behaviour and support the design and operational

management of such systems. The major contributions of this thesis are:

(i) development of a novel high-level formalism, PALOMA, the Process Algebra

for Located Markovian Agents for the modelling of CAS. CAS specified in PALOMA

can be automatically translated to their underlying mathematical models called Popu-

lation Continuous-Time Markov Chains (PCTMCs).

(ii) development of an automatic moment-closure approximation method which

can provide rapid Ordinary Differential Equation-based analysis of PALOMA models.

(iii) development of an automatic model reduction algorithm for the speed up of

stochastic simulation of PALOMA/PCTMC models.

(iv) presenting a case study, predicting bike availability in stations of Santander

Cycles, the public bike-sharing system in London, to show that our techniques are

well-suited for analysing real CAS.

iii



Lay Summary

With the increasing popularity of the smart city theme, collective adaptive systems

(CAS), comprised of many autonomous and interacting entities, are becoming perva-

sive. Examples are smart transport systems, smart electricity power grids, to name a

few. Such systems are often required to adapt their services seamlessly to the changing

needs of their users, thus the design and operational management of CAS are of vital

importance because they can significantly affect the performance and the quality of ser-

vices the systems offer. However, due to their high complexity, existing techniques can

hardly applied to modelling CAS. Therefore, novel modelling and quantitative analy-

sis methodologies specifically tailored for CAS are required to support the design and

operational management of a wide range of such systems.

In this thesis, we develop a novel high-level modelling formalism, PALOMA, the

Process Algebra for LOcated Markovian Agents for the modelling of CAS. Moreover,

two techniques are proposed to provide fast and scalable quantitative analysis of CAS.

Lastly, we also present a case study, predicting bike availability in stations of Santander

Cycles, the public bike-sharing system in London, to show that our techniques are

well-suited for analysing real world CAS.

iv



Acknowledgements

First and foremost, I want to give many thanks to my supervisor, Prof. Jane Hillston,

who has given me tremendous help and invaluable advice over the past three years.

Without her inspiring, patient and supportive supervision, I would never have finished

this thesis. The enjoyable PhD journey with Prof. Hillston will always be a cherished

memory.

I would also like to thank many other colleagues within the QUANTICOL project

including Stephen Gilmore, Vashti Galpin, Daniël Reijsbergen, Luca Bortolussi for

their kindly help and collaboration on my work. Thanks extend to my great office-

mates, Anastasis Georgoulas, Ludovica Luisa Vissat, Natalia Zoń, Yota Katsikouli,

Maria Astefanoaei and Alireza Pourranjbar, who provided me a fantastic work envi-

ronment.

I also need to say many thanks to my family and friends for their endless support

throughout the past three years. Special thanks to Lili Liu, who always cheered me up

and accompanied me during writing up the thesis.

Finally, I would like to acknowledge that all my PhD work was financially sup-

ported by the EU QUANTICOL studentship and the Edinburgh Informatics Global

scholarship.

v



Declaration

I declare that this thesis was composed by myself, that the work contained herein

is my own except where explicitly stated otherwise in the text, and that this work

has not been submitted for any other degree or professional qualification except as

specified. A preliminary version of the material in Chapter 3 has been appeared in

[Feng and Hillston, 2014] and [Feng et al., 2016a]. Part of the work in Chapter 4 has

been appeared in [Feng et al., 2016a]. Chapter 5 is based on the work published in

[Feng and Hillston, 2015]. Chapter 6 is an extended version of the material published

in [Feng et al., 2016b].

(Cheng Feng)

vi



Table of Contents

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Thesis Structure and Contributions . . . . . . . . . . . . . . . . . . . 3

2 Background 5

2.1 Continuous Time Markov Chain . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Infinitesimal Generator Matrix . . . . . . . . . . . . . . . . . 6

2.1.2 Transient State Distribution . . . . . . . . . . . . . . . . . . 6

2.1.3 Steady State Distribution . . . . . . . . . . . . . . . . . . . . 7

2.1.4 State Space Explosion . . . . . . . . . . . . . . . . . . . . . 8

2.2 Population Continuous Time Markov Chain . . . . . . . . . . . . . . 9

2.2.1 Stochastic Simulation of PCTMCs . . . . . . . . . . . . . . . 11

2.2.2 Fluid Approximation of PCTMCs . . . . . . . . . . . . . . . 13

2.3 High-level CTMC/PCTMC Formalisms . . . . . . . . . . . . . . . . 17

2.3.1 Markovian Agent Models . . . . . . . . . . . . . . . . . . . 18

2.3.2 Stochastic Process Algebras . . . . . . . . . . . . . . . . . . 21

3 PALOMA: A Process Algebra For Located Markovian Agents 23

3.1 Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2 A Motivating Example . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.3 Individual-based Semantics . . . . . . . . . . . . . . . . . . . . . . . 30

3.3.1 The Delay Transition Relation . . . . . . . . . . . . . . . . . 31

3.3.2 The Probabilistic Transition Relation . . . . . . . . . . . . . 33

3.3.3 CTMC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.4 Population-level Semantics . . . . . . . . . . . . . . . . . . . . . . . 35

3.4.1 PCTMC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.5 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

vii



4 Automatic Moment Closure Approximation of PALOMA Models 43
4.1 The Derivation of Moment ODEs . . . . . . . . . . . . . . . . . . . . 44

4.2 Moment ODE Reduction . . . . . . . . . . . . . . . . . . . . . . . . 46

4.2.1 Neighbourhood Relation . . . . . . . . . . . . . . . . . . . . 47

4.2.2 Reduction Method . . . . . . . . . . . . . . . . . . . . . . . 47

4.3 Moment-closure Method . . . . . . . . . . . . . . . . . . . . . . . . 49

4.4 Case Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.4.1 An Epidemiological SIS Model . . . . . . . . . . . . . . . . 52

4.4.2 A Wireless Sensor Network Model . . . . . . . . . . . . . . 55

4.4.3 The City Bike-sharing Model . . . . . . . . . . . . . . . . . 60

4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5 The Speed-up of Stochastic Simulation of PCTMCs 63
5.1 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.2 Reduction Proposal Generation . . . . . . . . . . . . . . . . . . . . . 66

5.2.1 Direct Coupling Coefficient . . . . . . . . . . . . . . . . . . 66

5.2.2 Directed Coupling Graph . . . . . . . . . . . . . . . . . . . . 68

5.2.3 Coupling Propagation . . . . . . . . . . . . . . . . . . . . . 69

5.2.4 Generating Algorithm for Reduction Proposals . . . . . . . . 70

5.3 Error Control of Reduction Proposals . . . . . . . . . . . . . . . . . 71

5.4 Searching for the Optimal Reduction Proposal . . . . . . . . . . . . . 72

5.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.5.1 Experiments on the Bike-sharing Example . . . . . . . . . . . 73

5.5.2 Experiments on the Smart Taxi Example . . . . . . . . . . . . 76

5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

6 Moment-based Availability Prediction for Bike-sharing Systems 81
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

6.2 PCTMC with Time-dependent Rates . . . . . . . . . . . . . . . . . . 83

6.3 Markov Queueing Model . . . . . . . . . . . . . . . . . . . . . . . . 84

6.4 PCTMC of Bike-sharing Model . . . . . . . . . . . . . . . . . . . . 86

6.4.1 A Naive PCTMC Model . . . . . . . . . . . . . . . . . . . . 86

6.4.2 Directed Contribution Graph with Contribution Propagation . 87

6.4.3 The Reduced PCTMC Model . . . . . . . . . . . . . . . . . 90

6.5 Reconstructing the Probability Distribution Using the Maximum En-

tropy Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

viii



6.5.1 Reconstruction Algorithm . . . . . . . . . . . . . . . . . . . 94

6.6 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.6.1 Root Mean Square Error . . . . . . . . . . . . . . . . . . . . 96

6.6.2 Probability of Making a Correct Recommendation . . . . . . 96

6.6.3 Time Cost . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

7 Conclusions 101
7.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

7.2 Further Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

7.2.1 Enhancing Expressiveness of PALOMA . . . . . . . . . . . . 103

7.2.2 Defining Useful Performance Measures for CAS . . . . . . . 103

7.2.3 Statistical Model Checking of CAS . . . . . . . . . . . . . . 104

7.2.4 Learning Model Parameters From Data . . . . . . . . . . . . 105

Bibliography 107

ix





List of Figures

2.1 The schematic structure of two Markovian agents in two locations . . 19

3.1 The city bike sharing model . . . . . . . . . . . . . . . . . . . . . . 29

3.2 The delay transition relation for PALOMA . . . . . . . . . . . . . . . 32

3.3 The probabilistic transition relation for PALOMA . . . . . . . . . . . 34

3.4 Structural congruence in PALOMA . . . . . . . . . . . . . . . . . . 36

3.5 The population-level structured operational semantics of PALOMA . 38

3.6 The trajectories of the average number of available bikes in the stations

in the agent-based and population-level simulation of the bike-sharing

model each with 10000 runs . . . . . . . . . . . . . . . . . . . . . . 41

4.1 The correlation graph of a moment variable E[x1x2x3x4x2
5]. . . . . . . 48

4.2 The first moment of infected population . . . . . . . . . . . . . . . . 54

4.3 The second moment of infected population . . . . . . . . . . . . . . . 55

4.4 The topology of the WSN model . . . . . . . . . . . . . . . . . . . . 55

4.5 The first moment of number of sensor nodes with different pheromone

level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.6 The second moment of number of sensor nodes with different pheromone

level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.7 The expected pheromone level in each cell at time 100. . . . . . . . . 59

4.8 The first three moments of number of available bikes in the central station 61

5.1 The directed coupling graph for the PCTMC with population variables

(A,B,C,D), and transitions (τ1,τ2,τ3,τ4). Weights on edges are the

direct coupling coefficients. . . . . . . . . . . . . . . . . . . . . . . . 69

5.2 The proportional reduction of simulation time, number of transitions

with different acceptable error thresholds in the experiments on the

bike-sharing example . . . . . . . . . . . . . . . . . . . . . . . . . . 75

xi



5.3 The proportional reduction of simulation time, number of transitions

with different acceptable error thresholds in the experiments on the

smart taxi example. . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

6.1 The time-inhomogeneous Markov queue for station i . . . . . . . . . 85

6.2 The number of bikes in use in 20 minute slots from 06:00 to 22:00 in

Santander Cycles, London during weekdays and weekends. . . . . . . 86

6.3 An example directed contribution graph with six stations . . . . . . . 88

6.4 The empirical cumulative distribution function of contribution coeffi-

cients (x is the value of contribution coefficients) . . . . . . . . . . . 90

xii



List of Tables

3.1 Important notations in Chapter 3 . . . . . . . . . . . . . . . . . . . . 24

3.2 The bike-sharing model simulation configuration (unit of time in sim-

ulation: minute) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.3 Simulation time cost of 10000 runs of the bike-sharing model . . . . 39

4.1 The SIS model simulation configuration . . . . . . . . . . . . . . . . 53

4.2 Simulation vs. moment analysis of the SIS model . . . . . . . . . . . 56

4.3 The WSN model simulation configuration . . . . . . . . . . . . . . . 58

4.4 Simulation vs. moment analysis of the WSN model . . . . . . . . . . 58

4.5 The bike-sharing model simulation configuration . . . . . . . . . . . 60

4.6 Simulation vs. moment analysis of the bike-sharing model . . . . . . 62

5.1 The average error (with 99% confidence interval) caused by reduction

with different acceptable error thresholds in the experiments on the

bike-sharing example. . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.2 The average error (with 99% confidence interval) caused by reduction

with different acceptable error thresholds in the experiments on the

smart taxi example. . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

6.1 The calculated RMSE on the prediction of the number of available

bikes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6.2 Average score of making a recommendation to the “Will there be a

bike?” query with 95% confidence interval . . . . . . . . . . . . . . 98

6.3 Average score of making a recommendation to the “Will there be a

slot?” query with 95% confidence interval . . . . . . . . . . . . . . . 99

6.4 Time cost to make a prediction with 95% confidence interval . . . . . 100

xiii





Chapter 1

Introduction

1.1 Motivation

Collective adaptive systems (CAS) as a broad term, often refers to systems composed

of many individuals which adapt their behaviour locally without centralised control

whereas they exhibit collective behaviour at the global level. Such systems are ex-

tremely common in the natural world. Examples include colonies of ants, flocks of

birds and swarms of bees. In the man-made world, there are also many engineered

CAS such as smart transport systems, smart electricity power grids, robot swarms and

so on. More specifically, CAS can be viewed as being constituted by a large number

of spatially distributed simple entities that interact locally with one other as well as the

environment. Each entity may have its own properties and objectives. At the individ-

ual level, entities perform actions following rules with very little or even no knowledge

about the global system. Although there is no centralised control to instruct how in-

dividuals should behave, interactions between these entities lead to the emergence of

some interesting collective behaviour at the system level. In the natural world, the

emergence of collectives often exhibits some interesting properties such as global op-

timization. For instance, ants can always find the shortest path between their colony

and a food source through laying down pheromone trails on the road by each individual

ant. In the man-made domain, the designing goals of CAS are often the achievement

of more efficient allocation and utilisation of resources. As an illustration, by tracking

and predicting the behaviour of passengers, how many taxis and buses are needed at a

specific location can be evaluated, thus more efficient deployment of public transport

can be achieved.

In comparison with traditional collaborative systems with centralised control, CAS

1



2 Chapter 1. Introduction

have advantages on their flexibility (members of CAS can quickly adapt to their chang-

ing environment), robustness (failure of individuals will be less likely to influence the

performance of the whole system) and self-organization (individuals need very little

supervision, thus no top down control required). As a result, with the pervasion of

ICT-based systems, application of CAS has become more and more popular, which

contributes to an increasing societal importance of CAS modelling, e.g., in the con-

text of smart cities [ter Beek et al., 2014]. Modelling existing CAS can help us better

understand the systems, possibly improve them, and predict their future behaviour to

provide suggestions to system users for satisfaction enhancement. Modelling new CAS

can provide us the chance to conduct a comprehensive analysis of their design and in-

vestigate all aspects of their behaviour before they are put into operation. For example,

we may want to investigate the behaviour of CAS with respect to their specification

in order to make sure that their performance meets the predefined requirements, and

some unexpected behaviour like system crash does not show up in the design period.

As a result, a framework for quantitative modelling and analysis of CAS is required in

order to support comprehensive mathematical experiments on these systems.

There are many challenges for quantitative modelling and analysis of CAS

[Hillston, 2013]. First of all, entities in CAS are often spatially distributed, and the

interaction between them can be influenced by their localities. Thus, in order to faith-

fully capture CAS, the spatial arrangement of entities as well as the constraints that the

spatial arrangement places on the interaction between entities must be represented. For

example, interaction may only be allowed for entities which are co-located or within

a certain physical distance of each other whereas in some circumstances, space may

be segmented in a way such that even physically close entities are unable to commu-

nicate. Furthermore movement can also be a crucial aspect of the behaviour of entities

within the system. Therefore it becomes essential to develop modelling formalisms in

which space is captured explicitly, and in which the same entity in different locations

can be distinguished. This poses significant challenges to both model expression and

solution.

Secondly, real CAS usually embody rich forms of interaction between entities.

For example, communication between entities can be synchronous and asynchronous,

one-to-one and one-to-many, etc. Moreover, interaction between entities can also be

influenced by their states, attributes, and possibly the environment. For example, the

transmission range of packets in a wireless sensor network can be influenced by the

battery levels of nodes and the environment conditions (underwater, forest, etc.). Pro-



1.2. Thesis Structure and Contributions 3

viding a mechanism to allow all these types of interaction to be captured is difficult but

necessary. Meanwhile, given the scale of CAS, which often rely on large populations

of entities in order to meet their objectives, we must also find efficient and scalable

mechanisms both to express and to analyse the developed models. This thesis is aimed

at addressing the above challenges by providing a high-level formalism and its scalable

analysis techniques for the modelling of CAS.

1.2 Thesis Structure and Contributions

The first contribution of this thesis is the development of a novel high-level modelling

formalism, PALOMA, the process algebra for located Markovian agents, for the mod-

elling of CAS. Specifically, as CAS are often very complicated, attempts to model

them without a high-level formalism are likely to be time-consuming and error-prone.

Stochastic process algebras [Clark et al., 2007], which were formal languages orig-

inally developed to represent concurrent dynamic systems, are well-suited for con-

structing models of CAS. PALOMA is a stochastic process algebra tailored for the

modelling of CAS. Specifically, the novelty of PALOMA is that it supports explicit

spatial representation and provides mechanisms to capture the various interaction pat-

terns between entities in CAS. The underlying mathematical model of a PALOMA

model is a Continuous Time Markov Chain (CTMC), which can be further mapped to

a Population CTMC (PCTMC) through a counting abstraction. Based on the PCTMC

generated via formal semantics, comprehensive quantitative analysis of the system can

be conducted.

As CAS usually consist of a large number of entities, classical Markov chain analy-

sis techniques based on linear-algebraic operations are entirely infeasible for analysing

the derived PCTMCs from PALOMA models due to their extremely large state space.

Among the scalable analysis techniques are the Ordinary Differential Equation (ODE)-

based fluid approximation and discrete-event stochastic simulation; both can avoid

storing the entire state space of the PCTMC. However, existing fluid approximation

methods cannot be directly applied to PALOMA models, and because of the highly-

heterogeneous nature of CAS, the derived ODEs for fluid approximation can easily

exceed the ability of contemporary ODE solvers. Like most Monte Carlo approaches,

the inefficiency of stochastic simulation has also become an obstacle for analysing

CAS. Thus, the second contribution of this thesis is the development of a novel au-

tomatic fluid approximation methodology which can provide a rapid analysis of the



4 Chapter 1. Introduction

moments (mean, variance, covariance, skewness, kurtosis, etc.) of the populations of

entities in an arbitrary PALOMA model. The third contribution is the development of

a novel algorithm that can significantly accelerate stochastic simulation of PCTMCs,

especially for CAS models, through automatic model reduction.

The last contribution of the thesis is a case study to show that our scalable analysis

techniques can be easily adapted and applied to quantitative modelling and analysis

of real CAS. Specifically, we use our scalable analysis techniques for bike availability

prediction in stations of Santander Cycles, the public bike-sharing system in London.

We show our model can outperform the time-inhomogeneous single station Markov

queueing model on several performance metrics for bike availability prediction.

We summarise the structure of the thesis as follows. The next chapter gives the

literature review of the mathematical background, existing analysis techniques and

high-level formalisms for CTMC/PCTMCs. Chapter 3 presents the concepts, syntax

and semantics of our modelling formalism, the process algebra PALOMA. The two

novel scalable analysis techniques for fluid approximation and stochastic simulation

of PALOMA/PCTMC models are introduced in Chapter 4 and 5, respectively. Chapter

6 gives the case study of bike availability prediction using moment-based fluid approx-

imation. Finally, in chapter 7, the achievements of this thesis are summarised, and the

directions of future work are discussed.



Chapter 2

Background

Before introducing our modelling formalism for CAS and its associated analysis

techniques, we give a literature review of the background material in this chapter.

Specifically, we will start with the introduction of continuous-time Markov chains

(CTMCs), a mathematical framework which is widely studied in many literatures, e.g.

([Norris, 1998, Anderson, 2012]). The numerical analysis techniques and the state

space explosion problem for CTMCs will be discussed. We then discuss a subset of

CTMCs, population CTMCs (PCTMCs), which can achieve a compact representation

of the underlying system being modelled, and is also the mathematical framework of

our modelling formalism in this thesis. We will also review the common analysis tech-

niques for PCTMCs. Having described the basic mathematical framework, we finally

discuss high-level modelling formalisms that can help modellers to construct CTMC

or PCTMC models for specific systems in a more intuitive manner.

2.1 Continuous Time Markov Chain

A continuous-time Markov chain (CTMC) is a continuous-time stochastic process

which satisfies the Markov property. Specifically, a CTMC is characterised by a ran-

dom variable X(t), indexed over continuous-time t, and a countable discrete state space

S such that X(t)∈ S for all t. Moreover, with the Markov property, the future behaviour

of a CTMC depends only on its current state, not on its historical behaviour. Formally,

letting FX(s) denote the history of X up to time s, and j ∈ S , 0 ≤ s ≤ t, the Markov
property indicates X(t) satisfies:

P{X(t) = j | FX(s)}= P{X(t) = j | X(s)}. (2.1)

5



6 Chapter 2. Background

We also say a CTMC is time-homogeneous if the behaviour of the process does not

depend on when it is observed. Thus, for all 0≤ s≤ t, it follows that

P{X(t) = j | X(s)}= P{X(t− s) = j | X(0)}. (2.2)

2.1.1 Infinitesimal Generator Matrix

The dynamic behaviour of a CTMC is represented by the transitions between these

states, and times spent in the states, which are also called sojourn times. Specifically,

if a state i ∈ S is entered at time t and the next state transition takes place at time

t +Ti, Ti is the sojourn time in state i. By the Markov property, at any time point t, the

distribution of the time until the next change of state is independent of the time of the

previous change of state. In other words, Ti satisfies the memoryless property, and is

therefore exponentially distributed (since the exponential random variable is the only

continuous random variable with this property). Hence at time t, the probability that

there is a state transition in the interval (t, t+h) is qi ·h+o(h) as h→ 0, where qi is the

parameter of the exponential distribution of the sojourn time in state i and E[Ti] = 1/qi.

Suppose that if the process jumps out of state i, it will enter state j with probability pi j.

Then, for i 6= j, i, j ∈ S , we have:

P(X(t +h) = j | X(t) = i) = qi j ·h+o(h) (2.3)

where qi j = qi · pi j is the transition rate from state i to state j, which is also exponen-

tially distributed according to the decomposition principle of exponential distributions.

With the definition of the transition rates between states, then a time-homogeneous

CTMC with n states can be characterised by a n× n infinitesimal generator matrix
Q. The element in the jth column of the ith row of Q is the transition rate from state i

to state j, i.e., qi j (i 6= j). The diagonal elements are chosen to ensure that the sum of

the elements in every row is zero, i.e., qii =−∑ j 6=i qi j.

2.1.2 Transient State Distribution

For a CTMC with n states, given its initial state distribution π0 = {π1(0), . . . ,πn(0)},
we are often interested in the transient state distribution of the CTMC at time t, denoted

as π(t)|π0 = {π1(t),π2(t), . . . ,πn(t)}, where πi(t) is the transient state probability of the

CTMC being in state i at time t. The transient state probability distribution is calculated

as

π(t)|π0 = π0 ·P(t) (2.4)



2.1. Continuous Time Markov Chain 7

where P(t) is a n×n transition probability matrix with each element

Pi j(t) = P(X(t) = j|X(0) = i). (2.5)

The evolution of P(t) for a time-homogeneous CTMC satisfies the Kolmogorov’s for-

ward equations:
d P(t)

d t
= P(t) ·Q (2.6)

with initial condition P(0) = I is the n×n identity matrix. Therefore, the transient state

distribution of the CTMC can be calculated by the following set of ordinary differential

equations (ODEs):
d π(t)

d t
= π(t) ·Q (2.7)

with π(0) = π0. The above ODEs can be solved using standard numerical simulation

algorithms such as the Runge-Kutta algorithm. Another possibility is to analytically

calculate the transient state distribution using a matrix exponential of Equation 2.6

such that:

π(t) = π0 · exp(Qt) = π0 ·
∞

∑
k=0

(Qt)k

k!
(2.8)

The computation of the above equation is, however, unstable due to the coexistence

of both positive and negative elements in Q. Thus, an improved algorithm is to use

uniformisation [Grassmann, 1977, Stewart, 2009], which transforms the CTMC into a

discrete time Markov chain (DTMC). Specifically, the original CTMC is scaled by the

fastest transition rate γ, where

γ≥max
i∈S
|qii|, (2.9)

so that transitions occur at the same rate in every state. The transient state distribution

can be then expressed as

π(t) =
∞

∑
k=0

π0 · (Q′)k (γ t)k

k!
exp(−γ t) (2.10)

where Q′ = I+Q/γ. Since Q′ only contains positive elements, numerical evaluation

of the above equation is stable.

2.1.3 Steady State Distribution

Apart from the transient behaviour of a CTMC, modellers may also be concerned with

behaviour of the CTMC over the long term, which we call the steady state distribu-

tion. Studying the steady state distribution of a CTMC is very useful because it will



8 Chapter 2. Background

overcome any bias introduced by choosing the initial state distribution of the CTMC.

Specifically, a CTMC is said to be irreducible if and only if all states in S can be

reached from all other states in a finite number of transitions, otherwise the CTMC is

said to be reducible. Furthermore, the state probability distribution for an irreducible,

time-homogeneous CTMC with a finite state space will always converge for large val-

ues of t, and the converged steady state distribution is independent of the chosen initial

state distribution.

More specifically, let π= {π1,π2, . . . ,πn} denote the steady state distribution of an

irreducible, time-homogeneous CTMC with n states, where

πi = lim
t→∞

P(X(t) = i|X(0) = j) ∀ j ∈ S , (2.11)

then π takes the solution of the following system of linear equations:

−qii ·πi +∑
j 6=i

q ji ·π j = 0 (2.12)

where

∑
i∈S

πi = 1. (2.13)

Equivalently, Equation 2.12 can also be written as a matrix equation:

π Q = 0 (2.14)

2.1.4 State Space Explosion

It can be seen that all the above transient and steady-state analysis techniques of

CTMCs rely on the n× n infinitesimal generator matrix Q, and the n-dimensional

probability vector π(t) or π, where n is the size of the state space. Unfortunately, even

simple CTMC models can have a very large number of states, thus the size of the gen-

erator matrix and/or the probability vector often exceeds what can be handled in the

memory of traditional computers. This problem is known as state space explosion.

There has been much research work aiming to enable modellers to evaluate CTMCs

which suffer from state space explosion. For example, several techniques have

been proposed to represent the generator matrix in a more compact form in mem-

ory, such as Multi-Terminal Binary Decision Diagrams [Fujita et al., 1997], Edge-

Valued Decision Diagrams [Ciardo and Siminiceanu, 2002], and the Kronecker prod-

uct approaches [Plateau and Atif, 1991, Ciardo and Miner, 1999]. Further implemen-

tation optimisations can also be applied, such as using disks to store the infinitesi-

mal generator matrix [Deavours and Sanders, 1998] and parallelizing the computation



2.2. Population Continuous Time Markov Chain 9

[Knottenbelt and Harrison, 1999]. All the above techniques are useful to mitigate the

state space explosion problem. However, for most large CTMCs, they are still not

scalable enough.

Another common approach to reducing state space is through state aggregation

[Gilmore et al., 2001, Buchholz, 1994]. The idea is to aggregate symmetric states

which exhibit the same count of indistinguishable agents into superstates. Intuitively,

this means we shift the modelling view from individuals to populations. In general,

the resulting aggregated population model must satisfy a lumpability condition which

means that it has to be a CTMC such that all its transition rates can be defined as func-

tions on the aggregated state space. While individuality is sacrificed in the aggregated

model, interactions between individuals are still captured. This implies that the state

changes in the original CTMC are represented as changes of population sizes. The

resulting CTMC is often called a population CTMC (PCTMC) as described in Sec-

tion 2.2, which will be the focus of this thesis. Although the resulting PCTMC usually

still suffers from state space explosion, state aggregation is still an important step since

many efficient approaches to dealing with state space explosion can only be applied on

PCTMCs.

A straightforward way to overcome state space explosion is to use stochastic sim-

ulation, in which the state space of the CTMC can be explored on-the-fly. By doing

this, we can find the states step-by-step as the simulation progresses, thus avoiding

the construction of the whole state space at once. However, in order to obtain accu-

rate estimates of the state distribution, a large number of simulation traces have to be

evaluated which is often computationally expensive.

For models with large populations, a generally more efficient approach to tackling

state space explosion is the use of fluid approximation. Here the key idea is to approx-

imate the behaviour of a discrete event system which jumps between discrete states by

a continuous system which moves smoothly over a continuous state space.

Since stochastic simulation algorithms and fluid approximation methods are usu-

ally applied on population models, we delay their detailed reviews to Sections 2.2.1

and 2.2.2, respectively.

