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...φύσιν δὲ ἕκαστον ἔχει καὶ δύναμιν ἐφ᾽ ἑωυτοῦ, καὶ οὐδὲν ἄπορόν ἐστιν οὐδὲ 

ἀμήχανον. 

Each (disease) has a nature and power of its own; none is hopeless or incapable of 

treatment 

Hippocrates, The Sacred Disease, 400 BCE 

 

 

 

 

 

 

 

 

 

 

 



Abstract 

Fragile X syndrome (FXS) is the leading single gene cause of intellectual disability and 

Autism Spectrum Disorder (ASD). It is caused by epigenetic silencing of the fragile X 

mental retardation gene (FMR1), causing a loss of Fragile-X Mental Retardation Protein 

(FMRP). Over the last 2 decades, much has been learned about the pathophysiology 

related to the loss of FMRP from mouse models of FXS.  The recent generation of a rat 

model of FXS opens the door to: validate phenotypes across mammalian species, address 

cognitive dysfunction using paradigms that are more difficult to address in mice and 

explore candidate therapeutics more accurately.  

This thesis explored the validity of a new rat model for FXS (Fmr1 KO rat). I showed that 

Fmr1 KO rats exhibit normal spatial navigation memory, social interactions and anxiety 

levels. On the contrary, when subjects were tested in a battery of spontaneous 

exploration tasks: object recognition (OR), object-context (OC), object-place (OP), and 

object-place-context (OPC) recognition, which assess associative memory, Fmr1 KO rats 

showed a severe deficit in remembering the most complex (episodic-like) associations.  

Following these results, I sought to explore the development of associative memory from 

postnatal day 25 (P25) to adulthood (P71). Subjects were tested in the four spontaneous 

exploration tasks, previously mentioned, 8 times between P25 and P71 to assess the 

development of their ability to discriminate novel from familiar associations between 

objects, contexts and places. Fmr1 KO rats’ ability to discriminate novel from familiar 

object-place (spatial) and object-place-context (episodic-like) associations was 

significantly impaired (OP was delayed, and OPC ability did not develop).   

In the last part of this thesis I examined whether early therapeutic intervention with 

lovastatin can restore the cognitive deficits I observed. Subjects were fed either a diet 

containing lovastatin (“lovachow”) or an identically looking control diet, between P29 

and P64, and tested in the four spontaneous exploration tasks, previously mentioned. 

Fmr1 KO rats demonstrated a developmental profile of associative memory 

indistinguishable from that of WT animals. At P64, lovachow was replaced with standard 

laboratory chow and the animals were tested 1 and 3 months later.  Surprisingly, 

lovastatin treated Fmr1 KO animals maintained the ability to perform the OPC task even 

at 3 months after the end of treatment, whereas Fmr1 KO animals on control chow 

showed no improvement with age.  



The findings of this work indicate that transgenic rats can complement existing mouse 

models of FXS, providing valuable insights into the effects of FMRP loss on cognitive 

function. Furthermore, the results from the treatment study show that not only can 

lovastatin treatment prevent the emergence of cognitive deficits associated with Fragile 

X Syndrome but also that lovastatin (and perhaps pharmaceutical interventions more 

generally) may prevent the developmental deficits in neuronal circuit formation which 

can be maintained into adulthood. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Lay Summary 

Fragile X syndrome (FXS) is the most common form of inherited intellectual disability 

and the most frequent single gene cause of autism, affecting approximately 1 in 4,000 

males and 1 in 6,000 females. Over the last 2 decades, much has been learned about the 

disease mechanism using mouse models of FXS. This thesis focusses on a new rat model 

of FXS (Fmr1 KO rat), and examines whether it can model FXS efficiently. Furthermore, 

it examines whether therapeutic intervention early in life can prevent emergence of 

cognitive deficits and whether any benefits are dependent on ongoing treatment.   

Fmr1 KO rats appear to have normal cognitive performance in various tests but they are 

severely impaired in a complex type of memory called episodic memory (memory of 

events). This is a novel finding which offers valuable insights into the cognitive 

impairments associated with FXS but also provides a good way to test candidate 

therapies. 

Following my previous results, I sought to explore how episodic memory and other 

forms of associative memory develop in juvenile rats and, since FXS is a 

neurodevelopmental disorder, examine if Fmr1 KO rats experience any developmental 

delays. I found a certain type of associative memory (association of an object and its 

position) takes longer to appear in this rat model of FXS and episodic memory, as 

previously observed, doesn’t develop at all. 

Finally, I investigated if early therapeutic intervention can restore normal development 

of learning and memory. Treated Fmr1 KO rats demonstrated a developmental profile of 

associative memory indistinguishable from that of normal animals. I then tested if the 

beneficial effects of this treatment could be maintained into adulthood without ongoing 

drug application.  After 5 weeks of treatment, drug-containing diet was replaced with 

standard laboratory diet and the animals were tested 1 and 3 months later.  Surprisingly, 

treated Fmr1 KO animals maintained normal learning behaviour even at 3 months after 

treatment had been terminated, whereas Fmr1 KO animals on control diet showed no 

improvement with age.  

The findings of this thesis indicate that rat disease models can expand our knowledge of 

FXS, thus complementing existing mouse models. Furthermore, the results from the 

treatment study show that not only can appropriate treatment prevent of cognitive 



delays associated with Fragile X Syndrome but also that pharmaceutical interventions 

during potentially critical developmental windows can have long lasting or even 

permanent effects. 
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Overview 
 

Animal models of Fragile X Syndrome (FXS) have proven invaluable to advance our 

understanding of the pathogenesis and pathophysiology of FXS. Until the development 

of the first Fmr1 knockout mouse (Fmr1 KO)  model of FXS (Bakker et al., 1994) it was 

not feasible to study the effects of FMRP loss in vivo. The discoveries made using this 

model have undoubtedly changed the way we think about, not only FXS, but also 

neurodevelopmental disorders in general (Wijetunge et al., 2013). Although there is 

currently no effective therapy against the core symptomatology of FXS, our increasing 

understanding of the disease pathophysiology has created multiple lines of investigation 

for targeted therapies. Even though many phenotypes associated with the loss of FMRP 

have been shown to improve in preclinical treatment studies, attempts to translate these 

animal-model success stories into successful treatments for human patients have so far 

been unsuccessful. The recently created rat model of FXS offers a great potential for the 

study not only FXS but also ASD and other neurodevelopmental disorders. This thesis 

aims to introduce this new rat model into the research community and highlight its 

importance as an exciting new alternative to the established mouse model on 3 different 

levels: (1) the validation of phenotypes across mammalian model species carrying the 

same genetic lesion, (2) the exploration of pathophysiology and behaviour associated 

with FXS, using assays which are quite challenging for the mouse model and (3) bridging 

the gap between preclinical and clinical research. 

In the three introductory chapters of my thesis, I will discuss FXS, the most frequently 

encountered singe gene cause of inherited intellectual disability and the most common 

monogenic cause of autism. I will  then review reseach on the mouse model of the 

syndrome which carries an analogous genetic lesion and expresses similar physiological 

and behavioural phenotypes. This mouse model of FXS has been an invaluable tool for 

understanding pathophysiology of the disease on multiple levels, but my review is 

mainly focussed on the behavioural phenonype. Drug discovery is a challenging but 

absolutelly critical process in translational research. The empirical approach to drug 

discovery - focussed only on safety and efficacy in humans, but not connected to the 

underlying biological mechanisms – is gradually being replaced by a mechanism-based, 

targeted approach. Thus, in the second introductory chapter, I will summarise the most 

recent findings in FXS drug development and summarise current mechanism-based FXS 
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The era of mechanism-based treatments for neuropsychiatric disorders. The process starts with a 
thorough characterisation of the neuropsychiatric disease and genomic investigations in affected individuals 
(A). Once affected genes, which confer a risk or cause the disease, have been identified (B), animal models 
of the disorder which carry the same genetic lesion(s) can be created (C). Once we have these animal models, 
basic knowledge of neurobiology has to be applied in order to study of the cellular, physiological, and 
behavioural consequences, known as the disease pathophysiology (D). We may then be able to identify 
target(s), parts of core processes in the brain, which have gone awry and are amenable to pharmacological 
(or other) manipulations (E). The final step is to validate novel therapeutics created to interact with our 
identified targets, in clinical trials (F). 
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therapeutic strategies and their translation from animal models to humans. Finally, in 

the last introductory chapter, I will reflect on the behavioural differences between rats 

and mice and I will attempt to highlight the huge potential impact of the newly generated 

rat models of FXS and autism. 

The first series of experiments described in Chapter 4 focus on the initial behavioural 

characterisation of Fmr1 KO rats. The main aim is to determine whether this rat model 

recapitulates behavioural phenotypes seen in the mouse model. The tasks are divided 

into three categories, highlighting the three main behavioural domains affected in FXS: 

elevated anxiety/repetitive behaviours, social interaction abnormalities and cognitive 

deficits. Although the main body of work in this chapter makes use of the commercially 

available Fmr1 KO rat, on an albino Sprague-Dawley background strain, the last section 

of the chapter, I introduce a custom made model of FXS in a Long-Evans Hooded 

background strain, in an attempt to examine whether there are strain specific 

behavioural deficits as observed in the mouse model, or not. 

The study described in Chapter 5 attempts to build upon the findings of Chapter 4. We 

aim to investigate the development of associative object memory in Fmr1 KO rats and 

their wildtype littermates. The rationale behind this study is to identify possible 

developmental delays in this model of FXS, which would be consistent with the human 

phenotype since FXS is a neurodevelopmental disorder (children with FXS meet almost 

all developmental milestones later in life). 

The final experiment (Chapter 6) described in this thesis goes a step further towards 

closing the loop of molecular medicine. It investigates the effect of early pharmacological 

treatment with lovastatin (a candidate therapeutic also discussed in Chapter 2) on two 

levels: (1) restoring normal cognitive development (described in Chapters 5), and (2) 

resulting in robust long lasting effects.  

 

 

 

 

 

 



4 
 

1. Studying Fragile X Syndrome 
 

1.1 From Martin and Bell to Fragile X 

In 1943 Martin and Bell described an X-linked form of intellectual disability in a family 

with 11 affected boys; they had below average IQ and specific morphological 

characteristics (Martin & Bell, 1943) (Fig. 1.1A). Several years later, in 1969, Lubs 

(1969) revealed the existence of a “fragile site” on the long arm of chromosome X in 

Xq27.3 (FRAXA site)(Fig. 1.1B), when they cultured lymphocytes derived from 4 boys 

with intellectual disability. In 1977, Sutherland noticed that this fragile site was more 

easily observed if folic acid is not added to the culture medium. The discovery of the 

fragile site in the members of the family that Martin and Bell first studied lead to the 

connection between the chromosomal abnormality and the clinical image of the 

syndrome, known today as Fragile X syndrome (FXS).  Its known genetic aetiology, 

prevalence, and neurobiological commonality with less well understood 

neurodevelopmental disorders - including autism spectrum disorder (ASD), attention 

deficit and hyperactivity disorder (ADHD), and other forms of intellectual disability - 

make FXS a valuable model for understanding the neurobiology of these diseases and 

developing targeted therapeutic interventions (Elizabeth Berry-Kravis, Knox, & Hervey, 

2011). 

 

1.2 Genetics of FXS 

Fragile X Syndrome is the most prevalent single-gene cause of mental retardation 

(Turner et al., 1996).  Recent estimates indicate that approximately 1 in every 4000 

males and 1in every 8000 females are affected (Crawford, Acuña, & Sherman, 2001; P. J. 

Hagerman, 2008; Turner et al., 1996). FXS arises from an inter-generational trinucleotide 

expansion (cytosine, guanine and guanine) in the 5’ untranslated region (UTR) of the 

Fragile X Mental Retardation 1 gene (FMR1) (Verkerk et al., 1991)(Fig. 1.1C). This gene 

encodes FMRP, a protein involved in the regulation of mRNAs at the post-transcriptional 

level, playing key roles in synaptic structure and function, and in underlying cognitive 

processes. In typically developing individuals, the number of trinucleotide (CGG) repeats 

varies between approximately 5 and 50 with an average number of 30 trinucleotide units 

(Cunningham et al., 2011; Fu et al., 1991; Snow et al., 1993). However, individuals 
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affected with FXS typically have more than 200 CGG repeats (Chiurazzi, Neri, & Oostra, 

2003)(Fig. 1.1C). A two-step process leads to the full mutation of the FMR1 gene. The first 

mutation results in the expansion of the CGG trinucleotide to 55 - 200 repeats (called a 

premutation); the person is considered a carrier at that point and can have only up to 

mild clinical symptoms. The second step of the mutation, results in an affected individual 

with more than 200 repeats (called a full mutation). The premutation only develops into 

a full mutation when passed by a female to her offspring, because a recombination event 

with the other X chromosome facilitates the expansion process. That expansion results 

in an epigenetic silencing of the FMR1 gene on the X chromosome (Sherman et al., 2002) 

through over-methylation of the promoter, which in turn prevents expression of Fragile 

X Mental Retardation protein (FMRP) (Verkerk et al., 1991). Although this increase in the 

number of trinucleotide (CGG) repeats accounts for the vast majority of cases of FXS, 

rarely an individual can also be affected by point mutations or deletions within FMR1 

gene which can result in its silencing (Grønskov, Hallberg, & Brøndum-Nielsen, 1998; 

Santoro, Bray, & Warren, 2012).  

While FXS was originally thought to be a recessive genetic disorder, scientists noticed 

that approximately 1/3 of carrier females exhibited mild clinical symptoms including 

cognitive difficulties, emotional and social deficits and occasionally depression (Kim 

Cornish et al., 2005; F. Tassone et al., 2000). This points to the fact that FXS is not 

recessive, but rather an X-linked dominant disorder with reduced penetrance in females 

due to the normal process of X-inactivation (Sherman et al., 1985). Female premutation 

carriers - even those not experiencing any cognitive and emotional abnormalities - may 

experience problems later in life. Almost twenty-eight percent of female premutation 

carriers suffer from premature ovarian failure and early menopause, a condition called 

Fragile X associated primary ovarian insufficiency (FXPOI) (Cronister et al., 1991; 

Sullivan et al., 2005). Male premutation carriers are at high risk of developing a 

neurological disorder known as Fragile X tremor/ataxia syndrome (FXTAS) - 

characterized by ataxia, tremor, cognitive and autonomic dysfunction, and Parkinson’s-

like symptoms - usually by the age of 50 (Hagerman et al., 2004; Moore et al., 2004). 
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Figure 1.1 The fragile X phenotype. (A) Affected individual: the characteristic facial features of the 
syndrome include long, narrow face, prominent forehead, jaw, and ears. (B) The “marker X” chromosome. 
This peculiar constriction at the end of the long arm of metaphase chromosome X is characteristic in fragile 
X (FX) individuals. (C) Schematic representation of the fragile X mental retardation 1 (FMR1) gene. The 
CGG repeat is located within the untranslated region of the first exon. Expansion over 200 repeats leads to 
overmethylation of the promoter and transcriptional silencing. (D) Scatterplot of full-scale intelligence 
quotient (FSIQ) on FMRP levels (percentages of normal expression) showing high correlation between the 
two paprameters. Figures modified from Penagarikano, Mulle & Warren 2007 and Loesch, Huggins & 
Hagerman 2004 
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The fact that FXS has single gene aetiology enables us to establish a direct link between 

the FMR1 gene mutation and corresponding FXS phenotype (Fig. 1.1D). In typically 

developing individuals, FMRP is expressed in most cells with high levels of FMRP in both 

foetal and adult brains (Abitbol et al., 1993; Devys, Lutz, Rouyer, Bellocq, & Mandel, 

1993). In individuals with FXS, the lack of expression of FMR1 in somatic cells (Pieretti 

et al., 1991) leads to a well-defined phenotype that is characterized by a range of 

physical, neuroanatomical, behavioural and cognitive deficits. 

 

1.3 Clinical symptoms of Fragile X Syndrome 

1.3.1 Cognitive symptoms 

Intellectual disability is the main symptom of Fragile X syndrome, and can vary in 

severity even between members of the same family. The vast majority of patients (>90%) 

have IQ between 20 and 70 (Dykens et al., 1988; Cornish et al., 2001). While preschool 

children with FXS show an IQ close to the lower end of the average, cognitive 

development is significantly delayed in childhood and adolescence relative to unaffected 

individuals. Therefore, it is common for boys with FXS to progressively fall behind in 

school. By adulthood, most FXS men have an IQ well below the average of 100- around 

40 - with specific deficits in visuospatial skills, attention, and executive function (Van der 

Molen et al., 2010). Females carrying the full mutation tend to experience learning 

difficulties, with 25% having cognitive defects severe enough to be characterized as 

intellectual disability (de Vries et al., 1996). Males with the fully mutated gene and 

extensive over-methylation have a mean IQ of 41, while men with the full mutation but 

less than 50% methylation have a mean IQ of 88 (Merenstein et al., 1996). It is thus 

obvious that the IQ of an individual heavily depends on the methylation pattern of his 

DNA, which impacts expression of FMR1 and production of Fragile X Mental Retardation 

Protein (FMRP) (Warren & Ashley, 1995).  

1.3.2 Physical Symptoms 

In addition to the cognitive impairments associated with FXS, which are the hallmark 

feature of the syndrome, a number of physical symptoms are common. The typical triad 

of features in FXS adult males includes macroorchidism (enlarged testicles), elongated 

faces and large prominent ears (Hagerman, 1997) (figure 3). Also common are flat feet, 
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high arched palate, and connective tissue abnormalities like hyper-extensible joints 

(Beckel-Mitchener & Greenough, 2004). Amongst all the aforementioned physical 

features, it has been suggested that large ears are a feature particularly associated with 

FXS and no other forms of intellectual disability (Bagni et al., 2012).  

1.3.3 Behavioural Symptoms 

Males with FXS have distinct behavioural features. Hyperactivity and attentional deficits 

manifest in almost 9 out 10 affected individuals, while restrictive language and, 

repetitive, compulsive behaviours such as hand-flapping occur in 95% of boys 

(Hagerman, 1997; Merenstein et al., 1996). FXS males display a pronounced eye gaze 

aversion, excessive shyness, and anxiety. Anxiety disorders are often seen in both male 

and female affected individuals and include selective aphonia (lack of speech), social 

seclusion, specific phobias, as well as generalized anxiety (de Vries et al., 1996; 

Hagerman et al., 2009; Sullivan et al., 2007). Aggressive behaviour occurs in 

approximately 30 to 50% of males and can also include impulsivity, tactile defensiveness 

and hand biting, (Hagerman et al., 2009). Females with FXS tend to have less intense and 

widely variable symptoms. Quite often, they display executive function and attention 

deficits, even when their IQ is within the normal range (de Vries et al., 1996; Hagerman 

et al., 2009). Visual perception deficits are also markedly affected in females with the full 

mutation. Finally, social deficits and social anxiety are problematic in FXS females and 

can lead to general shyness and selective aphonia (Elizabeth Berry-Kravis et al., 2011). 

1.3.4 Neurological Symptoms 

Affected individuals experience profound deficits in sensory processing. The 

pronounced hyperarousal and hyper-responsivity to auditory, tactile, visual, and 

olfactory stimuli in the environment, can lead to sensory defensiveness - defined as 

aversive and out of proportion behavioural response, to certain types of stimuli of any 

sensory modality, that most people would find to be non-painful (Hagerman & 

Hagerman, 2002). Hypersensitivity to visual stimuli or visual avoidance is evident in 

more than 9 out of 10 males with FXS, including high functioning males of normal 

intelligence (Merenstein et al., 1996). Auditory hyper-responsivity is also a common 

sensory integrative dysfunction in individuals with FXS as well as other types of 

intellectual disability. Its prevalence is quite variable, ranging from 15 to 100% in 

patients on the autism spectrum and is heavily dependent on the way of assessment (in 
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clinical research tests 15 - 40%, in questionnaires for parents 16 - 100%, in 

questionnaires for teachers approx. 30%) (Sullivan et al., 2007). 

The prevalence of epilepsy in people with an intellectual disability (ID) is apparently 

higher than in the general population (McGrother et al., 2006), therefore is not a surprise 

that seizure susceptibility is high amongst males with FXS with a prevalence of 13 to 

18%. Seizures gradually stop in adulthood (Elizabeth Berry-Kravis, 2002). Many seizures 

are generalized tonic-clonic in which the whole brain is involved from the onset and 

include a loss of consciousness and violent muscle contractions, while other episodes can 

be subtler, partial complex or partial motor seizures which start at a specific focal area 

(Musumeci et al., 1999). Seizures are characterized by muscle tension followed by 

convulsions, a types of seizure called tonic-clonic. If not controlled properly, status 

epilepticus (a state of persistent seizure) can under certain conditions lead to death. 

While the pathophysiology underlying seizures in FXS is not adequately understood, 

these seizures can be triggered by environmental stimuli (Hagerman & Hagerman, 

2002). Sudden aggressive attacks not caused by such stimuli may have temporal lobe 

origin or be partial complex seizures (Hagerman & Hagerman, 2002). 

 

1.4 Fragile X Syndrome and Autism Spectrum Disorders 

Autism Spectrum Disorders (ASD) are extremely heterogeneous and their aetiology is 

characterised by increased biological complexity. While the main cause of most cases of 

ASD remains elusive, a growing body of literature suggests that ASD has a strong genetic 

basis. In families with a child on the autism spectrum, the risk that a future sibling will 

be affected is 25 to 50 times greater than for the general population (Abrahams & 

Geschwind, 2008; DiCicco-Bloom et al., 2006). Studies of twins yield even more powerful 

evidence that autism has a strong genetic component: concordance rates are between 70 

and 90% for monozygotic twins and 0 - 10% for dizygotic twins (Abrahams & Geschwind, 

2008). This evidence has led many researchers to search for genes associated with 

increased risk of ASD. 
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Table 1.1 Clinical characteristics of patients with Fragile X Syndrome. The majority of the phenotypic 
characteristics have been described in males with FXS, women typically have similar features although 
often less severe. Modified from Saldarriaga et al., 2014 
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FXS is the most common known single gene cause of autism spectrum disorders, 

responsible for approximately 4% of all cases (Hagerman et al., 2010). Interestingly, not 

all individuals with FXS meet all the criteria of ASD: 30% of males with FXS will be 

diagnosed at some point in their lives with full-blown autism and an additional 30% have 

pervasive developmental disorder not otherwise specified (PDD-NOS) (Hagerman et al., 

2010). PDD-NOS is still in the autism spectrum disorders; it includes cases where the 

criteria for full autism have not been met due to late age of onset, atypical 

symptomatology, or sub-threshold symptomatology (De Bruin et al., 2007). FXS patients 

who do not meet the criteria to be include in the previous two groups, have at least one 

autistic feature, like eye gaze aversion, hand flapping etc. Comorbidity of FXS with 

additional neurological medical problems such as seizures, leads to an increased risk of 

having full-blown autism compared to patients with FXS alone (Garcia-Nonell et al., 

2008). Moreover, FXS comorbidity with autism increases in male and female FXS 

patients who have low IQs compared to individuals on the upper end of the IQ range 

(Hagerman et al., 2010). This high chance of co-occurrence between FXS and ASD has led 

many researchers to propose that FXS, being an aetiologically better defined (i.e., a 

single-gene) disorder, will provide valuable insights into the aetiology of non-syndromic 

ASD (Belmonte & Bourgeron, 2006). 

Both ASD and FXS are highly heterogeneous disorders in terms of symptom severity and 

manifestation amongst affected individuals. This variability is likely to be the outcome of 

differences in genetic background, prenatal and postnatal environmental factors, and the 

interplay of the two. It is obvious from the above that environmental influences and 

additional genetic anomalies work in an intertwined fashion to modulate the 

interrelationships between behavioural, cognitive, and attentional deficits in FXS 

(Hagerman et al., 2010). There are only a few examples of FXS patients who have 

additional pathological mutations - such as Down or Tourette syndrome, other sex 

chromosome disorders, allelic variants of the serotonin transporter that lead to 

increased susceptibility to depression, and gene expression changes related to Prader-

Willi phenotype (Garcia-Nonell et al., 2008; David Hessl et al., 2008; Nowicki et al., 2007). 

Their symptoms are noticeably more severe or more multifaceted than patients with FXS 

alone. Males with the later condition (Prader-Willi phenotype and FXS) are usually 

severely obese, show excessive hunger, hypogenitalia, and a higher comorbidity with 

autism than patients with FXS alone (Nowicki et al., 2007). Concluding this section, we 

should keep in mind that the prenatal and postnatal environment is likely to impact 
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disease phenotype in a much greater degree than previously thought. Environmental 

influences on the pathophysiology of FXS and the severity of the symptoms associated 

with the disease, are just beginning to be explored and are likely to include exposure to 

toxins, abnormal immune response, and abuse or neglect (Hagerman et al., 2010). 

 

1.5 The mouse model of FXS 

1.5.1 Mouse model generation 

The FMR1 gene is highly conserved across different mammalian species; Fmr1 gene in 

mice has a 95% homology with the human gene including the upstream regulatory 

region which contains the trinucleotide repeats. Moreover, the mouse homologue of 

FMRP shares 97% homology with human FMRP in their amino acid sequence (Ashley et 

al, 1993a; Ashley, et al., 1993b). Furthermore, the expression profiles of Fmr1 mRNA are 

very similar in terms of tissue distribution and developmental time course between 

humans and mice (Hergersberg et al., 1995; Hinds et al., 1993). However, possibly due 

to differences in epigenetic responses between mice and humans, when mice are 

engineered with the pathological CGG trinucleotide expansion, the Fmr1 gene does not 

become over-methylated and so fails to be silenced (Brouwer et al., 2007; Santoro et al., 

2012).  

More than 20 years ago, the first and most widely used KO (KO) mouse model was 

generated with a neomycin cassette interruption in exon 5 of the Fmr1 gene which 

results in translational silencing and loss of FMRP expression (C E Bakker et al., 1994). 

This outcome has a good construct validity for the full mutation that occurs in FXS 

patients. Since its creation, this mouse model has been proven to be invaluable in our 

understanding of the disease pathophysiology, the normal function of the product of the 

Fmr1 gene, fragile X mental retardation protein (FMRP) in health and in disease, and 

designing novel therapeutic strategies. 

 

1.5.2 Effects of background genetics in phenotype  

In the previous section about the human phenotype (section 1.2.4) it was mentioned, 

that there is significant heterogeneity in the symptom manifestation of complex 

disorders like autism and FXS, possibly due to genetic background effects, prenatal and 



13 
 

postnatal environment stimuli, and the interplay between the two (Hagerman et al., 

2010). Therefore, not all affected individuals express the same constellation of 

symptoms, nor do these symptoms manifest themselves with the same severity. This 

heterogeneity is also evident in the mouse model of FXS (Table 1.3). Taking into account 

the research in the field so far, most behavioural studies on the mouse model of FXS have 

been conducted on a pure B6 or FVB strain (Kazdoba, Leach, & Crawley, 2016; Santos, 

Kanellopoulos, & Bagni, 2014), though relatively recent studies have explored how 

behavioural phenotypes are modified by genetic strain (Corinne M. Spencer et al., 2011). 

The effects of genetic background on behaviour and physiology have been documented 

previously (Sittig et al., 2016) but it is plausible that the diversity seen in the Fmr1 KO 

mouse phenotype echoes the range of clinical symptoms amongst individuals with FXS, 

rather than being due to subtle differences in experimental procedures or genetic 

background influence alone. The inconsistency in the magnitude and direction of 

phenotypic differences seen in the Fmr1 KO mouse may at first seem discouraging and 

may suggest the idea of disregarding the model altogether. However, the heterogeneity 

of FXS is so notable that affected individuals show a range of cognitive impairments, with 

affected males displaying mild to severe cognitive symptoms (Hessl et al., 2009; 

Schneider et al., 2009). This poses an obvious challenge for FXS animal models, but it 

might also be considered an advantage. 

 

1.5.3 Pathophysiology of the Fmr1 KO mouse  

Dendritic spine morphology and neurotransmission 

Fragile X mental retardation protein (FMRP) functions primarily as an RNA-binding 

protein and is highly expressed in neurons, and more specifically in the cell soma, the 

dendrites and postsynaptic terminals (Antar et al., 2004; Bakker et al., 2000; Feng et al., 

1997). Over the last years, the functional characterization of FMRP has revealed its 

specific dynamics: FMRP enters the nucleus and interacts with pre-messenger 

ribonucleoprotein (pre-mRNP) complexes in order to escort them to the cytoplasm (Fig 

1.2). FMRP-containing mRNPs are largely associated to polyribosomes and involved in 

translational control both in soma and in dendritic spines (Bardoni et al., 2006; Dury et 

al., 2013). Furthermore, in neurons, some of the FMRP-mRNP complexes can be 

translocated to distant locations, such as dendrites, as component of RNA-granules, 

where they mediate the binding between mRNAs and molecular motors, such as 
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kinesins, promoting transport upon specific stimuli (Bassell & Warren, 2008; Davidovic 

et al., 2007). It is likely that this mechanism also influences abundance of a subset of 

mRNAs in synapses (Dictenberg et al., 2008). Decreased capacity to transport mRNA and 

control local translation into distal processes may result in an abnormal level of their 

protein products with consequences on the structure and synaptic plasticity, as observed 

in FXS patients and existing animal models (Maurin, Zongaro, & Bardoni, 2014).  

Dendritic spines, small protuberances along the neuronal dendrites, are loci of excitatory 

and inhibitory synaptic input, where a large number of ligand receptors and various 

signalling molecules that are essential for synaptic function are located (Esther a 

Nimchinsky, Sabatini, & Svoboda, 2002). Post-mortem analysis of human brain tissue 

revealed that individuals affected by FXS have an elevated density of dendritic spines 

compared to age-matched unaffected subjects, with the vast majority of dendritic spines 

appearing lengthened and immature (Greenough et al., 2001; Hinton et al., 1991; Rudelli 

et al., 1985; Wisniewski et al., 1991). Fmr1 KO mice bred on both the B6 and the FVB 

genetic background exhibit directly analogous deficiencies in spine quantity and 

morphology (Galvez et al., 2003; Galvez & Greenough, 2005; McKinney et al., 2005; 

Nimchinsky et al., 2001), contributing additional face validity to the Fmr1 mouse model. 

Analysis of the developing barrel cortex of young (1 week old) Fmr1 KO mice revealed 

enhanced spine density and increased spine length in mutant mice compared to control 

littermates; this difference was not evident at 4 weeks of age (Nimchinsky et al., 2001). 

This lack of spine irregularities in 4 weeks’ old mice was also seen in the developing 

somatosensory cortex of Fmr1 KO mice by the Galvez and Greenough (2005). In the same 

study, adult Fmr1 KO mice were shown to exhibit increased density of immature, thin 

elongated spines compared to control littermates (Galvez & Greenough, 2005). This 

leads us to hypothesise that there may be a short time period in postnatal synaptic 

development, during which dendritic spine morphology normalises in the absence of 

FMRP, but is not maintained throughout life. Similar structural deficits in dendritic 

spines have been observed in various other brain regions of older Fmr1 KO mice. For 

example, Fmr1 KO mice possess higher densities of lengthened spines in the visual cortex 

at 16 weeks of age compared to wildtype littermate controls (Comery et al., 1997). These 

studies suggest that the presence of functional FMRP is essential for the development of 

healthy dendritic spine morphology, and that the loss of FMRP effects adversely the 

normal structure of the synapse.  
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As a negative regulator of mRNA translation, FMRP heavily influences protein synthesis 

and amongst other things can affect the fine balance of components in the synaptic 

machinery located in dendritic spines (Fig. 1.3). Long term potentiation (LTP) and 

depression (LTD) are two basic plasticity mechanisms which lead to long lasting 

enhancement and decrease, respectively, of signal transduction between two neuronal 

synapses (Buffington et al., 2014; Malenka & Bear, 2004; Whitlock et al., 2006). These 

activity-dependent cellular events rely heavily on transcriptional and translational 

regulation of synaptic proteins in order to rapidly and accurately respond to synaptic 

activity modulation and support cognitive function. Studies focussed on plasticity 

mechanisms such as LTP and LTD, which are considered to express the 

electrophysiological correlates of learning and memory processes (Malenka & Bear, 

2004; Takeuchi, Duszkiewicz, & Morris, 2014), have revealed defects in various brain 

structures of mice lacking the Fmr1 gene (Table 1.2). A specific form of LTD, which is 

dependent on protein synthesis and metabotropic glutamate receptor (mGluR) 

activation (mGluR-LTD), has been shown to be enhanced in hippocampus Fmr1 KO mice 

and cultured hippocampal neurons where FMRP was reduced with the use of small 

interfering RNAs (siRNAs) (Huber et al., 2002; Nakamoto et al., 2007; Nosyreva & Huber, 

2006). LTP, along with decreased AMPA receptor surface localisation and selective 

increases in NMDA receptor subunit protein expression, has been shown to be impaired 

in Fmr1 KO mice (Krueger et al., 2011; Li et al., 2002; Nosyreva & Huber, 2006; Schütt et 

al., 2009; Seese et al., 2012; Shang et al., 2009). Two different FMRP deficient mouse 

models also display abnormal synaptic plasticity. The first is Fmr1 KO2 mice, an Fmr1 

null mouse model which lacks both FMRP and Fmr1 mRNA due to deletion of the Fmr1 

promoter and first exon (Mientjes et al., 2006). The second is called Fmr1 I304N, a 

relatively new FXS mouse model in which the endogenous Fmr1 gene harbours an 

isoleucine to asparagine mutation (I304N) which leads to a non-functional FMRP (Zang 

et al., 2009). In the hippocampus of Fmr1 KO2 mice, a lower ratio of AMPA to NMDA 

receptors was detected early in postnatal development compared to wildtype littermate 

controls (Pilpel et al., 2009b). The upregulation of NMDA receptors in the Fmr1 KO2 

hippocampus resulted in increased NMDAR-dependent LTP. Taken together, this data 

confirms that the absence of Fmr1 results in anomalies in normal synaptic development 

and activity, which is likely to contribute to the FXS behavioural and neurological 

phenotype. Given the importance of FMRP for the regulation of proteins vital to synaptic 

function, it is not surprising that FMRP deficiency results in defects in the structure and 

function of synapses. 
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Figure 1.2 Schematic representation of FMRP function. (A) FMRP interacts with protein partners that 
lock the Nuclear Localisation Signal (NLS) domain and let it enter the nucleus and join the nascent 
messenger ribonucleoproteins (mRNPs) complexes emerging from the nuclear pores. In the cytoplasm the 
FMRP-mRNPs complexes either associate with the translation machinery (when needed) or are 
transported in RNA-granules to distal parts of the neuron staying translationally repressed until needed. 
(B) In the absence of FMRP, mRNPs cannot be regulated and the binding of RNA granules to transport 
proteins cannot take place, since FMRP normally acts as an adaptor. As a results mRNA translation is not 
regulated properly and protein synthesis is increased. Figure modified from Dury et al., 2013 

 



17 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.3 Role of Fragile X mental retardation protein (FMRP) in modulating synaptic plasticity. The activation 
of group I metabotropic receptors (mGluR) stimulates translation of specific mRNAs at synapses. FMRP normally 
acts as a translational repressor regulating such expression; in the absence of FMRP, these mRNAs are over-
translated leading to abnormalities in synapse structure and function. 
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Table 1.2 Synaptic plasticity phenotypes observed in the mouse model of FXS. Modified from Sidorov, 
Benjamin Bear 2013). 
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Physical Symptoms 

Like males with FXS Fmr1 KO mice have notably enlarged testes compared to wildtype 

littermate controls, but overall normal structural morphology (Ce E Bakker et al., 1994; 

Slegtenhorst-Eegdeman et al., 1998). It has been shown that this difference in testicle 

size is due to elevated proliferative activity of Sertoli cells which help in the process of 

spermatogenesis; This increased activity increases the number of germs cells in the 

testicles, and therefore, their weight and size (Slegtenhorst-Eegdeman et al., 1998). The 

presence of enlarged testes echoes the macroorchidism seen in male individuals with 

FXS, and therefore extends the face validity to the Fmr1 KO mouse model in this aspect 

of the clinical disorder. Other physical characteristics, such as body temperature, body 

weight, and neurological reflexes do not differ between KO and wildtype mice, 

suggesting an otherwise typical general physical development (Ce E Bakker et al., 1994; 

Peier et al., 2000). There is also no prominent effect on any facial features or connective 

tissue as is observed in individuals affected by FXS, at least none that are perceivable to 

human observers (Hagerman, 1997). 

 

1.5.4 Cognitive deficits of the Fmr1 KO mouse 

I mentioned earlier that intellectual impairments are a prominent feature of FXS in 

affected individuals and can range from mild to severe. The difference in IQ scores 

between human patients and neurotypical individuals widens over time until around 12 

years of age, which is probably due to the delayed development individuals with FXS 

experience rather than a true deterioration in overall intellectual functioning (Hall et al., 

2008; Skinner et al., 2005).  Novel approaches in cognitive testing suggest that 

conventional IQ tests can be adapted in order to reveal subtle irregularities within a 

selected population (Hessl et al., 2009). The hippocampus, an important brain structure 

for cognition, has been found to be larger in individuals with FXS (Kates et al., 1997; 

Reiss, Lee, & Freund, 1994); additionally, functional deficits in hippocampus-dependent 

tasks in subjects with FXS (Cornish, Munir, & Cross, 1998, 1999) would suggest that any 

hippocampus dependent task should reveal a deficit in mouse models of FXS. 

Furthermore, while no volume or morphology abnormalities in amygdala and prefrontal 

cortex of individuals with FXS have been reported, FXS patients have abnormal 

behavioural responses in tasks requiring the amygdala (S. Y. Kim et al., 2014), frontal 

lobe (Mazzocco et al., 1992) and prefrontal cortex (Kwon et al., 2001). Therefore, larger 
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hippocampal volumes and hippocampal morphology differences seen in FXS patients 

(Jäkälä et al., 1997; Reiss et al., 1994) may or may not relate to the deficits in 

hippocampal-dependent memory. Keeping in mind that no cognitive task so far depends 

on a single brain structure; the aforementioned discrepancies could represent another 

instance in which behavioural tasks that require functional circuits (i.e., the limbic 

system) may lead to unpredictable outcomes when multiple neural components within 

that system are impaired (i.e., prefrontal cortex, amygdala, and hippocampus).  

Decades of research focussed on the characterisation of the cognitive abilities in 

individuals with FXS predict that deficits in a FXS mouse models should occur in short-

term (visuospatial) memory, visuospatial abilities, sequential information processing, 

associative learning, executive function and attention (Cianchetti et al., 1991; Kemper, 

Hagerman, & Altshul-Stark, 1988; Maes et al., 1994; Reiss & Freund, 1992) Starting from 

the Dutch-Belgium Fragile X Consortium (1994), many researchers over the last 22 years 

have conducted systematic characterizations of Fmr1 KO mice and compared the 

observed phenotypes to the intellectual disabilities exhibited by individuals with FXS. 

Spatial and Working memory 

The Morris watermaze (MWM) is a setup commonly used to evaluate hippocampal-

dependent spatial learning in rodents, using a variety of tasks. In the simplest task 

version (Spatial Reference Memory-SRM task), subjects are trained over several days 

(usually 1 week) to locate a submerged platform using spatial cues. The latency to find 

an escape platform from a pool of opaque water decreases with the number of training 

trials indicating learning. This test, which was initially developed by Richard Morris, is 

used as a robust readout for spatial learning and memory (Morris et al., 1982). The SRM 

task was used from the first study describing the creation of the Fmr1 KO mouse, to 

evaluate its visuospatial learning and memory (Bakker et al., 1994). The study did reveal 

mild genotype differences, such as that Fmr1 KOs’ performance was significantly poorer 

in reversal training (i.e., a change of platform location to the opposite position in the 

pool) than their wildtype littermates, specifically during the first few trials after location-

switching. This difference may reflect an impairment when dealing with alternating 

reinforcement parameters. Surprisingly however, when the platform was removed from 

the pool and mice had search for 60 seconds to locate it (probe trial), there were no 

performance differences between groups; this suggests that visuospatial memory is 

unimpaired in Fmr1 KO mice. When Kooy and colleagues (1996) repeated the original 
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Consortium study (Bakker et al., 1994) using a larger sample size, they observed very 

similar results in the watermaze reference and reversal task, with the additional finding 

of a genotype difference during the initial spatial memory acquisition. Again however, no 

significant differences in the time spent looking in the right platform area, during the 

probe trial, were observed; this could mean that while there are some differences in 

watermaze performance, these may not be functionally relevant to the cognitive deficits 

associated with FXS. Despite the deficit Fmr1 KOs exhibit in reversal training in 

watermaze, a different reversal learning task using an E-shaped maze filled with water 

revealed no difference between genotypes (Kooy et al., 1996). However, even though 

Fmr1 KO mice did not show a robust perseveration phenotype across slightly different 

cognitive modalities (i.e., impaired reversal in Morris water maze, but not E-shaped 

maze), a cross-shaped watermaze replicated the watermaze acquisition deficit, even if 

that was in just one of two used background genetic strains (Dobkin et al., 2000; Van 

Dam et al., 2000). The aforementioned initial learning deficits have been replicated by 

some (D’Hooge et al., 1997), but others found no differences between groups (Paradee 

et al., 1999; Uutela et al., 2012). Similarly, the perseveration deficits Fmr1 KO mice 

exhibit in reversal learning were replicated by some studies (K. B. Baker et al., 2010; 

D’Hooge et al., 1997) but not others (Paradee et al., 1999).  

