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ABSTRACT 

Forest growth is important both economically and ecologically and it follows a 

predictable general trend with age. Generally, the growth of all forests accelerates as 

canopies develop in young forests and declines substantially soon after maximum 

leaf area is attained. The causes of this decline trend are multiple. Initially, age- and 

size-related decline was attributed to photosynthesis-respiration imbalance. 

Subsequently, several competing hypotheses have been proposed over the years 

although nutrient and hydraulic limitation hypotheses appear to be the most likely. 

However, age and size are normally coupled during growth. Therefore, an 

experimental manipulation has been adopted to separate the effects of size from 

those of age by using traditional grafting techniques. Genetically identical grafted 

seedlings were produced from scions taken from trees of four different age classes of 

two species, ranging from 4 to 162 years of age. The aim of this study is to 

investigate the effects of tree age and tree size on growth, physiology and water use 

of two broadleaf species by conducting three major experiments. Growth 

characteristics, such as relative growth rate and growth efficiency were measured, 

together with leaf-level gas exchanges and sap flow studies. Comparisons were 

established among results observed in the field with the ones obtained in the grafted 

seedlings. 

The results showed that relative growth rate and growth efficiency decreased 

substantially with increasing age of donor trees in the field. In contrast, these 

parameters seemed almost constant on grafted seedlings, i.e., scions taken from 

donors with different meristematic ages did not show the age-related trend after they 

were grafted onto the rootstocks. Similar patterns were also observed in net 

photosynthesis from leaf-level gas exchange and sap-flow-based parameters for both 

species. In general, these results suggested that size limitation to water and nutrient 

transport to the top of the canopy is a primary cause that triggered the decline in 

production of photosynthate and reduced growth of the trees, and/or increase in 

maintenance respiration with increasing in tree size rather than controlled by 

meristematic age. 
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CHAPTER 1 

INTRODUCTION 

1.1 	GENERAL BACKGROUND 

The importance of forests for moderating levels of atmospheric carbon 

dioxide and in the control of international political climate change processes have 

created a timely need for reliable and transparent estimates of carbon budgets of 

forests. Fixed carbon is the source of almost all energy for life and the foundation of 

food webs, thus influence most ecological processes. Net  ecosystem productivity, the 

net exchange of carbon between the ecosystem and the atmosphere, results from the 

balance between carbon uptake through photosynthesis and carbon release through 

respiration and decomposition. The rate at which carbon is sequestered or mobilized 

from forest ecosystems is of particular interest to forest researchers and managers in 

light of society's concern over increasing levels of greenhouse gases (particularly 

CO2) in the atmosphere. 

Forest management practices and activities were one of the main issues 

discussed during the recent convention on climate change in Kyoto, Japan (Rotter 

and Danish 2000). The Kyoto protocol, which was designed to mollify the current 

rise in atmospheric CO2, suggested managing forests to maximise carbon uptake and 

sequestration and that nations be responsible for quantifying their carbon 

sequestration. The potential for carbon sequestration in intensively managed forests 

is promising under a situation where higher ambient CO2  concentrations provide a 

carbon fertilization effect for growing trees through increased water use efficiency, 

decreased photorespiration during gas exchange and carbon fixation, and higher 

biomass accumulation over shorter rotation lengths (Groninger et al. 1999, Nilsen 

and Orcutt 1996). In intensively managed forest ecosystems, forest researchers and 

managers are currently studying the effects of varying silvicultural and harvesting 

practices on the carbon dynamics of sites differing with respect to vegetation type, 
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age and productivity. Increases in productivity can further enhance the role of forests 

as a potential carbon sink if a portion of that increased productivity can be 

incorporated into the soil organic carbon pool (Kirschbaum 2000). However, forests 

also have the potential to serve as a net source of carbon if they are deforested and 

lose soil organic carbon (Harmon et al. 1990, Rustad et al. 2000). 

Carbon assimilation through photosynthesis and subsequent carbon dynamics 

provides the mechanism by which the energy available from solar radiation is 

converted into substrates useable by all other forms life. Within forest ecosystems, 

changes in carbon assimilation can have drastic effects on ecosystem metabolism 

(Waring and Running 1998). Therefore, it is important to understand the constraints 

on carbon assimilation. Essentially, refining knowledge of the interactions between 

tree physiology and ecological mechanisms is important in defining management 

strategies of forest ecosystems. 

Numerous studies have highlighted factors that directly or indirectly control 

photosynthetic carbon gain (net primary production) associated with sapling growth 

or tree age. For example, a leaf-level impediment to photosynthetic carbon gain 

would be diminishing stomatal conductance with decreasing water potential (Conroy 

et al. 1986). Stand and leaf level mechanisms may interact to cause decreases in 

assimilation; thus, net primary production is the result of the interaction of extrinsic 

(environmental) and intrinsic (physiological) factors (Day et al. 2002). 

Environmental factors consist of all normal biotic, climatic and edaphic factors that 

influence tree growth. Each of these can interact with each other and concurrently 

they all can interact with genetic effects. Age- and size-related changes also cannot 

be examined separately from these effects. According to Day et al. (2002), age-

related changes in morphology and physiology are likely the result of complex 

interactions among 'extrinsic', 'intrinsic' and 'intrinsic-extrinsic' pathways, and 

these interactions may be further complicated by influence of 'stimulus-response' 

pathways controlled by environmental variables. In order to minimise the influence 

of both external and internal factors, a common-rootstock approach using scions 

from juvenile and reproductively mature donors has been proposed as suitable 

experimental method. Further explanations and the outcomes from such study will be 

discussed afterward. 
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1.2 JUSTIFICATION 

The production of biomass by both individual trees and forest stands 

decreases substantially with age (Assmann 1970). Age-related reductions in biomass 

accumulation is an important consideration in mechanistic models that predict forest 

growth and determine the capacity of forests to act as carbon sinks. With the current 

impetus towards silvicultural approaches that employ uneven-aged systems and 

extended rotations, understanding the physiological basis for age-related decline in 

productivity of dominant species has became increasingly important. Understanding 

this component of productivity is crucial to quantifying and manipulating carbon 

fluxes in forest ecosystems and their influence on global CO2  cycles. 

Despite many studies attempting to explain age-related decline of forest 

productivity through a number of theories, age-related regulation still remains 

unclear. There is little direct evidence that old forests assimilate less carbon than 

young forests. This makes model-based predictions of carbon sequestration suspect, 

as most physiological process models predict carbon assimilation based on 

measurements of photosynthesis on young trees (Ryan et al. 1997a). For example, 

Bond (2000) provided a list of studies exhibiting two contrasting results in the 

changes in net photosynthesis with age of trees and shrubs (Table 1.1). 

Table 1.1: 	Studies reporting a comparison of net photosynthesis in differently 
aged trees and shrubs. 

Decreased net photosynthesis (Anet) with increased ages of trees and shrubs 

Species 	 Comparison 	 Reference 

Chrysothamnus Maximum Anet  in 	summer. 	Juvenile 	versus Donovan and 
nauseosus mature. Ehieringer (1992)* 

Juniperus occidentalis Juvenile versus young mature. Miller et al. (1995)* 

Larrea tridentata Daily maximum Anet, three summer months. Franco at al. (1994)* 
Juvenile versus mature. 

Picea abies Light-saturated Anet, open-grown trees. Juvenile Kull and Koppel 
versus mature. (1987)* 

Picea rubens Seasonal 	A., 	Mature 	versus 	relatively 	old- Day et al. (200 1) 
growth. 
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Table 1.1 (continued) 

Pinus aristata 	 Light-saturated Anet, optimal conditions. Mature Schoettle (1994)* 
versus old-growth. 

Pinus contorta 	Light-saturated Anet. Mature versus old-growth. 	Yoder et al. (l994)* 

Pinus ponderosa 	Light-saturated A11 . Mature versus old-growth. 	Yoder et al. (1994)* 

Pinus ponderosa 	Mean morning Anet. Juvenile versus mature and Kolb and Stone 
old-growth. 	 (2000)* 

Prosopis glandulosa 	Daily maximum An,, after rainfall. Juvenile DeSoyza et al. (1996)* 
versus mature. 

Prunus serotina Growing season average 	Seedling versus Fredericksen et al. 
sapling versus mature. (1996)* 

Sequoiadendron Maximum Anet. Seedlings versus juvenile, mature Grulke and Miller 
giganteum and old-growth. (1994)* 

No difference or increased net photosynthesis with increased ages of trees and shrubs 

Species Comparison Reference 

Acer negundo Maximum An, during peak of drought period. Juvenile Donovan and 
versus mature. Ehieringer (1992)* 

Artemesia Maximum Ant, in mid-summer at a dry site. Juvenile Donovan and 
tridentata versus mature. Ehieringer (1992)* 

Chrysothamnus Maximum Anet, in mid-summer at a dry site. Juvenile Donovan and 
nauseosus versus adult. Ehieringer (1992)* 

Prosopis Daily maximum An,,. Summer drought. Small (0.5 m) DeSoyza et al. (1996)* 
glandulosa versus large (1.1 m). 

Pseudotsuga No clear trend of light-saturated Anet. Mature versus McDowell et al. (2002) 
menziesii old growth. 

Quercus rubra Light-saturated 	during growing season. Seedling Hanson et al. (1994)* 
versus mature. 

Note: * = cited from Bond (2000). 

The causes of this age-related decline are likely multiple, as discussed 

previously. But the most important potential causes that can explain a decline in 

forest productivity with stand development are nutrient limitation, hydraulic 

limitation and maturation (genetic programming) hypotheses. In this thesis, we focus 

on the last one. According to some authors, the so called "age-related" decline in 

forest productivity is primarily a "size-related" decline (Weiner and Thomas 2001). 
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Ideally, a test should be conducted on trees of similar size but different ages or vice 

versa, thereby separating the confounded factors of size and age. An alternative to 

obtain trees with similar size but different ages is to graft scions of different ages 

onto young rootstocks. 

Table 1.2: 	Summary of results showing contrasting trends involving grafted 
scions. 

Species Result Reference 

Hedera helix Increased light-saturated Anet  with increased ages of Bauer and Bauer 
scions. 	Juvenile 	versus 	mature 	scions 	grafted to (1980) 
juvenile rootstock. 

Larix laricina Height and diameter growth decreased with increased Greenwood et al. 
ages of scions. Juvenile versus mature scions grafted to (1989) 
juvenile rootstock. 

Larix laricina Total chlorophyll increased with increased ages of Greenwood et al. 
scions. 	Juvenile 	versus 	mature 	scions 	grafted 	to (1989) 
juvenile rootstock. 

Larix laricina Increased light-saturated Anet  with increased ages of Hutchison et al. (1990) 
(indoor-grown scions. 	Juvenile 	versus 	mature 	scions 	grafted 	to 
trees) juvenile rootstock. 

Larix laricina No trend observed in light-saturated Anet  with increased Hutchison et al. (1990) 
(outdoor-grown ages of scions. Juvenile versus mature scions grafted to 
trees) juvenile rootstock. 

Larix laricina Increased xylem diameters with increased ages of Takemoto and 
scions. 	Juvenile 	versus 	mature 	scions 	grafted 	to Greenwood (1993) 
juvenile rootstock. 

Picea rubens Decreased Anet  with increased ages of scions. Juvenile Rebbeck et al. (1993) 
versus mature scions grafted to juvenile rootstock. 

Picea rubens Decreased light-saturated Anet  with increased ages of Day et al. (200 1) 
scions. Mature versus old scions. 

Picea taeda 	Diameter and height growth, leaf area, branch numbers Greenwood (1984) 
and scion biomass decreased with increased scion ages. 
Juvenile versus young scions grafted to juvenile 
rootstock. 

Pinus radiata 	Diameter and height growth and branch numbers Sweet (1973) 
decreased with increased scion ages. Juvenile versus 
mature scions. 

Pseudotsuga 	Diameter and height growth, branch numbers and Ritchie and Keeley 
menziesii 	 branch length decreased with increased scion ages. (1994) 

Juvenile versus young scions grafted to juvenile 
rootstock. 
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Studies using grafting have been conducted by a few researchers (as 

summarised in Table 1.2) with regard to the effect of age on growth, morphology and 

physiology of grafted scions. However, these studies still showed contrasting 

outcomes with scion age. Despite the presence of these grafting studies, there are 

some weaknesses that have never been tackled by previous researchers. For instance, 

no study so far has compared simultaneously individuals in the field and genetically 

identical grafted seedlings. Recently, Day et al. (2001) have conducted a similar 

study, but the individuals selected in the field were not genetically identical with the 

grafted seedlings (although they came from the same population). Moreover, most of 

the published evidence on grafting has been obtained with very young trees. With 

regard to the studies presented in Table 1.2, for instance, Hutchison et al. (1990) 

used individuals taken from four age classes ranging from 1 to 45 years whereas 

Rebbeck et al. (1993) only used juvenile and mature (>50 years old) scions. In 

addition, Greenwood (1984) studied shoot development as a function of age on Picea 

taeda but the comparisons were only made among scions up to 12 years of age. 

Furthermore, Greenwood et al. (1989) also used grafting approach to study the effect 

of age on morphological characteristics and DNA methylation of Larix laricina, but 

the scions involved were taken from juvenile and mature trees ranging from 1 to 74 

years in age. Because our primary objective is to assess the relative roles of size and 

age in affecting growth reductions in older forests, we decided to expand the existing 

literature by enlarging the range of ages employed. 

1.3 	AIM OF STUDY 

The overall aim of this study is to add to our understanding of the age- and 

size related trends on tree growth at the individual level. In other words, how the age 

and size of trees affect the pattern of growth and how they change the morphological 

and physiological characteristics of tree species and what factors (i.e. genetic or/and 

environment control) exactly take place as trees grow taller and older. 



	

1.4 	GENERAL OBJECTIVES 

To compare age- and size-related effects on growth, physiology and water 

use of Acer pseudoplatanus L. (sycamore) and Fraxinus excelsior L. (ash) 

trees. 

To establish any correlation between age or size and selected morphological 

and physiological attributes. 

	

1.5 	GENERAL HYPOTHESES 

Age- and size-related declines in forest productivity have received significant 

attention from many researchers recently. From these, many hypotheses have been 

developed and some of them were used in our study. By doing grafting and air 

layering, we tried to go one step further and test whether maturation (related to age) 

and hydraulic limitation (related to size) hypotheses are applicable in our study. We 

hypothesised that age factors (maturation) will not have significant impacts on 

physiological attributes, but will mostly affect significantly morphological attributes 

of trees studied. On the other hand, physiological attributes will be affected by 

differences in size (hydraulic limitation hypothesis). To prove that, we compared the 

morphological and physiological characteristics of donor trees from different age 

classes in the field and their grafted scions grown in the glasshouse. We also tested 

specific hypotheses related to grafting technique whereby, a) There is no effect of 

graft union on plant hydraulic conductance despite initial disturbance on the xylem 

structure, and b) There is no complication introduced by the presence of two 

different genotypes (the rootstock and the scion). 
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1.6 	LITERATURE REVIEW 

1.6.1 Forest tree development and ageing 

Development and ageing including variation at the leaf level results from the 

interaction of genetic and environmental controls. It involves differential gene 

expression and activation together with the effects of biotic and abiotic factors. At 

the tree level, maturation and ageing are generally thought to be intimately braided. 

However, the process of maturation which strongly affects plant structure and 

function and initiates the diversion of resources from vegetative to reproductive 

growth is thought to be triggered by a shift in hormonal patterns possibly of 

endogenous genetic origin. In contrast, the age-related decline in net primary 

productivity (NPP) is generally assumed to be controlled by exogenous factors. A 

number of theories have been proposed suggesting nutrient or hydraulic limitations, 

increased respiration or shifts in biomass allocation as possible mechanisms 

(Magnani and Jarvis 2000). Decline in nutrient availability with stand development 

may result in increased allocation belowground or decreasing photosynthesis (Gower 

et al. 1996, Ryan et al. 1997a). In addition, the influence of genetically based 

maturational changes in tree meristems on age-related declines in productivity should 

not be neglected. Such changes could be purely maturational or mediated through 

physiological pathways related to tree size or external environmental cues (Day et al. 

2001). 

1.6.2 Age- and size-related regulation of net primary production 

Observations have showed that aboveground net primary productivity 

negatively correlates with tree age for both individual trees and single cohort stands 

(Assmann 1970, Whittaker 1975, Bormann and Likens 1979, Harcombe et al. 1990). 

Long-term studies on even-aged forests showed that maximum bole increment rate 

occurs shortly after crown closure and declines as trees reach maturity (Assmann 

1970). Yoder et al. (1994) suggested that age-related declines in photosynthetic rates 

for lodgepole and ponderosa pine may be a significant cause of net production 

decreases in old trees. This is supported by studies of age-related differences in 
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photosynthetic rates in Scots pine (Kull and Koppel 1987), bristlecone pines 

(Schoettle 1994), and hybrid Englemann x white x Sitka spruce (Richardson et al. 

2000). However, photosynthetic rates in eastern larch have been reported to be 

higher in grafts from older trees (Hutchison et al. 1990). 

Explanations for these age-related differences in photosynthetic rates are 

generally centred on multiple constraints on carbon assimilation. Among the 

potential constraints on carbon assimilation are genetic-down regulation of 

photosynthesis, reductions in whole-tree leaf area per unit biomass, nutrient based 

limitations on photosynthetic capacity and reductions in hydraulic conductance, 

together with changes in micrometeorological factors such as temperature, light and 

water availability. A few hypotheses have been developed based on aforementioned 

constraints such as the respiration hypothesis, the nutrient limitation hypothesis, the 

maturation hypothesis and the hydraulic limitation hypothesis. In the respiration 

hypothesis, for instance, the allometry of trees must be such to support the vertical 

mass and to resist the bending forces from wind, which increase rapidly with tree 

height. But these support systems require considerable investment in non-

photosynthetic tissues, which increase maintenance respiration. Meanwhile, in the 

nutrient limitation hypothesis, growth in older trees is limited by nutrient supply with 

nutrients being tied up in living plants and soil litter. Moreover, the hydraulic 

limitation hypothesis is based on the increase in tree height which may increase 

hydraulic constraints that limit gas exchange in older or taller trees. Another 

explanation may be due to ontogenetic changes (maturation hypothesis) that 

contribute to reduced growth in older trees. 

1.6.2.1 Respiration hypothesis 

Before the links between respiration and biosynthesis started to become clear 

in the 1950s, respiration was considered to be an imperfection in the mechanisms 

which convert substrates into structural dry matters (Lambers 1985). Since then, a 

rapid expansion of knowledge has taken place. Gradually it became of interest to 

establish the quantitative relationship between substrate use and processes such as 

growth and maintenance of plants and plant parts under different environmental 



conditions (Lambers 1985). The earliest attempt to measure the total respiration of a 

forest stand was reported by Jensen (1932). Yoda et al. (1965) estimated the total 

aboveground wood respiration of a tree by sorting all shoot parts into diameter 

classes and multiplying the biomass in each class with the average respiration rate for 

that class. 

For years, many scientists assumed that the most important constraint to large 

size is the maintenance cost required by living biomass in very large stems and roots 

systems (Bond 1998). This respiration consumes the photosynthate and thus leaves 

less for new growth in large trees. Hence, this hypothesis is based on the relative 

importance of various photosynthate sinks and the observed declines in the ratio of 

photosynthetic to non-photosynthetic tissues as trees and stands age. Over the years, 

researchers have expressed respiration rates on the basis of different measures of 

plant size. Rates expressed on a weight (Yoda et al. 1965, Walters et al. 1993) or 

volume (Tranquillini and Schütz 1970, Lavigne et al. 1996, Ryan et al. 1996) bases 

decline, while surface area based rates (Tranquillini and Schütz 1970, Lavigne et al. 

1996) increase with increasing diameter. 

Carbon may be allocated away from aboveground growth and toward 

respiration (Yoda et al. 1965), to defend against pathogens or insects, reproduction 

(Ryan et al. 1997b, Becker et al. 2000) or belowground growth (Grier et al. 1981, 

Gower et al. 1996, Magnani et al. 2000). However, tests of the respiration hypothesis 

in lodgepole pine (Ryan and Waring 1992) and eucalyptus (Ryan et al. 2003) have 

failed to support it. This hypothesis has also been weakly supported by modelling 

studies (Magnani etal. 2000, Mäkelä and Valentine 2001). 

1.6.2.2 Nutrient limitation hypothesis 

The nutrient limitation hypothesis has been supported by some previous 

studies and refuted by others (Ryan et al. 1997a). As forests age, nutrients may 

become scarce due to sequestration in biomass and necromass (Gower et al. 1996, 

Ryan et al. 1997b). Such scarcity may lead to reductions in nitrogen allocation to 

thylakoid membranes and enzymes, thereby reducing photosynthetic capacity. This is 
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because photosynthetic capacity is strongly correlated with leaf nitrogen content 

across a wide range of plant species (Field and Mooney 1986, Pearcy et al. 1987, 

Lambers et al. 1990). However, this relationship may be complicated by partitioning 

between various photosynthetic system and non-photosynthetic components (Evans 

1989), and the occurrence of nitrogenous osmoregulatory and storage substances 

(Sarjala et al. 1987; Margolis and Vezina 1988; Lavoie et al. 1992; Billow et al. 

1994). Reich and Schoettle (1988) suggested that photosynthetic response may be 

more strongly linked to the interaction of nitrogen and phosphorus content than to the 

former element alone. However, Ryan and Waring (1992), Yoder et al. (1994) and 

Mencuccini and Grace (1996b) found no significant age-related differences in total 

foliar nitrogen content for chronosequences of Pinus contorta, P. ponderosa and P. 

sylvestris. However, their analyses were limited to first year foliage. Numerous 

investigations have shown that foliar nitrogen content is inversely related to leaf age 

(Lehto and Grace 1994, Field 1983, Field and Mooney 1983, Matyssek 1986, Lang et 

al. 1987). In addition, lower nutrient availability may lead to increased allocation of 

photosynthetic products to root production especially in older stands and therefore to 

decreased allocation to aboveground structures (Ryan et al. 1997a). Grier et al. 

(1981) found that the allocation to fine roots was dramatically greater in an old rather 

than in an adjacent young Abies amabilis forest. Similar results have also been 

reported for a Pinus el!iottii stand where fine-root biomass was greater in a mature 

stand than in a younger stand (Gholz et al. 1982). 

Aboveground net primary productivity (ANPP) may decline during stand 

development due to decreasing availability of nutrients, particularly nitrogen. 

Generally, nitrogen mineralization and nitrification rates decrease during secondary 

succession of forests (Vitousek et al. 1989). The decline is strongly correlated with 

litter decomposition which, in turn, is controlled by environmental conditions 

together with chemical and physical characteristics of litter (Gower et al. 1996). 

Stand-age effects may contribute in two ways. First, the ratio of leaf to woody 

detritus input (with low and high C:N ratios, respectively) gradually decreases during 

stand development. Second, the accumulation of woody litter as stands age will slow 

decomposition due to its low surface area:volume ratio compared with fine litter 

(Landsberg and Gower 1997). The reductions in litter quality during stand 
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development increase nitrogen immobilization during litter decomposition, which in 

turn decreases net nitrogen mineralization as stand age (Davidson et al. 1992, Hart et 

al. 1994). 

1.6.2.3 Hydraulic limitation hypothesis 

The hydraulic limitation hypothesis proposes that leaf-specific hydraulic 

conductance (KL) declines as trees grow taller, resulting in decreased carbon 

assimilation ((Ryan and Yoder 1997, Bond and Ryan 2000). Yoder et al. (1994) and 

Ryan and Yoder (1997) proposed this hypothesis to explain the results of their study 

on ponderosa pine, which indicated that photosynthesis was limited in older trees 

relative to younger individuals by reductions in midday stomatal conductance (Ge). 

This hypothesis is based on older trees having lower hydraulic conductivity in the 

water path between roots and shoots due to longer or more complex hydraulic 

pathways. Due to this lower conductivity, stomata of older trees show greater 

sensitivity to evaporative demand and more tightly regulate transpiration to minimize 

the potential for xylem embolism (Ryan and Yoder 1997). The rate of xylem water 

flow is determined by Darcy's law (Tyree and Ewers 1991, Margolis et al. 1995), in 

which flow rate is directly proportional to cross-sectional area of the transmitting 

structure (sapwood xylem), its permeability, and the water potential gradient. As 

conductivity is equivalent to the combination of area and permeability terms, a 

decrease in this combined parameter will require an increase in water potential 

gradient to maintain constant flow. If xylem conductance is lower in older (larger) 

trees, a critical water potential for stomatal closure will be reached more rapidly than 

in younger (smaller) trees, as evaporative demand increases. 

Studies of tree hydraulic architecture provide evidence that potential xylem 

flux decreases with tree size. Darcy's law further states that flow is inversely related 

to pathway length. Thus, maintaining an equal flow to leaves at greater distance from 

a root absorption point, as in larger trees, requires either an increase in conductivity 

or water potential gradient. Leaf specific conductivity (LSC) is commonly used as a 

measure of the ability of a particular section of stem or branch to supply water to 

more distal leaves, and values for this parameter have been found to be relatively 
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constant along the length of tree stems (Tyree and Ewers 1991). However, Ewers and 

Zimmerman (1984a, b) have found leaf specific conductivity values to be much 

lower in branches, strongly influenced by branch diameter and order, and subject to 

significant restriction at branch-stem junctions. Although stem leaf specific 

conductivity values, if strictly height-determined, would not be expected to differ 

greatly between younger and older trees of the same height, the longer branches 

typical of older crowns may provide significantly reduced leaf specific conductivity 

values. 

McDowell et al. (2002) found that hydraulic conductance decreased by 44% 

as tree height increased from 15 to > 32 in, and showed a further decline of 6% with 

increasing height. Sensitivity analyses based on Darcy's Law to quantify the extent 

to which compensating mechanisms buffer hydraulic limitations to gas exchange 

indicated that without the observed increases in the soil-to-leaf water potential 

differential (AP) and decreases in the leaf area/sapwood area ratio, KL would have 

been reduced by more than 70% in the 60-rn trees compared with the 15-rn trees, 

instead of the observed decrease of 44%. However, compensation may have a cost, 

for example, the greater AT of the largest trees was associated with smaller tracheid 

diameters and increased sapwood cavitation, which may have a negative feedback on 

KL and G as well. 

Several studies indicate that larger trees are capable of altering their hydraulic 

architecture to compensate for the longer, more complex pathways between roots and 

foliage (Becker et al. 2000b, Bond and Ryan 2000, Mencuccini and Magnani 2000). 