2.2 Population Continuous Time Markov Chain

A population continuous time Markov chain (PCTMC) is a CTMC whose states are

captured by a numerical population vector, and transitions between states are defined



10 Chapter 2. Background

by changes in some of the populations, with rates expressed as functions of popula-

tions. The analysis of interest for such models is often the evolution of different popu-

lations over time. Formally, a PCTMC can be represented as a tuple P = (X,T ,X0),

where:

• X = (x1, ...,xn) ∈ Zn
≥0 is an integer vector with the ith (1 ≤ i ≤ n) component

representing the current population level of an agent type Si. Each xi takes values

in a finite domain Di ∈Z≥0. Hence, D = ∏
n
i=1 Di is the state space of the model.

• T = {τ1, ...,τm} is the set of transitions, of the form τ = (rτ(X),dτ), where:

1. rτ(X) : Zn
≥0 → R≥0 is the rate function, associating with each transition

the rate of an exponential distribution, depending on the global state of the

model.

2. dτ = (d1
τ , . . . ,d

n
τ ) ∈ Zn is the update vector which gives the net change for

each element of X caused by transition τ.

• X0 ∈ Zn
≥0 is the initial state of the model.

For convenience, transitions in PCTMCs can be easily expressed in the chemical reac-

tion style with Si being a specific molecular species, rτ(X) being the reaction propen-

sity function and dτ capturing the consumed and produced population of species by

the reaction:

N1S1 + . . .+NnSn −→τ N1S1 + . . .+NnSn at rate rτ(X)

where the net change on the population of agent type/species Si due to transition τ is

given by di
τ = Ni−Ni (1≤ i≤ n).

Given a PCTMC P , it is straightforward to define its infinitesimal generator matrix

Q by the D×D matrix where each element:

qx,x′ = ∑{rτ(X) | τ ∈ T ∧X′ = X+dτ} (2.15)

Clearly, the size of the state space of P can easily become intractable for the traditional

analysis techniques for CTMCs such as introduced in Section 2.1.2 and 2.1.3. Thus, in

most cases, stochastic simulation and fluid approximation are the only scalable analysis

techniques for PCTMCs.



2.2. Population Continuous Time Markov Chain 11

2.2.1 Stochastic Simulation of PCTMCs

The most straightforward way to analyse a PCTMC is to use stochastic simulation

to numerically compute individual realisations of the stochastic process. The idea is

simply Monte Carlo: if we sample enough realisations of the stochastic process, then

the estimates of statistical properties of the stochastic process will eventually converge

to their true values. Specifically, given a PCTMC P = (X,T ,X0) and the end time of

simulation te, a trace of the PCTMC X(t) for t ≤ te is often calculated by Gillespie’s

algorithm [Gillespie, 1977] which is also called the direct method, or the standard

stochastic simulation algorithm (SSA):

Algorithm 2.1 The SSA of PCTMCs

Require: P = (X,T ,X0), te
1: Set t = 0, X = X0,

2: while t ≤ te do
3: Generate two random numbers α, β uniformly distributed in (0,1)

4: Compute r = ∑τ∈T rτ(X)

5: Compute the time when the next transition fires as t +h, where h = 1
r ln[1/α]

6: if t +h > te then
7: break
8: end if
9: Compute which transition fires at time t +h by finding τ j such that

β≥ 1
r

j−1

∑
i=1

rτi(X) and β <
1
r

j

∑
i=1

rτi(X)

10: Set t = t +h, X = X+dτ j

11: end while

We can repeatedly apply the above algorithm to compute a large number of traces

so as to estimate some statistical properties of a PCTMC such as the distribution or

moments of the population vector X at any time point t ≤ te.

In principle, the standard SSA is able to simulate all PCTMCs. However in prac-

tice, due to the fact that the cost of SSA increases with the population size and the

number of reactions, the inefficiency of SSA has clearly become an obstacle for many

realistic models. As a result, numerous approaches have been proposed to improve

the efficiency of SSA, including the optimized direct method [Cao et al., 2004], the



12 Chapter 2. Background

next reaction method [Gibson and Bruck, 2000], and the composition rejection algo-

rithm [Slepoy et al., 2008]. However, all these approaches are exact methods which

means they have to simulate every transition event, thus their efficiency is limited by

the number of transitions in the PCTMC.

In order to overcome the restriction of exact simulation methods, many ap-

proximate methods have been proposed, among which the tau-leaping methods

[Gillespie, 2001, Cao et al., 2006] are widely used. Specifically, the tau-leaping algo-

rithm speeds up SSA by firing multiple transitions during a selected time interval in-

stead of firing one transition at each step in SSA, given that the transition rates remain

relatively constant during the selected time interval. Other approximate approaches

mostly focus on exploiting the presence of different time scales in the model. The

common idea behind these approaches is to construct abstracted models, by decom-

posing a model into a fast and a slow subsystem (in some cases, even more time scales

can be considered, but the general decomposition idea is the same). The fast subsys-

tem is assumed to reach an equilibrium state at a time scale which is much faster than

the time scale of the slow subsystem. Hence, the fast subsystem needs not to be simu-

lated once it reaches its equilibrium state, and the system dynamics are dominated by

the slow subsystem which can be simulated solely based on the equilibrium state of

the fast subsystem. According to the detailed decomposition methods, the approaches

can be further divided into two categories, namely the Quasi-Steady-State approaches

[Rao and Arkin, 2003, Mastny et al., 2007, Pu et al., 2011] and the Quasi-Equilibrium

approaches [Cao et al., 2005, Bortolussi and Paškauskas, 2014]. In the Quasi-Steady-

State approaches, populations are partitioned into fast and slow, and transitions are

separated accordingly. The fast-changing populations are approximated with a near

stationary distribution over a long period by their quasi-steady state, and the dynamics

of slow-changing populations are simulated upon the quasi-steady state. Alternatively,

the Quasi-Equilibrium approaches start by partitioning the transitions into fast and

slow, and then separating the system into a virtual fast process which only consists of

fast transitions and a slow process which only consists of slow transitions. The virtual

fast process reaches a stochastic quasi-equilibrium state very quickly between consec-

utive slow transitions. Then, the rate of slow transitions can be approximated based on

the quasi-equilibrium distribution of the virtual fast process. For approaches in both

categories, a common downside is that the identification of fast and slow subsystems

is usually a manual process, and requires expert knowledge of the dynamic behaviour

of the model. This process is expensive and error-prone which significantly hinders



2.2. Population Continuous Time Markov Chain 13

the usage of these approaches. Recently, some work has been done to automate the

separation process by obtaining the knowledge of the time-scales through some exper-

imental simulation runs of the entire model [Wu et al., 2012, Bortolussi et al., 2015b].

Multi-time scale separation is not in conflict with the tau-leaping algorithm. Instead, a

combination of them can actually give further acceleration [Cao and Petzold, 2008].

Given various acceleration algorithms, sometimes it may also be difficult to decide

which algorithm is most efficient with respect to a particular model. Indeed, even for

the same model, the performance of a simulation algorithm can vary during simulation

runs. Therefore, some adaptive algorithms have been proposed, among which the

adaptive simulator [Helms et al., 2015] is a generic adaptation scheme that is realised

as a wrapper for other simulation algorithms. More specifically, based on machine

learning methods, the adaptive simulator can automatically pick the best simulation

algorithm from the wrapped ones according to the current state of the model during

simulation. Thus it can achieve a better performance compared with the realisation

of a single simulation algorithm. The adaptive simulator is implemented as a plug-in

of JAMES II [Himmelspach and Uhrmacher, 2007], a well-known Java framework for

modelling and simulation.

2.2.2 Fluid Approximation of PCTMCs

Even with so many acceleration algorithms, stochastic simulation is still costly when

applied to large PCTMCs. As a result, fluid approximation which describes the mo-

ments (mean, variance, covariance, skewness, kurtosis, etc.) of population dynamics

in a PCTMC using a system of coupled ODEs, becomes a more appealing method to

analyse large PCTMCs since the associated evaluation cost remains almost unaffected

as the populations grow.

For example, let P = (X,T ,X0) be a PCTMC, and P (N) = (X(N),T (N),X(N)
0 ) be

the corresponding normalised version, where N is the normalising factor which is usu-

ally setted to the initial total population size ∑
n
i=1 xi(0); X(N) is the normalised state

vector in which x(N)
i = xi/N, ∀(1 ≤ i ≤ n); T (N) is the transition set in which each

transition’s rate function is density dependent such that τ = (rτ(X(N)),dτ); X(N)
0 is the

normalised initial state. Then, for each τ ∈ T (N), if there exists a Lipschitz continu-

ous and bounded function gτ, such that rτ(X(N)) = N · gτ(X(N)), it is certain that the

behaviour of the PCTMC becomes deterministic and converges to the solution of a

mean-field differential equation [Kurtz, 1981, Bortolussi et al., 2013], which takes the



14 Chapter 2. Background

following form:

d X(N)(t)
d t

= ∑
τ∈T (N)

dτ · rτ(X(N)(t)) with X(N)(0) = X(N)
0 as N→ ∞ (2.16)

If populations are in the order of tens or hundreds of thousands, mean-field equations

are generally very accurate [Bortolussi et al., 2013]. When populations are smaller, the

mean-field equations can still occasionally give a good approximation of the evolution

of average values of populations by ignoring any covariance between the individual

population variables [Guenther et al., 2012]. However, in many cases it can also lead

to high errors due to the groundless independence assumption between population vari-

ables.

As a result, a more robust approach is to derive ODEs for the moments of the popu-

lation variables which also accounts for the dependence between populations. Specifi-

cally, let M :Rn
≥0→R be a moment function, then the moment described by M evolves

according to the following differential equation [Engblom, 2006]:

d
dt
E[M(X(t))] = ∑

τ∈T
E[(M(X(t)+dτ)−M(X(t)))rτ(X(t))] (2.17)

with E[M(X(0))] = M(X0). For example, if we set M(X(t)) = xi(t), M(X(t)) = x2
i (t),

M(X(t)) = xi(t)x j(t), we get the following ODEs to describe the first moment, the sec-

ond moment and the second-order joint moment respectively, of population variables

in an arbitrary PCTMC:

d
dt
E[xi] = ∑

τ∈T
E[(xi +di

τ− xi)rτ(X)] = ∑
τ∈T

di
τE[rτ(X)]

d
dt
E[xi

2] = ∑
τ∈T

E[((xi +di
τ)

2− xi
2)rτ(X)]

= 2 ∑
τ∈T

di
τE[xi× rτ(X)]+ ∑

τ∈T
di

τ

2E[rτ(X)]

d
dt
E[xix j] = ∑

τ∈T
E[((xi +di

τ)(x j +d j
τ)− xix j)rτ(X)]

= ∑
τ∈T

di
τE[x j× rτ(X)]+ ∑

τ∈T
d j

τE[xi× rτ(X)]+ ∑
τ∈T

di
τ×d j

τE[rτ(X)]

where we use xi as short for xi(t), and rτ(X) as short for rτ(X(t)) for convenience.

The above system of ODEs does not necessarily have a solution since the dynamics

of lower-order moments can depend on higher-order moments. For example, if we

let rτ(X) = c xix j, then an infinite number of ODEs are required to describe moment

dynamics. In order to deal with this problem, various moment-closure methods are

proposed to truncate the system of ODEs at a certain order of moment.



2.2. Population Continuous Time Markov Chain 15

2.2.2.1 Moment Closure Methods

A generic closure method is to use the Taylor expansion to approximate moment vari-

ables, and then close the moment ODEs by assuming the moments of order higher

than a certain threshold around the mean to be zero, which is the so-called moment

expansion and central moment truncation method [Ale et al., 2013]. Specifically, let

E[ f (x)] = E[ f (x1, . . . ,xd)] denote an arbitrary moment variable in the right hand side

of a moment ODE which is a factor of d population variables, µ = (µ1, . . . ,µd) denote

their means, then by doing a Taylor expansion of f (x1, . . . ,xd) about the mean µ, we

can rewrite the moment variable as follows:

E[ f (x)] =
∞

∑
n1=0
· · ·

∞

∑
nd=0

E[(x1−µ1)
n1 · · ·(xd−µd)

nd ]

n1! · · ·nd!
· ∂

n1+...+nd f (µ1, . . . ,µd)

∂xn1
1 · · ·∂xnd

d

= f (µ1, . . . ,µd)+
d

∑
i=1

∂ f (µ1, . . . ,µd)

∂xi
E[(xi−µi)]+

1
2!

d

∑
i=1

d

∑
j=1

∂2 f (µ1, . . . ,µd)

∂xi∂x j
E[(xi−µi)(x j−µ j)]+

1
3!

d

∑
i=1

d

∑
j=1

d

∑
k=1

∂3 f (µ1, . . . ,µd)

∂xi∂x j∂xk
E[(xi−µi)(x j−µ j)(xk−µk)]+

· · ·

Then, if we assume for any central moment whose order is larger than a specific value

m, is equal to zero (i.e., setting terms of the above Taylor expansion corresponding to

∑
d
i=1 ni > m to 0), the moment variable E[ f (x)] will only contain moment variables

whose orders are less than or equal to m. Consequently, the system of moment ODEs

can be closed at order m. The merit of this closure method is that it can deal with any

form of moment variables, however it also has a drawback that the derivatives in the

Taylor expansion have to be manually calculated. Thus the method is not suitable for

integrating into tools for automatic moment closure approximation.

For PCTMCs with only polynomial rates (thus moment variables are also in the

form of polynomials), the most straightforward method for moment closure is to make

a particular distribution assumption of the population variables in the PCTMC. For

example, the normal moment closure assumes that the population variables at each

point in time are approximately multivariate normal and therefore all third and higher-

order moments can be expressed in terms of means and covariances. This relationship

is captured by Isserlis’ theorem [Isserlis, 1918]: For x multivariate normal with mean



16 Chapter 2. Background

µ and covariance matrix σi j, we have

E[(x−µ)(m)] = E[(x1−µ1)
(m1) · · ·(xn−µn)

(mn)] = 0 if o(m) is odd

E[(x−µ)(m)] = ∑∏E[(xi−µi)(x j−µ j)] if o(m) is even

where the notation ∑∏ means summing over all distinct ways of partitioning 1, . . . ,n

into pairs of i, j, o(m) = m1 + . . .+mn. For example, we can approximate

E[xix2
j ]≈ 2E[x j]E[xix j]+E[xi]E[x2

j ]−2E[xi]E[x j]
2

if multivariate normal distribution for population variables is assumed, which yields

E[(xi−µi)(x j−µ j)
2] = 0.

Similarly, the lognormal closure [Keeling, 2000, Singh and Hespanha, 2006] as-

sumes that the population variables follow a multivariate lognormal distribution. Thus,

suppose we want to approximate moment variable E[x(m)] using only moment vari-

ables of order up to o(m)− 1. Then, let M = {m1, . . . ,mk} be the moment order set

containing all the moments up to the order o(m)− 1, we can approximate E[x(m)] ≈
∏

k
p=1(E[xmp ])γp , where γ = (γ1, . . . ,γk) is the unique solution to the following system

of linear equations

C(m)
(ms)

=
k

∑
p=1

γpC(mp)

(ms)
∀s = {1, . . . ,k} where C(m̂)

(m̌) = C(m̂1)
(m̌1)

C(m̂2)
(m̌2)

. . .C(m̂n)
(m̌n)

where m̂ and m̌ are vectors with size n, Cl
h is defined as:

Cl
h =

{
l!

(l−h)!h! if l ≥ h

0 if l < h

For instance, if m = 2, using the lognormal closure, we can approximate:

E[xix j
2]≈

E[x j
2]E[xix j]

2

E[xi]E[x j]2

Compared with the normal moment closure method, the lognormal closure has the

advantage that probabilities are only defined for position values, thus it is generally

preferable for PCTMC models [Keeling, 2000].

Apart from the above two closures, there exist further closure meth-

ods based on other distribution assumptions such as the beta-binomial closure

[Krishnarajah et al., 2005], Possion closure [Nåsell, 2003], etc. Which distribution as-

sumption is the most valid will depend greatly on the problem being investigated.



2.3. High-level CTMC/PCTMC Formalisms 17

There are also many other different closure techniques. For example, pair approx-

imation which approximates the density of triplets (third-order moments) by counting

certain link densities (second-order moments) that form the triplet, is typically used

in spatial epidemic models [Keeling, 1999, Hiebeler, 2006] and self-organization of

adaptive networks such as opinion formation [Nardini et al., 2008]. The maximum-

entropy moment-closure makes no assumption about the correlation structure of pop-

ulation variables and chooses the distribution of maximum entropy subject to the con-

straints based on the knowledge of some lower dimensional marginals [Singer, 2004,

Rangan and Cai, 2006]. Both the pair approximation and maximum-entropy moment-

closure have the disadvantage that they require one ODE to capture the density or the

population in each possible value, and thus are not scalable for PCTMCs.

2.3 High-level CTMC/PCTMC Formalisms

Although the CTMC is a powerful modelling formalism, the construction of CTMC

models through the generator matrices is highly complicated and error prone. As

a consequence, many high-level formalisms such as stochastic process algebras

[Clark et al., 2007] and stochastic Petri nets [Balbo, 2001] have been developed to

provide intuitive specification of CTMC models. The process algebraic descrip-

tions are appealing for modelling complex systems since they offer the benefits

of describing a system in a modeller-friendly compositional approach. Some for-

malisms have also been specifically suggested for PCTMC models, and each is suit-

able for describing a particular set of systems. For example, Grouped PEPA (GPEPA)

[Hayden and Bradley, 2010] is a simple syntactic extension of PEPA [Hillston, 1996]

which allows for the straightforward derivation of PCTMC models that can be anal-

ysed using fluid approximation techniques. GPEPA is particularly suitable for mod-

elling systems with agents which compete for limited shared resources. The Bio-PEPA

process algebra [Ciocchetta and Hillston, 2009] can be used to derive PCTMC mod-

els specifically for systems biology. ML-Rules [Helms et al., 2014] is a rule-based

language developed for supporting the multi-level modelling of cell biological sys-

tems whose underlying mathematical framework is also a PCTMC. The stochastic

Concurrent Constraint Programming (sCCP) formalism [Bortolussi, 2006] is primar-

ily conceived to construct PCTMC models for bio-chemical processes. A noteworthy

formalism is the Markovian agents modelling framework [Cerotti et al., 2010] which

is particularly designed to define PCTMCs for describing systems composed by spa-



18 Chapter 2. Background

tially distributed interactive agents. In the remainder of this section, we will review

the Markovian agents modelling framework and stochastic process algebras which we

believe can provide us a useful insight into the problem of designing a high-level mod-

elling formalism for capturing CAS.

2.3.1 Markovian Agent Models

In this section, we give an overview of the multi-class multi-message Markovian agents

model (M2MAM) which is a mathematical framework that could be a good start point

for specifying CAS. M2MAM is a modelling framework proposed by Cerrotti et al.

for the modelling of collective systems comprised of populations of agents which are

spatially distributed [Cerotti et al., 2010]. Several case studies have demonstrated that

this is a powerful and useful framework [Gribaudo et al., 2008, Bruneo et al., 2012,

Cerotti et al., 2008].

Specifically, a M2MAM consists of a collection of Markov agents (MAs) spread

over space which is represented by a finite set of locations. Each MA has a location

attribute and can be denoted by a finite state machine in which two types of transitions

can happen: local transitions and induced transitions. Local transitions occur when-

ever the MA changes its state spontaneously with a delay governed by an exponential

distribution. Local transitions can also possibly emit messages that can cause the oc-

currence of MAs’ induced transitions in the same or other locations. This enables

location-based communication between MAs in the M2MAM. The reception of an in-

coming message is governed by the perception function, which depends on both the

locations and the states of the sender and receiver MAs. When a MA receives a mes-

sage, it can either ignore or accept it. In the first case, nothing will happen whereas in

the second case, the agent will change its state immediately by performing an induced

transition.

Following [Cerotti et al., 2010], we use MAc(`) to denote a MA of class c in loca-

tion `. A MAc(`) can be defined as a tuple {Qc(`),Λc(`),Gc(`,m),Ac(`,m),πc
0(`)}, in

which:

• Qc(`) = [qc
i j(`)] is a nc×nc matrix, in which each element qc

i j(`) represents the

rate of the local transition from state i to state j, with qc
ii(`) =−∑

nc
j 6=i qc

i j(`) where

nc is the number of states of a MA of class c.

• Λc(`) = [λc
i (`)] is a vector, in which each element λc

i (`) denotes the rate of a

self-jump transition which reenters the same state i, for a MA of class c.



2.3. High-level CTMC/PCTMC Formalisms 19

• Gc(`,m) = [gc
i j(`,m)] is a nc× nc matrix in which each element gc

i j(`,m) de-

scribes the probability of MAc(`) generating a message of type m during a local

transition from state i to state j.

• Ac(`,m) = [ac
i j(`,m)] is a nc×nc matrix, in which each element ac

i j(`,m) (i 6= j)

describes the acceptance probability of messages of type m for MAc(`), with

induced transition from state i to state j whereas ac
ii(`,m) denotes the probability

of dropping this message, and ac
ii(`,m) = 1−∑ j 6=i ac

i j(`,m).

• πc
0(`) is the initial state probability distribution of an agent of class c in location

`.

Figure 2.1 illustrates the schematic structure of two Markovian agents in two locations

` and `′, where nodes denote states, solid lines between states denote local transitions,

dashed lines denote induced transitions, dotted lines denote message emissions and

receptions.

i

j

k

. . . . . .

< gii,m′ > < g j j,m′ >

i′

j′

< gi′ j′,m >

`

`′
qi j

< m,aik >

λi

λ j

qi′ j′

q j′i′

um(`,c, i, `′,c′, i′)

Figure 2.1: The schematic structure of two Markovian agents in two locations

2.3.1.1 Model Analysis

We next introduce how to analyse a M2MAM according to [Cerotti et al., 2010]. Specif-

ically, let pc
i (`, t) denote the density of agents of class c in state i, in location ` at time

t. In M2MAMs, the density of agents of different classes in a location is assumed to

remain constant, this means that the value of ∑
nc
i=1 pc

i (`, t) = Pc(`) is invariant. Fur-

thermore, we use a vector pc(`, t) = [pc
i (`, t)] to denote the state density distribution



20 Chapter 2. Background

of agents of class c in location ` and at time t. The analysis of interest is the transient

evolution of pc(`, t). It can be computed by solving a set of coupled ODEs.

First of all, the total rate at which messages of type m are generated by a MA of

class c in state j and location ` can be computed by:

β
c
j(`,m) = λ

c
j(`)g

c
j j(`,m)+ ∑

k 6= j
qc

jk(`)g
c
jk(`,m) (2.18)

where the first term on the right hand side of the above equation gives the rate at

which messages of type m are generated by the MA in state j by a self-jump transition,

whereas the second term denotes the rate of message generation by the MA during a

local transition from state j to another state.

With βc
j(`,m), we can compute γ c

ii(`,m, t), the total reception rate of messages of

type m by a MA of class c in state i and location `, at time t. The rate γ c
ii(`,m, t) is

contributed by all the messages of type m generated by MAs of all classes in all states

and all locations, as long as they can be perceived by the receiver MA. Thus, γ c
ii(`,m, t)

is obtained by the following equation:

γ
c
ii(`,m, t) = ∑

`′∈L

C

∑
c′=1

nc′

∑
j=1

um(`,c, i, `′,c′, j)βc′
j (`
′,m)pc′

j (`
′, t) (2.19)

where C = {1, . . . ,C} is the set of agent classes in the model, L is the location set over

which the MAs are spread, um(`,c, i, `′,c′, j) is the perception function of message m,

whose value represents the probability that an agent of class c, in state i, and in location

` perceives a message m sent by an agent of class c′ in state j and in position `′.

Finally, we use a diagonal matrix, Γ c(`,m, t) = diag(γ c
ii(`,m, t)) to collect the rates

in Equation 2.19, and the infinitesimal generator matrix Kc(`, t) for the CTMC of

agents of class c in location ` at time t can be obtained by:

Kc(`, t) = Qc(`)+∑
m

Γ
c(`,m, t)[Ac(`,m)− I] (2.20)

where I is the identity matrix, the first term on the right hand side of the above equation

is the infinitesimal generator matrix of the CTMC for local transitions, and the second

term gives the infinitesimal generator matrix for induced transitions.

Shifting to a mean field view, the evolution of pc(`, t) can be studied by solving the

following ODEs:
dpc(`, t)

dt
= pc(`, t)Kc(`, t) ∀(`,c) (2.21)

with initial conditions pc(`, t0) = Pc(`)πc
0(`) ∀(`,c).



2.3. High-level CTMC/PCTMC Formalisms 21

2.3.2 Stochastic Process Algebras

Process algebras are a family of formal languages which were originally designed

for the modelling of systems characterised by communication and concurrency

[Milner, 1989]. These systems consist of individual agents which act independently

or communicate with others in order to access some shared resources to achieve their

goals. Process algebras provide a straightforward way to define, interpret and analyse

these systems. By using the various operators (prefix, choice, parallel composition,

etc.) in the process algebras, the modeller can specify the distinct agents in the system,

the action sequences they perform, and the components can be further composed to

build the model for complex systems. Since CAS are usually very complex in a global

view, but much simpler in an individual view, we believe it is a rather advantageous

strategy to use process algebras to specify CAS in a bottom-up manner.

Classic process algebras such as CCS [Milner, 1989] and CSP [Hoare, 1985] allow

the modeller to reason about the qualitative behaviour of the modelled system, such

as whether or not there is a deadlock in the system or a particular system state can be

reached. In order to investigate the quantitative behaviour of systems with different

characteristics, classic process algebras are extended to many different versions.

An important extension of classic process algebras is the stochastic process alge-

bras (SPAs) which associate a random duration that is governed by a negative expo-

nential distribution, with the firing of each action. This allows the model to capture the

randomness of systems in the real world. Moreover, based on the rules of the struc-

tural operational semantics (SOS rules) for SPAs in the style of [Plotkin, 2004], models

specified by SPAs can be translated to a graph which is called the labelled transition

system (LTS). In the LTS, the nodes are system states and the edges are the transitions

between states. The LTS is further used to generate the underlying CTMC which can

be numerically solved for performance evaluation of the modelled system. Among

the well-known examples of SPAs are PEPA [Hillston, 1996], stochastic π-calculus

[Priami, 1995], TIPP [Gotz et al., 1992], EMPA [Bernardo and Gorrieri, 1998], etc.

As the underlying mathematical framework is CTMCs, SPA models also suffer from

the state-space explosion problem. Indeed, because of the compositionality, very sim-

ple SPA models can have very large state spaces.

Recently, by shifting view of the system from individual components to popula-

tions, fluid approximation techniques for large CTMCs have been successfully applied

to SPA models. For example, [Hillston, 2005] showed how to translate a PEPA model



22 Chapter 2. Background

to a system of ODEs describing the evolution of the mean population of processes by

fluid-flow approximation in an informal way. Later, [Tribastone et al., 2012] formally

justified the fluid-flow approximation using Kurtz’s fluid limit theorem [Kurtz, 1981].

Furthermore, [Hayden and Bradley, 2010] showed how to derive ODEs describing

higher moments of PEPA models. [Cardelli, 2008a, Cardelli, 2008b] also presented

translations from some SPA models, namely Chemical Parametric Form (CPF), a sub-

set of stochastic π-calculus and stochastic interacting processes, to systems of chemi-

cal reactions for mean-field ODE analysis. Mean-field ODE analysis is also supported

by Bio-PEPA models [Ciocchetta and Hillston, 2009].

There have also been some SPAs which encompass some spatial modelling such

as stochastic π-calculus, Bio-PEPA, stochastic Bio-Ambients [Brodo et al., 2007] and

stochastic bigraphs [Krivine et al., 2008]. But in each of these space is abstractly rep-

resented and most focus on a containment relationship between locations. There are

also SPAs in which space is explicitly captured. For example, PALPS (Process Alge-

bra with Location for Population Systems) [Antonaki and Philippou, 2012] is a spatial

process algebra specifically designed for building ecological models. In PALPS, each

process has explicit location attributes in a two-dimensional space. Each location also

has its specific attributes, for example the number of processes in the location. Pro-

cesses can choose whether or not to perform an action depending on the state of its

location or nearby locations. SpacePi [John et al., 2008a] which associates each pro-

cess with a n-dimensional space attribute, is tailored for the modelling of molecular

biological systems in which processes’ communication is constrained by their dis-

tance. The attributed Pi calculus [John et al., 2008b] supports more general represen-

tation of space by defining attributes for processes, and attribute-based communication

which is an important feature of CAS, is also supported. However, models speci-

fied by the attributed Pi calculus can only be analysed by discrete-event simulation,

thus the language suffers from the lack of scalable analysis techniques to model large

scale systems like CAS. CARMA [Bortolussi et al., 2015a], inspired by our modelling

formalism and SCEL [Nicola et al., 2014], is a more general and powerful SPA partic-

ularly tailored for the modelling of CAS in which both explicit spatial representation

and attribute-based communication are supported. However, currently, only the dis-

crete semantics of CARMA has been introduced. Thus, the work in the remainder of

this thesis can also be a guide for developing scalable analysis techniques for CARMA

models.