This inconsistency in results across laboratories, points to the idea that the spatial 

learning deficits observed in the first studies may be due small changes in experimental 

conditions that cannot be systematically controlled. The vast majority of published 

studies -recently Baker and colleagues (2010) reported some probe trial differences- 

agrees that the probe trial analyses do not yield any differences between Fmr1 KO and 

wildtype mice, indicating limited deficits in spatial learning and memory. To further 

understand the role of FMRP in spatial learning and memory, the performance of Fmr1 

KO mice has also been analysed in other dry-land mazes. In the Barnes maze (BM) for 

example, rodents are trained to find an escape hole based on distal extra-maze cues, and 

contrary to what has been found in the MWM, in the BM the Fmr1 KO mice show 

significant differences in retrieval and memory consolidation compared to wildtype 

littermates (Yan et al., 2004). In addition, a relatively recent study (Guo et al., 2012) 

showed that Fmr1 KO mice exhibit a decreased ability to preserve spatial information 

after food reward, in a radial arm maze apparatus, compared to control subjects. We have 

to remember that some researchers have reported task-specific impairments in spatial 

cognition rather than global impairments (Cornish et al., 1998, 1999), although global 
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cognitive impairments in individuals with FXS have also been reported (Hall et al., 2008; 

D Hessl et al., 2009; Skinner et al., 2005). The mild deficits in spatial learning and memory 

reported in Fmr1 KO mice could support the hypothesis of task-specific cognitive deficits 

and not global cognitive dysfunction.  

Working memory has been shown to be affected in FXS and it is suggested to be amongst 

the core features of the syndrome (Baker et al., 2011). Several human clinical studies 

have shown that individuals with FXS exhibit low performance on specific working 

memory tasks under low-control conditions -verbal and visuospatial (K. Cornish et al., 

2001; Dykens, Hodapp, & Leckman, 1987; Jäkälä et al., 1997; Munir, Cornish, & Wilding, 

2000). Lanfranchi and colleagues (2009) recently reported working associative memory 

deficits under high-control conditions (i.e., a dual task requirement; for example, specific 

word recall only upon the presentation of a stimulus with particular properties) in 

affected individuals; these deficits were specific to another component of working 

memory, central executive functioning. While these studies and others suggest that 

human cognition deficits in FXS are task-specific and not global in nature, additional 

research has revealed impairments in all components of working memory in FXS 

regardless of task complexity and modality (Baker et al., 2011; Munir et al., 2000). The 

conflicting results related to specific and general working memory abnormalities in 

individuals with FXS could be due to task-specific contingencies (e.g., the type of stimuli 

used), as FXS patients shown more accurate recall with familiar stimuli rather than with 

abstract novel material (Maes et al., 1994). In Fmr1 KO mice, different working memory 

tasks, such as olfactory working memory and visuospatial working memory in a radial 

arm maze, can rely heavily on different brain regions (i.e., olfactory bulb or hippocampus, 

respectively). In several tasks, including those in the radial arm maze, Fmr1 KO mice did 

not show to exhibit robust working memory deficits (Yan et al., 2004), although others 

have reported working memory impairments in Fmr1 KOs in a version of a serial reversal 

task in the watermaze (Baker et al., 2010). Furthermore, Fmr1 KOs performed similarly 

to the wildtype littermates in the “olfactory discrimination task” (Guo et al., 2011; Mineur 

et al., 2002; Moon et al., 2008; Yan et al., 2004), suggesting that their working memory 

(which correlates with IQ in humans) is not affected. It is plausible that the olfactory bulb, 

hippocampus or other brain structures are compensating for deficiencies in working 

memory in some of these tasks. Therefore, behavioural tasks which are less dependent 

on multiple brain regions are necessary in order to examine whether Fmr1 KO mice 
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exhibit robust working memory deficits, as this would expand the face validity of the 

model. 

The conflicting results in cognitive assays to date have sparked a debate as to whether 

the Fmr1 KO mouse is a reliable and sufficient model of FXS in humans, since the core 

symptom of intellectual impairment is not prominent enough in the mutant mouse 

model.  

Associative memory 

Fear conditioning studies have been used to further elucidate whether other specific 

cognitive domains (i.e. associative learning) are affected in Fmr1 KO mice (Phillips & 

LeDoux, 1992). Fear conditioning can be divided into several distinct subtypes that 

dependent on the amygdala, hippocampus, and prefrontal cortex, each to a different 

extent. Contextual fear conditioning requires both the amygdala and hippocampus, while 

delay-cued fear conditioning requires the amygdala but not the hippocampus (Fanselow 

& Kim, 1994; Gould & Leach, 2014; Logue, Paylor, & Wehner, 1997). Contextual and 

delay-cued fear conditioning can also take place during the same training session and 

can be assessed using different settings in order to reveal hippocampus-dependent and 

hippocampus-independent memory effects, respectively. Trace-cued fear conditioning, 

a more difficult task in which the tone and shock are not simultaneous during training, 

requires hippocampus and prefrontal cortex (Gilmartin & Helmstetter, 2010; Runyan, 

Moore, & Dash, 2004) and may or may not be independent of the amygdala (Gilmartin, 

Kwapis, & Helmstetter, 2012; Raybuck & Matthew Lattal, 2011). In these tasks a 

conditioned and non-aversive stimulus (a tone, a smell or an environment) is coupled 

with a harmful unconditioned stimulus. As a result of this pairing, the conditioned 

stimulus “obtains” the aversive properties of the unconditioned stimulus, leading 

subjects to react aversively (freezing) to it; this response can be used as a readout of a 

defensive behaviour and, by association, an expression of memory (Wehner & Radcliffe, 

2004). When Fmr1 KO mice were tested in both cued (tone) and contextual 

(environment) fear conditioning paradigms, they were shown to freeze less than the 

control littermates indicating associative memory deficits (Ding, Sethna, & Wang, 2014; 

Guo et al., 2011, 2012; Hayashi et al., 2007; Olmos-Serrano, Corbin, & Burns, 2011; 

Paradee et al., 1999). Trace fear conditioning studies have revealed mixed results: some 

showed Fmr1 KO mice may have deficits (Zhao et al., 2005) while others showed Fmr1 
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KOs to be identical if not slightly better than their wildtype littermates in acquisition of 

trace fear conditioning (Baker et al., 2010). 

As in the case of spatial and working memory, other research groups did not report any 

memory deficits in the Fmr1 KOs compared to littermate controls, using the same 

behavioural tasks (Peier et al., 2000; Uutela et al., 2012; Van Dam et al., 2000). These 

inconsistences could, once again, stem from small differences in the experimental 

protocols and/or from the influence of the background genetic strain (Corinne M. 

Spencer et al., 2011). Interestingly, Olmos-Serrano and colleagues (Olmos-Serrano et al., 

2011) reported decreased freezing time in cued fear conditioning, when the same tone 

is presented in an altered environment (different context) from the initial chamber 

where the training took place, suggesting that the amygdala-dependent learning is most 

impaired. 

One cognitive test which was used very early on in the behavioural assessment of the 

Fmr1 KO mouse model is the passive avoidance task. This task utilizes the association of 

a mild foot-shock (just like fear conditioning) with an apparently safer but previously 

“punished” dark compartment of a maze in order to assess memory for the aversive 

event. Passive avoidance learning relies heavily on the dorsal hippocampus (Lorenzini 

et al.,  1996) but because it involves fear conditioning, it also requires the amygdala 

(Slotnick, 1973). This dependence of performance in passive avoidance task on the 

dorsal hippocampus and amygdala would predict that subjects showing abnormalities in 

the function of either or both of these brain structures -like Fmr1 KO mice would show 

decreased performance in this task, but unfortunately experimental data is inconsistent. 

Indeed, while control mice take more time or even refuse to enter the dark compartment, 

because they associate it with the shock to their paws, the Fmr1 KO mice show a range 

of behavioural responses. Even though amygdala volume or structure are not typically 

affected, amongst individuals with FXS, affected individuals with FXS experience 

difficulties with emotion regulation. Furthermore, a recent study revealed that 

individuals with FXS displayed deceased activation of the amygdala, relative to healthy 

age-matched subjects, while viewing fearful faces (Kim et al., 2014); this indicates a 

difference in the processing of potentially fearful stimuli. Inconsistencies in behaviour 

have been obvious in this type of task as well; passive avoidance learning appeared to be 

unaffected in Fmr1 KO mice in some studies (Bakker et al., 1994; Dolen et al., 2007; 

Veeraragavan et al., 2012; Veeraragavan et al., 2011) but was found to be disrupted in 
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others (Ding et al., 2014; Michalon et al., 2012, 2014; Yuskaitis et al., 2010). Interestingly, 

Fmr1 KO mice seem to be more susceptible to extinction training than wildtype 

littermates - as shown by shorter latencies to enter the dark compartment (Dölen et al., 

2007; Michalon et al., 2012), a finding which is consistent with the exaggerated 

extinction Fmr1 KOs exhibit in other assays (Sidorov et al., 2014). Looking again at the 

divergence in the behaviour response of Fmr1 KOs we could speculate that existing 

cognitive deficits combined with abnormal responses to fearful stimuli are working in 

opposition, explaining some of the inconsistent results in fear-associated tasks such as 

passive avoidance.  

A different task which was used to assess, amongst other cognitive components, 

associative memory in Fmr1 KO mice was the “five-choice serial reaction time” task.  This 

paradigm can be used to measure to main aspects of cognition: visuospatial attention 

and impulsivity. Mice are required to observe a random light in one of five small holes, 

located on side of the testing box, and respond in a timely manner with a nose-poke in 

the correct spatial location, in order to receive a food reward. Fmr1 KO mice were found 

to be significantly impaired in the acquisition phase; they showed an increased number 

of errors per trial during the training period (Krueger et al., 2011). They were therefore 

slower in reaching a pre-set training criterion and completing the task. However, they 

were able to complete the task.  

In an attempt to implement rodent cognitive tasks with more ethological relevance, more 

recent studies have included spontaneous exploration tasks including novel object 

recognition as well as spatial and temporal order object recognition tasks. Novel object 

recognition, which is typically used as a short-term memory task, exploits rodents' 

innate behaviour in investigating novelty. In the case of novel object recognition (NOR), 

a subject is placed into a testing box with two identical copies of an object. After a certain 

interval, the experimental subject is returned to the box where one of the familiar objects 

has been replaced by novel one (Bevins & Besheer, 2006). If the mouse remembers the 

previously seen object, it preferentially investigates the novel object. Fmr1 KO mice have 

been shown to have a memory deficit in this task (Busquets-Garcia et al., 2013; King & 

Jope, 2013; Ventura, Pascucci, Catania, Musumeci, & Puglisi-Allegra, 2004), but as with 

all the previously discussed cognitive domains, this impairment has not always been 

replicated successfully (Yan et al., 2004). Lastly a recent study reported that Fmr1 KO 
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mice are impaired in a hippocampus-dependent spatial object recognition task, known 

as object location or object displacement task (King & Jope, 2013). 

 

1.5.5 Behavioural abnormalities of the Fmr1 KO mouse 

Anxiety, Attention and Hyperactivity  

Anxiety is one of the central behavioural features of individuals with FXS, which persists 

throughout their life (Hagerman & Hagerman, 2002). Anxiety-related behaviour testing 

in Fmr1 KO mice, like all previously discussed behaviours, has generated quite 

inconsistent results, ranging from reduced anxiety-like behaviour in Fmr1 KOs, to no 

genotype differences, to increased anxiety-like behaviour on numerous tasks. The 

elevated plus-maze is an anxiety-related task that utilizes rodents’ natural preference for 

enclosed shady spaces by observing the amount of time and entries made into dark, 

enclosed (safe) arms as compared to open (exposed-unsafe) arms of an elevated-plus 

maze (Handley & Mithani, 1984; Lister, 1987; Peier et al., 2000). Fmr1 KO mice have been 

shown to spend significantly more time in the open arms and less time in the closed arms, 

but also have travelled more throughout the maze compared to controls. These findings 

may simply indicate higher general locomotion or they could be interpreted as decreased 

fear of exposed areas (Heulens et al., 2012; Liu, Chuang, & Smith, 2011; Yuskaitis et al., 

2010). In a very similar task to the elevated plus maze set-up called the zero-maze, Fmr1 

KO mice spent more time in the open quadrants of the maze (Z.-H. Liu et al., 2011). 

Furthermore, in the open field test, reduced time spent or distance travelled in the centre 

of an open area is traditionally considered an indicator for anxiety-related behaviour, 

since wildtype mice prefer to remain in the perimeter (thigmotaxis) when introduced to 

a novel environment. Fmr1 KO mice spent a greater portion of their time in the central 

area of the open field compared to wildtype control mice (Spencer et al., 2005; Yan et al., 

2004; Yuskaitis et al., 2010). Taken together, these reports point to a profile of lower 

anxiety-related behaviours in Fmr1 KO mice, which is the opposite to the FXS clinical 

phenotype. In contrast to the findings of the previously discussed studies, others have 

shown Fmr1 KO mice to exhibit increased anxiety-like responses in the mirrored 

chamber task (Spencer et al., 2005), avoidance of the central area of the open field 

(Restivo et al., 2005) and reduced time spent in the open arms of the elevated plus-maze 

(T V Bilousova et al., 2009). Another task which has been used to assess anxiety-related 

behaviours is the light-dark exploration test. The apparatus is divided into two 
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compartments; a well-lit compartment and dark enclosed one. A typical mouse subject 

spends more time in a dark part of the testing box than the well-lit (J. Crawley & Goodwin, 

1980). It has been shown that mice which received anxiolytic drug treatments increase 

the number of transitions between compartments (J N Crawley, 1985). When Fmr1 KO 

mice were tested in the light-dark test, they made more transitions between the 

chambers (Ding et al., 2014; Spencer et al., 2011), but did not show any differences in the 

time they spent in the light chamber compared to wildtype littermates. This could mean 

that the hyperactivity Fmr1 KOs exhibit could hide any anxiety-related phenotypes when 

the tasks used, rely on scoring locomotion.  Contrary to the aforementioned studies, 

several research groups reported no differences between genotypes in the elevated plus-

maze (Mineur et al., 2002; Nielsen et al., 2002; Yan et al., 2004), in light-dark test 

(Spencer et al., 2007), or in the open field (Veeraragavan et al., 2012, 2011). These 

conflicting results could potentially be explained as a combination of differences in 

experimental parameters and housing conditions, genetic background, and age at testing 

(Walf & Frye, 2007). Moreover, elevated locomotion in Fmr1 KO mice could mask 

anxiety-like behaviours for the simple reason that all three of these tasks (elevated plus 

maze, light dark box, zero maze, open-field) use, to some degree, subjects’ movement as 

a measure. Given the sensitive nature of anxiety-related assays, it is important that 

similar testing protocols are used across labs to determine the robustness of the Fmr1 

KO genotype on anxiety-related phenotypes, but also that novel tasks which tease out 

these behaviours without taking into account locomotion, should be employed.  

It has been mentioned that individuals with FXS exhibit hyperactivity and have 

difficulties with attention and impulse control (Cornish et al., 2004; Hagerman & 

Hagerman, 2002; Hatton et al., 2002). Compared to individuals with other forms of 

severe intellectual disability, individuals with FXS performed better on selective 

attention, no difference between subjects was found in sustained attention and working 

memory (Bailey et al., 2001). Moreover, different studies have found that as task 

difficulty increases, individuals with FXS exhibit more profound attentional deficits, 

especially when subjects have to inhibit/switch previously learned responses (Wilding, 

Cornish, & Munir, 2002). In view of FXS clinical symptoms (i.e., its common comorbidity 

with ADHD), Fmr1 KO mice were assessed in the previously discussed, “five-choice serial 

reaction time” task, which is considered the most reliable task for attention and 

impulsivity in rodents (Winstanley, Eagle, & Robbins, 2006). Although Fmr1 KO mice 

were impaired in the acquisition phase of a visuospatial discrimination task, they were 
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identical to wildtype controls in the five-choice serial reaction time task (Kramvis et al., 

2013; Krueger et al., 2011). Specifically, Krueger and colleagues found that Fmr1 KOs 

need more training in order to reach a pre-set criterion during initial training (> 50% 

correct of > 15 trials for 2 consecutive days), when nose-pokes in illuminated holes were 

marked as correct and nose-pokes in non-illuminated holes were incorrect, but this 

effect could not be replicated in subsequent studies (Sidorov et al., 2014). Sidorov and 

colleagues reported a different behaviour instead: they observed enhanced extinction of 

nose-poke responses in Fmr1 KOs, which is consistent with the enhanced extinction 

training seen by some research groups in a passive avoidance paradigm. In a different 

series of tasks assessing attention, Fmr1 KO mice were shown to exhibit impaired 

inhibitory control, exhibiting a higher rate of premature responses than wildtype mice 

(Moon et al., 2006). This was associated with changes in task parameters, suggesting that 

inhibitory control in Fmr1 KO mice could be affected by stress or novelty. Additionally, 

the incorporation of olfactory distracters in the task significantly disrupted the 

performance of Fmr1 KO mice; making more inaccurate responses during distracter 

presentations (Moon et al., 2006). Perhaps the most consistent behavioural finding in 

Fmr1 KO mice is their increased locomotor activity in the open field test compared to 

wildtype littermate controls (Bakker et al., 1994; Ding et al., 2014; Moon et al., 2006; 

Peier et al., 2000). It is important to keep in mind that the observed robust hyperactivity 

phenotype seen in Fmr1 KOs could easily be a confounding factor for the assessment of 

sustained attention, given that elevated general activity of mutant mice can easily 

interfere with task engagement. 

Social interactions and Communication 

Together with high levels of anxiety, individuals with FXS are often diagnosed with social 

phobias and social avoidance, especially those who are on the autistic spectrum (Cohen 

et al., 1988; Gross, Berry-Kravis, & Bassell, 2012; Hagerman & Hagerman, 2002). In 

rodents, a test that assesses preference for social interactions and social novelty is the 

“three-chambered apparatus”, in which the experimental subject is given the choice 

between exploring a compartment (chamber) containing a stranger/novel mouse or an 

empty one (alternatively an object/non-social). Usually testing includes a second phase 

in which the experimental subject can choose between the previously 

encountered/familiar mouse and a new stranger mouse. The numbers of approaches and 

the time spent in proximity with each mouse are scored and usually expressed as raw 
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exploration times or an index expressing the exploration of the novel social stimulus 

(e.g., novel stranger mouse) versus the novel object or familiar mouse stimulus (Moy et 

al., 2004).  Neurotypical mice will preferentially explore a novel mouse when given the 

choice between a novel mouse and a novel object or a novel mouse and familiar mouse. 

Results using the three-chambered social approach with Fmr1 KO mice to evaluate their 

sociability are inconsistent in the literature. For example, several research groups have 

reported that Fmr1 KO mice have unaffected sociability, preferring the social over the 

non-social maze compartment (Bhattacharya et al., 2012; Liu & Smith, 2009; 

McNaughton et al., 2008; Mines et al., 2010; Pietropaolo et al., 2014). On the other hand, 

Fmr1 KO mice are affected in social novelty discrimination; they do not show any 

preference for the unfamiliar stranger mouse in the second phase of the paradigm 

(Bhattacharya et al., 2012; Mines et al., 2010). Moreover, Fmr1 KO males show less 

interest in social interaction with novel female mice (Mineur, Huynh, & Crusio, 2006) as 

well as impaired social dominance when tested in the “tube-test” with unfamiliar 

wildtype mice (C. M. Spencer et al., 2005). Such deficits may be partially explained by 

augmented social anxiety, as seen by the increased rearing and digging behaviour that 

the Fmr1 KO mice display in the presence of another mouse (Liu & Smith, 2009; 

McNaughton et al., 2008; Mines et al., 2010). We have to keep in mind that anxiety 

phenotypes in Fmr1 KO mice haven’t yielded any robust results over the years. Impaired 

preference for the unfamiliar mice may indicate lack of interest in general novelty and/or 

failure to discriminate between familiar and novel mice; although the latter should be 

supported by robust deficits in olfactory discrimination tasks. As previously discussed, a 

finding which supports a general lack of interest for novelty is that Fmr1 KO mice fail to 

recognize the novel object, in the novel object recognition task (Bhattacharya et al., 2012; 

Busquets-Garcia et al., 2013; Ventura et al., 2004). These findings suggest that 

discrimination deficits are not only observed in social tasks and that a deficit in the 

second phase of the three-chambered apparatus testing is hard to interpret. 

In addition to the previously discussed studies, studies using direct social interactions 

with freely moving juvenile mice of the same sex, or using adult male subjects interacting 

with females on oestrus, did not reveal any differences between genotype deficits in 

social behaviour (Pietropaolo et al., 2014; Rotschafer et al., 2012) or they even showed 

enhanced social interactions for Fmr1 KO mice, based on the greater engaging duration 

in affiliative behaviours, such as nose-to-nose sniffing, nose-to-anogenital sniffing and 

interaction time with a stimulus mouse by Fmr1 KO mice (Spencer et al., 2005, 2008).   
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Table 1.3 Behavioural abnormalities seen in Fmr1 KO mouse (Modified from Santos et al., 2014 and 
Kazdoba et al., 2014). 
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Once more, genetic background differences seem to affect the behavioural output; social 

interaction performance appears to be dependent on the background strain into which 

the Fmr1 mutants have been bred (Moy et al., 2009; Spencer et al., 2011). Despite several 

studies suggesting that individuals with FXS have social interaction deficits and social 

phobia, it has been proposed that these social deficits are due to hyperarousal and 

augmented social anxiety rather than a lack of interest in social interactions. A behaviour 

supporting this idea is known as the "Fragile X handshake"; affected individuals will 

shake the interviewer's hand and acknowledge their presence but will actively avoid eye 

contact until the interviewer looks away (Lozano, Rosero, & Hagerman, 2014); the 

behaviours of the mouse model described here, may differentially account for these 

factors. 

Along with various other cognitive delays, children with FXS exhibit delays in all major 

developmental milestones, including language development (Abbeduto et al., 2008; 

Finestack, Richmond, & Abbeduto, 2009; J E Roberts, Mirrett, & Burchinal, 2001). Rodent 

pup ultrasonic vocalizations (USVs) are considered to be biologically meaningful 

(Fischer & Hammerschmidt, 2011), as they are emitted by young pups primarily during 

stressful situations (i.e. maternal separation) (Maria Luisa Scattoni, Crawley, & Ricceri, 

2009) and elicit behavioural responses by the parents (mainly mother). It has been 

shown that the type and duration of USVs emitted by the Fmr1 KO mouse pups (8 days 

old) were different from the control littermates, following maternal separation (Roy, 

Watkins, & Heck, 2012); however, there was no apparent changes in the total number of 

calls. Recently, Lai and colleagues reported an increased number of USVs in seven-day 

old mouse Fmr1 KO pups (Lai et al., 2014a) suggesting an age-dependent function of 

FMRP on communication. Moreover, adult male mice and rats emit ultrasonic 

vocalizations during interaction with females and in response to scents from sexually 

receptive females (Holy & Guo, 2005). Yet again the behavioural phenotypes related to 

social communications are fairly contradictory; studies focusing on ultrasonic 

vocalizations of Fmr1 KO mice have been inconsistent in their findings. While there are 

reports of increases (Spencer et al., 2011) or no differences in the number of calls 

between Fmr1 mutant and wildtype mice (Pietropaolo et al., 2011), other research 

groups have reported a significant reduction in vocalizations from Fmr1 KO mice (S. E. 

Rotschafer et al., 2012), including deficits in specific call-types (Roy et al., 2012); 

although no apparent difference in mating behaviour was observed.  Taken together, 

these data suggest that social interaction and communication phenotype in Fmr1 KO 
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mice is multifaceted. Mutant mice seem to exhibit some aspects of normal sociability, but 

they also display some abnormalities in social behaviour and communication. 

 

1.5.6 Neurological symptoms of the Fmr1 KO mouse 

Approximately 10-20% of individuals with full FMR1 mutation exhibit childhood 

seizures which gradually decrease in adulthood (Hagerman & Stafstrom, 2009; 

Musumeci et al., 1999). Seizures associated with FXS are irregular, often partial, and can 

typically be managed with appropriate medication (Hagerman & Stafstrom, 2009; Heard 

et al., 2014). Fmr1 KO mice have not been reported to display spontaneous seizures, but 

display enhanced susceptibility to audiogenic seizures, induced by exposure to a 125 

decibel, high-intensity siren (Dolan et al., 2013; Osterweil et al., 2013a; Pacey, Heximer, 

& Hampson, 2009; Veeraragavan et al., 2012). Susceptibility to audiogenic seizures has 

been the most consistent behavioural phenotype in the mouse model and it is therefore 

usually implemented to examine the efficacy of potential FXS treatments (Michalon et al., 

2012; Osterweil et al., 2013; Pacey et al., 2009; Yan et al., 2005). Audiogenic seizure 

vulnerability in Fmr1 KO mice could reflect the seizure susceptibly seen in individuals 

with FXS, although the severity of audiogenic seizure in Fmr1 KO mice varies in degree 

depending on age and background strain (Santos, Kanellopoulos, & Bagni, 2014).  

Individuals with FXS have been reported to exhibit hyperarousal and augmented 

sensitivity to sensory stimuli (Verkerk et al., 1991). For example, individuals with FXS 

have heightened and more frequent responses and reduced habituation to a variety of 

sensory stimulations (e.g., olfactory, auditory, visual, tactile, and vestibular stimuli) as 

measured by electrodermal responses (Miller et al., 1999). Electrophysiological 

recordings in the auditory cortex demonstrated enhanced responses to auditory tones 

in Fmr1 KO mice, indicating that auditory neurons of Fmr1 KO mice are hypersensitive 

to stimuli (Rotschafer & Razak, 2013). These sets of data are consistent with the 

increased responses to high intensity tones seen in individuals with FXS (Rojas et al., 

2001; Van der Molen et al., 2012b). “Prepulse inhibition” (PPI) has been used to evaluate 

the ability of human and rodents to filter irrelevant information in their surroundings, 

called sensorimotor gating. It occurs when a weak pre-stimulus weakens the response 

to a strong stimulus (pulse) which follows within 100 milliseconds (Braff, Geyer, & 

Swerdlow, 2001; Swerdlow et al., 2001). Abnormal sensory inhibition may reflect a 

deficit in processing and prioritizing incoming information, a feature also seen in 
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schizophrenic patients (Braff et al., 2001; Rihs et al., 2013). Treatments with 

antipsychotic medication has been shown to alleviate those deficits in both rats and 

humans (Curzon, Kim, & Decker, 1994; Sánchez-Morla et al., 2009; Suryavanshi et al., 

2014). It is known that patients with FXS are hyper-aroused in situations of excessive 

stimulation and habituate poorly to sensory stimuli (Elizabeth Berry-Kravis, 2014). 

Deficits in PPI have been reported in individuals with FXS, correlating with other clinical 

FXS features, such as reduced IQ and attention (Frankland et al., 2004; D Hessl et al., 

2009; Yuhas et al., 2011). Therefore, Fmr1 KO mice and control littermates were tested 

in PPI in an acoustic startle task to examine possible sensorimotor gating deficits. These 

studies in Fmr1 KO mice have yielded contradicting results. The majority of reports 

indicate Fmr1 KOs exhibit enhanced PPI and decreased startle (Ding et al., 2014; Paylor 

et al., 2008; Pietropaolo et al., 2011).  This is a significant effect but unfortunately in the 

opposite direction to the human FXS phenotype.  Moreover, it fits well with enhanced 

extinction in fear conditioning paradigms. In contrast, other research groups have 

reported deficits in PPI for Fmr1 KO mice (de Vrij et al., 2008), enhanced startle 

responses to low intensity auditory stimuli (Nielsen et al., 2002), and minimal or no PPI 

differences between Fmr1 KOs and wildtype controls (Nielsen et al., 2002; Veeraragavan 

et al., 2011; Yan et al., 2004). As has been previously discussed, Fmr1 KO’s behaviour 

phenotypes are heavily influenced by genetic background (Pietropaolo et al., 2011; 

Spencer et al., 2011). Explanations for the inconsistent findings on PPI as reported by 

different research laboratories could include the use of different murine genetic 

backgrounds and subtle differences in testing protocols (Swerdlow, Braff, & Geyer, 

2000). Of greater concern have been the contrasting phenotypes between the majority 

of PPI studies in the Fmr1 KO mouse model and FXS clinical studies. However, in one 

published study Frankland and colleagues (2004) showed that Fmr1 KO mice display a 

heightened reaction to auditory stimuli, similar to the human phenotype (Renoux et al., 

2014). Despite the inconsistences in published reports, it is clear that FMRP plays a role 

in sensorimotor gating. The absence of FMRP could be underlying the altered sensitivity 

to sensory stimulation seen in both human patients and mouse models.  

Another aspect of behaviour which seem to be recapitulated by the mouse model of FXS 

is abnormal circadian rhythms. Sleep difficulties are a common feature of patients with 

FXS (Elizabeth Berry-Kravis, 2014); in the mouse model of the syndrome, FMRP has been 

shown to be involved in the regulation of circadian rhythmicity as measured by 

locomotor analysis. In complete darkness, FMRP was found to regulate the duration of 
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the circadian period (J. Zhang et al., 2008) as shorter activity periods of wheel running 

were recorded in the Fmr1 KO mice compared to wildtype controls. Interestingly, FMRP 

absence affects circadian rhythmicity differently in females and males; recorded 

ambulatory activity during the light phase was elevated only in the female Fmr1 KO mice 

(Baker et al., 2010)and no changes were reported in males. A caveat of these studies is 

that the affected circadian patterns seen in Fmr1 KO mice cannot be directly compared 

to the sleep disturbances seen in human; simply because lack of activity (as measure by 

wheel running) does not mean sleep.  

 

1.5.7 Lessons learned and lessons to be learned 

Over the past 20 years, combined research by hundreds of laboratories working on FXS, 

has led to the identification of several hundreds of possible FMRP target mRNAs 

(Pasciuto & Bagni, 2014). A large number of these FMRP target mRNAs is known to have 

integral roles in synapse formation and function; a lot have also been shown to confer 

risk for autism. This fact might explain the very diverse and heterogeneous behavioural 

deficits seen in FXS; FMRP loss could be influencing multiple circuitries and cause 

alterations in various receptor pathways in different ways. Moreover, recent studies 

have shown that there is a convergence not only in behaviour but also key 

pathophysiological mechanisms between the mouse model of FXS and non-syndromic 

forms of intellectual disability (Barnes et al., 2015), and between Fmr1 KO mice (as a 

syndromic form of autism) and neuroligin 3 (Nlgn3) KO mice (as a non-syndromic form 

of autism) (Baudouin et al., 2012). Even though it is very well established that multiple 

behavioural abnormalities seen in the mouse model of FXS are due to FMRP loss and 

subsequent alteration of the glutamatergic signalling (Bear, Huber, & Warren, 2004), 

many other molecular pathways such as BDNF, mTOR, ERK1/2, cAMP, and PKC cascades 

are also affected (Osterweil et al., 2010; Sharma et al., 2010; Uutela et al., 2012; Wang et 

al., 2008). In addition, multiple neuronal circuits, such as the GABAergic, cholinergic, 

dopaminergic, and serotonergic systems, have been shown to be modified by FMRP loss 

(Deng et al., 2013; Gatto, Pereira, & Broadie, 2014). What’s clear from these sets of data 

is that while certain aspects of FXS are recapitulated in the Fmr1 KO mouse, other clinical 

features of the syndrome cannot be reproduced. This could be due to limitations of the 

behavioural paradigms used or because of limitations of the mouse as a model of 

neuropsychiatric diseases. Later in this thesis (Chapter 3) I will try to compare the two 
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favourite rodent species in biomedical research, mouse and rat, and explain why newly 

created rat models have the potential to expand our knowledge of the pathophysiology 

of many devastating neuropsychiatric disorders. 

Although it is well-known that the core genetic cause leading to FXS is the silencing of 

the FMR1 gene, the wide spectrum of disabilities and diversity of physiological and 

cognitive features among patients with FXS lead us to believe that the cure of the disease 

could be difficult when targeting a single downstream affected pathway. The 

combination of pharmaceutical treatments targeting different molecules altered in FXS 

might be the key for the amelioration of FXS deficits. Having said that, the use of 

established and newly created animal models has been and will be of vital importance in 

advancing our understanding on the molecular basis of FXS, in order to be able to identify 

key affected molecular mechanism, which may lead to extended behavioural 

improvement when targeted. In the following introductory chapter, I will review recent 

advances in FXS treatment development and summarise FXS clinical trials which utilise 

symptom-based and mechanism-based treatments. 
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2. Therapeutic approaches in FXS 

2.1 From Symptom-based to Mechanism-based therapeutic 

interventions 

Drug discovery is by no means a novel concept. For millenia, we have identified the 

protective and therapeutic capacity of herbs and their crude extracts, like poppy seeds 

or willow tree bark. This premodern approach was pretty straighforward: focus 

exclusively on efficacy and safety without concern for mechanism of action (Enna & 

Williams, 2009). Remarkably, the Greek physician Hippocrates in the fourth century BCE 

described headache relief and fever reduction from the bitter powder of the willow tree 

in writings and was aware of the utility of willow bark in the treatment of inflammatory 

pain (Ugurlucan et al., 2012). Nearly two and a half millennia down the line, chemists 

working for Bayer isolated the active substance – salicylic acid –  edited its formulation 

in order to reduce gastric side effects, and started selling it as aspirin in 1899. Similarly, 

the powerful analgesic morphine, was first isolated from opium poppy in 1804, 

industrially produced by Merck in Germany in the late 1820s, and later modified to be 

commercially sold as a cough suppressant in 1898, under the trade name Heroin. All of 

the above were done without any knowledge of the processes being targeted in the 

human body. The mechanism of action underlying the effects of these medications, and 

in the earliest example of salicylic acid, even the chemical compound itself, was 

completely unknown when these drugs were popularised. In this way, the empirical, 

symptom-based, approach led to the discovery of original CNS drugs. 

Following the genomic revolution of the 1990s, the  current high-throughput era has 

drastically reshaped our approach  to the discovery of novel therapeutics. Today, 

research efforts focus on a hypothesis-driven, mechanism-based approach. Drug 

discovery emphasises target identification and the discovery of new chemical 

compounds which can act on a preselected molecular target site. This approach requires 

a very good understanding of the target physiology and a progressional integration of 

cellular and tissue in vitro studies, ultimately to animal models that can within reason 

predict the human responses (predicitve validity of a model).  

This approach, also called "molecular medicine", begins with the identification of 

patients with similar or identical presentation of the disorder (Krueger & Bear, 2011). 

This can be very challenging when it comes to psychiatric and neurological disorders 
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which are highly heterogeneous in behavioural symptoms and genetic aetiology. 

Identifying multiple, more specific disorders from what originally appeared to be one 

syndrome with a diverse phenotype, will increase the likelihood of discovering the 

underlying mechanisms causing each disorder. A profound understanding of the genetic 

aetiology of the disease consequently allows for the generation of animal models with 

adequate construct validity. The application of basic neurobiology research in these 

models aims to characterise the molecular, cellular, and circuit processes being affected; 

these processes should be tightly associated with a measurable, behavioural 

manifestation. Molecular targets, such as receptors or proteins taking part in critical 

signal transduction cascades, may be amenable to pharmacological or other 

interventions. Genetic or small molecule approaches are validated first using in vitro 

assays and later in the animal model. It is critical to remember that irrespective of how 

much different disorders overlap, it is best to consider them independently at these first 

steps of the drug development process. Nevertheless a single therapeutic strategy could 

effectivelly alleviate symptoms in several or even all related disorders. Keeping this in 

mind, the current hope is that the identification of core molecular process contributing 

to FXS pathophysiology will lead to drug development which will be able to treat not only 

FXS but also autism spectrum disorders and intellectual disabilities more generally. 

Over the last 20 years, the study of molecular, cellular, and behavioral alterations in 

existing animal models of FXS has significantly increased our understanding of FMRP 

function and the human disease pathophysiology, while providing us with potential 

molecular targets and candidate treatments in FXS, autism, and other associated 

neurodevelopmental disorders. Most of the current targeted treatments which are 

undergoing clinical trials have attempted to adjust the excitatory/inhibitory imbalance 

seen in FXS which is believed to contribute to its core pathophysiology. In the brain of 

individuals affected by FXS,there is likely to be excessive excitatory, mainly 

glutamatergic, signaling, coupled with deficits in inhibitory, mainly GABAergic, signaling. 

In the following paragraphs I will summarise existing symptomatic treatments followed 

by a summary of treatment undergoing clinical trials, categorised based on a 

hypothesised drug mechanism (Table 2.1). 
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2.2 Symptom-Based Interventions 

To date, most of the drug treatment in FXS  is symptomatic. The two most widely used 

medications are stimulants that help with attention and hyperactivity and selective 

serotonin reuptake inhibitors that can control aggression which individuals sometimes 

display due to elevated social anxiety (Levenga et al., 2010). In addition to the use of 

pharmacological agents, patients with FXS also seem to benefit from behavioural therapy 

addressing speech, general communication and emotional problems (Moskowitz, Carr, 

& Durand, 2011). The latter has also been demonstrated in the FXS mouse model; an 

enriched environment can positively affect behaviour, and thus this behavioural 

intervention might also be beneficial for human patients (Restivo et al., 2005). While 

both existing types of treatment, pharmacological and non-pharmacological, impact 

symptoms only and do not improve any core behavioural deficits associated with the 

disease, multi-drug therapies based upon individual phenotype are currently the most 

common method of helping affected individuals. 

 

2.2.1 ADHD treatments 

Individuals with FXS are often been diagnosed ADHD. The comorbidity rate is 

approximately 73%, as measured in an all-male cohort for subjects scoring 15 or higher 

on the Conner’s abbreviated scale, which is indicative of ADHD (Baumgardner et al., 

1995). Even individuals not diagnosed with ADHD, often display hyperactivity and 

difficulty focusing in a classroom setting. On top of the human observations, Ventura and 

colleagues (2004) have shown that treating Fmr1 KO mice with amphetamine -known 

treatment for ADHD- can have beneficial effects in behaviour.  

So far, there have been three clinical trials testing medications aimed at the treatment of 

ADHD symptoms in FXS. The first in FXS was a double-blinded placebo-controlled study 

of the stimulants methylphenidate (Ritalin) and dexamfetamine. Participants were 

treated for one week with each of methylphenidate, dexamfetamine, and placebo. 

Methylphenidate treatment was shown to improved patient behaviour, based on the 

Comprehensive Teacher Rating Scale, while no improvement was observed with 

dexamfetamine (Hagerman, Murphy, & Wittenberger, 1988). The second trial has looked 

at the ability of L-acetylcarnitine (LAC) to reduce the ADHD symptoms observed in boys 

with FXS. This double-blinded, placebo-controlled, clinical trial found significant 
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improvement in the Clinical Global Impressions (CGI) scale for both parent and teacher 

response scores, as well as in the Vineland Adaptive Behaviour Scale (VABS) and 

Adaptive Behaviour Composite (ABC) score (Torrioli et al., 2008). The most recent trials 

of the three focusing on ADHD symptomatology in FXS examined the effects of the 

antiepileptic drug valproic acid (VPA). In an open-label trial of VPA, the only significant 

change was in hyperactivity measured by the Conner’s Parent Rating Scale (Torrioli et 

al., 2010). Taken together, data from clinical trials show that while compounds like LAC 

and VPA may have some beneficial effects against ADHD symptomatology observed in 

FXS patients, stimulants are more commonly used since they show more robust effects 

(Roberts et al., 2012). 

 

2.2.2 Oxytocin 
It is common for individuals with FXS to experience extreme social anxiety, which is often 

coupled with severe eye gaze avoidance and hyperarousal (Reiss & Hall, 2007). The 

neuropeptide oxytocin (OXT) has been shown to have profound anxiolytic effects, 

besides its many other prosocial and reproductive effects. Hence, there is increasing 

basic research and medical interest in its potential therapeutic use for the treatment of 

neuropsychiatric disorders, such as anxiety disorders, posttraumatic stress disorder, as 

well as autism and schizophrenia, among others (Neumann & Slattery, 2016). The effects 

of intranasal oxytocin on social anxiety were tested in a double-blind, placebo-controlled 

trial involving eight individuals with FXS. Subjects’ heart rate, heart rate fluctuation, eye 

gaze incidents, and concentration of salivary cortisol in response to a social stressor 

were amongst the outcome measures. Treated individuals showed significant 

improvement on eye gaze and salivary cortisol measures (Hall et al., 2012). Despite the 

promising results of the study, a larger study is essential in order to adequately evaluate 

the benefits of oxytocin in FXS. 

 

2.2.3 Aripiprazole 

Aripiprazole, also known as Abilify, belongs to class of drugs called atypical 

antipsychotics. They are usually prescribed by clinicians to contain hyperarousal seen in 

individuals with FXS and autism (Ching & Pringsheim, 2012). Despite their widespread 

use, clinical trials of antipsychotics in FXS are very limited. Amongst the newer 

generation antipsychotics, the only reported clinical testing in FXS has been with 
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aripiprazole. In a 12-week, open-label trial, 10 subjects received aripiprazole treatment. 

As a result, individuals showed significantly improved performance on CGI scale, Social 

Responsiveness scale (SRS), and the Children’s Yale-Brown Obsessive Compulsive Scale 

Modified for Pervasive Developmental Disorders (PDDs) (Erickson et al., 2010). 