These are summarized in a critique of the hydraulic limitation hypothesis by Becker 

et al. (2000b). Critics of the hydraulic limitation hypothesis have pointed out the 

various mechanisms by which plants compensate for hydraulic limitation, as 

evidence that the increased height and structural complexity of old trees are unlikely 

to constrain hydraulic conductance and hence assimilation. Although tapered xylem 

conduits may buffer hydraulic resistance from path length effects (West et al. 1999, 

Becker et al. 2000a), such buffering appears to be overdriven by hydraulic 

constraints in tall trees. Further, other buffering factors such as greater water storage 

in sapwood (Becker et al. 2000b) and increased xylem permeability to water flow 
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during tree ageing (Mencuccini and Magnani 2000) may compensate to some extent 

for long path lengths for water movements in tall trees. 

In addition, several attempts to provide direct evidence in support of the 

hydraulic limitation hypothesis by experimental manipulation have been 

unsuccessful. Hubbard et al. (1999) girdled young lodgepole pine trees to reduce leaf 

specific conductivity and removed foliage from older trees to increase it, but found 

that neither manipulation significantly changed stomatal conductance or 

photosynthetic rates. A similar study, in which foliage of old Douglas-fir was 

enclosed in plastic bags to reduce transpiration, and thus leaf specific conductivity, 

was also unsuccessful at increasing gas exchange rates of uncovered foliage on the 

same branches (Brooks et al. 2000). 

1.6.2.4 Maturation hypothesis 

Genetic regulation of photosynthesis has not been specifically proposed in the 

literature, nor are there data testing this hypothesis. However, dramatic changes in 

morphological and physiological attributes of foliage, including photosynthetic 

capacity, have been described for numerous species during their early development 

and have been attributed to different challenges to growth and survival at various 

life-stages (Greenwood 1984, Hackett 1985, Rebbeck et al. 1992, Greenwood and 

Hutchison 1993). Although little is known about age-related trends in foliar attributes 

beyond reproductive maturity or mid-age, there is some evidence that supports a 

concept of continuing change. Richardson et al. (2000) reported that changes in 

foliar morphology and gas exchange attributes continue past mid-age in hybrid 

Englemann x white x Sitka spruce. Similar trends in foliar attributes have been 

described for Norway spruce (Kull and Koppel 1987), and in needle morphology of 

Sitka spruce (Steele et al. 1989). However, none of these studies have directly 

addressed the potential for ontogenetic changes in meristematic tissue as a 

contributing mechanism to age-related declines in productivity, nor did they separate 

age from size experimentally. 
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The contribution of maturation-related changes in meristem behaviour to age-

related decline in forest productivity is still poorly understood. 'While changes in 

morphological and physiological attributes associated with transition from juvenile to 

reproductively-mature phases have been described for many woody species, few 

studies have examined maturational changes that occur after the onset of 

reproductive development (Greenwood 1989, Day et al. 2001 and Day et al. 2002). 

In any case, common rootstock studies, in which scions are donated by juvenile and 

mature trees, hint at the possibility that differences in morphological and 

physiological traits associated with those life-stages are inherent in meristems. Such 

studies have been carried out on loblolly pine (Greenwood 1984), eastern larch 

(Greenwood and Hutchison 1989), red spruce (Rebbeck et al. 1992, Day et al. 2001). 

A field study conducted by Day et al. (2001) on Picea rubens Sarg. 

demonstrated significant age-related trends in foliar morphology, including 

decreasing specific leaf area (SLA) and increasing needle width, projected needle 

area, and needle width-to-length ratio. Similar trends were also apparent in foliage 

from the grafted trees with different scion ages. Both in situ foliage and shoots 

resulting from grafted scions from the oldest cohort showed significantly lower 

photosynthetic rates than their counterparts from younger trees; however, differences 

in stomatal conductance and internal CO2  concentrations were not significant. They 

concluded that lower rates of photosynthesis contribute to age-related decline in the 

productivity of older red spruce and that decline in photosynthetic rates result from 

non-stomatal limitations. In addition, a study where scions from juvenile and mature 

red spruce were grafted onto common rootstock (Rebbeck et al. 1992) clearly 

showed that maturation-related changes in meristems of red spruce persist for at least 

two years after grafting. In their results, scions from mature trees exhibited lower 

stomatal conductance and net photosynthetic rates than those from juvenile donors. 

In addition, Emebiri et al. (1998) and Hutchison et al. (1990) have implicated 

a genetic basis for ontogenetic changes by identifying differential patterns of gene 

expression related to life-stages. However, pathways by which genetic changes in 

meristems and/or the foliage they produce affect photosynthetic rates have not been 

described. A possible pathway by which ontogenetic changes in meristems may 

affect photosynthetic rates is by producing tissue in older trees that has an inherently 
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lower growth rate. Shoots resulting from grafts of meristems from older trees have 

lower growth rates than scions from young trees. This has been shown for radiata 

pine (Sweet 1972), loblolly pine (Greenwood 1984), eastern larch (Greenwood et al. 

1989, Takemoto and Greenwood 1992) and red spruce (Rebbeck et al. 1992). 

Takemoto and Greenwood (1992) speculated that the older meristems may be weak 

sinks for resources compared to shoots arising from scions taken from younger trees. 

Weak sinks for carbohydrate, due to reduced growth, can result in feedback 

limitations to photosynthesis (Stitt 1990). Leverenz (1981) suggested that sink 

strength limitations may explain differential photosythetic capacity among branches 

in the crowns of mature Douglas-fir. 

1.6.3 Macropropagation approach 

1.6.3.1 The techniques 

Macropropagation is one of the vegetative propagation methods that has long 

been recognised and applied mostly in fruit trees and ornamental trees or shrubs. In 

forestry, this technique is used mainly in clonal propagation to solve problems 

related to genotype preservation. The common techniques used in macropropagation 

are grafting, rooting of cutting and layering. 

Grafting, in which rootstock and scion are joined to create a composite tree, 

provide a method of vegetative reproduction in which desired components of the 

scion are preserved. As the components of the scion are preserved, the memory of 

their donor trees is directly preserved as well, which may confer benefits that a 

seedling lacks, such as increased reproductive precocity, increased disease resistance 

and may reduce tree height (dwarfing) (Hartmann et al., 1997). This technique 

however has some disadvantages such as the involvement of different genotypes in 

order to produce a single plant or tree, scion and rootstock incompatibility that 

reduce the likelihood of grafting success or may alter the physiological condition of 

scion, and the fact that a tree or plant may be reinvigorated so that the reproductive 

precocity may be slowed down. 
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The simplest method of propagating a tree asexually in alternative to grafting 

is rooting of cuttings. A cutting (a piece of the parent plant) is cut and stuck into the 

soil or medium. Artificial rooting hormones are sometimes used to ensure success. If 

the cutting does not die of desiccation first, roots grow from the buried portion of the 

cutting which then becomes a complete plant. This technique can be used in mass 

production of desired trees or plants. However, this technique only works well for 

some plants and most trees are unsuitable to this method. 

A refinement on rooting is by layering. This is rooting a piece of a branch 

that is still attached to its parent and continues to receive nourishment from it. The 

branch is severed only after it has successfully grown roots. Like grafting, this 

technique may also increase the reproductive precocity by taking branches from the 

old donors. This technique carries a few advantages over grafting such as stem 

characteristics (xylem anatomy) can be maintained by propagating big and lengthy 

branches. In addition, the size of propagated plants can be determined in advance 

compared to grafting and rooting of cutting where instead the new stem (new xylem) 

usually develops from a tiny bud. This technique however does not work as well as 

rooting of cuttings on most trees. 

We used grafting in our study since it has the ability to successfully produce 

a reasonable amount of grafted seedlings for our selected species. In this study, we 

employed a side grafting method using different scion ages of two broadleaves 

species, i.e. Acer pseudoplatanus and Fraxinus excelsior. Since this technique 

involved two genotypes (rootstock and scion), we were aware of potential side 

effects. Hence, we also employed an air-layering technique to make sure we had 

enough information before making any conclusion on the relative roles of age and 

size for our trees. 

1.6.3.2 Grafting studies 

Grafting was known to Chinese and Greeks (Aristotle and Theophrastus) 

thousand years ago (Roberts 1949, Shen 1980). Renewed interest in grafting during 

Renaissance increased knowledge of grafting practices. By the 16th  century, grafting 
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techniques in Europe were performed with increased attention to cleanliness and 

proper mechanics of grafting, including matching layers of cambium to each other, 

resulting in greater success in the production of grafted plants (Hartmann et al. 

1997). Fundamentally, many contemporary grafting techniques are the same as those 

reported by Bailey (1891) in the latter 19th  century. This technique involves two 

genotypes of a same species one each from rootstock and scion. The rootstocks 

provide ready roots that can supply water and nutrients to the scions before and after 

the graft union heal. However, successful grafting is dependent on the compatibility 

of rootstock genotypes and scion genotypes. Incompatibility between rootstocks and 

scions is sometime the cause of the failure or deterioration of the graft union that 

possibly leads to tree death (Moore and Walker 1981). Incompatibility may not be 

expressed at the time the graft union is undergoing the initial healing, but 

deterioration of union connections can take years to occur (Hartmann et al. 1997). 

The relative importance of rootstock genotypes has been evaluated in 

various tree species via grafting studies (e.g. Rom and Carlson 1987, Jayawickrama 

et al. 1991). These classic studies, wherein different genotypes or species are grafted 

interchangeably, have sometimes revealed substantial influence of rootstock on 

growth performance of scions (c.f. Rom and Carlson 1987). In a comprehensive 

review of rootstock effects in grafting of conifers, Jayawickrama et al. (199 1) found 

that in most studies, there were no large effects of rootstock on scion growth and 

these tend to diminish over time (e.g., Sylvertsen et al. 1997). This generally holds 

for Pinus taeda L. (Jayawickrama et al. 1997), although in a few studies, 

substantial effects of rootstock upon growth were found (Schmidtling 1991). 

Variation in height among different rootstocks of P. taeda was positively correlated 

to foliar potassium concentrations, but not to other foliar nutrients (Schmidtling 

1991). 

In addition, Mohr and Schopfer (1995) stressed that grafting experiments 

are a classical approach for studying genetic effects of shoots and roots on plant 

growth. Although the objectives of most of the studies have been tied to a specific 

agronomic or horticultural interest, a few studies have been designed to test the 

fundamental aspect of root-shoot interactions. Many explanations are possible for 

the lack of root-shoot dependency, but one aspect may relate to the age and source 



of the grafted plant material. In this study, physiologically mature scions were 

grafted onto genetically similar and juvenile seedlings as rootstock. Thus, the 

variation among rootstock plants was less than that within each scion, and so the 

small effects of rootstock are not surprising. Hence, the traits are more closely 

related to the genotype of the scion (parent tree). As an example, in Knight's 

Observations (1795), the grafted trees of apple and pear were found to have 

inherited all the diseases of the parent trees although they had been re-grafted a 

few times. 

A specialized variation of the typical grafting method is that of reciprocal 

grafting of very young plants. Allen (1967) employed this technique to assess 

effects of species as rootstock in the three major southern pine species: loblolly, 

slash, and shortleaf. Although he included intraspecific grafts, the intraspecific 

genetic variation was unknown. No treatments were imposed, rather, height 

growth was assessed annually for five years. The study did reveal evidence that 

rootstock can affect scion growth, at least for grafts across species. 

In studies conducted on P. radiata L., P. taeda L., Larix laricina (Du Roi) 

K. Koch and Pseudotsuga menziesii (Mirb) Franco, growth of grafted scions 

decreased with increasing age of the donor ortet (Sweet 1973, Greenwood 1984, 

Greenwood et al. 1989, Hutchison et al. 1990, Ritchie and Keeley 1994). This 

reduction in growth was said to be associated with changes in foliar morphology 

and physiology. Hutchison et al. (1990) found that specific leaf area decreased in 

both species whereas chlorophyll content and net photosynthesis increased in L. 

laricina with increasing maturation. Moreover, in a study related to age and size 

effects on foliar morphology and physiology, Day et al. (2001) found that the age-

related trends were retained after three growing seasons in grafted seedlings of 

Picea rubens Sarg. In contrast, Vanderklein et al. (in press) and Mencuccini et al. 

(2005) found no age-related morphological and physiological trends in Pinus 

sylvestris L., Acer pseudoplatanus L., and Fraxinus excelsior L. grafted seedlings 

and a poplar hybrid (Populus balsamfera L. ssp. trichocarpa and P. deltoids Bartr. 

Ex Marsh) rooting of cuttings. 
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The conflicting results found in the studies above are puzzling and may 

suggest either: a) that the relative importance of age and size is species-specific; b) 

that there are confounding factors which are unaccounted for. For instance whether 

there is any hydraulic restriction in graft union that influence those results. There was 

evidence to suggest that the vigour of the rootstock onto which a scion was grafted 

influenced the scion hydraulic capacity. This occurred independently of conductance 

changing simply in relation to rootstock-induced changes in stem diameter or 

supported leaf area. Measurements of stem hydraulics across a combined series of 

resistances, from the rootstock shank, through the graft union, to the scion, showed 

that conductance was related to rootstock vigour (Atkinson et al. 2001). In addition, 

Nakano et al. (2004) found that compatible graft unions showed higher hydraulic 

conductance than incompatible grafted unions between peach cultivars and Prunus 

tomentosa Thunb. (Nanking cherry). However, this result was based on different 

species connection in grafting. Published reports showed considerable tissue 

disorganisation, particularly within the xylem. These results suggest that the graft 

union is a region of low hydraulic conductance, relative to the scion in particular, and 

this may influence the movement of substances in the xylem such as ions, water and 

plant growth regulating hormones. The experiments reported here describe 

measurements made with a high-pressure flow system designed to determine in situ 

hydraulic conductance of relatively large stem sections incorporating the graft union 

(diametric) of two-year-old trees (Atkinson et al., 2003). 

1.6.4 The study site 

The study site was located in Cramond, in the western part of Edinburgh 

(55°58'42"N, 3°16'09"W). The study was conducted in a community woodland 

comprising two dominant species, i.e., Acer pseudoplatanus L. (sycamore) and 

Fraxinus excelsior L. (ash) that belongs to Edinburgh City Council under the area of 

Cramond Village. 

Historically, the derivation of Cramond's name is Caer Amon, meaning a 

fortified place on the River Almond, reflecting the Roman occupation of the area. 

Cramond contains evidence of the first sites of human settlement in Lothian with 
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recent excavations producing finds such as flint tools, indicating a Middle Stone Age 

encampment from c.5000BC. It is also likely that there was settlement from the 

Bronze Age as revealed by the discovery of stone burial cists and plough marks. It is 

thought that the Romans took possession of Cramond in the early 140's AD and 

established an outpost fort associated with the defensive Antonine Wall located 

across Scotland. The Roman occupation of Cramond lasted only until 165 AD but it 

was reoccupied in 208AD as one of three forts in Scotland acting as a rearward depot 

and supply base for punitive campaigns further north. The Romans finally withdrew 

from Scotland by 215 AD (c.f, Edinburgh City Council 2005). 

Cramond is located in the River Almond Valley which, with its tributaries, is 

a major landscape feature of the west of Edinburgh. The Almond valley is generally 

a steep incised valley of sheer and exposed rock faces. To the west, the land rolls up 

to a local ridge that is reinforced by the woodland plantations on the Rosebery Estate, 

with its predominant land cover of arable ground and areas of improved pasture. The 

mixed woodlands, shelterbelts and mature parkland trees follow the localised 

ridgelines and break down the otherwise open and exposed coastal landscape. The 

woodlands extend down to and into the Almond Valley itself. This boundary is very 

rural and open, forming part of the wider Green Belt context that surrounds 

Edinburgh to the north. The ridgeline provides enclosure to the north-west end of the 

conservation area as it curves to meet the River Almond. East of the Valley, the land 

rises more gently to a ridge and a localised high point just to the north of Cramond 

Bridge. 

To the north, the Forth provides an open and natural boundary to the 

conservation area. Its nature changes between high and low tides ranging from high 

water to mud flats with geological exposures concentrated to the east and west of 

Cramond. It is possible to make out the rolling landscape and the mature trees 

associated with the Estate landscapes right along the coastline. The Cramond 

Conservation Area consists of clearly defined areas. Although these are physically 

and historically related, they have distinctive structural parts with varied and 

contrasting characteristic and spatial patterns. 
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Cramond Village includes the main village consisting of tightly knit 

vernacular cottages clustered around the harbour and also the Kirk Cramond area that 

contains the Roman remains, Cramond Tower and the planned development of 

Cramond House, Cramond Manse and the Old Schoolhouse. All of which are 

individual sites of historic, architectural and archaeological interest set in open 

landscape. A significant proportion of the conservation area is natural environment 

with the secluded and heavily wooded River Almond valley that contains the 

surviving relics of the mills. 

In the Cramond village, the land rises steeply from the river resulting in a 

terraced form of development. To the east of the village, this steep slope is covered 

in trees. There is evidence that this area supports remnants of original woodland 

planting, as there are a number of mature oak and pine trees enclosing Cramond 

Tower. The remainder of the area has been disturbed with car parks and 

archaeological excavation. As a result the area is subject to regeneration of trees such 

as A. pseudoplatanus and F. excelsior with a strong under storey of shrubs and 

ground flora (cf, Edinburgh City Council 2005). Most of A. pseudoplatanus trees in 

Cramond woodland were found in an area close to the coast at the bottom of the 

steep slope. Meanwhile, F. excelsior trees, especially the older ones, were found at 

the top of the steep slope. 

1.6.5 The study species 

1.6.5.1 Acer pseudoplatanus L. 

Acer pseudoplatanus, locally known as Sycamore belong to the Aceraceae 

family. In Britain A. pseudoplatanus is considered the invader, i.e., an aggressive 

naturally-regenerating non native species. Both ecological and historical evidence 

support the view that the species was introduced around the 15th  century. The native 

range of A. pseudoplatanus does not extend as far as the Channel, the North Sea or 

Atlantic coast, but its introduction and spread has been recorded throughout the 

coastal areas from Brittany to Norway (Harris 1987). This species remained rare 

around houses and in hedges throughout the 17 th  and 18th  Centuries when nursery 
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records show stocking and sale of young sycamores (Bleay 1987). However, it was 

not extensively planted until the late 18 1h  Century (Jones 1944). At that time 

sycamore was especially popular in amenity planting of some ancient parks and was 

planted with many other exotics for a classical effect (Mabey 1980) and it is said that 

this practice encouraged its spread (Pennington 1969). The first British records of 

this species originate from Scotland. In Scotland the first Gaelic name for sycamore 

('the Pliimtriinn') was first referred to in 1772 suggesting that the tree was not 

common enough prior to that date to warrant a name (Fergusson 1878). In 1842, a 

tree near Dunblane was described as 440 years old (Binggeli 1994). In the Lothian 

Region of Scotland, this species constitutes 18.4% of the total number of trees in 

residential areas, 15.3% in lowland rural and 5.5% in upland rural areas. It is the 

commonest species except in upland areas where soils are poorly drained (Good et 

al. 1978). 

This deciduous species can be grown up to 35 in in height with the life span 

between 400 to 600 years. The growth of the species at seedling stage can be 

enhanced by the ideal associations with mycorrhizae (Weber and Claus 2000). This 

species can thrive well in light (sandy), medium (loamy) and heavy (clay) soils, 

requires well-drained soil but can grow in heavy clay and nutritionally poor soils. 

The plant is found in acid, neutral and basic (alkaline) soils. Further, it has a 

capability to grow in semi-shade or under limited light condition. Because of this, it 

has been classified as a shade-tolerant species (Clapham et al. 1962). 

The leaves are divided into five lobes which are unevenly toothed (Brimble 

1946). The dark green five-lobed leaves turn a deep golden-yellow colour in autumn. 

Both the shape and size of the leaves vary with the age of the tree. This species is in 

flower from April to June, and the seeds ripen from September to October. The 

flowers are monoecious which refers to individual flowers that are either male or 

female, but both sexes can be found on the same tree. The flowers are pollinated by 

bees. The paired, winged fruits are known to children as 'helicopters' in England, 

because of their propeller-like path of descent. 

The bark is grey and fissured forming rectangular plates. Orange patches may 

be revealed as these plates are peeled away. The sapwood is white with a reddish 
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tinge and narrow whereas the heartwood is a uniform light reddish brown. The 

density of its wood is 520-680 kg m 3. Xylem vessels have essentially equal 

diameters and are uniformly distributed through a growth ring. This type of wood is 

called diffuse porous (Esau 1965). 

1.6.5.2 Fraxinus excelsior L. 

Fraxinus excelsior is a well-known tree species and sometime referred to as 

common ash. It is belong to the family of Oleaceae which has drawn as much interest 

as A. pseudoplatanus, and a large amount of information is available for the purpose 

of comparison. It has often been suggested that ash and sycamore are ecologically 

similar (Oakali 1966). As pointed out by Watt (1925), it is true that many general 

features such as the frequency of seed production, the age at which this occurs and 

the adaptations for dispersal are much the same. F. excelsior is distributed in Europe 

from northern Spain to Norway and eastwards to central Russia. It ranges from 

northern Turkey to the Caucuses and may also be found in north Africa. It is widely 

distributed throughout Ireland and Britain (Nelson et al., 1993 and Savill, 1991). 

McCracken (1971) reports that ash became established in Ireland after the major 

climatic fluctuations of the post-glacial age had given way to the type of climate 

which, with minor changes, has prevailed since about 500 BC. 

The ecology of F. excelsior has been reviewed by Wardle (1961) and Grime 

et al. (1988), and some aspects are very well documented including its light 

requirements (Gardner 1975), seedling and sapling ecology (van Miegroet and Lust 

1972, van Miegroet et al. 1981), and its silviculture (Thill 1970). The respective 

ranges of F. excelsior and A. pseudoplatanus are quite different. The centre of their 

distributions is in central Europe but F. excelsior occurs at higher latitudes and 

further to the north west and north east whereas A. pseudoplatanus occurs at higher 

altitudes in the Alps. In the British Isles according to Perring and Walters (1962) 

both species now have a similar distribution. 

This species is a broad-spreading deciduous tree which is capable of reaching 

30 m or more in height but most often seen growing at a moderate pace at 20 to 25 
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in. It can thrive in light (sandy), medium (loamy) and heavy (clay) soils whether 

acidic, neutral or alkaline soils (Bean 1981). But most members of this genus are 

gross feeders and require a rich soil (Bean 1981, Huxley 1992). Weber and Claus 

(2000) found that mycorrhizal associations have a strong impact on growth rates of 

F. excelsior saplings as opposed to A. pseudoplatanus. This species was said to be 

successful in very good soil conditions on a sheltered site, with the result that it is 

usually found in small patches. Plants can succeed in very exposed positions, 

including maritime exposure, though they can become wind-shaped. Unlike A. 

pseudoplatanus, this species is very intolerant of shade where young plants fail to 

develop properly in such a position and often die (Beckett and Beckett 1979). 

The leaves are dark green and are made up of a group of eleven small spear 

shaped leaflets or so called pinnately compound, each leaf being about 25 to 30 cm 

long. It is in leaf from May to October and starts to flower from April to May, and 

the seeds ripen from September to January. The flowers are dioecious but only one 

sex is to be found on any one tree. So both male and female plants must be grown if 

seed is required and are pollinated by wind. 

The wood type of F. excelsior is ring porous, which means that pore size 

varies with position in the growth ring, with unequal diameters and early wood pore 

ring occasionally loosely packed (Esau 1965). Latewood pores are solitary or in short 

radial multiples (mostly one to two pores), rarely in small groups. The density of its 

wood is about 690 kg m 3. 

1.7 	THESIS STRUCTURE 

Chapter 1 provides a general introduction on the age- and size-related decline 

of net primary productivity of the forest. It also provides justification and objectives 

of the study. It discusses the importance of study and the causes that contribute in 

reducing net primary productivity in details. The latter part of this Chapter consists 

of a selected review of the hypotheses followed by information regarding the 

techniques useful in separating age from size, the study site and a brief description of 

selected species. 
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Chapter 2 starts with the investigation of the changes in growth 

characteristics of both species from the youngest (- 4 years) to the oldest ( 162 

years) trees. Growth parameters such as relative growth rate and growth efficiency 

for both donor trees and grafted seedlings are measured. This chapter also provides 

allometric equations based on diameter and height functions established by previous 

British investigators to calculate aboveground biomass and leaf area in the field. 

Equations to calculate those parameters for grafted seedlings are also established 

through destructive measurements. 

Chapter 3 investigates the effects of age and size on gas exchange parameters 

and leaf chemical compositions on both the donor trees and the grafted seedlings. 

Parameters such as net photosynthesis, internal CO2  and stomatal conductance are 

investigated. Additional parameters investigated in the grafted seedlings included 

saturated maximum photosynthesis, apparent quantum efficiency, maximum 

carboxylation rate and maximum electron transport from A/Q and A/Ci curves 

response. Correlation analyses are also carried out on some parameters with specific 

leaf area reported in the previous chapter. 

Chapter 4 illustrates experiments regarding sap flow measurement on the 

donor trees in the field. Whole plant transpiration, canopy stomatal conductance and 

hydraulic conductance are derived from this measurement. Daily whole plant 

transpiration and stomatal conductance are also regressed against vapour pressure 

deficit obtained from nearby meteorological station. Age-related trends are 

investigated by the establishment of correlation analyses between these parameters 

and individual tree age. This chapter also investigates whole plant transpiration and 

hydraulic conductance on grafted seedlings through gravimetric methods. The 

appropriate values of stomatal conductance are calculated in grafted seedlings 

through the measurements of stomatal response with different level of vapour 

pressure deficit. The mean values of those parameters observed in grafted seedlings 

are statistically grouped. 

In Chapter 5, cumulative results from previous chapters are compared 

between controls and grafted seedlings. The hydraulic resistance of entire stem 
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sections and of scion sections are investigated using the High Pressure Flow Meter 

apparatus in grafted seedlings of both species. Comparisons are established between 

them in order to test hypothesis that there are no effect of grafted union on water 

flow in grafted seedlings. Additional parameters are also derived from these 

measurements such as hydraulic conductivity of stem and scion sections. 

