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Abstract 

The abstract representation of persistent storage in conventional programming 

languages is examined and criticised for being modeled upon serial input/output 

devices. The introduction of databasà models into programming language is 

reviewed and is found to introduce non-orthogonal elements into language 

design. It is argued that persistence should be an orthogonal feature of data 

and that its duration should be determined by a combination of scope rules and 

heap reachability criteria. The architecture of a distributed computing system to 

implement this model is presented. The possibility of a system for the 

cannonical representation and storage of persistent data from Algol-68 and Pascal 

is examined and rejected. The design and implementation of a prototype 

configuration supporting orthogonal persistence in the language S-algol is 

described. Algorithms for the maintenance of the persistent heap in the 

prototype are evaluated. The weaknesses of the prototype language are criticised 

and an extended language NEPAL proposed to overcome these. The implications 

of orthogonal data persistence for scope rules, garbage collection, and 

concurrency control are examined. • 
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Preface 

This thesis is the result of work carried out as part of the Data Curator Project: 

a Science Research Council funded investigation into databases and programming 

languages. 

Ken Chishoim and the author were employed on this project, working under the 

supervision of Dr U. P. Atkinson. Within the project Ken Chishoim worked 

almost exclusively on the Chunk Management System mentioned in Chapter 5. 

The other software components described in this document were the work of the 

author with the exception of the 3220 and Vax scode interpreters, parts of which 

were produced by Richard Marshall a yacation student temporarily employed on 

the project and Paul Mclellan. The model of orthogonal persistence outlined in 

Chapter 3 was arrived at by the author on the basis of a critical examination, of 

prior proposals by Atkinson. The proposals for system architecture in Chapter 4 

including the initial version of the PIDLAM idea derive in large part from proposals 

by Atkinson. The examination of and eventual rejection of the idea of a 

cannonical type representation was the work of the author in conjunction with B. 

Monahan. The heap, algorithms described in Chapter 6 were the work of the 

author. 

The choice of the language S-algol as the most suitable for extension and its 

subsequent extension into NEPAL were arrived at by the author in conjunction 

with Atkinson. The investigation of the relationship between scope rules and 

garbage collection was the work of the author. 
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Programming Langu.gos and Persistent Data 

This is a defence of the thesla that it Is technically feasible and pragmatically 

desirable to add data persistence as an orthogonal feature to a certain class of 

algorithmic languages. 

By persistence of data used in a program. I mean that the data should remain 

available to the same or other programs over a period during which the computer 

or computers on which the data is held may have run many programs and may 

have been switched off. 

The history of programming languages is characterised by a markedly uneven 

development of their facilities for handling temporary and persistent data. 

The temporary data has been provided with sucessively more sophisticated 

structuring facilities. Even the most basic of algorithmic languages provide 

facilities for the symbolic naming of data items and for the construction of 

vectors. As language design has progressed one has had the notion of type 

applied to data items. Initially one had a limited set of predefined types 

supported by the language: integers, reals, logical or boolean values. These 

facilities were available in languages of the early 1960's such as Fortran or 

AIgolSO, or even the autocodes of the late 50's. 

The concept was then generalised to include programmer defined data types 

formed by a group of type construction operators such as enumeration, set 

definition, cartesian composition, referencing and set union. These facilities 

became available by the late 1960's with such languages as Algol W, Algol 68 

and Pascal. [1] (2] (3] 

Finally one has seen the development of the notion of an abstract data type 

defined in terms of the operations upon members of that type rather than in 

terms at its representation. This appeared first in Simula, [4] was extensively 

experimented on during the 1970's, e.g. Mesa, CLU, EUCLID (5] [6] [7] and 

is likely to become widely accepted with the programming language Ada (8] 

The language definitions which brought us these facilities are, however, marked 

by a silence that is at first 'inaudible. They assume, but do not explicitly say, 

that the data for whose structuring they provide, is to be held In the random 

access memory of a computer. The data world of the programming language is 

well ordered but evanescent. Within it data stands in its classes or orders, 

governed by the rule of law, with each class kept in its place and prohibited by 

sumptuary provision from impersonating its superiors. But like all mundane 

orders it eventually meets its end, exits from its final block and Is no more. 

Then its territories are put on the free list to be reallocated and the memories of 

its former variables overwritten or reinitlalised. 