 

2.2.4 Melatonin 

Sleep disturbances, and more specifically insomnia, is another symptom associated with 

FXS. Based on parent/caregiver reports, approximately 32% of boys with FXS experience 

some form of sleep irregularity. Irregular night sleep patterns and difficulties falling 

asleep were the most reported issues (Kronk et al., 2010). In a double-blind, placebo-

controlled trial of melatonin, lasting four-weeks, individuals with FXS and ASD (12 

subjects, 6 with FXS) were treated.  Results demonstrated a significant increase in sleep 

duration, decreased latency to sleep, and caused earlier sleep time onset (the clock time 

when the child fell asleep) in individuals who got the treatment. Sleep awakenings were 

decreased but the difference between treated and untreated individuals was not 

significant (Wirojanan et al., 2009). 

 

2.2.5 Selective Serotonin Reuptake Inhibitors 

To date there are only a few clinical trials assessing the value of selective serotonin 

reuptake inhibitors (SSRIs) in FXS. Existing evidence suggests this class of 

antidepressant drugs may have beneficial effects. In a case study involving individuals 

with autism, a low-dose of sertraline, also known as Zoloft, led to improvements (eight 

of nine subjects) in irritability, anxiety, and behavioural decline induced by a transition 

in daily routine (Steingard et al., 1997). A retrospective chart review of studies in 45 

children with FXS, showed that the 11 subjects who were treated with sertraline showed 

improved language development (Indah Winarni et al., 2012). Moreover, in a very recent 

study, 52 children with FXS aged 2 to 6 years old were treated with sertraline for 6 

months. Although analysis of the primary outcomes showed no improvement, secondary 

exploratory analyses revealed significant improvement on motor and visual perceptual 

tests, as well as some cognitive measures (Greiss Hess et al., 2016). Finally, in a survey of 

individuals with FXS, it was found that fluoxetine, also known as Prozac, led to the 

greatest behavioural activation compared to any other drug in its class (Hagerman et al., 

1994). It’s clear from the above that, despite the small number of clinical trials in FXS, 

SSRIs are a commonly prescribed treatment for the management of anxiety and 
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depression related symptoms which could also have beneficial effects in cognitive 

impairments associated with FXS. 

 

2.3 Modulating Excitatory Neurotransmission 

Research in the mouse model of FXS has revealed extensive alteration in signalling 

and/or localization of several glutamatergic receptors (Bostrom et al., 2016). Several 

clinical trials have been focussing on testing compounds reducing excitatory 

neurotransmission by antagonism of group I metabotropic glutamate receptors 

(mGluRs) and more specifically mGluR5 (Fenobam, AFQ056, RO4917523). Alternative 

strategies include drugs which block the N-methyl-D-aspartate (NMDA) receptors 

(memantine) or the α-amino-3-hydroxy-5-methyl-4- isoxazolepropionic acid receptors 

(AMPAR) (CX516) have also been tested in individuals with FXS. 

The mGluR theory of FXS proposed by Bear and colleagues (Bear et al., 2004) suggests 

that excessive signalling through mGluRs is a significant contributor to the behavioural, 

electrophysiological, and molecular abnormalities associated with the loss of FMRP. The 

brainchild of Bear and his colleagues was one of the first hypotheses describing a link 

between the loss of FMRP in FXS and changes in molecular and cellular mechanisms of 

known importance for synaptic development and function in the normal brain. The 

mGluR theory was based on a few key observations: (1) FMRP was shown to acts as a 

translation regulator for several genes at the synapse (Brown et al., 2001), (2) mGluR 

signalling is known to be coupled with synaptic protein synthesis (Weiler et al., 2004), 

(3) direct evidence connecting FMRP loss to an increase of mGluR signalling downstream 

effects (Chuang et al., 2005; Huber, 2000), and finally (4) the loop of evidence closes with 

the fact that many of the aforementioned downstream effects rely on intact mRNA 

translation at the synapse (Huber, 2000; Karachot et al., 2001; Raymond et al., 2000; Zho 

et al., 2002). Over the last 10 years, experimental data from countless studies have 

supported the mGluR theory for FXS (Bostrom et al., 2016). One of the most direct pieces 

of evidence supporting the role of mGluR in FXS, came from Dolen and colleagues. They 

were the first to demonstrate that a reduction in the levels of mGluR5 in Fmr1 KO mice, 

is enough to normalize elevated protein synthesis, dendritic spine morphology and some 

behavioural abnormalities (Dölen et al., 2007). However, a more recent study which 

included a more thorough behavioural assessment, revealed that genetically reducing 

mGluR5 in Fmr1 KO mice has a limited beneficial effect in behavioural deficits. This 

suggests that mGlur5 signalling alterations may not lead to improvements as robust as 
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originally indicated (Thomas et al., 2012). Furthermore, several studies using the mouse 

model of FXS have shown that strong mGluR5 antagonists, like MPEP, can improve FXS 

related phenotypes, including receptor expression, behavioural deficits, and abnormal 

dendritic spine morphology (Michalon et al., 2012; Yan et al., 2005). I should also point 

out that the mGluR5 antagonists used in preclinical Fmr1 KO studies so far, were also 

shown to maintain analgesic effects in mGluR5 KO mice. This data suggests that these 

molecules are not as eclectic as we would like and are likely to have additional molecular 

targets which could potentially contribute to the promising treatment effects previously 

discussed (Montana et al., 2009). 

 

2.3.1 Fenobam 

Fenobam is a non-benzodiazepine and potent negative allosteric modulator of mGluR5. 

It was synthesised in the late 1970s as a novel anxiolytic drug. It binds to the target in a 

non-competitive manner and has inverse agonist properties. This makes its mechanism 

of actions very similar to MPEP (a different selective mGluR5 antagonist developed by 

Novartis) (R. H. P. Porter et al., 2005). Studies in Fmr1 KO mice have reported some 

beneficial effects of fenobam on molecular, cellular and behavioural levels but the results 

were not conclusive (Vinueza Veloz et al., 2012; Wang, Smith, & Mourrain, 2014). In 

order to evaluate, primarily, its safety and its pharmacokinetic properties, an open-label, 

single-dose study in adult males and females with FXS was conducted almost 8 years ago 

(Berry-Kravis et al., 2009). The effects on sensory gating, attention, and behavioural 

inhibition were also explored. The small experimental sample included six young males 

and six young female adults with FXS (18.7–30.7 years). There were no significant 

adverse events and the medication was well tolerated. That was an important outcome 

because previous reports in non-FXS individuals who received fenobam treatment in 

high doses (four times the daily highest dose in the FXS trial) for a period of 4 weeks, 

reported adverse CNS effects including insomnia, vertigo, paresthesia, and even 

hallucinations (Friedmann et al., 1980). The primary measured outcome of the study, 

pre-pulse inhibition (PPI) was tested at baseline and after treatment with a single dose 

of fenobam. Six out of twelve (50%) subjects met a performance criterion of at least 20% 

improvement compared to baseline. The limited beneficial outcomes and potentially 

severe adverse effects suggest that future studies on fenobam as a long-term treatment 

option in FXS are highly unlikely to be considered. 
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Figure 2.1 Therapeutic strategies against FXS. (A) Symptom based treatments are still in use but little 
is known about the mechanisms targeted in FXS patients. (B) Compounds targeting excitatory 
transmission have received a lot of attention due to promising pre-clinical data but failed to produce 
promising results in human clinical trials. (C) Molecules targeting inhibitory transmission have also 
received due to the well characterised inhibition/excitation ratio anomalies in the mouse model of FXS but 
so far have not produced any clear positive outcomes. Lastly, a number of other therapeutics which target 
core pathophysiology associated with FXS (D). Their mechanism by which they exert their therapeutic 
effects is not fully understood so both pre-clinical and clinical studies are currently been conducted either 
with monotherapies or a combination of treatments. In red are compounds which were found to be 
inefficient in human clinical trials and their testing has been terminated.  
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2.3.2 Mavoglurant/AFQ056 

Mavoglurant, also known by the product name AFQ056, is a non-competitive mGluR5 

antagonist developed by Novartis Pharmaceuticals specifically as a candidate drug for 

the treatment of Fragile X syndrome. As in the case of fenobam, studies in mice showed 

that AFQ056 could reverse some behavioural deficits and spine morphology (Gantois et 

al., 2013; Pop et al., 2014). So far three clinical trials of mavoglurant in individuals with 

FXS have been completed. The first was a double-blind crossover study (subjects 

switched from placebo to treatment and vice versa during the trial), in which 30 subjects 

received 20 days of treatment. This study failed to find any positive effect of the 

treatment on any primary or secondary outcome measures, when the full study sample 

was analysed. Interestingly, when the researchers divided the participants according to 

methylation profiles, and limited their analysis to a small sub-set of seven individuals 

with complete FMR1 promoter methylation, they found significant improvement across 

a wide range of outcome measures (Jacquemont et al., 2011). It is important to note that 

these seven participants showed minimal or no improvement while receiving the 

placebo treatment in one of the two stages of study, as measured by the Aberrant 

Behaviour Checklist (ABC). This finding may have contributed to the reported post-hoc 

effect found in that subgroup. The results of this initial study, led to two large 

international clinical trials in adults and adolescents: (1) a Phase IIb, double-blind, 

placebo-controlled, parallel group study in adult male and female participants (18–45 

years) which lasted three months, and (2) a similarly controlled Phase III trial, in 

adolescents with FXS (12–17 years). Participants were assigned to two doses daily of 25 

mg, 50 mg, 100 mg AFQ056, or placebo in order to evaluate the safety and efficacy of the 

three doses for treating the behavioural deficits associated with FXS. The ABC total score 

was used as a primary outcome measure, with the Clinical Global Impression-

Improvement (CGI-I) scale and Repetitive Behaviour Scale-Revised (RBS-R) as 

secondary outcome measures. Unfortunately, neither of these studies found any 

significant improvements as a result of the treatment, on any primary or secondary 

outcome measures (Berry-Kravis et al., 2016). Following these negative results, the 

sponsor Novartis, terminated the open-label extension portion of the study in 

adolescents and discontinued the development program of AFQ056 for the treatment of 

FXS (ClinicalTrials.gov Identifiers: NCT01253629, NCT01357239) (Clapp, 2014). 
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2.3.3 Basimglurant/RO4917523 

Another mGluR5 antagonist which was developed by Roche for the treatment of FXS and 

treatment resistant depression, is basimglurant (RO4917523). There is no published 

work testing basimglurant in Fmr1 KO mice but a recent study showed that the orally 

bioavailable mGluR5-selective antagonist, CTEP, which is similar in structure, potency, 

and selectivity to basimglurant, can prevent cognitive impairments and prevent 

pathogenesis in an Alzheimer’s disease mouse model (Hamilton et al., 2014). The effects 

of basimglurant as well as its safety and tolerability were studied in a Phase II clinical 

trial: 183 individuals with FXS, 14–50 years of age (ClinicalTrials.gov Identifier: 

NCT01517698) and in an additional study in 47 affected children and adolescents aged 

5–13 years (ClinicalTrials.gov Identifiers: NCT01015430, NCT01750957). Although trial 

data remain unpublished at this time, treatment did not demonstrate efficacy based on 

the primary and secondary endpoints employed. Therefore, the sponsor of the trials, 

Roche, subsequently terminated its program for the development of basimglurant as a 

treatment for FXS (Santarelli, 2014). 

Taken together, the disappointing results from both the mavoglurant and basimglurant 

trials, have led pharmaceutical companies to drastically move away from pursuing 

development of selective mGluR5 antagonists as potential targeted treatments for FXS. 

The fact that these clinical trials did not yield any promising results, does not 

conclusively answer the question of whether or not selective mGluR5 antagonists can 

alter FXS symptomatology and does not rule out the validity of the mGluR5 theory; 

however, these results do suggest that selective pharmacological decrease of mGlur5 

signalling, alone, in humans with FXS, is not sufficient in order to ameliorate behavioural 

abnormalities when is used as a short-term treatment in the ages studied. Future trials 

of mGluR5 antagonists should target young subjects whose brains are dramatically more 

plastic compared to aged subjects. Targeting signalling imbalance during early postnatal 

brain development is possible to protect neural circuitry as it develops, potentially 

improving clinical outcomes, or even preventing the emergence of symptoms as a result. 

Finally, one of the current trends in field involves combined therapeutics, possibly 

including mGlur5 selective antagonists, with additional targeted drugs aiming at other 

key molecular and cellular mechanisms which might contribute to the FXS behavioural 

phenotype. 
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2.3.4 Memantine 

Memantine (3,5-dimethyladamantan-1-amine) is a non-competitive antagonist acting on 

the N-methyl-D-aspartate (NMDA) receptor. There is evidence of NMDA receptor 

dysfunction in FXS, but the overall direction of the effect is unclear, appearing to depend 

on brain region and age. Memantine was the first medication targeting the glutamatergic 

system that the US Food and Drug Administration (FDA) approved for the management 

of Alzheimer’s disease. A large body of work supports its effect in this devastating 

disorder; while it does not cure or reverse Alzheimer's, it does effectively treat a wide 

range of cognitive symptoms (Matsunaga, Kishi, & Iwata, 2015). Memantine treatment is 

also being explored in humans with other neurological disorders including Fragile X-

associated tremor/ataxia syndrome (FXTAS) and Down Syndrome with mixed results so 

far (Hanney et al., 2012; Seritan et al., 2014; Yang et al., 2014). Only one pilot open-label 

study has been conducted related to FXS until now. Six participants who had previously 

been diagnosed with both FXS and PDD/NOS (diagnosed using criteria of the Diagnostic 

and Statistical Manual of Mental Disorders, fourth edition) received an average of 34.7 

weeks of memantine treatment, in order to test the tolerability of memantine and its 

effectiveness against a number of symptoms associated with FXS (Erickson, Mullett, & 

McDougle, 2009). While four subjects showed an improvement in general 

symptomatology, as measured by the CGI-I, there were no robust effects in any specific 

symptom domains. Furthermore, two of the subjects displayed increased irritability and 

had to discontinue memantine treatment. 

 

2.4 Modulating Inhibitory Neurotransmission 

Along with the increase in glutamatergic signalling, the signalling imbalance observed in 

FXS is, in part, due to deficits in inhibitory GABAergic function. The fragile X mouse 

models (Fmr1 KO) display reduced GABA(A) subunit receptors, reduced synthesis of 

GABA coupled with augmented degradation of GABA and overall deficits in GABAergic 

input in multiple brain regions, including the hippocampus, striatum, amygdala, and 

somatosensory cortex (Idrissi et al., 2012; Lozano, Hare, & Hagerman, 2014; Olmos-

Serrano et al., 2010). This reduced GABAergic input seen in FXS leads to various 

behavioural impairments including hypersensitivity to sensory stimuli, increased 

seizure susceptibility, and elevated anxiety. Moreover, deficits in the GABA receptor 

structure and function, in different brain regions, have been repeatedly associated with 

behavioural abnormalities and attentional processing deficits linked to anxiety disorders 
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and autistic spectrum disorders (Frye et al., 2016; Prager et al., 2016). Moreover, studies 

using Fmr1 KO mice have already shown that drugs which act as positive modulators of 

GABAA receptors can improve behavioural and neurophysiological deficits (Braat & 

Kooy, 2015). All the above suggest that the GABAergic system represents a promising 

target for new treatments against core deficits of FXS.  

 

2.4.1 R-baclofen/arbaclofen/STX209 

The active right enantiomer of racemic baclofen, R-baclofen/arbaclofen, is a GABAB 

agonist. It is a GABA derivative and has been used as a skeletal muscle relaxant, primarily 

used to treat spasticity. Recent knowledge related to the contribution of GABA signalling 

in the excitation/inhibition imbalance, seen in FXS, led Seaside Therapeutics to 

reformulate arbaclofen under the code name STX209, and study it’s efficacy in 

individuals with FXS and ASD. STX209 acts at presynaptic GABAB receptors. This led to 

the hypothesis that it inhibits glutamate release from presynaptic terminals, therefore 

reducing the neuronal hyperexcitability observed in FXS models and human patients. In 

the Fmr1 KO mouse model, STX209 has been to shown to restore to normal a number of 

abnormal phenotypes; from reducing susceptibility to audiogenic seizures (Pacey et al., 

2009), normalising excessive dendritic spine density and protein synthesis (Henderson 

et al., 2012), reducing repetitive behaviours and reversing social deficits (Silverman et 

al., 2015). A four-week, Phase II trial of STX209 recruited 63 individuals (55 male), 

carrying a full FMR1 mutation, aged 6–40 years; it was completed in 2010 and showed 

that the drug was well tolerated (Berry-Kravis et al., 2012). The study was designed as a 

double-blind, placebo-controlled clinical trial with a two-period crossover conducted 

across 12 centres in the USA. STX209 did not show a significant difference over placebo 

on the primary endpoint, the Irritability Subscale of the Aberrant Behaviour Checklist 

(ABC-I). Nevertheless, post-hoc analyses did reveal significant improvements in parent-

reported problem behaviours on the Visual Analog Scale (VAS) and on the Social 

Avoidance subscale of the ABC (ABC-SA); additional positive trends were also seen on 

multiple global measures. Interestingly, the more socially impaired subset of 

participants (based on the ABC-LSW at baseline), showed significant improvement on 

the Vineland II-Socialization raw score, on the ABC-Social Avoidance scale, and on all 

global measures. These very promising results lead to two phase III clinical trials in FXS 

individuals (Berry-Kravis et al., 2014). Unfortunately, no significant improvements were 

detected in the adolescent/adult Phase III trial. The Phase III trial in children found no 
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significant effect on any primary outcome measures, but did find an effect on the Fragile 

X Irritability subscale of the Aberrant Behaviour Checklist, a secondary outcome 

measure.  

 

2.4.2 Acamprosate 

Acamprosate, also known as Campral, is an FDA approved medication for the 

management of alcohol dependence and is currently being tested for efficacy in FXS. Its 

mechanism of action is still largely unknown and somewhat controversial; experiments 

done in Xenopus oocytes showed that acamprosate fails to alter activation of several 

tested GABA or glutamate receptor subtypes (Reilly et al., 2008). It is likely that 

acamprosate alters excitatory/inhibitory balance by modulating NMDA receptor 

transmission and may indirectly affect GABAA receptor transmission (Boismare et al., 

1984; Kalk & Lingford-Hughes, 2014), probably in a pleiotropic manner (Mann, Kiefer, 

Spanagel, & Littleton, 2008). The first study looking at the effects of acamprosate in 

individuals with FXS was a small three-subject open-label trial in which all subjects 

showed improvements, as measured by the CGI-I (Erickson, Mullett, & McDougle, 2010). 

Acamprosate was then tested in a group of 12 children with FXS (6-17 years) for a period 

of 10 weeks, in a new open-label trial. Again acamprosate was shown to significantly 

improve the performance of participants on a number of outcome measures including 

various subscales of the ABC, CGI Severity, Social Responsiveness Scale (SRS), Attention 

Deficit Hyperactivity Disorder Rating Scale (ADHD-RS), and subscales of the Vineland 

Adaptive Behaviour Scale (VABS). On the CGI-I, the primary outcome measure, nine of 

the twelve subjects were either ‘‘very much improved’’ or ‘‘much improved’’ (Erickson 

et al., 2010). Moreover, in a separate published paper from the same study, acamprosate 

was shown to reduce plasma amyloid precursor protein (APP) and secreted APPα 

(sAPPα), and increase brain-derived neurotrophic factor (BDNF); although individual 

responses to treatment did not correlate with the extent of the change in BDNF plasma 

levels (Erickson et al., 2013; Erickson et al., 2014). Based on the results of these two 

open-label studies, acamprosate is currently undergoing a Phase II double-blind, 

placebo-controlled study in individuals with FXS (clinicaltrials.gov, NCT01911455). 
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Table 2.1 Summary of therapeutic approaches for FXS to date. In orange symptom based treatments, 
blue excitation modulators, green inhibition modulators and red other mechanism based treatments. 
References are examples from existing literature. For more details see Sastre et al., 2015. IGF-1: insulin-
like growth factor 1, SSRIs: selective serotonin reuptake inhibitors, (-): negative outcomes, (+): positive 
outcomes 
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2.4.3 Riluzole 

Riluzole is a prescription drug approved by FDA for use by individuals with amyotrophic 

lateral sclerosis (ALS). It has been also shown to have antidepressant properties and act 

as an anxiolytic in obsessive-compulsive disorder (Grant et al., 2007; Zarate et al., 2004). 

Although the action of riluzole on glutamate receptors has not been elucidated fully yet, 

it is hypothesized to work by inhibiting glutamate release (Debono et al., 1993; Martin et 

al., 1993) and potentiating post-synaptic GABAA receptor activity (Jahn et al., 2008). 

Although there are no published studies in the mouse model of FXS, riluzole was one of 

the first drugs, hypothesised to act as a GABAA agonist, to be studied in FXS clinical trials.  

A six week open-label prospective pilot study (100 mg/day) took place 6 years ago 

(Erickson et al., 2011) with a primary outcome of repetitive, compulsive behaviour, 

which is a common comorbid disorder with FXS; the sample was six adults with FXS. The 

study showed that treatment with riluzole was associated with a clinical response only 

in one of six subjects. Peripheral extracellular signal-related kinase (ERK) activation, 

which is known to be altered in fragile X KO mouse models (Weiler et al., 2004), was 

significantly corrected in all subjects despite the lack of significant clinical improvement. 

 

2.4.4 Ganaxolone 

Ganaxolone (3a-hydroxy-3B-methyl analog of allopregnanolone) is a CNS-selective 

steroid and positive allosteric modulator of the GABAA receptors (Greenfield, 2013). 

Ganaxolone has been shown to act effectively as an anticonvulsant in diverse rodent 

models of seizure disorders, at tolerable doses and as potent sedative at higher doses 

(Carter et al., 1997). In Fmr1 KO mice, ganaxolone has been shown to alleviate symptoms 

such as audiogenic seizures (Braat et al., 2015; Heulens et al., 2012). Furthermore, it is 

known to be well tolerated by human adults, children, and infants (Kerrigan et al., 2000; 

Monaghan et al., 1997). A Phase II trial in approximately 60 child carriers of the full 

mutation, aged 6–17 years, is currently taking place in California, US (ClinicalTrials.gov 

Identifier: NCT01725152). The study aims to determine the safety, tolerability, and 

efficacy of ganaxolone for the treatment of anxiety and attention deficits seen in FXS 

patients by using a randomized, double-blind, placebo-controlled, 6-week crossover 

design with a 2-week washout period between the two treatment stages. 
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2.5 Other Mechanism-based Treatments 

2.5.1 Lithium 

Lithium has been used for more than 60 years as a psychiatric medication, and especially 

for the treatment of major depressive disorder and bipolar disorder (Rybakowski, 2011). 

Long before it was the subject of preclinical and clinical testing, lithium had been used, 

off-label, to treat aggression and mood instability seen in individuals with FXS (Liu & 

Smith, 2014). Over the last 10 years, lithium has been shown to ameliorate a wide range 

of phenotypes associated with the loss of FMRP. Fmr1 KO mice treated with lithium 

showed improvements in hyperactivity (Liu et al., 2011; Yuskaitis et al., 2010), social 

preference (Liu et al., 2011), cognition (King & Jope, 2013; Liu et al., 2011; Yuskaitis et 

al., 2010), aberrant dendritic spines (Liu et al., 2011), hippocampal plasticity (Choi et al., 

2011), protein synthesis (Choi et al., 2011; Franklin et al., 2014; Liu et al., 2011) and 

seizure susceptibility (Min et al., 2009). Based on the extensive literature, lithium’s 

mechanism of action seems to be the inhibition of glycogen synthase kinase-3 (GSK-3) 

(Jope, 2003), which has been shown to be altered in the Fmr1 KO mouse (Jope & Roh, 

2006; Portis et al., 2012). All the aforementioned preclinical data led to an open label 

treatment trial of lithium. Fifteen individuals with FXS, ages 6-23 were treated for two 

months, and showed improvement on a wide range of secondary measures such as ABC 

total scores, the CGI and the VAS. On the contrary, no effect was observed in the primary 

outcome measure, the Irritability Subscale of the ABC. While there were general 

behavioural improvements, the study also had a large number of adverse events, already 

known for lithium, including aggression, polyuria (increased urination), and polydipsia 

(increased thirst) (Berry-Kravis et al., 2008). The open-label design of this clinical trial 

makes it difficult to draw robust conclusions from the results. Although these findings 

are somewhat promising, the known side-effect profile of lithium probably limits its 

widespread use in patients with FXS. 

 

2.5.2 Minocycline 

Minocycline is a semi-synthetic broad-spectrum bacteriostatic antibiotic and it has an 

FDA approval for the treatment for acne (Strauss et al., 2007). Minocycline has been 

shown to inhibit matrix metalloproteinase 9 (MMP-9), which has been found to be 

elevated in the hippocampus of Fmr1 KO mice (Bilousova et al., 2006; Dziembowska et 

al., 2013). Furthermore, Fmr1 KO mice which received minocycline treatment displayed 
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reduced hyperactivity (Bilousova et al., 2009), reversal of communication deficits 

(Rotschafer et al., 2012), normal social recognition memory (Yau et al., 2016) and 

improvements in the immature dendritic spine phenotype (Bilousova et al., 2009; Siller 

& Broadie, 2012). There are two human clinical trials reported to date. In the first pilot 

study, 20 patients with FXS, 13-35 years, participated in an initial open-label trial. 

Minocycline led to significant improvement in CGI, ABC-C and the ABC irritability, 

hyperactivity, and inappropriate speech subscales after eight weeks of treatment 

(Paribello et al., 2010); minor side effects were observed. These promising results led to 

an additional study. This time minocycline efficacy was tested in randomized, double-

blind, placebo-controlled clinical trials. Fifty-five children and adolescents aged 3.5–16 

years with FXS underwent a minocycline treatment for 3 months.  Subjects who received 

the drug demonstrated significant improvements in CGI-I but no significant 

improvement was found on any specific measure of the behavioural domains tested 

(Leigh et al., 2013). Even though no significant effects of minocycline on VAS scores were 

detected upon initial analysis, ad-hoc analysis did reveal significant improvements in 

anxiety and mood-related symptoms. Results for this study could have been affected by 

study design weaknesses; including unblinding of subjects when they completed the 

study, unblinding related to drug side effects, and the fact that investigators were aware 

of preliminary efficacy results. Twelve subjects (mean age 10.5 years) were taken from 

the same study and tested in a passive, auditory oddball paradigm. It was shown that 

minocycline treatment could normalise a specific electrocortical measure called event-

related potentials (ERPs) (Schneider et al., 2013). This could be indicative of a 

normalisation in hypersensitivity to auditory stimulation which individuals with FXS 

exhibit.  

 

2.5.3 Lovastatin 

Lovastatin, also known as Mavacor, is a statin that has been FDA approved for the long-

term management of familial hypercholesterolemia (Descamps et al., 2011). As a statin, 

lovastatin is an inhibitor of the enzyme HMG-CoA reductase, an enzyme that catalyses 

the conversion of HMG-CoA to mevalonate. This pathway is upstream to Ras signalling. 

Work by Cerezo-Guisado and colleagues, in cultured rat brain neuroblasts, revealed that 

lovastatin can indeed inhibit Ras signalling, an upstream effect that resulted in reduction 

in ERK1/2 activation (Cerezo-Guisado et al., 2007). This study supported previous 

findings by Xu and colleagues done in fibroblasts (Xu et  al., 1996). The extracellular 
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signal-related kinase (ERK1/2) intracellular signalling pathway has been shown to be 

connected with the pathophysiology associated with FXS. Acting downstream of mGluRs, 

the ERK1/2 signalling pathway is integral for maintenance of normal synaptic plasticity 

and the regulation of activity-dependent protein synthesis (Gallagher et al., 2004; 

Osterweil et al., 2010). Elevated ERK activity under baseline conditions, has been shown 

except from the FXS mouse model in human post-mortem brain tissue as well (Wang et 

al., 2012). Reducing ERK1/2 activation indirectly, by inhibiting its activating kinase MEK 

with commercially available inhibitors U0126 and SL327, effectively reversed the 

audiogenic seizure phenotype in Fmr1 KO mice (Wang et al., 2012) and reduced the 

increased basal level of protein synthesis seen in the hippocampus of Fmr1 KO mice 

(Osterweil et al., 2010).  Recently, Osterweil and colleagues confirmed that lovastatin 

indirectly inhibits Ras signalling and increases basal ERK1/2 activation. Moreover, Fmr1 

KO mice treated with lovatatin, showed normalised level of protein synthesis, 

hippocampal plasticity and audiogenic seizure susceptibility (Osterweil et al., 2013). 

Despite the known safety profile of lovastatin and the aforementioned very promising 

preclinical results, only one clinical trial has studied lovastatin’s efficacy against FXS 

symptomatology so far. Çaku and colleagues (2014) reported an open-label trial in 15 

patients (13 males, 6-31 years old). Treatment response was assessed before and after 

treatment using the ABC-C, total score (primary outcome), as well as the subdomains of 

the FXS validated version of the ABC-C, and CGI-I, and VABSII (secondary outcomes). 

Significant improvements were observed in the primary outcome, after 4 and 12 weeks 

of treatment. There was also moderate improvement on the CGI-I, but the open-label 

nature of the trial precludes any strong inferences of efficacy at this stage of development 

(Çaku et al., 2014). In addition to the behavioural evaluation of the treated individuals, 

blood samples were collected in order to analyse relevant biochemical markers. 

Quantitative Western blotting analysis in platelet samples, showed that ERK and Akt 

phosphorylation levels were normalised as well as ERK activity. Interestingly the 

changes in ERK phosphorylation correlated well with the clinical response to the 

treatment (Pellerin et al., 2016). One of the potential issues that arises with the possible 

use of lovastatin as a treatment for FXS is the lipid metabolism of the patients. Individuals 

with FXS have been reported to have lower levels of low- and high-density lipoproteins 

and total cholesterol. Therefore, participants should be placed on lipid monitoring 

during future lovastatin trials (Berry-Kravis et al., 2015). 
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2.5.4 Insulin Growth Factor 1/Trofinetide/ NNZ-2566 

NNZ-2566, or trofinetide, is a synthetic analogue of a naturally occurring peptide, called 

glypromate or GPE, which is derived from insulin-like growth factor 1 (IGF-1). 

Trofinetide has been shown to have neuroprotective properties; in a rat model of 

traumatic brain injury, trofinetide leads to improving recovery, reducing apoptotic cell 

death, and reducing neuroinflamation (Cartagena et al., 2013; Wei et al., 2009). 

Trofinetide’s efficacy has already been studied in recent Phase II clinical trial in 

individuals aged 16 to 45 years with Rett syndrome. Although the study has not been 

published yet, Neuren Pharmaceuticals has reported that the drug was well tolerated 

and met pre-specified criteria for improvement (Pharmaceuticals, 2016). Treatment 

with the entire IGF-1, which trofinetide mimics, has also been shown to improve 

symptomatology associated with Phelan-McDermid syndrome (PMDS) in the mouse 

model of the syndrome (Bozdagi, Tavassoli, & Buxbaum, 2013), cultured human neurons 

(Shcheglovitov et al., 2013), and a Phase I clinical trial in children (Kolevzon et al., 2014). 

PMDS, also called 22q13 deletion syndrome, is a rare developmental disorder caused by 

heterozygous deletion of the terminal of chromosome 22 (22q13.3) which includes the 

SHANK3 gene, or a loss of function mutation on the SHANK3 gene. SHANK3 gene loss of 

function mutations have been associated with ASDs (Boccuto et al., 2012; Phelan & 

McDermid, 2012). In the only publish study using the mouse model of FXS, trofinetide 

has been shown to reverse some learning and memory deficits, reduce hyperactivity, 

normalise abnormal dendritic spine morphology, and restore normal extracellular 

signal-related kinase (ERK) signalling and, interestingly, restore normal testicular size 

(Deacon et al., 2015). A double-blind, placebo-controlled early phase trial of trofinetide 

in patients with FXS, has recently been completed. This study was designed to investigate 

the safety and tolerability of a liquid oral formulation of trofinetide in adolescent and 

adult males with FXS (Treagus, 2015). 

 

2.6 Treatment development for FXS: Quo Vadimus? 

Over the last 10 years, drug development for FXS has received an increased amount of 

attention from both basic science researchers as well as large and small pharmaceutical 

companies. Basic, translational and clinical research breakthroughs continue to identify 

novel targets and develop new promising therapeutic treatments for patents. Based on 

its prevalence (1 in 5000), FXS is classified as a rare disease (EMA EU/3/15/1452). As a 

result, the Food and Drug Administration (FDA) as well as the European Medicines 
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Agency (EMA) have adjusted the criterion for demonstrating drug efficacy to a single 

Phase III clinical trial with positive primary and secondary outcomes; as opposed to two 

Phase III trials in disorders affecting larger populations (that’s mainly due to the 

difficulties of recruiting more participants for a second large scale clinical trial). As in any 

other clinical study, the primary endpoint, which is preapproved by the FDA or EMA and 

specified before the clinical trial begins, must be significantly improved in the treatment 

group compared to participants who received placebo. Despite the less strict criteria for 

approval, there has not yet been a single treatment medication which is approved for the 

treatment of FXS.  

Clinical trials so far have revealed a number of promising medications with positive 

behavioural responses, but have the final behavioural readouts been adequately 

objective? Thorough evaluation of drug efficacy requires a set of standardized, disease-

specific, outcome measures; considerable effort is already being made in that direction. 

Primary endpoints of clinical trials in FXS have typically included the Aberrant Behaviour 

Checklist (and other subsection scores), the Clinical Global Impressions Improvement of 

Severity subscales (CGI-I or CGI-S), the Social Responsiveness Scale (SRS), or other care 

giver-, teacher-, or clinician-based rated scales. In research on developmental disorders 

it is possible to observe a significant improvement of subjects (20–30%) in response to 

placebo, when the aforementioned subjective evaluation methods are used; this effect is 

often tricky to avoid, even with a placebo lead-in phase during the trial (Waschbusch et 

al., 2009). It is clear from the above that the commonly used outcome measures listed, 

can be inadequate to track improvements in the FXS phenotype, resulting in a push to 

develop reliable, FXS-specific outcome measures (Berry-Kravis et al., 2013). The FXS-

specific Fragile X Symptom Rating Scale is currently being validated in several clinical 

trials, including the Phase II trial of trofinetide (clinicaltrials.gov NCT01894958). 

Another scale being validated for use in FXS is the Pediatric Anxiety Rating Scale revised 

for FXS (Russo-Ponsaran et al., 2014).  Progress in clinical trial endpoints and biomarker 

development are becoming top priorities in the field (Elizabeth Berry-Kravis et al., 2013). 

Less subjective measures such as eye-tracking, pre-pulse inhibition, brain imaging, 

evoked related potentials (ERP), and blood biomarkers are slowly beginning to be 

included in early Phase II drug development as more objective measures of a treatment’s 

efficacy and potential engagement with the underlying pathophysiology of the disorder 

(Pellerin et al., 2016). Molecular biomarkers, which are being explored as indicators of 

treatment response and signalling proficiency, include, but are not limited to, cyclic 
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adenosine 3′, 5′-monophosphate (Kelley et al., 2007), ERK (Weng et al., 2008), BDNF 

(Erickson et al., 2013), amyloid beta-protein precursor and cleavage proteins (Erickson 

et al., 2014), MMP9 (Dziembowska et al., 2013), and event-related potential (Schneider 

et al., 2013); it is likely that the latter may only be applicable to higher-functioning 

individuals, as many subjects with FXS find the procedure too stressful to tolerate. These 

molecular and physiological biomarkers, have not been used as ‘primary’ endpoints in 

any large placebo-controlled trials in FXS yet. Nevertheless, even the inclusion of these 

types of assessment is important for identifying changes, positively associated with the 

given treatment, keeping in mind the strong placebo effect on standard parent/ caregiver 

report rating scales. Ideally, additional research focusing on the correlations between 

behavioural symptomatology/severity and its physiological/molecular correlates, the 

use of objective biomarkers, will be more common in the future, providing a way to a 

clearer treatment evaluation. 

The possibility of divergence in response treatment between various sub-populations 

defined by factors such as IQ, premutation status, or even gender, obviously complicates 

the problem of treatment evaluation even further. For the purpose of ad-hoc analyses, 

several studies used symptom severity: social withdrawal (Berry-Kravis et al., 2012) or 

methylation status (Jacquemont et al., 2011) to stratify participants. Unfortunately, in 

both instances, when the trials were repeated in larger sample sizes, the findings were 

not replicated.  Although it is still considered controversial, the expression levels of 

FMRP and methylation status of the FMR1 gene have been correlated with cognitive 

ability (positively and negatively respectively), whereas little work has been done on the 

relation between the extent of CGG trinucleotide repeat and cognition (Chudley et al., 

1983; Steyaert et al., 1996). Surprisingly, it was recently shown that the number of CGG 

repeats can differ across different tissue types in the same affected individual (Lokanga 

et al., 2013). This suggests that the number of repeats based on blood mononuclear cells 

(the cell type often used for FXS diagnostic and stratification purposes) may not always 

directly translate to that in the brain. If this finding is correct, it is obvious that inaccurate 

trinucleotide repeat characterisation can severely complicate efforts to use blood 

biomarkers for clinical trial inclusion/exclusion criteria. 

One major question which need to be addressed in future FXS research, and in 

neuroscience as a whole, is whether correcting lifelong abnormal synaptic morphology 

and function can or will lead to improved behavioural symptomatology. More 

specifically, in FXS treatment development, the main question is whether modulation of 
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synaptic imbalance in the adult brain, is adequate to restore normal cognitive function 

in FXS. Excitation/inhibition imbalances, which show a distinct developmental profile 

(Gatto & Broadie, 2010), can cause the brain circuitry to develop improperly with 

potentially permanent consequences in behaviour. We should keep in mind that FMRP 

is expressed ubiquitously across the brain starting from early stages of embryonic 

development.  

On top of the complexity of the human disease and the difficulties in assessing the 

outcomes of clinical trials objectively, the reasons for our failure to develop a successful 

treatment for FXS so far, arises from the fact that the mouse model of FXS has some 

limitations. It is important to recognize the inherited limitations of the data produce and 

of the mouse model as a system. Clear interpretation of results, replication of the studies, 

and further studies on initial results need to receive more attention from the research 

community. Furthermore, it is a common problem in research that negative molecular, 

electrophysiological and especially behavioural responses are very rarely being 

reported; this can drastically skew the attitude of the research community, and the 

pharmaceutical industry towards the efficacy of a treatment. As discussed earlier, 

behaviour in Fmr1 KO mice is known to be very unreliable; it is critical that authors are 

aware of potential confounding factors in their behavioural tasks. For example, many 

tests in rodents, can be heavily influenced by changes in locomotor activity. If, by any 

chance, a proposed treatment reduces basal levels of locomotor activity in the Fmr1 KOs, 

this could affect a number of tests’ readouts; reduce marble burying (reduced repetitive 

behaviours) and time spent in the open arm of the elevated zero or plus maze (perceived 

as reduced stress). When reporting and interpreting the efficacy of a pharmacological 

treatment, it is also really important to mention whether there was a robust baseline 

deficit between the vehicle-treated Fmr1 KO mice and wildtype littermate controls. The 

differences between mouse and human physiology are obvious and translating results 

between species is challenging. Without thorough assessment, careful interpretation, 

and full disclosure of all experimental procedures in preclinical models, it is extremely 

difficult to get a clear picture of the effectiveness of a treatment. Nevertheless, this does 

not mean that a robust improvement in a single domain of the mouse behavioural 

(observed in several different tasks) is not a significant finding. Individuals with FXS 

exhibit a very multifaceted behavioural phenotype so that even if a drug only improves 

reliably one of the affected behavioural domains, it would be incredibly beneficial.  
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Even if we examine treatments where behavioural (limited in many cases), 

electrophysiological and molecular improvement/normalization were shown in the 

mouse model and moderate improvements were also shown in small scale clinical trials, 

expansion into larger sample sizes was unsuccessful in most cases. A reason for that 

could also be that the human equivalent of the majority of the behavioural and 

physiological readouts or symptom domains examined in the mouse model studies, are 

either not being assessed in the human clinical trials (i.e., audiogenic seizure 

susceptibility, object memory, PPI), or the equivalent human symptom domain is not 

heavily affected or easily translated into a relevant mouse behavioural task (social 

preference, inhibitory control) (Kramvis et al., 2013). Therefore, the efficacy of a 

treatment cannot be adequately examined for a number of behaviours across mouse 

model and human patients. For example, one of the most commonly used FXS preclinical 

mouse behaviour tests is the audiogenic seizure paradigm, partly because increased 

seizure susceptibility is one of the most common behavioural deficits seen in Fmr1 KO 

mice. Several mGlur5 antagonists and many other treatments, especially those targeting 

excitatory/inhibitory imbalance, were effective at reducing the number or the severity 

of audiogenic seizures in Fmr1 KO mice (Michalon et al., 2012). These results could 

suggest that the examined treatments effectively reduce hyperexcitability seen in the 

mouse brain; for obvious ethical reasons, seizure susceptibility is not something that is 

assessed in human clinical trials and the direct effect of a possible hyperexcitability 

attenuation, does not have a clear correlation to other symptom domains, such as anxiety 

or inattentiveness. Moreover, treatment with mavoglurant was shown to improve 

deficits in startle response in a PPI paradigm in the mouse model, but PPI could not be 

assessed in the clinical trial because several participants with FXS could tolerate this 

procedure easily (Levenga et al., 2010).  