Chapter 3

PALOMA: A Process Algebra For

Located Markovian Agents

The Process Algebra for Located Markovian Agents (PALOMA) is a stochastic pro-

cess algebra which is designed to capture models within the M2MAM framework.

Through its high-level specification, PALOMA provides an intuitive approach to con-

structing models within the M2MAM framework by circumventing the rather cumber-

some matrix specification of the models [Feng and Hillston, 2014]. The language has

been extended in [Feng et al., 2016a] by supporting unicast communication between

agents (which is not supported within the M2MAM framework) in order to enhance

the expressiveness of the language in capturing the synchronized interaction patterns

between agents in CAS.

PALOMA is equipped with both individual-based and population-level seman-

tics. The individual-based semantics provides the theoretical foundation for automatic

derivation of executable models for agent-based simulation in which each agent is sim-

ulated as a stochastic process whose events are individually scheduled. However, with

the population-level semantics, we are able to map PALOMA models into PCTMCs,

for which the simulation can be undertaken at the population-level using Gillespie’s

algorithm [Gillespie, 1977]. Population-level simulation is more efficient compared

with agent-based simulation when the model contains many symmetric agents (agents

that are indistinguishable from each other) which is often the case for CAS.

In the remainder of this chapter, we will first introduce the syntax of PALOMA.

Then, we will give an example model which captures a city bike-sharing system to

illustrate the expressiveness of PALOMA in capturing collective adaptive behaviours.

The formal semantics of PALOMA will be given afterwards. Lastly, we will also show

23



24 Chapter 3. PALOMA: A Process Algebra For Located Markovian Agents

Symbol Meaning

α An action type

!α A broadcast message typed α

!!α A unicast message typed α

π An action

S An agent state

` A location

`s The location of the sender agent of a message

`r The location of the receiver agent of a message

S(`) An agent in state S and location `

P,Q PALOMA components

Σw The sum of the weights of all potential receivers of a unicast

message

E The ether element

Sys A snapshot of the system in a PALOMA model

ξ The numerical count matrix of agent types in a PALOMA

model

Ei, j A numerical matrix of the same size as ξ, in which only the

element in the ith row, jth column is 1, all other elements are

0.

Table 3.1: Important notations in Chapter 3

some results from both agent-based and population-level simulation of the city bike-

sharing model. The important notations in this chapter are summarised in Table 3.1.

3.1 Syntax

PALOMA supports the construction of formal models of CAS in which agents are

distributed over a discrete set of named locations, L . Agents are parametrised by a

location, denoted by `, ` ∈ L . Each individual agent specifies a finite state machine,

and the language is conservative in the sense that no agents are created or destroyed

during the evolution of the model. There is a finite set of action types A , and actions



3.1. Syntax 25

may be undertaken spontaneously or may be induced by a message of the same type,

sent by another agent in the system. All spontaneous actions are assumed to have

a duration governed by an exponential distribution and characterised by a rate r. A

model consists of a number of agents composed in parallel. There is no direct com-

munication between agents, for example in the style of CSP [Hoare, 1985] or PEPA

[Hillston, 1996], but communication between agents is achieved through broadcast and

unicast message passing.

The language has the following grammar:

π ::= !(α,r)@IR{
−→
` } | ?(α, p)@Pr{v} | !!(α,r)@IR{

−→
` } | ??(α, p)@Wt{v} | (α,r)

S(`) ::= π.S(`) | S(`)+S(`) | C

P ::= S(`) | P ‖ P

where the first line defines actions, the second line defines agents, the last line produces

model components. Specifically, PALOMA supports the following operators:

Prefix: π.S(`) denotes an agent which performs an action π and behaves as S(`)

subsequently. π can be one of the following five classes:

• Spontaneous action with broadcast message emission: !(α,r)@IR{
−→
` } describes

a spontaneous action α, α∈A with rate r. During the occurrence of the action, a

broadcast message !α is emitted. The influence range of the broadcast is defined

by the location list
−→
` , which gives the locations in which agents can potentially

be influenced by this message.
−→
` can be defined both statically and dynamically.

For example,
−→
` = [`1, `2, `3] means that the influence range of the broadcast is

locations `1, `2 and `3, whereas
−→
` = range(d) denotes that the influence range

is a set of locations whose distance from the location of the sender agent is less

than a specific threshold d. Some other frequently used definitions of influence

range are
−→
` = local and

−→
` = all, which represent that the influence range of

the broadcast message is restricted to the location of the sender agent or consists

of all the locations in the model, respectively. Note that the spontaneous action

with broadcast message emission is non-blocking. The action is executed even

if no agent is able to receive the message.

• Spontaneous action with unicast message emission: !!(α,r)@IR{
−→
` } also de-

scribes a spontaneous action of type α, rate r and influence range
−→
` . The differ-

ence is that here the emitted message !!α is a unicast, meaning that at most one

agent can receive the message. Moreover, the action is blocking, which means



26 Chapter 3. PALOMA: A Process Algebra For Located Markovian Agents

that the action can only be executed if there are one or more potential receivers

currently in the system.

• Spontaneous action without message emission: (α,r) denotes a spontaneous ac-

tion α with a rate r. No message is sent out during the firing of this action. Thus

it remains an individual action solely of this agent.

• Induced action by a broadcast message: ?(α, p)@Pr{v} describes an action α

which will be triggered immediately after receiving and accepting a broadcast

message !α. Whether an agent can receive a broadcast message is decided by

two factors. Firstly, the agent must be located within the influence range of the

message; otherwise, the message will be ignored. Secondly, an implicit function

g(v) gives the probability that the message will be received by the agent given

that it is within the influence range of the broadcast, where v∈R is a real number

defined by the following grammar:

v ::= c | dist(`1, `2) | |S(`)| | v (op) v

in which c is a constant real number, dist(`1, `2) is the distance between two loca-

tions, |S(`)| is the number of agents in state S at location `, (op) ∈ {+,−,×,÷}
is a basic arithmetic operator. The function g(v) is simply used to ensure the

value domain of the reception probability is proper:

g(v) =


1 if v≥ 1

v if 0 < v < 1

0 if v≤ 0

The reception probability can be a static value, for example, v = 0.5 means that

the agent has 50% chance of receiving the message. It can also be a dynamic

value, for instance, v = 1/|S(`)| denotes that the message reception probability

is dependent on the current number of agents in state S at location ` in the system.

Once the message has been received, the agent decides whether to accept it.

Here, a constant value p ∈ [0,1] encodes the probability that the agent will ac-

cept the message. This can be thought of as the agent choosing to respond to a

spontaneous action of the given type with probability p. The definition of v and

p support a rich set of possible interaction patterns between agents which will

be illustrated by the example in the next section.



3.1. Syntax 27

• Induced action by a unicast message: ??(α, p)@Wt{v} describes an action α

which will be triggered immediately after receiving and accepting a unicast mes-

sage !!α. Similarly, a unicast can be potentially received only if the agent is

within the influence range of the message. Furthermore, an implicit function

w(v) =

v if v > 0

0 if v≤ 0

gives the weight of the agent to be the receiver of this unicast message, where v

follows the same definition as previously. The weights are used to resolve be-

tween several potential receiver agents: suppose there are n agents denoted by

S1(`1),S2(`2), ...,Sn(`n), which can potentially receive the unicast message, with

weights w(v1),w(v2), ...,w(vn), respectively. Then, the probability that agent

S1(`1) receives the message is w(v1)/Σw, where Σw denotes ∑
n
i=1 w(vi), the sum

of the associated weights of all potential receivers. Note that if there is no po-

tential receiver, the message cannot be sent since the corresponding spontaneous

action with unicast message emission is blocked. The value p∈ [0,1] is a distinct

probability deciding whether a received message is accepted or not. Note that if

the selected agent does not accept the unicast message, the message is discarded;

it cannot be passed to any other potential receiver agent.

Choice: Alternative behaviours are represented by the standard choice operator,

+. For example, agent π1.S(`) + π2.S′(`′) can either perform an action π1 and be-

have as S(`) or perform an action π2 and behave as S′(`′) depending on which action

first completes. Specifically, a choice between spontaneous actions is resolved via the

race policy, based on their corresponding rates. For instance, if π1 and π2 are both

spontaneous actions with rate r1 and r2, then the probability to perform action π1 is

r1/(r1+ r2) whilst the probability to perform action π2 is r2/(r1+ r2). When there is a

choice between a spontaneous action and an induced action, the induced action will be

fired immediately after a corresponding message is accepted, taking precedence over

any enabled spontaneous actions. A choice between induced actions will be decided

by which message is accepted first, and the corresponding induced action will be fired.

Here, we assume that there is never a choice between two induced actions by the same

message within a single agent. Moreover, we impose that there is at most one message

currently in the system at any given time. Thus, there will never be a chance that two

induced actions within a single agent are going to fire simultaneously.



28 Chapter 3. PALOMA: A Process Algebra For Located Markovian Agents

Constant: C = S(`) gives the constant C the behaviour of agent S(`). This is how

we assign behaviour to agents.

Parallel: P ‖ Q denotes parallel composition of components. For convenience, we

also introduce a notation P[N] which indicates N copies of components P in parallel,

i.e.,

P ‖ P ‖ . . . ‖ P︸ ︷︷ ︸
N

Unlike previous operators which are used to define behaviour for an agent type, this

higher level operator is used to specify model components.

3.2 A Motivating Example

In this section, we show a motivating example of a city bike-sharing model to illustrate

how the language may be used to describe CAS.

Specifically, we consider a model of a bike sharing service, where we assume a city

with m parking stations, each one with its location `i ∈ L = {`1, . . . , `m}, a number of

available bikes Nbi , and a number of available parking slots Nsi (for i = 1, . . . ,m). We

also assume that we have n users of the bike sharing service: at any time, each user

is positioned in one location and can be in one of the two states Pedestrian and Biker.

In each of those states, the user can move around the city (with speed depending on

the state) according to preferences modelled by two probability transition matrices Qb

and Qp of size m×m for the biker and the pedestrian state, respectively. The user

becomes a Biker or a Pedestrian after borrowing and returning a bike from/to a station.

The model is shown in Figure 3.1, in which Slot(`i) and Bike(`i) denote an avail-

able slot and bike in the station at location `i, respectively. Both Slot(`i) and Bike(`i)

are passive since they cannot make any spontaneous action. They can only be induced

to make a return (a bike is returned to this station) or borrow (a bike is borrowed from

this station) action by a unicast message, and when this happens they switch role. The

weight for the agents to receive a borrow or return message is 1, which means that

each bike or slot has equal probability to be taken.

Station(`i) denotes the parking station at location `i. A parking station performs

both a BikeAvailablei and a SlotAvailablei self-jump spontaneous actions with broad-

cast message emission at the rate of γ. In reality, this can be regarded as updating the

bike and slot availability of the station on the website or smart phone application. The

influence range of the broadcast messages is defined by the function range(d), which



3.2. A Motivating Example 29

Slot(`i) =??(return,1)@Wt{1}.Bike(`i)

Bike(`i) =??(borrow,1)@Wt{1}.Slot(`i)

Station(`i) =!(SlotAvailablei,γ)@IR{range(d)}.Station(`i)

+!(BikeAvailablei,γ)@IR{range(d)}.Station(`i)

Pedestrian(`i) =(seekb,rseekb).SeekBike(`i)+∑
j 6=i

(walki j,Qp(i, j)).Pedestrian(` j)

SeekBike(`i) =
m

∑
j=1

?(BikeAvailable j,1)@Pr{v1}.Walk2Station j(`i)

where: v1 = θ0 +θ1
d−dist(`i, ` j)

d
+θ2

|Bike(` j)|
|Bike(` j)|+ |Slot(` j)|

Walk2Station j(`i) =(W2Si j,w2si j).BorrowBike(`i)

BorrowBike(`i) =!!(borrow,o)@IR{local}.Biker(`i)

Biker(`i) =(seeks,rseeks).SeekSlot(`i)+∑
j 6=i

(ridei j,Qb(i, j)).Biker(` j)

SeekSlot(`i) =
m

∑
j=1

?(SlotAvailable j,1)@Pr{v2}.Ride2Station j(`i)

where: v2 = θ0 +θ1
d−dist(`i, ` j)

d
+θ2

|Slot(` j)|
|Bike(` j)|+ |Slot(` j)|

Ride2Station j(`i) =(R2Si j,r2si j).ReturnBike(`i)

ReturnBike(`i) =!!(return,o)@IR{local}.Pedestrian(`i)

. . . ‖ Pedestrian(`i)[Npdi] ‖ Biker(`i)[Nbri] ‖ Slot(`i)[Nsi] ‖ Bike(`i)[Nbi] ‖ Station(`i) ‖ . . .

Figure 3.1: The city bike sharing model



30 Chapter 3. PALOMA: A Process Algebra For Located Markovian Agents

means that only agents in locations whose distance to the location of the sender station

is less than d can potentially be influenced by this message.

Pedestrian(`i) denotes a user in Pedestrian state at location `i. She can travel from

location `i to location ` j at the rate of Qp(i, j) by doing a spontaneous action walki j

without message emission. She may also seek a bike at the rate of rseekb, and goes into

the SeekBike state.

The user in the SeekBike state at location `i can do a BikeAvailable j action in-

duced by a broadcast message sent by a station agent in location ` j and goes to the

Walk2Station j(`i) state, which represents the user walking from location `i to the bike

station in location ` j. The probability of receiving a bike available message from the

station in location ` j is defined by v1, where

v1 = θ0 +θ1
d−dist(`i, ` j)

d
+θ2

|Bike(` j)|
|Bike(` j)|+ |Slot(` j)|

.

In reality, this can be interpreted as follows: the users will check the bike availability in

nearby stations on the website or the smartphone application before deciding where to

rent a bike, and they tend to rent a bike from a closer bike station with more available

bikes, and θ1, θ2 are associated weights of those factors, θ0 is the noise term.

The user in the Walk2Station j(`i) state can do a spontaneous action W2Si j at the

rate of w2si j, where 1/w2si j is the expected time to walk from ` j to the bike station in

location `i. Then, the borrow bike action borrow is fired at the rate of o. Meanwhile, a

unicast message borrow is sent out, and the user becomes a Biker. A user agent in the

Biker state can perform actions and become a Pedestrian again in a similar fashion.

Finally, the last line in the model gives the initial population of agents in the system,

where Npdi , Nbri , Nsi and Nbi are numbers indicating the initial count of pedestrians,

bikers, available slots and bikes in location i or station i, respectively.

3.3 Individual-based Semantics

The individual-based semantics provides the basic rules for agent-based simulation of

PALOMA models. Concretely, the individual-based semantics proceeds in sequences

of alternating steps. This can be regarded as a semi-Markov process: the first step,

corresponding to the spontaneous actions, determines a delay, activates an action and

sends out a message (except spontaneous actions without message emission) to occupy

the environment, whilst the second step is probabilistic and determines what the next

state will be, as each possible induced action decides whether to fire or not. More



3.3. Individual-based Semantics 31

specifically, in order to make sure these two steps alternate correctly, we associate an

ether element with the system, which provides the environment for all agents. The

ether element has a distinguished empty state E0.

Correspondingly, we define two transition relations −→d and −→P , which are the

delay transition relation and the probabilistic transition relation, respectively.

3.3.1 The Delay Transition Relation

The rules for the delay transition relation (−→d) are given in Figure 3.2. As shown

in rules DeBrA and DeUnA, a spontaneous action with message emission can only be

initiated if the ether is currently empty, and no probabilistic transitions are enabled

(→P/ ). The resulting local state records that the ether contains the message !α or !!α,

the location of sender agent `s, the influence range of the broadcast or unicast
−→
` , and

the snapshot of the system state Sys after the firing of the spontaneous action, which

contains all the information that is needed to evaluate the reception probability of the

message in an induced action. More specifically, we can think the snapshot Sys cap-

tures the environment of the agents and can modulate the interaction between agents

by shaping communication probabilities. The continuation is subject to a probabilis-

tic resolution. Note that for the spontaneous action with unicast message emission,

it can be triggered only if there is at least one potential receiver agent in the sys-

tem (∃??(α, p)@Wt{v}.S′(`′), `r ∈
−→
` , where `r denotes the location of the receiver

agent). Any agent awaiting probabilistic resolution is denoted S(`)P . The rule of a

spontaneous action without message emission, as defined in DeNoMsgA, is just a spe-

cial case of spontaneous action with broadcast message emission. Specifically, the

emitted broadcast message has an empty influence range /0. In this case the message

will propagate, without impacting any other agents, except to put them into the trivial

probabilistic state.

If the ether contains a message of any type, then all agents will immediately witness

the ongoing action, enter a probabilistic state and await resolution (rule DeBlock). This

means all actions will be blocked until the current message has been fully disseminated

and probabilistically resolved, which ensures that only one spontaneous action can be

in progress at a time.

Choice behaves as we would anticipate (rule DeChoice). When the ether is empty,

then one of the enabled spontaneous actions can be chosen to fire. However, when the

ether is occupied by a message, then all actions must be blocked, and the agent will go



32 Chapter 3. PALOMA: A Process Algebra For Located Markovian Agents

DeBrA

E0, !(α,r)@IR{
−→
` }.S(`) (α,r)−−→d [!α, `s,

−→
` ,Sys],S(`)P (→P/ )

DeUnA

E0, !!(α,r)@IR{
−→
` }.S(`) (α,r)−−→d [!!α, `s,

−→
` ,Sys],S(`)P(

→P/ ∧ ∃??(α, p)@Wt{v}.S′(`′), `r ∈
−→
`
)

DeNoMsgA

E0,(α,r).S(`)
(α,r)−−→d [!α, `s, /0,Sys],S(`)P (→P )/

DeBlock

[α̂, `s,
−→
` ,Sys],π.S(`)

(α,r)−−→d [α̂, `s,
−→
` ,Sys],

(
π.S(`)

)P (
α̂ ∈ (!α, !!α)

)

DeChoice

E0,S1(`)
(α,r)−−→d E,S′1(`

′)P

E0,S1(`)+S2(`)
(α,r)−−→d E,S′1(`

′)P

E0,S2(`)
(α,r)−−→d E,S′2(`

′)P

E0,S1(`)+S2(`)
(α,r)−−→d E,S′2(`

′)P

E,S1(`)
(α,r)−−→d E,S1(`)

P E,S2(`)
(α,r)−−→d E,S2(`)

P

E,S1(`)+S2(`)
(a,r)−−→d E,

(
S1(`)+S2(`)

)P

DeParallel

E1,P
(α,r)−−→d E ′,(P′)P E2,Q

(α,r)−−→d E ′,(Q′)P(
E1,P

)
‖
(
E2,Q

) (a,r)−−→d E ′,
(
P′ ‖ Q′

)P

DeConstant

E,S(`)
(α,r)−−→d E ′,S′(`′)

C = S(`)
E,C

(α,r)−−→d E ′,S′(`′)

Figure 3.2: The delay transition relation for PALOMA



3.3. Individual-based Semantics 33

into the probabilistic state. We assume that within a choice both elements are in the

same location as they correspond to a single agent.

Parallel agents must agree on the single spontaneous action to take place, and con-

sequently update the ether in the same way (rule DeParallel).

The rule DeConstant is straightforward. It just gives the constant C the delay be-

haviour of S(`) if C = S(`) is defined.

3.3.2 The Probabilistic Transition Relation

A spontaneous action is deemed to be complete when all agents have moved to a prob-

abilistic state. In this case a probabilistic resolution must be made to determine the

next state. This is defined by the probabilistic transition relation, which will clear the

ether and create the opportunity for the next spontaneous action. More specifically,

probabilistic resolutions are determined by a second transition relation −→P , shown

in Figure 3.3.

Specifically, the rule PrBr shows the probabilistic resolution of an induced action

influenced by a matching broadcast message. There are two different resolution out-

comes according to whether the message is actually received and accepted by the agent

or not. Note that all the information that is needed to compute the reception probabil-

ity g(v) is provided within the ether element. In either case the ether is emptied when

the probabilistic resolution is made. The probabilistic resolution of an induced action

influenced by a matching unicast message follows a similar pattern (rule PrUn).

For other states in which no action can be induced, the probabilistic resolution is

trivial. It will simply clear the ether and return the agent to an active state again (rule

PrTr).

PrChoice gives the rules for probabilistic resolution of a choice between actions.

Since we assume that there is never a choice between two induced actions of the same

type within a single agent (see Page 27), at most one action can be potentially induced

within an agent and the probabilistic resolution for the rest of the actions must be

trivial. Therefore, if an action is induced within an agent, the agent will simply go to

the corresponding subsequent state. Otherwise if no action is induced, the agent will

clear the ether and the probabilistic resolution is completed.

Parallel agents undergo probabilistic resolution for a broadcast message indepen-

dently and their probabilities are multiplied (rule PrBrParallel). For probabilistic reso-

lution for a unicast message, at most one agent can actually receive the message. Thus,



34 Chapter 3. PALOMA: A Process Algebra For Located Markovian Agents

PrBr

[!α, `s,
−→
` ,Sys],

(
?(α, p)@Pr{v}.S(`)

)P


(α,g(v)×p)−−−−−−→P E0,S(`)

(α,1−g(v)×p)−−−−−−−−→P E0,?(α, p)@Pr{v}.S(`)
(`r ∈

−→
` )

PrUn

[!!α, `s,
−→
` ,Sys],

(
??(α, p)@Wt{v}.S(`)

)P


(α,

w(v)
Σw ×p)

−−−−−−→P E0,S(`)

(α,1−w(v)
Σw ×p)

−−−−−−−−→P E0,??(α, p)@Wt{v}.S(`)

(`r ∈
−→
` )

PrTr

[α̂, `s,
−→
` ,Sys],

(
π.S(`)

)P (α,1)−−−→P E0,π.S(`)
(

α̂ =

!α∧π 6=?(α, p)@Pr{v}

!!α∧π 6=??(α, p)@Wt{v}
∨ `r /∈

−→
`
)

PrChoice

E,S1(`)
P (α,p)−−−→P E0,S′1(`

′)

E,
(
S1(`)+S2(`)

)P (α,p)−−−→P E0,S′1(`
′)

E,S2(`)
P (α,p)−−−→P E0,S′2(`

′)

E,
(
S1(`)+S2(`)

)P (α,p)−−−→P E0,S′2(`
′)

E,S1(`)
P (α,p)−−−→P E0,S1(`) E,S2(`)

P (α,1)−−−→P E0,S2(`)

E,
(
S1(`)+S2(`)

)P (α,p)−−−→P E0,S1(`)+S2(`)

E,S1(`)
P (α,1)−−−→P E0,S1(`) E,S2(`)

P (α,p)−−−→P E0,S2(`)

E,
(
S1(`)+S2(`)

)P (α,p)−−−→P E0,S1(`)+S2(`)

PrBrParallel

E,PP (α,p)−−−→P E0,P′ E,QP (α,q)−−−→P E0,Q′

E,
(
P ‖ Q

)P (α,p×q)−−−−→P
(
E0,P′

)
‖
(
E0,Q′

)
PrUnParallel

E,PP (α,p)−−−→P E0,P′ E,QP (α,1)−−−→P E0,Q

E,
(
P ‖ Q

)P (α,p)−−−→P
(
E0,P′

)
‖
(
E0,Q

)
E,PP (α,1)−−−→P E0,P E,QP (α,q)−−−→P E0,Q′

E,
(
P ‖ Q

)P (α,q)−−−→P
(
E0,P

)
‖
(
E0,Q′

)
PrConstant

E,S(`)
(α,r)−−−→P E0,S′(`′) C = S(`)

E,C
(α,r)−−−→P E0,S′(`′)

Figure 3.3: The probabilistic transition relation for PALOMA



3.4. Population-level Semantics 35

if a non-trivial probabilistic resolution happens within a component, the other com-

ponents in parallel must stay in their current states after probabilistic resolution (rule

PrUnParallel).

Like the constant rule in the delay transition relation, the rule PrConstant just gives

C the probabilistic behaviour of S(`) if C = S(`) is defined.

3.3.3 CTMC

With the basis of the above individual-based semantic rules, a PALOMA model can be

represented as a labelled transition system (S ,A ,{ (α,r)−−−→ |(α,r) ∈ A}), where S is the

set of system states, A is the set of actions, and the transition relation
(α,r)−−−→∈ S ×S is

given by the combination of the rules in Figure 3.2 and 3.3 as follows:

S0
(α,r)−−−→d S P

1 , S P
1

(α,p)−−−→P S2 =⇒ S0
(α,r×p)−−−−→ S2

More specifically, using the above combination rule, we eliminate all probabilistic

states because no time elapses in those states whereas states in a CTMC must have an

exponentially distributed sojourn time.

The generated labelled transition system can be further mapped onto a CTMC.

However, since the state space of the CTMC is often extremely large, in most cases, it

is only possible to explore the state space on-the-fly through agent-based simulation in

order to analyse the CTMC.

3.4 Population-level Semantics

The population-level semantics provides the theoretical foundation for population-

level stochastic simulation of PALOMA models. Specifically, as agents in the same

state and location are indistinguishable in a PALOMA model, we aggregate those in-

distinguishable agents through a counting abstraction. Furthermore, with the seman-

tics which lifts the transitions within the model to the population level, we map the

PALOMA model to a PCTMC whose the state space is much smaller than the original

individual-based CTMC. As a result, the computational cost of simulating the model

can be reduced compared with the agent-based simulation.

Concretely, in order to define the population-level semantics for PALOMA, for an

arbitrary model, we first construct a state vector S whose size is |S|, where each element

Si denotes a specific agent state that appears in the model. Then, a location vector



36 Chapter 3. PALOMA: A Process Algebra For Located Markovian Agents

L whose size is |L| is also constructed, in which each element `i denotes a specific

location that appears in the model (Both S and L can be initialized by simply traversing

the model definition and listing all the distinct states and locations that appear on the

left hand side or the right hand side of a defining equation in the specification of the

model). Furthermore, we use a |S|× |L| numerical matrix ξ(t) to represent the current

count of agents in all possible states and locations. Specifically, the element ξi, j(t) in

the ith row and jth column of the matrix denotes the current number of agents in state

Si at location ` j at time t (we set ξi, j(t) =−1 if Si(` j) does not exist). For convenience,

we will use ξ as short for ξ(t), ξi, j as short for ξi, j(t) hereafter.

Furthermore, we define a structural congruence in Figure 3.4 which allows us to de-

fine the population-level semantics in a more compact and straightforward way. More-

over, we also define a function:

pf(Si(` j)) = {πn.Sin(` jn) | Si(` j) = ∑
n∈N

πn.Sin(` jn)}

which gives the set of prefixes of a specific agent type (we say two agents are of the

same type if and only if they are in the same state and location).

Now, we formally define the population-level structured operational semantics with

rules for the derivation of population-level transitions for PALOMA in Figure 3.5.

Specifically, the rule PbNoMsg infers a population-level transition from a spontaneous

action with no message emission of a single agent with rate r. The idea is that if there

are ξi, j copies of an agent type Si(` j) at any time instant, then the total rate at which

a spontaneous action with no message emission in the premise fires is r× ξi, j. After

firing the transition, the number of agents Si(` j) in the system will decrease by one

whereas the number of agents S′i(`
′
j) will increase by one (we refer the meaning of Ei, j

to Table 3.1).

S(`)[n] ≡ S(`) ‖ . . . ‖ S(`)︸ ︷︷ ︸
n copies

S(`) ≡ S(`)[1]

S(`)[n1] ‖ S(`)[n2] ≡ S(`)[n1 +n2]

S(`) ‖ S′(`′) ≡ S′(`′) ‖ S(`)(
S(`) ‖ S′(`′)

)
‖ S′′(`′′) ≡ S(`) ‖

(
S′(`′) ‖ S′′(`′′)

)

Figure 3.4: Structural congruence in PALOMA



3.4. Population-level Semantics 37

The rule PbBrCombo infers a set of population-level transitions from a sponta-

neous action with broadcast message emission coupled with all its potential receivers.