Furthermore, air-layered plants are established as an alternative to grafting. With a 

single genotype involved in air-layered plants, genotypic complication that may exist 

in grafted seedlings are eradicated. Similar testing such as growth and gas exchange 

measurements are also carried out on air-layered plants. Due to the variation in terms 

of size in air-layered plants, correlation analyses are established. Last but not least, 

general conclusions on previous chapters are presented in Chapter 6. 
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CHAPTER 2 

AGE- AND SIZE-RELATED CHANGES IN MORPHOLOGY AND 
GROWTH OF ACER PSEUDOPLATANUS AND FRAXINUS EXCELSIOR 
SPECIES 

2.1 INTRODUCTION 

There is growing interest in understanding the costs and benefits of increased 

size and lifespan for plants. Some species of trees can grow more than 100 m in 

height and can live for several millennia, however whether these achievements are 

obtained at the cost of some other physiological functions is currently unclear. As 

increases in size are usually associated with ageing, it is also unclear whether 

observed reductions in growth rates and increased mortality rates are a function of 

size or of age per Se. One conjecture proposes that reduced growth after the 

beginning of the reproductive stage is caused by cellular senescence. A second set of 

theories has focused instead on plant size and the increased respiratory burdens or 

excessive height (c.f, Mencuccini et al. 2005). 

Genetically programmed slowing of tree growth has the potential to explain 

the decrease in height growth with age (Greenwood 1989, Greenwood and Hutchison 

1993, Day et al. 2001). In contrast, as the size of trees usually increases with tree 

age, the decreases in tree growth could be associated with the limitation in hydraulic 

transport. Bond (2000) stated that the total resistance of the hydraulic pathway 

increases as trees approach their maximum height owing to a combination of factors 

including gravity, a longer hydraulic path length through stems and branches, greater 

tortuosity of the hydraulic path and reduced allocation to roots (see also Chapter 1). 

Most of the findings discussed before did not separate the possible effect of age from 

height or size (Niinemets 2002). Hence, which factor, i.e., age or size, play the most 

important role in tree growth? To answer this question, one should be able to 

separate the effect of size from age. To do this, macropropagation techniques such as 

grafting have been identified in order to separate size of trees from their age. 



Studies of tree ageing that have compared scions from branches of mature 

and juvenile trees after grafting onto common rootstocks have shown that stem 

growth rate varied with tissue age independent of differences in tree height 

(Greenwood 1995). These studies suggested that some changes in morphological 

traits during tree maturation result from changes in phytohormones and gene 

expression. Furthermore, Day et al. (2001) also found significant age-related trends 

of red spruce (Picea rubens Sarg.) in foliar morphology and physiology of trees in 

the field and in grafted scions. They concluded that the expression of genes in 

meristems is altered as trees grow older or larger beyond reproductive maturity or 

mid-age and these gene expressions also persisted in meristems of grafted scions. 

However, some studies showed contrasting results. For instance, net photosynthesis 

of Hedera helix L. and Larix laricina K. Koch increased with increasing age of 

scions (Bauer and Bauer 1980, Hutchison et al. 1990). Details related to grafted 

scion studies have previously been presented in Chapter 1 and will not be discussed 

further in here. 

In this chapter, we studied the growth characteristics of selected A. 

pseudoplatanus and F. excelsior trees in the field, comprising different age or size 

classes. We also present results of experimental manipulations using scions taken 

from the same trees. The most useful growth characteristics to compare between 

them used in this study are the absolute growth rate (AGR), the relative growth rate 

(RGR) and the growth efficiency (EG). The total specific leaf area (SLA) and the 

ratio between total leaf area (AL) and total sapwood area (As) were also determined 

from allometric equations and increment cores. A comparison was carried out 

between the donor trees in the field and the grafted seedlings obtained from the same 

donors, but all now of the same size. We tested a set of hypotheses by decoupling 

'intrinsic' from 'extrinsic' factors for each of two tree species and by asking whether 

growth rates were a function of 'intrinsic' or 'extrinsic' factors per se (e.g. 

Mencuccini et al. 2005). 

39 



2.2 	MATERIALS AND METHODS 

2.2.1 Field Study 

2.2.1.1 Sampling 

A. pseudoplatanus and F. excelsior were selected in this study since they are 

the dominant species in Cramond woodland and are represented by various size and 

age groups growing at the same site. These species also represented two principal 

xylem anatomies, i.e. diffuse porous and ring porous, since water transport has been 

suggested as the main constraint to the growth and physiology of old/tall trees 

(Yoder et al. 1994, Mencuccini and Grace 1996b, Ryan et al. 1997). The trees 

selected varied from 3 to 162 and 3 to 132 years of age in both species respectively. 

At the beginning, four groups of diameter/age classes were formed. Ten trees were 

selected in the youngest class for both species, followed by five trees in the second, 

third and fourth diameter classes. 

2.2.1.2 Diameter, height growth and specific leaf area measurement (SLA) 

Diameters at breast height (DBI-I) were measured on all selected trees using 

diameter tape except the youngest ones where the diameters were taken at 10 cm 

above ground in both species. Current height of all the trees were measured using a 

Suunto clinometer (Suunto Oy, Vantaa, Finland) and a height stick depending on the 

height of the trees. The average height growth in the past five years was measured in 

each tree from the branches taken at the top of the tree. About five to six leaves were 

excised from the cut branches and were brought back to the laboratory. Leaf area 

measurements were then made using LI-3 100 leaf area meter (LI-CUR Inc, Lincoln, 

Nebraska, USA). The leaves were then dried in the oven at 60°C for 48 hours. Leaf 

weights were measured afterward using a balance and the specific leaf area (SLA) 

was calculated by dividing leaf area with leaf weight. 



2.2.1.3 Total leaf area, tree age and sapwood area 

Whole tree leaf area of A. psedoplatanus and F. excelsior in each individual 

tree was estimated from total leaf mass. Total leaf mass was calculated from 

equations based on estimated crown biomass and DBH as given in Broadmeadow 

and Matthews (2004). Total crown biomass was first calculated using a specific 

equation using DBH as independent variable, before calculating total leaf mass. Total 

leaf area in each individual tree was then obtained by multiplying total leaf mass 

with SLA (Table 2.1). The equations used are as given below: 

Crown biomass (DBH<7cm): 

Wcro  = 0.00005 122 * DBH2°67028 * 	to tal 
	 (2.1) 

Crown biomass (DBH>7cm): 

Wcrown  0.00729453 + 0.00003081 * DBH367047187 * HT 44028024total 	
(2.2) 

Total leaf mass: 

Wleaf = 0.06391085 _0.06391085*(0.17108421o) 	 (2.3) 

Total leaf area = Wleaf*SLA 
	

(2.4) 

An increment core was taken at breast height (1.3 m) from trees in each 

diameter class 2, 3 and 4 in the summer 2003. The growth rings were counted under 

magnifying glass with a fluorescent lamp. Annual rings may be difficult to 

distinguish in a sample core due to species-specific characteristics such as in 

diffusely porous species (A. pseudoplatanus). In this case, sample cores were stained 

with a solution of 1% phioroglucinol in 95% ethyl alcohol and a solution of 50% 

aqueous hydrochloric acid. For the youngest trees (age class 1), the age was 

estimated from bud scars along the stem. All the trees were then classed into four age 

groups (Table 2.1). 
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Meanwhile, another core was taken from the three older classes in each 

species to determine the sapwood area. For the youngest class, four trees in each 

species were cut in order to determine the sapwood area. The width of active 

sapwood was measured from the cores and stems visually. The sapwood of A. 

pseudoplatanus is white to light yellow, while the heartwood is light to dark brown. 

However, some of the cores showed little difference in colour between sapwood and 

heartwood, especially the cores from F. excelsior. In this case, the cores were stained 

with o-toluidine as described by Sham (1967). The sapwood area was estimated 

afterward. 

Table 2.1: 	Characteristics of A. pseudoplatanus and F. excelsior donor trees used 
in this study. Mean attributes for each age class in both species used in 
growth measurements. 

Class 	No. of 	Age at 1.3m 	DBH 	Height 	Estimated Leaf 
tree 	 Area 

(yr) 	(cm) 	(m) 	(m) 

A. pseudoplatanus 

1 10 5.2±0.47* 1.95±0.35 2.73±0.41 0.50±0.09 

2 5 27.0± 0.89 15.20±0.98 7.94± 0.32 68.30± 14.25 
3 5 65.4± 3.99 51.70± 3.28 16.26± 1.19 735.70± 89.93 

4 5 143.8 ± 6.23 88.20 ± 6.89 24.98 ± 0.58 806.93 ± 75.69 

F. excelsior 

1 10 4.6±0.41* 1.83±0.19 2.66±0.31 1.34±0.43 

2 5 27.2± 1.49 19.40± 1.58 12.48±0.91 97.11±27.25 

3 5 43.2 ± 3.15 33.70 ± 1.30 15.70 ± 1.36 301.15 ± 51.79 

4 5 114.2± 8.27 69.30± 3.34 22.88± 1.18 613.73 ±45.56 

Notes: The ±' represents mean standard error. The '*' indicated that ages were estimated from bud 
scars on stem surface. 

2.2.1.4 Tree aboveground biomass, absolute mass growth rate (AGRmas ), relative 
mass growth rate (RGRIIIaSS) and growth efficiency (EG) 

Tree aboveground biomass was estimated by summing the data obtained from 

the calculation of leaf mass using the equations derived by Broadmeadow and 

Matthews (2004) with branch and trunk mass equations valid for the United 

Kingdom obtained from Bunce (1968) for both species, as presented below: 

42 



Branch and trunk biomass: 

= —5.5 70499 + 2.529411 * LnDBH for Acer pseudoplatanus 	(2.5) 

LflWbrancheS+nk  = — 5.234459 + 2.480921 * LIIDBH for Fraxinus excelsior 	
(2.6) 

Total aboveground biomass: 

710ta1 = Wleaf + JVbranches+t,.iflk 
	 (2.7) 

The growth rate of a plant is generally defined as the increase over time in the 

total dry weight (biomass) of the plant. There are two ways to calculate growth rate 

whether by the absolute growth rate (AGR) or/and the relative growth rate (RGR). 

The AGR, representing the average actual rates at which substance is added during 

each period, is found by subtracting from each value that previously recorded and 

dividing with the length of the period as shown in the equation below: 

AGR= "  W11.12 - ' ' otalI 
	 (2.8) 

T2 —J 

where W is the plant mass and T is the time of measurement. This definition of 

growth rate is important because AGR describes the pattern of biomass accumulation 

through time in a forest and it is useful in describing the increase in plant size. This 

determines both the resource requirement and the impact on other plants especially in 

competition studies. Meanwhile, the RGR measure the rate of increase not only per 

unit of time but per unit of weight (mass) already attained. This definition describes 

the rate at which a given unit of biomass contributes to growth in an individual tree. 

The RGR is useful in describing the physiological basis for the rate of biomass 

increase because it can be broken down into several additional components of growth 

as shown below: 

RGR = LAR *NAR 
	

(2.9) 

where LAR is the leaf area ratio and NAR is the net assimilation rate. LAR is the 

amount of leaf area per total plant biomass (Au Wtotau).  It is the basis for root to shoot 

ratio acclimation to changing aboveground and belowground resources. The value of 
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LAR normally declines with increasing root to shoot ratio especially when a plant 

becomes bigger and it differs among growth forms. Moreover, LAR can be further 

partitioned into two components as shown below: 

LAR =LWR*SLA 
	

(2.10) 

where L 14'R is the leaf weight (mass) ratio and SLA is the specific leaf area. L WR is 

the amount of leaf biomass per total plant biomass whereas SLA is the amount of leaf 

area per leaf mass. By substituting LAR from equation 2.10 into equation 2.9, a more 

detailed definition of RGR is as follow: 

RGR =LWR*  SLA  *NAR 	 (2.11) 

From these expressions, it is clear that there is more than one way for a plant to grow 

rapidly but the most important determinant of RGR is SLA. By spreading leaf 

biomass over a large area, plants can absorb more light and increase photosynthesis. 

However, in competitive situations where a plant can get overtopped by a neighbour, 

having a high value of SLA is not too useful in the shaded condition. Low values of 

SLA might decrease the amount of light absorbed and carbon gain, and consequently 

reduce RGR. 

Both AGR and RGR are important traits in growth analysis. However, there 

are some limitations to growth analysis, mainly because these traits are variable over 

time, since plants produce more unproductive support tissue as they get larger, leaf-

level photosynthetic rates decline as leaves age and growth rate becomes resource-

limited possibly constrained by hydraulic architecture and cavitation as plants get 

bigger. In this case, since big trees grow more in an absolute sense than small trees, 

as to normalize growth for different tree sizes, one often computes the RGR rather 

than AGR. As defined above, RGR measures the rate of biomass increase per unit of 

time and weight already attained. Mathematically, the average value of the RGR for 

any period can be obtained from the natural logarithms of the successive weights, 

just as the actual rates of increase are from the weights themselves as shown below: 

RGR= 
Ln 1  total 2 - Ln W01011  

SS  

AT 

(2.12) 

(Evans 1972, Hunt 1978) 



Apart from AGR and RGR, the growth efficiency (EG) which is defined as the 

increase in biomass through time (AGR) divided by leaf area, was also computed. 

The EG is sometime referred as the NAR. The concept of tree EG, defined originally 

by Waring et al. (1980) as the volume (or biomass) of stemwood increment per unit 

of foliage, has seen increasing application in studies that attempt to understand and 

quantify the relationship between tree and stand growth, stand structure (e.g., Smith 

and Long 1989, Long and Smith 1990, Roberts and Long 1992, O'Hara 1996), and 

site resource availability (e.g., Binkley and Reid 1984, Kaufmann and Ryan 1986, 

Vose and Allen 1988, Velazquez-Martinez et al. 1992, McCrady and Jokela 1998). 

For conifers, the widespread development of allometric equations that predict tree 

leaf area (AL) from sapwood basal area (e.g., Long and Smith 1989, Gilmore et al. 

1996, O'Hara and Valappil 1995) or a modified live crown ratio (Valentine et al. 

1994) has facilitated the estimation of tree leaf areas, and thus EG, from simple non-

destructive procedures. 

In our study, AGRmass, RGRmass  and EG were estimated from aboveground 

biomass growth using measured annual diameter increments over the last five years 

(AT 	5) and allometric equations for branches and trunks as described above. 

2.2.2 Grafting Study 

2.2.2.1 Grafted seedling preparation 

Age-related trends in growth parameters were evaluated using a common-

rootstock approach in order to separate age from size. Scions originating as terminal 

branch shoots with relatively uniform sizes (6 - 8cm) from trees representing four 

diameter classes (Table 2.1) were collected from selected donor trees during the last 

two weeks of February 2003. Scions were collected with a hand pruner, pole pruner, 

and also by climbing the trees depending on tree height. After collection, scions were 

bagged and tagged, and were then brought to R & B nursery in Roslin, Edinburgh, 

U.K., where all the grafting works were done. These scions, consisting of a terminal 

bud with a short twig were side-grafted onto leader stems of similar diameter. 



Two hundred seedlings (rootstocks) for each species were used for grafting 

and 50 seedlings (25 self-grafted and 25 ungrafted) were used as controls. All the 

grafted seedlings and rootstocks were placed in five trays comprising 100 seedlings 

per tray due to space limitations. All the grafted seedlings were maintained in a well-

ventilated plastic roof greenhouse until danger of frost was past. Trees were 

transferred in 3-litre polyethylene bags, potted with sphagnum peat, sand and 

vermiculite mixed 2: 1: 1, and supplied with slow-release fertilizer. Potted trees were 

then placed in glass frames in School of GeoScience nursery, University of 

Edinburgh. A Randomised Complete Block Design (RCBD) was used. The 

arrangement of trees was based on the glass frame space (150cm X 624cm X 2 

frames) made after the age of donor trees was determined. Potentially competing 

leaders from rootstocks were pruned following bud break. All surviving grafted 

unions were counted in May 2003 after their leaves were fully expanded (Table 2.2). 

The grafted seedlings were then divided into two groups depending on the purposes 

of the study. In early 2004, all the grafted seedlings were transferred into 10-litre 

polyethylene bags. 

2.2.2.2 Diameter and height growth, leaf area (A1), specific leaf area (SLA) and 
leaf number (LN) 

Ten healthy grafted seedlings of each age class in both species were selected 

for the study. This included all seven surviving grafted seedlings in age class three of 

A. pseudoplatanus species. Measurements of the diameter were taken at about 10 cm 

above the graft union using a digital vernier calliper (Mitutoyo Ltd., UK) whereas 

height measurements were made using a meter ruler on all selected grafted seedlings. 

First measurement was made in June 2003 after the foliage was fully expanded. 

These measurements were then carried out on August 2003, June 2004 and August 

2004 to determine their growth rate. 

All the leaves were excised and counted at the end of each growing season. 

Total leaf area was determined using LI-3 100 leaf area meter (LI-CUR Inc, Lincoln, 

Nebraska, USA). These leaves were then left in a drying oven for four days at 58°C 
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and then weighed. Dry weights of the leaves were used to calculate the specific leaf 

area (SLA) of each selected grafted seedlings. 

Table 2.2: 	Number of grafted seedlings survived in both species. 

Age Class 	No. of tree 	No. of tree 	% Survival 
crafted 	survived 

A. pseudoplatanus 

1 50 25 50 
2 50 22 44 
3 50 7 14 
4 50 12 24 

Control (self-grafted) 25 21 42 
Total 225 87 38.7% 

F. excelsior 

1 50 40 80 
2 60 48 80 
3 40 30 75 
4 50 36 70 

Control (self-grafted) 25 25 100 
Total 225 179 79.6% 

2.2.2.3 Absolute mass growth rate (AGRmass), relative mass growth rate (RGRmaSS), 
growth efficiency (EG), total biomass (MT) and root to shoot ratio 

Three to five grafted seedlings (without leaves) in each age class were 

destructively harvested in October 2004. The stems and branches (if available) were 

dried in the oven at 70°C for about four days and weighted. Regressions were then 

established between stem and branch biomass of each tree and stem diameter using 

linear regression analysis and were then applied to the rest of the plants. A function 

based on stem diameter was used since the similar one had been applied to the donor 

trees. The equations derived from this analysis were applied to the rest of the grafted 

seedlings. Total aboveground biomass was calculated by summing the stem and 

branch biomass with the leaf biomass obtained. The equations used to estimate the 

stem and branch biomass for the rest of undestructed grafted seedlings are as follow: 
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Stem and branches biomass: 

A. pseudoplatanus 

LflWstem+branches  = 4.13956 + 1.00067*LnDiameter, n=5, R2 = 0.998 for Age Class 1 

LflWstem+branches  = 3.34276 + 2.45623*LnDiameter, n=5, R2  = 0.991 for Age Class 2 

LflWstem+branches  = 3.93661 + 0.07494*LnDiameter, n=3, R2 =0.997 for Age Class 3 

LflWstem+branches  = 2.87451 + 5.62113*LnDiameter, n=4, R2 = 0.998 for Age Class 4 

F. excelsior 

LflWstem+branches  = 3.71985 + 0.98988*LnDiameter, n=5, R2  = 0.999 for Age Class 1 

LflWstem+branches  = 3.72016 + 0.98867*LnDiameter, n=5, R2  = 0.998 for Age Class 2 

LflWstem+branches  = 3.64250 + 1.14150*LnDiameter, n=5, R2 = 0.905 for Age Class 3 

LflWstem+branches  = 3.69586 + 1.26225*LnDiameter, n=5, R2 = 0.913 for Age Class 4 

Total aboveground biomass for both species: 

Wtotal 	1eaf + 'r"stem+branches 	 (2.13) 

EG and RGRmass  of grafted seedling were calculated based on aboveground 

biomass obtained in 2003 and 2004 using the equations as presented before. 

Meanwhile, the total mass (MT) of graft seedlings was calculated by summing the 

total aboveground biomass with root mass of respective trees used in establishing 

those equations above. The root masses were measured directly after they were 

cleaned and oven dried at 70°C for four days, and root dry weight to shoot dry weight 

ratios were then calculated. 



2.2.3 Data analyses 

The data obtained were subjected to one-way analysis of variance (ANOVA) 

for the balanced data and general linear model (GLM) for the unbalanced data among 

age classes in both species. The statistical analysis system (SAS Institute Inc., 2002) 

was used for these analyses. Non-linear and linear regression analyses were carried 

out on some of the data and fitted using Sigma Plot 9.0 (Systat Software Inc., 2004). 

2.3 RESULTS 

2.3.1 Growth characteristics of the donor trees 

Analysis of variance (Table 2.3) indicated that all growth parameters 

measured from the donor trees were significantly different across age classes in both 

species. A highly significant difference (p<0.001) was found in specific leaf area 

(SLA) and relative mass growth rate (RGRmass) in both species, whereas leaf area to 

sapwood area ratio (A L:As) was found significant at p<0.05 and p<O.Ol in A. 

pseudoplatanus and F. excelsior, respectively. Highly significant differences at 

p<0.001 and p<O.Ol were also found in AGRmass  and growth efficiency (EG) for A. 

pseudoplatanus and F. excelsior. 

Comparing mean values against age classes, whole tree AL:AS  was found to 

vary among age classes, whereby mean values in age class one (AC 1) were 

comparatively higher than the other older age classes for both species (Figure 2.1). 

The mean value of ALAS in AC 1 for F. excelsior was found to be more than twice 

the value recorded in older classes. Age-related trends were clearly observed in this 

parameter for both species. When AL:AS values were regressed against height, 

negative linear correlations (p<0.00 1) were found in both species suggesting that 

AL:AS decreased with increasing height (Figure 2.2). 

Similar patterns were also recorded in SLA for both species. The mean values 

in AC1 for both species were almost double the values of nearest age class (Figure 

2.3). The mean values of SLA in age class two (AC2), three (AC3) and four (AC4) 

for A. pseudoplatanus were not much different compared with the mean values of the 
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same classes in F. excelsior and they were also not statistically different from each 

other for both species. 

Table 2.3: 	Summary of one-way analysis of variance on growth parameters of A. 
pseudoplatanus and F. excelsior donor trees. 

A. pseudoplatanus 	 F. excelsior 
Growth Parameters 

F value F value 

AL:As(m2cm2) 455* 8.64** 

SLA(m2 g') 8.96*** 8.71*** 

AGRmass  (kg yf 1 ) 20.13*** 8.18** 

RGRmass  (kg kg 1  yf') 52.19*** 104.27*** 

EG (kg m 2 yf) 46.16*** 7.84** 

Notes: *** 	Significantly different at p<0.001 
** 	Significantly different at p<O.Ol 
* 	Significantly different at p<0.05 

t.. 

+ 

A. pseudoplatanus 	 F. excelsior 

DAC1 B AC2 U AC3 

Figure 2.1: Mean values of ALAS of A. pseudoplatanus and F. excelsior across 
four age classes of donor trees. Different letters indicate significant 
differences between age classes within species studied. 
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Leaf area to sapwood area ratio (AL AS ) plotted against tree height for 
both species. The *** indicates p<0.001. 
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Figure 2.3: Mean values of SLA of A. pseudoplatanus and F. excelsior across four 
age classes of donor trees. Different letters indicate significant 
differences among age classes within species studied. 
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Total aboveground biomass growth was estimated as annual carbon 

accumulation from allometric equations as stated before and these values were used 

in calculating AGRmass, RGR SS  and EG. There was a substantial difference between 

mean values OfAGRmass  of AC1 with those observed in AC2, AC3 and AC4 for both 

species (Figure 2.4). Since AGRmass  is a size-dependent parameter, increased trends 

were observed with increasing size/age of the trees in both species. Hence, the 

RGR SS  was calculated to determine the growth rate without the effect of tree sizes 

as shown in Figure 2.5. RGRmaSS  showed the most pronounced decreasing trends with 

increasing age in both species, indicating that the relative growth rates in the 

youngest trees are much higher compared with older trees. Furthermore, we found 

that the average EG of the very young class in A. pseudoplatanus was more than 

twice than that of old-growth trees (Figure 2.6). In F. excelsior, mean value of E0  in 

AC1 was about 62%, 73% and 79% higher than that of AC2, AC3 and AC4 

respectively. Age-related decline trends were also observed in EG but with a minor 

notable inversion between classes 3 and 4 in A. pseudoplatanus. However, EG in F. 

excelsior showed a very clear age-related decline trend. 
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Figure 2.4 	Mean values of AGR 	mass  of A. pseudoplatanus and F. excelsior across 
four age classes of donor trees. Different letters indicate significant 
differences between age classes within species studied. 
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Figure 2.5: Mean values of RGRmass  of A. pseudoplatanus and F. excelsior across 
four age classes of donor trees. Different letters indicate significant 
differences between age classes within species studied. 
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Figure 2.6: Mean values of EG of A. pseudoplatanus and F. excelsior across four 
age classes of donor trees. Different letters indicate significant 
differences between age classes within species studied. 
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2.3.2 Growth characteristics of the grafted seedlings 

For our purposes, the grafted seedlings were categorized, at the genotypic 

level, into four classes of scion age to see whether the growth and morphological 

characteristics from their donor trees still remained. Rootstock seedlings and self-

grafted seedlings obtained from the same rootstock genotype were also used as 

controls. Table 2.4 showed the analysis of variance (ANOVA) for various growth 

and morphological traits measured in this study. The ANOVA results combine the 

effects of scion age as well as the differences with the controls on growth and 

morphological characteristics. Highly significant differences (p<0.001) were found 

for total diameter in both species, whereas total height was only found significant in 

F. excelsior after two growing seasons. The leaf area (AL) and specific leaf area 

(SLA) were found highly significant at p<0.001  in both species. The effects of scion 

ages and the controls on LN  and AGRmass  were found significant at p<O.Ol and 

p<0.001  in A. pseudoplatanus and F. excelsior respectively. In addition, these grafted 

seedlings were not significantly different among age classes and the controls in 

RGRmass  trait for A. pseudoplatanus but a highly significant difference (p<0.001)  was 

found in F. excelsior with regard to this trait. Similar results were also found for total 

biomass in both species. The growth efficiencies (EG) based on the actual records and 

allometric equations established were significantly affected by scion ages and the 

controls. However, this trait was found less significant at p<0.05 in A. 

pseudoplatanus compared with F. excelsior, for which the effect of scion ages and 

the controls was much higher. However, root to shoot ratio (Rt:St) did not differ 

among scion ages and the controls in both species. 

Since the AL, SLA, LN  and AGRmass  were highly affected by scion ages and the 

controls in both species, the mean values of these traits were found to be 

substantially different between the four age classes and the controls (Table 2.5). 

