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Abstract

This work consists of original research in aspects of fetal and neonatal mineralised

bone mass, as measured by a unique portable single photon absorptiometer. The

aim of the study is to explore potential matemo-fetal mechanisms implicated in the

determination ofmineralised bone mass at birth, and to examine the effect of

individualised calcium and phosphorus supplementation on mineralised bone mass

in preterm infants.

Methods - Bone mineral content (BMC), area normalised bone mineral density

(BMD) and radial width (RW) were measured within 5 days of birth using single

photon absorptiometry (SPA) of mid-radius in a cohort of 99 infants. Venous cord

blood was collected for parathyroid hormone (PTH) assay. The relationship

between antenatal factors and mineralised bone mass was explored using multiple

regression.

In a randomised controlled trial 12 infants received individualised mineral

supplementation based on plasma concentrations and urinary excretion, while 13

control infants received standard calcium and phosphorus supplements according to

European Society of Paediatric Gastroenterology, Hepatology and Nutrition

(ESPGHAN) guidelines.

Results - BMC, BMD and RW were significantly linearly related to birthweight. In

each model, all maternal factors and PTH concentrations were excluded at 0.1 level,

leaving only birthweight in the final models for BMC, BMD and RW. High PTH



concentrations were found only in low birthweight infants. Categorising PTH into

<11 (group 1), 11-55 (group 2) and >55ng/L (group 3), there is a significant

difference in birthweight between group 1 and 2 (p<0.05) and group 1 and 3

(p<0.05).

Compared to controls, individualised mineral supplementation failed to enhance

radial BMC, BMD or RW. BMC increased from a mean of 7.2mg at birth to 9.2mg

at 37 weeks post-conceptional age (PCA) (p<0.05), RW increased from 0.43 to

0.57cm (p<0.001), with no change in BMD. There was a significant difference in

the preterm infants from weight-adjusted values of BMC of 13.7mg (p<0.001) and

BMD of 105.5mg/cm2 (p<0.001) at 37 weeks PCA but no significant difference in

RW adjusted for weight.

Conclusion - BMC, BMD and RW are directly related to birthweight in infants of

any viable gestational age. This study failed to demonstrate a relationship between

materno-fetal factors, cord PTH concentrations, and mineralised bone mass at birth.

Individualised mineral supplementation of preterm infants did not improve

mineralisation over standard supplementation regimens. Preterm infants have a

reduced mineralised bone mass at term compared to expected weight-adjusted

values.
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1 Bone Mineralisation in the Newborn Infant

Increasing numbers of preterm infants are surviving the acute complications of

extreme prematurity (Stevenson et al, 1998), such that the focus of neonatal care is

moving towards reducing morbidity associated with their survival (Jobe, 2001).

Recent studies on the impact of fetal and infant nutrition on diseases in adult life

(Barker et al, 1990) suggest that the nutritional status of the preterm infant during

the first weeks of life (Ehrenkrantz et al, 1999) may be relevant not only to the

neonatal period but may have long term consequences (Lucas, 1991).

This thesis examines the impact ofprenatal factors and the hormonal environment

which may influence mineralised bone mass in the newborn infant, and the effect of

early mineral supplementation on bone mineral content in the preterm infant.
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1.1 Bone formation and growth

The musculoskeletal system develops from mesoderm and neural crest cells.

Mesodermal cells initially condense to form models of the bones before

differentiating into fibroblasts, chondroblasts and osteoblasts. Bone structures

develop within mesenchyme either by intramembraneous ossification or by

transforming into cartilage models and ossifying by endochondral ossification

(Moore & Persaud 1993).

Cartilage first appears in the embryo in the 5th week. The mesenchyme condenses

and cells proliferate to form a matrix in which collagenous or elastic fibres are

deposited. Mesodermal cells differentiate within the matrix and secrete collagenous

fibrils and the ground substance of the matrix.

1.1.1 Intramembraneous ossification

The mesenchyme condenses and becomes highly vascular. Some cells differentiate

into osteoblasts and begin to deposit matrix or osteoid tissue into which calcium

phosphate is deposited. Bone osteoblasts are trapped within the matrix and become

osteocytes. Spicules of bone become organised and coalesce into lamellae.

Concentric lamellae develop around blood vessels forming Haversian systems.

Some osteoblasts remain at the periphery of the developing bone and continue to lay

down layers, forming plates of compact bone on the surfaces. Between the surface
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plates the intervening bone remains spiculated, accentuated by the resorbing action

of osteoclasts. In the interstices of this spongy bone, the mesenchyme differentiates

into bone marrow. Continuous remodelling by the action of osteoclasts and

osteoblasts during fetal and postnatal life remodels the bone.

1.1.2 Intracartilaginous ossification

Primary ossification centres appear in the diaphysis of a long bone in the 8th week

of embryonic life. The cartilage cells hypertrophy, the matrix calcifies and the cells

die. Concurrently a thin layer of bone is deposited under the perichondrium

surrounding the diaphysis and the perichondrium becomes periosteum. Invasion of

vascular connective tissue from the periosteum breaks up the cartilage. Invading

cells differentiate into haemopoeitic cells of the marrow or into osteoblasts that

deposit bone matrix on the spicules of calcified cartilage. This process continues

towards the epiphyses. The spicules of bone are remodelled by the action of

osteoclasts and osteoblasts. Lengthening of bone occurs at the diaphyseal-

epiphyseal junction. Growth in diameter results from the deposition of bone at the

periosteum and absorption on the medullary surface.
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1.2 Metabolic Bone Disease

The term "metabolic bone disease" (MBD) applies to a spectrum of

hypomineralisation in the preterm newborn, ranging from mild undermineralisation

or "osteopenia" to radiological evidence of rickets (Brooke & Lucas, 1985). Rickets

is characterised by the accumulation of unmineralised osteoid interrupting

mineralisation of the growth plate (Greer, 1994), similar to osteomalacia which

occurs in non-growing bone. Fractures may occur in osteopenic bones, with or

without the radiological appearances of rickets.

Histologically MBD is characterised by reduced matrix formation and decreased

osteoblastic activity (Greer, 1994). Diagnostic radiological findings include fraying,

widening and irregularity of the metaphyses; subperiosteal new bone formation; and

fractures of long bones and ribs. This characteristically occurs at 2-3 months age,

usually representing 38 to 42 weeks post-conceptional age (PCA) (Campbell &

Fleischman, 1988).
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1.2.1 Mineral Accretion

For many years it has been recognised that premature infants have high requirements

for calcium and phosphorus and that human milk is an inadequate source ofminerals

(Benjamin et al, 1943). This view was supported by von Sydow who also suggested

that vitamin D supplementation was essential to enhance calcium absorption in

preterm infants and so reduce the incidence of rickets (von Sydow, 1946). Despite

this early literature the use ofmineral supplementation for human milk fed preterm

infants has taken many years to become established.

1.2.2 The environment in-utero

Calcium and phosphorus are actively transported across the placenta, with 70% of

mineral accretion occurring during the third trimester of pregnancy (Givens &

Macy, 1933). Calcium and phosphorus accretion rates peak at 34 to 36 weeks post-

menstrual age (PMA) at 3.0 mmol/kg/day (120 mg/kg/day) and 2.4 mmol/kg/day

(75 mg/kg/day) respectively (Ziegler et al, 1976).

At term the appropriately grown infant has a total body calcium content of 30 gm

and phosphorus of 16 gm (Ziegler et al, 1976). This may be reduced if placental

mineral transport has been compromised, for example in pregnancy-induced

hypertension or from other causes of placental insufficiency (Khattab & Forfar,

1971).
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1.2.3 The post-natal environment

Postnatally mineral accretion in the preterm infant is largely dependant on the

tolerance of enteral and parenteral feeds, with dietary mineral deficiency being

primarily responsible for metabolic bone disease.

In utero bone mineral accretion rates ofphosphorus and calcium can be achieved in

preterm infants supplemented with energy, protein and minerals, leading to

improved BMC at 32 weeks PCA (Schanler & Abrams, 1995). Some consider that

achieving 2/3 of the in utero accretion rate is a more appropriate goal (Ziegler, 1985;

Bentur et al, 1987).

1.2.4 Incidence of Metabolic Bone Disease

Prior to the use ofmineral supplemented human milk or preterm formula milk, most

infants born before 30 weeks PCA demonstrated some degree of

hypomineralisation, which persisted into early infancy (Greer, 1994). The incidence

of radiographic rickets in newborns of birthweight <1500g has been reported to be

20-32% (Callenbach et al, 1981; Evans et al, 1989), being more prevalent in black

infants and those who have sustained greater weight loss in the early neonatal

period, and increasing to up to 50-60% in infants fed unsupplemented human milk

(Mcintosh et al, 1982).
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In the extremely low birth weight infant (birth weight <1000g) dependent upon

parenteral nutrition in the first weeks of life, the incidence ofMBD has been

reported to be as high as 80% (Lindroth et al, 1986). However, since the widespread

introduction of human milk supplementation and mineral-enhanced preterm formula

biochemical rickets has diminished (Warner et al, 1998), although osteopenia

continues to occur in up to 30% of infants (Koo et al, 1988). X-ray diagnosis of

MBD is no longer routinely performed, and as such there are no recent reports of the

incidence of radiological MBD.
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1.3 Mineral Metabolism

1.3.1 Calcium Metabolism

99% of total body calcium is contained within the skeleton; the remainder is

distributed within the intravascular, interstitial and intracellular spaces. Total serum

calcium is tightly maintained within 2 and 2.8 mmol/L (8-11 mg/dl), with 50% in

ionised form. Serum calcium concentration is regulated mainly by the rate of

gastrointestinal absorption, bone metabolism and resorption, with glomerular

filtration and renal tubular absorption playing a minimal role.

Fluctuations in ionised calcium concentrations are controlled by parathyroid

hormone (PTH), calcitonin and 1,25-dihydroxycholecalciferol (1,25-DHCC) (Figure

1). Other factors which affect calcium homeostasis are oxygenation, acid-base state,

and interactions with hormones, e.g. thyroid hormone, growth hormone, adrenal

steroids, oestrogens, insulin and glucagon (Campbell and Fleischman, 1988).
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Figure 1: Hormonal control of hypocalcaemia (Mawer & Berry, 1995)

1.3.1 i Gastrointestinal absorption of calcium

Calcium is absorbed in the duodenum by both active and passive transport, with the

rate-limiting factor being the calcium supply. Calcium absorption and retention by

the preterm infant are difficult to measure. Measurements of net absorption do not

take account of calcium loss from bone, and so may underestimate dietary

absorption in high bone turnover states. However, absorption appears to be

influenced by gestational age, PCA, endogenous (intestinal) loss of calcium, and the

quantity and quality of fat in the diet (Shaw, 1976; Lucas et al, 1997). The

percentage of calcium absorbed by both human and formula milk fed infants is

increased by vitamin D supplementation, although calcium in human milk may have
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a higher bioavailability (70% absorption) than in formula milk (50% absorption)

(Senterre & Salle, 1982). Other studies suggest that the preterm infant may achieve

percentage absorption of calcium as high as 80% of intake irrespective of the dietary

source (Ehrenkranz et al, 1985).

In the very low birthweight infant gastrointestinal absorption and retention of

calcium appears to be related directly to calcium intake as long as an adequate intake

of vitamin D (Day et al, 1975; Salle et al, 1986) and phosphorus (Moya &

Domenech, 1982; Giles et al, 1987) are maintained. The ratio of calcium to

phosphorus therefore appears to be less important than absolute amounts. An

inadequate phosphorus intake results in increased urinary losses of calcium (Senterre

et al, 1983). Increases in calcium supplementation may result in increased faecal

calcium losses, although net retention improves. As calcium combines with

intestinal fat to form insoluble long chain saturated fatty acids concurrent increases

in faecal loss of fat may also occur (Katz & Hamilton, 1974; Salle et al, 1986).

1.3.1 ii Renal excretion of calcium

In blood 35 to 40% of total calcium is bound to plasma proteins and the remainder is

filtered across the glomerulus. Calcium is actively resorbed in the distal tubule

resulting in only 0.5 to 1% of filtered calcium appearing in the urine (Massry et al,

1973). Calcium excretion is, therefore, related to the glomerular filtration rate

(GFR).
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The calcium excretion index (Car:) allows for variation in renal function and is

calculated by multiplying the ratio of urinary calcium to creatinine by the plasma

creatinine concentration (Nordin, 1976) (Figure 2). As creatinine excretion is

related to lean body mass, this provides a reference. Normal fasting calcium

excretion in adults is 0.05 to 0.15 mg/lOOml GFR (Nordin et al, 1967). The term

infant has comparable calcium excretion, although the preterm infant may exhibit

much larger calcium losses (Brion et al, 1994).

Figure 2:Calcium excretion index
(mg/100 ml glomerular filtration rate)

CaE = Urinary calcium (mmol/L) x Plasma creatinine (umol/L)
Urinary creatinine (mmol/L) x 250
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1.3.2 Phosphorus metabolism

Inorganic phosphorus is involved in nearly all metabolic processes, with 85% of

total body phosphorus being contained in bone (Campbell & Fleischman, 1988).

Plasma phosphorus is almost entirely inorganic and therefore rapidly diffuses

through the extracellular space, and is quickly incorporated into nucleotides,

phospholipids and proteins. Phosphorus is essential for soft tissue growth and

metabolism by the body. In low phosphorus intake states, phosphorus is withdrawn

from the skeleton; calcium cannot be utilised for bone metabolism and so is lost in

the urine (Brooke & Lucas, 1985; Bentur et al, 1987).

1.3.2i Gastrointestinal absorption of phosphorus

Serum inorganic phosphorus concentrations vary widely between 0.8 and 2.5 mmol/l

(2.5 and 8.0 mg/dL) depending on age, intake and growth rate. A narrow range is

unnecessary and intestinal absorption is efficient (70-90%).

Phosphorus is absorbed primarily from the jejunum by active and passive transport,

and absorption rates are high reaching up to 95% in the preterm infant fed on human

milk (Senterre, 1983; Rowe, 1984). However, absorption from soy-based products

is reduced due to the binding ofphosphate by phytates.
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1.3.2ii Renal excretion of phosphorus

The renal tubule is the major regulator of extracellular phosphorus, involving PTH

and 1,25-DHCC. PTH inhibits tubular resorption ofphosphorus in the proximal

tubule through activation of adenylcyclase and elevation of cyclic adenosine

monophosphate (cAMP), promoting urinary excretion of phosphorus. At least 90%

of plasma phosphorus is filtered at the glomerulus with negligible phosphorus

secretion occurring at the nephron (Massry et al, 1973).

The renal phosphorus threshold or maximum tubular reabsorption of phosphorus

(TmP/GFR) can be assessed clinically by simultaneous measurement of phosphorus

loading and GFR, or in adults by the nomogram described by Walton and Bijvoet

(Walton & Bijvoet, 1975).

Brodehl (Brodehl et al, 1982) demonstrated that infants have higher plasma

phosphate and higher urinary phosphate excretion than children. The net tubular

reabsorption of phosphorus is lower in infants due to reduced GFR, but the

fractional tubular reabsorption is elevated in association with higher plasma

phosphorus concentration. It has been suggested that growth hormone may act on

the nephron to reduce renal excretion of phosphorus resulting in an elevated plasma

phosphorus concentration (Massry et al, 1973).

Furthermore, in infants and children the TRP during the fasting state is already

maximal and phosphorus loading is therefore unnecessary (Brodehl et al, 1988).
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They suggest that the nomogram ofWalton and Bijvoet is correct in predicting

Tmp/GFR when the clearance of phosphate/GFR ratio is above 0.2. However, below

0.2 the nomogram overestimates the directly measured value. For clinical

assessment of renal phosphate clearance in infants and children they recommend the

formula:

plasma phosphorus - urinary phosphorus x plasma creatinine
urinary creatinine

Expressed as a percentage of plasma phosphorus this gives the percentage of tubular

reabsorption of phosphorus (TRP), which corrects for variation in renal function and

cancels out errors in urine collection (Figure 3) (Massry et al, 1973). Adult

reference values range from 78 to 94% (Kyle et al, 1958; Chambers et al, 1956).

Preterm infants have a higher fractional excretion of phosphorus at birth than term

infants. This falls from 20% to 3% in the first week, and remains low over the first

3 months of life (Karlen et al, 1985).

The maximal TRP seen in preterm infants after the first week of life suggests

relative phosphorus deficiency (Senterre et al, 1983). High TRP persists in human

milk fed infants (Schanler et al, 1985). As the concentration ofplasma phosphorus

falls, the urinary phosphorus diminishes to almost disappear from the urine (Massry

et al, 1973). When supplemental phosphorus is given a dramatic reduction in TRP is

seen, with between 45 and 100% urinary excretion being documented in mineral-

supplemented preterm infants (Carey et al, 1985).

14



Figure 3: Percentage tubular reabsorption of phosphorus

%TRP = 1
_ Urine phosphate x Plasma creatinine x 100

Urine creatinine Plasma phosphate

All units mmol/L. (N.B. Plasma creatinine is usually measured in nmol/L.)



1.3.3 The relationship between calcium and phosphorus

Hypercalciuria with hypercalcaemia is seen in the preterm infant as a result of

hypophosphataemia, with a reduction in renal calcium excretion in very low

birthweight infants given supplemental phosphorus (Senterre et al, 1983; Lyon et al,

1984; Carey et al, 1985; Chessex et al, 1985; Holland et al, 1990). Low serum

phosphorus concentrations stimulates the hydroxylation of 25-

hydroxycholecalciferol to 1,25-dihydroxycholecalciferol (1,25-DHCC). The action

of 1,25-DHCC on bone raises both plasma phosphorus and calcium concentrations

by the action on bone and kidneys (See section 1.5.3).

With increased availability of plasma phosphorus without calcium supplementation,

the deposition of both phosphorus and calcium in bone results in reduced circulating

calcium concentrations. However, animal studies suggest that the effect on reduced

renal calcium excretion may be independent of the reduced plasma calcium

concentration and of PTH (Coburn et al, 1971; Lau et al, 1982).

Improved calcium absorption resulting from vitamin D supplementation results in

increased urinary losses of calcium unless phosphorus intake is adequate (Senterre et

al, 1983) as calcium alone cannot be deposited into bone. Supplementation with

phosphorus alone leads to high urinary phosphorus losses (Carey et al, 1985) and

hypocalcaemia (Rowe et al, 1979; Kovar et al, 1983), as additional calcium is

unavailable for bone mineral accretion.
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1.3.4 Calcium and phosphorus requirements

In low birth weight infants the estimated requirements of calcium and phosphorus

based on intestinal loss, urinary excretion and the rate of tissue increments at birth

are 3.0 mmol/kg/day of calcium and 2.4 mmol/kg/day of phosphorus (Ziegler et al,

1976).

Due to the low phosphorus content of humanmilk breast-fed infants become

primarily deficient in phosphorus. Low birth weight infants fed human milk

demonstrate high TRP (99.7%) compared with formula fed infants (82%), indicative

of phosphorus depletion (Rowe et al, 1984). The early introduction of phosphorus

supplementation has been shown to reduce the incidence of rickets in LBW infants

(Holland et al, 1990).

Very low birth weight infants require both calcium and phosphorus

supplementation. Individualised supplementation of calcium and phosphorus based

on absolute urinary mineral excretion has been shown to improve bone

mineralisation in the preterm infant (Pohlandt, 1994a).

The European Society of Paediatric Gastroenterology, Hepatology and Nutrition

(ESPGHAN) recommendations for very low birth weight formula fed infants are

currently 1.8-3.5 mmol/100 kcal calcium and 1.6-2.9 mmol/100 kcal phosphorus.

Human milk fed infants, at risk of phosphorus deficiency, require up to 4.2

mmol/100 kcal phosphorus in order to maintain the plasma concentration of
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phosphorus above 1.5 mmol/L and avoid excessive urinary calcium loss. Calcium

and phosphorus should be provided in a ratio of 1.4-2:1 mg/mg (1.1-1.6:1

mmol/mmol) (Bremer et al, 1987).

1.3.4i Parenteral feeding

The amount of phosphorus and calcium which can be made available in parenteral

nutrition (PN) is limited by poor solubility of the mineral salts, although this can be

improved by the use of organic phosphate salts (Harming et al, 1989).

Conventionally calcium gluconate or calcium chloride is administered with mono or

dibasic potassium phosphate. The use of glycerophosphate salts permits increased

concentrations of calcium and phosphorus even in fluid restricted infants.

Increasing the phosphorus and calcium content ofPN by 35% to 1.8 mmol/kg/day

calcium and 2.5 mmol/kg/day phosphorus results in improved rate of increase in

BMC over the first 8 weeks of life (Prestridge et al, 1993). The aluminium content

of PN may have implications for mineralisation in the preterm infant (Koo et al,

1989).
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1.4 Complications in the Preterm Infant

1.4.1 Renal function

1.4.1 i Development of renal function

The mature kidney has one million nephrons. In the normal mature kidney two

thirds of the filtered sodium chloride and water are resorbed in the proximal tubule

along with glucose, bicarbonate, phosphorus and amino acids Nephrons begin to

form during the 8th week of life and begin to function at the end of the first

trimester. All nephrons are formed by 34 weeks post-conceptional age, but they

remain immature in function (Bailie, 1993). Glomerular filtration rate (GFR) in

both the preterm and term infant is reduced in comparison to adult GFR even when

corrected for surface area (Corey & Spitzer, 1992).

Between 28 and 40 weeks PCA GFR increases 4 fold to 40 ml/1.73m , and reaches

adult levels of 100ml/l ,73m by 2 years of age. The fetus has a very low renal

blood flow and following birth this rises rapidly, again reaching adult levels by 2

years of age. Likewise tubular function is immature, with the newborn kidney

unable to excrete a high solute load and having poor resorptive capacity.

Phosphorus is filtered at the glomerulus with probably no active secretion (Massry et

al, 1973). Reduced clearance resulting from diminished GFR is offset by a raised

plasma concentration, which allows total excretion to remain constant (Brodehl et al,

1982). Plasma calcium concentration is determined largely by non-renal factors, so

that the absolute urine calcium output is related to the GFR. Expressing calcium
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excretion per 100ml of glomerular filtrate allows comparison of excretion

irrespective of body mass and abolishes the effects of reduced renal function.

