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A new method for identifying the parameters of a 

continuous system has been developed. This method the 

Modified Modulating Function Method (MMFM), is a 

development of Shinbrot's Modulating Function Method. 

The auto and cross correlation functions are used in 

place of the input and output signals in, the 

identification algorithm. This enables pre-estimation 

checks to be performed on the data, and also enables 

important information about the system to be determined 

prior to identification. A fast correlation algorithm 

was developed to perform the large number of 

correlations needed. This employed Fell's Skip 

algorithm in a Relay correlator. The MMFM was developed 

as a fault detection system to be applied to a Diesel 

Alternator set at Stornoway power station. Tests were 

carried out on simulated systems to determine the 

viability of the system before on-line tests at 

Stornoway power station. 

A review of system identification has been carried 

out, along with a review of fault detection methods 

using transfer function techniques. This reveals a need 

for an accurate method for determining the continuous 

transfer function. The Modified Modulating Function 

Method is a possible solution to this problem. 



For Helen 



ACKNOWLEDGEMENTS 

My thanks goto the Department of Electrical Engineering 

at Edinburgh University for providing the opportunity 

and the facilities to carry out this research. I would 

like to thank Dr. J.R. Jordan for his help, friendship, 

support and encouragement during this research project. 

I would also like to thank Dr. H.W. Whittington for his 

help and support, and all my friends and colleagues in 

the Digital Systems Laboratory at Edinburgh University. 

I am also indebted to the North of Scotland 

Hydro-Electric Board for the support and facilities 

provided. In particular I would like to thank Mr. P.M. 

Johnston for his help and co-operation, and Mr. M.D. 

Mcleod for the use of his power station at Stornoway. 

I would also thank all the station staff at Stornoway 

for their help and co-operation. 

Particular thanks go to Mrs J. Paterson for her 

patience in typing this thesis and to Mr J. Paterson for 

proof reading this work several times. I would like to 

thank my wife Helen for her patience, support and 

understanding during the writing of this thesis. 



TITLE PAGE 

ABSTRACT 

DECLARATION OF ORIGINALITY 

ACKNOWLEDGEMENTS 

GLOSSARY 

LIST OF CONTENTS 

CHAPTER 1 	INTRODUCTION 	 - 

1-1 	Condition Monitoring 	- 	 3 
1-2 	Diesel Engines and their Applications 	6 
1-3 	Diesel Condition Monitoring 	 ii 

1-4 	The Programme of Research 	 17 
1-5 	Thesis Format 	 19 

CHAPTER 2 	SYSTEM IDENTIFICATION AND FAULT DETECTION 21 
2-1 	System Identification 	 21 
2-2 	Non-Parametric Identification 	 24 
2-2-1 	Time Domain Methods 	 26 
2-2-2 	Frequency Domain Methods 	 34 
2-3 	Parametric Identification 	 35 



2-3-1 System Modelling 36 

2-3-2 Discrete Techniques 40 

2-3-3 Continuous Techniques 54 
2-4 Modulating Function Method 71 

2-4-1 Unified Approach 88 
2-5 Fault Detection 90 
2-5-1 Fault Detection Based on Non-Parametric 

Methods 94 
2-5-2 Fault Detection Based on Parametric 

Methods 103 

CHAPTER 3 MODIFIED MODULATING FUNCTION METHOD 109 

3-1 Modified Modulating Function Method 109 

3-1-1 Noise 116 
3-1-2 Modulating Functions 118 

3-2 Correlation 122 
3-2-1 Discrete Correlation 126 
3-2-2 Polarity Correlation 128 
3-2-3 Relay Correlation 131 

3-2-4 Skip Algorithm 132 
3-3 Diesel Modelling 133 
3-3-1 Model Order 139 

3-3-2 Time Delay 142 

3-3-3 Closed Loop Transfer Function 144 

CHAPTER 4 EXPERIMENTAL SYSTEM 145 

4-1 Test Hardware 111.5 



4-2 Test Software 169 
4-3 Test Programme 160 

CHAPTER 5 RESULTS 161 
5-1 Software Simulations 161 
5-1-1 Verification of MMFM 162 

5-1-2 Time Delay 166 
5-1-3 Model Order 170 
5-2 Analogue Simulations 182 
5-2-1 Skip Algorithm 184 
5-2-2 Fault Simulation 192 
5-3 Diesel Engine Results 196 
5-3-1 Diesel-Alternator Set 	Transfer 

Function 196 
5-3-2 Diesel-Alternator Set 	Frequency 

Response 	 203 
5-3-3 	Comparison of Frequency response and 

MMFM Results 	 211 

CHAPTER 6 	CONCLUSIONS 	 213 

REFERENCES 	 217 

APPENDICES 	Papers Published 	 225 



CHAPTER ONE 

INTRODUCTION 

Fault detection using transfer function techniques has 

largely been used to detect and diagnose faults in 

analogue electronic circuits. Only recently has there 

been an attempt to extend these techniques for use on 

mechanical systems. This research work has been devoted 

to the application of fault detection using transfer 

function techniques to a large diesel engine used by the 

North of Scotland Hydro-Electric Board (NSHEB) for the 

generation of electricity in their Stornoway power 

station. 

Diesel engines are expensive to maintain and repair. 

In addition, rising fuel oil prices over the last decade 

have increased operation costs still further. 

Manufacturers have made great efforts to improve the 

efficiency of their engines UU offset these costs. 

Even so the diesel engine market is under threat from 

other power sources. Railways are being electrified, 

small rural and island power stations are being 

connected to grid systems. Even the shipping market, 

where the diesel engine has achieved all but total 

dominance as the main propulsion unit, is in a world 

wide slump. This means the diesel manufacturer, to 



survive, must reduce the capital cost of his plant and 

the operational costs by lowering maintenance and fuel 

costs. 

One possible method of achieving this is to employ a 

condition based maintenance scheme, where the 

maintenance requirements of the engine are determined by 

its condition. This reduces unnecessary maintenance and 

also allows the maintenance and repair of the engine to 

be scheduled to suit the plant duty. This combined with 

an ability to reduce the number of unplanned outages 

allows for a reduction in the plant margin, and also a 

reduction in the spares inventory held, thus a large 

saving in the capital cost of the plant can be made. 

The necessary instrumentation for this condition 

monitoring system can be expensive and requires many 

access points around the engine. In this research work 

it is intended to reduce the cost of implementing a 

condition based maintenance scheme by using a transfer 

function technique to detect faults or a loss of 

performance in the engine. This method would require 

only two access points on the engine thus reducing 

instrumentation costs considerably. For this, a means 

of estimating the parameters of a linear lumped 

parameter continuous transfer function was required. 

The Modified Modulating Function Method was developed 
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for this purpose. 

1-1 Condition Monitoring. 

Condition monitoring (CM) of large mechanical systems 

is playing an ever increasing role in the safe and 

economic operation of these systems. When operating a 

condition monitoring regime the objective is to extract 

sufficient information from the system to be able to 

estimate the condition or health of that system, and to 

make maintenance decisions based on that information. 

Condition monitoring very largely supersedes the need 

for planned preventative maintenance (PPM). PPM can 

result in components being adjusted or replaced that 

need not be changed, also a component may fail before 

the next scheduled maintenance period, thus resulting in 

an unplanned outage. This can lead to unnecessary 

maintenance costs and system down time. This regular 

maintenance also introduces the possibility of human 

error when maintenance tasks are carried out. Therefore \ 

it would be better to have a system which only 

implemented system maintenance, when required. 

Condition monitoring is such a system. 

Condition monitoring aims to reduce costs by 

increasing the reliability of the plant, and reducing 

maintenance costs. This is achieved by monitoring 
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various parameters of the system, such as temperatures, 

pressures and vibration at various critical points 

around the plant. This information represents a 

signature of the plant. It has been shown [1] that 

these parameters will change significantly before a 

failure situation arises in the plant. The faulty 

signature can be compared with the healthy signature and 

some decision arrived at as to the cause of the 

incipient failure, and the lead time to failure. This 

can be achieved by a thorough knowledge of the plant and 

its various failure mechanisms, or by comparison with 

past failure events. The latter course requires a long 

build up time to acquire sufficient data. Having 

assessed the likely cause of the incipient failure and 

the likely time to failure, it will then be possible to 

order the replacement parts and organise the maintenance 

staff to implement the necessary maintenance at a time 

suitable for the operation of the plant. 

In this way it should be possible to reduce the number 

of maintenance staff necessary to repair unplanned plank 

outages and also reduce the inventory of spares 

necessary to cover these events, as they can now be 

planned and the parts ordered in advance. As a result 

of this, machine downtime will be reduced, and much more 

productive time can be gained from each machine. Hence 

the plant margin, the extra machines necessary to 



perform the plant function while repairs are carried out 

on other machines, will be reduced, thus lowering the 

capital cost of the plant. As a result of the plant 

being continuously monitored, its performance should not 

be allowed to drift far from the optimum, and hence it 

is expected that fuel costs will be reduced. 

Condition monitoring (CM) systems require a lot of 

expensive transducers and signal conditioning equipment, 

along with the necessary computer equipment, user 

knowledge and experience. The CM package can be 

expensive. Examples of the cost benefits and penalties 

of a CM system are given in [1].  It was felt that there 

was a need for a low cost on-line device which could 

operate without user interaction and hence be suitable 

for remote locations. The device would use a minimum of 

test points, input and output, and would infer 

information about the internal state of the plant from 

these two information sources. This approach is usually 

called Performance Monitoring (PM), where the 

relationship between the input and the output of the 

system is monitored. 

In this research work it was decided to investigate 

the PM approach by monitoring the transfer function of 

the plant. This particular relationship between the 

input and output, if properly used, can give information 
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about the condition of the plant, and offers a 

potentially large saving in transducers and signal 

conditioning equipment. User experience is not a 

necessary requirement as the diagnostic capability of 

the device is programmed into it, during the design of 

the PM system, from a prior knowledge of the plant. 

The disadvantage of this system is that it may be 

insensitive to some serious component faults which may 

not affect the performance of the plant greatly. For 

instance, if a bearing were to wear, the power output of 

an engine may not be significantly reduced until the 

bearing fails catastrophically. Hence the PM system 

would not in this case detect incipient failure, whereas 

a CM system employing a temperature or vibration 

transducer on the bearing may well detect this fault. 

It is however expected that the PM system would detect 

incipient faults related to the performance of the 

engine, such as fouling of fuel injectors and 

turbo-chargers. 

1-2 Diesel Engines and their Applications. 

Rudolph Diesel in 1893 patented a power cycle which 

has formed the basis of the diesel engine throughout the 

years. In this cycle a piston compressed air in a 

cylinder until its temperature was raised sufficiently 



to ignite a fuel. This was followed by a constant 

pressure combustion and an adiabatic expansion of the 

gas. As Germany had no natural oil resources but plenty 

of coal this cycle was originally designed to use coal 

dust as the fuel. Coal dust proved to be an unsuitable 

fuel due to the need for a powerful compressor to 

overcome the cylinder pressure when injecting this fuel, 

so oil was used in its place. 

The diesel engine relies on the heat of the compressed 

air igniting the fuel, which is injected into the 

compressed cylinder just before top dead centre. A high 

compression ratio is required to raise the air to this 

ignition temperature and it is this feature which gives 

the diesel its high thermal efficiency. Also diesel 

fuel has a higher calorific value than petrol, 11% 

higher, which also improves the fuel consumption 

figures. The efficiency of the engine depends on good 

combustion of the fuel, which is dependent upon air and 

fuel mixing evenly throughout the cylinder. This is 

achieved in three ways, which can also be used to 

classify the engines. Slow and medium speed diesels 

rely on the fuel injection distributing the fuel in a 

fine vapour throughout the cylinder. These engines tend 

to be large 2 mega watts (MW) and above, and are used in 

ships and power stations. An intermediate size of 

engine, used in trucks, buses and small boats, employs a 
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modest amount of air swirl (turbulence) caused by the 

induction stroke to mix the injected fuel with the air. 

In small high speed engines, of the type being fitted to 

modern cars, the mixture of fuel and air is achieved by 

a high degree of turbulence. The engines that are of 

interest in this work are the large slow and medium 

speed engines, used mainly at constant load over a long 

time span. 

In this bracket of large engine there are two types, 

four and two stroke. The very large engines 24Mw tend 

to be slow speed two stroke engines. Sultzer is a 

manufacturer of this type of engine. The medium speed 

engines are mostly four stroke, and a great many 

manufacturers of this type of engine exist, of which 

Mirrlees Blackstone is one. All the large engines use 

turbo-chargers to increase the air charge in the 

cylinder and increase the power output from a given size 

of engine. 

Over the years manufacturers have used devices like 

the turbo-charger to increase the efficiency of the 

diesel, until it can now obtain a thermal efficiency of 

40% making it the most efficient practical thermal cycle 

available. With the escalating fuel prices this has 

made the diesel engine the most popular ship propulsion 

unit. In addition to the very large number of diesels 



used for marine application, diesels have been used in 

the generation of electricity in rural areas or 

developing countries. In a developing country a diesel 

generator can be placed close to the capital city 

providing the early needs of the city and larger towns. 

Once the demand for electricity rises, a larger steam 

plant can be built and it may be possible to remove the 

diesel to a more remote site, thus forming the basis of 

an electric grid. In developed countries the diesel 

generator can still play an important role in supplying 

electricity to remote or island locations which cannot 

be economically connected to the national grid system, 

and cannot support a larger steam plant. Usually 30 MW 

is considered the economic maximum capacity of a diesel 

plant, although there have been instances of much larger 

stations, for example 92 MW in Taiwan. Diesels are 

ideal for low load work, being small and compact they 

can be located near to the towns they supply. In this 

type of work diesels are used throughout the world, in 

developed as well as developing countries. 

Although a diesel engine offers the most thermally 

efficient means of converting fuel into energy; the 

Stirling cycle is more efficient but not practical. 

The cost of diesel fuel compared to coal, and the 

economies of scale achieved in a large steam plant, make 

the diesel generation of electricity an expensive 



exercise. Also the complex nature of a diesel engine 

means that the maintenance costs are high. 

Mirrlees Blackstone diesels at Stornoway power station 

run for 3000 hours between routine servicing, and 

require a major overhaul every 12000 hours. This 

workload on a station such as Stornoway, where there may 

be nine such engines, requires a large number of skilled 

fitters to carry out maintenance and repair any 

unexpected failures. Added to this expenditure is the 

cost of carrying a large inventory of spare parts to 

repair and service the engines, and the capital cost of 

providing backup plant to cover unplanned outages. 

Pollution can be a problem with diesel engines. 

Although the engines do not produce the amount of toxic 

gas that a petrol engine does, the heavy fumes produced 

by a diesel are under suspicion as being carcinogenic. 

It is therefore advisable to reduce the amount of black 

smoke emission from diesels by ensuring that the diesel 

engine runs efficiently. 

Throughout the ninteen seventies the diesel engine 

market expanded. In the wake of the oil crisis, ship 

owners were replacing gas turbine plant with the cheaper 

to run diesels. This expansion has been halted due to 

the world wide recession and the industry has now been 
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left with an over capacity due to the continual 

expansion in the late seventies. The traditional 

manufacturing bases in Europe and the U.S.A are now 

under the:threat of strong competition from the Far East. 

Although there has been consolidation aimed at righting 

this over capacity [2],  the diesel market today is still 

a very competitive place. To survive, the diesel 

manufacturer must offer a product that has economic 

advantages over its competitors. The reduction of 

running costs can play its part in •achieving this 

advantage. Some form of condition monitoring capability 

is one approach to the reduction of maintenance, fuel 

and capital costs. 

1-3 Diesel Condition Monitorin 

The variety of types of diesel and the variety of uses 

they are put to is quite enormous, but diesels still 

suffer common problems due to poor design or misuse. 

Fagerland [3] has studied the common failures of diesels 

used for ship propulsion these are, burnt exhaust 

valves; bearing failures; cracks in the cylinder head, 

liner, piston, turbocharger and beadplate; high 

lubrication oil consumption. Chambers [4] discusses 

various diesel failures that have resulted in very large 

insurance claims. These have included bearing failure 

due to oil contamination which led to a claim for 

£100,000 for the replacement of the crankshaft. 
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Failures in large medium speed diesels can be very 

expensive, another reason for the interest in a 

condition monitoring maintenance regime, which may 

detect the fault before catastrophic failure. 

For condition monitoring of a diesel engine, various 

parameters such as temperature and pressure are 

monitored from key points around the engine. These are 

monitored on-line by a computer, Fig (1-1), and it may 

be possible to predict imminent failure in the engine by 

trend analysis on the various parameters [5]. It is 

important to monitor the parts of the engine that are 

known to be susceptible to failure. Konstantinos [6] 

has proposed a list of parameters to be monitored. 

Instantaneous performance parameters. 
Crankshaft bearing condition. 
Top piston ring wear. 
Exhaust valve wear. 
Turbo-charger system behaviour. 
Fuel injection system. 
Cylinder pressure. 
Temperature of critical components. 
Vibration. 
Oil and cooling water analysis. 

This list of parameters is broadly similar to the 

parameters measured by Fagerland et al [7] and Langballe 

et al [8]. The instantaneous performance parameters are 

the various temperatures, pressure and flow rates in the 

engine and its various subsystems. These will show a 

deterioration in the condition of the engine and enable 
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FIGURE 1-1 

COMPUTER MONITORING SYSTEM 
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accurate diagnosis of the fault. 

The remainder of the list concerns the detection of 

faults in more specific areas of the engine or in the 

case of vibration and oil analysis, by the use of well 

know CM tools. 

The only method generally available to monitor the 

condition of the crankshaft bearing is to monitor the 

bearing temperature. If wear occurs in a bearing, 

friction will cause a build up of heat, which can be 

detected by a thermocouple located in the bearing shell 

or by measuring the temperature of the lubrication oil 

flowing out from the bearing. 

Top piston ring wear is a common fault in all 

reciprocating engines. 	The piston rings usually 

deteriorate before other components in the 

piston-connecting rod assembly, therefore it is 

advantageous to monitor this parameter of the engine. A 

method of monitoring the wear in the top piston ring has 

been developed for large diesels [6]. This uses a 

non-contacting sensor set into the cylinder liner to 

detect the magnetic properties of the piston ring. As 

the piston ring wears, its magnetic property changes and 

this can be used to determine the condition of the 

piston ring. 
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Exhaust valve wear is a serious problem on diesels and 

is usually caused by overloading of the engine or poor 

combustion. This results in higher exhaust gas 

temperatures than is permissible, causing damage to the 

exhaust valves. The solution is to monitor the 

temperature of the exhaust gas and when this exceeds a 

specific limit, trigger an alarm. 

Fouling of the Turbo Charger system is the biggest 

problem. Deposits of carbon from the exhaust gas build 

up on the turbine side of the Turbo Charger reducing its 

efficiency. Monitoring the pressure of the air after 

the compressor will give a good indication of any drop 

in the Turbo Charger efficiency. 

The fuel injection process must be functioning 

correctly for proper combustion to be obtained. A badly 

adjusted or malfunctioning fuel injection system will 

lead to poor fuel consumption and pollution. It is 

therefore possible to deduce the condition of the fuel 

injection system from the exhaust gas temperature and 

cylinder pressure. 

Monitoring the pressure in each cylinder of a diesel 

can give a good indication of poor injector condition, 

poor spray pattern, excess fuel or bad ignition timing. 
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The pressure can be measured either by a pressure sensor 

or a strain gauge on one or more of the cylinder head 

bolts. 

The temperature or thermal load of critical components 

can be measured by the location of thermocouples in the 

components. The cylinder wall temperature and piston 

crown temperature are of most interest. 

Vibration spectra is a classical condition monitoring 

tool. Vibration of components such as bearings can be 

measured using vibration transducers; a signature for a 

normal component can be obtained which subsequent 

signatures can be compared against, and a fault declared 

if the vibration amplitude at certain critical 

frequencies exceeds a safe limit [1]. 

Lubrication monitoring is another classic approach to 

CM. The lubrication oil can be monitored for particles 

of new debris [1].  The amount of debris in the oil will 

continually increase at a constant rate between oil 

changes. Any increase in the rate or size of these 

particles can indicate an incipient failure in some part 

of the machine. The detection of these particles can be 

achieved using ferrographic techniques, which can detect 

ferrite materials, or spectral analysis techniques. A 

diagnosis of the fault can be made from a knowedge of 
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the location of various materials in the engine. These 

techniques are usually off-line and the lead time 

between sample and fault reporting is critical. 

A condition monitoring system can make use of all or 

some of these methods. Signals from the various 

transducers are usually fed into a computer which can 

make comparisons with the normal operation of the 

engine. If any reading is found to be abnormal the 

computer can diagnose the fault using some form of 

pattern recognition or fault tree analysis. Prediction 

of failure can be made by some form of trend analysis, 

using one of the numerical techniques available, such as 

least squares method [5]. 

1-4 The Programme of Research 

The objective of this research work was to investigate 

a low cost on-line machinery health monitoring system 

which could be operated at remote locations without any 

operator intervention. it was the intention that this 

system would use a minimum of test points and still 

provide a useful amount of information about the health 

and performance of the machine being monitored. The 

method which seemed to fit this requirement was that of 

monitoring the parameters of the small signal 

differential equation or transfer function, which would 
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require only two test points. The parameters of the 

transfer function would be monitored for any deviation 

from the normal, which may be due to an incipient 

failure, or loss of performance on the machine. 

For this purpose a method of 'system identification was 

developed which was thought robust enough to detect bad 

data and operate without skilled intervention, after the 

initial setting up procedure. This method, the Modified 

Modulating Function Method of linear system 

identification, was developed from the classical 

approach to continuous system identification proposed by 

Shinbrot [56]. 

The development of this method, and the software to 

implement it, has been the major activity during this 

research. Once developed this method was tested using 

software and hardware simulated systems. All the 

software for the method was written on an HP85 computer 

in either BASIC or Assembler. The HP85 was used to 

control the tests through the IEEE 488 Bus as well as 

perform the identification on the system. The 

portability of the HP85 was also required for on-site 

testing at Stornoway Power Station. 

One of the base load diesel engines in the station was 

chosen for the tests, several tests were carried out on 
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this engine to establish the transfer function. This 

was obtained using the Modified Modulating Function 

Method and then checked against that obtained by a 

commercial spectrum analyser. 

1-5 Thesis Format 

Chapter two reviews the more popular techniques of 

system identification and parameter estimation. 

Particular attention is given to the methods of 

continuous model system identification. Also reviewed 

in this chapter are the methods of fault detection based 

on transfer function techniques. 

Chapter three presents a theoretical development of 

the Modified Modulating Function Method, and the 

correlation techniques upon which it depends. Modelling 

of the diesel engine and the problems encountered are 

also discussed in this chapter. 

In chapter four the experimental system used and the 

software developed for the various experiments and 

software simulations is described. 

Chapter five presents the results obtained from the 

extensive laboratory testing of the MMFM through the use 

of software and hardware simulated systems. Also 



presented are the results obtained during the on-site 

testing at Stornoway Power Station. 

Chapter six contains the conclusions drawn from this 

work and recommendations for further work. 
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CHAPTER TWO 

SYSTEM IDENTIFICATION AND FAULT DETECTION 

Fault detection using transfer function techniques is a 

combination of two fields of study; System 

Identification and Fault Isolation. In this chapter the 

literature from these fields is reviewed. The first 

half of the chapter deals with the field of System 

Identification and Parameter Estimation. This field has 

undergone considerable expansion in the last twenty five 

years and now covers a wide variety of different 

techniques and methods. A limited review of the field 

as a whole, with a closer inspection of the techniques 

of particular interest to this project, is presented 

here. The second half of this chapter reviews the 

literature on the use of transfer functions for fault 

detection. This area relies heavily on techniques 

developed in the previous section and it is therefore 

appropriate that these two fields are reviewed together. 

2-1 System Identification 

System identification and parameter estimation has 

been greatly developed over the last twenty five years 

or so. The classical approach to system identification, 

frequency response testing, has been largely surpassed 
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by the discrete methods of parameter estimation, which 

now dominate the literature. This is due to the 

introduction of computers which are capable of 

processing large amounts of data quickly. The discrete 

methods allow parametric models which are easily 

implemented on computer, and can therefore be used in 

simulation studies, controller design or in the case of 

self tuning, in the controller itself. In this, they 

have a great advantage over frequency response 

techniques which may partly explain the considerable 

interest in discrete techniques. The difference in 

approach between the classical and the discrete methods 

highlights one of the main categorisations in system 

identification. There are two main categories, 

non-parametric and parametric identification. 

