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Lay Summary

Tiny ripples exist on any liquid surface, but we cannot see them with our naked eyes. These

ripples, or waves, are 1 million times smaller than the width of a human hair and arise due

to the constant bombarding of molecules with each other. The most advanced experimental

techniques are still not able to resolve these molecular waves, which is why this thesis uses very

detailed molecular simulations to study them and understand their impact on a few engineering

flow problems. In particular, this thesis focuses on the influence of these waves when nanoscale

droplets (a) merge with each other, (b) spread on a surface and (c) merge and lift-off from a

surface. Merger and spreading of droplets are ubiquitous in our daily lives: mixing of sauces

during cooking, spreading of cleaning liquids on various surfaces, merging of ink droplets

inside printers and spreading of the resulting coloured ink on papers. Formation of clouds and

rain also relies on droplets forming and merging. Molecular simulations in this thesis show, for

the first time, that during droplet merging, these tiny waves reach out across these droplets to

initiate the first contact between them. Right after this, the surfaces of the droplets get stuck

onto each other and continue to merge in a newly discovered behaviour that is best explained

like how one zips both sides of a jacket after putting it on. This will go on along with a few other

well-known processes, which will later lead to the complete merger of the droplets. A similar

‘zipping’ process is also observed when a droplet impacts and spreads on a surface. However,

on repelling surfaces, droplets will avoid spreading and adopt a perfectly spherical shape, just

like rain droplets that rest on a lotus leaf. When two such neighbouring droplets merge, the

final droplet will spontaneously lift-off from the surface. This jumping process requires no

external intervention and can be used to self-activate cleaning on surfaces, transfer heat in

cooling devices and has the potential to inhibit ice formation. In this thesis, these tiny ripples

on nanodroplet surfaces have also shown that they can enable the lift off of the smallest possible

droplets from a surface at various speeds. Moreover, the drag caused from the nanodroplets’

surroundings as they merge and lift-off is found to behave in an unusual way. Such improved

understanding about these processes at a fundamental molecular level will enable us to design

next-generation nano/micro devices and understand processes that manipulate and leverage

droplets in various engineering applications.
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Abstract

Droplet-based systems appear in various aspects of our daily lives: in understanding the process

of atmospheric storm cloud formation – involving very large length and time scales; in deter-

mining the shelf life of emulsion-based products such as mayonnaise – involving intermediate

scales; and in design and optimization of next-generation micro/nano-fluidic devices such as

nanopipe cooling materials – operating at much smaller scales. There are clear differences in

the dominant physics that underpins their functioning, when these systems scale from macro

to nano. As a result, many of the experimental observations at micro/nano-scales are often

counter-intuitive and fascinating. Some such examples relevant to future nano-engineered tech-

nologies include: order of magnitudes higher water flow rate through nanotubes than predicted

by traditional theories, passive water droplet transport to hotter regions on a heated surface

and faster evaporation rates from nanoscale menisci. In this thesis, unconventionally large and

computationally expensive molecular dynamics simulations are used to study problems involv-

ing nanodroplets, which have a wide range of engineering applications. The novelty in this

work includes: (a) the investigation of previously unexplored realms of nanoscale interfacial

fluid flows using high-fidelity molecular simulations and (b) uncovering the theoretical and

fundamental explanation of how molecular motion affects the nanodroplet dynamics of three

problems: merging, spreading and jumping nanodroplets.

In the first problem, coalescence of two water droplets is studied, focusing on the first con-

tact and growth of the bridge that connects both droplets. Many mathematical models in the

literature host a ‘singularity’ in the beginning of coalescence, where calculated quantities

like velocity and pressure diverge at this point. Such singularities are unphysical, and what

happens in reality is investigated in more detail in this thesis. The thermal motion of constituent

molecules is found to have substantial impact not only in initiating coalescence, but also in

developing the liquid bridge in the initial stages. For large droplets, a hydrodynamic instability

develops owing to the attraction between confronting interfaces of the droplets as they approach

each other. However, no evidence of such instability is observed at the nanoscale. Instead,

the first contact happens because of the interfacial thermal fluctuations on droplets’ surfaces

meeting from opposite sides. Thereafter, coalescence proceeds in an observed ‘thermal regime’,

where, as molecular simulations show, the bridge grows as a result of gradual cohesion of the

confronting interfaces of the droplets due to collective molecular jumps. This continues until

a ‘thermal length scale’ is achieved, which is found to scale as square-root of the size of the

coalescing droplets. Only after these molecular-driven processes finish does the bridge evolve

in the manner that we had previously understood.

The relevance of the observed molecular thermal motion on droplet-droplet interactions is
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tested on droplet-surface interactions and found to extend also to these problems with small

variations in the observed physics. When a liquid wets a solid surface, which is essential

for applications in coating technologies, agriculture and printing, to name a few, a regime

of contact line motion, which is very similar to the thermal regime in coalescence, is found

to precede the contact line motion that we have traditional understood. The extent of this

regime not only scales as square-root of the droplet size, but also depends on the attraction from

the underlying wall. The dependence of this length scale on the equilibrium contact angle is

explained based on the local profile of the droplet near the wall when the first contact happens.

In this ‘thermal-vdW regime’, the interfacial molecules of the droplet get deposited directly

on to the surface, before it gives way to the traditional picture of contact line motion, where

the molecules at the three-phase-zone hop over the potential energy landscape above the wall

atoms. The existence of this new regime of droplet wetting on atomically smooth surfaces

is further validated by comparison of the contact line motion with what is described by the

molecular kinetic theory, with which the late stage dynamics closely match.

The third problem combines the droplet-droplet and droplet-surface interactions and investi-

gates the molecular physics of coalescence-induced jumping of nanodroplets from non-wetting

surfaces, which is relevant for heat transfer and self-cleaning applications. Here, the effect of

molecular thermal motion and ambient gas rarefaction on the jumping speed of a droplet is

investigated. While the presence of an outer gas reduces the jumping speed by introducing an

additional dissipation mechanism into the system, the interfacial thermal fluctuations make the

jumping of nanodroplets a stochastic process. An analytical model of drag from outer gas is

developed explaining the reduction of the jumping speed with respect to that in near-vacuum

conditions. The thermal-capillary waves on the droplet surface renders the jumping speed to

be statistically distributed with smaller droplets having wider and skewed distributions. It is

shown that the jumping dynamics of nanodroplets is governed not just by Ohnesorge number

as previously thought, but also by Knudsen number and thermal fluctuation number.

Despite their increased importance at the nanoscale, this is the first time that the effect of

thermal capillary waves is properly quantified in studies concerning the dynamics of nan-

odroplets. Moreover, this thesis is intended to inspire the reader to look at many other traditional

problems with singularities from a fundamental molecular perspective. It may be the case that

the thermal regime of droplet coalescence and the thermal-vdW regime of droplet spreading

are two special classes of a larger set of interface evolution dynamics and this requires further

systematic molecular investigations and quantifications. Furthermore, the models developed in

this thesis can be integrated in CFD simulations in the future as better initial/boundary condi-

tions. Coupled with insights from the theoretical analyses presented throughout this thesis, the

results can be used to study many natural systems and to predict performance characteristics of

futuristic micro/nano-fluidic devices, which employ nanodroplets for heat-transfer and various

other emerging technologies such as self-cleaning and anti-icing surfaces.
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Chapter 1

Introduction

Water vapour in the atmosphere condensing on microscopic dirt, salt or clay particles results

in the formation of droplets that ultimately form a storm cloud. These droplets, which are in

constant motion in the turbulent atmospheric air, bombard into each other before eventually

showering on the earth below (Kovetz and Olund, 1969). This involves collision of droplets in

intense vortical structures (Agasthya et al., 2019); many of them leads to droplet coalescence.

Such collision and coalescence processes are crucial to trigger rain, since small water nuclei in

warm clouds must aggregate to a minimum size before gravity can bring them down.

Dynamical processes involving droplets find many other fascinating applications. Boreyko and

Chen (2009) reported experimental observations of coalescence-induced jumping of water

droplets from ultra-low adhesion surfaces. Droplets tend to retain spherical shape on such

surfaces, and when they coalesce with their neighbours, the final droplet lifts-off without

any external force. Insects like cicada use this mechanism to self-clean their wings (Wisdom

et al., 2013); the wings are composed of hierarchical structures equipping them with ultra-low

adhesion properties. Geckos use this phenomenon to remove dew droplets from their skins

(Watson et al., 2011). This has inspired engineers to design similar surfaces, but for widely

different applications (Boreyko et al., 2011; Zhang et al., 2013; Miljkovic et al., 2013).

Droplet-surface interactions find numerous other interesting applications. For example, many

insects use attachment pads to adhere to exceptionally smooth surfaces (Bohn and Federle,

2004; Qian and Gao, 2006). Gromphadorhina portentosa, commonly known as the Madagascan

hissing cockroach, secrete a special fluid from the pre-tarsal glands near their feet, which

spontaneously spreads on surfaces giving the insects firm adhesion as well as fair mobility

(van Casteren and Codd, 2010).

Droplet dynamics dictate the working and performance of many other natural and industrial

processes: spreading of pesticides on plant leaves (Xu et al., 2011), mixing of medicines

in pharmaceutics (Komatsu et al., 1997), determining shelf life of emulsion-based products,

such as mayonnaise (Kumar et al., 1996), heat transfer applications (Rose, 1967; O’neill and

Westwater, 1984), droplet transport (Zimmerli et al., 2005; Qin et al., 2011), anti-icing surfaces

(Boreyko and Collier, 2013; Zhang et al., 2013), thermal diodes (Boreyko et al., 2011), metal

nanoparticle formation (Boneberg et al., 2008) and energy harvesting (Miljkovic et al., 2014).

1
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1.1 Background

Inspired from the vast number of natural and engineering applications of droplet-based sys-

tems in our daily lives, the theme of this thesis is on dynamical problems associated with

droplet-droplet and droplet-surface interactions – particularly, droplet coalescence, spreading

and jumping. The thesis primarily looks into these processes from a fundamental molecular

perspective with the main aim to study the influence of molecular effects such as thermal

motion on droplet dynamics and to observe and quantify how such nanoscale effects manifest

themselves at much larger length scales. In the process, the influence of other non-continuum

effects such as the atomic structure of solid substrate and extreme gas rarefaction are also

investigated. While researchers have briefly studied some of these problems using different

techniques, a full molecular picture of these processes is lacking in the literature. Nevertheless,

before proceeding to the contribution of this thesis to the scientific literature, it is necessary to

have a sense of where our current understanding stands today.

1.1.1 First contact between droplets during coalescence

In a system at a finite temperature, the constituent particles will always be in Brownian motion,

with particles frequently bombarding with their neighbours. Due to this thermal agitation of

the constituent molecules, any interface between two phases, be it solid/liquid, liquid/liquid,

liquid/gas or solid/gas, will have a ‘dynamic roughness’ associated with it (v. Smoluchowski,

1908) and its characteristics will depend on temperature, interfacial tension, geometry and other

system parameters (Rowlinson and Widom, 1982). Consequently, the shape of any interface is

assumed to comprise a mean/nominal profile and a fluctuating part that arises due to thermal

fluctuations — for example, a free droplet will have a spherical mean profile with fluctuations

imposed on top of it.

A liquid/vapour interface resolved at a molecular scale will have molecules in a constant

thermal motion, the speed of which is determined by the temperature of the system. At any

instant, several molecules at the interface may have a non-zero component of their thermal

velocity in the direction normal to the interface. As a result, these interfacial molecules will

try to move away from the interface (see Fig. 1.1(a)). Since any deviation from the nominal

profile will result in an increase in the interfacial area, the interfacial tension (γ) will act

to bring these molecules back to their original location, thereby trying to reduce the overall

exposed area (see Fig. 1.1(b)). The two processes of thermal jumps and interfacial tension pull-

back occur at all interfacial locations, and are the underlying mechanisms that give interfaces

their molecular roughness. Since the thermal energy of molecules is balanced by the capillary

energy of the interface, these fluctuations are called thermal capillary waves, and they have

been experimentally observed (Aarts et al., 2004; Hennequin et al., 2006).

Traditionally, the problem of droplet coalescence is approached as two different — and in-

dependent — sub-problems. In the first one, the mechanism of the establishment of the first
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Figure 1.1: The mechanisms which generate interfacial thermal fluctuations. (a) Some
molecules near the interface may have a component of their thermal velocities oriented
normal to the mean profile. (b) interfacial tension (γ) tries to minimise the deviation of the
instantaneous profile due to thermal fluctuations from the mean profile.

contact between the droplets is described by an interplay of (a) hydrodynamic drainage of the

intervening fluid and (b) competitive action between surface thermal fluctuations and van der

Waals interactions. In the second one, which studies the subsequent evolution of this connection

between the droplets using traditional hydrodynamics, the influence of thermal fluctuations and

van der Waals interactions are suddenly neglected.

When two droplets approach each other prior to coalescence, the intervening fluid between

them will get displaced. This will continue until a thin film remains (see Fig. 1.2(a,b)), whose

stability and life-time have been subjected to theoretical (Vrij, 1966; Vrij and Overbeek, 1968;

Prevost and Gallez, 1986) and experimental studies (Chen et al., 2004; Manor et al., 2008;

Vakarelski et al., 2010; Chireux et al., 2018). While the initial stages of fluid displacement

only involve the hydrodynamic drainage, the effect of attraction/repulsion between confronting

interfaces must be incorporated into the analysis as the thickness of the film approaches a

few 100 nanometres or below; van der Waals attraction increases the drainage and double

layer repulsion decreases it. Dominant repulsive interactions between confronting interfaces

stabilizes the intervening film. During thinning, some films will reach a metastable state where

opposing forces equilibrate. Instability only occurs when attractive interactions dominate.

Vrij (1966) studied the stability of a free, thin liquid film subjected to spontaneous fluctuations

in its thickness. While fluctuations due to bending of the film as a whole is shown to be

stabilizing under all conditions, instability can arise due to a competition between increases

in the Gibbs free energy (G) (owing to increases in interfacial area) and changes in G (owing

to thinning of the film). The drainage of the film during thinning is studied by assuming the

intervening film is composed of a liquid of thickness-independent viscosity. If the surface

perturbations are assumed to be composed of numerous Fourier modes, a critical wavelength
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Figure 1.2: Schematic showing the approach and onset of coalescence of two droplets in an
outer fluid. (a) As the droplets approach each other, the intervening fluid escapes from the
gap between them. (b) The gap becomes very small. Depending on the speed of approach
and the thermophysical properties of the fluids involved, there will be local deformations of
the interfaces and the intervening gap size may remain constant (∆) for a finite amount of
time. (c) During this time, the interfacial thermal fluctuations on the droplet surface interact
across the gap and the attraction will cause local ‘bumps’ to develop, as shown in (d), which
grow exponentially in time. (e) The two bumps merge from opposite sides and results in the
formation of the first contact between the droplets.

Λc can be derived as

Λc =

√
−2π2γ

d2G/d∆2 , (1.1)

where ∆ is the thickness of the intervening film. It can be shown that all Fourier modes with

wavelengths Λ>Λc will grow exponentially in time until the film ruptures (see Fig. 1.2(c,d,e)).

Prevost and Gallez (1986) considered the non-linear effects on the stability of such films and

found that non-linearities considerably accelerate the film rupture process.

Recent experiments have shown that the critical distance, ∆min below which the droplets spon-

taneously grow an ‘irreversible capillary bridge’ between their confronting interfaces follows a

size-dependent scaling law (Chireux et al., 2018). A dimensionless parameter Ha≡ 4AH/3πγR2
eq,
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where Req ≡ R1R2/(R1 +R2), is defined to quantify the relative importance of attraction be-

tween interfaces over the capillary force (here, AH is the Hamaker constant and R1, R2 are

the radii of the two droplets). The non-dimensional critical distance ∆min/Req scales as Ha1/3

for sub-micrometre droplets and ∆min/Req ∼ Ha1/2 for larger droplets. Inevitably, the rupture

of the intervening film results in establishing the first contact between the two bulks of the

merging liquid.

1.1.2 Scaling laws for coalescence of liquid droplets

After a contact is established between the droplets (or a droplet and a planar interface as

studied in Gillespie and Rideal (1956); Thoroddsen and Takehara (2000)), a capillary bridge

connects both of them, which grows in time until both droplets merge to form a larger one.

The speed at which droplets coalesce is determined by the growth dynamics of this bridge,

which in turn depends on the interfacial tension, viscosities and densities of both coalescing and

outer fluids. During electro-coalescence, where droplets coalesce in the presence of an external

electric field, the growth dynamics of the bridge is affected by the electric field strength (Bird

et al., 2009; Ristenpart et al., 2009). Traditional studies on droplet coalescence assume that the

process is always driven by capillary force, and either viscous, inertial or both forces oppose it.

While viscosity is thought to resist the capillary force in the beginning of the process – known

as the viscous regime, inertia is expected to be the opposing force in the later stages – known

as the inertial regime. A transition between these regimes occur when the strength of viscous

and inertial forces are comparable. In what follows, this time line of droplet coalescence and

different scaling laws derived to predict the bridge growth are discussed in detail.

One of the earliest and most commonly used studies describing the evolution of the capillary

bridge is due to Hopper (1984), wherein he derived an analytical solution for the entire two-

dimensional shape of coalescing cylindrical droplets as a function of time using conformal

mapping techniques. The viscous-dominated coalescence of two identical cylinders in a passive

outer gas (i.e. perfectly inviscid or absent) studied by Hopper (1984) is described by Stokes

flow. Hopper’s analysis provides an analytical solution to the non-dimensional bridge radius

rb/R and the height of the droplets h/R as a function of non-dimensional time (normalised by

the viscous-capillary time scale τv ≡ γR/µl , where µl is the liquid viscosity):

rb/R =
√

2(1−m)(1+m2)−1/2, h/R =
√

2(1+m)(1+m2)−1/2. (1.2)

Here, m is a parameter that links t to rb and h through a relationship:

t/τv =

√
2π

4

∫ 1

m2
[τ(1+ τ)1/2K(τ)]−1dτ, K(τ) =

∫ 1

0
[(1− x2)(1− τx2)]dx, (1.3)

where τ and x are two arbitrary variables of integration. Figure 1.3 shows the bridge evolution

as described by Eq. (1.2). It must be noted that the speed of bridge growth diverges as the ‘time
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Figure 1.3: Bridge growth in time as described in Hopper (1984) and Eggers et al. (1999). A
simple volume balance gives the radius of the final droplet to be 21/3 ≈ 1.26 times the radii
of the initial droplets. Hopper’s solution shows that coalescence of two droplets of a highly
viscous liquid continues ‘smoothly’ until the final droplet is formed. Eggers et al. (1999) derived
analytical expressions for the bridge growth when outer fluid is viscous and inviscid. The time
is normalised with the viscous-capillary time scale τv ≡ γR/µl . In the cases where the outer
fluid has non-zero viscosity, their equation is only expected to hold for rb/R < (µg/µl)

2/3. For
the inviscid case, its validity is restricted to rb/R < 0.03.

since coalescence’ approaches zero. Such divergences in the bridge growth are characteristic

of many traditional models, since they predict singularities caused by infinite free-surface

curvature at the bridge front when the droplets first meet. Hopper (1984) also provides a

parametric form of the free-surface shape of the coalescing droplets that are used in many

computational studies to generate an initial free-surface shape during coalescence (Sprittles

and Shikhmurzaev, 2014a,b).

While Hopper’s analytical solution deals with the case of inviscid outer fluid, Eggers et al.

(1999) discuss coalescence of liquid droplets in an outer fluid of non-zero viscosity. Eggers

et al. (1999) used Stokes flow to argue that droplet coalescence will always be viscous domi-

nated in the initial stages. The driving capillary force is primarily attributed to the longitudinal

curvature 1/∆ (see Fig. 1.4(c)). Subsequently, the development of the bridge radius is shown

to have a logarithmic dependence on time:

rb

R
=−Cv

t
τv

ln
(

t
τv

)
; Cv =

α−1
2π

; α =

3, µg/µl = 0,

3/2, µg/µl > 0.
(1.4)

It is interesting to note that the above equation is independent of the gas-to-liquid viscosity

ratio, µg/µl , when µg/µl > 0. Eggers et al. (1999) also suggests that, in the cases where the
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outer fluid has non-zero viscosity, their equation is only expected to hold for rb/R< (µg/µl)
2/3.

For the inviscid case, its validity is restricted to rb/R < 0.03.
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Figure 1.4: (a,b) Coalescence of two droplets of radii R and definitions of the bridge radius rb
and height h. Free-surface shape evolution in time as described in Eggers et al. (1999) (c,d)
and in Duchemin et al. (2003) (e,f). (c) A passive outer fluid results in no bubble formation
close to the bridge front. (d) When the outer fluid is viscous (no matter how small its viscosity
is), a non-enclosed toroidal bubble is developed at the bridge front. (e) When two inviscid
droplets coalesce, capillary waves are formed next to the bridge front that travel along the
free-surface. (f) The first bubble becomes enclosed by the coalescing liquid at one point in
time, which gives rise to the formation of a ‘new bridge front’ that advances forward.

Nevertheless, no experiments have observed the logarithmic growth of the bridge as described

by Eq. (1.4). In the early stages of coalescence, a linear regime is often observed instead

(Paulsen et al., 2011; Burton and Taborek, 2007; Aarts et al., 2005). The initial speed of the

bridge growth in this regime is obtained by setting the capillary number to unity, which suggests

rb ∼ γt/µ . Paulsen et al. (2012) classified this as an ‘inertially-limited-viscous’ regime and

argued that it will always be the initial regime of droplet coalescence. However, Sprittles and

Shikhmurzaev (2014b) constructed a phase diagram of droplet coalescence (Reynolds number

based on droplets radii ReR ≡ ρlγR/µ2
l vs. rb/R, where ρl is the coalescing liquid density)

and showed that Hopper’s solution best approximates the dynamics in the early stages of

coalescence and argued that the inertially-limited-viscous regime is merely a characteristic of

the global motion of the droplets. A ‘transition regime’ is also identified wherein both viscous
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and inertial forces are relevant.

A particular characteristic of the free-surface shape that Eggers et al. (1999) observed in their

simulations is the existence of non-enclosed toroidal bubbles (see Fig. 1.4(d)) next to the bridge

front for the cases where the outer fluid has non-zero viscosity. Consequently, the gap width

at the meniscus is much larger than that in the absence of an external fluid. The external fluid

caught inside the bubble only escapes when rb/R > 0.1. Although the majority of the analysis

are performed for 2D parallel coalescing cylinders, Eggers et al. (1999) also established that

the dynamics is asymptotically equivalent to the coalescence of 3D spherical droplets in the

early stages. This was further validated in later experiments (Burton and Taborek, 2007). Prior

to work presented in this thesis, traditional theories therefore suggest that droplet coalescence

will always be viscous dominated in its initial stages.

The effects of viscosity diminishes as time proceeds and at one point the dynamics switches

from Stokesian to Eulerian (Eggers et al., 1999). At this ‘crossover’ point, the Reynolds number

Re≡ ρlγrb/µ2
l ≈ 1, where the dominant length scale is assumed to be of size rb and a velocity

scale is assumed to be γ/µ . In other words, the crossover point is characterised by

rb ≈ lv ≡
µ2

l
ρlγ

, (1.5)

where lv is the ‘viscous length scale’. This crossover can also be represented alternatively as

rb/R≈ Oh2
l ; Ohl ≡

µl√
ρlγR

, (1.6)

where Ohl is the Ohnesorge number of the process based on liquid properties, which quantifies

the relative magnitude of viscous force as opposed to inertial and surface tension forces.

Paulsen et al. (2011) subjected the above hypothesis to rigorous experimental validation and

found that the crossover, in fact, happens when rb/R ≈ Ohl and not when rb/R ≈ Oh2
l . They

used a novel experimental technique, in which they passed an alternating current through

slightly conducting droplets, giving them access to small length and time scales that were

previously unexplored (rb ∼ 1 µm and t ∼ 10 ns after the first contact). The glycerol content

in the coalescing liquid, which is saturated with NaCl to make it electrically conductive, was

varied in order to achieve variation in viscosity over two orders of magnitude. The crossover

time is found to vary as µ2
l instead of µ3

l , which would have been the case if the crossover had

corresponded to rb/R≈ Oh2
l . They identified that the length scale over which a dominant flow

occurs is of the order of the gap width between the coalescing droplets, ∆ = r2
b/R and not rb.

This crossover ends in an ‘inertial regime’, where inertial force is expected to oppose the driv-

ing surface tension force. Since the effects of viscosity are negligible, the far field conditions

do not affect the dynamics of the bridge growth. Eggers et al. (1999) assumed that the driving

capillary pressure is predominantly due to the sharp meniscus at the bridge front quantified by
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γ/∆. This capillary pressure must be balanced by the dynamic pressure at the bridge front ρlv2,

where v = drb/dt. Consequently,

ρl

(
drb

dt

)2

∼ γR
r2

b
. (1.7)

Integrating the above equation gives:

rb

R
=Ci

(
t
τi

)1/2

; τi ≡
(

ρlR3

γ

)1/2

, (1.8)

where Ci is an unknown constant, expected to be O(1) and τi is the inertial-capillary time

scale. The rate of bridge growth in the inertial regime scales as t−1/2. Unlike for the viscous

regime, the coupling between pressure and velocity requires the pre-factor Ci to be determined

by alternative means (Sprittles and Shikhmurzaev, 2014a). Pothier and Lewis (2012) showed

through molecular dynamics (MD) simulations of coalescing liquid metal droplets that the

pre-factor Ci is not universal and it depends on system properties including initial radii of the

droplets, viscosity and surface tension of coalescing liquid.

Duchemin et al. (2003) extended the study of Eggers et al. (1999) in the inertial regime and

found that the coalescence of low-viscosity liquid droplets involves sequential entrapment

of enclosed bubbles, whose evolution can be described by self-similar solutions. Predictions

of their theoretical analysis were validated using high-precision boundary integral numerical

simulations. They showed that enclosed toroidal bubbles (see Fig. 1.4 (e,f)) are formed at the

bridge front as the confronting surfaces of the droplets reconnects in finite time, which in

turn gives rise to the development of another open bubble in front of it, which will become

enclosed later and so on. When averaged over many such discrete events, the t1/2 scaling

of the bridge front is recovered. Many numerical studies (Paulsen et al., 2012; Sprittles and

Shikhmurzaev, 2012; Duchemin et al., 2003) including those employing molecular dynamics

(Liang and Keblinski, 2015) and experiments (Paulsen et al., 2012; Menchaca-Rocha et al.,

2001; Thoroddsen et al., 2005; Eiswirth et al., 2012) have observed this scaling of the bridge

growth in the inertial regime. Although Duchemin et al. (2003) predicted the value of the pre-

factor Ci to be 1.62, experimental observations measured it to be in the range of 1.03 – 1.29

(Wu et al., 2004; Aarts et al., 2005).

However, formation of toroidal bubbles and subsequent reconnections are not observed in

experiments of coalescence of low-viscosity droplets even when using the high-resolution

electrical method (Case, 2009; Case and Nagel, 2008). It is also possible that this behaviour

occurs at a time scale that is much smaller than the time resolution of these experiments.

During the bridge growth in the inertial regime, if the gap width (∆) remains constant,

ρ

(
drb

dt

)2

∼ γ

∆
, (1.9)
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Figure 1.5: Bridge growth in inertial regime as described in Eggers et al. (1999) and Sprittles
and Shikhmurzaev (2014a). Both curves are drawn with Ci = 1.5.

which results in the bridge radius to grow linearly in time:

rb =C′i

(
γ

ρ∆

)1/2

t. (1.10)

This scenario happens only during the coalescence of low-viscosity droplets. Case (2009)

attributed this linear bridge growth in the inertial regime to the presence of surfactants on

the droplet surfaces. Surfactants can prevent droplets from coalescing due to the resulting

repulsion, causing the droplets to undergo slight flattening near the tip, which will keep ∆

constant.

The scaling law in the inertial regime (Eqs. (1.8) and (1.10)) is derived by assuming that the

driving capillary pressure is due to the longitudinal curvature of the free surface (∼ 1/∆);

the opposing capillary pressure due to the azimuthal curvature (1/rb) is neglected. For water

droplets of R ∼ 1 mm, which is the size that is usually studied in experiments, coalescence

crosses over to inertial regime when rb/R ∼ Ohl = O(10−2). Even for droplets coalescing in

microfluidic devices, where, say R ∼ 10 µm, this crossover happens when rb/R ∼ O(10−1).

In other words, for many of the applications that rely on the merger of low viscosity droplets,

coalescence proceeds in the inertial regime for the majority of the dynamics. Therefore, deter-

mining the accurate scaling law for the bridge evolution is essential, when it comes to studying

such processes that have numerous engineering applications.