Data can only persist beyond the pale, on the outside, in the world of files 

where, it is said, you can live for, if not ever, at least a day. Dealings with 

the world beyond take place by input and output operations. But these are risky 
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undertakings. For all Its promIses of Immortality the outside Is C chaotic, 
anarchic place. It acknowledges no class or rank higher than the byte and no 
law other than sequence. Integers and reals alike are reduced to sequences of 
bytes; while records or enumerated types, let alone abstract types cannot enter 
or leave. 

Input data poses even more problems. It enters without a pedigree; how Is one 
to know to which class It Is to be assigned. One must set up elaborate 
immigration procedures on input to sort out the Integers from the strings and 
reals, to regiment these together Into higher order types. 

inside and Outside 

This sharp division between the world within and the world outside the program Is 
a relic of an earlier stage of computing. It Is the reflection within programming 
languages of an old diagram, familiar to us all, that divided computers into three 
parts: a cpu, a memory and peripherals (FIg 1.1). 

The cpu, It was explained, dId calculations and Interpreted instructions which it 
fetched from memory to process inputs from peripherals and the results were 
sent back out to peripherals. And what were these peripherals? 

First of course there were the tape drives, symbols of the computer age. Then 
there were the card readers, printers, teletypes and discs. But for the 
programmer• they were all peripherals, and their details peripheral to her 
concerns. Her programs dealt with input and output streams, their mateiial 
incarnations as devices was nothing to do with the program and could be 
relegated to the operating system and the JCL. The operating system presented 
a device independent view of peripherals. To change the devices that a program 
used one had merely to assign different devices to the streams or channels used 
by the program. But this freedom was bought at a cost that we are still paying. 
All devices must be made to look alike. All must be reduced to the lowest 
common denominator: Input devices end up looking like a paper tape reader, 
output devices lIke a teletype. The operations on them are reduced to the 
barest essentials: on input, look at the character under the read head or step 
the tape on, for output just print a character. 

Time has passed, the technology of storage devices has advanced and now we 
have a new diagram. It is called the storage hierarchy. 

It is In the shape of a pyramid (FIg 1.2). [9] At the base are the dIsc drives. 
Upon them stands the MOS main memory. Above this Is the bipolar cache and 
at the apex sit the cpu registers. All of these, we are told, are storage 
devices. What distinguishes thema just speed. All of them are randomly 
accessible and all may be read from or written to. The older generation of 
operating systems was concerned to make all peripherals look like paper tape. 
The new virtual memory systems make all store look like main memory, but like a 
much bigger and, if the cache works, faster main memory. 

From the viewpoint of the operating systems engineer this is true, but the poor 
programmers are left with languages of the previous era. Yes they can now 
declare arrays of a million elements with carefree abandon and the operating 
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system will take care of mapping these onto the appropriate level of the storage 
hiàrarchy on demand. But from the standpoint of the Isnguag., an array is an 
array wherever it resides during its still short lif•. it is still thrown away at the 
end of the program. What Is left at the end of a program is Just what has been 
written out to a tile. Nowadays the file will be on disk but, in basic conception, 
it still looks like a serial peripheral device to the program. 

We have advanced somewhat. We are no longer forced to look at discs as if 
they were paper tape, we can also make them look like RAM. From one point 
of view they are a set of tiles: securely locked cupboards with neatly rolled, 
carefully labeled rolls of paper tape. The operating system acts as diligent 
operator who will fetch named tapes from the cupboard and put them on the 
reader. From the other point of view they are a giant scratchpad RAM and the 
operating system is a rather slow address decoding chip. 

In the EMAS system, [10] this view reaches an apex with all tiles being mapped 
onto random access memory. Memory mapped files are a very significant 
advance on ordinary tiles. They would seem to provide an answer to the 
problem of making a program's run time data structures persist. Under EMAS a 
file can be mapped onto an array which is used in the conventional fashion within 
a program, and then at the end of the program the data in this is preserved In 
the tile. There are, however, two fundamental weaknesses to memory mapped 
tiles as implemented on EMAS. 

The programming language support for memory mapped files is very 
weak. There is no type checking of the data in the mapped file. 
The use of such tiles relies entirely upon the programmer to get her 
typo declarations for the memory mapped tiles right. All programs 
which use a tile must have the same view of it, and there is no 
check that when one maps a file it is of the appropriate type. 
Furthermore, none of the languages provided under the operating 
system use these files in conjunction with a heap. This leads to 
needless multiplication of effort, with every program needing its own 
ad hoc storage allocation mechanism. 