1.4.1 ii Diuretics

Many preterm infants are treated with diuretics for chronic lung disease and

persistent ductus arteriosus. Frusemide is calciuric, inhibiting electrolyte absorption

from the ascending loop of Henle (Duarte, 1968). Human adult studies suggest that

ffusemide increases urinary phosphorus excretion (Puschett & Goldberg, 1968). In

preterm infants a single dose of frusemide may result in persisting urinary excretion

of both calcium and phosphorus (Morgan & Evans, 1986).

In newborn infants the prolonged use of frusemide in conjunction with high urinary

calcium produces an the incidence of nephrocalcinosis of 2.5% (Hufnagle et al,

1982; Ezzedeen et al, 1988). Although radiological features resolve, an association

between renal calcification in the neonatal period and functional renal abnormalities

at 1 to 2 years (including reduced creatinine clearance and reduced ability to excrete

hydrogen ions) has been demonstrated (Downing et al, 1992).

Thiazide diuretics reduce the excretion of calcium and increase the excretion of

phosphorus in adults (Brickman et al, 1972). However, in premature infants the

administration of thiazides may result in hypercalciuria (Atkinson et al, 1988).

Thiazides act on the distal tubule to increase calcium absorption and decrease the

resorption of sodium. A large sodium load may override this mechanism, leading to
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natriuresis and calcium wasting, such that sodium supplementation may contribute

to urinary bone mineral losses and hence promote the development ofmetabolic

bone disease (Campfield et al, 1997).
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1.4.2 Bronchopulmonary dysplasia

In bronchopulmonary dysplasia (BPD), the combination of fluid restriction, reduced

caloric and nutrient intake, delay in enteral feeding, and diuretics may have a

profound effect on mineral availability. Despite this, a follow up study of preterm

infants failed to demonstrate a significant difference in weight, length or BMC

(measured by radial SPA) in infants with BPD compared to preterm controls without

BPD (Greer & McCormick, 1987). However BMC comparable to term infants at

birth was not attained by any of the study infants until at least 6 months post partum.

1.4.2i Corticosteroids

Deleterious effects of elevated Cortisol levels on bone have long been recognised

(Cushing, 1932). Glucocorticoid-induced bone disease is characterized by

decreased bone formation (Dempster, 1989) and cell death of isolated segments of

bone by apoptosis (Weinstein et al, 1998). The mechanism is poorly elucidated but

appears to involve a reduction in bone formation and bone mineral density with

impaired osteoblastogenesis and osteoclastogenesis in bone marrow, and enhanced

apoptosis of osteoblasts and osteocytes. In particular, the programmed cell death of

osteocytes may explain the continued evolution of bone disease after steroid

administration is discontinued (Weinstein et al, 2000).

The long term administration of corticosteroids in adults result in increased urinary

excretion of calcium due to reduced tubular resorption (Laake, 1960). Animal
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studies show that glucocorticoid administration results in lower circulating calcidiol

and calcitriol concentrations, and reduced intestinal absorption of calcium. Piglets

receiving dexamethasone exhibit reduced linear growth and lower total body BMD.

This occurs as a result of a direct effect on osteoclast and osteoblast activity, and the

changes in the endocrine regulation of calcium metabolism (Weiler et al, 1995).

In a cohort of preterm infants given postnatal dexamethasone for prevention of

chronic lung disease, trial infants developed early elevation in PTH concentration in

association with increased phosphorus excretion and reduced calcium excretion.

Radiographic assessment of bone growth was the same in both groups (Lin et al,

1998). Short course dexamethasone therapy administered to premature infants for

chronic lung disease results in an initial period of reduced linear growth velocity.

Catch-up growth is achieved by 30 days after the treatment is discontinued (Gibson

et al, 1993).
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1.5 Control of bone mineralisation

1.5.1 Parathyroid hormone

Parathyroid hormone (PTH) primarily maintains the extracellular fluid calcium

concentration. It acts directly on bone and kidney and indirectly on intestine

through the synthesis of 1,25 DHCC (Bentur et al, 1987). There is evidence of an

action on a variety of bone cells, including osteoblasts, osteocytes and osteoclasts.

Mature osteoclasts do not appear to have PTH receptors, and it is believed that

osteoblasts signal to osteoclasts via mediators such as prostaglandins and

interleukins (Gillham et al, 1997).

Within a few minutes of the exposure of bone to PTH a release of calcium and

phosphorus from osteoclasts and osteocytes occurs. Subsequently RNA and protein

synthesis proceeds within osteoclasts, with release of collagenase and other

lysozomal enzymes into the bone matrix. Continuous exposure to PTH results in

erosion of calcified bone and release of calcium and phosphorus into the circulation

(Gillham et al, 1997) The effects ofPTH on osteoblasts are variable and include cell

proliferation, matrix protein synthesis and secretion, enzyme synthesis and release of

growth factors and cytokines (Potts & Juppner, 1998).

Intermittent administration ofPTH leads to an increase in bone mass, and has been

used in the treatment of osteoporosis (Lindsay et al, 1997). Animal models confirm

an increase in osteoblast number and bone formation (Dobnig & Turner, 1997),

initially thought to be attributed to activation of bone lining cells into osteoblasts
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(Dobnig & Turner, 1995). More recently, the increase in bone mass on exposure to

PTH has been attributed to reduced apoptosis ofmature osteoblasts (Jilka et al,

1999).

In the kidney PTH inhibits the absorption of calcium and phosphorus in the

proximal tubule, with increased delivery to the distal tubule. In the distal nephron

increased quantities of both sodium and calcium are resorbed with calcium

absorption further enhanced by PTH. There is minimal phosphorus absorption in

the distal tubule, resulting in phosphaturia (Massry et al, 1973).

PTH is an 84 amino acid which is rapidly synthesised and almost immediately

undergoes intracellular degradation. Interpretation of early research on maternal,

fetal and neonatal concentrations is complicated by the inability of assays to detect

the intact molecule. Inactive fragments and intact molecules are stored and released

together. Previous work using radioimmunoassay (RIA) for either the carbon or

nitrogen moiety may overestimate the total PTH, or fail to detect an increase in

active PTH if the intact active molecules are released with a reduced number of

detectable fragments (Bishop, 1989).

The evidence regarding placental transfer ofPTH is conflicting. Animal data

suggests that intact maternal PTH does not cross placenta (Erenberg et al, 1978).

Human studies indicate that placental transfer and degradation ofmaternal PTH

occurs (Balabanova et al, 1986). In the same study, the finding of a higher

concentration ofPTH in the umbilical artery than umbilical vein suggests that the
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fetus is able to produce PTH. Umbilical cord PTH may also be influenced by

gestation, mode of delivery and morbidity, such that high PTH concentrations are

associated with prematurity, delivery by caesarean section and poor neonatal

outcome (Bruchi et al, 1984).

1.5.2 Calcitonin

Calcitonin is a peptide hormone secreted by the parafollicular cells of the thyroid

gland. It acts in many ways as an antagonist to PTH, being hypocalcaemic and

hypophosphataemic. It reduces bone resorption and increases renal calcium

clearance. Synthesis and secretion is regulated by extracellular calcium

concentrations and by gastrointestinal hormones, e.g. gastrin (Mundy, 1995). It

appears to have little physiological effect in adults and is thought to exert effects

only in high bone turnover states (Bentur et al, 1987).

Calcitonin concentration in cord blood is elevated above adult levels (Venkataraman

et al, 1985), and may be implicated in the pathogenesis of early neonatal

hypocalcaemia (Venkataraman et al, 1987). Concentrations are further elevated in

the preterm infant, being inversely related to gestational age (Hillman et al, 1977,

David et al, 1981; Seki et al, 1994a). The effect of calcium infusion on calcitonin

has been examined in infants developing hypocalcaemia during exchange

transfusion (Dincsoy et al, 1982). Calcitonin concentration was seen to rise in

response to intravenous calcium administration, reaching significantly higher
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concentrations in preterm infants, suggesting a protective effect of calcitonin on

bone resorption.

Elevated calcitonin concentrations seen in preterm low birthweight infants are not

found in term small-for-gestational age infants (Romagnoli et al, 1987). Mean

serum calcium concentrations are lower in preterm infants, with higher calcitonin

concentrations in the first week of life. In preterm infants, but not SGA infants,

calcitonin levels were further increased in the hypocalcaemic infants.

Similarly, in infants of well-controlled diabetic mothers, calcitonin levels are low at

birth and rise over the first 5 days of life (Salle et al, 1982a), although

concentrations do not differ from those seen in term control infants (Cruikshank et

al, 1983; Mimouni et al, 1990). The authors suggest that calcitonin levels do not

appear to be related to the hypocalcaemia seen in infants of diabetic mothers.

1.5.3 Vitamin D

Vitamin D (cholecalciferol) is acquired both through metabolism from provitamin

D3 in the skin, and through the ingestion and absorption of vitamin D of plant

(vitamin D2) or animal (vitamin D3) origin. In skin provitamin D3 is converted to

previtamin D3 by the action of ultraviolet radiation, and subsequently isomerises to

vitamin D3. Vitamin D2 and vitamin D3 are bound to vitamin D-binding protein

(DBP) and are transported to the liver. In the liver, vitamin D is hydroxylated to
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produce 25-hydroxycholecalciferol (25-HCC), which is bound and transported to the

kidney, where it is hydroxylated again to form 1,25-DHCC (Tsang et al, 1981). 25-

HCC is thought to reflect overall vitamin D status, as it is the most abundant

circulating form.

Low calcium, low phosphate and high parathyroid hormone levels facilitate the

synthesis of 1,25-DHCC in the kidney. Persistent hypophosphataemia stimulates

1,25-DHCC synthesis, enhancing renal tubular absorption of phosphorus and

intestinal absorption of both calcium and phosphorus. In the presence of calcium

and phosphorus sufficiency when the PTH level is low 24,25-DHCC is synthesised

by the kidney. This has a weak effect on mineral mobilisation from bone and

increases intestinal absorption of calcium.

1,25-DHCC increases serum calcium and phosphorus concentrations by enhancing

intestinal absorption of calcium and phosphorus and increasing the renal tubular

absorption of phosphorus and calcium. In mineral sufficiency, it promotes calcium

and phosphorus deposition in the epiphyseal-growth plate cartilage and in newly

formed bone. However, with PTH it regulates the release of calcium from bone and

in the event ofmineral unavailability 1,25-DHCC may cause bone resorption, with

increased serum and urinary calcium and urinary hydroxyproline excretion

(Maierhofen et al, 1983).

Vitamin D is available in a variety of pharmacological preparations. Vitamin D3

(cholecalciferol) requires hydroxylation by the kidney; alfacalcidol (la-
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hydroxycholecalciferol) and calcitriol (1,25-dihydroxycholecalciferol) are active

forms of the vitamin and do not require further metabolism.

1.5.3i Vitamin D and the fetus

Several studies have demonstrated a correlation between maternal and umbilical

cord 25-HCC concentrations, confirming that this metabolite crosses the human

placenta (Delvin et al, 1982; Hollis & Pittard, 1984; Zeghoud et al, 1997). The

relationship between umbilical cord and maternal 24,25-DHCC concentrations is

less clear, with some studies suggesting a correlation (Delvin et al, 1982; Hollis &

Pittard, 1984), and others refuting this (Hillman et al, 1978).

The fetal supply of 1,25-DHCC is predominantly synthesised by the feto-placental

unit (Delvin et al, 1982). Renal la-hydroxylase appears to be functional in the

human fetus immediately after birth (Glorieux et al, 1981). 1 a-hydroxylation is the

rate limiting step, the activity ofwhich is enhanced by a low plasma calcium (via

PTH) and low plasma phosphorus level.

1.5.3ii Vitamin D requirement of the preterm infant

Early studies indicated that in the very preterm infant plasma concentrations of 25-

HCC may fall following delivery (Hillman & Haddad, 1975), and there is consensus
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agreement that preterm infants require supplemental vitamin D. However the

suggested dose ranges from 400 to 1200 IU. Early studies involved infants on low

mineral supplementation and results were often based on the finding of radiological

rickets rather than more precise measures ofMBD.

In a large cohort, 50% of formula fed premature infants developed low 25-HCC

concentrations despite supplements of 400 IU/day vitamin D2; radiographic evidence

of hypomineralisation correlated with concurrent dietary mineral insufficiency

(Hillman et al, 1985a). In the absence ofmineral supplementation a reduction in

radiographic hypomineralisation can be seen with vitamin D2 supplementation of

800 IU/day (Hillman et al, 1985b). Other studies in premature infants have failed to

demonstrate improvements in plasma 25-HCC concentrations or rickets on doses of

vitamin D supplementation exceeding 400-500 IU/day (Robinson et al, 1981;

Markestad et al, 1983a; Evans et al, 1989). The administration of 25-HCC appears

to be no more effective than cholecalciferol (Hillman, 1985b).

Although it has been shown that 1 a-hydroxylation is taking place in the preterm

infant (Glorieux et al, 1981), infants receiving daily vitamin D supplements who

later developed rickets have been shown to have lower serum 1,25-DHCC

concentrations than those infants who did not develop rickets (Seino et al, 1981).

The administration of 1,25-DHCC has been shown to elevate plasma concentrations

of 1,25-DHCC, but this also results in a high fractional excretion of hydroxyproline

due to the direct mobilisation of calcium from bone (Salle et al, 1982b). Currently it
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is suggested that 1,25-DHCC is given only to infants with a defect in la-

hydroxylation, and that calciferol is the analogue of choice.

Some authors feel that there is little evidence that vitamin D deficiency is implicated

in MBD (Mcintosh et al, 1982). Despite high doses (2000 IU/day) of vitamin D

their human milk-fed infants had a high incidence of demineralisation. 1,25-DHCC

has been found to be elevated in association with osteopenia of prematurity on

dietary supplementation of 500 IU/day vitamin D. In conjunction with low plasma

phosphorus concentration this suggests phosphorus deficiency as the primary

pathology (Markestad et al, 1983b). In a case report plasma 1,25-DHCC

concentrations reduced following phosphorus supplementation (Rowe et al, 1979),

suggesting that adequate mineral supply was more important than high dose vitamin

D supplementation. Currently it is accepted that adequate mineral supplementation

negates the need for high vitamin D supplementation, although infants receiving

prolonged parenteral nutrition are at increased risk ofmetabolic bone disease and

may require higher doses of vitamin D when enteral feeds are commenced

(Campbell & Fleischman, 1988). However, the current ESPGHAN guidelines

recommend a daily intake of 1000 IU vitamin D in enterally fed premature infants

(Bremer et al, 1987).
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1.5.3iii Genetic influence of vitamin D receptor genotype

There are conflicting data regarding the influence of the vitamin D receptor (VDR)

gene on bone mineralisation (Jorgensen et al, 1996). Twin studies have suggested

an important link between the VDR gene and BMD (Spector et al, 1995), with the

bb allele conferring higher BMC than the BB allele (Morrison et al, 1994).

However intrapair differences in bone mineralisation increase with age (Smith et al,

1973) and it has been suggested that environmental factors influence a genetic

predisposition (Pocock et al, 1987).

1.5.4 Parathyroid hormone related protein

Parathyroid hormone-related protein (PTHrP) is a polypeptide that exerts biological

properties similar to PTH, acting via the PTH receptor. It consists of a variable

length protein species of 139, 141, and 173 amino acids, with 8 of the 13 N-terminal

sequence being shared with PTH (Moseley et al, 1987). Pharmacological studies

indicate that the action ofPTHrP in animals mimics that ofPTH excess. PTHrP is

responsible for the hypophosphataemia, hypercalcaemia and increased urinary cyclic

AMP seen in humoral hypercalcaemia ofmalignancy (HHM) (Martin & Moseley,

1990).
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PTHrP has also been shown to exhibit paracrine functions as a developmental

regulatory molecule. These functions include the regulation of endochondral

ossification, involving a negative feedback loop involving the paracrine factor,

Indian hedgehog (Ihh) (Lanske et al, 1996; Vortkamp et al, 1996). Ihh is produced

by prehypertrophic chondrocytes, which in turn increases the production ofPTHrP.

This binds to the PTH/PTHrP receptor on prehypertrophic chondrocytes, inhibiting

their differentiation and hence further production of Ihh, in a negative feedback

loop. As the committed cells progress, they cease to produce Ihh, attenuating the

negative feedback loop and allowing the differentiation of prehypertrophic

chondrocytes. By this mechanism, the actions ofPTHrP and Ihh inhibit chondrocyte

differentiation and promote cell proliferation and linear growth. Evidence for the

importance of functioning PTHrP receptors in man has been demonstrated by both

delayed endochondral ossification caused by active PTHrP receptors in Jansen's

metaphyseal dysplasia (Schipani et al, 1995), and advanced ossification due to

nonfunctional receptors in Blomstrand chondrodysplasia (Jobert et al, 1998).

Low plasma concentrations of PTHrP are normally present in the adult, but both

placenta and fetal parathyroid glands show evidence ofPTHrP production. PTHrP

stimulates calcium transport across the sheep placenta (Rodda et al, 1988). It is

present in large amounts in the placenta early in gestation, suggesting that this may

be the initial source ofPTHrP, with fetal parathyroid glands playing a part later in

gestation (Martin & Moseley, 1990). Maternal milk of several mammalian species,

including humans, has been shown to contain high concentrations of PTHrP, at

concentrations more than 100 times those seen in HHM (Budayr et al, 1989).
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Concentrations in infant formula milk vary from undetectable to 1/3 of those in

human milk, and it is absent from soy-formula.

PTHrP concentrations have been shown to be higher in umbilical cord blood than in

non-pregnant and pregnant serum samples (Hillman et al, 1990; Thiebauld et al,

1993). Umbilical arterial concentrations are elevated above umbilical venous

concentrations, suggesting synthesis ofPTHrP by the fetus (Seki et al, 1994b).

Other researchers have failed to demonstrate this materno-fetal gradient and suggest

factors other than PTH or PTHrP may contribute to placental calcium transport

(Khosla et al, 1990; Papantoniou et al, 1996).

34



1.6 Assessment of bone mineralisation

Accurate determination of bone mineralisation is difficult to obtain in the clinical

setting. Severe demineralisation occurs long before changes of craniotabes and

rachitic rosary are apparent by clinical examination. Similarly hypomineralisation is

not detectable by radiography until 30-40% bone loss has occurred (Ardran, 1951).

The x-ray classification ofMBD describes degrees of severity from grades I to III as

follows: I - loss of dense white line at metaphyses, increased submetaphyseal

lucency and thinning of the bone cortex (osteopenia), II - grade I plus irregularity

and fraying of metaphyses, with splaying and cupping (overt rickets), III - grade II

plus fractures (Koo et al, 1982).

Biochemical markers of bone turnover have been used to estimate bone mineral

status with limited success. Bone imaging techniques provide a more reliable

assessment of bone mineralisation, but are often not available for clinical use.

1.6.1 Biochemical markers

1.6.1 i Alkaline Phosphatase

Alkaline phosphatase (AP) is an enzyme located on the membrane of the osteoblast-

derived "matrix vesicles", and in parent osteoblasts is close to the mineralisation

front. Membrane phosphatase is a phosphotransferase which transfers phosphate

residues into matrix vesicles where, together with calcium ions, crystallisation is
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initiated. As mineralisation proceeds, vesicles and osteoblasts are disrupted and

alkaline phosphatase leaks into the circulation. When substrate deficiency is present

an increase in alkaline phosphatase production may occur, such that an increase in

plasma activity is detected despite a reduction in mineralisation (Lucas et al, 1989).

Most circulating alkaline phosphatase is derived from bone and liver, but bone

forming osteoblasts have high amounts of alkaline phosphatase. In infants 90% of

serum AP activity is derived from bone (Pittard et al, 1992), and in the absence of

liver disease plasma AP activity correlates with bone formation. Measurement of

plasma AP concentration has poor sensitivity and specificity in relation to

radiographic bone changes of osteopenia (Walters et al, 1986; Evans et al, 1989;

Pittard et al, 1992). Although levels up to five times the normal adult range may be

seen in preterm infants(Kovar et al, 1982), with MBD as diagnosed by radiography

and clinical pathology at 7.5 times the adult reference range (Kovar et al, 1982),

some infants have evidence of rickets without a rise in AP (Mcintosh et al, 1984).

1.6.1 ii Osteocalcin

Osteocalcin (OC) or gamma carboxyglutamic acid-containing (Gla) protein (BGP)

comprises 20% of the non-collagen protein in bone. It is synthesised by osteoblasts,

and provides a marker of remodelling activity (Mundy, 1995). y-carboxylation of

osteocalcin is vitamin K dependent. Serum OC concentrations fall with age, and are

higher in breast-fed than formula fed infants (Lichtenstein et al, 1987). OC is
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removed from the circulation by renal clearance and serum concentrations in both

adults and infants are significantly altered by impaired renal function (Delmas et al,

1983; Charles et al, 1985). A correlation has not been found between OC and MBD

or AP in the preterm infant (Pittard et al, 1992).

1.6.1 iii Collagen assays

There are at least 13 genetically distinct types of collagen molecules in mammalian

connective tissue. Bone is composed primarily of type I collagen which constitutes

90% of bone matrix. It is a complex molecule consisting of 2 pro-al(I) and 1 pro-

a2(I) polypeptide chains. Crosslinking between molecules occurs at both the N-

terminal and C-terminal ends by specific N-terminal and C-terminal peptidases. The

molecules are organised in a characteristic staggered component with gaps between

the end of one molecule and the beginning of the next, the "hole zones", where

mineralisation occurs.

Collagen molecules are packed end to end within collagen fibrils. Interactions occur

between collagen and extracellular macromolecules, e.g. fibronectin, osteonectin

and proteoglycans. Once alignment of collagen molecules and related

macromolecules occurs mineralisation can take place (Mundy, 1995).