Specifically, suppose there are ξi, j copies of Si(` j) which can do a spontaneous action

with broadcast message emission at rate r at any time instant, then the total emission

rate of the broadcast message !α from those agents is r×ξi, j. For an agent in state Sm

and location `n which is within the influence range of the broadcast message (`n ∈
−→
` ),

assume the probabilities of receiving and accepting the message are g(v) and p, re-

spectively. Suppose a broadcast message !α is sent out, as agents choose to receive

and accept the broadcast message independently, then at the population level, the num-

ber of agents in state Sm and location `n who actually fire the corresponding induced

action caused by the broadcast message is a random variable following a Binomial

distribution, K ∼ Binomial(ξm,n,g(v)× p). Hence, the probability that k
(
k ∈ Ω(K)

)
copies of Sm(`n) fire their corresponding induced action is Pr(k;ξm,n,g(v)× p), where

Pr(k;ξm,n,g(v)× p) =
(

ξm,n

k

)
(g(v)× p)k(1−g(v)× p)ξm,n−k k ∈ (0,1, . . . ,ξm,n)

Moreover, there can be agents of multiple types in different states or locations which

have actions induced by the same broadcast message. Again, as agents choose to

receive and respond to the message independently, the probabilities of their outcomes

can be multiplied to obtain the combined probability. Therefore, for agents of a type

Si(` j) which can do a spontaneous action with broadcast message emission at rate r at

any time instant, suppose there are Z different agent types, denoted as Smz(`nz)
(
z ∈

(1,2, . . . ,Z)
)
, which have an induced action coupled with the message, we can infer

∏z(ξmz,nz +1) population-level transitions from the spontaneous action with broadcast

message emission coupled with its all potential receivers. Moreover, for a specific

transition in which for z ∈ (1,2, . . . ,Z), there are kz copies of agents Smz(`nz) who fire

the corresponding induced actions, its rate is r× ξi, j ×∏z Pr
(
kz;ξmz,nz, pz× g(vz)

)
.

After firing the transition, one copy of Si(` j) goes to S′i(`
′
j), for z ∈ (1,2, . . . ,Z), kz

copies of Smz(`nz) go to Sm′z(`n′z).

The rule PbUnPair infers a population-level transition from an induced action cou-

pled with a spontaneous action with unicast message emission. There is no explanation

since the inference is rather straightforward.

3.4.1 PCTMC

With the population-level semantics, any PALOMA model can be mapped to a PCTMC

represented as a tuple P = (X,T ,X0), where:



38 Chapter 3. PALOMA: A Process Algebra For Located Markovian Agents

PbNoMsg

(α,r).Si′(` j′) ∈ pf(Si(` j))

ξ
(α,r×ξi, j)−−−−−→∗ ξ−Ei, j +Ei′, j′

PbBrCombo

!(α,r)@IR{
−→
` }.Si′(` j′) ∈ pf(Si(` j)) ∀z ?(α, pz)@Pr{vz}.Sm′z(`n′z) ∈ pf(Smz(`nz)) `nz ∈

−→
`

ξ

(
α, r×ξi, j×∏z Pr

(
kz;ξmz ,nz , pz×g(vz)

))
−−−−−−−−−−−−−−−−−−−−−−−→∗ ξ−Ei, j +Ei′, j′ +∑z kz(Em′z,n′z −Emz,nz) ∀kz ∈ (0,1 . . .ξmz,nz)

PbUnPair

!!(α,r)@IR{
−→
` }.Si′(` j′) ∈ pf(Si(` j)) ??(α, p)@Wt{v}.Sm′(`n′) ∈ pf(Sm(`n)) `n ∈

−→
`

ξ
(α,r×ξi, j×p×w(v)

Σw ×ξm,n)
−−−−−−−−−−−−−−→∗ ξ−Ei, j +Ei′, j′ −Em,n +Em′,n′

Figure 3.5: The population-level structured operational semantics of PALOMA

• X = (x1, ...,xn) maps all the non-negative elements in the population numerical

matrix ξ to a vector format, where each vector element xi is the count variable

of a specific agent type. Note that we use X as short for X(t) to represent the

current state of the model at a time instant t.

• T = {τ1, ...,τm} is the set of population-level transitions inferred by the rules in

Figure 3.5, of the form τ = (rτ(X),dτ) in which the the action type α is omitted,

1. rτ(X) ∈ R≥ 0 is the rate function of transition τ. Specifically,

rτ(X)=


r× xi if τ is inferred by rule PbNoMsg

r× xi×∏z Pr
(
kz;xz, pz×g(vz)

)
if τ is inferred by rule PbBrCombo

r× xi× p× w(v)
Σw
× x j if τ is inferred by rule PbUnPair

2. dτ ∈ Zn is the update vector which gives the net change for each element

of X caused by transition τ. Intuitively, following the mapping rule from ξ

to X, dτ also maps the associated update matrix (e.g., the update matrix is

−Ei, j +Ei′, j′ if τ is inferred by rule PbNoMsg) into a vector format.

• X0 is the initial state of the model.



3.5. Simulation 39

Scenario I Scenario II Scenario III

m 8 8 8

Npdi

(
i ∈ (1,2, . . . ,m)

)
10 20 30

Nbri

(
i ∈ (1,2, . . . ,m)

)
10 20 30

Nsi

(
i ∈ (1,2, . . . ,m)

)
5 10 15

Nbi

(
i ∈ (1,2, . . . ,m)

)
5 10 15

Stop time of a simulation run 100 100 100

Number of simulation runs 10,000 10,000 10,000

Table 3.2: The bike-sharing model simulation configuration (unit of time in simulation:

minute)

Scenario I Scenario II Scenario III

agent-based simulation 4.3hrs 5.4hrs 7.9hrs

population-level simulation 3.3hrs 3.5hrs 3.7hrs

Table 3.3: Simulation time cost of 10000 runs of the bike-sharing model

With the tuple P , any PALOMA model can be simulated at the population-level using

Gillespie’s algorithm as described in Algorithm 2.1.

3.5 Simulation

In this section, we show some experiments on the city bike-sharing example using both

agent-based simulation and population-level simulation. The goal is twofold. First,

we validate the equivalence of agent-based simulation and population-level simulation

in capturing the system dynamics of a PALOMA model. Second, we compare the

efficiency of the two level simulations.

Specifically, we consider three simulation scenarios which differ in their size of

agent populations. Table 3.2 gives the simulation configuration of the three scenarios

(only the values of key parameters are listed, the values of other parameters are kept

the same in all the scenarios). Figure 3.6 gives the trajectories of the mean number

of available bikes in stations over 10,000 simulation runs for each scenario. It can

be seen that the trajectories from agent-based simulation overlap with the population-



40 Chapter 3. PALOMA: A Process Algebra For Located Markovian Agents

level simulation. The simulation time cost is given in Table 3.3 in which we can see that

the simulation cost of agent-based simulation grows much faster than population-level

simulation as the population size increases, which confirms that the population-level

simulation is more efficient in case of large population sizes.



3.5. Simulation 41

Figure 3.6: The trajectories of the average number of available bikes in the stations in

the agent-based and population-level simulation of the bike-sharing model each with

10000 runs





Chapter 4

Automatic Moment Closure

Approximation of PALOMA Models

In the previous chapter, we showed that by using a counting abstraction and simulating

a PALOMA model at the population level, the computational cost of analysing the

model can be reduced compared with agent-based simulation. However, since CAS

usually consist of a massive number of entities, stochastic simulation of the associated

PALOMA model can still be computationally too expensive (the simulation cost of the

bike-sharing example is already very expensive, not to mention CAS with thousands of

entities). Moreover, deriving performance measures from stochastic simulation often

requires us to simulate the model a large number of times, and then obtain the measures

of interest such as mean, variance and covariance of populations from the trajectories

of those simulation runs. This means that analysing large-scale CAS may become

extremely inefficient or even impractical.

In this chapter, we propose an approach which makes an approximation of

the system as a set of ordinary differential equations (ODEs). Unlike earlier

fluid approximation techniques of process algebras such as PEPA [Hillston, 2005,

Tribastone et al., 2012], our approach is not limited to the expectation or first mo-

ment characterisation of system behaviour. Importantly, our moment-closure-based

approach also incorporates higher order moments supporting the analysis of the com-

pliance of a system to service level agreements and other performance requirements.

Specifically, we will describe the evolution of the moments (mean, variance, covari-

ance, skewness, kurtosis, etc.) of population variables in an arbitrary PALOMA model

by a set of coupled ODEs. The obtained ODEs are not, in general, amenable to analyti-

cal solution but can nevertheless be solved efficiently by numerical simulation. What’s

43



44 Chapter 4. Automatic Moment Closure Approximation of PALOMA Models

more, the structure of the set of ODEs is independent of the number of agents in the

model, making the approach scalable even in the face of very large populations.

When representing a PALOMA model as moment ODEs, some problems can also

arise. First of all, the dynamics of lower-order moments often depend on higher-order

moments. Thus, an infinite number of ODEs are required to describe the system. In

order to deal with this problem, we propose an automatic moment-closure approach

to truncate the system at a certain order of moment. Secondly, the number of ODEs

characterising the evolution of the moments, whilst independent of the size of the pop-

ulations of agents, does depend on the number of locations and local state space of each

agent type. In some circumstances this can lead to a prohibitive number of ODEs, or

to a slow-down in analysis. Thus we also propose a model reduction technique which

generates a reduced set of ODEs on the basis of a formally defined neighbourhood

relation that is defined at the level of PCTMC description and can be automatically

applied. We demonstrate through three examples that this can significantly improve

the efficiency and scalability of moment-closure analysis whilst still retaining high ac-

curacy. All the techniques reported in this chapter are implemented in a tool which is

freely available for download1.

Part of the work in this chapter has been published in a paper in Journal ACM

Transactions on Modelling and Computer Simulation [Feng et al., 2016a].

4.1 The Derivation of Moment ODEs

We have mentioned that the evolution of the moments of the underlying population-

level stochastic process of an arbitrary PCTMC model can be approximated by the

following system of ODEs [Engblom, 2006]:

d
dt
E[M(X)] = ∑

τ∈T
E[(M(X+dτ)−M(X))rτ(X)] (4.1)

where M(X) denotes the moment to be calculated, dτ and rτ(X) represent the update

vector and rate of a population-level transition τ, respectively. For instance, if we

substitute M(X) with xi, xi
2 and xix j, we get the following ODEs to describe the first

moment, second moment and second-order joint moment respectively, of population

1https://github.com/cfeng783/paloma/wiki#the-paloma-eclipse-plug-in

https://github.com/cfeng783/paloma/wiki#the-paloma-eclipse-plug-in


4.1. The Derivation of Moment ODEs 45

variables in an arbitrary PALOMA model:

d
dt
E[xi] = ∑

τ∈T
E[(xi +di

τ− xi)rτ(X)] = ∑
τ∈T

E[di
τ · rτ(X)]

d
dt
E[xi

2] = ∑
τ∈T

E[((xi +di
τ)

2− xi
2)rτ(X)]

= 2 ∑
τ∈T

E[di
τ · xi · rτ(X)]+ ∑

τ∈T
E[di

τ

2 · rτ(X)]

d
dt
E[xix j] = ∑

τ∈T
E[((xi +di

τ)(x j +d j
τ)− xix j)rτ(X)]

= ∑
τ∈T

E[di
τ · x j · rτ(X)]+ ∑

τ∈T
E[d j

τ · xi · rτ(X)]+ ∑
τ∈T

E[di
τ ·d

j
τ · rτ(X)]

where di
τ is the ith element in dτ representing the update on the population variable

xi caused by transition τ. Note that if we derive the moment ODEs directly from the

PCTMC, we may get some Binomial probability mass functions in rτ(X) from transi-

tions inferred by rule PbBrCombo. However, since we treat the populations of agents as

continuous variables in moment-closure approximation, there will be no meaning for

such functions in moment ODEs. Hence, in order to avoid these Binomial probability

mass functions, we first do a transition combination for the PCTMC before deriving the

moment ODEs. Specifically, consider the following set of population-level transitions

inferred by the rule PbBrCombo:

xi,x j,xm,xn
r×xi×(xm

0 )(p×g(v))0(1−p×g(v))xm

−−−−−−−−−−−−−−−−−−−−→0 xi−1,x j +1,xm−0,xn +0
...

xi,x j,xm,xn
r×xi×(xm

k )(p×g(v))k(1−p×g(v))xm−k

−−−−−−−−−−−−−−−−−−−−−→k xi−1,x j +1,xm− k,xn + k
...

xi,x j,xm,xn
r×xi×(xm

xm)(p×g(v))xm(1−p×g(v))0

−−−−−−−−−−−−−−−−−−−−→xm xi−1,x j +1,xm− xm,xn + xm

It is possible to combine the above set of transitions for each possible update into a

single population-level transition:

xi,x j,xm,xn
r×xi−−→ xi−1,x j +1,xm− p×g(v)× xm,xn + p×g(v)× xm

because

p×g(v)× xm = ∑
k=0,...,xm

k×
(

xm

k

)
(p×g(v))k(1− p×g(v))xm−k.

Intuitively, this means that we get a combined population-level transition for a set of

population-level transitions inferred from PbBrCombo where the rate of the combined



46 Chapter 4. Automatic Moment Closure Approximation of PALOMA Models

transition is the rate of the spontaneous action with broadcast message emission, the

update vector of the combined transition is the expected number of agents to actually

change their state. Equivalently, we can think that we rewrite the rule PbBrCombo as

follows:

!(α,r)@IR{
−→
` }.Si′(` j′) ∈ pf(Si(` j)) ∀z ?(α, pz)@Pr{vz}.Sm′z(`n′z) ∈ pf(Smz(`nz)) `nz ∈

−→
`

ξ
(α, r×ξi, j)−−−−−−→∗ ξ−Ei, j +Ei′, j′ +∑z pz×g(vz)×ξmz,nz × (Em′z,n′z −Emz,nz)

where ∀z ?(α, pz)@Pr{vz}.Sm′z(`n′z) ∈ pf(Smz(`nz)), `nz ∈
−→
` traverses all agent types

that are potential receivers of the broadcast message α, ∑z pz×g(vz)×ξmz,nz×(Em′z,n′z−
Emz,nz) is the expected updates of the populations of those agent types after the spread-

ing of the broadcast message.

After transition combination, we are able to circumvent the intractable Binomial

probability mass functions, and a set of moment ODEs can be derived for fluid moment-

closure approximation for an arbitrary PALOMA model.

4.2 Moment ODE Reduction

Describing the evolution of expected population-level dynamics by moment ODEs

can dramatically improve our ability to analyse large scale CAS. However, due to the

spatially distributed nature of CAS, it is likely that there will be a large number of

population variables in the derived PCTMC model. Thus when higher order moments

are required, a problem we call ODE explosion (so many coupled ODEs that tradi-

tional machines do not have enough memory and computational power to numerically

simulate them) may emerge. Specifically, consider a PCTMC derived by a PALOMA

model in which there are n elements in the population vector X. Suppose we want to

approximate the second-order moments of the population variables, then there will be

n ODEs to describe the evolution of all E[xi
2], and (n2− n)/2 ODEs for all E[xix j].

Clearly, the problem of ODE explosion is mostly caused by the number of ODEs for

joint moments, as their number grows exponentially as the order of moments increases.

Therefore, in order to deal with the ODE explosion problem, in this section, we intro-

duce an algorithm for the reduction of ODEs to describe the evolution of joint mo-

ments. Specifically, our algorithm is based on the neighbourhood relation between the

population variables in the PCTMC. The definition of the neighbourhood relation will

be given in the next subsection.



4.2. Moment ODE Reduction 47

4.2.1 Neighbourhood Relation

Here, we introduce the neighbourhood relation between population variables in an

arbitrary PCTMC which will be the basis of moment ODE reduction.

Concretely, we say two population variables xi, x j are one-hop neighbours if one

of them can directly influence the evolution of the other. Formally, we define:

(xi,x j) ∈ R (1) ⇐⇒ ∃ τ, (di
τ 6= 0∧δ

j
τ = 1)∨ (d j

τ 6= 0∧δ
i
τ = 1)

where δ
j
τ is an indicator equal to 1 if and only if x j is updated after transition τ (d j

τ 6= 0)

or x j appears in the rate function (rτ(X)) of τ. Intuitively, this means that there exists

a transition, in which one of the two population variables is updated, and the other is

also involved. Moreover, we can infer two-hop neighbours by:

∃ k /∈ {i, j} (xi,x j) /∈ R (1)∧ (xi,xk) ∈ R (1)∧ (xk,x j) ∈ R (1)⇒ (xi,x j) ∈ R (2).

More generally, R (n) is the smallest relation that satisfies

∃ k /∈ {i, j} (xi,x j) /∈ R (1), . . . ,R (n−1)∧ (xi,xk) ∈ R (1)∧ (xk,x j) ∈ R (n−1)⇒ (xi,x j) ∈ R (n).

In general, with a higher-hop neighbourhood relation, the evolution of a population

variable will be less likely to influence the other. Thus, the neighbourhood relation

gives a coarse approximation of the dependence between the population variables in a

PCTMC.

Based on the neighbourhood relation between the population variables, we further

propose the following assertion:

Assertion 1. Let xi and x j be two population variables in a PCTMC, then xi and x j

can be treated as independent of each other if

(xi,x j) ∈ R (d′)∧d′ > d

where d ≥ 0 is a threshold chosen by the modeller.

Note when d = 0, it means that we assume all the population variables are indepen-

dent; when d = ∞, it means all the population variables are treated as inter-dependent.

4.2.2 Reduction Method

After the identification of independent population variables in the PCTMC using the

neighbourhood relation, we can construct a correlation graph for each distinct moment

variable in the derived moment ODEs. The definition of a correlation graph is given

below:



48 Chapter 4. Automatic Moment Closure Approximation of PALOMA Models

x1

x2

x3

x4

x5

Figure 4.1: The correlation graph of a moment variable E[x1x2x3x4x2
5].

Definition 1. The correlation graph G of a moment variable E[xm] = E[xm1
1 · · ·xmn

n ] is

a graph, in which there is a node for each population variable xi that appears in the

expression of the moment variable. Moreover, there is an edge Edge(xi,x j) between

two nodes if and only if (xi,x j) ∈ R (d′)∧d′ ≤ d.

Furthermore, we say two nodes in G are connected if and only if there exists a path

between them. Therefore, the correlation graph of a moment variable can consist of

one or more correlation islands. The correlation islands are defined as follows:

Definition 2. A correlation island I is a subgraph of a correlation graph G such that:

∀ xi,x j ∈ I −→ xi and x j are connected

∀ xi ∈ I ,x j /∈ I −→ xi and x j are not connected

Figure 4.1 illustrates the correlation graph of a moment variable E[x1x2x3x4x2
5]

which consists of two correlation islands. Each correlation island in a correlation graph

represents a decoupled moment variable with a lower order than the moment variable

represented by the correlation graph. Thus, with the identification of correlation is-

lands in a correlation graph, we can decouple the moment variable for ODE reduction.

Specifically, let E[xm] = E[xm1
1 · · ·xmn

n ] be an arbitrary moment variable that appears on

the left hand side of a moment ODE, G be the corresponding correlation graph, and I
be a correlation island in G . We can approximate E[xm] by the following formula:

E[xm]≈ ∏
I∈G

E[∏
xi∈I

xmi
i ] (4.2)

Furthermore, according to the above formula, for a moment variable E[xm] which ap-

pears on the left hand side of a moment ODE, if its correlation graph consists of more

than one correlation island, then this moment ODE can be eliminated since it can be

approximated by the product of moment variables with lower orders.



4.3. Moment-closure Method 49

Clearly, with a smaller value of reduction threshold d, more population variables

in the PCTMC will be approximated as independent of each other. As a result, we

can use fewer ODEs to describe the joint moments for the population variables in the

PCTMC. But, in the meantime, a larger amount of error can also be introduced by the

independence approximation. Therefore, the reduction threshold d is a factor to control

the trade-off between the efficiency and accuracy of moment-closure approximation.

Thus, starting from d = 0 where all population variables are treated as independent of

each other, we can find the optimal value of the reduction threshold d for the moment-

closure approximation of an arbitrary PCTMC whenever increasing the value of d will

not make any observable difference in the results on the evolution of required moments.

In our case studies, we will show that this reduction method can substantially re-

duce the number of moment ODEs, but still retains very good accuracy compared with

the moment-closure approximation without any reduction.

4.3 Moment-closure Method

In this section, we formally explain our automatic moment closure method for an ar-

bitrary PALOMA model. Specifically, for an arbitrary PALOMA model, we derive its

moment ODEs up to order m according to Equation 4.1, where m is the highest order

of moments required by the modeller. Then, let E[xm] = E[xm1
1 · · ·xmn

n ] denote a mo-

ment variable that appears on the right hand side of a moment ODE, whose moment

order is o(m) = m1 + . . .+mn
(
note that we restrict all the moment variables to this

product form by letting E[ f (X)]≈ E[ f1(X)]/E[ f2(X)] if f (X) = f1(X)/ f2(X)
)
. Then

if there exists a moment variable E[xm] and o(m)> m, the ODE system is not closed.

Therefore, we need to approximate E[xm] with moment variables whose order is less

than or equal to m, which is the so-called moment closure approximation.

For the purpose of moment closure, the first thing we do is to utilise the correlation

graph of moment variables introduced in the previous section. Specifically, for an

arbitrary moment variable which appears on the right hand side of a moment ODE, if

its correlation graph consists of more than one correlation island, we approximate it

using Equation (4.2).

Secondly, if the derived moment ODEs only contain moment variables whose or-

ders are no higher than m+1 (these are cases when the probability of receiving a broad-

cast message and the weight of receiving a unicast message are constants), we apply

the lognormal closure method [Singh and Hespanha, 2006] to close the system of mo-



50 Chapter 4. Automatic Moment Closure Approximation of PALOMA Models

ment ODEs at order m. Specifically, the lognormal closure method assumes that the

dependence of a higher-order moment on lower order ones is consistent with the pop-

ulation being joint lognormally distributed. Compared with moment closure methods

with other probability distribution assumptions on population variables, the lognormal

closure has the advantage of probabilities only being defined for positive values, thus

it is most suitable for PALOMA models. The details for deriving lognormal closure

formulas for an arbitrary order have been introduced in Section 2.2.2. For illustration,

if we set m = 2, using the lognormal closure technique, we can approximate all third

order moment variables by:

E[xi
3] ≈

(E[xi
2]

E[xi]

)3

E[xix j
2] ≈

E[x j
2]E[xix j]

2

E[xi]E[x j]2

E[xix jxk] ≈
E[xix j]E[xixk]E[x jxk]

E[xi]E[x j]E[xk]

In case when the derived moment ODEs also contain moment variables that are

higher than order m + 1, we use a heuristic algorithm to reduce the order of those

moment variables to m+ 1. Concretely, we first utilise the neighbourhood relation

defined in the previous section to estimate the dependence of a population variable

with a list of other population variables. More specifically, we let

(xi, [x j1, . . . ,x jn]) ∈ R (N) ⇐⇒ (xi,x jk) ∈ R (dk), 1≤ k ≤ n ∧
n

∑
k=1

dk = N.

Then, for a moment variable E[xm] = E[xm1
1 · · ·xmn

n ] with o(m)> m+1, we reduce its

order, by letting

E[xm] = E[xm1
1 · · ·x

mn
n ]≈ E[xmi

i ]E[ ∏
j=1,...,n∧ j 6=i

xm j
j ] (4.3)

where xi is the least correlated population variable in (x1, . . . ,xn), such that

Ni = max(N1, . . . ,Nn),

where

(xi, [x1, . . . ,xn]) ∈ R (Ni) ∀(1≤ i≤ n).

We apply the above algorithm until the order of the moment variable is m+ 1, after

which, the lognormal moment-closure can be applied. The whole flow of our automatic

moment closure approximation method for an arbitrary PALOMA model is given in

Algorithm 4.1.



4.3. Moment-closure Method 51

Algorithm 4.1 Automatic moment closure approximation for a PALOMA model

Require: P {the PCTMC after transition combination}, m, d

1: Derive moment ODEs up to order m for P according to Equation 4.1

2: Put all distinct moment variables in the derived moment ODEs into Set S.

3: for all moment variables E[xm] in S do
4: Construct the correlation graph G for E[xm] with reduction threshold d

5: if G consists of more than one correlation island then
6: if o(m)≤ m then
7: Eliminate the ODE describing E[xm]

8: Replace E[xm] in all other ODEs according to Equation 4.2

9: else if o(m)> m then
10: Replace E[xm] in all ODEs according to Equation 4.2

11: Put any new moment variables on the right hand side of Equation 4.2 into

S
12: end if
13: else if G consists of a single correlation island then
14: if o(m)> m+1 then
15: Reduce the order of E[xm] to m+1 according to Equation 4.3

16: else if o(m) = m+1 then
17: Apply lognormal moment-closure approximation to reduce the order of

E[xm] to m

18: end if
19: end if
20: end for
21: Numerically solve the reduced set of moment ODEs



52 Chapter 4. Automatic Moment Closure Approximation of PALOMA Models

4.4 Case Studies

In this section, we apply our automatic moment closure approximation algorithm to

three CAS from different areas, and compare the results with population-level stochas-

tic simulation using the standard SSA. Without loss of generality, we set m = 2 in

the experiments of the first two cases. In the third case, we set m = 3. The scripts

of the three models can be found on the PALOMA Eclipse plugin wiki page https:

//github.com/cfeng783/paloma/wiki#the-paloma-eclipse-plug-in.

4.4.1 An Epidemiological SIS Model

We first consider a classical epidemiological SIS model of individuals partitioned into

communities, where individuals move between communities but infections only take

place within communities. Each individual is considered to be susceptible (S) or in-

fected (I) with respect to the disease. More specifically, consider a total fixed popula-

tion of N individuals partitioned into m communities in a ring topology, each of which

contains n individuals (N = n×m). A continuous-time SIS epidemiological model is

then applied to this population as follows: each individual, regardless of its susceptible

or infected status, can move to his/her neighbour communities with rate r. Each in-

fected individual contacts and attempts to infect others in the same community at rate

λ. Each contact is with a randomly chosen individual. When an infected individual

contacts a susceptible individual, the latter becomes infected as well. Finally, infected

individuals independently recover to the susceptible state at rate µ.

The individuals in susceptible and infected states can be represented in PALOMA

by the following agents:

S(`i) = ??(contact,1)@Wt{1}.I(`i)+ ∑
j∈nearby(i)

(movei j,r).S(` j)

I(`i) = !!(contact,λ)@IR{local}.I(`i)+??(contact,1)@Wt{1}.I(`i)

+(recover,µ).S(`i)+ ∑
j∈nearby(i)

(movei j,r).I(` j)

where S(`i) and I(`i) denote an individual in the susceptible and infected state currently

in community i respectively, nearby(i) = {(i+1) mod m,(i−1+m) mod m} is the

index of nearby communities of community i.

The initial population of agents are given in the following definition:

S(`1)[n− I1] ‖ I(`1)[I1] ‖ . . . ‖ S(`i)[n− Ii] ‖ I(`i)[Ii] ‖ . . . ‖ S(`m)[n− Im] ‖ I(`i)[Im]

https://github.com/cfeng783/paloma/wiki#the-paloma-eclipse-plug-in
https://github.com/cfeng783/paloma/wiki#the-paloma-eclipse-plug-in


4.4. Case Studies 53

where Ii denotes the number of initially infected individuals in community i.

In the simulation, we randomly choose 5 out of 50 communities as the source of

the epidemic. There are 5 individuals in the 5 chosen source communities who are

infected initially. All the other individuals in the model are in the susceptible state

initially. Table 4.1 gives the simulation configuration of the SIS model. The values of

the parameters in the model are chosen to make the model close to realistic scenarios.