The non-parametric identification is the classical 

technique in system identification. This method results 

in a graphical representation of the system. The 

graphical model is generally not suitable for direct 

implementation on a computer. The non-parametric 

methods include frequency response, step response and 

impulse response techniques. These methods are still of 

" 
great interest and in general use, and have also been 

used in fault detection studies for a number of years. 

Parametric identification results in a mathematical 
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model of the system which can be easily implemented on a 

digital computer. Parametric identification can be 

split into two approaches, discrete or continuous. 

Discrete methods use difference equations to model the 

system and the transfer functions operate in the Z - 

plane. Continuous methods use differential equations as 

a model of the system, the transfer functions of these 

methods operate in the S - plane. 

As the field of system identification is so large and 

varied a complete literature survey would prove 

impossible to carry out here. Instead we shall split 

the review into three sections, and look closely only at 

the techniques that are of particular interest in fault 

detection. The first of these three sections will cover 

the non-parametric techniques, the second section will 

deal with the parametric methods and the third section 

will review the literature of a specific technique, the 

Modulating Function Method, around which this research 

work is based. 

For fault detection it is thought better to use the 

continuous model of the system rather than the discrete 

model [83]. This will enable deviations in the 

parameters of the model to be traced back to the system, 

and enable the fault to be located. This is because 

continuous models are directly derived from the physical 



laws that govern the system, and the process 

coefficients such as length, mass, temperature etc. will 

make themselves apparent in the coefficients of the 

model. Therefore any deviations in the process 

coefficients caused by a fault, may be detected in the 

model coefficients. 

For this reason more attention will be given, to 

continuous model parameter estimation than discrete 

parameter estimation in the parametric section. This is 

despite the fact that most of the effort in system 

identification has gone into discrete methods of 

parameter estimation. 

In this review we shall limit ourselves to the problem 

of modelling a linear, single input, single output, 

lumped parameter system. For a review of non-linear 

work the reader is directed to the recent review by 

Billings [91. Distributed systems have been reviewed by 

Lubrusky [10]. 

2-2 Non-Parametric Identification 

Non-Parametric Identification of a system results in a 

graphical representation of the system. These graphical 

models can take the form of 	frequency response 

magnitude and phase curves, impulse response and step 

response plots. Therefore the system is described by 



how it reacts to a given input rather than being 

described by a mathematical equation relating the input 

to the output of the system. 

This is the classical approach to the identification 

problem, and has been used successfully for many years. 

Perhaps these methods should be turned to first when 

trying to identify the system, so that a picture of its 

response can be obtained. These methods have a great 

advantage over parametric identification in that no 

model of the system is needed before identification can 

commence. This means that there will be no modelling 

errors or prior assumptions made about the system that 

may turn out to be erroneous and invalidate the 

identification. Being simple and easy to perform, a 

step response could be performed before any parameter 

estimation and a suitable model structure determined 

from this [11]. 

Although they are important and reveal considerable 

information about the system, non-parametric models are 

not easy to use on a computer. Hence there has been 

much interest in deriving parametric models from these 

graphical models. Rake [11] describes methods of 

obtaining parametric models from non-parametric models, 

also Payne [12] describes a method for curve fitting the 

frequency response. There are other examples in the 



literature, these two being given as examples. There 

are 	two 	main 	approaches 	to 	non-parametric 

identification. The time domain methods, which are 

graphical representations of the system transient 

response, and frequency domain methods which represent 

the steady state response of the system to a periodic 

signal. Kwiatkowski [13] compared the two approaches to 

identification and concluded that the choice of method 

depended upon the system to be identified. 

2-2-1 Time Domain Methods 

Time domain methods use non-periodic inputs to excite 

a transient response from the system. The classical 

approach is to test a system with a step, ramp or pulse 

input [11,14]. For these tests a large signal to noise 

ratio is required, otherwise the output response may not 

be accurately recognised. This can be achieved by using 

a larger input signal, but this might lead to the use of 

a test signal that is too large, causing damage to the 

plant or product, or pushing the system into a non 

linear region and hence invalidating the result. This 

problem can be overcome by repeating the test and 

averaging the result. As long as the noise is 

stationary with a zero mean, it will reduce with 

successive averages, thus a small test signal can be 

used. However there is the disadvantage that a long 

U 



examination time is required and the system might drift 

during the test. 

A system is completely described by its weighting 

function h(t), 

Y(u=jh(t) u(t-t)dt 	 (21) 

where u and y  are system input and output, respectivly. 

The obvious method of obtaining h(t) is to use as an 

input, the Dirac impulse function g(t) which has the 

property of infinite height and zero width and unit 

area. If this is used in equation (2.1) it will result 

in y(t)=h(t) . 	This kind of test signal is impossible 

to generate in practice, although in seismic work it is 

often possible to devise a test signal that is a close 

approximation to an impulse. A more practical general 

approach is to use •a step input, the weighting function 

can then be obtained from the derivative of the step 

response. However the derivative of a noisy response is 

usually meaningless, and noise free step responses 

require a considerable number of averages. Therefore if 

h(t) is required an alternative method of obtaining it 

must be used. 

The correlation method [15,16] is the most popular 
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method of achieving the weighting function without the 

need for an impulse test signal. 

The relationship between the input u(t), and output 

y(t), signals is given by the convolution integral (2.1) 

A similar relationship exists for the auto and cross 

correlation functions, 

ryu()=Jh(t)ruu(_t)dt 

where 

ryu()=(t)ut-)dt 	(2'2) 
rfY  

From this relationship it can be seen that if the auto 

correlation of the input signal can be made to look like 

an impulse, then the cross correlation between the input 

and output signals will resemble the impulse response or 

weighting function. The auto and cross correlation can 

be performed on the natural noise in the system, but 

this is rarely suitable. Very long integration times 

would have to be used on the correlation integral (2.2) 

to obtain a good approximation. In addition the 

bandwidth of the noise may not be sufficient to excite 

all the modes in the system, and the auto correlation 



function would not approximate an impulse if the noise 

bandwidth was narrow. 

Instead a noise signal with sufficient bandwidth would 

be used to excite the system. The most popular noise 

signal is the Pseudo Random Binary Sequence (PRBS). The 

use of this signal has many advantages. The test is 

relatively quick (defined by the sequence length) and 

because the signal is of a low level, typically 2% of 

full scale output, it can be carried out on-line with no 

disruption to plant or process. The PRBS signal is a 

two level signal, fig. 2.1, which is easy to generate 

using a shift register and an exclusive - OR gate, fig 

2.2. The bandwidth of the PRBS noise is controlled by 

selecting the clock rate. The auto correlation function 

of the PRBS signal, shown fig. 2.3, is a narrow spike of 

finiteI-  ght and width twice the clockperiod. There is 

a small offset, which will result in a small bias in 

the cross correlation but this is negligible when a long 

sequence is used. The triangular nature of the auto 

correlation will result in a weighting function that is 

slightly distorted, but again this can be designed to 

have a negligible effect. Because the PRBS signal is 

Pseudo-Random its auto correlation function repeats at 

the sequence length N. Great care must be taken to 

ensure that the cross correlation function has settled 

before the auto correlation function repeats, ie the 
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sequencelperiod, must be less than the 2% settling time 

Ts. The effect on the cross correlation function by 

having a short sequence length is shown in figure 2.4. 

Inevitably the signals measured will be corrupted with 

noise, fig 2.5. The input I PRBS signal 	is assumed 

to be noise free and any variance in the auto 

correlation signal will be due to truncation of the 

integration time from 	to ±T.  The cross correlation 

variance will partly be due to integration time but 

spurious system noise will be more of an influence. The 

variance problems can be overcome by averaging the auto 

and cross correlation function estimates. 

Correlation has been widely used as a system 

identification tool [15]. Applications were limited 

initially by the lack of computer power to perform the 

correlations necessary. Even so on-line identification 

of distillation columns [17,18], and other chemical 

plant [19] has been achieved. Godfrey [19] has used 

this method on nuclear power plant, and shows an 

interesting range of other applications by other 

authors. More recently Flower & Windlett [20,21] have 

used these techniques to identify the dynamics of a 

Diesel engine. Lang et al [22] has used the technique 

on a voltage regulator. 
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2-2-2 Frequency Domain Methods. 

Probably the most popular method of system 

identification is that of transfer function analysis. 

This is the method of injecting sine waves into a system 

at different frequencies and measuring the steady state 

response of the system, i.e. the magnitude and phase 

shift of the output signal. These measurements give the 

frequency response plot. Athough well understood and a 

very useful tool, this method needs very long experiment 

times. Low frequency test signals can have long periods 

and will require many averages to overcome noise 

problems. It would therefore be better if instead of 

trying to identify each point on the frequency response 

curve individually, all the points on the curve could be 

determined simultaneously. This can be achieved using 

the Discrete Fourier Transform (DFT). The DFT requires 

a large number of multiplications, N2, for a N point 

DFT. This makes the algorithm less attractive for 

identification work as it is slow to implement. Cooley 

and Tukey [23] proposed a fast algorithm, the Fast 

Fourier Transform (FFT) to reduce the number of 

multiplications to N.log2  N. This discovery led to an 

enormous expansion in this field, and now commercial 

spectrum analysers are available. 

The FFT is used to calculate the discrete Fourier 
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sequences ui(k) and y(k) of the input u(t) and output 

y(t) signals. From these the auto and cross periodgram 

Puu(W) and Pyu(W) is calculated. These are averaged to 

produce the auto and cross spectra, Suu(W) Syu(jW). The 

transfer function H(jw) is then obtained from, 

su (i 
H(jw)= 

S() 

Welstead [16] decribes DFT techniques and their 

problems (eg windowing). He also gives real 

applications of the techniques. Ljung and Glover [24] 

compare the spectral estimation techniques with the 

discrete parametric techniques now popular in system 

identification. They conclude that spectral analysis 

and parameter estimation are not competitive techniques, 

but that they should be used to complement one another. 

2-3 Parametric Identification 

Parametric identification has become the most widely 

researched 	identification technique over the past 

twenty years or so. This has been due, principally due 

to the need for a model that can be used in computer 

simulation to aid system and controller design. 

Parametric models are mathematical relations which 

define the system response for a given input. 
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Parametric models are amenable to computer 

implementation and as such, have a great advantage over 

non-parametric models. 

Parametric identification can be categorised into two 

approaches. Discrete and continuous methods. It is 

thought that continuous models are more useful for fault 

detection purposes [83] and we shall, therefore, 

concentrate on this approach. There appears to be no 

unified approach to the problem. There are a large 

number of techniques, and variations on techniques, in 

both discrete and continuous methods. The main methods 

of interest in discrete identification will be 

mentioned, and a comprehensive review of continubus 

methods will be presented. 

Although there is no unified approach one problem all 

methods suffer from, is modelling. A good model of the 

structure of the system is needed before identification 

of the parameters of the model is carried out. A brief 

review of the techniques of modelling is given first. 

2-3-1 System Modelling 

A model of a system can be obtained either by 

theoretical modelling of the system, using the physical 

laws that govern the system to produce a mathematical 
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model, or by experimentation. A combination of the two 

is also a possibility. A theoretical model of the 

system is obtained if the system cannot be tested 

because it is still in the design stage, or if for 

safety reasons no experimentation is permitted. In this 

case, the physical laws of conservation of mass, energy 

and momentum are applied to the system and a 

mathematical relation, or set of relations is obtained. 

This relation describes the system's response to a given 

input. 

If experimentation is permitted and a system is so 

complex that the coefficients of the model cannot be 

determined easily using theoretical techniques, system 

identification and parameter estimation techniques may 

be used. For these methods the structure of the model 

should be known. This enables a known number of 

parameters to be identified. Thus system identification 

requires a certain amount of theoretical modelling to be 

carried out in advance. 

Models can be classified broadly into four categories 

depending on the types of mathematical relation the 

model is based on. It may belong to any one or a 

combination of the following categories: 

Steady state or dynamic 

Linear or Non-linear 
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Lumped or Distributed 

Continuous or Discrete 

A steady state model is usually based on single 

algebraic equations. Flow through a pipe could be 

modelled this way, but if surges in the flow or 

transients existed., and were of interest, a dynamic 

model would be required. This would normally be a 

differential equation. 

A dynamic model of a system may be linear or 

non-linear. In general, if a system is non-linear it is 

better to linearise the model around an operating point. 

Linear models are more easily identified than non-linear 

models. Provided any test signal is kept small, and the 

system does not drift, this should be a valid 

simplification. This is well described by Fasol and 

Jorgi [25]. 

Similarly systems that are described by partial 

differential equations, 	distributed systems, are more 

easily identified if a lumped parameter model, a 

differential equation is used. Kubresly [10] has 

surveyed the different methods of distributed system 

parameter estimation, but ordinary differential 

equations are better understood in the parameter 

estimation context. 



d) Continuous modelling is the classical approach and 

theoretical modelling results in a continuous model. 

This can be made discrete if a discrete estimation 

method is to be used. If we are restricted to SISO 

models then the black box transfer function model, 

derived from the system differential equation is often 

used. A typical transfer relation is shown below, 

Y(s) = G(s) B(s) 
U(s) 	A(s) 

Where A and B are polynomials in s, and - U and Y are the 

system input and output respectively. Hence for 

example, 

For discrete systems a similar is obtained ie, 

Y( 	Bz) tEf) I 

Where z t is the backward shift operator and 
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Note that this is a common, but inexact, use of 

functional notation ie s~z. 

2-3-2 Discrete Techniaues. 

Discrete techniques of system identification are by 

far the most popular approach to the problem. There is 

a very large collection of literature with very many 

techniques, and variations on techniques, being 

reported. As continuous methods of identifcation are of 

more interest in fault detection, and the number of 

discrete techniques available would prohibit a 

comprehensive review, only a brief review of the main 

discrete parameter estimation techniques will be 

presented here. For brevity, state estimation will not 

be reviewed, neither will recursive versions, which have 

been developed for most of the discrete methods. 

The methods reviewed here are either all extensions of 

the least squares method, or techniques derived to 

overcome the major problem of least squares estimation. 

It is therefore appropriate to start with least squares 

estimation and introduce the other methods as the 

problem becomes apparent. 

The least squares technique was first developed by 

Gauss for use in astronomical experiments. Lately it 

has become popular as a means of system identification. 
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The least squares method estimates the parameters of a 

model of the system, using successive samples of the 

input/output records of the system. If we assume that 

the system can be modelled by the z-'transform function, 

1C\ (i') Y'z') = 13 (z') U'') 	(2-3) 

where z is the backward shift operator. 	Equation 

(2.3) can be written, 

ik 	
-. 	 1k 6.0 -. L 

This is more compactly expressed in vector form, 

where z is the transpose of z . 

and 2 
F ~k-1 

and 
 

A The least squares estimate of the parameter vector, 0, 

is that estimate of 	which minimises the sums of the 

squares of the measurement errors, or residuals. The 
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residual is usually formed from the equation error, 

although other error models exist, such as output error, 

figure 2.6. 

The residual, e  is defined as, 

e 

For N samples of the input u1<  and the output y, ie 

k=l,2,...,N.,, N should be very much larger than the 

number of parameters to be estimated (m+n+l) [26]. 

From this a cost function J(0), which is a function of 

the parameters, can be formed. The best parameter 

estimates are obtained when the residuals are small and 

hence the cost function is a minimum. This is achieved 

by differentiating the cost function with respect to 0 

and equating to zero to find the minimum. The cost 

function is defined by, 

lice) 
=

14 

Differentiating and setting the result to zero leads 

to a set of linear equations known as the normal 

equations from which the parameter estimate 0 can be 

obtained ie, 
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(z)= 	kL( 	(1•4) 
ktt 	 kl 

This is the deterministic approach to least squares 

estimation. Real systems however are not deterministic, 

noise contamination of the input/output signals means 

that a stocastic approach must be used. Equation (2.3) 

can be re-expressed, 

Uz') + 	(5) 

£ (ct) is the effect of all the noise on the system. 

It is known that the estimate of 0 will only be 

unbiassed if the noise 	 is white and has zero 

mean. Otherwise the estimate 	will be biased, and by 

an unknown amount. If the residual ek is not a sequence 

of random variables, but there exists some dependence 

between successive residuals, then the residuals are 

said to be correlated and the parameter estimates will 

be biased. 

This is the major problem of system identification. 

Most of the methods developed are aimed at overcoming 

this problem, usually by including in the system model 

a model of the noise. We shall look at four popular 

techniques, these are 
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Generalised least squares 

Instrumental variables 

Maximum likelihood 

Correlation with least squares 

a) The Generalised Least Squares method of system 

identification tries to overcome the problem of bias by 

replacing the white noise term 	 in equation 

(2.5) by a coloured noise term C(z ). This is an 

attempt to model the noise by a filter driven by white 

noise. This coloured noise is a sequence of correlated 

random variables defined by, 

F(z') 

Equation (2.5) now becomes 

\/ 
y( 	

___ 

z')= 	
-') 

a(z -~- 
 

&-'~ is uncorrelated white noise with zero mean. The 

problem of estimation can now be dealt with by using the 

least squares method with modified input/output signals, 

as shown in figure 2.7. Then new output is, 

F() Y(z') 
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and new input is, 

The problem arises in determining F(z). An iterative 

procedure is generally used to determine the polynomial - 

F(z) [27]. 

Set F(z')=l 

Use new input/output signals F(z)U(Z' ) and F(z )Y() 

for parameter estimation 

Use 2) in least squares estimate of . 

Use 	to form residual ek=A()Y(z')-B(z)U(z') 

Model this biased residual with F(z)e=E(z) 

Have the parameters of F(z) converged. 

No - goto 2) use latest estimate of F(z). 

Yes - stop 

b) Instrumental Variables is another method used to 

overcome the problem of biased estimates. For this an 

additional variable is introduced, the instrumental 

variable. This is chosen so that it is strongly 

correlated with the noise free system input and output 

signals, but not correlated with the noise that corrupts 

the input/output signals. These variables are used in 

the cross products in the co-variance matrix, where, as 

in the least squares approach, the noise product is 

squared. In the instrumental variable method the noise 



is rejected, because the instrumental variable is 

independent of the noise, therefore the noise is 

correlated out. 

For the instrumental variable the least squares 

estimator (2.4) is modified, 

Where k  is the instrumental variable vector defined as, 

This instrumental variable is chosen so as to be 

highly correlated with the noise free vector k 

[- 
X 1  - - - -  

Where xis the noise free output ,y being the corrupted 

output see figure 2.8. If2ik  is available the parameter 
A 	 A 

estimates 0 will be unbiased. The problem is that xk  is 

seldom known and unless it is correlated strongly with 

and independent of the noise Ek  a good estimate of 

. will not be achieved. Young [28] discusses the 

various possible methods of generating an instrumental 

variable. The use of an auxiliary model is a popular 
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approach. This is a model which is updated with each 

successive estimate of the system until the parameter 

estimates converge, figure 2.8. 

The maximum likelihood method [30] deals with the 

problem of correlated residuals in quite a different way 

from the two previous approaches. The maximum 

likelihood estimate of the parameters is obtained by 

maximising a function of the observations and the 

parameters, the likelihood function. This function is 

the probability density function of the observed data. 

It is necessary to know the shape of the probability 

density function to implement this function. 

Correlation with least squares. From the least 

squares estimator equation (2.4) it is found that the 

elements of 3. are essentially auto and cross 

correlation of the input and output signals [33]. 

Therefore if the auto and cross correlations are 

calculated, they can be used in the estimation of the 

parameters. This is the method of correlation with 

least squares [31] 

If the model order is not known and may also have a 

time delay term present then the procedures looked at 

above suffer from an additional problem. The model 

order and time delay must be determined using an 
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iterative technique [31]. Using this technique the 

model order and time delay is increased and a least 

squares parameter estimate performed in each iteration 

until the loss function is minimised. This involves a 

great deal of computational effort. One way of 

overcoming this problem is to identify a non-parametric 

model first, from which the model order and time delay 

can be determined, and then use least squares estimation 

on this model [32]. 

Once a model of the system has been obtained a 

verification procedure should be carried out to ensure 

that the model order is correct, and that there is no 

longer any bias due to correlated residuals. Isermann 

[34] suggests a loss function test to determine the 

correct model order. The system is repeatedly modelled 

with increasing order of model, and a loss function 

formed which is dependent on the model order. 

00 

V)
=5 .e dM  

The order of the system is obtained when the loss 

function V(m) is a minimum. 

Isermann [34] also suggests that the residuals can be 

tested for whiteness, by performing an auto correlation 



on them. Any colouring of the residual will show as a 

spread in the auto correlation function. 

As a final check on the model, the system and model 

output should be compared, if any significant deviation 

is detected, modifications can be made to the model. 

The model should be checked for different input signals, 

eg steps and ramps and different amplitude input 

signals. All of these methods have received much 

attention in the past, the Astrom and Eykhoff [33] 

survey paper covers many of the methods mentioned here, 

and a great deal besides. This paper, although fifteen 

years old, is still a useful and comprehensive survey. 

Isermann et al [32] has compared six identification 

methods. A comparison of the variances of the parameter 

estimates and the impulse response for the six estimates 

was made. These were carried out using two different 

signal to noise levels. This study was carried out on a 

simulated system and hence the structure was known 

already. It is interesting to note that the methods 

that perform best, and which had the smallest deviations 

from the true values, were those with better noise 

models. The instrumental variable method performed well 

for example'.and,as would be expected, the least squares 

method did not perform as well. 
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Many of the studies which have taken place have been 

simulation studies, comparatively few have taken place 

on real systems. Thi,s may be due in part to the expense 

and availability of testing real systems, although it 

seems possible that methods which work well in the 

laboratory do not perform well on real systems 

identification. Another reason is the model order. 

Strejc [35] suggests that the estimation of systems with 

order greater than three is not practicable. One reason 

for this is the loss of information due to sampling 

but the main reason is contaminating and unmeasurable 

noise, which real systems have in abundance. This limit 

on the estimation procedure is obviously a handicap when 

it comes to identifying real systems. However, low 

order models of quite complex systems are acceptable in 

some circumstances [35]. 

When performing identification on real systems the 

design of the experiment is important. It is wise to 

gather as much information about the system before 

identification begins. This should enable selection of 

sample time and measurement time. Isermann 11341 

suggests 6 to 15 samples per 95% settling time for PID 

control algorithms. If the sample time chosen is too 

large then the dynamic behaviour is not described 

accurately, and if the sample rate is too small, ill 

conditioned matrices result, because the difference 
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equations become approximately linearly dependant [34]. 

The selection of the input signal is also very 

important. This should be chosen so that the system is 

persistently excited, i.e. the whole dynamic range of 

the system is excited. PRBS signals or band limited 

noise are suitable for this purpose. 

Recently there has been a number of studies carried 

out on real plant. Kalistrom [36] has investigated 

ships' steering dynamics as has Trankel [37] who uses a 

maximum likelihood method. McDyer [38] has used least 

squares estimation to identify a low order model for 

three different types of generating plant, gas turbines, 

steam plant and hydro plant. These simple models 

achieved reasonably good results. Hogg et al [39] has 

also investigated generating plant; least squares and 

instrumental variable methods were used. 

2-3-3 Continuous Techniques 

Although most of the effort in system identification 

has been centred on the discrete techniques, there has 

been a small but significant parallel development in 

continuous system identification methods. Continuous 

methods estimate the parameters of the differential 

equation which results in a s-plane transfer function. 

There exists a great many analytical techniques to 
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handle continuous models. For fault detection 

continuous models are of particular importance because 

not only is detection of the fault important, but it is 

also necessary to diagnose and locate the fault in the 

system as well. For this purpose it is necessary to 

have a model that can be related directly to the system 

through the physical laws that govern the system. 

Continuous models are the closest to the physics of the 

system and any deviation in a model parameter can be 

related to a malfunction in a system component [83]. 

Discrete models are further removed from the direct 

relationship between the system and the model by the 

sampling process and therefore the parameters cannot be 

so easily related to system failures. 

If we consider a SISO lumped parameter linear system 

which is represented by the differential equation 

A 
where, 

AL A 

This can be represented as a transfer function, 
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s) 

Y(S ) = a(s) 	
(•8) 

A(s) = &"' a1 ' - - 

(s) 	- b, 	- - 

This will be the basic model used here. Another 

popular representation is the state space model but for 

brevity only the transfer function model will be 

considered. 

There are two approaches to the problem of estimation 

of the continuous system parameters. One approach, the 

indirect method, first estimates the discrete model of 

the system and from this a continuous model is obtained 

[43]. The other approach is direct, in that the 

parameters of equation (2,7) are calculated directly 

using one of the techniques available. It is these 

methods that are of most interest here. 