Of course mice are still relevant as a model for FXS and there is a lot more to learn from 

studies on them. For example, robust genetic manipulations are still only possible in 

mice. Genetic rescue in the Fmr1 KO mouse by creating double mutants that harbour a 

mutated/deficient allele such as mGlur5 (Dölen et al., 2007), muscarinic M4 

(Veeraragavan et al., 2012), p70 ribosomal S6 kinase (Bhattacharya et al., 2012), or 

amyloid β-protein precursor (APP) (Westmark et al., 2011) can be really powerful 

experiments. However, we have to keep in mind a major limitation of genetic rescue 

studies. This rescue approach is significantly different from administering a drug, which 

will proceed to modify the function of a receptor or any other signalling molecule, to an 
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infant, an adolescent, or even an adult. Double-mutant mice which are generated by 

crossing two single-mutant mice, will have “received the treatment” exerted by second 

genetic manipulation, from conception, every day, throughout the day, rather than the 

typically short-duration treatment used in a FXS clinical trial. Furthermore, in the case 

of a pharmacological approach, the optimal dose is usually unknown (since we are 

dealing with novel therapeutic strategies) and the highest tolerable dose is usually used. 

Nevertheless, both genetic and pharmacologic approaches can reveal potential core 

mechanisms which have been affected by the loss of FMRP, and can give greater insight 

into the likelihood of success of a treatment’s for FXS. 

It looks like mouse models often take the blame for one of the most inconvenient truths 

in translational research: Even after mouse studies suggest that a medication will be safe 

and effective, more than 8 out of 10 potential therapeutics fail when tested in large scale 

clinical trials (Arrowsmith, 2011; Ledford, 2011). Mouse models of various conditions, 

especially neuropsychiatric, are regularly thought to be poor predictors of an 

experimental drug’s efficacy (poor predictive validity). As we previously discussed, the 

real reason for the observed poor predictive validity is often that the preclinical 

experiments are not rigorously designed; but in the case of neuropsychiatric disorders, 

mice might have certain inherited limitations as a species. In the following introductory 

chapter, I will be discussing how the emergence of new rat KO models can be a potential 

“game changer”, for translational research.  
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3. From Mouse to Rat 

3.1 Rats are not oversized mice 

The outward similarity of mice and rats can convey the false impression that mice are 

essentially smaller, faster breeding rats. The evolutionary distance between mice and 

rats, however, is bigger than one might imagine; the rodent lineage which gave rise to 

these two species split between 18 and 40 million years ago; hence the genetic material 

shared between a rat and a mouse has had more evolutionary time to diverge than one 

might expect (Gibbs et al., 2004; S Kumar & Hedges, 1998). Homo sapiens has common 

ancestry with non-human primates about 6 to 7 million years ago, therefore mice and 

rats on average are much more different from each other than we are from chimps.   

The Norway rat, Rattus norvegicus, was the first mammalian species to be domesticated 

for scientific purposes; the first recorded rat dissection dates back to 1621 when 

Theophilus Müller and Johannes Faber of Italy’s Accademia dei Lincei in Rome perform 

a dissection of a pregnant wild specimen; work on rat physiology dates back to the early 

19th century, when experimenters concentrated on the effects of food and oxygen 

deprivation (Abbott, 2004). The rat has been a very important model in biomedical 

research ever since, due to its well-characterized physiology and convenient size and, 

more importantly, the rat is a species with its own biological particularities which make 

it, in several circumstances, an advantageous model compared to a mouse. For example, 

rat arthritis and hypertension models, including transgenic animals, have long been used 

because they recapitulate, better than mice, human clinical aspects such as gender 

differences (Paul et al., 1994; Taurog et al., 1999).  

Behavioural neuroscientists have historically preferred the larger and less 

temperamental rat. Mice are difficult to work with because they are generally 

hyperactive and more impulsive than rats; mice are also slower and less flexible learners 

compared to rats (Ellenbroek & Youn, 2016). For instance, a widely used experimental 

set-up for researchers interested in addiction, involves training rats to press a lever in 

order to get a small quantity of a certain drug such as cocaine (drug self-administration 

studies). Rats appear to learn faster and it is clear that they deliberately press the lever. 

On the other hand, mice look much more impulsive and they do not seem to have a 

certain plan; they rush and press the lever randomly (Chistyakov & Tsibulsky, 2006; 

Thomsen & Caine, 2005).  
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Even though rats have been used in both basic and applied biomedical research for many 

years now, the mouse is currently the king. Since 1990, the number of yearly published 

scientific reports indexed by PubMed in which mouse models have been used increased 

threefold, overtaking the number of papers devoted to the rat in 2002. The mouse 

genome has been extensively studied and genetic manipulation techniques have been far 

more advanced than in any other mammalian model. But rat genetics have begun to catch 

up after the report of the first cloned rat in 2003 and sequencing of the rat genome in 

2004. Technologies such as zinc-finger nuclease technology have now been used to 

create dozens of KO rat lines (Dolgin, 2010). Moreover, recent advances in gene editing, 

like the CRISPR/Cas9 system provide outstanding possibilities for targeted modification 

of the genome, which are often extremely efficient. New KO rat models are being 

developed every month, which reveals the excitement in biomedical research about re-

establishing the rat as the main animal model (Bao et al., 2015; Li et al., 2013). In the 

following few pages I will discuss why rats have the potential of being an invaluable tool 

in biomedical research and more specifically research focussed on neurological and 

neuropsychiatric disorders.  

 

3.2 Rat in translational research 

The development of technology allowing for targeted genetic manipulation of mouse 

embryonic stem cells 25 years ago, led to an explosion in biomedical research. Not 

surprisingly, the mouse has overtaken the rat and has become the most widely used 

model organism (Mayford et al., 1997). Yet the rat has traditionally been the preferred 

model organism in biomedical research, so that even until 2001 the number of published 

research reports in which rats were used was larger than that of mouse publications. In 

fact, in 1989, the year in which the creation of the first KO mouse was reported 

(Thompson et al., 1989; Zijlstra et al., 1989), there were 70% more publications on rats 

than mice. That bias toward rats in biomedical research, has given us today an enormous 

archive of historical physiological data on the rat (Gill et al., 1989). Furthermore, most in 

vivo assays, particularly those in behavioural and cardiovascular research, were initially 

developed and validated on the rat and only in the recent past have been adapted to be 

used for mice. Understanding of rat genetics is the single field where rats have been 

lagging behind mice. However, this has changed with the sequencing of the rat genome 

(Gibbs et al., 2004; Mullins & Mullins, 2004) and the development of tools such as the rat 

genome database (Shimoyama et al., 2015). Finally, the advent of new genomic editing 
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tools, such as zinc finger nucleases (ZFNs) and CRISPR/cas9 gene editing system, has 

now enabled precise genetic manipulation of the rat genome and germ-line transmission, 

setting the stage for the resurgence of the rat as the model organism of choice. 

 

3.2.1 Larger sample volumes 

By weight, a rat is more than 10 times the size of a mouse. The larger size means larger 

tissues and samples (Kleiber, 1947; Medigreceanu, 1910). This can mean a reduction in 

the number of animals required for a study, or enable the study of molecules too low in 

concentration to be measured reliably in the mouse. There are also more opportunities 

to measure multiple biomarkers/metabolites from the same sample, further reducing 

animal requirements (Parasuraman, Raveendran, & Kesavan, 2010). Small sample 

volumes require highly sensitive assays and are prone to high variability and false 

readout, while the larger sample volumes afforded by rat models reduce these technical 

limitations. Moreover, with blood volume of approximately 25mL, it is a lot easier to get 

multiple blood samples from rats than mice (1.5-2.5mL), enabling time-course sampling 

(for both animals a maximum of 1% of the circulating blood volume can be removed 

every 24 hours) (Parasuraman et al., 2010; Teilmann et al., 2014).  

 

3.2.2 Easier surgery 

The larger size of the rat compared to mice, allows for surgery that is much easier to 

perform. Experimenter’s training times are reduced when rats are the models of choice, 

reducing simultaneously the time needed for reliable data acquisition and eventually 

publication. More easily performed surgery also means fewer experimental errors, 

leading to increased data collection efficiency, reduction in experimental costs and in the 

number of animals used (Ellenbroek & Youn, 2016). Small substructures can be more 

easily studied and targeted, for example microinjections or cannulations into small brain 

nuclei such as the arcuate nucleus of the hypothalamus is far easier to perform in the rat. 

For example, disconnection studies (multiple brain areas in both hemispheres being 

deactivated in order to study the importance of functional connections between different 

brain areas) can be performed much more efficiently in rat models, even in neonates 

(Lipska et al., 2002; Zeeb & Winstanley, 2013). Furthermore, implantation of probes in 

order to monitor brain activity (something relevant to research in neurodevelopmental 

disorders) is possible in rat pups starting from the 14th day of their lives (Langston et al., 

2010). 
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3.2.3 Higher resolution imaging 

Imaging technologies are advancing rapidly with the emergence of techniques such as 

two-photon functional imaging of neuronal activity using calcium-sensitive (Svoboda & 

Yasuda, 2006) and voltage-sensitive (Ferezou, Bolea, & Petersen, 2006) dyes and protein 

markers, quantum dots (Marshall & Schnitzer, 2013), diffusion tensor imaging 

(Alexander et al., 2007), and fMRI among many others. Even though some of them 

require certain genetic tools already available in mice (like voltage and calcium dyes for 

two-photon imaging), the translational nature of the rat as a model makes it an ideal 

organism for imaging aimed at uncovering structural and functional irregularities 

related to disorders. Perhaps the biggest advantage of the rat over the mouse, which has 

already been discussed, is the increase in spatial resolution due to the rat’s larger size; 

spatial resolution in PET imaging has been estimated to be up to 10 fold greater in the 

rat than the mouse) (Zheng et al., 2015). 

An example of an imaging technique with potential translational value is resting state 

functional Magnetic Resonance Imaging (rsfMRI). Interest in rsfMRI, an imaging method 

commonly used to study functional connectivity in the brain, has recently increased and 

has opened interesting and flourishing lines of investigation. The idea of measuring the 

brain’s resting state became popular among human researchers and various resting state 

networks have been identified over the recent years. These observations led to a number 

of intriguing studies which investigated functional connectivity correlates in both 

neurologic and psychiatric disorders (van den Heuvel & Hulshoff Pol, 2010), depression 

(Greicius et al., 2007), dementia (Zhang et al., 2013) and schizophrenia (Kantrowitz et 

al., 2015). Consequently, rsfMRI became a very attractive candidate for identifying 

(early) disease signatures as it is a non-invasive technique which is undemanding for the 

patient due to its limited scanning time. rsfMRI experiments on animals are up to this 

date scarce, and are mainly on rats and monkeys (Kannurpatti et al., 2008; Moeller et al., 

2009; van Meer et al., 2010; Vincent et al., 2007), with a few exceptions on mice 

(Grandjean, Schroeter, Batata, & Rudin, 2014). In a study published 5 years ago, Jonckers 

and colleagues (2011) compared functional connectivity between mice and rats using 

rsfMRI. They found that rats produced less variable data than mice, the imaging 

resolution was higher (i.e. 4 separate components for the entorhinal cortex compared to 

2 for mice), but the overall signal to noise ratio was the same between the two rodent 

species. The use of rsfMRI in rat models clearly has the potential to give us more insight 
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into, and understanding of, the potential of this technique as a clinical diagnostic tool. Rat 

models make it possible for us to experimentally alter functional connectivity using 

drugs and/or genetic lesions. Additionally, rsfMRI could be used to evaluate the efficacy 

of potential treatments in rat models (a preclinical stage), and examine how that 

translates to human patients who received the same treatment, (clinical trial stage), 

bridging the gap between the two stages of treatment development. 

 

3.2.4 Physiology closer to humans 

Over the years, several anatomical and physiological differences have been highlighted 

between mice and rats (Logan et al., 1988; Stepanichev et al., 2016; Witte et al., 2010). 

Additionally, rats are consistently more representative of human physiology than mice, 

but still not as close as larger animals (i.e. swine, dogs, macaque) (Lelovas et al., 2008; 

Radermacher & Haouzi, 2013). The heart rate of a mouse is ~600 beats per minute (310-

840bpm), while the rat is less than half of that (300-450bpm) and therefore closer to the 

human average of 70 bpm. Adding to the previous the fact that rats have larger heart and 

blood vessel size, it is obvious why they are preferred in cardiovascular research over 

mice (a quick PubMed search shows that there are 6 times more published reports on 

rat than mouse). Furthermore, during the past decades, researchers working on drug 

discovery have preferred to screen the efficacy of a drug in genetically modified mice, 

models of disorders, and then switch models and assess safety and toxicity in rats, mainly 

due to the large volume of historical safety data in the rat and the greater physiological 

similarities between rats and humans compared to mice and humans. This methodology 

relies heavily on extrapolations of used mouse dosing to rat, and the assumption that this 

dose would have similar efficacy in the rat. The uncertainty in this approach is clearly far 

from ideal, as drug efficacy has been observed to be highly variable in different mouse 

strains, let alone in different species (Fattore et al., 2002; Paterson et al., 2003). Recently 

developed genetically modified rat models can now address this problem, enabling 

researchers to conduct both drug efficacy and safety studies not only in the same species 

but even in the same background strain. 

 

 

3.2.5 Rich behavioural profile 

I have already mentioned that the rat has been the work horse of experimental 

psychology. Rats’ performance in behavioural tasks is much more reliable and robust 
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than that of mice; due to their increased variability, mouse behavioural assays typically 

require cohort sizes of up to 50% larger than those needed for rats (Ellenbroek & Yun 

2016). Generally, rats perform better than mice on behavioural assays addressing 

learning and memory mechanisms and addiction; I mentioned earlier that rats are the 

preferred species for drug self-administration studies. The ability to classify subtly 

different behavioural responses is what can make the rat a powerful model of 

neuropsychiatric disorders. An example of that was reported by Steiner and Redish 

(2014). They showed that when rats realised they made a mistake, in a decision making 

task, they displayed signs of “regret”. Regret is different from disappointment, which is 

simply when things are not working out. Regret is the recognition of one’s mistake and 

the realisation that if one had done something differently, things would have been better. 

Steiner and Redish trained rats to run around a circular track past a series of four arms, 

each leading to a different food. As the rat came to the entrance of each arm, a tone 

indicated how long the rat would have to wait to receive that food. The rat could choose 

whether to stay or go, depending on how much it liked that food and how long it would 

have to wait. Whenever a rat refused a “good deal” only to realise that the next arm was 

offering a worse deal, it would stop and look back at the previous arm it had skipped. The 

rats showed three behaviours consistent with regret: (1) they only looked backwards in 

the “regret” arm, and not in the “disappointment” arm, (2) they were more likely to take 

a “bad deal” after their mistake, and (3) instead of taking their time to eat and groom 

themselves after they finished eating, the rats in the regret conditions ate quickly and 

rushed to the next arm. Of course, some differences in the cognitive performance 

between mice and rats could be due to the fact that most of the widely used cognitive 

tasks were first developed in rats and then just “transferred” with minor modifications 

to mice, without taking into account ethological difference between rodent species 

(Jaramillo & Zador, 2014).  

In assays assessing pain, rats are less likely to be susceptible to anxiety-induced 

analgesia and, as previously discussed, perform much more reliably; in fact, pain 

research is one field where mice never surpassed rats in the number of publications. 

Interestingly, a recent study showed that the gender of experimenter heavily affects the 

response to painful stimuli in mice (Sorge et al., 2014).  Moreover, rats are highly social 

compared to mice, which are more territorial and aggressive. An example is juvenile play; 

young rats will display playful wrestle behaviour with cagemates, much like kids do, 

while mice do not (Wöhr & Scattoni, 2013). Due to aggression and social rigidity in mice, 
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cages of male mice (the sex that is most frequently used in biomedical research) are a 

mixture of dominant and subordinate animals that vary greatly in terms of behaviour, 

physiology and immune function (Berry, 1970; Brain, 1971; C. A. Hendrie, Weiss, & 

Eilam, 1996) and this is, at least, a major source of variance in all studies using this rodent 

species. Cognitive and social behaviour differences will be discussed in more detail in the 

following paragraphs of this section, as these domains are two of the main affected 

behavioural domains in FXS and autism.  

 

3.2.6 More translational 

Taking together all of the previously discussed advantages of rats over mice, everything 

points to the idea that rat models are more translational than mouse models. The recent 

creation of KO rat models may be the best possible way to bridge the gap between basic 

preclinical research and clinical research, which can hopefully lead to the development 

of new treatments. Rats have been used in the pharmaceutical industry for years to 

predict how human patients will metabolize medication and to identify and study 

potential side effects. The results of these studies are essential before Phase I trials, 

addressing tolerance, can begin in humans.  In the previous chapter, I discussed recent 

drug development efforts against FXS. Several translation failures so far have led to 

uncertainty in the field.  As a result, the mouse model of FXS has recently come under 

scrutiny. Two examples that highlight the differences between the two rodents, once 

more, come from two comparative pharmacology studies. Rats and mice were treated 

with two previously discussed drugs (R-baclofen and MPEP) in an attempt to examine 

their efficacy against nicotine addiction. In both studies, differences between species was 

reported; mice also showed an inflexibility in dose-response curves and the dose of self-

administered nicotine (Fattore et al., 2002; Paterson et al., 2003). The newly created rat 

models are now aiming to reclaim their position as the animal model of choice because 

of all the reasons mentioned above.  

 

 



  

Figure 3.1 Rats are not oversized mice. The outward similarity of mice and rats can give somebody the 
false impression that mice are essentially smaller, faster breeding rats but there are core differences 
between the species. 
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3.3 Rat as a model organism of ASD and FXS 

Validity is a key concept when assessing the utility and reliability of animal models. As 

originally stipulated by McKinney and Bunney (1969), the ideal animal model of a 

disorder should mimic the disorder’s aetiology, pathophysiology/symptomatology, and 

response to treatment. These criteria proposed by McKinney and Bunney laid the 

foundation for the concept of construct, face, and predictive validity of animal models 

respectively (D. C. Blanchard, Summers, & Blanchard, 2013; Willner, 1984). Specifically, 

in model organisms of neuropsychiatric disorders, construct validity expresses the 

conceptual framework of the model – that is, the commonality between the underlying 

neurobiological mechanisms in the model system/organism and those underlying the 

behaviour in the pathological state being observed in human patients. Face validity 

expresses the similarities between the symptoms displayed by the affected individuals 

and the behaviours exhibited by the model organisms. Lastly, the criterion of predictive 

validity relates to the capability of the model organism to predict the progression of the 

disorder modelled, as well as the response to therapeutic interventions; whether or not 

a medication will be successful when tested in the clinical trials (Willner, 1984), also 

including sensitivity of the animal model in question, to pharmacological manipulations 

affecting the disease in humans, either in a positive or in a negative direction (D. C. 

Blanchard et al., 2013). In the following pages I will discuss the potential advantage of 

rat models over mice in modelling FXS and ASD(Cenci, Whishaw, & Schallert, 2002). I will 

focus on the three core behavioural domains being affected in FXS and ASD, namely 

anxiety/hyperactivity, social interactions and cognitive deficits, and explain why the rat 

is a more suitable model organism.  

 

3.3.1 Differences in anxiety-hyperactivity  

Anxiety and hyperactivity are common behavioural problems associated with FXS and 

ASD (Leitner, 2014; Wheeler et al., 2014). The neurobiological mechanisms connecting 

anxiety/hyperactivity phenotypes and FXS/ASD remain elusive but there are available 

symptom-based treatments like SSRIs and ADHD medications (methamphetamines) that 

can partially alleviate the behaviours in affected individuals. Over the last 20 years 

behavioural phenotyping in the mouse model of FXS has yielded some contradictory 

results. The three main behavioural paradigms used to access anxiety-like and 

hyperactivity-like behaviours in rodents and specifically in Fmr1 KO mice are the open 

field test, the elevated plus or zero maze and the light-dark box task (Bouwknecht & 
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Paylor, 2008). Although, rats do not seem to have an obvious advantage over mice when 

modelling anxiety related behaviours, differences between the species’ natural response 

to stressors lead to different readouts in these tasks. An obvious difference in that 

respect is that mice are primarily herbivores while rats are opportunistic (herbivores 

and carnivores depending on their habitat’s natural sources). This key difference in 

natural behaviour means that rats are bolder when exploring new environments which 

are potential unfriendly; a behaviour which is essentially assessed in all three 

aforementioned tests. 

Rats and mice are used extensively in the field of depression and anxiety research 

because of the wealth of genetic and physiology data available. Nevertheless, 

summarising the findings from studies made using rats, mice or other species, as ‘rodent 

models’ does not take into consideration the potential importance of these species 

differences. This is also a very high risk strategy that assumes depression and anxiety to 

be general mammalian features that can be modelled in any animal of this class (Hendrie 

et al., 2013). In relation to innate fear and depression related tasks, there are important 

differences between rats and mice and their significance cannot be ignored.  

Even though there are not many comparative studies specifically in behaviour, there are 

a large number of studies looking at differences in the neurotransmission systems 

between rats and mice, relative to mood disorders and specifically in depression, anxiety 

and innate fear. For example, galanin and galanin receptor 1 (GalR1) have been 

connected to the serotonergic system (Misane et al., 1998) and have been shown to be 

implicated in cellular processes related to neurological disorders such as anxiety and 

depression (Bellido et al., 2002). A comparative study showed that galanin and GalR1 

have different expression profiles in the central nervous systems of mice and rats; there 

is a lack of galanin and GlR1 in the mouse dorsal raphé nucleus, a part of the serotonergic 

system which has long been implicated in mood disorders (Larm, Shen, & Gundlach, 

2003). Consistent with this finding, two studies have demonstrated that drugs acting on 

the serotonergic system exert anxiolytic-like and panicolytic-like effects only on rats but 

not in mice (Blanchard et al., 1997; Griebel et al., 1997). The differences in 

neurotransmission between rats and mice seem to be even more widespread; it has been 

reported that exposure to restrain stress leads to different responses in the 

monoaminergic neurotransmission between rats and mice (Konstandi et al., 2000). 
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Differences have also been observed in the effect of corticotropin releasing factor (CRF), 

a molecule associated with depression and anxiety disorders (Binder & Nemeroff, 2010). 

It has been shown that intra-cerebroventricular administration CRF leads to a reduction 

of depression like behaviours in rats but not in mice (Dunn & Swiergiel, 2008). Moreover, 

Radulovic and colleagues (1998) showed that there are key differences in the 

distribution of Corticotropin-Releasing Ractor Feceptor type1 (CRFR1) between rat and 

mouse central nervous systems. The main species differences were observed in cortex 

and brainstem. Mice were found to express less CRFR1 in the neocortical areas and more 

CRFR1 in the brainstem than rats. Keeping in mind that the cortical CRF receptors have 

been implicated in stereotyped motor behaviours (Crawley et al., 1985) and cognitive 

function (Van’T Veer et al., 2012), while brainstem CRF receptors are mainly involved in 

fear and anxiety, one could speculate that besides the differences seen in stress response 

between the species, differential CRFR1 expression profiles could account, at least in 

part, for differences between the rats and the mice in studies of learning and memory 

(Whishaw, 1995). 

 

3.3.2 Differences in social interactions 

Perhaps the most important reason to consider rats as a superior animal model for the 

autism spectrum and other related neurodevelopmental disorders is that they express 

much more complex social behaviours than mice. Social interaction deficits are one of 

the three affected core behavioural domains in FXS and ASD. To date, many behavioural 

paradigms have been developed in order to assess related deficits in existing mouse 

models (Silverman et al., 2010; Wöhr & Scattoni, 2013). Nevertheless, the question of 

whether these human behavioural traits have strong endophenotype similarities to 

rodents still remains unanswered (Servadio, Vanderschuren, & Trezza, 2015).  

Differences between rats and mice can be observed even while handling them (see 1.5.3). 

Anyone who has worked with both rodent species will easily see that mice are much 

more aggressive than rats. This may be due to the species’ different social structures in 

the wild; mice normally live in small groups (depending on the availability of natural 

resources) where one extremely aggressive alpha male dominates and monopolizes all 

females. They are strongly territorial and show high levels of intra-male aggression 

whenever they are group housed. Rats, on the other hand, which are organised in bigger 

highly social colonies, have a more loose and dynamic hierarchy, with widespread 
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promiscuity and low levels of aggression (Barnett, 1976). Rats live together relatively 

peaceably under laboratory conditions, within which significant levels of full-blooded 

aggression are seen under only the most unusual of conditions (Barnett, 1976; Rodgers 

& Hendrie, 1982).  

Social learning is another behavioural skill relevant to FXS and ASD affected traits. Social 

transmission of knowledge and emotions have been documented in both mice and rats 

(Galef, 1984; Knapska et al., 2010; Munger et al., 2010). The only type of social learning 

that has been documented in mice is socially transmitted food preference, in addition to 

the identification of one of the molecular pathways involved. It seems that a specific 

receptor expressed in olfactory sensory neurons which are part of a specially designed 

circuit in the olfactory system is required for the acquisition of socially transmitted food 

preferences (STFPs) in mice (Munger et al., 2010). On the other hand, rats seem to be 

able to share information related not only to food preference (Strupp & Levitsky, 1984) 

but also to emotions (Knapska et al., 2010) and pain sensitivity (Fanselow, 1985). 

Knapska and colleagues (2010) showed that a brief social interaction of a rat with a cage 

mate that has undergone an aversive learning experience, was enough to promote 

aversive learning in the otherwise naive animal. Another related study by Fanselow 

(1985), showed that odours released by stressed rats can produce analgesia in 

unstressed naive conspecifics. These two socially evoked responses may belong to group 

of evolutionary conserved behaviours that promote defensive responses to novel, 

potentially harmful, situations in their environment. Collectively, these observations of 

social influence on food preference and fear in rats, point to the fact that the 

neuroanatomical circuits, mediating the complexities of social interactions seen in rats, 

should be much more intricate in comparison to mice, suggesting that rats can be a more 

suitable model for disorders affecting social interactions like FXS and ASD. Furthermore, 

such studies provide a useful model system with which we can explore the many ways 

in which social interactions are affected in these disorders.  

One other way of communication in rodents, which is extensively studied, involves the 

use of ultrasonic vocalisations (USVs). Rodents have developed an elaborate 

communication system which is associated with emotionally negative and positive 

states. Aversive low pitch vocalisations, termed 22kHz type USVs, are emitted in 

dangerous and life threatening situations, or situations causing discomfort, frustration, 

and significant stress and anxiety. On the other hand, high pitch vocalisations (50kHz 
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type USVs), include brief calls emitted in a variety of social non-aversive, appetitive, and 

pleasing situations (Burgdorf et al., 2013). As mentioned before, rats display a richer 

social behavioural repertoire compared to mice, exhibiting more “human-like” 

behaviours; thus it is not surprising that rats and mice seem to have differences in 

vocalisations as well. It has been shown that juvenile rats display ‘rough-and-tumble’ 

play (largely composed of non-serious chasing, fighting and rolling around together); 

mice on the other hand exhibit a very low percentage of time spent in contact social play 

(Siviy & Panksepp, 2011). Furthermore, it has been found that juvenile rats emitted a 

high number of high frequency USVs also in anticipation of play when they were placed 

alone in a chamber where they had played with a partner during the previous days 

(Knutson, Burgdorf, & Panksepp, 1998). Play is thought to have an important role in 

brain development and well-being of humans as well as other animals. Taking this into 

account, several studies show that rats selectively bred for low rates of play-related 50-

kHz pro-social USVs can be used to model social deficit symptoms of autism (Burgdorf et 

al., 2013). Another indication of the rich communication repertoire of rats was shown by 

Blanchard and colleagues (Blanchard et al., 1990). They showed that rats’ production of 

USVs, in response to a predator depends on the presence of conspecifics, meaning that 

they produce these alarm cries deliberately, reflecting in that way social facilitation 

(Crawford, 1939). Blanchard and colleagues hypothesized therefore, that rat USVs 

emitted in aversive situations serve as alarm calls to warn conspecifics (Blanchard et al., 

1991). In support of this hypothesis, Kim and colleagues (2010) showed that the main 

vehicle for social transmission of fear in rats is potentially the emission of USVs. These 

observations have yet to be replicated in mice using the same apparatus (Visible Burrow 

System) and the same paradigm. The latest example suggests that mice lack the intense 

social bonding observed in rats.  Conclusively, mice and rats have the capability to emit 

USVs mainly in a social context. The more colonial life style of the rat compared to the 

mouse is accompanied by the occurrence of ultrasonic vocalisations in a much wider 

variety of contexts. This species difference in the capability for, and evolutionary value 

of, communication of affective states could be linked to the more complex social 

structure of rats in comparison with mice.  

Apart from the USVs, differences in the patterns of defensive behaviour in rats and mice 

were observed in the previously described studies (Blanchard et al., 1991; Blanchard et 

al., 1990). Upon the initial presentation of a predator, mice normally retreat from the 

open surface and return later engaging in risk assessment behaviour. This behaviour 
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consists of returning to the main hall area of the apparatus and peeking through an 

opening. If an obstacle obscures the view of the cat, the mice would change their vantage 

point. After a period of about 5 to 10 min of risk assessment, the mice retreat to the 

depths of the burrows and remain there for some hours. In contrast, the rats immediately 

retreat to the depths of the burrows and engage in prolonged freezing behaviour. The 

main reason why the rats do not engage in initial risk assessment appears to be related 

to their use of vocal communication. The first rat to observe the cat emits an alarm signal 

to alert other members of the colony about the potential danger; therefore, not all 

members of the colony have to see the predator in order to avoid it. One could 

hypothesise that the greater complexity of social organization of rats seems to have 

resulted in their use of different defensive strategies to that used by mice. This observed 

use of vocal communication in rats may suggest the use of a more complex behaviour 

than simple predatory inspection, as vocal communication is widely thought to involve 

relatively complex signalling (Marler, Evans, & Hauser, 1992). 

Another difference between rats and mice which is possibly more relevant to ASD than 

FXS relates to prosocial behaviours like empathy. Behavioural tasks which assess 

empathy related behaviours have been developed for both rats and mice (Atsak et al., 

2011; Bartal et al., 2011; Langford et al., 2006). Langford and colleagues (2006), working 

with mice, showed that the pain sensitivity of mice which observe cage mates in pain, is 

increased. In an attempt to determine the transmitting sensory modality of this 

behavioural response, they blocked sensory inputs individually, by placing physical 

barriers to sight and/or touch or by rendering mice anosmic or deaf. They found that 

visual blockade completely abolished the observed hyperalgesia, although based on the 

techniques used, pheromonal communication could not be ruled out. On a similar 

experiment in rats (Atsak et al., 2011) researchers showed that if a rat witnesses a 

conspecific receiving a mild electric foot shock, two things can happen; the witnesses 

reacts with a typical distress behaviour to the distress of the demonstrator rat, displaying 

empathetic freezing behaviour and the demonstrator’s behaviour was in turn modulated 

by the behaviour of the witness, as in, demonstrators froze more following foot shocks if 

their witness froze more. The latter shows a reciprocal social communication. In a pair 

of more sophisticated paradigms, only possible in rats so far, Bartal et al. (2011) showed 

that under certain circumstances the rat can exhibit empathic behaviours. In their 

experiment, a rat was restrained in a small cylindrical cage in the middle of larger 

rectangular arena. A second, cage mate, rat was free to move into the arena, and 
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gradually learned how to open the door of the cage and free its cage mate. Opening this 

door takes some effort, and it took the rats a while to find out how to open it. In contrast 

to the misconception that rats would be selfish animals, the free rats were seen putting 

considerable effort into finding ways to open the door and free their captive conspecific. 

In an additional experiment, they gave the free rat the choice between getting a chocolate 

reward placed inside an identical cage, and freeing the constrained rat. Surprisingly the 

majority of the test subjects decided to free the caged rat first and then share the food 

reward. All female rats in the study displayed this behaviour, while 30% of the males did 

not, showing that females seem to exhibit more empathy related behaviours. One could 

suggest, that this behaviour was seen not because rats really display empathic 

behaviours but because they crave companionship, but recently Sato and colleagues 

(2015) reported a similar behaviour, putting those doubts to rest. In order to test rats’ 

altruistic behaviour, they divided a Plexiglas box into two compartments using a 

transparent partition. On one side of the box, a rat was forced to swim in water (the water 

level was rising slowly). The only way the rat could escape was if a second rat, sitting safe 

in the dry compartment of the testing box, open a small escape hatch connecting the two 

sides. Interestingly, the rats in the dry side did not open the hatch when their conspecific 

was still dry, confirming that they were helping in response to others’ distress, rather 

than because they just wanted company. Rats that had previously been in the wet 

compartment, learned how to save their cage mates much faster than those who had 

never been soaked previously, suggesting that it is empathy that drove their response 

(Sato et al., 2015).  

 

3.3.3 Differences in cognition 

There are many studies to date showing that rats are indeed much better at acquiring 

new information than mice. This difference could also be due to the higher impulsivity 

of mice. Operant tasks that require suppression of spontaneous behaviours are more 

difficult for mice to perform well. A wide range of popular behavioural tasks either are 

best performed in rat models or have been validated and optimized especially well in 

rats, including tasks related to reward (De Vries et al., 1998), sensory systems 

(Znamenskiy & Zador, 2013), working memory (Deacon & Rawlins, 2006), declarative 

memory (Dusek & Eichenbaum, 1997) and decision making (Steiner & Redish, 2014). 
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One of the most widely used behavioural tasks to assess learning memory in rodents is 

the Morris watermaze. It was initially designed for rats as natural swimmers, but it has 

been adjusted for mice ever since. The water maze has several advantages over 

conventional dry mazes. For example, there are no local cues such as scent traces from 

other rats and there is no fixed escape strategy. Experimental animals make good 

progress in the trials because they want to escape. Several studies have shown that even 

rat pups outperform the mice, especially in retention memory (Frick et al., 2000; 

Podhorna & Didriksen, 2005; Stranahan, 2011; Whishaw & Tomie, 1997; Whishaw, 

1995). Both rats and mice are able to locate the hidden and visible platform, even when 

tested in an intense one-day training protocol. However, the two rodent species appear 

to use different strategies for locating the hidden platform; rats demonstrate a robust 

spatial strategy, whereas mice appear to utilize alternative non-spatial strategies which 

are neither consistent nor reliable. Moreover, early studies suggested that laboratory 

mice seemed to have a tendency to float, behaviour perhaps related to their perceived 

weakness in the water maze. Therefore, it was suggested that mice did not actually aim 

to find the platform, but simply waited until the experimenter rescued them, though 

water mazes have now been utilized extensively in thousands of published experiments 

with transgenic and knock-out mice. The key when using mice is to use procedures that 

minimize stress and improve performance in this task, like gentle handling for a few 

minutes every day before the start of training. The fact that rats seem to have greater 

visual acuity than mice and are natural swimmers gives them an obvious advantage in 

water maze tasks, of course, so we cannot claim that rats exhibit higher cognitive 

flexibility than mice based only on water maze results (Ellenbroek & Youn, 2016). 

When mice and rats are compared in a spatial navigation task in dry mazes their 

performance is comparable (Cressant et al., 2007; Whishaw & Tomie, 1997). These 

results confirm that mice and rats can learn dry-land spatial tasks equally well but are 

likely to rely on different strategies even when confronted with the same paradigm. 

Cressant and colleagues (2007) confirmed what was previously observed (Frick et al., 

2000); that the strategies of mice are much less robust and flexible than the ones used 

by rats, not allowing a rapid adaptation to a dynamic environment when a switch onto 

another sensory modality is ineffective. On this last note, several behavioural tasks have 

been used to assess cognitive flexibility, mainly in rats. These behaviours, such as 

attention shifting (Birrell & Brown, 2000), delayed alternation (Horst & Laubach, 2012) 

and delayed (non)matching-to sample tasks (Porter, Burk, & Mair, 2000) rely heavily on 
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prefrontal brain areas in mammals (Birrell & Brown, 2000). Interestingly, FXS patients 

exhibit difficulties in prefrontal cortex dependent tasks such as the Wisconsin Card 

Sorting (Van der Molen et al., 2012a). Rat and mouse equivalent of the tasks have already 

been developed (Tait, Chase, & Brown, 2013); once again the rat equivalent is more 

complex and rats perform much better in all aspects of testing. These differences in 

performance are important in order to be able to detect subtle differences after a 

potential treatment, so it is obvious that rat models can have a real advantage over 

mouse models when testing these complex behaviours.  

Another type of a widely used set of behavioural paradigms is the spontaneous object 

exploration task. Again rats appear to perform better than mice either in short or long 

retention intervals (Bevins & Besheer, 2006) in novel object recognition, which is the 

simplest version of these tasks. In contrast a study by Stranahan (Stranahan, 2011) 

showed no difference between species but rats show increased exploratory behaviour; 

even so high exploration times are a very important element of behaviour in these types 

of tasks in order to get interpretable results. To date there is not a direct comparison 

between the species in other similar tasks like object in place or object in context but a 

quick look at the literature is enough to prove that rats outperform mice in both 

retention of memory, and performance index (Langston & Wood, 2010; Spanswick & 

Dyck, 2012).  

Looking at physiology studies related to brain areas important for cognition can also give 

us an idea of the differences between mice and rats. An important comparative study 

showed that the adult neurogenesis in dentate gyrus (a process believed to be important 

for learning and memory amongst other behaviours) in rats, processes much faster and 

newly differentiated neurons have much higher chances of being incorporated into a 

functional circuit (Snyder et al., 2009). This suggests that new neurons may make a 

greater contribution to behaviour in rats than in mice. One other major difference 

between the rat and mouse dentate gyrus is that the peak of granule cell development is 

postnatal in the rat but prenatal in the mouse (Angevine, 1965; Schlessinger, Cowan, & 

Gottlieb, 1975), despite the almost identical gestation time in the two species. The 

delayed development of the dentate gyrus in the rat may result in a structure that is more 

versatile to changes in response to environmental stimuli and more plastic during 

adulthood. Behaviourally, this could result in rats showing a much more complex 

behavioural repertoire than mice and being able to acquire behavioural strategies that 
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demand significant plasticity (Whishaw et al., 2001) and/or that strongly rely on refined 

hippocampal function (Gerlai & Clayton, 1999). It is not yet known which of these two 

species shows rates of neurogenesis comparable to humans. However, the extended 

development and more intricate and flexible behavioural repertoire of the rat compared 

with the mouse (Whishaw et al., 2001) suggest that the rat’s hippocampus may be the 

better model for that of the human. 

Concluding, the mouse can perform similarly to the rat, in many behavioural tasks, but is 

almost always less sophisticated and with less capacity for modifying its initial 

behavioural response. Given that there is roughly a fourfold difference in the weight of 

rat and mouse brains and that the mouse cortex is only about 60% as thick as the rat’s 

brain, it is reasonable to assume that rats have more synapses per equivalent volume of 

cortical tissue, resulting to a more complex behavioural repertoire (Whishaw et al., 

2001). Therefore, the mouse seems to be relatively inefficient for neurobehavioral 

research as it is a species functioning at a lower level of complexity, relative to the rat, 

focussing primarily on just those behaviours directly needed for successful survival and 

reproduction. When used in learning and memory tasks, mice often seem to lack a solid 

plan and a robust strategy (Cressant et al., 2007; Frick et al., 2000); manipulations of 

neural processes are thus relatively limited in their ability to alter behavioural output. 

This may not be a drawback for the genetic analysis of behaviour and can aid in gaining 

insights into the genetic basis of more basic behaviours. However, this may be a 

stumbling block for those neurobiologists who aim to assess behavioural plasticity and 

social behaviour as a primary aim of investigation. In particular, research related to 

behavioural deficits of neurodevelopmental disorders, like autism spectrum disorders, 

requires animal models which can exhibit complex behaviours. Lastly, using mouse 

models may also may be a drawback in comparing the results produced in different 

laboratories, in which the focus of the analysis is on behaviours that might be a less 

pronounced part of an animal’s natural behaviour. Crabbe, Wahlsten and Dudek (1999) 

have remarked on the widely divergent results that can be obtained from behaviour of 

mice tested in different laboratories even when the same tests using the same apparatus 

are applied. This could be one of the ways to explain the inconsistency of the behavioural 

phenotype of Fmr1 KO mice.  
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Figure 3.2 Rodent models are accelerating therapeutic development for neurodevelopmental 
disorders. Translational neuroscience has made great effort in developing treatments based on 
understanding the causal genetic mechanisms underlying neurodevelopmental diseases. Today we stand 
at a therapeutic front line, with much more to learn and the recent generation of a rat models creates 
exciting new directions. (photo from Jeste and Geschwind 2016)  
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3.4 The age of KO rats   

A number of technological problems have made it very difficult to specifically target 

genes in rats. On the other hand, scientists have been effectively manipulating genes in 

mice ever since researchers first discovered mouse embryonic stem (ES) cells in the 

1980s (Evans & Kaufman, 1981). Recent advances in genome sequencing in rats (Jacob 

& Kwitek, 2002) and the development of methods to produce pluripotent stem cells from 

rats (Buehr et al., 2008; P. Li et al., 2008) paved the way for the development of novel 

genetic manipulation techniques possible in rats and this has led to the creation of KO 

rats. Before the emergence of ZFN technology (Geurts et al., 2009), there had not been a 

reliable technique for creating KO rat models. Chemical mutagenesis using 

ethylnitrosourea (ENU) and random insertion mutagenesis using gene-trap Sleeping 

Beauty transposons have been used to generate loss-of-function, or ‘KO’, mutations in 

important disease genes including rat models of cancer, eye development and 

immunodeficiency (Amos-Landgraf et al., 2007; Homberg et al., 2007; Zan et al., 2003). 