For simplicity, the number of simulation runs is chosen to make the first moment and

the second moment observable (an alternative choice would be to let the simulation

result achieve certain level of statistical significance). The stop time of a simulation

run is chosen to let the first moment and the second moment converge. The same

standard is also applied in the next two examples.

m 50

n 50

r 1

λ 2

µ 1

Ii (`i is a source community) 5

Ii (`i is not a source community) 0

Stop time of a simulation run 20

Number of simulation runs 10,000

Table 4.1: The SIS model simulation configuration

The analysis of interest in the SIS model is the number of infected individuals over

all the communities. We apply moment-closure analysis on the SIS model with differ-

ent reduction thresholds based on the neighbourhood relation of population variables,

and then compare the results with the stochastic simulation. Figure 4.2 and 4.3 show

the trajectories of the first and second moments of the infectious population in the SIS

model in the 10,000 runs of stochastic simulation as well as moment analysis, respec-

tively. It can be seen that with a stricter reduction standard (the larger value of d), the

result of moment analysis is closer to the stochastic simulation. Nevertheless, the result

of moment analysis when d = 3 is almost the same as that with d = 4, which means

that the second-order joint moments between population variables when their neigh-

bourhood relation is larger than three hops gives little extra information than their first

moments. Therefore, we can ignore the correlation between those population variables



54 Chapter 4. Automatic Moment Closure Approximation of PALOMA Models

Figure 4.2: The first moment of infected population

without loss of accuracy but with the gain of reduced solution time for the moment

ODEs. More evidence is shown in Table 4.2, where the error ratio is calculated by

averaging the difference between the stochastic simulation and the moment analysis

over 200 data points evenly selected in the trajectories along the simulation time. We

can see that the number of ODEs and solution time for moment analysis can be signif-

icantly reduced by our reduction method with only limited loss of accuracy compared

with the full moment analysis (d = ∞) as long as the optimal value of d (d = 3 in this

case) is chosen.

Furthermore, it is clear that moment analysis can enormously reduce the compu-

tational cost of analysing a PALOMA model compared with stochastic simulation (in

this thesis, we do not consider situations in which stochastic simulations are run in

parallel on multiple machines such as cloud clusters. Moment-closure approximation

is less likely to be parallelised).



4.4. Case Studies 55

Figure 4.3: The second moment of infected population

4.4.2 A Wireless Sensor Network Model

Here, we discuss a spatial model that represents the spread of pheromone in a multi-

hop Wireless Sensor Network (WSN). In nature, pheromone is a hormone laid down

by colony-based insects, to indicate popular routes to food sources or new nest sites.

In a similar manner pheromone gradients have been adapted in the WSN literature

as an abstract means of studying the evolution of routes from source to sink nodes.

Several models have been built to investigate the spread of pheromone in such networks

[Bruneo et al., 2012, Guenther et al., 2013]. We show how to capture those models in

PALOMA. Figure 4.4 visualises the topology of the WSN model, where there is a sink

node in cell 13 and there is a sensor deployed in each cell.

1
6

11
16
21

2
7

12
17
22

3
8

18
23

4
9

14
19
24

5
10
15
20
25

13

Figure 4.4: The topology of the WSN model



56 Chapter 4. Automatic Moment Closure Approximation of PALOMA Models

SIS model ODE number Solution time
Error ratio

1st moment 2nd moment

Simulation (10,000 runs) N/A 10.39 hrs N/A N/A

Moment analysis with d = 0 200 0.31 secs 14.01% 22.78%

Moment analysis with d = 1 350 0.83 secs 11.27% 18.37%

Moment analysis with d = 2 550 1.1 secs 8.61% 14.16%

Moment analysis with d = 3 750 1.34 secs 7.42% 12.30%

Moment analysis with d = 4 950 1.82 secs 7.41% 12.21%

Moment analysis with d = ∞ 5150 31.99 secs 7.16% 11.34%

Table 4.2: Simulation vs. moment analysis of the SIS model

Assuming we are only interested in the spread of pheromone, then the sink node

which is also the source of the pheromone spread broadcasts a message containing the

maximum pheromone level to all sensor nodes in the network at rate λsink. Thus, the

sink node is represented as follows:

Sink(`13) = !(phmax,λsink)@IR{all}.Sink(`13)

The pheromone level in a sensor node is denoted by an integer in the range 0 to

max. A sensor node can update its pheromone level to max once it receives a broad-

cast message from the sink node. However, the probability of a message from the sink

node being received by a sensor node depends on the physical distance between the

sink node and sensor node. The sensor nodes can also exchange pheromone informa-

tion with their neighbourhood sensor nodes using a Manhattan style communication

pattern. The pheromone level in each sensor node is assumed to decrease exponen-

tially at rate µ. Moreover, sensor nodes can also enter an off state at rate roff. Sensor

nodes in the off state can do nothing but sleep for a while and return to the on state

with rate ron. When a sensor node re-enters the on state, its pheromone level is set to

0.



4.4. Case Studies 57

Thus, the sensor nodes can be represented as follows:

Sensorphk(`i) = ∑
k< j≤max

?(ph j,1)@Pr{ 1
1+dist(`s, `i)

}.Sensorph j(`i)

+ !(phk,λsensor)@IR{range(1)}.Sensorphk(`i)

+(evaporate,µ).Sensorphk−1(`i) (k > 1)

+(off,roff).Sensoroff(`i)

Sensoroff(`i) = (on,ron).Sensorph0(`i)

where Sensorphk(`i) denotes a sensor node in cell i currently with pheromone level k.

The sensor node can receive a message containing a higher level pheromone and then

update its pheromone level. dist(`s, `i) is the distance between `i and the location of

the message sender (can be either a sink node or a sensor node). It can also broadcast

a message containing its current pheromone level to its neighbourhood at rate λsensor.

The other two actions capture the evaporation of pheromone and the sleep of nodes.

Table 4.3 summarises the simulation configuration of the model, where we set the

maximum pheromone level to 5. The analysis of interest is the spread of pheromone:

the number of sensor nodes with different pheromone levels and the expected pheromone

level in each node. Figures 4.5 and 4.6 show the trajectories of the first moment

and second moment of the number of sensor nodes with different pheromone levels

(note that total number of sensor nodes is constant in the model, thus some numbers

are overestimated whereas some are underestimated). Figure 4.7 shows the expected

pheromone level of the sensor nodes in each cell at time 100 which is the stop time of a

simulation run. In both cases, we can see that moment analysis with d = 1 gives much

closer results to stochastic simulation than moment analysis with d = 0. Table 4.4

compares the moment analysis with different reduction thresholds with stochastic sim-

ulation. In this case, moment analysis cannot be applied without our reduction method

since the number of ODEs is too large for Matlab to solve when d > 1. Moreover, again

we can see that moment analysis with d = 1 gives much better results than moment

analysis with d = 0. This is because fluid limit analysis neglects all the correlations

between population variables and can only give a good result at the first moment when

the population is large [Tribastone et al., 2012]. However, in this case, the population

is too small for this kind of analysis.



58 Chapter 4. Automatic Moment Closure Approximation of PALOMA Models

max 5

λsink 0.35

λsensor 0.35

µ 0.5

roff 0.05

ron 0.25

Stop time of a simulation run 100

Number of simulation runs 10,000

Table 4.3: The WSN model simulation configuration

sensor network model ODE number Solution time
Error ratio

1st moment 2nd moment

Simulation (10,000 runs) N/A 15.55 mins N/A N/A

Moment analysis with d = 0 352 0.21 secs 33.34% 45.42%

Moment analysis with d = 1 2427 25.94 secs 8.72% 12.97%

Moment analysis with d = 2 12332 out of memory N/A N/A

Table 4.4: Simulation vs. moment analysis of the WSN model

Figure 4.5: The first moment of number of sensor nodes with different pheromone level



4.4. Case Studies 59

Figure 4.6: The second moment of number of sensor nodes with different pheromone

level

Figure 4.7: The expected pheromone level in each cell at time 100.



60 Chapter 4. Automatic Moment Closure Approximation of PALOMA Models

m 16

d 1

θ0 0

θ1 0.5

θ2 0.5

Npdi 25

Nbri 5

Nsi 5

Nbi 10

Stop time of a simulation run 150

Number of simulation runs 10,000

Table 4.5: The bike-sharing model simulation configuration

4.4.3 The City Bike-sharing Model

The last example we discuss is the city bike-sharing example from the previous chap-

ter. Here, we consider the city is divided into 16 zones in a 4× 4 grid. Table 4.5

gives the simulation configuration of the bike-sharing model (only the values of key

parameters are listed). Here, we set m = 3, thus the analysis of interest is the first three

moments of the number of available bikes in each station over time. Table 4.6 gives

the detailed comparison between moment closure with different reduction thresholds

and stochastic simulation, where the error ratio takes into account of the trajectories of

available number of bikes in all the 16 stations. For illustration, we give the trajecto-

ries of the first three moments of the number of available bikes in the central station

in Figure 4.8. Here, we can observe again that moment analysis with d > 1 is infeasi-

ble due to the extremely large number of moment ODEs. Neglecting all correlations

between population variables results in very poor accuracy (d = 0). Nevertheless, mo-

ment analysis with d = 1 can achieve good accuracy since it can capture the most

important correlations between population variables in the PCTMC.

4.5 Summary

In this chapter, we proposed a moment-closure approximation method that can be au-

tomatically applied to an arbitrary PALOMA model. Moment-closure techniques have

been studied for many years in different scientific areas. The goal is to achieve a closed



4.5. Summary 61

Figure 4.8: The first three moments of number of available bikes in the central station



62 Chapter 4. Automatic Moment Closure Approximation of PALOMA Models

bike-sharing model model ODE number Solution time
Error ratio

1st moment 2nd moment 3rd moment

Simulation (10,000 runs) N/A 19.96 hrs N/A N/A N/A

Moment analysis with d = 0 912 4.14 secs 42.51% 64.92% 76.91%

Moment analysis with d = 1 19360 9.7 mins 2.74% 6.39% 9.92%

Moment analysis with d = 2 271266 out of memory N/A N/A N/A

Table 4.6: Simulation vs. moment analysis of the bike-sharing model

form of an infinite set of coupled differential equations by expressing higher-order mo-

ments in terms of lower-order moments. Many different closure techniques have been

introduced (cf. Section 2.2.2), each is suitable for solving a particular set of models.

Our moment-closure method for PALOMA models firstly utilises the neighbourhood

relation between population variables to reduce the order of moment variables which

consists of population variables whose correlation can be ignored without causing sig-

nificant deviation on results. Consequently, a large set of ODEs for joint-moments can

be removed since they can be approximated by moment variables with lower orders.

The lognormal closure is applied afterwards on moment variables whose orders cannot

be reduced using the neighbourhood relation. Specifically, the lognormal closure is

chosen because its closure operation can be easily automated and the lognormal distri-

bution assumption only assigns probabilities to positive values for population variables.

In our experiments, we showed that the results of the our method can significantly im-

prove the scalability of moment-closure approximation for PALOMA models and still

have acceptably low levels of error. Lastly, since both our moment-closure and ODE

reduction methods are defined on the PCTMC level, we think the same approach can

be applied to other high-level modelling formalisms as long as their underlying math-

ematical models are also PCTMCs, especially for those with large population sizes.



Chapter 5

The Speed-up of Stochastic

Simulation of PCTMCs

In the previous chapter, we showed that moment-closure approximation is a much more

efficient option for analysing large-scale PCTMCs compared than stochastic simula-

tion. However, this does not mean moment-closure approximation can always replace

stochastic simulation. First of all, although moment-closure approximations usually

work well in practice, rigorous justification of them is rather difficult and there is

no straightforward way to predict their accuracy [Kuehn, 2016, Schnoerr et al., 2015].

Therefore, in practice, even if moment-closure approximation is used, a certain num-

ber of stochastic simulation runs are still needed in order to check whether the ap-

proximation works well. More importantly, although stochastic simulation is com-

putationally expensive, it is also the most informative computational technique for

analysing PCTMCs. For instance, an important goal of representing dynamic sys-

tems such as CAS by PCTMCs is to undertake stochastic model checking where cer-

tain properties of the underlying systems can be verified by investigating the associ-

ated mathematical model, and such properties are often expressed using probabilities

[Kwiatkowska et al., 2007]. For example, in a SIS model, we might be interested in

whether the probability that the number of infected individuals exceeds N at any time

point between t0 and t1 is less than 5%. Thus, in these cases, only knowing the mo-

ments of populations is not sufficient to do the verification. Although moments can

be used to reconstruct the probability distribution of populations by the maximum en-

tropy approach [Andreychenko et al., 2015], the maximum entropy approach requires

knowledge of higher moments in order to achieve a faithful reconstruction. This tends

to increase the risk of the underlying moment ODEs becoming intractable for CAS.

63



64 Chapter 5. The Speed-up of Stochastic Simulation of PCTMCs

Thus, in some circumstances, statistical model checking [Legay et al., 2010] in which

probabilities are obtained through sampling from multiple stochastic simulation runs,

is the only feasible approach for verifying properties expressed using probabilities for

CAS.

Fortunately, although the scale and spatially distributed nature of CAS increase the

complexity of the underlying PCTMCs, on the other hand, it also offers possibilities

for model reduction. For instance, two agents which are located far away from each

other are generally less likely to influence each other than another two agents located

in close proximity. Therefore, if we are interested in only a few populations in the

PCTMC (which is often the case for model checking), we can remove some popu-

lation variables and transitions which have very limited influence on our target from

simulation. As modellers we know that a model is an abstraction of the system in the

real world. Thus it inevitably contains some deviation from the real system due to

details that are omitted in the abstraction process. Consequently, except for the case

of particular safety critical systems, it is generally acceptable to allow some minor

noise to be introduced to a model during construction. Taking this perspective a lit-

tle further, we can consider the transitions and population variables that we removed

from the simulation as noise factors which have negligible impact on the evolution

of populations of interest. Based on this idea, we propose a novel approach to speed

up stochastic simulation of PCTMCs by removing a set of transitions and population

variables which will not cause a significant error in the simulation result.

Specifically, in order to identify those removable population variables and transi-

tions, we define a directed coupling graph for an arbitrary PCTMC which quantifies

the coupling between population variables and transitions in the PCTMC. The graph

can be constructed at a relatively low computational cost compared with the total sim-

ulation cost. Using the graph, a reduction proposal which specifies the most likely

removable population variables and transitions, with respect to some target popula-

tions of interest, can be automatically generated. Moreover, in order to ensure that

the generated reduction proposal will not cause unacceptable error in the simulation

results of target populations, we utilise a deterministic model to efficiently check the

deviation of the dynamics of target populations before and after a reduction proposal.

An optimal reduction proposal can be automatically derived based on an acceptable

error threshold (for the target populations). Then, the simulation can be safely accel-

erated according to the optimal reduction proposal. This chapter is based on the work

published in EPEW 2015 [Feng and Hillston, 2015].



5.1. Related Works 65

5.1 Related Works

There has been much work which focuses on improving the speed of stochastic sim-

ulation, such as the tau-leaping algorithm and many other multi-time scale based al-

gorithms (cf. Section 2.2.1). Even though so many algorithms have been proposed,

stochastic simulation of PCTMCs is still very expensive due to the large number of

required simulation runs and the increasing size of systems under study. Especially for

CAS, just like the three case-study models in the previous chapter, it is likely that there

is no opportunity for time-scale separation even when faced with very large-scale sys-

tems. The tau-leaping algorithm is also not efficient enough to deal with large models

since it still tries to simulate every transition event in the system. Therefore, in this

chapter, we seek a different approach to speed up stochastic simulation of PCTMCs

through model reduction which is particularly suitable for CAS due to their highly

distributed nature. This is achieved by automatically generating reduction proposals

which specify a set of removable transitions and population variables from simulation.

Similar to our work is the directed relation graph (DRG)-based methods for skele-

tal mechanism reduction for the simulation of hydrocarbon oxidation, where a graph-

based model reduction approach is also used for removing unimportant species and re-

actions whose contribution to species of interest is negligible [Lu and Law, 2005]. The

approach has since been improved by researchers in the combustion research domain

such as DRG with error propagation [Pepiot-Desjardins and Pitsch, 2008], DRG with

sensitivity analysis [Niemeyer et al., 2010], etc. Our work is inspired by the DRG-

based methods, however, there are some key differences. First, the DRG-based meth-

ods are used to reduce deterministic models whereas our work is applied to stochastic

simulations. Second, since our goal is to speed up stochastic simulation, our primary

focus is on transition reduction instead of the species (population variables) reduction

that is the focus of the DRG-based methods. Lastly, although the DRG-based meth-

ods work well in the combustion simulation domain, they are still heuristics since no

accuracy can be guaranteed for reductions. Our work has an error control step where

the reduced model can be guaranteed to satisfy an error threshold, which makes our

work more convincing and easier to apply. The whole process of our automatic reduc-

tion method is fast, and has low computational cost compared to the total simulation

cost. In the following section, the details of how to generate a reduction proposal are

described.



66 Chapter 5. The Speed-up of Stochastic Simulation of PCTMCs

5.2 Reduction Proposal Generation

The cost of the standard stochastic simulation algorithm (SSA) depends on the number

of transition events in the system (see Algorithm 2.1), thus, to speed up stochastic

simulation, given an arbitrary PCTMC P = (X,T ,X0), our primary goal is to specify

a largest set of transitions Trm that can be removed from simulation without causing

an unacceptable impact on the target populations. A group of population variables

Xrm which are not involved in any transitions after transition elimination can also be

identified. A reduction proposal which represents a reduced version of P , denoted

as P̂ = (X̂, T̂ , X̂0), where X̂ = X−Xrm, T̂ = T − Trm, X̂0 is the associated initial

condition for X̂, is then generated. This is achieved by defining appropriate coupling

coefficients as a measure of the influence of the transitions on the target populations.

Since removing a transition which has very small influence on the target populations is

less likely to induce a significant error in them, we can treat transitions whose coupling

coefficients to the target populations are lower than a threshold as removable. In the

remaining part of this section, the definition of coupling coefficients will be described.

5.2.1 Direct Coupling Coefficient

Transitions and populations can be coupled through direct and indirect influence on

each other. The direct coupling coefficients are defined as a measure of the direct

influence of a transition on the dynamics of a population variable, or the other way

around. The direct influence of a transition on a population variable is measured dif-

ferently to the direct influence of a population variable on a transition. Thus, their

definitions are also given separately.

The direct coupling coefficient of a transition τ j to a population variable xi is de-

fined as:

cxi,τ j =
|di

τ j
Nτ j |

∑τ∈T |di
τ Nτ|

(5.1)

where di
τ is the update of xi caused by the firing of transition τ, Nτ is the firing count of

transition τ during a simulation run. Intuitively, cxi,τ j measures the proportional con-

tribution of the transition τ j to the evolution of population variable xi. With smaller

values of cxi,τ j , the removal of transition τ j from simulation will be less likely to im-

mediately induce a significant error in the evolution of population variable xi.

The direct coupling coefficient of a population variable xi to a transition τ j is de-



5.2. Reduction Proposal Generation 67

fined as:

cτ j,xi =

1, if population variable xi contributes to transition τ j

0, otherwise
(5.2)

where we say xi contributes to transition τ j if and only if xi appears at the reactant side

of τ j (assuming expressing transitions in the chemical reaction style) or the rate of τ j

depends on xi. Since removing a population variable which contributes to a transition

will immediately invalidate the transition, the direct influence of a population variable

on a transition is either 100% or 0.

The direct coupling coefficients between two population variables or two transi-

tions are always defined to be zero because we assume they are always not directly

coupled:

cxi,x j = 0, ∀(xi,x j) (5.3)

cτi,τ j = 0, ∀(τi,τ j) (5.4)

5.2.1.1 Evaluate the Firing Count of Transitions

A key point for the computation of direct coupling coefficients is the evaluation of

Nτ, the firing count of transitions during a simulation run (all other factors in the def-

initions of direct coupling coefficients in Equations 5.1 and 5.2 can be directly ob-

tained from the PCTMC description). Thus, in order to achieve a convincing eval-

uation of Nτ for each transition, we compute the average firing count of the tran-

sition over infinite simulation runs. This can be achieved efficiently by moment-

closure approximation of a PCTMC with additional dummy population variables rep-

resenting the counter of the firing of transitions. Specifically, based on a PCTMC

P =
(

X = (x1, . . . ,xn),T = (τ1, . . . ,τm),X0 =
(
x1(0), . . . ,xn(0)

))
for stochastic sim-

ulation, we can construct another PCTMC P ′ = (X′,T ′,X′0), in which:

• X′ = (x1, . . . ,xn,xn+1, . . . ,xn+m), where xn+i (1≤ i≤ m) is a dummy population

variable representing the counter of the firing of transition τi.

• T ′ = (τ′1, . . . ,τ
′
m), where for 1 ≤ i ≤ m, τ′i = (rτ′i

(X′),dτ′i
) such that rτ′i

(X′) =
rτi(X), dτ′i

= (d1
τ′i
, . . . ,dn

τ′i
,dn+1

τ′i
, . . . , ,dn+m

τ′i
) in which

d j
τ′i
=


d j

τi if 1≤ j ≤ n

0 if n+1≤ j ≤ n+m∧ j 6= n+ i

1 if j = n+ i



68 Chapter 5. The Speed-up of Stochastic Simulation of PCTMCs

• X′0 =
(
x′1(0), . . . ,x

′
n(0),x

′
n+1(0), . . . ,x

′
n+m(0)

)
where

x′i(0) =

xi(0) if 1≤ i≤ n

0 if n+1≤ i≤ n+m

Intuitively, the above PCTMC will increase the counter for a transition by one when-

ever the transition is fired. Then, by computing the first moments of the population

variables using Algorithm 4.1 for the PCTMC P ′, we can evaluate Nτi = E[xn+i](te)

for 1≤ i≤ m, where te is the end time of the simulation.

5.2.2 Directed Coupling Graph

With the evaluation of direct coupling coefficients, we can construct a directed cou-

pling graph for an arbitrary PCTMC. The definition of the directed coupling graph is

given as follows:

Definition 3. The directed coupling graph for a PCTMC with n population variables

and m transitions is a graph consisting of m+n nodes, in which each node represents a

population variable or a transition in the PCTMC, and there exists a weighted directed

edge from node i to node j if the direct coupling coefficient ci, j > 0. In this case, ci, j > 0

is the weight for the edge.

For example, for a PCTMC consisting of four population variables (A,B,C,D), and

four transitions (τ1,τ2,τ3,τ4) as follows:

A −→τ1 D at rate c1×A

A+B −→τ2 2A at rate c2×AB

B −→τ3 C at rate c3×B

C −→τ4 D at rate c4×C

Assuming Nτ1 = 70, Nτ2 = 30, Nτ3 = 10, Nτ4 = 30, the corresponding directed coupling

graph is given in Figure 5.1. As can be seen from the graph, there is an edge from node

A to node τ1 since cA,τ1 = Nτ1/(Nτ1 +Nτ2) = 0.7, an edge from node τ1 to node A since

A appears in the reactant side and the rate function of transition τ1. There is no edge

from node τ1 to node D since D only appears in the product side of transition τ1, thus

makes no direct contribution to it.

In the above example, if A is a target population, then removing transition τ3 and

τ4 will not induce an immediate error on the evolution of A, since cA,τ3 = cA,τ4 = 0.



5.2. Reduction Proposal Generation 69

A

τ1 τ2

B

τ3

D C

τ4

0.7

0.3

0.75
0.25

0.25

0.75

0.7

0.3

1
1

1

1

1

Figure 5.1: The directed coupling graph for the PCTMC with population variables

(A,B,C,D), and transitions (τ1,τ2,τ3,τ4). Weights on edges are the direct coupling

coefficients.

But, from the model definition, we can clearly see that removing τ4 will make zero

impact on A either directly or indirectly, however, removing τ3 can affect A through

an indirect coupling with population variable B. This indirect coupling effect can be

captured by a propagation method using the directed coupling graph.

5.2.3 Coupling Propagation

Transitions can influence the evolution of population variables by coupling propagation

through intermediate populations and transitions. Specifically, for a target population

xt and a transition τ which are not directly connected in the directed coupling graph,

we quantify the indirect coupling coefficient of the transition τ to the target population

xt by a path dependent coefficient cγ

xt ,τ, which is the product of the direct coupling

coefficients along an acyclic path γ from node xt to node τ in the directed coupling

graph:

cγ

xt ,τ = ∏
i j∈γ

ci, j (5.5)

Clearly, indirect coupling becomes weaker with more intermediate nodes.

For the purpose of model reduction, we assume that all coupling with respect to the

target populations which are less than a small threshold ε can be ignored without caus-

ing significant error to the target populations. Then this is equivalent to charactering



70 Chapter 5. The Speed-up of Stochastic Simulation of PCTMCs

the influence of removing an arbitrary transition τ on the evolution of a target popu-

lation xt by a coupling coefficient Cxt ,τ, which is the maximum of the path dependent

coefficients:

Cxt ,τ =


max

all paths γ

cγ

xt ,τ, if there exists a path from node xt to node τ

0, otherwise

Consequently, we can specify whether a transition is removable with respect to a target

population by simply checking if Cxt ,τ < ε.

In the example in Figure 5.1, if A is a target population, then we can obtain CA,τ1 =

0.7, CA,τ2 = 0.3, CA,τ3 = 0.3× 1× 0.25 = 0.075, CA,τ4 = 0. Therefore, if we set ε =

0.01, only τ4 will be identified as removable. However, if we set ε = 0.1, then τ3 will

also be treated as removable. Thus, the reduction threshold ε can be thought of as a

value to control the extent of model reduction. With a larger value of ε, more transitions

will be treated as removable. As a result, a larger error on the target population will

also be induced.

5.2.4 Generating Algorithm for Reduction Proposals

Given an arbitrary PCTMC, and a set of target populations (xt1 ,xt2, . . . ,xtn), a reduction

proposal is associated with a reduction threshold ε. Specifically, for each target popu-

lation xti , we regard a transition τ as removable with respect to it if Cxti ,τ
< ε. The gen-

erated reduction proposal discards transitions which are removable with respect to all

target populations, and population variables which are not involved in any transitions

except those removable transitions (a population variable is not involved in a transition

if it does not appear either in the reactant side, product side or the rate function of

the transition). The procedure for generating a reduction proposal is summarised in

Algorithm 5.1.



5.3. Error Control of Reduction Proposals 71

Algorithm 5.1 Reduction Proposal Generation

Require: P = (X,T ,X0), (xt1 ,xt2, . . . ,xtn), ε

1: Define Trmi = /0 ∀i ∈ (1,2, ...,n), Xrm = /0

2: for all τ in the transition set T of P do
3: for all xti in (xt1 ,xt2, . . . ,xtn) do
4: if Cxti ,τ

< ε then
5: add τ to Trmi

6: end if
7: end for
8: end for
9: Let Trm = Trm1 ∩Trm2 ∩ . . .∩Trmn , T̂ = T −Trm

10: for all xi in the population vector X of P do
11: if xi is not involved in any transition in T̂ then
12: add xi to Xrm

13: end if
14: end for
15: Let X̂ = X−Xrm, X̂0 be the initial state of X̂
16: return P̂ = (X̂, T̂ , X̂0)

5.3 Error Control of Reduction Proposals

A reduction proposal specifies a reduced PCTMC which discards the most likely re-

movable transitions and population variables from a stochastic simulation with respect

to the given target populations according to a reduction threshold ε. However, there is

no direct estimate of the amount of error which will be caused by the reduction.

Therefore, an error control step is needed to ensure the error caused by a reduction

proposal is lower than an acceptable error threshold. Since the dynamics of a popula-

tion variable in a single simulation run is random, it is more reasonable to evaluate the

error caused by a reduction proposal based on the mean dynamics of target populations

over infinite simulation runs. Again, this is achieved by computing the expectation of

target populations at a random time point during simulations using the moment-closure

approximation which is described in the previous chapter. Specifically, to evaluate the

error caused by a reduction proposal, we compute the first moments of target popula-

tions using Algorithm 4.1 for the original PCTMC P and the reduced PCTMC P̂ . In



72 Chapter 5. The Speed-up of Stochastic Simulation of PCTMCs

both cases, we set m = 2, d = 1 in which second order moments are used as correction

terms to make the computed first moments more accurate.

Sampling the first moments of target populations at m time points evenly distributed

along the simulation through moment closure approximation, we can evaluate the error

caused by a reduction proposal on a target population xti at a time point j by:

Errori, j =
|E(x j

ti)−E(x̂ j
ti)|

E(x j
ti)

(5.6)

where E(x j
ti) and E(x̂ j

ti) are expectations of the target population xti at time point j

before and after reduction, respectively.

Then, we characterise the error caused by a reduction proposal by the maximum of

the error samples for all target populations, which is defined as follows:

ErrorP̂ = max
i∈(1,2,...,n), j∈(1,2,...,m)

Errori, j (5.7)

Thus, we can treat a reduction proposal P̂ as acceptable if ErrorP̂ < θ, where θ is the

acceptable error threshold.

5.4 Searching for the Optimal Reduction Proposal

The optimal reduction proposal specifies a reduced PCTMC which has the smallest

set of transitions that satisfies the acceptable error threshold on target populations.