One method is to differentiate the input and output 

signals, substituting these derivatives in the 

differential equation. This method is generally 

disregarded because of the problems of differentiating 

noisy signals. However the first class of methods 

reviewed here attempts to obtain the derivatives by 
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using state variable filters. The second class of 

methods repeatedly integrates the differential equation 

so that an integral equation is formed. The third class 

avoids the differentiation by means of a Modulating 

function. This is looked at in detail in the next 

section. 

In the first class of methods, the discrete methods 

which were studied in the previous section can be 

applied to continuous models. Young [40] gives an 

interesting survey of these and the other methods 

designed to overcome the problem of the derivatives of 

noisy signals. The least square method illustrates the 

problem. From equation (2.8) an equation error or 

residual can be formed, Figure 2.9 

e() = tL '(s) '/s)]  

A'(s) indicates the model rather than the system A(s). 

To form this residual, derivatives of the input and 

output signals must be formed, ie 

This would be very difficult in the case where the 

57 



1ERROR,  

FIGURE 2-9 
EQUATION ERROR OF A 
CONTINUOUS SYSTEM 

- 	 FIGURE 2-10 
THE USE OF STATE VARIABLE FILTERS 
IN THE ESTIMATION OF A CONTINUOUS 

SYSTEM - 

WON 



signals y(t) and u(t) were not deterministic, but 

contaminated with noise, as the noise would be amplified 

by the differentiation. To avoid this problem a 

generalised equation error is formed in place of the 

equation error. In this method the derivatives are 

obtained by the use of a S'tate Variable Filter, which 

filters the input and output signals and provides 

filtered time derivations of the input/output signals 

[40], figure 2.10 

The cost function 3 is defined not as a sum of the 

squares of the residuals, but as an integral, 

here T1 to T2 is the sample window. As in the discrete 

cases  minimising this cost function will provide an 

estimate of the parameters. 

W 

The Instrumental Variable method can be applied in the 

continuous case. This overcomes the problem of bias due 

to correlated residuals. Another signal is introduced, 

the instrumental variable, which is highly correlated 

with the noise free input/output signals but independent 

of the noise. Young [40] proposes an auxiliary model 

which is updated by the parameter estimates to produce a 

59 



noise free input/output vector, figure 2.11 This is 

similar to the discrete approach, but again the 

derivatives of the noisy signals are required and 

therefore a state variable filter is included. As the 
A 

auxiliary model output x becomes highly correlated with 

y, the auxiliary model will match the system, and an 

estimate of the parameters will be achieved. 

In the second class of methods the problem of 

derivatives of the input/output signals is overcome in 

other ways. Diamensis [41] used repeated integrations 

of the input/output signals to obtain a set of linear 

equations in which the only unknowns are the parameters. 

Consider equation (2.7) this can be integrated n+m 

times. 

f (t)= Ole 

A set of linear equations can be formed by use of 

different integration times tk;  k=1,2,. . .m+n. This is 

perhaps better illustrated using a first order system. 

Consider, 
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bctL) 	L) = 

Integrating from t=O to t1 gives, 

Integrating from t=O to t2 gives, 

ao AS aJfa)c 
00 	 00 

This can be solved, using standard matrix techniques 

for b and a. This method uses the input/output signals 

and there is no requirement for a test signal, although 

it should be noted that the input signal should have a 

bandwidth wide enough to excite all the modes in the 

system. The use of repeated integrals can lead to 

problems of compounding errors, in high order systems. 

To overcome the problems of having to perform multiple 

integrations Garnett and Eisenberg [42] introduced an 

integral transform, which reduces the multiple 

integrations to a single integration, and hence 

overcomes the problem of compounded errors. 

2 



Another solution to the integral equation is to set 

the integration limits over a shorter time interval and 

approximate the signal with a known function. Sinha 

[44] has compared three such methods, each based on a 

successively more complex approximation to the signal. 

These three methods are the Block Pulse, Trapezoidal and 

Cubic Spline methods. 

The basis of the Sinha method is to integrate the 

differential equation N times, substituting the 

estimates of the signals into the integral equation. 

An equation error is formed and used to solve for the 

unknown parameters by using Least Squares technique. 

The integration interval is over a sample period 

[KT,(K+l)T]. For the first order system described 

above: 

(kHj'r 	(k~I Or 

y- y± 	 b 

To solve this integral equation an estimate of the 

input/output signals over the interval KT to (K+l)T is 

needed. In the Block Pulse method [45,46] the. signal is 

approximated by a constant equal to the mean value of 
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the function over the integration interval, figure 2.12. 

Hence, 

j ( )3±¼ ki) 

The trapezoidal method [471 improves the estimate of 

the signal and hence the accuracy of the solution to the 

integral equation by modelling the signal with a ramp 

between the two sample points as shown on figure 2.13. 

In this case 

(~jLj - 	
I] 

This increases the computational burden necessary to 

estimate the parameters, but an improvement in accuracy 

compared with the Block Pulse method can be expected. 

The Cubic Spline method [44] carries this improved 

estimate of the signal further, by modelling the signal 

with a third order polynomial as shown on figure 2.14. 

In this case 

(&) A- 
-LI 	
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FIGURE 2-12 

BLOCK PULSE METHOD 
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FIGURE 2-13 
TRAPEZOIDAL METHOD 
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where h is the sampling interval. 

The repeated integrations have a smoothing effect on 

the noise resulting in a good parameter estimate [47]. 

The Least Squares method is used unless the noise level 

is high, when a more sophisticated technique such as the 

Instrumental Variables or Maximum Likelihood method, 

should be used. 

Sinha [44] has compared the three methods and has 

found that the accuracy increases with an increase in 

complexity but that the Trapezoidal method achieves 

results that are acceptable without a high level of 

computation. For noisy signals the sample period should 

be reduced to cope with this additional problem. The 

higher the order of model estimated, the greater the 

number of integrals to be evaluated. It has been found 

that the more complex functions handle these integrals 

more successfully [47]. 

Walsh functions [48] can be used in a similar fashion 

to the above methods. Again an integral equation can be 

formed over a time interval [O,T]. The input/output 

signals are estimated by Walsh series, and these series 

substituted in the integral equation. 

A signal can be approximated by a Walsh series in a 

similar fashion to the Fourier series, 
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The coefficients (Ce) of the series can be determined 

using, 

CA :7 	YI a) C14 

Where (pare the Walsh functions. The first eight Walsh 

functions are shown in figure 2.15. The integral of a 

Walsh function can be expressed in terms of a series of 

Walsh functions. 

t 

oJ 	') 
0 	 J1i 

LQJ 
Chen [50] extends this to define a P matrix which 

translates integration into multiplication. 
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The parameter estimates of the transfer function are 

obtained by repeatedly integrating the differential 

equation in a similar manner as used in the previous 

methods. The input/output signals are expanded into 

Walsh series using equations 2.10 and 2.11. These Walsh 

series are substituted in the integral equation (2.9), 

and the integrals are simplified using the P matrix. 

Hence 
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( 

() 	
and 	 , ) 

gives 

a, 	
AJ

41 

k E b, b P+ - - - 	 f J 

Lem 



This equation can be solved for the m+n+l unknown 

parameters by sampling the input/output signals m+n+l 

times, and forming a loss function which is solved for 

the unknown parameters a,b using the least squares 

technique. 

Corrington [49] has used Walsh functions to solve 

differential equations. A similar approach employing a 

P matrix is used to that of [50,51] to determine the 

sytem output to a given input. Bohn [52,53] has 

developed a technique which eliminates some of the 

redundances in the P matrix and improves computation. 

Rao [54] has used Walsh functions to estimate the 

parameters of systems with time lags by employing a loss 

function to determine the unknown lag. Bohn [55] has 

also developed a technique to handle pure time lags 

using Walsh functions. 

Continuous methods of system identification all suffer 

from the same problem, how to avoid the use of 

derivatives of the input and output signals. The 

continuous methods discussed here attempt to overcome 

this by the use of State Variable Filters, or repeated 

integration of the differential equation. These 

introduce further arithmetic complications and can, in 

the case of high order systems, result in very complex 

and clumsy integral equations which would be prone to 
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truncation errors, and errors introduced by the 

approximations to the system signals. 

2-4 Modulatincr Function Method 

The methods of continuous model parameter estimation 

reviewed in the previous section all tried to overcome 

the problem of having to use the derivatives of the 

input/output signals. One method of overcoming this 

difficulty which has so far not been discussed is the 

Modulating Function Method (MFM). As this research work 

is based on a development of the MFM it is appropriate 

to review the development of this technique 

independently from the other continuous methods. 

The Modulating Function Method could almost be 

described as the classical solution to the problem of 

obtaining the parameters of a continuous model. The 

method, which was first proposed by Shinbrot [56,57],  is 

conceptually simple. It overcomes the problem of 

derivatives of noisy signals and only uses the 

measurable input/output signals of the system. There is 

no repeated integration of the signals to form integral 

equations, thus no sampling errors are accumulated. 

Since the method is one shot it alleviates the need for 

the use of Least Squares techniques. 

Shinbrot's method forms the bases of the MFM's 
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proposed by other authors. These other techniques only 

usually vary in the application or the choice of 

modulating function. 

Shinbrot proposed that the system equation be 

multiplied by a modulating function which would have the 

special property that the function and its derivatives 

are zero, at the beginning and end of the sample window 

[O,T]. 

Ø[O,T] = d O[O,T]=O 	 (2.12) 

Given this, if the modulating function 0(t) is 

multiplied through the differential equation, and the 

resulting equation then integrated over the sample time 

window [O,T], an equation is formed in which no 

reference to the derivatives of u,y are made, but only 

to the derivatives of the modulating function. 

A second order differential equation is used here to 

illustrate the method. 

Consider 

) 	 = cat) 

multiply by a modulating function 
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integrate from t=O to T 

-r 

J ) )c4 f ) )d 
0 

integration by parts gives 

= {) ()J { 

using equation 2.12 gives, 

S' 

)(L - 	(t) 

The result is an equation whose unknowns are the 

system parameters, everything else is known or easily 

measured. Thus the equation can be solved for the 

unknowns a,b and c using successive modulating functions 

On, n=l ... N. A block diagram of the method is shown in 

figure 2.16. Shinbrot has extended this method to 

include non-linear systems, where the parameters are 

modelled by polynomials [56]. 

The choice of 0(t) is crucial, the end point 

conditions (2.12) must be met for the method to work. 

Shinbrot has chosen a trigonometric modulating function, 

see figure 2.17, 

On=si-n2wnt 

which has the property 
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FIGURE 2 - 16 

BLOCK DIAGRAM OF THE 
MODULATING FUNCTION METHOD 
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The frequency Wn  has to be chosen carefully to ensure 

that the boundary conditions are satisfied, ie wnn/T. 

Loeb and Cahen [58,59] have developed the modulating 

function method further by extending the modulating 

function end point conditions,ie 

I' 
Where 0 is the nth derivative of 0 

This allows the parameters of any order of system to 

be determined, where Shinbrot was limited to 2nd order 

because his modulating function end point condition was 

limited to the first derivative. A solution for the nth 

order differential equation can now be obtained. 



(- I)"'a 	4 (-i) 	
- - - 

A set of simultaneous equations can be formed using 

successive samples of u and y, eq [t1  to ti],  [t3to  t4 ], 

[t5to tL]  or different modulating functions 0, Ø,, Ø 	In 

this case, 

1 

(- - 	- - - 
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dt 
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Cs 

In order that matrix invertion can be performed the 

modulating functions should be orthogonal [58],  ie 

f0(t)O(t)dt=O 
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Loeb has considered the possibility of a modulating 

function based on the exponential function described by 

Schwartz [60], 

This satisfies the boundary condition (2.13) for t<a and 

t>b where a and b are arbitrary. The functions A(t) and 

B(t) and their derivatives are continuous for a<t<b. 

Takaya [61],  following on from Loeb's work has 

proposed the use of modulating functions based on 

Hermite functions. These satisfy the boundary condition 

(2.13) and indeed prove to be most versatile and useful 

functions. These modulating functions can be applied 

to any order of system and are the modulating functions 

used in this research work. The Hermite function is 

described by, 

kA fr) i)
,  A () d€(-) 

Hermite functions do not alone satisfy the orthogonal 

property of the modulating functions. To achieve this 

criteria the Hermite function must have a weighting 

function defined by, 



00 

exp(_r2/2)Hn(r)Hm(r)dt 

-00 
	 =n!,.fW' if mn 

=0 otherwise 

Thus Takaya proposed the use of weighted Hermite 

functions as modulating functions, where the higher 

derivatives of the modulating functions are obtained by 

using higher order Hermite functions, 

(- 	) 

Substituting (t-T/2) for r results in modulating 

functions that satisfy equation (2.13). The first four 

Hermite modulating functions are shown on figure 2.18 

Maletinsky [62,63] has proposed a modulating function 

method based on spline type modulating functions. these 

modulating functions are based on repeated integrations 

of Dirac delta functions. Maletinsky obtains the 

estimates of the parameters using a recursive least 

squares technique rather than the one shot simultaneous 

equations used by Shinbrot and Loeb. This is achieved 

by forming an equation error from the modulated system 

differential equation (fig 2.19). Repeated equation 
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FIGURE 2-18 
HERMITE MODULATING FUNCTIONS 
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EQUATION ERROR 

FIGURE 2-19 
CUBIC SPLINE MODULATING 
FUNCTION METHOD 



errors are formed using different samples of the 

input/output signals, this is then solved for the 

parameters using the least squares technique. 

Maletinsky recognises the problem of bias due to noise 

and suggests the use of the Instrumental Variables 

technique to overcome this problem. To ensure accuracy 

of the parameter estimates the input signal should 

excite the whole bandwidth of the system and the order 

of the system should also be known. 

The spline type modulating functions proposed by 

Maletinsky are based on repeated integrations of the 

Dirac Delta function, (figure 2.20). For a known order 

of system, n, a weighted sum of Dirac delta functions 

can be formed from the following equation 

C., 
Where 	 and 

A 

Where n is the order of the system 

The integral modulating function equation (2.1.4 ) can 

now be restated using. 
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Belorusets [64] uses a similar approach to Shinbrot in 

obtaining modulating functions. For a system with two 

unknown parameters the sample window is split into two 

sub-intervals and modulating functions are formed on 

each of these 

01(t)sin2(2t/T) 	te[O,T/2] 

02(t)sin2[(2NtT/2))/T] tdJ/TJ 

02(t) is obtained by translating 01(t) into the 

sub-interval T/2 to T. Shortening the sample window 

makes the set of linear simultaneous equations ill 

conditioned therefore another form of modulating 

function was considered by Belorusets. A polynomial 

modulating function was proposed, figure 2-21 

01(t)t2(tT)2  

02(t)t3(tT)2 	t€[o ,T] 

The problem with polynomial modulating functions is 

that they only satisfy the boundary conditions (2.12) 

for the modulating function and its first derivative, as 

with Shinbrot. 
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POLYNOMIAL MODULATING FUNCTIONS 
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Shinbrot suggested the use of carefully chosen 

sinusoids as modulating functions and Pearson [65] has 

extended this proposal by using the Fast Fourier 

Transform (FFT) to compute the modulating functions. 

Pearson's modulating functions are a summation of 

cosines for the odd modulating functions, and a series 

of sine functions for the even ordered modulating 

functions. 

$ () = TakJ  (D 'çtc 
¼ 

)3 S(3) / t< 

jQ 

where a 	and b .IJ  are chosen so that the end 

conditions 2.22 .of the modulating function are met. 

Then 0)
(r) 	 (2()) 

c, L( 	 / 

And 	(o) 	C, L  



Using these modulating functions enabled Pearson to 

produce a set of linear equations which are solved by 

the least squares technique. 

Pearson has extended this work to periodically time 

varying models, and also to non-linear systems [66]. 

Pearson claims that a large computational saving is 

afforded by using this method, because of the use of the 

FFT algorithm. This eliminates the need to perform the 

numerical integration of the input and output signals. 

The Poisson Moment functional approach has been 

explored by various authors, Loeb has used modulating 

functions derived by Shwartz which are based on Poisson 

functions [67].  More recently Saha [68] and Fairman 

[69] have developed modulating function techniques based 

on Poisson functions. 

The basis of the Poisson functional approach is that 

the higher derivatives of a signal can be expressed in 

terms of itself through the use of Poisson functions. 

This is achieved by modelling the input/output signals 

by an exponentially weighted series of impulses, 

00. 

t) 	
[c)) 
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These models of the signal can be substituted in 

equation 2.7. This gives a weighted series of 

derivatives of the impulse distribution. The parameters 

are now independent of time and derivatives of the 

input/output signals. Equating like orders of 

derivatives of the impulse distributions results in 

linear algebraic equations in the unknown parameters. 

Some of the previously mentioned methods utilise the 

least squares technique to arrive at a parameter 

estimate. While this has certain advantages, namely it 

has an averaging effect on the parameter estimates, it 

introduces a further complication, and increases the 

computational burden. 

2-4-1 Unified Approach 

Although the MFM as an approach to system identification 

seems to stand apart from other methods, it is possible 

to link it to most of the continuous methods which have 

been discussed here. This approach to parameter 

estimation can be classed as the weighting function 

No 



method (WFM). In the weighting function method equation 

(2.7) is multiplied by a weighting function and a scal&r 

product formed with each term. The scal&r product is 

defined as, 

J
ø(t)Y(t)dt 

This allows a set of N linear equations to be solved 

for the N unknown parameters. The weighting functions 

can be of several different forms, eg Shinbrot's and 

Takaya modulating functions. Mironovskii and Vudovich 

[70] have shown that Walsh functions are a type of 

weighting function. 

Least squares and instrumental Variables can be 

considered as a WFM's [70]. These methods are based on 

the minimisation of a cost function. A residual can be 

formed from equation (2.7.). 

N-O 6 
- 	 - - 	 ) 

7- 
S e2-(~ and the cost function is, 	 C& 

andis a minimum when, 	J 	 0,160 

substituting equation (2.15) into equation (2.16) gives, 
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fi(t)=fy(t) 	i=1,i 

	

-u(t) 	i=n+1,N 

This is the form of the WFM with weighting functions 

fi(t). The least squares method will produce biased 

results by using the input-output signals as weighting 

functions if there exists a correlation between them and 

the noise, as discussed earlier. The instrumental 

variable method overcomes this by using a weighting 

function not correlated with the noise. 

Thus it can be seen that most of the continuous 

methods of system identification belong to a set of 

methods called the Weighting Function Method, of which 

the Modulating Function Method is a sub-set. 

2-5 Fault Detection 

Fault detection has developed considerably, in the 

last twenty years or so, from the standard techniques of 

sensor output monitoring to the sophisticated parameter 

and state estimation techniques employed today. The 

standard techniques employed to detect faults in 

industrial plant involve checking the output level of 

various sensors around the system. These sensors 

usually measure parameters such as temperature, pressure 

Me 



and velocity. When a parameter exceeds a certain level, 

an alarm is signalled and the system operators will take 

the appropriate action to locate and rectify the fault. 

This standard approach has several disadvantages, it 

only gives an indication of the system's health at one 

moment in time, and does not give any indication that 

the system may fail in the near future. Also this kind 

of static test gives no indication if the systems 

dynamic response is not as it should be. It may not 

respond to disturbances as quickly as it should. 

With the cost of maintenance increasing all the time 

and large amounts of capital being tied up in providing 

backup systems and a spares inventory, it makes sense to 

be able to plan the maintenance amd repair of a system, 

thus reducing the maintenance and capital costs. In 

addition there is an ever increasing emphasis on safety 

plus the need to eliminate unexpected catastrophic 

failures. The standard go/no go tests on measurements 

of system parameters do not provide the necessary 

information to accomplish this, and as a result complex 

dynamic tests on the system have been developed to try 

to achieve these aims. 

Dynamic testing has several advantages over 

conventional methods of fault detection, the tests are 



fast and the results obtained quickly - essential if 

further damage is to be avoided. The tests are 

standardised and under the control and supervision of a 

computer, therefore operator intervention and skills are 

usually not required. Usually, for dynamic tests, only 

two access points are required, the input and output, 

thus there is no need to provide extra access points for 

test measurements, which might reduce reliability. The 

number and type of dynamic tests available is large, 

figure (2.22) shows most of these. These tests can be 

split into two sections as in system identification, 

Non-Parametric and Parametric. Both will be considered 

here. 

There appears to be two main influences in the 

development of fault detection methods. During the 

early sixties NASA's space flight programme became 

increasingly complicated and the number of equipment 

failures per mission increased. This led to a drive 

into the area of fault detection and isolation • to 

overcome this problem. Fault detection using transfer 

functions is just one of the areas which were explored. 

The techniques employed were relatively straightforward 

and simple, and remained that way until the advent of 

the small low cost micro-computer. 

The micro-computer has had a profound effect on fault 
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detection. It allowed complex algorithms with large 

data processing requirements to be implemented on-line. 

This increased capability has led to areduction in the 

time between a fault occurring and it being detected 

2-5-1 Fault Detection Based on Non-Parametric Methods 

Non-Parametric fault detection like non-parametric 

identification utilises a graphical representation of 

the system. For fault detection this representation or 

signature of the system is compared against a standard 

signature and a decision made on whether a fault exists 

or not. The graphical representation can be either a 

time domain model such as step, ramp or impulse 

response, or a frequency domain representation, such as 

frequency response or power spectra. 

On establishing that a fault in the system exists a 

diagnosis of that fault is sought. In non-parametric 

fault detection methods this is nearly always done using 

some kind of pattern recognition technique. 

Dynamic time domain testing is usually associated with 

step, ramp and correlation testing. Correlation testing 

has been used extensively to obtain the system impulse 

response, and a few authors have extended this to fault 

detection. 



Steps and ramps as test signals for fault detection 

have not received as much attention. This may, in part 

be due to the nature of the test signal. It is not easy 

to perform step inputs and not disturb the process, or 

send it into a non-linear region. If a small step is 

used many tests must be performed to average out the 

noise. This would require long test times, thus 

increasing the time to detect a fault condition. 

Impulse, step and ramp testing is usually implemented 

by placing tolerance gates on the responses. For 

example a gate may be placed on the maximum overshoot or 

peak impulse response, fig (2.23). These tolerances or 

gates are usually chosen at the system design stage, 

using simulation knowledge [71].  Payne [72] has used 

this technique to test batches of servo-mechanisms, in 

conjunction with frequency response testing. 

The impulse response, obtained by using correlation 

techniques is perhaps the most popular time domain test 

procedure. Towill [73] compares the measured, impulse 

response with a standard impulse response, the measured 

response is subtracted from the' standard response and 

the resulting function examined to see if it exceeds a 

threshold (fig. (2.24)). 	This threshold is chosen 'to 

allow some variation between the test and the standard 

responses. If the variation between the two 
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becomes large, the threshold is exceeded and a fault is 

declared. On establishing that a fault exists, pattern 

recognition techniques are then used to locate the 

fault. This is achieved by producing a fault vector 

(fig (2.25)) which describes, in binary form, whether 

the threshold has been exceeded at each particular 

instant on the impulse response. The fault is located 

in the system by comparing this fault vector with. a 

table of fault vectors which are related to particular 

types of failure. Once the pattern in the test fault 

vector has been matched with that in the table, the 

location and type of fault will then be known. 

Towill carried out tests on complex electro-hydraulic 

servo systems. To set up the table of fault vectors, 

simulation studies were carried out using a mathematical 

model of the system, a parameter in the model was 

altered and the effect on the impulse was noted. This 

was used to construct a fault vector for that particular 

fault. Alternatively the fault vector can be 

constructed by physically changing a component in the 

system to introduce a fault and again noting the effect 

on the system. 

Garzia [74] in his comprehensive review of the fault 

detection methods available in the early 1970's reports 

on a time domain method that is similar to Towill's. He 



determines the auto and cross spectra of a system and 

from this calculates the transfer function. Then the 

impulse response is calculated and compared with a 

standard impulse response. A measure of how well these 

two responses match each other is made using the 

chi-squared goodness of fit criteria, 

where h (f L- ) is the 	point on the standard. From 

this it is possible to determine if the system is 

acceptable. If not, the fault can be located using a 

similar approach to that used byTowill. 

Frequency domain testing is the most popular of the 

non-parametric fault detection methods. Several 

techniques have been used, and most utilise some part or 

parts of the system's frequency response. This involves 

checking the response of a system at a particular 

frequency or set of frequencies, and if these do not 

prove satisfactory, a diagnosis of the fault is made. 