Recently, the CRISPR/Cas9 system has emerged as a highly efficient and advantageous 

alternative to the previously mentioned genetic manipulation approaches. The 

CRISPR/Cas9 system has been used to generate genetically modified rat strains which 

carry single or multiple mutations in genes relevant to selected disorders (Bao et al., 

2015; Shao et al., 2014).  While existing mouse models were created by cloning or using 

embryonic stem cells, CRISPR/Cas9 technology bypasses these techniques by targeting 

genes in vivo, creating knock out or genetically modified animals in a shorter amount of 

time and enabling KO in a wider range of mammalian species; for example, by direct 

injection of RNAs into one-cell embryos. Now that KO technology is available for rats and 

mice, scientists will be able to make choices based only on the question they want to 

answer. Thus, it is widely believed that the rats’ natural advantages as experimental 

animals, combined with the wealth of new genetic information and gene manipulation 

techniques should lead to a surge of interest among biomedical researchers (Dolgin, 

2010) (Iannaccone & Jacob, 2009; Wöhr & Scattoni, 2013; Zalocusky & Deisseroth, 2013). 

It is also the case that more complex brains are not always preferable.  As Vermaercke 

and colleagues showed, when rats and humans were trained in rule-based and 

information-integration category-learning tasks with visual stimuli, their performance 

was equal in the rule-based categorization, but rats outperformed humans on 

generalization in the information-integration task (Vermaercke et al., 2014). 
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Furthermore, and contrary to what I have discussed already, a recent test showed that 

even though rats learned faster than mice in a challenging rule-based auditory task, that 

tested perceptual ability as well as cognitive flexibility, their final performance was very 

similar. (Jaramillo & Zador, 2014). According to the authors, the performance differences 

researchers detect between mice and rats, could be due to the training protocols used in 

a wide range of behavioural tasks. The rat has been the workhorse of experimental 

psychology for many years, so most of the tasks were developed and optimized 

specifically for them. Since all of the genetic tools available in mice are still ages ahead of 

rats, careful adjustment of behavioural protocols could be an alternative way to study 

the neural mechanisms of normal and diseased brain states. 

In closing, it is important to keep in mind that these recent innovations in genetic 

manipulation tools for rats do not mean the end of the lab mouse (Fig. 3.2). The hope is 

that by acknowledging and understanding the differences between species, the 

resources used in the past decades in studies, using mice as model organisms, will not be 

wasted and that both rodent species, rats and mice, will continue to be used in parallel, 

with a rational conceptual frame of reference based on objective features of comparative 

pathophysiology (rather than physiology). Only then could mouse and rat models take 

their real place in neuropsychiatric research along with other experimental approaches 

and in vitro (i.e., primary cultures, iPSC from affected individuals) studies before 

commencement of any human clinical trials. 

 

 

 

 

 

 

 

 

 

 

 



82 
 

4. Behavioural characterisation of a new rat 

model of Fragile X syndrome  

4.1 Introduction 

Over the last two decades, much has been learned about the pathophysiology associated 

to the loss of FMRP from mice and other model organisms of FXS (Chapter 1). Recent 

advances in techniques for manipulating genomes have allowed the generation of 

transgenic mammals other than mice. The recent generation of a rat model of FXS opens 

the door, not only to validate phenotypes across mammalian species, but also to address 

behavioural deficits (especially cognitive) using paradigms that are more challenging to 

address in mice. This cross-mammalian comparison, especially related to behavioural 

manifestations can be quite challenging if we take into account ethological differences 

between species (Chapter 3). The approach most likely to be used, to test the validity of 

new rat models is going to be the same as for any other previous model organism. Many 

candidate gene mutations, thought to be important for disorders, will be introduced in 

homologous rat genes and each mutant rat line will be evaluated for phenotypes 

analogous to the symptomatology of the human condition. Successful rat models should 

incorporate face validity (strong analogies to the pathophysiology of the human 

condition), construct validity (common biological underpinnings to the human disease, 

such as a genetic lesion or anatomical abnormality) and predictive validity (analogous 

system reaction to treatments which prevent or reverse symptoms in human patients) 

which is vital when testing the efficacy of new therapeutics (Silverman et al., 2010).  

Choosing appropriate behavioural tests that are relevant to human neuropsychiatric 

disorders is not a trivial task. Certain symptoms may manifest only in humans or are 

inherently variable in severity. The same problem exists in the case of new rat models. 

In the case of Fmr1 knockout rats, it is still not clear if common cellular and circuit 

pathophysiology with the mouse model leads to the same behavioural abnormalities.  

Therefore, this new model of FXS will enable us to directly examine whether common 

cellular dysfunction or behavioural outcomes of a genetic mutation are conserved across 

species. 
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4.2 The Fmr1 KO rat 

The first rat model for FXS has been made available almost 5 years ago. Therefore, 

literature is still very limited; there are only seven published studies (including a study 

describing part of the work described in this thesis) looking into cellular, circuit and 

behavioural abnormalities in Fmr1 knockout rats. 

The first report by Hamilton and colleagues (2014), focussed on the behavioural 

characterisation of Fmr1 KO rats. No significant differences were found between groups 

Fmr1 KO and WT rats, in a wide range of behavioural tasks but some behavioural 

abnormalities with relevance to autism were reported. Juvenile Fmr1 knockout rats 

displayed reduced play behaviours during interaction with same genotype animals. This 

is interesting because contrary to mice, juvenile rats display a large repertoire of social 

and play behaviours (Thor & Holloway, 1984). No differences were observed in the 

three-chamber test, as all juvenile rats showed a strong preference for the “social” 

compartment, containing an unfamiliar stimulus rat. Moreover, a phenotype emulating 

repetitive behaviours was observed. Mutant rats chewed a wood block more. No 

cognitive or sensory processing abnormalities were reported except from small trends 

for enhanced PPI, indicating minor dysfunctions in sensory gating. The results in this first 

report are limited to only some subtle differences related to social and repetitive 

behaviour. Fmr1 knockout rats do not seem to express a variety of behavioural deficits 

seen in the mouse model, but the rich behavioural of rats, like juvenile play (Wöhr & 

Scattoni, 2013), could reveal behavioural differences which indicate that this rat model 

will complement existing mouse models. 

Two more studies examined deficits related to sensory processing, and specifically 

auditory stimuli (Engineer et al., 2014; Ruby, Falvey, & Kulesza, 2015). Engineer and 

colleagues reported that evoked potentials and spiking activity were significantly 

degraded in primary auditory cortex, anterior auditory field and the ventral auditory 

field in response to auditory stimuli. Further analysis revealed that activity in these brain 

areas contains significantly less information about sound identity in Fmr1 knockout rats 

compared to wildtype littermates. Specifically, ventral auditory field which has been 

related to emotional regulation (Kimura, Imbe, & Donishi, 2010), showed the biggest 

differences. The second study examined morphology and neurochemistry in the auditory 

stem (Ruby et al., 2015). They reported that in absence of FMRP, specific neuronal types 
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have abnormal somatic and spine morphology, pointing to the fact that auditory 

dysfunction in FXS derive, at least in part, from malfunctioning brainstem circuits. 

Another recently published study focussed on the postnatally developing visual cortex 

(Berzhanskaya et al., 2016a). They showed that the visual cortex of Fmr1 null rats 

exhibits long periods of hyperactivity compared to wildtype littermates. Moreover, this 

hyperactivity was connected with reduced synchronisation of circuits in visual cortex, 

suggesting disrupted inhibitory function. As this thesis was being composed, another 

report from the same research group (Berzhanskaya et al., 2016b), showed that instead 

of the hyper-excitability previously observed, visual responses before eye-opening have 

reduced spike rates and an absence of early gamma oscillations, which is a marker for 

normal thalamic function at this age (Hartung et al., 2016). Surprisingly, despite this 

finding early in life, the developmental trajectory of visual responses in Fmr1 null rats 

was found to be identical to wildtype littermates. Taken together these two studies 

suggest that early circuit deficits in this rat model of FXS have consequences on circuit 

function and are opposite those found in adults. 

Lastly, another recently published study reported that FMRP loss leads to a 

dysregulation in reward processing in rats (Kenkel et al., 2016). Further behavioural 

analysis revealed that transgenic rats failed to discriminate a rewarding odour (almond) 

which is shown to elicit innate reward response in wildtype rats and a subsequent 

increased preference. These results provide support to evidence pointing to the reward 

system as a contributor to social deficits seen in individuals with FXS. The importance of 

this study apart from the results showing deficits in reward processing, is that it 

highlighted one of the advantages of rats as a translational model. Combining fMRI in 

awake rats with relevant behavioural assays in genetic rat models, represents an 

effective experimental approach that allows the identification of the effect of single gene 

mutations on neural circuits regulating emotion and cognition. 

Taken together these studies suggest indicate that transgenic rats will complement 

existing mouse models, providing valuable insights into the pathophysiology associated 

with FMRP loss. Despite the diverse finding, it is obvious that cognitive deficits have been 

quite challenging to be identified so far in this new rat FXS model. This study is an 

attempt to characterise this rat model is the most thorough way possible within the 

limits of a PhD thesis. Behaviour was assessed on all three mainly affected trait groups 

in FXS: (1) anxiety/hyperactivity (2) social interactions/communication and (3) 
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cognition. For each behavioural trait, more than one tests were used in an attempt to 

allow a more detailed characterisation of the model. While the majority of work 

presented in this chapter is focussed on the commercially available model of FXS on an 

albino Sprague-Dawley background strain, in the last section. I present work done on a 

custom made rat model with the same genetic lesion on Fmr1 gene, but on a Long-Evans 

hooded background strain. Since the mouse model has shown background strain 

influences behavioural phenotype heavily (Corinne M. Spencer et al., 2011), we wanted 

to examine whether the cognitive deficits Sprague-Dawley rats display, persist across 

different strains.  

 

4.3 Methods 

4.3.1 Animals 

Sprague-Dawley Fmr1 KO rat founders obtained from Sigma Advanced Genetic 

Engineering (SAGE) Labs (St. Louis, MO, USA), now part of Horizon Discovery, bred in-

house and kept in a 12h/12h light dark cycle. Female Fmr1 heterozygotes were crossed 

to WT SD males (Charles River labs) to produce Fmr1 KO and WT littermate controls. 

Offspring were genotyped using primers for Fmr1 lines, Fwd: 5’-

TGGCATAGACCTTCAGTAGCC-3’, Rev: 5’-TATTTGCTTCTCTGAGGGGG-3’. WT rats 

produced a 400bp PCR product while Fmr1 KO a 278bp (Figure 4.1A). DNA samples were 

obtained after alkaline lysis of tissue samples (~2mm ear clips) using 600μL NaOH 

50mM per biopsy and incubating in 96 degrees for 40 minutes. 60μL of Tris 1M pH 8, 

were used to neutralise the pH of the solution. 1μL of this sample was used for each PCR 

reaction. 

Long Evans Hooded Fmr1 KO rats, were obtained from Sigma Advanced Genetic 

Engineering (SAGE) Labs (St. Louis, MO, USA), now part of Horizon Discovery, bred in-

house and kept in a 12h/12h light dark cycle. Female Fmr1 heterozygotes were crossed 

to WT LEH males to produce Fmr1 KO and WT littermate controls. Offspring were 

genotyped using primers targeting the eGFP cassette in exon 1 of Fmr1 gene Fwd: 5’-

ACGTAAACGGCCACAAGTTC-3’, Rev: 5’- ATGCCGTTCTTCTGCTTGTC-3’. WT rats 

produced no PCR product while Fmr1 KO a 421bp. Primers targeting the genomic 

sequence either way of the eGFP cassette insertion site were used as positive control in 

a separate reaction; WT rats produced a 400bp PCR product while Fmr1 KO nothing; the 

two reactions were run separately and the products from the same DNA sample were 

loaded on the same column (different well) on agarose gel (Figure 4.1B). All 
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experimental subjects were male and group housed (2–5 animals/cage) to avoid effects 

of isolation. Ad libitum standard laboratory chow was provided throughout 

experimental procedures. All experiments were done blind to genotype. Testing was 

always performed in during the light phase of the cycle. Prior to the start of the study, all 

experimental procedures were approved by the University of Edinburgh centenary 

services and abided by the Animal Care (Scientific Procedures) Act 1986. 

 

4.3.2 Experimental Design 

Six different cohort of animals were used for the experiments described in this chapter. 

Cohort 1 (9 WT and 9 Fmr1 KO SD) was tested in USV analysis and a Reference and 

reversal task in watermaze. Cohort 2 (8 WT and 8 Fmr1 KO SD) was tested in marble 

burying test. Cohort 3 (12 WT and 12 Fmr1 KO SD) was tested in a Delayed Matching to 

Place task in watermaze. Cohort 4 (10 WT and 10 Fmr1 KO SD) were tested in open field 

test and light/dark box. Cohort 5 (16 WT and 16 Fmr1 KO SD) was tested in spontaneous 

exploration tasks and three chamber social interaction test (for the social interaction test 

only 14 from 16 animals of each group were used). Finally, cohort 6 (16 WT and 16 Fmr1 

KO LEH) was tested in spontaneous exploration tasks. Statistical analysis was done using 

IBM SPSS Statistics 22.0 and GraphPad Prism 6. All graphs were produced in GraphPad 

Prism 6. 

 

4.3.3 Behavioural Assays 

Open field test 

Testing was carried out in wooden square arena (1x1 m) painted grey, under dimmed 

light. The walls were not vertical, but on a 45-degree angle in order to prevent shadow 

creation. No handling was carried out before testing, as it could have masked any anxiety 

phenotype. Rats’ behaviour was recorded using an overhead camera, for 30min. The 

open field was cleaned with 70% ethanol between rats. Anymaze software was used to 

analyse subjects’ behaviour.  

Light/dark box 

A wooden box with an enclosed (dark) and an open (light) compartment was used (light 

40x50x30 cm; dark 40x30x30 cm). The two compartments were connected through an 

opening (8x8 cm). Rats were placed in the light compartment and let to explore the box 
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for 5min. Rats’ behaviour was recorded using an overhead camera. A transition between 

compartments was recorded only when all 4 paws crossed the opening. The apparatus 

was cleaned with 70% ethanol between rats.  Anymaze software was used to analyse 

subjects’ behaviour. 

Marble burying test 

Testing was carried out as previously described (Deacon, 2006a). Transparent plastic 

cage (Tecniplast) (48x26.5x21 cm) was filled approximately 5 cm deep with wood chip 

bedding, lightly tamped down to make a flat, even surface. 15 black glass marbles were 

place in a regular pattern evenly spaced, each about 4 cm apart. Animals were placed in 

the cage for 2 h and the number of marbles buried (to 2/3 their depth) with bedding 

were recorder after 30 min and at the end of the experiment. Due to technical limitations 

rat behaviour was not monitored.  

USV analysis 

Dirty bedding was collected from cages containing males and transferred daily for seven 

days prior to the experiment, to cages containing stimulus females. This was done to 

ensure that the 14 females used would be receptive to male courtship (Moncho-Bogani 

et al., 2002). Oestrus in females was determined based on lordosis behaviour (Dulac & 

Torello, 2003; Kow & Pfaff, 1998). Every female was used maximum twice as stimulus to 

avoid decline in interest in males after repeated exposure. Apparatus was a transparent 

plastic cage (Tecniplast) (480x265x210mm). A microphone able to record in the 

ultrasonic frequency range (Avisoft-Bioacoustics) was placed approx. 10 cm above 

experimental cage on holding hand and connected to a computer running the 

appropriate acquisition software (Avisoft-RECORDER). Camera was placed next to 

experimental cage in order to record courtship behaviour. Male subjects were 

independently housed for 1 hour before the experiments, in cages outside the 

experimental room. Females were in a separate room from males. Each male was placed 

in the experimental cage approx. 15sec before female. USVs were recorded during a 3min 

interaction session between a male and female and for additional 3min after the stimulus 

female was removed from the cage. Males were weighed before the experiment as 

vocalisations’ frequencies are heavily influenced by weight. Due to the special nature of 

the dataset, data analysis was primarily carried out by Dr Caterina Michetti Prof Maria 

Louisa Scattoni using Avisoft-SASLab Pro (Avisoft-Bioacoustics). Probability of 
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vocalizations within each strain was calculated as number of calls in each category for 

each subject/total number of calls analysed in each subject and standardized by angular 

transformation (M. L. Scattoni, Ricceri, & Crawley, 2011). 

Social interaction task 

The backbone of this protocol is based on previously described experiments (McKibben, 

Reynolds, & Jenkins, 2014). The apparatus was rectangular box divided into three 

equally sized chambers (each chamber 21×63×45 cm; total size 63 ×63×45 cm). An 

overhead camera was used to record animal behaviour. The central chamber was 

connected to the left and right cambers with doors. Right and left chambers contained a 

wire mesh cylindrical enclosure (18cm diameter). Juvenile stimulus SD rats (n=8) 

(Charles River Laboratories, UK), complete strangers to the experimental subjects, were 

be habituated for 20 min to placement in a wire cage 24 h before testing. These rats were 

counterbalanced across genotypes and their location in the left vs right side chamber 

were counterbalanced between trials and tested rats. Each of them was not used for 

more than 2 rats in a row, as their loss of interest in the experiment animal would 

introduce bias. The experiment is divided in to three stages: Stage 1-Habituation; The 

test rat was placed in the middle chamber and allowed to explore only this chamber for 

10 min. Barriers were place in the two doorways leading to the right and left chamber. 

Stage 2-Social interaction: following habituation, a stimulus rat (stranger 1), that had no 

prior contact with the experimental rat, was placed in one of the side chambers enclosed 

in the wire mesh cylindrical enclosure that will allow nose contact. An empty, but 

otherwise identical wire cage was placed in the opposite chamber. The experimental rat 

was placed in the middle chamber and was allowed to explore the entire arena for a 

period of 5 min. This step was repeated two more times to test social habituation. Stage 

3-Social novelty preference; Following stage 2, the experimental rat will return to the 

centre chamber. With stranger1 (now familiar) retained in the arena, a second, 

unfamiliar rat (stranger2) was placed in the empty wire cage in the opposite chamber. 

The subjects were allowed to explore the entire arena again for a period of 5 min. 

Between the stages, rats were transferred in to a holding bucket for 3 min and the maze 

was cleaned with 70% ethanol. Time spent sniffing the wire cages was recorded online 

using in-house developed scoring software (multitimer). For each session a 

Discrimination Index DI [(time exploring social chamber—time exploring empty or 

familiar rat chamber)/(time exploring both chambers)] was calculated.  
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Spatial reference memory and reversal in watermaze 

Subjects were trained in three stages in a 2 m diameter water maze containing a 12 cm 

escape platform (Fig 4.2). First, rats were trained for 3 days on the visible platform 

version of the water maze (4 trials/day, 15 min ITI, extra-maze cues obscured, platform 

location moved each trial). In the second stage, extra-maze cues were visible and rats 

received one daily hidden-platform training session for seven consecutive days; each 

session began with a reinforced probe trial, followed by three training trials separated 

by a 15 min ITI. For probe trials, an Atlantis platform (Spooner et al., 1984) was raised 

to 1.5 cm below the water surface 1 min into the trial; for standard trials the platform 

was raised throughout. Each trial lasted a maximum of 2 min; rats failing to escape were 

guided to the platform. All rats remained on the platform for 30 s before removal from 

the pool. The third (reversal) stage was identical to the second, but the platform was 

relocated to the opposite side of the pool. Path length performance is plotted in meters 

(m) was compared to account for differences in swim speed. For probe trials, target 

crossings during the first 60 s were quantified. 

Delayed matching to place in watermaze 

Subjects were trained on a modified version of a DMP task in the water maze (Steele & 

Morris, 1999). The protocol for both pre-training and delay phases were the same; the 

platform was hidden in a novel location on trial 1 of each day and then remained in this 

place for trials 2–4, on which rats could use rapidly encoded place memory to reach the 

escape platform efficiently. The different platform locations were located on an inner 

ring (0.8-m diameter) or outer ring (1.4 m) concentric with the pool. Each trial lasted a 

maximum of 2 min; rats failing to escape were guided to the platform. All rats remained 

on the platform for 30 s before removal from the pool. All four start positions were used 

daily in an arbitrary sequence, to discourage egocentric strategies. During the first phase, 

rats received two 4-day blocks of pre-training (4 trials/day, 15 s ITI, extra-maze cues 

visible, platform location moved each day). In the second phase, rats received 15 days of 

delay training during which three different ITIs (15 s, 15 min or 2 h) were introduced 

between trials 1 and 2 (5 days of each ITI); for one of the 5 days at each delay, trial 2 of 

the day was run as a probe trial with an Atlantis platform (Spooner et al., 1984) raised to 

1.5 cm below the water surface 1 min into the trial; for standard trials the platform was 

raised throughout. Probe trial performance was calculated as the percent time spent in 

a 20 cm diameter zone around the centre of the platform location during the first 60 s. 
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Perseveration index indicates the difference between the percent time spent in the 

previous day’s target zone and the current day’s target zone during the first 60 s of the 

probe trial. 

Spontaneous exploration tasks 

Subjects underwent object recognition (OR), object place (OP), object context (OC) and 

object place context (OPC) tasks as previously described (Langston & Wood, 2010). 

Animals were tested in a rectangular box (76 × 45 × 60 cm tall) that could be configured 

as either of two contexts (by changing floor/wall inserts). An overhead black and white 

camera was used to monitor the movement of the rat around the testing arena. The video 

signal was fed into a TV monitor on the desk of the experimenter. A computer ran an in-

house timing program (National Instruments, LabView) whereby depression of a key on 

the computer keyboard would activate a timer. This was performed manually by the 

experimenter who observed the behaviour of the rat via the TV monitor and recorded 

the amount of time the rat was engaged in exploration (Fig. 4.3 A&B). To confirm that no 

bias was introduced, since the experimenter was not blind to object novelty identity, a 

second independent scorer, blind to genotype, object identity and task rescored portion 

of trials (96 trials) and scoring was compared yielding a very high correlation (Pearson 

r =0.91, p <0.001) (Fig 4.3 C).  Training included a 5-day habituation period during which 

rats familiarize themselves with the apparatus, the two different contextual 

configurations of the testing arena, the type of objects that would be placed in the arena 

during testing and the locations in which these objects would be placed. Each day, rats 

were brought into the testing room in their home cage, which was placed on a bench near 

to the testing apparatus. Following the habituation, rats were tested on object 

recognition tasks (associative and non-associative) in the morning. On each trial, rats to 

be tested were removed from its home cage and placed in the holding bucket on a stool 

next to the testing apparatus. Appropriate objects were cleaned with 70% ethanol 

solution and attached at the appropriate locations in the testing box configured as either 

context 1 or context 2 (counterbalanced across rats). Rats were placed into the box facing 

the wall from the side opposite to the object positions and were let to explore the objects. 

Exploration was defined as the rat being within 2 cm of an object, directing its nose at 

the object and being involved in active exploration such as sniffing or whisking. Sitting 

on or next to an object without any signs of active exploration was not included. After 3 

min subjects were removed from the box at the same point from which they entered.  
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Figure 4.1 Injection of targeted Zinc finger nuclease (ZFN) mRNAs resulted in the respective loss of 
FMRP in Sprague-Dawley (SD)  and Long-Evans Hooded (LEH) rats. Diagram of ZFN left and right 
homology arms (HA-L, HA-R) cleavage sites (selection) for the (A) commercially available Fmr1 KO SD rats 
and (B) custom made Fmr1 KO LEH rats. Note that the open reading frame of Fmr1 gene has been 
interrupted in exon 1 by a eGFP gene cassette in the case of LEH rats and in exon 8 by a 122 bp deletion in 
SD rats. Using primers flanking the deletion region, the wild type and deletion alleles yield readily 
distinguishable PCR amplicons in SD rats(A). In the case of LEH (B), two reactions with two different 
primer sets were used for each DNA sample. One primer set flanking the insertion region gives a product 
of 400bp only for WT rats and another primer set targeting the eGFP gene was used to confirm the KO rats. 
The agarose gell used in this case had two combs in different positions; the two PCR products for a given 
rat were loaded in the upper and lower sections of gel (In the example upper for primers targeting Fmr1, 
lower for primers targeting eGFP) Furthermore primer dimers seem to be to be two close to the approx. 
400bp products because if the short duration of electrophoresis. 
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Figure 4.2 Experimental setup (A) and acquisition software (B) used in watermaze experiments. 
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Figure 4.3 Experimental setup (A) and acquisition software (B) used in spontaneous exploration tasks. 
Correlation of scoring between the main scorer (scorer 1) and an independent scorer (scorer 2). The values 
on both axis are ratios of scored exploration times between left and right object (C). 
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During the retention interval of 2 min rat were returned to the holding bucket while the 

experimenter prepared the box for the next part of the trial. The floor and walls of the 

box were removed, cleaned and replaced in the appropriate context configuration. For 

OC and OPC recognition a second sample in the opposite context with appropriate 

objects followed. New objects were cleaned and placed in the box. For the test phase one 

object was a third copy of the two objects seen in the sample phase while the other object 

was completely novel. The test phase was carried out using exactly the same procedures 

as the sample phase. After the test phase, the rat was returned to its home cage. Rats 

received 2 trials (one/day) on each of the four tasks (order OR, OP, OC, OPC, OPC, OC, OP, 

OR), with 3 min sample phases, a 2 min retention interval and a 3 min test phase. For 

each test phase, a Discrimination Index DI [(time exploring novel object—time exploring 

familiar object)/(time exploring both objects)] was calculated. Trials in which a subject 

did not reach at least 10 sec of exploration for each object in the sample phase and 15 

sec of total exploration in the test phase were excluded from the analysis.  

For the second group of spontaneous exploration tasks (Object displacement {OD} and 

Object recognition, short and long term memory tasks) a different square arena was used 

(60x60x50 cm). Subjects were habituated for 5 days to the new apparatus. Rats received 

again 2 trials (one/day) on each of the four tasks [order OR (2min ITI), OD (2min ITI), 

OD (2min ITI), OR (2min ITI), OD (24h ITI), OR (24h ITI), OR (24h ITI), OD (24h ITI)], 

with 3 min sample phases, a 2 min retention interval and a 3 min test phase for the short 

term memory tasks, and 5 min sample phases, a 24 h retention interval and a 3 min test 

phase for long term memory tasks. Object displacement assesses spatial memory 

requiring allocentric representation of space therefore on all sessions, the rats will enter 

the testing box pseudo-randomly from one of the corners of the box. 
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4.4 Results 

4.4.1 Fmr1 KO rats exhibit normal activity and anxiety levels 

To determine whether Fmr1 KO rats experience the elevated activity and anxiety levels 

seen by many researchers in the mouse model of FXS (Santos, Kanellopoulos, & Bagni, 

2014), we used three widely utilised tasks, open field test, light/dark box test and marble 

burying test. No differences were found between genotypes in any of these tests. 

Open field test 

We measured the total distance travelled and found no difference between groups 

(WT:160.8 ± 11.6cm; KO:172.6 ± 8.8cm; t18 = 0.81, p = 0.43 Fig. 4.4A). In attempt to 

examine whether there are different patterns in the exploratory behaviour between 

groups we analysed the distance travelled in 5 min epochs across the total 30 min of 

open field testing. We found no statistically significant main effect of genotype indicating 

that, overall, Fmr1 KO rats did not have abnormal activity compared with control rats 

(time epoch F(5,90) = 96.86, p < 0.001; genotype F(1,18) = 0.649, p = 0.43; genotype × 

time epoch F(5,90) = 0.87, p = 0.50; Fig. 4.4B). The significant effect of time and the 

absence of interaction with genotype, indicates that both Fmr1 KO and control 

littermates displayed a burst of activity while exploring a novel environment, which 

steady decreased as a response to habituation to the environment as testing progressed. 

Another measure assessing activity levels is mean speed (Walsh & Cummins, 1976). The 

mean speed was found to be almost identical between the two groups (WT:0.089 ± 

0.006cm/sec; KO:0.096 ± 0.005cm/sec; t18 = 0.81, p = 0.43 Fig. 4.4E).  We also found no 

statistically significant effect of genotype when we examined mean speed in different 

epochs (time epoch F(5,90) = 96.75, P < 0.001; genotype F(1,18) = 0.658, p = 0.43; 

genotype × time epoch F(5,90) = 0.87, p = 0.50; Fig. 4.4F). Max speed did not reveal any 

differences between groups either (data not shown). In order to assess possible anxiety 

phenotypes in open field we analysed the movement of animals into different area zones 

(Bailey & Crawley, 2009). An outer zone 30cm wide was set in the analysis software 

(Anymaze). Again no differences were seen in the total distance spend in the outer area 

(WT:158.8 ± 11.5cm; KO:170.1 ± 8.7cm; t18 = 0.79, p = 0.44 Fig. 4.4C) and when we 

looked the profile over time (time epoch F(5,90) = 101.1, p < 0.001; genotype F(1,18) = 

0.623, p = 0.44; genotype × time epoch F(5,90) = 0.87, p = 0.50; Fig. 4.4D). Analysis of 

other areas (i.e. corners) or number of transitions between them did not yield any 

differences between groups either (data not shown).  
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Light/dark box test 

The light/dark box test utilises the innate aversion of rodents to intensely illuminated 

spaces and on their spontaneous exploratory behaviour in response to mild stressors, 

like novel environment (Hascoët & Bourin, 2009; Hölter et al., 2015). Analysis of time 

spent in the two compartments revealed a main effect of compartment but no significant 

effect of group and no interaction indicating that both groups behaved similarly 

(compartment F(1,36) = 10.96, p = 0.002; genotype F(1,18) = 0.0, p > 0.99; genotype × 

compartment F(1,36) = 0.033, p = 0.86; Fig. 4.5A). The number of transitions between 

the two compartments was also identical between the groups (compartment F(1,36) = 

0.47, p = 0.499; genotype F(1,18) = 0.0, p > 0.99; genotype × compartment F(1,36) = 

0.298, p = 0.59; Fig. 4.5B). 

Marble burying test 

The marble burying test is thought to be assessing repetitive and perseverative 

behaviours but it also heavily influenced by novelty induced anxiety (Deacon, 2006; 

Thomas et al., 2009). In response to an aversive stimulus rodents are likely to engage 

into a burying behaviour, commonly referred to as “defensive burying” (Poling, Cleary, 

& Monaghan, 1981). Taking into account previous report showing repetitive behaviours 

in Fmr1 KO rats (Hamilton et al., 2014) we wanted to examine if marble burying could 

reveal similar phenotypes. Analysis of number of marbles left uncovered by sawdust in 

two time points revealed a significant main effect of time but no significant effect of 

genotype (time F(1,14) = 29.34, p <0.001; genotype F(1,14) = 2.01, p =0.178; genotype × 

compartment F(1,14) = 0.059, p = 0.82; Fig. 4.5C). 

 

4.4.2 Fmr1 KO rats display minor communication and social interaction 

deficits 

The second main group of behaviour traits we assessed was social communications and 

social interactions. The three chamber social interaction task and analysis of ultrasonic 

vocalisations (USVs) have been used extensively to explore social deficits in models of 

neurodevelopmental disorders (Wöhr & Scattoni, 2013). Both tasks revealed mild 

deficits in social interactions which are consistent with previous findings in the mouse 

model and in recently published work in the rat model of FXS. 
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Figure 4.4 Fmr1 KO rats exhibit normal activity and anxiety levels in open field test. (A) Total 
ambulatory distance as well as distance travelled in 5 min epochs across the total 30 min of open field 
testing (B) revealed no differences between groups. Distance travelled in the periphery of the testing 
apparatus (C) as well as its profile across the testing (D) confirmed that Fmr1 KO rats experience normal 
anxiety levels. Hyperactivity was further assessed by analysis of the total average speed and speed profile 
across the total 30 min of open field testing confirming similar activity level between groups. 
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Figure 4.5 Fmr1 KO rats experience normal anxiety level and show no repetitive behaviours. 
Light/dark box testing revealed no differences in time spent between the two apparatus compartments 
(A) and equal number of transitions (B) between Fmr1 KO and wildtype rats. (C) Marble burying test 
confirmed that novelty-induced anxiety and repetitive behaviours are not augmented in Fmr1 KO rats. 
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Figure 4.6 Fmr1 KO rats display subtle social interaction deficits. (A) Fmr1 KO rats tend to explore 
less a stimulus rat over 3 repeated sessions, showing a steeper decline in their interest in the last two 
sessions. (B) Averaging exploration between all three sessions reveals a genotype difference in social 
preference. Both Fmr1 KO (C) and WT rats (D) show preference to the social stimulus. Both groups show 
good memory for a social stimulus (E) and both preferentially explore a novel conspecific rather than a 
familiar juvenile rat (F).  *p<0.05 
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Figure 4.7 Fmr1 KO rats display minor communication deficits in social interaction task. Subjects 
used have similar body weight (A). Social investigation of female in oestrous was almost identical between 
groups (B). Total number of vocalisations over the two phases of testing revealed that Fmr1 KO rats 
vocalise less compared to their wildtype littermates (C). Comparison of different categories of calls (D) 
produced by the two groups revealed no differences in the probability of each type of call irrespectively of 
the female presence (E). *p<0.05 



101 
 

Three chamber social interaction task 

Previous work by Hamilton and colleagues (Hamilton et al., 2014) showed that Fmr1 KO 

rats exhibit reduced play behaviours during adolescence but the show a strong 

preference, equal to wildtype littermates, to a social stimulus over an object in three 

chamber social task. We wanted to see if repeated exposure to the same social stimulus 

would lead to any differences in social habituation. For that reason, instead of a single 

exposure subjects were presented with the same stimulus juvenile rat three times (Fig 

4.6). Analysis of the preference index revealed that Fmr1 KO rats overall have a lower 

interest in the social stimulus than their wildtype littermates (session F(2,52) =7.8, p 

=0.0011; genotype F(1,26) =6.52, p =0.017; genotype × session F(1,14) = 0.519, p = 

0.598; Fig. 4.6A).  When values for each animal were averaged across the three sessions 

KO animals clearly showed a diminished interest (WT: 0.48 ±0.027; KO: 0.34 ±0.056; t26 

= 2.29, p = 0.031; Fig. 4.6B). Nevertheless, both groups showed a strong preference for 

the social stimulus, over the three sessions (all multiple t-tests p <0.01 Bonferroni 

corrected; Fig 4.6 C, D). In order to explore possible social memory deficits, we used a 

fourth session; an unfamiliar rat was introduced to the chamber and the subjects were 

tested in their ability to recognise a novel over a familiar rat. Both groups of rats showed 

strong preference for the novel social stimulus (WT t26 = 6.47, p <0.001; KO t26 = 5.52, 

p <0.001; Fig. 4.6 F) and there were no differences between groups in their preference 

for the unfamiliar social stimulus (WT: 0.55 ±0.078; KO: 0.43 ±0.084; t26 = 1.02, p = 0.32 

Fig. 4.6E). 

USV analysis 

Rats have a very rich repertoire of vocalisations ranging from fear-induced vocalisations 

to vocalisations specific to mating behaviour. As a result, it is thought that analysis of 

these vocalisations during different social paradigms could reveal deficits in rodent 

models of human conditions which include communication deficits (Wöhr & Schwarting, 

2013). We used the male courtship paradigm which has been previously used in rats 

(McGinnis & Vakulenko, 2003) and in the mouse model of FXS (Rotschafer et al., 2012). 

The paradigm consists of two phases; first a stimulus female on oestrous interacts with 

a male subject and then the male is recorded while being alone in the testing apparatus. 

The weight of animals is known to affect vocalisation frequency (Wöhr & Schwarting, 

2013), so subject were weighed before the experiment and no differences were found 

between genotypes (WT: 377.1 ±9.49; KO: 363.8 ±8.39; t20 = 1.05, p = 0.31 Fig. 4.7A). 
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The interactions between the female stimulus and the subjects were analysed and 

classified. No differences were seen in any of the types of interactions examined (type of 

interaction F(2,48) =95.12, p <0.001; genotype F(1,16) =0.55, p =0.46; genotype × type 

of interaction F(2,48) = 0.36, p = 0.697; Fig. 4.7B). Analysis of the mean number of 

vocalisations, during both phases of the paradigm, revealed a significant effect of 

genotype (female presence F(1,32) =18.82, p <0.001; genotype F(1,16) =6.61, p =0.042; 

genotype × female presence F(1, 32) = 0.21, p = 0.650; Fig. 4.7C). Although there was an 

overall genotype effect, the total number of calls was no significantly different between 

genotypes (p =0.075, data not shown). For that reason, a detailed analysis of seven 

different categories of calls was carried out (Fig. 4.7D, E) in order to examine whether 

loss of FMRP in rats causes limited and call-type specific deficits in ultrasonic 

vocalization (Roy, Watkins, & Heck, 2012). No differences were observed in any of the 

different categories of calls with either female present (call type F(6,112) =95.21, p 

<0.001; genotype F(1,16) =0.292, p =0.9712; genotype × call type F(6,112) = 2.87, p = 

0.224; Fig. 4.7E), or male subjects alone (call type F(6,112) =54.98, p <0.001; genotype 

F(1,16) =0.007, p =0.566; genotype × call type F(6,112) = 2.21, p = 0.067; Fig. 4.7E).  

 

4.4.3 Watermaze tasks reveal normal spatial memory in Fmr1 KO rats 

To start addressing whether the loss of FMRP leads to impaired cognitive function in rats, 

we employed two tasks in the widely used watermaze apparatus (Morris, Garrud, 

Rawlins, & O’Keefe, 1982). The first is a spatial reference memory and reversal task 

which has been used to assess memory and cognitive flexibility in the mouse model of 

FXS (Santos et al., 2014). The second is delayed matching-to-place (DMP) task, which is 

a rather unusual version of the watermaze protocols in which rats (or mice) learn to 

escape to the hidden platform which is moved to a new location daily and performance 

is recorded across many days or weeks (da Silva, Bast, & Morris, 2014). Neither of these 

hippocampus dependent tasks revealed any differences in cognitive performance 

between groups (Till et al., 2015). 

Spatial reference memory and reversal task 

This task assays the ability of subjects to learn to navigate a circular pool using distal 

cues to locate a hidden, submerged escape platform. During the first phase of the task, 

both Fmr1 KO and wildtype rats showed a progressively decreased path length needed 

to reach the platform (training day F(6,96) =21.89, p <0.001; genotype F(1,16) =1.66, p 
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=0.22; genotype × training day F(6,96) =0.56, p =0.76; Fig. 4.8A). Moreover, the time 

spent in a zone around the platform location during probe trials across days increased 

(training day F(6,96) =10.30, P <0.001; genotype F(1,16) =0.04, p =0.85; genotype × 

training day F(6,96) =0.66, p =0.68; Fig. 4.8C). This data indicate that spatial learning and 

memory is equivalent between genotypes and that Fmr1 KO rats have intact spatial 

navigation capacity. To assess cognitive flexibility, rats then underwent a reversal 

learning task during which the platform was moved to the opposite side of the pool; the 

decrease in overall path length (training day F(6,96) =27.58, p <0.001; genotype F(1,16) 

=0.48, p =0.50; genotype × training day F(6,96) = 1.68, p = 0.13; Fig. 4.8B) and the 

increase in time spent in the new platform location zone (training day F(6,96) =14.8, P 

<0.001; genotype F(1,16) <0.001, P =1; genotype × training F (6,96) =1.18, p =0.32; Fig. 

4.8D) reveal a comparable learning of the new platform position between genotypes. 

Although analysis of cognitive parameters revealed no difference in learning in either of 

the two the phases of the task, swimming speed was significantly increased in Fmr1 KO 

during the reference memory phase (training day F(6,96) =4.54, P <0.001; genotype 

F(1,16) =6.52, p =0.02; genotype × training day F(6,96) =1.43, p = 0.21; Fig. 4.8E) but not 

during reversal (training day F(6,96) =6.67, p <0.001; genotype F(1,16) =2.93, p =0.11; 

genotype × training day F(6,96) =0.61, P =0.72; Fig. 4.8F). 

Delayed Matching to Place (DMP) task 

To explore further the effects of FMRP loss in behavioural flexibility, we used a DMP task 

which is similar to the spatial reference memory task of water maze except that the 

location of the hidden platform location is updated daily (da Silva et al., 2014) (Fig. 4.9). 

This assay assesses the ability of an animal to learn a new location of a hidden platform 

in a single trial as measured by its performance in the following three trials. During the 

eight days of the pre-training phase, both Fmr1 KO and wildtype rats showed similar 

decreases in path lengths taken to escape over trials 2–4 compared with the first trial of 

the day (trial FD1-4(3,66) =21.19, p <0.001; genotype FD1-4(1,22) =0.21, p =0.65; 

genotype × trial FD1-4(3,66) =0.86, p =0.47. trial FD5-8(3, 66) =19.10, p <0.001; 

genotype FD5-8(1,22) =0.23, p =0.64; genotype × trial FD5-8(3,66) =0.18, p = 0.91 Fig. 

4.9A). During the second phase, variable time delays were introduced between the first 

and second trials of each day [15sec, 15min or 2h inter-trial intervals (ITI)]. Although the 

task was made substantially more demanding, both Fmr1 KO and control rats performed 

similarly at each ITI as measured by their path lengths to escape (trial F15sec(3,66) 

=115.2, p <0.001; genotype F15sec(1,22) =0.45, p =0.51; trial × genotype F15sec(3,66) 
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=1.14, P =0.34. trial F15min(3,66) =91.6, p <0.001; genotype F15min(1,22) =2.04, P 

=0.17; trial × genotype F15min(3,66) =0.56, P = 0.64. trial F2hr(3,66) =85.93, p <0.001; 

genotype F2hr(1,22) =0.17, p =0.69; trial × genotype F2hr(3,66) =1.23, p = 0.30; Fig. 