Since the size of the reduced set of transitions is a monotone function of the reduction

threshold ε, the optimal reduction proposal can be found by searching the largest value

of ε which generates a reduced PCTMC P̂ that satisfies ErrorP̂ < θ. This is achieved

by a modified binary search method illustrated in Algorithm 5.2. Specifically, steps

4−17 implement the binary search for a reduction proposal which satisfies θ−∆θ ≤
ErrorP̂ ≤ θ, where [θ−∆θ,θ] is a convergence interval for which we think the optimal

reduction proposal is found. Step 4 defines the initial upper bound and lower bound

of the reduction threshold, in which we conservatively set the initial upper bound to

1. However, in practice, it is more efficient to set ε̄ = θ in order to save some search

attempts since the error caused by a reduced PCTMC with reduction threshold ε will

almost always be larger than ε. Step 5 defines the termination condition for the binary

search in which δ is a small value close to zero. If a reduction proposal whose error falls

into the convergence interval can not be found, then the optimal reduction proposal

should be the last found PCTMC P̂ which satisfies ErrorP̂ < θ−∆θ (Step 18-20).



5.5. Evaluation 73

Otherwise, no reduction proposal can be found to satisfy ErrorP̂ < θ, thus the original

PCTMC is returned (Step 22). Using Algorithm 5.2, the optimal reduction proposal

can always be found if it exists. Then, the associated PCTMC P̂ which contains the

smallest set of transitions can be used in future simulation runs.

5.5 Evaluation

In this section, we use two examples to evaluate the usefulness of our automatic model

reduction algorithm for the speed-up of stochastic simulation. The first one is the

PCTMCs derived by the PALOMA bike-sharing model in Section 3.2. The second

one is a PCTMC for the smart taxi scenario which is a simplified version of the model

described in [Hillston and Loreti, 2015]. In the experiments for both examples, the

usefulness of our reduction algorithm is evaluated by the size of the reduced model

(the proportion of removed transitions), the decrease of simulation time, and the error

caused by the reduction.

5.5.1 Experiments on the Bike-sharing Example

We first consider the PCTMCs derived by the bike-sharing model described in Sec-

tion 3.2. Specifically, to make our experiments more thorough, we generated 50 bike-

sharing models each with 30 locations. There are 50 pedestrians and a bike station

which is equipped with 25 available bikes and 5 available slots initially in each loca-

tion in the simulation. The topology of the locations and the value of other parameters

in each model are generated randomly. This means we have generated 50 different

PCTMCs for the bike-sharing example for experiments.

To achieve a fair comparison, we first simulate each PCTMC without reduction for

500 runs. Then, we simulate each PCTMC with our reduction algorithm with different

acceptable error thresholds each for 500 runs. The end time of each simulation run

for both cases is te = 150. Without loss of generality, we pick the number of available

bikes in two random stations as our target populations in each simulation.

We first compare the size of the reduced PCTMC and the total simulation time

cost using our reduction method (the overhead cost to run our reduction algorithm is

included) with simulation without reduction. Figure 5.2 gives the average proportional

reduction of transitions and simulation time with different acceptable error thresholds.

It can be seen that our reduction algorithm can significantly reduce the number of



74 Chapter 5. The Speed-up of Stochastic Simulation of PCTMCs

Algorithm 5.2 Searching for the optimal reduction proposal

Require: P = (X,T ,X0), (xt1,xt2, . . . ,xtn), θ, ∆θ, δ

1: Evaluate the firing count of transitions during a simulation run through moment-

closure approximation of a PCTMC P ′ with additional dummy population vari-

ables as counters of the firing of transitions

2: Construct the directed coupling graph for P
3: Obtain the first moments of (xt1 ,xt2, . . . ,xtn) using the moment-closure approxima-

tion result of P ′

4: Define ε̄ = 1, ε = 0

5: while |ε̄− ε|> δ do
6: Let ε = (ε̄+ ε)/2

7: Generate a reduced PCTMC P̂ with reduction threshold ε using Algorithm 5.1

8: Compute the first moments of (x̂t1 , x̂t2, . . . , x̂tn) through moment-closure approx-

imation of P̂
9: Compute ErrorP̂

10: if ErrorP̂ > θ then
11: Let ε̄ = ε

12: else if θ−∆θ≤ ErrorP̂ ≤ θ then
13: return P̂
14: else if ErrorP̂ < θ−∆θ then
15: Let ε = ε

16: end if
17: end while
18: if ε > 0 then
19: Generate a reduced PCTMC P̂ with reduction threshold ε using Algorithm 5.1

20: return P̂
21: else
22: return P
23: end if



5.5. Evaluation 75

Figure 5.2: The proportional reduction of simulation time, number of transitions with

different acceptable error thresholds in the experiments on the bike-sharing example

transitions as well as the simulation time even with a small error threshold. With larger

error threshold, more transitions are removed and more simulation time is reduced.

The overhead costs of our reduction algorithm in all the experiments are between 2.68

to 3.85 minutes, which are approximately the time cost of 9 to 14 simulation runs

of a full PCTMC for the bike-sharing model. This means the overhead costs of our

reduction algorithm is insignificant if a large number of simulation runs is required.

Furthermore, in order to measure the error caused by reduction, we evenly sample

the mean value of target populations at 200 time points along each simulation. The

error on a target population xt at a time point i can be quantified by:

Errort,i =
| x f

t,i − xr
t,i |

x f
t,i

where xr
t,i and x f

t,i are the average value of target population xt at time point i in the 500

simulation runs with and without reduction. If we treat each Errort,i where t ∈ {t1, t2},
i ∈ (1,2, . . . ,200) as an error sample, then the average error caused by the reduction

algorithm in our experiments can be measured by:

Errort1,...,tn =
∑

200
i=1(Errort1,i + . . .+Errortn,i)

n×200
(5.8)

where n = 2 and xt1 , xt2 are the number of available bikes in the two chosen stations

in this case. Table 5.1 gives the average error with 99% confidence interval caused by



76 Chapter 5. The Speed-up of Stochastic Simulation of PCTMCs

Value of θ % 2.5 5 7.5 10 12.5 15

Mean Error % 0.66±0.14 0.89±0.17 1.02±0.18 3.4±0.66 8.7±1.69 10.9±2.44

Table 5.1: The average error (with 99% confidence interval) caused by reduction with

different acceptable error thresholds in the experiments on the bike-sharing example.

reduction with different acceptable error thresholds. It can be seen the error caused by

our reduction algorithm is well controlled since 99% of the error samples caused by

our reduction algorithm are below the acceptable error threshold which we assign to

the target populations.

5.5.2 Experiments on the Smart Taxi Example

The next example we consider is a PCTMC for the smart taxi scenario. Specifically, we

model a system which consists of a number of taxis and users in a city that is divided

to N regions in a grid topology. The users arrive in different regions at different rates.

After arrival, a user makes a call for a taxi and then waits in that region until they are

successfully taken by a taxi and move to another randomly chosen region. Unengaged

taxis move about the city voluntarily or influenced by the calls made by users. For

readability, the transitions of the PCTMC are given in the chemical reaction style as

follows:

/0−→ User{` : i, dest : j, state : call} at λi · pi
j ∀i, j ∈ N (5.9)

User{` : i, dest : j, state : call}+Taxi{` : k,state : unengaged} −→

User{` : i, dest : j, state : wait}+Taxi{` : k, pickup : i,state : engaged}

at α
k
i ·min

(
#(User{` : i, dest : j, state : call}),#(Taxi{` : k,state : unengaged})

)
∀i, j,k ∈ N∧dist(i,k)< r (5.10)

User{` : i, dest : j, state : wait}+Taxi{` : k, pickup : i,state : engaged} −→

Taxi{` : i, dest : j,state : occupied}

at β
k
i ·#(Taxi{` : k, pickup : i,state : engaged}) ∀i, j,k ∈ N (5.11)



5.5. Evaluation 77

Taxi{` : i, dest : j,state : occupied} −→ Taxi{` : j,state : unengaged}

at γ
i
j ·#(Taxi{` : i,dest : j,state : occupied}) ∀i, j ∈ N (5.12)

Taxi{` : i,state : unengaged} −→ Taxi{` : j,state : unengaged}

at µi
j ·#(Taxi{` : i,state : unengaged}) ∀i, j ∈ N∧ j ∈ nearby(i) (5.13)

in which (5.9) represents a user arriving at Region i and calling for a taxi to Region j,

where λi is the arrival rate of users in Region i, pi
j is the probability that the destination

is Region j if a user calls for a taxi in Region i; (5.10) represents an unengaged taxi

in Region k accepting a call from region i (the distance between Region k and Region

i must be less than r), where αk
i ·min

(
#(User{` : i, dest : j, state : call}),#(Taxi{` :

k,state : unengaged})
)

is the rate at which a taxi in Region k responds to a call in

region i if there are currently #(User{` : i, dest : j, state : call}) users calling for a

taxi from Region i to Region j, and #(Taxi{` : k,state : unengaged}) unengaged taxis

in Region k; (5.11) represents a user being picked up by a taxi, where 1/βk
i is the

expected time to pick up a user in Region i starting from Region k; (5.12) represents

the taxi finishing its service from Region i to Region j, where 1/γ i
j is the expected time

for a journey from Region i to Region j; (5.13) represents an unengaged taxi moving

to a nearby region voluntarily.

In the experiments, we set N = 25, and the city is divided into a 5× 5 grid. Fur-

thermore, we set r = 1 which means only taxis currently in the same region or adjacent

regions can accept user calls from that region. 1000 taxis are randomly distributed

across the city initially in the simulation. The arrival rates of users in all the regions

are set to a value between 10 to 40. All other parameters are set to a value between

0 to 1. Moreover, we choose all the users in the call state in one region as our target

populations in each experiment. In each experiment, we simulate the model with and

without our reduction algorithm, both for 1000 runs. The end time of each simulation

run is te = 100. Figure 5.3 shows the average proportional reduction of simulation time

and transitions with different acceptable error thresholds in the experiments. Table 5.2

gives the associated mean error with 99% confidence interval caused by reduction with

different acceptable error thresholds according to the same evaluation standard as was

used in the bike-sharing example. The overhead costs of our reduction algorithm in

this case are between 4.12 to 5.85 minutes, which are approximately the time cost of

10 to 15 simulation runs of the full PCTMC.

We can see that our algorithm even achieves a larger reduction on transitions and

simulation time in this case, and the error caused by our reduction is still well con-



78 Chapter 5. The Speed-up of Stochastic Simulation of PCTMCs

Figure 5.3: The proportional reduction of simulation time, number of transitions with

different acceptable error thresholds in the experiments on the smart taxi example.

Value of θ % 2.5 5 7.5 10 12.5 15

Mean Error % 0.38±0.1 3.82±1.0 5.24±1.4 5.70±1.7 6.31±1.8 6.55±1.8

Table 5.2: The average error (with 99% confidence interval) caused by reduction with

different acceptable error thresholds in the experiments on the smart taxi example.

trolled. Moreover, in both cases, with the increase of acceptance error threshold θ, we

can observe that the proportional increase of reduced simulation time almost overlaps

with the increase of reduced transitions, this also reflects that the cost of our reduction

algorithm is almost negligible compared with the total simulation cost.

5.6 Summary

In this chapter, we have proposed an automatic model reduction algorithm which can

significantly accelerate stochastic simulation of PCTMCs assuming that only the dy-

namics of a few target populations are required to be checked. The algorithm involves

the following key steps:

• generating model reduction proposals by constructing the directed coupling graph

for the PCTMC, and computing the coupling coefficients between the transitions

and the target populations,



5.6. Summary 79

• efficiently evaluating the error caused by reduction proposals by moment-closure

approximation of the PCTMC before and after reduction,

• obtaining the optimal reduction proposal which satisfies the acceptable error

threshold by a binary search algorithm.

We demonstrated the usefulness of our algorithm by applying it to the stochastic sim-

ulation of two PCTMC models in the smart transport area. The result shows that

the algorithm can achieve significant acceleration of stochastic simulation even with a

small acceptable error threshold on the target populations. Lastly, although our algo-

rithm is particularly useful for PCTMCs for CAS, we expect other general PCTMCs

can also benefit from our algorithm as long as there are loosely coupled populations

and transitions in them.





Chapter 6

Moment-based Availability Prediction

for Bike-sharing Systems

In the previous chapters, an abstract bike-sharing model has been used as an exam-

ple to illustrate our techniques for the modelling and analysis of CAS. By assuming

the perfect knowledge of parameters, the model can provide us the chance to investi-

gate all aspects of the behaviour of the system before it is actually put into operation.

In this chapter, we will present a more realistic model to study bike-sharing systems

from a data-driven prospective. Specifically, we will study the problem of future bike

availability prediction of bike stations using a time-inhomogeneous PCTMC whose

parameters are fitted using historical data. For the purpose of real time prediction,

instead of computing the probability distribution of the number of available bikes in

a station through stochastic simulation which is computationally expensive, we will

derive the moments of the number of available bikes at a future time point by deter-

ministic moment analysis. Then, the underlying probability distribution of the avail-

able number of bikes is reconstructed through the maximum entropy approach based

on the derived moments. As a case study chapter, several model reduction techniques

introduced in the earlier chapters are successfully applied to speed up the prediction

process. Our model is parametrized using historical data from Santander Cycles1, the

bike-sharing system in London. In our experiments, we show that our model outper-

forms the time-inhomogeneous Markov queueing model on several performance met-

rics for bike availability prediction. This chapter is an extended version of the work

published in a paper in QEST 2016 [Feng et al., 2016b].

1https://tfl.gov.uk/info-for/open-data-users/our-feeds?intcmp=3671#
on-this-page-4

81

https://tfl.gov.uk/info-for/open-data-users/our-feeds?intcmp=3671#on-this-page-4
https://tfl.gov.uk/info-for/open-data-users/our-feeds?intcmp=3671#on-this-page-4


82 Chapter 6. Moment-based Availability Prediction for Bike-sharing Systems

6.1 Introduction

In recent years, we have seen significant growth of bike-sharing programs all over

the world [Fishman, 2016]. Public bike-sharing systems have been launched in many

major cities such as London, Paris, and Vienna. Indeed, they have become an impor-

tant part of urban transportation which provides improved connectivity to other modes

of public transit. The concept of bike-sharing systems is rather simple: the system

consists of a number of bike stations distributed over a geographic area (city). Each

station is equipped with a limited number of bike slots in which public bikes can be

parked. When users arrive at a station, they pick up a bike, use it for a while, and

then return it to another station of their choice. With the increasing popularity of the

smart transport theme, there has been great interest from the research community in

the intelligent management of bike-sharing systems. Topics include, but are not limited

to, policy design [Lin and Yang, 2011, Pfrommer et al., 2014], intelligent bike redistri-

bution [Nair and Miller-Hooks, 2011, Contardo et al., 2012, Schuijbroek et al., 2013],

and user journey planning [Yoon et al., 2012, Gast et al., 2015]. The focus of this chap-

ter is on the probabilistic prediction of the number of available bikes in stations. Hav-

ing a predictive model is of vital interest to both the user and the system administrator.

The user can use it to identify likely origin/destination stations for which a trip can be

successfully made. System administrators can use the model to undertake service level

agreement checking, and plan bike redistribution for stations which are likely to break

the service level requirement.

Specifically, in this chapter we present a novel moment-based prediction model

that can provide probabilistic forecasts for the number of available bikes in a bike sta-

tion. Since the modelling scenario for this case study is rather straightforward, we

will directly use PCTMC as our modelling tool instead of PALOMA. Specifically,

by representing the bike-sharing system as a PCTMC with time-dependent rates, our

model is explanatory as the dynamics of the system are explicitly given. Gast et al.

[Gast et al., 2015] show the benefits of predicting (forecasting) the entire probability

distributions of possible bike availabilities in a station, compared with previous mod-

els that were only able to produce point estimates, often using time-series-based tech-

niques [Froehlich et al., 2009, Kaltenbrunner et al., 2010, Yoon et al., 2012]. However,

unlike [Gast et al., 2015], in which all the considered forecasting methods worked at

the level of isolated stations, our model also captures the journey dynamics between

stations. Guenther and Bradley [Guenther and Bradley, 2013] also provide a PCTMC



6.2. PCTMC with Time-dependent Rates 83

model with time-dependent rates for bike availability prediction, however there are

several key differences between that model and ours. Firstly, our model provides the

full probability distribution of the number of available bikes in a station which is much

more informative from bike users’ perspective than their model which only provides

a point estimate (e.g., it is more likely that the users want to know the probability of

a station being full or empty in a future time point instead of the expected number of

bikes or slots in that station). Secondly, we use a model reduction method to prune our

PCTMC such that the significant journey dynamics with respect to the target station

are guaranteed to be preserved. However, their model aggregates stations which are

spatially close, assuming that they have similar journey durations to the target station,

which causes the information about the emptiness and fullness of stations to be lost.

We summarize the contribution of this chapter as follows. Firstly, as a real case

study for the modelling of CAS, a novel PCTMC model with time-dependent rates is

presented to successfully capture the bike-sharing scenario from a data-driven prospec-

tive. Secondly, we show that several model reduction methods introduced in earlier

chapters can be successfully applied to speed up the deterministic moment analysis

of the PCTMC. Finally, we reconstruct the underlying probability distribution of the

number of available bikes in the target station using the maximum entropy princi-

ple based on a few moments generated from deterministic moment analysis of the

PCTMC, and show that the model has better performance on a set of metrics for bike

availability prediction compared with the Markov single-station queueing model.

The rest of this chapter is structured as follows. We briefly introduce the concepts

of PCTMC with time-dependent rates in the next section. Section 6.3 gives the intro-

duction of the Markov queueing model for bike availability prediction. In Section 6.4,

we present our PCTMC model for the bike-sharing scenario. In the next section we

show how to reconstruct the probability distribution of the number of available bikes

using the maximum entropy approach. Section 6.6 presents the experimental results

of our model on the London bike-sharing system compared with the Markov queueing

model. Finally, Section 6.7 draws conclusions and discusses possible extensions of our

model.

6.2 PCTMC with Time-dependent Rates

While PCTMCs can be used to model many CAS, it would be rather inaccurate to de-

scribe the bike-sharing system using a PCTMC exactly as introduced in Section 3.4.1,



84 Chapter 6. Moment-based Availability Prediction for Bike-sharing Systems

since many parameters, such as pickup rates and destinations of bikes, vary with time.

Hence, we present an extension to the PCTMC, in which we allow deterministic rate

changes that occur at specific time points. This implies that any transition rate rτ(X) is

now time dependent, i.e. rτ(X, t), where:

rτ(X, t) =



rτ(X, t1) if Xi ≥ Ni ∀i = 1,2, . . . ,n∧ t < t1

rτ(X, t2) if Xi ≥ Ni ∀i = 1,2, . . . ,n∧ t1 ≤ t < t2

. . .

rτ(X, tm) if Xi ≥ Ni ∀i = 1,2, . . . ,n∧ tm−1 ≤ t < tm

0 otherwise.

(6.1)

in which t1, t2, ..., tm are deterministic time points at which transition rate changes oc-

cur. Furthermore, with time-dependent rates, the evolution of the moments of the

underlying population-level stochastic process of a PCTMC becomes a hybrid model,

in which discrete jumps of rates at some specific points of the numerical simulation of

the moment ODEs are also allowed:

d
dt
E[M(X(t))] = ∑

τ∈T
E[(M(X(t)+dτ)−M(X(t)))rτ(X, t)] (6.2)

Numerical simulation of the derived moment ODEs might be slower for PCTMCs with

time-dependent rates since discrete jumps of rates may increase the stiffness of the

ODEs. However, analysing the model by solving the ODEs should be still much more

efficient than stochastic simulation. The above equations will be used to derive moment

ODEs for the PCTMCs for bike availability prediction in this chapter. Moreover, since

there is no non-linear transition rates for the PCTMCs in this chapter, the derived

moment ODEs can be directly solved without moment-closure approximation.

6.3 Markov Queueing Model

Before introducing our PCTMC model, we first give the Markov queueing model for

bike stations which is going to serve as our comparator.

The most straightforward way to evaluate the behaviour of a station is to analyse it

in isolation. In this case, a station can be modelled as a time-inhomogeneous Markov

queue M/M/1/ki, illustrated in Figure 6.1.



6.3. Markov Queueing Model 85

0 1 2 . . . ki

λi(t)

µi(t)

λi(t)

µi(t)

λi(t)

µi(t)

λi(t)

µi(t)

Figure 6.1: The time-inhomogeneous Markov queue for station i

Specifically, ki denotes the capacity of a station i, λi(t) and µi(t) are the time-

dependent bike arrival and pickup rates of station i at time t of a day. Usually, the

time of a day is split into n even slots, [t0, t1), [t1, t2), . . . , [tn−1, tn). Then, both λi(t) and

µi(t) can be estimated based on |D| days of observation (all days in D should be either

weekdays or weekends since bike usage patterns are rather different during those days

(cf. Figure 6.2)), for t j−1 < t < t j:

λi(t) =
∑d∈D No. of bike arrivals at station i in (t j−1, t j) on day d

∑d∈D time length in (t j−1, t j) on day d during which station i is not full

µi(t) =
∑d∈D No. of bike pickups at station i in (t j−1, t j) on day d

∑d∈D time length in (t j−1, t j) on day d during which station i is not empty

Furthermore, using the transition rate matrix for station i: Q i(t), where

Q i(t) =



−µi(t) µi(t)

λi(t) −
(
µi(t)+λi(t)

)
µi(t)

. . . . . . . . .

λi(t) −
(
µi(t)+λi(t)

)
µi(t)

λi(t) −λi(t)


,

we can predict the probability that there are y bikes in station i at time t +h given the

station has x bikes at time t, by the following equation:

Pr(y | x, t,h) = exp
(∫ h

0
Q i(t + s)ds

)
x,y

where exp(M)x,y is the element at row x and column y of the matrix exponential

of M. Such a model has been used to make bike availability or station inven-

tory level predictions in several papers in the literature (e.g. [Schuijbroek et al., 2013,

Raviv and Kolka, 2013, Gast et al., 2015]).



86 Chapter 6. Moment-based Availability Prediction for Bike-sharing Systems

Figure 6.2: The number of bikes in use in 20 minute slots from 06:00 to 22:00 in San-

tander Cycles, London during weekdays and weekends.

Two assumptions are made in this model. First, the bike arrivals and pickups at

stations form Poisson processes. Second, the state of a particular station does not

depend on the state of the others. The first assumption is successfully validated for

busy stations in [Gast et al., 2015], using historical data from the Velib bike-sharing

system in Paris. However, we conjecture that the second assumption is generally not

true in practice. For example, when a station is empty, no bikes can depart from it,

therefore the arrival rate at other stations should be reduced. Hence, we seek a more

realistic model, which captures the journey dynamics between stations.

6.4 PCTMC of Bike-sharing Model

6.4.1 A Naive PCTMC Model

To faithfully represent the journey dynamics between bike stations in a bike-sharing

system with N stations, we first propose a naive PCTMC model which contains the



6.4. PCTMC of Bike-sharing Model 87

following transitions:

Bikei −→ Sloti + Journeyi
j@P1 at µi(t)pi

j(t) ∀i, j ∈ (1,N)

Journeyi
j@Pl −→ Journeyi

j@Pl+1 at (Pi
j/di

j)#(Journeyi
j@Pl)

l ≥ 1∧ l < Pi
j , ∀i, j ∈ (1,N)

Journeyi
j@PPi

j
+Slot j −→ Bike j at (Pi

j/di
j)#(Journeyi

j@PPi
j
) ∀i, j ∈ (1,N)

where Bikei, Sloti represent a bike and a slot agent in station i respectively; Journeyi
j@Pl

represents a bike agent which is currently on a journey from station i to station j at

phase l. Note that since journey durations are generally not exponentially distributed,

we fit the journey duration from station i to station j as a phase-type distribution with

Pi
j identical phases each with rate Pi

j/di
j, where di

j is the mean journey duration. µi(t)

is the fitted bike pickup rate governed by an exponential distribution in station i at time

t, pi
j is the probability that a journey will end at station j given that it started from

station i at time t. #(S) denotes the population of an agent type S.

Obviously, the above model is not scalable. Since the total number of bike stations

N is usually very large (for example there are around 750 bike stations in London),

it is computationally infeasible to analyse a model which captures the full set of bike

stations. Fortunately, since we are only interested in the prediction of bike availabil-

ity of a single target station at a time, we only need to model stations which have a

significant contribution to the journey flows to the target station (knowing the state of

a station which has a very small contribution to the journey flows to the target station

will have negligible impact on the accuracy of bike availability prediction for the target

station). Thus, a directed contribution graph together with a contribution propagation

method which is similar to the reduction method introduced in the previous chapter is

proposed to automatically identify the set of stations which need to be modelled with

respect to a given target station for bike availability prediction.

6.4.2 Directed Contribution Graph with Contribution Propagation

Here, we show how to derive a set of bike stations Θ(v) in which all stations have a

significant contribution to the journey flows to a given target station v∈ (1,2, . . . ,N) for

bike availability prediction. Concretely, we first need a way to quantify the contribution

of one station to the journey flows to another station. Specifically, we let Ci j denote

the contribution coefficient of station j to station i which quantifies the contribution of

station j to the journey flows to station i.



88 Chapter 6. Moment-based Availability Prediction for Bike-sharing Systems

One station can contribute to the journey flows to another station both directly and

indirectly. The definition of a direct contribution coefficient at time t is given by the

following simple formula:

ci j(t) = λ
j
i (t)/λi(t)

in which λ
j
i (t) represents the bike arrival rate from station j to station i at time t and

λi(t) = ∑ j λ
j
i (t). Then, it is clear that ci j(t) ∈ [0,1], 0≤ ∑ j 6=i ci j(t)≤ 1.

With the definition of directed contribution coefficient, we can construct a directed

contribution graph for the bike-sharing system at each time slot of a day. The definition

of the directed contribution graph is given as follows (for convenience, we abbreviate

ci j(t) to ci j):

Definition 4. For an arbitrary time t, the directed contribution graph for a bike-

sharing system at time t is a graph in which nodes represent the stations in the system,

and there is a weighted directed edge from node i to node j if ci j > 0, and in this case

the weight of the edge is ci j. Thus, the direction of edges is the inverse of contribution

flows.

Figure 6.3 shows a sample directed contribution graph which consists of six bike

stations only for illustration purpose (in a real case, the graph will be more connected).

i

n

k

l

m

j

cin = 0.2

cik = 0.7

cnl = 0.5

clk = 0.3

ckm = 0.8

cl j = 0.6

cm j = 0.9

Figure 6.3: An example directed contribution graph with six stations

For those stations which are not directly connected in the directed relation graph,

by using a contribution propagation method, we can evaluate the indirect contribution

coefficient of one station on the journey flows to another station. Specifically, the in-

direct contribution coefficient is quantified by a path dependent coefficient ci j,γ, which



6.4. PCTMC of Bike-sharing Model 89

is the product of the direct contribution coefficients along an acyclic path γ from node

i to node j. Then, the contribution coefficient of station j to station i is characterized

by the maximum of the path dependent coefficients:

ci j,γ = ∏
kl∈γ

ckl

Ci j =


max

all paths γ

ci j,γ if there exists a path from node i to node j

0, otherwise

For example, according to Figure 6.3, the contribution coefficient of station j to station

i is Ci j = cik× ckm× cm j = 0.504, since cik× ckm× cm j > cin× cnl× cl j > cin× cnl×
clk× ckm× cm j.

With the contribution coefficient, given a target station v, then for i ∈ (1,2, . . . ,N),

we can infer:

i ∈Θ(v) if Cvi > θ

i /∈Θ(v) if Cvi ≤ θ

where θ ∈ (0,1) is threshold value which can be used to control the extent of model

reduction. A point to note is that we choose to characterize contribution coefficients by

the maximum instead of the sum of path dependent coefficients because we only want

to model stations which have at least a significant (direct or indirect) journey flow to

the target station. To model stations which have many small journey flows to the target

station is costly but the impact is rather unpredictable. Moreover, the maximum of path

dependent coefficients has another nice property that if i∈Θ(v) and Cvi = cvi,γ, then for

a station j which is on the path γ, it is certain that Cv j > θ, thus j ∈Θ(v). As a result, for

all stations which have a significant journey flow to the target station, that journey flow

will certainly be captured in the resulting reduced PCTMC. However, this property

will not be preserved if we use the sum of path dependent coefficients. For example in

Figure 6.3, if we set θ = 0.55 and use the sum instead of the product of path dependent

coefficients to characterise contribution coefficients, we get Ci j = ∑γ ci j,γ > 0.55, thus

station j is included in the reduced PCTMC. However, since ∑γ cil,γ < 0.55, station

l will not be included in the reduced PCTMC. As a result, ∑γ ci j,γ > 0.55 will not

actually be satisfied in the reduced PCTMC after station l is excluded.