Allen [75] proposed that the system gain and phase 

could be monitored on-line. This would be done by 

injecting test signals at frequencies above and below 



the normal operating range of the system under test. 

This would not disturb the system's normal operation and 

hence the system could be continuously monitored, 

resulting in a fast fault detection method. The output 

of the system is bandpass filtered for each of the test 

frequencies and changes in the gain and phase monitored. 

On-line fault detection using frequency response is not 

usual. This method offers the possibility of detection 

of incipient failures [75],  but fault diagnosis is not 

possible. The test frequencies do not give sufficient 

information about the system to allow this. 

A more usual procedure is to inject several sine waves 

at critical frequencies into the system, and measure the 

gain and phase-at these frequencies. From this a fault 

dictionary can be set up to diagnose any faults 

discovered. 

Seshu [76] injects test frequencies at the break 

points on the frequency response curve for a system. 

Only the magnitude response is measured and if the gain 

exceeds a bound then a fault is declared. The bounds on 

the gain are calculated by using the worst case 

acceptable for the maximum and minimum gain. From the 

test data a gain signature is obtained, this is 

equivalent to the fault vector in the time domain's 

case, and as before, a fault table is used to determine 



the cause of failure. A similar approach is taken by 

Hsieh [77], complex systems are split into modules, 

reducing the burden of generating a fault signature 

capable of pinpointing the fault, to that of producing a 

fault signature that will indicate which module is 

faulty. 

Towill has extended his time domain fault detection 

methods to the frequency domain [78].  He proposes that 

three test frequencies are sufficient to test a dynamic 

system. These test frequencies are identified by 

generating a range of unacceptable systems and 

determining the frequencies at which these unacceptable 

systems are most easily recognised. A diagnosis of the 

fault is achieved by relating the change in the 

frequency response through the Bode approximation to 

that part of the system responsible for the fault. 

Sriyananda has proposed a voting technique for the 

frequency response [79] methods. This is a similar 

approach to that used in the time domain [73].  Here 

both the gain and the phase are measured to create the 

fault vector. 

Varghese [80] has proposed a method for determining 

the best test features, which will classify a system 

good or faulty with the minimum computation effort, ie.a 

10I 



minimum number of test frequencies. 

The basic approach to frequency response testing is as 

follows: - 

Model the system and/or use test data to establish 

the frequencies at which the test signals have to be 

injected into the system. Also set the limits on the 

normal gain and phase of the system at these limits. 

Set up the fault dictionary by simulating faults 

on the model or creating faults on the real system. 

To locate faults in the system under test, match 

the fault vector with an element from the fault 

dictionary. 

This is the basic approach used in the previous 

methods, it has also been used by Garzia [74],Polovko 

[81] and Himrnelblau [82] in a similar manner. 

The methods described above suffer from several 

drawbacks. It is difficult to set the limits on the 

gain and phase, and thus change may be difficult to 

detect, Himmelblau [82].  More complex characteristics 

such' as slope may be required. Also the method fails if 

the fault vector is not in the fault dictionary, 



allowing no diagnosis of the fault. This may be due to 

multiple faults. If there is a total failure no output 

is measured. In addition these methods do not monitor 

the system continuously, with the exception of the 

method proposed by Allen [75],  and are therefore 

unlikely to detect incipient failure. 

2-5-2 Fault detection based on Parametric methods 

The non-parametric methods described in the previous 

section offer a technically simple method of detecting 

and locating faults in systems. A number of problems 

with this method have been noted, but perhaps the 

biggest restriction on the method is the inability to 

predict faults. Only those faults which have occurred, 

are detected and located. An on-line method of failure 

prediction is needed. One method which may achieve this 

is to monitor continuously the parameters of the system 

model for any change which may be due to an incipient 

failure of the system. The parameters of the model are 

obtained by one of the parametric system identification 

methods described earlier in this chapter. If a failure 

in the system is detected, it may be possible to relate 

deviations in the model parameters to failures in actual 

system components through the physical relations that 

formed the model. For instance, failure in a heat 

exchanger due to fouling could be detected by a change 

in the flow rate and temperature differentials which 
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would be reflected in a change in the relevant model 

coefficients. For this reason it is thought that 

continuous models are more appropriate for fault 

detection than discrete models [83], as the physical 

parameters such as length, mass, velocity are all 

combined in the continuous model parameters. Thus if 

identification is carried out on—line the fault 

detection procedure can be carried out simultaneously, 

so that the health of the system can-,be continuously monitored, 

and any incipient faults detected and located quickly, 

before any damage is done. Figure 2.26 shows a fault 

detection and isolation system. In addition to 

monitoring the parameters of the model it may be 

possible to monitor the character of the system noise, 

or look for change in the bias of the parameter 

estimates, also state estimation techniques may be used 

to monitor system performance. 

In general parameter estimation is thought to be more 

sensitive to faults, and to give, a better indication of 

the system performance than state estimation [83]. Also 

a trade off exists between noise and speed of detection. 

If a system is noisy, many averages must be performed on 

the parameter estimates if false alarms are to be 

avoided. This obviously reduces the speed of detection. 

Vaistar [84] proposed a method of checking aircraft 
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dynamic systems during flight. This method tracked the 

parameters of the continuous transfer function. It was 

hoped that a gradual deterioration in the system could 

be detected using this method, and thus provide an early 

warning for the pilot. Valstar recognised the effect of 

modelling errors on the accuracy of the detection 

system, and suggested an optimisation method to reduce 

the error to a minimum. 

Garzia [741 has reviewed many different methods of 

fault detection and fault isolation. A method similar 

to that of Valstar is proposed for parametric fault 

detection. Parametric fault detection did not develop 

much until the mid-seventies when low cost computers 

became available to perform the large computational 

requirements of most of the parameter estimation 

methods. 

Although the continuous model of a system is thought 

to be more useful than the discrete model for fault 

detection, there is little literature published on this 

technique. Slightly more work has been carried out on 

discrete techniques. Pau [85] has used the discrete 

approach, as has Wilisky [86] who has employed Kalman 

Filtering techniques, Mehra [87] used a time series 

forecasting method to try to predict a system going "out 

of limit". Park [88] used the Kalman Filter method in a 
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fault detection and isolation system applied to a 

chemical reaction tank. Various faults were created to 

determine the practicability of the method. It was 

found when the model of the system was accurate and 

there was no measurement noise, good fault detection was 

achieved. However if an accurate model cannot be 

achieved, and the measurement noise is significant, 

fault detection will be seriously impaired. 

Duhamel [89] has reviewed many techniques for fault 

detection in analogue circuits. For parametric fault 

detection the least squares technique is used. Duhamel 

notes several problems with this approach. If several 

components are faulty, fault isolation is not possible. 

Variations of components within their tolerance band can 

obscure other faulty components, or cause false alarms. 

In addition the advantage of this method, ie two test 

points and only two signals to be measured, can be 

outweighed by the computational burden of parameter 

estimation, and modelling problems if the system is 

large. 

In one of the few studies using continuous models 

Isermann [83] reviews the possible fault detection 

methods. Parametric fault detection is carried out 

using continuous least squares methods developed in 

Young [40]. Isermann notes that a need exists for a 
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parameter estimation method which will estimate the 

parameters of a continuous model for higher orders, more 

accurately than is possible at present. Two case 

studies are presented. In the first, an electrically 

driven centrifugal pump is monitored. A complex model 

was developed. Isermann suggested that to measure the 

transfer function accurately it should be split into 

sub-components so that low order elements are measured. 

In the second case study, detection of leaks in 

pipelines was examined. Isermann concluded that the use 

of dynamic' models will enable smaller leaks to be 

detected. 

Isermann suggests that fault detection is more 

suitable for abrupt faults than detecting slowly 

developing faults. In addition accurate models and 

parameter estimates are% needed if fault detection is to 

be reliable and not generate false alarms. 

Goedecke [90] has used a continuous technique in an 

experimental fault detection system. This was developed 

to detect faults in a tubular heat exhanger. The heat 

exchanger was modelled by a continuous differential 

equation, and parameter estimates were obtained using 

least squares methods outlined by Young [40]. 

Artificial faults were created, and the method detected 

a change in the model parameters. 



CHAPTER THREE 

MODIFIED MODULATING FUNCTION METHOD 

3-1 Modified Modulatinq Function Method 

In this chapter the theory of the modified modulating 

function method of linear system identification will be 

developed. The Modified Modulating Function Method 

(MMFM) is a development of the Modulating Function 

Method (MFM) reviewed in chapter 2. 

When using parameter estimation techniques in a fault 

detection and identification environment it is better to 

work with continuous time models rather than sampled 

data models. Continuous models are closer to the 

physical laws governing the operation of the system, and 

hence it will be easier to connect parameter deviations 

in the model to a particular cause or fault in the 

system. The MMFM like the Modulating Function Method 

estimates the parameters of the small signal 

differential equation of the continuous model of the 

system, but has the advantage over other methods in that 

it is a two stage method. An initial correlation stage 

is used to check data quality before further signal 

processing is attempted. A visual indication of 

measured correlation function can be included to provide 
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operators with a diagnostic check on the performance of 

the measurement system. 

Instead of using the system input/output signals, as 

the Modulating Function Method uses, the modified method 

uses the auto correlation of the system input signal in 

place of the input signal and the cross correlation 

function of the input and output signals in place of the 

output signal. This has the advantage in that it will be 

possible to eliminate bad data. If no cross correlation 

can be obtained, this may indicate a fault in the test 

equipment or a wrong assumption in the method of 

identification. Hence this makes this method suitable 

for on-line use in remote locations. Properly used the 

correlation function also gives clues as to what type of 

model to use. 

The MMFM is similar to the approach taken in the 

correlation analysis with least squares parameter 

estimation method [31]. In that method the auto and 

cross correlations are formed and then least squares 

estimation applied to them. 

The shape of the cross correlation function in 

relation to the input auto correlation function can give 

a strong indication as to the order of the system. 

First and second order systems are easy to distinguish 
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but higher order systems can present a problem. As the 

system order increases it is often possible to obtain 

similar responses from a second order model plus a time 

delay. 

Time delay is a serious problem that badly affects 

attempts to identify the parameters of the system. In 

many identification algorithms that use the system 

input/output signals the detection of time delay is a 

considerable problem. Visual inspection of the measured 

cross correlation functions can be used to detect pure 

time delay terms, but as noted above, confusion with 

responses generated by multiple lag systems is a 

possibility. 

The input and output signals of a single-input, 

single-output system represented by the differential 

equation, 

+c) 	 = 	) 	4- 

are are related through the convolution integral, 

Y()Jh(_t)(t)dt 



or 	y()=h(t)*u(t) 

where * indicates convolution. 

or through the transfer function in the s-plane, 

Y(s)=H(s)U(s) 

where U(s) is the Laplace Transform of 

u(t). 

A similar convolution and transfer function relation 

exists for the cross and auto correlation functions, 

ryu()=Jh( -t)ruu(t)dt 

or, 	ryu()=h(t)*ruu(t) 

and Ryu(S)H(s)Ruu(s) 

Where ruu(') is the auto correlation of the input 

signal, and ryu(?J) is the cross correlation of the input 

and output signals. A two-sided Laplace Transform is 

required in this case. 

Thus the system differental equation (3.1) may be 



re-formulated, 

--- f;) 	(J 

As in the modulating function method, equation (3.2) 

is multiplied by the modulating function 0(t), and 

integrated by parts to form an equation where no 

reference is made to the differentials of the auto and 

cross correlation functions, 

(- 1) 	f)[-~ , o- - -'- z 

74 
- - 

f r) ( (L (3,S)  

Where Ø(C) is the nth derivative of the modulating 

functLion. Figure 3.1 shows a diagramatic representation 

of the MMFM. 

In the modulating function method K (K=n++l) 

parameters are found by ç samples of the input/output 

signals. For the modified method, successive samples of 

the auto and cross correlation function are not 
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advisable, because the auto and cross correlation 

functions will not change significantly with successive 

samples. Any equations formed with them will be ill 

conditioned and therefore poor estimates of the 

parameters will be obtained. Differences between 

successive samples of the auto and cross correlations 

will be due to variance caused by short integration 

times in the computation of the functions and not a 

system effect. It is advisable then to form the set of 

simultaneous equations by using different modulating 

functions. 

AA 	 ) 	

r 

M   

These modulating functions can be of a different shape 

or type so long as they satisfy the boundary condition, 

(I2 	- - - ri 
Ø[O,T]=o 	' 

k : 	 (\#tP-i- 

In practice it was found convenient to use the higher 

order derivatives of the modulating functions to form 

each new simultaneous equation. This made the 
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function easier to 

to the parameter 

Modified Modulating 

generation of the modulating 

implement. Thus the solution 

estimation problem using 

Function Method is, 
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This method also has an advantage over the modulating 

function method in that k samples of the input and 

output signals are not needed. 

3-1-1 Noise 

Noise has so far been omitted from the problem. 

Equation (3.3) can be re-stated with a noise term. 
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The MMFM has a considerable advantage over the MFM, in 

dealing with the problem of noise. The system is 

injected with a test signal free from corrupting noise 

and the auto correlation function is derived from this. 

The output signal is corrupted by noise, figure 2.5, but 

a cross correlation function formed between these two 

signals will be noise free so long as there is no 

correlation between the test signal and the corrupting 

noise, and the integration interval of the correlation 

function is sufficiently long. In other words the noise 

is rejected from the system. 

This is a great advantage when identifying in noisy 

environments, where noise of a particular frequency or 

frequency band is automatically rejected without the 

need to use sophisticated filters or lose information 

about the system in a particular frequency range. The 

MMFM is also superior in this respect to most of the 

well known techniques of system identification of noisy 

data, such as Instrumental Variables or Maximum 

Likelihood which require prior knowledge of the noise. 

The long integration times which are required to 

obtain noise free correlation functions, are not 

practical for identification of real systems. The 

system might drift during the experiment, also the data 
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storage requirement for batch processing would be 

prohibitive. In practice a limited integration interval 

is used, and the resultant correlation function will 

have a non-zero variance, but this can be reduced by 

taking successive averages of the correlation function. 

3-1-2 Modulating Functions 

The modulating function is central to this method of 

parameter estimation. Various modulating functions have 

been proposed. The most effective for parameter 

estimation are the modulating functions based on Hermite 

functions proposed by Takaya [61]. 

Modulating functions based on Hermite functions have 

been used in this work. The Hermite function is defined 

as, 

To form the modulating function, weighted Hermite 

functions are used (see chapter two). 
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The Hermite function may be expressed in polynomial 

form, 

[r/J 

1/1 \ (-2e 

where [n/2] is the largest integer that does not exceed 

n/2, and, fn' 
(zpf - 	(21)!(u\-'i! 

(2p-1 ) ! !=(2p-l) (2p-3) .....5.3.1 

Mason [91] has shown that a recursive version of (3.6) 

can be developed, 

H,(r) =rH,.,( r ) -nH,( r) 

H 1  (r)=r 

This greatly improves the speed and ease of computation 

of the Hermite functions. 

Hermite modulating functions, as described by equation 

(3.5), exist for a finite time window of approximately 

ten seconds, see figure 2.18 page O . The modulating 

functions decay to zero at the limits of this window. 

If the dynamics of a fast system are to be examined, 
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then the auto and cross correlation functions may only 

exist for a time window considerably shorter than that 

of the modulating function window, figure 3.2. For a 

slow system the cross correlation function may not have 

decayed to zero at the end of the time window, and as a 

result much information about the system may be lost. 

Thus a time scale factor is needed for the modulating 

function. 

For the diesel engine the modulating function window 

had to be shortened by approximately 	'a factor 

of ten 	. The sample window of the auto and cross 

correlation functions being approximately two seconds. 

Normalisation of the modulating function is necessary 

if the higher order derivatives of the modulating 

functions are to be used. This is because the 

modulating functions have the following property [61], 

I lim maxØ(t_T/2)t= 
fl 9_ CO  

Therefore there may be a large difference in amplitude 

between the lower derivative modulating function and the 

higher order derivatives. Thus difference in range may 

exceed computational limits. Takaya proposed the use 

of the following normalisation factor to overcome this 

difficulty, 
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cn =J(t_T/2)Idt 

The coefficient c is divided through the system 

differential equation. 

In practice, use has not been made of this method of 

normalisation. Each modulating function has been 

normalised to a scale height so as to reduce rounding 

errors in the discrete integration of the correlation 

and modulating function products. The correlation 

functions have been normalised likewise,and equation 

(3.3) now becomes, 

A 

 

where An  is the scale factor for the nth  derivative of 

the modulating function, B is the cross correlation 

scale factor, C is the auto correlation scale factor, S 

is the time scale factor. 

3-2 Correlation 

When using the MMFM the input auto correlation and 

cross correlation functions of the system output and 

input signals are computed before identification takes 



place. It is therefore important that a fast and 

accurate correlation algorithm is used. 	The auto and 

cross correlations can be performed directly on the 

system input and output signals, but these rarely 

contain sufficient noise bandwidth  to excite all the 

modes in the system. It is often better to inject a 

test signal into a system under test rather than rely on 

the naturally occurring noise signals. This ensures that 

a sufficiently wide bandwidth of noise signal is used 

to excite all the modes in the system. 

It has been found that when testing a diesel engine 

used in a power station the injection of noise becomes 

essential. All natural noise in the signals is swamped 

by the 50 Hz interference present. This is a serious problem 

that can only be overcome if careful attention is given 

to filtering out the noise, without losing valuable 

information about the system at this frequency range. 

The MMFM eliminates this problem by cross correlating 

not between the actual input and output but between the 

injected noise signal and the output signal (see figure 

3.3). Because the 50 Hz noise is not correlated with 

the injected noise it is eliminated from the correlation 

function. Although care has to be taken to ensure that 

the noise does not cause an overload of the ADC used in 

the measurement system. 

IZS 



ME 

H- 
LU 
V) 

ml 



Pseudo Random Binary Sequences (PRBS) have been found 

to be very useful input signal [92]. The auto 

correlation of the PRBS signal has a triangular shape 

and the cross correlation between the PRBS and the 

output signal resembles the impulse response of the 

system under test. When testing a diesel engine PRBS 

noise was not used because it induced a large variance 

in the cross correlation function. Gaussian noise was 

used and gave a much smoother cross correlation 

function. The probable reason for this is that the 

Gaussian noise has lower high frequency harmonic content 

than the PRBS noise signal. 

A brief description is given here of the various 

methods of performing correlation. Attention will be 

restricted to software methods. It should be noted that 

considerable progress has been made towards using 

silicon circuit technology to realise hardware 

correlators which will be of particular interest in 

applications involving fast data rates. 

Correlation can be thought of as a matching process 

where a common pattern in two stochastic signals is to 

be detected. Given two stochastic signals, y(t) and 

u(t). The correlation between these two signals is 

dependent only on the time difference between the two 

signals, (t-b, if the signals have stationary 
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characteristics. The correlation function is given by 

the expected value of y(t) and u(t-t), 

ry(i2)=E[y(t) u(t-t)] 

Where E is the expectation operator. Ideal 

cross-correlation is defined by. 

1 

ryu(t)=li(l/2Ty(t) u(t)dt 
T-> 

-T 

Similarly the auto correlation function, which matches a 

signal with itself, is given by, 

ruu(-t)=lim/2T)Ju(t) u(t-)dt 
	

(3' 
-T 

3-2-1 Discrete Correlation 

If the correlation function is to be calculated on a 

micro computer, discrete versions of (3.7) and (3.8) are 

needed. The correlation operation consists of a time 

shift, , between the two signals, a multiplication 

between the signals and then a summation. This is shown 

schematicallyin figure (3.4). To ensure that no 



information is lost the data should be sampled at twice 

the Nyquist rate at least. The integration time is also 

limited. Thus we arrive at an approximation for the 

correlation function, 

ruu(t)=l/TSu(t-) u(t)dt 

If a limited length of data is available some loss of 

data will occur as one signal is delayed, thus a further 

modification will be necessary. 

ruu(t)=l/(T-t)fu(t) u(t-t)dt 

This will restrict the size of Z  to 'i<<T otherwise 

ruu('l) will become increasingly inaccurate. 

Assuming no restriction on the data available the 

discrete correlation function becomes, 

ruu(k)l/N)ur urk 
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To implement this correlation requires a large 

computational effort with many multiplications and 

summations. A significant reduction in the complexity 

of the arithmetic operation can be obtained using some 

form of quantised data. Polarity and relay correlation 

are commonly used methods that use quantised data. 

3-2-2 Polarity Correlation 

When using polarity correlation the data signals are 

quantised into their sign form, figure 3.5. Correlation 

is then performed on this quantised data, and the 

correlation function becomes, 

ruu(?7)=l/Tfsgn(u(t))sgn(u(t-~t))dt 

Performing the correlation in terms of the signal 

polarity will lead to a loss of information, but an 

approximate doubling of the integration time will 

compensate for this [93]. A very considerable time 

saving is achieved by eliminating the need for 8 bit 

digital multiplication. Using polarity correlation 

distorts the shape of the correlation function by 

sharpening the peak of the auto correlation function, for 

example see figure 3.6. A relationship between polar 
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and normal correlation has been developed for the case 

when the signal to be correlated can be described by 

Gaussian statistics, [93]. It can be shown that, 

r=(2/Tr)sin'r 

where 	rp  - polarity 

and 	r - normal 

3-2-3 Relay Correlation 

Relay correlation can be considered a combination of 

polarity and normal correlation. It combines some of 

the speed advantage of polarity, with the shape benefits 

of normal correlation. With relay correlation one 

signal is quantised and the other analogue. The Relay 

correlation function is defined by, 

rT 

ruu()=l/TJsn((u(t))u(t_)dt 

0 

The computational time savings are not as large as 

polarity, but a significant improvement over normal 

correlation is achieved by reducing the multiplication 

of u(t-t).u(t)  to a sign test of u(t) which will 

determine whether u(t-D) will be added or subtracted to 

the accumulated ruu(I).  A relationship between Relay 

L3' 



and analogue correlation exists for signals with 

Gaussian statistics. 

L() 
where rr  Relay correlation 

and 	rA -  Normalised analogue correlation 

3-2-4 Skip Algorithm 

The skip algorithm is a correlation algorithm designed 

to speed up the calculation of the correlation function 

still further. With normal correlation both signals are 

sampled at the same rate. In the skip algorithm one 

signal is sampled at a rate which ensures the necessary 

resolution of the correlation function, and the other 

signal is sampled more slowly, typically up to one 

eighth the sample rate of the fast channel. This slow 

sample rate should not fall below the Nyquist frequency, 

otherwise information loss will occur. Figure 3.7 shows 

a schematic illustration of the skip algorithm. 

Fell [94] has shown that the fast sampling rate, used 

to obtain resolution in the correlation signal is 

usually much faster than the minimum sampling rate, 

twice Nyquist, by typically, a factor of ten 	It 

is thus argued that if the cross correlation products 
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are formed at a slower sample rate while performing the 

shifting operation at the faster rate no loss of 

resolution in the correlation function will be suffered 

while a great reduction in redundant arithmetic will be 

achieved, typically a factor of tent.. 	Thus a large 

saving in the computational requirement needed to 

perform the correlation algorithm is achieved. 

The skip algorithm can be used in conjunction with 

analogue, polarity or relay correlation algorithms, 

improving the computational speed of them. Although 

polarity correlation has thegreatest speed advantage, 

relay correlation in conjunction with the skip algorithm 

has been used here. Although slower than polarity this 

enables us to retain the shape of the correlation 

function while achieving substantial computational 

savings over normal discrete correlation. 

3-3 Diesel ModellincT 

The creation, of a system model is a very complex 

process and a great deal of effort in the field of 

system identification has gone into this difficult area. 

Most of the effort has concentrated on producing 

discrete models for the discrete identification 

techniques developed over the past twenty years. For 

fault detection it is thought that continuous time 
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models are more relevant to the problem. 

An accurate model of the system to be identified is 

essential for a good estimate of the parameters of the 

model to be obtained. The normal approach is to model 

the system using the physical laws governing that 

system. This often results in a model that is very 

complex, as in the case of distributed systems, or in a 

model that is an approximation because the system 

processes are not fully understood. Either way when it 

comes to identifying such a model a compromise must be 

arrived at in order to identify a model that is not over 

complex but will be able to respond to a disturbance in 

a similar manner as the system. 