Memory mapped tiles are unsafe. Data in a memory mapped file is 
corruptible in the event of program or machine malfunction. Either 
of these can cause a database held in such a file to be Irretrievably 
corrupted. In other words EMAS memory mapped files do not 
support the notion of atomic transaction. By atomic transaction 
(henceforth transaction) I mean an all or nothing modification to a 
body of data. If a transaction succeeds all the changes required will 
have taken place, if it falls, none will have. in a conventional tile 
system, transactions are frequently done by creating a new version 
of a file whenever you write to it. If used with memory mapped 
files, this would provide a secure, if space consuming, way of 
implementing transactions on program data structures. The EMAS 
tiling system does not provide file versions for mapped files, so that 
this approach to providing transactions is unimplementable. 

Although the memory mapped file approach seems a promising line of 
development given a little more work, it has not been part of the mainstream of 
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computing culture. This was concerned to l.t discs appear as what they are: 
random access persistent storage dv$css; 

Another World Another Histo.y 

Programming language designers seem to have been too busy elsewhere to give 
much thought to how to represent persistent storage devices within programming 
languages. But this did not deter applications programmers from attempting the 
task, and In the process giving rise to a new world: the world of database 
systems. This is a world with its own history, culture and traditions, but It Is a 
history and culture that has few points of contact with that of programming 
languages. Database systems and programming languages have both evolved In 
response to constraints, some of the constraints and problems have been the 
same, others different, giving rise to an evolution that was at times divergent 
and at others convergent. Programming languages, or more property, 
algorithmic programming languages have evolved as a means of precisely 
specifying algorithms for the transformation and manipulation of externally supplied 
data. Their data structuring facilities have developed as a means of handling the 
data structures needed in algorithms. Algorithmic languages are a means of 
programming with fast random access memory, data base systems are a means 
of programming with discs. In keeping with the characteristics of the device, 
database systems are not so much concerned with the transformation of data, but 
with its preservation, organlsation and access. 

In contrast to MOS RAM, discs are large in capacity, have a slow cycle time and 
if we consider disc blocks to be analogous to words, a large word length and of 
course the information in them does not vanish when you turn the power off. 
Each of these features has had its effect on the divergence of the evolution of 
database systems from that of programming languages. 

The large capacity has meant that the amount of data to be handled is much 
greater than in algorithmic languages. This has made the provision of automatic 
storage allocation necessary. All algorithmic languages also have some form of 
automatic storage allocation, if only for named variables, but in general this 
relies upon knowing beforehand the order in which store will be requested and 
released. Only a few languages routinely provide a full heap regime with 
automatic allocation and recovery of objects in any arbitrary order. This, 
however, is always provided by database systems. 

The long word length and slow cycle time of discs in combination with the large 
amount of data stored has led to an emphasis on the provision of means of 
efficiently Indexing large populations of data using sparse keys. The non-volatile 
nature of disc storage has meant that database systems are primarily concerned 
with the maintenance rather than the manipulation of data. In turn, this has led 
to a concern for robustness and security of data storage and the notion of 
transaction and recovery. 

Despite this concern with the maintenance and organisation of stored data, this 
data has still In most applications to be manipulated and transformed. Given the 
pro-existence of programming languages optimised for the task of manipulating 
and transforming data, an obvious way of dealing with this is to Interface the 
database system to some existing programming language. It is worth giving a 
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abort outhea of the phases through which this process of Interfacing programming 
languages to database systems has passed. As with most technological 
developments Its history is only partially sequential. The earlier phases of the 
technology continue in use well after newer ones have been lnveflted. 

The earliest facility provided to programming languages for handling databases 
stored on disc was the direct access file. In essence this gives the programmer 

a virtUal disc. drive. It allows only the primitive disc operations of reading and 
writing numbered blocks. The only difference between this and directly operating 
on the disc Itself is that the operating system restricts these operations to a 
subset of the total disc. To the programmer the facility looks like either a 
modified input or output statement or a subroutine, which when given a number 
and a buffer transfer the contents of the numbered disk block to or from the 
buffer. As a programming technique this is about on a par with programming a 
single accumulator machine with an assembler that does not even provide 
symbolic labels. The programmers must provide their own rules for allocating 
storage, and all dereferencing and assignment must be done with explicit 
operations. Programming In this way is tedious and prone to errors of the most 
elementary kind: getting addresses mixed up, failure to carry out the necessary 
level of dereferenciflg. Although the organisation of data within a disc block may 
be handled cleanly if the host language supports records, there is no type 
protection. There is no guarantee that when you read in a disc block that it will 
contain the type of record that you want. As against these problems it does 
have the advantage that it is very powerful. You have lost none of the 
underlying machine capabilities. All more sophisticated database systems must 
ultimately be implemented in terms of operations at this level. 