4.9B). A reduction in path length between the first and second trial of each day known as 

‘savings’ reflect the learning from a single trial. The savings from trials one to two again 

did not reveal any differences between groups (delay F(2,44) =4.77, p =0.01; genotype 

F(1,22) =2.58, p =0.12; delay × genotype F(2,44) =0.14, p =0.87; Fig. 4.9C). Probe trials, 

during the second trial, measuring time spent searching in the target zone of each day 

further confirmed analogous one-trial spatial learning between groups across all used 

ITIs (delay F(2,44) =4.27, p =0.02; genotype F(1,22) =0.34, p =0.56; delay × genotype 

F(2,44) =1.26, p =0.29; Fig. 4.9D). Analysis of the time spent in a zone around the 

platform location on the previous day (expressed in negative values) suggests no 

difference in cognitive flexibility and no signs of perseveration across genotypes (delay 

F(2,44) =2.07, p =0.14; genotype F(1,22) =0.61, p =0.44; delay × genotype F(2,44) =0.54, 

p =0.59; Fig. 4.9E). 

 

4.4.4 FMRP loss leads to hippocampus-dependent, spatial and episodic-

like memory impairments 

To investigate further the effect of FMRP loss on cognitive function, rats were tested on 

a battery of spontaneous recognition memory tasks testing non-associative memory in 

object-recognition (NOR), spatial memory in object displacement (OD) tasks and 

associative memory in object-context (OC), object-place (OP) and object-place-context 

(OPC) tasks (Fig. 4.10 and 4.11). Interestingly, while no impairments were observed in 

most of the tasks, a very robust deficit was detected in the most complex OPC task which 

is hippocampus-dependent and involves the associative recognition of objects, their 

spatial locations and the local context (Eacott & Norman, 2004; Langston & Wood, 2010). 
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Figure 4.8 Fmr1 KO rats have normal spatial reference memory acquisition and reversal learning. 
(A) Fmr1 KO rats learn the hidden-platform version of the water maze similarly to WT littermates as 
measured by a decrease over days in the path taken to escape (B) and the time spent in a zone around the 
platform during daily probe trials (C). Performance during reversal learning was comparable between 
genotypes as measured by path to escape (B) and the time spent in a zone around the new platform 
location, during daily probe trials (D). (E) Fmr1 KO rats swim faster than WT littermates over reference 
memory training but not over reversal (F). *p<0.05 
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Figure 4.9 One-trial spatial learning is intact in Fmr1 KO rats. (A) Fmr1 KO rats learn the DMP task 
similarly to WT littermates as measured by a decrease in the path length taken to escape over trials within 
a day. Introducing a variable time delay between the first and second trials of the day does not affect 
performance of Fmr1 KO rats compared with WT as measured by path length to escape (B), savings (C), 
time spent searching in the target zone on probe trials (D) or time spent around the location of the target 
on the previous day on probe trials (E). 
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Figure 4.10 Loss of FMRP results in impaired performance on spontaneous object exploration task 
assessing episodic-like memory. On top: a schematic of the spontaneous exploration tasks for novelty 
preference. (A) WT rats exhibit memory for all four tasks as measured by above chance performance. In 
contrast, Fmr1 KO rats do not perform above chance levels in an OPC task that requires the ability to form 
associations between objects, their locations and the context, but do exhibit memory for the individual 
components as measured by above chance performance in object recognition, object-place and object-
context tasks. Object exploration in sample (B) and test phase (C) of the tasks is similar between the two 
genotype groups. * p<0.05 difference from chance (DI =0) # p<0.05 difference between genotypes 
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Figure 4.11 Fmr1 KO rats show impairment in long-term spatial object memory. On top: a schematic 
of the spontaneous exploration tasks for novel object and object displacement tasks. (A) Both groups have 
intact short and long-term object memory.  WT rats exhibit memory for spatial object memory at both short 
and long delays while Fmr1 KO rats show only short term spatial memory (B). Object exploration in sample 
(C) and test phase (D) of the tasks is similar between the two genotype groups. * p<0.05 difference from 
chance (DI =0) 



  

Figure 4.12 Hooded rats are considered more suitable for behavioural testing due to their increased innate 
curiosity for novelty.  
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Short term non-associative and associative spontaneous exploration tasks 

These four tasks assessed the subjects’ ability to discriminate novel from familiar objects, 

and novel from familiar object-context, object-place and object-place-context 

associations over a short (2 min) delay. Both groups showed significant memory in NOR, 

OC and OP tasks but only wildtype rats performed above chance in OPC task (WTNOR: 

0.37 ±0.03, t15 = 11.26, p <0.001; WTOC: 0.28 ±0.03, t15 =8.88, p <0.001; WTOP: 0.28 

±0.06, t15 =5.03, p <0.001; WTOPC: 0.22 ±0.04, t15 =5.32, p <0.001; KONOR: 0.42 ±0.04, 

t15 =11.20, p <0.001; KOOC: 0.18 ±0.04, t15 =4.93, p <0.001; KOOP: 0.21 ±0.05, t15 =4.1, 

p =0.004; KOOPC: 0.07 ±0.03, t15 =2.21, p =0.17; all values Bonferroni corrected Fig. 

4.10A). Fmr1 KO rats showed a decreased preference for novelty in OC and OP tasks 

compared to their wildtype littermates, but only in OPC there was a significant difference 

between groups (NOR: t120 =0.88, p =0.85; OC: t120 =1.69, p =0.32; OP: t120 =1.26, p 

=0.61; OPC: t120 =1.26, p =0.04; all values Bonferroni corrected). In order to confirm 

that this finding was true memory deficit rather than an effect of impaired encoding we 

analysed the exploration time during the sampling phase of the tasks. We saw that both 

groups interacted with object on a very similar level indicating that the observed deficit 

is not due to poor encoding (task F(3,120) =1.2, p =0.32; genotype F(1,30) =0.18, p =0.67; 

task × genotype F(3,120) =0.92, p =0.43; Fig. 4.10B). We further analysed the exploration 

time during the test phase of the tasks in order to see if the observed impairment in OPC 

task is due to decreased interest in the objects. Although we found a main effect of task, 

no differences between groups were detected (task F(3,120) =1.87, p =0.039; genotype 

F(1,30) =0.05, p =0.83; task × genotype F(3,120) =0.58, p =0.63; Fig. 4.10C).  

Short and long term spatial and non-spatial object memory 

Taking into account the OPC deficit and the fact that no differences between genotypes 

were observed in the hippocampus dependent watermaze tasks, we want to assess 

spatial memory at both a short (2min) and along (24h) delay using object-displacement 

(OD) task. For OD task we used a different square testing apparatus, so in order to be 

sure that animals can perform in this new environment we used NOR as a positive 

control (Fig 4.11). Both Fmr1 KO rats their wildtype littermates performed significantly 

above chance in both delays in NOR task (WTNOR2min: 0.37 ±0.03, t15 = 11.26, p <0.001; 

WTNOR24h: 0.26 ±0.04, t15 =6.92 p <0.001; KONOR2min: 0.42 ±0.04, t15 =11.20, p 

<0.001; KONOR24h: 0.19 ±0.03, t15 =6.92, p <0.001; all values Bonferroni corrected; Fig. 

4.11A) confirming the intact object memory after FMRP loss. Although both groups 
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performed similarly in OD task at short delay (WTOD2min: 0.30 ±0.03, t15 = 10.07, p 

<0.001; KOOD2min: 0.19 ±0.04, t15 =4.27 p =0.002; all values Bonferroni corrected; Fig 

4.11B), only wildtype rats performed above chance at a 24h delay (WTOD24h: 0.12 

±0.03, t15 = 3.73, p =0.008; KOOD24h: 0.06 ±0.03, t15 =1.95 p =0.28; all values 

Bonferroni corrected; Fig 4.11B). Despite this finding, no statistically significant 

differences were found in any of the two delays in either NOR or OD task (NOR2min: t30 

=1.01, p =0.32; NOR24h: t30 =1.3, p =0.20; OD2min: t30 =2.17, p =0.16; OD24h: t30 

=1.30, p =0.20; all values Bonferroni corrected). As previously, we also analysed raw 

exploration times during sample (task F(3,120) =1.4, p =0.26; genotype F(1,30) =3.59, p 

=0.061; task × genotype F(3,120) =0.08, p =0.97; Fig. 4.11C) and test phase (task F(3,120) 

=11.57, p <0.001; genotype F(1,30) =0.08, P =0.77; task × genotype F(3,120) =0.92, p 

=0.43; Fig. 4.11D) and found no differences in the exploratory behaviour between 

groups. 

 

4.4.5 Spatial and episodic-like memory impairments persist across 

different rat strains 

Following our findings that Fmr1 KO rats, on a Sprague-Dawley background, exhibit 

deficits in the OPC task, we explored whether the newly created Fmr1 KO Long-Evans-

Hooded (LEH) rats exhibit the same deficit. The main goal was to determine whether the 

behavioural phenotype described previously persists across strains, since the mouse 

model of FXS has been shown to have many strain-specific behavioural phenotypes 

(Chapter 1). Previous research has shown that hooded rat strains are more suitable for 

behavioural testing than albino (Birch & Jacobs, 1979; Broersen & Uylings, 1999; 

Clemens et al., 2014) (Fig. 4.12); thus we were very pleased to discover in line with our 

previous findings in SD rats, LEH Fmr1 KO rats exhibit episodic-like (OPC) memory and 

spatial (OD) memory deficits.  
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Figure 4.13 LEH Fmr1 KO rats are unable to remember object-place-context associations. On top: a 
schematic of the spontaneous object exploration. (A) WT rats exhibit memory for all four tasks as 
measured by above chance performance. In contrast, Fmr1 KO rats do not perform above chance levels in 
an OPC task that requires the ability to form associations between objects, their locations and the context, 
but do exhibit memory for the individual components as measured by above chance performance in object 
recognition, object-place and object-context tasks. Object exploration in sample (B) and test phase (C) of 
the tasks is similar between the two genotype groups. * p<0.05 difference from chance (DI =0) # p<0.05 
difference between genotypes.  
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Figure 4.14 LEH Fmr1 KO rats show impairment in long-term object memory and reduced 
preference spatial novelty. On top: a schematic of the spontaneous exploration tasks for novel object and 
object displacement tasks. (A) Both groups have intact short object memory but only WT rats are able to 
remember object identities over a 24h delay.  Both groups of rats exhibit memory for spatial object memory 
at both short and long delays while Fmr1 KO rats show diminished preference for the displaced object at 
both delays compared to their WT littermates (B). Object exploration in sample (C) and test phase (D) of 
the tasks is similar between the two genotype groups. * p<0.05 difference from chance (DI =0) # p<0.05 
difference between genotypes.  
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Short term non-associative and associative spontaneous exploration tasks 

As described above, we used four tasks (NOR, OC, OP, OPC) to assess non-associative 

(NOR) and associative object memory (OC, OP, OPC) over a short (2 min) delay. As 

previously, both genotype groups showed significant memory in NOR, OC and OP tasks 

but only wildtype rats performed above chance in OPC task (WTNOR: 0.38 ±0.03, t15 = 

14.18, p <0.001; WTOC: 0.33 ±0.03, t15 =11.44, p <0.001; WTOP: 0.32 ±0.03, t15 =10.23, 

p <0.001; WTOPC: 0.29 ±0.04, t15 =7.6, p <0.001; KONOR: 0.39 ±0.02, t15 =16.95, p 

<0.001; KOOC: 0.22 ±0.04, t15 =5.50, p <0.001; KOOP: 0.23 ±0.04, t15 =6.7, p <0.001; 

KOOPC: 0.08 ±0.03, t15 =2.79, p =0.06; all values Bonferroni corrected Fig. 4.13A). 

Although LEH Fmr1 KO rats showed again decreased preference for novelty in all three 

associative memory tasks, groups were significantly different only in OPC (NOR: t120 

=0.10, p >0.99; OC: t120 =2.40, p =0.07; OP: t120 =1.99, p =0.18; OPC: t120 =4.55, p 

<0.001; all values Bonferroni corrected). The exploratory behaviour even though it was 

slightly different in LEH compared to SD, highlighting the strain differences in novelty-

induced behaviour (Clemens et al., 2014), it was almost identical between genotypes in 

both sample (task F(3,120) =17.63, p <0.001; genotype F(1,30) =0.39, p =0.53; task × 

genotype F(3,120) =0.25, p =0.86; Fig. 4.13B) and test phase (task F(3,120) =7.03, p 

<0.001; genotype F(1,30) =0.02, p =0.90; task × genotype F(3,120) =0.93, p =0.43; Fig. 

4.13C), confirming that the observed deficit is not due to reduced encoding or luck of 

interest. 

Short and long term spatial and non-spatial memory 

LEH rats were also tested in the previously described tasks NOR and OD at both 2min 

and 24h delays (Fig 4.14). Testing in short 2min delay confirmed the results from the 

previous group of tasks (Fig 2.13), that the short term object memory in not affected by 

loss of FMRP (WTNOR2min: 0.49 ±0.04, t15 = 11.31, p <0.001; KONOR2min: 0.45 ±0.03, 

t15 =15.93, p <0.001; Fig. 4.14A). On the other hand, only wildtype rats performed above 

chance in NOR at the 24h delay (WTNOR24h: 0.32 ±0.02, t15 =13.67 P <0.001; 

KONOR24h: 0.08 ±0.04, t15 =2.01, p =0.25; Fig. 4.14A). Furthermore, comparison 

between groups revealed a significant difference only at the 24h delay (NOR2min: t30 

=0.80, p =0.43; NOR24h: t30 =4.65, p <0.001). In OD task Fmr1 KO rats performed 

significantly worse than their wildtype littermates at both delays (OD2min: t30 =4.30, p 

<0.001; OD24h: t30 =5.06, p <0.001) but both groups still performed significantly better 

than chance levels (WTOD2min: 0.36 ±0.04, t15 = 10.34, p <0.001; KOOD2min: 0.12 



115 
 

±0.04, t15 =2.90 p =0.04; WTOD24h: 0.30 ±0.02, t15 = 12.96, p <0.001; KOOD24h: 0.11 

±0.03, t15 =3.57 p =0.01; all values Bonferroni corrected; Fig 4.14B) indicating that even 

though there is a difference in novelty preference, Fmr1 KO rats still have intact spatial 

object memory. Analysis of the exploration times revealed a main effect of task in both 

sample (task F(3,120) =7.89, p <0.001) and test phase (task F(3,120) =8.01, p <0.001) 

and a subtle genotype effect in test (genotype F(1,30) =4.57, p =0.03) but not in sample 

phase (genotype F(1,30) =1.89, p =0.17), and no significant interactions in either sample 

(task × genotype F(3,120) =1.62, p =0.19; Fig. 4.14C) or test phase (task × genotype 

F(3,120) =0.29, p =0.84; Fig. 4.14D). 

 

4.5 Discussion 

4.5.1 Fm1 KO rats exhibit distinct behavioural deficits 

Recent developments in gene manipulation techniques have allowed genetic 

modification of mammalian species other than mice. The creation of rat models provides 

an invaluable opportunity of understanding the pathophysiology associated with the loss 

of FMRP, as well as providing cross-species validation of cellular dysfunction that will 

strengthen the relevance of genetic models of FXS to the human disorder. Part of the 

work presented in this chapter has been published on (Till et al., 2015) along with a first 

characterisation of cellular and plasticity abnormalities in this rat model of FXS. We find 

that Fmr1 knockout rats recapitulate key aspects of hippocampal cellular and synaptic 

phenotypes associated with the loss of FMRP in mice, including elevated basal protein 

synthesis (Dölen et al., 2007), abnormal synaptic plasticity (Nosyreva & Huber, 2006) 

and alterations in the morphology of dendritic spines (Wijetunge et al., 2014) of 

hippocampal pyramidal neurons. From a translational scope, these phenotypes are 

commonly used to assess therapeutic efficacy for pharmacological reversal of FXS-

related symptoms (Michalon et al., 2012; Osterweil et al., 2013b) therefore the fact that 

they do persist in the rat model is important. Taking into account that the lineage which 

gave rise to the two species (mouse and rat) separate more than 12 million years ago, 

the commonality in cellular abnormalities validates the conceptual basis of theories 

underlying targeted approaches to therapies and their potential relevance to the human 

syndrome (Wijetunge et al., 2013).  

In the first group of experiments we examined whether mutant rats exhibit any 

behaviours resembling the elevated anxiety and hyperactivity seen in humans affected 
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by the disorder. Consistently with what Hamilton and colleagues had reported 

previously, no differences were observed in open field test that would indicate either 

elevated anxiety (time spent in the middle of open field), or hyperactivity (larger 

distance travelled). Light/dark box task did not reveal any difference between either. 

Some consider this task to be inadequate for identifying anxiety phenotypes in rats, 

based on the fact that rats are bolder when exploring a novel environment than mice 

(Hascoët & Bourin, 2009; Hölter et al., 2015). In our experiments, repetitive behaviours 

were assessed with the marble burying task (Deacon, 2006). This task is thought to 

access repetitive and perseverative behaviours but since the final readout is heavily 

influenced by novelty-induced anxiety and hyperactivity (Thomas et al., 2009), no 

differences were observed between groups. This result is somewhat contradicting to 

what Hamilton and colleagues (2014)have seen; they reported that Fmr1 KO rats exhibit 

perseverative chewing behaviours when they are presented with a wood block.  

Furthermore, we observed that a three-chamber social interaction test, which is 

commonly used to assess social interest in mice (Silverman et al., 2010), elicits a very 

strong preference for a social stimulus in rats. Despite the small genotype difference (Fig. 

4.6A&B) both knockout rats and wildtype littermates demonstrated a strong preference 

for investigating the enclosure with the social stimulus (rat vs empty or novel rat vs 

familiar rat). This replicates previous work (Hamilton et al., 2014) showing that Fmr1 

KO rats have no differences in their preference for social stimuli in the three chamber 

social interaction task. The differences observed in social habituation, are consistent 

with absence of social odour recognition deficits (Hamilton et al., 2014); a task assessing 

social odour habituation is likely to support our findings (Yang and Crawley 2009). 

Interestingly we observed no effect in social memory test suggesting that the differences 

between mutants and control animals are very subtle and more demanding protocols are 

required in order to reveal deficits. Consistently with this idea Harony-Nicolas and 

colleagues (Harony-Nicolas et al., 2014) showed that by increasing the retention interval 

to 24h, Shank3 knockout rats (model for autism) are not distinguishing between familiar 

and novel conspecifics. The subtle difference we observed in USVs (Fig 4.7 C) are again 

consistent with previous findings (Hamilton et al., 2014) showing no differences in 

vocalisations between groups albeit in a different social paradigm (juvenile play). In our 

courtship paradigm, Fmr1 KO rats displayed reduced vocalisations. Nevertheless, these 

small differences could may as well be because of limitations in our paradigm. The main 

limitation being our inability to differentiate between the female and male vocalisations.  
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Recent studies have shown that contrary to what is widely believed, both female mice 

(Neunuebel et al., 2015) and rats (Börner et al., 2016) emit USVS in response to male 

Figure 4.15 Schematic illustration of organisational levels involved in manifested behaviour. On top 
(A) and (B) the behaviour depends mainly on two brain structures, at the bottom (C) and (D) a similar but 
different behaviour dependent on three structures. In the presence of a molecular event such as a genetic 
lesion, several molecular processes and events will be affected to a different extend (B) and (D). 
Behaviours which require wider networks, are more likely to be affected as subtle abnormalities in each of 
the brain structures supporting it “accumulate”, causing greater disturbances in the wider network. The 
intensity of grey is parallel to the disturbance of each system. 
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courtship. Therefore, it is plausible that the small difference we observe is due to females 

compensating for Fmr1 KOs’ reduced vocalisation frequency. It would be interesting to 

analyse social communication in a number of other social and non-social paradigms, or 

even address the ontogeny of communication in Fmr1 KO rats. Overall our results show 

a few consistent trends but no strong statistically significant differences in a number of 

parameters assessing communication and social interactions. This could simply indicate 

that experimental protocols and approaches used to assess the mouse model of FXS 

cannot be directly applied to rats. It is possible that adjusting some of these tasks by 

taking into account the ethological differences between the two species (rats have 

stronger memory expression, are more social etc.), will yield positive results.   

Intellectual disability is a defining feature of Fragile X syndrome. Even though Fmr1 

knockout mice show deficits (subtle non the less) in reversal learning in the watermaze 

(D’Hooge et al., 1997; Van Dam et al., 2000), this form of spatial learning is not affected 

by the loss of FMRP in rats. This is evidence that common cellular phenotypes in the 

hippocampus in Fmr1 KO mice and rats are not mirrored by the same hippocampus- 

dependent behavioural phenotypes. This result is consistent with previous work 

showing absence of deficits in hippocampus-dependent contextual fear conditioning in 

Fmr1 null rats (S. M. Hamilton et al., 2014). One possibility is that these results parallel 

the scarcity of robust and reproducible across labs, cognitive deficit phenotypes reported 

for mouse models of FXS (Corinne M. Spencer et al., 2011). Another possibility is that 

since rats are natural swimmers (Whishaw, 1995), similar protocols used to reveal 

subtle deficits in Fmr1 null mice are highly unlikely to do same for rats. In an attempt to 

answer this question, we decide used a more challenging paradigm in watermaze which 

has not been used in Fmr1 KO mice (Fig. 2.9). This one-trial spatial learning in a 

hippocampus- dependent DMP water maze task was also unaffected in Fmr1 KO rats. 

These findings point to an intact flexible spatial learning in Fmr1 KO rats. Dry land spatial 

working memory tasks have also failed to reveal a difference between genotypes (Supp. 

Fig. 1) (Asiminas et al., 2014). Additional experiments further probing spatial cognitive 

abilities in Fmr1 KO rats are clearly needed. Maybe a more challenging reference and 

reversal protocol in the watermaze (1 trial/day) could reveal a deficit as it has been 

shown to be more sensitive previously (Nolan et al., 2004). 

Interestingly, while spatial learning in watermaze tasks was found to be unaffected in 

Fmr1 knockout rats, we found significant deficits in hippocampus-dependent associative 
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recognition memory, but not in other types of associative memory that do not require an 

intact hippocampus (Fig 4.10). Complete hippocampal lesions impair performance on 

the OPC recognition task but do not alter performance on OR, OP and OC (Langston & 

Wood, 2010). We find that adult Fmr1 null rats are able to perform similarly to wildtype 

litter maters in the OR, OP and OC tasks, but not the OPC task. This episodic-like memory 

task that requires the hippocampus as well as intact prefrontal cortex-lateral entorhinal 

cortex connections (Chao et al., 2016) is the most complex of the object exploration tasks 

used here and requires binding of multiple associations to a coherent episodic 

representation. The fact that only OPC reveals a deficit might be simply because of its 

high complexity as a task. One other explanation lies on the fact that as a task requires a 

number of intact circuits working as a wide range network (perirhinal cortex-

hippocampus-lateral entorhinal cortex-prefrontal cortex). It is plausible that subtle 

synaptic abnormalities in each of these brain structures “accumulate” causing greater 

disturbances in the wider network (Fig. 4.15).  

Further to the episodic-like memory impairment, Fmr1 knockout rats also exhibit spatial 

memory impairments in an object exploration task which examines allocentric spatial 

memory (OD) and depends on the hippocampus (Vogel-Ciernia & Wood, 2014). The fact 

that spatial memory deficits were not observed in any watermaze task but were 

observed in this spontaneous exploration task indicates that the differences between the 

very nature of the tasks can hide or a reveal an impairment. Spontaneous exploration 

tasks do not involve any training and they have a very naturalistic approach. Tasks like 

watermaze, in which good performance is a “life or death” situation push the system to 

compensate more efficiently. One could speculate that navigation tasks which involve 

training, direct the system’s resources (rat brain) to focus on a certain “dimension” (i.e. 

find salient extra-maze cues). Object exploration tasks do not require any training; rats 

do not learn to expect any reward or any punishment. This approach does not put any 

pressure on the system to compensate to the same extent. Consistently with this idea 

Kentros and colleagues (2004) have shown that place cells in the CA1 area of 

hippocampus show increased place field stability when animals performed a 

navigational spatial task, compared to animals which were randomly foraging in the 

same apparatus. Since place cell stability has been associated with better memory 

(Dupret et al., 2010; Kentros et al., 1998) this supports the hypothesis that navigational 

spatial tasks like watermaze or T-maze may force the system to utilise mechanisms that 

could support this type of memory and potentially mask subtle circuit malfunctions. 
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Overall these data suggest that the loss of FMRP selectively affects a subset of 

hippocampus-dependent processes that include memory/binding of complex 

associations. Understanding how these differences arise will require a detailed analysis 

of the mechanisms by which cellular dysfunction affects neuronal circuit activity to 

ultimately control behaviour. Moreover, these differences highlight the fact that common 

cellular dysfunction across species can manifest in distinct behavioural phenotypes 

which may result from species ethological differences (Gerlai & Clayton, 1999). 

 

4.5.2 Persistent cognitive deficits across background strains 

One of the limitations of the mouse model has been the inconsistent and strain specific 

behavioural phenotype. Most behavioural studies on the mouse model of FXS have been 

conducted on a pure B6 or FVB strain (Kazdoba et al., 2014; Santos et al., 2014), though 

relatively recent studies have explored how behavioural phenotypes manifest in hybrid 

background strains (Corinne M. Spencer et al., 2011). Therefore, testing whether a rat 

model of FXS on a different background strain (LEH) expressed the same cognitive 

deficits was an obvious next step. Surprisingly, the two strains almost phenocopy each 

other in the spontaneous exploration tasks. These robust deficits in Object-place-context 

and Object-displacement memory, across rat strains, provide an assay against which 

potential therapeutics could be tested. 

In summary, this study gives valuable insight into the deficits in episodic-like memory 

and spatial object memory associated with the loss of FMRP. Moreover, by 

demonstrating that the cellular pathophysiology associated with the loss of FMRP is 

shared between mice and rats (Till et al., 2015), we provide the foundation for 

interpretation of subsequent investigations of hippocampal function that utilises the 

biological and technical advantages rat models permit. As a result, rat-based disease 

models will like complement existing model organisms and together they could provide 

new insight into pathophysiology and behavioural manifestations of FMRP loss in 

humans. 
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5. Fmr1 KO rats exhibit abnormal development of 

associative memory 

5.1 Introduction 

One of the main symptoms individuals with FXS display is pronounced developmental 

delays. Amongst the first clinical clues in children is delayed attainment of one or several 

developmental milestones; on average, boys with FXS can sit without support by the time 

they are 10 months of age and walk and talk at 20 months compared to 6-8 and 10-18 

months for neurotypical children  (Maes et al., 2000). Several studies have investigated 

the cognitive development in children and juveniles with FXS and revealed different 

profiles of delay for a wide range of behavioural traits, during different developmental 

stages. Starting from early childhood, although the rate of growth was found to be about 

half of that of typically developing children, boys with FXS progress normally in general 

cognitive and especially language development before age 7 (Bailey et al., 1998; Frolli, 

Piscopo, & Conson, 2014; Tonnsen et al., 2015). Interestingly Bailey and colleagues 

(2001) showed that ASD comorbidity severely slows down the development in all 

behavioural aspects examined (cognitive development, social development, language 

development, motor development). Studies looking at a broader age range normally 

reveal a decreased cognitive development during later childhood and adolescence. 

Gradually, affected children and adolescents display decreased improvement in raw 

scores on tests assessing cognitive function, compared to neurotypical peers (Hall et al., 

2008), which subsequently translates to a decline in standardized IQ scores (Fisch, 

Simensen, & Schroer, 2002; Kover et al., 2013; Skinner et al., 2005). More specifically, 

children with FXS have been shown to display sharp decreases in IQ scores before ages 

8 (Skinner et al., 2005), 10 (Dykens et al., 1989), and 11 (Fisch et al., 1996). These 

decreases have been shown to be followed by a potential stabilization in adolescence 

until at least age 14 (Skinner et al., 2005). Additionally, two longitudinal studies: one in 

a sample of children with FXS 3 to 11 years old (Cornish et al., 2013) and a second on 

children and early adolescents (6-16 years old) (Quintin et al., 2015), found greater 

improvements in working memory compared to attention skills. Therefore, these 

conflicting developmental trajectories of working memory and attention may be a 

signature of the cognitive developmental profile of children and adolescents with FXS. 
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Developmental delays and alterations during potentially critical developmental 

windows associated with the loss of FMRP have been studied using the Fmr1 KO mouse 

model of FXS. A number of studies have reported a range of spine dysmorphologies or 

alterations in the pattern of synaptic protrusions and plasticity (Galvez & Greenough, 

2005; Testa-Silva et al., 2012; Till et al., 2012; Wijetunge et al., 2014). These 

abnormalities are reported either during adulthood or more interestingly, around the 

second postnatal week, when both cortical and hippocampal areas undergo an extended 

synapse remodelling due to new functional circuit formation (Portera-Cailliau, 2012). 

Moreover, there are several reports of time-restricted changes in the thalamocortical 

circuit; namely increased NMDA to AMPA ratios and altered synaptic plasticity during 

the second postnatal week (Harlow et al., 2010). In addition to the deficits seen in the 

maturation of excitatory circuits, the development of local GABAergic inhibition is also 

delayed during the second postnatal week (Daw, Ashby, & Isaac, 2007) but it returns to 

wildtype levels by the start of the third (He et al., 2014). These phenotypes are in no way 

only a feature of this brain region; similar defects are displayed in other cortical and 

hippocampal regions (Meredith, Dawitz, & Kramvis, 2012; Pilpel et al., 2009), the 

amygdala (Vislay et al., 2013) and also in the other model organisms like the Drosophila 

model of Fragile X syndrome (Doll & Broadie, 2016; Gatto, 2009).  

Besides the studies focussing on morphology and circuit function delays, there are a few 

focussing on biochemical/molecular evidence of a developmental abnormalities due to 

FMRP loss.  For example, Lai, Doering and Foster (2016) examined the expression of 

neuroligins and neurexins in hippocampus and somatosensory cortex of Fmr1 knockout 

mice. These transsynaptic proteins are key players in the maturation of two systems 

found to be affected by the loss of FMRP: glutamatergic (Bear et al., 2004) and GABAergic 

(Paluszkiewicz, Martin, & Huntsman, 2011). They observed a decrease in neurexin 3 

expression in area CA1 of the hippocampus on two different postnatal days (P14 and 

P21) and in CA3 area only on P14. No statistically significant differences were observed 

for neuroligins. These changes might be linked to the delay in maturation of 

glutamatergic projections, seen in Fmr1 knockout mice (Harlow et al., 2010). Moreover, 

the levels of certain important metabolites have been shown to be altered in the 

hippocampus of Fmr1 knockouts (Gruss & Braun, 2001; Shi et al., 2012). More 

specifically, the levels of myo-inositol were found to be decreased on postnatal day 30 

and taurine was increased in all ages tested (P18, 21, 30) (Shi et al., 2012). Taurine, which 

is an inhibitory amino acid derivative, is present in high concentrations in the developing 
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brain and decreases with age (Kulak et al., 2010). The observed increase in taurine level 

could therefore reflect a delay in the maturation of hippocampus. An alternative 

interpretation is that this difference is a part of a compensatory system mechanism, in 

response to excessive mGluR signalling; taurine has been shown to protect against the 

effects of glutamate excitotoxicity in vitro by stabilizing calcium concentration in the 

cytoplasm to basal levels (A El Idrissi & Trenkner, 1999). Direct comparison between the 

aforementioned studies can be very difficult due to differences in imaging or 

electrophysiological techniques used (Wijetunge et al., 2014), age, brain region, and 

statistical analyses (Nimchinsky et al., 2001). Nevertheless, these studies, indicate that 

the effects of FMRP ablation are widespread and affect brain development heavily. 

What is obviously missing from the studies reviewed so far is a connection with 

behaviour, showing delays in related behavioural domains like memory (connection to 

hippocampus development deficits) or sensory integration (somatosensory cortex). The 

only two studies which have reported behavioural delays come from Yun and colleagues 

(2006) and Lai and colleagues (2014), who studied startle response and ultrasonic 

vocalisations (USVs) respectively. In the first study, researchers showed that Fmr1 

knockout mice showed a different developmental trajectory in their startle response, 

specifically after the 4th postnatal week. These results are somewhat consistent with 

abnormal developmental plasticity seen in primary auditory cortex of Fmr1 knockouts 

(Kim et al., 2013). The second behavioural study focussed on pup USVs, which are 

considered a valid way to model communication deficits seen amongst individuals with 

FXS. Lai and colleagues (2014) used the maternal separation paradigm and recorded pup 

vocalisations in three different ages (P4, P7 and P10). They reported that Fmr1 knockout 

pups showed an increased number of USVs compared to wildtype controls at P7 but not 

at P4 or P10. Moreover, Fmr1 knockout mice displayed a developmental shift in the 

temporal distribution of vocalisations, with P10 mice calling in distinct patterns.  

The lack of behavioural studies focussing on cognitive development in Fmr1 knockout 

mice is evident, and there are a number of factors which have led to this. A plausible 

reason is that the model’s unreliable cognitive phenotype (see 1.3) has discouraged 

researchers from attempting such laborious longitudinal studies. Another explanation 

lies within the very nature of the cognitive tasks routinely used in rodents; previous 

experience. Most of the widely used learning and memory tasks assessing cognition in 

rodents shape the behaviour of subjects drastically, even from the first exposure/testing 
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(i.e. watermaze, radial maze). Therefore, the performance profiles seen cannot be easily 

interpreted; improved performance on a subsequent time-point could be the effect of 

previous knowledge rather than a genuine behavioural recovery. Moreover, these 

strong, behaviour shaping experiences could abolish effects previously seen on 

physiological and biochemical studies. Of course the way around this stumbling block 

would be to conduct cross-sectional instead of longitudinal studies with the main 

limitation being the inability to observe the emergence of certain behaviours within the 

same group of subjects. 

The spontaneous object exploration tasks previously described (see Chapter 2), rely on 

the innate preference of rodents for novelty, and do not require any 

training/conditioning which could drastically affect behaviour. The only parameter that 

could slightly affect performance is that repeated exposures to the testing apparatus and 

experimenter will lead to increased habituation. Recently Lyon and Langston (2014) 

reported that Lister Hooded rats display distinct developmental trajectories across the 

four object exploration tasks described in the previous chapter (NOR, OC, OP, OPC). 

Weaning rats, we able to perform above chance in the simplest of the four tasks (NOR), 

from the first time tested (P25). Object-context recognition was shown to come online at 

P34, and surprisingly rats developed the ability to remember both OP and OPC 

associations, acutely on P48. 

Two of the advantages of rat over mouse model (Chapter 3) are their larger size and the 

fact that they can be handled much more easily. These are especially relevant to studies 

focussing on the cognitive development in weanling rats. Moreover, in a recent review 

article Semple and colleagues (2013) highlighted some of the brain development 

milestones and drew parallels between humans and rodents. After carefully reviewing 

existing literature, the authors suggested that despite the obvious enormous difference 

in the time scale of development between the species, the sequence of key milestones in 

brain development are generally quite consistent between humans and rodents.  

Taken together, the advantages of spontaneous object exploration tasks in longitudinal 

studies, the advantages of rats as models of neurodevelopmental disorders and the 

similarities in brain developmental milestones between rats and humans, offer a great 

opportunity to study developmental trajectories in subjects that will allow a more 

dynamic account of how certain cognitive skills and deficits emerge in FXS. 
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The aim of this study is to assess the performance in the four spontaneous object 

exploration tasks throughout postnatal development, to examined whether Fmr1 KO 

display normal developmental trajectories or exhibit any delays. Taking into account 

that these four tasks depend on different neuronal circuits, the exact pattern of delay 

would highlight circuit specific delays and give insights into brain areas which are mostly 

affected by the loss of FMRP. 

 

5.2 Methods 

5.2.1 Animals 

Subjects were male Sprague-Dawley rats (wild-type {WT}, n=16; Fmr1-KO {KO}, n=16), 

bred in-house and kept in a 12h/12h light dark cycle. Colony founders were produced by 

Sigma Advanced Genetic Engineering (SAGE) Labs (St. Louis, MO, US). Ear biopsies for 

genotyping and identification purposes were collected on postnatal-day 14 (P14). Large 

litter sizes were adjusted between P10-P15 to approximately 8-10 pups in order to 

ensure as equal as possible maternal care during infancy (Masís-Calvo et al., 2013). 

Animals were weaned from their mother at (P21) (Fig. 5.1) and housed in mixed 

genotype cages with littermates, 4 animals per cage. Animals were provided with water, 

sawdust bedding and either a gnawing block of wood and/or a cardboard tube as 

environmental enrichment throughout the experiment. Ad libitum standard laboratory 

chow was provided throughout the experiment. Testing was always performed in during 

the light phase of the cycle. Prior to the start of the study, all experimental procedures 

were approved by the University of Edinburgh centenary services and complied with the 

Animal Care (Scientific Procedures) Act 1986.  

 

5.2.2 Apparatus 

Testing pparatus was identical to the one used in Chapter 4 for the four spontaneous 

exploration tasks previously described (Object {NOR}, Object-Context {OC}, Object-Place 

{OP} and Object-Place-Context recognition {OPC}) (Till et al., 2015). In brief; the 

apparatus consisted of a rectangular box with removable walls and floor inserts that 

could conform to two distinct contexts. Positions of objects were the same throughout 

the experiment. The box was placed on a table surrounded on 3 sides by a black fabric 

curtain, with one opening at the south side of the box (where subjects were placed). An 
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overhead light and yellow rectangular cue hanging for the black curtain were placed, 

(and stayed the same throughout testing), on the north west and northeast corners of 

the environment, serving as extra-maze cues. A variety of objects were used which had 

to be reasonably sized, non-porous, easily cleaned with wet wipes and not easily pushed 

over. Each object was only used once per animal. Objects were cleaned between trials 

with 70% ethanol solution and baby wipes.  

 

5.2.3 Habituation/Testing 

Staring from P18 (3 days before weaning), animals were handled daily in the animal 

house and experimental room for 5 days prior to experiments. Task-specific habituation 

occurred during the two days prior to testing (P23-24). On P23, the animals were 

habituated to both contexts in cage groups (30 minutes per context) in the morning and 

individually in the afternoon (10 minutes per context). Between exposures to contexts, 

rats were place in a holding bucket which was also used during testing. On P24, animals 

were habituated twice (morning and afternoon) individually but this time 2 different 

objects were placed in the positions in which subjects would encounter objects during 

testing (10 minutes per context, with objects); these objects were not used again during 

testing. Testing started on P25 and continued for 45 days (P71). Testing time points were 

5-7 days apart except from the last two time points (P61 and P70) (Fig 5.1). In order to 

be able to access performance within restricted developmental time windows the testing 

battery described previously (Chapter 4) was compressed into a 2-day protocol for each 

time point. In the morning of the first day, subjects were tested in OR and during the 

afternoon in OC recognition. In the morning of the second day OP task took place and 

OPC in the afternoon (testing protocol modified from Lyon & Langston, 2014). All four 

tasks were carried out exactly as described before (Chapter 4).   
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Figure 5.1 This study used weanling rats and monitored their performance in spontaneous exploration 
tasks from postnatal day 26 until early adulthood (P71) to explore developmental delays in the model of 
FXS (Cartoons of rats taken from McCutcheon &Marinelli 2009). 
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5.2.4 Statistical analysis 

As descried previously, a Discrimination Index DI [(time exploring novel object—time 

exploring familiar object)/(time exploring both objects)] was calculated for each test 

phase. The only difference was that the criterion for data exclusion was less stringent 

than previously since the repeated testing of (4 tasks in 2 days) had a slight impact on 

the subjects’ interest for objects. For this experiment, trials in which a subject did not 

reach 15 sec of total object exploration in both the sample and the test phases and at 

least 5 sec of exploration for each object in the sample phase, were excluded from the 

analysis. This criterion is stringent enough to exclude animals who were not interested, 

but to include animals that explored for an adequate amount of time overall and had 

experienced both objects. Groups’ performance in all testing time points was compared 

to chance levels (unless stated otherwise), and false discovery rate during multiple 

comparisons against chance levels, was corrected using the Benjamini–Hochberg 

procedure (Benjamini & Hochberg, 1995) with the false recovery rate set to 0.05. 

Statistical analysis was done using IBM SPSS Statistics 22.0 and GraphPad Prism 6. All 

graphs were produced in GraphPad Prism 6. 

 

5.3 Results 

5.3.1 Fmr1 KO rats show significant memory for objects throughout 

development 

Both groups displayed significant object novelty preference in the NOR task in all testing 

time points used in this study (P25-P70) (Fig 5.2 A&B, Table 5.1&5.2). These results 

indicate that rats as young as 25-days-old can learn object identities and retrieve this 

information after a short 2min retention interval. Compared to adult testing were 

subjects were tested in each task twice and the average value was used for analysis, each 

time point of this study has only one testing session for each task. This difference can 

explain the increased variability observed across time points. Analysis of exploration 

times during both sample phase (Supp. Fig. 2A) and test phase (time F(7,210) =12.41, p 

<0.001; genotype F(1,30) =1.85, p =0.18; genotype × training day F(7.210) =0.33, p =0.94; Fig. 