Diesel engines are very complex and some of the 

processes, for example combustion, are so complex with 

so many factors influencing I them that it is not possible to 

model them accurately, so a very crude model is often 

used to model this process. Normally the diesel engine 

is so complex it is not modelled with linear transfer 

function techniques, but requires non-linear partial 

differential equations. Some work however has been done 

on producing transfer function models of the diesel, eg 

Thiruarooran et al,[95] but even these end up using a 

very high order model, principally due to the time 

delays in the system. A block diagram of the diesel 
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engine is shown in figure (3. 8), and the corresponding 

transfer function model is shown in figure (3.9) 

It can be seen that the combustion system has been 

modelled with a first order lag. The time delays in the 

system are due to the fuel system and the turbo charger 

characteristics. These were modelled using the Padé 

approximation and resulted in the closed loop transfer 

function, 

bs  S'.i- 6.s2-4 b, + L 

This model is too complex to use in most identification 

algorithms as the variance of the estimates of the 

higher order terms becomes large. Other authors [96] 

have produced simpler models1  but these model the time 

delay with a first order 	lag and as such are probably 

too simplistic. 

A simple linear model which takes into account time 

delays is needed for the identification algorithm, in. 

which the variance of the estimates is not large and the 

computational effort does not prohibit on-line use. The 

problem of non-linearity.can be overcome using piecewise 

linear models of the system. 
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The choice of model is often difficult to make without 

prior knowledge of the system. The MMFM allows a study 

of the dynamics of the system before identifying the 

system, thus allowing a choice of model to be made. The 

MMFM uses the auto and cross correlation functions of 

the input and output signals. A study of the shape of 

the cross correlation will reveal clues about which 

order of model to use, and whether time delay is 

present. Higher order terms in the system will also 

give the appearance of time delay, thus it is thought 

possible to model most systems with a second order model 

plus a time delay. A study of the cross correlation of 

the diesel engine indicated that this type of model is 

appropriate, see chapter 5. This is a very simple model 

with only four parameters to identify, and as such will 

not present problems in identification. However this 

model is a long way removed from the physics of the 

actual system and as such will present problems for 

subsequent fault detection and isolation algorithms. 

There is, unfortunately, a difference in requirements 

between identification and fault detection. For 

identification the model should be as simple as 

possible, but for fault detection the model should 

describe every detail of the original system. The 

closer the model is to the original system the more 



likely it is that deviations in the parameters of the 

model can be associated with actual faults in the 

system. Unfortunately as we have shown it is not 

possible to model the diesel accurately, therefore a 

trade off between identification accuracy and fault 

detectability is required. 

It is thought that if a fault occurs in the diesel it 

will affect the response of the diesel in some way, and 

hence the cross correlation function will change. This 

should affect the parameters of the model, which are 

being monitored for change. If the model was a 

comprehensive one it would be possible to relate these 

parameters back through the system and identify the 

faulty component in the, engine. Because the model we 

are using is not comprehensive it may not be possible to 

isolate the fault, but the detection of a deterioration 

in the engine performance, due to a fault, may be 

possible. 

3-3-1 Model Order 

When modelling such a complex system as a diesel 

engine, with a simple model, modelling errors will be 

introduced as the higher order terms are truncated. 

The auto and cross correlation functions are related 



through the transfer function G(s). 

Ryu(s)G(s).Ruu(s) 	 (si) 

where G(s)N(s)/D(s) 

and 	D(s)=Ql(s)+Qh(s) 

and 	N(s)=P1(s)+Ph(s) 	 (3 '( - 

The subscripts 1 and h represent the low order and 

high order parts of the polynomials. 

If we then model the system with a low order model, 

G' (s)P1(s)/Q1(s) 

An error will be introduced, this can be expressed in 

terms of a modified auto correlation function. 

substituting (3.10) and (3.11) into (3.9) gives 

Qi(5).Ryu ( S) N ( S ) .Ruu(s) Qh(s).Ryu(s) 
from equation (3.10) 	

/ 
Qh(s).1 yu(s)=Qh(s).(N(S)/D(s.Ruu(s) 

substituting (3.14) into (3.13) gives 

Ql(s).Ryu(s)=N(s).Ruu(s).(l-Qh(s)/D(s)) 

Q1(s) .Ryu(s)Pi(s) .R'uu(s) 

Ryu(s)G'(s) .Ruu(5) 

where 	R'uu(S)=(l+Ph(s)/Pl(s)).(l_Qh(s)/D(s)).Ruu(s) 
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Therefore the effect of truncating the model of the 

system can be expressed in terms of a distorted input 

signal, ie R'u(s) becomes the new input to the model if 

the same output is to be obtained for the low order 

model as for the system. 

Thus the differential equation becomes, 

a -  - - - 
a0

A d"I'V-  (,- ) 	() 	
- -. 	(t) 

+ 
() 

andL(t) is the effect of, 

/1+ 	s) \/H(s)\ 

57 PL 1   

on Ruu(S). 

Thus the scalar products formed with the modulating 

functions Ø(t) and the auto correlation ruu(t)  will 

contain errors. 
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ø(t) .r 'ft)dt 	JC~() 	t)Øt)d 

I 

Thus fO(t)-A(C)dt is the error induced by using a 
0 

model order lower than that of the actual system. The 

time available for the programme of work reported here 

was not long enough to allow a detailed interpretation 

of the errors introduced by low order models. A 

continuation of this work has been reported by 

Jalali-Naini and Jordan [97]. 

3-3-2 Time Dela 

Time delay in system identification is a serious 

problem. Discrete models tend to overcome 	this 

by increasing the order of themodel [34], but there are 

difficultie if the time delay is not an integer value of 

the sample period. Continuous time models are not 

amenable to this solution, and there have recently been 

different techniques proposed to eliminate this problem 

[55]. The MMFM offers 	- 	alternative solution by 

using a manual method that requires no computational 

effort during identification, and only a setting up 



procedure to implement. Care must be taken to avoid 

introducing errors caused by the incorrect removal of 

time delay. 

The technique requires that the auto and cross 

correlation functions are studied for a time lag between 

them, this can then be removed in the software 

computation of the cross correlation function. The 

parameters of the model can then be identified in a 

straightforward manner. Thus, the time delay would be 

removed and the parameters of G'(s) identified. The 

final model of the system G(s) would be, 

G(s)G'(s) .eSTd 

Alternatively a mechanised method [97] could be used. 

Assuming a second order model with time delay, 

- s- 

(irs 	+ ci) 

(a l#a,s./a0) 

Using a power expansion of eTd 

I 
I (aa) 	+ 

ZJ43 



Hence the measured coefficient of s3  and higher ordererms 

become zero when Td0 	Therefore an iterative delay 

removal procedure which checks the estimate of the s2  

parameter can be adopted. 

3-3-3 Closed Loop Transfer Function 

System identification is usualy best carried out with 

the feedback loop open. In many systems it is not 

possible to break the feedback loop for safety, or 

practical reasons. The diesel engine is such a case 

where the feedback loop cannot be broken for safety 

reasons. The open loop transfer function cannot be 

determined , thus we must be content with identification 

of the closed loop transfer function. Gustavsson et al 

[98] have produced a survey of closed loop 

identification, which reviews methods of discrete 

identification of closed loop systems. In their study 

they found that in some cicumstances closed loop 

identification is as good as open loop identification, 

for example when an additional test input is used. 

-t 
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CHAPTER FOUR 

EXPERIMENTAL SYSTEM 

The aim of this research work was to investigate the 

Modified Modulating Function Method of parameter 

estimation and use it in a fault detection system. An 

experimental system was developed and applied to a 

diesel engine used for the generation of electricity at 

Stornoway Power Station. It was necessary-to have an 

experimental system which was both portable and 

flexible. 'The equipment 'was developed in the laboratory 

using R-C networks 	and then the equipment was 

transported to Stornoway for on-site testing. This 

enabled the flexibility of on-line system identification 

to be retained, which was considered an advantage over 

the normal method of using recorded data. The system 

could then be adapted according to the results obtained. 

4-1 TEST HARDWARE. 

Given that the equipment needed to be portable, an 

HP85 computer was used to control the experiments and 

process the results. The data from the input/output 

signals was obtained from a Datalab Transient Recorder 

under the control of the HP85 via an IEEE 488 Bus. A 

noise generator provided the necessary stimulation for 

the system. This formed the basis of the test equipment 



as shown on figure 4-1. A Wavetech Spectrum Analyser 

was added occasionally to verify the results. 

The test] equipmenticould be applied to any SISO process 

for identification of the transfer function parameters, 

provided the process had suitable access points. 

Therefore, once the system software was operational, it 

was a simple step to transfer the effort from laboratory 

study to field study. In the laboratory the method was 

first developed on software simulated systems, which 

will be discussed later, and then on simple analogue 

networks. Much of the work was concentrated on a 

second order network, figure 4-2, as the diesel was 

thought to be predominantly second order. This network 

was given a natural frequency approximating the diesel 

natural frequency, and stimulated using the same noise 

source as would be used on site. In this way a 

reasonable approximation to the diesel was obtained and 

any problems overcome before site testing. 

Test equipment was installed at Stornoway Power 

Station to allow access points to the diesel so that a 

test signal could be injected into the engine and to 

enable the response of the diesel alternator set to be 

measured. 

As a prerequisite for use of the MMFM, detailed access 

to the system under test is essential. The ability to 
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stimulate the system and measure the effect is required. 

On a conventionally governed diesel it is very difficult 

to stimulate the engine in any useful manner, because it 

is normal to fit a hydraulic governor which has limited 

or no access to the summing junction. For this reason 

the engine under test had an electronic governor fitted 

which permitted access to the summing junction, and 

enabled the injection of various test signals. 

Measurement of the response of the engine to this 

stimulation was achieved by the use of current and 

voltage transducers, on the output of one phase of the 

alternator, which enabled the power output to be 

measured. All test equipment was isolated from the 

power station control equipment by opto-isolation 

amplifiers to avoid the problem of floating earths 

causing damage or false alarms. 

The diesel engine used in this work was a 

Mirr lees -Blackstone KV12 Major El. This is a twelve 

cylinder engine configured in a 'V formation, the power 

output is approximately 4.3 MW. The engine has twin 

turbo-chargers, one for each half of the engine. A 

block diagram of the engine and ancillaries is shown in 

fig. 4-3. 

4-2 TEST SOFTWARE 

The software was written to perform two distinct 
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tasks and consisted of two programs. 	The first program 

was written in BASIC and its function was to control the 

experiment. This included loading data from the 

Transient Recorder, controlling the assembler level 

calculations .. of 	the 	correlation 	and 	modulating 

fupctions, and storing the results. The second was an 

assembly language program designed to calculate the auto 

and cross correlation functions, and the integral of the 

product of a correlation function and a modulating 

function. This use of the assembler language program 

considerably improved the speed of calculation. 

Two software designs were produced, one to control the 

experiments on hardware, and the other to perform 

simulation experiments.. The flowchart for control of 

experimentation is shown on figure 4-4. This,software 

was designed to enable a sequential processing of many 

samples of the input/output signals. Initially the 

Transient Recorder was triggered to sample the two 

signals. When this was complete, the data, 2048 bytes, 

was loaded into the HP85. The Transient Recorder was 

then triggered again so that data sampling could be 

performed while the current data set was processed. The 

data was then passed to the correlation routine where 

auto and cross correlation functions were calculated. 

The correlation functions were returned to the BASIC 

program for averaging. 

ci 

Is' 



START 
DATA SAMPLING 

'INPUT DATA FROM 
TRANSIENT RECORDE 

CALCULATE 
CORRELATION FUNCTIONS 

ADD TO RUNNING 
AVERAGE 

N 	AVERAGE 
COMPLETE 

FORM ELEMENTS OF 

MMFM MATRIX 
EQUATION 3 -4. 

CALCULATE 
PARAMETER ESTIMATES 

P EAT 

IN 
STOP 

FIGURE 4-4 
EXPERIMENT CONTROL FLOW CHART 
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The variance on the correlation functions causes a 

wide spread in the estimates of the parameters, it is 

therefore necessary to introduce a form of averaging. 

The program was designed for continuous monitoring of 

the system, so a moving average was used. This took the 

form of exponential averaging, which weighted the most 

recent correlation function in preference to the older 

functions. Figure 4-5 shows a flow chart of the 

averaging routine. 

If the total number of correlations has not reached 

the running total another correlation is performed until 

the total is reached. When this happens the correlation 

functions are multiplied by the modulating functions and 

the results integrated. This operation is handled by an 

assembler program. Before the correlation function 

array is passed to the integration routine it must be 

converted into binary and amplitude scaled to ±127.  The 

modulating functions are similarly scaled to minimise 

the integration error. 

When the integrations have been performed, the matrix 
- - 

equation 3-4 can be formed. Matrix inversion is 

performed using a program stored in a ROM module fitted 

to the HP85. The parameter estimates calculated were 

then stored on tape for analysis. 

The assembler programs were written in HP assembler 
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language. A significant improvement in processing 

speed over BASIC was achieved, thus making it possible 

to process large amounts of data. Only the two main 

assembler programs will be considered, these are the 

correlation routine and the evaluation of the 

correlation and modulating function integral. The other 

assembler routines handle simple communication tasks 

with the basic program, for example transfer and 

conversion of data. 

The correlation program was designed as a Relay 

Correlator which also implemented Fell's [94] skip 

algorithm. The program was designed to be flexible with 

a variable shift and variable skip. This allowed 

experimentation into accuracy with decreasing data 

samples. A flow chart of the correlation routine is 

shown on figure 4-6. The raw data from the transient 

recorder was down loaded into the HP85 in a string of 8 

bit bytes. Because Relay correlation is defined as, 

r 	Ct) 	J ) S[ -) J 

the correlation can be simplified to a sign test on u 	- 

and then either an addition or subtraction on the 

accumulator for the particular shift. The raw data 

signals u and y were accessed by indirect addressing 
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which was incremented after each correlation cross 

product. After a complete pass on the data the delay 

shift register was incremented and another correlation 

cross product and summation was completed. For each pass 

the accumulator total was stored thus building up the 

correlation function. The number of shifts was limited 

to 256. This was considered sufficient and yielded a 

good resolution in the correlation function as the size 

of shift was set by the sample rate on the transient 

recorder. The data was sampled over 2048 bytes and the 

cross multiplication performed over 1600 bytes to allow 

for the overlap on maximum shift. Once the data had 

been returned to the BASIC program the correlation 

function was multiplied by the scale factors to create 

the true function. The number of shifts used could vary 

2,4,8 .....256. 

The skip algorithm was implemented by skipping 	a 

number of cross products, i.e. a skip of one would have 

1600 cross products. A skip of 2 would have 800 cross 

multiplications. The skip is variable under program 

control, the skip options available are, no skip (1), 

2,4,8,--64. 

The modulating functions routine calculates 4ke 

integral of the correlation function multiplied by a 

modulating function. This task is performed for both 

the auto and cross correlation function with 2N 

/5.7 



derivatives of the modulating function. A flow chart of 

the modulating function routine is shown on figure 4-7. 

As there was no multiplication operation in the 

assembler a short routine to perform the multiplication 

was written, this forms the bulk of the flow chart. The 

modulating function and its derivatives (up to the 

eighth) were stored in data arrays of 256 bytes per 

derivative. 

The modulating function data was generated using a 

BASIC program, which calculated the functions using 

Hermite polynomials and magnitude scaled them to ±127. 

The functions were converted into octal code which was 

used in the data arrays. 

One other important BASIC program written was the 

software simulation program. This generated simulation 

of the auto and cross correlation functions of different 

systems, and was used to test and experiment with the 

MMFM. It had the great advantage that noise was not 

present, and accurate results could be achieved, 

enabling detailed analysis of the method to be 

performed. This program used the calculated impulse 

response of 1st, 2nd, 3rd and 4th order systems in a 

convolution with a triangular shape representing the 

auto correlation to give the cross correlation. The 

impulse response for first and second order systems is 

well known but the third and fourth order responses had 
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to be calculated by convoluting a first order and a 

second order system to make a third order system. 

Similarly a fourth order system was made by convoluting 

two second order systems. This was achieved by 

multipling the two systems in the s - plane and then 

performing an inverse Laplace Transform. 

4 - 3 TEST PROGRAM. 

The testing carried out using the MMFM followed the 

classical technique of validating the method using 

simulated data, i.e. the simulation program previously 

discussed. Software experiments were carried out to 

determine the effect of time delay, and of measuring 

higher order systems with low order models on the 

parameter estimates. A hardware simulator was then 

used, this was a 2nd order analogue system which enabled 

the correlation routine to be verified. This simulator 

was also used to experiment, with the number of shifts in 

the correlation routine and also 	the number of skips 

to be used. Once the best set up had been achieved 

experimentation 	- 	. at Stornoway Power Station was 

carried out. Long term tests were undertaken to 

determine the transfer function and an attempt made to 

detect failure on the engine. The results of these 

tests are detailed in chapter 5. 
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CHAPTER FIVE 

EXPERIMENTAL RESULTS 

In this chapter the application of the MMFM, and the 

results obtained, will be studied. As the aim of this 

research work was to produce a low cost, remote 

operation on-line monitoring device for a Diesel Power 

Station, the experimentation was biased towards this. 

Experimentation on the MMFM followed the classical 

technique of software simulation experimentation to 

verify the 
im 
ethod and then application of the method to 

a laboratory system before testing at Stornoway Power 

Station. Results obtained on the diesel were 

corroborated by results obtained from a 	commercial 

transfer function analyser. 

5-1 Software Simulation 

The software simulation, experimentation program was 

carried out with the aim of proving the MMFM. It was 

also used to investigate the various problems created by 

using a simple model of the diesel engine, such as model 

order and time delays, which make accurate identification 

impossible. The use of computer simulated data had the 

advantage that there were no noise problems to confuse 
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the results. Simulated auto and cross correlations were 

generated by convolving the known impulse response of a 

system with a representation of the auto correlation 

function of a PRBS noise signal. A narrow triangle is a 

good approximation to the auto-correlation of PRBS 

noise. The bias of the auto-correlation can be 

considered negligible if we assume a long sequence 

length of the PRBS noise. The MMFM was applied to this 

simulated data. First order, second order, second order 

with time delay, third order andfourth order simulated 

systems were studied. 

5-1-1 Verification of the MMFM 

Verification of the MMFM is a straightforward 

procedure. Simulated system responses are generated by 

using the convolution routine described in chapter 4. 

The impulse response was convolved with a triangular 

shape to obtain the simulated auto and cross correlation 

functions, figure 5-1 shows a first order simulated 

system. The MMFM was then applied to these systems and 

the parameter estimates compared with the known system 

parameters. On performing this test the MMFM estimated 

the parameters of the transfer function accurately, 

however, it was noted that movement of the correlation 

functions within the modulating function window caused a 

variation in the accuracy of the parameter estimates. 
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For a first order system the zero shift point on the 

correlation functions was shifted within the modulating 

function window, from the extreme left, to the extreme 

right. The percentage error in the parameter estimates, 

the gain and time constants, is shown in figure 5.2. 

This reveals that the MMFM estimates of the parameters 

is most accurate for a first order system when the zero 

shift of the correlation functions is set between 70 and 

100, of the sample length. The minimum error on the 

parameter estimate obtained, being in the region of two 

to four percent. A similar study was carried out with a 

second order system, figure 5.3. This shows the most 

accurate estimates to be in the region 100 to 150, fig. 

5.4. The minimum percentage error achieved is lower for 

the second order system, between 0.1% and 1%. 

The reason for a variation in accuracy between 

individual parameter estimates may be due to truncation 

error in the integrals formed with high order modulating 

functions, although the difference in the accurate 

region is not significant.. The error caused by the 

variation of the zero within the window may be caused by 

the shape of the modulating function giving more weight 

to the centre of the window, thus reducing the 

truncating effects of the numerical integration at the 

centre, compared to the tails. 
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Selection of the sample time is critical, the whole 

cross correlation function should be contained within 

the modulating function window, thus the sample rate 

should be selected to allow this. A slow sample rate 

should be avoided so that the correlation functions do 

not become narrow thus increasing the truncation error 

in the numerical integration. Errors due to this effect 

can be expected to be exaggerated due to noise present in 

real systems. Equally, fast sample rates should be 

avoided because, if the correlation function extends 

beyond the modulating , function window, information 

about the system will be lost. 

5-1-2 Time Dela 

A serious problem was encountered during preliminary 

testing on the diesel engine. A time delay between the 

auto and cross correlation functions was detected. This 

was due to the fuel transport lag between the fuel pump 

and the fuel injectors. Any time delay would affect 

the estimates of the parameters, and thus make fault 

location, by way of relating parameter deviations to 

system failures, difficult. For this reason it was 

decided to investigate the effect on the parameter 

estimates of a simulated second order system when time 

delay and time advance were introduced. 



This simulated system was modelled by a second order 

transfer function, and parameter iestimates obtained. 

These were used to calculate the impulse response, which 

was convolved with the simulated auto correlation to 

give the cross correlation of the model. .This was then 

compared with the cross correlation of the system' 

Even small delays quite markedly affected the 

parameter estimate. Figure 5-5 shows the effect on the 

model when a time delay of 10% of the settling time is 

introduced between the auto and cross correlation 

functions. As can be seen, the response of the model is 

much more sluggish than that of the system. Figure 5.6 

shows a similar and more exaggerated effect for a time 

delay of 20% of settling time. 

A similar exercise can be carried out using time 

advance, although this situation would not normally be 

met in an engineering system. However in the winding 

out procedure adopted to remove time delay, there is a 

danger of over correcting and introducing time advance 

into the system. Time advance has the opposite effect 

on the model, the response becomes much more active. 

Figures 5.7 and 5.8 show the response for a time advance 

of 5% and 10% of the settling time. 
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The effect on the parameter estimates of introducing a 

time advance or time delay into the system is shown on 

figure 5.9. 

When time delay is introduced the coefficients, gain, 

damping factor and natural frequency all fall in value. 

This is reflected in the response of the model, which 

becomes increasingly sluggish. This is shown in figures 

5-5 and 5-6. From figure 5-9 it can be seen that there 

is no characteristic, in the curves, which actually 

defines the zero time delay accurately. This meant that 

a manual winding out of the time delay had to be 

adopted, and the accuracy depended on judgment. 

5-1-3 Model Order 

A diesel engine is a complex system and has a complex 

transfer function. It was felt that any attempt to 

identify such a complicated transfer function with a 

large number of parameters would not be successful. 

Initial tests to obtain the cross correlation function 

of the diesel engine had shown that the cross 

correlation "impulse response" approximated to a second 

order response with a time delay. It was felt that 

greater accuracy of identification could be achieved by 

limiting the model to a second order transfer function. 
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In using a low order model, errors will be introduced. 

In section 3.3.1 it has been shown that these errors can 

be thought of as a distortion of the input signal. To 

study these errors, higher order simulated systems 3rd 

and 4th order, were modelled with a 2nd 	order model, 

and compared with the system responses. For the third 

order system a pole pair was located at (-1,±3) on the 

pole zero map and a single pole located at various 

points on the real axis. The further out the single 

pole the less effect it has on the system and the model 

response should resemble that of the dominant pair. As the pole 

is brought closer, the greater the influence it will 

have, and the parameter estimates will change. Figure 

5.10 shows this effect on the s2  and s parameter 

estimates as the pole is brought in towards zero. 

Figure 5.11 shows the changes in the coefficients, 

natural frequency, damping factor and gain. 

It is interesting to note that the gain remains flat 

and unaltered until the first order component begins to 

dominate, then falls away rapidly. As would be expected 

the damping factor increases as the first order term 

becomes prominent. The natural frequency tends to zero 

as the pole becomes the dominant feature. The series of 

figures 5.12 to 5.17 show the simulated system and model 

response to a triangular impulse. In figure 5.12 the 

pole is located at -20. At this location the poles' 
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influence should be negligible, being 20 times further 

out from the imaginary axis than the pole pair. However 

there is still some influence exerted by the pole, 

indicating that the modulating function method is 

sensitive to small changes in the parameters. Figure 

5.13 is a similar plot with the pole at -10, again the 

influence of the pole, which should be negligible, can 

be clearly seen. At -5, figure 5-14, the pole is 

clearly affecting the estimates, with the model becoming 

more sluggish than the system. This is to be expected 

as figure 5-11 shows. The parameter estimates have 

started to show large deviations from the true values, 

figure 5-10. As the pole reaches -2, figure 5.15, the 

effect of the pole is very significant with the model 

only roughly approximating the system. In figures 5.16 

and 5.17 the model begins to look first order and only 

approximates the system by a kind of best fit. 