For rectifying the shortcomings of the existing scaling laws in the intertial regime, Sprittles

and Shikhmurzaev (2014a) included the contribution of capillary pressure due to the azimuthal

curvature in their analysis and derived a new explicit analytical expression for the bridge front
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propagation:

r̄3
b +3r̄2

b +
3C2

i t̄
4

(
3C2

i t̄
4
−4
)
= 0, (1.11)

where r̄b ≡ rb/R, t̄ ≡ t/τi.

Eq. (1.11) is compared with Eq. (1.8) in Fig. 1.5. Since the bridge growth is opposed by

azimuthal curvature, the speed is reduced to what is suggested by Sprittles and Shikhmurzaev

(2014a) and has been shown to closely match with experiments. This indicates that the late

stage dynamics is well understood in the literature, particularly because the length and time

scales involved are easily accessible in experiments.

In summary, according to traditional hydrodynamics, droplet coalescence always begin in a

viscous regime, which will later cross over to an inertial regime through a ‘transition regime’.

For high-viscosity droplets, it is not necessary for an inertial regime to be present towards

the end. The motion in the viscous regime can be approximated by Stokes equations, i.e. by

neglecting the inertial terms, and motion in the later inertial regime can be modelled using

Euler’s equations. In the transition regime, the full Navier-Stokes equations are essential for

the accurate modelling of the coalescence process and so it may not be possible to obtain

simple analytical solutions in the transition regime. More importantly, it must be noted that

all traditional theories predict the existence of an unphysical mathematical singularity in the

beginning of coalescence, where measurable quantities, like local velocity and pressure, diverge

due to the infinite free-surface curvature when the droplets first meet. In numerical studies, this

singularity is avoided by beginning the simulation with an arbitrarily small bridge existing

between the droplets. This may have adverse effects on the accuracy of these simulations.

1.1.3 Contact line motion during wetting

The wetting of a solid by a liquid is ubiquitous in our daily lives: spreading of ink on papers

inside printers, wetting of wall/canvas by paint, coating of specially treated surfaces in indus-

tries and spreading of pesticides on plant leaves. Owing to its numerous practical applications,

dynamic wetting of a solid by a liquid has been a subject of many theoretical (Blake and

Haynes, 1969; de Ruijter et al., 1999; Blake and De Coninck, 2011), computational (Blake

et al., 1997; de Ruijter et al., 1999; Bertrand et al., 2009; Blake and De Coninck, 2011; Chen

et al., 2014; Lukyanov and Likhtman, 2016) and experimental work (Bird et al., 2008; Winkels

et al., 2012; Duvivier et al., 2013).

A droplet of a liquid, when placed slowly on a substrate, will spread on it depending on how

well it interacts with the solid at a molecular scale. The spreading process is a consequence of

the general tendency of any system to minimize its interfacial free energy. For quantifying the

wetting properties of a liquid on a given solid substrate, an equilibrium contact angle (θc) is

defined as the angle made by the liquid/liquid or liquid/vapour interface on the solid substrate,

which is measured through the liquid of interest at the point where all three phases meet.
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Figure 1.6: The figure illustrates the configurations of the liquid/vapour interface when it
wets/dewets a solid. The contact angle associated with the wetting configuration is larger
than that associated with the equilibrium configuration. The contact angle associated with the
dewetting configuration is smaller than the former two.

Under equilibrium conditions, i.e. after the spreading has finished, the contact angle will have a

minimum value. The equilibrium configuration of such a system can be classified as completely

wetting (θc = 0◦) or partially wetting (θc > 0◦). A characteristic of the complete wetting is that a

thin (∼ 10 nm) precursor film advances ahead of the apparent contact line. In the partial wetting

regime, if θc < 90◦, the liquid is said to wet the substrate, and is non-wetting if θc > 90◦.

Under many circumstances, it is imperative to know not just how well a liquid wets a solid,

but also how fast it wets or dewets it. The speed at which it takes place is occasionally the

controlling factor in process design. During wetting/dewetting, the instantaneous contact angle

– otherwise known as the dynamic contact angle θd – is mostly of interest. The instantaneous

contact angle measured when a liquid interface advances on a solid surface (i.e. during wet-

ting) is known as the advancing contact angle (θd = θa), and the instantaneous contact angle

measured when a liquid interface recedes on a solid surface (i.e. during dewetting) is known

as the receding contact angle (θd = θr). Generally, liquids satisfy the relation: θa > θc > θr,

as shown in Fig. 1.6. Experimentally it is observed that the advancing contact angle increases

with the wetting velocity, whereas the receding contact angle decreases with it. Determining

the velocity dependence of the dynamic contact angle has been the main aim of many previous

works and researchers have approached this problem from different perspectives.

The dynamics of the spreading process can also be studied by looking at the dependence of the

contact radius of the wetted area on the solid as a function of time. An imaginary line, which

demarcates the wetted region and the non-wetted region on the solid, termed as the contact

line (CL), is often used to locate the extent of the wetted area during spreading. Although it is
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Droplet
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Figure 1.7: Definition of contact angle (θc) based on far-field interfacial energies per unit
area. θc can be defined without having the knowledge of what happens in the core region.
Here, γsv,γsl and γ are the solid-vapour, solid-liquid and liquid-vapour interfacial tensions,
respectively and r is the contact radius at the base of the droplet.

traditionally considered as a line of infinitesimal thickness, theory (de Gennes, 1985) and many

molecular dynamics simulations (Winkels et al., 2012; Zhang et al., 2017) have shown that it is

a region of finite thickness, much like any interface between two phases. In fact, there exists a

core region close to where the contact line is supposed to occur with a thickness of rcore ∼ γ/E,

where E is the Young’s modulus of the substrate (see Fig. 1.7).

It is possible to write a relationship between the far-field (i.e. far from the core region) energy

parameters (solid/liquid (γsl), solid/vapour (γsv) and liquid/vapour (γ) interfacial tensions) and

the equilibrium contact angle (see Fig. 1.7):

cosθc =
γsv− γsl

γ
. (1.12)

The above relation is the ubiquitous Young’s equation. As the size of the spreading droplet

is decreased, such as in nanodroplets, the line tension comes into play, which has an effect

on the equilibrium contact angle. Line tension is assumed to arise due to the modification

of the droplet profile close to the substrate owing to the intermolecular interactions between

the spreading liquid and the substrate. Subsequently, a modified Young’s equation has been

suggested for nanodroplets:

cosθc =
γsv− γsl

γ
− TL

γr
, (1.13)

where TL is the line tension and r is the contact line radius. It must be noted that for large enough

droplets (R� TL/γ), θc is independent of droplet size. In particular, numerical simulations

often use cylindrical droplets (r→ ∞) to avoid the complications due to contact line tension.
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In terms of contact radius of the droplet, Winkels et al. (2012) observed a wettability-independent

spreading regime in the initial stages of spreading where r∼C
√

t on partially wetting surfaces.

The pre-factor C is found to be dependent on θc. After this initial stage, Bird et al. (2008)

observed that the spreading follows a power-law dependence on time such that r ∼ tα , where

the exponent α is dependent on θc.

During complete wetting, the initial dynamics is nearly identical to droplet coalescence with a

film of the same liquid. This similarity arises due to the presence of precursor films that spread

ahead of the apparent contact line (whose location is indicated by r) at a much faster rate, and so

the droplet essentially spreads on a film of its own liquid. As discussed in the previous section,

under such circumstances, the power-law describing the spreading dynamics depends on the

force resisting the driving capillary force. When inertia opposes the motion, r ∼
√

t and when

viscosity opposes, r ∼ t with a weak logarithmic dependence on time. However, the late stage

dynamics of complete wetting, i.e. after the droplet has achieved a spherical cap shape, the

dynamics is governed by Tanner’s law, where r ∼ t1/10. This extremely slow dynamics results

from a balance of surface tension and viscous forces near the apparent contact line. It is worth

noting that Tanner’s law is a limiting case of a more general spreading behaviour, which arises

when a viscous liquid spreads on its own film (Cormier et al., 2012).

In general, the spreading of a droplet on a solid is associated with four dissipation mechanisms:

(a) the viscous losses within the bulk of the spreading droplet (Φv), (b) losses in the precursor

film in the case of complete wetting (Φ f ), (c) losses due to liquid slipping on the wall (Φs)

and (d) losses in the core region due to the interface formation/disappearance as the contact

line moves (Φc). While the final configuration of the system depends on the minimization

of its free energy, the path along which it is achieved depends on the relative magnitudes of

these dissipation mechanisms. Analysing various losses will give an understanding about the

dependence of contact line velocity on the dynamic contact angle. While usual hydrodynamic

theories can model the viscous losses in the system, a more detailed description of the contact

line motion involving local effects are necessary to quantify, particularly, the fourth kind of

dissipation.

Experiments of Dussan V. and Davis (1974) showed that the contact line motion results from

a rolling type movement of the droplet surface close to the substrate that is reminiscent of the

chain wheels of a caterpillar vehicle. A ‘wedge’ of liquid is assumed to roll over the underlying

solid with constant contact line velocity (VCL) and angle (θd). The hydrodynamics of such a

scenario was first studied by Huh and Scriven (1971) using the lubrication approximation. They

showed that the application of Navier-Stokes equations with the standard no-slip boundary

condition leads to stress singularity around the contact line. This dissipation is quantified as

Φv =
3µV 2

CL
θa

ln
(

xmax

xmin

)
. (1.14)
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The upper cut-off xmax is expected to be of the order of R. A non-zero value of xmin is required

to avoid the divergence of this type of dissipation. Several other hydrodynamic models exist in

the literature that emphasize this dissipation channel (Voinov, 1977; Cox, 1986).

If the contact line dissipation is neglected, Φ f = SVCL, where S is the spreading coefficient

(de Gennes, 1985). Of course, this channel of dissipation need not be considered in the case of

partial wetting. A straightforward way of quantifying Φs is to incorporate slip as a boundary

condition in the standard hydrodynamic models of wetting. However, precise quantification of

this channel of dissipation requires a molecular point of view of liquid slippage that incorpo-

rates density stratifications near the wall, which is usually neglected in traditional hydrodynam-

ics.

Thompson and Robbins (1989) studied the Couette flow simulations of two immiscible liq-

uids confined between solid walls using molecular dynamics and showed that the no-slip

boundary condition breaks down within a few atomic thickness from the contact line. This

suggests the corresponding break down of the usual hydrodynamic theory at atomic scales and

requires a model that can incorporate molecular effects to quantify the last type of dissipa-

tion: Φc. Shikhmurzaev (1993, 1997) developed an innovative hydrodynamic framework that

can incorporate the local effects near the core region. This model assumes that the material

properties of the interface close to the core region is different from their equilibrium values

due to an interface formation/disappearance process occurring as the contact line traverses

the solid surface during wetting/dewetting. The dissipation in the core region is attributed

to this interface formation/disappearance process. In this model, the dynamic contact angle

emerges as a solution to the system of equations and it is not an imposed quantity as in other

hydrodynamic models. However, some of the parameters involved still have to be determined

from experimental data by curve fitting.

The molecular kinetic theory (MKT) of dynamic wetting (not to be confused with the kinetic

theory of gases) developed by Blake and Haynes (1969) and later extended by Blake and

De Coninck (2002) describes dynamic wetting as a stress-modified rate process. The con-

tact line motion is described as a consequence of a large number of individual jumps of the

molecules belonging to the liquid phase on top of the potential energy landscape formed by the

substrate atoms (see Fig. 1.8). MKT describes Φc by assuming the existence of a contact line

friction as the contact line moves over the substrate surface. Due to the thermal motion of the

liquid molecules, coupled with the force which drives the wetting process, the liquid molecules

traverse the energy landscape until an equilibrium configuration is achieved. Their motion is

characterised by an average distance of jumps (λ ) and the equilibrium frequency of such jumps

(κ0). Figure 1.9 schematically shows how the contact line advances due to several molecules

at the three-phase-zone (TPZ) jumping over the sites of wall atoms and shows the definition of

λ . This physical mechanism of contact line motion is the foundation of MKT.

Blake and Haynes (1969) assumed that the driving force during spreading is the out-of-balance



1.1. Background 16

Unstable hills Stable valleys

Figure 1.8: An illustration of the potential energy landscape on top of a substrate surface
under equilibrium conditions. Unstable hills are located right on top of the wall atoms, while
stable valleys are located in the ‘adsorption sites’ between wall atoms. Liquid molecules tend
to spend more time in these sites while traversing the energy landscape during spreading.
The local potential energy is evaluated by placing a single liquid molecule at a distance σ

above the top wall layer and then calculated using the LJ potential (see Chapter 2).

Contact line at a later stage

Contact line

Figure 1.9: (a) Instantaneous snapshot of a spherical droplet spreading on a hydrophilic
wall. (b) Enlarged image from near the three-phase-zone illustrates how a large number of
individual jumps of the molecules at the three-phase-zone on the surface takes the contact
line to its new location, as suggested by MKT.
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surface tension force γ[cos(θc)− cos(θd)], and the work done by this force is spent entirely in

modifying the potential energy landscape over the surface, so that there is net motion in the

direction of applied force. Under such circumstances, MKT predicts the CL velocity to be

VCL = 2κ0λ sinh
(

γ[cos(θc)− cos(θd)]

2nkBT

)
, (1.15)

where n is the number of adsorption sites per unit area. In the linear limit, i.e. when the

argument of sinh is small, the above equation can be rewritten in the form

VCL =
γ

ζ
(cos(θc)− cos(θd)), (1.16)

where ζ ≡ kBT/κ0λ 3 is the contact line friction coefficient, which quantifies the contact line

dissipation in the linear regime. MKT has been compared to many experiments in this linear

limit with reasonable agreements (Duvivier et al., 2013) and has been applied to develop

multiscale simulation methods of dynamic wetting in its full form (Zhang et al., 2017). Re-

cent molecular dynamics simulations reported the non-linear regime of MKT when a liquid

displaces another liquid (Wang et al., 2019).

1.1.4 Coalescence-induced jumping of droplets

Many industrial and natural processes rely on water droplets condensing from a vapour phase

on to a hydrophobic surface. Drop-wise condensaton has high phase-change heat transfer

performance when compared to film-wise condensation (Rose, 2002), provided the condensate

droplets are rapidly removed from the surface, leaving space for re-nucleation. Traditionally,

gravity is required for the removal of these condensate droplets from an inclined or vertical

plate (Kim et al., 2002; Dimitrakopoulos and Higdon, 1999), but the droplet radius has to be

on the order of the capillary length lγ =
√

γ/ρlg, where g is the acceleration due to gravity;

sub-millimetre sized water droplets cannot be dislodged in this way.

Experimental studies (Boreyko and Chen, 2009) have shown that smaller droplets can be

removed from superlyophobic surfaces (with contact angle θc ≥ 150◦ and small contact angle

hysteresis) by a self-induced jumping mechanism (see Fig. 1.10). This rapid self-coalescence

and consequent lift-off behaviour of the condensate droplets results from the excess surface

free energy released after coalescence being partially converted into kinetic energy of the final

droplet. It has also been observed that nature has already been utilising this phenomena for

various purposes, such as in self-cleaning of cicada wings (Wisdom et al., 2013) and plant

leaves (Mockenhaupt et al., 2008), and in dew droplet removal from gecko skin (Watson et al.,

2011).

There have been several studies on this topic to understand the underlying dynamics of this

process (Miljkovic et al., 2013; Enright et al., 2012; Boreyko and Collier, 2013; Enright et al.,
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Figure 1.10: Coalescence-induced jumping of two argon droplets (R = 55.2 nm) from
a superlyophobic surface in argon vapour at various timesteps of a molecular dynamics
simulation (conducted in this work). Molecules from different droplets are coloured differently
for ease of illustration.

2013; Nam et al., 2013). During coalescence and jumping of two droplets, after the rupture of

the intervening fluid film, the liquid bridge that forms between them grows quickly, hits the

underlying surface and provides a reaction force for the final droplet to take off with a speed Vg

(Liang and Keblinski, 2015; Sheng et al., 2017; Enright et al., 2014) (here, subscript ‘g’ denotes

coalescence happens in the presence of a gaseous atmosphere). If the entire excess interfacial

energy released during coalescence is converted into the final jumping kinetic energy of the

droplet, the energy balance reads:

γR2 ∼ ρlR3V 2
g . (1.17)

Rearranging gives:

Vg ∼U ≡
√

γ

ρlR
, (1.18)

where U is the inertial-capillary velocity scale. Notably, U is only a good predictor of Vg when

viscous effects are negligible, which occurs when Ohl = µl/
√

ρlγR is sufficiently small.

The above equation assumes that all the velocity components in the bulk of the droplets during

the coalescence process contribute to the translational kinetic energy of the final droplet. En-

right et al. (2014) studied the coalescence-induced jumping of droplets from superhydrophobic

surfaces using numerical simulations and showed that only the unbalanced momentum com-
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ponents can contribute to the translational motion of the final droplets. Hence, the jumping

speed Vg is usually only a fraction of U , even if other factors such as gravity, viscous effects

and adhesion in the system are negligible. In their numerical simulations, they found that a

capillary wave propagates along the droplet surfaces from the initial point of contact and the

corresponding variation in the capillary pressure with respect to its initial value decreases as

Ohl is increased, which is in accordance with the idea that Ohl represents a dimensionless

viscosity. This results in characteristic changes in both the interfacial shape evolution and

internal flow dynamics during coalescence. They also showed that the jumping process is

fundamentally inefficient with only about 6% of the available excess surface free energy being

converted into the translational kinetic energy of the jumping droplet.

In general, while the jumping process is suppressed by internal viscous dissipation for smaller

droplets (Wang et al., 2011; Enright et al., 2014), it is limited by gravity for relatively large

ones (R ∼ lγ ) (Peng et al., 2013). Wang et al. (2011) derived an analytical expression for the

jumping speed as a function of the droplet size:

Vg =

√
γ

ρR

[
3
8

Γ−24
µl√
ρlγR

]1/2

, (1.19)

where Γ is a term that quantifies the adhesion from the surface. Peng et al. (2013) improved the

analysis of Wang et al. (2011) and observed a better match with experimental data.

The role of surface adhesion on the jumping speed is studied in detail by Cha et al. (2016).

They report data from experiments of droplet jumping from ultralow-adhesion carbon nanotube

(CNT) surfaces. CNTs of diameter ∼ 7 nm and deposit thickness ∼ 1 µm are grown on a

silicon wafer allowing them to obtain ultralow-adhesion, coupled with negligible contact angle

hysteresis. By manipulating the saturation temperature and relative humidity of the incoming

vapour on to the substrate, the condensate nucleation density is maximized and jumping of

droplets as small as R ≈ 500 nm is observed. From the viscous-to-inertial crossover radius

suggested by Paulsen et al. (2011), Cha et al. (2016) showed that for the lowest sizes of

the droplets they studied, coalescence proceeds in the inertial regime and not in a viscous

regime. This suggests that the fundamental limitation for small droplets to jump from ultralow

adhesion surfaces is most likely due to a combination of a complex droplet-surface interaction

mechanism, contact angle hysteresis and viscous effects, and not just the viscous dissipation

mechanism as suggested before.

Experimental, theoretical and numerical analyses suggest that the jumping speed is expected to

be a non-monotonic function of the size of the droplets. Its maximum is observed to be≈ 0.25U

(Mouterde et al., 2017; Boreyko and Chen, 2009; Enright et al., 2014; Liu et al., 2014) for water

droplets with R ≈ 100 µm (Boreyko and Chen, 2009). As mentioned before, coalescence-

induced jumping has been observed for water droplets with radii as small as R ≈ 500 nm

(Ohl ≈ 0.17) (Cha et al., 2016). The minimum size of droplets that can jump after coalescence
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can further be reduced during multidroplet coalescence (Lv et al., 2015).

Enhancing the jumping speed of the final droplet is crucial for increasing the efficiency of any

application that utilizes this particular phenomenon. Gao et al. (2018) used molecular dynamics

simulations to study the effect of surface textures on the jumping speed of nanodroplets. They

found that the jumping speed enhances when the adhesion from the substrate is reduced. This

reduction in the adhesive force is achieved either by reducing the magnitude of the attractive

force from the surface or by decreasing the solid fraction, which quantifies the actual area over

which a droplet is in contact with the underlying textured surface.

Wang et al. (2016) studied the self-enhancement of droplet jumping speed based on the inter-

action of the expanding liquid bridge with a small (compared to R) rectangular groove or a

triangular prism. A groove delays the impact of the bridge on the surface and consequently,

larger amount of excess surface free energy is spent in order to overcome the viscous dissi-

pation. This results in a reduced jumping speed. On the other hand, with a triangular prism

underneath, the accelerated retraction of the droplet base area and the redistribution of the

liquid mass result in a higher jumping speed. Wang et al. (2016) observed Vg ≈ 0.53U .

Vahabi et al. (2018) used macro-textures (size comparable to R) to enhance the jumping speed.

They observed a higher energy conversion efficiency (about 570% increase compared to jump-

ing from surfaces without any textures) resulting from the effective redirection of the in-plane

velocity vectors to the out-of-plane direction. Notably, in their experiments, they observed

coalescence-induced jumping for droplets with Ohl > 1 on such surfaces.

Observing sub-micron scale droplets is experimentally challenging and this motivated Liang

and Keblinski (2015) to perform MD simulations of coalescence of argon nanodroplets on

an atomically smooth superlyophobic surface. They observed jumping for droplets with Ohl

as large as 0.55. When Ohl is so large, the coalescence process is strongly influenced by

dissipative forces and a scaled jumping speed V ∗g ≡Vg/U is expected to monotonically decrease

with Ohl until no jumping is observed (Enright et al., 2014; Liu et al., 2014; Wang et al., 2011).

In stark contrast to this expectation, Liang and Keblinski (2015) observed a constant V ∗g in their

study with varying Ohl , which has so far evaded any explanation.

The role of outer gas in the jumping process is usually neglected in many analyses. Enright

et al. (2014) neglected the role of drag from the external fluid during the coalescence process

in their experimental analysis and simulations, and Peng et al. (2013) showed that air friction

has negligible influence on jumping due to small jumping speed. Their analyses finished once

the droplet lost its contact with the underlying substrate. Farokhirad et al. (2015) studied the

jumping process using the Lattice Boltzmann method, paying particular attention to the role

of density of the outer gas on the aftermath of the coalescence process – i.e. the maximum

height of the final droplet jumps. Their results showed that the higher inertia of the outer fluid

associated with its large density gave rise to vortices in the outer flow field, which enhanced
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the jump heights.

1.2 Open problems and thesis originality

Sprittles and Shikhmurzaev (2012, 2014a) developed a singularity-free model of droplet coa-

lescence called the interface formation model in which the interface evolution right after the

moment when droplets establish the first contact is modelled by assuming the existence of an

‘internal interface’. It takes a finite time for this internal interface to disappear, during which the

divergence of pressure, local velocity etc. are taken care of. This model of droplet coalescence

is shown to better represent different experimental data than models that host a singularity

in the beginning of coalescence (Sprittles and Shikhmurzaev, 2012). Furthermore, the scaling

laws used to describe the bridge evolution during droplet coalescence has to be subjected to

systematic scrutiny, especially in the early stages of coalescence in order to better understand

the role of thermal fluctuations and interatomic interactions in the dynamics. During this time,

where experiments and continuum based analysis have limitations in probing the dynamics,

the intervening gap between the droplets will be of the order of molecular dimensions and this

necessitates the detail of MD simulations.

A similar mathematical singularity exists in many computational models that study droplet

spreading on a surface. At the point of first contact between the droplet and the surface, the

capillary energy suddenly becomes available at that singular point, which subsequently enable

the spreading process. This singularity also arises due to the infinite free-surface curvature at

the point of contact. However, this must not be confused with the singularity associated with

contact line motion as described in Huh and Scriven (1971) and Dussan (1979) i.e. due to

the divergence of stress and energy dissipation close to the three-phase-zone. Although the

latter has been dealt with in the literature by suggesting alternative boundary conditions, the

physical mechanism by which nature removes the former singularity is still unknown. Since

the distance between the droplet interface and the substrate at this initial stage is of the order

of a few nanometres, the interfacial thermal fluctuation and other molecular effects may play a

significant role in the spreading dynamics, and this also requires systematic investigation.

In studies related to coalescence-induced jumping of droplets, a factor that is usually over-

looked is the involvement of ambient gas in the overall dynamics. Besides traditional gas

dynamics, coalescence-induced jumping of nanodroplets in an ambient gas could involve other

effects such as slip at solid-fluid and fluid-fluid interfaces and thermal fluctuations at interfaces

(Rowlinson and Widom, 1982; Werner et al., 1999; Sides et al., 1999; Eggers and Villermaux,

2008; Lucassen et al., 1970). Since the natural length scale involved in the process is of the

order of R, and the mean-free-path of the gas molecules is typically of the order of a few

10s of nanometres, the gas flow will be rarefied and involves significant slip. This slip at the

interfaces can be crucial to the dynamics of the problem and is sometimes ignored in continuum



1.3. Chapter outline 22

simulations; for example, previous phase-field simulations (Liu et al., 2014) of nanodroplets

failed to observe the bridge hitting the underlying surface as opposed to what was observed

in MD simulations (Liang and Keblinski, 2015). Moreover, a part of this thesis has recently

shown that the spatio-temporal fluctuations at the interface – the so called thermal capillary

waves (Zhao et al., 2019a; Zhang et al., 2019) – make onset of coalescence a stochastic process

and that the thermal motion of the molecules crucially affect the initial stages of coalescence

(Perumanath et al., 2019). Clearly, modelling nanodroplet coalescence inevitably requires a

method which can incorporate such nanoscale affects. By using MD, we can simultaneously

capture the spatio-temporal scales associated with rarefied gas flow and thermal fluctuations

that are currently beyond experimental capabilities, and understand their influence on nan-

odroplet jumping.

1.3 Chapter outline

All studies carried out in this thesis employ MD simulations for the investigation of the role

of molecular effects on droplet dynamics: coalescence, spreading and coalescence-induced

jumping. In Chapter 2, a general introduction to MD simulations, different molecular models

used in this thesis and their validations are given. The working procedure of any MD simulation

is then explained through a simple example of contact angle measurement.

In Chapter 3, the coalescence of water nanodroplets is investigated in detail using MD. The role

of molecular effects is quantified for the first time. Here, (a) the physical mechanism with which

the first contact between coalescing nanodroplets establishes and (b) the unique mechanism

of the bridge evolution in the early stages are studied. Assisted by a theoretical analysis,

this chapter addresses the issue of initial singularity in droplet coalescence and provides a

comprehensive picture of the entire process.

Chapter 4 resolves the initial singularity associated with droplet spreading by studying the

role of intermolecular attractions between wetting liquid and the substrate on the spreading

dynamics. The molecular mechanism of contact line evolution in the initial stage is shown to

be completely different from our traditional understanding and this motion is quantified using

different techniques.

Chapter 5 investigates the role of gas rarefaction and molecular thermal effects on the coalescence-

induced jumping of nanodroplets. It is shown that the nanodroplet jumping is governed not

just by the Ohnesorge number as previously thought, but also by two other non-dimensional

parameters: Knudsen number and thermal fluctuation number. The effect of new parameters

are explained using theoretical analyses.

Finally, Chapter 6 details the thesis conclusions and future directions along which the study

presented here can move on to.
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Figure 2.1: The microscopic constituents of a simulation model normally determines the
overall macroscopic prediction. In a molecular dynamics simulation, every single molecule
in a system is modelled. (a) shows a bowl containing water; a system that we encounter
mostly daily in our lives. (b) shows a magnified version of the water-air interface in the bowl.
Air bubbles of radii ∼ 0.1 mm are also seen. (c) shows an MD simulation snapshot of the
same interface. Several vapour molecules are also seen.

In studying and solving engineering problems in fluid dynamics, experiments are frequently

used – some examples include: droplet manipulation on special surfaces, wetting/coating, flow

through pipes and nanochannels and even for measurement of fluid properties, such as mass

23
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diffusivity, surface tension and viscosity. These experiments have given us tremendous insights

into the fundamentals of any problem at hand and have helped us in validating many hypothe-

ses. Many of these experiments involve investigating a system with some probes, assuming that

they do not interfere with the inherent system dynamics.

With the growth of powerful computers, researchers have also been studying many of these

problems in fluid dynamics with the help of computer simulations. Once the governing equa-

tions, boundary and initial conditions are known, any software that can numerically solve a set

of equations, can provide many minute details of the system that are otherwise inaccessible

through experiments – for example, 3-dimensional flow velocity, pressure, density and tem-

perature fields in a system. The key factor here is that the set of equations that govern these

systems are derived under the continuum assumption: any physically measurable quantity must

be continuous, finite and should not diverge anywhere in the domain of the problem.