Furthermore, our results on SLA showed that the trend with scion age still persisted 

in grafted seedlings. However, the age-related trends in growth traits such as 

RGRISS, EG and total biomass (MTOt) tended to diminish or disappear in grafted 

seedlings, as shown in Table 2.5. Regardless of controls, the mean values ofRGR 

and EG were found higher in AC4 and AC3 for A. pseudoplatanus and F. excelsior 

respectively. The lowest mean values of EG were recorded in AC3 for A. 

54 



pseudoplatanus and AC  for F. excelsior, while the RGR mass  mean values were found 

lower in AC2 and AC4 for A. pseudoplatanus and F. excelsior respectively. 

Furthermore, no age-related trend was found in total biomass (MT) for both species. 

The mean values of MT0t  were found higher in rootstock seedlings and lower in AC3 

for both species. The Rt:St mean values were also found not significantly affected by 

scion ages and controls indicating that neither scion nor rootstock genotypes affect 

the shift in resource allocation to roots or to shoots. 

Table 2.4: 	Summary of analysis of variance on growth parameters of A. 
pseudoplatanus and F. excelsior grafted seedlings after two growing 
seasons. 

Growth Parameters A. pseudoplatanus F. excelsior 

Total diameter (cm) 6.52*** 19.92*** 
Total height (m) l .43m 8.48*** 
AL(m) 793*** 33.51*** 
SLA(m2g') 547*** 24.21*** 
LN 345** 11.44*** 
AGR 5  (kg yf) 394** 8.89*** 
RGR 5  (kg kg 1 yf 1) 1.67s 23.11*** 
EG  (kg m 2 yf) 2.47* 17.51*** 
MTQt  1.29s 7.26*** 
Rt:St(gg 1) 0.92 1.60' 

Notes: *** 	Significantly different at p<0.001 
** 	Significantly different at p<O.Ol 
* 	Significantly different at p<0.05 
ns 	Not significant 
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Table 2.5: 	Summary of growth characteristics of grafted seedling across age classes in both species after two growing seasons. 

Class 	Scion Age 	AL 	 SLA 	 LN 	 AGRmass 	RGRmass 	 EG 	 MTOt 	 Rt:St 

(yr) 	(m) 	(m2 g) 	 (kg yf) 	(kg kg"' yf') 	(kg m 2  yf) 	(g) 	(g g') 

A. pseudoplatanus 

1 5.4 ± 0.4 0.39 ± 0.042 B  178.85 ± 6.87 AB  39.30 ± 489BC 0.074 ± 0.006 B  0.943 ± 0.111 AB  0.205 ± 0.028 AB  169.34 ± 14-97 AB  0.447 ± 0030 A 
2 27.5 ± 0.5 0.38 ± 0.041 B  169.39 ± 467BC 38.10 ± 3.35 BC 0.045 ± 0.005 B 0.663 ± 0.088 B 0.124 ± 0.018 B 146.18 ± 11.78 AB 0.467 ± 0.031 A  
3 64.4±2.9 0370028B 147.03± 10.90 c4129347ABC 0.043 0007 B 0922±0201AB 0.1180018 B  113.53± 1•95B 0.5080027A 
4 143.4 ± 4.3 0.28 ± 0.023 B  139.65 ± 6A2C 31.80 ± 1.65 0.062 ± 0•007B 1.158 ± 0.145 A  0.215 ± 0.027 AB  135.18 ± 8•21AB 0.485 ± 0.038 A  

Self-grafted 3.0 0.49 ± 0.033 A  190.2 ± 14.40 AB  46.70 ± 3.74 AB  0.056 ± 0.003 B  0.809 ± 0.049 AB  0.116 ± 0.011 B  150.08 ± 11.46 AB  0.462 ± 0.019 A  
Rootstock 3.0 0.56 ± 0.043 k' 202.55 ± 1440A 50.90 ± 4. IOA 0.122 ± 0032A 0.938 ± 0.164 AB 0.235 ± 0066A 225.04 ± 68•36A 0.402 ± 0054A 

F. excelsior 

1 5.0 ± 0.4 0.48 ± 0.017C183.66 ± 982B 27.4 ± 2.l9 BC  0.056 ± 0002A 1.047 ± 0.068 B  0.119 ± 0.006°  135.68 ± 6.53 B  0.567 ± 0.055 AB 
2 25.2± 1.1 0.41 ±0.03i  i59.84±6.32  238±279BCD 0.054±0.002 1•1570039 iB 0 138 0009 BC 12624 ± 765BC 0590 ± 0068AB 
3 40.4 ± 0.9 0.24 ± 0•009D 140.15 ± 7.95 C  21.5 ± 2.23 CD  0.046 ± 0.001 C  1.190 ± 0•047A 0.193 ± 0•007A 110.30 ± 4.67 0.702 ± 0.081 A  
4 117.8 ± 5.7 0.28 ± 0.04 ID  145.07 ± 6.25 C  17.2 ± 1•50D 0.040 ± 0.003 D  0.911 ± 0.023 C  0.167 ± 0.022 AB  114.96 ± 9.43 BC  0.692 ± 0.063 A  

Self-grafted 3.0 0.56 ± 0.02 B  212.92 ± 4.65 A  32.9 ± 4.77 B  0.052 ± 0.002 0.895 ± 0.044 0.094 ± 0.004  DE 133.94 ± 6•01B 0.473 ± 0044 B 
Rootstock 3.0 0.66 ± 0.03 A  219.35 ± 5.22 A  48.5 ± 4.73 A  0.049 ± 0.002 BC  0.629 ± 0.021 D  0.075 ± 0.002 E  165.68 ± 8.55 A  0.576 ± 0.086 AB  

The '±' represents mean standard error. Different letters indicate significant differences between age classes within species. 



2.3.3 Relationships between growth characteristic and age in donor trees and 
grafted seedlings 

Regression analyses were carried out to compare some growth characteristics 

between donor trees and grafted seedlings. The regression analysis was found to be a 

strong tool to compare the data obtained in both donors and grafted scions, with 

regard to this age- and size-related study. The individual data taken for each tree in 

the field and grafted seedling was regressed against its individual tree and scion age. 

Three main parameters, i.e. SLA, RGRmass  and EG, were used in this analysis. Non-

linear regressions using power functions and linear regressions were used as 

necessary. 

The SLA characteristics were assessed in both growing seasons (2003 and 

2004) in the grafted seedlings for both species and compared with the ones obtained 

in the donor trees in 2004 (Figure 2.7). The SLA was found to significantly decline at 

p<O.00l with age in the donors. This trait was also declined at p<O.Ol with 

increasing scion age in the second growing season for A. pseudoplatanus, but no 

significant decline was observed in the first growing season for this species. 

However, F. excelsior grafted seedlings showed significantly decline with age in SLA 

for both growing seasons. 

Figure 2.8 showed the regression analyses between RGRmass  and age. The 

rates of decline in RGRmasS  with age for the donor trees were very similar in both 

species. Higher significant decline trends at p<0.001  were found in both species. 

Meanwhile, these trends did not persist in their grafted scions, as found for EG. The 

age-related trends in RGRmass  disappeared in grafted seedlings indicating that the 

scion genotypes did not influence the growth characteristics of grafted seedlings. 

For each species, E0  strongly declined with age for the donor trees sampled in 

the field, as shown in Figure 2.9. However, when EG was compared across scion ages 

in grafted seedlings, there was no age-related decline observed for either species. 
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Figure 2.7: Regression analyses between specific leaf area (SLA) and age of each 
individual donor tree and grafted scions. The bar indicates standard 
error, ns = not significant (p>0.05), *rp<0.05, **rp<o.ol and 
***=p<0.001. 
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Figure 2.8: Relationship between relative mass growth rate (RGR SS ) and age of 
each individual donor tree and grafted scions. The bar indicates 
standard error, ns = not significant and ***zzzrp<0.001. 
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Figure 2.9: Relationship between growth efficiency (EG) and age of each 
individual donor tree and grafted scions. The bar indicates standard 
error, ns = not significant and ***_-rp<O.00l .  
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2.4 DISCUSSION 

All growth parameters from donor trees except AGRmass  declined with tree 

age in both species. AGRmass  increased with increasing age of donor trees. This is not 

surprising because absolute mass in new growth is much larger in the big trees 

compared to the smaller trees, but relative to the size of the individuals, the small 

trees are growing much faster each year as shown by their relative growth rate. 

The trends of age-related decline of tree growth with age as shown by EG, 

were more pronounced in F. excelsior than in A. pseudoplatanus (Figure 2.6) but 

similar trends were visible when the regression analyses were done for both species 

(Figure 2.9).These results suggest that, for the two broadleaf species investigated, 

trees have visible growth declines with regard to growth efficiency after reaching 20 

years of age. In both species, the trees were growing very rapidly during younger 

stages (<7 years) and the growth rates began to decrease afterwards as shown in 

Figure 2.5. The growth rates were more likely to level-out when the trees reached 40 

year-old of age and over (Figure 2.8). Ryan and Waring (1992) observed a decrease 

in EG as well as in aboveground net primary production (ANPP) in old lodgepole 

pine, but their results were obtained on a conifer. Furthermore, Ryan et al. (1997) 

also observed a decline in individual tree growth with advancing age and this decline 

resulted from reduced efficiency. Furthermore, these results were also consistent 

with the ones obtained in Scots pine (Mencuccini and Grace 1996a). Parallel work 

conducted on Scots pine and a poplar clone (Populus deltoides x balsamfera ssp. 

Trichocarpa) showed also very similar patterns (Mencuccini et al. 2005). This 

confirms what has widely been discussed in various papers regarding the limitation 

of water and nutrient transport from roots to shoots caused by tree size. This factor 

has been stated as early as 1960s by Zimmerman (1975), which speculated that the 

distance between the apical shoots and the roots in large woody trees might be too 

great to allow efficient transport between them, which in turn causes a decline in 

growth with increasing size. 

Moreover, apart from those growth parameters, SLA also showed declining 

trends with increasing age in the donor trees for both species. Since the leaves from 

our sampled older trees were found to be larger than those of younger trees (data not 
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shown), these trends may be corresponding to the changes in leaf thickness rather 

than affected by leaf area. As different age is confounded with different size, it is 

well known that leaves in shaded areas receive less radiation compared to sun-

exposed leaves especially in uneven-aged stands. With this factor, smaller trees tend 

to have thinner leaves but be more efficient in harvesting light, which contributes to 

the higher growth rates compared to big trees which canopies are more exposed to 

the direct sun light. Moreover, the leaves from the tall trees are likely to experience 

water stress due to the limitation in water transport. Water stress-induced increases 

leaf dry weight to turgid weight ratio in a drought treatment of A. pseudoplatanus 

seedlings and consequently reduced SLA (Khalil and Grace 1992). In eastern larch 

(Larix laricina (Du Roi) K. Koch), the decrease in SLA with increasing maturation is 

associated with increases in the cross-sectional area of the leaf and the size of the 

vascular cylinder (Takemoto and Greenwood 1993). Furthermore, these results were 

similar to the ones obtained by Day et al. (2001) in red spruce (Picea rubens Sarg.). 

They reported that the age-related trends in SLA continued well beyond reproductive 

maturity, but concluded that foliar morphology was driven by intrinsic factor such as 

age when they found that the trends occurred in both trees in the field and grafted 

scions. 

Although the age-related trends in SLA did exist in our grafted seedlings, the 

growth characteristics did not follow the same trends. This is not surprising because 

morphological characteristics such as leaf shape and size may be retained in grafted 

seedlings, at least initially, that contribute to retaining the SLA trends as observed in 

this study. When scions from mature plants are grafted onto juvenile rootstock, they 

may retain most of their mature characteristics (Bond 2000). Although there are not 

many studies related to grafting on forest trees to support the argument that 

phenological characteristics are retained in grafted scions, alternative evidence can 

be obtained from agriculture- or horticulture-based tree species studies. For example, 

Knight (1975) found that scions taken from very young apple trees had not produced 

a single blossom compared to the ones taken from old trees. Furthermore, there were 

variations among age classes of grafted seedlings but none of the growth parameters 

showed clear age-related trends. The growth characteristics of our grafted seedlings 

likely corresponded to the ones obtained in Scots pine by Vanderklein et al. (2006). 

They found some significant differences among seedlings with different scion ages 
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but they did not find a consistent trend of increasing or decreasing growth with 

increasing age of parent tree. They suggested that growth variation found in grafted 

seedlings were due to grafting success since this variation was age independent. In 

our case, since the survival rates were reasonable and root pruning had also been 

applied on rootstocks after grafting, the factor that most likely contributed to the 

significant differences among grafted seedlings was probably seedling size. Since 

there were no initial size difference, the grafted scions from older trees may become 

reinvigorated after grafting onto young rootstocks. Takemoto and Greenwood (1993) 

found that when the mature scion of eastern larch no longer had to compete with 

juvenile rootstock shoots, its vigour tend to increase. 

In this chapter, the results showed that age-related trends of growth only 

occurred in donor trees but not in grafted seedlings, suggesting that the growth 

attributes are size-dependent rather than controlled by maturation (genetic) factor. 

Furthermore, SLA was found to decrease with increasing age in donor trees and 

grafted seedlings for both species about at a reduced rate. Similar results were 

obtained on two other species in a parallel study (Mencuccini et al. 2005). Overall, 

these results once again supported the fact that growth is reduced in aging trees but 

the underlying mechanism is still not well understood. Since this chapter mainly 

focused on growth characteristics in donor trees and grafted seedlings, further studies 

have to be done in order to provide a clearer picture in supporting this phenomenon. 

In the following chapters, we provide more evidence related to physiological 

characteristics as well as sap flow. 
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CHAPTER 3 

AGE- AND SIZE-RELATED CHANGES IN PHYSIOLOGICAL 
CHARACTERISTICS OF ACER PSEUDOPLATANUS AND FRAXINUS 
EXCELSIOR SPECIES 

3.1 INTRODUCTION 

Approximately 90% of a plant's dry weight originates from products fixed in 

photosynthesis (Poorter et al. 1990) and may reach 100% in tall trees. It is therefore 

not surprising, that photosynthesis has been the subject of many studies which sought 

to understand the basis of variation in tree growth. For many years, scientists have 

measured photosynthesis with various cuvette-based machines or concluded from 

leaf chemical composition such as nitrogen. Although photosynthesis is responsible 

for tree growth, causes of the decreased or increased growth rates are still not well 

understood. It is true that when photosynthesis is greatly impaired, growth declines. 

However, there appears to be a wide range of photosynthetic rates which do not 

appear to be related to growth. In fact there are situations where growth appears to 

control photosynthesis. For example, when the trees are getting older or taller, 

photosynthesis normally appears to decrease. But in certain cases the effect is 

reversed particularly in uneven age stands comparing between shaded and un-shaded 

trees. The causes for the decrease or increase in photosynthesis are likely multiple. 

Recently, many hypotheses have been proposed to explain this phenomenon as given 

in Chapter 1. Among those hypotheses, maturation and hydraulic limitation 

hypotheses are the most likely to explain this. 

Studies of tree ageing from grafting have shown that physiological traits such 

as net photosynthesis and stomatal conductance are reduced with tree age 

independent of differences in tree size (Rebbeck et al. 1993, Day et al. 2001). 

Furthermore, height and diameter growth together with branch numbers have found 

to decrease with increased age of scions in Douglas-fir (Ritchie and Keeley 1994), 

eastern larch (Greenwood et al. 1989) and radiata pine (Sweet 1973). Thus, these 

grafting studies demonstrate that maturation results in changes in the growth habits 
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of the apical meristem that persist even when the mature meristem is re-exposed to 

physiological conditions associated with a young plant, including input from a 

juvenile rootstock (Greenwood 1995). In contrast, net photosynthesis of Hedera helix 

(Bauer and Bauer 1980) and Larix laricina (Hutchison et al. 1990) have been found 

to increase with increases in scion ages. Therefore, for this case, the maturation 

hypothesis seems unlikely. With regard to age- and size related changes, some 

studies have shown that photosynthesis is reduced in tall or old trees because of the 

limitation of hydraulic transport. The age-related or size-related reductions in leaf-

specific hydraulic conductance has been suggested as a main mechanism that 

constraint stomatal conductance of tall trees and consequently reduces 

photosynthesis and subsequently primary productivity (Yoda et al. 1994, Ryan and 

Yoder 1997). Leaf-specific hydraulic conductance may decrease with tree size as a 

result of a larger path length from soil to stomata, causing a reduction in stomatal 

conductance and photosynthesis that directly affects tree growth. 

Considering the obvious difference in growth trends in Chapter 2, one would 

expect strong differences in carbon assimilation as well. Do these characteristics of 

carbon gain imply any differences in age or size? So, in the field, physiological 

characteristics and chemical composition at the leaf level were measured and 

compared to their grafted scion seedlings. The first aim is to link the reduction in tree 

growth when ageing with their physiological characteristics. 

3.2 	MATERIALS AND METHODS 

3.2.1 Field gas exchange, water potential, nitrogen content and 513C 

Field gas exchange was carried out in summer 2004. Four sampling dates 

were chosen (Julian dates 175, 176, 177 and 178) and about eight to ten trees from 

four age classes in both species were selected randomly in each day. The 

measurements were taken between 1030 and 1430 GMT with ambient irradiance 

ranging between 1100 Itmol photons m 2  s and 2800 pmo1 photons m 2  s (data 

from Edinburgh Gogarbank meteorological station) and ambient temperature was 

around 22°C to 26°C except Julian date 175 when the day was overcast. 



The measurements were carried out using LCpro Portable Photosynthesis 

System (ADC, Inc., Lincoln, UK). This open-type photosynthesis system was 

equipped with a standard 2.5 X 2.5 cm broadleaf cuvette. Prior to measurement, 

calibrations for flow meter and CO2  zero values were made. To avoid the effects of 

fluctuating environmental conditions, the cuvette irradiance was set at 1200 Amol 

photons m 2  s-1  (saturating irradiance) for both species based on trial measurements 

where photosynthesis saturates at >1000 tmol photons m 2  S-1  using external light 

unit with Red/Blue LED array. Cuvette Ca, temperature and relative humidity were 

set at 360 ppm CO2, 25°C and 40% respectively. Branches about two to four meters 

long were taken from the top third of the donor tree crowns using a climber and pole 

pruner. Four to six leaves were measured directly from the cut branches within three 

minutes after the branches were cut. Trials were conducted prior to taking actual 

measurements where excised branches have not showed deleterious effects on 

photosynthetic rates within five to eight minutes. Day et al. (2001) also conducted 

similar procedure on Picea rubens Sarg. where they found that preliminary 

measurements indicated that excision of branches did not affect photosynthetic rates 

for at least six to ten minutes. 

The measured leaves were then excised from the branch and placed in a 

black bag with wet tissues to avoid evaporation. These samples were brought back to 

the laboratory and the leaf water potential was taken using Portable Plants Moisture 

System (Skye Instruments Ltd, Powys. UK) with N2. Leaf area was measured on 

these samples using a LICOR 3100 leaf area meter (LI-CUR Inc, Lincoln, Nebraska, 

USA) and specific leaf area (SLA) was calculated after the leaves were oven dried at 

60°C for about 48 hours. 

The same samples were used to determine the leaf nitrogen content on a mass 

basis (Nm) and the 613C isotopes. These samples were first ground in the automatic 

freezer miller with liquid nitrogen and the ground samples were then placed in 

Eppendorf tubes before being sent to the Cornell University stable isotope 

laboratory, Ithaca, USA for analysis. Measurements of 613C  isotopes were done on 

a Finnigan MAT Delta Plus mass spectrometer that was interfaced to a Carlo Erba 

NC2500 elemental analyzer (EA). The '3C delta (613C) values were measured against 

the PDB scale, which is the international scale for measuring stable isotopes of 



carbon. Most organic plant samples have a negative value between -25 and -35 at 

natural abundance levels. 

3.2.2 Grafted seedling gas exchange, nitrogen content and 613C 

The gas exchange was compared between four age classes together with two 

controls, i.e. self-grafted and rootstock in the first and the second growing season. In 

both growing seasons, ten trees from each age class in two species were randomly 

selected for gas exchange measurements. This included all seven surviving trees in 

age class three (AC3) of A. pseudoplatanus. The main characteristics of grafted 

seedlings used in this study were presented in Table 3.1. The selected seedlings were 

then placed in a constant environment such as a glasshouse prior to gas exchange 

measurements. Two sampling dates, i.e., June and August were selected in both 

growing seasons on the basis of seasonal changes of foliar attributes. Because the 

number of trees is high, the measurements were conducted on different days for both 

species. The gas exchange measurements were made on fully expanded leaves from 

the uppermost part of each selected grafted scion and rootstock. The LCpro Portable 

Photosynthesis System (ADC, Inc., Lincoln, UK) was used and cuvette climate was 

set as described in the field gas exchange. Three sequential measurements were made 

within 1 to 4 minutes, and the average values were used for analyses. After sampling, 

the leaves used in gas exchange measurements were severed and leaf water potentials 

were measured. In addition, predawn water potential measurements were made on all 

selected seedlings between 0230 and 0530 hours. The leaf area was also measured on 

the leaves taken in both water potential measurements for further study. 

The leaves from six grafted seedlings in each age class taken in the first and 

the second growing season during gas exchange and water potential measurements 

were randomly selected from ten grafted seedlings in order to determine nitrogen 

content and 613  C. These leaves were oven dried at 60°C for about 48 hours before 

being weighed and ground in liquid nitrogen using freezer miller. The procedures for 

nitrogen and 5' 3C analyses were similar to the ones applied in donor tree leaves. 
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Table 3.1: 	Characteristics of Acer pseudoplatanus and Fraxinus excelsior grafted 
seedlings used in this study. Mean attributes are based on the sample 
size of n = 10 for each age class in both species (except in age class 3 
of A. pseudoplatanus where n = 7) over two growing seasons. 

Class Scion Age Diameter 
(cm) 

2003 
Height 	SLA 	Diameter 
(cm) 	(cm2 g) 	(cm) 

2004 
Height 	SLA 
(cm) 	(cm2 g) 

Acer pseudoplatanus 

1 5.4 + 0.4 0.94 ± 0.06 90.2 ± 9.6 108.3 ± 7.3 

2 27.5 ± 0.5 0.95 ± 0.06 102.0 + 8.7 107.0 ± 47 

3 64.4±2.9 0.81±0.07 66.1± 12.4 119.8± 15.0 

4 143.4±4.3 0.79+0.07 61.5±9.6 110.5±7.3 

Fraxinus excelsior 

1 5.0±0.4 1.03±0.07 65.9+7.6 148.5±4.2 

2 25.2 + 1.1 0.84 ± 0.04 29.6 + 2.3 126.1 + 3.2 

3 40.4 ± 0.9 0.75 + 0.03 26.6 + 3.3 123.5 + 3.8 

4 117.8±5.7 0.93±0.04 27.1+3.0 120.8+4.8 

The ± represents mean standard error. 

1.55 ± 0.05 175.9 + 12.3 178.9 + 6.9 

1.45 ± 0.05 162.2 ± 6.4 169.4 + 4.7 

1.38+ 0.07 140.6+ 8.8 147.0+ 10.9 

1.32±0.05 153.7+6.5 139.7+6.4 

1.49±0.07 148.3±8.6 183.7±9.8 

1.31 + 0.05 106.9 + 7.8 159.8 + 6.3 

1.19±0.04 98.4± 13.2 140.2±7.9 

1.18 ± 0.04 94.5 ± 10.5 145.1 ± 6.3 

3.2.3 Photosynthetic efficiency and capacity of grafted seedling 

An extended experiment was carried out on the grafted seedlings to determine 

the response of photosynthesis to different light regimes (efficiency) and CO2  

concentrations (capacity). Photosynthetic efficiency and capacity were assessed 

using different light intensities (A/Q curve) and response curves of photosynthesis to 

intercellular CO2  (A/Ci  curve). In A/Q response curve, cuvette Ca was kept at ambient 

level (360 /Lmol mol) and constant temperature under high and stable humidity 

conditions. Measurements were started from 530 Amol moi' and increased in three 

steps, i.e., 760, 950 and 1190 pmol mof' until complete light saturation was reached 

and then decreased in five steps, i.e., 330, 150, 100, 50 and 0 /Lmol moi'. Quantum 

efficiency and saturation photosynthesis were derived from these curves. The 

response of net photosynthesis (A) to light level (Q) can be modelled by a non-

rectangular hyperbola where the initial slope is Apparent Quantum Efficiency ((I), 

the light compensation point and apparent respiration are estimated from axis 
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intercepts and the light saturated maximum photosynthesis (Amax) is the upper 

asymptote. An additional parameter k (convexity) is required to describe the 

progressive rate of bending between the linear gradient and maximum value. All 

these parameters can be determined by fitting data to the model function expressed as 

a quadratic equation by Prioul and Chartier (1977) as below: 

(3.1) 

2k 	
Rday 

where Rday refers to the release of CO2  in the light by processes other than 

photorespiration (Brooks and Farquhar 1985). 

Meanwhile, the A/C1  response curve was determined by measuring 

photosynthesis rate (A) and intercellular CO2  (C1) at a series of ambient CO2  

concentrations (Ca). A protocol in determining this response (e.g Ainsworth et al. 

2002) was used in this study as follows: (1) Induce photosynthesis at the growth Ca 

until a steady-state A is obtained (2) Then Ca  is decreased first to 300 /Lmol moF1, A 

will drop and as soon as Ca is stable (3) A and C1  are recorded, and Ca is again 

dropped to 250, 200, 150, 100 and finally 50 tmol moi' (4) Ca is then returned to 

370 Itmol moi' (ambient) to check that the original A can be restored. If this 

achieved then Ca  is increased in the following order, 450, 550, 650, 800 and 1000 

mol mof'. Steady-state photosynthesis needs to be obtained at each step (Long and 

Bemacchi 2003). The maximum carboxylation rate (VCm)  and maximum electron 

transport rate (J,,)  were calculated from A/CI  curves using non-linear least squares 

regression to fit the values of these parameters to the best fit equation of von 

Caemmerer and Farquhar (1981) photosynthesis model (Harley et al. 1992). The 

A/C, response curve consists three phases. The first phase is the initial response 

below C1  concentrations of approximately 20 Pa where ribulose bisphosphate (RuBP) 

is saturated and Rubisco activity limits carboxylation. The second phase is the slower 

rise of the curve beyond its inflection point. The higher Ci  levels present within this 

phase result in the limiting factor being the supply of RuBP. This model can be used 

to provide estimations of the VCmax  and Jmax.  The calculation of these parameters 

according to the model uses equations as below: 
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A=l— 0•50.min(WWW)_R 	 (3.2) 

r.ci J 

where 0 is the concentration of oxygen in the stroma in unit Pascal (Pa) and r (Tau) 

represents the specificity factor for Rubisco (Jordan and Ogren 1984). When the rate 

of carboxylation is solely limited by the activity of Rubisco, carboxylation can be 

described by the equation: 

vcnux  ci 	 (3.3) w= 
[c+ K(1+ 0/K0 ] 

where K and K0  respectively are the Michaelis-Menten constants of Rubisco for CO2  

and 02.  The conditions of this limitation can be imposed by low C1  levels (<20 Pa) 

and high irradiance (>1500 mol m 2  s 1 ). When electron transport limits 

photosynthesis by the regeneration of RuBP, carboxylation rate can be expressed by 

the following equation: 

w = 	J.0 	 (3.4) 

' 4(C1 +O/) 

The factor 4 represents the fact that four electrons will generate sufficient ATP and 

NADPH to regenerate RUBP (Farquhar and von Caemmerer 1982). J, the potential 

rate of electron transport, is calculated using the empirical relationship (Harley et al. 