C-terminal propeptide of type I procollagen (PICP) quantitatively reflects type I

collagen synthesis and is produced by proliferating osteoblasts. It is principally a
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marker of bone formation and has been shown to correlate with changes in BMC in

preterm infants (Crofton et al, 1999).

The cross-linked C terminal telopeptide of type I collagen (ICTP) is a marker of type

I collagen breakdown. Serum concentrations are high at birth and subsequently fall

(Crofton et al, 1999). This marker has not been shown to correlate with changes in

BMC.

1.6.1iv Hydroxyproline

Hydroxyproline is found almost exclusively in collagen, and its presence in urine is

seen as a marker of collagen degradation. In preterm infants urinary excretion of

hydroxyproline is increased although there is no correlation between urinary

concentrations in infants with and without rickets or fractures. The high excretion

rates may be related to immature renal function (Koo et al, 1990).

1.6.1v Pyridinium Crosslinks

Pyridinoline (Pyd) and deoxypyridinoline (Dpd) can be measured in the urine as

markers of collagen degradation, with Dpd being more bone specific. Both have

been found to correlate positively with birthweight (Crofton et al, 1999), and may
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rise after birth (Naylor et al, 1999). More data is required to assess the use of

pyridinium crosslinks as a surrogate for bone imaging techniques.

1.6.2 Imaging Techniques

1.6.2i Single Photon Absorptiometry

Single photon absorptiometry (SPA) was first described by Cameron and Sorensen

in 1963 (Cameron & Sorenson, 1963). An iodine-125 source is used to produce a

beam of collimated photons that pass to a photomultiplier detector. The bone

attenuates the photon beam and as BMD is inversely related to the logarithm of the

bone compared to the soft tissue, BMD may be calculated. It assumes that the site

ofmeasurement is a cylinder of constant width and that bone is surrounded by a

water-equivalent material such as muscle. Fat attenuates the beam less than water.

As the depth of the bone is not measured the measurement is expressed as a result of

photon attenuation per unit area, an areal density.

It has accuracy and precision of 2-5%, a radiation dose of 5mRem and a scan time of

10-15 minutes (Shaw & Bishop, 1995). It is limited by being useful in only

measuring bones in the peripheral skeleton, most commonly the radius. The scan

may be performed at the mid-radius (97% cortical bone), distal radius (80% cortical

bone) or ultradistal radius (30% cortical bone, 70% trabecular bone). Cortical bones

have a low turnover. Trabecular bone is therefore more sensitive to mineral

changes. There are no significant differences between BMD of the midradius and
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distal radius by SPA, but a difference between either of these and lumbar spine as

measured by dual photon absorptiometry (DPA) in adult subjects (Seeman et al,

1982). Conventional methods ofmeasuring the distal 1/3 radius may be a problem

in longitudinal studies as the bone lengthens with time giving a different location of

measurement (Greer et al, 1982)

A portable single photon absorptiometer, specifically designed for use in preterm

infants has been developed (Truscott 1996). The neonatal bone mineral device uses

a charge couple device (CCD) to acquire a 2-dimensional bone image. Photons are

produced at 27.5keV by the decay of 125I point source, and a cone beam is passed

through the infant's forearm. Photons are differentially absorbed by bone of varying

mineral content resulting in a beam of differing intensities, inversely proportional to

the bone mineral, falling on the detector. A bone mineral equivalent image can be

calculated on a pixel by pixel basis. In order to compensate for the different

radiation path lengths produced by the cone beam a water bolus image is obtained

and subtracted from the image of the infant arm. The bone mass per unit area (MB)

is given as:

Mb = [Pb/(PbPb - psps)] In lo/I

where pB and ps are the mass attenuation coefficients for hydroxyapatite (3.1704

cm2/g) and water (0.48016 cm2/g) and are pB and ps are the density values for

hydroxyapatite (3.225 g/cm3) and water (1.0 g/cm3). I is the photon intensity of the
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image pixel and Io the photon intensity in the same pixel through the water bolus

alone.

BMC in grams of hydroxyapatite is calculated by integration of the bone image

within a region of interest (ROI) and an equivalent area in the non-bone background

is subtracted. The area normalised BMD is then calculated by dividing the BMC by

the area of the BMD.

The Xray sensitive video camera coupled to the CCD imager provides input to an

integrated image processor and frame grabber allowing real time image capture,

with an image region of 40mm by 30mm. Data is stored as a 16-bit image file and

archived to hard disk drive.

mc
t ...

The I source is held in a shielded container with simple shutter. The source,

forearm holder and camera are encased in perspex, and are coupled to the video

output, camera power, and control signals mounted on a small trolley. The

instrument measures 52cm by 20cm permitting use within a neonatal incubator.

The infant forearm is placed between 2 perspex sheets, the sheet furthest from the

detector being adjustable to allow for the width of the arm. The distance between

the positioned sheets is read from a 1 mm gauge. Following image acquisition the

infant arm is removed and a background image is taken of a water bolus of identical

width, using a water-filled condom.
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The system has been shown to produce forearm BMD ranging from 43 to 115

mg/cm2 in babies aged 23-41 weeks post-conceptual age. Linearity has been

demonstrated using aluminium foils. The absorbed radiation dose to skin is 6uSv.

1.6.2ii Dual Photon Absorptiometry

Dual photon absorptiometry (DPA) uses an isotope with two energies, usually

gadolinium (153Gd) with photopeaks at 44 and lOOkeV. Bone attenuates the low

energy photons more than the high energy photons and so summation of the relative

attenuation of the two energies may be used to estimate BMD of the spine, hip and

total skeleton. A single scan takes 15-20 minutes and has a radiation dose of

5mRem. DPA has an accuracy of 4-10% and precision of 2-4%, although the

precision is reduced as the source decays (Shaw & Bishop, 1995).

1.6.2iii Quantitative Computed Tomography

Quantitative computed tomography is the only technique that measures true bone

density. It relies on the principle that mineralised tissues absorb ionising radiation to

a greater extent than soft tissue. It can separately measure trabecular and cortical

bone within the spine and is not influenced by vertebral size. Scan takes 10-20

minutes, accuracy of 10-15%, precision 2-4%. It provides a significant radiation
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dose of 1 OOmRem, limiting use in children and longitudinal studies (Shaw &

Bishop, 1995).

1.6.2iv Dual energy x-ray absorptiometry

In dual energy x-ray absorptiometry (DXA) a beam of collimated x-rays are

transmitted from a source to a detector located above the subject, producing a

measure of bone mineral density by correcting the bone mineral content for the

projected bone area. The beam is of higher intensity than DPA and may be more

highly collimated allowing for improved spatial resolution and increased scan speed

(Eastell & Wahner, 1990). The first generation machines took up to 8 minutes to

obtain an image, but this has been reduced to 45 seconds on fan beam machines.

Accuracy and precision is 1-2% and the radiation dose is small at 3-5mRem. DXA

also provides estimates of total lean body and fat mass in all but small infants.

Different machines use different methods of generating the dual-energy source and

this may result in differing estimates ofBMD (Eastell & Wahner, 1990).

SPA, DPA and DXA measure area and do not allow for differences in bone

thickness. Therefore BMD is overestimated in large bones and underestimated in

small bones. An attempt to correct for this has been described, using bone mineral

apparent density which is adjusted for bone volume (Carter et al, 1992).
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1.6.2v Broad band ultrasound attenuation

Broad band ultrasound attenuation of the calcaneum is correlated with total body

bone mineral density. This method uses no ionising radiation but is less sensitive

than DXA. It provides information about bone architecture, and may be a useful

adjunct to radiological techniques of bone density measurement (Mughal et al,

1996).
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1.7 Bone mineralisation in the newborn infant

BMC of the forearm correlates with weight rather than gestation, such that low

birthweight infants have reduced BMC for gestation (Minton et al, 1979; Ryan et al,

1988; Pohlandt & Mathers, 1989). Similarly, total body bone content (TBBC) as

measured by DPA and DXA is related to birthweight, being reduced in the small for

gestational age (SGA) infant (Petersen et al, 1989; Koo et al, 1996; Lapillonne et al,

1997). The appropriate for gestational age (AGA) preterm infant however has a

lower TBBC than the SGA term infant of the same weight.

Extremely low birthweight infants fail to achieve any increment in radial BMC

between birth and 40 weeks PCA, such that at 39 weeks PCA BMC in premature

born infants is 50% of control infants born at term. These infants also fail to exhibit

weight gain and increase in crown-heel length, suggesting that osteopenia is a result

of both reduced growth and reduced density of mineralised bone mass (Horsman et

al, 1989a). However by 65 to 100 weeks PCA there is no difference in BMC

between the premature and term infants, although the preterm group remain

significantly lighter with reduced crown-heel length (Horsman et al, 1989b).

Using whole body DXA, preterm infants have been shown to have reduced TBBC at

term as compared to infants born at full-term, irrespective of dietary

supplementation (Lapillonne et al, 1994; Wauben et al, 1998). By 6 months of age

(3 months post-term) Lapillonne's infants had a TBBC similar to full-term infants at

birth. However, there is a lack of consensus as to whether TBBC as measured by
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DXA should be interpreted in relation to weight-matched or age-matched infants

(Lapillonne & Salle, 1999). In low birthweight infants lumbar spine BMD is more

closely correlated with birthweight than whole body BMD (Ichiba et al, 2001). The

authors found no correlation between lumbar spine BMD and total body BMD at 40

weeks PCA and suggested that in infants less than 4kg lumbar spine BMD is more

suitable than TBBC for serial evaluation of changes in mineralised bone mass, due

to the rapid metabolic turnover of cancellous bone, and the large contribution of the

mineralised bone mass of the skull in low birthweight infants
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1.7.1 Biochemical markers of mineralisation

North American summer-born infants have been shown to have lower radial BMC

than winter-born term infants, in association with elevated osteocalcin and 1,25-

DHCC concentrations (Namgung et al, 1994). Conversely, a study using DXA to

assess total body bone mineral content demonstrated lower TBBC in Korean winter-

born infants despite similar changes in 1,25-DHCC and cord calcium concentrations

(Namgung et al, 1998), similar to findings in adults and older infants. The authors

suggest that these differences may be related to vitamin D deficiency seen in the

Korean mothers, in contrast to the 25-HCC sufficient American mothers.

SGA infants have reduced radial BMC proportional to birthweight as compared to

AGA infants, in association with reduced 1,25-DHCC and OC concentrations

(Namgung et al, 1993). In conjunction with mineralised bone mass, SGA infants

have been shown to have an unexplained elevation of PTH concentration at birth

compared to AGA controls (Minton et al, 1983). They suggest that this may be

detrimental to bone growth, but found a subsequent reduction in serum

concentration over the first 12 weeks of life in both AGA and SGA infants, by

which time the BMC of SGA infants had reached the normal BMC ofAGA infants

at birth.

No differences in carboxyterminal propeptide of type 1 procollagen (PICP) or cross-

linked carboxyterminal telopeptide of type 1 collagen (ICTP) have been shown in

SGA and AGA infants suggesting that reduced BMC in SGA infants is not related to
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altered fetal bone collagen synthesis or degradation, but to mineral supply

(Namgung et al, 1996).

1.7.2 Supplementation

In infants born at term BMC is independent of type ofmilk feeds received in the

first year (Chan et al, 1982). In contrast, breast fed preterm infants are

demineralised at 1 year compared to formula milk-fed infants, although this has

resolved by 2 years of age (Abrams et al, 1989; Schanler et al, 1992). Protein and

mineral fortification of human milk results in improved bone mineralisation and rate

of growth comparable to that achieved with preterm formula (Greer & McCormick,

1988). However, low birthweight infants fed with either fortified human milk or

preterm formula for the first 3 months of life remain significantly demineralised

compared to full-term newborns at birth (Lapillonne et al, 1994).

In a non-randomised study of 74 low birthweight infants (birthweight median 970g,

range 430-1580g) those demonstrating urinary excretion of both calcium and

phosphorus in more than 50% of collected urine samples (n=30) were shown to have

improved humeral BMC, although there were no significant differences in the

amount of calcium and phosphorus received by the two groups (Pohlandt, 1994a).

The authors suggest that individualised mineral supplementation based on urinary

calcium and phosphorus excretion may enhance bone mineralisation in the preterm

infant.
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The Cochrane Library contains 2 reviews pertaining to the assessment of mineral

supplementation of human milk on bone mineral content (Kuschel &Harding, 1998;

Kuschel &Harding, 2001). A review ofmulticomponent fortification of human

milk (Kuschel &Harding, 1998) evaluates the impact of commercially-manufactured

human milk fortifiers against human milk feeding alone. A statistically significant

improvement in bone mineral content is concluded, although the effect is produced

from one larger study, with several smaller studies failing to demonstrate a

difference. In an attempt to isolate the effects of calcium and phosphorus from

multi-nutrient supplementation of human milk in the preterm population (Kuschel &

Harding, 2001), the same authors conclude that there are no randomised controlled

trials eligible for inclusion.

Several studies demonstrate that the low birthweight infant should continue to

receive supplemented feeds after hospital discharge in order to enhance bone

mineralisation. At 16 weeks post discharge infants receiving high calcium

containing formula have increased radial BMC compared to breast-fed infants

(Chan, 1993). Infants fed nutrient-enriched formula feeds after discharge showed

improved radial BMC at 3 and 9 months post term after adjusting for body weight

(Bishop et al, 1993).

Similarly Raupp demonstrated improved mineralisation at 3 months post-term in

preterm infants receiving calcium and phosphorus enriched formula at hospital

discharge (Raupp et al, 1997). In this cohort bone width increment remained greater

in the supplemented group at 6 months, although no significant differences were
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found in radial BMC at this time. Raupp's trial infants received more phosphorus

and calcium, and the control group more calcium than the infants in Bishop's study.

1.7.3 Follow up

The effect of early nutrition on mineralisation in the preterm infant remains difficult

to quantify, with studies providing conflicting conclusions. It has been suggested

that mineralisation in preterm-born children aged 5 months to 15 years is not

influenced by early nutrition, but related directly to birthweight and current weight

(Rubinacci et al, 1993; Kurl et al, 1998). However, a study of the effect of early

nutrition on bone mineralisation in preterm infants at 5 years of age suggests that

maternal milk enhances radial BMC (Bishop et al, 1996).

In the newborn period the infants had all received maternal breast milk and had been

randomly assigned top-up feeds of banked donor breast milk or preterm formula. In

multiple linear regression analysis BMC was positively correlated with the amount

ofmaternal milk received in the postnatal period. The authors suggest that the

reduced mineral content of human milk may "programme" these infants to have

"thrifty" bones such that when exposed to an increased mineral supply "over-

mineralisation" occurs. They found no difference in mean BMC between the 2

groups, or between AGA and SGA infants at 5 years of age.
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A larger follow-up study at 8 to 12 years of age of preterm infants randomised to the

same feed regimens during the neonatal period, found that the differences in BMC

seen at 5 years of age had disappeared. BMC and BMD as measured by both DXA

and radial SPA were related only to body size, and not to early feed regimen. The

preterm children were shorter and lighter, but when corrected for size BMC and

BMD were not different from term controls. Growth retarded preterm infants were

smaller still, but again BMC and BMD remained related to size (Fewtrell et al,

1999). The authors suggest that efforts to increase bone mass during childhood

should be directed towards increasing body size.

A Finnish study found that preterm infants were within control reference ranges for

height, weight and BMC at 6-7 years age. BMC was again related to current weight

and bone area, but a correlation also exists with weight and height at one year of

age, such that prematurely born children who were thinner at one year had higher

BMC at 6-7 years (Kurl et al, 1998).

1.7.4 More than just bones

Early intervention to prevent the onset ofmetabolic bone disease in preterm infants

may have wider implications than the prevention of rickets and fractures.

Dolicocephalic head flattening of preterm infants is influenced by mineral

supplementation and BMC, as shown by a 27% contribution to head shape by

BMC/body weight ratio in preterm infants at discharge (Pohlandt, 1994b).

51



Alterations in head shape may also have an impact on the incidence ofmyopia in the

child born prematurely (Pohlandt, 1994c). As well as reduced BMC measured at

term, dental enamel hypoplasia and hypomineralisation has been described in a

cohort of preterm infants at 3 years PCA when compared to control infants born at

term (Drummond et al, 1992). Osteopenia is also a contributing factor in respiratory

distress (Glasgow & Thomas, 1977) and possibly chronic oxygen dependency.

Several studies have indicated a link between reduced linear growth and reduced

mineralisation in preterm infants. Preterm infants fail to exhibit catch-up growth

comparable to term peers in the first 3 years of life (Casey et al, 1990; Casey et al,

1991).

Biochemical evidence of rickets coexists with reduced short term linear growth.

Infants with high peak AP in the neonatal period were significantly shorter at 18

months (Lucas et al, 1989). They also had significantly lower plasma phosphorus,

urinary phosphorus and higher urinary calcium concentrations, suggesting

phosphorus deficiency. These infants exhibited slower growth rate in the neonatal

period. It has been suggested that although weight gain in preterm infants is related

to energy intake, phosphorus supplementation may influence linear growth (Mize et

al, 1995).
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1.8 Fetal origins of adult disease

The concept ofprogramming was described by Lucas (Lucas, 1991) as a stimulus or

insult acting at a critical or sensitive point in development and resulting in a long

term effect on the structure or function of the organism. Barker (Barker & Osmond,

1992) observed that areas of the UK which currently has high mortality rates from

cardiovascular disease had high infant mortality 50 years previously. The Barker

group began a series of geographical studies exploring this relationship, and a

wealth of epidemiological research has followed, supporting the hypothesis that

poor nutrition and health in the female population results in increased death rates

from cardiovascular disease in their offspring. The most striking relationship was

found between low birth weight and high systolic blood pressure in adult life

(Barker et al, 1990), but relationships between newborn anthropometric

characteristics and non-insulin dependent diabetes (Hales et al, 1991), cholesterol

concentrations (Fall et al, 1992) and coagulation factors (Barker et al, 1992) have

also been explored.

Other researchers have sought to develop Barker's theory by investigating twin pairs

in an attempt to exclude maternal and genetic factors, and focusing on the

birthweight differences of the infants (Dwyer et al, 1999; Poulter et al, 1999).

However, findings have been inconclusive, confounded by small numbers of

monozygotic pairs.
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Although SGA infants appear to be at increased risk of cardiovascular disease in

adult life, the mechanism remains unclear. Epidemiological studies have focused on

birthweight, length, head circumference and placental weight, but largely exclude

gestation as a variable, primarily as accurate information is not available (Wilson,

1999). More recent studies describe the SGA age infant without discriminating

between the growth-restricted infant and constitutionally small infant, although

some authors have controlled for target height (Leger et al, 1997).

Early nutrition appears to play a part in subsequent growth and cognitive function

(Lucas et al, 1990; Sorenson et al, 1997), but larger twin studies are required to

exclude genetic predisposition to adult disease in growth-restricted infants. The

preterm infant provides a unique opportunity to study the programming effect of

early nutrition as they are at a stage of rapid growth and maturation (Morley &

Lucas, 1994).
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1.9 Physical activity and mineralisation

During weight bearing and muscle contraction, minor deformations of bone occur.

These stresses are important in the normal development of bone. The in utero

environment provides a weightlessness and physical containment in flexion in which

the term infant develops muscle tone (Short et al, 1996). Movement in the sick

preterm infant is frequently reduced by the use of analgesics, sedatives and

paralysis. Even the active preterm infant is exposed to a gravitational environment

without containment.

The importance of muscular activity on bone development is supported by the

presence of hypomineralised long bones in newborns with fetal akinesia syndromes

(Rodriguez et al, 1988). In severe cases cortical bone is replaced by cartilaginous

tissue. However in all cases the long bones were thinner than expected; a

phenomenon seen in rickets of prematurity.

In vitro studies in bones of fetal mice has demonstrated increased mineralisation in

bones exposed to minimal physical loading comparable to that produced by muscle

contraction (Van't Veen et al, 1995). A small randomised study in preterm infants

suggests a beneficial effect of passive range-of-motion exercises on both BMC and

weight gain (Moyer-Mileur et al, 1995).
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1.10 Effects of prematurity on cellular control

Potential candidates in the control ofmineralisation in utero include cytokines,

human placental lactogen, human growth hormone-variant and oestrogen.

1.10.1 Cytokines

Cytokines are a diverse group of proteins which mediate autocrine or paracrine

interactions in many tissues. Cytokines are implicated in the control of bone cell

activity and abnormal control of cytokine production may be relevant in the

pathogenesis of adult bone disease. It has been suggested that the effects of the

various cytokines on bone may be dependent on the stage of development of the

skeleton (MacDonald and Gowan, 1992). The role of cytokines in reduced

mineralisation in the newborn infant has not been explored.

Insulin-like growth factors, transforming growth factor-p (TGF-P) and bone

morphogenic proteins (BMPs) stimulate bone formation. Conversely, interleukin-Ia

and p (IL-Ia and P), and tumour necrosis factors a and P (TNFa and p) are potent

stimulators of bone resorption (Gowen et al, 1983; Pfeilschifter et al, 1989), with

interleukin-6 (IL-6) exerting a permissive effect on bone resorption. Both groups of

cytokines stimulate bone cell proliferation, but have opposing effects on mature

osteoblast function, such that TGF-P, IGFs and BMPs stimulate osteoblast function,

whereas IL-Is and TNFs lead to activation of bone resorption and paralysis of local
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bone formation to allow unopposed osteoclast action (MacDonald and Gowan,

1992).

1.10.2 Sex hormones

In postmenopausal women oestrogen has a protective effect on the skeleton. This

effect may be modulated by cytokines, particularly IL-6.

Oestrogen, testosterone and dihydrotestosterone have been shown to inhibit IL-6

production in human and animal models in vitro (Jilka et al, 1992; Girasole et al,

1992; Bellido et al, 1995). Oestrogen loss results in up-regulation of IL-6

production (Passeri et al, 1993). Following loss of sex steroids, the IL-6 knockout

mouse fails to show the expected loss in bone mass (Manolagas, 1998).