Similarly a fourth order system can be modelled by a 

second order model. A second order pole pair is located 

at (-1,±3) on the pole zero map and a second pole pair 

is introduced at various positions around the pole zero 

map. The effect of this is shown in the series of 

figures 5-18 to 5-21. This series of figures show that 

the MMFM model adopts a best fit to the system, 

extracting what seems to be the dominant pole pair at 

(-1,±3). If each of the model responses in figures 5-18 
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to 5-21 are compared with the the response of a second 

order system, located at (-1+3),figure 5-12, there is a 

strong similarity between them. However errors are 

introduced as the theory predicts, and the model 

responses are not exactly that of the second order 

system. 

It is interesting to compare a measured second order 

model response with the response of the actual third 

order system, truncated to second order. For a third 

order system as shown below. 

+ 

the response of the truncated system 

is compared with the estimated model G'(s) 

Sz a S4 
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This is shown in figures 5.22 and 5.23. It is 

interesting to note that G'(s) and G"(s) compare 

favourably until the error between the estimate and the 

system increases, then the model and truncated system do 

not approximate so well. 

5-2 Analogue Simulations 

The purpose of the hardware simulator was to assist in 

the development of a correlation routine that could be 

successfully used in the MMFM. A second order analogue 

computer, figure 4.2, was used as the simulation of the 

diesel engine. This had a natural frequency of 

approximately 2Hz, which corresponds to the diesel's, 

natural frequency. Although it was not possible to 

simulate the time delay with this method, the model 

still allowed development of the correlation algorithms 

which would be used, on-site, at Stornoway Power 

Station. 

Initially correlation was accomplished using the 

normal Relay correlation algorithm with a 256 point 

shift. The auto and cross correlation of the second 
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order analogue systemare shown in figure 5.24. In this 

figure quite a degree of variance in the correlation 

functions is apparent, especially noticeable in the 

region before the auto correlation spike. This region 

should be flat, and the imperfect correlation obtained 

is due in part to the limited integration time used, and 

to the loss of data when Relay correlation is used. 

This variance in the correlation functions can result in 

a large spread in the parameter estimates. 

One method of overcoming this difficulty is to obtain 

an average of the correlation functions over a number of 

data samples. Figure 5.25 shows the auto and cross 

correlation functions averaged five times, and it is 

already apparent that the variance has been 

significantly reduced. By ten averages, figure 5.26, it 

has been all but eliminated. Performing this type of 

correlation, then averaging, is slow, and can take up to 

an hour to perform twenty averages. A faster correlation 

algorithm is needed. 

5-2-1 Skip Algorithm 

The skip algorithm as described in chapter 3 provides 

a faster method of obtaining the correlation function. 

This correlation algorithm relies on speeding up the 

computation of the correlation function by skipping 
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cross products. For example in a skip of two, only 

every second cross product would be formed, in a skip of 

eight only every eighth product would be formed and 

added to the accumulator, and so on. 

This reduction in the data available to form the 

correlation at a given time shift, will increase the 

variance of the correlation function. The series of 

figures 5.27 to 5.34 show the cross correlation function 

formed using a skip of 2n  n=0,l,2,..,7. 	Only the cross 

correlation is shown for clarity, but both the auto and 

cross correlation functions would be formed using the 

skip algorithm. 

It is apparent from these figures that as the number 

of skips is increased, the variance on the correlation 

function increases until it completely breaks down. 

However, it is interesting to note that the correlation 

function retains its basic shape up to a skip of 

sixteen, compare figure 5.27 with figure 5.31. In 

practice a skip factor of eight was found to give a good 

result. An average of twenty cross correlations with a 

skip of eight is shown on figure 5.35, this compares 

well with figure 5.26. 

An analysis of the parameter estimates of a second 

order analogue system, using the skip algorithim, was 
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performed. The parameters of the system were estimated 

100 times for each skip and a mean and standard 

deviation for each skip calculated. These results are 

presented in table 5-1. 

It is interesting to note that the mean of the 

parameter estimates for different skips does not vary 

greatly. This indicates that increasing the skip does 

not introduce a bias. 

As expected the standard deviation of the parameter 

estimates increases as the skip increases. However 

there is a marked change in the standard deviation at a 

skip of 32. This is interesting because in this case a 

skip of 16 is the maximum that still satisfies the 

criteria of the slow sampling rate, being twice the 

Nyquist rate. 

5-2-2 Fault Simulation. 

A test on the fault detection properties of the MMFM 

was performed. 	The second order analogue computer model was 

used, and a parameter estimate of the system was 

obtained using correlation functions that had been 

averaged using an exponential weighting factor of ten. 

The variable resister controlling the damping factor was 

adjusted while the experiment was running. The cross 
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FREQUENCY 	DAMPING 	 GAIN 

SKIP 
~AX10  

c_i 

xi 

1 76 4.7 3.3 037 11 017 

2 7•7 5 33 043 11 017 

.4 7.5 5.5 3.3 041 11 019 

8 7•5 5.9 34 04 11 0-2 

16 85 82 32 110 11 028 

32 88 138 39 3.7 11 07 

TABLE 5-1 

SKIP PARAMETER ESTIMATE 
STATISTICAL RESULTS 

'q3 



correlation function began to change, and the parameter 

estimates reflected this. Figure 5.36 shows the change 

in the cross correlation function. As would be expected 

with an increase in the damping factor the exponential 

decay of the cross function becomes shorter, and the 

parameter estimates reflect this. The only parameter to 

change is the b term, 

figure 5.37 shows the variation in parameter estimates 

as the experiment' progressed. As can be seen with an 

increase in the damping factor, S , the parameter 
estimate b will increase. A fault detection system 

would be able to trace the fault to the element 

controlling the damping by comparing the change in b 

with the; stationary estimates of a and c. 	Similarly a 

change in the natural frequency could be detected by a 

variation in the b and q estimates. A change in the 

gain would only affect the c parameter estimate. 

It is therefore possible to tiace the source of a 

fault through variation in the parameter estimates 

obtained using the Modified Modulating Function Method. 
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5-3 Diesel Engine Results. 

In this section the experimental results obtained from 

the diesel engine at Stornoway Power Station will be 

presented. The MMFM was used to obtain the transfer 

function of the diesel alternator set at different 

loads, also different amplitude test signals were used 

to check for non-linear condition. A spectrum analyser 

was also used to obtain the transfer function at these 

load conditions, the results were compared with the 

MMFM. An attempt to simulate a fault condition on the 

diesel was also made. 

5-3-1 Diesel-Alternator Set Transfer Function 

Measurement. 

The transfer function of the Diesel Alternator set was 

measured using the MMFM. To eliminate the noise problem 

an exponential averaging weighting factor of fifty was 

used. With such a large averaging the computation of 

the correlation functions needed to be quick, for this 

reason a sixty four point correlation function was used. 

A skip of eight was used in the skip algorithm. 

Previous measurements of the auto and cross 

correlation functions had shown that variance on the 

correlation measurement would prove to be a serious 



problem, figure 5.38 shows such an ,  auto and cross 

correlation measurement. A series of parameter 

estimates were performed using non-averaged correlations 

and the results obtained were not impressive. Table 5-2 

shows the spread of parameter estimates for a second 

ordermodel of the diesel at a power output of 3.5 MW. 

In addition to this problem it was noted in, the initial 

experiments that a time lag was present in the system. 

Before any parameter estimation was attempted, on the 

engine, this time lag was removed by winding out the 

time lag manually. This was achieved by re-defining the 

zero point of the cross correlation function. Since 

these experiments were performed a rigid method of 

measuring has been developed, thus accurately 

eliminating the time lag. This has been described in 

Chapter three. 

A cross correlation function of the diesel-alternator 

I set, obtained by correlating between -the injected 

Gaussian noise and the power output 'of the alternator is 

shown in figure 5.39. 

With the time delay removed and therefore a known fixed 

value, the parameters to be measured are, 
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The parameter estimates for two different loads are 

shown in tabLe 5.3. This indicates that there is little 

difference in the transfer function at these loads, 

suggesting that the diesel is linear in the test range. 

This is also confirmed by the frequency response tests 

shown later. In addition to this a stationary input/output 

curve was obtained, figure 5-41. This shows power 

output against voltage on the governor set point. This 

is also linear in the test range, only going non-linear 

at high loads. 

These parameter estimates were used in the simulation 

program to produce responses which can be compared with 

the original, figure 5.40. This gave a response which 

is much more heavily damped than the system. A similar 

set of results for the engine at 2MW is shown in figures 

5.42 and 5.43. Here ,the model closely approximates the 

system > indicating that the model is susceptible to 

small variations in the parameter estimates. 

A fault detection experiment was performed on the 

diesel. Two fuel injectors were disconnected during an 

experiment, but a change in the transfer function 

parameters was not noticed. Because of the large 
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exponential averaging factor, 50, needed to overcome the 

variance in the parameter estimates, changes in the 

diesel engine response take some time to affect the 

parameter estimates. This experiment was not run for a 

sufficiently long period after the fuel injectors were 

disconnected, because an operating staff shift change at 

the power station required the termination of the 

experiment. 

5-3-2 Diesel-Alternator Set Frequency Response. 

As a check on the transfer function measured by the 

MMFM, a commercial spectrum analyser was used to measure 

the system frequency response. The frequency response 

was measured at various loads, and again there appears 

to be very little difference in the results obtained. 

This confirms the MMFM results and the static 

input/output curve previously shown. Different 

amplitude test signals were also used to obtain the 

frequency responses, again there was no variation in the 

results obtained. This all points to the diesel 

alternator set being linear in the test range. The 

frequency response for the engine at 2 MW load is shown 

in figures 5-44 to 5-46. This can be compared with the 

frequency response plot obtained from the engine at 3.5 

MW shown in figures 5-47 to 5-49. As can be seen there 

is no significant difference in these frequency response 
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plots. The coherence functions, figure 5-46 2 MW and 

figure 5.47 3.5MW, show that good coherence is obtained 

over the frequency range of interest, 0.5 Hz  to  SHz. 

This indicates that a high level of confidence can be 

placed in the results. These results were obtained by 

injecting a noise signal of 5Hz  bandwidth and obtaining 

the frequency response from the spectrum analyser. The 

spectrum analyser also had the facility to inject pure 

sine waves and sweep through the desired frequency 

range. A similar response was obtained using this 

method as seen in figure 5.50 and figure 5.51. 

Different amplitude noise signals were injected into 

the engine to determine the effect that any 

non-linearity present would have on the transfer 

function. Surprisingly there was very little difference 

in the reponses obtained. A test signal of 0.3v Rms 

which represented a disturbance of ±2%  of the load at 

3.5MW was injected and the responses shown in figures 

5-52 to 5-54. Comparing this with a 0.6v Rms signal, 

giving a 	disturbance on the load at 3.5MW, figures 

5-47 to 5-49, as can be seen there is little difference 

between the responses. 
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5-3-3 Comparison of Frequency Response and MMFM Result. 

As a check on the validity of the model obtained using 

the MMFM, a frequency response of the model was 

calculated. This was then compared with the frequency 

response obtained from the spectrum analyser. 

A representative 	 ,frequercy rresponse 

calculated from the MMFM models of the diesel-alternator 

set at 3.5Mw are shown on figures 5.55 and 5.56. These 

compare favourably with the frequency response obtained 

using a spectrum analyser, figure 5.50 and 5.51. 

Additionally the MMFM transfer functions do not vary 

significantly with load or i signal size, which is the 

same result obtained from the spectrum analyser. It is 

thought that this simple model of the diesel alternator 

set is a reasonably accurate model for control purposes, 

but is probably not sufficiently complex to allow fault 

isolation. 
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CHAPTER SIX 

CONCLUSIONS 

A new method for identifying the parameters of a 

continuous transfer function has been presented here. 

This method is a development of Shinbrots Modulating 

Function Method. The method was developed for use in a 

fault detection and fault isolation system. Other 

methods of continuous parameter estimation were 

examined, this showed that no standard method exists and 

that there are problems associated with all of them. 

The MMFM overcomes some of these problems, and was 

particularly suitable for the application chosen here. 

The main advantage of this method lies in the 

pre-processing of the input and output system signals. 

It makes use of the input signal auto correlation 

function and the input/output cross correlation 

function. These functions are used in the 

identification algorithm in place of the input/output 

signals. This allows the problem of noise to be 

overcome. Also a pre-estimation check is automatically 

performed on the data which will detect bad data. Relay 

correlation was used in the correlation algorithm. This 

results in a faster processing time while not 

introducing any degradation in the correlation shape. A 

further improvement in processing speed was achieved by 

N 



implementing Fell's skip algorithm which resulted in 

little loss of accuracy up to a skip of eight. 

The simulation tests have shown that the MMFM is a 

useful method of continuous system identification. 

Software simulations were carried out to study the 

effect on the parameter estimates of modelling a high 

order system with a low order model. In addition the 

effect of time delay on parameter estimation was studied 

and showed the need for accurate models of the system 

under test. This was a particular problem in this 

research due to the complex nature of the system under 

test at Stornoway. 

A second order model with time delay was used to model 

the diesel/alternator set. The parameter estimates 

obtained were compared with independent results obtained 

using a commercial spectrum analyser. The results 

compared favourably. The second order model was chosen 

because the diesel auto and cross correlation functions 

closely resembled a second order response with time 

delay. 	Conventional modelling of diesels, results in 

high order transfer functions, which can be approximated 

by second order with time delay. 

The problem of noise was of concern, especially at the 

power station where some noise is always present. The 



MMFM overcomes this problem by using as the input signal 

an independent noise signal PRBS noise or Gausian noise, 

and performing the cross correlation with this and the 

output signal, thus eliminating the noise. 

This method was developed for use in a fault detection 

and location system. Continuous methods are thought 

best for this purpose because it may be possible to 

relate changes in parameters back to faults in the 

system. Using this technique it was hoped to detect 

incipient failures, 	although several problems exist 

Variance in the parameter estimate may mask 

any change and an accurate model is needed to detect 

and locate failure. Also some types of faults may not 

affect the input/output relationship significantly and 

therefore the method may be insensitive to these types 

of faults. 

A fault was simulated on the diesel but was not 

detected. This may have been due to the heavy averaging 

needed to overcome the variance problem masking any 

change in the parameters. 

To work effectively, this method of fault detection 

needs an accurate model and accurate parameter 

estimation if detection and isolation of faults is to 

be achieved. At present this is not possible and the 



method is only of use as a fault detection scheme. The 

second order model used here is not sufficient to locate 

any fault. A better model of the diesel is needed. 

Further work is required to determine how effective a 

second order model plus time delay representation of a 

complex system is, for detecting faults. The variance 

on high order parameter estimates needs to be studied, 

and compared with the variance of lower order estimates. 

In addition a range of practical examples should be 

studied now that the basis of the method has been 

established. 
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Abstract. 	The transfer function identification method described in this paper is 

based on the modulating function technique. 	It has been modified to use measured 

cross-correlation and auto-correlation functions. 	This paper presents a brief 

introduction to the modified modulating function method and the results of a practical 

assessment of its use carried out at Stornoway Power Station. 

INTRODUCTION 

The transfer function analysis method described 

in this paper arose from a study of the monitoring 

requirements of diesel powered generating stations 

Long term monitoring of the small signal para-
meters of the diesel/alternator system may provide 

useful diagnostic information about the health of 

the system. 	A low cost, microcomputer based, 

measurement technique is required. 

This work is being carried out in collaboration 

with the North of Scotland Hydroelectric Board 

and field trials are being carried Out at their 

more remote generating stations. 	Consequently 

a transfer function measurement method was 

required that could be left to operate, unattended 

for long periods. 	In practice, this suggests 

that bad data should be detected before it is 

processed by the transfer function algorithm and, 

that it should be easy to implement and check 

that small signals test conditions have actually 

been established. 	These considerations have led 

to the use of correlation preprocessing of the 
data before system identification is attempted. 

The identification method for this work is based 

on the modulating function method introduced by 

Loeb (1965). 	This work can be related back to 

a report by Shinbrot published in 1954 (Eisenfeld 

1979). 	Ilermite modulating functions, proposed 

by Takaya (1968) have been used. 	Mironvuskii 

et at (1978) and Belorusets (1981) have related 

the modulating function method to other linear 
identification methods. 	It should be noted that 

the modulating function method directly measures 

the parameters of a systems, small-signal, 
differential equation. 

The modulating function method was originally 

developed to operate on data directly derived from 
measurements made on the system under test. 	The 

method has been modified to use preprocessed data 

in the form of auto- and cross-correlation 

functions. 	The correlation functions provide 

a useful intermediate diagnostic check on the 

data. 	A number of efficient methods for micro- 

computer evaluation of correlation integrals have 

been produced. 	In this work use is being made of 

the Fell Skip Algorithm (Fell 1982) to implement 
the relay correlation function. 

The measurement technique was initially validated 
by using a software simulation of the convolution 

integral to generate specimen auto- and cross- 

correlation functions. 	Encouraging results were 

obtained from a more realistic test of the 

experimental system which was subsequently carried 

out by using a hardware simulation of a second- 

order system. 	In this paper the result of teats 

carried out on a large diesel/alternator set are 
presented. 

Section 2 of this paper will introduce the 

modified modulating function method. 	Field 

trials of the experimental system were carried 

Out at Stornoway Power Station in August 1984. 

The experimental system is described in Section 3 
and the results obtained described in Section 4. 

THE MODULATING FUNCTION METII0I) 

The output and input of a single-input linear 
system are related by the convolution integral. 

If x is the input and y the output then auto- 

correlation r 
xx 	 yx 

and cross-correlation r 	may 

be defined and the convolution integral becomes 

r 
yx 	J 
(a) 	I 	h(a-t) .r 

xx 
 (t)dt 	 (I) 

or 

B (a) H(s).R (5) 	 (2) 
yx 	 xx 

where R 
yx 
 (s) R xx(s)  and H(s) are the Laplace 

Transforms of the cross-correlation function, the 

auto-correlation function and the system impulse 

response, respectively. 

It follows that the system differential equation 

may be reformulated in terms of correlation 

functions to give 

q 	

d0r 
yx 

 (a) 	
d n- I 

yx 
r (a) 

n. da 
	 da 
a 	n-1 	n-i 

q .r (a) 	r (a) 	 (3) 
0 	 XX 

This differential equation may be converted to an 
algebraic equation by multiplying by a suitably 

chosen modulating function, , and integrating by 

parts over the interval 0 to T. 	If 	and all of  

,,-u nutside .' the interval 

0 to T then it can be shown that 
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T 
(-1)

0 
 •q 	I 	(n) .r yx  (a).da + 

+ 	(-1) 	. q0_1 Jfl_l(a)..r(a).da 

I 
+ 	... + q 	Jo (a).r yx (a).da - 

'I n 	d(a) (a).r.  (a).da,wbere 	(a) - 	 (4) 
0 Jo 	 da 

By choosing different sets of modulating functions 
a set of linear equations is obtained which can be 
represented by a matrix equation. 	The system 
parameters q . . . q0  are obtained by matrix 

inversion. 	In general, when phase advance terms 
are included, i.e. when the transfer function is 
of the form 

k 
Pks 

 + 
It(s) 	a + . . . (l 

the matrix will be increased to include the para- 
meters Pk  to p1 . 	A correspondingly larger 

number of modulating fenctions will be required in 
this case. 

Takaya (1968) introduced the use of Ilermite 
functions as modulating functions. 	Hermits 
functions are defined by 

n 	2 
I-, (t) = (-i) . exp(t /2) 2 	d exp(-t /2) 	(6) a 	 dt'5 

The properties of Hermits functions guarantees 
that the modulating functions derived from them 
are continuous and differentiable. 	Takaya shows 
that the lIe rmi te Modulating Functions and their 
derivatives approximately become zero at both 
upper and lower boundaries. 	Figure 1 shows the 
set of Ilermite Modulating Functions used to assess 
the performance of this identification method. 

Since the cross-correlation function is not 
required to be a good approximation to the system 
impulse response it is not necessary to design the 
input auto-correlation function to have a very 
small width compared with the decay time of the 
cross-correlation function. 	The experimental 
system used Gaussian filtered, pseudo random noise 
with a bandwidth approximately double the resonant 
frequency of the system under test. 	The input 
noise level was always adjusted to ensure that 
the developed power was never perturbed by more 
than ± 32 of its steady state value. 

The power signal typically has a superimposed 
very low frequency drift term. 	To make best 
use of the dynamic range of the data logger and 
to avoid overload conditions this drift term must 
be eliminated by using an A.C. coupling network. 
If the power signal is A.C. coupled then, to 
balance the measurement system, the noise test 
signal must also be A.C. coupled into the data 
logger with an identical network. 	In this case 
the measured cross- and auto-correlation functions 
are defined by 

since 

V(s) = H(s).li (s).X(s )  

and 

X(s) . It(s) 

where H(s) is the transfer function of the system 
under test and It(s) is the transfer function of 

the coupling networks. 	The signals x, y, v and 
w are as defined in Figure 2. 	Algebraically the 
effect of the coupling networks has been completely 
cancelled but in practice care must be taken to 
use a coupling time constant which is large 
enough to ensure that sufficient of the low 
frequency content of the output power signal has 
been coupled into the data logger. 	A simple RC 
circuit with transfer function 

5 RC H 	 (8) c (s) - 1 .;7- sRC 

was used as the coupling network in the experi-
mental system. 

The measurement system, as currently developed, 
cannot automatically take account of system time 
delay terms. 	When a time delay term is observed 
it is necessary to interrupt the software and use 
key-board control to offset the cross-correlation 
data set until the delay has been eliminated. 
This is an area of this work that requires further 
attention. 

EXPERIMENTAL SYSTEM 

The engine used for these tests was a 4.6 MM 
Mirrlees Blackstone KV12 Major, used for base 
load generation at Stornoway Power Station. 
The engine was controlled by an electronic 
govenor and it was this circuit that enabled a 
Gaussian noise test signal to be injected. The 
power response of the system to this test signal 
was monitored by using current and voltage 
transducers on one phase of the alternator output. 
The noise signal and the power response were 
A.C. coupled to a data logger with a 0.1 Hz 
coupling time constant. 	Data was then down 
loaded via an lEE BUS to an HP85, desk top 
computer, where auto- and cross-correlations were 
generated using a relay correlation technique. 
In addition to this instrumentation a 
Spectrum Analyser was used to produce frequency 
response and coherence functions. 	A block 
diagram of the experimental system is shown in 
Figure 2. 

The relay correlation implementation was based on 
the Skip Algorithm (Fell, 1982). 	This involved 
a batch processing of the data where two blocks 
of 2048 bytes were down loaded from the logger 
to the 11P85 computer. 	The sample rate was set 
to define the required correlation function time 
delay intervals. 	Only every eighth cross-product 
was summed to form the correlation estimate. 	A 
negligible variance increase was observed compared 
with the results obtained by using the whole data 
set. 

RESULTS 

R (s) - Il(s),Il (s) 	 (7) 	The engine was run at a constant load of 3.5 MM 
vw 	 and the perturbing noise signal level adjusted 

to restrict the resulting changes in the power 
level to never exceed ± 32 of the steady state 
value. 	the correlation tuntion stimateiitre 
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exponentially averaged and the modulating function 
method used to obtain the model parameters. 

The measured cross-correlation function clearly 
indicates a response which includes pure time delay 
term. 	Its the first instance a simple, resonant, 
low pass, second-order function was used to model 
the remainder of the response. 	The model transfer 
function was 

2 
-aT is li(s) 	

Kw 	
e 	 (9) 

s2+2 	
2 

cv 5 + 'a 
n 	n 

where T 	time delay 
C = damping factor 

	

w
n 	

undamped natural frequency 

	

K 	gain constant 

The time delay term is removed before the 
modulating function method is used. 	A typical 
cross-correlation function after removal of this 
time delay is shown it Figure  3 . 	The model 
transfer function becomes  

2 	 (hO) 
q 25 + q 1 s + q O  

where q2, q and 
 q 

 are the parameters to he 

measured. 

Frequency response and coherence functions 
obtained from a Wavetek spectrum analyser 
monitoring the outputs from the A.C. coupling 
networks are shown in Figure 4. 	The coherence 
falls rapidly as the frequency decreases below 
0.5 Hz. 	This reduction is caused by the A.C. 
coupling network. 

The following transfer function parameters were 
obtained with the same power and noise levels 
used to obtain Figure 4 (i.e. 3.5 MW and 0.6 V 
r 

 
.M.S.). 