1992) as below: 

(3.5) 

where a is the efficiency of the light conversion and Jna,, is the light saturated rate of 

electron transport and I is the incident radiation. 

Photosyn Assistant Software package (Dundee Scientific, UK) was used for 

calculations and data interpretation using abovementioned equations for both A/Ci  

and A/Q curves. 
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3.2.4 Data analyses 

The data obtained from gas exchange of repeating measurements were 

summed and averaged for each individual tree prior to any data analysis. If 

necessary, data transformations (normalised) were applied to stabilise error variance. 

These data were then analysed using one-way analysis of variance (ANOVA) and 

general linear model (GLM) for balanced and unbalanced data among age classes in 

both species respectively. The mean values obtained were compared among age 

classes using Duncan Multiple Range Test (DMRT). All the statistical analyses were 

performed using Statistical Analysis System version 9.0 (SAS Institute Inc. 2002) 

and the significance level was set at 0.05. The linear regression analyses were also 

carried out on some of the data and plotted against tree age and leaf characteristics 

using Sigma Plot 9.0 (Systat Software Inc. 2004). The slopes of the regression 

equations were tested by analysis of covariance (ANCOVA) in SPSS version 12.0 

(SPSS Inc. 2003). 

3.3 RESULTS 

3.3.1 Leaf level gas exchange, leaf water potential, nitrogen content and 6 13 
of the donor trees 

Analysis of variance (ANOVA) showed variable effects of age class on 

physiological parameters such as net photosynthesis (Anet), internal CO2  (C1), 

stomatal conductance (Ga) or even leaf characteristics and chemical compositions 

such as leaf water potential, specific leaf area (SLA), nitrogen content (Nm) and 

carbon isotope discrimination (6130 in both species (Table 3.2). The Anet  was found 

significantly different among age classes at p<0.01 in A. pseudoplatanus and p<0.05 

in F. excelsior. A highly significant difference (p<O.Ol)  was found in C1  in A. 

pseudoplatanus but this parameter was not significantly different among age classes 

in F. excelsior. In contrast, G was not significantly different among age classes for 

either species. The differences in result obtained between Anet  and Gs  or even C1  in 

both species could be due to the differences in leaf characteristic such as leaf water 

potential (eaf)  and SLA. A highly significant difference at p<0.001 was found 
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in Vl af  and SLA among age classes in A. pseudoplatanus. In contrast, no significant 

difference was found in Tflaf  in F. excelsior but only SLA showed significant 

difference (p<0.01) in this species. Furthermore, the most promising parameters to 

show the differences among age classes in the donor trees were contained in the leaf 

chemical compositions such as nitrogen content (Nm) and carbon isotope 

discrimination (5'3C). There was no significant differences among age classes 

detected in Nn, in both species but 5' 3C was found significant at p<O.Ol in A. 

pseudoplatanus and at p<0.001 among age classes in F. excelsior respectively. 

Table 3.2 	Summary of ANOVA of leaf-level gas exchange, SLA and leaf 
chemical composition in A. pseudoplatanus and F. excelsior donors. 

Source of Variation 
AGE CLASS 

A. pseudoplatanus 	F. excelsior 

Parameters F value F value 
Net assimilation rate, Anet  (tmol g1 	1)  5.20** 2.57* 
Internal CO2, C, (mol mol') 5.67** 1.66s 
Stomatal conductance, G. (mmol m 2  s1)0.85 ns O.34' 
Leaf water potential, Pleaf(-MPa) 9.84*** 0.02s 
Specific leaf area (SLA) 8.96*** 8.71** 
Nitrogen content, N, (% mass) 0.99" 2.9 Ins 

Carbon isotope discrimination, ö'3c 779** 11.25*** 
Notes: 	*** 	Significantly different at P <0.001 

** 	Significantly different at P <0.01 
* 	Significantly different at P <0.05 
ns 	Not Significant 

The measured values of Anet  on the basis of leaf area ranged from 7.19 to 8.76 

and 6.48 to 9.51 tmo1 m 2  s in A. pseudoplatanus and F. excelsior, respectively, but 

no age-related trend was observed. Furthermore, the age-related trends were only 

found in both species in Anet  on the basis of leaf mass as shown in Figure 3.1 A. This 

trend was not observed in other gas exchange parameters such as C1  and Gs  in either 

species (Figures 3.1B and 3.1C). The Ci was also found higher in the youngest class 

in A. pseudoplatanus, followed by AC4, AC2 and AC3 as opposed to Anet  in leaf 

mass basis. Similar trends were also observed in F. excelsior, as illustrated in Figure 

3.1B. An age-related trend in G was found for the first three age classes in A. 

pseudoplatanus. However, no age-related trend was found for this parameter in F. 
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excelsior, for which AC3 showed highest value, followed by AC4, AC2 and Ad. 

Furthermore, higher value of Tfle,,f was found in AC 1 followed by AC2, AC4 and 

AC3 for A. pseudoplatanus, whereas this parameter was found higher in AC3 for F. 

excelsior followed by AC4, AC2 and AC1 (Figure 3.1D). In contrast, leaf 

characteristics such as SLA sampled during gas exchange showed an age-related 

trend in both species (Figure 3.2A). This parameter may contribute to the age-related 

trend observed in Anet  compared with other gas exchange parameters. Further 

observations found that the trends recorded in T-'Iaf  were similar with the ones 

recorded in G in both species respectively. Hence, the G values obtained during 

one-time leaf level gas exchange measurements may have been directly affected by 

1ieaf. 

Since gas exchange parameters are directly affected by timing and 

environmental conditions, the leaf chemical compositions were also determined in 

the same samples taken during gas exchange measurements. Although the mean 

values of Nm were not found to significantly differ among age classes in either 

species as indicated in Table 3.2, age related trends were clearly observed as shown 

in Figure 3.2B. Similar patterns were also found in 513C in both species in the field 

(Figure 3.2C). 
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3.3.2 Leaf level gas exchange, leaf water potential, nitrogen content and 5'3C 
of the grafted seedlings 

Analogous measurements were also carried out on grafted seedlings to 

determine whether the scion ages behaved similarly to their donors. Leaf level gas 

exchange, leaf water potential (1Pfeaf)  and leaf chemical composition from the same 

leaf samples were determined in grafted seedlings from four classes of scion age and 

two types of control, i.e., rootstocks and self-grafted in the first and the second 

growing season. ANOVA and GLM procedures were used as necessary, and DMRT 

was used for grouping. The data were first normalised prior to these analyses. Table 

3.3 showed the summarised outcomes from these analyses on those parameters stated 

above. 

Net assimilation rates (Anet) on the basis of leaf mass were found to be 

significantly different among scion ages and controls of A. pseudoplatanus and F. 

excelsior for both growing seasons. A highly significant level at p<0.001 was found 

for the first growing season for A. pseudoplatanus, whereas this significance level 

was detected in both growing seasons for F. excelsior. The Anet  was found to be less 

significantly difference in the second growing season for A. pseudoplatanus. 

However, internal CO2  (C1) was not significantly different among scion ages and 

controls in A. pseudoplatanus in either seasons, but this parameter did differ only in 

the first growing season for F. excelsior. The G values from both growing seasons 

were found to be significantly different among scion ages and controls in both 

species. The G did differ at p<O.Ol  in the first growing season and at p<0.001 in the 

second growing season for A. pseudoplatanus, whereas this parameter was found to 

have a highly significant difference at p<0.001 in both growing seasons for F. 

excelsior. Differences in [feaf  were found to be not significant in the first growing 

season for A. pseudoplatanus, but a less significant difference was detected in the 

second growing season. Meanwhile, this parameter was found less significant in the 

first growing season, whereas higher significant level was observed in the second 

growing season in F. excelsior. The effects of scion age and control in Nm were 

significantly different in both species in the first growing season but no significant 

effect was found in the second growing season. However, the 5' 3C parameter of both 

species was consistently affected by scion age and control in both growing seasons. 
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Table 3.3: 	Summary of ANOVA of leaf-level gas exchanges and chemical 
compositions in A. pseudoplatanus and F. excelsior grafted seedlings. 

Source of Variation 
AGE CLASS 

A. pseudoplatanus F. excelsior 

Parameters F value F value 
2003 2004 2003 2004 

Net assimilation rate, Anet  (p.mol g' 	1) 
 5.18*** 2.85* 21.21***  4.64*** 

Internal CO2, Ln C, (p.mol mol 1 ) 2.13' 0.52ns  4.62** 0.831s 
Stomatal conductance, Ln G(mmolni2  s 1 ) 3.58** 14.7*** 5•49***  9.11*** 

Leaf water potential, Peaf(-MPa) 0.73s 2.89* 3.31* 17.18*** 
Nitrogen content, N, (% mass) 4•47** 0.95 4•37** 2.27' 
Carbon isotope discrimination, VC 8.41*** 2.71* 935*** 17.37*** 
Notes: 	Significantly different at P <0.001 

** 	Significantly different at P <0.01 
* 	Significantly different at P <0.05 
ns 	Not Significant 

Table 3.4 shows the mean values of those parameters discussed above. With 

no regards to controls, the mean values of Anet on the basis of leaf mass were found 

higher in AC2 followed by AC3, AC4 and AC1 in first growing season. Meanwhile 

this parameter was found greater in AC1 followed by AC4, AC2 and AC3 of A. 

pseudoplatanus in second growing season. In F. excelsior, highest values of Anet  in 

leaf mass basis were found in AC1 and AC4, and lowest values were observed in 

AC2 and AC1 in both growing seasons respectively. Obviously, the age-related 

decline trend in Anet  did not persist in the grafted seedlings of either species. 

Moreover, the mean values of Anet on the basis of leaf area did not show any age-

related trend. In A. pseudoplatanus, these values ranged from 8.08 to 10.06 and 8.20 

to 13.31 tmol m2 s  in first and second growing season respectively. In F. excelsior, 

the mean values Of Anet  in leaf area basis were ranged from 14.42 to 19.48 and 8.66 to 

13.90 imol m 2  s 1  in first and second growing season respectively. Furthermore, the 

mean values of C1  did not vary among four classes of scion ages and controls in first 

and second growing season in either species, except in the first growing season in F. 

excelsior. Again, this parameter did not show any declining trend with increasing 

scion ages. Moreover, the G parameter was highly affected by scion ages and 

controls but apparently there was no trend with regards to their scion ages observed 



in either species. The mean value of G was found higher in AC1 followed by AC2, 

AC4 and AC3 in first growing season, whereas this mean value was found greater in 

AC4 followed by AC 1, AC3 and AC2 during the second growing season in A. 

pseudoplatanus. In F. excelsior, this parameter was found greater in AC1 followed 

by AC3, AC4 and AC2 in first growing season. However, an age-related trend in G 

was observed in the second growing in F. excelsior, although this trend was found in 

reverse order with greater values recorded in AC4 followed by AC3, AC2 and AC I. 

Generally, none of the observed parameters showed any age-related decline trends, 

indicating that the differences with regards to age in physiological characteristics or 

even leaf chemical compositions tended to disappear in the grafted scions. 

Table 3.4: 	Summary of leaf level gas exchange parameters, leaf water potential 
and chemical composition of grafted seedlings and controls in both 
species. 

Class Anet  
(.tmoI g' s) 

Ln Ci 
(mol mol') 

Ln Gs 
(mmol m 2  s) 

Wie.f 

(MPa) 

N. 
(%) 

Ô' 3C 

Acer pseudoplatanus 

2003 

1 0.087 ± 0.008 A  2.460 ± 0.006 A 2.440 ± 0.048 A -0.396 ± 0.04 A 2.30 ± 0.13 C -29.55 ± 0.48 B 
2 0.099 ± 0.006 A 2.398 ± 0.012 A 2.344 ± 0.041 AB  -0.369 ± 0.03 A 2.64 ± 0.04 BC  -28.91 ± 0.30 B 
3 0.098 ± 0012A 2.380± 0.017 AB 2.1590058B 0408002A 3.09± 006A -29.54± 019B 
4 0.091 	0008 A 2•4080013A 2.2320052 B  -0.391 	003A 2550 18BC 2897048B 

SG 0.095 ± 0.009 A 2.399 ± 0.006 A 2.200 ± 0.047 -0.396 ± 0.03 A 2.49 ± 0.15 BC -27.73 ± 0.38 A 
RS 0.052 ± 0.005 B 2.214 ± 0.135 B 1.769 ± 0.101 C -0.450:L 0.03 A 2.89 ± 0.17 AB -26.92 ± 0.25 A 

2004 

1 0.223 ± 0.022 A 2.254 ± 0.024 A 2.162 ± 0.061 -0.598 ± 0.03 B 2.32 ± 0.26 A -29.78 ± 0.53 B 
2 0.150 ± 0.018 BC 2.256 ± 0.034 A 1.935 ± 0.078 C -0.580 ± 0.02 B 2.42 ± 0.04 A -28.98 ± 0.47 AB  
3 0.123 ± 0.018 C 2.301 ± 0016A 2.010 ± 0069BC -0.478 ± 0.02 A 2.35 ± 017A -28.42 ± 0.61 AB  
4 0.185 ± 0.010 AB  2.265 ± 0016A 2.235 ± 0•029A -0.465± 003A 2.10± 018A -28.83 ± 0.72 AB  

SG 0.186± 0.019 AB  2.263 ± 0015A 2.047± 0.064 "C  -0.530±0.04 AB  2.49 ± 0.13 A -27.83 ± 0.31 A 
RS 0.191 ±O.025 AB  2.2580015A 20070049BC -0.501 ± 0.04AB 2580 15 A 2742033A 

E31 



Table 3.4 (continued) 
Fraxinus excelsior 

2003 

1 0.289 ± 0.012 2.358 ± 0.009 AB  2.693 ± 0.05 1 AB  -0.346 ± 0.02 AB  2.87 ± 0.09 C  2764 ± 0.32 B  

2 0.179 ± 0.013 C 2.350 ± 0.008 B  2.439 ± 0.069 C -0.374:1: 0.02 A  335 ± 0.06 A  -26.93 ± 0.06 A  

3 0.219 ± 0008C 2.375 ± 0.008 A  2.683 ± 0.048 AB  -0.297 ± 0.02 BC  3.21 ± 0.08 AB  -28.14 ± 0 17 B 

4 0.204 ± 0008 C 2.351 ± 0.005 B 
 2.584:E 0.048 B  -0.355 ± 0.03 AB  3.30 ± 0.05 A  -27.64 ± 0.14 B  

SG 0.374 ± 0.032 A  2.350:E 0.006 B  2.786 ± 0.040 A  -0.261 ± 0.02 C  3.28 ± 0.12 A  -27.82 ± 0.06 B  

RS 0.377 ± 0.026 A  2.329 ± 0.004 C  2.621 ± 0.039 B  -0.306 ± 0.03 ABC 2.98 ± 0.12 BC  -26.84 ± 0.08 A  

2004 

1 0.159 ± 0014C 2.112 ± 0064A 1.886 ± 0072C0 -0.706 ± 0.03 B  2.27 ± 004A -26.36 ± 040A 
2 0.191 	0008 ABC 2.1870042 A  2.119±0.057 0.624±0.02 2.61 ±O.12 27590168 

3 0.189 ± 0.003 BC  2.194 ± 0037A 2.197 ± 0032A -0.565:±: 002C 2.61 ± 0.16 A -29.02 ± 017C 
4 0.196±0.007 2.226±0.021 A  2.2050025 A  -0.581 ± 003C 224005A 2834032C 

SG 0.221 	0014A 2.1290060A 19860063BC -0.705±0.01 B 2250 14 A 2685011A 

RS 01670010BC 2.146±0.041 A  1.825±0.051 D 0868003A 2.21 ± 017A 3AB  

The '±' represents mean standard error. Different letters indicate significant differences between age 
classes within species. 

3.3.3 Photosynthetic capacity and efficiency 

An extensive study was conducted on the grafted seedlings by looking at their 

photosynthetic efficiencies and capacities. These experiments were conducted over 

two growing seasons. All the results obtained over both growing seasons were 

summarised in Figure 3.3. The mean values of apparent quantum efficiency (0) 

observed in the two growing seasons were not significantly different among scion 

ages and controls in both species respectively. Regardless of the controls, no age-

related trend was observed in either the first or the second growing season in A. 

pseudoplatanus as well as in F. excelsior. 

The mean values of maximum photosynthetic rates (Amax) did not differ 

among scion ages and controls in either the first or the second growing season in A. 

pseudoplatanus. But these values were found higher in the second growing season 

compared to the first growing season. In F. excelsior, Amax  showed very similar 

values in the second growing season across all groups. However, the mean values of 

this parameter were found to be quite different among different scion ages and 

controls during the first growing season. Again, no age-related trend was found in 

either species, although the experiments were carried out over two growing seasons. 
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The mean values of maximum carboxylation rate (VCm ) and maximum 

electron transport rate (Jm ) in each scion age and control over both growing seasons 

were also presented in the figure above. In the first growing season, the mean value 

of VC,, was found higher in AC  in A. pseudoplatanus and AC2 in F. excelsior. In 

the second growing season, self-grafted seedlings showed highest mean value of 

Vcmax  compared to rootstock and scion age classes in A. pseudoplatanus but this 

parameter was found higher in AC3 in F. excelsior. Meanwhile, AC1 and AC2 

showed the highest mean value of Jmax  in the first growing season for both species 

respectively. In the second growing season, AC4 in both species showed highest 

mean value of Jmax  compared to the rest of the treatments. With regards to the age-

related trend, a similar result as observed in parameters obtained in A/Q curve 

analyses was also observed in these two parameters obtained from the mechanistic 

A/Ci  response curve analyses. 
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Figure 3.3: The mean values of photosynthetic efficiency and capacity of both 
species over two growing seasons. The different letters represent 
statistically significant differences across age classes. 

Overall, these results showed that no age-related trend was found in the 

grafted seedlings despite the extensive study carried out on them with different light 

regimes and CO2  concentrations. 



3.3.3 Relationship between some physiological parameters and leaf properties 
in donor trees and grafted seedlings 

Gas exchange parameters and leaf chemical compositions are normally 

affected by their leaf characteristics, especially SLA. Since the age-related decline 

trends were observed in SLA for both donor trees and grafted seedlings, this 

parameter was regressed against Anet  and Nm for donor trees, and Anet, Amax, Vcmax  and 

Nm for grafted seedlings, to conclude the results obtained above with no regards to 

their age factor. The correlation analyses were also carried out between Anet  and Nm 

in both donor trees and grafted seedlings for the two species. 

Figure 3.4 shows the relationships between SLA and Anet  on leaf mass basis 

for both donor trees and grafted seedlings. Highly significant positive correlations 

(p<0.001) were found between SLA and Anet  in donor trees of A. pseudoplatanus, as 

well as in their grafted seedlings for the two growing seasons. Meanwhile, strong 

correlations (p<0.001) were also found between SLA and Anet  in F. excelsior in donor 

trees and their grafted seedlings in first growing season, but no significant correlation 

was observed in their grafted seedlings in second growing season. When SLA was 

held constant, the ANCOVA analysis revealed that there were significant differences 

(p<0.001) between values for donor trees and grafted seedlings in both species, with 

higher values for the seedlings. 
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Meanwhile, Figure 3.5 shows the regression analyses between Nm and SLA in 

both species. There were highly significant correlations (p<0.001) between these two 

parameters found in both donor trees and grafted seedlings for A. pseudoplatanus, 

but, significant correlation was only observed in donor trees for F. excelsior. Further, 

ANCOVA once again revealed that there were highly significant differences at 

p<0.001 for A. pseudoplatanus and p<O.Ol for F. excelsior in nitrogen concentration 

between the donor trees and the grafted seedling, when SLA was held constant. 
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In parallel with many studies, nitrogen concentrations were positively 

correlated with Anet  in donor trees for both species (Figure 3.6). For the grafted 

seedlings, however, a significant positive correlation was only found in A. 

pseudoplatanus in the second growing season. 

Further, the Amax  and Vcmax  values obtained from the responses of assimilation 

rate with different light intensity (A/Q curves) and different CO2  concentrations (A/C1  

curves) experiments in second growing season were regressed against their 

respective SLA as shown in Figure 3.7. Interestingly, both species showed similar 

correlation lines in Amax  (both p<0.001). For VCmax, negative correlations were also 

found as Amax. However, a significant correlation was found only in F. excelsior but 

no significant correlation was found in A. pseudoplatanus. 
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Figure 3.7: The relationship between maximum photosynthesis and maximum 
carboxylation rate with their respective specific leaf area across age 
classes in A. pseudoplatanus and F. excelsior grafted seedlings. 

3.4 DISCUSSION 

Generally, our gas exchange results of donor trees did not strongly support 

the decline in growth rates observed for the donor trees in Chapter 2. Thus 

measurements of photosynthesis on the leaf level do not easily allow for conclusions 

to be reached on tree growth (Kuppers andd KUppers 2003). Age-related decline 

trends were only observed in Anet  per unit leaf mass in both species (Figure 3.1A). 



Despite the fact that, values of Anet  per unit leaf area basis did not show age-related 

trends, these values were found to be within the range recorded by Morecroft and 

Roberts (1999) for A. pseudoplatanus in unmanaged old woodland and by Hölscher 

(2004) for F. excelsior in old-growth forest of broad-leaved deciduous tree species. 

Day et al. (2001) also found similar trends of Anet  on the leaf mass basis in red 

spruce, but they also found other parameters such as C and Gs  were also reduced in 

older trees compared to younger trees. Lower G of large trees compared with small 

trees under unshaded conditions is consistent with the hydraulic limitation hypothesis 

that water movement to the top of tall trees is restricted because of the gravitational 

hydrostatic gradient and cumulative hydraulic resistance (Ryan and Yoder 1997, 

Ryan et al. 1997, Bond and Ryan 2000), thus directly reducing photosynthesis rate 

and C1. In our case, C1  and G partially showed the age-related decline trends in A. 

pseudoplatanus with a recovery observed for values in trees above 100 year-old of 

age (AC4). However, no age-related trend was observed in F. excelsior (Figure 3.1). 

The lowest value of Gs  for F. excelsior was found in AC1. Since the study site is a 

mixed uneven-aged species woodland, the results observed in G for both species 

may reflect the attribute of both species. It is well known that A. pseudoplatanus is a 

shade tolerant species, whereas F. excelsior is a shade intolerant species (Beckett and 

Beckett 1979). In particular, partially shaded seedlings and saplings often have lower 

G than un-shaded dominant trees, despite limitations to water movement in large 

trees (Köstner et al. 1992, Fredericksen et al. 1995, Martin et al. 1997, Samuelson 

and Kelly 1997) as found in F. excelsior. Moreover, other potential reasons may lie 

in 1) the measurement of gas exchange was not carried out at the same time on each 

tree due to accessibility problems, 2) the V-',e,f values at the time of measurements 

had similar trends with G in both species as indicated in Figure 3.1, and they may 

have played an important role in determining stomatal conductance values. It is well 

known that stomatal closure has been associated with lower soil to leaf hydraulic 

conductance (Kolb and Stone 2000) and the differences in ,.,f (Hubbard et al. 

1999). 

Because of these limitations, the chemical composition such as nitrogen 

content and carbon isotope discrimination observed in the leaves taken during gas 

exchange measurements may become the best parameters to described age-related 



decline trends. Leaf nitrogen content has been shown to be a good predictor of Anet 

and G8  (Field and Mooney 1986, Reich et al. 1997, Samuelson and Kelly 1997), thus 

information on variation in leaf nitrogen content with tree ageing might improve the 

understanding of changes in leaf gas exchange. Nitrogen contents in mass basis (Nm) 

clearly decreased with increasing age of the trees in both species, although this trend 

was significant only for F. excelsior (Figure 3.2B). These results also indicated that 

lower photosynthetic capacity was observed in older trees. Many studies have shown 

that the nitrogen content of leaves is closely correlated with photosynthetic capacity 

(e.g. Hackett 1985, Kolb et al. 1998). In concordance with our results, Kull and 

Koppel (1987) observed declines in leaf nitrogen and photosynthetic capacity as tree 

aged. Furthermore, Schoettle (1994) found that leaf nitrogen contents in old Pinus 

aristata were lower than the ones observed in young trees. In contrast, other studies 

have shown no change in nitrogen concentration or photosynthetic capacity with tree 

age (e.g. Schoettle 1994, Mencuccini and Grace 1996b, Hubbard et al. 1999, 

McDowell et al. 2002a, Barnard 2003). Apart from Nm, 
613C was also determined. 

This parameter can act as an independent test of the hypothesis that G declines with 

increasing height (McDowell et al. 2002a) and age in our case. The 5' 3C showed 

age-related trends in both species in the field with the values becoming less negative 

with increasing age (Figure 3.2C). The trends in 513C were not similar with the trends 

obtained in G. McDowell et al. (2002a) also found different trends between cuvette-

based Gs  and Gs  which were inferred from 513C of Douglas-fir (Pseudotsuga 

menziesii var. menziesii). They stated that hydraulic limitations to gas exchange may 

occur in the spring months but not during summer drought. Furthermore, Bauerle et 

al. (1999) concluded that cuvette-based G was a poor measure compared with 513C 

data because of the limitation in temporal integration of gas exchange instrument. 