There are many scenarios where the continuum assumption does not hold; mainly those systems

where relevant processes happen over very short length and time scales. Flow in micro/nano-

fluidic devices, thermal fluctuations at interfaces, rarefied gaseous systems and contact line

motion can be thought as examples of such systems, that are often challenging to model

through traditional computational fluid dynamics (CFD) modelling. Experimental studies of

these systems are also highly challenging and require a separate class of computer simulation

techniques. Particle-based deterministic simulation tools, such as molecular dynamics (MD),

and probability-based stochastic tools, such as direct simulation Monte-Carlo (DSMC) meth-

ods that provide solution to the Boltzmann equation, are usually used to study some of these

non-continuum systems. In this thesis, MD is exclusively used to study a few engineering flow

problems relevant to nanoscale interfacial fluid dynamics.

Through MD simulations, it is possible to obtain full molecular resolution of the system, includ-

ing their positions and velocities, from which we can evaluate many system parameters. Since

its introduction, molecular dynamics simulations have been used to study systems pertaining

to widely different applications: how a liquid wets a solid surface (Blake et al., 1997), the

relationship between structure and function of bio-macromolecules (Dror et al., 2012) and to

address geological radio-active waste disposal issues (Ma et al., 2019). In this chapter, the basic

simulation methodology employed throughout this thesis is discussed. The free, open-source

and highly parallelised MD simulation software LAMMPS (Large-scale Atomic/Molecular

Massively Parallel Simulator) (Plimpton, 1995) is used for all molecular simulations in this

thesis.

This chapter is (a) intended to verify various MD models that have been used in this thesis;

a crucial part of any computational study and (b) to provide details to a newly starting PhD

student or anyone wishing to use MD by taking them through what I think are important

procedures to consider, which do not merit that much fine detail in journal publication. This

chapter begins with a general description of molecular dynamics simulations, how it works
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and a discussion about evaluating different properties. Since water is employed as the main

working fluid in all the simulations, two computational models of water: TIP4P/2005 and the

mW model are discussed in detail and are validated against experiments of water in Sections 2

and 3, respectively. In some systems, the effect of an ambient gas on nanodroplet dynamics is

studied using a mono-atomic model of nitrogen, which is introduced and validated in Section 4.

Finally, Section 5 discusses the basic working procedure of any molecular dynamics simulation

carried out in this work by demonstrating a case for measuring contact angle of a droplet on

atomically smooth surfaces.

2.1 Molecular dynamics

Molecular dynamics is a particle simulation tool in which the time evolution of a set of interact-

ing particles is carried out by integrating their equations of motion (Allen and Tildesley, 2017).

This requires force evaluations and updating the positions and velocities of these particles in

discrete timesteps. In the absence of any external force fields – such as electric or gravitational

– the force acting on any particle i in a system of N particles is given by the gradient of the

potential energy function with respect to molecular positions:

~Fi =−∇i∀(~r1, ...,~rN), (2.1)

where ~Fi is the force acting on the ith particle due to it being in the potential energy field (∀)
generated by the presence of the rest of the N−1 particles in the system and ∇i is the gradient

operator with respect to the position of ith particle.

The evaluated force on each particle is then used to time-march the particles forward in time

and space according to Newton’s laws of motion:

~Fi = mi~ai, (2.2)

where~ai = d2~ri/dt2 = d~vi/dt is the acceleration of that particle. MD is a completely determin-

istic approach: given the configuration of a system at any instant of time, one can determine its

configuration at any other instant in its past or future. For such a conservative system, the total

energy (T E), which constitutes both global potential (PE) and kinetic (KE) energies, remains

invariant in time. Correspondingly, the configuration of a system containing N particles will

traverse a constant T E surface in a 6N-dimensional (3N positions and 3N momenta) phase

space.
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Figure 2.2: The Lennard-Jones (LJ) potential and the ‘shifted LJ potential’, shifted to zero
at 2.5σ for a species with ε = 1 and σ = 1. The potentials are spherically symmetric and
so depends only on the separation between any two atoms r. The inset shows magnified
potential near r = 2.5σ .

2.1.1 Interaction potentials

The choice of the interaction potential V , which is translationally invariant, determines the

characteristics of the system at hand. For example, V can be a two-body potential: V =V (~ri,~r j),

which is appropriate for simple systems, such as argon, or it can be a complicated many-body

potential: V =V (~ri,~r j,~rk), which is commonly used to model semiconductor systems, such as

silicon.

Two-body potentials are, perhaps, the most widely used interaction potentials in molecular

simulations. Among them, the Lennard-Jones potential may be the most popular one. This

potential is spherically symmetric, repulsive at short distances and attractive at long distances.

Mathematically, it is represented by

VLJ =Ui j(r;εi j,σi j) = 4εi j

[(
σi j

r

)12
−
(

σi j

r

)6
]
, (2.3)

where εi j is the energy parameter that quantifies the strength of the interaction between the

two interacting particles i and j, σi j is the zero-crossing distance for the potential and r =

|~ri j| = |~ri−~r j| is the separation distance between them. Figure 2.2 shows VLJ as a function of

the separation distance (r) between two particles for a special case where εi j = 1 (in energy

units) and σi j = 1 (in distance units). While the attractive nature of VLJ at long distances arises

due to van der Waals forces because of dipole-dipole interactions, the strong repulsion at short

distances arises due to overlapping electron clouds as the atoms approach each other (i.e. due to

Pauli’s exclusion principle). This potential is thoroughly validated for many physical systems,
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particularly containing inert gases like argon, krypton and xenon.

In reality, Eq. (2.3) is boundless and in a simulation box of finite size with periodic boundaries

(see below), a particle will interact with itself and this will drastically affect the simulation pre-

dictions as well as the scalability of the system. This problem is usually solved by truncating the

potential at a specified distance, essentially neglecting any intermolecular interactions above

that distance. This cut-off distance rc is optimally chosen such that any smaller value will result

in changes of the system’s microscopic behaviour that leads to changes in it’s macroscopic

behaviour (such as surface tension, viscosity etc.), while any larger value of rc will result in the

same microscopic/macroscopic physics, but with an unnecessarily large computational cost.

Apart from truncating at rc, the LJ potential is also shifted to eliminate the energy discontinuity

at r = rc, and given by:

Ui j(r;εi j,σi j,rc) =

4εi j

[(
σi j
ri j

)12
−
(

σi j
ri j

)6
−
(

σi j
rc

)12
+
(

σi j
rc

)6
]
, r ≤ rc,

0, r > rc.

(2.4)

At r = rc, the slope of the above equation (i.e. force) is still not zero and a particle moving in

or out or rc of another particle will suddenly experience a finite force, which can be avoided by

smoothing the function in the neighbourhood of rc. In Fig. 2.2, the above equation is plotted and

the inset shows a magnified plot of the region close to where the original potential is truncated.

Usually rc = 2.5σ or rc = 3.2σ is employed in the literature.

The force computation of Eq. (2.4) for all particles is by far the most computationally costly

step in the MD algorithm. The truncation step allows molecules to interact only with their

neighbours. In the MD implementation, a neighbour list is utilised, which produces for each

atom a list to neighbouring atoms to identify the unique pairs. The neighbour list is built every

few timesteps to save in the computational cost, and considers all molecules within a radius of

rc +dskin, where dskin is a small buffer value which allows the capacity for molecules to leave

or enter rc within the allocated time of list rebuild. Usually dskin is taken as a small fraction

of the molecular size σ . The larger the skin distance, the less often do we have to update the

neighbour list and this may result in a higher computational efficiency.

2.1.2 Periodic boundary conditions

Periodic boundary conditions (PBCs) are the most commonly used boundary conditions in

MD, as they allow mass, linear momentum and energy conservation, in line with MD practices.

While implementing PBCs, the simulation box is replicated in all directions (see Fig. 2.3(b))

from the central simulation box and consequently several molecules close to the boundary may

have neighbours located in a few of these replicas. Moreover, when a particle crosses one of

the boundaries with a particular velocity, it is re-inserted into the central box with the same

velocity, but from the opposite side. This can be thought of as another particle entering the
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Figure 2.3: (a) All atoms within a distance of rc +dskin from the central atom are considered
to be its neighbours. (b) Periodic boundary conditions. The central simulation box is replicated
in all directions while identifying the neighbours for each atom. An atom can have neighbours
lying in the same box or lying in many other boxes. When an atom crosses over a boundary
with a particular velocity (depicted by the arrows), its image from the other side enters the
central box with the same velocity, thereby keeping the number of atoms constant at any
instant of time.

central simulation box from one of its replicas.

It must also be noted that the separation between opposing periodic boundaries of the simula-

tion domain must be at least greater than twice the cut-off distance employed in the simulation.

Otherwise, particles will interact with more than one periodic images of itself, creating spurious

effects known as finite-size effects (Rapaport, 2004). The sizes of all domains used in this thesis

are always larger than 3rc.

2.1.3 Time integration

For the implementation of MD, many finite-difference based algorithms exist for the time

integration of the system: velocity-Verlet, Leap-frog and predictor-corrector. Starting from a

particular instant in time t, these algorithms allow us to determine the configuration of the

system at a later instant of time t +∆t, where ∆t is the timestep. Fig. 2.4 shows the collision of

two molecules in an MD simulation and the corresponding variation of their potential energy.

The velocity-Verlet algorithm is used for simulating any system presented in this thesis. Here,

the positions and velocities of atoms are updated as follows:

~r(t +∆t) =~r(t)+~v(t)∆t +(1/2)~a(t)∆t2, (2.5)

~v(t +∆t/2) =~v(t)+(1/2)~a(t)∆t, (2.6)



2.1. Molecular dynamics 29

0 1 2 3 4

-1

0

1

2

3

Figure 2.4: Trajectory of two atoms undergoing a collision. The heavier atom (say blue)
undergoes less deviation from its original trajectory. The collision can happen over a finite
interval, i.e. the atoms may remain in contact for a finite amount of time (from t1 till t2 in the
figure). The potential energy of the system is shown on the right side at different times.

~a(t +∆t) =−(1/m)∇i∀(~r(t +∆t), (2.7)

~v(t +∆t) =~v(t +∆t/2)+(1/2)~a(t +∆t)∆t. (2.8)

The size of the timestep used in the above equation determines the stability a simulation

and accuracy of these equations. Usage of a large value of ∆t may result in atoms moving

unphysically large distances from its neighbours; this is particularly adverse when the distance

between any two atoms are to be kept constant — for example, if there exists a bond of fixed

length between these atoms. There is an optimum range of values of the timestep for each

system that minimizes computational costs and, at the same time, will not result in blowing up

the entire simulation. In all the simulations presented in this thesis, a timestep size of a few

femto-seconds are used.

2.1.4 Thermodynamic quantities

Molecular simulations give the microscopic details of a system, such as the positions, velocities

and forces on each atom in the system. These microscopic details are of little to no use at large

scales, where researchers are more interested in the thermodynamic properties of a system, such

as temperature and pressure. From first principles of molecular simulations, and with the help of

statistics, a link can be made between the microscopic details of a system and its corresponding

macroscopic observables. These thermodynamic physical quantities are usually functions of

atomic positions and velocities. Measurements of several such quantities are discussed below.

Temperature— The temperature of a system is directly related to the kinetic energy of all the
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particles present in the simulation. If 3N is the number of degrees of freedom (which is the

case, if the particles are simple spheres), the equipartition theorem suggests that each degree of

freedom contributes (1/2)kBT to the total kinetic energy; i.e.

3N
kBT (t)

2
=

1
2 ∑

i
mi|~vi(t)|2, (2.9)

where kB = 1.38× 10−23 J/K is the Boltzmann constant. Rearranging gives the instantaneous

temperature

T (t) =
1
2 ∑

i

2mi|~vi(t)|2

3NkB
. (2.10)

Note that, when there is a flow with a mean velocity, the velocity term in Eq. (2.10) becomes

|~vi(t)−~vm(t)|, where~vm(t) is the instantaneous mean velocity.

Pressure— The measurement of pressure in MD is based on the virial equation

PV = NkBT +
1

Dm

〈
N

∑
i=1

~ri ·~Fi

〉
, (2.11)

where Dm is the dimensionality of the system, ~F is the total force on particle i, V is the the

control volume and 〈· · · 〉 denotes ensemble average (see below). Here, ~Fi is evaluated by using

Eq. (2.1). It must be noted that the above equation reduces to the ideal gas equation when the

particles are non-interacting. The above equation assumes that the interaction potential is not

cut off at any finite length scales.

For a system with particles interacting through pair potentials, the above equation in a principal

direction (say x) reduces to

PxxV = ∑
i

miv2
xi +∑

i
∑
j>i

rxi j fxi j, (2.12)

where fx is the x component of the force acting between particles i and j and the second

summation is performed such that any particle-particle pair is counted only once. The local

pressure inside any small control volume in the domain can be evaluated by taking the average

of all three equations similar to Eq. (2.12) over all atoms present in that control volume.

Since the LJ interaction potential is cut-off and shifted at rc, the pressure evaluated using the

above equations will not be the exact value of the pressure in the system. As long as the radial

distribution function (see below) is roughly invariant above rc, a ‘tail correction’ term can be

derived that has to be added to these equations to obtain the real value of pressure:

Ptail =
16πN2

3V 2 εσ
3

[
2
3

(
σ

rc

)9

−
(

σ

rc

)3
]
. (2.13)
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Since all the simulations presented in this thesis, where there is an outer gas, are relatively rar-

efied (Knudsen number . 1), the tail correction term is less than 10% of the value determined

from Eq. 2.11.

Similarly, the shear stress can be obtained by

τxyV = ∑
i

mivxivyi +∑
i

∑
j>i

rxi j fyi j. (2.14)

The above expression will be used later to evaluate the viscosity of the working fluids.

2.1.5 Ensembles

A thermodynamic system can exist in different states subjected to several conditions. At one

end, it cannot exchange either mass or energy (isolated system) and at the other end, it can

exchange both with surroundings (open system). Subjected to any set of conditions, the system

state traverses different surfaces in its 6N-dimensional phase space. The collection of all such

possible system states is called an ensemble. Often, an ensemble average is used to deter-

mine different properties of the system from the principles of statistical mechanics (Allen and

Tildesley, 2017). In other words, an ensemble represents a collection of all system states with

different microscopic states, but identical macroscopic/thermodynamic state.

Microcanonical ensemble— An isolated system is represented by a microcanonical ensemble.

For such a system, the total number of particles (N), its volume (V ) and its total energy (E)

are invariants, and therefore is called an NV E ensemble. Here, the system state will traverse

a constant energy surface in its phase space. Examples of systems that are depicted by this

ensemble are droplet coalescence and spreading that are central to this thesis. In both cases,

once the initial configuration is set, the total energy within the system is contained and is

redistributed among the particles during the process.

Canonical ensemble— In a canonical ensemble, the system is coupled to a heat bath such that

its temperature (T ) remains constant, where the heat bath is much larger in its capacity than the

system. This ensemble represents a system that is in thermal equilibrium with its surroundings.

Other ensembles exist such as the grand canonical ensemble, which describes an open system

and the isothermal-isobaric ensemble, which describes a system undergoing a thermodynamic

process under constant temperature and pressure.

Throughout this thesis, a canonical ensemble is employed while equilibrating different systems

at a desired temperature. For fair control of system temperature, a thermostat must be applied

to bring any system to the desired temperature. It is then turned off during the main MD run,

thereby switching to a microcanonical ensemble.
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2.1.6 Berendsen thermostat

For controlling the temperature of any system studied in this thesis, a Berendsen thermostat

is used. This thermostat controls the temperature of a given group of atoms by rescaling their

velocities.

Suppose the current temperature of the system is T and the target temperature is T0, the

Berendsen thermostat will scale the momenta of the associated particles by a factor λs given

by

λs =

√
1+

∆t
τT

(
T0

T
−1
)
, (2.15)

where τT is the coupling parameter that determines the time scale over which the target tem-

perature is achieved. LAMMPS recommends using τT ≈ 50∆t−100∆t in MD simulations and

it is followed throughout this thesis.

2.1.7 Limitations of MD

Molecular dynamics simulations do not make any assumptions about matter being continuum,

and the thermophysical properties of the material being studied and the thermodynamic quan-

tities of the system will come out as emergent quantities from these simulations. Nevertheless,

like any other simulation tool, MD is also burdened with its own limitations.

Perhaps, the most important of these limitations is the fact that MD simulations are computa-

tionally expensive, as it models every single atom in a system. This puts a cap on the maximum

size of the system, particularly in terms of the total number of atoms. This limitation stems from

the fact that for every system with N number of particles, the number of corresponding pair-

wise computations at each timestep scales as N2. For systems with other type of interactions,

additional computations will be required. To put this in perspective, a water droplet of radius

1 mm contains roughly ∼ 1021 molecules (so ∼ 3× 1021 atoms) in it and the largest MD

simulation so far has only been able to simulate only 100 million atoms.

Another limitation is that typically many interaction parameters are required to model a realistic

system, such as water. These parameters are usually calibrated based on experimental evidences

on certain properties of these systems. For example, the energy parameter in the LJ potential

can be varied until any of the properties of the model matches with that of the real system

within an expected margin of error. However, this might cause other properties of the model

to shift considerably away from those of a realistic system. With the advent of high-power

computers, quantum mechanical calculations are often employed to determine these parameters

from first principles. Development of accurate interaction potentials among atoms, by itself, is

a dedicated and important inter-disciplinary research area that includes artificial intelligence,

quantum mechanics, big data and statistics.

With these limitations, the size of the largest system that can be simulated using MD on even
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Figure 2.5: The TIP4P/2005 water molecule (not to scale). Each molecule consists of one
oxygen atom (mass = 15.9994 g/mol), two hydrogen atoms (mass 1.008 g/mol each) and a
massless charged site ‘M’. The partial charges are: δ+ = +0.5564e and 2δ− = −1.1128e,
where e = 1.602 × 10−19 C is the electronic charge. The image in the background is
sometimes used in this thesis to represent TIP4P/2005 molecules.

today’s supercomputers are only ∼ 100 nm, and the longest these simulations can be studied

are only for ∼ 100 ns. Several of the simulations presented in this thesis were run for days, if

not weeks on ARCHER, the UK’s national supercomputer using 100s of cores. This demands

exceptional care while setting up any MD simulation. Any error in the simulation that shows

itself at the end would mean that the entire simulation will have to be run again and would

incur a high cost in terms of power and time.

2.2 All-atom model of water – TIP4P/2005

Apart form its biological applications, water is one of the most widely used engineering fluids

(Watson et al., 2011; Miljkovic et al., 2012; Wisdom et al., 2013). Several ‘all-atom’ molecular

models of water exist in the literature: SPC/e (Berendsen et al., 1987), TIP3P (Jorgensen et al.,

1983), TIP4P/2005 (Abascal and Vega, 2005; Vega and de Miguel, 2007) and TIP5P (Zhao

et al., 2019b).

The TIP4P/2005 is an accurate and widely used model. Figure 2.5 shows the detailed atomic

structure of this molecular model. There are four sites in this model of water: one charge-less

oxygen (O), two positively charged hydrogen atoms (H) and a massless negatively charged

site (M) located along the HOH angular bisector below the oxygen atom. The bond, angle

and partial charges of different sites of this model are parametrised so as to match its thermo-

physical properties to those of real water. In this model, the effective potential between any

two atoms j and k is a combination of the shifted Lennard-Jones potential and electrostatic
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Coulombic interaction, given by

U jk = 4ε jk

[(
σ jk

r jk

)12

−
(

σ jk

r jk

)6

−
(

σ jk

rc

)12

+

(
σ jk

rc

)6
]
+

1
4πε0

q jqk

r jk
, (2.16)

where ε jk is the van der Waals interaction energy between the oxygen atoms, σ jk is the length

parameter, r jk is the distance between the atoms, q j is the charge on atom j, ε0 is the permittivity

of the vacuum, and rc = 1.3 nm is the cut-off distance used. This value of rc is typical in the

literature for liquid-vapour systems (Vega and de Miguel, 2007). The hydrogen atoms have

only electrostatic interactions with other atoms in the model. The long-range electrostatic

Coulombic interactions are included in the model by using a particle-particle particle-mesh

(PPPM) algorithm (Hockney and Eastwood, 1988). Here, the interactions outside a specified

distance (dk) are computed in the (inverse) K-space for computational efficiency. The PPPM

method maps the charges on each atom to a 3-dimensional mesh and then uses a 3-dimensional

fast Fourier transform (FFT) to solve Poisson’s equation on that mesh. The final computed

values of the forces are then linked back to each atom. The simulation parameters used while

simulating any system with the TIP4P/2005 model in this work is given in the table below.

Parameter Value

ε 0.1852 kcal/mol

σ 0.315 nm

rc 1.3 nm

∆t 0.002 ps

τT 0.2 ps

Output every 0.02 ps

dk 0.85 nm

Apart from evaluating thermodynamic quantities using different atom attributes during a sim-

ulation, these can be used to evaluate thermophysical properties of any matter using the prin-

ciples of statistical thermodynamics. Here, these properties of TIP4P/2005 water are evaluated

so as to validate it against real water. For such validations, the thermophysical properties of

water are either taken from the National Institute of Standards and Technology (NIST), US

database or from other experiments. Many of the thermophysical properties of this model

deviate slightly (∼ 10%) from that of real water. Such deviations can be primarily attributed

to the assumptions made in designing the model, such as the rigidity of the molecule, absence

of van der Waals interactions for hydrogen atoms and the fact that this model was originally

designed to match the temperature of maximum density of real water (≈ 4◦C). It is necessary

to perform such validation studies before using a model to study any system.
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Figure 2.6: Radial distribution function (in arbitrary units) of oxygen atoms in a bulk system
of TIP4P/2005 water molecules, depicting the probability of finding a neighbour at a distance
r from the central molecule. There exists only short-range order.

2.2.1 Radial distribution function

In a bulk system of water, each molecule is surrounded by its neighbours and they bombard

into each other by virtue of their thermal motion. For any bulk molecule, its neighbours are

not uniformly distributed around its centre-of-mass. But instead, in liquid systems, there exist

short-range order around any molecule. That is, it is more probable to find other molecules

near to a given central molecule than it is to find another molecule far from it. This probability

is mathematically quantified using the radial distribution function (RDF) g(r), where r is the

radial distance of a neighbour molecule from the central molecule. Figure 2.6 shows the RDF

of TIP4P/2005 molecules, which is obtained by simulating 33,400 molecules in a box of

(Lx, Ly, Lz) = (10 nm, 10 nm, 10 nm) equilibrated for 1 ns. Far from any central molecule, it

is equally probable to find neighbours as indicated by the invariance of g(r) with r. Near to the

central molecule, its neighbours cluster in shells of different sizes. This clustering results from

a competition of the short-range repulsive and the long-range attractive interactions among the

molecules. The locations of various peaks and their relative heights observed in the present

study correspond well with those in Camisasca et al. (2019); Schlesinger et al. (2016), where

researchers have compared RDF of different molecular models of water with experimental data.

The RDF can be used to evaluate the number of neighbours (n) a central atom has within a

given distance rc:

n = nv

∫ rc

0
4πr2dr g(r), (2.17)

where nv =N/V is the average number density of the liquid of interest and N is the total number

of molecules in a system of volume V .
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Figure 2.7: Identifying the interfacial molecules based on number of neighbours. (a) the water
slab geometry used here. (b-d) The optimum criterion is determined by trial and error, by
systematically changing the upper limit until only molecules at the interface are recognised.
The lower limit (n > 5) excludes all vapour molecules. In the figure, only oxygen atoms are
shown.

The number of neighbours determined in the way described above can be used as a parameter

to identify interfacial molecules in a system, which can, in turn, be used to evaluate the surface

area of a complex deforming liquid body required in this work. From simulations of bulk sys-

tems, it is observed that a bulk water molecule will have roughly 310 neighbours within a sphere

of radius rc = 1.3 nm, while an interfacial molecule will have fewer neighbours. Furthermore,

vapour molecules will have nearly no neighbours (except when a collision occurs).

Here, a slab of TIP4P/2005 water molecules is simulated (Fig. 2.7(a)) and the interfacial

molecules are identified through trial and error. A lower bound of n > 5 excludes all vapour

molecules in the system. The upper bound is gradually decreased until no molecules in the bulk

are identified. As shown in Fig. 2.7(b-d), a higher value of the upper limit wrongly identifies

some bulk molecules as interfacial molecules. Because of thermal motion of molecules, even

the bulk molecules may momentarily have fewer number of neighbours than their average

value.

2.2.2 Diffusion coefficient

The diffusion coefficient D usually depends on the pressure, temperature and the size of the

diffusing molecules. In molecular simulations, where a system of particles undergoes Brownian

motion, the diffusion coefficient is related to the mean-squared displacement (MSD) of the

diffusing molecules by Einstein’s relation

〈|~x(t)−~x0|2〉= 6Dt, (2.18)
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Figure 2.8: Mean-squared displacement (MSD) of TIP4P/2005 water molecules as a function
of time.

where

〈|~x(t)−~x0|2〉=
1
N

N

∑
i=1
|~xi(t)−~xi

0|2. (2.19)

In other words, the slope of a graph of 〈|~x(t)−~x0|2〉 versus time t is six times the diffusion coef-

ficient of those species when they are in equilibrium. Figure 2.8 shows the MSD of TIP4P/2005

water molecules in equilibrium in a system containing 300 molecules (see inset of the Figure) at

T = 300 K, which gives D = 0.0021 nm2/ps and is fairly close to the experimentally observed

value of 0.0023 nm2/ps. The deviation can be attributed to the assumptions made while

designing the TIP4P/2005 model.

2.2.3 Surface tension

The interfacial tension of an interface is the tangential force per unit length experienced by an

imaginary line lying at the interface between any two phases. It can also be defined as the extra

energy per unit area (eA) possessed by molecules near any interface by virtue of them having

fewer number of neighbours compared to the ones in the bulk. For determining the interfacial

tension γ of the water-vapour interface from MD simulations, a slab containing 16,500 water

molecules is simulated, as shown in Fig. 2.9(a). In this system, the interfacial tension can be

evaluated as the integration of the imbalance of tangential and normal pressures from the bulk

of one phase (liquid) to that of the other (vapour) along the direction normal to the interface y:

γ12 =
∫

PN(y)−PT (y) dy, (2.20)
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Figure 2.9: Determining the surface tension of water. (a) The water slab geometry used in the
MD simulations and (b) time averaged energy per unit cross-sectional area (eA) as a function
of the coordinate normal to the interface (y). eA at all locations are calculated by dividing the
entire domain into several bins along the y direction and integrating the RHS of Eq. 2.20 from
one end to the other of a bin. eA is zero everywhere except at the interfaces, because the
interfacial molecules possess some extra energy by virtue of fewer number of neighbours in
comparison to bulk molecules. (c) Variation of local density with y. ρ approaches both bulk
side densities in a sigmoid fashion. Here, ρNIST = 0.99 g/cm3.
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Figure 2.10: Determining the viscosity of water through shearing simulation. (a) Geometry of
the simulation domain used. The top wall moves at a steady 100 m/s and the bottom wall is
kept stationary. (b) The velocity profile as a function of the distance above the bottom wall in
steady state. Inset shows the stress experienced by the entire water molecules over the time
of simulation.

where PT (y) = (Pxx(y)+Pzz(y))/2, PN(y) = Pyy(y). For interacting particles, the pressure com-

ponents are evaluated from Eq. (2.12). The integration performed above from one location

(y1) to another (y2) will give the energy per unit area eA of all the molecules lying between

y1 < y < y2. In Fig. 2.9(b), eA is plotted as a function of y. It can be seen that eA is nearly zero

in the bulk of both phases, because in the bulk (where the local density is the bulk density;

see Fig. 2.9(c)), pressure is isotropic in nature, i.e. Pxx = Pyy = Pzz. For such a system of

TIP4P/2005 molecules, summing eA over the entire length (ymin < y < ymax) of the simulation

box, gives 2γ ≈ 130.4 mN/m (a factor 2 is present, because there are two interfaces). This gives

a surface tension of γ ≈ 65.2 mN/m, which is fairly close to the experimental value of 72 mN/m

for real water. The deviation can be attributed to the assumptions made while designing the

TIP4P/2005 model.