As an illustration of the extent of model reduction, Figure 6.4 shows the empiri-

cal cumulative distribution function of contribution coefficients during all time slots

between any two bike stations in Santander Cycles (which is computed by historical



90 Chapter 6. Moment-based Availability Prediction for Bike-sharing Systems

Figure 6.4: The empirical cumulative distribution function of contribution coefficients (x

is the value of contribution coefficients)

journey data with 20 minutes slot duration). It can be seen that more than 96% of the

computed contribution coefficients are smaller than 0.01. This means that on average

more than 96% stations can be excluded even if θ is set to a small value 0.01 for the

PCTMC of a random station in Santander Cycles.

6.4.3 The Reduced PCTMC Model

Given a target station v and current time t, suppose we are interested in the number of

bikes at the station at time t +h, then let s = (s1,s2, . . . ,sn) be the minimal set of time

slots which cover [t, t + h], we obtain Θ(v) = Θ(v,s1)∪Θ(v,s2)∪ . . .∪Θ(v,sn)∪ v,

where Θ(v,si) is the set of bike stations which have significant contribution to the

journey flows to the target station within time slot si.

Therefore, the PCTMC for the prediction of bike availability at station v at time



6.4. PCTMC of Bike-sharing Model 91

t +h can be represented as follows:

Bikei −→ Sloti at µi(t)
(

1− ∑
j/∈Θ(v)∨c ji≤θ

pi
j(t)
)

∀i ∈Θ(v) (6.3)

Sloti −→ Bikei at ∑
j/∈Θ(v)∨ci j≤θ

λ
j
i (t) ∀i ∈Θ(v) (6.4)

Bikei −→ Sloti + Journeyi
j@P1 at µi(t)pi

j(t) ∀i, j ∈Θ(v)∧ c ji > θ (6.5)

Journeyi
j@Pl −→ Journeyi

j@Pl+1 at (Pi
j/di

j)#(Journeyi
j@Pl)

l ≥ 1∧ l < Pi
j,∀i, j ∈Θ(v)∧ c ji > θ (6.6)

Slot j + Journeyi
j@PPi

j
−→ Bike j at (Pi

j/di
j)#(Journeyi

j@PPi
j
)

∀i, j ∈Θ(v)∧ c ji > θ (6.7)

Journeyi
j@PPi

j
−→∅ at 1

(
Slot j(t) = 0

)
(Pi

j/di
j)#(Journeyi

j@PPi
j
)

∀i, j ∈Θ(v)∧ c ji > θ (6.8)

where (6.3) represents a bike in station i is picked for a journey to a station outside

Θ(v) or a station to which the journey flow is negligible (the direct contribution coef-

ficient c ji ≤ θ indicates that journey flow from i to j must not be a significant journey

flow); (6.4) represents a bike is returned to station i from a station outside Θ(v) or a

station from which the journey flow is negligible; (6.5) represents a bike in station i is

picked for a journey to a station j inside Θ(v) and the journey flow is significant; (6.6),

(6.7) represent progress and completion of the journey, respectively; (6.8) assumes a

bike in transit from station i to station j will be returned to another station outside Θ(v)

when there is no empty slot in station j, where 1(Slot j(t) = 0) is an indicator function

which returns 1 when the number of empty slots at station j at time t is zero, otherwise

returns 0.

6.4.3.1 Dealing with Indicator Function

Since we are going to numerically solve the PCTMC using moment ODEs as illus-

trated in Equation 6.2, we can only access the moments of the number of empty slots

at a station i at time t, denoted as um
i , during numerical simulation (here we let um

i de-

note E[
(
Sloti(t)

)m
], where m is the order of the moment), whereas the number of empty

slots at station i at time t is a random variable. Thus, we propose a method to approxi-

mate the indicator function 1(Sloti(t) = 0) by a function of the moments of the number

of empty slots and the capacity of the station: 1(Sloti(t) = 0) ∼ f (u1
i ,u

2
i , . . . ,u

m
i ,ki).

Concretely, given the first m moments of the random variable Sloti(t), and the value do-

main Sloti(t)∈ [0,1, . . . ,ki], we can approximate the probability distribution of Sloti(t)



92 Chapter 6. Moment-based Availability Prediction for Bike-sharing Systems

by a discrete distribution with finite support ki. For example, if we only know the

first moment of Sloti(t) (which is u1
i ), we can fit a binomial distribution Sloti(t) ∼

Binomial(ki,u1
i /ki) to the probability distribution of Sloti(t). In this case, we get

P(Sloti(t)= 0)= (1−u1
i /ki)

ki . Furthermore, if we know the first two moments (u1
i ,u

2
i ),

then we can fit a beta-binomial distribution Sloti(t)∼ BetaBinomial(ki,α,β), where

α =
u1

i u2
i − ki(u1

i )
2

ki(u1
i )

2 + kiu1
i − kiu2

i − (u1
i )

2
β =

(ki−u1
i )(kiu1

i −u2
i )

ki(u1
i )

2 + kiu1
i − kiu2

i − (u1
i )

2

Thus, we get

P(Sloti(t) = 0) =
B(α,ki +β)

B(α,β)
where B(a,b) is a beta function. Theoretically, with knowledge of more moments of

Sloti(t), the estimation of P(Sloti(t) = 0) will be more accurate. Finally, we let

1(Sloti(t) = 0) =

1 if P(Sloti(t) = 0)> p

0 if P(Sloti(t) = 0)≤ p

where P(Sloti(t) = 0) = f (u1
i ,u

2
i , . . . ,u

m
i ,ki), p is a threshold value above which we

believe the number of available slots in station i is zero. In general, p should be set to

a value close to 1 in order to make sure the station is only treated as full when there

is no available slot with a high confidence. In our later experiments, we explicitly set

p = 0.9.

6.4.3.2 Specifying the initial state

Given a snapshot of the bike-sharing system at a time instant t which contains the

following information2:

Bikei(t), . . . ,Sloti(t), . . . ,Journeyi(t,∆t), . . .

where Bikei(t) and Sloti(t) are the current number of available bikes and empty slots

at a station i; Journeyi(t,∆t) represents there is a bike currently en route from station i,

and the journey started at time t−∆t. Then, for each Journeyi(t,∆t), we use a random

number to determine the destination of the journey, and the time ∆t to determine the

appropriate phase of the journey time. Thus we generate a random number α uniformly

distributed in (0,1), and let pi
k(t−∆t),∀k be the probability that the journey will end

at station k given that the journey started from station i at time t−∆t. Then

Journeyi(t,∆t) = Journeyi
j(t,∆t) if α≥

j−1

∑
k=0

pi
k(t−∆t) ∧ α <

j

∑
k=0

pi
k(t−∆t).

2This information is actually recorded for the London bike-sharing system



6.5. Reconstructing the Probability Distribution Using the Maximum Entropy Approach93

Furthermore, we let

Journeyi
j(t,∆t) = Journeyi

j@Pl if ∆t ≥ (l−1)di
j/Pi

j ∧ ∆t < l×di
j/Pi

j,

where l ≤ Pi
j. Otherwise, if l > Pi

j, we let Journeyi
j(t,∆t) = Journeyi

j@PPi
j
.

6.4.3.3 Solving the moment ODEs

We derive the moment ODEs following Equation 6.2 for the above PCTMC for the

first m order of moments. Furthermore, using the moment ODE reduction method in

Section 4.2, we can make a further reduction to the size of the moment ODEs by uti-

lizing the neighbourhood relation between population variables in the above PCTMC.

Specifically, we set reduction threshold d = 1 which means all population variables

which are not directly involved in any transition will be treated as independent of each

other. The derived moment ODEs can be solved by numerical simulation using stan-

dard methods.

6.5 Reconstructing the Probability Distribution Using

the Maximum Entropy Approach

From the moment analysis of the PCTMC for the bike-sharing model, we gain the first

m moments of the number of available bikes in the target station at the prediction time

t +h, i.e.
((

Bikev(t +h)
)1
,
(
Bikev(t +h)

)2
, . . . ,

(
Bikev(t +h)

)m
)

, which we denote as

(u1,u2, . . . ,um) in the following. Our goal is to predict the probability that the sta-

tion has a specific number of bikes at time t +h. This means the problem is to reveal

P
(
Bikev(t + h) = i | u1,u2, . . . ,um,kv

)
, where i ∈ (1,2, . . . ,kv). Therefore, we need to

reconstruct the entire probability distribution of the random variable Bikev(t+h) based

on its first m moments. The corresponding distribution is generally not uniquely de-

termined. Hence, to select a particular distribution, we apply the maximum entropy

principle to minimize the amount of bias in the reconstruction process. In this way,

we assume the least amount of prior information about the true distribution. Note that

the maximum entropy approach has been successfully applied to reconstruct distribu-

tions based on moments in many areas, e.g. physics [Mead and Papanicolaou, 1984],

stochastic chemical kinetics [Andreychenko et al., 2015], and performance analysis

[Tari et al., 2005].



94 Chapter 6. Moment-based Availability Prediction for Bike-sharing Systems

6.5.1 Reconstruction Algorithm

Let Xv denote Bikev(t + h) for convenience, G be the set of all possible probability

distributions for Xv. Then, based on the maximum entropy principle, the goal is to

select a distribution g to maximize the entropy H(g) over all distributions in G . The

problem can be denoted as follows:

argmax
g∈G

H(g) = argmax
g∈G

(
−

kv

∑
x=0

g(x) lng(x)
)

Furthermore, given (u1,u2, . . . ,um), we know the following constraints should be sat-

isfied:
kv

∑
x=0

xng(x) = un, n = 0,1, . . . ,m

where u0 = 1 to ensure that g is a probability distribution. Now, the problem becomes

a constrained optimization program. Thus to perform the constrained maximization of

the entropy, we introduce one Lagrange multiplier λn per moment constraint. We thus

seek extrema of the Lagrangian functional:

L(g,λ) =−
kv

∑
x=0

g(x) lng(x)−
m

∑
n=0

λn
( kv

∑
x=0

xng(x)−un)
Functional variation with respect to the unknown distribution function g(x) yields:

∂L
∂g(x)

= 0 =⇒ g(x) = exp

(
−1−λ0−

m

∑
n=1

λnxn

)

Since u0 = 1, we get

kv

∑
x=0

exp

(
−1−λ0−

m

∑
n=1

λnxn

)
= 1.

Thus we can express λ0 in terms of the remaining Lagrange multipliers

e1+λ0 =
kv

∑
x=0

exp

(
−

m

∑
n=1

λnxn

)
≡ Z

Then, the general form of g(x) can be given as follows:

g(x) =
1
Z

exp

(
−

m

∑
n=1

λnxn

)
Inserting the preceding equation into the Lagrangian, we can then transform the prob-

lem into an unconstrained minimization problem of the following function with respect

to variables λ1,λ2, . . . ,λn:



6.6. Experiments 95

Γ(λ1,λ2, . . . ,λn) = lnZ +
m

∑
n=1

λnun

The convexity of the function Γ is proved in [Mead and Papanicolaou, 1984], which

guarantees the existence of a unique solution. Thus, a close approximation

(λ∗1,λ
∗
2, . . . ,λ

∗
n) of the true solution can be obtained by the classic gradient descent

approach [Snyman, 2005]. After finding (λ∗1,λ
∗
2, . . . ,λ

∗
n) through gradient descent, we

can finally predict

P
(
Xv = x

)
=

exp

(
−∑

m
n=1 λ∗nxn

)

∑
kv
i=0 exp

(
−∑

m
n=1 λ∗nin

) , ∀x ∈ (1,2, . . . ,kv)

6.6 Experiments

In this section, we test the time cost and accuracy of our prediction model in different

cases and compare the accuracy of our model with the Markov queueing model. We

use the historic journey data and bike availability data from January 2015 to March

2015 from the London Santander Cycles Hire scheme to train our PCTMC model as

well as the Markov queueing model, and the data in April 2015 to test their prediction

accuracy. As in [Guenther and Bradley, 2013], we fit the number of journey phases

between stations using the HyperStar tool [Reinecke et al., 2012] command line inter-

face. Specifically, we set the maximum value of Pi
j to 20 to make our model compact

and also to avoid overfitting. Moreover, for parameter estimation, we split a day into

slots of 20 minute duration. In our experiments, given the bike availability in a station

at time t, we predict the probability distribution of the number of available bikes in

that station at time t +h, where h is set to 10 minutes for short range prediction and 40

minutes for long range prediction.

The evaluation of our model is twofold. The first is accuracy, the second is effi-

ciency. These two aspects are both influenced by the value of two important param-

eters, namely m, the highest order of moments being derived, and θ, the coefficient

threshold for the identification of bike stations which have significant contribution to

the journey flow to the target station. For higher values of m, the solution cost of

our model becomes larger since more moment ODEs are derived, however the model

should become more accurate due to more constraints in the probability distribution

reconstruction based on the maximum entropy principle. For higher values of θ, more



96 Chapter 6. Moment-based Availability Prediction for Bike-sharing Systems

10min 40min

Markov queueing model 1.52 3.03

PCTMC with θ = 0.03 1.49 2.81 m = 1,2,3

PCTMC with θ = 0.02 1.49 2.81 m = 1,2,3

PCTMC with θ = 0.01 1.48 2.79 m = 1,2,3

Table 6.1: The calculated RMSE on the prediction of the number of available bikes

stations are excluded in the reduced PCTMC for a target station whereas the model

accuracy can be potentially reduced. Thus, to observe the effects on these two param-

eters, we do experiments with values m = 1,2,3, θ = 0.01,0.02,0.03.

6.6.1 Root Mean Square Error

For prediction accuracy, we first consider the classic criterion based on root mean

square error (RMSE), a commonly used metric for evaluating point predictions (i.e.,

predictions that only state the expected number of bikes). Specifically, given a vector

x of predictions and y of observations, with A the set of prediction/observation pairs,

the RMSE is defined as: √
1
|A|∑i∈A

(xi− yi)2

Table 6.1 compares the RMSE of the prediction results of our PCTMC model with the

Markov queueing model. As can be seen, the PCTMC model outperforms the Markov

queueing model in both prediction ranges. Especially in the long range, a considerable

improvement is observed. For the PCTMC models, smaller values of θ only reduce

the RMSE slightly. This means capturing less significant journey flows will have little

impact on the prediction accuracy. Moreover, we find that the derived highest moments

have almost no impact on the RMSE. This is obvious since the expected number of

available bikes is only decided by the first moment.

6.6.2 Probability of Making a Correct Recommendation

Predicting the expected number of available bikes is important for system administra-

tors when they want to decide how to redistribute bikes in the system. However, a user

is interested in whether there is a bike in the target station when she wants to pick up



6.6. Experiments 97

a bike from there, or whether there is a free slot in the target station when she wants to

return a bike to that station. We are specifically interested in being able to make correct

recommendations for the queries “Will there be a bike?” and “Will there be a slot?”3 to

measure the accuracy of our model. Specifically, for the “Will there be a bike?” query,

we respond “Yes” if the predicted probability of that station having more than one bike

is greater than 0.8, and respond “No” if the predicted probability of that station having

more than one bike is less than 0.8. As is argued in [Gast et al., 2015], the root mean

square error is not an appropriate evaluation metric in this setting. After all, we need

a prediction of the probability of the recommendation being correct rather than just

a point estimate of the number of available bikes/slots. Instead, a suitable evaluation

scheme is proposed in [Gast et al., 2015] that ensures that the best prediction algorithm

can always be expected to obtain the highest score. Such a scheme is called a proper

scoring rule. Specifically, for the “Will there be a bike?” query, the following scoring

rule is proper:

Score =



1 if P(Xv > 0)> 0.8∧ xv > 0

−4 if P(Xv > 0)> 0.8∧ xv = 0

1 if P(Xv > 0)< 0.8∧ xv = 0

−1
4 if P(Xv > 0)< 0.8∧ xv > 0

Note that incorrect predictions need to be penalised by a negative score for the rule

to be proper. The evaluation of recommendations to the “Will there be a slot?” query

follows a similar pattern. Table 6.2 and 6.3 show the experimental results for different

models and parameters. Note that the PCTMC model with m = 1 is excluded since at

least two moments are needed to make a meaningful reconstruction of the probability

distribution. As can be seen from the tables, the PCTMC model clearly has a better

performance in making such recommendations. Moreover, we also observe that with

higher values of m, the average score increases. This is because, with higher values of

m, the reconstructed probability distribution is closer to the true distribution.

6.6.3 Time Cost

The time cost of making a prediction is also important. Table 6.4 shows the time cost

for making a prediction using our PCTMC model with different parameters (we do not

show the time costs for the Markov queueing model since they are negligible due to
3These queries can be readily extended to “Will there be n bikes?” and “Will there be n slots?”



98 Chapter 6. Moment-based Availability Prediction for Bike-sharing Systems

10min 40min

Markov queueing model 0.90±0.05 0.87±0.06

PCTMC with θ = 0.03
0.91±0.04 0.89±0.05 m = 2

0.92±0.04 0.91±0.04 m = 3

PCTMC with θ = 0.02
0.91±0.04 0.89±0.05 m = 2

0.92±0.04 0.91±0.04 m = 3

PCTMC with θ = 0.01
0.92±0.04 0.89±0.05 m = 2

0.93±0.04 0.91±0.04 m = 3

Table 6.2: Average score of making a recommendation to the “Will there be a bike?”

query with 95% confidence interval

its small state space because of independence assumption). For real time application,

we assume that the time cost of making a prediction must be less than one second.

Thus, for point prediction, we recommend to set θ = 0.01,m = 1 for both prediction

ranges. For probability distribution prediction, we recommend to set θ = 0.02,m = 2

for short range prediction, θ = 0.03,m = 2 for long range prediction. Note that we

used an Intel CORE i7 laptop with 8GB RAM to run our experiments, the time cost

could be considerably reduced if a more powerful machine, e.g. a server, were used.

6.7 Conclusions

We have presented a moment-based approach to make predictions of availability in

bike-sharing systems. The moments of the number of available bikes are automatically

derived via a PCTMC with time-inhomogeneous rates, fitted from historical data. The

entire probability distribution is reconstructed using a maximum entropy approach.

Our model is easy to understand since it explicitly captures the dynamics of the bike-

sharing system. We demonstrated that it outperforms the Markov queueing model in

several performance metrics for prediction accuracy. Moreover we have also shown

that by using the directed contribution graph and the moment ODE reduction method,

the model size can be significantly reduced to such an extent that it is suitable for real

time application.

In future work we plan to explore the impact of neighbouring stations, and extend



6.7. Conclusions 99

10min 40min

Markov queueing model 0.91±0.04 0.88±0.05

PCTMC with θ = 0.03
0.91±0.04 0.90±0.05 m = 2

0.92±0.04 0.91±0.04 m = 3

PCTMC with θ = 0.02
0.91±0.04 0.90±0.05 m = 2

0.92±0.04 0.91±0.04 m = 3

PCTMC with θ = 0.01
0.92±0.04 0.91±0.05 m = 2

0.93±0.04 0.92±0.04 m = 3

Table 6.3: Average score of making a recommendation to the “Will there be a slot?”

query with 95% confidence interval

our model to capture their effects. For example, if a station is empty, then the user is

likely to pick up a bike from a neighbouring station, thus increasing the pickup rate at

the neighbouring station. Conversely, if a station is full, then the user is likely to return

a bike to a neighbouring station, increasing the bike arrival rate there. We think another

merit of our PCTMC model is that it can be easily extended to capture such impact by

using the indicator function to check whether a neighbouring station is empty or full

in order to alter the bike arrival and pickup rate of a station. Unfortunately we do not

currently have data to capture the impact of neighbouring stations.



100 Chapter 6. Moment-based Availability Prediction for Bike-sharing Systems

10min 40min

PCTMC with θ = 0.03

1.76±0.2ms 6.98±0.77ms m = 1

103±13.7ms 328±43ms m = 2

2.2±0.2sec 8.9±0.83sec m = 3

PCTMC with θ = 0.02

4.25±0.4ms 15.72±1.42ms m = 1

251±25.5ms 1.1±0.1sec m = 2

8.9±1.2sec 37±3.5sec m = 3

PCTMC with θ = 0.01

13.5±0.9ms 49.1±3.92ms m = 1

8.8±1.1sec 30.1±0.31sec m = 2

33.9±5.4sec 157±17.8sec m = 3

Table 6.4: Time cost to make a prediction with 95% confidence interval



Chapter 7

Conclusions

7.1 Summary

This thesis has explored methods for quantitative modelling and scalable analysis of

CAS. A novel stochastic process algebra, PALOMA, was presented to allowing for in-

tuitively capturing complex dynamic behaviours in CAS using its rather simple gram-

mar. In comparison with other process algebras like PEPA [Hillston, 1996] and Bio-

PEPA [Ciocchetta and Hillston, 2009], PALOMA has the advantages that the space

is explicitly captured, and a richer set of interaction patterns are supported by func-

tional unicast and broadcast communication between entities, which makes PALOMA

a language specifically tailored for modelling CAS. Based on its formal semantics, the

underlying mathematical model, PCTMC, can be automatically derived for an arbi-

trary PALOMA model. The generated PCTMC can be used for quantitative analysis

of the modelled system using both discrete-event stochastic simulation and Ordinary

Differential Equation (ODE)-based fluid approximation.

Fluid approximation, or more specifically moment-closure approximation, which

approximates the evolution of the moments (mean, variance, covariance, skewness,

etc.) of population variables in a PCTMC using a set of coupled ODEs is generally

much more efficient than stochastic simulation for analysing PCTMCs. However, due

to the large system scale and highly heterogeneous nature of CAS, the number of de-

rived ODEs from PALOMA models can easily become too large, which makes them

infeasible to solve using contemporary ODE solvers. In Chapter 4, we proposed a

novel moment-closure approximation method based on the combination of the neigh-

bourhood relation between population variables and the lognormal closure method,

that can be automatically applied to an arbitrary PALOMA model. Several experiments

101



102 Chapter 7. Conclusions

showed that our method can improve the scalability of moment-closure approximation

by significantly reducing the required number of ODEs to describe the evolution of the

moments, but still achieves reasonable accuracy.

Stochastic simulation is costly, but it is also the most informative analysis technique

for PCTMCs. In practice, the inefficiency of stochastic simulation often becomes an

obstacle for many PCMTCs for large-scale systems such as CAS. In Chapter 5, we

proposed a novel model reduction algorithm that can significantly speed up stochastic

simulation of PCTMCs by removing a set of unimportant transitions and population

variables with respect to some target populations of interest. The removable transi-

tions and population variables can be efficiently identified by constructing a directed

coupling graph for the PCTMC. The error caused by our reduction algorithm can be

effectively controlled by an acceptable error threshold set by the modeller. Our algo-

rithm is particularly useful for PCTMCs for CAS since entities in CAS are usually

highly distributed which increases their chance of decoupling. Experiments on two

example CAS models illustrated the usefulness of our algorithm.

In Chapter 6, we adapted and applied our scalable analysis techniques to the predic-

tion of bike availability in Santander Cycles, the public bike-sharing system in London.

Specifically, the moments of the number of available bikes in a station are derived by

fluid approximation of a pruned PCTMC in which only significant journey flows with

respect to the station are explicitly captured. The method for pruning the PCTMC

is adapted from the reduction algorithm in Chapter 5. The number of ODEs for the

PCTMC is further reduced based on the neighbourhood relation between population

variables that is proposed in Chapter 4. The entire probability distribution is recon-

structed to maximise the entropy which minimises the bias introduced by the recon-

struction process. The experiments showed that our prediction model can achieve a

higher accuracy than the Markov queueing model. Moreover, by using the scalable

analysis techniques, the model size can be significantly reduced to such an extent that

it is suitable for real time application.

7.2 Further Works

Having summarised our achievements, we conclude this thesis by outlining possible

future research directions to enhance the works in this thesis.



7.2. Further Works 103

7.2.1 Enhancing Expressiveness of PALOMA

There are still several things that can be done to improve the expressiveness of PALOMA

in capturing CAS. For example, agents in PALOMA are only parametrised by their lo-

cation attributes. This can be extended by allowing other user defined attributes in

order to support more general attribute-based communication between agents. More-

over, the creation and destruction of agents can also be introduced to make the language

more expressive. Taking the smart taxi model in Section 5.5.2 as an example, the model

can be easily specified in PALOMA if the above two features are added. The inclusion

of more features can improve the expressiveness of PALOMA, but it can also increase

the risk of the underlying PCTMC becoming intractable more easily. For example, in-

troducing a new attribute for agents means adding a new dimension to the state space

of agents. This is likely to result in a drastic increase of the number of population

variables in the PCTMC. Consequently, fluid approximation in which the number of

generated ODEs depends on the number of population variables can easily become

intractable. Therefore, some other analysis techniques such as population aggregation

based on behaviour or spatial equivalence [Piho and Hillston, 2016] and other coarser

representation of populations are worth exploring. More importantly, as a modelling

language, its user experience is of vital importance. Thus, in order to show, and possi-

bly improve the benefits of using PALOMA for the modelling and quantitative analysis

of CAS, it is also highly useful to collect feedbacks from PALOMA users, especially

on the compactness and intuitiveness of PALOMA for the modelling of CAS compared

with other modelling languages.

7.2.2 Defining Useful Performance Measures for CAS

Traditionally, performance measures derived from probability distributions can be broadly

divided into three categories as was discussed by us in [Feng et al., 2015]:

State-based: an expectation over the states of the system. In its simplest form this is

the probability that a certain property holds (Boolean values attributed to states).

Utilisation is an example of this type. But such measures can also be based on

more meaningful values for states, such as queue length where the value for each

state is the number of customers in a queue. When the probability distribution is

the steady state distribution the derived values will the average values, where at

other times they will be transient, based on the transient probability.



104 Chapter 7. Conclusions

Rate-based: an expectation over the rates of the system. Typical examples are through-

put, loss probabilities, collision probability etc. Essentially these are also calcu-

lated as expectations over the states but the rewards associated with the states are

now the rate at which events occur within the given state. Again either the tran-

sient or the steady state probability distribution may be used in the calculation

of the expectation.

Time-based: an average time, or a probability distribution with respect to time with

respect to some behaviour. The classic example is perhaps response time which,

via Little’s Law can be expressed in terms of throughput (a rate-based measure)

and average number (a state-based measure). For non steady state measures, a

passage time calculation will usually be required.

For CAS in which there are both temporal and spatial aspects of behaviour, we think

it is reasonable to also define space-based and spatial-temporal performance mea-

sures. For instance, when spatial information is also represented in the system, the

states of interest may be those in which certain spatial conditions are satisfied. Thus

we might think of a form of spatial utilisation, the percentage of time that a par-

ticular location or set of locations are occupied. There has already been some re-

cent work on the definition and evaluation of spatial-temporal properties for CAS

[Nenzi et al., 2015, Bortolussi and Tschaikowski, 2016]. A preliminary study of the

types of useful spatial-temporal performance measures for CAS has been presented

by us in [Feng et al., 2015]. In future work we would like to investigate our identi-

fied measures further to see how well they match to the user and operator performance

requirements for CAS.

7.2.3 Statistical Model Checking of CAS

Having shown that our reduction algorithm in Chapter 5 can significantly reduce the

computational cost of stochastic simulations for CAS models, and the the error caused

by the reduction can be well controlled by the acceptable error threshold set by the

modeller, we anticipate that the benefit to be gained from our approach could be partic-

ularly valuable in statistical model checking since it usually requires thousands of sim-

ulation runs in order to check whether a hypothesis holds. For example, for the bike-

sharing system, suppose we want to check whether the following hypothesis holds:

Pr(G[0,100]0 < xb <C) ≥ 95% where xb is the number of bike agents in a station, and

C is the capacity of that station. This means we require that in the first 100 time points,



7.2. Further Works 105

the probability of the station being empty or full should be less than 5%. Thus, if we

set the bike agents in that station as our target population, the simulation speed can be

significantly boosted by using our reduction algorithm. We plan to explore and exploit

this promising application of our approach in future work.