With that factor in mind, our 613  results have clearly provided evidence that G may 

decrease with increasing age or size of trees. Livingston et al. (1998) found that G 

decline linearly with height provided that 513C was not a result of photosynthetic 

capacity or light availability. 

Studies of tree ageing that have compared scions from branches of mature 

and juvenile trees grafting onto seedling rootstocks have shown that physiological 

characteristics such as Anet  and G can also vary with tissue age independent of 



differences in tree height (Greenwood 1995). Rebbeck et al. (1993) found that G 

was lower for scions from old Picea rubens trees compared with scions from 

seedlings, when both were grafted onto similar sized rootstocks. Similar results were 

also found in red spruce when scions from older and younger trees were grafted onto 

young rootstocks (Day et al. 2001). They concluded that differences in physiological 

characteristics between young and old trees can arise from tree maturation processes. 

These experiments showed that grafting may also imply the existence of genetic 

controls. However, in our grafted seedlings, there was no age-related trend of leaf 

gas exchange parameters nor of leaf chemical compositions in either species, despite 

measurements were taken in both first and second growing season (Table 3.4). 

Furthermore, results obtained from photosynthetic capacity and efficiency 

measurements using response curves of Anet  against different levels of carbon dioxide 

and light intensity on grafted seedlings also did not show any age related trend 

(Figure 3.3). In fact, those results did not follow the trends in their growth traits as 

illustrated in Chapter 2. Poorter et al. (1990) has pointed out that the relationship 

between photosynthesis and growth is a complex one, with growth rate not being 

well correlated with the rate of photosynthesis on a leaf-area basis. This is because 

growth also depends on the investment of biomass in growing sinks and investment 

in leaf area (Chapin et al. 1990, Poorter and Remkes 1990). Increases in 

photosynthesis rates and decrease in growth rates is sometime associated with fruit 

production (Bond 2000). 

Since SLA did change in grafted seedlings as observed in Chapter 2, 

regression analyses were conducted on some physiological parameters such as Anet, 

and Vcmax, and leaf Nm with SLA on grafted seedlings without taking into 

account of scion ages. The regressions were also carried out on Anet  and Nm with their 

respective SLA in donor trees regardless of age factor. Interestingly, Ant  and Nm  

correlated well with SLA in first and second growing season for both species in 

grafted seedlings (Figure 3.5 and 3.7). An exception only occurred in Anet  of F. 

excelsior grafted seedlings in second growing season. Furthermore, similar trends 

were also observed in donor trees (Figure 3.4). These results clearly support the 

general correlation between SLA, Anet  and Nm for six biomes and different plant life 

forms by Reich et al. (1997) (c.f Gulias 2003). In addition, Anet  on a leaf-mass basis 
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has been positively correlated with SLA and Nm (Poorter et al. 1990, Reich et al. 

1994), and these patterns are common to all species (Reich 1999). This is because 

significant nitrogen per unit leaf mass accumulation would be required in leaves to 

achieve a high Anet. According to Hunt and Cornelissen (1997), species with high 

SLA and Nm usually show high potential relative growth rates. This is supported by 

our results where trees in younger classes tend to have higher relative growth rates 

compared with older trees as given in Chapter 2. 

Generally, the results of gas exchange only partially supported the age- or 

size-related changes in growth parameters. The age- or size-related decline trends 

were only observed in Anet  on the basis of leaf mass for both species. Furthermore, 

the evidence supporting the size-related hypotheses lies in leaf chemical 

composition, such as Nm and 513C. Overall, the results showed that the changes in 

Anet  and leaf chemical compositions were triggered by size, not age. This is supported 

by results observed in the grafted seedlings for both species. One time leaf-level gas 

exchange measurements may insufficient to test the hydraulic limitation hypothesis. 

Further investigations have to be carried out, especially involving stomatal response 

and hydraulic conductance. Hence, the following chapter focuses on those 

parameters. 
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CHAPTER 4 

THE EFFECT OF AGE AND SIZE IN WHOLE PLANT TRANSPIRATION, 
HYDRAULIC CONDUCTANCE AND STOMATAL CONDUCTANCE OF 
A CER PSEUDOFLA TANUS AND FRAXINUS EXCELSIOR SPECIES 

4.1 INTRODUCTION 

Water, especially the availability of soil water, in the soil-plant-atmosphere 

system is one of the most important factor controlling the distribution and growth of 

forest trees. Water affects all phases of tree growth, because it is involved in various 

vital processes such as photosynthesis, respiration, mineral nutrition, enzymatic 

activity and nitrogen metabolism (Kozlowski 1982). Water deficits reduce tree 

growth directly through effects on cell turgor that affects cell enlargement and 

differentiation, and indirectly through perturbation of various essential physiological 

processes. 

Water movement from soil through the tree to the atmosphere involves 

different mechanisms of transport. In the soil and xylem, water moves by bulk flow 

in response to water potential gradient. In the vapour phase, movement is primarily 

by diffusion, at least until water reaches the outside air, where convection (a form of 

bulk flow) becomes dominant. When water transport occurs across membranes, the 

driving force is the water potential gradient across the membrane (Taiz and Zeiger 

1998). Such flow occurs when cells absorb water and when roots transport water 

from the soil to the xylem. Water movement is largely believed to be a passive 

process in which water flow in response to physical forces and no energy is 

expended directly by the plants to transport water. 

Usually, plant water relations are dominated by transpiration. Transpiration is 

the evaporation of water from plants and involves the movement of water through the 

soil-plant-atmosphere continuum. High transpiration may cause plant injury, 

however, it is ultimately unavoidable because leaf structure that is favourable for the 

entrance of CO2  is also favourable for the loss of water vapour (Kozlowski 1991). In 

general, the rate of transpiration depends on environmental conditions such as light, 
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temperature, humidity and the relative availability of soil moisture, and plants 

characteristics such as canopy leaf area and xylem structure. However, there is a 

growing interest in the role of hydraulic resistance to water transport from the soil to 

the leaf and the changes in stomatal conductance at different heights that directly 

influence the rate of transpiration and the inhibition of photosynthesis. Hydraulic 

resistance may increase in response to increased path length in growing trees, thereby 

reducing leaf stomatal conductance. The relationship between hydraulic conductance 

and tree height has been well documented in Bond (2000). In addition, stomata may 

also become very sensitive to vapour pressure deficit (D) with increased tree height. 

D normally varies spatially within crown height. Tang et al. (1999) showed that the 

upper crown foliage of loblolly pine had a significantly greater D, corresponding to a 

lower stomatal conductance, albeit higher transpiration rates compared to lower 

crown foliage. These two assumptions clearly indicated the role of tree height in 

conjunction with physiological studies, especially stomatal conductance. 

The resistance to water movement in plants has been described using Ohm's 

Law analogy which is often referred to as van den Honert's equation (van den Honert 

1948). This equation has gained wide acceptance amongst plant scientists (Cowan 

1965, Feddes and Rijtema 1972, Lynn and Carlson 1990, Ewers and Cruiziat 1991, 

Mencuccini and Grace 1996a). From the Ohm's law electrical analogy, water flow 

through a path of the soil-plant-atmosphere continuum is analogous to current in an 

electrical circuit composed of a series of resistances (Ewers and Cruiziat 1991). The 

total resistance of the tree includes the root, stem, leaf, stomata, and boundary layer 

resistances. Ewers and Cruiziat (1991) described that the flow rate between two 

points A and B in the plant equals the difference in water potentials at these points 

divided by the resistance of the path between A and B. 

Flux AB 

	 (4.1) 

where FluxAB  is flow rate between points A and B (m3 1),  9. and TB  are water 

potentials at points A and B (MPa), and RAB  is the resistance of the path between A 

and B (MPa m 3  s). Hydraulic conductance is the reciprocal of resistance: KAB  = 1/ 

R. The Ohm's Law analogy is useful to calculate water flow and hydraulic 



conductance under constant conditions, because it assumes that the resistance offered 

by a system is constant. It requires that the quantity of water transpired by the plant 

should equal the quantity of water absorbed by plant roots to maintain or reach a 

steady state. However, the steady-state condition is not easy to meet because 

transpiration changes during the day as influenced by environmental conditions and 

water storage varies inside the plant. Therefore, it is necessary to measure the sap 

flow density during different times in the day. 

Since there is a direct link between transpiration and stomatal conductance, 

any changes in stomatal response to fluctuating environmental conditions will also 

change the rate of transpiration. One of the most influential environmental variables 

governing stomatal conductance is the vapour pressure deficit (D) between the 

saturated leaf intercellular air spaces and air surrounding the leaf. Saturation vapour 

pressure in the leaf is a function of leaf temperature, which fluctuates according to air 

temperature and radiation (Nobel 1991). Absolute humidity in the ambient air, which 

is also a function of temperature, is rarely at a maximum and thus some D almost 

always exists. The relationship between conductance and D has been demonstrated in 

numerous reports from various species including loblolly pine (Pataki et al. 1999), 

tropical trees (Meinzer et al. 1995), Pinus sylvestris (Scots pine, Beadle et al. 1985), 

Elates suineans (oil palm, Dufrene and Saugier 1993), Vigna unguiculata (cowpea, 

Bates and Hall 1982) and several others. In all cases, an increase in D decreased 

stomatal conductance. Also, it should be noted that in several of the above cases, low 

soil water potential coupled with a high D contributed to accelerated stomatal 

closure. 

The typical stomatal response to a high D is thought to be the result of either 

increasing water losses directly from the stomata (peristomatal or epidermal 

hydropassive mechanism) or via complex integrated metabolic responses resulting 

from water stress. Transpiration will generally increase when the D is increased until 

rapid water loss triggers a stress response. This change in D eventually causes 

stomatal closure, resulting in water conservation. This process improves leaf water 

status and will often decrease or maintain transpiration rates despite an increase in D. 

However, an increase in D may be enough to overcome increasing stomatal 

resistance, resulting in a potential increase in transpiration with increasing D. 



Assuming hypothetically that conductance is constant, an increasing D will directly 

increase transpiration since transpiration is equal to stomatal conductance multiplied 

by the driving force (D). 

Photosynthesis is indirectly related to D since stomatal conductance 

influences internal carbon (C) concentrations and therefore affects the amount of 

CO2  available for reduction via photosynthesis. Conifer gas exchange studies, 

including loblolly pine studies, have consistently shown that photosynthesis and 

stomatal conductance are closely coupled (Teskey et al. 1986, Mitchell and Hinckley 

1993, Tang et. al 1999). Increases in D reduce photosynthesis by decreasing stomatal 

aperture and reducing Q. In Scots pine, the relationship between photosynthesis and 

stomatal conductance was directly correlated with D at large deficits (Beadle et al. 

1985). The relationship was curvilinear at a high D, but independent of D at lower 

deficits. D therefore plays a vital role in governing the resources available for carbon 

assimilation, which directly influences productivity. 

As transpiration by trees is a key component in the water use of forest stands, 

the direct measurement of water use by trees permits the partitioning of this 

component of total stand evapo-transpiration from soil evaporation and the loss of 

intercepted or condensed water from the canopy. Such estimates are necessary for 

modelling biological control of transpiration with respect to evaporative demand, soil 

water levels, and canopy wetness (Hatton and Vertessy, 1990). Unfortunately, direct 

measures of tree and stand transpiration are difficult and rare. Some canopy 

transpiration models based on energy balance parameters with refinements such as 

soil moisture limitation parameters or stomatal responses to humidity fail to provide 

information on the variation of transpiration among trees within a stand (Werk et al. 

1988). Rapid and effective methods of directly measuring the mass flow of water 

through the xylem of a tree, and thus whole-tree transpiration have been developed 

and tested (ermák et al. 1973, Edwards and Booker 1984, Sakuratani, 1984, Granier 

1987, Hatton and Vertessy 1990, Oren et al. 1999). 

An understanding of the transpiration by individual trees of different heights 

and forest stands of different strata is a necessary component of assessment of stand 

water use. However, it is difficult to quantify the transpiration of large trees. 

100 



Techniques to measure sap flow remain the most economical and practical approach 

for the direct estimation of water use by individual trees. The most widely applied 

techniques are based on the use of heat as a tracer for sap flow. Methods for 

measuring sap flow include the heat pulse velocity (Edwards and Booker 1984, 

Hatton and Vertessy 1990), the stem heat balance techniques ((ermák et al. 1973, 

Sakuratani 1984), and the heat dissipation method (Granier 1987, Oren et al. 1999). 

The stem heat balance technique measures sap flow directly but can not be used for 

large tree measurements. The heat pulse velocity and heat dissipation methods can be 

used in large tree measurements of sap flow density (sap flow per unit sapwood 

area), but variation in different positions of xylem need to be considered for 

estimating whole-tree sap flow. Variations of sap flow density between outermost 

and inner xylem have been reported in some studies (Dye et al. 1991, Phillips et al. 

1996, Zang et al. 1996, Oren et al. 1999, Wullschleger and King 1999, Jiménez et al. 

2000, Lu et al. 2000). 

In addition, Granier (1987) improved the heat dissipation method of the 

constant-heat flow to measure sap flow density for large trees. This method uses two 

cylindrical probes with a diameter of 2 mm and an effective measuring length of 20 

mm. The two probes are inserted into the hydroactive xylem of the tree stem with a 

vertical spacing of 10-15 cm. The upper probe is heated with a constant energy (200 

mWatt DC), which is dissipated as heat into the sapwood and vertical sap flow 

surrounding the probe. The lower probe is left unheated to monitor the ambient 

temperature of sapwood. Both thermocouples are connected at the constantan end 

and thus give an output representing the temperature difference between the two 

probes (1°C = 40 jNolt for copper-constantan at 20°C). The sap flow density u (m s-

1) is calculated as follows: 

U = 119x10 6.K1231 	 (4.2) 

where 199X10-6   and 1.231 are empirical constants from the calibration, and K is sap 

flow index that is related to the temperature difference between the two probes (AT) 

as calculated below: 
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K=\  
AT - AT) 	

(4.3) 
AT 

where AT.. is the temperature difference at zero flow (u = 0). Total sap flow (flow) of 

a tree (m3  s') is estimated as follow: 

F=u.SA 	 (4.4) 

where SA is the cross-sectional area of sapwood at the point of insertion of the heated 

probe. 

Many studies have used this method to study sap flow of different forest 

strata, age or even size of trees (e.g. Meinzer et al. 1997, Hubbard et al. 1999, Oren 

et al. 1999, Schafer et al. 2000, Phillips et al. 2002, Phillips et al. 2003, Barnard and 

Ryan 2003, Delzon et al. 2004, Unsworth et al. 2004, Meinzer et al. 2005). In our 

study, we used the same method to study age- and size-related decline trends on A. 

pseudoplatanus and F. excelsior in the field. This study was conducted to estimate 

the whole plant transpiration and whole plant leaf-specific hydraulic conductance. 

Canopy stomatal conductance was also estimated from the data obtained in sap flow 

measurements and meteorological station. In addition, a gravimetric method was 

used to determine the whole plant transpiration and whole plant leaf-specific 

hydraulic conductance in grafted seedlings. Stomatal conductance values of grafted 

seedlings from different age classes were also estimated from an experiment relating 

stomatal conductance to D. These studies may provide further information regarding 

the tested hypotheses. 

4.2 	MATERIALS AND METHODS 

4.2.1 Field study 

4.2.1.1 Sap flow measurement on donor trees 

In this experiment, five trees from age class 2 and three trees from each of 

age classes 3 and 4 in both species were selected in the field (Table 4.1). Due to 

technical limitations in cable lengths and distances from loggers, trees from age class 
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1 could not be sampled in either species. The sap flow measurements were done 

using constant heating Granier probes (Granier 1987). Two sensors, approximately 

2.2 cm long and 0.2 cm in diameter were constructed using cylindrical probes. These 

sensors comprise one heated probe with a constantan resistor which is inserted in the 

sapwood at the top and an unheated probe which is inserted at the bottom (Plate 4.1). 

Table 4.1: 	Summary of main characteristics of donor trees used in this experiment 
for both species 

Age class Age DBH Height AL:AS 
(year) (cm) (m) (m2  cm) 

A. pseudoplatanus 
2 27.00 + 089A 15.20± 0.98 A  7.94 ± 0.32 A  0.63 ± 0.04 A 
3 7133291B 56.83± 159B 17 77 0 15 B 056010A 

4 135.33 ± 546C 78.67 ± 0.73 C  24.23 ± 0.38 C  0.47 ± 0.03 A  

F. excelsior 
2 	 27.20± 150A 	19.40± 158A 	1248091A 	0 530 07 A 

3 	 44.67 ± 524A 	33.83 ± 220B 	15.93 ± 207A 	0.53 ± 007A 

4 	 104.33± 10•17B 68335 

	

33C 	2117 095 B 	0 44 0 06 A 

The '±' represents mean standard error. Different letters indicate significant differences between age 
classes within species. 

Two small holes were drilled accordingly on the north facing side of the stem 

at tree breast height (1.3 m). The sensors were coated with conducting pastes before 

being inserted into the drilled holes. The conducting pastes filled excess space in the 

drilled holes to ensure thermal contact between probes and xylem. The sensors were 

then covered with an aluminium box, and insulation sheeting was applied around the 

tree stem, protecting them from rainfall and the effects of radiant heating and 

convective heat losses (Plate 4.2). 
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Plate 4.1: 	Granier-type probes showing heated sensor (left) and unheated sensor 
(right). 

All sensors were connected to dataloggers and heating boxes for heating 

purposes. These equipments were powered with 12 V batteries. The batteries were 

replaced between five to seven days when all the data were downloaded into a 

laptop. The data were recorded every 10 seconds and stored every 15 minutes with 

two dataloggers (Model 21X and CR10, Campbell Scientific Inc., Utah, U.S) and a 

multiplexer (Model AM416, Campbell Scientific Inc., Utah, U.S). This experiment 

was carried out for about three weeks starting from July 4 to July 23, 2004. 
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Insulation sheets were applied around the stem where sensors were 
installed to protect them from rainfall and convective heat losses. 

4.2.1.2 Whole plant leaf-specific transpiration (Qi)  and whole tree leaf- specific 
hydraulic conductance (K1) of donor trees 

The estimation of total sap flow was done using the equations stated above 

for Granier-type sensors. However, in the case of A. pseudoplatanus and F. excelsior 

where sapwood thickness is normally shorter than the sensor length, we used 

equation 4.2 to represent sap flow density per sapwood area instead of using equation 

4.4. These sap flow values were then multiplied with sapwood area to leaf area ratio 

values to obtain whole plant transpiration per unit leaf area (QL)  (Oren et al. 1999). 

Sapwood area was estimated using tree-cores for each tree and visually distinguished 

between light coloured sapwood and dark coloured heartwood, while leaf area was 

estimated from allometric equations as given in Chapter 2. 

Meanwhile, the whole plant leaf-specific hydraulic conductance (KL, in mmol 

m 2  S-1  MPa) was estimated for each tree from both species using the equation given 

in Wullschleger et al. (1998) as follow: 
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KL = 
	QLX 	 (4.5) 
Ytpredawn - P'midday 

where QLmax  is the average sap flow at radiation above 1000 KJ m 2  from 11.00 am to 

16.00 pm, Tp,,dawn  is the predawn water potential (MPa) and Pmidday  is the midday 

water potential (MPa) taken on Julian date 209. 

4.2.1.3 Meteorological data 

Meteorological data were obtained from Edinburgh Gogarbank 

meteorological office. The data comprise five important variables, i.e., air 

temperature, relative humidity, rainfall, wind speed and radiation. Vapour pressure 

deficit (D) was calculated based on temperature and relative humidity data. These 

variables were measured every hour. 

4.2.2 Grafting Study 

4.2.2.1 Stomata! conductance (Ga) versus vapour pressure deficit (D) 

A study of stomatal conductance against vapour pressure deficit (D) was 

conducted to obtain appropriate values of stomatal conductance in each individual 

from four age classes and two controls in both species. One fully expanded and 

healthy leaf was chosen from six out of ten grafted seedlings in each age class that 

were picked up randomly and placed in the glasshouse to obtain relatively constant 

conditions. The LCPro portable photosynthesis system was used. At the beginning, 

about ten different D ranging from 0.5 kPa to 2.5 kPa were set using climate control 

on LCPro portable photosynthesis system. However, since ambient vapour pressure 

and air temperature in the glasshouse fluctuated throughout the experiment and 

caused the cuvette vapour pressure and temperature to change, we decided to 

calculate the actual D from the raw data obtained by using equations cited in Jones 

(1992) as given below: 
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D = eS(T) - e 	 (4.6) 

where e is the actual ambient vapour pressure in the air and es(fl is the saturated or 

maximum vapour pressure at the ambient air temperature calculated as follow: 

( 
e. (T) =a.expi 

bT 

) 
I 	

(4.7) 
c+T 

where Tis temperature (°C) and a (= 613.75), b (= 17.502) and c (= 240.97) are the 

empirical coefficients. 

The stomatal conductance values for each individual seedling were then 

plotted against D using logarithmic regressions and the equations obtained were used 

to calculate stomatal conductance at a reference ambient D (1.5 kPa). 

4.2.2.2 Whole plant leaf-specific transpiration rate (E1) and whole plant leaf -
specific hydraulic conductance (K1) 

Whole plant leaf-specific transpiration rate (EL) and whole plant leaf-specific 

hydraulic conductance (KL) were measured using the gravimetric method. Five 

grafted seedlings from a total of 60 seedlings were selected for both species (Table 

4.2). Prior to taking the measurement, the pots were covered in black bags after they 

were watered at field capacity to avoid any water loss from the soil. The trees were 

weighed using a 12 kg dual face balance in early morning around 3.30 to 5.30 BST 

(T1). One leaf was excised in each individual after the weight was measured in order 

to estimate the leaf water potential (redawn).  Predawn water potential was measured 

as an estimation of soil water potential that can be used to calculate leaf-specific 

hydraulic conductance (KL). This leaf was then placed in a plastic bag with a small 

lump of moist tissue in it to avoid evaporation. The water potential measurement was 

carried out in the laboratory using a Portable Plants Moisture System (Skye 

Instruments Ltd, Powys. UK) with N2. Those seedlings were then weighed again (T2) 

at around 10.30 BST and a leaf was also excised in order to estimate the midday 

water potential (I'midday).  The EL and KL values were calculated using equations as 

follow: 
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E 
d 	 (4.8) 

L 
 dT 

where d  is the different in weight (W1-W2) at T1  and T2  and dT is the different in 

time (T2-T1). 

EL  (4.9) 
KL 

= 

Y'predawn - P'midday 

Table 4.2: Summary of main characteristics of grafted seedlings of both species 
used in this experiment. 

Diameter Age class Height AL 
(cm) (cm) 2 (m) 

A. pseudoplatanus 
1 1.52 ± 0.08 176.43 ± 13.54 0.37 ± 0.06 
2 1.45±0.06 165.92±8.16 0.38±0.06 
3 1.35 ± 0.06 135.68 ± 8.62 0.35 ± 0.02 
4 1.38±0.06 157.65±7.77 0.27±0.04 

SG 1.45 ± 0.04 177.23 ± 20.51 0.52 ± 0.04 
RS 1.66±0.09 161.50± 15.90 0.56± 0.06 

F. excelsior 
1 1.51 ± 0.08 151.80± 14.64 0.46± 0.02 
2 1.25 ±0.04 110.03± 11.01 0.39± 0.05 
3 1.13 ± 0.04 104.97 ± 20.38 0.24 ± 0.02 
4 1.21 ± 0.04 101.00± 11.61 0.29± 0.06 

SG 1.56± 0.08 139.42± 10.80 0.54± 0.03 
RS 1.76 ± 0.11 151.30 ± 12.24 0.63 ± 0.04 

The ± represents standard error of the mean 

4.2.3 Data Analysis 

The data obtained from sap flow measurements in the field were analysed 

using equations given above for every parameter studied. The average value of QL 

from each age class and from each day was plotted against daytime D and fitted 

using logarithmic regression. The slopes of the regression equations were tested by 

analysis of covariance (ANCOVA) in SPSS version 12.0 (SPSS Inc. 2003). Age- 
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related trends were determined using non-linear regression analyses of mean tree 

values for QL  at a given D, and KL with tree age. 

In grafted seedlings, the values of G were specifically obtained from the 

response curves between G and D using logarithmic regression analyses. The data 

were analysed using ANOVA and compared using DMRT. Similar analyses were 

also done on EL and KL in grafted seedlings. 

4.3 RESULTS 

4.3.1 Variation of sap flow density per unit leaf area (QL)  among age classes in 
the field 

The typical diurnal patterns of sap flow density per unit leaf area (QL)  among 

age/sizes classes in both species are shown in Figure 4.1. These diurnal sap flow 

density patterns (the amplitudes) were found similar with the patterns observed in 

meteorological parameters especially temperature and vapour pressure deficit (D) as 

shown in Figure 4.2. Similar patterns were observed with regard to each age class of 

both species. However, the separation of the amplitudes among age classes in A. 

pseudoplatanus was not as distinct as the differences observed in F. excelsior 

especially towards the end of the experiment. Diurnal patterns of QL  were generally 

found to be lower in the oldest class of both species. 

In addition, the variation observed in daily mean values of QL  was regressed 

against D (Figure 4.3). Apparently, with similar daytime values in D, mean values 

from trees in age class 2 (AC2) showed highest mean values of QL  followed by age 

class 3 (AC3) and age class 4 (AC4) in both species. The amount of separation of the 

data obtained between age classes seem to be fair in A. pseudoplatanus. However, 

the values obtained in AC2 for F. excelsior were only slightly higher than the ones 

observed in AC3. This could be due to the fact that height of trees in AC2 and AC3 

are not significantly different, as shown in Table 4.1. The ANCOVA analysis 

revealed that, once D was held constant, there were significant differences (p<0.001) 

in the values of sap flow per unit leaf area (QL)  among age classes in both species. 
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Figure 4.1 	Typical diurnal sap flow density in three age classes of A. 
pseudoplatanus and F. excelsior species. 
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Figure 4.2: Typical diurnal patterns of four meteorological variables obtained from 
weather station. 
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Figure 4.3 	The relationship between vapour pressure deficit and mean sap flow 
per unit leaf area (QL).  Logarithmic regressions were carried out for 
each age class in both species. 