3.2C) revealed that even though exploration levels are fluctuating during the course of 

the experiment, both groups explore objects at a similar level. 
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Figure 5.2 Intact object memory in Fmr1 KO rats. Both wildtype (A) and Fmr1 KO rats (B) can 
distinguish novel from familiar objects from the first time-point of testing. (C) Exploration time between 
the groups was similar throughout the experiment. * p<0.05 difference from chance (DI =0); significance 
values have been controlled for the false discovery rate using the Benjamini–Hochberg procedure. 
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Figure 5.3 Developmental trajectory of object-context memory is largely unaffected by FMRP loss. 
Wildtype rats can distinguish novel from familiar object-context associations from P37 onwards (A) while 
Fmr1 KO rats (B) show a very similar developmental profile, performing above chance from P43 onwards. 
(C) Overall Fmr1 KO rats did explore the objects more but post hoc analysis revealed that the only time 
point with significant difference between groups was P55. For (A) and (B)* p<0.05 difference from chance 
(DI =0); significance values have been controlled for the false discovery rate using the Benjamini–Hochberg 
procedure. For (C) * p<0.05 difference between groups 
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Figure 5.4 Fmr1 KO rats display a delay in the developmental trajectory of object-place associative 
memory. WT subjects develop the ability to remember object-place associations on postnatal day 50 (A). 
Fmr1 KO rats start perform significantly above chance almost 2 weeks after (P62) (B). Exploration time 
between the groups was similar throughout the experiment except from testing on postnatal day 56 when 
Fmr1 KO rats showed a significantly increase exploration compared to littermate controls (C). Focussing 
on the two testing points before and after the emergence of OP (D). For (A) and (B)* p<0.05 difference 
from chance (DI =0); significance values have been controlled for the false discovery rate using the 
Benjamini–Hochberg procedure. For (C) and (D) * p<0.05 difference between groups 
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Figure 5.5 Fmr1 knockout rats are unable to discriminate novel from familiar object-place-context 
associations. (A) WT rats show a developmental profile of performance similar to OP task, with OPC 
emerging at postnatal day 50. In contrast, Fmr1 KO rats’ ability to discriminate novel from familiar object-
place-context (episodic-like) associations does not develop (B). Exploration time between the groups was 
similar throughout the experiment (C). Focussing on the two testing points before and after the emergence 
of OPC (D). For (A) and (B)* p<0.05 difference from chance (DI =0); significance values have been 
controlled for the false discovery rate using the Benjamini–Hochberg procedure. For (C) and (D) * p<0.05 
difference between groups 
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5.3.2 Fmr1 KO rats show similar object-context memory developmental 

profile to wildtype littermates  

The developmental trajectory of object-context associative memory seems to be largely 

unaffected by FMRP loss (Fig 5.3) Even though Fmr1 KO rats display a slightly delayed 

trajectory (Fig 5.3B) compared to wildtype littermates (Fig. 5.3A) we cannot be certain 

about the precise developmental trajectory due to high variability. The ontogenetic 

emergence of object-context associative memory seems to happen sometime between 

P32 and P37 (Table 5.1&5.2).  Analysis of exploration times during test phase revealed 

significant fluctuation (time F(7,210) =6.77, p <0.001) across different time points; 

moreover Fmr1 KO rats were found to explore more than their wildtype littermates 

(genotype F(1,30) =7.36, p =0.01; genotype × training day F(7.210) =4.54, p <0.001; Fig. 5.3C) 

but post hoc t-tests revealed that the only time point when there was a group difference 

was at P55 (P <0.001). Analysis of exploration times during sample phase revealed no 

genotype effect (Supp. Fig. 2 B). 

 

5.3.3 Fmr1 KO rats display a delay in the developmental trajectory of 

object-place associative memory 

Object-place associative memory was found to be significantly delayed for Fmr1 KO rats 

(Fig. 5.4). Wildtype rats can perform significantly better than chance from P50 onwards 

(Fig. 5.4A, Table 5.1) whereas Fmr1 Kos perform better than chance only from P62 (Fig. 

5.4B, Table 5.2). This significant delay could be interpreted as a delay in the development 

of plasticity mechanisms supporting this type of memory. The ability of the subjects to 

discriminate between novel and familiar object-place associations seems to develop 

between P44 and P50 in wildtype controls. This finding contradicts previous work by 

Ainge and Langston (2012) who found that juvenile rats are able to remember this type 

of associations as early as P30. However more recently Lyons and Langston showed a 

surprisingly similar developmental trajectory in Lister Hooded rats, with OP coming 

online at P48 (Lyon & Langston, 2014). Focusing on the time points before and after the 

ontogenetic emergence of OP (P44 & P50) gives us a better idea of the abruptness by 

which this type of memory emerges (Fig. 5.4D). Even though there is not a significant 

difference between time for either WT (t15 =1.91, p =0.08) or Fmr1 KOs (t15 =1.57, p 

=0.14), analysis of the individual subjects showed that 10 out of 16 WT rats (62.5%) 

increased performance between the two testing points whereas only 5 out of 16 (31.3%) 
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Fmr1 KO rats did the same.  Exploration times during test phase did fluctuate across 

different time points (time F(7,210) =3.77, p <0.001), and no differences were detected 

between groups (genotype F(1,30) =3.49, p =0.07). On the other hand, the interaction 

between the groups and time was found to be significant (genotype × training day F(7.210) 

=2.72, p=0.01; Fig. 3.4C)  but post hoc 1-sample t-tests revealed that the only time point 

when there was a group difference was at P56 (p <0.001). Moreover, analysis of 

exploration times during sample phase revealed no genotype effect (Supp. Fig. 2 C). 

 

5.3.4 Fmr1 KO rats are unable to discriminate novel from familiar object-

place-context associations  

Analysis of the developmental trajectory of object-place-context memory confirmed our 

previous findings (Till et al., 2015; Chapter 4) that Fmr1 KO rats are unable to remember 

complex object-place-context associations, thus Fmr1 KOs are not able to perform 

significantly better than chance levels at any time point (Fig. 5.5B, Table 5.2). 

Interestingly, the normal emergence of OPC task is identical (at least or the testing times 

we used) with OP task (Fig. 5.5A, Table 5.1). Focussing on the testing times before and 

after the ontogenetic emergence of OPC (P44 & P50), in order to get a closer look at the 

changes on a single subject level, reveals that 11 out of 16 (68.8%) WT rats improved 

their performance between the two testing points whereas there were only 4 out of 16 

(25%) Fmr1 rats with the same change (Fig. 5.5D). Moreover, the performance of WT 

rats on P44 was significantly worse than on P50 (p =0.03, paired t-test) and as expected 

no significant difference was detected for Fmr1 KOs. Analysis of exploration times during 

both sample phase (Supp. Fig. 2D) and test phase (time F(7,210) =4.85, p <0.001; genotype 

F(1,30) =0.56, p =0.46; genotype × training day F(7.210) =1.1, p =0.36; Fig. 3.5C) revealed that 

even though exploration levels are fluctuating during the course of the experiment, both 

groups explore objects at a similar level. 
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Table 5.1 Development statistical overview for WT rats. * p<0.05 for Bonferroni correction for multiple 
comparisons; * indicates significance from chance levels of discrimination after controlling the false 
discovery rate using the Benjamini-Hochberg procedure (B&H) 
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Table 5.2 Development statistical overview for Fmr1 KO rats. * p<0.05 for Bonferroni correction for 
multiple comparisons; * indicates significance from chance levels of discrimination after controlling the 
false discovery rate using the Benjamini-Hochberg procedure (B&H) 
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5.4 Discussion 

The disussion of the findings in this study can focus on two different directions; the 

developmental trajectory of object recognition and associative memory in wildtype rats 

and second the developmental delays and deficits related to FMRP loss.  

 

5.4.1 Distinct developmental trajectories in associative memory of 

wildtype rats  

In this study we investigated the ontogeny of associative and non-associative object 

recognition memory in wildtype and Fmr1 KO juvenile rats. We showed that rats can 

remember novel objects form the same time tested (P25) all the way to adulthood. 

Moreover, we found age-related improvements in memory for, object-context, object-

place and object-place-context associations, and we observed that these age-related 

progression differs as a function of the type of association (Fig 5.6). Consistent with the 

complexity of the tasks used, different age-related performance was observed, 

implicating the development of processes facilitating binding operations to account, at 

least in part, for the development of associative memory in juvenile rats (McCutcheon & 

Marinelli, 2009). Both wildtype and Fmr1 KO weanling rats were able to recognise object 

identities from the earliest time point tested (P25) (Fig. 5.2). This result is fundamental 

in the interpretation of findings from more complex types of memory involving objects. 

Being able to remember object identities throughout the experimental time points 

suggests that the different developmental trajectories observed for the other 3 tasks are 

not due to inability to distinguish novel from familiar objects.  

Consistently with previous findings by Lyn and Langston (Lyon & Langston, 2014), in our 

study OC recognition appears to ontogenetically emerge between P32 and P37 in 

wildtype rats. Contrary to this finding, Ramsaran and colleagues (2016) found that 

juvenile rats can remember object context associations from P17 onwards. This could be 

an effect of their experimental design, since they only used a specific object pair of 

objects, whereas in our experiments a variety of object pairs was used. Interestingly, 

contextual learning using a contextual fear conditioning paradigm has been shown to 

develop between P17 and P23 (Foster & Burman, 2010). Although the fact that fear 

conditioning paradigms were used in these studies, makes the comparison with non-

aversive spontaneous exploration task difficult, it is possible that the late development, 
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seen in our OC test, could be due to the need of binding two non-aversive relevant pecies 

of information. Two recent reports suggest that postrhinal (POR) and lateral entorhinal 

(LEC) cortices are key neural substrates for object-context associative memory (Wilson 

et al., 2013a; Wilson, et al., 2013b); thus, these findings would appear to support the idea 

that POR and LEC development, or more importantly the crosstalk between two areas, 

may be the bottleneck in the emergence of object-context memory.  

To our knowledge, this is one of the first demonstrations of a developmental trajectory 

of OP and OPC memory in juvenile rats. Based on the time-points tested, OP and OPC 

recognition both develop sometime between P44 and P50 in wildtype rats. Further 

studies are required to pin down the exact age these two tasks develop; Lyon and 

Langston (2014 and Lyon personal communication) have already shown that those two 

tasks seem to develop acutely and simultaneously on P48. OP associative memory has 

been shown to involve LEC (Wilson, et al., 2013a), prefrontal cortex (Chao et al., 2016) 

and is likely to involve perirhinal (PER) cortex which is an important brain area for object 

memory (Norman & Eacott, 2005), whereas it doesn’t require an intact hippocampus 

(Langston & Wood, 2010). OPC associative memory has been shown to involve PER and 

LEC, prefrontal cortex (PFC) (Chao et al., 2016) and hippocampus (Langston & Wood, 

2010). Therefore, it is unlikely that hippocampus postnatal development is dictating the 

emergence of these two types of associative memory. After all, hippocampus has 

developed almost to its adult form by P21; plasticity mechanisms are in place, stable 

place fields have emerged and other hippocampus dependent tasks, like object 

displacement task, are online (Bayer, 1980; Bekenstein & Lothman, 1991a, 1991b; 

Langston et al., 2010; Westbrook, Brennan, & Stanton, 2014). Nevertheless, additional 

complexity in dendritic morphology and overall neuron structure continues to improve; 

density of dendritic spines reaches a maximum on P24 in the stratum moleculare and on 

P48  in stratum lacunosum (Pokorný & Yamamoto, 1981).  

Based on our behavioural data and what is known about the postnatal hippocampus 

development, we can hypothesise that: (1) OPC emergence is probably dictated by the 

object-place component of the task and (2) and that prefrontal cortex postnatal 

development timeline is the reason of the late onset of these types of associative 

memory. But what is known for the postnatal development of PFC? In contrast to the 

postnatal development of hippocampus, PFC circuits appear to develop later in life, in a 

timeline consistent with our findings, and continue to mature until early adulthood. 
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Piontkewitz and colleagues found a dramatic increase in PFC volume between P35 and 

P46 (Piontkewitz, Arad, & Weiner, 2011) and a subsequent mild decrease between P56-

90, consistent with synaptic pruning during adolescence (Andersen, 2003). Moreover, 

there is a sharp increase in trypsin/EDTA resistant cortical synapses between P35 and 

P49, indicating increase structural stabilisation (Khaing et al 2006). These findings fully 

agree with the observed ontogenetic development of OP and OPC recognition (Lyon and 

Langston 2014). Further to this volumetric study, the functional maturation of PFC has 

been suggested to occur between P40 and P60. A study looking at the development of 

brain areas underlying foraging behaviour in rats found that prefrontal cortex is not 

critically involved in food and water regulation until nearly 60 days of age (Kolb & 

Nonneman, 1976).  More detailed analysis on the development of innervation of PFC 

revealed that dopamine D1 receptors, mainly expressed by pyramidal cells in cortical 

layers III and V, continue to increase in number after P35 until early adulthood (P60), 

while D2 and D4 reach adult levels of density from P35 (Tarazi & Baldessarini, 2000). In 

contrast, GABAergic neurons appear to complete their postnatal maturation by the 

fourth postnatal week but the slower progression in the development of dopaminergic 

system dictates the maturation in interactions between pyramidal cells and GABAergic 

interneurons (Benes, Taylor, & Cunningham, 2000). Normal expression and 

development of dopamine receptors could significantly influence maturation of synaptic 

structures, function and behaviour, and may play an important role in the organization 

and connectivity of cortical and hippocampal brain systems. Consistently with the 

hypothesis that the development of prefrontal dopaminergic system supports OP and 

OPC associative memory, a recent study showed that infusion of D1/D5 receptor 

antagonists in prefrontal cortex, but not hippocampus or perirhinal cortex, leads to 

impairments in an associative spatial object memory task (Savalli, Bashir, & Warburton, 

2015).  

The abruptness by which OP and OPC emerge should not be a surprise. Other types of 

memory show the same sudden manifestation, indicating the importance of finely tuned 

circuits before a behaviour appears (Languille, Richer, & Hars, 2010; Westbrook et al., 

2014). In contrast to this hypothesis, studies have shown that even though spatial 

memory is in place just before P18 it certainly continues to improve (Adams & Jones, 

1984). Thus, it is possible that behaviours (types of memory in our case) which rely 

heavily on a single structure could emerge gradually and be refined in the process 

(spatial memory-hippocampus). This hypothesis is supported by studies looking at the 

development of spatial representation system ( Langston et al., 2010; reviewed by Ainge 
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& Langston, 2012). On the other hand, behaviours which require intact wide range 

circuits involving multiple brain areas, are more likely to show abrupt developmental 

emergence, simply because the circuits supporting these complex behaviours have to be 

fully refined. Thus, it is plausible that even though the hippocampus is functional 

relatively early in postnatal development, its ability to cooperate with other brain areas 

and integrate information from different memory and sensory systems emerges later 

and in a more gradual fashion depending on the neural circuits involved. This could 

explain why OPC recognition, which requires multiple brain areas including the 

hippocampus, emerges late in postnatal development.  

 

5.4.2 Fmr1 knockout rats display abnormal development of associative 

memory 

The second major finding of this study is that Fmr1 KO rats display delays in emergence 

of OP and performed no better than chance at any time point on OPC. This finding is 

consistent with cognitive delays seen in individuals with FXS (Bailey et al., 2001; Maes et 

al., 2000). While OR and OC memory development shows very similar profile between 

wildtype and knockout rats, differences are observed in OP and OPC. OP associative 

memory emergence appears to be delayed for 6-12 days and OPC memory was not 

observed at any time point, which is consistent with previously presented data from 

adult subjects (Chapter 4) (Till et al., 2015).   

The vast majority of studies looking at rodent postnatal brain development have focused 

on the first four postnatal weeks, during which major changes take place, leading to the 

emergence of most basic behaviours (Hartung et al., 2016; Meredith, 2015; Sugar & 

Witter, 2016). The same lack of reports focussing on developmental events between the 

sixth and seventh postnatal week is also evident for the mouse model of FXS. 

Nevertheless, a handful of studies have yielded results which could be considered 

consistent with the idea that fully functional hippocampus, PFC and LEC are important 

for OP and OPC recognition. Moreover, knowledge based on adult Fmr1 knockout mice 

could provide some hints on the processes which have gone awry due to FMRP loss. For 

example, Calabrese and colleagues (2013) have shown, using magnetic resonance 

histology, that hippocampus reaches its plateau volume around P50 while frontal cortex 

around P42. This is largely consistent with the trajectories we see in OP and OPC. 

Moreover, it has been shown that interneurons in the rat prefrontal cortex undergo a 

dramatic reduction in NMDA/AMPA ratio, a determinant of synaptic plasticity, just 
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before the emergence of OP and OPC (P31-P49) (H.-X. X. Wang & Gao, 2009). This could 

be relevant to FXS, since several studies have shown that NMDA/AMPA ratios are 

generally lower in cortex (Gocel & Larson, 2012; Harlow et al., 2010; Martin et al., 2015) 

and hippocampus (Yun & Trommer, 2011); moreover, interneurons in other cortical 

areas display robust deficits in excitatory drive (Gibson et al., 2008). Studies focussing 

on biochemical biomarkers during postnatal development have also revealed some 

interesting changes supporting our hypothesis and might explain the differences 

between Fmr1 knockouts and wildtype littermates. Counotte and colleagues (2010) 

examined the synaptic proteome in rat prefrontal cortex, and found that it undergoes 

vast changes between P44 and P78. Keeping in mind that FMRP is a translation 

regulator/suppressor, controlling various genes important for synaptic function 

(Darnell et al., 2011), it is obvious that these natural changes in synapse proteome during 

sensitive developmental periods are bound to be severely affected by the loss of FMRP, 

leading to permanent circuit dysfunction.  Lastly, the dopamine-mediated 

neuromodulation in prefrontal cortex of adult Fmr1 KO mice has been shown to be 

decreased (Paul, Venkitaramani, & Cox, 2013; Ventura et al., 2004). It is plausible that 

this dysregulation could account for these observed deficits. 

 

5.4.3 Looking forward 

Cognitive processes are generally supported by finely tuned interactions within large-

scale neuronal networks. Performance in different cognitive tasks is obviously not 

inherited, but it progressively matures in parallel with the formation of functional 

circuits and long-range coupling in the developing brain. Overall the results of this study 

replicate the behavioural deficits of Fmr1 knockout rats presented in Chapter 2 (Fig 5.7) 

confirming the robustness of this cognitive deficit. This study went a step forward; the 

use of this longitudinal paradigm revealed a delay in the ability to form OP associative 

memory which could not have been explored otherwise. This suggests that our approach 

can definitely expand our understanding of the pathophysiology associated with FXS but 

also other neurodevelopmental disorders. It would be interesting to see if other 

behaviours which appear to be unaffected during adulthood, have an abnormal 

developmental trajectory. Of course longitudinal studies will not be possible for a 

number of tasks (i.e. watermaze tasks) in which case a cross-sectional experimental 

design should be followed (McCutcheon & Marinelli, 2009).  



142 
 

Different trajectories between different types of associative memory found in this study 

agree with studies in children, which have also shown different developmental profiles 

for item-item or item-order etc. (Lee et al., 2015); this offers additional face validity to 

our rat model but also validates this behavioural assay. Focussing only on the 

developmental profile of wildtype rats, we can easily see that there is a relatively long 

time period (P25-P50) during which circuits supporting complex types of associative 

memory (OP and OPC) undergo extensive reconstruction and improvement. It is possible 

that pharmaceutical interventions during these period of elevated plasticity, could 

maximise the therapeutic effects (Andersen, 2003;  Meredith et al., 2012). Therefore, 

these behavioural tasks could serve as powerful functional assay to help us examine the 

efficacy of target-based therapeutics not only in reversing established circuit and 

behavioural deficits but more importantly preventing their emergence.   
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Figure 5.6 Distinct developmental trajectory in object memory tasks for WT rats. Significant 
preference for novelty appears first for NOR, then OC, and finally OP and OPC. (time: F(7,420) =11.31, P 
<0.001; task: F(3,60) =32.91, P <0.001; Time x task: F(21,420) =1.86, P =0.01). 
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Figure 5.7 Fmr1 KO rats are unable to form coherent object-place-context memory associations. 
Average data across the last two time-points (P61&P70) confirm previous findings in adult rats. Despite a 
diminished preference for novelty in NOR and OP tasks compared to their wildtype littermates, Fmr1 KO 
rats are able to remember object identities (A), object-context (B) and object-place associations (C), but 
their ability to remember episodic-like memories (D) is severely impaired. * p<0.05 difference from chance 
(DI =0) # p<0.05 difference between genotypes.  
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6. Lovastatin treatment early in life restores 

cognitive development in Fmr1 KO rats 

6.1 Introduction 

Over the last decade, multiple studies have reported that it is possible to reverse 

symptomatology associated with neurodevelopmental disorders in model organisms 

(primarily mouse models) during adulthood. The approaches utilised pharmacological 

or genetic rescue strategies in adulthood in different mouse models for 

neurodevelopmental disorders including Down syndrome (Fernandez et al., 2007), 

tuberous sclerosis (Ehninger et al., 2008), Rett syndrome (Guy et al., 2007) and Fragile X 

syndrome (Dölen et al., 2007; Osterweil et al., 2013b). Although collectively, these 

studies have reported correction of a wide range of phenotypic anomalies in the mouse 

models used, individually, the overwhelming majority of studies have reported rescue of 

selected physiological and behavioural deficits, with some key aspects of 

pathophysiology remaining unaffected. Due to the nature of these disorders, the timing 

of intervention could be a vital parameter to the efficacy of a given treatment; therefore, 

early intervention approaches in these mouse models, are currently gaining attention. 

For example, acute dosing with appropriate drug in new-born TS65Dn mice (a model for 

Down syndrome) is adequate to correct some pathophysiological and behavioural 

phenotypes during adulthood (Das et al., 2013). However, as mentioned earlier the 

therapeutic effects were somewhat limited, leaving other cerebellar pathological 

phenotypes unaffected (Gutierrez-Castellanos et al., 2013).  

An alternative strategy to target processes during early critical periods in brain 

neurodevelopment, is treatment late prenatally. For example, administration of 

bumetanide (Na+-K+-2Cl– co-transporter antagonist), 24h before delivery, to pregnant 

Fmr1 Het female mice and to VPA pre-treated pregnant rats (non-genetic model for 

autism) restored a range of physiological and behavioural deficits: namely neuronal 

activity of pyramidal neurons in CA3 area of hippocampus, hippocampal oscillations and 

abnormal pup vocalisations (Tyzio et al., 2014). Interestingly, Wang and Kriegstein 

(2011) showed that the same treatment (bumetanide) can cause long-lasting deficits in 

excitatory synaptic transmission, developmental delay and impaired sensorimotor 

gating in wildtype control mice, if it is given during a narrow developmental time 

window from E17 to P7. Drawing parallels between species (Semple et al., 2013; 



146 
 

Sengupta, 2013), these results could indicate that therapeutic interventions in 

comparable developmental stages in humans can have profound effects in 

pathophysiology of neurodevelopmental disorders but also highlight the importance of 

tight regulation in treatment applications during early development.  

Other studies have gone a step further and compared different treatment timing. For 

example, it was shown that early pharmacological intervention in Fmr1 knockout 

juvenile mice appears to be more efficient in correcting biochemical, physiological and 

cognitive deficits the same pharmacological treatment in adult subjects (Dansie et al., 

2013; Su et al., 2011; Sun, Hongpaisan, & Alkon, 2016). The existence of time-windows 

sensitive to pharmacological treatment has also been reported in the Drosophila model 

for FXS. Gatto and Broadie (2010)reported that reintroducing the FMRP fly homolog 

during a critical phase in brain development led to correction of abnormal dendritic 

morphology. On the other hand, treatment in the adult fly or intriguingly even at an 

earlier stage of circuit formation was ineffective. Such experiment of timed genetic 

intervention, has not been translated to any other model organism of FXS but it is vital 

to determine if the effectiveness of treatment dependents on already defined critical 

periods and precise developmental stages. It appears that the weakness of treatment 

during adulthood or to generalise, any untimely intervention, is that the therapeutics 

could miss a sensitive period of elevated plasticity, important in behavioural 

development. If FXS is a lasting consequence of abnormal brain development with 

deficits in synaptic maturation, it is possible that early interventions with 

pharmacological agents facilitating synaptic maturation could achieve more dramatic 

results, unfolding in that way, the full potential of the therapeutics. Since FXS is a genetic 

syndrome with defined genetic aetiology, this is entirely plausible, considering that new-

born screening for FXS is technically feasible (Flora Tassone, 2014). 

It is obvious from the above that early detection and therapeutic intervention holds 

promise for maximizing the efficacy of treatment. Early interventions are likely to 

improve symptomatology in young children with FXS. However, adapting treatment 

approaches to this population requires elucidating the developmental trajectories of 

cognitive function during early childhood first. Another limiting factor when treating 

children is drug safety. Candidate therapeutics which have been used in children before 

and found to be effective, would significantly speed up the translation of preclinical data. 

It is important to keep in mind that only about 30 percent of drugs commonly prescribed 
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to children today, have been thoroughly tested in children; even though this can be 

harmless, this is not always the case. For example, 60 years ago, the antibiotic 

chloramphenicol was commonly prescribed in adults. But many new-borns died after 

receiving the antibiotic because their livers were not developed enough to metabolise 

the drug efficiently (FDA, 2016). 

A drug group which has been approved by FDA for child use is HMG-CoA reductase 

inhibitors, or statins. They have been in use since 1970s and are considered a first-line 

pharmacologic intervention for children with familial hypercholesterolemia (Eiland & 

Luttrell, 2010). Over the last decade, there is a growing interest in statins with regards 

to their effects on brain function (Ling & Tejada-Simon, 2016). Surprisingly, studies using 

preclinical models of numerous neurodevelopmental disorders including Rett 

syndrome, Fragile X syndrome (FXS), neurofibromatosis and tuberous sclerosis have 

shown that statin treatment can have really positive effects against a wide range of 

symptoms. These promising results have led to a number of clinical trials as well. For 

example, in disorders such as neurofibromatosis type 1 (NF1), treatment with lovastatin 

reversed cognitive deficits in both a mouse model (Weidong Li et al., 2005) and children 

suffering from these disorders (Acosta et al., 2011; Bearden et al., 2016; Chabernaud et 

al., 2012; Mainberger et al., 2013). However, in a placebo-controlled trial, twelve weeks 

of treatment with a different statin (simvastatin) did not lead to any improvement in 

cognitive function of children with NF1 (Krab et al., 2008). In FXS, treatment with 

lovastatin has been shown to improve symptomatology. Fmr1 KO mice which were 

treated with lovastatin displayed normalized protein synthesis levels in hippocampus 

and reduced susceptibility for audiogenic seizures (Osterweil et al., 2013b). The 

promising results of this study led to an open-label study in 2014. Patients who received 

treatment showed a significant improvement in measured behaviour output (Çaku et al., 

2014).  

How is lovastatin mechanism of action connected to molecular cascades affected by 

FMRP loss? During the early 1990s, several research groups reported that one of statins 

indirect mechanisms of action includes reduction of Ras farnesylation and as a result the 

activity of two downstream kinases, ERK-1 and ERK-2, in cells (Ling & Tejada-Simon, 

2016) (Fig. 6.1B). Interestingly, two decades after, it was shown that blockade of Ras-

ERK-1/ERK-2 signalling cascade, decreased some biochemical markers associated with 

FXS in the mouse model of the disorder (Osterweil et al., 2010). Taken together these 
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findings suggest that statins could be part of treatment schemes against core defects 

associated with FXS, but it is still unclear whether they could be used as monotherapy or 

in combination with other mechanism-based therapeutics or behavioural treatments. 

Consistent with the later though, two ongoing trials of lovastatin are focussing in the 

combination of lovastatin and a behavioural intervention (ClinicalTrials.gov Identifier: 

NCT02642653) and combination of lovastatin and minocycline (ClinicalTrials.gov 

Identifier: NCT02680379). 

While Osterweil and colleagues (2013) focused on epileptogenesis and showed that 

lovastatin can reverse audiogenic seizure susceptibility in Fmr1 knockout mice, this 

study aims to examine the effects of early lovastatin treatment on cognitive deficits 

before these have even emerged. We hypothesised that treating subjects early in life 

during possibly sensitive periods of postnatal development, would have strong effects in 

their cognitive development. In the previous chapter I have shown that Fmr1 KO rats 

exhibit cognitive delays and deficits in two associative memory tasks, Object Place (OP) 

and Object-Place-Context (OPC) (OP delayed, OPC does not develop). Moreover, I showed 

that wildtype rats develop the ability to remember these complex associations not before 

postnatal day 49, revealing a time window of approximately 1 month from weaning 

(P22-P49), during which circuits supporting these times of memory are still being 

developed.  

Cognitive attention and working memory, although delayed in FXS, reveal a 

developmental change, rather than a “freeze” (Cornish et al., 2013). This indicates that 

the system is still plastic and has a potential to change drastically once the appropriate 

treatment is in place.  Fish and colleagues (1994) showed that it is the cognitive deficits 

that lag the adaptive abilities in boys with FXS. Their adaptive behaviour is sometimes 

sufficiently high to challenge a mental retardation diagnosis. They found that adaptive 

behaviours decline as a function of age. More interestingly, the average social intelligence 

quotient (SQ), which is indicative of adaptive behaviour, for 3 to 8-year-old affected 

children, is relatively high (approx. 70) (SQ follows the ‘standard score’ approach used 

in IQ tests, with a mean of 100). We propose a treatment timeline (P29-64) which would 

catch this period of high adaptive behaviour and possibly the last week or so in brain 

development (approx. a month in a rat with a lifespan of 2 years is roughly equal to 3.3 

years of brain development in humans; (Semple et al., 2013; Yoon et al., 2014) before 

phenotypes associated with FXS are established in our rat model (Chapter 5). 
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Figure 6.1 Experimental design and lovastatin mechanism of action. (A) Subjects were given a 
lovastatin enriched diet (100mg/Kg) (green) for 5 weeks (P29-P64) and tested once every week 
throughout this period (arrows). The same subjects were also tested approx. 5 weeks and 3 months after 
the end of the treatment. Throughout that period they consumed normal diet (blue). (B) Statins’ 
mechanism of action and potential link to FXS pathophysiology. Based on this hypothesis, it is obvious that 
lovastatin acts fairly indirectly on the molecular cascades affected by FMRP loss. Its effects on cholesterol 
metabolism or protein farnesylation can also contribute to its therapeutic effects. 
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6.2 Methods 

6.2.1 Animals 

Subjects were male Long Evans Hooded rats (wild-type {WT}, n=25 {13 treated and 12 

untreated}; Fmr1-KO {KO}, n=24 {12 treated and 12 untreated} *), bred in-house and 

kept in a 12h/12h light dark cycle. Colony founders were produced by Sigma Advanced 

Genetic Engineering (SAGE) Labs (St. Louis, MO, US). Animals were weaned from their 

mother at postnatal-day 22 (P22) and housed in mixed genotype cages with littermates, 

2-4 animals per cage. Animals were provided with water, sawdust bedding and either a 

gnawing block of wood and/or a cardboard tube as environmental enrichment 

throughout the experiment. Ad libitum standard laboratory chow was provided until 

P29. *Note that for the last two time points (P98-105 & P164-5) numbers of animals are 

different due to experimental error (wild-type {WT}, n=22 {11 treated and 11 

untreated}; Fmr1-KO {KO}, n=20 {9 treated and 11 untreated}). 

 

6.2.2 Experimental Procedures 

All experimental procedures, data analysis and exclusion criteria are almost identical to 

those described in Chapter 5 except for some minor changes. In brief; starting from 

weaning (P22), animals were handled daily in the animal house and experimental room 

for 4 days prior to experiments. Task-specific habituation was reduced to the two days 

prior to testing (P26-27). On P26 and P27, the animals were habituated to the apparatus 

as described in Chapter 3. Testing started on P28 with OR and OC and P29 with OP and 

OPC. On the afternoon of P29 animals switched to either control or lovastatin-enriched 

(100mg/kg) (Bioserv®) diet which was restocked and weighed once daily. Testing 

continued every 7 days until P64. At P64, animals were returned to ad libitum standard 

laboratory chow until the end of experiment (P164). Two more testing points 5-6 weeks 

and 3 months after the end of treatment were carried out (Fig. 6.1A). Rats’ weight and 

consumption per cage was monitored throughout the dosing period (P29-P64) to ensure 

that diet did not have any adverse effects on their growth. Objects were used only once 

and were counterbalanced across tasks, genotypes and time-points to eliminate any bias. 

Abiding by the ARRIVE guidelines (Kilkenny et al., 2010), experimenters were always 

blind to the genotype and the diet of the animals. Furthermore, all experimental 

conditions (position of the novel object, context of test phase, order of presented 

contexts etc.) were counterbalanced across genotypes, treatment, age and tasks.  
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6.2.3 Statistical analysis 

As described previously, a Discrimination Index DI [(time exploring novel object—time 

exploring familiar object)/(time exploring both objects)] was calculated for each test 

phase. The only difference was that the criterion for data exclusion was less stringent 

than previously. As the repeated testing of (4 tasks in 2 days) had a slight impact on the 

subjects’ interest for objects. For this experiment, trials in which a subject did not reach 

15 sec of total object exploration in both the sample and the test phases and at least 5 sec 

of exploration for each object in the sample phase, were excluded from the analysis. This 

criterion is stringent enough to exclude animals who were not interested, but to include 

animals that explored for an adequate amount of time overall and had experienced both 

objects. Groups’ performance in all testing time points was compared to chance levels 

(unless stated otherwise), and false discovery rate during multiple comparisons against 

chance levels, was corrected using the Benjamini–Hochberg procedure (Benjamini & 

Hochberg, 1995). Due to missing data (rats didn’t reach object exploration criteria), a 

mixed linear model with time as a repeated measure was used to examine the effects of 

the treatment. Statistical analysis was done using IBM SPSS Statistics 22.0 and GraphPad 

Prism 6. All graphs were produced in GraphPad Prism 6. 

 

6.3 Results 

6.3.1 Lovastatin does not impede normal physical development of rats 

A promising drug candidate should have minimal side effects on the physiology of the 

subjects receiving the treatment. To determine whether lovastatin treatment has 

negative impacts on normal growth, we tracked weight changes in rats while they 

consumed lovastatin enriched diet, daily for the course of the treatment (35 days) (Fig 

6.1). Lovastatin did not affect normal weight gain in either WT (time F(35,770) =1453, p 

<0.001; treatment F(1,23) =0.44, p =0.51; treatment × time F(35,770) =0.71, p =0.89; Fig. 6.2A)  

or Fmr1 KO rats (time F(35,770) =1037, p <0.001; treatment F(1,22) =3.42, p =0.08; Fig. 6.2B). 

Even though a significant interaction was found in Fmr1 KO rats (treatment × time 

F(35,770) =2.97, p <0.001), post hoc t-tests revealed no significant differences between 

groups. The average food intake per subject was similar for both diets throughout the 

course of the treatment, with both treatment groups reaching a plateau in food 

consumption (approx. 29gr/day) after postnatal day 57 (time F(14,476) =53.29, p <0.001; 

diet F(114) =1.33, p =0.27; treatment × time F(14,476) =1.68, p =0.01; Fig. 6.2C) with post hoc 
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1-sample t-tests revealing no differences at any time point. Finally, analysis of the daily 

treatment intake revealed that there was a peak of approx. 15mg lovastatin/Kg rat, 

between P35 and P42 (before the emergence of object-place and object-place-context 

memory) for both WT and Fmr1 KO rats but overall no effect of genotype (time F(34,748) 

=21.47, p <0.001; genotype F(1,22) =0.03, p =0.87; genotype × time F(35,770) =0.27, p >0.99; 

Fig. 6.2D). 

 

6.3.2 Lovastatin does not affect normal cognitive development in Object 

and Object-Context recognition 

Treatment with lovastatin early in life did not affect object recognition memory in either 

WT (time F(5,112.7) =0.52, p <0.05; treatment F(1,22.7) =0.52, p =0.48; treatment × time 

F(5,112.7) =0.76, p =0.58; Fig 6.3A) or Fmr1 KO rats (time F(5,108.1) =0.40, p =0.85; treatment 

F(1,21.2) =0.55, p =0.47; treatment × time F(5,108.1) =1.12, p =0.36; Fig. 6.3B). Both treatment 

groups in both genotypes were able to perform significantly above chance levels from 

the first testing time point. Analysis of exploration times during both sample (Supp. Fig. 

3A) and test phase (time F(5,220) =1.41, p =0.22; test group F(3,44) =0.99, p =0.40; test group 

× time F(15.220) =0.84, p =0.63; Fig. 6.3C) revealed no difference in exploratory behaviour 

as a result of treatment. Dividing the 6 testing times in 2 epochs (before and after the 

ontogenetic emergence of object-place and object-place-context memory) reduces the 

variability and confirms that object recognition memory is not affected by FMRP loss 

(genotype F(1,45) =1.21, p =0.28) and that lovastatin treatment does not affect 

performance (treatment F(1,45) <0.05, p =0.95; treatment × genotype F(1,45) =1.18, p =0.28; 

Fig. 6.3D). The performance of individual subjects shows clearly that there was no 

substantial improvement between the time points. Only 7 out of 13 (approx. 50%) WT 

untreated rats improved their performance but overall there was no statistical difference 

between the two epochs (t12 =1.42, p =0.17, paired t-test; Fig. 6.3E). On the other hand, 

WT rats who received treatment showed a small but significant improvement (t11 =3.11, 

p =0.01, paired t-test;). Moreover, both untreated and treated Fmr1 KO did not show any 

improvement (KOcontrol: t11 =0.31, p =0.77; KOlova: t11 =1.10, p =0.29, paired t-test; Fig. 

4.3F).  

Object context developmental was not affected from lovastatin treatment either. Both 

genotype groups could perform significantly above chance from P35 onwards either they 

received control or lovastatin enriched diet (WT: time F(5,114.4) =3.50, p <0.01; treatment 

F(1,22.7) =0.22, p =0.65; treatment × time F(5,114.4) =0.48, p =0.79; Fig. 6.4A. Fmr1 KO: time 
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F(5,106.7) =2.25, p >0.05; treatment F(1,21.6) =1.83, p =0.19; treatment × time F(5,106.7) =0.51, 

p =0.77;  Fig. 6.4B). Exploration did not differ between groups either in sample (Supp. 

Fig. 3B) or test phase of testing (time F(5,220) =4.35, p <0.001; test group F(3,44) =0.50, p 

=0.68; test group × time F(15.220) =0.66, p =0.82; Fig. 6.4C). Collapsed data points in two 

epochs (P28-42 & P49-63) confirm that there are no differences between groups in 

response to the treatment (genotype F(1,45) =0.33, p =0.57; treatment F(1,45) =2.0, p =0.16; 

treatment × genotype F(1,45) =0.44, p =0.51; Fig. 6.4D). Analysis of individual subject 

novelty preference verify our previous observations that object-context memory 

develops normally before P42 and that lovastatin does not alter this trajectory (WTcontrol: 

t12 =3.54, p <0.01; WTlova: t11 =1.42, p =0.18; KOcontrol: t11 =0.53, p =0.61; KOlova: t11 =0.99, 

p =0.34, paired t-test; Fig. 6.4E&F).  

 

6.3.3 Lovastatin treatment corrects developmental delay in Object-Place 

associative memory 

Lovastatin treatment did not impede normal development of object-place memory in WT 

subjects (time F(5,111.7) =13.44, p <0.001; treatment F(1,21.8) =1.50, p =0.23; treatment × 

time F(5,111.7) =0.43, p =0.83; Fig. 6.5A). Previous data (Chapter 5) suggested that Fmr1 KO 

rats exhibit a developmental delay in the ontogeny of object-place associative memory. 

This study verified this delay; even though after correction for false discovery Fmr1 KO 

rats did not perform significantly above chance at any testing point during treatment, 

there is a strong trend on P64 (Table 6.2). Lovastatin treated KO subjects displayed a 

significantly improved developmental trajectory (time F(5,107.1) =6.08, p <0.001; 

treatment F(1,22.3) =8.38, p <0.01; treatment × time F(5,107.1) =1.05, p =0.40; Fig 6.5B). 

Exploratory activity was identical between all groups in both sample (Supp. Fig. 3C) and 

test phase (time F(5,220) =5.32, p <0.001; test group F(3,44) =0.21, p =0.89; test group × time 

F(15.220) =0.66, p =0.82; Fig. 6.5C). Collapsed data into pre-emergence and post-emergence 

epochs shows clearly that all groups except untreated Fmr1 KO rats improved 

significantly (genotype F(1,45) =8.99, p <0.01; treatment F(1,45) =9.0, p <0.01; treatment × 

genotype F(1,45) =2.70, p =0.11; time × treatment × genotype F(1,45) =3.13, p =0.08;Fig. 

6.5D). Moreover, performance of individual subjects confirms this robust improvement 

in object-place memory between the two epochs for WT and KO treated subjects. All WT 

on control diet (t12 =7.23, p <0.001) and 11 out of 12 WT treated animals (t11 =4.76, p 

<0.001; Fig. 6.5E) displayed improved performance between the two epochs. On the 

other hand, only Fmr1 KO rats treated with lovastatin improved their performance (t11 
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=3.49, p <0.01; Fig. 6.5F); even though 10 out of 12 Fmr1 KO on control diet improved 

their performance this chance was not robust enough to lead to significant difference 

between epochs (t11 =2.02, p =0.07 Fig. 6.5F).  