(12 ......0.04 to 0.1 

ql 	
0.14 to 0.23 

qO 	
9.6 to 12.5 

Frequency response functions (including the effect 
of the measured system time delay) were calculated 
by substituting s = jw into the transfer functions 
obtained by using the measured parameters. 
Figure 5 shows the calculated magnitude and phase 
response. 	Good agreement is obtained between the 
measured response (Figure 6) and the calculated 
response. 

CONCLUSIONS 

Initial studies have shown that the modified 
modulating function method can be used to estimate 
the small-signal parameters of practical systems. 
Field trials at Stornoway Power Station of an 
experimental implementation of the method has 
shown that the method is easy to use and suitable 
for operation at remote sites. 

More work is needed to (i) investigate the optimum 
choice of averaging procedure for correlation and 
parameter estimates, (ii) investigate the effect 
of the windowing action of the modulating ftinc t ions 
on the cross-curt-elation function (iii) investigate 
the effect of choice of model order and (iv) 
investigate procedures for automatically off-
setting system time delay. 
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Abstract. A modified modulating-function method for 
identifying the parameters of the differential equations that 
represent the small-signal performance of a system is described. 
The method makes use of the input auto-correlation function 
and the cross-correlation function relating the output to the 
input of the system. The application of the method to the on-line 
detection of faults is discussed. 

1. Introduction 
Systems for monitoring the health of machinery are receiving 
more attention as new diagnostic algorithms are developed and 
the cost of microelectronic implementation decreases. A study 
of the monitoring requirements of diesel-powered generating 
stations has indicated that it would be interesting to investigate 
how the parameters of the small-signal transfer function vary as 
the performance of the diesel control system changes throughout 
its period of operation. It remains to be discovered whether the 
small-signal parameters will change significantly as the control 
system operates at different points on its typically non-linear 
transfer characteristic and enable the state of tune of the engine 
to be monitored. 

This work is being carried out in collaboration with the 
North of Scotland Hydroelectric Board and field trials are 
being carried out at their more remote generating stations. 
Consequently, a transfer-function measurement method was 
required that could be left to operate, unattended for long 
periods. In practice, this suggests that bad data should be 
detected before they are processed by the transfer-function 
algorithm and that it should be easy to implement and check 
that small-signal test conditions have actually been established. 
These considerations have led to the use of correlation 
preprocessing of the data before system identification is 
attempted. 

One identification method chosen for this work is based 
on the modulating-function method (Loeb and Cahen 1965). 
This method can be related back to a report by Shinbrot 
(Eisenfeld 1979) published in 1954. Hermite modulating func- 
tions, proposed by Takaya (1968), have been used. Mironvuskii 
and Yodovich (1978) and Belorusets (1981) have related the 
modulating-function method to other linear identification 
methods. It should be noted that the modulating-function 
method directly measures the parameters of a system's small-
signal differential equation. The modulating-function method 
was originally developed to operate on data directly derived 
from measurements made on the system under test. In this paper 

_the method is modified to use preprocessed data in the form of 
auto- and cross-correlation functions. The correlation functions 
provide a useful intermediate diagnostic check on the data. A 
number of efficient methods for microcomputer evaluation of 
correlation integrals have been produced. In this work we use 
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the Fell skip algorithm (Fell 1982) to implement the relay 
correlation function. 

A prototype transfer-function analyser (constructed from 
available computing and data-logging subunits) has been used to 
monitor simulated systems and the power control loop of a 
diesel powered alternator. It is expected that a wide range of 
applications will become feasible once a dedicated, low-cost, 
microcomputer-based, implementation has been developed. 

Section 2 of this paper presents a brief review of fault 
detection using transfer functions. Section 3 introduces the 
modulating-function method and a discussion of the errors 
resulting from the use of models having a lower order than the 
actual system transfer function. The results of software 
simulation experiments demonstrating the use of the 
modulating-function method are described in § 4. 

2. Fault detection using transfer functions 
The method of detecting faults using changes in the small-signal, 
linearised, transfer function was investigated during the early 
1960's. Interest in this area was particularly stimulated by 
NASA's space flight programme (Allen 1963). Recently this 
area has been given a considerable boost by the availability of 
low-cost, powerful, microcomputers. Typically, a signature 
characteristic of good performance is obtained by measuring 
frequency and time-domain transfer-function features when 
acceptable performance has been achieved and then predicting a 
fault condition when a change beyond some predefined level is 
observed. A major problem with this type of system is the 
setting of levels that minimise the number of false predictions of 
a fault condition and at the same time accurately indicate a 
damaging fault condition. 

Many authors have proposed fault detection by monitoring 
gain and phase with various test frequencies, usually developing 
this further (i.e. by using pattern recognition techniques) to 
isolate the fault. Towill and Payne (1971), for example, used 
frequency response data and set limits to define an acceptable 
range of response values. Systems having responses that fall 
within these limits are passed as good systems and those that do 
not, fail the test. The limits were arrived at by creating a range of 
unacceptable systems (caused by a known fault condition) and 
identifying the frequencies at which these faulty systems are 
most easily recognised. 

Test procedures have been based on cross- and auto-
correlation of the input and output signals of the system under 
test. Naturally occurring noise signals do not usually have 
sufficient bandwidth to exercise all operating modes. Towill 
(1977) has stimulated the system under test with a pseudo-
random noise signal and derived the impulse response of the 
system from the cross-correlation of the output signal with 
the input signal. Each measured impulse response was com-
pared with a standard impulse response (representing good 
performance) and deviations used to indicate a fault condition. 
Voting techniques have been developed to optimise the process 
of fault location for frequency-domain (Sriyananda and Towill 
1973) and time-domain test methods (Sriyandanda eta! 1975). 

Isermann (1984) has surveyed fault detection techniques 
based on the use of modelling and estimation methods to 
produce a parametric description of the system under test. For 
fault detection the system model should have a direct link with 
the physical description of this model. Hence a continuous-data 
model is preferable to a sampled-data model. Isermann has 
noted that 'there is still a need for robust parameter estimation 
methods with less computational effort which provide 
and efficient estimates of the parameters of a continuous model 
under many noise conditions'. The modified modulating-
function method described in this paper satisfies many aspects 
of this need. 
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3. The modulating-function method 
The output and input of a single-input linear system are related 
by the convolution integral. If x is the input and y the output 
then auto-correlation r,, and cross-correlation r, may be 
defined and the convolution integral becomes 

	

h(a—t)r,,(t)dt 	 (1) 

or 

Rr ,(s) = H(s)R,(s) 	 (2) 

where R,(s), R_(s) and H(s) are the Laplace transforms of the 
cross-correlation function, the auto-correlation function and the 
system impulse response, respectively. 

It follows that the system differential equation may be 
reformulated in terms of correlation functions to give 

q d'r3(a) 	q,i\-1 d'r,(a) 

da 
+ 	

da,, 	+. . . +qor(a)=r,,(a). 	(3) 

This differential equation may be converted to an algebraic 
equation by multiplying by a suitably chosen modulating 
function, ,, and integrating by parts over the interval 0 to T. If 
and all of its derivatives are zero outside of the interval 0 to T 
then it can be shown that 

f
J'0 	

a)r,(a)da 

fT 
+ q0 

j 
ço(a)ry,(a) da= 	ço(a)r,,(a) da. (4) 

.0 	 .0 

It should be noted that the modulating-function method is 
usually applied to the system differential equation relating input 
x to the output v. 

By choosing different sets of modulating functions a set of 
linear equations is obtained which can be represented by the 
matrix equation shown below where 	(a) has been used to 
represent the nth derivative of (a) 

fo 
 (-1)f.   co(a)r(a)da... q 

f
0  

(-1) 	p(a)ry(a) d . .. 	ço,,,(a)r,,(a) da 	q0  

I ço(a)r,,(a)da 
Jo 

= 	 (5) 
C r 
I ço,,,(a)r,(a)da 
Jo 

The system parameters q, . . . qo are obtained by matrix 
inversion. In general, when phase advance terms are included, 
i.e. when the transfer function is of the form 

(Pk sk+...+1) 
(6) 

(qs+. . . +q) 

the matrix will be increased to include the parameters Pk to PT. A 
correspondingly larger number of modulating functions will be 
required in this case. 	 - 

Takaya (1968) introduced the usef Hermiè Functions as 
r-,tr. A—flnma ire deJ1d by 

H(t)=(-1)" 
exp(t2/2) d' exp(—t2/2) 	

(7) 
dt 

The properties of Hermite functions guarantee that the 
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modulating functions derived from them are continuous and 
differentiable. Takaya shows that the Hermite modulating 
functions and their derivatives approximately become zero at 
both upper and lower boundaries. Figure 1 shows the set of 
Hermite modulating functions used to assess the performance of 
this identification method. 

H(f) 

-0. 

Figure I. Modulating Hermite functions as used in the experimental 
system. 

When the order of the model used is lower than the actual 
system order the modulating-function method will not measure 
the expected parameter values. If the system transfer function is 
written as 

H(s)= N(s)— 	 (8) 
D(s) 

then the numerator and denominator functions can be 
partitioned into a high-order part and a low-order part i.e. 

	

D(s) QL(S) + Q(s) 	 (9) 

	

N(s)=PL(s) + PH (S) 	 (10) 

where subscript L indicates low order and subscript H indicates 
high order. Hence equation (2) becomes 

QL(s)R,.(s) = (PL(s) + PH(s))R.(s) - QH (s)R (s). 

Hence 

QL(s)R Y (s)=PL(s)R.(s) 	 (11) 

where 

H(s) 
(12) 

HL(s) 

and 

PL(s) 
HL(s) = 

QL(S) 

From (11) the time-domain differential equations for the model 
are 

dr(a) 	 der.' (a) 
qL 	

da
,, . . . +qor(a)=P L 	+... +r(a) 	(13) 

da
,,  
 

where r(a)=r(a) + (a) where r(a) and r(a) are 
measured cross- and auto-correlation and A(a) represents the 
effect of H(s)/H L (s) acting on R.(s). Hence the error intro-
duced by a low-order model can be described by an error in 
the measured input auto-correlation functions. 

Time-delay terms introduce high-order numerator terms 
which can introduce errors if they are ignored. Practical  

experience has shown that a time delay observed in the 
measured cross-correlation can be backed-off before the 
modulating-function method is applied. The errors introduced 
by low-order models and partial cancellation of time delays can 
be investigated by convolving the impulse response of the model 
with the input auto-correlation and then comparing the result 
with the measured system cross-correlation. The results of an 
experimental investigation into the significance of the errors 
introduced by the use of low-order models will be presented in 
the next section. 

4. Performance of the modulating-function method 

The modulating-function method has been applied to a software 
simulated system having a dominant-transfer function in series 
with higher-order terms. The time constraints of the higher-order 
terms were adjusted and the effect on the parameters measured 
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Figure 2. Graph showing the variation of the coefficient of s' when 
system under test comprises a second-order low-pass filter in series with 
a first-order low-pass filter. Line I shows variation of coefficient ofs 2  
in overall third-order function as first-order pole position is changed. 
Line 2 shows variation of this coefficient in the measured second-order 
approximation. 
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Figure 3,craph showing the variation of the coefficient of s when the 
system under test comprises a second-order low-pass filter in series with 
a first-order low-pass filter. Line I shows variation of coefficient of s 
in overall third-order function as first-order pole position is changed. 
Line 2 shows variation of this coefficient in the measured second-order 
approximation. 
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assuming the system to have a transfer function defined only by 
the dominant terms. Experiments involving a dominant second-
order system will be described. 

A second-order dominant-pole pair was positioned at —1 on 
the real axis of the pole zero map and a single pole moved 
towards it from —20 on the real axis. The third-order system so 
formed was modelled by a second-order function and the 
parameters of this model obtained by using the modulating 
function method. Figure 2 shows the error between the actual 
coefficient of 2  and the model coefficient of 	will be seen 
that the errors start to decrease significantly when the single pole 
is at least ten times further out in the plane than the second order 
poles. Figure 3 shows similar results for the coefficient of s. 
Figure 4 shows how the normalised parameters of the model 
(natural frequency, (O,, damping factor c, and gain, g) vary as 
the single pole is moved towards the pole pair and the system 
becomes predominantly third order. The effect of partial 
elimination of time delay (i.e. giving a small residual time delay 
or time advance) on the measurement of the parameters of a 
second-order system is shown in figure 5. It will be seen that 
accurate results are obtained when the model order and system 
order are the same. 
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Figure 5. Graphs demonstrating the effect of time delay or advance on 
the measurement of standardised second order parameters. 
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5. Conclusions 
Simulation studies and field trials of a prototype measurement 
system at Stornoway Power Station Centre (the power control 
loop of a diesel powered alternator was investigated) have 
shown that the modified modulating-function method can be 
used to reliably measure transfer-function parameters (Jordan et 
al 1985). Although an accurate model is not necessary for fault 
detection purposes it is clear that great care must be taken to 
ensure that observed changes are due to faults and not due 
to a variation in the neglected high-order terms. More work 
is required to relate changes of measured transfer-function 
parameters to particular fault conditions. A microcomputer-
based implementation of the modified modulating-function 
method, which incorporates the transfer-function based fault 
diagnosis in a wider range of instruments and measurement 
systems, is being developed. 
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Performance monitoring of diesel 
electricity generation 

H.W. Whittington, J.R. Jordan, N. Paterson, and P.M. Johnson 

Indexing terms: 	Power systems and plant, Generators 

Abstract: The paper describes the characteristics of diesel generation plant and discusses the role of diesel 
generation in the context 

'
of bulk supply of electricity. The specific operational and maintenance aspects of diesel 

generation are presented and the need for the development of aids to routine maintenance are discussed. One 
technique for monitoring the performance of diesel plant is described and results are given from tests carried out 
in Stornoway power station on the island of Lewis. 

Introduction 

Ithough the bulk supply of electricity is well established, 

'e 
part to be played by small generating plant in electriti-

tion is still significant. For example, in developing coun-
ies comparatively small plants will often suffice to serve 
e early needs of the larger towns, even of the capital city. 
ater, the growing demand will justify the installation of 
rger, more sophisticated and more efficient plant; 
rhaps even the interconnection of two or more town-
ips to form the rudiments of a grid or power pool. When 
is happens it will often be possible to take up the earlier 
ant from their foundations, and to remove them to 
aller or more remote centres of population to perform 

eful pioneer work, further into the heart of the country. 
Even in highly developed countries, small power plants 

rye an important function in remote places, either where 
ere is low population density or where consumers are 
nd- or sea-locked. These conditions are not conducive to 
e early establishment of grid systems and townships are, 
erefore, likely to remain electrically isolated from one 
other for a long time. 
Of the options available for the prime mover in such 

rcumstances, the diesel engine is one which is widely 
ed. With so many advantages to its credit, it is not sur-
ising that, in the past, the diesel engine has found appli-
tion in small power stations with total installed 
pacities of approxinately 30 MW. 
Larger stations are also becoming more common. This 
s certainly created a frontier of competition between the 
esel engine and the steam turbine, as previously it had 
en assumed that above about 30 MW installed capacity, 
e steam turbine becomes economically attractive, and 
d been used in preference to the diesel engine, [I]. 
Because of their compactness, diesel stations can be 

ted at or as near to load centres as permitted by noise 
gulations. Although diesel engines tend to be rather 
isy, tests and experience have shown that even without 
ecautions to cut down noise, it is satisfactory to site 
rge diesel plants within 800 m of domestic dwellings [2]. 

Technical considerations of diesel generators 

1 	General features 
he diesel-electric generating set is available in almost any 
ze over a wide range. Earlier size limitation was imposed 
y the need to use very low speeds. This meant very bulky 
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and heavy machines but modern designs have enabled 
higher speeds to be utilised, with the result that more 
powerful plant can be built without their physical size 
being unmanageable. Large diesel engines have long been 
used for marine propulsion, but today are finding an ever 
increasing role in land-based operation. For example, as 
standby generating plant in both large industrial and com-
mercial premises or as completely stand-alone plant in iso-
lated power systems such as on islands. 

2.2 	Security of supply 
In isolated systems, it is necessary to provide some margin 
of spare plant so that supply may be maintained when part 
of the plant is out of service for routine maintenance or 
because of breakdown. For complete security, it could be 
argued that in any station two spare sets should be 
installed, so that when one set is out of service for routine 
maintenance, there is still a spare set standing by in case of 
the breakdown of a running set. Although this level of 
spare capacity may be justified on occasion, the provision 
of two spare sets is often an expensive luxury. For small, 
newly established electricity supply undertakings, it is 
usually of greater importance to produce relatively cheap 
electricity with the risk of very occasional interruptions, 
than to have almost perfect continuity of supply. Indeed, 
even with established systems, the supply authority will 
accept that there is a finite probability of failing to meet 
demand at any given time, even working with spare ca-
pacity. This risk is of course dependent not only on the 
reliability of the plant, which in turn depends to a great 
extent upon the care with which it is maintained, but also 
on the proportion of time (in days per year) when the plant 
is out of service for routine maintenance. 

Where a large number of units is installed, the risk of a 
'double outage' i.e. one set out for maintenance and 
another set subject to breakdown, will be greater. No defi-
nite ruling can be given as to the amount of spare plant 
which should be provided; much will depend on the size 
and nature of the load. The following margins are there-
fore suggested tentatively, though it is recognised that 
many individual variations will be necessary: 

(a) assuming the largest installed unit to be out of 
service for routine maintenance, and where the total 
number of sets is five or less, assume there is no coincident 
breakdown, i.e. one spare set 

(h) where the total number of installed sets is six or 
more, assume the largest unit to be out of service for 
routine maintenance and any other set to be out due to 
breakdown, i.e. two spare sets. 

The average time any machine is out due to a breakdown 
is usually about 5% of its total operational time in any 
year. This, combined with a typical planned outage time of 
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MIX, per annum would result in a 0.035% chance of a 
double outage occurring during an average operating year 
of 4605 hours. 

2.3 	Life expectancy of plant 
When planning diesel-powered electricity generation, it is 
usual to allow a life of 15 years for diesel plant. For very-
high-speed diesels, or engines using fuel of low quality, a 
shorter period may sometimes be more realistic (10 or 12 
years). For slow-speed diesels, or for diesel plant that is 
operated intermittently without overloading, rather longer 
periods (up to 20 years) may be taken as according with 
practice. However, when planning ahead, a 15-year period 
of utilisation in a given situation would appear to be 
prudent because diesels tend to become superseded 
through growth of demand rather than through wear and 

effects of one component or mechanical subsystem, inde-
pendent of similar emissions from other components or 
subsystems. Frequency- and time-domain signal processing 
is used to obtain 'signatures' representing normal and 
faulty performance. 

It should be noted that identification of a fault condi-
tion from such measurements is often difficult and, in the 
case of complex systems involving many measurements 
and a large body of background knowledge (e.g. initial 
design information), it will be found that decision support 
software will be required to assist the engineer [3]. Oper-
ator confidence will diminish rapidly if the health monitor-
ing system continually indicates a fault condition for no 
good reason, so time must be spent in developing reliable 
decision making software. 

Present monitoring of diesel generating sets 

Operation of plant 

Well maintained diesel engines can run for a long period 
between overhauls and have low wear rates. The average 
running hours between overhauls for most North of Scot-
land Hydroelectric Board (NSHEB) machines is greater 
han 10000 hours, which represents about 18 months con-
inuous operation. Where skilled labour is scarce, station 
peration can often be adapted for automatic operation. 

Maintenance may be simplified by provision of easily 
eplaceable assemblies of parts, thus enabling recondition-
ng to be undertaken away from the generating plant. 
eriods between order and delivery are short and a diesel 
ower station may therefore be extended rapidly by 

idding suitably sized units to meet growing demands. 
ompact, lightweight, high-speed diesels are obtainable for 

ites which are remote, cramped or difficult of access. 
obile diesel power units mounted on skids or trailers 
ay be used for temporary or emergency purposes. 
Despite the provision of installed redundancy and port-

ble plant, unplanned outages do occur and can he expen-
ive both in terms of lost revenue or increased fuel costs by 
eeting demand with less efficient plant. Additionally, the 

nconvenience to the consumers of loss of supply must be 
onsidered as of prime importance. 

It follows that a system which can indicate the onset of 
ault conditions and thus allow time for action to be taken 
ill be of considerable value to the supply authority. 
aintenance could be scheduled on the basis of equipment 

erformance rather than merely at regular intervals 
esulting in savings, both recurrent and capital. Recurrent 
osts will be reduced because of the reduced maintenance 
equirements and capital savings would be possible 
ecause of the reduced requirements for standby plant to 
over for the occasions when unplanned outages occur. 

Sea locked, small-scale electricity supply systems are 
enerally diesel powered. This leads to unit costs for dcc-
icity which are significantly higher than those for a large 
rid system, mainly because of higher fuel costs. It follows 
at the incentive to reduce operating costs is high and the 

otential savings considerable if fuel costs can be reduced. 

Machine health monitoring 

everal studies have demonstrated that secondary- ncts 
cli as sound, vibration, temperature, pressure, and other 

hysical phenomena exhibit detectable changes long before 
tastrophic mechanical failures occur and, therefore, can 
used to predict and diagnose mechanical malfunctions. 

:eflsors can usually be positioned to detect the secondary 

Electronic instrumentation for machinery health monitor-
ing based on both vibration data and on transfer function 
models has been investigated by the authors. 

	

5.1 	Vibration monitoring in Kirkwall power station 
Initial experience with vibration monitoring equipment 
and hardware at Kirkwall power station on Orkney, Fig. 
I, had shown that this equipment tended to be expensive if 
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Fig. 1 	Map of North of Scot h,,ul Iit'droe!ectru Board area 

a comprehensive coverage of sensitive monitoring points is 
attempted but could be designed to give information about 
clearly identified points in the machine, i.e. bearings and 
structural support. 

The study was directed towards the development of 
monitoring equipment of reduced cost and complexity. In 
the knowledge that signature based fault detection requires 
only a change to be detected from a known good (i.e. 
iIcatiy) cuiu.iitioti, when a vibralioiiectFiitff is used, it 
was realised that it is not ncccssa rvjor the spectrum to be 
mauieina ticaity accurate. It has been found that an 
approximate spectrum can be easily implemented if the 
conventional sine and cosine operations in the discrete 
Fourier transform (DFT) are replaced by a square wave- 
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form. Using this technique a 0-10 kHz spectrum analyser 
with 10, 100 Hz ZOOM bands has been implemented by a 
single-board computer with a single-board interface 
circuit. This work is reported fully elsewhere [4]. 

T. If 0 and all of its derivatives are zero outside of the 
interval 0 to T, it can be shown that 

fo 

T 
l)flq/Y(a)r(a) da 

5.2 Transfer-function based monitoring at Stornoway 
power station 

This paper concentrates on a description of a method of 
machine monitoring based on a knowledge of the transfer 
function, for, although the measured small signal param-
ters of a system transfer function cannot usually be easily 
elated to identifiable parts of the system, such measure-
ents can be used to give a global indication of the state 

f a system. 
The identification method for this work is based on the 

odulating function method introduced by Loeb [5]. This 
ork can be related back to a report by Shinbrot 
ublished in 1954 [6]. Hermite modulating functions pro-
osed by Takaya have been used. Others [8, 9] have 
elated the modulating function method to other linear 
dentification methods. It should be noted that the modu-
ating function method directly measures the parameters of 
system small-signal differential equation. 
The modulating function method was originally devel-

ped to operate on data directly derived from measure-
ents made on the system under test. The method has 
een modified to use preprocessed data in the form of 
uto- and cross-correlation functions. The correlation 
nctions provide a useful intermediate diagnostic check 
n the data. A number of efficient methods for micro-
omputer evaluation of correlation integrals have been 
roduced. In this work, use is being made of the Fell skip 
lgorithm [5] to implement the relay correlation function. 

Normally, naturally occurring system noise does not 
ave a sufficient bandwidth to excite all the modes in it 

ystem and psuedorandom noise is injected to overcome 
his problem. The modulating function method is then 
pplied to measured correlation functions and if n param-
ters are to be measured, n equations must be solved 
imultaneously to estimate the transfer function param-
ters. Extensive simulation studies have shown this to he it 
eliable method and, as such, should be suitable for remote 
perations. 