2.2.4 Viscosity

The viscosity of a fluid is a measure of its ability to transfer momentum between adjacent

layers in a direction normal to their motion. For evaluating viscosity of TIP4P/2005 water,

16,500 molecules are simulated between the walls of a nanochannel which are 10 nm apart, as

shown in Fig. 2.10(a), and is sheared using a Couette flow set-up. Periodic boundary conditions

are applied in all three directions. The wall atoms are modelled as hydrophilic in order to avoid

liquid slippage as much as possible, but the method will work even if slip exists. The top wall

is set at a fixed speed of 100 m/s in +x direction and the bottom wall is fixed to its initial

location. Over time, the liquid between the channel will resist shearing and come to a steady

state velocity profile as shown in Fig. 2.10(b). The tangential stress (τxy) experienced by the
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entire liquid body can be evaluated from Eq. (2.14) during the simulation time. A Berendsen

thermostat is applied to the liquid molecules in the z component of their velocities in order to

keep its temperature constant at 300 K. In steady state, a system of Newtonian fluid will satisfy

τxy =−µl
dvx

dy
, (2.21)

where µl is the viscosity of the medium being sheared. From these simulations, an average

value of τ̄xy =−8.36 MPa is obtained (see inset of Fig. 2.10(b)). With dvx/dy= 10.5×109 s−1,

the viscosity of TIP4P/2005 water is evaluated to be µ = 0.8 mPa-s and is comparable with the

experimental value of 0.89 mPa-s.

2.3 Mono-atomic model of water – mW

Although the TIP4P/2005 model of water is fairly accurate, each molecule contains 4 inter-

action sites and on top of this requires long-range Coulombic interactions to be computed.

TIP4P/2005 is therefore a computationally-expensive water model. For this reason, researchers

have developed simplified models of water, such as the mono-atomic water (mW), which mod-

els water as an intermediate atom between carbon and silicon using the Stillinger-Weber (SW)

potential (Molinero and Moore, 2009). The SW potential is a many-body potential developed

to model semi-conductor systems involving silicon.

The advantage of using the mW water model in this work is that we can create droplet systems

that are many times larger than what is possible with TIP4P/2005 for the same computational

cost. This happens not just because of the fewer sites (and therefore fewer interactions and no

PPPM interactions), but also because this model can use a far larger timestep. Since this is a

single-site model, many of its thermo-physical properties are slightly different from those of

more detailed models such as TIP4P/2005, and so below, measurements of these properties will

be performed, for use in the theoretical descriptions in this thesis.

Diffusion coefficient.— One of the consequences of mW being a single-site model is that the

molecules are able to diffuse through the bulk easier than all-atom models, despite their masses

being identical. This is because the energy barrier for each molecule to overcome is less, as

there are no explicit hydrogen atoms present in the mW model. It is observed that the MSD is

almost 3 times that of actual water (Molinero and Moore, 2009), resulting in a commensurately

higher diffusion coefficient.

Surface tension.— For evaluating the surface tension of the mW model, a geometry similar to

that given in Fig. 2.9(a) is used. eA as a function of the coordinate normal to the interface (y) is

given in Fig. 2.12(a). eA is zero in the bulk of both phases and is non-zero only at the interfaces.

The surface tension of mW model is found to be ≈ 66.1 mN/m (Molinero and Moore, 2009),

which is comparable to that of TIP4P/2005.
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Figure 2.11: MSD of mW water molecules as a function of time. A small simulation box
containing roughly 300 molecules is used to evaluate the MSD. Due to the simplicity of the
model, the MSD is almost three times as that of TIP4P/2005 molecules, as they can diffuse
faster.
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Figure 2.12: Determining the surface tension of mW water. A similar geometry as in Fig. 2.9(a)
is used here. (a) The time averaged interfacial energy per unit area (eA) as a function of the
coordinate normal to the interface (y) and (c) the variation of local density with y. Experimental
density is ρNIST = 0.99 g/cm3.
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Figure 2.13: A similar geometry as in Fig. 2.10(a) is used here to determine the viscosity of
mW water. Inset shows that the stress experienced by mW molecules is only as half as that
experienced by TIP4P/2005 molecules in a similar situation. Consequently, mW water has
proportionately lower viscosity.

Viscosity.— The viscosity of mW model is evaluated by the shearing method described for

TIP4P/2005 model in the previous section. Periodic boundary conditions are applied in all

three directions. Because of the simplicity of this model, for the same strain rate, the mW

molecules experience only a fraction of the shearing stress experienced by the TIP4P/2005

model. Correspondingly, the viscosity of the model is only µl = 0.31 mPa.s (see Fig. 2.13)

(Dhabal et al., 2016).

These results show that, despite quantitative changes in some fluid properties, mW and TIP4P/2005

models are qualitatively comparable. Nevertheless, care must be taken while interpreting results

that describe same physics. The simulation parameters used while studying any system with

the mW model are:
Parameter Value

∆t 0.01 ps

τT 1.0 ps

Output every 0.02 ps
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Figure 2.14: Determining the viscosity of nitrogen through modified-shearing simulation. A
long square pillar-like geometry is used here. All molecules in the top and bottom regions of
the box experience an extra force −Fx in the −x direction and molecules in a central region
(twice as big as the former) experience Fx in +x direction. Resulting velocity profile shows
velocity is linear in steady state in the fitting region, which is well outside the forcing regions.

2.4 Mono-atomic model of nitrogen

In several chapters of this thesis, a mono-atomic model of nitrogen (at T = 300 K) is used to

study the effect of an ambient gas on the dynamics of nanodroplets. Although real nitrogen

molecules are diatomic in nature, this model is computationally efficient. Here, the interaction

between any two nitrogen molecules is defined by a shifted LJ potential (Eq. (2.4)) with εNN =

0.189 kcal/mol, σNN = 0.375 nm and rc = 0.94 nm. In what follows, this model is validated

against experimental data on nitrogen obtained from NIST database.

Viscosity.— The main effect of ambient gas outside droplets is to oppose the droplets’ motion

by virtue of the viscosity of the gas. In this section, the viscosity of the single-site model of

nitrogen is tested against corresponding experimental data from NIST. For the determination

of viscosity, a long and fully periodic simulation box is set up, as shown in Fig. 2.14. The

simulation domain is filled with molecules that match the target thermodynamic state, and is

then divided into 5 sub-regions. Three regions are used to apply a steady-state shearing force,

and two regions are used to measure the response, from which the viscosity can be calculated.

A force of |Fx| = 3.9× 10−12 N is applied on each molecule in the negative x direction in
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Figure 2.15: (a) Viscosity of nitrogen determined through modified-shearing simulations as
a function of bulk pressure compared with that obtained from NIST data base. Viscosity of
single-site model of nitrogen is comparable to the NIST values. (b) Ideal gas behaviour of the
nitrogen model. The errorbars in p∞ is smaller than the data points.

the top and bottom forcing regions, and the same magnitude of force is applied on molecules

in the central region, but in the positive x direction. Because the top and bottom regions are

half the size of the central region, the net force on the system is zero. Unlike the Lees-

Edwards boundary condition, where a location dependent velocity is explicitly applied on fluid

atoms, applying a body force in the manner described above will ultimately result in a linear

velocity profile, as shown in Fig. 2.14. In this ‘modified-shearing simulation’, where shearing

is performed without confining walls, by measuring the shearing stress (τxy) experienced by

all the molecules in the ‘fitting region’, the viscosity of nitrogen at different pressures can be

measured by using Eq. (2.21) (Ramisetti et al., 2017).

The simulation parameters used while studying systems containing nitrogen are:

Parameter Value

∆t 0.01 ps

τT 1.0 ps

Output every 0.02 ps

It must be noted that for simulations that contain both water and nitrogen in the system,

parameters relevant to the water model are used. For example, a timestep size of ∆t = 0.002

ps is used in a system of TIP4P/2005 water droplets coalescing in a nitrogen atmosphere. The

viscosity of nitrogen obtained in this manner at different pressures is shown in Fig. 2.15(a).

The viscosity matches well with the NIST data at 300 K at higher pressures. Figure 2.15(b)

shows the pressure-density graph at T = 300 K. The mono-atomic model of nitrogen behaves

nearly as an ideal gas in the range of pressures investigated.
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Figure 2.16: (a) Two molecules that are overlapped in the initialisation step are moved apart
during energy minimization. This needs not be in the direction of their velocities. Since no time
integration is performed on the system during this process, the initial velocities of molecules
remain unaltered. (b) Reduction in the potential energy of a system during energy minimization
resulting from the removal of overlaps. System contains 5832 TIP4P/2005 water molecules
randomly arranged in a R = 3.5 nm sphere in the beginning. Temperature remains constant
during the process, as velocities are unaltered.

2.5 Basic machinery – example of contact angle measurement

Once the interaction potentials between any pair of molecules are known, a system can be set

up based on a target number of molecules, operating temperature, system dimensions and initial

conditions. MD simulations usually work in four basic steps, and are followed in studying any

system presented in this thesis. In this section, each of these steps will be explained using a

simple example of contact angle measurement of a nanodroplet on a hydrophilic wall.

2.5.1 Energy minimization

The first step in this process is to arrange molecules in a spherical droplet of desired size.

Initially, 5832 water molecules are randomly arranged in a sphere of R = 3.5 nm. Because of

the initial random arrangement, several molecules may overlap with their neighbours, resulting

in a high repulsive interaction among them. Time-integrating a system like this will move these

molecules to unphysically large distances, thereby blowing up the entire simulation.

LAMMPS has a ‘minimize’ command to perform energy minimization over a system of parti-

cles. During energy minimization, the atom coordinates are iteratively adjusted so as to remove

all the overlaps among them with an aim to attain a local potential energy minimum. Time-

integration is not performed during this process. As shown in Figure 2.16(a), it may be easier

to remove overlaps by moving the molecules in a direction different from what is suggested

by their respective velocities. Figure 2.16(b) shows the potential energy change during the

minimization process of the system mentioned above. During initialisation, all molecules are

given velocities from a Gaussian distribution corresponding to a temperature of T = 300 K. As
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Equilibration Production run

Figure 2.17: (a-c) Equilibration of a R= 3.5 nm droplet on a hydrophilic wall. (c-d) Time during
which production run is carried out.

their velocities are not updated during energy minimization, temperature remains constant.

2.5.2 Equilibration and production run

After it reaches a local potential energy minimum, the system can now be equilibrated. Time-

integration updates the velocities and coordinates of all molecules in the system. In this exam-

ple, the droplet is placed over a substrate, which is pre-equilibrated at 300 K. The attraction

from the underlying substrate will bring the droplet down and let it evolve until it reaches its

equilibrium configuration. Figure 2.17(a-c) show different stages in the equilibration stage. By

the end of t = t0 +400 ps, the centre-of-mass coordinate of the droplet in the direction normal

to the wall, potential energy of the system and various other measurable quantities have come

to a steady state, indicating that the system is in its equilibrium configuration.

If the dynamics of the spreading process is not of interest, it is better to let the system equi-

librate as long as possible, and the data collection should only begin afterwards. During this

‘production run’ stage, relevant atom attributes, such as coordinates of all oxygen atoms, are

stored in a separate file for post-processing. The amount of data collected during this stage

directly determines the statistical reliability of the measured quantities, while evaluating their

‘time averages’.

If the dynamics is of interest, it may not be possible to collect sufficient data for reliable

statistics. In such cases, it is better to perform several versions of the same simulation with

different initial conditions, and then evaluate any quantity that is of interest from each of these

‘realisations’. This will give us an ensemble average of the measured quantity. If the system is in

equilibrium, the ‘ensemble average’ evaluated in this manner and the ‘time average’ evaluated

as before will give identical results. This is known as the ‘ergodic hypothesis’.

During the equilibration and production run stages, it is desirable to geometrically arrange

the processors in the domain such that each processor gets more or less the same number of

atoms. When LAMMPS is executed in parallel, this will make sure that the load is uniform
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Figure 2.18: (a) 2D density field inside the equilibrated water droplet evaluated during the
production run time. (b) Equimolar points, where the density falls to the average of the liquid
and vapour bulk densities. A circle is fit to these points to determine the equilibrium contact
angle θc. Roughly a 0.8 nm thick region above the surface is not included in the fit due to the
density layering close to the wall. The first layer of wall molecules are at y = 0.

on each processor involved and it decreases the execution time to a great extent. LAMMPS

has a ‘processor’ command to redistribute the total number of processors in all three directions

and a ‘balance’ command to arrange them in any fashion. In all the simulations presented

in this thesis, processors are initially arranged in the domain such that the load is uniformly

distributed.

2.5.3 Post-processing

Once all the relevant atom attributes are obtained from the production run stage, several com-

puter programs can be used to evaluate other measurable quantities that are otherwise difficult

to determine during the previous stages. For post-processing the output data obtained from MD

simulations, primarily C++ and MATLAB programs are used in this thesis. These programs

read atomic positions and velocities from the LAMMPS output files and evaluates the relevant

quantity. For example, if the position coordinates of all molecules in a droplet are known as a

function of time, post-processing programs can easily evaluate the centre-of-mass location and

velocity. For droplets coalescing in gaseous systems, if the stress tensors of the gas molecules

are output, each of those molecule can be assigned into a spatial bin and the pressure field in

the system can be determined as coalescence proceed. Typically, these codes are run serially on

a single core and would take a few hours to a few days to finish, depending on the total number

of atoms.

In the present example, a C++ program is written for evaluating the density profile inside

the droplet. Since the effect of body forces such as gravity are negligible at the nanoscale, a

nanodroplet will spread on a surface until a circular profile of the interface is achieved because

of the surface tension forces. In this example, from the coordinates of all oxygen atoms, the

density profile of the droplet can be evaluated by assuming axisymmetry around a centroidal

axis normal to the wall. For this purpose, the entire domain is sub-divided into a number of bins,

each of size 0.1 nm, and the local density is evaluated. Figure 2.18(a) shows that deep inside
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the droplet, the local density is roughly the same as the bulk density of water (∼ 1 g/cm3) and

towards the interface, the density drops to the vapour density. A Gnuplot code is then used to

pick all those points on the interface where the density falls to the average of liquid and vapour

bulk densities (see Fig. 2.18(b)). A circle is then fit to these points after discarding a region

of roughly 0.8 nm above the surface. This is done in order to avoid any complications due to

density ordering close to the wall. The tangent to the circle where it meets the top layer of the

wall (y = 0) gives information about the contact angle made by the water droplet on the wall.



Chapter 3

Droplet coalescence commences in a

thermal regime

The majority of this chapter is already published in Perumanath, S., Borg, M. K., Chubynsky,

M. V., Sprittles, J. E., and Reese, J. M. Droplet coalescence is initiated by thermal motion.

Phys. Rev. Lett., 122:104501, Mar 2019.

Figure 3.1: Coalescence of two water nanodroplets of radii R = 5.1 nm. A bridge connecting
both droplets develops after the first contact between the droplets is established, which grows
in time (measured in picoseconds (ps)) until the droplets are completely merged. Here, oxygen
atoms are represented in red and hydrogen atoms are represented in white.

Droplet based systems are ubiquitous in our daily lives; ranging from storm cloud formation

and rain droplet size distribution in the atmosphere to office ink-jet printers and emulsion-based

products, such as mayonnaise (Kovetz and Olund, 1969; Ristenpart et al., 2006; Miljkovic et al.,

2012; Boreyko and Chen, 2009; Kumar et al., 1996). Often many of these systems involve

coalescence of two or more smaller droplets that form a larger one. As a process that involves a

49
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variety of length and time scales which span over a few orders of magnitude, the mathematical

modelling of droplet coalescence is highly challenging (Eggers et al., 1999; Duchemin et al.,

2003; Sprittles and Shikhmurzaev, 2014a,b,c; Paulsen et al., 2012). Although existing compu-

tational models have provided us with deep insights into how the coalescence proceeds as a

function of time (see Chapter 1), the reliability of these models breaks down drastically as one

marches backward in time to the exact point of the beginning of coalescence. In other words,

these models are not accurate in the initial stages of the process, as many of these models

host a finite-time singularity in the beginning of coalescence, where the continuum assumption

breaks down. Experimental study of droplet coalescence becomes increasingly challenging as

one tries to investigate the early stage dynamics of the process, which involve small length and

time scales.

In this chapter, the problem of coalescence is approached from a molecular perspective and

we try to understand how this singularity is removed in reality. Molecular dynamics is per-

haps the best tool to study the effect of non-continuum nature of the liquids on coalescence

dynamics, as this technique makes no assumption that gives rise to a singularity. Figure 3.1

shows MD simulation snapshots of coalescence of two nanodroplets. Since every single atom

in the system is modelled, the only restriction in using MD is that only droplets of nanometre

sizes can be simulated. Nevertheless, good scalability of the results presented here is expected.

In this chapter, mainly quasi-2D droplets are simulated, since it has been shown that the

early stage dynamics of coalescence of spherical droplets can be asymptotically studied using

their cylindrical counterparts (Eggers et al., 1999) and also there are qualitative similarities

between coalescence of cylindrical and spherical droplets (Burton and Taborek, 2007; Pothier

and Lewis, 2012). Computationally expensive coalescence simulations of 3D spherical droplets

are used to validate any inferences made by studying cylindrical droplets. This chapter is

organised as follows: in Section 1, the thermal fluctuations at an interface is introduced and

quantified. Section 2 investigates how these fluctuations affect the onset of coalescence. After

a first contact is established between coalescing droplets, the physical mechanism of bridge

growth is investigated in Section 3, thereby explaining how a singularity is removed. The affect

of outer fluid and impact velocity is studied in Section 4. Lastly, Section 5 discusses the impact

of this particular chapter.

3.1 Thermal fluctuations at droplet interfaces

By investigating closely the behaviour of interfacial thermal fluctuations and quantifying their

characteristics, we can then start to understand how two droplets coalesce, with particular

attention to its initial stages (where these fluctuations are thought to be important). For example,

quantifying the amplitude of these fluctuations on droplet surfaces will give a rough idea about

when the coalescence will initiate as two droplets are brought together from a distance. In what
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Figure 3.2: (a) MD simulation snapshot of a quasi-2D droplet at a particular instant of time.
(b) The corresponding equimolar points (red), where the local density falls to the average of
liquid and vapour densities, and the mean circular profile (solid blue circle). At any instant, the
profile deviates significantly from the mean profile due to thermal fluctuations at the interface.

follows, the amplitude of interfacial thermal fluctuations on both quasi-2D and 3D spherical

droplets are quantified using theory and compared to MD simulations.

Any interface is composed of some ‘dynamic roughness’ due to interfacial thermal fluctuations.

Figure 3.2 shows the snapshot of a quasi-2D water nanodroplet with radius R = 11.1 nm and

its instantaneous equimolar line. Since the liquid-vapour interface is diffusive in nature, an

‘equimolar’ line, where the local density falls to the average of the bulk densities of both

liquid and vapour is identified to mark the location of the interface. It can be clearly seen

that the presence of thermal-capillary waves distorts the interface from the mean circular

profile of a droplet. The instantaneous profile of such a thermally fluctuating interface can be

10.6 10.8 11 11.2 11.4 11.6 11.8
0

50

100

150

200
Histogram
Fitted normal disribution

Figure 3.3: Probability distribution of the position of an interfacial point on the equimolar line
with respect to the radius of a quasi-2D droplet with R= 11.1 nm. The location of this interfacial
point is normally distributed about its mean surface.
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represented by a sum of Fourier modes (or spherical harmonics, if it is a spherical droplet) that

are orthogonal to each other. For a large enough droplet, the interfacial fluctuations are small

in comparison to the large radius, and the oscillation of any ‘interfacial point’ on the equimolar

line in the radial direction will be distributed normally about its mean location. Figure 3.3

shows the probability distribution, G(r), of the location of a particular point on the interface of

a droplet measured using MD, which follows a normal distribution.

For a planar interface, the capillary wave modes are plane waves, each characterized by a

wave number q ≡ 2π/W , where W is the wave length. The theory of thermal-capillary waves

(Rowlinson and Widom, 1982; Sides et al., 1999) predicts that the mean-square amplitude of

thermal fluctuations at the interface will be given by

〈ζ 2〉pl =
kBT
2πγ

ln
(

qmax

qmin

)
, (3.1)

where qmax and qmin are the maximum and minimum wave numbers, which are required to

prevent divergence of the above expression. The square-root of Eq. (3.1) will quantify the

standard deviation of the normal distribution G(r).

For a spherical droplet, the above expression is still expected to hold, since for most modes

(except for the longest ones) the mean surface is effectively flat on the scale of the wavelength.

In the absence of an external field – for example gravity (which will be negligible at the

nanoscale) – the minimum wave number will be determined by the longest possible wave

on the surface. For the case of a spherical droplet, this will have a wave length of half of

its perimeter, i.e. qmin ≈ 2π/(πR). In Eq. (3.1), qmax = 2π/B0 signifies an upper cut-off for

the wave number, beyond which it is meaningless to discuss fluctuations in terms of a set of

continuous waves. Here, B0 signifies the wave length of the shortest possible wave. An obvious

choice for B0 is the size of a constituent molecule (Rowlinson and Widom, 1982) and radius

of gyration or segment length in case of polymer chains (Werner et al., 1999). Therefore, by

assuming the above equation to be valid for 3D spherical droplets, the standard deviation of

thermal fluctuations on the surface is expected to be:

σsph(R) =
√
〈ζ 2〉sph ≈

√
kBT
2πγ

[
ln
(

πR
B0

)] 1
2

. (3.2)

It is assumed that R� B0. Although σ is a diverging function of R, the divergence is very

weak. It can be noted that on pure liquid surfaces, these waves have nanoscale amplitudes, i.e.

σ ∼
√

kBT/γ (note that σ here is not to be confused with the LJ length parameter described in

the previous chapter.)

For quasi-2D cylindrical droplets, the principal difference is that the characteristic lengths are

quite different in the azimuthal and axial directions. Such droplets are of interest because: (a)

for the same droplet radius R, a quasi-2D cylindrical droplet will only have fewer number of
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molecules compared to its spherical counterpart, essentially promising huge savings in terms

of computational power and (b) the complications that might arise because of the capillary

pressure due to the azimuthal curvature are completely absent in this geometry. To this end, the

axial length L must be made smaller compared to circumference of the droplet, i.e. a ‘thin disc’

geometry is assumed. In all the cases studied here, a value of L ≈ 3rc is chosen to avoid other

complexities, for e.g. finite size effect.

For such a thin disc geometry, i.e. R� L, an expression for the standard deviation of the thermal

fluctuations is derived:

σ(R)cyl =
√
〈ζ 2〉cyl =

√
kBT
2πγ

[
3R
2L

+ ln
(

L
B0

)] 1
2

, (3.3)

(see Appendix A for full derivation). Unlike Eq. (3.2), Eq. (3.3) diverges quickly with increas-

ing R, while keeping L constant. This means that, beyond a certain limit (say, 2πR > 100

nm), quasi-2D cylindrical droplets cannot model their 3D counterpart. However, a smaller full-

cylindrical droplet spread on a wall can give an identical coalescence radius R but has a lower

value of σ than predicted by Eq. (3.3) (see example in Fig. 3.4); a value of σcyl close to σsph

can be obtained in the same way when R is large. This is because in the system where a droplet

is spread on a wall, the longest Fourier wavelength is only a fraction of πR. Coalescence of

two such quasi-2D droplets spread on walls is used in this thesis to study the largest of the

systems investigated (i.e. with R = 58.5 nm). Coalescence simulations using this method is

not necessary for small droplets as (a) the computational cost of simulating small droplets are

feasible and (b) the top most portion of the spread droplet must be as far away as possible (at

least ∼10 nm) from the wall in order to reduce the influence of density layering near the wall

on coalescence dynamics; this is achievable only for large enough droplets (R > 20 nm).

The above discussion describes the impact of the longest possible thermal-capillary wave on

a surface on σ . In order to determine B0, the length scale that describes the shortest wave, a

separate set of MD simulations of cylindrical droplets with varying R, but fixed L are used.

Water droplets at T = 300 K are simulated and the standard deviation of surface thermal

fluctuations as a function of the perimeter 2πR (see Fig. 3.5) is explicitly evaluated. During

the simulation, the position of all atoms are recorded at regular intervals of 0.02 ps for a total

simulation time of 1 ns. Then, a point on the equimolar line is randomly chosen and the standard

deviation of its thermal fluctuation is evaluated. A fit to the MD data points in the form of Eq.

(3.3) gives B0 ≈ 1.2 nm, which represents around 3 water molecule diameters in scale. In Fig.

3.5, the standard deviation of fluctuations for 3D spherical droplets with the same value of B0

is also shown, assuming B0 applies to the 3D case.
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Figure 3.4: The standard deviation of thermal fluctuations changes as the longest Fourier
wavelength on the surface changes, even though the coalescence radius (R) is kept constant.
The figure shows a full cylindrical droplet and a smaller cylindrical droplet spread on a wall,
each with identical R. As the longest Fourier wavelength in (b) is smaller than that in (a), σ is
also correspondingly smaller in (b).
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Figure 3.5: Standard deviation of the local thermal fluctuations on top of (quasi-2D) cylindrical
droplets as a function of droplet circumference 2πR. The broken blue line is a fit to the blue
points in the form of Eq. (3.3) using only B0 as the fitting parameter. Note that Eq. (3.3) is
not applicable when 2πR < L. The red curve shows Eq. (3.2) for the 3D droplet case with the
same fitted value of B0 from the quasi-2D case. A C++ code is written in order to evaluate
average fluctuation amplitudes from MD simulations.
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3.2 Location of first contact between droplets during coalescence

The traditional understanding of the formation of a bridge between two droplets during coales-

cence is by the growth of a hydrodynamic instability (Vrij, 1966; Lucassen et al., 1970). When

two droplets approach each other, the attraction between their confronting interfaces will cause

a set of modes on both surfaces to grow exponentially until a first contact between them is

established. Once a bridge of finite size connects the droplets, interfacial tension will drive the

processes until both droplets are completely merged; these processes have been extensively

studied by continuum CFD simulations (Paulsen et al., 2012; Sprittles and Shikhmurzaev,

2012, 2014a).

What has not been studied in the past is the onset of coalescence: when two droplets start to

interact, touch for the first time and the subsequent bridge growth. The presence of thermal

fluctuations on the surface will inevitably destroy the axisymmetry along the line of approach

of two droplets that is usually assumed in continuum simulations during coalescence. With

thermal-capillary waves on the surface, there is no guarantee that the first contact between the

droplets will happen along the line connecting their centres-of-mass. Furthermore, with the

limited set of modes present on nanodroplet surfaces, the mechanism of onset of coalescence

may be different from what is described above for larger droplets. Figure 3.6 shows an MD

simulation snapshot of the beginning of coalescence of two droplets, where the first contact oc-

curred offset from the line of approach. During the simulation, two independently equilibrated

droplets of same size are brought towards each other along the coalescence axis connecting

their centres-of-mass, either in vacuum or in an outer fluid with a relative velocity Vr. This is

repeated several times using different realisations. A sample LAMMPS code for such a case is

given in Appendix B.

Knowing the relative fluctuation of neighbouring points on the surface, assuming that the fluc-

tuations on both droplets are independent and there are no instabilities, the theory of thermal-

capillary waves allows us to derive an expression for the extent of the region (lc) from the

coalescence axis, within which a contact can happen:

lc ≈
(

kBT
γ

)1/4

R1/2, (3.4)

(see Appendix C for details of the derivation). Figure 3.7 shows the distribution of coalescence

onset points along x for two quasi-2D droplets of radii R = 11.1 nm obtained through 40

independent realisations. While the most probable location for the onset of coalescence is

close to the line of approach, as expected, it is still possible to initiate coalescence from a

location away from the line of approach. From Fig. 3.7, lc is comparable within a pre-factor of

order unity to the spread of the distribution obtained through MD simulations, which is deter-

mined by fitting a Gaussian function to it (99% confidence interval (CI)). This shows that for

nanodroplets, within the region |x|< lc, the first contact happens when thermal fluctuations of
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Figure 3.6: MD simulation snapshot of coalescence of two droplets with R = 20.1 nm.
The presence of thermal fluctuations on their surfaces renders the onset of coalescence a
stochastic process. Here, the first contact can be seen made away from the line of approach.

coalescing droplets meet from opposite sides; there is no evidence of a growth of hydrodynamic

instability. In other words, no significant shape change of the droplets, as described in Sub-

section 1.1.1, is observed in any of the MD simulations of nanodroplets before the coalescence

began. Consequently, there may be multiple contacts between droplets during coalescence,

which is more probable for larger droplets. Figure 3.8 shows the beginning of coalescence

between two quasi-2D droplets with R = 58.5 nm characterised by two local bridges between

them.
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Figure 3.7: Distribution of coalescence onset points obtained from 40 MD realisations of two
R = 11.1 nm quasi-2D droplets coalescing in vacuum. See Fig. 3.6 for the definition of x
direction.
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Figure 3.8: MD simulation snapshot of two cylindrical droplets coalescing with R = 58.5 nm,
characterised by multiple local bridges between the droplets.