 

6.3.4 Lovastatin treatment prevents the emergence of cognitive deficits in Object-

Place-Context recognition 

The most striking cognitive deficit described in this thesis, is the inability of Fmr1 KO rats 

to form coherent episodic-like memories (Chapter 4).  This type of associative memory 

develops at P50 in WT rats (Chapter 5). Interestingly lovastatin treatment early in life, 

starting at a pre-symptomatic period can, not only, prevent the emergence of the deficit 

but also totally restore its developmental trajectory to WT levels (Fig. 6.6). Consistent 

with all 3 previously described tasks, WT rats are not affected by lovastatin treatment 

and show very similar developmental trajectory with the untreated group (time F(5,109.5) 

=4.33, p <0.01; treatment F(1,21.9) =1.13, p =0.30; treatment × time F(5,109.5) =0.85, p =0.52; 

Fig. 6.6A). More importantly, lovastatin treated Fmr1 KO rats display normal 

development, while untreated subjects can never perform significantly above chance 

levels (time F(5,106.7) =3.12, p <0.05; treatment F(1,21.9) =9.32, p =0.06; treatment × time 

F(5,106.7) =3.06, p <0.05; Fig. 6.6B). The exploration levels are identical between groups in 

both sample (Supp. Fig. 3D) and test phase of the task (time F(5,220) =1.00, P =0.42; test 

group F(3,44) =0.70, P =0.56; test group × time F(15.220) =1.18, P =0.29; Fig. 6.6C). Collapsed 

data points into the pre-emergence and post-emergence epochs confirms the effects of 

lovastatin treatment (genotype F(1,45) =2.05, p =0.16; treatment F(1,45) =8.91, p <0.01; 

treatment × genotype F(1,45) =2.11, p =0.15; time × treatment × genotype F(1,45) =9.26, p 

<0.01; Fig. 6.6D). Analysis of the individual values further validates our findings. Almost 

every WT rat in both treatment groups improved their performance between the two 

epochs (WTcontrol: t12 =2.75, p <0.05; WTlova: t11 =2.83, p <0.05; Fig. 6.6E). On the other 

hand, only Fmr1 KO rats who received lovastatin treatment improved their performance 

(KOcontrol: t11 =0.52, p =0.61; KOlova: t11 =4.35, p <0.01, paired t-test; Fig. 6.6F).  
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Figure 6.2 Lovastatin has no effects on normal physical development of rats. Both WT (A) and Fmr1 
KO (B) rats have normal development during lovastatin treatment compared to untreated same genotype 
controls. Average daily food intake, based on cage consumption is similar between the two used diets (C). 
Normalising the daily food intake to rats’ weight reveals no difference between genotypes (D). 
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Figure 6.3 Fmr1 KO and WT rats experience normal development of object recognition memory. WT 
(A) and Fmr1 KO (B) rats’ ability to discriminate novel from familiar objects is unaffected by lovastatin 
treatment. Exploration time between the groups was similar throughout the experiment (C). Averaging 
performances before and after the critical age for the ontogenetic emergence of object-place and episodic 
memory (P49, Chapter 3) reveals no differences between groups (D). Focussing on the individual subjects 
reveals no improvement for Fmr1 KO (F) and WT untreated rats but a small improvement for WT treated 
subjects (E). For (A), (B) and (D) * p<0.05 difference from chance (DI =0); significance values have been 
controlled for the false discovery rate using the Benjamini–Hochberg procedure. For (E) and (F) # p<0.05 
difference between groups. 
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Figure 6.4 Normal development of object recognition memory for Fmr1 KO and WT rats treated 
with lovastatin. WT (A) and Fmr1 KO (B) rats’ ability to discriminate novel from familiar objects is 
unaffected by lovastatin treatment. Consistently with our previous observations both Fmr1 KO and WT 
rats develop the ability to discriminate novel from familiar object-context associations on P35. Exploration 
time between the groups was similar throughout the experiment (C). Averaging performances before and 
after the critical age for the ontogenetic emergence of object-place and episodic memory (P49, Chapter 3) 
reveals no differences between groups (D). Focussing on the individual subjects reveals no improvement 
for Fmr1 KO (F) and WT treated rats but a small improvement for WT untreated subjects (E). For (A), (B) 
and (D) * p<0.05 difference from chance (DI =0); significance values have been controlled for the false 
discovery rate using the Benjamini–Hochberg procedure. For (E) and (F) # p<0.05 difference between 
groups. 
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Figure 6.5 Lovastatin restores normal developmental trajectory of object-place memory in Fmr1 
KO rats. WT rats which received lovastatin treatment experience identical cognitive development to 
untreated controls and begin to discriminate novel from familiar object-place associations on P50 (A). 
Fmr1 KO rats’ ability to discriminate novel from familiar object-place associations develops normally with 
lovastatin treatment early in life (B). Exploration time between the groups was similar throughout the 
experiment (C). Averaging performances before and after the critical age for the ontogenetic emergence of 
the task further confirms our observations (D). Focussing on the individual subjects reveals no 
improvement for Fmr1 KO untreated subjects (F) but a significant improvement for both WT groups and 
treated Fmr1 KO subjects (E). For (A), (B) and (D) * p<0.05 difference from chance (DI =0); significance 
values have been controlled for the false discovery rate using the Benjamini–Hochberg procedure. For (E) 
and (F) # p<0.05 difference between groups. 
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Figure 6.6 Lovastatin restores normal developmental trajectory of Object-Place-Context associative 
memory in Fmr1 KO rats. WT rats who received treatment experience identical cognitive development 
to untreated controls and start to discriminate novel from familiar object-place associations on P50 (A). 
Even though untreated Fmr1 KO rats perform at chance level throughout testing, lovastatin treatment early 
in life can lead to normal development of object-place-context associative memory (B). Exploration levels 
between the groups was similar throughout the experiment (C). Averaging performances before and after 
the critical age for the ontogenetic emergence of the task confirms our previous observations (D). 
Focussing on the individual subjects reveals no improvement for Fmr1 KO untreated subjects (F) but a 
significant improvement for both WT groups and treated Fmr1 KO subjects (E). For (A), (B) and (D) * 
p<0.05 difference from chance (DI =0); significance values have been controlled for the false discovery rate 
using the Benjamini–Hochberg procedure. For (E) and (F) # p<0.05 difference between groups. 
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Figure 6.7 Performance in NOR and OC 5 weeks and 3 months after the end of treatment. All groups perform 
significantly better than chance levels in NOR (A) and OC (B). Exploration levels between the groups was similar 
for both NOR (C) and OC (D) in both testing points. For (A), (B) and (D) * p<0.05 difference from chance (DI =0); 
significance values have been controlled for the false discovery rate using the Benjamini–Hochberg procedure.  
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Figure 6.8 Lovastatin treatment early in life leads to long lasting cognitive improvements. Performance in OP 
5 weeks and 3 months after the end of treatment is similar for all experimental groups confirming the 
developmental delay rather than a deficit (A). Surprisingly Fmr1 KO rats treated with lovastatin display WT levels 
of performance in (B). Exploration levels between the groups was similar for both OP (C) and OPC (D) in both 
testing points. For (A), (B) and (D) * p<0.05 difference from chance (DI =0); significance values have been 
controlled for the false discovery rate using the Benjamini–Hochberg procedure.  
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6.3.5 Early lovastatin treatment has profound long lasting effects on 

cognition 

Perhaps the most interesting and at the same puzzling result in this study come when 

the same subjects which received lovastatin treatment for 5 weeks during adolescence, 

were tested approx. 5 weeks and more than 3 months after the end of the treatment (Fig. 

6.7 & Fig. 6.8). Performance in both NOR and OC was identical to the last testing point 

during treatment (NOR: genotype F(1,35.5) =1.05, p =0.31; treatment F(1,35.5) =0.27, p =0.61; 

treatment × genotype F(1,35.5) =0.51, p =0.48; Fig 6.7A. OC: genotype F(1,36.9) =1.15, p =0.29; 

treatment F(1,36.9) =0.01, p =0.92; treatment × genotype F(1,36.9) =0.16, p =0.69;  Fig 6.7B). 

As previously, we found no differences between groups in exploration during sample 

(Supp. Fig 3A&B) or test phase (NOR: time F(1,32) =6.91, p <0.05; group F(3,32) =0.23, p 

=0.88; time × group F(3,32) =0.64, p =0.60; Fig 6.7C. OC: time F(1,32) =1.22, p =0.29; group 

F(3,32) =1.99, p =0.14; time × group F(3,32) =0.13, p =0.94;  Fig 6.7D). Furthermore, Fmr1 KO 

displayed fully developed ability to discriminate novel from familiar object-place 

associations (genotype F(1,36.9) =4.52, p <0.05; treatment F(1,36.9) =1.17, p =0.29; treatment 

× genotype F(1,36.9) =0.05, p =0.83; Fig 6.8A), while exploration times stayed again 

unaffected (time F(1,32) =0.97, p =033; group F(3,32) =0.19, p =0.91; time × group F(3,32) 

=0.88, p =0.46; Fig 6.8C). OPC task revealed the most intriguing result; Fmr1 KO rats 

which received lovastatin early in life retained the profound effects of treatment for 

more than 3 months after the end of it (genotype F(1,39.2) =5.36, p <0.05; treatment F(1,39.2) 

=6.77, p <0.05; treatment × genotype F(1,39.2) =7.34, p <0.05; Fig 6.8B) without any effects 

on exploratory activity (time F(1,32) =0.13, p =073; group F(3,32) =1.58, p =0.21; time × 

group F(3,32) =0.75, p =0.53; Fig 6.8B).  
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Table 6.1 Development statistical overview for WT rats on control diet. * p<0.05 for Bonferroni correction for 
multiple comparisons; * indicates significance from chance levels of discrimination after controlling the false 
discovery rate using the Benjamini-Hochberg procedure (B&H) 
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Table 6.2 Development statistical overview for Fmr1 KO rats on control diet. * p<0.05 for Bonferroni correction 
for multiple comparisons; * indicates significance from chance levels of discrimination after controlling the false 
discovery rate using the Benjamini-Hochberg procedure (B&H) 
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Table 6.3 Development statistical overview for WT rats on lovastatin diet. * p<0.05 for Bonferroni correction 
for multiple comparisons; * indicates significance from chance levels of discrimination after controlling the false 
discovery rate using the Benjamini-Hochberg procedure (B&H) 
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Table 6.4 Development statistical overview for Fmr1 KO rats on lovastatin diet. * p<0.05 for Bonferroni 
correction for multiple comparisons; * indicates significance from chance levels of discrimination after 
controlling the false discovery rate using the Benjamini-Hochberg procedure (B&H) 
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6.4 Discussion 

This study builds upon observations described in the previous chapter about altered 

developmental trajectories of associative memory displayed by Fmr1 KO rats. The three 

issues addressed in this study were: (1) the effects of lovastatin in the normal 

development of WT rats; (2) the effectiveness of lovastatin treatment at early age in 

restoring normal development of cognitive abilities; and (3) the dependence of 

behavioural improvements on the continuous administration of treatment. The main 

findings of this early-onset lovastatin intervention in weanling rats can be summarized 

in the following points. Firstly, lovastatin appears to have minimum impact on rat 

growth; Fmr1 KO subjects which received the treatment seem to have slightly lower 

weight but they display the same growth curve, whereas WT animals, both treated and 

untreated, were identical in their physical development. This can easily be explained by 

the fact that lovastatin affects cholesterol metabolism. Translating the average daily drug 

intake (approx. 12mg/Kg for rats equals 2.4mg/kg for humans Fig. 6.2D) is very close to 

the suggested dosage by FDA for children and teenagers with hypocholesteraemia (40mg 

daily) (Çaku et al., 2014; Reagan-Shaw, Nihal, & Ahmad, 2008). This is very important 

because it simply means that the observed behavioural improvements are not due to 

unrealistic drug quantities that would reduce the translational value of these results. 

Moreover, this also explains the very limited adverse effects (slight weight change) and 

the absence of effects on normal development of cognition in wildtype rats. This is 

particularly important as it means that other physiological mechanisms are not 

significantly altered, making transition to clinical trials even smoother. Moreover, 

lovastatin treatment starting from the 4th week can prevent the emergence of cognitive 

deficits (seen from P49 onwards) and lead to normal cognitive development. This is the 

first study to my knowledge reporting not just reversal but the prevention of a cognitive 

deficit in a model of FXS. What is really important and adds validity to this results, is that 

recent unpublished work in the lab has shown that plasticity deficits in prefrontal cortex 

(an important area for the two affected types of associative memory, OP and OPC)(Chao 

et al., 2016) are also reversed as a result of the treatment (Supp. Fig. 4) (Adam Jackson 

personal communication). Finally, the most surprising results of this study came from 

testing the same experimental subjects 5 to 6 weeks and more than 3 months after the 

end of treatment. Even though the rats were fed normal diet for all this time, the 

therapeutic effects of lovastatin seen at the end of the treatment persist even 100 days 

after. This the first demonstration of such an exciting but also puzzling effect. Moreover, 
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unpublished work has revealed that basal levels of protein synthesis are reduced to 

wildtype level in animals treated with lovastatin (Supp. Fig. 4) (Susana Ribeiro dos 

Louros personal communication). Putting aside the unique experimental design and the 

suppressing persistence of therapeutic effects of this study, overall these results are 

consistent with previous studies showing that lovastatin can reverse phenotypes 

associated with FXS (Osterweil et al., 2013b), other disorders (Y. S. Lee et al., 2014; 

Weidong Li et al., 2005).  

 

6.4.1 How does lovastatin alleviate FXS symptomatology? 

Lovastatin, like other statins, inhibits HMG-CoA reductase, an enzyme that is part of 

mevalonate pathway (Fig. 6.1B) and acts several steps upstream of ERK-1 and ERK-2 

cascades. Therefore, any molecular changes introduced by lovastatin treatment inhibit 

ERK-1 and ERK-2 activity fairly indirectly. This mechanism of action for lovastatin is 

consistent with mGluR theory for FXS (Bear et al., 2004) as ERK-1 and ERK-2 signalling 

is activated by mGluR5 (Krab, Goorden, & Elgersma, 2008; Osterweil et al., 2010). 

Nevertheless, explaining the effects of lovastatin on behaviour and physiology, only 

based on fact that it can modulate ERK-1 and ERK-2 activity is limiting. While mGluR 

antagonists which are thought to target Fragile X syndrome-relevant translational 

mechanisms more directly, showed similar therapeutic effects to lovastatin when tested 

in mice (Michalon et al., 2012), clinical trials did not yield any promising results. This 

outcome does not conclusively answer the question of whether or not selective mGluR5 

antagonists can alter FXS symptomatology and definitely does not rule out the validity of 

the mGluR5 theory, however, these results do suggest that selective pharmacological 

decrease of mGlur5 signalling, alone, in humans with FXS is not sufficient in order to 

ameliorate behavioural abnormalities, when used as a short-term treatment in the ages 

studied. There is still a distinct lack of mechanistic supportive evidence to justify the use 

of statins in the prevention or treatment of pathophysiology associated with various 

neuropsychiatric disorders. While the precise molecular mechanism of lovastatin action 

is beyond the scope of this thesis, it is tempting to speculate about possible pleiotropic 

effects of lovastatin treatment contributing to its therapeutic function.  

There are several possible experiments which will elucidate further the mechanism of 

lovastatin action. An obvious line of investigation is cholesterol metabolism since 

cholesterol is vital to normal brain function including learning and memory (Schilling et 
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al., 2014; Schreurs, 2010). Cholesterol metabolism alterations have been documented in 

individuals with FXS (Elizabeth Berry-Kravis et al., 2015) and recently Pietropaolo and 

colleagues (2014) have reported that dietary supplementation with omega-3 fatty acids 

from weaning reversed a wide range of behavioural deficits associated with loss of FMRP 

in mice. Moreover, cholesterol metabolism has been shown to be affected in a different 

neurodevelopmental disorder, Rett syndrome (Nagy & Ackerman, 2013). Consistently 

with studies on FXS, both omega-3 fatty acids and lovastatin treatment improved 

cholesterol homeostasis but also partially alleviated motor impairments, and generally 

improved the life of mice modelling the disease (Buchovecky et al., 2013; De Felice et al., 

2012). A way to examine whether cholesterol homeostasis normalisation is even 

partially, related to lovastatin effects on pathophysiology associated with FXS, would be 

to use a similar statin which cannot cross the blood brain barrier (something that 

lovastatin can do). In that way any effects in symptomatology would be only due to other 

systemic effects of the drug. 

Another function or lovastatin which should be addressed in relation to FXS and other 

neurodevelopmental disorders is its effects on neuroinflammation. The role of immune 

system on brain function under healthy and diseased conditions is becoming to be a 

major line of investigation especially in the field of neurodevelopmental disorders 

(Derecki, Cronk, & Kipnis, 2013; Gupta et al., 2014; Malkki, 2016). Along these lines, 

offspring of perinatally infected mothers is a widely used model of autism (Knuesel et al., 

2014). In FXS, it has been shown that the mouse model of the syndrome displays some 

neuroinflammatory imbalances (IL-1β, CD45, CD11b), which can be rescued by omega-

3 fatty acids supplementation (Pietropaolo et al., 2014). Interestingly Gouveia and 

colleagues (2011) showed that lovastatin reduces expression of the mRNA of 

interleukin-1β, amongst other cytokines, in animals with status epilepticus; remember 

that one of the main behavioural deficits rescued by lovastatin treatment was increased 

susceptibility in audiogenic seizures (Osterweil et al., 2013b).  Moreover, statins have 

been shown to decreases inflammation by reducing the expression the cytokines IL-1β 

and TNF-α, in the kainic-induced animal model of epilepsy (Lee et al., 2008) and 

modulate immune T-cell function (Zhao et al., 2015). The connection between immune 

system and neurodevelopmental disorders is further validated by the finding of 

abnormally active neuroinflammatory processes in autistic individuals (Ashwood et al., 

2011; Vargas et al., 2005). Taken together, the above could suggest a possible additional 

route for lovastatin to have positive effects on the FXS symptomatology. Obviously 
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further work is needed in order to elucidate the relations between statins, core FXS 

pathophysiology and immune system. Focussing on the resident immune cell of CNS, 

microglia, could be a potential route, since there is already a defined connection between 

microglia function, synapse formation and function and neurodevelopment. (Schafer et 

al., 2012; Zhan et al., 2014).  A possible first experiment would be to explore translational 

changes in microglia during different age points, using Translating ribosome affinity 

purification (TRAP) (Heiman et al., 2014), and examine if lovastatin treatment early in 

life can have effects on possible translational abnormalities. 

Looking at the seminal work from Osterweil and colleagues (2013), certain results point 

to the hypothesis of additional (possibly systemic) ways lovastatin exerts its effects.  For 

example, while lovastatin had a dramatic effect on improving audiogenic seizure 

susceptibility, the effects on Ras-ERK-1/ERK-2 signalling were only moderate. Taking 

into account that farnesylation depletion affects not only Ras signalling (Sebti, 2005), it 

is fair to believe that downregulating ERK-1 and ERK-2 is just one of lovastatin’s (and 

other statins) mechanisms of action. In order to get a better idea on the importance of 

Ras farnesylation in FXS symptomatology, the farnesyl group could be supplemented 

during lovastatin treatment and examine whether or not the beneficial effects of 

lovastatin diminish. Another approach could be a more direct downregulation of Ras 

farnesylation, using bisphosphonates (Bergstrom et al., 2000). In that way we could 

bypass additional effects from mevalonate pathway products upstream Ras signalling 

(Fig. 6.1B). 

Focussing on our behavioural results, one might argue that the effects we’re seeing 

cannot be interpreted as direct effect of lovastatin. Repeated exposures to the testing 

environment, experimenter and the overall procedure could have easily served as 

environmental enrichment. Environmental enrichment, especially early in life, has been 

shown to alleviate some cellular and behavioural abnormalities in Fmr1 knockout mice 

(Lauterborn et al., 2015; Oddi et al., 2014), so it could be possible that an enhanced 

plasticity due lovastatin treatment was enough to amplify the effects of environmental 

enrichment. Even though there are no behavioural data to support or dispute this 

hypothesis, the preliminary electrophysiology results, showing rescue of plasticity 

deficits, came from animals which were only dosed in their home cage, without any 

additional manipulation. Of course the most direct way to examine the synergistic effects 

of lovastatin and environmental enrichment would be to use the same treatment 

duration but only test the subjects at the end of it. In line with this idea, an ongoing 
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clinical trial is testing the effects of lovastatin combined with behaviour intervention 

(ClinicalTrials.gov Identifier: NCT02642653). 

 

6.4.2 Are all statins alike?  

Over the recent years, statins have gain significant attention in relation to their effects 

against core pathophysiological mechanisms of a wide range of neuropsychiatric 

diseases (Ling & Tejada-Simon, 2016). Until this point, it is still questionable and poorly 

examined whether the preclinical and clinical outcomes documented, are a result of the 

statins’ cholesterol-dependent or cholesterol-independent effects. One has to keep in 

mind that even though statins seem to share a common mechanism of action and have 

similar potency, and safety profile, they are not the same (Pedersen & Gaw, 2001; Tobert, 

2003). Despite the similarities in the molecular structures of lovastatin and simvastatin, 

newer statins like fluvastatin and rosuvastatin are structurally diverse. The seemingly 

small structural differences can alter drastically the mechanism of action of a compound 

and, ultimately, its effect on physiology. This is particularly interesting as lovastatin, 

simvastatin and fluvastatin have been shown to inhibit Ras/ERK pathway (Osterweil et 

al., 2013b; Tsubaki et al., 2016) while rosuvastatin has been reported to enhance it (Z. 

Zhang et al., 2013). A difference between statins, highly related to their effects on the 

central nervous system (CNS) is concerning their relative lipophilicity and 

hydrophilicity. This parameter is important since lipophilicity is needed in order a 

compound to cross the blood brain barrier. Another important difference between 

statins is that even though all are predominantly metabolised by cytochrome P450, this 

is done by different isoforms of the enzyme (Pedersen & Gaw, 2001). This is particularly 

important when we consider early interventions, since during postnatal liver 

maturation, different P450 isoforms display different temporal patterns of expression 

(Cui, Renaud, & Klaassen, 2012; Ince et al., 2013). Therefore, it is important to improve 

our understanding as to the precise mechanism differences between statins. Until more 

comparative evidence is produced, clinicians and researchers should consider the effects 

on CNS for each statin individually, instead of assuming that other statins will have 

similar effects.  
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Figure 6.9 Paradigm shift in therapeutic intervention. After several failed clinical trials, both clinicians and basic 
researchers have suggested that the age of the participants requires further consideration. Animal models can 
be utilized to address biological questions on the pathological trajectory to full onset of symptomatology in 
neurodevelopmental disorders. 
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6.4.3 How can early intervention have such long lasting results?  

Whilst in some ways this study replicates previous studies examining the efficacy of 

lovastatin (Lee et al., 2014; Osterweil et al., 2013) or the augmented effects of early 

intervention (Dansie et al., 2013; Oddi et al., 2014; Sun et al., 2016), the most striking and 

novel result is that early pharmacological intervention can have very long lasting effects 

on cognition, on a genetic rat model of intellectual disability and autism.  This result 

besides impressive, is also quite puzzling. How can a relatively short pharmacological 

treatment, during a period of no observed major brain development milestones, lead to 

effects which persist for more than three months after the end of the treatment?  

A first obvious suggestion is that this period (P29-P64) does indeed include important 

cellular events which affect synaptic formation and function later in life. I mentioned 

earlier that almost all research on postnatal brain development has been focusing on the 

four first postnatal weeks. Following the results of this study, there is a need to focus on 

discovering brain development hallmarks in the following weeks (4th-7th). It is possible 

that FMRP loss has a profound effect during this critical period which subsequently 

contribute to cognitive deficits but its effects during adulthood alone are minimal. This 

hypothesis agrees with the spatiotemporal expression pattern of FMRP (Rhiannon M. 

Meredith et al., 2012) and previous studies showing that treatment early in life can lead 

to more dramatic and persisting effects than treatment during adulthood (Dansie et al., 

2013; Sun et al., 2016). Contrary to the latter hypothesis, a relatively recent study 

showed that ablation of FMRP in adulthood leads to decrease neurogenesis in the 

hippocampus and hippocampal dependent cognitive deficits (Guo et al., 2011). Repeating 

our study with the same duration of treatment but in adult animals, after the behavioural 

deficits in OPC have been established, is needed in order to reveal if: (1) established 

cognitive deficits can be reversed in adult Fmr1 KO rats, and (2) if the treatment has long 

lasting effects. 

In this absence of relevant physiological evidence that could explain the results of our 

study based on the more “mainstream” proposed mechanisms of action for lovastatin 

(Ras-ERK1/2 activity downregulation)(Krab, Goorden, et al., 2008), I think it is 

important to consider alternative ways by which lovastatin exerts its effects. A recent 

interesting study looked at the effects of early treatment with antioxidants in a rat model 

of schizophrenia (Cabungcal et al., 2014). What the authors showed is that when pre-

symptomatic juveniles and adolescent rats were treated with the antioxidant N-acetyl 
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cysteine, physiological and behavioural deficits’ onset was prevented. One of the 

pathophysiological features of this model is altered prefrontal function, including 

inhibitory interneurons during adolescence and augmented oxidative stress especially 

affecting parvalbumin (PV)-positive interneurons in prefrontal cortex.  

Could these data be relevant to FXS? Research in Fmr1 KO mice has revealed major 

defects in cortical inhibitory circuits (Selby, Zhang, & Sun, 2007). Moreover, a few studies 

in Fmr1 knockout mice have demonstrated that FMRP loss leads to an augmentation in 

oxidative stress and related markers in the brain that it is possible to contribute to the 

pathophysiology of the Fragile X syndrome (de Diego-Otero et al., 2009; El Bekay et al., 

2007).  In agreement with these findings, FMRP has been shown to positively regulate 

the expression of the mitochondrial and cytosolic Superoxide Dismutase (SOD) (Bechara 

et al., 2009). Thus FMRP loss could lead to an increase in mitochondrial oxidative stress 

and subsequent abnormalities in mitochondrial function. Interestingly, lovastatin and 

other statins have been found to possess anti-oxidative properties (Kumar, Srivastava, & 

Gomes, 2011; Lee et al., 2016). Taken together these studies may suggest an additional 

mechanism for lovastatin, explaining its long lasting effects. It is plausible that specific 

neuronal types which are part of key circuits for learning and memory (Lipina et al., 

2015) are highly susceptible to elevated oxidative stress (Liang et al., 2016), especially 

during early periods in life. Agents like lovastatin and other antioxidants, which can 

reduce oxidative stress and subsequently protect these circuits from decay, will lead to 

long lasting or even permanent results. Of course testing this hypothesis is a relatively 

straightforward task; dosing with an antioxidant during the same time period should 

produce the same or similar results to ours. 

Besides pharmacological approaches, it is important to remember that intervention 

strategies might not be limited to pharmacological. For example, a different research 

group, using the same rat model of schizophrenia that was utilised for the antioxidant 

treatment rescue (Cabungcal et al., 2014), reported that cognitive training during 

adolescence is enough prevent the emergence of cognitive impairments normally seen 

in adulthood (Lee et al., 2012). In the case of FXS. Several studies have shown the 

beneficial effects of environmental enrichment (Lauterborn et al., 2015; Restivo et al., 

2005) but only recently Oddi and colleagues showed that early social enrichment can 

have long lasting results in physiology and behaviour which persist through adulthood 

(Oddi et al., 2014). This is yet another testament to the fact that combination of 
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pharmacological treatments and cognitive interventions holds a great promise in curing 

neurodevelopmental disorders. 

 

6.4.4 Paradigm shift in future clinical trials? 

The current optimism, shared amongst some researchers, that treatment for FXS during 

adulthood is possible, is not unreasonable; several preclinical studies in adult mice 

showed reversal of symptomatology (Henderson et al., 2012; Michalon et al., 2012; 

Osterweil et al., 2013b). Nevertheless, after several failed clinical trials, both clinicians 

and basic researchers have suggested that the age of the participants requires further 

consideration. Like all other neurodevelopmental disorders, the behavioural and 

cognitive characteristics of FXS, such as social communication deficits, intellectual 

disability, and cognitive inflexibility, manifest early in infancy and continue to unfold 

during life. Failed trials of pharmacological interventions in adults may echo therefore, 

the fact that the fully matured nervous system has irreversibly suffered the 

pathophysiological consequences of FMRP loss (exacerbated LTD and abnormal synaptic 

morphology and function).  Our results, support this paradigm shift in FXS clinical trials 

(Fig. 6.9). We showed that early pharmaceutical intervention during a pre-symptomatic 

period, can not only prevent the emergence of cognitive deficits associated with the loss 

of FMRP, but also have persistent benefits on cognitive function.  
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7. General discussion 

FXS is the most common monogenic cause of intellectual disability and autism spectrum 

disorder. The mouse model of the syndrome (Ce E Bakker et al., 1994) has been proven 

invaluable in FXS research so far, however the subtle and strain-specific behavioural 

phenotype and recent failures of clinical trials which failed to replicate the promising 

results of preclinical studies, have raised questions over its validity. The recent 

generation of a rat model of FXS paves the way for determining whether certain 

phenotypes are species specific or persist across mammalian species. In this thesis, we 

have demonstrated that this novel rat model is promising, recapitulating key 

pathophysiological features of the disease (Till et al., 2015), but further work is needed 

to utilise all the advantages of rats as model organism. We have identified a robust 

cognitive deficit, which persists across two background strains (Chapter 4) (Asiminas et 

al., 2015) and we further explored its developmental trajectory in a longitudinal study 

(Chapter 5) (Asiminas et al., 2014). The next step was to attempt to reverse that deficit 

using a known pharmaceutical agent (lovastatin) (Chapter 6) (Asiminas et al., 2016). 

Utilising knowledge gained from the longitudinal study we decided to begin treatment 

over a pre-symptomatic, for the observed deficit, period. Unexpectedly, treatment could 

not only prevent the emergence of the deficit, but also fully restore normal 

developmental trajectory in all other developmentally delayed but unimpaired in 

adulthood tasks. Furthermore, when the same animals were tested 3 months after the 

end of the treatment showed the same behavioural profile compared to the end of the 

treatment. Our results show that not only we can prevent the emergence of cognitive 

deficits associated with FXS but also that therapeutic interventions in potentially critical 

developmental windows can have long lasting or even permanent effects. 

Curing cognitive deficits associated with FXS or other intellectual disability syndromes 

is one of the holy grails in translational neuroscience. We believe that with the right 

medication during the appropriate developmental windows, which could enhance 

synaptic plasticity, in conjunction with the other types of educational and behavioural 

interventions, including relevant computer technologies, we will be able to achieve such 

a goal. This is a very exciting time in translational neuroscience not only for FXS but other 

conditions as well, due the extensive commonality amongst different types of 

neurodevelopmental disorders. 
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7.1 So you want to be a model (of FXS): what rats have to offer 

This thesis is amongst the first few to examine the validity of new genetically modified 

rat models of neurodevelopmental disorders. Along with recently published work 

(Berzhanskaya et al., 2016a; Berzhanskaya et al., 2016b; Engineer et al., 2014; Hamilton 

et al., 2014; Kenkel et al., 2016; Ruby, Falvey, & Kulesza, 2015; Till et al., 2015), we 

showed that rats have the potential to expand our knowledge of pathophysiology 

associated with FXS significantly but also validate phenotypes across mammalian 

species. Rat’s size, behavioural repertoire and physiology (Chapter 3) make it a very 

suitable model organism for FXS and other neurodevelopmental syndromes, but is it 

better than the mouse model? As is the case with any neurodevelopmental disease 

model, the Fmr1 KO rat should not be seen as faithfully reproducing the disease (there is 

no such thing as a rat with FXS). However, this and other neurodevelopmental disease 

models are extremely useful to testing specific hypotheses about developmental 

trajectories of molecular, electrophysiological and behavioural phenomena of relevance 

to the disease of interest. Perhaps the biggest promise of rat models is bridging the gap 

between pre-clinical and clinical research. Due to their physiology which is closer to 

human, rats have been used in the pharmaceutical industry for years, to predict how 

human patients will metabolise medication, and to identify and study potential side 

effects. The results of these studies are essential before Phase I trials, addressing 

tolerance, can begin in humans. Moreover, during the past decades, the standard 

approach in drug discovery research, included drug efficacy screening in genetically 

modified mice, models of disorders, and then safety and toxicity assessment in rats, 

mainly due to the large volume of historical safety data in the rat and the physiology 

similarities between rats and humans. This methodology has relied heavily on 

extrapolations of used mouse dosing to rat, and the assumption that this dose would have 

similar efficacy in the rat. The recently developed genetically modified rat models, can 

now address this problem, enabling researchers to conduct both drug efficacy and safety 

studies in the same species, increasing coherence between efficacy and toxicity studies 

and speeding up the process significantly. 

 

 



178 
 

7.2 Time after time: the value of studying developmental 

trajectories 

In Chapter 5 in this thesis I described a longitudinal study exploring the developmental 

trajectory of associative and non-associative object memory. Although these type of 

studies have been reported previously (Green & Stanton, 1989) very little is known 

about the emergence of behavioural phenotypes in rodent models of 

neurodevelopmental disorders. We showed that Fmr1 KO rats showed a developmental 

delay in a type of memory which is unaffected during adulthood (OP) and they were 

nether able to develop the ability to remember more complex episodic-like memories 

(OPC). To our knowledge, this was the first demonstration of a cognitive delay in a rodent 

model of FXS and the first identification of a pre-symptomatic period during which 

potential interventions could be introduced. On a more general note, our findings 

highlight the value of studying behavioural developmental trajectories especially 

through carefully designed longitudinal rather than cross-sectional studies.  

Longitudinal studies are fundamentally different from, cross-sectional studies, and have 

the power to answer important questions about cognitive development. While cross-

sectional studies compare data from different groups, longitudinal studies track the 

same subjects over time. They therefore control for two problems: the lack of 

comparability across different groups, and the inability to answer questions regarding 

continuity in individual development. Although longitudinal studies only evaluate one 

group over time, which means that any findings might simply reflect conditions relevant 

at the time of data collection, they are nevertheless considered far superior to cross-

sectional ones. But, they are also logistically more difficult to handle. Since longitudinal 

studies involve data collection from long periods of time, they can be really helpful in 

determining patterns. 

Focussing on neurodevelopmental disorders, longitudinal studies can serve as a useful 

tool to test possible developmental pathophysiological hypotheses, in particular to 

investigated mechanisms involved in delayed emergence of behavioural anomalies, 

driven by developmental dysregulation. Taking into account that the sequence of key 

milestones in brain development are generally quite consistent between humans and 

rodents (Semple et al., 2013; Sengupta, 2013), longitudinal studies in rodent models can 

help us investigating how and when developmental sequences are disrupted in animal 

models, predict symptoms based on developmental markers identifiable during a pre-
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symptomatic period, and help us identify critical periods suitable for intervention. What 

our data shows is that there is period during adolescence (P35-50) when neuronal 

networks supporting complex types of associative memory are still being refined. 

Despite indications that extensive synaptic changes take place during that period 

(Counotte et al., 2010),  the vast majority of literature looking at synaptic maturation has 

been focussing so far in the first four postnatal weeks. There is a need for more in depth 

behavioural and physiological longitudinal studies in order to elucidate changes during 

adolescence which precede later behavioural deficits.  

 

7.3 The early bird gets the worm 

“No one calls in question the fact that the experiences of the earliest years of our childhood 
leave ineradicable traces in the depths of the mind” 

Sigmund Freud 1899 

Our findings clearly demonstrate that early pharmaceutical intervention with lovastatin 

fully restores cognitive development in Fmr1 KO rats and leads to long lasting beneficial 

effects (Chapter 6). It is difficult to explain the mechanism by which a pharmacological 

(Dansie et al., 2013) or behavioural intervention (Oddi et al., 2014) leads to sustained 

effects, especially in the case of disorders with defined genetic aetiology, pre-existing any 

intervention such as FXS. It is possible that FMRP loss primarily has a profound effect 

during critical plasticity periods (Rhiannon M. Meredith et al., 2012), which precede 

cognitive deficits in adulthood. These developmentally coordinated changes in structural 

and plasticity phenotypes (Harlow et al., 2010; Till et al., 2012) and their consequences 

have not yet been fully investigated. However, it is possible that they illustrate the 

necessity of specific misregulated proteins, like FMRP, on specific neuronal circuits 

during development and maturation. Focussing on the spatiotemporal expression 

profiles of misregulated genes, important for neuronal function will expand our 

knowledge regarding which neuronal circuits and underlying behaviours are more 

susceptible to impairments in FXS and other neurodevelopmental disorders. An obvious 

consequence of the very existence of early time-windows, critical for phenotypic deficits 

is that they may constitute early periods of high susceptibility to therapeutic treatment. 

By comparing outcomes of treatment designs focussing on either young pre-

symptomatic periods and during adulthood in animal models, the potential translational 

advantages from such an approach can be evaluated.  
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Another critical point when discussing the application of treatment order to correct 

neurodevelopmental impairments, during identified critical periods is that the brain 

undergoes multiple critical plasticity periods, spread across different brain areas, each 

of which has a unique underlying mechanism. Even within the same region of the 

nervous system, the same developing neuronal network could go through a sequence of 

critical periods, supported or triggered by distinct neurotransmitter or ion channel-

dependent mechanisms. For instance, retinal circuits go through a series of simultaneous 

network activation from perinatal development onwards, which involve first gap 

junction coupling, followed by nicotinic cholinergic receptor signalling and lastly, 

glutamatergic neurotransmission to mediate activity during the later postnatal stages 

(Blankenship & Feller, 2010). Taking into account this complexity, the pathophysiology 

associated with a neurodevelopmental disorder could depend on abnormalities in the 

sequence of these critical periods or even synapse-specific impairments in a regional 

circuit. Intervention strategies will probably need a careful fine-tuning in order to 

correct abnormal molecular mechanisms and restore a balance in the affected networks.  

The extent to which late-stage pharmacological interventions could rescue the 

established deficits at specific neuroanatomical sites in FXS patients requires additional 

investigation. Although adult pharmacological interventions may be enough to reverse 

synaptic function, it seems unlikely that they will be enough to rewire abnormally 

formed circuits; this hypothesis could perhaps explain the limited efficacy of treatments 

over the relatively short duration of a clinical trial, seen so far. As a result, the FXS 

treatment field is moving toward pharmacological treatment trials with participants at 

the youngest possible age, in an effort to correct synaptic plasticity deficits early on in 

postnatal development; the hope is that normalizing circuit formation mechanisms will 

help improve behavioural impairments of FXS, on a long-term course. Future waves of 

treatment trials in FXS will likely deviate from previous studies, as researchers begin to 

use the information collected from earlier unsuccessful trials, in an attempt to eventually 

optimize study design specifically for FXS participants. For example, a case study of two 

young children with FXS showed that aggressive early combination treatment combined 

with intense educational intervention can lead to profound behavioural and cognitive 

improvement (Winarni et al., 2012). It’s obvious that, for medications designed to be 

used by infants and young children, tolerability/toxicity will be a critical factor in 

determining which are appropriate for intervention that early in life. One of the potential 
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medications discussed earlier, lovastatin, has already been approved by FDA for the 

treatment of hypercholesterolemia in children (Tobert, 2003).  

 

7.4 Changing direction in translational research 

The low predictive validity of current animal models of FXS, as seen by the recent failure 

of many clinical trials, is at least partially an effect of the current direction in translational 

research. Animal model validity is currently being judged largely based on the 

identification of behavioural output which could be considered analogous to the 

multifaceted human phenotype. What this thesis is proposing is that animal models 

should be defined based on affected circuit mechanisms instead. We saw that common 

cellular pathophysiology between mouse and rat models of FXS leads to distinct 

behavioural deficits in rats (Till et al., 2015). Whether or not these behavioural deficits 

are consistent with human symptomatology is somewhat irrelevant; as long a human 

genetic lesion associated with a disease, leads to defined impairments from a molecular 

all the way to a behavioural level that makes an animal model valid and valuable to test 

the efficacy of candidate therapeutics.   
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8. Supplementary figures 

 

 

 

 

 

 

 

Supplementary Figure 1. (B) 2W ANOVA: Day x genotype F(9,126) = 2.41, P = 0.01; genotype F(1,14) = 
2.62, P = 0.13; Day F(9,126) = 4.94, P < 0.0001 (C) 2W ANOVA: Block x genotype F(1.14) = 2.33, P = 0.15; 
genotype F(1,14) = 2.62, P = 0.13; Block F(1,14) = 31.6, P < 0.0001. Fmr1 KO (n = 8) WT (n = 8) Results are 
means ± s.e.m 
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Supplementary Figure 2. Sample phase exploration for NOR (A), OC (B), OP (C), OPC (D) throughout testing. 
No differences between genotype groups. Fluctuation between different time points could be attributed to 
rats’ different interest to objects used.   
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Supplementary Figure 3. Sample phase exploration for NOR (A), OC (B), OP (C), OPC (D) throughout testing. 
No differences between genotype or treatment groups. 
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Supplementary Figure 4. Lovastatin treatment reverses long term plasticity deficits in prefrontal cortex after 5 
weeks of treatment (A). 3 months after the end of treatment Fmr1 KO rats treated with lovastatin show 
corrected levels of basal protein synthesis in dorsal hippocampal slices from Fmr1 KO rats compared with WT 
littermate controls (B). 
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