At a level up from direct access files one has subroutine access to record 
management software. I am thinking here of systems which allow the reading 
and writing of variable sized records, and which handle the automatic allocation 
of records and the recovery of space when these are deleted. In other words a 
record based disc store. Whilst this relieves the programmer of the problem of 
storage allocation, a number of the other headaches remain. There is still no 
type protection. When following a chain of pointers, one must still carry out 
explicit fetches to do the dereferencing. Programming at this level brings all the 
problems associated with working directly upon the representations of data types. 
Knowledge of these representations becomes spread throughout the algorithms 
that work on the data. This is bad enough within a single program, but when 
dealing with whole groups of programs written by different authors, acting on 
common persistent data structures, the situation becomes unmanageable. Any 
change to the data structure has implications throughout the. whole set of 
programs. Fear of the consequences of such changes leads to data structures 
becoming frozen. 

By the early 197019, awareness of these problems led to the development of 
database systems that incorporated data descriptions on disc as a database 
schema. Proposals for the two currently leading database models, the network 
and relational were formulated [11] [12] These enabled the definition of data 
structures that were accessed via certain well defined operations that effectively 
enforced type protection. In addition, more sophisticated access paths were 
incorporated, allowing the application programmer to avoid having to do explicit 
pointer following. With the development of database systems with schemata, 
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automatic storage control and sophisticated access methods, database systems 
had advanced to a level of data handling that was perhaps analogous to that 
reached by algorithmic languages of the eaziy 1970's. Indeed It one considers 
relations or CODASYL sets to be type constructors, the level reached was 
somewhat higher. 

The first method by which access was provided to such systems was by 
subroutine call. This was In keeping with the usual method by which the 
facilities in existing programming languages had been extended. The continued 
popularity of Fortran, for instance, Is testimony to the effectiveness of the 
enrichment of a language by the use of subroutine libraries. In the database 
context, the applications programmer would write a call on a subroutine In the 
DBMS library requesting some kind of retrieval or update operation and passing 
the address of a buffer into which or from which the data was to come. While 
this technique of enrichment has been successful In a number of areas of 
computing, graphical or mathematical subroutine libraries spring immediately to 
mind, there were a number of reasons why it was less effective in the case of 
database systems. 

In database systems there are a larger number of potential error 
conditions than in many other applications. Retrieval requests may 
often be Issued for which there is no target record In the database. 
Such conditions must be caught and handled by the applications 
program. A subroutine call interface makes the communication of 
error status information difficult. The information must be passed 
back as a parameter or function result and the calling program must 
test this after every call. 	One cannot rely upon applications 
programmers to do this. 

With subroutine libraries it is difficult to enforce standards. What 
tends to happen is that particular implementations become standard. 
In a competitive market this tends not to work. With statistical or 
mathematical libraries, the main users and providers of the software 
are academic institutions. They are not trying to make a profit from 
their software and have a strong incentive to standardlee. Database 
software has been developed by and for commercial users, who have 
every incentive to put their own product on the market. They may 
be able and willing to produce software to a language standard but 
they are unlikely to accept another company's set of subroutines. 

Subroutines provide very poor protection mechanisms. The user 
program may fetch a record into a buffer of a different format from 
that of the record, without this being detectable. This provides rich 
opportunities for corruption. 	 - 

Subroutine libraries do provide the undoubted advantage of being able to use 
database software with an existing unmodified compiler. The next phase in the 
development of interfaces for programming languages attempted to retain this 
advantage whilst giving a higher level of protection and checking than subroutine 
calls. It involved the definition of language extensions that provided syntactic 
sugar plus an added level of protection to the basic subroutine Interface. The 
extensions were handled by preprocessors. 
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Both the programming language Pascal and CODASYL database lystems may be 
considered to have separate Data Definition and Data Manipulation Languages. In 
the latter case, they are explicitly separated, in the former. they exist implicitly. 
All the syntactic constructions that can appear in the CONST, VAR and fl'PE 
subsections of a Pascal program constitute Pascal Data Definition Language 
(DDL). The syntactic constructions that can occur within a block constitute its 
Data Manipulation Language (DML). The CODASYL database systems provide 
type definition facilities that are comparable in power to those of Pascal. it has 
three type construction operations in its Data Definition Language: cartesian 
composition of elements to form records, the formation of vectors out of 
repeating groups of elements, and the construction of sets of records. Its notion 
of a set is somewhat different from that of a Pascal set, but is more powerful 
and makes up for its lack of a reference type construction operator. 