3.3 Physical mechanism of the bridge growth

Continuum simulations have shown how the flow field develops inside the droplets once a

finite bridge connects both droplets, which results in the complete merger of them. Traversing

from the unperturbed surfaces of both droplets towards the bridge, there is a sharp contrast in

the local curvature at the bridge. In an attempt to equalise local curvature everywhere on the

liquid surface, the surface tension will drive the entire process until a larger droplet forms. The

traditional picture of bridge growth, therefore, is that a ‘flow’ of liquid develops during this

surface tension-driven process and it will push the bridge front to its new location (Hopper,

1990; Eggers et al., 1999; Duchemin et al., 2003). Figure 3.9 schematically shows how a

‘control volume’ close to the bridge front moves to its new location according to the traditional

understanding. Depending on the relative magnitude of the driving surface tension force and the

opposing viscous or inertial forces, different scaling arguments have been developed for bridge

growth in time, as already discussed in Chapter 1. As discussed previously, such mathematical

models of bridge growth hosts a finite-time singularity in the beginning of coalescence.

Interestingly, there has been no study so far which has looked into the role of nanoscale

effects near the singularity in coalescence. Using MD, the trajectories of different groups of

molecules close to the bridge front are analysed as coalescence proceeds. Figure 3.10 shows

the MD simulation snapshots of bridge growth at different stages of coalescence. In the initial

stages, the bridge grows due to collective molecular jumps (Fig. 3.10(a)) next to the bridge
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Figure 3.9: A schematic of our traditional understanding of how a bridge evolves with time
during droplet coalescence. As the interfacial tension pulls the high-curvature region, a ‘flow
field’ develops which will push a control volume next to the bridge front to its new location.

front (indicated by green arrows) instead of a bridging flow of molecules towards the neck,

as one might expect from the traditional picture. During this initial thermal regime, which

these simulations reveal for the first time, due to the proximity of the confronting surfaces

of the droplets coupled with the thermal-capillary waves at the interface, the molecules are

observed to gradually fill the intervening gap between the droplets (this motion resembles

that of a zip). When there are multiple local bridges, this mechanism will go on until two

such bridge fronts meet from opposite sides and merge. Otherwise this type of bridge growth

proceeds until the bridge front reaches a thermal length scale lT from the coalescence axis,

where thermal fluctuations can no longer be the dominant mechanism of the bridge evolution

and the traditional hydrodynamic mechanism takes over the dynamics.

For quantifying lT , a statistical method is adopted, since the initial stages of bridge growth

involves thermal motion of the molecules. At first, Fig. 3.11(a) shows how interfacial molecules

(yellow) are identified in the system at a particular instant of time by using the criteria men-

tioned in Chapter 2 and ‘bridge molecules’ (maroon) selected within a 1 nm region of the

bridge. At a later stage, molecules are identified in a similar way (coloured cyan), however

now we are able to highlight those molecules which have travelled from the original maroon

list. If the fraction of molecules which came from the maroon to the cyan list is less than 0.5,

the bridge growth is identified to be in the thermal regime; otherwise if the fraction is larger

than 0.5, this is identified as the hydrodynamic regime. The point where this fraction crosses

over the half way mark of 0.5 is designated as the extent of the thermal regime, identified by

the thermal length scale lT . lT is measured for different droplet sizes during their coalescence

and its size-dependence is shown in Fig. 3.12, which shows lT ∼
√

R. It is also observe that lT
is seemingly captured by 2lc for both 3D and cylindrical droplets, which is reasonable, since

both length scales are defined by thermal mechanisms.

The bridge growth during coalescence is further analysed by studying the time-evolution of
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(a) Thermal regime

(b) Hydrodynamic regime Line of approach

Figure 3.10: The bridge growth mechanism at different stages of coalescence. (a) In the
‘thermal regime’, the bridge grows due to a large number of molecules jumping into the gap
between the droplets. These collective molecular jumps occur until the bridge radius reaches
lT , measured from the line of approach. (b) At a later stage, i.e. after the bridge has passed
lT , the mechanism resembles that of the traditional picture, where the liquid hydrodynamics
moves a ‘control volume’ next to the bridge front to its new location. In the figure, only
oxygen atoms are shown for improved visibility, and a few of them are coloured differently
for illustrative purposes.

equimolar lines. Figures 3.13 – 3.15 show the equimolar line and corresponding bridge evolu-

tion in three cases (quasi-2D) right after the first contact is established between the droplets.

Here ‘offset’ represents how far away from the line of approach the first contact is established.

Figure 3.16 shows the bridge evolution for two cases when 3D spherical droplets coalesce. The

bridge evolution in the initial stages of both quasi-2D and 3D droplets is observed to be linear in

time with a characteristic speed that seemingly depends on the local radius of curvature next to

the bridge front. It is to be noted that in most cases, the characteristic speed of bridge evolution

is much greater than the viscous-capillary velocity scale (γ/µl), which would be expected, if

the bridge was expanding in the Stokes regime. This further verifies that the bridge operates in

a new thermal regime in the beginning of coalescence.

In order to better differentiate the mechanism of bridge evolution at different times, the time-

evolution of the total surface area of the droplets during coalescence is studied. With MD, the

number of interfacial molecules in the system can be tracked, which is a direct indicator of the

instantaneous total surface area of the droplets (see Chapter 2). Since during coalescence, there

is a reduction in the surface area as the bridge grows in time, these two measurable quantities

must be directly related.

If the total surface area of a single droplet is A, and the number of interfacial molecules per unit
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Figure 3.11: (a) The interfacial molecules in the system during coalescence of two R = 11.1
nm droplets. Only oxygen atoms are shown. A few molecules near to the lower bridge front are
identified and coloured differently. (b) Bridge front molecules at a later stage in coalescence
are coloured in cyan for comparison with interfacial molecules in (a). A C++ code is written in
order to distinguish these groups of molecules at different timesteps.
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Figure 3.12: The variation of the extent of the thermal regime lT with
√

R. Here Vr denotes
the approach speed of both droplets.
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Figure 3.13: (a) The equimolar line showing the location of the interface during coalescence
right after a contact is established close to the coalescence axis (R = 11.1 nm). Bridge fronts
are randomly labelled as 1 and 2. (b) Bridge growth in time for the case shown in (a). The
bridge location is measured from the coalescence axis. Here t = 0 denotes the time at which
a bridge appeared in the equimolar plots. In reality, the coalescence might have begun a few
timesteps earlier than this. A C++ code is written in order to identify the equimolar points.
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Figure 3.14: Similar to Fig. 3.13, but here, the first contact occurred significantly offset from
the coalescence axis.
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Figure 3.15: Similar to Fig. 3.13, but for R = 58.5 nm droplets with the first contact again
significantly offset from the coalescence axis.

0 5 10 15 20 25 30 35
0

1

2

3

4

5

Bridge front
0.1606 t+1.5881

0 10 20 30 40
0

1

2

3

4

5

Bridge front
0.2023 t+0.5905

Figure 3.16: Bridge growth in time in the case of coalescence of two 3D spherical droplets.
The bridge growth in the early stages is linear in time as it is in the case of cylindrical droplets
with a speed much larger than the viscous-capillary velocity scale.
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Figure 3.17: Time variation of the number of interfacial molecules during coalescence of (a)
two quasi-2D droplets and (b) two 3D spherical droplets.

area is nA, the change in the number of interfacial molecules during coalescence when the area

decreases by 2∆A will be 2nA∆A. That is the rate at which the number of interfacial molecules

are changing:

dN/dt = 2nA(dA/dt). (3.5)

The decrease in the area can also be estimated in terms of the rate of bridge growth:

dA/dt =−(drb/dt)∆Z, (3.6)

where ∆Z is the length of a particular bridge front over which molecular jumps occur in the

thermal regime.

Combining Eqs. (3.5) and (3.6), an estimate for the bridge growth speed for comparison with

its counterpart observed in MD simulations is obtained:

vb ≡
drb

dt
≈ −dN/dt

2nA∆Z
. (3.7)

Figure 3.17(a) shows the time dependence of the number of interfacial molecules in the system

during coalescence of two quasi-2D droplets that corresponds to the case of ‘bridge front

1’ highlighted in Fig. 3.14. The variation of interfacial molecules are linear in time: N0 −
N(t) = −dN/dt(t− t0). Here N0 denotes the number of interfacial molecules above or below

the contact point, before coalescence began, N(t) is the instantaneous number of interfacial

molecules above or below that contact point, and t0 is the time at which that contact is made.

From Fig. 3.17(a), with −dN/dt ≈ 44.2 molecules/ps, ∆Z ≡ L = 4.3 nm used in this study,

and nA ≈ 25 molecules/nm2 for water-vapour interface, Eq. (3.7) predicts vb ≈ 200 m/s, which

agrees well with the bridge growth velocity in Fig. 3.14(b). The slower speeds in Fig. 3.13(b)

is due to a smaller dN/dt because of the initial contact occurring close to the coalescence axis.
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On the other hand for spherical droplets, ∆Z grows as the bridge expands in time. Since the

bridge growth in the thermal regime is observed to be linear in time for spherical droplets as

well (Fig. 3.16), ∆Z ≡ 2πrb ∼ t, so that −dN/dt ∼ t since vb ∼ t0 from Eq. (3.7). This implies

that the number of interfacial molecules should decrease as∼ t2 in the thermal regime and Fig.

3.17(b) seems to agree well with this.

As expected, the bridge growth qualitatively changes after the thermal regime in both cases, as

now there is a ‘flow’ of molecules towards the neck. It is interesting to note from Figs. 3.14(b)

and 3.15(b) that even though there is no symmetry in bridge growth in the initial stages of

coalescence, a symmetry gets established as time proceeds as is usually assumed in continuum

simulations.

3.4 Effect of outer fluid and impact velocity

In many realistic situations, droplet coalescence occurs in the presence of an outer fluid. In

nature, rain droplets coalesce by bombarding into each other at various speeds in the presence

of air. A variety of industrial applications involve coalescence of liquid droplets in another

liquid. In this section, the effect of outer fluid and impact velocity on lT is studied.

Droplet coalescence is simulated in a nitrogen atmosphere at various densities (see Fig. 3.18),

and separately in the presence of liquid ethane. Both droplets are brought towards each other

and lT is measured as described earlier. From Fig. 3.19, the extent of thermal regime is observed

to be independent of the outer gas Knudsen number (Kn), where Kn ≡ λ/R is defined as the

ratio of mean-free-path of gas molecules to the droplet radius. Interestingly, when the outer

fluid is a liquid (i.e. in the limit as Kn → 0), a negligibly small lT is obtained (not shown in

the figure), which is close to the spatial resolution of the method described above to determine

lT . Since every fluid is composed of its own constituent molecules, a system of liquid-in-liquid

emulsion will have a finite non-zero Kn. After both droplets of the dispersed medium make the

first contact at a molecular scale, the first few molecules which form the bridge will not be able

to develop the bridge due to a ‘flow of molecules’, simply because there are not many molecules

available to carry out this process. Consequently, the bridge must expand in a thermal regime

to a finite extent, even if the outer fluid is as dense as a liquid. The interfacial molecules will

collectively jump to the gap that still exists between the two fluids (dictated by immiscibility).

Another complication that might arise in such case is the depletion layer interaction between

coalescing droplets, as it plays a role in coagulation of colloidal particles. In colloids, the

excluded volume around the dispersed phase gives rise to forces that are of entropic origin that

bring these particles together to coagulate. As the continuous phase moves out of the interven-

ing gap between the dispersed phase particles, the corresponding rise in osmotic pressure in the

surroundings will push the dispersed phase, aiding coagulation. On the contrary, for the case
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Figure 3.18: MD simulation domain used in order to study the effect of an outer gas on lT . A
Knudsen number is defined based on the mean-free-path of gas molecules λ and the droplet
size R in order to characterise the rarefaction in the outer medium.
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Figure 3.19: The variation of lT with outer fluid Kn. For gaseous atmospheres, lT is essentially
independent of Kn in the range of Kn studied here. In the figure, Kn→ ∞ corresponds to the
value in vacuum, with dashed lines representing the standard error.
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Figure 3.20: The variation of lT with impact velocity for R= 11.1 nm and R= 20.1 nm droplets.
The variation is linear with a non-zero y-intercept.
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Figure 3.21: Variation of local pressure between approaching droplets (pm) when ambient
pressure is 1 atm. pm = p∞ in the beginning of the simulation. (a) At low approach speeds,
the local pressure stays roughly as a constant until coalescence begins at around t ≈ 5 ps. (b)
At higher speeds, compressibility of the ambient gas becomes noticeable, as the intervening
gas molecules do not get sufficient time to escape from the gap between the droplets as they
approach. A higher number density of gas molecules in the local region gives rise to a higher
pressure. Here, coalescence begins at t ≈ 0.9 ps, as the approach speed is higher.
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of droplet coalescence, there is no depletion layer around the droplets; in fact there is a local

high-density region of gas just around the droplets (Ramisetti et al., 2017). As a result, when

the droplets approach each other in an gaseous medium, particularly at high approach speeds,

the pressure of the gas in the intervening gap is observed to rise (see Fig. 3.21), primarily

because of the increase in number of gas molecules in the gap. Once the gap width falls within

a minimum distance, thermal fluctuations initiate coalescence of nanodroplets, as discussed

before. These evidences suggest that the depletion interactions are not of relevance during

droplet coalescence.

The effect of impact velocity on lT is studied by imposing a wide range of initial centre-of-mass

velocities (±Vr/2) to both droplets coalescing in vacuum. Figure 3.20 shows the variation of lT
with Vr for two droplet sizes. A simple argument based on geometry and hydrodynamics can

predict the linear behaviour exhibited by lT (see Appendix D). The non-zero y-intercept, which

indicates the limit when the impact speed approaches zero is clearly a nanoscale effect which

arises because of the bridge growth due to collective molecular jumps.

3.5 Discussion and outlook

The major impact of the existence of a thermal regime in the initial stages of droplet coales-

cence is that it provides us with an improved understanding of how a singularity is removed

in coalescence. This particularly inspires one to see the traditional problems in fluid dynamics,

which host a singularity in their mathematical formulation from a molecular perspective. The

existence of a thermal regime in coalescence calls into question previous studies that have

tried to address this issue through continuum simulations (Paulsen et al., 2012; Sprittles and

Shikhmurzaev, 2014a). These simulations are highly sensitive to the initial conditions such

as the value of initial bridge radius with which the simulations begin, and is usually below

the corresponding lT found in this work. Since existing CFD simulations do not consider

such fundamental molecular physics in their formulations, the next best way to incorporate

the effects of thermal fluctuations is to use rb ∼ lT as the initial condition. Although this will

qualitatively improve the closeness of simulations and experiments, their accuracy must be

quantified separately.

Interestingly, for two R ∼ 1 mm droplets (the size that is usually considered in experiments),

lT ∼ 1 µm, which shows how a high-aspect ratio geometry between the confronting surfaces

of a droplets enhances the extent to which nanoscale phenomena such as molecular jumps can

have an effect. With bridge fronts expanding with a high speed as observed in the present study,

the thermal regime in such macro-scale systems will be covered in a few nanoseconds, and this

is well beyond the temporal resolution of latest experiments. Besides, in previous experiments,

which used an electrical method to study bridge growth during coalescence (Case and Nagel,
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2008; Case, 2009; Paulsen et al., 2011), the electrostatic interactions between the droplets may

have changed the initial geometry and so the extent of the thermal regime itself.

A previous droplet coalescence study using molecular dynamics failed to notice the existence

of the thermal regime due to low-resolution measurements (Pothier and Lewis, 2012). In the

present study, the effect of molecular thermal motion is analysed not only in initiating co-

alescence, but also in the subsequent bridge growth. Droplet coalescence using a different

molecular model of water: the mW (Molinero and Moore, 2009) model is also studied and

the results are qualitatively unchanged. There are quantitative differences, in particular, in the

bridge growth speed, which justifies using a computationally expensive, but more accurate

TIP4P/2005 model for the major portion of our studies.

As pointed out in the beginning of this chapter, although the nanoscale amplitude of interfacial

thermal fluctuations on pure liquid surfaces makes it difficult to observe the thermal-capillary

waves experimentally, some experiments have observed them on the surfaces of ultra-low sur-

face tension liquids (Aarts et al., 2004). As for computational studies, thermal-capillary waves

have already been incorporated into continuum analysis based on a fluctuating hydrodynamic

theory to investigate stability of nanojets (Zhao et al., 2019a). Moreover, the nature of bridge

growth in the thermal regime is reminiscent of the interface disappearance exhibited by the

computational model of droplet coalescence developed by Sprittles and Shikhmurzaev (2014c).

Incorporating thermal fluctuations to this model to study macro-scale droplets coalescence

seems to be a promising way forward. Such experiments and computational techniques will

be capable of further verifying the existence of the thermal regime in droplet coalescence.



Chapter 4

Earliest transient dynamics of wetting

The work presented in this chapter is being drafted to be submitted to Nanoscale Horizons:

Perumanath, S., Chubynsky, M. V., Pillai, R., Sprittles, J. E., and Borg, M. K. Droplet spreading

commences in a thermal-vdW regime. Nanoscale Horiz..

Figure 4.1: A spherical water nanodroplet of R = 17.5 nm spreading on a hydrophilic wall.
After the first contact, the liquid molecules at the three-phase-zone jumps over the atoms of
the underlying wall as described by molecular kinetic theory, taking the contact line further.

Numerous practical situations are conditioned by the spreading of a liquid on a solid substrate,

such as treatments of plant leaves with pesticides (Bonn et al., 2009), metal or glass coatings

in industries (Simpkins and Kuck, 2003), painting, ink-jet printing (de Gans et al., 2004) and

self-assembly of nanoparticles (Brinker et al., 1999; Vakarelski et al., 2009). A liquid droplet

coming in contact with a wettable surface spreads on it in order to minimise total interfacial

energy in the system. During spreading, a liquid bridge connecting the spreading droplet to

69
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the substrate develops in time after the first contact, until the system attains equilibrium. At

this point, the liquid-solid contact angle will have come to rest at its minimum value, which

is determined by the affinity of the spreading liquid towards the underlying substrate — the

higher the affinity, the lower the equilibrium contact angle, θc.

The fundamental difficulty in numerically modelling droplet spreading is that the standard ‘no-

slip’ boundary condition gives rise to divergences in energy dissipation and pressure near the

three-phase-zone (TPZ), where the liquid, gas/vapour and the solid meet (Huh and Scriven,

1971; Dussan, 1979; de Gennes, 1985). There have been many attempts to solve this issue,

particularly by suggesting alternative boundary conditions from a continuum fluid mechanics

perspective (Huh and Mason, 1977; Hocking, 1976). Blake and Haynes (1969) explained the

motion of the contact line (CL) as a result of a large number of individual molecular jumps

occurring at the TPZ. In this way, they were able to suggest the existence of a ‘contact line

friction’ near the TPZ, which helped us further understand the physical mechanism of CL

motion in detail.

Nevertheless, the early stage dynamics of droplet spreading has still proved to be elusive.

It is assumed that the capillary energy suddenly becomes available at a singular point in

space and time, the moment a droplet touches a wettable substrate. Similar to the problem of

droplet coalescence, it is reasonable to expect nanoscale forces to play a key role in removing

this singularity. In this chapter, molecular simulations are used to study the initial dynamics

of droplet spreading and provide an improved understanding of the entire process, such as

the example in Fig. 4.1, which shows a water nanodroplet spreading on a partially wetting

substrate. Similar to the previous chapter, here the focus is also on quasi-2D droplets. This

chapter is organised as follows: several simulation details specific to this chapter are provided

in Section 1. In Section 2, the molecular picture of contact line motion, widely known as

the molecular kinetic theory (MKT) is discussed. It is crucial to understand the molecular

mechanism of CL motion at the later stage in order to distinguish the early stage dynamics

from it, which will be discussed in Section 3. In Section 4, the impact of this work is examined

and possible future directions in which this work can move to are discussed.

4.1 Simulation details

In this chapter, the mW model (Molinero and Moore, 2009) of water is used in order to study the

early stages of droplet spreading on a substrate. Since how the interaction between the substrate

and the liquid affects the CL motion is of interest, usage of a computationally expensive

TIP4P/2005 model is not absolutely necessary in this case, as the solid-liquid interactions are

usually modelled identically (using LJ potential) irrespective of the water model used.

A pre-equilibrated quasi-2D mW water droplet of radius R = 29.8 nm (at T = 300 K) is placed

roughly 2 nm above the substrate and is brought towards the wall by imposing a net velocity of
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Figure 4.2: Geometry of the problem studied here. A thermostat is applied only to the top few
layers (grey) of the wall (T = 300 K). Wall atoms in the remaining layers underneath (blue) are
fixed. Location of the contact point r on both sides is measured from the initial location of the
centre-of-mass of the droplet.

Droplet
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Figure 4.3: Dependence of equilibrium contact angle θc on solid-liquid intermolecular energy
parameter εSL normalised with mW liquid-liquid energy parameter εLL = 6.189 kcal/mol.
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Figure 4.4: Definition of the dynamic contact angle (θd) and the corresponding location of the
contact point. A parabola fit is used in order to deal with the strong interface bending close to
the wall, which occurs in the early stages.

1 m/s to it. Figure 4.2 shows the geometry of the problem studied in this chapter. A Berendsen

thermostat is applied to a few layers on the top of the substrate and the atoms in the rest of

the layers underneath are fixed in order to maintain the integrity of the entire substrate. The

droplet will come in contact with the substrate and spread to an equilibrium configuration that

depends on the solid-liquid interaction parameter, εSL. Figure 4.3 shows how εSL determines

the equilibrium contact angle of a quasi-2D droplet spreading on a substrate. The variation is

linear until θc becomes 0◦, in which case the droplet completely wets the solid substrate. For

quasi-2D cylindrical droplets, θc does not depend on the size of the droplets as the CL curvature

is zero. A sample LAMMPS code for this case is provided in Appendix E.

While studying the dynamics of the droplet spreading problem, the dynamic contact angle θd

is evaluated in a way that is slightly different from previous researches. The most widely used

method in determining the contact angle is by fitting a line to a group of interfacial points of

the droplet above the surface. It is recommended to discard a few immediate layers (∼ 0.6 nm)

just above the surface in order to avoid complications that might arise due to layering of the

liquid close to the wall, as described in Chapter 2. In the next few layers, instead of fitting a

line to the interfacial points, a parabola is fit. The main motivation for using a second degree

polynomial for the fit is to account for the strong interface bending close to the TPZ, especially

in the early stages of spreading.
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This method reproduces the contact angle data obtained using the method of line fitting instead,

when there is negligible interface bending close to the wall. The location where this curve

intersects the top layer of the wall is designated as the instantaneous contact point and the rate

at which this point moves on the surface directly gives the CL velocity, VCL.

4.2 Contact line motion – MKT
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Figure 4.5: Variation of (a) location of contact point, r, on both sides and (b) dynamic contact
angle, θd , as a quasi-2D droplet (R = 29.8 nm) spreads on a hydrophilic wall. Here, r0 is
the location of the projection of centre-of-mass of the droplet on the wall before spreading
begins. Spreading need not start at r0. As the system approaches its equilibrium state, (c) the
deviation of cosine of θd from that of θc approaches zero along with (d) the CL velocity. A
C++ code is written in order to identify the location of contact line and the value instantaneous
contact angle.

MKT describes the contact line motion as a consequence of a large number of individual jumps

of the molecules belonging to the liquid phase on top of the potential energy landscape formed

by the substrate atoms (see Fig. 1.8 in Chapter 1). Due to the thermal motion of the liquid
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Figure 4.6: Variation of MKT parameters λ and κ0 with εSL/εLL. While λ is independent of
the wetting parameter, κ0 decreases linearly with increasing εSL.

molecules coupled with the force which drives the wetting process, they traverse the energy

landscape until an equilibrium configuration is achieved. Their motion is characterised by an

average distance of their jumps (λ ) and the equilibrium frequency of such jumps (κ0). Figure

1.9 schematically shows how the CL advances due to several molecules at the TPZ jumping

over the sites of wall atoms and shows the definition of λ . This physical mechanism underpin-

ning the CL motion is the foundation of MKT, and so later this definition is referred back in

order to distinguish it from another regime of dynamic wetting during droplet spreading, which

these simulations reveal for the first time.

Blake and Haynes (1969) assumed that the driving force during spreading is the out-of-balance

surface tension force, γ[cos(θc)−cos(θd)], and the work done by it is spent entirely in modify-

ing the potential energy landscape over the surface, so that there is net motion in the direction

of applied force. Under such circumstances, the CL velocity will be given by

VCL = 2κ0λ sinh
(

γ[cos(θc)− cos(θd)]

2nkBT

)
, (4.1)

where n is the number of adsorption sites per unit area. Further details of this model are

provided in Chapter 1. Figure 4.5(a) shows the evolution of contact point in the MD simulations

conducted here and Fig. 4.5(b) shows the dynamic contact angle as a function of time when

a quasi-2D droplet of R = 29.8 nm spreads on a hydrophilic surface with θc = 62.1◦. For all

cases of θc, VCL is evaluated along with the deviation of cosine of θd from that of θc in order to

compare their functional inter-dependence to Eq. (4.1).

It is interesting to note that, under the assumptions made in developing MKT, only the equilib-
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Figure 4.7: (a) Approach of the lowest point on the equimolar points at the droplet interface
towards the wall. When there is higher solid-liquid interaction (lower θc), the approach is faster
as indicated by the slope of ymin vs. t − t0 graph just before the beginning of spreading. At
small θc, the density layering close to the wall is severe and consequently, ymin settles at
a lower point after t = t0 than where it settles when θc is higher, where density layering is
only moderate/negligible. Droplet profile close to the wall at t = t0 for (b) complete spreading
(θc = 0◦) and (c) superhydrophobic case (θc = 155.8◦). There are characteristic differences in
the local profile of the droplet in both cases. In the figures, the mean circle is drawn by placing
its centre at the instantaneous centre-of-mass of the droplet.

rium jump distance (λ ) and the equilibrium jump frequency (κ0) affect the CL motion. Here,

these MKT parameters are explicitly evaluated in order to independently verify whether droplet

spreading follows Eq. (4.1) from MKT at all stages or not. In Fig. 4.6, the dependence of these

parameters on εSL is shown. Jumping frequency linearly depends on the solid-liquid coupling

in the range of εSL that is of interest. Here the length of all the jumps that occur parallel to

the surface (Bertrand et al., 2009) is evaluated. At higher coupling, the contact line friction

increases, which results in a decrease in κ0. The average jump distance λ , on the other hand,

is found to be independent of εSL. This is because changes in εSL will not result in a change in

the lattice spacing between the wall atoms (Bertrand et al., 2009; de Ruijter et al., 1999; Blake

et al., 1997). Since evaluation of λ involves contribution from all molecular displacements

parallel to the wall, which are close to the wall, it is greater than the lattice spacing ≈ 0.39 nm.

4.3 Instability growth and the first contact

The free surface shape of a droplet can be assumed to be composed of a mean profile (i.e.

a circle for quasi-2D droplets and a sphere for 3D droplets) and a fluctuating part that arises

from the interfacial thermal fluctuations. The free surface shape can be decomposed into a

number of orthogonal modes of various wave numbers; Fourier modes for quasi-2D droplets

and spherical harmonics for 3D droplets. As the droplet approaches the wall, a set of modes of
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the interfacial thermal fluctuations on the surface of the droplet with wavelengths larger than a

critical value will grow exponentially. This growth occurs since the increase in free energy due

to the increase in surface area is smaller than the decrease in free energy owing to the attraction

between the droplet interface and the substrate.(Vrij, 1966; Vrij and Overbeek, 1968) The rate

at which these modes grow depends on the strength of attraction from the wall — quantified by

the Hamaker constant (AH) between the droplet interface and the wall (which in turn, depends

on εSL). Using an analysis presented in Appendix F, the conditions under which an instability

can develop to make a contact between two interfaces are examined:

σmax(H)
H
v
> 1, (4.2)

where

σmax ≈
(

4a3
H

27γρ2

)1/4

, aH =
AH

16πH4 , (4.3)

σmax is the maximum growth rate of the available wave numbers, ρ is the liquid density and µ

is its dynamic viscosity. H is half the distance between approaching interfaces, which is ∼ 1

nm (the typical size of fluctuations on droplet surface) as a droplet approaches the wall and

v is the approach speed. By substituting relevant parameters in the above equations, it can be

shown that Eq. (4.2) is satisfied in all cases considered in this work, indicating that the role of

thermal capillary waves is significant in establishing the first contact between the droplet and

the substrate. Although the above relations are derived for two approaching planar interfaces,

we expect them to be applicable for the case of droplets approaching a substrate before wetting

as H/R� 1.

Figure 4.7(a) shows the approach of the lowest point at the droplet interface closest to the

wall as a result of the instability growth in two cases: complete wetting (θc = 0◦) and on a

superhydrophobic surface (θc = 155.8◦). Once these interfacial points are significantly within

the region of influence of the wall, they approach the wall at different speeds, as indicted by

the slopes of the plots in Figure 4.7(a). When εSL is higher, this approach is faster because of

the larger intermolecular force experienced by the fluid atoms. As they reach the wall at t = t0,

the lowest point on the droplet interface ymin, establishes the first contact with the substrate.