In vitro studies in fetal rat metatarsal bones have demonstrated that oestrogen

promotes chondrocyte proliferation with subsequent bone lengthening, whereas

dihydrotestosterone has a greater effect on increasing bone width. A combination of

oestrogen, dihydrotestosterone and progesterone together resulted in less bone

growth but increased calcification (Chamoux et al, 1997).

Evidence for the importance of oestrogen in human fetal bone development is found

in pathological oestrogen deficient states. Oestrogen deficiency due to defects in the

aromatase gene and oestrogen resistance result in abnormalities of bone
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development, including increased bone turnover, reduced bone mineral density and

failure of epiphyseal fusion in both males and females (MacGillivray et al, 1998;

Smith etal, 1994).

During pregnancy high concentrations of fetal, maternal and placentally derived

oestradiol and progesterone are available to the fetus (Tulchinsky et al, 1972). This

supply is disrupted in preterm delivery. A recent study in premature infants

examined the effects of oestrogen and progesterone replacement on bone mineral

accretion in extremely preterm infants. This randomised controlled trial suggests

that postnatal hormone replacement may improve mineralisation in this population

(Trotter et al, 1999).

1.10.3 Growth hormones

The growth hormone-prolactin-related hormones are classified into two categories,

some having primarily lactogenic effects and others having mainly somatogenic

effects. As a group they modulate linear bone growth mediated by the generation of

local and hepatic IGF-1.

During the first 2 trimesters circulating GH is derived from the fetal pituitary gland.

However in the last trimester this is replaced by placental growth hormone or human

growth hormone variant (hGH-V), which is detectable in the maternal circulation

between 21 and 26 weeks and increases to a peak at 36 weeks (Frankenne et al,
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1987). hGH-V is not detectable in the fetal circulation. Maternal IGF-I

concentrations are positively correlated with hGH-V rather than human placental

lactogen (hPL) or pituitary GH (Caufriez et al, 1990). It has been suggested that

hGH-V may influence fetal growth by interfering with the maternal metabolism of

IGF-I or by modulating placental development (Mirlesse et al, 1993).

hPL is secreted by the placenta and is detectable in the fetal circulation. It has low

somatotrophic action, but has a direct action on fetal tissues stimulating IGF-I

production (Handwerger & Freemark, 2000). A role in bone metabolism is

suggested by evidence that 1,25-DHCC stimulates the synthesis and release of hPL

by the placenta (Stephanou et al, 1994).

GH receptors have been demonstrated in a variety of fetal tissues at 14-16 weeks

gestation, but appear to be absent from fetal skeletal tissue and epiphyseal growth

plate (Hill et al, 1992). The appearance of the GH receptor in late gestation may

play a role in the transition from GH-independent fetal growth to GH-dependent

postnatal growth (Handwerger & Freemark, 2000). Conversely the hPL receptor is

expressed widely in the fetus from early in development. Studies of transgenic mice

bearing deletions of the prolactin receptor gene showed delayed ossification and

defects of bone formation persisting into adulthood (Clement-Lacroix et al, 1999).

1.10.4 Preterm delivery

At delivery the preterm infant loses the placental supply of hPL, hGH-V, and

oestrogen. Control of IGF-1 by pituitary GH is insufficient in the extremely preterm

59



infant due in part to lack of receptors, and may have an immediate impact on

growth. The reduction in hPL and oestrogen results in increased IL-6 production,

producing a permissive effect on osteoclastic bone resorption. Postnatally, increases

in vitamin D may influence mineralisation via the effect on oestrogen receptors.

Further studies in animal models will be helpful in clarifying the control of fetal

mineralisation. The regulation of fetal growth changes at delivery (Gluckman,

1989). The preterm infant is not only deprived of the uteroplacental nutritional

supply, but is exposed to a new hormonal environment for which it may not be

prepared.
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2 Methodology

2.1 Cohort study

2.1.1 Introduction

Osteoporosis is a major public health problem, with osteoporotic fractures being

directly related to peak bone mass acquired through skeletal maturation and

subsequent bone mineral losses related to disease states, age and/or menopause. The

optimisation of peak bone mass has been targeted through dietary and exercise

interventions during childhood, however the concept of nutritional programming

suggests that the nutritional and/or hormonal environment in fetal and early neonatal

life may also have long term implications.

Fetal nutrition is dependent on the integrity of the materno-placento-fetal unit. In

placental insufficiency the fetus is at risk ofmineral insufficiency and consequent

reduced mineralised bone mass. It has been suggested that high ionised cord

calcium concentrations in infants of diabetic mothers are responsible for suppressed

parathyroid function (Tsang et al, 1975).

2.1.1i Aim:

To explore the relationship between mineralised bone mass at birth and potential

fetal mechanisms implicated in the control ofmaterno-fetal calcium transport across

the gestational range of viability.
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2.1.1 ii Hypothesis:

In impaired transplacental calcium delivery, PTH production by the fetus is

increased, such that the growth restricted infant will demonstrate elevated cord

blood PTH concentrations, in association with reduced mineralised bone mass

(MBM).
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2.1.2 Patients and Methods

Caucasian infants born at the General Infirmary of Leeds between October 1997 and

July 1999 were considered for inclusion in the study. Infants with suspected or

antenatally diagnosed chromosomal abnormalities or skeletal anomalies were

excluded. Recruitment was targeted at preterm infants and infants who were

expected to be small for gestational age. Appropriately grown term infants were

recruited on an opportunistic basis, with an attempt to include both AGA and SGA

infants in each month of recruitment.

Up to 8 ml of umbilical venous cord blood was taken by a single researcher (AH)

from the placental circulation following delivery of the placenta. The samples were

decanted into 2ml lithium heparin bottles and centrifuged within 15 minutes (by

AH). The plasma was then separated, frozen at -70 °C, and stored for later analysis

ofPTH. Paired venous and arterial umbilical cord samples were taken on a cohort

of babies.

Following informed written parental consent forearm bone images were taken by

portable single photon absorptiometer within 5 days of birth, and stored for analysis

at the completion of the study period.

A structured standard form designed for obstetric note abstraction (McKinney et al,

1997) was modified and completed from the maternal hospital and patient-held

records where available (Appendix C). Information collected included the first
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antenatal visit, illnesses in pregnancy, ultrasound scans, labour record, delivery and

neonatal details. The diagnosis of pregnancy induced hypertension was accepted

where designated by the obstetrician as a reason for admission or delivery. Placental

abnormality was used in all cases where the description of the placenta deviated

from the designation of normal. All information was entered into Microsoft Access

for Windows database designed by the Paediatric Epidemiology Group at Leeds

General Infirmary.

Ethical approval was granted by General Infirmary at Leeds Ethical Committee.

Parental consent was obtained prior to bone measurements, but anonymised blood

samples were analysed without consent on the approval of the Hospital Ethical

Committee.
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2.1.3 Parathyroid hormone

PTH was assayed using the Nichols Advantage Chemiluminescence Intact

Parathyroid Hormone Immunoassay (Nichols Institute Diagnostics, USA), an

automated method.

The assay detects intact PTH using two goat polyclonal antibodies. One of the

antibodies is coupled to biotin (39-84 segment) and the second is labelled with

acridinium ester for detection (N terminal 1-34 sequence); the 2 antibodies

sandwiching the intact PTH molecule. Following initial incubation of the plasma

sample and labelled antibodies, streptovidin coated magnetic particles are added.

These bind the PTH-antibody complex via the high-affinity interaction between

biotin and streptovidin. Aspiration of the reaction mixture and subsequent washing

separates the bound from free labelled antibody.

Hydrogen peroxide and sodium hydroxide are added, oxidising the acridinium ester.

This leads to emission of light which is quantified and expressed in relative light

units by the integrated luminometer. The amount of labelled antibody is directly

proportional to the concentration of intact PTH in the sample. The automated

system calculates test results from the stored calibration curve.

Precision at 8 pg/ml is 6.7% CV (expressed as 90% confidence level for variance).

Interassay variation at 34 pg/ml is 9%. The reference ranges for the assay are 11 to
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55 ng/L, such that the lower limit of detectability of the assay is 10 ng/L, and >55

ng/L is regarded as a high concentration.

2.1.4 PTHrP

PTHrP assay was performed by Dr W Fraser, University of Liverpool (Fraser et al,

1993). Cord blood samples were collected into 2cc collection tubes containing

protease-inhibitors, spun, separated and frozen within 30 minutes of collection. The

samples were stored at -70°C until completion of the study when they were

packaged on ice and sent to the University of Liverpool for analysis.

Since the original publication (Fraser et al, 1993), the assay has been refined to a

detection limit of 0.3-0.5 pmol/L, with the upper limit of normal considered to be

1.8 pmol/L (Personal communication Dr W Fraser).
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2.1.5 1,25 dihydroxycholecalciferol

1,25-DHCC was assayed using the IDS Gamma-B kit (Immunodiagnostic systems

• 19S •

Ltd, UK) by immunoextraction followed by quantitation by I radioimmunoassay.

Serum samples are delipidated using a solution of dextran sulphate and magnesium

chloride, and incubated for 3 hours with highly specific solid phase monoclonal anti-

1,25-DHCC to extract 1,25-DHCC. The immunoextraction gel is then washed and

the purified 1,25-DHCC eluted into glass assay tubes.

The samples are incubated overnight with highly specific 1,25-DHCC sheep anti-

1,25-DHCC.125I-l,25-DHCC is added for a further 2 hours incubation. Separation

of bound from free is achieved with short incubation with Sac-Cel (anti-sheep IgG),

followed by centrifugation, decanting and counting. Bound radioactivity is

inversely proportional to the concentration of 1,25-DHCC. Intraassay variation is 5-

8%, sensitivity (mean minus 2sd of 10 replicates) of 5pmol/l and 100% specificity

for 1,25 vitamin D3 and 94% for 1,25 vitamin D2.
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2.1.6 Single photon absorptiometry

For the purposes of the clinical studies, BMC and area normalised BMD were

measured using a portable single photon absorptiometer, specifically designed for

use in preterm infants (Truscott 1996). This scanner produces a measurement of

mineralised bone mass of the infant forearm in both the extremely-low birthweight

population and the ventilated infant, permitting data collection in the first few days

of life in these high risk populations, an advantage over DXA scanning.

Images were taken at the midpoint of the right radius wherever possible. This point

was determined using the formula

d = 0.391 xDu+ 1.19

where d is the separation of the midpoint of the radius from the radial styloid

process and Du is the distance between the distal styloid process and the proximal

tip of the olecranon, measured in millimetres (James et al, 1986).

Du and d were measured using perspex calipers and the midpoint marked on clear

clinical tape (Blenderm, 3M, USA).

The system has previously been shown to produce forearm BMD at the distal radius

ranging from 43 to 115 mg/cm in babies aged 23-41 weeks post-conceptional age

(Truscott 1996). Linearity has been demonstrated using aluminium foils. The

absorbed radiation dose to skin is 6uSv.
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2.1.6i Bone mineral density

Area-normalised BMD of the radius is estimated from the 2-dimensional bone

image by lining up the cursor along the axis of the radius, with the base of the T-bar

at the fiduciary mark (Figure 4). This offsets the centre of the ROI 10mm from the

fiduciary mark. The cursor is then rotated 90°, and the length of the ROI box

adjusted to match the width of the radius. The edges of the radius are confirmed

using the profile ofbmc/pixel (Figure 5). Box width is maintained at 38 pixels

(2mm). Both radial width and areal density within the ROI are obtained.
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Figure 4: Image of forearm bones; cursor positioned for BMD measurement

Figure 5: Image of forearm bones; alignment for BMD measurement



2.1.6ii Bone mineral content

BMC of a 1mm section ofmid-radius and ulna is estimated at the mid-radial point.

The cursor is lined up along the axis of the 2 bones with the base of the T-bar at the

fiduciary mark (Figure 6). This offsets the centre of the ROI 10 mm from the

fiduciary mark. The cursor is then rotated 90°, and the length of the ROI box

adjusted to extend beyond the radius and ulna (Figure 7). Box width is maintained

at 19 pixels (1mm). Bone mineral content of the 2 bones (and soft tissue) within this

area is obtained.
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Figure 6: Image of forearm bones; cursor positioned for BMC measurement

Figure 7: Image of forearm bones; alignment for BMC measurement
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2.1.7 Statistics

As a pilot study, Dr P Holland measured PTH in cord blood of a small number of

preterm infants. The mean PTH in SGA infants was 34 pg/ml (4 infants, gestation

27-31 weeks, PTH range 25-54 pg/ml). In AGA infants PTH was undetectable at

<10pg/ml (4 infants, gestation 30-38 weeks). Because the AGA group of infants all

had PTH levels below the limit of detectability (<10 pg/ml), an s.d. was estimated

for the power calculation, following discussion with a statitician (Darren

Greenwood). Given the range in the SGA group, 20 was considered to be a

generous, but realistic figure.

To detect a difference in mean PTH concentrations between SGA and AGA infants,

assuming a mean of 10 and 34 and a standard deviation of 20, a study with 90%

power at a significance level of 5% would require a sample size of 15 in each group.

However, in order to perform multiple regression analysis a larger sample size was

targeted, with the aim to recruit 150 infants.

Independent t-tests were performed to determine the effect of each of independent

variables thought to influence mineralised bone mass: sex of infant, maternal

smoking, antenatal dexamethasone, caesarean section, spontaneous onset of labour,

pregnancy induced hypertension, absent/reversed end diastolic flow on one or more

doppler ultrasound scans, and placental abnormality, on each of the three dependent

variables BMC, BMD and RW separately.
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Pearson's correlation was performed on each of the continuous variables:

birthweight, gestation, birth centile, maternal weight and height at booking, maternal

systolic and diastolic blood pressure at booking, and the three dependent variables

separately.

For each of the dependent variables a final model predictive equation was generated

by linear regression analysis using backward elimination. Independent variables

were weight, gestation, caesarean section, placental abnormality, PTH, spontaneous

onset of labour, pregnancy induced hypertension and maternal smoking. BMC and

BMD models used regression through the origin (no-intercept model).

Mann-Whitney and Kruskal-Wallis tests for non-parametric data were used for

analysis ofPTH concentrations in relation to BMC, BMD and RW.

Statistics were performed using Statistical Package for Social Sciences (SPSS)

version 9.0 for Windows. SAS system was used for regression analysis when non-

dichotomous categorical data was included (PTH).
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2.2 Randomised controlled trial of individualised calcium and

phosphorus supplementation

2.2.1 introduction

Previous studies have demonstrated that bone mineralisation at birth is related to

weight. Postnatally, the preterm infant fails to demonstrate in utero mineral

accretion rates, despite the provision of comparable quantities of calcium and

phosphorus either enterally, or parenterally.

Plasma calcium concentrations are maintained at the expense of calcium deposition

within bones, such that monitoring plasma calcium concentrations alone is an

unreliable measure of calcium requirements. In calcium deficiency states urinary

excretion of calcium will be reduced, with high phosphorus losses due to

hyperparathyroidism, leading to reduced plasma phosphorus concentrations.
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2.2.1 i Aim:

To examine the effect of individualised calcium and phosphorus supplementation on

bone growth and mineralised bone mass of the radius in preterm infants, using the

portable single photon absorptiometer.

2.2.1 ii Hypothesis:

A personalised mineral supplementation regimen based on routine plasma and urine

calcium and phosphorus concentrations promotes mineralised bone mass in the

preterm infant, such that bone mineral content is increased at term by 20% in those

receiving individualised mineral supplementation.
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2.2.2 Patients and Methods

2.2.2i Setting

Peter Congdon Neonatal Unit between November 1997 and October 1999.

2.2.2ii Population

Infants below 32 completed weeks gestation and of birthweight less than 1800g, less

than 96 hours of age, born to Caucasian parents. Infants with chromosomal

anomalies, skeletal abnormalities or primary gastrointestinal pathology were

excluded. Infants in whom transfer to another unit prior to discharge home, and

infants in whom survival was precarious in the first days of life were also excluded.

Infants subsequently requiring surgical intervention were subsequently managed by

the surgical team and were therefore removed from the study.

There was no process in place recording the total number of eligible infants for the

study and the reasons for non-recruitment.

2.2.2iii Consent

Informed written parental consent was obtained by the researcher (AH).

2.2.2iv Randomisation

Infants were randomised using sealed opaque envelopes to the control or study

groups. Randomisation was performed by table of random numbers, in advance of

study commencement by AH, in blocks of four and six, stratified for gestation as

less than 28 completed weeks and equal to or above 28 completed weeks. All
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aspects of randomisation, including enrolment of patients, group assignment and

storage of randomisation envelopes and study records was carried out by AH.

2.2.2v Primary Outcome

Bone mineral content of radius and ulna at 40 weeks PMA

2.2.2vi Secondary Outcomes

Bone mineral areal density and radial width at term; BMD, RW and BMC at 64

weeks PMA; alkaline phosphatase concentrations.

2.2.2vii Confounding variables

The following potentially confounding variables were included: parental and enteral

intake, ventilation parameters, medications.

2.2.2viii Data sampling

Plasma and urinary calcium, phosphorus and creatinine concentrations were

measured weekly along with plasma alkaline phosphatase by the department of

biochemistry. Plasma samples were taken as part of routine clinical monitoring and

were drawn by technicians as capillary samples or by medical staff from an

indwelling arterial line when present.

Details were taken from the medical and nursing records on all respiratory support,

drugs administered, weekly weight (measured on seca model 724 or 727), and any

medical complications (Appendix C). Forearm bone images were obtained within

the first week of life and 4 weekly thereafter until discharge from the neonatal unit.
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A cohort of these infants had further measurements taken after 56 weeks PMA.

Images were analysed primarily for radial and ulnar BMC, and also for RW and

BMD.

Regular Xrays were not included as part of the study protocol.

2.2.2ix Study design

Infants randomised to the control arm received the neonatal unit protocol ofmineral

supplementation at the discretion of the neonatal unit medical staff, following

guidelines (Bremer et al, 1987). Local recommendations suggested that

intravenously fed infants were commenced on 0.7 mmol/kg/day each of both

phosphorus and calcium added to parenteral nutrition; enterally fed infants received

supplementation when plasma phosphorus concentration fell below 1.6 mmol/1 and

plasma calcium concentration below 2.2 mmol/1.

Infants randomised to the study group received mineral supplementation based on

plasma concentrations of phosphorus and calcium, and urinary calcium excretion

and renal tubular absorption of phosphorus. Phosphorus supplementation was

adjusted weekly to maintain a plasma phosphorus concentration of >2.0 mmol/1 and

a tubular resorption of phosphorus < 95%. Calcium supplementation was adjusted

weekly to maintain plasma calcium concentration within the range 2.2-2.6 mmol/1

with a urinary calcium excretion > 0.3 mg/100 ml glomerular filtrate. All infants on

full enteral feeds received 400 IU/day of vitamin D as abidec (Appendix F).
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Calcium and phosphorus were added to parenteral feed solution as calcium

gluconate and potassium glycerophosphate, to a maximum of 1.5 mmol/kg/day

calcium and 2.0 mmol/kg/day phosphorus. Where appropriate, oral supplements

were commenced at one week of age or when tolerating at least half the daily

volume requirement by enteral route. Phosphorus was given as potassium phosphate

17.42% commencing 2 mmol/day in 2 divided doses, and increasing to 3 mmol/day

in divided doses. Supplements were reduced by half to a minimum of 1mmol/day

prior to discontinuation when the criteria for supplementation were no longer met.

Calcium was prescribed as calcium sandoz (0.54 mmol/ml) commencing at 0.5

mmol/kg/day, increasing to a maximum of 1 mmol/kg/day, reducing to a minimum

of 0.5 mmol/kg day prior to discontinuation. All supplements were prescribed on

the patient's medication chart and administered by the nursing staff as boluses via

nasogastric tube, with calcium and phosphorus supplements prescribed at different

times of day and administered immediately prior to bolus feeds. All prescriptions

were written by AH. Infants who were unable to tolerate enteral feeds for a period

of 10 days or more received parenteral nutrition throughout that time.

Decisions regarding commencement of feeds and the type of feed were made by the

neonatal unit staff, incorporating parental preference. All parenteral and enteral

feeds were recorded until the infant was 40 weeks PMA, discharged from the

neonatal unit or receiving primarily breast feeds.
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2.2.2x Data Collection

All information was entered into Microsoft Access for Windows database designed

by the Paediatric Epidemiology Group at the University of Leeds.

2.2.2xi Blinding

There was no blinding of study and control groups from the researcher (AH).

Extraction ofBMC, BMD and RW from archived images was performed by JT who

was blind to group allocation.

2.2.2xii Laboratory Methods

Plasma and urinary calcium and phosphorus concentrations were assayed using

automated methods, by the department of clinical biochemistry. Calcium was

carried out by o-cresolphthalein complexone method (Roche Ltd, Welwyn Garden

City, Hertfordshire) and phosphorus by ammonium molybdate method (Roche).

Plasma and urinary creatinine was assayed by Jaffe method (Roche) and alkaline

phosphatase by p-nitrophenyl phosphate/DEA buffer method (Roche).

2.2.2xiii Ethical approval

Ethical approval was granted by General Infirmary at Leeds Ethical Committee.
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2.2.3 Statistical Methods

Power calculations were based on previous studies of BMC in term and preterm

infants (Horsman et al, 1989a). The mean BMC at 30 weeks gestation in preterm

babies being 80 mg/cm and reaching 81 mg/cm (s.d. 15.9) at 38 weeks, compared

with term infants of 187 mg/cm (s.d. 24.7) at birth. A study with 90% power at the

5% significance level would need to recruit 21 infants into each arm to show a 20%

difference (1 s.d.) at term in BMC (mui=81, mu2=97, sigma=l 5.9). On statistical

advice (DG) we aimed to recruit 48 infants.