7.2.4 Learning Model Parameters From Data

Finally, an important problem when constructing PCTMC models for CAS is the

inference of parameters from real data. Parameter inference is frequently car-

ried out by Approximate Bayesian Computing approaches [Beaumont et al., 2002,

Toni et al., 2009]. These methods which rely on exhaustive stochastic simulation runs

and accept parameter values if the differences between simulation and data is suffi-

ciently small will be extremely costly for CAS. Inference using Finite State Projec-

tion (FSP) [Munsky and Khammash, 2006] is usually more efficient, however FSP

is still very limited since directly evaluating the probability densities for popula-

tions will end up with an prohibitive number of ODEs for large scale systems like

CAS. Recently, moment-closure approximation has been regarded as a promising tool

for parameter inference for biochemical reaction networks [Bogomolov et al., 2015,

Fröhlich et al., 2016]. For CAS, traditional moment-closure approximation without

ODE reduction may still be over-expensive for many realistic models, thus using our

moment-closure approximation method for parameter inference in the construction of

PCTMCs for realistic CAS should be another promising direction to explore.





Bibliography

[Ale et al., 2013] Ale, A., Kirk, P., and Stumpf, M. P. (2013). A general moment

expansion method for stochastic kinetic models. The Journal of Chemical Physics,

138(17):174101.

[Anderson, 2012] Anderson, W. J. (2012). Continuous-time Markov chains: An

applications-oriented approach. Springer Science & Business Media.

[Andreychenko et al., 2015] Andreychenko, A., Mikeev, L., and Wolf, V. (2015).

Model reconstruction for moment-based stochastic chemical kinetics. ACM Trans-

actions on Modeling and Computer Simulation (TOMACS), 25(2):12.

[Antonaki and Philippou, 2012] Antonaki, M. and Philippou, A. (2012). A process

calculus for spatially-explicit ecological models. EPTCS, 100:14–28.

[Balbo, 2001] Balbo, G. (2001). Introduction to stochastic Petri nets. In Lectures on

Formal Methods and Performance Analysis, volume 2090 of LNCS, pages 84–155.

Springer.

[Beaumont et al., 2002] Beaumont, M. A., Zhang, W., and Balding, D. J. (2002). Ap-

proximate Bayesian computation in population genetics. Genetics, 162(4):2025–

2035.

[Bernardo and Gorrieri, 1998] Bernardo, M. and Gorrieri, R. (1998). A tutorial on

EMPA: A theory of concurrent processes with nondeterminism, priorities, proba-

bilities and time. Theoretical Computer Science, 202(1):1–54.

[Bogomolov et al., 2015] Bogomolov, S., Henzinger, T. A., Podelski, A., Ruess, J.,

and Schilling, C. (2015). Adaptive moment closure for parameter inference of bio-

chemical reaction networks. In Computational Methods in Systems Biology, volume

9308 of LNCS, pages 77–89. Springer.

107



108 Bibliography

[Bortolussi, 2006] Bortolussi, L. (2006). Stochastic concurrent constraint program-

ming. Electronic Notes in Theoretical Computer Science, 164(3):65–80.

[Bortolussi et al., 2015a] Bortolussi, L., De Nicola, R., Galpin, V., Gilmore, S., Hill-

ston, J., Latella, D., Loreti, M., and Massink, M. (2015a). CARMA: collective

adaptive resource-sharing Markovian agents. In Proceedings Thirteenth Workshop

on Quantitative Aspects of Programming Languages and Systems, QAPL 2015, Lon-

don, UK, 11th-12th April 2015., pages 16–31.

[Bortolussi et al., 2013] Bortolussi, L., Hillston, J., Latella, D., and Massink, M.

(2013). Continuous approximation of collective system behaviour: A tutorial. Per-

formance Evaluation, 70(5):317–349.

[Bortolussi et al., 2015b] Bortolussi, L., Milios, D., and Sanguinetti, G. (2015b). Ef-

ficient stochastic simulation of systems with multiple time scales via statistical ab-

straction. In Computational Methods in Systems Biology, volume 9308 of LNCS,

pages 40–51. Springer.

[Bortolussi and Paškauskas, 2014] Bortolussi, L. and Paškauskas, R. (2014). Mean-

field approximation and quasi-equilibrium reduction of Markov population mod-

els. In Quantitative Evaluation of Systems, volume 8657 of LNCS, pages 106–121.

Springer.

[Bortolussi and Tschaikowski, 2016] Bortolussi, L. and Tschaikowski, M. (2016).

Fluid analysis of spatio-temporal properties of agents in a population model. In

Analytical and Stochastic Modeling Techniques and Applications, volume 9845 of

LNCS, pages 92–106. Springer.

[Brodo et al., 2007] Brodo, L., Degano, P., and Priami, C. (2007). A stochastic seman-

tics for BioAmbients. In Parallel Computing Technologies, volume 4671 of LNCS,

pages 22–34. Springer.

[Bruneo et al., 2012] Bruneo, D., Scarpa, M., Bobbio, A., Cerotti, D., and Gribaudo,

M. (2012). Markovian agent modeling swarm intelligence algorithms in wireless

sensor networks. Performance Evaluation, 69(3):135–149.

[Buchholz, 1994] Buchholz, P. (1994). Exact and ordinary lumpability in finite

Markov chains. Journal of Applied Probability, 31(1):59–75.



Bibliography 109

[Cao et al., 2005] Cao, Y., Gillespie, D. T., and Petzold, L. R. (2005). The slow-scale

stochastic simulation algorithm. The Journal of Chemical Physics, 122(1):014116.

[Cao et al., 2006] Cao, Y., Gillespie, D. T., and Petzold, L. R. (2006). Efficient step

size selection for the tau-leaping simulation method. The Journal of Chemical

Physics, 124(4):044109.

[Cao et al., 2004] Cao, Y., Li, H., and Petzold, L. (2004). Efficient formulation of the

stochastic simulation algorithm for chemically reacting systems. The Journal of

Chemical Physics, 121(9):4059–4067.

[Cao and Petzold, 2008] Cao, Y. and Petzold, L. (2008). Slow-scale tau-leaping

method. Computer Methods in Applied Mechanics and Engineering, 197(43):3472–

3479.

[Cardelli, 2008a] Cardelli, L. (2008a). From processes to ODEs by chemistry. In Fifth

IFIP International Conference On Theoretical Computer Science–TCS 2008, pages

261–281. Springer.

[Cardelli, 2008b] Cardelli, L. (2008b). On process rate semantics. Theoretical Com-

puter Science, 391(3):190–215.

[Cerotti et al., 2008] Cerotti, D., Gribaudo, M., and Bobbio, A. (2008). Disaster prop-

agation in inhomogeneous media via Markovian agents. volume 5508 of LNCS,

pages 328–335. Springer.

[Cerotti et al., 2010] Cerotti, D., Gribaudo, M., Bobbio, A., Calafate, C. T., and Man-

zoni, P. (2010). A Markovian agent model for fire propagation in outdoor envi-

ronments. In Computer Performance Engineering, volume 6342 of LNCS, pages

131–146. Springer.

[Ciardo and Miner, 1999] Ciardo, G. and Miner, A. S. (1999). A data structure for

the efficient Kronecker solution of GSPNs. In Petri Nets and Performance Models,

1999. Proceedings. The 8th International Workshop on, pages 22–31. IEEE.

[Ciardo and Siminiceanu, 2002] Ciardo, G. and Siminiceanu, R. (2002). Using edge-

valued decision diagrams for symbolic generation of shortest paths. In International

Conference on Formal Methods in Computer-Aided Design, volume 2517 of LNCS,

pages 256–273. Springer.



110 Bibliography

[Ciocchetta and Hillston, 2009] Ciocchetta, F. and Hillston, J. (2009). Bio-PEPA: A

framework for the modelling and analysis of biological systems. Theoretical Com-

puter Science, 410(33):3065–3084.

[Clark et al., 2007] Clark, A., Gilmore, S., Hillston, J., and Tribastone, M. (2007).

Stochastic process algebras. In International School on Formal Methods for the

Design of Computer, Communication and Software Systems, volume 4486 of LNCS,

pages 132–179. Springer.

[Contardo et al., 2012] Contardo, C., Morency, C., and Rousseau, L.-M. (2012). Bal-

ancing a dynamic public bike-sharing system. Technical Report CIRRELT-2012-09.

[Deavours and Sanders, 1998] Deavours, D. D. and Sanders, W. H. (1998). On-the-fly

solution techniques for stochastic Petri nets and extensions. IEEE Transactions on

Software Engineering, 24(10):889–902.

[Engblom, 2006] Engblom, S. (2006). Computing the moments of high dimen-

sional solutions of the master equation. Applied Mathematics and Computation,

180(2):498–515.

[Feng et al., 2015] Feng, C., Gribaudo, M., and Hillston, J. (2015). Performance anal-

ysis of collective adaptive behaviour in time and space. Electronic Notes in Theo-

retical Computer Science, 318:53–68.

[Feng and Hillston, 2014] Feng, C. and Hillston, J. (2014). PALOMA: A process al-

gebra for located Markovian agents. In Quantitative Evaluation of Systems, volume

8657 of LNCS, pages 265–280. Springer.

[Feng and Hillston, 2015] Feng, C. and Hillston, J. (2015). Speed-up of stochastic

simulation of PCTMC models by statistical model reduction. In Computer Perfor-

mance Engineering, volume 9272 of LNCS, pages 291–305. Springer.

[Feng et al., 2016a] Feng, C., Hillston, J., and Galpin, V. (2016a). Automatic moment-

closure approximation of spatially distributed collective adaptive systems. ACM

Transactions on Modeling and Computer Simulation (TOMACS), 26(4):26.

[Feng et al., 2016b] Feng, C., Hillston, J., and Reijsbergen, D. (2016b). Moment-

based probabilistic prediction of bike availability for bike-sharing systems. In

Quantitative Evaluation of Systems, volume 9826 of LNCS, pages 139–155.

Springer.



Bibliography 111

[Fishman, 2016] Fishman, E. (2016). Bikeshare: A review of recent literature. Trans-

port Reviews, 36(1):92–113.

[Froehlich et al., 2009] Froehlich, J., Neumann, J., and Oliver, N. (2009). Sensing and

predicting the pulse of the city through shared bicycling. In IJCAI, volume 9, pages

1420–1426.

[Fröhlich et al., 2016] Fröhlich, F., Thomas, P., Kazeroonian, A., Theis, F. J., Grima,

R., and Hasenauer, J. (2016). Inference for stochastic chemical kinetics using

moment equations and system size expansion. PLoS Computational Biology,

12(7):e1005030.

[Fujita et al., 1997] Fujita, M., McGeer, P. C., and Yang, J.-Y. (1997). Multi-terminal

binary decision diagrams: An efficient data structure for matrix representation. For-

mal Methods in System Design, 10(2-3):149–169.

[Gast et al., 2015] Gast, N., Massonnet, G., Reijsbergen, D., and Tribastone, M.

(2015). Probabilistic forecasts of bike-sharing systems for journey planning. In

The 24th ACM International Conference on Information and Knowledge Manage-

ment, CIKM ’15, pages 703–712. ACM.

[Gibson and Bruck, 2000] Gibson, M. A. and Bruck, J. (2000). Efficient exact

stochastic simulation of chemical systems with many species and many channels.

The Journal of Physical Chemistry A, 104(9):1876–1889.

[Gillespie, 1977] Gillespie, D. T. (1977). Exact stochastic simulation of coupled

chemical reactions. The Journal of Physical Chemistry, 81(25):2340–2361.

[Gillespie, 2001] Gillespie, D. T. (2001). Approximate accelerated stochastic sim-

ulation of chemically reacting systems. The Journal of Chemical Physics,

115(4):1716–1733.

[Gilmore et al., 2001] Gilmore, S., Hillston, J., and Ribaudo, M. (2001). An efficient

algorithm for aggregating PEPA models. IEEE Transactions on Software Engineer-

ing, 27(5):449–464.

[Gotz et al., 1992] Gotz, N., Herzog, U., and Rettelbach, M. (1992). TIPP – a lan-

guage for timed processes and performance evaluation. Technical Report Technical

Report 4/92, IMMD VII, University of Erlangen-Nurnberg.



112 Bibliography

[Grassmann, 1977] Grassmann, W. K. (1977). Transient solutions in Markovian

queueing systems. Computers & Operations Research, 4(1):47–53.

[Gribaudo et al., 2008] Gribaudo, M., Cerotti, D., and Bobbie, A. (2008). Analysis of

on-off policies in sensor networks using interacting Markovian agents. In 6th An-

nual IEEE International Conference on Pervasive Computing and Communications,

pages 300–305. IEEE.

[Guenther and Bradley, 2013] Guenther, M. C. and Bradley, J. T. (2013). Journey

data based arrival forecasting for bicycle hire schemes. In Analytical and Stochas-

tic Modeling Techniques and Applications, volume 7984 of LNCS, pages 214–231.

Springer.

[Guenther et al., 2012] Guenther, M. C., Stefanek, A., and Bradley, J. T. (2012). Mo-

ment closures for performance models with highly non-linear rates. In European

Workshop on Performance Engineering, pages 32–47. Springer.

[Guenther et al., 2013] Guenther, M. C., Stefanek, A., and Bradley, J. T. (2013). Mo-

ment closures for performance models with highly non-linear rates. In Computer

Performance Engineering, volume 7587 of LNCS, pages 32–47. Springer.

[Hayden and Bradley, 2010] Hayden, R. A. and Bradley, J. T. (2010). A fluid anal-

ysis framework for a Markovian process algebra. Theoretical Computer Science,

411(22):2260–2297.

[Helms et al., 2015] Helms, T., Ewald, R., Rybacki, S., and Uhrmacher, A. M. (2015).

Automatic runtime adaptation for component-based simulation algorithms. ACM

Transactions on Modeling and Computer Simulation (TOMACS), 26(1):7.

[Helms et al., 2014] Helms, T., Maus, C., Haack, F., and Uhrmacher, A. M. (2014).

Multi-level modeling and simulation of cell biological systems with ML-Rules—a

tutorial. In Proceedings of the Winter Simulation Conference 2014, pages 177–191.

IEEE.

[Hiebeler, 2006] Hiebeler, D. (2006). Moment equations and dynamics of a household

SIS epidemiological model. Bulletin of Mathematical Biology, 68(6):1315–1333.

[Hillston, 1996] Hillston, J. (1996). A Compositional Approach to Performance Mod-

elling. Cambridge University Press.



Bibliography 113

[Hillston, 2005] Hillston, J. (2005). Fluid flow approximation of PEPA models. In 2nd

International Conference on the Quantitative Evaluation of Systems, pages 33–42.

IEEE.

[Hillston, 2013] Hillston, J. (2013). Challenges for quantitative analysis of collective

adaptive systems. In International Symposium on Trustworthy Global Computing,

volume 8358 of LNCS, pages 14–21. Springer.

[Hillston and Loreti, 2015] Hillston, J. and Loreti, M. (2015). Specification and anal-

ysis of open-ended systems with CARMA. In Agent Environments for Multi-Agent

Systems IV, volume 9068 of LNCS, pages 95–116. Springer.

[Himmelspach and Uhrmacher, 2007] Himmelspach, J. and Uhrmacher, A. M.

(2007). Plug’n simulate. In 40th Annual Simulation Symposium (ANSS’07), pages

137–143. IEEE.

[Hoare, 1985] Hoare, C. A. R. (1985). Communicating Sequential Processes.

Prentice-Hall Englewood Cliffs.

[Isserlis, 1918] Isserlis, L. (1918). On a formula for the product-moment coefficient of

any order of a normal frequency distribution in any number of variables. Biometrika,

12(1/2):134–139.

[John et al., 2008a] John, M., Ewald, R., and Uhrmacher, A. M. (2008a). A spatial

extension to the π calculus. Electronic Notes in Theoretical Computer Science,

194(3):133–148.

[John et al., 2008b] John, M., Lhoussaine, C., Niehren, J., and Uhrmacher, A. M.

(2008b). The attributed pi calculus. In Computational Methods in Systems Biol-

ogy, volume 5307 of LNCS, pages 83–102. Springer.

[Kaltenbrunner et al., 2010] Kaltenbrunner, A., Meza, R., Grivolla, J., Codina, J., and

Banchs, R. (2010). Urban cycles and mobility patterns: Exploring and predicting

trends in a bicycle-based public transport system. Pervasive and Mobile Computing,

6(4):455–466.

[Keeling, 1999] Keeling, M. J. (1999). The effects of local spatial structure on epi-

demiological invasions. Proceedings of the Royal Society of London B: Biological

Sciences, 266(1421):859–867.



114 Bibliography

[Keeling, 2000] Keeling, M. J. (2000). Multiplicative moments and measures of per-

sistence in ecology. Journal of Theoretical Biology, 205(2):269–281.

[Knottenbelt and Harrison, 1999] Knottenbelt, W. J. and Harrison, P. G. (1999). Dis-

tributed disk-based solution techniques for large Markov models. In Proceedings of

the 3rd International Meeting on the Numerical Solution of Markov Chains NSMC,

volume 99, pages 58–75.

[Krishnarajah et al., 2005] Krishnarajah, I., Cook, A., Marion, G., and Gibson, G.

(2005). Novel moment closure approximations in stochastic epidemics. Bulletin

of Mathematical Biology, 67(4):855–873.

[Krivine et al., 2008] Krivine, J., Milner, R., and Troina, A. (2008). Stochastic bi-

graphs. Electronic Notes in Theoretical Computer Science, 218:73–96.

[Kuehn, 2016] Kuehn, C. (2016). Moment closure-a brief review. In Control of Self-

Organizing Nonlinear Systems, Understanding Complex Systems, pages 253–271.

Springer.

[Kurtz, 1981] Kurtz, T. G. (1981). Approximation of population processes. SIAM.

[Kwiatkowska et al., 2007] Kwiatkowska, M., Norman, G., and Parker, D. (2007).

Stochastic model checking. In International School on Formal Methods for the De-

sign of Computer, Communication and Software Systems, volume 4486 of LNCS,

pages 220–270. Springer.

[Legay et al., 2010] Legay, A., Delahaye, B., and Bensalem, S. (2010). Statistical

model checking: An overview. In Runtime Verification, volume 6418 of LNCS,

pages 122–135. Springer.

[Lin and Yang, 2011] Lin, J.-R. and Yang, T.-H. (2011). Strategic design of public

bicycle sharing systems with service level constraints. Transportation Research

Part E: Logistics and Transportation Review, 47(2):284–294.

[Lu and Law, 2005] Lu, T. and Law, C. K. (2005). A directed relation graph method

for mechanism reduction. Proceedings of the Combustion Institute, 30(1):1333–

1341.

[Mastny et al., 2007] Mastny, E. A., Haseltine, E. L., and Rawlings, J. B. (2007). Two

classes of quasi-steady-state model reductions for stochastic kinetics. The Journal

of Chemical Physics, 127(9):094106.



Bibliography 115

[Mead and Papanicolaou, 1984] Mead, L. R. and Papanicolaou, N. (1984). Maximum

entropy in the problem of moments. Journal of Mathematical Physics, 25(8):2404–

2417.

[Milner, 1989] Milner, R. (1989). Communication and Concurrency. Prentice-Hall,

Inc.

[Munsky and Khammash, 2006] Munsky, B. and Khammash, M. (2006). The finite

state projection algorithm for the solution of the chemical master equation. The

Journal of Chemical Physics, 124(4):044104.

[Nair and Miller-Hooks, 2011] Nair, R. and Miller-Hooks, E. (2011). Fleet manage-

ment for vehicle sharing operations. Transportation Science, 45(4):524–540.

[Nardini et al., 2008] Nardini, C., Kozma, B., and Barrat, A. (2008). Who’s talking

first? consensus or lack thereof in coevolving opinion formation models. Physical

Review Letters, 100(15):158701.

[Nåsell, 2003] Nåsell, I. (2003). An extension of the moment closure method. Theo-

retical Population Biology, 64(2):233–239.

[Nenzi et al., 2015] Nenzi, L., Bortolussi, L., Ciancia, V., Loreti, M., and Massink, M.

(2015). Qualitative and quantitative monitoring of spatio-temporal properties. In

Runtime Verification, volume 9333 of LNCS, pages 21–37. Springer.

[Nicola et al., 2014] Nicola, R. D., Loreti, M., Pugliese, R., and Tiezzi, F. (2014). A

formal approach to autonomic systems programming: The SCEL language. ACM

Transactions on Autonomous and Adaptive Systems (TAAS), 9(2):7.

[Niemeyer et al., 2010] Niemeyer, K. E., Sung, C.-J., and Raju, M. P. (2010). Skeletal

mechanism generation for surrogate fuels using directed relation graph with error

propagation and sensitivity analysis. Combustion and flame, 157(9):1760–1770.

[Norris, 1998] Norris, J. R. (1998). Markov chains. Cambridge University Press.

[Pepiot-Desjardins and Pitsch, 2008] Pepiot-Desjardins, P. and Pitsch, H. (2008). An

efficient error-propagation-based reduction method for large chemical kinetic mech-

anisms. Combustion and Flame, 154(1):67–81.



116 Bibliography

[Pfrommer et al., 2014] Pfrommer, J., Warrington, J., Schildbach, G., and Morari, M.

(2014). Dynamic vehicle redistribution and online price incentives in shared mobil-

ity systems. IEEE Transactions on Intelligent Transportation Systems, 15(4):1567–

1578.

[Piho and Hillston, 2016] Piho, P. and Hillston, J. (2016). Stochastic and spatial equiv-

alences for PALOMA. In Proceedings of the Workshop on FORmal methods for the

quantitative Evaluation of Collective Adaptive SysTems, FORECAST@STAF 2016,

Vienna, Austria, 8 July 2016, volume 217 of EPTCS, pages 69–80.

[Plateau and Atif, 1991] Plateau, B. and Atif, K. (1991). Stochastic automata net-

work of modeling parallel systems. IEEE transactions on Software Engineering,

17(10):1093–1108.

[Plotkin, 2004] Plotkin, G. D. (2004). A structural approach to operational semantics.

J. Log. Algebr. Program., 60(61):17–139.

[Priami, 1995] Priami, C. (1995). Stochastic π-calculus. The Computer Journal,

38(7):578–589.

[Pu et al., 2011] Pu, Y., Watson, L. T., and Cao, Y. (2011). Stiffness detection and

reduction in discrete stochastic simulation of biochemical systems. The Journal of

Chemical Physics, 134(5):054105.

[Rangan and Cai, 2006] Rangan, A. V. and Cai, D. (2006). Maximum-entropy clo-

sures for kinetic theories of neuronal network dynamics. Physical Review Letters,

96(17):178101.

[Rao and Arkin, 2003] Rao, C. V. and Arkin, A. P. (2003). Stochastic chemical kinet-

ics and the quasi-steady-state assumption: application to the Gillespie algorithm.

The Journal of Chemical Physics, 118(11):4999–5010.

[Raviv and Kolka, 2013] Raviv, T. and Kolka, O. (2013). Optimal inventory manage-

ment of a bike-sharing station. IIE Transactions, 45(10):1077–1093.

[Reinecke et al., 2012] Reinecke, P., Krauss, T., and Wolter, K. (2012). Hyperstar:

Phase-type fitting made easy. In 9th International Conference on Quantitative Eval-

uation of Systems, pages 201–202. IEEE.



Bibliography 117

[Schnoerr et al., 2015] Schnoerr, D., Sanguinetti, G., and Grima, R. (2015). Compar-

ison of different moment-closure approximations for stochastic chemical kinetics.

The Journal of Chemical Physics, 143(18):185101.

[Schuijbroek et al., 2013] Schuijbroek, J., Hampshire, R., and van Hoeve, W.-J.

(2013). Inventory rebalancing and vehicle routing in bike sharing systems. Techni-

cal Report 2013-E1, Tepper School of Business, Carnegie Mellon University.

[Singer, 2004] Singer, A. (2004). Maximum entropy formulation of the Kirkwood

superposition approximation. The Journal of Chemical Physics, 121(8):3657–3666.

[Singh and Hespanha, 2006] Singh, A. and Hespanha, J. P. (2006). Lognormal mo-

ment closures for biochemical reactions. In 45th IEEE Conference on Decision and

Control, pages 2063–2068. IEEE.

[Slepoy et al., 2008] Slepoy, A., Thompson, A. P., and Plimpton, S. J. (2008). A

constant-time kinetic Monte Carlo algorithm for simulation of large biochemical

reaction networks. The Journal of Chemical Physics, 128(20):205101.

[Snyman, 2005] Snyman, J. (2005). Practical mathematical optimization: an intro-

duction to basic optimization theory and classical and new gradient-based algo-

rithms. Springer Science & Business Media.

[Stewart, 2009] Stewart, W. J. (2009). Probability, Markov chains, queues, and sim-

ulation: the mathematical basis of performance modeling. Princeton University

Press.

[Tari et al., 2005] Tari, Á., Telek, M., and Buchholz, P. (2005). A unified approach

to the moments based distribution estimation–unbounded support. In Formal Tech-

niques for Computer Systems and Business Processes, volume 3670 of LNCS, pages

79–93. Springer.

[ter Beek et al., 2014] ter Beek, M., Bortolussi, L., Ciancia, V., Gnesi, S., Hillston, J.,

Latella, D., and Massink, M. (2014). A quantitative approach to the design and

analysis of collective adaptive systems for smart cities. ERCIM News, 2014(98).

[Toni et al., 2009] Toni, T., Welch, D., Strelkowa, N., Ipsen, A., and Stumpf, M. P.

(2009). Approximate Bayesian computation scheme for parameter inference and

model selection in dynamical systems. Journal of the Royal Society Interface,

6(31):187–202.



118 Bibliography

[Tribastone et al., 2012] Tribastone, M., Gilmore, S., and Hillston, J. (2012). Scalable

differential analysis of process algebra models. IEEE Transactions on Software

Engineering, 38(1):205–219.

[Wu et al., 2012] Wu, S., Fu, J., Li, H., and Petzold, L. (2012). Automatic identifica-

tion of model reductions for discrete stochastic simulation. The Journal of Chemical

Physics, 137(3):034106.

[Yoon et al., 2012] Yoon, J. W., Pinelli, F., and Calabrese, F. (2012). Cityride: a pre-

dictive bike sharing journey advisor. In 13th IEEE International Conference on

Mobile Data Management (MDM), pages 306–311. IEEE.


	cover sheet
	thesis
	Introduction
	Motivation
	Thesis Structure and Contributions

	Background
	Continuous Time Markov Chain
	Infinitesimal Generator Matrix
	Transient State Distribution
	Steady State Distribution
	State Space Explosion

	Population Continuous Time Markov Chain
	Stochastic Simulation of PCTMCs
	Fluid Approximation of PCTMCs

	High-level CTMC/PCTMC Formalisms
	Markovian Agent Models
	Stochastic Process Algebras


	PALOMA: A Process Algebra For Located Markovian Agents
	Syntax
	A Motivating Example
	Individual-based Semantics
	The Delay Transition Relation
	The Probabilistic Transition Relation
	CTMC

	Population-level Semantics
	PCTMC

	Simulation

	Automatic Moment Closure Approximation of PALOMA Models
	The Derivation of Moment ODEs
	Moment ODE Reduction
	Neighbourhood Relation
	Reduction Method

	Moment-closure Method
	Case Studies
	An Epidemiological SIS Model
	A Wireless Sensor Network Model
	The City Bike-sharing Model

	Summary

	The Speed-up of Stochastic Simulation of PCTMCs
	Related Works
	Reduction Proposal Generation
	Direct Coupling Coefficient
	Directed Coupling Graph
	Coupling Propagation
	Generating Algorithm for Reduction Proposals

	Error Control of Reduction Proposals
	Searching for the Optimal Reduction Proposal
	Evaluation
	Experiments on the Bike-sharing Example
	Experiments on the Smart Taxi Example

	Summary

	Moment-based Availability Prediction for Bike-sharing Systems
	Introduction
	PCTMC with Time-dependent Rates
	Markov Queueing Model
	PCTMC of Bike-sharing Model
	A Naive PCTMC Model
	Directed Contribution Graph with Contribution Propagation
	The Reduced PCTMC Model

	Reconstructing the Probability Distribution Using the Maximum Entropy Approach
	Reconstruction Algorithm

	Experiments
	Root Mean Square Error
	Probability of Making a Correct Recommendation 
	Time Cost

	Conclusions

	Conclusions
	Summary
	Further Works
	Enhancing Expressiveness of PALOMA
	Defining Useful Performance Measures for CAS
	Statistical Model Checking of CAS
	Learning Model Parameters From Data


	Bibliography