112 



4.3.2 Age-related trends in sap flow density (QL)  and whole plant leaf-specific 
hydraulic conductance (KL) among tree ages in the field 

The mean values of QL  and KL from each tree were then regressed against 

tree age using non-linear model, as shown in Figure 4.4. In these analyses, the level 

of statistical significance was set to a = 0.1 due to the relatively small sample size 

and small range of values for sap flow. In QL,  significant negative correlations 

(p<O.l) were observed in both species. The trees from youngest/smallest class 

tended to have higher values of QL  compared to the older/bigger classes. Comparing 

QL values between species, F. excelsior trees showed higher values in the 

youngest/smallest class than the ones observed in A. pseudoplatanus. However, A. 

pseudoplatanus trees showed the opposite results compared with F. excelsior trees in 

the oldest/biggest class. Hence a steeper regression line was observed in F. excelsior 

compared with A. pseudoplatanus, suggesting that the stomata from older F. 

excelsior trees are more sensitive than the ones from A. pseudoplatanus. This could 

be due to the older trees of F. excelsior being located at a higher altitude compared to 

A. pseudoplatanus which was exposed to higher D. Furthermore, significant 

regressions (p<0.05 and p<O.l) were observed in KL  for A. pseudoplatanus and F. 

excelsior respectively. 

Overall, the results showed the age-related decline trends to be clearly 

observed in all parameters obtained from sap flow measurements except for one 

exceptional circumstance observed in F. excelsior between AC2 and AC3. 
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Figure 4.4: The relationship between individual tree age and sap flow (A) and 
hydraulic conductance (B). A non linear function was used to fit the 
data for each parameter. The '*' represents significant difference at 
p<0.05 and 's' represents significance at p<O.lO. 
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4.3.3 Stomata! conductance (G), whole plant transpiration (EL) and whole 
plant leaf-specific hydraulic conductance (KL) among age classes in 
grafted seedlings 

The data obtained on the response of Gs  to D for both species are shown in 

Figure 4.5. These results suggested that the influence of D on G was much weaker at 

lower D, which is contributes to the higher values of G, but the values of G tended 

to decrease and level-out with increasing D. 
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Figure 4.5: The relationship between individual grafted seedling stomatal 
conductance (Gs) with vapour pressure deficit (D) in each age class of 
A. pseudoplatanus (A) and F. excelsior (B). 
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The comparison of appropriate G values among age classes together with 

controls was done using logarithmic regression equations. These values were then 

averaged and grouped using DMRT from ANOVA. Significant differences among 

age classes and controls were observed. However, no age-related trend was observed 

in either species as shown in Figure 4.6A. Regardless of controls, highest mean 

values of G were found in AC 1 and AC3 whereas the lowest mean values were 

found in AC3 and AC1 for A. pseudoplatanus and F. excelsior, respectively. 

Generally, the mean values of G were found higher in F. excelsior than A. 

pseudoplatanus. 

The gravimetric method was used to calculate whole plant transpiration rate 

per unit leaf area (EL) of grafted seedlings and the results obtained are presented in 

Figure 4.6B. The mean value of EL was found higher in AC4 and lower in AC1 for 

A. pseudoplatanus. Meanwhile, this parameter was found higher in AC3 and the 

lowest was found in SG for F. excelsior. However, the trends were similar in both 

species. 

Whole plant hydraulic conductance (KL) was calculated by dividing EL with 

the differences in leaf water potential between midday and predawn. Regardless of 

controls, the mean value of KL was found to increase with increasing age of grafted 

seedlings in A. pseudoplatanus (Figure 4.6C). A similar trend was found in F. 

excelsior, except for the value observed in AC4. These results could be a reflection 

of the physical sizes of grafted seedlings used in this study as given in Table 4.2 (i.e., 

seedlings from older donors tended to be smaller). 
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4.4 DISCUSSION 

The sap flow experiments carried out on donor trees in the field can provide 

additional information regarding the age and size effects on morphological and 

physiological characteristics observed in previous chapters. As productivity is always 

referred to physiological processes such as photosynthesis, reduced photosynthesis 

may directly reduce productivity. Vapor pressure deficit (D) is known to indirectly 

affect photosynthesis by influencing stomatal conductance (Grantz 1990). A 

feedback system for the stomata response to D is based on the effect of whole leaf 

transpiration rate on leaf water status or the gradient of water potential between 

guard cells and other epidermal cells (Yong et al. 1997). However, we did not 

calculate the canopy stomatal conductance due to the lack of support from the 

available meteorological data. Nevertheless, since stomatal conductance is closely 

coupled with photosynthesis (Teskey et al. 1996, Tang et al. 1999) and directly link 

with transpiration rate, whole plant leaf-specific transpiration rate (QL)  observed in 

sap flow experiment may become an important parameter to explain the effect of size 

and age on stomatal response in our study. 

Although this experiment was carried out over a short period, the results 

obtained clearly indicated that QL  tended to be increased and leveled out, and may 

subsequently be reduced when D increased regardless of species involved. This is 

because stomata responses to close as the D between a leaf and surrounding air 

increases is caused by an increase in the rate of transpiration. Almost without 

exception, studies of the stomatal response to increases in D report a decline in 

stomatal conductance (Whitehead et al. 1984, Meinzer et al. 1997, Oren et al. 1999). 

Furthermore, as D increases, stomata generally respond by partial closure (Lange et 

al. 1971). However, in most cases, stomatal conductance decreases exponentially 

with increasing D (McCaughey and lacobelli 1994, Monteith 1995). The stomatal 

closure response to increasing D generally results in a non-linear increase in 

transpiration rate with D, as shown in Figure 4.3, leading to a plateau and in some 

cases a decrease at high D (Jarvis 1980, Monteith 1995, Pataki et al. 1999). By 

avoiding high rates of transpiration which would otherwise be caused by increasing 

D, stomatal closure avoids the corresponding decline in plant water potential 

(Saliendra et al. 1995). It is a reasonable premise that the closure response evolved to 
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prevent excessive dehydration and physiological damage. 

When QL  values from trees of different ages/sizes were regressed against 

their respective individual tree age, we found that QL  showed the age related decline 

trends with increasing age in both species (Figure 4.4A). These results do not 

coincide with the ones obtained from leaf-level gas exchanges especially stomatal 

conductance values in Chapter 3. In leaf-level gas exchanges, we found that only net 

photosynthesis on a mass basis (Anet) showed the age-related decline trends, but not 

stomatal conductance and internal CO2  in both species. On the other hand, these 

results are less at variance with the age-related decline trends observed for the leaf 

chemical compositions observed in the field (i.e., N n  and 5'3C). As discussed in 

previous chapter, leaf-level gas exchange could be synchronised over time due to 

accessibility problems and temporal coverage was more limited. Overall, these 

results are similar to the ones observed by Bond et al. (1999). They found that the 

rate of sap flow per unit xylem area was slightly lower for large/old trees compared 

with small/young trees but stomatal conductance and photosynthesis showed the 

opposite trend. They concluded that the difference occurred because branches of 

older trees had a much higher sapwood area to leaf area ratio. However, the cause of 

It is well known that hydraulic resistance increases as trees grow taller. 

Hence, the decreases in QL  were found to be associated with increased hydraulic 

resistance. Hydraulic conductance, which is the inverse of hydraulic resistance, is an 

important regulator of stomatal conductance via a supply-and-demand relationship. 

In our results, hydraulic conductance (KL) showed declining trends with increasing 

age of trees in both species (although the difference was only significant at p<O.lO 

for F. excelsior) (Figure 4.4B) and the trends are similar to those for QL  as shown in 

Figure 4.4A. It is a shame that we could not instrument our AC  for sap flow 

measurements, as many other measurements (e.g., Nm and 613
C) showed a very 

strong decline between AC1 and AC2. Evidence showing reduced hydraulic 

conductance with increasing tree size has been found in numerous species (e.g. 

Mencuccini and Grace 1996b, Hubbard et al. 1999, Ryan et al. 2000). Our results 

also paralleled to those obtained by Vilalta et al. (in press) for Scots pine. They 

found that QL  and KL were reduced in older trees compared with young trees. In 

contrast, Philips et al. (2002) found that KL did not differ between 32 in tall trees and 
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60 in tall trees in their sap flow experiment. They suggested that the structural 

change in the aboveground portions of the trees may moderate the influence of size 

on KL. Furthermore, hydraulic limitation hypothesis is also based on the interactions 

between cavitation avoidance and water transport capacity (McDowell et al. 2002). 

Moreover, this hypothesis also predicts that xylem water potential at the top of tall 

trees is close to the water potential that causes xylem cavitation. Foliage tends to 

hold a minimum water potential beyond which cavitation will occur. Ryan and Yoder 

(1997) stated that stomates close more often in old trees than in young trees to 

prevent such cavitation. Stomatal closure prevents leaf water potential ([i)  from 

dropping below this minimum (Y threshold). In our leaf-level gas exchange study 

(Chapter 3), similar levels of stomatal conductance in old trees compared to young 

trees were found to be accompanied by lower VL  (at least in A. pseudoplatanus) in 

old trees, suggesting that the closure is a response to a decrease in water status 

(Bauerle et al. 1999). However, at least for F. excelsior, the leaf-level data showed 

no difference in either stomatal conductance or water potential across age classes. 

In grafted seedling, an intended experiment with regard to stomatal 

conductance (Gs) versus different levels of D was carried out. This experiment was 

done to gain appropriate values of Gs  since leaf-level gas exchange in Chapter 3 was 

more limited in its coverage of a range of environmental conditions (thanks to 

climate control in the cuvette). Furthermore, one would expect that if the memory of 

donors trees persisted in grafted scions, Gs  of grafted seedlings would not changed 

dramatically. In this chapter, however, G of grafted seedlings did not show any age-

related decline trend in either species. Thus, we can conclude that the response of 

stomatal conductance does not depend on maturation characteristics persisting in 

grafted seedlings. These results suggest that the factor affecting the regulation of 

stomata is again size, rather than age. This can be supported by the results of KL 

especially the ones observed in F. excelsior where the trend is similar to G, despite 

being obtained in two different experiments. In both experiments, neither Gs  nor KL  

showed an age-related trend, although they are different in terms of scion ages. In 

contrast, Day et al. (2001) found the opposite results, whereby grafted scions of red 

spruce showed a declining trend of G with increasing age, but no age-related trend 

was observed in donor trees. However, their results were based on small sample size. 
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Together with the results obtained in previous chapters, the results obtained 

in this chapter strengthen the hypothesis that age- or size-related reductions in 

hydraulic conductance in older or tall trees, causing reduced photosynthesis and 

growth. Several studies have also reported a decline in whole-plant hydraulic 

conductance with height (Mencuccini and Grace 1996a, Ryan et al. 2000, McDowell 

et al. 2002). The association between stomatal and hydraulic conductance with the 

transpirational flux has now been widely observed, but less is understood about how 

stomatal conductance is affected by a decline in hydraulic conductance as trees grow 

taller. It has been proposed that the stomatal control mechanism is affected directly 

by these-height related or age-related changes in plant hydraulic conductance, and 

that this could contribute to a declining productivity as trees get taller (Ryan and 

Yoder 1997). 
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CHAPTER 5 

TESTING THE SUITABILITY OF GRAFTING IN STUDIES AIMED AT 
SEPARATING THE EFFECTS OF AGE AND SIZE IN TREE GROWTH 

5.1 INTRODUCTION 

Previous chapters have shown that the growth and physiological 

characteristics of A. pseudoplatanus and F. excelsior generally decreased with 

increasing age. However, these trends were observed in donor trees in the field but 

not in their grafted scions. Since the trees in the field are significantly variable in 

terms of size, we concluded that the size limitation to water or nutrient transport 

(related to hydraulic limitation) is the major factor that contributes to these findings 

rather than age itself. Hence, we found no evidence that the morphological and 

physiological changes are genetically programmed inside the meristems. 

Nevertheless, we could not finalise our study without taking into consideration the 

problems that may rise from the grafting technique. 

Manipulative experiments such as taking scions from different tree age 

groups to separate the size effect through grafting have to be carefully investigated. 

Since grafting involves two relatively different genotypes (rootstock and scion), two 

potential problems should be considered; 1) the potential constraint on water 

movement created by the graft union itself, and 2) the physiological and 

morphological effects of the fact that the grafted seedlings contain two different 

genotypes. 

When scions are grafted onto rootstocks, a graft union is formed at the 

junction of the two tissues (Atkinson et al. 2001). The gross morphology of this 

union tissue can be quite distinctive and in some cases a considerable swelling exists 

at the tissue junction, predominantly on the scion side (Warne and Raby, 1938). This 

type of swelling is often much more pronounced when a scion is grafted onto a 

rootstock which restricts its vegetative growth, i.e. a dwarfing rootstock (Atkinson et 

al. 2001). The internal anatomy of these graft unions found in apple has revealed that 

127 



the structure of the union tissue is different from that of either the scion or the 

rootstock (Simons, 1986; Soumelidou et al., 1994). Atkinson et al. (2001) reported 

that there is considerable tissue disorganisation, particularly within the xylem in the 

graft union of two-year-old grafted apple clone (Queen Cox). The results from this 

study suggest that the graft union is a region of low hydraulic conductance, relative 

to the scion in particular, which may influence the movement of substances in the 

xylem, such as ions, water and plant growth regulating hormones. There have been 

many suggestions that the graft union itself plays a role in a causing dwarfing effect 

by apparently restricting water flow, or by removing substances, particularly 

minerals and plant growth regulators, from the xylem sap (Knight 1926, Jones 1984). 

Such a hypothesis is consistent with the observed anatomical changes in the graft 

union (Simons, 1986; Soumelidou et al., 1994). 

In this chapter, we initially compare the cumulative results obtained from 

growth characteristics and net photosynthesis rates from previous chapters between 

rootstock, self-grafted and the combination of grafted seedlings from four age 

classes. These comparisons can provide us early indicators of incompatibility issues. 

Later, we also report results of measurements of the hydraulic conductance of entire 

stems (stem with graft union) and scions (stem without graft union) of seedlings of 

the two studied species. The aim of the experiments described here was to determine 

if the graft union provides a hydraulic bottleneck to the movement of water between 

the rootstock and the scion. Additionally, we also recorded the hydraulic 

conductance of entire stems with and without leaves, and of graft sections across the 

four age classes in both species. 

Another potential issue with regards to grafting technique is the involvement 

of two genotypes in the process of producing a single tree. In our case, it was not 

possible to separate the effects of age and size while at the same time obtaining 

survival rates high enough to ensure a reasonably large sample size merely by 

selecting grafting as the sole method of propagation. Therefore, we conducted a 

simple test by also propagating some branches of variable lengths through the air 

layering technique. This technique holds three main advantages over grafting; 1) 

only one genotype is involved, 2) it can produce various seedlings sizes by 

propagating different branch lengths, and 3) there is no alteration in wood structure 
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at the beginning of growth since the sample branches are relatively long compared to 

grafted scions. The plants that have been propagated using this technique can be used 

to test our hypothesis that there is no adverse effect of the genotype complication in 

grafting and also to provide additional evidence on the role of plant size. To our 

knowledge, there is no published account on this kind of study to date. 

5.2 	MATERIALS AND METHODS 

5.2.1 Measurement of hydraulic conductance of grafted seedlings using High 
Pressure Flow Meter (HPFM) apparatus 

The hydraulic conductance of xylem was measured using HPFM (Dynamax 

Inc., Texas, USA). Four and five grafted seedlings were measured within each age 

class of A. pseudoplatanus and F. excelsior respectively. These plants were brought 

into the laboratory under low light condition and the entire pot was immersed in 

water for at least a day to avoid the introduction of air embolisms into the xylem 

after cutting the stem prior to measurement. The stem was cut about five centimetre 

below the graft union (refers to the point at which the scion and understock of a graft 

meet) and was attached to the HPFM by compression couplings. A leaf was excised 

from the top of the plants and bagged with wet tissues before hydraulic conductance 

measurements took place. Leaf water potential was measured on those leaves using a 

Portable Plants Moisture System (Skye Instruments Ltd, Powys. UK). Leaf water 

potentials for all the studied plants were above 1.5 bar (0.15 MPa) suggesting that the 

entire plants were effectively saturated with water and having low transpiring leaves. 

Diameter and height (length) of the entire stem and the scion were also measured 

(Table 5.1). The hydraulic conductance of the entire stem segment with leaf (refers to 

entire aboveground stem, where the cut was made 5 cm below graft union) was 

measured first, then, followed by entire stem without leaf (refers to entire 

aboveground stem after the leaves were removed) and graft union (refers to grafted 

union segment where another cut were made 5 cm above graft union with the total 

length of about 10 cm). The hydraulic conductance of the scion segment (refers to 

the entire stem after the graft union was removed) was calculated by subtracting the 

value of the graft union from the value of the entire stem segment. In all 
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measurements, hydraulic conductance was measured using the transient method 

(Tyree et al. 1995). Three sequential measurements were made on each section and 

the readings were only recorded after water could be seen coming out from the tips. 

The comparison between sections was established by calculating the hydraulic 

resistances for each age class. In addition, hydraulic conductivity for each section 

was also determined by dividing hydraulic conductance by the length of each 

measured section. 

Table 5.1: 	Summary of main characteristics of A. pseudoplatanus (N=16) and F. 
excelsior (N=20) grafted seedlings used in this study. 

Stem 	 Scion Stem length 	diameter 	Scion length 	Leaf area Age class 	diameter 	(cm) 	 (cm) 	(m) (cm) 	 (cm) 
A. pseudoplataiws 

I 	2.19±0.19a 

2 	2.23±0.12a 

3 	2.34±0.13a 

4 	2.17±0.05a 

219.63±22.78a 1.68±0.13a 

181.25 ± 6.82ab 1.62±0.15a 

169.35± 17.92ab 1.61±0.11a 

161.85± 14.31b 1.61 ±0.09a 

208.05 ± 23.54a 	0.330 ± 0.05a 

170.23 ± 6.66ab 	0.342 ± 0.05a 

159.30 ± 17.92ab 	0.198 ± 0.02b 

151.80 ± 14.28b 	0.245 ± 0.03ab 

F. excelsior 

1 1.93 ±0.11a 181.90±6.56a 1.54±0.13a 170.82±6.31a 0.532± 0.04a 

2 1.79 ± 0. 10a 152.30 ± 9.97a 1.42 ± 0.04a 142.24 ± 9.97a 0.516 ± 0.02a 

3 1.95 ±0.06a 150.84± 14.08a 1.29±0.05a 140.80± 14.1 Oa 0.465 ±0.03a 

4 1.72±0.09a 161.50± 15.63a 1.31 ±0.07a 150.90± 15.94a 0.469±0.03a 

Note: Stem represents the whole shoot from 5 cm below graft union to the top and scion represents the 
shoot from 5 cm above graft union to the top. Same letter within each column indicates that age 
classes were not significantly different (using Duncan Multiple Range Test). 
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Plate 5.1: 	Graft union of A. pseudoplatanus (A) and F. excelsior (B), 30 months 
after grafting. 

5.2.2 Growth and physiological characteristics of air-layered plants 

5.2.2.1 Sample collection and preparation 

For the two species, six branches of three different lengths were selected in 

each of three trees of age class 2 (27 years) and age class 4 (140 years) for air 

layering. Due to accessibility problem, lower or middle branches were selected. 

Branches that grew more than 60°  upright and receiving full sunlight were chosen in 

order to avoid the air-layered plants to grow laterally after being transplanted into 

pots. The air layering was conducted in early spring 2004 after a trial was made in 

2003. From the trial, we only succeeded to propagate one branch of A. 

pseudoplatanus but none for F. excelsior probably due to unsuitable timing. Some 

samples were also damaged by birds and squirrels. In 2004, the works were started in 

early spring (March). The selected branches were girdled in an area about 2.5 cm to 
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3.5 cm wide to remove the bark. This girdled area was then scrapped gently to 

remove the cambium layer that can prevent the formation of roots. A commercial 

rooting hormone (Homebase Rooting Hormone powder, PSD 07630) was applied on 

the girdled area before being covered by a lump of medium. The material used as the 

medium was sphagnum peat, and aluminium foil was used to make a lump which 

was then covered by a thick plastic sheet in order to prevent them from being 

damaged by birds and squirrels. Normally, the air-layered branch will root after four 

to eight weeks. In our case, for unknown reasons they took about five months to root 

and the branches were ready to cut after six months. We only succeeded at 

propagating 12 branches out of 18 from age class 2 and 9 out of 18 from age class 4 

in A. pseudoplatanus. No survival was recorded for F. excelsior. 

After the branches rooted (Plate 5.2), they were transferred into 10-L pots, 

potted with sphagnum peat, sand and vermiculite mixed 2: 1: 1, and supplied with 

slow-release fertilizer. The initial diameter and height (length) were recorded after 

being transplanted (Table 5.2). These plants were then placed in the glasshouse until 

the 2005 growing season. In 2005, only nine air-layered plants had survived in each 

age class. About 50% of them started flowering and podding (Plate 5.3). They were 

then arranged in a complete randomised design and rotated every three weeks. 
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Plate 5.2: 	Air-layered branches of age class 2 (left two) and age class 4 (right 
two) after being cut from the donor trees. 
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Plate 5.3: 	Air-layered plants produced flowers and pods in spring. 
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Plate 5.4: 	Air-layered plants were assigned in a complete randomised design and 
rotated every three weeks. 

5.2.2.2 Diameter, height and relative growth rate 

Measurements of total diameter (taken about 10 cm above the soil and 

marked with a permanent marker) and total height were taken in early May 2005 and 

subsequent measurements were taken every four weeks until July 2005. A digital 

calliper and a measuring tape were used for diameter and height measurements 

respectively. Relative growth rate for both parameters were calculated using the 

equations given in Chapter 2. 

5.2.2.3 Leaf-level gas exchange, transpiration rate (E1) and leaf-specific hydraulic 
conductance (K1) 

Gas exchange was measured in three sampling dates: May 7, June 26th  and 

July 31't.  In each sampling date, the measurements were conducted on the three 

uppermost leaves of each individual plant. The LCPro portable photosynthesis 
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system with climate control as described in Chapter 3 was used and average values 

across three sampling dates were obtained. 

Transpiration rate per unit leaf area (EL) and leaf-specific hydraulic 

conductance (KL) were also estimated on July 31st  using the gravimetric method. All 

the air-layered plants were watered to field capacity and covered by black plastic 

bags about 8 hours before taking the measurement (Plate 5.5). The first measurement 

was taken around 3.00 am by weighing the pot on a dual face balance (Plate 5.6). A 

leaf was excised from each plant to measure the leaf water potential. The second 

measurement was carried out around 12.00 pm (after 9 hours). All the leaves were 

excised from the air-layered plants and total leaf area was measured using LI-3 100 

leaf area meter (LI-COR Inc, Lincoln, Nebraska, USA). The difference of plant 

weight was divided by the time interval and total leaf area in order to calculate EL. 

The leaf specific hydraulic conductance (KL) was estimated by dividing EL by the 

difference in leaf water potential between predawn and midday. The equations used 

to calculate EL and KL are as shown in Chapter 4. 

Table 5.2: 	Some characteristics of A. pseudoplatanus air-layered plants used in 
this study (both N=9). 

Age 
class 	Diameter range 	Height range 	Total leaf area range Podding 

(mm) 	 (cm) 	 (m) 	 (%) 

	

6.62- 16.55 	 38.7 -147.1 	 0.02-0.36 
2 	 44.4 

	

(10.79± 1.19) 	(80.5± 12.6) 	(0.12± 0.03) 

	

8.51 -19.36 	60.0-121.1 	 0.03-0.33 
ri 	 55.6 

	

(12.71 ± 1.24) 	(91.1 ± 8.4) 	(0.16 ± 0.03) 

Note: Numbers in parentheses are mean values and standard errors. 

5.2.3 Data analyses 

Means and standard errors calculated for each parameter in the first 

experiment by analysing the data using SPSS (SPSS Inc. 2003). ANOVA was carried 

out in second experiment and the mean values were compared using Duncan 

Multiple Range Test (DMRT) using SPSS. Some of the data were also fitted by 

regression analysis using Sigmaplot 9.0. 
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Plate 5.5: 	The pots of air-layered plants were covered by black plastic bags in 
order to measure water use by gravimetric method. 

Plate 5.6: 	The pot of air-layered plants was weighed using a dual-face Sartorius 
bench-top scale in early morning and at midday. Leaf water potentials 
were also measured at both times. 
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5.3 RESULTS 

5.3.1 Hydraulic resistance and conductivity of the grafted seedlings 

Table 5.3 shows the mean values and standard errors of each parameter 

measured among four age classes of A. pseudoplatanus and F. excelsior. The mean 

values of the whole stem resistance (Rstem) ranged from 66.21% to 80.83% in A. 

pseudoplatanus and from 44.63% to 53.94% in F. excelsior. Meanwhile, the mean 

values of the hydraulic resistance observed in scion sections (R 0 ) ranged from 

45.67% to 58.12% and from 39.42% to 51.58% in A. pseudoplatanus and F. 

excelsior respectively. The mean values of the graft union hydraulic resistance (R aft) 

ranged from 12.54% to 35.15% in A. pseudoplatanus and from 1.44% to 2.85% in F. 

excelsior. An ANOVA analysis conducted on stem and scion values showed that 

there were no significant differences among age classes for either species, indicating 

that graft union did not differ depending on donor age effects on hydraulic transport. 

Table 5.3: 	Means and standard errors of hydraulic resistance from various parts of 
A. pseudoplatanus and F. excelsior grafted seedlings. 

Rstem+Ieaf Rstem Rscion Rgraft  Age class n 
(x 10)  

A. pseudoplatanus 

1 4 8.35±2.04 73.10±5.77 58.12±4.24 14.99±2.44 

2 4 8.15 ± 0.71 80.83 ± 6.10 45.67 ± 3.02 35.15 ± 5.79 

3 4 9.87± 1.86 66.21 ± 4.29 53.67 ±4.40 12.54± 0.87 

4 4 9.85 ± 2.07 79.81 ± 5.76 49.21 ± 9.49 30.60 ± 13.97 

F. excelsior 

1 5 10.99 ± 1.25 53.94 ± 8.60 51.58 ± 6.41 1.89 ± 0.27 

2 5 12.72 ± 1.19 49.23 ± 3.40 43.59 ± 1.68 2.39 ± 0.83 

3 5 13.32 ± 1.94 44.63 ± 4.65 39.42 ± 3.39 1.44 ± 0.10 

4 5 16.20 ± 4.98 45.03 ± 6.07 39.90 ± 3.38 2.85 ± 0.63 

Note: Rstem  = stem hydraulic resistance for the whole tree excluding root system, R50  = scion 
hydraulic resistance, and Rgraft = graft section hydraulic resistance. 
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The hydraulic conductivity (i.e., conductance per unit length) was also 

calculated in stem and scion segments of each age class. The mean values and 

standard errors of these parameters were plotted for each age class of both species, as 

shown in Figure 5.1 and Figure 5.2 respectively. The mean values of hydraulic 

conductivity for both stem and scion sections were found higher in AC 1 of both 

species but no trend related to age was observed. These results also showed no 

significant difference in hydraulic conductivity between stem and scion sections. 
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Figure 5.1: Means of hydraulic conductivity per unit length between stem and 
scion sections in each age class of A. pseudoplatanus. 
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Figure 5.2: Means of hydraulic conductivity per unit length between stem and 
scion sections in each age class of F. excelsior. 