Statistical analysis was performed using Statistical Package for Social Sciences

(SPSS) version 9.0 for Windows. Paired and non-paired t-tests were used for BMC,

BMD and RW, plasma calcium and phosphorus concentrations. The non-parametric

Mann-Whitney test was used for protein, carbohydrate, fat, calcium, phosphorus and

vitamin D intake, TRP, and Cae. Fisher's Exact test and Chi-squared test were used

for categorical data.
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3 Results of Cohort study

3.1 Single photon absorptiometer

3.1.1 Coefficient of variation

Repeated measurements were taken on 20 images selected randomly, and the

coefficient of variation (CV) calculated for BMC and BMD using 3 measurements

(Bland M, 1997). CV = 3.4% (0.33mg) for BMC, 4.4% (4.0mg/cm2) for BMD and

2.9% (0.036 cm) for RW.

Reproducibility ofBMC and BMD was assessed using measurements from 21 pairs

of images taken following repositioning of the forearm within the cradle. CV of

BMC is 10.9% (1.7 mg), BMD 11.5% (13.7 mg/cm2) and RW 14.3% (0.089 cm)

(Bland M, 1997).

3.1.2 Loss of images

The edges of the bone were determined using the profile of bmc/pixel in an attempt

to remove observer error. In small infants the profile produced distinct edges which

were easy to identify. In larger infants the interosseous membrane and tendons

produced an image incompletely distinct from bone, potentially leading to error in

the measurement ofBMD and RW. For each image 3 estimates ofBMD were

taken. The first measurement was taken from the best estimate, with 2 subsequent
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measurements taken at 2 pixels wider and 2 pixels narrower than the best estimate.

The mean of these 3 measurements was taken as BMD.

Some images were not suitable for interpretation due to movement artefact during

imaging, and these were discarded for both BMC and BMD. In some small infants

overlapping of the radius and ulna occurred at the midpoint, preventing

interpretation ofBMD measurements. In these infants only BMC of the combined

radius and ulna were used.
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3.2 Patient characteristics

Structured questionnaires were completed on 99 infants. All questionnaires were

completed from maternal notes to avoid bias in recollection. However, some notes

were incompletely available from referring hospitals, or had not been completed

during pregnancy. Not all mothers had undergone detailed antenatal ultrasound

scans providing information on umbilical or uterine artery blood flow. All infants

were bom to Caucasian mothers.

Bone images were taken on all 99 infants and were available for BMC on 92 and

BMD on 88. On one infant the image failed to save to the archive, and in 6 infants

movement artefact causing indistinct edges to the radial image prevented estimation

ofBMC. Overriding of radius and ulna at the midpoint prevented BMD estimation

of 10 images (Figure 8). Data on how many parents were approached for inclusion

in the study and did not consent was not collected.

t
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Figure 8: Bone images of infants recruited
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Gestational age as determined by maternal menstrual dating were within 2 weeks of

gestational age by ultrasound scan before 15 weeks where available. Gestation

ranged from 23 to 41 completed weeks, mean 33.4 weeks, standard deviation 4.6.

Birthweight ranged from 0.540 to 4.975 kg, mean 1.935 kg (0.887). 59 infants were

preterm (<37 weeks) and 71 were low birth weight (<2.5 kg). 32 infants were SGA

(<10th centile; Freeman et al, 1995).

BMC ranged from 0.3 to 44.0 mg. BMD ranged from 9.8 to 183.0 mg/cm , and was

measured only in infants with birthweight 0.540 to 4.520 kg. All infants with BMD

measurements had RW estimated.

Archived images
98
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Samples were acquired for PTH 60 infants. In 38 of the infants parents consented

for BMC measurement. A further 22, declined to have bone images taken or were

discharged home within 6 hours of delivery such that images were unable to be

obtained (Figure 9). Cord blood was drawn on an opportunistic basis by the single

researcher (AH) due to the necessity to spin and separate the samples immediately.

Where cord blood samples had been insufficient or were not obtained at delivery,

parents were subsequently approached for BMC measurements, accounting for 54

infants on whom PTH was not measured.

Figure 9: Parathyroid analysis of recruited infants

Consent Cord blood
99 60

PTH & BMC 38

(SGA=9)

BMC, BMD and RW were correlated with birthweight; BMC r=0.847, BMD

r=0.752, RW r= 0.682 (Figures 10,11,12); and gestation, BMC r=0.706, BMD

r=0.662, RW r=0.663. pO.OOl for all correlations. Statistically significant
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differences were found in BMC, BMD and RW between infants whose mothers had

received antenatal dexamethasone and those who had not, p<0.001 for all variables,

with the administration of steroids being associated with reduced mineralised bone

mass. Significant differences were also found in lower RW in those infants who had

been delivered by caesarean section (p=0.021), and those with placental abnormality

(p=0.043).

Absent or reversed end-diastolic doppler flow (EDF) was associated with a

significant reduction in BMC (p=0.042) and BMD (p=0.038), but not RW

(p=0.077). No significant correlation was found between BMC, BMD or RW and

maternal booking weight, height, systolic or diastolic blood pressures. Sex of infant,

maternal smoking, diagnosis of pregnancy induced hypertension (PIH) or

spontaneous onset of labour (SOL) was not related to BMC, BMD or RW (Table 1).
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Table 1: Effect of independent variables on BMC, BMD and RW

n

BMC

n

BMD BMC* BMD* RW*

Sex of infant 92 88 0.320 0.335 0.873

Antenatal dexamethasone 59 53 <0.001 <0.001 <0.001

Caesarean section 73 68 0.073 0.176 0.021

Placental abnormality 70 65 0.170 0.424 0.043

Spontaneous onset of labour 74 69 0.249 0.263 0.592

Pregnancy induced hypertension 74 69 0.880 0.590 0.491

Absent/reversed end diastolic flow 74 69 0.042 0.038 0.077

Maternal smoking 61 59 0.134 0.405 0.832

*p-value, independent t-test
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3.3 Linear Regression

Complete data sets including weight, gestation, caesarean section, placental

abnormality, spontaneous onset of labour, pregnancy induced hypertension and

maternal smoking were available on 72 infants. Addition ofPTH to the model

reduced the dataset to 38 infants (Figure 9). In each model, all maternal factors

were excluded at 0.1 level, leaving only birthweight in the final models for BMC,

BMD and RW, with beta coefficients as shown in Table 2. Regression through the

origin produced good fit for BMC and BMD. Regression equations were derived

using beta values, and for RW a constant:

BMC (mg) = 6.371 x birthweight (kg)

BMD (mg/cm2) = 48.788 x birthweight (kg)

RW (cm) = 0.356 + 0.08 x birthweight (kg)

Table 2: Regression coefficients for mineralised bone mass and birthweight

n Constant Beta 95% CI r2 p value

BMC 92 6.371 5.975/6.767 0.918 p<0.001

BMD 88 48.788 45.83/51.746 0.925 p<0.001

RW 88 0.356 0.08 0.065/0.104 0.465 p<0.001
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Figure 10: Bone mineral content and birthweight

BMC (mg) = 6.371 x birthweight (kg)
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Figure 11: Bone mineral density and birthweight

BMD (mg/cm2) = 48.788 x birthweight (kg)
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Figure 12: Radial width and birthweight
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As birthweight had a massive effect on bone mass, it was subsequently excluded

from the model to examine effects of the other variables. Using backward

elimination, the general linear model for BMC excluded maternal smoking, PIH,

absent or reversed EDF, sex of infant, delivery by caesarean section and

spontaneous onset of labour, leaving antenatal dexamethasone and placental

abnormality in the model (Table 3).

Table 3 :General linear model for BMC

Included variables Excluded variables
beta P P

Dexamethasone -5.45 0.001 Maternal smoking 0.467
Placental abnormality -4.93 0.004 PIH 0.549
Constant 15.715 <0.001 Absent/reversed EDF 0.544

Sex 0.429
C-section 0.803
Labour 0.434

Similarly for RW, antenatal dexamethasone and placental abnormality remained in

the model, excluding maternal smoking, PIH, absent or reversed EDF, sex of infant,

delivery by caesarean section and spontaneous onset of labour (Table 4).

Table 4: General linear model for RW

Included variables Excluded variables
beta P P

Dexamethasone -0.084 0.003 Maternal smoking 0.158
Placental abnormality -0.087 0.006 PIH 0.096
Constant 0.578 <0.001 Absent/reversed EDF 0.994

Sex 0.338
C-section 0.726
Labour 0.588
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The model for BMD excluded only maternal smoking, PIH, absent/reversed EDF

and delivery by caesarean section. Significant predictors were antenatal steroids,

placental abnormality, spontaneous onset of labour and sex of infant (Table 5).

Table 5 :General linear model for BMD

Included variables Excluded variables

Dexamethasone
Placental abnormality
Labour
Male sex

Constant

beta p
-45.72 <0.001 Maternal smoking
-21.54 0.030 PIH
-19.68 0.029 Absent/reversed EDF
18.635 0.039 C-section
131.08 <0.001

0.783
0.805
0.529
0.375

P

However, there was a significant difference in birthweight between those infants

born to mothers who received antenatal dexamethasone and those who did not,

p<0.001 (Figure 13), suggesting that the effect of antenatal steroids was a

birthweight phenomenon. There were no differences in birthweight between the

groups when analysed by delivery after spontaneous onset of labour (p=0.10),

placental abnormality (p=0.126), or sex of infant (p=0.652).
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Figure 13: Birthweight and administration of antenatal steroids
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3.4 Parathyroid hormone

60 venous cord blood samples were obtained and analysed for PTH, on infants of

birthweight 0.580 to 4.975 kg and gestation 26 to 41 weeks. All infants were
Caucasian.

Very high PTH concentrations were found only in low birthweight infants (Figure

14).

Paired venous and arterial samples were obtained in 10 of the larger term infants and

run for PTH only. In all arterial samples, PTH was below the detection limit of

lOng/L, as were the corresponding venous samples. Duplicate samples were not

available on smaller infants due to the size of the umbilical cords.

As birthweight is related to BMC and BMD, high PTH concentrations were also

seen in those infants with low radial BMD and low forearm BMC. Only 3 infants of

gestational age 37 weeks and over had PTH >10 (11, 15,17 ng/L). Many of the term

infants had concentrations below the lower limit of detectability (<10 ng/L),

therefore the PTH data is treated as categorical, using the reference ranges to divide

the categories into <10 ng/L, 11-55 ng/L, and >55 ng/L.
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Figure 14: PTH and birthweight

CD

sz
D)
d)
5
JZ
•c
in

Gestation (weeks)

Categorising PTH into <11 (group 1, n=44), 11-55 (group 2, n=12) and >55 ng/L

(group 3, n=4), there is a significant difference in birthweight between group 1 and 2

(p=0.03) and group 1 and 3 (p=0.012), with high PTH seen in low birthweight

infants (Figure 15).

There is also a significant difference in gestation between groups 1 and 2 (p=0.046)

and groups 1 and 3 (p=0.015), with high PTH in low gestation infants (Figure 16).

However, there is no relationship between PTH concentration and birthweight

centile (Figure 17).
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BMC and BMD are linearly related to birthweight, however the difference in BMC

(Figure 18) and BMD (Figure 19) was only significant between groups 1 and 3:

BMC p=0.017, BMD p=0.020.
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Figure 15: Parathyroid hormone and birthweight
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Figure 16: Parathyroid hormone and gestation
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Figure 17: Parathyroid hormone and birthweight centile
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Figure 18: Parathyroid hormone and bone mineral content
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Figure 19: Parathyroid hormone and bone mineral density
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3.4.1 Parathyroid hormone and pregnancy-induced hypertension

A significantly increased incidence ofPIH is seen in infants with elevated PTH

concentrations, Fisher's Exact test p=0.008 (Table 6, Figure 20), although only 4%

of infants were born to mothers diagnosed as having PIH. In all infants there was no

statistical difference in birthweight between those born to mothers with and without

a diagnosis ofPIH (n=99, p=0.194; Figure 21). Similarly, there was no difference in

birthweight between those born to mothers with and without a diagnosis ofPIH in

the subgroup of infants on whom PTH was analysed (n=38, p=0.517; Figure 22).

However, the 95% confidence intervals are wider in those born to mother's with PIH

reflecting the lower birthweight infants in that group.

Table 6: PTH concentrations and pregnancy-induced hypertension

PTH PIH

<10
10-55
>55

26
5
3
34

no yes
0
3
1
4
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Figure 20: Pregnancy-induced hypertension and birthweight

° no
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Figure 21: Birthweight and pregnancy-induced hypertension (aii infants)

Diagnosis of pregnancy-induced hypertension
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Figure 22: Birthweight and pregnancy-induced hypertension (PTH measured)
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3.4.2 Parathyroid hormone and season of birth

PTH concentrations were analysed according to month of birth. Concentrations

below the limit of detectability were assigned the value 5ng/L for data handling.

There was no significant difference between median PTH and season of birth,

Kruskal-Wallis p=0.132 (Figure 23).

Figure 23: PTH and month of birth
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3.5 PTHrP

Cord blood was assayed for PTHrP concentrations on 18 infants on whom excess

venous blood was opportunistically obtained. Birthweight ranged from 0.720 to

4.975g and gestation 26 to 41 weeks. PTHrP concentrations ranged from 0.35 to

0.95 pmol/L, with Normal distribution, mean 0.55 pmol/L, s.d. 0.17.

PTHrP does not correlate with birthweight, birthweight centile, gestation. PTH

concentrations, BMC or BMD. There was no relationship to antenatal steroid

administration, pregnancy-induced hypertension, delivery by caesarean section,

maternal smoking, absent end diastolic doppler flow or placental abnormality.

Figure 24: PTHrP concentrations and bone mineral content
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Figure 25: PTH and PTHrP concentrations
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3.6 1,25-dihydroxyvitamin D

Cord blood was assayed for 1,25-DHCC concentrations on 48 infants ranging from

birthweight 0.720 to 4.975g and gestation 26 to 41 weeks, with Normal distribution,

mean 86.5 pmol/L, s.d. 27.09.

1,25-DHCC did not relate to birthweight (Figure 26), birthweight centile, gestation,

BMC, BMD or PTH concentration. The infants with high PTH values had low 1,25-

DHCC concentrations but this was not statistically significant (Figure 27).

109



Figure 26:1,25-dihydroxycholecalciferol and birthweight

Birthweight (kg)

Figure 27: PTH and 1,25-dihydroxycholecalciferol
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4 Results of randomised controlled trial

26 infants were recruited to the study between November 1997 and October 1999.

Only parents of inborn infants with local addresses were approached for consent,

excluding those who were likely to be transferred to other hospitals prior to

discharge home. Permission from the attending medical team was sought on infants

less than 25 weeks completed gestation who were unstable in the first days of life

prior to approaching the parents, excluding some extremely low birth weight infants

from the study (numbers not recorded). Some of these infants not approached for

consent due to early complications of extreme prematurity subsequently died.

Parents of two infants who remained eligible declined participation in the study.

On commencement of the study it was anticipated that infants would be recruited at

a rate of 20 per year, allowing achievement of the target of 48 infants by March

2000, during which time the clinical researcher (AH) was available. During the time

period of the study, the admission profile to the neonatal unit changed, reducing the

number of preterm infants admitted to the tertiary referral centre in favour of infants

with complex surgical and cardiac anomalies. In October 1999, radio-active iodine

(I ) manufacture ceased in the UK and a replacement source for the scanner could

not be obtained, necessitating early termination of the study.

13 infants were randomised each to trial and control groups. One infant (trial group)

was prematurely discharged from the neonatal unit and was excluded from the

analysis. One infant (control group) developed necrotising enterocolitis with
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perforation and was excluded from further data collection at 7 weeks of age (33

weeks PMA). 2 infants died (control group); one at 39 weeks PMA in the neonatal

unit, and one at 40 weeks PMA following discharge from the neonatal unit.

Overriding of radius and ulna at the midpoint prevented estimation ofBMD and RW

in 3 infants at birth (1 trial, 2 control) and 2 trial infants at term. In one trial infant

the image was unusable due to movement artefact, and in one control infant at term

the bone image was indistinct, preventing measurement ofRW. In this infant BMC

and BMD were designated zero.

Of the remaining 22 infants, 14 reached 64 weeks PCA within the study period,

ending in November 1999. Bone measurements were made on 11 of these: 5 trial, 6

control. The remaining 3 infants were discharged from hospital follow-up prior to

64 weeks PCA (all trial group). 8 infants were recruited late in the study period

such that the study ended before reaching 64 weeks PCA (4 trial, 4 control). 1

image (trial group) was lost from the archive and was not included in the analysis

(Table 7).

Analysis was made on an intention-to-treat basis.
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Table 7 : Details of infants entered into study

Control Trial Total

Recruited 13 13 26

Excluded prior to 1 discharged from 1

entry NICU
Entered 13 12 25

Excluded prior to 1 excluded for NEC 1
term and bowel resection

Completed (term) 12 12 24

Excluded prior to 2 died 3 discharged from 6
64 weeks PMA follow-up,

1 lost to F/U
Recruited late, 4 4 8

study ended
Completed (>64 6 4 10
weeks PMA)
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4.1 Characteristics of trial and control groups

Trial and control groups were comparable at entry in terms of birthweight, gestation,

BMC, BMD and RW (Table 8).

Table 8: Details of trial and control groups

Trial (n=12) Control (n=13) p value
Birthweight (kg) 1.21 (0.11) 1.20(0.07) 0.94
Gestation (weeks) 28.9 (0.52) 28.4 (0.45). 0.60
Male/female 5/7 10/3 0.85
Initial BMC (mg) 7.4 (1.19) 7.1 (1.36) 0.54

n=12 n=13
Initial BMD (mg/cm2) 80.2 (11.05) 71.2(9.25) 0.73

n=11 n=11
Initial RW (cm) 0.42 (0.029) 0.43 (0.030) 0.85

n=11 n=11

Mean (sem)
n: number of infants included in analysis

4.1.1 Parenteral and enteral intake

Intravenous intake was analysed over the first 4 weeks of life. This included

parenteral nutrition and IV dextrose/saline solution. There was no significant

difference in carbohydrate, protein, fat, phosphorus or calcium received from IV

fluids by the trial and control groups (Table 9). Some infants received no IV

nutrition.
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Enteral nutrition was analysed over the first 5 weeks of life. The trial group

received more enteral phosphorus over the first 5 weeks (p=0.037) and had a

significantly lower TRP (p=0.002) (Figure 28). Can was not significantly different

between the two groups (Figure 29). There was no difference in enteral

carbohydrate, protein, lipid, calcium, vitamin D intake (Table 10). Without making

assumptions about percentage of gastrointestinal absorption which may have

differed due to varying absolute amounts ofminerals, it was not possible to combine

parenteral and enteral intake between the 2 groups.
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Table 9: Daily parenteral intake in trial and control groups by week of age

Week 1

Trial Control
n=12 n=13

Week 2

Trial Control
n=12 n=13

Week 3

Trial Control
n=12 n=13

Week 4

Trial Control
n=12 n=13

Calcium (mmol) 0.56 0.65 0.38 0.54 0.32 0.28 0.20 0.23

(0.06) (0.06) (0.12) (0.09) (0.11) (0.10) (0.09) (0.09)

Phosphate (mmol) 0.35 0.59 0.49 0.57 0.38 0.24 0.25 0.19

(0.11) (0.08) (0.19) (0.13) (0.18) (0.10) (0.18) (0.10)

Lipid (g) 0.70 0.88 1.04 1.36 0.83 0.63 0.36 0.59

(0.24) (0.14) (0.39) (0.38) (0.39) (0.30) (0.26) (0.35)

Protein (g) 0.75 1.09 0.83 1.15 0.58 0.52 0.29 0.4

(0.23) (0.15) (0.29) (0.27) (0.26) (0.22) (0.20) (0.25)

Carbohydrate (g) 9.3 10.7 5.5 8.8 4.8 4.7 3.4 4.7

(0.7) (0.8) (1.7) (1.5) (1.7) (1.7) (1.4) (2.0)

mean (sem)

Table 10: Daily enteral intake in trial and control groups by week of age

Week 1

Trial Control
n=12 n=13

Week 2

Trial Control
n=12 n=13

Week 3

Trial Control
n=12 n=13

Week 4

Trial Control
n=12 n=13

Calcium (mmol) 0.26 0.26 1.63 1.27 2.27 2.20 2.98 2.48

(0.09) (0.17) (0.48) (0.30) (0.54) (0.41) (0.49) (0.43)

Phosphate (mmol) 0.26 0.20 1.66 0.91 2.41 1.61 2.44 1.86

(0.08) (0.13) (0.44) (0.21) (0.47) (0.30) (0.39) (0.33)

Lipid (g) 1.14 0.68 4.37 3.52 4.98 4.68 5.69 4.50

(0.32) (0.31) (0.85) (0.66) (0.80) (0.65) (0.52) (0.77)

Protein (g) 0.54 0.32 1.99 1.75 2.68 2.53 3.03 2.82

(0.14) (0.15) (0.46) (0.34) (0.47) (0.39) (0.31) (0.47)

Carbohydrate (g) 2.2 1.2 8.6 6.6 10.6 9.6 12.2 10.4

(0.6) (0.6) (1.8) (1.3) (2.0) (1.5) (1.3) (1.7)

Vitamin D (IU) 18 12 307 135 485 370 552 513

(10) (9) (92) (58) (116) (97) (96) (111)

mean (sem)
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Figure 28: Tubular resorption of phosphorus in trial and control groups

120

I I Trial

! | Control

week of life

(Bar=median, box=interquartile range, whiskers=range, x=outliers greater than 1.5
times box length)

Figure 29: Calcium excretion index in trial and control groups

week of life

(Bar=median, box=interquartile range, whiskers=range, x=outliers greater than 1.5
times box length)
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4.1.2 Mineralised bone mass

Analysis at discharge showed no significant difference between trial and control

group in weight, gestation, BMC, BMD or RW at term, despite individualised

supplementation regimens and significantly higher phosphorus intake with a fall in

TRP in the trial group (Table 11).

With 12 infants in each group the study has 80% power to detect 25% difference and

90% power to detect 28% difference.