For highly wettable surfaces, the density layering close to the wall is severe, and consequently,

the value of ymin after t0 is closer to the wall than it is when wettability is lower, where density

stratification is only moderate/negligible.

4.4 Early stage dynamics of contact line motion

After the first contact is established (see Figs. 4.7(b,c)), we investigate the dynamics of wetting

at its early stages by studying the motion of interfacial liquid molecules on the droplet surface.

Surprisingly, the way in which the CL advances during droplet spreading is completely differ-

ent in its early stages from what is envisioned by MKT. Figs. 4.8 and 4.9 show snapshots
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Figure 4.8: Simulation snapshots showing how the contact line proceeds at different stages
of droplet spreading when θc = 113.8◦. In the initial stages, interfacial molecules (yellow) get
directly deposited on to the substrate. After the contact line passes lT , contact line proceeds
in a way that is suggested by MKT.
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Figure 4.9: Similar to Fig. 4.8, but for θc = 62.1◦. lT for this case is observed to be less than
that of the θc = 113.8◦ case.
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of simulations where a droplet spreads on a surface — the equilibrium contact angles are

θc = 113.8◦ and θc = 62.1◦, respectively. Similar to the discussion of ‘thermal regime’ in

droplet coalescence analysed (see Chapter 3), during the initial stages of droplet spreading, the

contact line advances in a thermal-vdW regime. It is termed in this way, because unlike the

MKT, both the thermal capillary waves and the effect of van der Waals forces between the

solid and liquid play a role in the initial dynamics.

This new thermal-vdW regime is also characterised by interfacial molecules (yellow ones)

jumping across the gap between the droplet surface and the underlying wall (see Figs. 4.8(a,b)

and 4.9(a,b)). In this regime, the CL motion resembles how a caterpillar vehicle moves on

a ground, i.e. by a rolling type motion. The CL is found to advance in this manner until it

reaches a distance lT (the proposed thermal length scale) from the line of approach, which

passes through the centre-of-mass of the droplet before the beginning of spreading. Here, lT is

determined in a similar way as described in the previous chapter: the interfacial molecules near

the TPZ (i.e. just above the wall) are identified at a particular instant. The fraction of these TPZ

molecules, which came from the TPZ at a previous instant is then determined. If this fraction

is greater than 0.5, which means the majority of the molecules at the present TPZ came from

the previous TPZ by jumping over the substrate atoms, the base radius is considered to be in an

MKT regime. And if the fraction is less than 0.5, meaning the majority of the molecules at the

present TPZ came from the free interface of the droplet, the base radius is considered to be in

the thermal-vdW regime. The point where this fraction crosses over the half way mark of 0.5

is designated as the extent of the thermal-vdW regime.

The CL motion within lT is observed to be linear in time, as it is for droplet coalescence (see

Fig. 4.10), with VCL being a decreasing function of θc. This constant velocity motion removes

the singularity in the beginning of droplet spreading.

Figure 4.11(a) shows how lT depends on the equilibrium contact angle, θc, for a quasi-2D

droplet of R = 29.8 nm. lT is evidently dependent on the solid-liquid interaction energy εSL.

The initial intuition is that a low εSL (such as that of a hydrophobic surface) inhibits the free

interface molecules of the droplet from getting directly deposited on to the wall in the thermal-

vdW regime. Correspondingly, lT is expected to be small at low εSL. This would mean lT being

an decreasing function of θc. However, counter-intuitively, Fig. 4.11(a) shows that lT behaves

in the opposite manner, and is actually an increasing function of θc. This is explained from

further measurements from the MD simulations.

As the droplet approaches the wall, a set of modes of the interfacial thermal fluctuations on the

surface of the droplet begin to grow owing to the attraction from the wall. The rate at which

these modes grow depends on the strength of attraction from the wall i.e. εSL. Figure 4.7(a)

shows the approach of the lowest point at the droplet interface towards the wall in two cases:

complete spreading (θc = 0◦) and on a superhydrophobic surface (θc = 155.8◦). Once these

interfacial points are significantly within the region of influence of the wall, they approach
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Figure 4.10: Variation of location of contact point measured from r0. The CL motion within lT
is linear in time with VCL increasing with decreasing θc.
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Figure 4.11: (a) Variation of the extent of the thermal-vdW regime, lT with equilibrium contact
angle θc. (b) Variation of lT with size of the droplets. lT seemingly scales as
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Figure 4.12: (a) MD simulation snapshots and (b) variation of VCL with cos(θc)− cos(θd)
when θc = 82.6◦.

the wall at different speeds. As they reach the wall at t = t0, the lowest point on the droplet

interface ymin, remains approximately constant. It has to be noted that depending on εSL, there

are characteristic differences in the local profile of the droplets in both cases, as indicated

by Figs. 4.7(b) and 4.7(c). In the complete spreading case, a local radius of curvature at the

TPZ is higher compared to that in the superhydrophobic case. Consequently, the remaining

free interface of the droplet is further away from the wall in the complete spreading case

(Fig. 4.7(b)) than it is in the superhydrophobic case (Fig. 4.7(c)). Accordingly, more liquid

molecules from the remaining droplet interface will approach the wall in the initial stages of

spreading, when θc is larger, resulting in a larger value of lT . In all cases, CL motion continues

in this manner until lT , after which the dynamics is dominated by a large number of individual

molecular displacements, as described by MKT.

Furthermore, as a circular profile of radius R approaches a planar interface, the gap between

the surfaces scales as r2/2R. Here, at a given εSL, all molecules that lie within the influence

of the solid wall (i.e. within rc from the top layer of the wall) after the first contact will get

deposited on the wall during the thermal-vdW regime. This process will continue until the

contact point reaches ±lT from the line of approach where the gap width, l2
T/2R ∼ rc. Since

rc is kept constant throughout the simulations, lT ∼
√

R (see Fig. 4.11(b)) is expected, as it is

in the case for droplet coalescence. As explained in Chapter 2, a large enough cut-off is used

such that any interatomic interaction above rc is negligibly small. Therefore, lT is not expected

to change appreciably at a higher rc.
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Figure 4.13: (a) MD simulation snapshots and (b) VCL vs. cos(θc)− cos(θd) for θc = 62.1◦.
As θc is decreased, the thermal-vdW regime is not that far off from the MKT regime.

4.5 Discussion and outlook

The obvious difference in the molecular mechanism of base radius growth between the initial

and later stages of wetting is the defining characteristic of the thermal-vdW regime identified

in this work. During complete wetting, a precursor film only develops after the thermal-vdW

regime. As seen in the simulation snapshots (Figs. 4.8(c,d) and 4.9(c,d)) in the later stage,

the CL advances as a result of displacement of molecules belonging to the TPZ as described

by MKT. The dynamics of the CL motion after lT is compared with Eq. (4.1) and reasonable

agreement is observed (see Figs. 4.12 – 4.13); the late stage of wetting is hence termed as

‘MKT regime’ in this work.

The mW water model used in the present analysis is one of the simplest models of water

available in the literature. Similar to real water, this model exhibits low vapour pressure at 300

K, high surface tension and relatively high viscosity. The motivation for using such a simple

model in the present chapter, apart from the improved computational savings, is that liquid-wall

interactions are usually modelled in a similar manner, i.e. using the LJ potential, irrespective

of the liquid-liquid interactions considered. Further validation of the thermal-vdW regime can

be done by using a more accurate, but computationally expensive, TIP4P/2005 model of water.

Here, the manner in which the individual molecular displacement parameters are evaluated

must be revisited in order to acknowledge the structural complexities of this four site model.

The CL motion in the thermal-vdW regime during droplet spreading on a surface is strikingly

similar to the bridge evolution in the thermal regime during droplet coalescence. In both cases,

the thermal-capillary waves play a crucial role and a CL/bridge evolves due to collective molec-

ular displacements into the intervening gap between the droplet and the wall/other droplet.
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It may be the case that such a process of interface disappearance is common in the initial

stages of many other natural and industrial processes, which have so far avoided rigorous

analysis due to the presence of a singularity in their mathematical formulations. An innovative

way of incorporating molecular effects within a hydrodynamic framework has been suggested

by Shikhmurzaev (1997). Perhaps the thermal-vdW regime can be used to parametrise this

model from a molecular perspective. Such accurate hydrodynamic analyses will be extremely

beneficial in the numerical studies of many industrial applications.



Chapter 5

Molecular physics of jumping

nanodroplets

The work presented in this chapter has been submitted to Nanoscale: Perumanath, S., Borg, M.

K., Sprittles, J. E., and Enright, R. Molecular physics of jumping nanodroplets. Nanoscale.

Figure 5.1: Coalescence-induced jumping of two water droplets (yellow, cyan) of R = 7.2 nm
from a superhydrophobic surface in a nitrogen atmosphere (magenta).

The coalescence-induced jumping phenomenon of nanodroplets on superhydrophobic surfaces

is a promising candidate in heat transfer and self-cleaning applications without the necessity

of any moving parts. In condensation heat transfer, drop-wise condensation has high phase-

change heat transfer performance when compared to film-wise condensation (Rose, 2002),

83
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provided that these droplets are rapidly removed from the condensing surface, leaving space

for re-nucleation. Traditionally, gravity is used for the removal of droplets from an inclined or

vertical plate (Kim et al., 2002; Dimitrakopoulos and Higdon, 1999), but the droplet radius has

to be larger than the capillary length lγ =
√

γ/ρlg, where g is the acceleration due to gravity;

sub-millimetre sized water droplets cannot be dislodged by gravity.

Recent experimental studies have shown that smaller droplets can be removed from super-

lyophobic surfaces (with contact angle θc ≥ 150◦ and negligible contact angle hysteresis) by

a self-induced jumping mechanism (Boreyko and Chen, 2009). This occurs when condensate

droplets grow until they coalesce with neighbouring droplets, which results in the final droplet

jumping off the surface. This rapid self-coalescence and consequent lift-off behaviour of the

droplets results from the excess surface energy released after coalescence getting partially

converted into kinetic energy of the final droplet. Since the original breakthrough, there have

been many studies on this topic attempting to understand the underlying dynamics of the

process (Miljkovic et al., 2013; Enright et al., 2012; Boreyko and Collier, 2013; Enright et al.,

2013; Nam et al., 2013) and enhance jumping speed in various ways (Gao et al., 2018; Vahabi

et al., 2018; Wang et al., 2016). Interestingly, nature has already been utilising this phenomena

for self-cleaning of cicada wings (Wisdom et al., 2013) and plant leaves (Mockenhaupt et al.,

2008), and in dew droplet removal from gecko skin (Watson et al., 2011).

During coalescence of two droplets, after the rupture of the intervening fluid film, a liquid

bridge will form, which grows quickly, hits the underlying surface and provides a reaction

force for the final droplet to jump (see Figure 5.1) (Enright et al., 2014). Previous numerical

and experimental studies have shown that while the jumping process is limited by gravity

for droplets with R ∼ lγ (Peng et al., 2013), it is suppressed by internal viscous dissipation

for smaller ones (Wang et al., 2011; Enright et al., 2014). Therefore, the jumping speed Vg

(where the subscript g denotes ‘coalescence in the presence of a gas’) is expected to be a non-

monotonic function of R and its maximum is observed to be ≈ 0.25U (Mouterde et al., 2017;

Boreyko and Chen, 2009; Enright et al., 2014; Liu et al., 2014) for R≈ 100 µm (Boreyko and

Chen, 2009) water droplets, where U is the inertial-capillary velocity scale. Notably, U is only

a good predictor of Vg when viscous effects are negligible, which occurs when the Ohnesorge

number Ohl = µl/
√

ρlγR is sufficiently small.

Although jumping has been observed experimentally for water droplets with radii as small as

R≈ 500 nm (Cha et al., 2016), observing sub-micron scale droplets is highly challenging. This

motivated researchers to use MD simulations to study jumping of nanodroplets (Gao et al.,

2018; Sheng et al., 2017; Liang and Keblinski, 2015). A factor that is usually overlooked in

such studies is the role of the ambient gas in the overall dynamics. Besides gas dynamics,

there exist a host of other intricacies in this scenario such as slip at solid-fluid and fluid-

fluid interfaces and interfacial thermal fluctuations. Clearly, modelling nanodroplet coalescence

requires a method which can incorporate such nanoscale affects. In this chapter, MD is used
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Figure 5.2: (a) Starting the MD simulations with two mW water droplets on top of a ‘slightly’
hydrophobic wall. (b) The same droplets after the water-solid interaction potential is decreased
to create a superhydrophobic wall (θc ≈ 170◦).

to study the influence of nanoscale effects on the jumping characteristics of nanodroplets. This

chapter is organised as follows: simulation details are provided in Section 1. In Section 2, the

viscous dissipation in the droplets and adhesion from the surface are quantified. In Section 3,

the effect of ambient gas on the jumping speed is studied. The influence of thermal capillary

waves on nanodroplet jumping is analysed in Section 4. Finally, in Section 5, the impact of this

particular chapter with respect to our existing understanding is discussed.

5.1 Simulation details

Molecular dynamics is, perhaps, the only computational technique that can simultaneously

capture the spatio-temporal scales associated with rarefied gas flow and thermal fluctuations at

a molecular scale that are currently beyond experimental capabilities, and understand their in-

fluence on nanodroplet jumping. In this chapter, water-based systems are primarily investigated

using the coarse-grained mW model of water and mono-atomic argon systems are employed in

order to compare with previous findings in the literature, as well as isolating the effect of the

outer gas. Unlike argon, water has negligible vapour pressure at the operating temperature (300

K) and so the effect of outer fluid on jumping speed can be isolated by adding an insoluble

gas outside the water droplets such as nitrogen. The simulation begins with two liquid droplets

sitting on a ‘slightly’ hydrophobic wall (see Fig. 5.2(a)). The energy parameter between the

wall and liquid molecules in the LJ potential is then reduced in small steps until the contact

angle increases well above 150◦ (see Fig. 5.2(b)), which is then equilibrated for a further 5 ns.

During this stage, a Berendsen thermostat is applied to the droplets and the time-integration
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is performed with a timestep size of 0.01 ps for the water-based systems and 0.004 ps for

the argon-based systems. The wall atoms are fixed to their initial lattice coordinates. After

equilibration, an impact speed (2 m/s) is imparted to each droplet towards the other, which is

sufficiently small to avoid having any influence on the jumping dynamics (Liang and Keblinski,

2015). This procedure is repeated under various ambient conditions for different droplet sizes.

A large number (30) of independent realisations are performed for each case in order to obtain

statistical reliability. The results are also compared with predictions of 3D continuum volume-

of-fluid (VoF) simulations in order to get a comprehensive picture of the size dependence of

the jumping speed. Details of the VoF simulations are provided in Appendix G.

In order to characterise the role of outer gas on jumping speed, a Knudsen number based on the

mean-free-path of the surrounding gas and the droplet radius, i.e. Kn = λ/R is defined. Here,

the mean-free-path is evaluated using the hard sphere model:

λ =
µg

p∞

√
πkBT

2m
, (5.1)

where m is the mass of a single gas molecule and µg is the gas viscosity. The vapour pressure

of argon at T = 85 K is so high that Kn is very low (see Fig. 1.10). Correspondingly, jumping

speeds in such cases are represented by Vg, where subscript ‘g’ indicates ‘in the presence of a

gas’. In stark contrast, the jumping of mW water droplets is represented by Vv, where subscript

‘v’ indicates ‘in vacuum’, because the vapour pressure of water at T = 300 K is so low that Kn

is very large for all cases (Kn� 10). For water droplets coalescing in nitrogen, however, Vg is

used to denote jumping speeds.

5.2 Jumping speed in vacuum

Studying nanodroplet coalescence in vacuum, where the process is adiabatic, will allow us

to isolate the coalescing liquid’s dynamics during the process, so that a comparison with

coalescence of argon droplets or water droplets surrounded with nitrogen will help us identify

the role of the outer gas/vapour.

When two droplets coalesce, energy is released as the total interfacial area decreases. A portion

of this energy released is dissipated due to viscosity of the coalescing droplets (Eµ ). The

remaining portion of the total energy budget is utilised to overcome the adhesion from the

surface (Wadh), generate a flow field inside the droplet after coalescence that does not contribute

to jumping (Ecirculation) and convert it into the kinetic energy (KE) of the final droplet (if it jumps

off the symmetry breaking superlyophobic surface), i.e.

γ∆A =Wadh +Wflow, (5.2)

Wflow = Eµ +KE+Ecirculation, (5.3)
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Figure 5.3: (a) Temperature rise during coalescence of two water nanodroplets (R = 4.1
nm, Ohl = 0.6) in vacuum and corresponding simulation snapshots. (b) Comparison of the
temperature rise (∆T = Tjump−Tinitial) obtained from MD simulations with Eq. (5.5) for various
droplet sizes (or Ohl).

where ∆A= 4πR2(2−22/3) is the reduction in the surface area when a sphere is rapidly formed.

It is worth noting here that Wadh is of the order of KE (see next section).

At the point where the droplet leaves the surface, Wflow is composed of the viscously dissipated

flow component Eµ , the translational kinetic energy KE, and what is left of the incoherent

flow within the droplet Ecirculation that is also viscously dissipated quickly after the jump point.

The energy spent due to viscous dissipation results in an increase in the average temperature

over the entire coalescing droplets and is given by 2mdcp∆Tv, where md = 4πR3ρl/3 is the

mass of a single droplet of radius R, cp is the specific heat capacity of the coalescing liquid,

∆Tv = Tjump−Tinitial is the temperature rise during coalescence, with subscript ‘v’ representing

processes occurring in vacuum, Tjump is the temperature of the final droplet when it takes off

the non-wetting surface and Tinitial is the initial temperature of the droplets. In Fig. 5.3(a),

the variation of temperature with time during coalescence of two water nanodroplets and the

corresponding simulation snapshots are shown. Notably, temperature is far easier to measure

in MD than directly computing viscous dissipation from gradients of the flow fields.

For nanodroplets, the coalescence process is largely viscous dominated and by noticing that

the temperature of the final droplet does not increase appreciably after jumping happens, the

energy associated with the circulatory flow field inside the droplets is assumed to be negligible
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(Ecirculation ≈ 0). Eq. (5.2) therefore changes to

γ

[
4πR2(2−22/3)

]
=Wadh +2mdcp∆Tv +mdV 2

v . (5.4)

Rearranging the terms for temperature rise gives:

∆Tv =

(
1.24−V ∗2v −

Wadh

mdU2

)
(γ/µl)

2

2cp
Oh2

l . (5.5)

In the above equation, V ∗v = Vv/U is the jumping speed in vacuum normalised with U . With

V ∗2v � 1, Wadh ∼ KE (see below) and inserting the properties of mW water, Eq. (5.5) simplifies

to ∆Tv(K)≈ 15 Oh2
l . As one would expect, viscous dissipation increases as the ‘dimensionless

viscosity (Ohl)’ increases. In Fig. 5.3(b), the temperature rise measured from MD simulations

is compared with the above equation, and their closeness validates the assumptions made.

5.3 Jumping speed in presence of a gas

The physics may be widely different, when the droplets are surrounded by a gas. Since γ is a

weak function of the pressure outside the droplets (p∞), the total energy budget of the system

in the presence of a gaseous atmosphere can be assumed to be the same as that in the absence

of it. However, during the coalescence process, a part of the energy budget is spent in order to

overcome the drag from the ambient gas. The energy balance in this case is modified to:

γ∆A =Wadh +2mdcp∆Tg +mdV 2
g +Wdrag, (5.6)

where ∆Tg is the increase in temperature of the droplets, Vg is the jumping speed in the presence

of gas and Wdrag is the work done against drag during the time both droplets coalesce.

A separate set of MD simulations are performed on argon droplets to determine the share of

Wadh in the overall energy balance. Figure 5.4 shows the variation of V ∗g ≡Vg/U as a function of

argon-wall energy parameter, εAr−W. The major effect of adhesion is in changing the jumping

speed by a factor of∼ 1 in the range of ε investigated (where θc is well above 150◦). This infers

that Wadh ∼ KE. This is further verified by evaluating Wadh directly from MD simulations and

comparing its value with KE of corresponding cases. For this purpose, all the liquid molecules

lying within a distance of rc = 1.3 nm from the top layer of the wall at the starting point of

the simulation are considered. Their total LJ potential energy due to their interactions with

substrate atoms are then evaluated, which will give a measure of the work of adhesion in the

system. Wadh evaluated in this manner is of the order of final droplet jumping KE (typically

∼ 1× 10−19 J or lower), and both of these are observed to be small compared to the energy

budget and viscous dissipation terms (≈ 5×10−18 J).



5.3. Jumping speed in presence of a gas 89

0.01 0.012 0.014 0.016 0.018 0.02 0.022
0.06

0.07

0.08

0.09

0.1

0.11

0.12

0.13
Liang and Keblinski (2015)

Figure 5.4: The effect of adhesion on jumping speed for coalescing argon droplets (R = 13.3
nm). The results of Liang and Keblinski (2015) seems reproducible at lower εAr−W. For argon
droplets, εAr−W = 0.02 kcal/mol is used in order to avoid complications like premature lift-off
due to increased thermal fluctuations.

It is further observed that smaller droplets lose contact with the wall at low values of ε , due

to increased effects of thermal fluctuations. Since nanodroplets smaller than those investigated

in previous studies are considered here, a system-specific single value of ε between wall and

the fluid is used: εmW−W = 0.01 kcal/mol and εAr−W = 0.02 kcal/mol. Furthermore, Wadh is

assumed to be independent of the outer conditions, as no discernible changes in the coalescing

droplet geometry is observed during the process (see Figs. 5.9 below).

From MD simulations, ∆Tg ≈ ∆Tv (see Figure 5.5(a)), indicating that the internal viscous

dissipation during the coalescence of nanodroplets is not drastically affected by the presence of
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Figure 5.5: (a) Temperature rise during coalescence of two water nanodroplets with R = 5.1
nm as a function of ambient pressure. ∆T is observed to be independent of p∞. (b) Variation
of drag on small spheres for a wide range of Kn as suggested in Phillips (1975).
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Figure 5.6: (a) Motion of the droplet centres-of-mass during coalescence. (b) The total force
on each droplet along their line-of-approach (x) direction from the gas molecules during
coalescence determined from MD.

a gaseous medium outside, i.e. heat transfer from the liquid to the outer gas phase is negligible

over the time-scale of the process.

Drag on coalescing droplets

In order to solve Eq. (5.6) for Vg, a good way of estimating the contribution of Wdrag is required.

Like pressure, shear stress and temperature, a ‘man-made’ parameter like Wdrag must also have

a microscopic description. In other words, evaluating forces directly from the simulation and

multiplying it with corresponding displacements is the most obvious and the first option to

quantify Wdrag through a particle-based simulation tool like MD. Fig. 5.6(a) shows the motion

of centres-of-mass of both droplets and Fig. 5.6(b) shows the total force from the gas along their

line-of-approach (x) experienced by each of the droplets. Coalescence of droplets with R = 7.2

nm at the lowest Knudsen number simulated is considered for good statistics. Even for a system

with relatively low Kn, direct force evaluations from MD is very noisy as shown in the figure.

Nevertheless, it is interesting to note that the total force Fx on each droplet is directed in such a

way that it aids the coalescence process. For quantifying the drag, the motion of both droplets in

the other two directions must also be considered. The forces in y and z directions are similarly

anticipated to be noisy. Since the other systems studied here have larger Kn than this particular

case, the noises in those cases are expected to be worse, because the dynamics are faster, and

we need to resolve the forces over a much shorter period of time. Consequently, direct force

evaluations from MD cannot be relied on, while determining work done against drag. A way

around this problem is to execute many realisations of any particular case considered here and

obtain an ensemble average of these forces and centre-of-mass displacements. Limited by the

computational resources available, this is not a practical solution to this problem. Furthermore,

even if successful, this method will only be able to validate the droplet jumping speeds observed
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at a few values of Knudsen numbers. Consequently, a curve fitting will have to be done in any

case in order to obtain a continuous function depicting the droplet jumping speeds for a range

of Kn that is of engineering relevance.

Another way of estimating Wdrag during coalescence is by explicitly determining the total stress

causing drag over the entire surface and summing the work done against it over the time scale

of coalescence. However, evaluating local stress tensors on the droplet surface in nanoscale

systems is highly challenging because (a) thermal fluctuations are strong, (b) there can be

slip and Knudsen layers near the interfaces and (c) the process happens very rapidly. In what

follows, a crude estimate of Wdrag is attempted, which captures some of the underlying physics.

For a small, rigid and spherical particle of radius a (representing the droplet), moving through a

highly viscous (µg) and infinitely large medium with a relative speed v at low particle Reynolds

number, the Stokes drag on it is given by

FStokes = 6πµgav, (5.7)

which is accurate only when the Knudsen number (based on particle radius) is small. In the

coalescence-induced jumping problem, the drag will be different from the above expression

due to three reasons: (a) because of the rarefaction in the surrounding gas resulting in finite non-

zero particle Kn, (b) due to the influence of the wall under both droplets making the medium

not infinitely large and (c) due to the complex flow geometry during the coalescence process.

In what follows, each of these problems is separately analysed in detail and the significance

of ‘reduction factors’ in modifying Stokes drag relevant to engineering applications is demon-

strated.

(a) Modification due to finite non-zero Kn— In this case, the slip between the particle surface

and the ambient medium must be accounted for while evaluating the drag force. There have

been many attempts to incorporate slip at interfaces into the Stokes-flow analysis and one of

the most successful ones for determining the drag force on small spheres moving through a

gas, without any restrictions on Kn, is by Warren F. Phillips (Phillips, 1975). His approximate

theoretical expression gives

Fdrag = FStokesq(Kn) = 6πµgav
(

1− 15Kn−15.42Kn2 +54Kn3

15+12Kn+18Kn2 +54Kn3

)
, (5.8)

where q is a reduction factor incorporating the effects of gas rarefaction on a moving spherical

particle in an infinite medium. Figure 5.5(b) shows how the drag force on a small sphere gets

modified for a wide range of Kn (Phillips, 1975). Complete accommodation between water

droplets and nitrogen molecules is assumed here. The above equation is derived by assuming

that the mean speed is much less than the thermal speed of particles in the surrounding medium,

which is the case when the final droplet jumps off the superlyophobic surface.
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Figure 5.7: (a) Slice of the MD domain used in this section to study drag on a spherical
nanodroplet approaching a wall (water droplet of R = 5.1 nm in nitrogen atmosphere at Kn
= 3.7). (b) Comparison of drag obtained from MD simulations with Hocking drag and drag
derived from lubrication approximation. Force is calculated using the instantaneous speed of
the sphere at each vertical location. While the latter diverges for the droplet near the wall,
Hocking’s expression seems to better capture the physics even for such nanoscale systems.

(b) Modification due to the presence of wall (sphere approaching a wall)— When a particle

approaches a wall, the traditional lubrication approximation predicts that the opposing force is

inversely proportional to the gap (h) between the particle and the wall, i.e.

FLubrication = FStokesφL = 6πµgav
(

a
h

)
, (5.9)

for large values of φL. This would mean that a contact is impossible in finite time.

Hocking (Hocking, 1973) used Maxwell’s slip boundary condition to quantify the resisting

force between approaching surfaces and found that the force depended only logarithmically on

the gap width between the surfaces, in which case a contact can be achieved in finite time:

FHocking = FStokesφH = 6πµgav
(

2a
hη2 [(1+η)log(1+η)−η ]

)
; η ≡ 6λ/h. (5.10)

A separate set of MD simulations are performed in order to compare the force experienced by a

droplet moving towards a wall with that predicted by the Hocking and lubrication expressions

for the resisting force. Figure 5.7(a) shows the MD geometry used for this separate analysis and

in Figure 5.7(b), the actual force is compared with Eqs. (5.9) and (5.10). The system consists

of a water droplet of R = 5.1 nm placed in a nitrogen atmosphere at p∞ = 3.75 atm at T = 300

K. The system is equilibrated for a long time (∼ 5 ns) and an impact speed of 20 m/s (of the
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Figure 5.8: Schematic of droplet coalescence for determining the work done against drag.

order of maximum jumping speed observed in the MD simulations) is given to the droplet in

the direction towards the wall; the droplet starts from a height of 50 nm above the wall. For the

droplet near the wall, the force on it in a direction normal to the wall due to all surrounding gas

molecules as a function of the gap width h is explicitly measured. While the traditional analysis

based on lubrication approximation wildly over-predicts the opposing force in the lubrication

region (h < 5 nm), the reduction factor φH enables Hocking’s expression to follow the variation

of the force measured for nanoscale droplets in MD.