Where Pascal and CODASYL database systems differ Is in algorithmic power and 
facilities for persistence. Pascal has no persistence facilities other than an 
untype-checked file input output . It is possible to declare files of any type In 
Pascal, but there is no check that a file is actually of that type when linked to a 
program. CODASYL allows all its datatypes other than cursors to be persistent. 
On the other hand Pascal has far greater algorithmic power. CODASYL DUL has 
an impoverished control structure designed only to deal with error conditions, 
lacks expressions and is mainly made up of navigation, selection and assignment 
operations. The reason for this is that CODASYL DML is Intended to be 
embedded in an existing algorithmic language. e.g. Cobol or Fortran. The host 
language is intended to supply the expression facilities and control structures 
necessary for the implementation of algorithms. The CODASYL DML provides the 
selection and assignment operations on the persistent data types provided by the 
001. Any calculations on or transformations of the data must be carried out by 

the host language on transient data. 

The embedding of the DM1 in the host language is done using a preprocessor 
phase in which the DM1 is translated into a set of subroutine calls on the 
database system. The actual transfer of data between the database system and 
the program is effected by inserting declarations for buffers of the various 
CODASYL record types into the code of the source code of the application 
program. These are then passed as parameters to the DBMS in subroutine calls. 

The preprocessor can also automatically generate code sequences to check for 
error conditions after each call on the DBMS that will cause a branch to a user 
provided error handler on encountering an error condition. Having been 
preprocessed the program Is passed to the COBOL or Fortran compiler and 

compiled and linked like any other. 

The problem with this approach, which has been repeated with other database 
systems and other languages, is that it fails to overcome the dichotomy between 
temporary and persistent storage of data. It does give the programmer access to 
data of both types and allows both of them to be structured in a reasonable way. 
But they are still different. The temporary and persistent data belong to 

different types with different operations available on them. Persistent data has 
to be explicitly FETCHED before it can be operated on in an expression. 
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It may be said that this is partly due to the tact that DUL 1* embedded In old 
languages ilk. Fortran and more particularly Cobol, and that the operations 
provided on persistent data must therefore conform to the Cobol "style". This 
does explain part of the difficulty. Cobol's own data structuring facilities are less 
sophisticated than CODASYL DDL even though the latter is closely modeled on 
Cobol. There was probably little option but to make the record accessing. 
facilities analogous to Cobol tile i/o in that they require explicit fetches. in a 
language without reference types and dereferencing coercions there is a limit to 
how concisely one can express what Is essentially a dereferencing operation. 
The end result, however, is to reproduce in a new form the old antithesis 
between inside and outside. Cobol was developed at a time when data 
processing was done on serial files on magnetic tape, the anatomy of CODASYL 
DIAL shows its ancestry. 
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Chapter 2 

Algorithmic languages with database constructs. 

Recently several attempts have been made to develop new algorithmic languages 

which incorporate database constructs. Examples are Pascal A, Plain, Aldat, 

TAXIS, DIAL and ADAPLEX [13], (14], [15], [16], [17], [18]. [19]. In 

each case, the algoritmic portion of the language is closely based upon some 

existing algorithmic language, which has its syntax extended to support new data 

types deriving from some database model. The objective has been to combine 

the expressive and algorithmic power of the programming language with the data 

handling facilities of the database model. The database model has two 

conceptually distinct things to add to the language: data persistence, and a new 

set of type constructors and operators to support its view of data. In the case of 

the relational model the new type is the relation and the operations of the 

relational algebra the operators. Most algorithmic languages have the power to 

implement database models using existing data type constructors and algorithmic 

constructs. Relational database systems are, after all, written in conventional 

programming languages. The justification for making such facilities part of the 

language definition is that the primitive relational operations are sufficiently widely 

applicable and the cost of reimplementing them sufficiently high, that the added 

convenience of having them as built in constructs, compensates for the additional 

complexity it introduces into the compiler and run time support system. 