Table 11: Details of trial and control groups at discharge

Trial (n=12) Control (n=12) p value
Weight (kg) 2.08(0.078) 2.27 (0.085) 0.11

n=12 n=12
Gestation (weeks) 36.2 (0.46) 36.8 (0.44) 0.33

n=12 n=12
Term BMC (mg) 8.3(1.064) 10.0(1.413) 0.37

n=11 n=12
Term BMD (mg/cm2) 62.1 (7.603) 77.3 (9.789) 0.26

n=9 n=12
Term RW (cm) 0.57 (0.018) 0.57 (0.034) 0.93

n=9 n=11
Mean (sem)
n: number of infants included in analysis
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4.3 Group characteristics

Daily weight gain, number of babies ventilated, length of time on a ventilator, and

the use of caffeine, dexamethasone, diuretics or antibiotics was the same in both

groups.

4.3.1 Weight gain

There was no difference in mean daily weight gain between the 2 groups, with 16.9g

(0.91) in the trial group and 17.3g (1.2) in the control group.

4.3.2 Ventilation

9 infants in the trial group and 11 in the control group were intubated and ventilated

from birth. Trial infants received a median of 1 day intubation initially (range 0-5,

n=12) with a total of 2 (0-53, n=12) days of intubation and nasal CPAP. Control

infants received 2 (0-12, n=13) days of intubation, with a total of 6.5 (0-48, n=13)

days of ventilatory support (Table 12).

4 infants in the trial group and 5 infants in the control group were discharged on

home oxygen. The number of days until no longer requiring supplemental oxygen
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in the remaining infants was 1 (0-40, n=8) in the trial group and 3 (0-64, n-8) in the

control group.

Table 12: Ventilatory support in trial and control infants

Intubation (days) Intubation + CPAP (days)
Trial 1 (0-5) 2 (0-53)
n=12
Control 2 (0-12) 6.5 (0-48)
n=13

Median (range)
n: number of infants included in analysis

4.3.3 Medication

There was no significant difference in the use of caffeine, dexamethasone,

ranitidine, frusemide, chlorothiazide and spironolactone (Table 13). The dose and

length of time the drug was administered was not considered.

No significant differences were found in the use of benzyl penicillin, ampicillin,

amoxycillin, flucloxacillin, gentamicin, aztreonam, vancomycin, meripenem,

trimethoprim, metronidazole and acyclovir.
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Table 13: Drug administration to trial and control infants

Trial (n=12) Control (n=13)
Caffeine 9 13
Dexamethasone 2 0
Ranitidine 3 1
Frusemide 3 7
Chlorothiazide 4 7

Spironolactone 4 7
Indomethacin 0 1

Diamorphine 3 7
Pancuronium 2 4

Dopamine 1 1
Insulin 1 0

n: number of infants included in analysis
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4.4 Morbidity and Mortality

4 infants in the control group and none in the trial group developed necrotising

enterocolitis; 3 Bell's stage 1, 1 Bell's stage 3 (Bell et al, 1978). One was excluded

from the study after undergoing laparotomy and ileal resection. The remaining 3

remained within the study as nutrition was not discontinued for more than 10 days.

2 infants in the control group died; one of ventriculitis following shunt insertion for

posthaemorrhagic hydrocephalus at 39 weeks PCA, and the other died at home

following discharge at 40 weeks PCA, with a diagnosis of unexplained sudden

infant death.
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4.5 Alkaline Phosphatase

Maximum alkaline phosphatase was significantly different (p=0.05) between the 2

groups, trial 918 (s.d 81.5, n=12), control 1132 (s.d. 65, n=13).

An alkaline phosphatase concentration in excess of 800 IU/L is used in the clinical

setting to indicate the upper limit of normal for the preterm population. Plasma

concentrations exceeded this limit more frequently in the control group than trial

group (p<0.001). As the concentrations measured in the first 2 weeks of life were

unlikely to have been influenced by mineral supplementation, these were

subsequently excluded, leaving a significance of p=0.002 (Figure 30).

There was no correlation between alkaline phosphatase and birthweight or gestation.

BMC, BMD, and RW were measured every 4 weeks during the study period. There

was no relationship between any of the bone mineral parameters and AP in trial or

control groups.
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Figure 30: Alkaline phosphatase concentrations in trial and control groups
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4.6 Post hoc analysis

With 12 infants in each group the study has 80% power to detect 25% difference and

90% power to detect 28% difference between the 2 groups. As there was no

difference between trial and control infants following intervention further analysis

has been performed on the cohort of 25 infants.

Of the 3 parameters ofmineralised bone mass, a significant increase was seen in

BMC (p=0.011), and RW (p<0.001), with no increase in BMD in the first weeks of

life, despite a significant increase in weight (Table 14). Using the regression

equation derived from the cohort data, study infants had a significantly lower BMC

and BMD but not RW at term compared to term-born infants of the same weight.

Table 14: Mineralised bone mass changes in recruited infants compared to cohort data

Entry Discharge
p-value

(discharge
v. entry)

Weight
adjusted
estimate"

p-value
(estimate v.
discharge)

Weight (kg) 1.21 (0.07) 2.16(0.06)
n=25 n=24

PCA (weeks) 28.6 (0.34) 36.5 (0.32)
<NIIC n=24

BMC (mg) 7.2 (0.89) 9.2 (0.91) 0.011 13.7 <0.001
n=25 n=23 (12.9/14.6)

BMD (mg/cm2) 75.7(7.10) 70.8 (6.84) 0.54 105.5 <0.001
n=22 n=21 (99.1/111.9)

RW (cm) 0.43 (0.02) 0.57 (0.02) <0.001 0.53 0.044
n=22 n=20 (0.50/0.57)

Mean (sem)
"Based on regression equations derived in cohort study (Table 2) with weight of 2.16 kg (95% CI)
n: number of infants included in analysis

125



4.6.1 Birthweight group analysis

The data was further analysed according to birthweight, comparing extremely low

birthweight infants (ELBW <lkg, n=7) and low birthweight infants (non-ELBW

>lkg, n=l 8). At birth there were significant differences in BMC (p=0.006), BMD

(p=0.004) and RW (p=0.028) between the two groups, as expected due to difference

in birthweight. At term, differences between the two groups remained in RW

(p=0.018), with no difference in BMC or BMD. Higher birthweight infants had

greater increase in RW, although both groups had a significant increase in RW from

birth to discharge (ELBW p=0.038, non-ELBW p=0.001). There was no difference

in weight between the 2 groups at term measurements but the ELBW infants were

more mature (p=0.034), with a mean weight gain in both groups of 17g/day (Table

15).

The ELBW group had a significant increase in BMC (p=0.041), but this was not

seen in the non-ELBW group (p=0.09).

This subgroup analysis suggests that RW increases without mineralised bone mass

even in the higher birthweight preterm infants.
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Table 15: Mineralised bone mass changes in recruited infants by birthweight

Birth Term

<1kg (n=7) >1kg (n=18) <1kg (n=7) >1kg (n=18)
Birthweight (kg) 0.822(0.051) 1.354(0.060) 2.046(0.156) 2.218(0.049)

n=7 n=18 n=7 n=18
Gestation 27.0(0.5) 29.2(0.3) 37.4(0.7) 36.0(0.3)**

n=7 n=18 n=7 n=18
BMC (mg) 3.5(0.8) 8.7(1.0)* 6.6(1.4) 10.3(1.0)

n=7 n=18 n=7 n=15
BMD (mg/cm2) 47.9(9.7) 88.7(7.4)* 64.7(8.9) 73.3(8.5)

n=7 n=15 n=6 n=15
RW (cm) 0.36(0.03) 0.46(0.02)* 0.50(0.04) 0.60(0.02)**

n=7 n=15 n=6 n=14
Mean (sem)
n: number of infants included in analysis
*p<0.05 between <lkg and >lkg at birth
**p<0.05 between <lkg and >lkg at term

127



4.7 Follow-up

BMD and RW was measured at 71.9 (sem 1.52) weeks PMA in 10 infants: 4 trial, 6

control. There was no difference between trial and control groups, with p=0.95

(Table 16).

This group of 10 infants has a BMD of 112.9 mg/cm2 (sem 12.2) and RW 0.87 cm

(sem 0.05). Using the cohort regression equations this corresponds to a newborn

infant of birthweight 2.314 kg for BMD and 3.73 kg for RW. There was no

difference between ELBW and non-ELBW groups (5 in each group).

Table 16: Follow-up of trial and control groups

Trial Control
n 4 6

BMD (mg/cm2) 114.0(23.6) 112.1 (14.9)

RW (cm) 0.86 (0.02) 0.88 (0.08)
Mean (sem)
n: number of infants included in analysis
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5 Discussion

The portable single photon absorptiometer has permitted measurement of radial

BMC, BMD and RW in extremely low birth weight infants during the first few days

of life. This technique has confirmed that radial BMC, BMD and RW are linearly

related to birthweight from 23 to 41 weeks gestation. BMC measurements are

comparable to previous studies using SPA (Minton et al, 1979; Pohlandt & Mathers,

1989).

5.1 Cohort study

5.1.1 What does this study add?

The hypothesis stated that in impaired transplacental calcium delivery, PTH

production by the fetus is increased, enhancing fetal calcium resorption from bone

such that the growth restricted infant will demonstrate elevated cord blood PTH

concentrations in association with reduced MBM. In order to explore this

hypothesis, it was important to confirm that modifications to the portable single

absorptiometer rendered it a suitable tool to use in extremely low birthweight

infants.

This study demonstrated that the portable single photon absorptiometer permitted

measurement of radial BMC, BMD and RW in extremely low birth weight infants

during the first few days of life. It has confirmed that radial BMC, BMD and RW is
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linearly related to birthweight from as early as 23 weeks PMA. The regression

model demonstrates a strong relationship between BMC, BMD, RW and birthweight

in infants across the gestational age range, but excludes refining factors included in

the model. Several investigators have used experimental techniques to examine

mineralisation in the preterm infant (Pohlandt & Mathers, 1989; Koo et al, 1996;

Lapillonne et al, 1997), however none of these have been used in the extremely low

birth weight infant immediately following birth. We found that birthweight was the

single best predictor of radial BMC, BMD and RW, such that retrospective

estimation of radial mineralised bone mass at birth can be inferred on any infant

whose birth weight is known. However, this does not suggest a causal effect of

birthweight on mineralised bone mass.

This study also confirms the SGA infant to have radial mineralised bone mass

comparable to the AGA infant of the same birthweight, as shown by Pohlandt using

mid-humeral SPA (Pohlandt & Mathers, 1989), and Lapillonne using whole body

DXA (Lapillonne et al, 1997).

Secondly, it was necessary to describe the infant with potentially impaired

transplacental function. Antenatal and maternal factors which were thought to be

potentially associated with in fetal mineralisation were chosen and used in a

regression model against estimates of mineralisation in the newborn infant. Infants

of mothers who had received antenatal dexamethasone had reduced BMC, BMD,

and RW. However these infants were also likely to be of low gestation and low

birthweight. This variable was not included in the multiple regression model due to
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data being unavailable on more than 1/3 of the infants. On the advice of

epidemiologist (Dr P MacKinney) all data was collected from maternal records

rather than maternal questioning, to avoid recollection bias. Unfortunately records

from referring hospitals were often unavailable, reducing the amount of information

which could be achieved. A model of the reduced dataset excluded antenatal

steroids at p=0.055. This is difficult to interpret as the dataset is small, and given

the overwhelming benefits of antenatal steroids on neonatal lung maturation

(Crowley, 1999) this finding has minimal relevance.

There is increasing evidence that there is no advantage in administering multiple

doses of maternal steroids and they may even have detrimental effects (Banks et al,

1999; French et al, 1999). An adverse effect of antenatal steroid administration may

be potentiated in infants exposed to multiple doses. This data suggests that follow-

up studies on the effect on fetal mineralised bone mass on infants delivered

following multiple steroid doses is warranted.

The demonstration of absent or reversed end-diastolic flow on doppler ultrasound

scan was also associated with reduced BMC and BMD. However this was

associated with low birth weight and did not improve the regression model. In the

regression models excluding birthweight as a potential predictor, this variable was

also non-significant.

In all 3 models excluding birthweight as a predictor (BMC, BMD and RW),

placental abnormality remained a significant predictor. Unlike antenatal steroids,
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the presence of placental abnormality was not related to birthweight. However, the

definition was a clinical one assigned by the obstetrician or midwife present at

delivery and was not based on a pathological examination. Descriptions recorded as

"abnormality" included "small", "gritty" or the presence of an infarct or

haemorrhage. As there were only 5 infants with placental abnormality on whom

PTH concentrations were available, it was not possible to analyse the

presence/absence of placental abnormality in relation to PTH concentrations.

Previous studies have shown elevated PTH concentrations in infants delivered by

caesarean section (Bruchi et al, 1984). It is not clear if this was seen as an acute

response to the operative procedure or fetal distress, or if delivery by caesarean

section could be used as a marker for chronic in utero compromise, potentially

resulting in impaired mineralised bone mass. We therefore included mode of

delivery in the regression equation. We found no relationship between mode of

delivery and BMC, BMD, RW.

Finally, the hypothesis stated that impaired placental function associated with

growth restriction would result in reduced mineral accretion manifesting as

diminished mineralised bone mass, and that such an infant would exhibit increased

production ofPTH in order to enhance plasma calcium concentrations. We found

that term infants (>37 weeks PCA) have low venous cord PTH concentrations,

below the limit of detectability by this assay, and that infants with high PTH

concentrations were of lower birthweight and of lower gestation. Term low birth

weight infants did not have elevated PTH concentrations (Figure 14).
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Some SGA infants were found to have low PTH concentrations, and elevated

concentrations were seen in AGA preterm infants. These results do not support the

hypothesis that PTH production by the growth-restricted fetus is increased. PTH

concentrations are detectable in the second trimester and fall below the normal adult

"range at term.

Although physiological in utero, the presence of circulating PTH may result in renal

phosphorus losses in the first days of life, explaining the early phosphorus

deficiency seen in preterm infants (Holland et al, 1990). As well as the renal effects,

PTH acts on osteoclasts to increase bone resorption. Low PTH concentrations seen

in some SGA and preterm infants could prevent increased resorption and therefore

demineralisation of the skeleton, and be viewed as a protective effect.

The portable single photon absorptiometer has permitted measurement of radial

BMC, BMD and RW in extremely low birth weight infants during the first few days

of life. This technique has confirmed that radial BMC, BMD and RW is linearly

related to birthweight from 23 to 41 weeks gestation. BMC measurements are

comparable to previous studies using SPA (Minton et al, 1979; Pohlandt & Mathers,

1989). However, DXA is now seen as the "gold standard" for bone mineral

estimation in the newborn period. Given the practical constraints of performing

DXA measurements on the extremely preterm infant at birth, this technique has

added to the current literature by demonstrating the linear relationship between
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birthweight and mineralised bone mass to the limits of viability in the liveborn

infant.



5.1.2 Critique of the Methodology

This cohort study could have been significantly improved both in the study design

and in the study procedure. Most importantly, the number of infants recruited

should have been increased significantly as outlined below, with both cord blood

sampling, data collection and bone images completed on all recruited infants, and

precise documentation of reasons for non-recruitment of eligible infants. Increasing

the size and completeness of the datasets would have significantly improved the

ability to broaden the analyses and explore the hypothesis.

5.1.2i Population

Recruitment was targeted at preterm infants and infants who were expected to be

small for gestational age. This was a significant flaw in the study design, as this

cohort study should have been inclusive of all deliveries. By having more available

researchers, all infants delivered during the recruitment period could have been

targeted for cord blood collection. Where recruitment did not take place, the reason

for non-inclusion or non-consent should have been recorded.

5.1.2ii Consent

Attempts should have been made to approach parents of all eligible infants about

inclusion in the study. Therefore, having multiple researchers involved in the

consent process may have increased the number of infants recruited, and aided

collection of data on those eligible infants not enrolled in the study.
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5.1.2iii Measured variables

The measured variables should be defined at the start of the data collection as:

BMC, BMD,RW, PTH, PTHrP, 1,25-DHCC, birthweight, gestation, maternal PIH,

placental abnormality, antenatal steroids, gender, method of delivery, onset of

labour, antenatal doppler studies, maternal smoking.

5.1.2iv Data Sampling

8 ml of umbilical cord blood should have been obtained for each infant, permitting

analysis ofPTH, PTHrP and a,25-DHCC. Venous cord blood samples were drawn

from the clamped umbilical cord following extraction of the placenta. By drawing

mixed blood "milked" from the placental bed, the number of samples may have been

increased, particularly in growth-restricted infants on whom the umbilical cords

were thin and difficult to sample from.

Clearly defined criteria for the diagnosis of pregnancy induced hypertension and

placental abnormality should have been implemented. Data sets could have been

improved by extending the data collection process from medical record extraction to

maternal history taking. As an epidemiological research process this is considered

inaccurate due to recollection bias, and was therefore not done.

An inherent problem with testing the hypothesis is defining the growth-restricted

infant exposed to placental insufficiency. We attempted to strengthen our regression

model by including factors which may influence the growth of the fetus or act as

markers of impaired placental function: maternal smoking, pregnancy induced
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hypertension, placental abnormality, and absent/reversed end diastolic flow. Data

was collected on the presence of pre-existing maternal illness and growth of the

fetus by ultrasound scan. Insufficient complete data sets were available in relation

to the number of variables in the model, and they were therefore excluded from the

analysis. Furthermore, the likelihood of statistical error increases along with the

increasing number of variables included form a small dataset.

Mineralised bone mass was measured using single photon absorptiometry, using a

portable machine which had been adapted for use in the preterm infant. The data

available from these images was limited, and could now be improved by using

DEXA. X-rays may have provided further information.

5.1.2v Study Design

The cohort study is a collection of overlapping datasets, with one substudy exploring

the effect ofmaternal and pregnancy factors on mineralised bone mass, and one

looking at the relationship between cord PTH and mineralised bone mass. This

should have been collected as one dataset, with bone images and cord blood

collected on all infants, as well as complete data extraction from the maternal charts,

supplemented with history taking.

5.1.2vi Data Collection

As previously stated, data collection was poor, with details of all non-eligible

infants, and eligible infants not recruited or consented being unrecorded.
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Further information may have been obtained by measuring 25-

hydroxycholecalciferol concentrations in maternal or cord blood. 25-HCC is an

intermediate metabolite which is thought to reflect overall vitamin D, as it is the

most abundant circulating form. The aim of this study was to explore potential fetal

mechanisms implicated in the control of materno-fetal calcium transport, and as

limited blood was likely to be available, we therefore chose to focus on 1,25-DHCC,

the active metabolite, rather than 25-HCC. 25-HCC is thought to cross the placenta

directly (Delvin et al, 1982; Hollis & Pittard, 1984; Zeghoud et al, 1997), and might

therefore have been drawn from maternal blood samples.

«
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5.1.3 Limitations of single photon absorptiometry

A water bolus was used as a background on the assumption that the forearm of the

infant is comprised of soft tissues with a density comparable to water. Although this

applies to term infants, in the extreme preterm infant the soft tissue mass is

negligible, such that the radius and ulna occupy a substantial volume of the forearm.

In these infants the use of the background water bolus may result in a lower estimate

ofBMC and BMD.

Interpretation ofBMD measurements is limited by the necessity to assume that the

bone is cylindrical, which is only true in small infants. Using this assumption it

would be possible to estimate a true bone mineral density using BMD and RW. It

was felt that this assumption was inappropriate and was therefore not applied. In

interpreting the results using area-normalised BMD rather than true density it must

be remembered that a bone of larger radial width but of the same true density will

have a larger area-normalised density. By using BMC of a 1mm segment of radius

and ulna, area-normalised BMD of radius, and radial width together, we are able to

observe the changes in mineral deposition within the bone and in mineralised-bone

growth, but cannot measure true changes in bone mineral density. Similarly our

results are applicable only to forearm bone and cannot be extrapolated to total body

mineralised bone mass.

This technique provides an estimation of bone mineral content and areal density

based on the detection of hydroxyapatite, providing a measurement of crystal
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deposition within the bone matrix, and cannot detect unmineralised osteoid. MBD is

characterised by reduced matrix formation and decreased osteoblast activity,

although rickets is caused by the accumulation of unmineralised osteoid at the

growth plates. SPA provides early detection of reduced hydroxyapatite deposition,

but may fail to identify the earliest changes in abnormalities ofmineralised bone

mass.
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5.1.4 Effect on future research

With the increasing emphasis on the "fetal origin of adult disease", techniques for

identifying infants at risk of disease in adult life, and an understanding of the

mechanism of disease pathogenesis and potential intervention are attracting

attention.

Osteoporosis is responsible for significant morbidity in the adult population. Our

study has shown that low birthweight infants have reduced radial mineralised bone

mass at birth. This data can be used to explore a link between adult and newborn

mineralised bone mass, using low birthweight as a marker for low mineral status at

birth. Inevitably environmental and potentially other genetic factors will play a role

in bone mineralisation in adult life, but an association between birthweight and adult

bone mineral content would support the theory of nutritional programming in bone

development.

We explored a hormonal variation to explain differences in bone mineralised bone

mass, hypothesising that SGA infants would have an elevated PTH concentration in

response to reduced mineral availability. Although this was not demonstrated, a

high PTH concentration was found in low birth weight infants as a result of

immaturity. We hypothesise that exposure to elevated PTH concentrations in the

perinatal period may upregulate receptors, "resetting" at a higher level, such that

elevated PTH concentrations are required throughout life to maintain "normal"

mineral homeostasis. Such children would be expected to exhibit reduced 1,25-
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DHCC in the presence of elevated PTH and low calcium concentrations. In the

presence of low plasma calcium concentrations, an increase in PTH production

might fail to stimulate bone resorption, thereby resulting in failure to reduce

mineralised bone mass in the presence of relative hypocalcaemia (Figure 1),

effectively resulting in "bone sparing". Follow-up studies ofpreterm infants fed

unsupplemented human milk have shown catch-up mineralisation at 8-12 years of

age (Fewtrell et al, 1999). Infants who were thinner at 1 year of age were also seen

to have increased catch-up in mineralisation by 6-7 years of age (Kurl et al, 1998).