The above two expressions are derived for a simpler flow geometry than what we have when

two droplets coalesce and jump. Consequently, it may not be appropriate to use any of them,

even Hocking’s expression, in determining the effect of wall on the drag on the droplets as

they merge. Nevertheless, the discussion presented in this section demonstrates that depending

on the problem at hand, some reduction factor (φ or q) modifies the Stokes expression for

drag on a spherical particle to account for slip at interfaces caused by kinetic gas effects; an

exact theoretical expression without experimental fitting is not always available, even for some

simple systems.

(c) Modification due to complex flow geometry— In order to evaluate the total work done

against drag during the coalescence process, the drag is decomposed into two components: the

first being the drag on the droplets because of their motion towards each other in the direction

parallel to the underlying wall as they coalesce (W‖) and the second is due to their combined

motion in the direction normal to the wall (W⊥). Next, some assumptions about how to model

these two phases of the process are made in a manner that captures the main physics but remains

as simple as possible to work its way into an analytical equation.

For evaluating W‖, the droplets’ instantaneous total surface area A(t) is equated to that of two



5.3. Jumping speed in presence of a gas 94

full spheres moving in an ambient medium of viscosity µg, each with a speed relative to the

ambient medium given by half the instantaneous speed of approach of the droplets: Vx(t) =

dlx/dt (see Figure 5.8). In moving both droplets towards each other by a distance dx parallel

to the wall, the infinitesimal amount of work done against the drag will be:

dW‖ = 2
(

6πµga(t)
Vx(t)

2
q(Kn)

)
dx
2
, (5.11)

where a(t) =
√

A(t)/8π is the radius of two full spheres as described above. Here, Eq. (5.8) is

used, since the coalescence happens in a finite non-zero Kn atmosphere.

Similarly, in order to evaluate W⊥, the instantaneous total surface area is equated to a single

sphere of the same area moving normal to the wall with a speed given by the instantaneous

speed of coalescing droplets in the same direction, which gives

dW⊥ =

(
6πµg

√
2a(t)|Vy(t)|q(Kn)

)
|dy|. (5.12)

Therefore, the total work done against drag during coalescence (Wdrag) can be obtained by

summing all the infinitesimal amounts of both contributions from the beginning of coalescence

until it ends, multiplied by an unknown reduction factor ψ that is introduced here in order

to accommodate the effects of a complex deforming liquid body and any possible influence

of the underlying wall on drag that is not considered in this simplified analysis. Obtaining an

analytical expression for ψ will be difficult and so, it will determined by curve fitting.

In Figure 5.9, the time evolution of the scaled total surface area and the approach speed are

shown for R = 5.1 nm droplets for two different Knudsen numbers. Kn→ ∞ denotes simula-

tions in near-vacuum. The dynamics is nearly unaffected by the presence of an ambient gaseous

medium (also seen in Fig. 5.5) and the coalescence process at such high Ohl is ‘smooth’, as

there are no obvious oscillations in any of the measured quantities or in the droplet geometry.

In the figure, A(t) is determined in MD simulations using a method described in Chapter 1.

Figure 5.10 shows how the centre-of-mass speed in the direction normal to the wall changes

due to rarefaction as coalescence proceeds for R = 7.2 nm droplets for two different Knudsen

numbers. The major change in the dynamics occurs only towards the end of the simulation,

where droplets have already merged and the final droplet is about to lift-off from the surface.

In all cases, the drag is evaluated by using Vy(t) corresponding to the vacuum case. This will

make all parameters used to evaluate drag identical among all cases of Kn for any particular

size (or Ohl), except ψ . Hence, there is only one fitting parameter in the entire analysis: ψ .

Equating Eq. (5.4) to Eq. (5.6) by setting ∆Tg ≈ ∆Tv, the energy balance will then reduce to

mdV 2
g = mdV 2

v −Wdrag. (5.13)
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Figure 5.9: The time evolution of scaled total surface area and approach speed of the droplets
during coalescence of two R = 5.1 nm (Ohl = 0.55) droplets. The invariace of both A(t) and
Vcm with respect to Kn shows that the geometry of the coalescing droplets is independent of
Kn. This further implies that Wadh is independent of outer conditions.

Dividing both sides by mdU2 and subsequent modification gives,

V ∗g =

√
V ∗2v −

Wdrag

mdU2 =

√
V ∗2v −

ψ ∑(dW⊥+dW‖)
mdU2 . (5.14)

In the above equation, the summation is performed over the timescale of coalescence. It must

be noted that although the above equation provides reasonable insights about the process, it

requires the knowledge of V ∗v to obtain V ∗g . The average values of vacuum-limit MD data are

used to estimate V ∗v , since thermal fluctuations are important at this scale (see below).

In Fig. 5.11, the scaled jumping speed as a function of Kn obtained from MD simulations is

shown for two systems: R = 7.2 nm (Ohl = 0.45) and R = 5.1 nm (Ohl = 0.55). For both

cases, the data is fitted to Eq. (5.14) with only ψ as the fitting parameter. There is characteristic

change in the jumping speed at Kn= 1, which is also indicative of the crucial role played by the

ambient rarefied gas in the overall dynamics. In Fig. 5.11(a), an extrapolation of the fit to our

Eq. (5.14) predicts non-zero jumping speed for a wider range of Kn (down to Kn = 0.035) as

compared to Fig. 5.11(b). At 300 K, nitrogen approaches super-critical behaviour near 30 atm,

and this restricts us from simulating lower Kn. For both cases, the value of ψ which maximised

the coefficient of determination of the fit is chosen to plot the red lines in Fig. 5.11.
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Figure 5.10: Time evolution of centre-of-mass speed of the droplets (R = 7.2 nm; Ohl = 0.45)
in the direction normal to the wall. Presence of an outer fluid changes the behaviour of Vy only
towards the end of the process. Simulation snapshots show only the coalescence in vacuum
(Kn→ ∞).
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Figure 5.11: V ∗g as a function of ambient gas Kn for (b) Ohl = 0.45 and (c) Ohl = 0.55. At
large Kn, the jumping speed increases and approaches its vacuum limit. The decrease in V ∗g
at low Kn is due to the increase in drag from the surrounding gas.
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Figure 5.12: Distribution of coalescence-induced jumping speeds in vacuum for (a) R = 3.1
nm and (b) R = 5.1 nm droplets, showing how the contribution of thermal motion of the liquid
molecules to the jumping speed differs with the thermal fluctuation number β . For droplets
with larger β , the pronounced influence of thermal fluctuations renders the distribution to be
significantly skewed and wider.

5.4 Stochastic nature of jumping speed

An interesting observation from these simulations is that just like the droplet coalescence in

Chapter 3, and the droplet spreading in Chapter 4, thermal-capillary waves play a role here as

well. Similar but independent realisations of the same two droplets are observed to jump with

various jumping speeds, suggesting that a unique value for jumping speed is not possible for

nanodroplets. In stark contrast to the traditional notion, where similar initial conditions for a

particular droplet size predict a similar value for jumping speed, the presence of thermal motion

of liquid molecules brings in a statistical nature to the jumping speed.

For nanodroplets, a thermal-fluctuation number is proposed as being the ratio of amplitude of

interfacial thermal fluctuations to the droplet radius: β ≡
√

kBT/γR2. For a given liquid-vapour

interface, β will be larger for smaller droplets. This means that the effect of thermal-capillary

waves on the jumping dynamics will be more on droplets with a larger value of β . Figs. 5.12(a)

and 5.12(b) show the distribution of coalescence-induced jumping speeds in vacuum for two

droplets with R = 3.1 nm (β ≈ 0.1) and R = 5.1 nm (β ≈ 0.05) respectively. The distributions

are obtained by performing 30 MD realisations, each of independent initial conditions. For a

droplet with larger value of β , the influence of thermal-capillary waves makes the jumping

speed distribution to be significantly wide. The skewness of the distribution in Fig. 5.12(a) is

explained below.

A single nanodroplet naturally bounces up and down on a superlyophobic surface, due to ther-

mal fluctuations of the constituent molecules (see Fig. 5.13). This effect is more predominant

for smaller droplets, as the amplitude of surface fluctuations are ∼ 1 nm. When two such

droplets approach each other, their centres-of-mass can be at different heights, as seen in Figs.

5.14(a), 5.14(b) and corresponding simulation snapshots. In Case A, by the time the bridge hits
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Figure 5.13: The y coordinate of centre-of-mass of a R = 3.1 nm nanodroplet on a
superlyophobic surface. Here, τ = τi is the inertial-capillary time scale and R is estimated from
the equimolar line from a time-averaged density profile of a droplet. The value of ycm/R > 1 is
due to the finite thickness of the water-vapour interface and the way R is defined. Oscillations
in ycm/R is caused by thermal fluctuations.

the surface, one of the droplets (yellow) has its centre-of-mass above the other droplet. Such an

asymmetry in the coalescence will always slow down the jumping process as it is this impact of

the bridge normal to the surface that provides the reaction force necessary for the final droplet

to jump. Conversely in Case B, the centres-of-mass align and the impact of the bridge is normal

to the wall such that the final droplet is able to lift off from the surface. Since in most of the

times, the bouncing of the droplets will make the coalescence proceed asymmetrically (similar

to Case A), the skewness of the distribution shown in Fig. 5.12(a) is expected. Such significant

skewness is not observed for larger droplets, where β is relatively smaller (Fig. 5.12(b)),

suggesting the diminishing significance of interfacial thermal fluctuations on the jumping of

large droplets. As shown in Figs. 5.14(a) and 5.14(b), the jumping speed in two realisations of

the same system of two nanodroplets can differ by as much as 27 m/s. The energy which could

have been used for jumping in Case A is converted into viscous dissipation, but this is hard to

distinguish in a temperature-time profile, because of the large value of cp of water model used.
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Figure 5.14: Position of y coordinate (normal to the wall) of the centre-of-mass of each droplet
on the superlyophobic surface right after they establish the first contact until the bridge hits the
underlying surface. Corresponding simulation snapshots show (a) Vv = 0 m/s when the bridge
grows in a direction widely different from y, and (b) Vv is non-zero when the bridge grows in
the direction normal to the wall. Here, τ = τi is the inertial-capillary time scale.

5.5 Discussion and outlook

These results show that the process governing nanodroplet jumping is defined not just by Ohl

(which quantifies the viscous dissipation within the droplet) but also by two other dimension-

less numbers that represent the non-continuum molecular physics: Kn and β . Kn has an effect

on reducing the drag due to the rarefied atmosphere, while β depends only on droplet size and

can exist at any Kn; its influence is on making the jumping speed have a wide statistical spread.

In Figure 5.15, V ∗g as a function of Ohl is compared between MD and VoF simulations. For

Ohl > 0.1, which is of interest to nanodroplets technologies, continuum VoF simulations pre-

dict a monotonic decrease of V ∗g . A part of this is verified in recent experiments (Enright et al.,

2014), and a cut-off Ohnesorge number (Ohlc) is identified that depends on the viscosity ratio

between the two phases (µg/µl; see inset of Figure 5.15). Here, Ohlc is defined as the minimum
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Figure 5.15: Scaled jumping speed (V ∗g ) as a function of Ohl comparing different computa-
tional methods. Brown ‘×’ symbols represent results from Liang and Keblinski (2015). For
systems where the dynamics is predominantly controlled by liquid properties, the scaled
jumping speed decreases monotonically with Ohl due to increased viscous dissipation. This
is exhibited by both MD in vacuum (Kn→ ∞) and VoF simulations with small µg/µl . For large
enough droplets coalescing in an outer fluid, MD and corresponding VoF predictions agree
well (µg/µl = 0.03 case). Deviations are observed as the size is decreased (Ohl increased),
due to nanoscale effects, which are not incorporated in continuum simulations. Inset shows
Ohlc appears to saturate to a maximum value of 2.5 as µg/µl → 0.

Ohl at which the VoF simulations predict no jumping occurs. If thermal fluctuations were

absent, MD simulations with Kn → ∞ are considered equivalent to VoF simulations in the

limit µg/µl → 0. In such cases, where the dynamics is governed by the coalescing liquid, the

decrease of V ∗v with Ohl is in accordance with the traditional understanding.

In the presence of an outer fluid, the final droplet jumps at a lower speed compared to its vacuum

limit, which happens because of an additional dissipation mechanism present in the system, to

the internal viscous losses. In such cases, the scaled jumping speed decreases monotonically

with decreasing Kn, which is quantified by Eq. (5.14). The results presented here and that of

Liang and Keblinski (2015) show a clear deviation from the predictions of VoF simulations with

identical viscosity ratio as Ohl is increased. In their work, Liang and Keblinski hinted at the

possible influence of fluid slip effects on the jumping speed, but did not quantify it. Based on the

results presented earlier, it can be inferred that V ∗g is larger than expected because the drag on

the droplets is not as severe as what is predicted by VoF simulations, which do not account for

slip at various interfaces and other rarefaction effects. This reduction in drag is relatively higher

for smaller droplets as their Kn is larger by definition, while keeping λ constant (coalescence

of argon droplets in vapour at a certain condition, for example). As shown in Fig. 5.5(a), the

difference in data between Liang and Keblinski (2015) and the results in Figure 5.15, is mainly
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due to the higher adhesion between the surface and droplets.

Besides the effect of ambient gas, the influence of interfacial thermal fluctuations is also

overlooked in the literature, even in molecular simulations of nanodroplets (Gao et al., 2018;

Sheng et al., 2017) where, as revealed here, its impact is non-negligible. For instance, the

extreme normalised jumping speed shown in Figure 5.14 correspond to V ∗v ≈ 0.2, which is

nearly as high as its maximum limit that is only expected for microscale droplets (Mouterde

et al., 2017; Enright et al., 2014) (i.e. where Ohl is small and there are negligible gravitational

effects). These MD simulations reveal the importance of thermal fluctuations on nanodroplet

jumping, i.e. such behaviour of nanodroplets is only stochastic.

Although MD simulations capture the full picture of droplet coalescence, its extreme compu-

tational expense puts a cap on the maximum droplet size that can be simulated. A generalized

continuum framework incorporating slip at various interfaces and thermal fluctuations can be

expected to reproduce the MD results and modelling droplet jumping using such a method

seems like a promising way forward.



Chapter 6

Conclusions and outlook

This thesis investigated the effects of interfacial thermal fluctuations and intermolecular inter-

actions on the dynamics of coalescing, spreading and jumping nanodroplets. The manifestation

of these nanoscale molecular effects at a larger scale is uncovered for the first time using

unconventionally-large and computationally-expensive molecular dynamics (MD) simulations,

their impact quantified using collective statistics of engaging molecules, and their character-

istics explained using predictive theoretical analyses. The influence of other non-continuum

effects such as extreme gas rarefaction and atomic structure of boundary walls are also studied

in the process. Such processes that involve droplet-droplet and droplet-surface interactions

find numerous fascinating applications in nature (Wisdom et al., 2013; Agasthya et al., 2019),

engineering (Miljkovic et al., 2013), medical sciences (Komatsu et al., 1997) and in our daily

lives (Kumar et al., 1996).

The primary outcome of this study and a foundational theme in each of the three main chapters

(3 – 5) is that it reveals the radical significance of interfacial thermal fluctuations in the begin-

ning of droplet coalescence and spreading, which are assumed insignificant in previous work.

The traditional mathematical models host a singularity in the beginning of these processes,

where measurable quantities like local velocity and stress diverge. Such unphysical features

arise due to the continuum assumption that is the foundation of these models. Through MD

simulations, it is shown that the interfacial thermal fluctuations, assisted by intermolecular

interactions, reach across the intervening gap between droplets (in case of coalescence), and

droplet/substrate (in case of spreading) to form and develop a capillary bridge in the initial

stages of the processes. This manner of capillary bridge evolution continues until the bridge

radius reaches a size dependent thermal length scale (lT ∼
√

R). Interestingly, the high-aspect

ratio geometry in the initial stages between a droplet and another droplet (or a substrate) enables

such nanoscale molecular effects to be manifested at even micrometre length scales. The study

also points to a possibility that the ‘thermal regime’ of droplet coalescence and ‘thermal-

vdW regime’ of droplet spreading are just two special cases of a general interface evolution

mechanism relevant to many natural and industrial applications, which have so far avoided

rigorous analysis due to the presence of a singularity in their mathematical formulations.

Furthermore, the rarefaction in the surrounding gas medium is found to have only a minimal

effect on the growth of the capillary bridge in the initial dynamics.

102
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On superlyophobic surfaces, interfacial thermal fluctuations have an added effect on nan-

odroplet jumping dynamics, i.e. to render the jumping speed to be statistically distributed;

traditional theories predict the jumping speed as a single-valued function of droplet size. The

effect is more drastic as the size of coalescing droplets is decreased, where the jumping speed

distribution becomes increasingly skewed and wider; meaning there is no unique jumping

speed. The lift off of these droplets can happen anywhere between both extremes: they can jump

with very high or moderate speeds, or do not jump at all. During coalescence-induced jumping

of nanodroplets, the outer gas rarefaction has an influence on the dynamics. Drag increases as

surrounding gas pressure increases, but not as much as one expects from standard continuum

theory. In fact, the drag on nanodroplets is lower than expected because of rarefaction effects,

which enables the nanodroplets to jump.

In summary, this thesis has shined a light on the importance of the molecular physics when con-

sidering multiphase/multiscale problems that employ droplets. In particular, interfacial thermal

fluctuations or thermal capillary waves, intermolecular interactions and non-equilibrium gas

effects play a significant role in the coalescence, wetting and coalescence induced jumping

of nanodroplets, i.e. when the dominant length scale of the system being studied becomes

comparable to the thermal fluctuation amplitude
√

kBT/γ .

6.1 Future work

From a modelling perspective, performing molecular simulations are computationally expen-

sive as it models every single molecule in a system. This correspondingly puts a cap on the

largest length scale (∼ 100 nm) and the longest time scale (∼ 100 ns) that can be achieved

in MD simulations. Even though the power of computers are increasing every year, it may

not be a viable option to keep resorting to MD simulations. A better alternative is to in-

corporate the molecular effects such as interfacial thermal fluctuations and intermolecular

interactions into continuum approaches. While these have been introduced into continuum

frameworks separately (Zhao et al., 2019a; Zhang et al., 2019; Prevost and Gallez, 1986; Vrij

and Overbeek, 1968; Vrij, 1966), a complete continuum picture simultaneously addressing

both effects is lacking in the literature. Perhaps the best candidate available in the literature

of continuum frameworks for incorporating these nanoscale effects may be the interface for-

mation/disappearance model of droplet spreading/coalescence (Shikhmurzaev, 1993, 1997;

Sprittles and Shikhmurzaev, 2012, 2014a), as it has some similarity with what is observed

in the initial stages of these processes in MD simulations. A multiscale simulation technique

of droplet coalescence, like what has been already developed for droplet spreading problem

(Zhang et al., 2017), is also worth looking into, as it can simulate coalescence of much larger

droplets incorporating the nanoscale effects.

From an experimental point of view, attempts to observe the nanoscale effects uncovered in the
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present thesis can shed light on previously unexplored realms of nanoscale interfacial fluid flow.

This can be challenging as the length scales associated with these processes for pure liquids are

∼ 1−10 nm, and the smallest length scale that is accessed in experiments related to interfacial

thermal fluctuations and coalescence are ∼ 1µm (Paulsen et al., 2012; Aarts et al., 2004).

Particularly in Aarts et al. (2004), where they experimentally observed interfacial thermal

fluctuations, an ultra-low surface tension mixture was used. As discussed in Chapter 1, lower

γ will result in simultaneous enhancement of the associated length scales and slowing down of

the dynamics. Perhaps, the adhesion of confronting interfaces during the growth of the bridge

in the initial stages of droplet coalescence/spreading that removes a mathematical singularity

can be observed in theory-driven experiments that use these unique fluids. These type of

experiments can also help develop novel engineering surfaces with maximum throughput (e.g.

in surface coating technologies) and introduce unconventional techniques to find solutions to

many problems in industry (e.g. coalescence-induced jumping of nanodroplets has the potential

to selectively self-clean engineering surfaces or form part of a thermodynamic cycle in next

generation microprocessor cooling membranes).

Singularities in fluid mechanics are not uncommon. They are broadly classified into mathemat-

ical and physical singularities (Moffatt, 2019). Common examples include flow around sharp

corners joining solid and porous walls (Nitsche and Bernal, 2018), cusp singularity at fluid/fluid

interface (Jeong and Moffatt, 1992), tip singularity during freezing of water droplets placed on

a supercooled surface (Marin et al., 2014; Enriquez et al., 2012) and diverging evaporation rate

(the so-called d2 law) of free droplets, where d is their diameter. Some of these problems have

been resolved by accounting for various nanoscale phenomena in their numerical analyses –

for example, the singularity in droplet evaporation has been resolved recently by incorporating

a temperature-jump boundary condition derived from kinetic theory of gas and compared to

MD simulations (Rana et al., 2019). Many similar problems await solution in the scientific

literature. Resolving some of these problems using MD may provide us with a better picture of

the wide class of interface evolution phenomena that forms the basis of many natural multiscale

processes and engineering applications.



Appendix A

Thermal fluctuations on a thin

cylindrical liquid surface

The following derivation is due to Dr. Mykyta V. Chubynsky.1 In this Appendix, we derive the

mean-square displacement of the surface of a short cylinder due to thermal fluctuations. This

result is needed to obtain the value of the cut-off length B0 from MD simulations, and is also

used to derive the width of the distribution of coalescence onset locations.

Consider an incompressible liquid cylinder of radius R. Periodic boundary conditions with

period L are assumed along the axis of the cylinder. Our consideration of thermal fluctuations

of its surface uses an approach similar to that of Sides et al. (1999) for a planar surface, where

the fluctuations are expanded in eigenmodes and the equipartition theorem is utilized. However,

there are two important differences. First, while in Sides et al. (1999) the sum over the modes

is replaced with an integral, which is valid for a surface with similar dimensions in the two

directions, we retain the sum and analyze carefully under what conditions the replacement is

possible. Second, in the case of a curved surface, special care needs to be taken to ensure that

the eigenmodes preserve the volume.

In cylindrical coordinates, the shape of the surface of the cylinder is described by a function

r(z,φ , t), where z is the coordinate along the axis (0 ≤ z ≤ L), φ is the azimuthal angle (0 ≤
φ ≤ 2π), r is the radial distance of the surface from the axis, and t is the time. The surface area

of the periodically repeated section of the cylinder is

A(t) =
∫ L

0
dz
∫ 2π

0
dφ

(
r2

[
1+
(

∂ r
∂ z

)2
]
+

(
∂ r
∂φ

)2
)1/2

, (A.1)

and the volume is

V (t) =
1
2

∫ L

0
dz
∫ 2π

0
dφ r2. (A.2)

We express the radial distance as

r(z,φ , t) = R+ζ (z,φ , t), (A.3)

1. Research Associate, University of Warwick
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and assume that the deviation ζ from the cylindrical shape is small (ζ � R).

In the linear approximation, free oscillations of the cylinder can be expanded into eigenmodes:

ζ (z,φ , t) ≈
∞

∑
nz=1

∞

∑
nφ=1

ζ
(1)
nznφ

+
∞

∑
nz=1

∞

∑
nφ=0

ζ
(2)
nznφ

+
∞

∑
nz=0

∞

∑
nφ=1

ζ
(3)
nznφ

+
∞

∑
nz=0

∞

∑
nφ=0

′
ζ
(4)
nznφ

, (A.4)

where

ζ
(1)
nznφ

(z,φ , t) = a(1)nznφ
sin

2πnzz
L

sinnφ φ , (A.5)

ζ
(2)
nznφ

(z,φ , t) = a(2)nznφ
sin

2πnzz
L

cosnφ φ , (A.6)

ζ
(3)
nznφ

(z,φ , t) = a(3)nznφ
cos

2πnzz
L

sinnφ φ , (A.7)

ζ
(4)
nznφ

(z,φ , t) = a(4)nznφ
cos

2πnzz
L

cosnφ φ , (A.8)

the coefficients a( j)
nznφ

are time-dependent, and the prime in the last sum excludes the term with

nz = nφ = 0 as it corresponds to the uniform expansion or contraction of the cylinder and so

does not preserve the volume.

When thermal fluctuations are considered, the coefficients a vary randomly in time and are

uncorrelated, so

〈a(i)mzmφ
a( j)

nznφ
〉 ∼ δmznzδmφ nφ

δi j, (A.9)

where 〈. . .〉 denotes the time average and δkl is the Kronecker delta. However, it is important

to note that perturbations of the form in Eqs. (A.5)–(A.8) do not preserve the volume exactly,

with deviations quadratic in a. To ensure volume preservation, we replace Eq. (A.5) with

ζ
(1,2,3,4)
nznφ

(z,φ , t) = a(1,2,3,4)nznφ
sin

2πnzz
L

sinnφ φ

−∆nznφ
(a(1,2,3,4)nznφ

), (A.10)

and similarly for Eqs. (A.6)–(A.8), where the ∆ terms do not depend on z or φ and so corre-

spond to uniform contraction (or expansion). By substituting these expressions into Eq. (A.3),

expanding Eq. (A.2) to quadratic order in a and linear in ∆, and requiring that the volume

remain equal to that of the unperturbed cylinder (i.e. πR2L), we obtain

∆nznφ
(a) =

 a2

8R , nz 6= 0 and nφ 6= 0,
a2

4R , nz = 0 or nφ = 0.
(A.11)

While the ∆ terms are quadratic in a and so at first sight seem negligible, this is not so, since
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the area change is quadratic in a, but linear in ∆.

Combining Eqs. (A.3), (A.4), (A.10) and (A.11), we can find the area change due to surface

fluctuations using Eq. (A.1), expanding it to quadratic order in a and subtracting the area of the

unperturbed cylinder (i.e. 2πRL). We find that the contributions of different modes to the area

change are additive, and are given by

∆A( j)
nznφ

=



(
π3Rn2

z
L +

πL(n2
φ
−1)

4R

)(
a( j)

nznφ

)2
, nz 6= 0, nφ 6= 0,

πL(n2
φ
−1)

2R

(
a( j)

nznφ

)2
, nz = 0,(

2π3Rn2
z

L − πL
2R

)(
a( j)

nznφ

)2
, nφ = 0.

(A.12)

Equation (A.12) has two notable features. First, ∆A( j)
01 = 0. This is expected, since the corre-

sponding modes (there are two of them, ζ
(3)
01 and ζ

(4)
01 ) are pure translations in the directions

transverse to the axis of the cylinder and so do not deform it. These modes need to be subtracted

when calculating the displacement of the surface, so the corresponding terms should be deleted

from Eq. (A.4). Second, ∆A( j)
10 < 0 when L > 2πR, so the corresponding deformation decreases

the surface energy. This is, of course, the well-known Plateau-Rayleigh instability (Eggers and

Villermaux, 2008). When it is present, the deviation from the cylindrical shape can become

arbitrarily large; we restrict ourselves to the case when the instability does not arise (as is

indeed true for our quasi-2D MD systems). It is worth noting that neither of these important

features is reproduced when the ∆ term in Eq. (A.10) is not included.

Surface energy changes associated with the modes can be obtained by multiplying Eq. (A.12)

by the surface tension γ . By equipartition, these energy changes are, on average, kBT/2, which

gives

〈(
a( j)

nznφ

)2
〉
=



2kBT/(πγ)
L
R (n

2
φ
−1)+ 4π2R

L n2
z
, nz 6= 0, nφ 6= 0,

kBT/(πγ)
L
R (n

2
φ
−1)

, nz = 0,

kBT/(πγ)
4π2R

L n2
z− L

R

, nφ = 0.

(A.13)

Then, according to Eq. (A.4) with the nz = 0, nφ = 1 terms removed, taking into account

Eq. (A.9) gives,

〈ζ 2〉 =
Nz

∑
nz=1

Nφ

∑
nφ=1

2kBT/(πγ)
L
R(n

2
φ
−1)+ 4π2R

L n2
z

+
Nz

∑
nz=1

kBT/(πγ)
4π2R

L n2
z − L

R

+
Nφ

∑
nφ=2

kBT/(πγ)
L
R(n

2
φ
−1)

. (A.14)

The result is independent of z and φ , which is expected, since all points on the surface are

equivalent. Note that the upper summation limits have been made finite by introducing cutoffs
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Nz and Nφ . These cutoffs are important, because without at least one of them Eq. (A.14)

would diverge. They are determined by the fact that below a certain length B0, continuum fluid

dynamics equations (on which the consideration here is based) cease to be valid. This length

scale is typically comparable to the molecular size. The cutoffs then approximately correspond

to the perturbations with wavelengths equal to this length scale, i.e.