5.3.2 Growth and physiological characteristics of air-layered plants of A. 
pseudoplatanus 

Total diameter and total height growth were almost constant throughout the 

sampling period for both age classes (Figures 5.3 and 5.5). The growth changes were 

very small as shown by diameter growth increment over time (RDGR) and height 

growth increment over time (RHGR) (Figures 5.4 and 5.6). These low rates of 

growth over time in air-layered plants after they were transplanted into pots could be 

due to allocation of photo synthates or other resources to belowground structures such 

as roots. Unfortunately, root biomass could not be measured due to the small number 

of available plants. Plate 5.7 shows evidence of substantial growth of roots eight 

months after transplanting (compare Plate 5.7 with Plate 5.2). When these 

parameters were analysed according to whether plants were non-podded and podded, 

we also found that the mean values of RDGR and RHGR were higher in non-podded 

plants (Figures 5.7 and 5.8), suggesting that an influence of this sink factor at the 

time of fruit growth. 
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Figure 5.3: Mean diameter of A. pseudoplatanus air-layered plants of two age 

classes taken over four sampling times since the initial measurement. 
Bars indicate standard error. 
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Figure 5.4: Relative diameter growth rate of A. pseudoplatanus air-layered plants 
on two age classes. Same capital and small letters represent no 
significant difference in first and second measurement respectively. 
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Figure 5.5: Mean height of A. pseudoplatanus air-layered plants of two age classes 
taken over four sampling times since the initial measurements. Bars 
indicate standard error. 
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Figure 5.6: Relative height growth rate of A. pseudoplatanus air-layered plants on 
two age classes. Same capital and small letters represent no significant 
difference in first and second measurement respectively. 
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Figure 5.7: Relative diameter growth rate of A. pseudoplatanus air-layered plants 
observed in podded and non-podded plants. Same capital and small 
letters represent no significant difference in first and second 
measurement respectively. 
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Figure 5.8: 	Relative height growth rate of A. pseudoplatanus air-layered plants 
observed in podded and non-podded plants. Same capital and small 
letters represent no significant difference in first and second 
measurement respectively. 
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Plate 5.7: 	Air-layered plants of age class 2 (left two) and age class 4 (right two) 
after eight months transplanted into pots. 

In concordance with growth studies, physiological measurements were also 

taken in these air-layered A. pseudoplatanus plants. ANOVA was carried out to 

compare these two age classes for their leaf-level gas exchange parameters, such as 

net photosynthesis (Anet), internal CO2  concentration (C1), transpiration rate (E) and 

stomatal conductance (Gs). The whole-plant transpiration rate (EL) was also 

estimated using gravimetric methods. Measurements of predawn water potential 

(redawn) and midday water potential (Pmidday) were also taken to calculate whole-

plant hydraulic conductance (KL). Table 5.4 shows the ANOVA summary of 

parameters mentioned above. Although the mean values of those parameters were 

generally higher for the younger class, no significant difference was found between 

these two age classes. 
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Table 5.4: 	Results of leaf level gas exchange, transpiration rate and leaf-specific 
hydraulic conductance on the two age classes of A. pseudoplatanus air-
layered plants. The values presented in the table are mean and standard 
error with significant level at p<0.05. 

Age 
Parameter 	 (year) 	 F value 

-27 	 -140 

Anet  (mo1 m 	s') 10.82 + 0.44 

Ci (pmol mo1) 174.43 ± 7.69 

E (mmol m2 s) 2.20 ± 0.12 

Gs(mmolm 2 s) 133.70± 11.61 

EL  (mmol m 2  s') 1.74 ± 0.22 

VIP.&,,, (-MPa) 0.482 ± 0.04 

10.44 ± 0.48 0.33' 

164.36± 8.19 ns 0.80 

2.06±0.13 059flS 

127.78 ± 12.49 0.12 

1.66±0.09 0.12ns 

0.476 ± 0.04 0.0 ins 

/nidday(MPa) 	 0.755 ± 0.06 	 0.915 ± 0.09 	2.16 ns  

KL  (mmol m 2  s MPa 1 ) 	 6.91 ± 1.09 	 4.70 ± 0.97 	2.29ns 

Note: the '+' represents mean standard error. ns = not significant difference. 

Regression analyses were conducted between morphological parameters and 

some physiological parameters to get a clearer picture of the results obtained 

previously. Regardless of plant age, negative relationships were observed between G 

and mean diameter and mean height of air-layered plants (Figure 5.9). These 

relationships were found significant at p<O.Ol and p<0.05 respectively. Negative 

significant correlations (p<0.05) were also found between Anet and mean diameter 

and mean height of air-layered plants. 
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Figure 5.9: 	Relationship of stomatal conductance with mean diameter (A) and 
mean height (B), and net photosynthesis with mean diameter (C) and 
mean height (D) across two age classes. The '**' indicates 
significant correlation at p<O.Ol, and '*' indicates significant 
correlation at p<O.OS. 

The EL and KL of air-layered plants obtained from gravimetric methods were 

also correlated with their respective diameters and heights as shown in Figure 5.10. 

Significant negative correlations were found (p<0.01) for EL with increasing 

diameter and height of the plants. Furthermore, higher negative correlations 

(p<O.001) were observed between KL and plant diameter and height. 
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Figure 5.10: 	Relationship of transpiration rate with total diameter (A) and total 
height (B), and leaf-specific hydraulic conductance with total 
diameter (C) and total height (D) across two age classes. The '***' 
indicates significant correlation at p<0.001, and '**' indicates 
significant correlation at p<0.01. 

Overall, the results obtained in this experiment showed that the difference in 

growth and physiological characteristics of air-layered seedlings were not due to the 

age of donor trees, instead, they were influenced by the size of the plants. The results 

also showed the effect of sink factor such as belowground root allocation and 

reproductive allocation, on lack of aboveground growth one year after air layering.. 
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5.4 DISCUSSION 

5.4.1 Comparisons between rootstock (RS), self-grafted (SG) and grafted 
seedling (GS) 

Previous chapters provide evidence that the age-related decline trends are 

triggered by size rather than age per Se. This argument is based on the comparison of 

the results obtained from the donor trees and the grafted seedlings. Despite the fact 

that grafted seedlings had been obtained from trees of different age, no age-related 

trends were observed in growth and physiological characteristics as well as leaf 

chemical compositions. Nevertheless, without proper evidence that grafting 

technique has no significant effect on scion growth, a strong conclusion cannot be 

established. 

In this study, grafting success was found to be relatively high, especially in 

the case of F. excelsior that showed no evidence of graft incompatibility. 

Furthermore, the overall results obtained from growth characteristics and net 

photosynthesis from previous experiments can provide additional evidences that 

grafting technique did not affect the overall growth of grafted seedlings. For 

example, comparisons were established between rootstock (RS), self-grafted (SG) 

and a combination of grafted seedlings from four age classes (GS) with regard to 

these parameters. In A. pseudoplatanus, no significant difference was detected 

among RS, SG and GS in RGR SS  (Figure 5.11). After two growing seasons, the 

mean value of RGR SS  was found higher in RS rather than in SG and GS. Similar 

results were also observed in EG (Figure 5.12). In contrast, Greenwood et al. (1989) 

found that grafted scions originating from the same rootstocks grew more than their 

intact counterpart, since the rootstock provided a considerably larger root system 

compared to rootstock itself. Their results were supported by the ones observed in F. 

excelsior. The potential reason explaining this lies in the stress experienced by RS in 

A. pseudoplatanus in the first growing season. In our observations, rootstocks from 

A. pseudoplatanus suffered some stress due to the attack from anthracnose fungus 

(refer to Plate 5 in Appendix). After RS overcome the stress, they grew much faster 

in the second growing season compared to SG and GS, which was the reason why 

RGR SS  and EG were higher in RS. Figure 5.13 clearly shows the effect of stress on 

RS. In the first growing season (2003), net photosynthesis rate was much lower in 
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RS compared to SG and GS but increased tremendously in the second growing 

season (2004). These results also showed that upon recovery from the grafting shock 

in first growing season, net photosynthesis rates in A. pseudoplatanus increased 

substantially in second growing season. However, an opposite trend was observed in 

F. excelsior (Figure 5.14). Based on our observations, this could be due to the 

increase in leaf thickness over leaf area in F. excelsior that contribute to the decrease 

in net photosynthesis rate per unit mass in F. excelsior, whereas in A. pseudoplatanus 

the leaves tend to increase in area rather than thickness. 
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Figure 5.11: 	RGRmass  in rootstock (RS), self-grafted (SG) and combination of 
grafted seedlings from four age classes (GS) in both species. 
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Figure 5.12: 	E0  in rootstock (RS), self-grafted (SG) and combination of grafted 
seedlings from four age classes (GS) in both species. 
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Figure 5.13: 	Net photosynthesis rates in rootstock (RS), self-grafted (SG) and 
combination of grafted seedlings from four age classes (GS) in A. 
pseudoplatanus over two growing seasons (2003 and 2004). 
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Figure 5.14: 	Net photosynthesis rates in rootstock (RS), self-grafted (SG) and 
combination of grafted seedlings from four age classes (GS) in F. 
excelsior over two growing seasons (2003 and 2004). 

In synthesis, these comparisons did not show any evidence of grafting 

incompatibility in the grafted seedlings, despite some differences observed in growth 

characteristics and net photosynthesis rates in the first growing season. Grafted 

scions taken from four age classes in the field had either higher or similar growth and 

physiological behaviour as the self-grafted seedlings and the rootstock seedlings. We 

can then conclude that, upon recovery from the grafting shock, the differences in net 

photosynthesis rate disappeared and values became similar to the ones observed in 

control seedlings. 

5.4.2 Hydraulic conductance of grafted seedling stems 

It has been proposed that grafting can influence the total growth of trees, 

especially scions. There are numerous studies suggesting that rootstock and graft 

union play important roles in controlling scion growth. Those studies suggested that 

the vigour of rootstock onto which a scion was grafted influenced the scion hydraulic 

capacity. For example, low hydraulic conductance found in rootstock reduces scion 

vigour (Syvertsen and Graham 1985, Atkinson and Else 2001). When tissue become 
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disorganised, particularly within the xylem, low hydraulic conductance was found in 

the graft union (Atkinson et al. 2001). 

To cater for the problem that may exist from rootstock effects, we used one 

rootstock genotype with physical similarities. Some studies showed a reduction in 

vegetative growth of scions due to the use of dwarfing rootstocks (Beakbane and 

Thompson 1947, McKenzie 1961) and other reported increases in scion vigour with 

rootstock vigour (Syvertsen and Graham 1985). The use of compatible rootstock 

during grafting can eliminate the effect of rootstock on scion growth and lead to the 

conclusion that the differences occuring in grafted seedlings are mainly due to the 

differences among scions themselves. Our approach has been supported by 

Jayawickrama et al. (1991). They found that in most studies related to grafting in 

conifers, there were no large effects of rootstock on scion growth. 

Results from previous chapters showed that no age-related trends were found 

in growth or even gas exchange and leaf chemical composition for the grafted 

seedlings, although statistical significant differences were sometimes detected for 

some of the parameters among scion ages. However, these results could not be 

confirmed without proper evidence related to grafting. The most important factor 

causing dwarfing effects by apparently restricting water flow between rootstocks and 

scions, is the graft union itself (Atkinson et al. 2001). Structural anomalies, 

specifically the graft union, can result in decreased water and nutrient status in the 

scion due to reduced transport volume. Hence, particular attention was focused on 

the effects of graft union instead of the effects of rootstock. Here, we show that graft 

union has had no effect on hydraulic conductance of grafted seedlings produced from 

physically and genetically similar rootstock in two different species with different 

xylem anatomy. 

From the results obtained, we found that the hydraulic conductivity of entire 

stem segments (stems with graft union section) did not differ from that of scion 

segments (stems without graft union section) in either species, as shown in Figure 5.1 

and Figure 5.2. In fact, the hydraulic resistances between these two segments were 

also not significantly different. Also, no significant differences were found among 

age classes in either species. These results suggest that the graft union did not 
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significantly impact on water flow in the stem between rootstock and scion. 

Furthermore, Basile et al. (2003) found that rootstocks had no effect on hydraulic 

conductance through the scion or the graft union. Vanderklein et al. (2006) also 

found that hydraulic conductance through the graft union in Scots pine grafted 

seedlings no longer plays a role in water movement since their resistances were much 

lower than shoot and root resistances. Similar results were also found in our study. 

Hydraulic resistance observed in graft unions were substantially low compared with 

the ones observed in stem and scion segments for both species, suggesting that their 

relative importance is limited. The observed results may reflect the vascular 

development after grafting. In the most severe cases of abnormal graft union 

development, incompatibility can result from deterioration of vascular connections 

(Simons 1982) with building up of resistance in it that could reduce the flow of 

water, nutrients and carbohydrates through vascular tissues. Incompatibility 

occurring in grafting could lead to improper growth of trees, such as smaller scions 

and loss of vigour. Furthermore, the failure or deterioration of the graft union could 

possibly lead to tree death (Moore and Walker 1981). In our case, however, survival 

rates (refer to Chapter 2) in both species were considerably high, especially in F. 

excelsior suggesting that both rootstocks and scions are compatible with no 

restriction in transportation in graft union. 

5.4.3 Growth and physiology of air-layered plants from two age classes 

Our study has been extended by propagating branches through air-layering 

from donors identical to the ones used for grafting. Although we did not successfully 

propagate branches from F. excelsior, the ones obtained from A. pseudoplatanus 

provided useful information regarding age- and size-related trends. Furthermore, if 

there were any complications introduced by the presence of two different genotypes 

in grafting, air-layering study can act as a check to strengthen the results depicted by 

grafted seedlings in previous chapters. Given the small number of air-layered plants 

obtained, this kind of study should be considered as preliminary and further 

investigation is required to increase our understanding on age- and size-related 

trends. 

152 



Growth rates were generally very small, as shown in Figures 5.4 and 5.6. The 

absolute growth patterns were about levelled out over time (Figures 5.3 and 5.5) in 

both age classes. Slower growth suggests the partitioning of carbon or 

photosynthates into different sinks, such as belowground development (roots) 

especially during the initial establishment of air-layered plants, and fruit 

development. Another factor may possibly lie in meristem memory of donor trees 

that persist in air-layered plants and contributes to the slowing in growth. 

Furthermore, direct measurements on growth, gas exchange, whole plant 

transpiration and hydraulic conductance showed that air-layered plants did not differ 

between two age classes, despite the samples being taken from trees from two 

contrasting ages. Although only two age classes were used in this study, the findings 

support the results previously observed for grafted seedlings. Both grafted and air-

layered plants did not show any age-related trends, despite all the studies were 

carried out on them. Meanwhile, when G, 	EL and KL were regressed against 

size of the plants, we found that the size-related decline trends occurred in plants 

ranging from 6.62 to 19.36 mm in diameter and 38.7 to 121.1 cm in height, with no 

regards to plant ages (Table 5.2). This is not surprising, because we believe that there 

is no alteration in xylem anatomy in air-layered plants at least initially, that 

contributes to increasing resistance with increasing length even over a few 

centimetres. This also supports the slower growth of air-layered plants observed 

above. Furthermore, the study conducted by Petit et al. (in prep) on branches 

sampled from the same trees showed that the hydraulic resistance of intact branches 

increased with increasing length of the branches from both donor trees in the field 

and from young trees in the field as well as grafted seedlings just within a meter 

length (Figure 5.15). He also found that the build-up of hydraulic resistance with 

distance from the tip was faster in old trees in the field compared to young trees and 

grafted seedlings, suggesting that build-up of hydraulic resistance in branches does 

not depend on age but on size. 
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Figure 5.15: 	Relationship between hydraulic resistance to tip and distance from 
tip of branches taken from old and young trees in the field, and old 
and young grafted seedlings of A. pseudoplatanus (source: Petit et 
al. in prep) 

In conclusion, there was no evidence that the graft union provided a hydraulic 

bottleneck to the scions. The proper contact between rootstocks and scions and 

compatible genotypes used for grafting may have contributed to this situation. 

Furthermore, air-layered plants once again supported the results obtained in the 

previous chapters. The growth and physiological changes in air-layered sycamore 

plants were independent of the differences in plant ages but simply controlled by 

differences in plant size. 
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CHAPTER 6 

GENERAL CONCLUSION 

With two broadleaf species having different water transport anatomies 

selected in this study, we can finally come to the conclusion with regard to the 

effects of age (maturation) and size on growth, morphological and physiological 

changes in tree ageing. Despite numerous hypotheses presented in many journals, 

only two main hypotheses have been identified. The hydraulic limitation hypothesis 

proposes that the changes during tree ageing are mainly due to size limitations in 

transporting water and nutrients to the top of the tree. The reduction of water supply 

with increasing path length to the leaves will reduce stomatal conductance and 

reduce photosynthesis rate. Decreased photosynthesis may lower mass and height 

growth through lower photosynthetic capacity, whereas lower photosynthetic 

capacity is related to the decrease in leaf nutrition status. On the other hand, the 

maturation-based hypothesis refers to developmental changes in meristematic 

behaviour that occur as trees increase with age (meristem-intrinsic factors). These 

developmental changes are a form of differentiation and probably have a cellular 

basis, involving the meristematic cells themselves. As meristems become mature, 

they change by exhibiting lower growth potential, producing different types of 

foliage and branching patterns, exhibiting plagiotropic growth and reproductive 

competence. 

The size of trees usually increases with increasing age. Hence, it is difficult to 

quantify which factor mainly controls growth and physiological characteristics of 

trees. Nevertheless, experimental manipulations such as grafting using scions from 

differently aged of trees onto similar rootstocks can separate the effects of size and 

age. If trees were genetically programmed, the characteristics of meristematic tissue 

would persist when scions from older trees are grafted onto young rootstocks. This 

technique provides the opportunity to have seedlings physically similar in terms of 

height or diameter but different in age. 
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In our study, we have separated a few experiments into chapters that focussed 

on growth, morphology and physiology of two species that grow in a mixed uneven-

aged species woodland. This site was selected because it comprises trees from 

different age or size classes dominated by A. pseudoplatanus and F. excelsior that 

grow together in a loosely dense woodland avoiding serious resource competition 

effects. Comparisons between size and age effects has been established by 

propagating scions from selected trees onto similar rootstocks. 

The growth and leaf characteristics were studied on both the donor trees and 

the grafted seedlings for both species and the results were presented in Chapter 2. In 

both species, the growth efficiency (EG) declined with increasing age of donor trees 

in the field. The decline in EG with ageing has been supported by the substantial 

reduction in relative mass growth rate (RGRmass). The sharp decreases in RGRmass  

with increasing tree age have been observed in both species suggesting that growth 

rates are getting slower in ageing trees. In contrast, AGRISS  increased with 

increasing age or size of the donor trees because it is a size-dependent parameter. It 

only describes the pattern of biomass accumulation through time not the rate at 

which a given unit of biomass contributes to tree growth. The SLA was also 

measured in this study since it is the most important determinant of RGR. Changes in 

SLA with increasing age were also observed in both species. The leaf area to leaf 

mass ratios got smaller with age, despite some older trees in F. excelsior showed 

broader leaves compared with younger trees. However, these results are still not 

enough to test whether the changes in growth or leaf characteristics were triggered by 

size or by age. Therefore, results from grafting experiments provided us with the 

answer to this phenomenon. Despite the fact that SLA and phenological 

characteristics persisted in scion meristems, grafted seedlings did not show any age-

related trends in EG  and RGR SS  or even AGRmass. These results suggest that the 

reduction in growth characteristics with tree age is lies in size not age per Se. 

Instead of growth measurements, gas exchange and leaf chemical 

composition measurements were also carried out on donor trees and grafted 

seedlings. These results may be important in explaining the decline in growth 

characteristics with tree ageing. The age-related decline trends were observed in net 

photosynthesis per unit leaf mass (Anet) for both species in the field as shown in 
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Chapter 3. The reduction in Anet with tree age has also been supported by leaf 

nitrogen content (Nm). The decrease in Anet of donor trees is triggered by lower 

photosynthetic capacity from decreased Nm. However, measurement of stomatal 

conductance (G) did not strongly support the reduction of Anet  due to stomatal 

closure in tall or old trees through limitations in hydraulic conductance. The G 

trends were found to be similar to the trends from leaf water potential (eaf), 

suggesting that stomata may have been regulated by Pfeaf at the time of 

measurements. Furthermore, the lack of support from one-time gas exchange 

measurements on donor trees, especially G is counter balanced by measuring carbon 

isotope discrimination ( 13C) on the same sampled leaves. Unlike G, 613C showed 

strong declining trends with increasing tree age in both species. These results support 

the reduction in G with ageing. Furthermore, our grafted seedlings did not show any 

age-related decline trends in gas exchange or even leaf chemical composition 

parameters, despite two series of measurements having been carried out during their 

first and second growing season. Nevertheless, those parameters regressed well with 

SLA and similar results were also observed in donor trees. Given these results, size 

had the greatest effects on tree growth as well as tree physiology rather than 

maturational processes. 

The study of whole tree transpiration by sap flow measurements may provide 

further evidence that whole plant leaf-specific (QL)  and whole plant leaf-specific 

hydraulic conductance (KL) decreased with size or age. It is a shame that we could 

not calculate canopy stomatal conductance from QL  data because net radiation data 

are not available. This canopy stomatal conductance may be useful to compare with 

the stomatal conductance values obtained from leaf level gas exchange 

measurements. Since there is a direct link between stomatal conductance and 

transpiration rate, any changes in stomatal response to fluctuating environmental 

conditions will also change the rate of transpiration. Hence, we can only use the QL 

parameter to explain the effect of age and size on water use of these two species. The 

results obtained by significant non-linear regression analyses in Chapter 4 showed 

that QL  and KL decreased with increasing age in both species. It is important to point 

out that QL  reductions with tree age or size are fully coupled with hydraulic 

limitations to stomatal conductance. Comparing these results with those obtained 
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from gravimetric methods for grafted seedlings in the glasshouse, no age-related 

trends were observed in EL  and KL  or even G in either species. Our results once 

again suggest that size alone is the dominant factor explaining differences in G, EL  

and KL between old and young trees. 

As we were aware that grafting could create potential bias in the results 

observed for grafted seedlings, experiments regarding stem hydraulic conductance 

were carried out. Furthermore, air-layered seedlings were also introduced to cater for 

this problem, with regard to the potential genotypic complications that may arise 

from grafting. No significant effect of grafted union on stem hydraulic conductivity 

was found in either species. The hydraulic resistance differences between stem and 

scion were about 12.5 to 35.2% in A. pseudoplatanus and 1.44 to 2.85% in F. 

excelsior. The substantial differences in hydraulic resistance of the graft union 

between these two species are probably due to the differences in their anatomical 

structures. Apparently, these findings suggest that there was no restriction to water 

flow or other substances in the grafted seedlings. Furthermore, no significant 

differences were found among two age classes of air-layered A. pseudoplatanus 

plants with respect to growth, gas exchange parameters, EL and KL. The results also 

showed a reduced growth of air-layered plants, due to the sink effects to 

belowground growth and fruit development. In general, the differences in Anet, G, EL  

and KL among air-layered plants were triggered by size, since they varied in diameter 

and height or even in physical look such as single stem or multiple branches. This 

argument has been supported by the results from linear regression analysis between 

those parameters and diameter or height. 

Overall, our results once again support the hydraulic limitation hypothesis, 

which is, that the reduction of growth of trees with ageing is triggered by size 

limiting factors rather than controlled by meristematic age. Since air-layering 

technique has the potential to propagate branches of trees from different ages and 

lengths, future studies should involve various tree ages and branch lengths to provide 

a clearer picture in age- and size-related research. 
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APPENDIX 
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Plate 1 
	

Edinburgh City Council woodland at Cramond (photo: Jordi 
Martinez-Vilalta). 
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Plate 2 
	

Grafted unions were transplanted in trays (photo: Jordi Martinez- 
Vilalta) 

161 



- 

Plate 3 	: All the grafted trees were placed in a well-ventilated plastic roof 
greenhouse (photo: Jordi Martinez-Vilalta) 

Plate 4 	: Grafted sycamore three months after grafting. 
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Plate 5 	: Grafted sycamore six months after grafting (Note: sycamore rootstock 
leaves have serious anthracnose fungus infection). 
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Plate 6 	: Grafted ash three months after grafting. 
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Plate 7 
	

Grafted ash six months after grafting. 

Plate 8 
	

LCPro portable photosynthesis system used in gas exchange 
measurements. 
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Plate 9 	Portable Plants Moisture System used for leaf water potential 
measurements. 

late 10 	: All grafted seedlings were left outside for hardening after first 
growing season. 
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Plate 11 	: Grafted seedlings at the beginning of spring about 14 months after 
grafting. 
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Plate 12 	: Grafted seedlings started to produce flowers in spring, especially from 
F. excelsior. 



Plate 13 13 Grafted seedlings from both species in second growing season. 

Plate 14 
	

Grafted seedlings of F. excelsior in second growing season. 
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Plate 15 	: Close up picture of F. excelsior pods. 

Plate 16 	: Some of materials and equipments used in building Granier's sensors. 



Plate 17 	: Datalogger, multiplexer and heating box were kept in a secured box. 

Plate 18 	: Batteries to power the dataloggers and heating boxes were kept in this 
box to avoid exposure to rain etc. 
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Plate 19 	: A climber was used to take branches from the top of big trees for gas 
exchange measurements. 

Plate 20 	LCpro portable photosynthesis system, a bucket of water, tissues and 
black bags used in gas exchange measurements in the field. 

170 



Plate 21 	Checking the air-layered branches for any sign of rooting. 

Plate 22 	: Some of the air-layered branches are still intact on the donor trees. 
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Plate 23 
	

Sign of damage by birds. 

Plate 24 	: Serious damage on air-layered branch. 
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