Over-mineralisation would not be seen if excessive mineral supplementation were

supplied, as this effect of suppressing PTH concentrations would not impact on

mineralised bone mass. Assessment of PTH, 1,25-DHCC in association with

measurement ofmineralised bone mass would be required to further this hypothesis.

We hypothesised that reduced calcium availability in the fetus would result in

increased PTH production, potentially as a means of increasing placental calcium

transfer. Although this is not a proven action ofPTH, the hormone PTHrP has been

shown to increase placental calcium transfer in the sheep (Rodda et al, 1988). As a

pilot study we measured PTHrP in a number of infants, but found no relationship

between PTH or mineralised bone mass and PTHrP. The assays for PTHrP are

continuing to evolve and further research in this area may be warranted.
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5.2 Randomised controlled trial

It is well recognised that demineralisation in premature infants can be reduced by

mineral supplementation (Greer & McCormick, 1988; Gross, 1987, Abrams et al,

1989; Schanler et al, 1992). We sought to further improve mineralised bone mass

by individual calcium and phosphorus supplementation based on plasma

concentrations and urinary excretion as suggested by Pohlandt (Pohlandt, 1994a).

However in this randomised controlled trial we were unable to show that

supplementation of calcium and phosphorus based on urinary excretion improved

mineralised bone mass in this population ofpreterm infants.

5.2.1 Mineralised bone mass at discharge

The longitudinal data on the preterm infants has been analysed in relation to the data

collected on newborn infants in study 1. As with previous studies (Horsman et al,

1989a; Lapillonne et al, 1994) BMC and BMD remained below weight-adjusted

values according to weight at term.

Using the portable single photon absorptiometer we were able to perform

longitudinal bone measurements on a cohort of very low birthweight infants. This

study demonstrated that in both trial and control infants there was a failure to

demonstrate any increase in mineralised bone mass from birth to term. A further

unexpected finding in the post hoc analysis was that even stable larger infants, who

had not received parenteral nutrition or had respiratory complications had failed to
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mineralise. In fact a greater increase in BMC and BMD was seen in the smaller

infants, although they had more time to achieve this increment.

In contrast, a greater increment in radial width was seen in the mature infants.

Given that the mineral content in a 1mm section of bone was the same in the 2

groups, this suggests that true volumetric bone density, which is not measurable by

this technique, may actually be lower in the larger infants. The greater increase in

radial width than BMC or BMD suggests that bone growth is taking place without

mineralised bone mass.

5.2.2 Follow-up

The numbers of infants followed beyond term is small, however these infants appear

to remain significantly demineralised at 6 months corrected gestational age. In this

study the lack ofmineralised bone mass is even more marked when compared to

reports of catch-up mineralisation seen in similar preterm populations (Horsman et

al, 1989b). In this cohort there did not seem to be a relationship between

birthweight and mineral status at 6 months as seen by Rubinacci (Rubinacci et al,

1993). Previous studies have suggested that reduced mineralised bone mass is a

result of both reduced growth and reduced density ofmineralisation (Horsman et al,

1989a), however at 6 months our infants had a radial BMD expected in a newborn

infant of 2.3 kg.
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5.2.3 Individualised supplementation

This trial confirms that oral bolus and continuous intravenous phosphorus

supplementation reduces the percentage tubular resorption of phosphorus as seen in

the trial group. The effect of calcium supplementation on urinary calcium excretion

is difficult to assess, as calcium excretion may be increased both by calcium

supplementation and phosphorus depletion (Senterre et al, 1983), possibly

accounting for the lack of observed difference in calcium excretion index between

the trial and control groups. Although failing to enhance mineralised bone mass, the

use of concomitant plasma and urinary monitoring may aid the assessment of dietary

supplementation in minerally-depleted infants.

5.2.4 Alkaline Phosphatase

The study provides further evidence that alkaline phosphatase is unhelpful as a

marker of bone mineral status (Walters et al, 1986; Evans et al, 1989; Pittard et al,

1992; Faerk et al, 2002). There was no correlation between AP and our measures of

mineralised bone mass. However, higher concentrations ofAP were seen in the

control group, despite a failure to demonstrate improved mineralised bone mass with

enhanced supplementation in this group. Lucas (Lucas et al, 1989) has suggested

that an increase in plasma activity ofAP may be seen in substrate deficiency despite

a reduction in mineralised bone mass. These results suggest that individual

supplementation provides a more adequate substrate level, as indicated by increased

urinary bone mineral excretion, but this is not translated into measurable

hydroxyapatite within the bone matrix.
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5.2.5 Cortical Width

In the term infant, the single photon absorptiometer produces images of the forearm

bones permitting delineation of the cortex of the bones (Figure 5). In the preterm

infant at birth the cortex is often difficult to distinguish, and this become more ill-

defined in the ex-preterm infant at term. In one infant we were able to obtain

cortical width assessments from the SPA images(Figure 31, Figure 32), using the

profile of bmc/pixel, where cortical width was assumed to be the distance from the

outside edge to the peak pixel density (Figure 33). In this example, cortical width

remained the same at term as at birth, with the distance from outside edge to peak

pixel density of 0.11 cm in both images. In the majority of images of preterm

infants it was not possible to distinguish the peak pixel density in order to estimate

cortical width.
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Figure 31: SPA image of 25 week gestation infant at birth

Figure 32: SPA image of 25 week gestation infant at term
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Figure 33: Determination of cortical width

SPA provides a measure ofmineralised bone mass. In the bone which has increased

in radial width, it does not distinguish the bone with an increase in cortical thickness

with increased porosity from one with the same (or decreased) cortical width of

comparable density (ProfN.J. Bishop, personal communication). Making

assumptions that cortical width remained the same for each infant between birth and

term, then a linear relationship should exist between the change in cortical volume
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and the change in radial width. As an estimate of cortical volume, areal bone

mineral density divided by the radial width was used (excluding constants), and the

change in BMD/RW between birth and term was plotted against the change in RW

between birth and term (Figure 34).

Figure 34: Relationship between change in estimated volumetric bone density and

change in radial width

-100

-200

-300

Change in radial width (cm)

149



Although the numbers are few, this does not demonstrate a linear relationship,

suggesting that cortical width does not remain constant, with a change only in

mineralisation of the cortex, between birth and term. The lack of increased

mineralised bone mass, seen in these infants, could therefore be due to changes in

cortical width, homogeneous changes in mineralisation of the cortex, increased areas

of porosity within the cortex, or a combination ofall three.

This in an area in which improvements in the image resolution obtained by the SPA

scanner may provide further information.
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5.2.6 Critique of the Methodology

As with the cohort study, there were major errors in the design of this randomised

controlled trial and in its execution. Most significantly, a low recruitment rate and a

failure to adhere to a methodology that would meet the reporting guidelines of a

randomised controlled trial as set out in the CONSORT statement (Begg et al,

1996). The optimal reporting of a trial should include 5 subheadings in the report,

with the 3 subheadings of "protocol", "assignment" and "masking (blinding)" under

the methods section, and "participant flow and follow-up", and "analysis" in the

results section, and I have followed these headings to highlight the major deficits in

this study.

5.2.6i Protocol

The setting of the study in a single centre had the advantage of ensuring that feeding

and supplementing protocols remained the same for all infants in the study.

However, as a confounder, this could have been minimised by stratifying the

randomisation by centre. The limited ability to move the scanner for bone images

was an obstacle to carrying out the study on multiple sites, which would have

increased the recruitment rate, allowing the target to be reached within the 2 year

period.

The study required a participant to remain in the neonatal unit until discharge home,

and as such, only those parents of infants with local addresses were approached.

Following commencement of the study there was a change in the admission profile
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to the neonatal unit resulting in a reduction in the number of preterm infants eligible

for entry to the study. Numbers of extremely preterm infants were further reduced

by the problems of approaching parents of critically ill infants for a long term study

within the first days of life. Few infants less than 28 weeks gestation were recruited

to the study. The design of the study failed to incorporate a means of recording the

total number of infants assessed for eligibility, and those not meeting the inclusion

criteria, as recommended in the CONSORT statement (Begg et al, 1996; Moher et

al, 2001).

The primary outcome should be clearly stated. In this case the bone mineral content

of radius and ulna at 40 weeks PMA.

The secondary outcomes are those outcomes which are also measured and analysed

at the completion of the study. In this case, bone mineral areal density and radial

width at term; BMD, RW and BMC at 64 weeks PMA; alkaline phosphatase

concentrations. Lower leg length measurements at birth and term would have been a

useful adjunct.

Infants randomised to the control arm received the neonatal unit protocol of mineral

supplementation at the discretion of the neonatal unit medical staff, following

guidelines (Bremer et al, 1987). We did not want to change current management in

the unit, and allowed the physicians to control the level of supplementation given to

the infants in the control arm of the study.
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5.2.6ii Assignment

Computer-generated randomisation would have been a more robust method of

randomising infants. The randomisation process and storage of records should not

be carried out by the researcher collecting the data.

5.2.6iii Masking

Details were taken from the medical and nursing records by the single researcher.

This information should be gathered by a separate researcher from the one aware of

study group allocation. Mineralised bone mass was measured using single photon

absorptiometry, using a portable machine which had been adapted for use in the

preterm infant. The data available from these images was limited, and could now be

improved by using DEXA. Regular x-rays may have provided further information.

As well as blinding of the researcher extracting data from the bone images, the

researcher collecting data and prescribing supplements should be blind to study

group allocation. This produced practical problems in terms of funding and available

personnel, and was not done.
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5.2.6iv Participant Flow and Foliow-up

Details of all non-eligible infants, and eligible infants not recruited or consented

should be recorded.

5.2.6v Analysis

Initial power calculations were based on detecting a 20% (1 s.d.) difference in BMC

at term with 90% power, based on Horsman's data (Horsman et al, 1989a). With 12

infants in each group the study has 80% power to detect 25% difference and 90%

power to detect 28% difference between the 2 groups. In order for a regimen of

supplementation based on urinary excretion to be worth implementing in a NICU

setting, we felt that an improvement in mineralised bone mass of at least 25% should

be obtainable. Therefore it was felt that by failing to show improved mineralised

bone mass in the individually supplemented infants of 25% this study demonstrated

that this method of supplementation was not an improvement on the current practice

of supplementing according to plasma mineral concentrations.

These initial calculations were based on previous work by Horsman (Horsman et al,

1989a) using an earlier version of the single photon absorptiometer and measuring

mineralised bone mass at the middle of the right forearm. They found no increment

in mineralised bone mass between 32 weeks and discharge in their preterm

population. The BMC results we obtained were comparable at birth (although

expressed in different units), but significant increments were seen in both trial and

control groups.
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5.2.7 What does this study add?

Despite low recruitment, randomisation resulted in comparable groups at entry to the

trial. The 2 groups received comparable protein, carbohydrate and fat intakes both

parenteral and enteral, and achieved the same discharge weights. Trial infants

received more oral phosphorus over the first five weeks, and had a lower TRP than

control infants, as would be expected from additional supplementation. Calcium

and vitamin D supplementation was not significantly different between the 2 groups.

Although administering calcium supplements according to the protocol, the decision

to maintain Cae greater than 0.3 mg/lOOml GFR was based on extrapolation from

adult data (Nordin et al, 1967; Brion et al, 1994). We were cautious not to provide

excessive amounts of calcium in the diet in order to avoid gastrointestinal and renal

complications, but the level of calcium supplementation in the trial group may have

been insufficient as it did not exceed supplements provided to the control group.

Given Horsman's data (Horsman et al, 1989a), which showed no improvement in

mineralised bone mass at discharge, and assuming that his infants were receiving the

same level of supplementation as our control group as they were in the same NICU

(although he did not look at this), the study aimed to look for improved mineralised

bone mass when supplementing on the basis of urinary excretion, which it was

assumed (correctly for phosphate) would increase the level of supplementation. The

level of supplementation may certainly have blunted the differences, but given

current practice it was not ethical to reduce the current amount of supplementation

given to the control group. The conclusion drawn from this is that the level of
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supplementation based on urinary excretion shows no benefit in mineralised bone

mass over the supplementation already used in the NICU for this population of

infants.

The effects of diuretics on urinary mineral losses did not confound the

supplementation protocol. As supplementation in the trial group was commenced on

the basis of plasma concentrations, the effect of high urinary losses secondary to

diuretics resulted in reduced plasma concentrations requiring supplementation

irrespective ofTRP or Cag.

In this study we looked at the actual nutritional, phosphorus and calcium intake by

the infants rather than the prescribed intake. As anticipated the actual nutrition

received by the infants was less than prescribed. In infants receiving parenteral

nutrition this was usually due to other intravenous infusions and in these infants we

included all dextrose infusions in the carbohydrate intake. Nutritional and mineral

content of breast milk was taken from published figures (Appendix A) and was not

measured. Accurate recording was only possible in the first weeks of life, as more

mature infants in the study were taking breast feeds by 5 weeks of age. As the aim

of the study was to investigate the effect of early individualised mineral

supplementation in order to prevent mineral depletion this was felt to be the most

appropriate feed data to collect.

No attempt was made to perform balance studies on these infants. The aim was to

investigate the effect of a simple supplementation regimen on bone mineralised bone
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mass, with a view to application in the clinical setting. The trial group received

more phosphorus with a significant reduction in TRP indicating absorption of

enteral phosphate. Individually phosphorus supplementation led to a reduction in

CaE. Similarly, increased calcium supplementation resulted in a rise in Can and an

increase in TRP, suggesting enteral absorption of calcium. However balance studies

would have provided more data, perhaps helping to explain the failure to improve

mineralised bone mass in the trial group.

Accurate linear growth data may have also provided useful information. Previous

studies have suggested that bone mineralisation is enhanced by adequate weight gain

(Horsman et al, 1989a). However, we found the preterm infants to be significantly

behind weight-matched controls in both BMC and BMD, but not in RW, suggesting

bone growth without mineralised bone mass. The use of knemometry to record

lower leg length was attempted in a small group of infants but insufficient data was

obtained for analysis.

Each infant had bone measurements taken at 4 weekly intervals throughout their

course in the neonatal unit. Having failed to recruit larger numbers there is

insufficient data to analyse the results of the 4 weekly bone mineral measurements,

or to compare outcomes on breast versus formula fed infants. Data has been

analysed according to BMC, BMD and RW at discharge or term. Some infants

exhibited marked losses initially in BMC and BMD, whereas others showed

increases and subsequent loss (Appendix B). There was no relationship between
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bone mineralised bone mass changes and gestation or birthweight. However the

number of recruited infants was insufficient to perform detailed analyses.

The portable single photon absorptiometer allowed the assessment of radial BMC,

BMD and RW in the first days of life, even in unstable extremely preterm infants.

This provided a baseline measurement in each infant in the study. Further

assessment of maternal mineral status, both from dietary history and biochemical

measurements was not obtained. In the cohort study we found no relationship

between antenatal or maternal factors and mineralised bone mass at birth, and so

would be unlikely to do so in this small group of infants.

Due to the nature of the supplemental regimen in the trial group it was not possible

to blind the investigator to the randomisation process. As the supplements were

prescribed on the infants' medication sheet, other health professionals caring for the

infant, as well as the parents, were aware of the group allocation. The effects of

supplementation on plasma phosphorus, calcium and alkaline phosphatase

concentrations was readily observed, and as such may have begun to influence

practice in the neonatal unit during the course of the study. This may have resulted

in more supplementation being prescribed to non-study and control infants, although

urinary monitoring was only performed within the study setting. As seen from the

results, the trial group continued to receive higher phosphorus supplementation than

the control group.
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Follow-up after discharge from the neonatal unit was limited. Infants returning to

the out-patient clinic for review by the Neonatologist had repeat BMD and RW

measurements. The baby scanner was modified for this purpose to accommodate

increased forearm soft tissue, but was not validated in this setting. BMC of radius

and ulna could not be made as the 2 bones could no longer be incorporated within

the imaged area. There were no term-born controls, and as such inferential

interpretation of bone measurements was made. The BMD measurements remained

within the range seen in the cohort data, allowing reverse application of the

regression equation to obtain expected infant weight based on radial BMD. The

regression equation for radial width was less robust because of the wider confidence

interval.

Opportunistic follow-up in this setting meant that the infants with few perinatal

complications were not seen, as they had been discharged from clinic. This may

have affected our limited results by missing infants with higher BMD. Follow-up of

all study infants with DXA scanning is required to observe potential long term

effects of early individualised mineral supplementation in these preterm-born

infants.
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5.2.8 Effect on future research

In order to reduce the incidence ofmetabolic bone disease, researchers are

continuing to investigate the potential of urinary calcium and phosphorus excretion

(Catache & Leone, 2003) and individualised mineral supplementation based on

plasma and urinary concentrations (Trotter & Pohlandt, 2002). However, there are

no published randomised controlled trials addressing supplementation based on the

measurement of urinary mineral excretion. As this method of titrating phosphorus

and calcium supplementation to urinary excretion failed to improve mineralised

bone mass to that of a newborn infant of comparable weight, it may be that factors

other than substrate supply are important in the promotion of bone mineral

deposition in the preterm infant. The lack of increased BMD in the larger preterm

infants was unexpected and may support this theory, suggesting that the change

from in utero to ex utero environment may have a more profound influence than the

cessation of transfer of minerals from mother to infant. Placental, fetal and maternal

hormones, growth factors or intrinsic bone stresses may play a role in modulating

mineralised bone mass, and warrant further investigation.
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5.3 Implications of reduced mineralisation

The implications of reduced bone mineralisation in the preterm population is

currently unknown. Increasing supplementation seems the most appropriate means

of enhancing bone mineral density, reducing the complications of rickets of

prematurity and fractures. With current nutritional regimens it seems inevitable that

the extremely low birth weight infant suffers an obligatory period of growth failure

in the immediate postnatal period, and this data shows that the majority of preterm

infants endure a prolonged period ofmineralisation failure.

Epidemiological studies have now demonstrated a clear link between early growth

failure and cardiovascular disease in adult life (Barker et al, 1990), and the concept

of the "thrifty" fetus/infant later exposed to an increased nutritional load is the

suggested explanation. In terms of bone development, it has been suggested that an

adverse prenatal environment may reprogramme the epiphyseal growth plate

towards a lower level of responsiveness to IGF-I or other growth factors (de Zegher

et al, 2000), although currently there is little supporting evidence.

The effects of nutritional supplementation on the hormonal environment is

potentially as significant as the dietary manipulations themselves (Jobe, 2001). In

light of the evolving research the effects of enhancing nutritional supplementations

in the post-neonatal period should be carefully monitored into adult life for potential

adverse as well as beneficial outcomes.
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5.4 Conclusion

This study has demonstrated that mineralised bone mass remains primarily related to

birthweight at the limits of viability, and that individualised mineral

supplementation of preterm infants does not improve mineralisation over standard

supplementation regimens, such that preterm-born infants have a reduced

mineralised bone mass at term compared to expected weight-adjusted values.

This work was limited primarily by the inability to achieve the proposed number of

subjects to the study (RCT), and by failure to complete data collection on those

recruited (cohort study). At the time of this study, the portability of SPA had

advantages over DXA imaging in this population of infants. However, with the

advent ofmore portable DXA scanners, the questions posed in this study will be

better approached using whole body assessment of bone mineral density.

162



6 Appendix

Appendix A: Phosphorus and calcium content of preterm

formula and breast milk

Nutrient Values (per 100 ml)

Cow and Gate
Premium

SMA Gold Farleys First Pregestimil Similac
Special Care
Study Formula

Energy (kcal) 66 67 68 68 80

Protein (g) 1.41 1.5 1.45 1.9 2.2

Fat (g) 3.6 3.6 3.82 3.8 4.4

Carbohydrate (g) 7.1 7.2 6.96 6.9 8.6

Phosphorus (mmol) 0.9

(mg) 26.7 33 27 42 90

Calcium (mmol) 1.3

(mg) 53.3 46 39 63 143.8

Vitamin D (IU) 120

(ug) 1.1 1.1 1.0 1.1

Cow and Gate
Nutriprem

SMA Low Birth
Weight formula

Farleys
Osterprem

Milupa
Prematil

Preterm
breast milk

Energy (kcal) 80 80 80 70 70

Protein (g) 2.2 2.0 2.0 2.0 1.8

Fat (g) 4.4 4.4 4.6 3.5 4.0

Carbohydrate (g) 8.0 8.6 7.65 7.7 7.0

Phosphorus (mmol) 1.7 0.45

(mg) 54 41 63 42 14

Calcium (mmol) 2.7 0.55

(mg) 108 77 110 70 22

Vitamin D (IU) n.s.

(ug) 2.4 1.2 2.4 2.1
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Fortifier

(2 sachets in 100
ml preterm EBM)

Thixo D

(per 100 g)
Duocal

(per100g)
Maxijul

(per 100 g)
Carobel

(per 100g)

Energy (kcal) 80 392 492 380 42

Protein (g) 2.5 0.5 6

Fat (g) 4.0 0.2 22 2

Carbohydrate (g) 9.0 97 73 95

Phosphorus (mmol) 1.7

(mg) 54 2.0 5.0 5.0

Calcium (mmol)

(mg) 82 5.0 500

Vitamin D (IU)

(ug) 5.0
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Appendix B: Individual variation in bone mineral content and

density

Bone measurements were taken every 4 weeks throughout the study period. Each

graph represents measurements on a single infant.

Figure 35: Individual bone mineral content changes throughout the study period
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Figure 36: Individual bone mineral density changes throughout the study period
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Appendix C: Structured form used for obstetric and neonatal note extraction

Bone Mineral Density of the New Born DATA COLLECTION FORM

Multiple Birth 1=Singleton , 2=Twin , 3=Triplet

CONTENTS

SECTION A Page no.