Nz ≈
L
B0

, (A.15)

Nφ ≈ 2πR
B0

. (A.16)

Further progress can be made by assuming that the period in the axial direction L is much

smaller than the radius R. We will also assume that B0 is sufficiently small that Nφ � 1. Then,

since the last sum in Eq. (A.14) converges as Nφ → ∞, we can safely write

Nφ

∑
nφ=2

kBT/(πγ)
L
R(n

2
φ
−1)

≈
∞

∑
nφ=2

kBT/(πγ)
L
R(n

2
φ
−1)

=
3kBT R
4πγL

, (A.17)

where the exact numerical value ∑
∞
n=2 1/(n2−1) = 3/4 has been used. The second sum

Nz

∑
nz=1

kBT/(πγ)
4π2R

L n2
z − L

R

≈ kBT L
4π3γR

Nz

∑
nz=1

1
n2

z

<
kBT L
4π3γR

∞

∑
nz=1

1
n2

z
=

kBT L
24πγR

, (A.18)

which is much smaller than Eq. (A.17) and therefore negligible. Finally, considering the double

sum, since changing nφ by one makes a change in the expression under the sum that is small

compared to the expression itself, the sum over nφ can be replaced by an integral:

Nz

∑
nz=1

Nφ

∑
nφ=1

2kBT/(πγ)
L
R(n

2
φ
−1)+ 4π2R

L n2
z

≈
Nz

∑
nz=1

∫
∞

nφ=0

2kBT/(πγ)
L
R n2

φ
+ 4π2R

L n2
z

dnφ

=
kBT
2πγ

Nz

∑
nz=1

1
nz
. (A.19)

Then

〈ζ 2〉 ≈ kBT
2πγ

[
3R
2L

+
Nz

∑
nz=1

1
nz

]
. (A.20)

The sum over nz diverges in the limit Nz → ∞, so Nz should be kept finite. If Nz � 1, then
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∑
Nz
nz=1 1/nz ≈ lnNz ≈ ln(L/B0), and the final result is

〈ζ 2〉 ≈ kBT
2πγ

[
3R
2L

+ ln
L
B0

]
. (A.21)



Appendix B

Sample LAMMPS code for two

TIP4P/2005 droplets coalescing in

nitrogen

############################################################

# Water Droplets Coalescing in N2

############################################################

log log.coalesce # log file to view output later

units real # Use real units. See LAMMPS website

dimension 3 # 3D geometry

boundary p p p # Periodic boundary conditions in all directions

neighbor 2.0 bin # Skin distance of 0.2 nm

neigh_ modify every 1 delay 5 check yes # Modify neighbour list

processors 8 6 12 # Processors in three directions

read_ data data.coalesce # Read data file

################################# INTERACTION PARAMETERS

# Define groups based on atom types and IDs
group nitrogen type 3

group hydrogen type 2

group oxygen type 1

group water union hydrogen oxygen

group Drop1 id 1:582615

group Drop2 id 582616:1165230

# Pair coefficients
pair_ style hybrid lj/cut/tip4p/long 1 2 1 1 0.1546 13.0 12.6 lj/cut 9.375 # TIP4P/2005

kspace_ style pppm/tip4p 1.0e-6 # Long-range interaction calculations using PPPM

pair_ modify shift yes mix arithmetic # Cross-species interactions using LB rule

110
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pair_ coeff 1 1 lj/cut/tip4p/long 0.1852 3.1589 # O-O

pair_ coeff * 2 lj/cut/tip4p/long 0.0 0.0 # H-H

pair_ coeff 3 3 lj/cut 0.189 3.75 9.375 # N2-N2

pair_ coeff 2 3 lj/cut 0.0000 0.0 # N2-H

pair_ coeff 1 3 lj/cut 0.130 3.24 # N2-O

# Bond and angle parameters. Energy values are redundant because of SHAKE algorithm
bond_ style harmonic

bond_ coeff 1 1000.00 0.9572

angle_ style harmonic

angle_ coeff 1 100.0 104.52

################################# RUN PARAMETERS

# Compute species temperatures and number of neighbours
compute nTemp Nitrogen temp

compute d1Temp Drop1 temp/com

compute d2Temp Drop2 temp/com

compute coord oxygen coord/atom 13.0 1

# Pressure evaluation in whole Nitrogen
variable dVol equal 3.1415*200*200*43 # Volume of one drop

compute peratom Nitrogen stress/atom NULL

compute p Nitrogen reduce sum c_ peratom[1] c_ peratom[2] c_ peratom[3]

variable nPress equal -(c_ p[1]+c_ p[2]+c_ p[3])/(3*(vol-2*$dVol))

fix SHAKE Water shake 0.0001 20 0 b 1 a 1 # SHAKE algorithm to make water molecules rigid

fix NVE all nve # Perform simulation in a micro-canonical ensemble

# Output to log file
thermo_ style custom step temp c_ d1Temp c_ d2Temp c_ nTemp v_ nPress pe etotal

thermo 200 # Output every 200 time steps

timestep 2.0 # Time step size in femto-seconds

# Impact velocity to droplets towards each other
velocity Drop1 set 1e-5 NULL NULL sum yes units box

velocity Drop2 set -1e-5 NULL NULL sum yes units box

# Output files for post-processing
dump 1 all custom 1000 R20P15.lammpstrj id type x y z

dump 2 oxygen custom 100 R20P15_ oxygen.dat id x y z vx vy vz c_ coord

dump 3 Nitrogen custom 100 R20P15_ nitrogen.dat id x y z vx vy vz

restart 50000 rst.R20P15

run 500000



Appendix C

Location of first contact between

coalescing nanodroplets

The following derivation is due to Dr. Mykyta V. Chubynsky. 1 The purpose of this Appendix

is to derive an expression for the finite extent within which the first contact between coalescing

droplets (both 3D spherical and quasi-2D cylindrical) can happen.

The location at which two nanodroplets meet is a stochastic process; they do not always

meet at the line of approach. Determining this distribution of onset locations theoretically is

a complex problem, since it will need to take into account the thermal fluctuations on the

surface and deserves separate consideration in this appendix. Scaling estimates of the size of

the coalescence onset region will be proposed here, by comparing the surface fluctuations in

the region to the variation of the mean distance between the surfaces within that region due to

their curvature.

C.1 Spherical droplets (3D)

Consider two spherical droplets of radius R approaching each other along the line connecting

their centres-of-mass (Fig. C.1). The coalescence is most likely to be initiated on the line of

approach. However, when surface fluctuations are accounted for, there is a possibility that a

point B on the surface of one droplets off the line of approach “overtakes” the more favourable

point A on that line to initiate off-center coalescence. Suppose the distance between points A

and B is x� R. Then the distance between the mean profiles at B is larger than that at A by

2Y (x) = 2(R−
√

R2− x2)≈ x2/R. (C.1)

Let the deviations of the profile of one of the droplets at a given instant of time at A and B be

ζA and ζB, respectively. It is reasonable to expect that the probability of coalescence at B is

1. Research Associate, University of Warwick
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Oscillating interfacial point
Mean profile
Instantaneous profile

Figure C.1: Geometry of the coalescence onset problem for two 3D spherical droplets.

significant (comparable to that at A) if ζB−ζA is likely to exceed Y (x), or, in other words,

〈
(ζB−ζA)

2〉& Y 2(x)≈ x4

4R2 . (C.2)

The relative fluctuation ζB − ζA is expected to be of the same order of magnitude as the

typical fluctuations within a patch of size x, which, according to Eq. (3.1) and accompanying

considerations, gives

〈(ζB−ζA)
2〉 ≈ kBT

2πγ
ln
(

x
B0

)
. (C.3)

The width of the distribution of coalescence onset locations, lc, will be approximately equal to

the value of x at which the left- and right-hand sides of Eq. (C.2) are equal, i.e.

kBT
2πγ

ln
(

lc
B0

)
≈ l4

c

4R2 , (C.4)

so,

lc ≈
[

2kBT
πγ

ln
(

lc
B0

)]1/4

R1/2. (C.5)

This is a transcendental equation that does not have a closed-form solution. However, in prac-

tice the logarithmic factor raised to a small power is of order unity, so for an order-of-magnitude

estimate, it, along with the factor (2/π)1/4, can be omitted, giving

lc ≈
(

kBT
γ

)1/4

R1/2. (C.6)
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C.2 Cylindrical droplets (quasi-2D)

For cylindrical droplets of axial length L, we use a similar approach. However, a complication

arises that instead of a single point A at which the mean profile of the droplet is closest to

that of the other droplet, there is now a line of such points. If point A is chosen arbitrarily on

that line and point B on a line at distance x from the first line, the result for
〈
(ζB−ζA)

2
〉

will

depend on where exactly A and B are chosen with respect to each other: the closer the points,

the smaller that expression is. It can then be argued that choosing A as close to B as possible

(i.e., at distance x) is reasonable, since in order for coalescence to be initiated at B, the gap

between the droplets at all possible A needs to be larger. The result will then depend on the

relation between x and L. If x < L, then, similar to the spherical case, the relative displacement

ζB−ζA is of the same order of magnitude as typical displacements in a patch of size x in both

dimensions. If, however, x > L, then the patch is still of size x in the azimuthal direction, but

cannot exceed L in the axial direction. For such an asymmetric patch, we use our quasi-2D

expression (Eq. (3.3)) replacing R with x/(2π). Then, arguing as before,

l4
c

4R2 ≈


kBT
2πγ

ln
(

lc
B0

)
, lc < L,

kBT
2πγ

[
3lc

4πL + ln
(

L
B0

)]
, lc > L.

(C.7)

Neglecting the logarithmic factor and term, and the numerical factors, gives

lc ≈


(

kBT
γ

)1/4
R1/2, lc < L,(

kBT
γL

)1/3
R2/3, lc > L,

(C.8)

or

lc ≈


(

kBT
γ

)1/4
R1/2, R < L2

(
γ

kBT

)1/2
,(

kBT
γL

)1/3
R2/3, R > L2

(
γ

kBT

)1/2
.

(C.9)

For the systems studied here, L2
(

γ

kBT

)1/2
≈ 73 nm and they correspond to the top line of Eq.

(C.9), which is the same expression as Eq. (C.6). For the three cylindrical droplets studied,

R = 11.1 nm, 20.1 nm and 58.5 nm, these correspond to lc =1.7 nm, 2.2 nm and 3.8 nm,

respectively.

Based on the above analysis, when two droplets of different radii coalesce, we expect no

qualitative change in the results found in the current work. The effect of different radii may

appear in two ways: 1) the droplets will now have different thermal fluctuation amplitudes, and

2) the gap thickness profile between the droplets will be modified, as this depends on the mean

curvature between the droplets. For a realistic 3D system, the fluctuation amplitude depends

only weakly on droplet sizes, so size will have a negligible effect on the overall process. As for
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the gap thickness, its effect is that the coalescence will correspond to that of two droplets of the

same curvature, equal to the mean curvature of the actual droplets.



Appendix D

Linear scaling of lT on impact velocity

The following derivation is due to Dr. James E. Sprittles.1 The purpose of this Appendix is to

show that when droplets impact with each other, the extent of the thermal regime (lT ) scales

linearly with the approach speed Vr.

Imagine a sphere falling through a plane at speed Vr and crossing an imaginary plane located

at z = 0. When the point on the bottom part of the sphere hits the plane, it’s height with respect

to the plane is zero. As the sphere continues to pass through the plane, the height between the

bottom point and the fixed plane becomes z = −Vrt. The peripheral point on the sphere that

crosses the plane at this moment is given as l =
√

2RVrt. This is obtained by noting that the

contact line is a height ∼ l2/(2R) above the base.

Figure D.1: Geometry of the problem where a sphere falls through a plane.

If the falling sphere were a droplet impacting on a surface (or two droplets impacting each

1. Associate Professor, University of Warwick
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other), the speed at which the peripheral point (contact line) advances side ways is given by:

dl/dt ≡Vg =

√
RVr

2t
, (D.1)

This ‘geometric mode’ of bridge growth continues until the effect of surface tension kicks in

and drives the coalescence process, which results in the usual hydrodynamic regime. Let us

assume that the speed associated with this hydrodynamic mode is

Vh =C
γ

µ
, (D.2)

for some constant C. The crossover would happen when Vg ∼Vh, i.e. the geometric mode slows

down enough for the hydrodynamic mode to take over. At this point

l = RVr
µ

γ
, (D.3)

Therefore, this model predicts that the hydrodynamic mode will kick in at a length scale which

varies linearly with approach speed Vr. Note that this approach does not predict a non-zero value

of lT as Vr → 0. This clearly implies that the finite extent of thermal regime when approach

speed is zero is a nanoscale effect.



Appendix E

Sample LAMMPS code for mW

droplet spreading on a wall

############################################################

# Water Droplet Spreading

############################################################

log log.spread # log file to view output later

units real # Use real units. See LAMMPS website

dimension 3 # 3D geometry

boundary p p p # Periodic boundary conditions in all directions

neighbor 2.0 bin # Skin distance of 0.2 nm

neigh_ modify every 1 delay 5 check yes # Modify neighbour list

processors 8 6 12 # Processors in three directions

read_ data data.spread # Read data file

################################# INTERACTION PARAMETERS

# Define groups based on atom types
group Twall type 3

group Bwall type 2

group water type 1

group wall union Bwall Twall

group move union Twall water

# Pair coefficients
pair_ style hybrid lj/cut 13.0 sw # LJ and mW potential

pair_ modify shift yes

pair_ coeff * * sw mW.sw Si NULL NULL # water-water

pair_ coeff 2* *3 lj/cut 15.975 2.471 # wall-wall

pair_ coeff 1 2*3 lj/cut 0.25 3.16 # water-wall

################################# RUN PARAMETERS

# Make bottom layers fixed and apply thermostat to the top few layers of the wall
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fix 1 Bwall setforce 0.0 0.0 0.0

velocity Twall create 300.0 34277 mom yes

fix TWmom Twall momentum 2 linear 1 1 1

compute Stemp Twall temp/com

fix 3 Twall temp/berendsen 300.0 300.0 100.0

fix_ modify 3 temp Stemp

# Compute temperature and potential energy of water molecules
compute wtemp water temp/com

compute wpe water pe/atom

# Output to log file
fix 5 move nve

timestep 10.0

thermo_ style custom step temp c_ Stemp c_ wtemp pe etotal

thermo 200

# Impact velocity to droplet towards wall

velocity water set -1e-5 NULL NULL sum yes units box

# Output files for post-processing
dump 1 all custom 5000 Spread.lammpstrj id type x y z

dump 2 water custom 100 water.lammpstrj id x y z c_ wpe

restart 50000 rst.Spread

run 500000



Appendix F

Relevance of van der Waals

interactions between the droplets

The following derivation is due to Dr. Mykyta V. Chubynsky.1 In our theoretical consideration,

we have assumed that the average shapes of the droplets remain spherical as they approach each

other, and the fluctuations of the surfaces of the two droplets are independent of each other and

of the distance between them. In reality, droplets in proximity to each other interact. First, they

may interact hydrodynamically via the medium in which they move. In our simulation setup,

however, the medium is the droplets’ own vapor and has a very low density, so that interaction

is clearly negligible. A more interesting effect is the van der Waals (vdW) interactions between

the molecules belonging to different droplets. These interactions change the average shape of

the droplets as they approach each other and also correlate the fluctuations of their surfaces and

modify their spectrum. The most dramatic manifestation of the latter effect is an instability, in

which fluctuations grow exponentially until the droplets touch.

Based on the fact that our simulation results generally agree with our theory and, in par-

ticular, there is no evidence of either a significant shape change or an instability, we have

concluded that these effects probably do not play an important role under the conditions of

our simulations. This is particularly interesting in view of the fact that it is the vdW-driven

instability that is considered in many works (see, e.g., Ref. Chesters (1991)) as giving rise to

coalescence between the droplets. In fact, there is no contradiction, since our work differs from

these previous ones in two respects: first, we simulate much smaller, nanoscale droplets, and

second, as mentioned above, our simulations are carried out essentially in vacuum, which, by

eliminating hydrodynamic interactions, affects the shape of the droplets and thus the effect of

vdW interactions as well. The purpose of this section is to consider the role of these two factors.

We take vdW interactions into account by introducing the disjoining pressure contribution to

the normal stress at the boundary i.e

pvdW =− AH

48πH3 , (F.1)

1. Research Associate, University of Warwick
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where AH is the material-dependent Hamaker constant, and H is one-half the separation be-

tween the surfaces.

We start by considering two very large volumes of liquid, separated by a vacuum gap between

two planar parallel surfaces. Ignoring first the interactions between the surfaces, we assume

that their thermal fluctuations are not large enough to bridge the gap (thus, strictly speaking,

the surfaces cannot be infinitely large, since the fluctuations diverge as the size of the surface

grows; however, this divergence is only logarithmic, so we will assume that the surfaces are

infinite for all other intents and purposes). Nevertheless, when the interactions are “switched

on”, this system will still be unstable: the fluctuations with wavelengths above a critical one,

λc, will grow exponentially. This critical wavelength corresponds to the surface perturbation

mode for which the local changes in the disjoining pressure are exactly compensated by those

in the Laplace pressure, which gives

kc = 2π/λc =

(
aH

γ

)1/2

, (F.2)

where

aH =
AH

16πH4 (F.3)

For large H, the growth rates σk [defined so that the corresponding mode grows as exp(σkt)]

are so small that this growth may not matter for practical purposes. A general expression for the

growth rate exists Lucassen et al. (1970), but it is more convenient to use much simpler ones

valid in the two limits, inertial and viscous, in both cases assuming kH � 1, and interpolate

between them.

For small wavenumbers k, the growth rate is limited by the liquid inertia and is given by

σk =

[
(aH − γk2)k

ρ

]1/2

, (F.4)

where ρ is the liquid density. For large k, it is limited by the viscosity µ and is

σk =
aH − γk2

2µk
. (F.5)

Both expressions vanish above kc. Since σk grows as k1/2 for small k and decreases to zero as

k→ kc, there is always a maximum, either at k at which Eq. (F.4) has a maximum (ki
max), or

at the crossover kx where Eqs. (F.4) and (F.5) are equal, whichever of the two values of k is

smaller. The maximum of Eq. (F.4) is at

ki
max =

(
aH

3γ

)1/2

, (F.6)
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while the crossover is the solution of

4µ2

ρ
k3

x + γk2
x = aH , (F.7)

which is

kx ≈


(

ρaH
4µ2

)1/3
, aH > ρ2γ3

16µ4 ,(
aH
γ

)1/2
, aH < ρ2γ3

16µ4 .
(F.8)

The second line of this gives kx ≈ kc > ki
max and therefore is irrelevant. Then the value kmax at

which the maximum rate is reached is either Eq. (F.6) or the top line of Eq. (F.8), i.e.

kmax ≈


(

ρaH
4µ2

)1/3
, aH > 27ρ2γ3

16µ4 ,(
aH
3γ

)1/2
, aH < 27ρ2γ3

16µ4 .
(F.9)

The corresponding maximum growth rate is

σmax ≈


(

a2
H

2µρ

)1/3
, aH > 27ρ2γ3

16µ4 ,(
4a3

H
27γρ2

)1/4
, aH < 27ρ2γ3

16µ4 .
(F.10)

There is a discontinuity, since an exact expression is used in the bottom line, but an approximate

one in the top line, but it is relatively small and insignificant for our purposes. Note also that

given Eq. (F.3), σmax increases very rapidly when H decreases (∝ H−8/3 in one regime and

∝ H−3 in the other). Individual modes grow quite rapidly, too: neglecting the γk2 terms, the

growth is ∝ H−2 in the inertial regime and ∝ H−4 in the viscous one.

Suppose now that the two liquid volumes approach each other with relative speed 2v so that H

decreases linearly in time as H0− vt. Even with vdW interactions “switched off”, the surfaces

would touch before H = 0 due to fluctuations. Suppose this typically happens when H = Hmin.

Then the question is whether the growth of the fluctuations due to the instability is significant

before H = Hmin. We can still estimate the growth using Eqs. (F.4) and (F.5), keeping in mind

that σk is now time-dependent. For the amplitude of a mode with wavenumber k we can write

ak(t)∼ exp
(∫ t

0
σk(t ′)dt ′

)
. (F.11)

Because of the fast growth of σk with decreasing H, the value of σk at Hmin dominates and the

modes with the most growth are those with k = kmax(Hmin). These modes grow by a factor

Fmax ' exp[σmax(Hmin)∆t], (F.12)
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where ∆t is the effective time interval during which the growth rate is close to maximal and is

∆t = αHmin/v, (F.13)

with α a numerical factor of order (but likely somewhat below) unity, e.g., α = 1/(β −1) for

σk(t) ∝ (H0/v− t)−β . Then, finally, the instability is not significant if

σmax(Hmin)∆t < 1, (F.14)

and significant otherwise.

The answer to the question above about significance of the instability depends on Hmin. For

a rough estimate, we choose Hmin = 1 nm, which is the typical size of fluctuations of drop

surfaces. Then for water (γ = 65 mN/m, µ = 10−3 Pa s, ρ = 103 kg/m3, AH = 3.7×10−20 J) we

find that this corresponds to the top lines of Eqs. (F.9) and (F.10) (though close to the boundary

between the regimes) and then kmax ≈ 6× 107 m−1, σmax ≈ 6× 109 s−1. Then, according to

Eq. (F.14) and assuming α = 1, the instability is insignificant for v > 6 m/s, a moderate speed

relevant experimentally, and the threshold may be even lower if α < 1.

Are the above results relevant to spherical droplets of a finite size? The vacuum gap between

the droplets is finite in extent and its width varies with the distance from the axis. This changes

the surface modes and their spectrum. However, near the axis the gap width can be considered

roughly constant. We define the “flat part” of the gap as that part of it where its width does not

exceed 1+ s times the width on the axis, where s∼ 1. Then, assuming that H is much smaller

than the radius of the droplet R, the radius of this “flat part” is

r f ≈ (2sRH)1/2. (F.15)

There will be modes oscillating many times within the “flat part”; these modes will have a

well-defined wavenumber and for them the previous results obtained above for a flat infinite

gap should remain valid. On the other hand, modes with wavelength above ≈ 4r f (or k <

kmin≈ π/(2r f )) do not exist. Then, if kmin < kmax [Eq. (F.9)], the above results for the maximum

growth rate (as well as those for significance of the instability) should remain valid; if, however,

kmin > kmax, then the growth should be slower, being determined by the “flat-gap” rate for kmin,

rather than kmax (this rate may, in fact, be negative). The condition kmin < kmax gives

π

2r f
< kmax, (F.16)

or

R >
π2

8sHk2
max

. (F.17)

For water and Hmin = 1 nm, we have obtained kmax ≈ 6× 107 m−1, which, assuming s = 1,
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gives R & 300 nm. Thus, our estimates should be roughly valid for macroscopic (e.g., mm-

sized) droplets; however, for smaller droplets, like those used in our simulations, the rate should

be slower and therefore even for slower approach speeds there should be no significant vdW

effect, in agreement with our simulation results.

Another effect of vdW interactions that we have ignored so far is their influence on the aver-

age shape of the droplets. Since the disjoining pressure depends on the distance between the

surfaces, its contribution is not constant on a spherical surface, which gives rise to pressure

gradients. This creates flows that distort the surface. The process is similar to that giving rise to

the instabilities that we have considered above, but with a specific length scale on the order of

r f (the size of the region on the surface where the interaction is the strongest). It is reasonable to

assume then that the time scale of the process is similar to that for development of the instability

with k = kmin (except perhaps with γ ≈ 0, as the pressure gradient is created by vdW forces

and is not initially counterbalanced by the Laplace pressure). This time scale is normally either

comparable to or longer than the shortest time scale of the instability development and so this

distortion process is never more important.

This explains how our results are different from what is commonly found in the literature where

the effect of the vdW instability is dominant. In part, the difference does indeed arise from the

fact that the growth rate is smaller for drops of nanometer size. However, a more important

factor is that when drops collide in a medium, a thin film between them exists for a relatively

long time (milliseconds for mm-sized drops), which is more than sufficient for the instability

to develop, even if the growth rate is smaller than the value of σmax quoted here due to the film

being thicker than 1 nm.

The discussion above indicates that the biggest contribution of vdW interactions between the

droplets arises within a short interval immediately preceding coalescence, of duration less than

the time it takes the droplets to move a distance equal to the size of the fluctuations. Given

that this size is somewhat below 1 nm for our droplets, the cut-off of 1.3 nm in our molecular

dynamics simulations appears adequate.



Appendix G

VoF simulation details for

coalescence-induced jumping of

nanodroplets

VoF simulations in this work were conducted by Dr Ryan Enright 1 as part of a collaborative

project with industry. The VoF results from this Appendix are used only in Fig. 5.15 to show

where the MD results lie in terms of the overall macroscopic picture.

Numerical simulations.—To study droplet coalescence and subsequent jumping on an ideal su-

perlyophobic surface, we simulate the case of symmetric binary coalescence using the volume-

of-fluid (VoF) approach with custom user-defined function for automated mesh adaption in

order to well resolve the liquid/gas interface implemented in a finite-volume solver (Fluent

v17.0, Ansys Inc.).

A uniform structured grid is used as the parent mesh. Three levels of adaption (cell splitting)

are allowed providing for a minimum cell volume (Vmin) in the interface region with charac-

teristic length (V 1/3
min ) of 1.9% the initial droplet radius, R. To simulate an ideal, non-wetting

surface, the droplet wetting wall is assigned a single valued contact angle of θc = 180◦. Due

to symmetry, only one quarter of the domain is simulated with dimensions of 3R× 3R× 5R.

The simulation domain is bounded by two symmetry planes dissecting the droplets where, by

definition, the contact angle is constant at π/2; two boundaries specified with a shear-stress free

condition (on the gas); the droplet wetting wall specified as no-slip (which still permits contact

line motion, due to the 180◦ contact angle) and a single valued contact angle (contact angle

hysteresis neglected); and an outlet vent, with backflow direction specified from neighbouring

cell, opposite to the droplet wetting wall.

The droplet volume is patched into the simulation domain with a geometry corresponding to

the droplets just in contact. The limited grid resolution led to an initial bridge radius of ≈
0.1R that initiated the start of coalescence at t = 0. The properties of the liquid droplet, the

surrounding gas and the interface between them are nominally those of water and humid air at

1. Senior Member of Technical Staff, Nokia Bell Labs, Ireland
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room temperature (argon and argon vapor at 85 K), which corresponds to a nominal viscosity

ratio, density ratio and surface tension of µl/µg = 56 (40) and ρl/ρg = 815 (307), γ = 65.4

(8.3) mN/m respectively. To simulate other viscosity ratios, the gas side viscosity is modified

accordingly. The density ratio is kept fixed at the nominal base value for each simulation.

Discretization for pressure, momentum and volume fraction is done with the PRESTO!, QUICK

and Geo-Reconstruct algorithms, respectively. The PISO algorithm is used for pressure-velocity

coupling. The CSF model is used to capture the contribution of surface tension to the normal

stress on the interface (Hirt and Nichols, 1981). The VoF implementation is intrinsically vol-

ume conserving (Brackbill et al., 1992). This is confirmed for all simulations by tracking the

volume of the droplet phase during the simulations. The liquid-vapor interface is implicitly

represented by the VoF function, which varies rapidly over a short distance, approximately

the mesh cell size. This abrupt change of the VoF function creates errors in calculating the

normal vectors and the curvature of the interface used to evaluate the interfacial forces. These

errors induce non-physical parasitic currents in the interfacial region, e.g. spurious velocities.

Good results in reducing spurious velocities are obtained by using Fluent’s native smoothing

function. One fully-weighted cycle of smoothing at each iteration is found to be suitable for the

simulations. Under-smoothing, by reducing the weighting for a single smoothing cycle, led to

noisy results and, in some cases, droplets that would begin accelerating after contact with the

surface had been lost. Over-smoothing should also be avoided as this unphysically reduces the

local curvature of the bridging region leading to a reduction in the simulated jumping speed.

Adaptive time stepping was used to control the progression of the simulation. An initial period

of 10 constant time steps (t/τ ≤ 1×10−2) was followed by varying time steps maintaining the

global Courant number of 0.5. At the same time, the mesh was adapted every 10 time steps.

This ensured that the interface never left the region of highest refinement during the simulation.

Determination of jumping speed from simulations.— Droplet jumping speeds are determined

from simulations by calculating the mass-averaged droplet velocity when the droplet lost con-

tact with the surface. It should be noted that, during the coalescence process, the droplet

typically loses contact with the substrate twice. The first instance occurs during the initial

bridge development where the entrainment liquid from the droplet bulk into the developing

bridge region results in loss of contact with the substrate. As the liquid bridge expands, it

eventually impacts the substrate leading to a substantial increase in the wetted area of liquid

on the substrate. The point of departure was found to correlate well with normal force on the

wall reaching a local negative maximum. An alternative definition of the jumping speed could

be determined as when the droplet lost viscous communication with the wall after the local

negative maximum normal force on the wall marked by a decay to zero transient force on

the wall. This definition coincides with the observed start of a smooth linear decay in droplet

velocity due primarily to drag with the surrounding fluid. The two definitions of jumping speed

converge as the viscosity ratio approaches zero.
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