Modulating function method 

he output and input of a signal-input linear system are 
lated by the convolution integral. If x is the input and t 
e output then autocorrelation r and cross-correlation 
may be defined and the convolution integral becomes 

r(a) = Jh(a - t)r,(t) dt 	 (I) 

or R(s) = H(s)R(s) 	 (2) 

here R,.(s), R(s) and H(s) are the Laplace transforms of 
e cross-correlation function, the autocorrelation function 

nd the system impulse response, respectively. 
It follows that the system differential equation may be 

formulated in terms of correlation functions to give 

I q dr(a) 	 - r(a) 

da 	 da" - 1 

+ 	+ q0  r %X(a) = r,(a) 	(3) 

'h is differential equation may be converted to an algebraic 
uation by multiplying by a suitably chosen modulating 

knction 0 and integrating by parts over the interval 0 to 
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CT 
+ ... + ( W- - 'q - f çb - '(a)r(a) da 

Jo 

+ 	+ q 0 
 fo

4(a)r;x(a) do 

f

da = (1" 0(a) 
	

(4) 
Jo 	 da 

By choosing different sets of modulating functions, a set of 
linear equations is obtained which can be represented by it 
matrix equation. The system parameters q ... q0  are 
obtained by matrix inversion. In general, when phase 
advance terms are included, i.e. when the transfer function 
is of the form 

H(s) = P
k Sk  + 	+ I 

(5) 
qs+" +q 0  

the matrix will be increased to include the parameters Pk  to 
P1 A correspondingly larger number of modulating func-
tions will be required in this case. 

Takaya [7] introduced the use of Hermite functions as 
modulating functions. The properties of Hermite functions 
guarantee that the modulating functions derived from 
them are continuous and differentiable. Takaya shows that 
the Hermite modulating functions and their derivatives 
approximately become zero at both upper and lower 
boundaries. 

As the cross-correlation function is not required to be a 
good approximation to the system impulse response, it is 
not necessary to design the input autocorrelation function 
to have a very small width compared with the decay time 
of the cross-correlation function. The experimental system 
used Gaussian filtered, pseudorandom noise with a band-
width approximately double the resonant frequency of the 
system under test. The input noise level was always ad-
justed to ensure that the developed power was never per-
turbed by more than +3%, of its steady-state value. The 
power signal typically has a superimposed very-low-
frequency drift term. To make best use of the dynamic 
range of the data logger and to avoid overload conditions, 
this drift term must be eliminated by using an AC coupling 
network. The power signal is AC coupled into the data 
logger with an identical network. In this case, the mea-
sured cross- and autocorrelation functions are defined by 

(7) 

because 

V(s) = H(s)H(s)X(s) 	 (8) 

and 

X(s) = 	W(s) 	 (9) 
He(s) 

where H(s) is the transfer function of the system under test 
and H e(s) is the transfer function of the coupling networks. 
The signals x, y, v and w are defined in Figure 2. 
Algebraically, the effect of the coupling networks has been 
coiiThleter5' cancelled  but in practice, care must be taken to 
use a coupling time constant which is large enough to 
ensure that sufficient of the low frequency content of the 
output power signal has been coupled into the data logger. 
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A simple RC circuit with transfer function 

H (s) = 
SRC 

1+sRC 

experiment demonstrating the benefits of skipping cross 
products. 

voltage 
proportional 

Fig. 3 	Typical ,iteastired cross-coo-relations of icr rentotal of s is! en, (line 
i/clay (leinonstrat 109 effi,cr ?! skij, (ilijorillin: 

tSkip 
I, Skip = 8 
e Skip = 16 
I'ea k values are nornialised 

8 	Results 

Block thaqran, of experimental S(-Stem 

as the coupling 	 the experimental 

Experimental system 

he measurement system, as currently developed, cannot 
utomatically take account of system time-delay terms. 
hen a time-delay term is observed, it is necessary to 

nterrupt the software and use keyboard control to offset 
he cross-correlation data set until the delay has been 
liminated. 

The engine used for these tests was a 4.6 MW Mirrlees 
lackstone KVI2 Major, used for base-load generation at 
tornoway power station, Fig. I. The engine was con-
rolled by an electronic governor enabling Gaussian noise 
est signal to be injected. The power response of the system 

this test signal was monitored by using current and 
oltage transducers on one phase of the alternator output. 
he noise signal and the power response were AC coupled 

a data logger with a 0.1 Hz coupling time constant. 
ata was then downloaded via an IEEE BUS to a desk 

op computer, where auto- and cross-correlations were 
enerated using a relay correlation technique. Hermite 
unctions were used to implement the modified modulating 
unction identification method. In addition to this instru-
entation, a spectrum analyser was used to produce fre-
uency response and coherence functions. A block 
iagram of the experimental system is shown in Fig. 2. 

The relay correlation implementation was based on the 
kip algorithm [10]. This involved batch processing of the 
ata where two blocks of 2048 bytes were down loaded 
rom the logger to the computer. The sample rate was set 

define the required correlation-function time-delay 
.ntervals. Only every eighth cross product was summed to 
'orm the correlation estimate. A negligible variance 
ncrease was observed compared with the results obtained 
)y using the whole data set. Fig. 3 shows the results of an 

The engine was run at a constant load of 3.5 MW and the 
perturbing noise signal level adjusted to restrict the 
resulting changes in the power level to never exceed ± 31 x, 
of the steady-state value. The correlation function esti- 
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mates were exponentially averaged and the modulating 
function method used to obtain the model parameters. 

The measured cross-correlation function indicated a 
response which included a pure time delay term. In the 
first instance, a simple, resonant, lowpass, 2nd-order func-
tion was used to model the remainder of the response. The 
time-delay term is removed before the modulating function 
method is used. A typical cross-correlation function after 
removal of this time delay is shown in Fig. 4. The model 
transfer function is 

H(s) = 
2+qts+q0 	

(II) 
q 2 s  

where q 2 , q1  and q0  are the parameters to be measured. 
Frequency response and coherence functions obtained 

from a commercial spectrum analyser monitoring the 
outputs from the AC coupling net-works are shown in Fig. 
4. The coherence falls rapidly as the frequency decreases 
below 0.5 Hz. This reduction is caused by the AC coupling 
network. 

The following average transfer-function parameters 
were obtained with the same power and noise levels used 
to obtain Fig. 4 (i.e. 3.5 MW and 0.6 V RMS). 

q 2  ... 0.07 

q 1  ... 0.19 

q0 ... 11.05 

Frequency response functions (including the effect of the 
measured system time delay) were calculated by substitut-
ing s =/w into the transfer functions obtained by using the 
measured parameters. Fig. 5 shows the calculated magni-
tude and phase response. Good agreement is obtained 

a 	Hz 	 0.5 	1 	2345 

Fig. 5 	A'feasured/requt'ncv response dcrired (10111 utodel llSlfllJ ,ltt'OSilrCd 
parameters 

a Magnitude 
h Phase 

between the measured response (Fig. 4) and the calculated 
response. 

Conclusions 

These studies have demonstrated that the modified modu-
lating function method can be used to estimate the small- 

signal parameters of a practical generating system. As it 
has been found that the parameters of the small-signal 
model change as a fault condition develops, it follows that 
the method may be used for machine health monitoring. 
Unfortunately, the small signal parameters will also, in 
general, change as the system static operating point 
changes and as a result the small signal parameter space 
must be combined with the static operating point space 
before a fault decision is made. 

Although it can be difficult to relate small signal param-
eter changes to a specific fault condition, they do offer the 
considerable convenience of making measurements while 
the system is operating normally. The use of continuous 
modelling techniques (rather than sampled data models) 
has made it easier to relate to the actualtructure of the 
practical problem but more work is necessary to establish 
the practical value of a continuous model in fault-detection 
algorithms. 

However, these initial studies have resulted in a sta-
tistically reliable procedure involving a two-stage identifi-
cation procedure: data are first analysed by correlation 
techniques and then a small-signal transfer function is 
developed from the correlation function. The correlation 
function provides a very convenient diagnostic check on 
the data collected and it can be assumed that the transfer-
function analyser always operates on reliable data. 

It is important to emphasise that although assessment 
of the different techniques used was possible by simulation 
in the laboratory, it was essential to validate the 
equipment and software in the field. The access to diesel 
sets at both Kirkwall and at Stornoway power stations 
proved to be an ideal test-bed for this study. Indeed, these 
tests have confirmed that the method is easy to use and 
suitable for operation at remote sites. 

Furthermore, if, as has happened in Orkney, the islands 
become interconnected by submarine cable to the main-
land grid, the role played by diesel stations will change to 
standby; here it becomes even more important to have 
confidence in the condition of the plant so that it is avail-
able when required, often in an emergency. 

At present it is not possible to quantify the economic 
returns from performance monitoring, but they should be 
manifest as lower operational costs because of reduced fuel 
costs, lower maintenance costs because of the better 
knowledge of the specific maintenance requirements of 
plant, and lower capital costs because of the reduction in 
the level of installed plant to cover for unplanned outages. 

However, with all health monitoring schemes, it is 
essential that the correct interpretation of information 
from such tests is made, and the authors envisage a deci-
sion support software package to be a natural complement 
to the transfer-function based monitor. 
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J. LNTRODUCTION 

This paper describes work carried out to as-
sess the condition of diesel generating plant. The 
eventual aim of the study is to develop a monitor-
ing system which ;ill assist maintenance staff to 
operate more effective repair and maintenance pol- 
icies, based on plant condition or health raiher 
than or a routine basis. 

2. fl1.RUD. 

Although the bulk supply of electricity is 
well established ,the part to be played by small 
generating plant in electrification is still sig- 
nificant 	

For example, in developing countries 
comparatively small plants will often suffice to 
serve the early needs of the larger towns, even of 
the capital city. 	Later, the growing demand will 
justify the installation of larger, more Sophisti-
cated and more efficient plant; perhaps even the 
interconnection of two or more townships to form 
the rudiments of a grid or power pool. 	When this 
happens it will often be possible to take up the 
earlier plant from their foundations, and to re-
move them to smaller or more remote centres of po-
pulation to perform useful pioneer work, further 
into the heart of the country. 

Even in highly developed countries small 
Power plants serve an important function in remote 
Places, either where there is low population den-
sity or where consumers are land- or sea-locked 
These conditions are not conducive to the early 
establishment of grid systems and townships are, 
therefore, likely to remain electrically isolated 
from one another for a long time. 

Of the options available for prime mover in 
such circumstances, the diesel engine is one which 
is widely used. With so many advantages to its 
credit, it is not surprisg that, in the past, 
the diesel engine has found application in small 
Power stations with total installed capacities of 
approximately 30 MW. 

Larger stations are also becoming more com- mon. 	
This has certainly created a frontier of 

competition between the diesel engine and the 
 

steam turbine, since Previously it had been as 
sumed that above about 30MW installed capacity, 
the steam turbine becomes economically attractive, 
and had been used in preference to the diesel en-
gine. 

Because of their compactness, diesel sta-
tions can be sited at or as near to load centres 
as permitted by noise regulations 	Although 
diesel engines tend to be rather noisy, tests and 
experience have shown that even without precau-
tions to cut down noise, it is satisfactory to 
site large diesel plants within BOO m of domestic 
dwellings ( Fawkes, 1967 ). Since the troublesome 
noise is in general in the higher frequency range, 
Sound barriers are found completely effective in 
reducing disturbances to an acceptable level. 

3. 
 

-ZE-CIJNICAI, CONSIDERATIONS OF DIESEL Qfl TOPS 

3.1General  Eeatures 

Diesel engines are extremely versatile prime 
movers for the generation of electricity. They 
are obtainable from a large number of manufactures 
based in several countries and the market is 
therefore competitive 

The diesel electric generating set is avaci-
able in almost any size over a wide range. Earlier 
size limitation was imposed by the need to use 
very low speeds. This meant very bulky and heavy 
machines but modern designs have enabled higher 
speeds to be utilised, with the result that more 
powerful plant can be built without their physical 
size being unmanageable Very large, low-speed, 
diesel engines have long been used for marine pro-
pulsion, but today are finding an ever increasing 
role in land-based operation. 

3.2 5ecurity 21 supply 

In isolated stations it is necessary to pro-
vide some margin of spare plant so that supply 
may be maintained when part of the plant is out of 
service for maintenance or because of breakdown. 
For proper security it could be argued that in any 
station two spare sets should be installed, so 
that when one set is out of service for mainte-
nance purposes there is still another spare set 
standing by in case of the breakdown of a running 
set. Although this level of spare capacity may be 
Justified on occasion, the provision of two spare 
sets is often an expensive luxury. For small, 
newly established electricity supply-undertakings 
it is usually of greater importance to produce re-
latively cheap electricity with the risk of very 

occasional interruptions, than to have almost per-
fect continuity of supply. Indeed, even with es-
tablished systems, the Supply Authority will ac-
cept that there is a finite Probability of failing 
to meet demand at any given time, even working 
with spore capacity . 	This risk is of course 
dependent not only or the reliability of the 
Plant, which in turn depends to a great extent 
upon the care with which it is maintained, but 
also on the proportion of time (in days per year) 
when the plant is out of service for routine 
maintenance. 

Where a large number of plant units is in-
stalled, the risk of a 'double outage' i.e. one 
set out for maintenance and another set subject to 
breakdown, will be greater. No definite ruling 
can be given as to the amount of spare plant which 
Should be provided; much will depend on the size 
and nature of the load. The following margins are 
therefore suggested tentatively though it is 
recognised that many individual variations will be 
necessary: 

assuming the largest installed unit to 
be out of service for routine maintenance, 
and where the total number of sets is five 
or less, assume there is no coincident 
breakdown, ie one spare set. 

where the total number of installed sets 
is six or more, assume the largest unit to 
be out of service for routine maintenance 
and any other set to be out owing to break-
down, ie two spare sets. 

It is of interest to note that, in the Unit- 
ed States, the term 'firm capacity' is used; this 
is the capacity of the station with the largest 
set out. The average time any machine is out ow-
ing to a breakdown is usually about 5% of its to-
tal operational time in any year. This, combined 
With a typical planned outage time of 9.7% per an-
num (NSHEB, Private communication), would result 
in a 0.035% chance of a double outage occurring 
during an average operating year of 4605 hours. 

3,3 Life expectancy of 

When planning diesel-powered electricity 
generation it is usual to allow a life of fifteen 
Years for diesel plant. 	For very high speed 
diesels, or engines using fuel of low quality, a 
shorter period may sometimes be more realistic 
(ten or twelve years) 	For slow speed diesels, or 
for diesel plant that is operated intermittently 



without overloading, rather longer periods (up to 
twenty years) may be taken as according with prac- 
tice. 	However, when planning ahead, a fifteen 

year period of utilization in a given situation 
would appear to be prudent since diesels tend to 
become uprceded through growth of demand rather 
than through wear and tear. However, a second 
lease of life'is often found for old plant at oth-
er sites. 

4. QPuATION Dr £L.MI. 

If well maintained, diesel engines can run 
fur a long period between overhauls and have low 
wear rates. The average running hours between 
overhauls for most NSIIED machines is greater than 
10,000 hours which represents about 18 months con-
tinuous operation (NSHEB, private communication): 
the NSHEB is the world's largest user of land-
based diesel engines, and as such has much experi-
ence in their operation and maintenance. 

Where skilled labour is scarce, station 
operation can often be adapted for automatic 
operation; that is to say, a stand-by diesel set 
may be started up by remote control or by mains 
failure. Full automation may be provided for 
starting, synchronising and shutting down diesels 
in response with local demand. 

Maintenance, may be simplified by provision 
of easily replaceable assemblies of parts, thus 
enabling reconditioninj to be undertaken away from 
the generating plant. Periods between order and 
delivery are short and a diesel power station may 
therefore be extended rapidly by adding suitably 
sized units to meet growing demands. 	Compact, 
light- weight, high-speed d1eel 	are obtainable 
for sites which are remote, cramped or difficult 
of access. 	Mobile diesel power units mounted on 
skids or trailers may be used for temporary or em-
ergency purposes. 

The NSHEB has several such power units which 
are kept at strategically central Positions in 
readiness for quick transportation. Transportable 
diesel sets are also used for supplying construc-
tion power for large civil engineering works and 
for supplementing electricity supply systems which 
are temporarily short of power. 

Despite the provision of installed redundan-
cy and portable plant, unplanned outages do occur 
and can be expensive both in terms of lost revenue 
or increased fuel costs by meeting demand with 
less efficient plant. Additionally, the inconveni-
ence to the consunimers of loss of supply must be 
considered as of prime importance. 

It follows that a system which can indicate 
the onset of fault conditions and thus allow time 
for action to be taken will be attractive to the 
supply authority. Indeed, if such a system could 

be arranged to monitor plant continuously and to 
give data on its health, maintenance could be 
scheduled on the basis of equipment performance 
rather than merely at regular intervals. The ad-
vantage would be that servicing would be carried 
out only on plant which required it and potential-
ly considerable financial savings will result, 
both recurrent and capital. Recurrent costs will 
be reduced because of the reduced maintenance re-
quirements and capital savings would be possible 
because of the reduced requirements for standby 
plant to cover for the occasions when unplanned 
outages occur. This approach to plant operation 
is usually termed machine health monitoring. 

. PIACHINE  jjfJ,TH MONITORING. 

Machine health monitoring and its associat-
ed instrumentation may be considered to involve 
designers, construction engineers, commissioning 
engineers and most importantly bpéiiona1raff: 
It is in this ultimate stage where performance 
monitoring systems aids the operator by continuoi-
ly assessing the health of the equipment and plant  

during its planned life. 	However, when conider- 
ing the usefulness of such a system, it is in the 
early phases of system design that a great deal of 
attention must be given to the type of plant to be 
installed, and the expected variation of parame-
ters during healthy operation together with the 
tolerance on these parameters that must be allowed 
prior to a probable fault condition being reported 
or acted upon. 	In much the same way data ob- 
tained at the construction and plant installation 
stage has an important bearing on the initial set- 
tings that are used. 	These two pre-operational 
stages are often neglected. 	Future construction 
programmes however offer the possibility of imple-
menting effective systems. 

Several studies have demonstrated that 
secondary effects such as sound, vibration, tem-
perature, pressure, and other physical phenomena 
exhibit detectable changes long before catastroph-
ic mechanical failures occur and, therefore, can 
be used to predict and diagnose mechanical mal-
functions. Sensors can usually be positioned to 
detect the secondary effects of one component or 
mechanical subsystem, independent of similar emis-
sions from other components or subsystems. 
Frequency- and time- domain signal processing is 
used to obtain "signatures representing normal 
and faulty performance. 

Manufacturers of monitoring systems claim 
savings of up to 40 on planned maintenance and up 
to 60 on breakdown repair. 	This has to be seen 
in the light of a maintenance expenditure which 
may be a significant proportion of the historic 
capital investment of the plant per annum, and a 
typical installation cost of a comprehensive moni-
toring system of approximately 151  of the capital 
investment in plant C Smith. JR , private communi-
cation 

Sea-locked, small-scale electricity supply 
systems are generally diesel-powered. This leads 
to unit costs for electricity which are signifi-
cantly higher than those for a large grid system, 
mainly because of higher fuel costs. 	it follows 
that the incentive to reduce operating costs is 
high and the potential savings considerable if 
fuel costs can be reduced. Field trials of proto-
type monitoring instrumentation have been carried 
out at both Kirkwall Power Station on Orkney and 
at Stornoway Power Station on the Outer Hebrides, 
Figure 1. 

.. MffE IIEAILI'fl MONITORING EXPERIENCE. 

Electronic instrumentation for machinery 
health monitoring based on vibration data and on 
transfer function models has been investigated by 
the authors. 	Initial experience with vibration 
monitoring equipment and hardware at Orkney Power 
Station had shown that this equipment tended to be 
expensive if a comprehensive coverage of sensitive 
monitoring points is attempted but can be designed 
to give information about clearly identified 
points in the machine i.e. bearings and structural 
support. 

In contrast, the measured small signal 
parameters of a system transfer function cannot 
usually be easily related to identifiable parts of 
the system and therefore such measurements can 
only be used to give a global indication of the 
state of a system. 

In both cases sigriaturec of normal perfor-
mance are obtained and deviations from normal per-
formance are monitored. Identification of a fault 
condition from these changes is often difficult 
and in the case of complex systems involving many 
measurements and a large body of background 
knowledge (e.g. initial design in formation), it 

h: 'Esrt System-' -software-will 
be required to assist the decision making process 
II.w.r$- 	O1 	ar,r.,--,- 	

w4,11-dimin- 
ish rapidly if the health monitoring system con-
tinually indicates a fault condition for no good 
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reason, so time must be spent in developing reli-
able decision- making software. 

SiQflture-based fault detection only re-
quires a ctiaige to be detected from a known good 
(i.e. healthy) condition. Subsequently when a vi-
bration spectrum is used it is not necessary for 
the spectrum to be mathematically accurate. 	it 
has boon found that ill approximate spectrum can be 
easily implemented if the conventional sine and 
cosine operations in the DFT are replaced by a 
square waveform. Using this technique e 0 to 10 
kHz spectrum analyser with 10, 100 Hz ZOOM bands 
has been implemented by a single board computer 
(using the 6809 processor) with a single board in 
terfaco circuit [Moulton, 1985]. 	This hardware- 
requirement will be reduced to a single card sys- 
tem when single chip microcomputer techniques are 
used. 

Normally naturally occurring system noise 
does not have sufficient bandwidth to excite all 
the modes in a system and psuedo random noise is 
injected to overcome this problem. The modulating 
function method is then applied to measured corre-
lation functions and if n parameters are to be 
measured then n equations must be solved simul-
taneously to estimate the transfer function param-
eters. Extensive simulation studies have shown 
this to be a reliable method that is suitable for 
remote operations 	Full details of this technique 
are given elsewhere by Jordan et al (1985). 

2. 	QJOk?AY EXPERIMENTAL 

A practical investigation of the transfer 
function monitoring method has been carried out on 
the main speed control loop of one of the diesel-
generator sets installed in Stornoway Power Sta-
tion. A 4.6 MW Mirlees Blackstone KV12 Major 
diesel engine was used and to allow injection of 
pseudo random noise signals part of the existing 
hydraulic governor was replaced by a commercial 
electronic unit. 

The power response of the system to this 
test signal was monitored by using current and 
voltage transducers on one phase of the altenator 
output. 	The noise signal and the power response 
were A.C. coupled to a data logger with a 0.1 Hz 
coupling time constant. Data was then down loaded 
via an IEEE BUS to a microcomputer, where auto and 
cross-correlations were generated using a relay 
correlation technique. 

The relay correlation implementation was 
based on the Skip Algorithm described by 
Fell(1982) This involved a batch processing of 
the data where two blocks of 2048 bytes were down 
loaded from the logger to the computer. The sam-
ple rate was set to define the correlation func- 

tion time delay intervals. Only every eigtti 
cross-product was summed to form the correlation 
05tilt- A negligible variance increase was ob- 
served compared with the results obtained by using 
the whole data set. 

E.  flQJ35 

The engine was run at a constant load of 3.5 
MW and the perturbing noise signal level adjusted 
to restrict the resulting changes in the power 
level so as never to exceed ±3% of the steady 
state value. The correlation function estimates 
were exponentially avorujej and the modulating 
function method used to obtain the model parame- 
ters. Typical measured auto and cross correlation 
functions are shown in Figure 2. 

Figure 3 shows the system frequency response 
Obtained by substituting s = jw in the transfer 
function derived from the measured small signal 
parameters. Good agreement has been obtained with 
frequency response measurement made directly with 
a Spectrum Analyser. 

CONCLUSIONS 

To be effective, machinery health monitoring 
equipment must have sufficient data processing and 
decision making complexity to ensure that spuri-
ous fault indications will be minimised. It must 
also be manufactured at a low enough cost to en-
sure that a financial return will be possible from 
the capital required to install the equipment. 

Progress Is being made with the development 
of lower cost machinery health monitoring equip-
ment. Initial tests on realistic scale system (eq 
the diesel powered generating sets) have shown the 
approximate spectrum analyser and the transfer 
function analyser to be viable, low cost, 
machinery health monitoring units. 

Although assessment of the different tech-
niques used was possible by simulation in the la-
boratory, it is esential to validate the equipment 
and software in the field. The access to diesel 
sets at both Kirkwall and at Stornoway Power Sta- 
tions proved to be a ideal test-bed for this 
study. 

At present, indications are that the tech-
nique described could produce significant finan-
cial savings for any Authority responsible for 
operating of such generating equipment and that 
eventually operations and maintenance scheduling 
may be based around such a concept. 

However, it is essential that the correct 
interpretation of Information from this unit is 
made, and the authors envisage the type of deci-
sion support software described above to be a na- 
tural complement to the transfer-function based 
monitor. 

Furthermore, as the islands become intercon-
nected by submarine cable to the mainland grid, 
the role played by diesel stations will change to 
standby; here it becomes even more important to 
have confidence in the condition of the plant so 
that It is available when required, often in an 
emergency. 
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