1 MOTHERS DETAILS / 2 HOSPITAL DETAILS 2

3 CHILDS / 4 RESERVE DETAILS & GP DETAILS 3

5 OTHER PREGNANCIES 4

6 FIRST ANTENATAL VISIT 5

7 ILLNESSES AND OPERATIONS / 8 MEDICATION (antenatal steroids) 6

9 FETAL ASSESSMENT 7

10 AMNIOCENTESIS /11 X-RAYS /12 HAEMOGLOBIN 8

13 TESTS AND INVESTIGATIONS 9

14 LABOUR RECORD 9-10

15 NEONATAL RECORD 10-12

SECTION B

STUDY 1 13

STUDY 2 14-21

IS INVOLVED IN STUDY 1 YES NO

IS INVOLVED IN STUDY 2 YES

IF YES: TRIAL

NO

CONTROL

IF THE CHILD HAS BEEN TRANSFERRED TO L.G.I. THEN SECTION A MAY BE INCOMPLETE
(SEE HOSPITAL DETAILS).
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1. MOTHERS DETAILS

Title

Surname

Current Address

Date of Birth

Ethnic Group

First Name

Previous Surnames

Post Code

□□□□□□

2. HOSPITAL DETAILS

L.G.I. Unit Number

IF TRANSFERRED FROM ANOTHER HOSPITAL:

When transferred ?

Hospital Name

Hospital Unit Number Mother:

Baby:

c □□□□□□
M □□□□□□

In Utero =1 Postnatal = 2 □

Date Transferred to L.G.I. □□□□□□
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3. CHiLDS DETAILS

Childs Name

Childs Surname

Childs change of Surname

Childs Address

Childs Date of Birth

Post Code

□□□□□□

4. RESERVE ADDRESS / GP DETAILS

Name of Reserve Address

Reserve Address

Post Code

GP Name

GP Address

Post Code
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5. OTHER PREGNANCIES Total pregnancies following

(DO NOT RECORD DETAILS OF INDEX CHILD)

Pregnancy no

Multiple Birth 1=Singleton , 2=Twin
3=Triplet

1=Singleton , 2=Twin ,

3=Triplet
1=Singleton , 2=Twin
3=Triplet

Source 1 =Hospital original
obstetric record

2=Hospital history taking
3=GP original obstetpi£

record
4=GP history taking

1 =Hospital original
obstetric record

2=Hospital history taking
3= GP original obstetric

record
4=GP history taking

1 =Hospital original
obstetric record

2=Hospital history taking
3= GP original obstetric

record
4=GP history taking

Date of Birth or

pregnancy end
Day Mth Yr Day Mth Yr Day Mth Yr

Gestation Weeks Weeks Weeks

Outcome 1=livebirth
2=miscarriage
3=stillbirth
4=termination
5=ectopic
6=hydatidiform mole

1=livebirth

2=miscarriage
3=sti!lbirth
4=termination

5=ectopic
6=hydatidiform mole

1=livebirth

2=miscarriage
3=stillbirth
4=termination

5=ectopic
6=hydatidiform mole

Delivery 1=normal
2=assisted
3=caesarian
8=N/A
9=not known

1=normal
2=assisted
3=caesarian
8=N/A
9=not known

1=normal
2=assisted
3=caesarian
8=NIA
9=not known

Sex 1=male
2=female
9=not known

1=male
2=female
9=not known

1=male
2=female
9=not known

Birthweight lb oz lb oz

gm gm

oz

gm

Abnormalities
or problems
with baby

If yes: please
describe

1=yes
2=no
9=not known

1=yes
2=no
9=not known

1=yes
2=no
9=not known

ICD 1
2
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6. FIRST ANTENATAL VISIT Available & complete = 1

incomplete = 2 □
Day / Mth / Yr

Date of first visit □□ □□ □□
Weeks

Gestation at first visit □□
Day / Mth / Yr

Date last menstrual period □□□□ □□
Day / Mth /Yr

Expected date delivery (by Imp) □□ □□ □□

Revised EDD ?
Yes = 1 No = 2

□
(If no skip the next question )

Day / Mth /Yr
Revised EDD date by scan <15 weeks □□□□ □□

Age at menarche

Height

Weight

Blood pressure

Years

□□
cm OR ft in

□□□ □□□□
kg OR st lb

□□□ □□□□
systolic

□□□
diastolic

□□□

Smoking
(If no skip the next question )
Number of cigarettes smoked a day
If not known use code "99".

Yes = 1 No = 2 NK = 9 □
□□
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7. ILLNESSES AND OPERATIONS Available & complete = 1

incomplete= 2

Total illnesses following

Condition Date From Date To

□□□□□
□□□□□
□□□□□
□□□□□

□□□□□
□□□□□

□□□□□

□□□□□

8. MEDICATION

□□□□□ □□□□□
Available & complete = 1

incomplete = 2

Antenatal Steroids > 12 hours before delivery

Total drugs following

Yes = 1 No = 2 NK = 9

Other Drugs

Date from
Day /Mth / Yr No. of doses

□□ □□ □□ □
□□ □□ □□ □
□□ □□ □□ □
□□ □□ □□ □

Date from Date to

□□ □□ □□ □□ □□ □□

□□ □□ □□ □□ □□ □□
□□ □□ □□ □□ □□ □□
□□ □□ □□ □□ □□ □□

□

□□
ICD Code

□□□□

□□□□

□□□□

□□□□

□□□□

□
□□

□
ICD Code

□□□

□□□

□□□

□□□

□□□□

□□□□
□□□□

□□□□
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Sheet

□

9.FETALASSESSMENT

Available&complete=1incomplete=2
□

Testno

1

2

3

4

5

Date

□□□□□□

□□□□□□

□□□□□□

□□□□□□

□□□□□□

Gestage(wks)

□□

□□

□□

□□

□□

HC(mm)

□□□□

□□□□

□□□□

□□□□

□□□□

Abdocirc(mm)

□□□□

□□□□

□□□□

□□□□

□□□□

FernLength(mm)

□□□□

□□□□

□□□□

□□□□

□□□□

BPD(mm)

□□□□

□□□□

□□□□

□□□□

□□□□

Liauorvol.3=Subreduced
1increased4=Severereduced 2=Normal5=Absent

□

□

□

□

□

UmbilicalArtery A/Bratio UmbilicalArteryFlow 1=Normal4=Absent 2=Subreduced5=Reversed 3=Severelyreduced

□

□

□

□

□

Echfetbowel1=Yes2=No

□

□

□

□

□
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10. AMNIOCENTESIS OR
CHORIONIC VILLUS
SAMPLING

REASON

11. X-RAYS

12. HAEMOGLOBIN

Amnio=1
CVS=2
Chordo-
centesis=3

□

□

Available & complete =1 incomplete =2 □
Total amniocentesis following

Gestation
(wks)

□□

□□

Day / Mth / Yr Code

□□ □□ □□ □□

□□ □□ □□ □□
Available & complete =1 incomplete =2

Total x-rays following

□

□□
Day / Mth / Yr CodeGestation

(wks)

□□ □□ □□ □□ □□
□□ □□ □□ □□ □□

Total Haemoglobin's following

grams per dl Day /Mth /Yr

□□ □□ □□

□□ □□ □□

□□ □□ □□

□□ □□ □□

□□ □□ □□

□□ □□ □□
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13. TESTS AND INVESTIGATIONS Available & complete =1 incomplete =2
NOT ELSEWHERE CLASSIFIED □

Total tests following j

Description Day / Mth / Yr Code

□□ □□ □□ □□
□□ □□ □□ □□
□□ □□ □□ □□

Yes =1 No =2 NK =9
14. LABOUR RECORD

1 Spontaneous labour ?

2 Prostaglandin pessaries ?

3 Artificial rupture of membranes ?

If YES : before labour = 1 during labour = 2

4 Oxytocic infusion ?

If YES : to induce labour = 1 to augment labour = 2

5 Caesarean ?

If YES : emergency before onset =1 emergency after onset =2 i—i

planned before onset =3 planned after onset =4 uncertain =9 I I
6 Complications in labour ?

Total complications following ;

ICD Code
A

□□□□
B

□□□□

! □□□□
0

□□□□

□
□
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7 Delivery : Normal SVD =1 Caesarean cephalic =5

Breech =2 Caesarean breech =6

Forceps cephalic =3 Caesarean transverse lie =7

Forceps breech =4 Ventouse =8

Not recorded =9

8 Placenta : Placental weight (grams) □□□□
Abnormality (specify) Yes =1 No =2 □

ICD Code

□□□□

□□□□
Number of cord vessels □

9 Duration of labour: Date Hours Minutes

Active phases start: □□ □□ □□ □□ □□
2nd stage start: □□ □□ □□ □□ □□
Delivery : □□ □□ □□ □□ □□
End of 3rd stage : □□ □□ □□ □□ □□
Rupture of membrane □□ □□ □□ I□□ □□

15. NEONATAL RECORD Available & complete =1

incomplete =2 □

2 Gestation (1) obstetric assessment weeks □□
(2) paediatric assessment weeks □□

3 Sex male = 1 female = 2 ambiguous(specify):= 9 □
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4

5

6

7

8

9

10

11

12

13

14

oz

Birthweight

Head
circumference

kg lb

□ .□□□ 2 □□ □□
cm in

□□□□ 2
cm in

Length □□□□ 2
Time to first gasp or cry less than one minute

Time to regular respirations (if < one minute code = 00)

Apgar score

Yes =1 No
=2 NK =9

minutes

1 minute

5 minutes

Use Code 99 if not known 10 minutes

Number of umbilical vessels

Baby's blood group if known

Problems at birth (specify)

□□

Use Code 99 if not known

Rhesus: +ve =1 -ve =2

Congenital malformations (specify)

Other problems (specify)

□

□□

□□
□□
□□

□
□

ICD Code

□□□□

□□□□

□□□□
ICD Code

□□□□
□□□□

□□□□
ICD Code

□□□□

□□□□

□□□□
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15

16

17

ANY OTHER RELEVANT INFORMATION (SPECIFY DATES AND ICD CODE)
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STUDY 1

CORD BLOODS

PTH (pg/ml)

Available & complete =1 incomplete =2

1,25 dihydroxycholecalciferol (pmol/l)

25 hydroxycholecalciferol (ng/ml)

PTHrP (pmol/l)

Total calcium (mmol/l)

Corrected calcium (mmol/l)

A=
A:

Phosphate (mmol/l)

PH

Base excess

Albumin (g/dl)

Other

INITIAL BONE MINERAL MEASUREMENTS

Arm used

Date

Day of age

Measure A

Measure B

□

BMC mg/cm BMD radius mg/cm

□
□□□

□

□□□

Right =1 Left =2 NK =9 |""'j

□□ □□ □□
□

BMD ulnar mg/cm2

V=
V=
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STUDY2 WEEKLYRESULTS Biochemistry Date
□□□□□□ □□□□□□ □□□□□□ □□□□□□ □□□□□□ □□□□□□ □□□□□□ □□□□□□

Serum calcium (mmol/l)

Serum phosphate (mmol/l)

Serum creatinine (umol/l) □□□ □□□ □□□ □□□ □□□ □□□ □□□ □□□

Alkaline Phosphatase (iu/l) □□□□ □□□□ □□□□ □□□□ □□□□ □□□□ □□□□ □□□□

Sheet

Urinecalcium (mmol/l)

□

Urine phosphate (mmol/l)

of□ Urine creatinine (mmol/l)



STUDY 2
Sheet □ of □

WEEKLY RESULTS

Measurements

Date Weight (kg) OFC (cm) Knemometry (mm)

□□ □□ □□ □ .□□□ □□□□.□□

□□ □□ □□

□□ □□ □□

□□ □□ □□

□□ □□ □□

□□ □□ □□

□□ □□ □□

□□ □□ □□
MONTHLY RESULTS

Bone Mineral Density
Arm used Right =1 Left =2 NK =9

Arm Date BMC mg/cm BMD radius mg/cm2 BMD ulnar mg/cm2

□ □□□□□□

□ □□□□□□

□ □□□□□□

□ □□□□□□

□ □□□□□□

□ □□□□□□
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STUDY2 DAILYRESULTS Enteralintake(mineralsandnutrition) Date

Calc

Phos
fY>KYIA1/

VitD

11111101/ day

mmoi/ day

i.u.

□

□

□

□

□

□

□

■

□

□

■

□

□

□

□

□

□□□□□□
□

■

□

□

■

□

□

□

□

□

□

□

□

□

□

□

□

■

□

□

■

□

□

□

□

□

□

□

□

□

□

□

□

■

□

□

■

□

□

□

□

□

□

□

□

□

□

□

□

■

□

□

■

□

□

□

□

□

□

□

□

□

□

□

□

■

□

□

■

□

□

□

□

□

□□□□□□

□

■

□

□□□□

□

□

□

□

□

□

□

■

□

□

■

□

□

□

□

□

Sheetof
□

AdditiveVolume (state%received where(mis/day) needed)

□□□ □□□ □□□ □□□ □□□ □□□ □□□ □□□

VolumeWeight(kg) received (mls/kg/day) □□□□.□□□ □□□□.□□□ □□□□.□□□ □□□□.□□□ □□□□.□□□ □□□□.□□□ □□□□.□□□ □□□□.□□□



STUDY2 DAILYRESULTS ParenteralIntravenousintake DateWeight(kg) □□□□□□□.□□□ □□□□□□□.□□□ □□□□□□□.□□□ □□□□□□□.□□□ □□□□□□□.□□□ □□□□□□□.□□□ □□□□□□□.□□□ □□□□□□□.□□□
DexratepresCHO (ml/hr)(g/kg/da

□□ □□ □□ □□ □□ □□ □□ □□

AminoCalcPhos acid(mmol/(mmol/ (g/kg/day)day)kg/day)
DexreceivedLipidreceived (mis/day)(mis/day)



STUDY 2

DAILY RESULTS

Parenteral Intravenous intake

Date Weight (kg) Volume
received

(mis/day)

Dextrose
solution

Standard ce

(1 = Yes, 2
9 = NK

□□ □□ □□ □ .□□□ □□□ □

□□ □□ □□ □□□ □

□□ □□ □□ □□□ □

□□ □□ □□ □□□ □

□□ □□ □□ □□□ □

□□ □□ □□ □□□ □

□□ □□ □□ □□□ □

□□ □□ □□ □□□ □

□□ □□ □□ □□□ □

□□ □□ □□ □□□ □

□□ □□ □□ □□□ □

□□ □□ □□ □□□ □

□□ □□ □□ □□□ □

□□ □□ □□ □□□ □

□□ □□ □□ □□□ □

□□ □□ □□ □□□ □



Sheet
□

of
□

Code Start date Stop date

□□□ □□ □□ □□ □□ □□ □□
□□□ □□ □□ □□ □□ □□ □□
□□□ □□ □□ □□ □□ □□ □□

□□□ □□ □□ □□ □□ □□ □□
□□□ □□ □□ □□ □□ □□ □□

□□□ □□ □□ □□ □□ □□ □□
□□□ □□ □□ □□ □□ □□ □□

□□□ □□ □□ □□ □□ □□ □□
□□□ □□ □□ □□ □□ □□ □□
□□□ □□ □□ □□ □□ □□ □□

□□□ □□ □□ □□ □□ □□ □□

□□□ □□ □□ □□ □□ □□ □□

□□□ □□ □□ □□ □□ □□ □□

□□□ □□ □□ □□ □□ □□ □□



STUDY 2

NEONATAL DRUGS

Dexamethasone

Dose (mg/kg)

□□
Start date

□□ □□
Stop date

□□ □□ □□

□□ □□□□ □□ □□ □□

□□ □□□□ □□ □□ □□

□□ □□□□ □□ □□ □□

□□ □□□□ □□ □□ □□

□□ □□ □□ □□ □□ □□

□□ □□□□ □□ □□ □□

□□ □□ □□ □□ □□ □□

Other Drugs

Name Code Start date Stop date

□□□ □□ □□ □□ □□ □□ □□
□□□ □□ □□ □□ □□ □□ □□
□□□ □□ □□ □□ □□ □□ □□

□□□ □□ □□ □□ □□ □□ □□
□□□ □□ □□ □□ □□ □□ □□
□□□ □□ □□ □□ □□ □□ □□
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STUDY 2

RESPIRATORY SUPPORT

HFOV

HFOV

SIMV

SIMV

SIMV

CPAP (Flow Driver)

CPAP (Flow Driver)

CPAP (Flow Driver)

CPAP (Other)

CPAP (Other)

CPAP (Other)

Supplemental Oxygen

Supplemental Oxygen

Supplemental Oxygen

Start date

□□ □□ □□
□□ □□ □□

□□ □□ □□
□□ □□ □□
□□ □□ □□
□□ □□ □□
□□ □□ □□
□□ □□ □□

□□ □□ □□

□□ □□ □□
□□ □□ □□
□□ □□ □□
□□ □□ □□
□□ □□ □□

Stop date

□□ □□ □□
□□ □□ □□

□□ □□ □□
□□ □□ □□
□□ □□ □□
□□ □□ □□
□□ □□ □□
□□ □□ □□
□□ □□ □□
□□ □□ □□
□□ □□ □□
□□ □□ □□
□□ □□ □□
□□ □□ □□

PAEDIATRIC EPIDEMIOLOGY GROUP PA . MCKINNEY / L.PRYDE
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Appendix D: Parent Information Sheets

Study 1

Study on Bone Strength in Babies

Dear Parent

We would like to invite you to take part in a research study.

In this study we want to find out more about the factors that influence the strength of
babies' bone. We wish to do this so that in future we may be able to identify those
babies with a tendency to have weak bones and give them extra minerals they need to
strengthen their bones.

We would do this by measuring the density of babies' bones and relating the
measurements we obtain to the information we gather from the mothers' and babies'
medical records.

If you agree to your baby taking part in the study, we would scan your baby's forearm
twice within 72 hours of the birth.

The scan is taken by a machine which will not disturb or hurt your baby at all. It
should take no longer than 10 seconds to take the picture. It is like having an Xray
but uses 6 times less radiation than a routine chest Xray and is therefore very safe.

Taking part in this study will not help your baby directly but may help babies in the
future. If you feel able to help we would be happy to discuss this with you in more
detail. Participation is entirely voluntary. You can refuse to take part, or withdraw
from the study at any stage, and this will have no effect on the care of your baby.

Adele Harrison
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Study 2

Study on Bone Strength in Premature Babies

Dear Parent

We would like to invite you to take part in a research study.

Nutrition plays a very important role in the growth and development of your
premature babies. As premature babies are born early it is known that they miss out
on the normal transfer of the minerals calcium and phosphorus from the mother.
These minerals are needed to make strong bones. In this study we would like to
compare two different feeding regimens aimed at improving the strength of babies'
bones.

We would randomly allocate your baby to one of the two regimens. This means that
the treatment is allocated by chance, which avoids biased results and means that we
can be certain at the end of the study which treatment is best.

Your baby would receive one of the following feeding regimens:

a. Our usual feeding regimen which is already in use in the neonatal unit.

b. A special feeding regimen tailored to the individual needs of your baby. We
would give extra calcium and phosphorus supplements based on blood and urine
results which are already done on the baby. No extra blood tests would be
required.

Both groups of babies may receive the minerals calcium and phosphate, only the
amounts may differ.

To find out which regimen is better we would like to obtain information from
mothers' and babies' notes, and then measure the development of your baby's bones
by scanning your baby's forearm at the following times:

1. Within 96 hours of the birth.
2. Every 4 weeks until discharge from the neonatal unit.
3. When your baby is 6 months past the date he/she is due.

The scan is taken by a machine which will not disturb or hurt your baby at all. It
should take no longer than 10 seconds to take the picture. It is like having an Xray
but uses 6 times less radiation than a routine chest Xray and is therefore very safe.

Taking part in this study will not help your baby directly but may help babies in the
future. If you feel able to help we would be happy to discuss this with you in more
detail. Participation is entirely voluntary. You can refuse to take part, or withdraw
from the study at any stage, and this will have no effect on the care of your baby.

Adele Harrison
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Appendix E: Assessment of calcium and phosphorus
solubility

After completion of the study, an assessment of the compatibility of formula and

human milk with calcium and phosphorus additives were made with the assistance of

V Lalari (dietician, Children's and Women's Health Centre of British Columbia).

The original calcium and phosphorus formulations were no longer available, and the

milk formula used (Similac Special Care 24, SSC24) in these experiments had higher

phosphorus (72 mg/lOOml) and calcium (132 mg/lOOml) content than Nutriprem, the

most commonly used formula in the study. Fortifier was similar to that used in the

study, but was available in smaller sachets, such that 1 sachet of study fortifier was

equivalent to 2 sachets of the similac fortifier used below.

0.5 mmol calcium gluconate (0.23mmol/ml) and 1 mmol sodium phosphate

(3mmol/ml) were added separately first to 5ml Similac Special Care formula 24 and

then to 5ml donated human milk with added similac fortifier (1 sachet/25cc).

In each of the 4 experiments (SSC24 + calcium, SSC24 + phosphorus, EBM+HMF +

calcium, and EBM+HMF +phosphorus) there was no precipitation seen in the test

tube. Due to the high fat content it was not possible to pass the milk through filter

paper.

When 0.5mmol of calcium gluconate and lmmol sodium phosphorus were mixed

together, precipitate was immediately visible in the test tube. The addition of 5cc of

SSC24 appeared to dissolve the precipitate. However, with the addition of 5cc of

EBM with HMF (1 sachet/25cc) precipitated particles remained visible on the test
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tube and marked sludging at the bottom of the tube occurred on emptying. The

finding of sludging and precipitation in this case supports the evidence that the

addition of calcium or phosphate alone did not result in precipitation.

The volume ofmilk used in this experiment was much less than administered to the

infants in the study, although the calcium and phosphorus supplementation was

comparable. In view of the increased plasma phosphorus concentrations, and urinary

excretion of calcium and phosphorus seen in the supplemented infants, this supports

the thesis that, in the doses used, calcium and phosphorus administered separately are

not precipitated in the milk, and are absorbed to some extent by the infants.
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Appendix F: Abidec

Yellow liquid containing in 0.6ml:

Vitamin C (ascorbic acid) 40mg

Vitamin A palmitate 1333iu

Vitamin B1 (thiamine hydrochloride) 0.4mg

Vitamin B6 (pyridoxine hydrochloride) 0.8mg

Nicotinamide (niacin) 8mg

Vitamin B2 (riboflavin) 0.8mg

Vitamin D2 (ergocalciferol) 400iu
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