In assessing these extended languages, one must judge them on three criteria: 

1. 	 Whether the new data model has been introduced in a way that 

conforms with the spirit of the original algorithmic language. If, Per 

instance, the data model requires a new type constructor, can this 

be used in the same way as existing type constructors? 

Can it be composed with existing type constructors in type 

construction expressions? 

Can it be used in the same way in the declaration of identifiers? 

If the data model requires new operations are these dealt with in a 

way appropriate to the host language? 

Let us take the example of inserting a tuple into a relation. In the 

case of a business data processing language like BASIC or COBOL it 

would be appropriate to extend the language with a new type of 

statement to carry out the insertion, since these are statement based 

languages. One might end up with a statement like: 

INSERT tuple INTO relation 

In the case of a Pascal derivative it would be more appropriate to 

use an assignment statement with the relation on the left hand side 

and a concatenation expression on the right. One would end up with 
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a statement like: 

relation : = relation + tuple 

In the case of an expression oriented language like C or Algo8 

which already has a rich set of modifying operators one might 

overload one of these to do the insertion. In this case one would 

end up with a construction like: 

relation + : = tuple 

These points of style may seem trivial, but when a particular 

syntactic style is stuck to consistently it should bring benefits. The 

fewer the number of syntactic rules in a language and the greater 

their orthogonality, then the easier it should be to learn. One of 

the justifications for extending an existing language, other than 

saving one time on language design, is that there is already a body 

of experience in using the language. If any additions conform to its 

style or spirit than the additional effort required to learn about the 

new features is minimised. Finally, as Hoare has pointed out, 

programs in languages with simple rules are more likely to be correct 

[20]. 

Whether the rules about the persistence of data are applied in a 

consistent and orthogonal fashion. In a database oriented extension 

to an algorithmic language, one assumes that at least the new 

datatypes required for the database model will be persistent, but are 

these the only data types that can be persistent? 

To produce a genuine integration of the database model into the 

programming language, persistence should be considered to be 

orthogonal to type. It one introduces relations into a language, one 

would not want all of these to be persistent. Some will be 

temporary relations used as a scratchpad for relational algorithms. 

Given that not all relations are persistent, orthogonality demands that 

not all persistent things should be relations. 

Whether the extended language provides a clearly defined mechanism 

for binding database variables within a program to database objects 

persisting outside the program. It is worth reflecting for a moment 

on how programming languages have been interfaced to tiles. The 

binding between a programming language and a file is usually left 

until run time. The file is given an internal identifier, which is 

bound to an actual file either by the operating system command 

language, or by a call on an operating system subroutine that opens 

the file. This technique, banal as it seems, has the great 

advantage of enabling the same program to be run against many 

different files, and making it possible to delay the choice of which 

file to run against until after the program has started. In practice 

this flexibility turns out to be very valuable. 

We can contrast this with the usual method of binding to external 
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subroutines. This is usually done In a separate linkage phase prior 

to execution. This approach works because the external routines 

constitute part of the algorithm of the program and as such are an 

invariant. The data that an algorithm works on is not invariant. 

We will see that some database extensions to programming languages 

have made the mistake of treating persistent data as analogous to 

external subroutines rather than to files. 

THESEUS 

In the case of THESEUS the underlying language is EUCLID, itself a derivative of 
Pascal. The database model is the relational one. Shopiro argues in favour of 

this model that it allows flexibility in modelling the real world, without being 

biased towards any particular application. Without for the moment committing 

myself as to whether the relational model does have these advantages. I would 

suspect that the reason Shopiro and others have chosen it is its widespread 

popularity. That in its turn may well have something to do with its similarity to 

previous data processing techniques. The relational model is an abstraction of 

files or records, and as such is readily understandable to a data processing 

community which is used to crunching through tiles of records with COBOL 

programs. Indeed one can seek the origin of the model further back. The file 

of records, itself owes something in concept to a deck of punched cards. The 

operations of selection and projection, are not so different from what used to be 

done using electromechanical devices and punched cards prior to the use of 
stored program computers: natu ra non tacit saltas. 

THESEUS has two new data structuring facilities: A-sets and relations. A-set 

stands for Associative set. An A-set is a set of name value pairs, or a set of 

named values. Shopiro claims that they are a generalisation of the programming 

language notion of a record or the database notion of a tuple. Both of these 

contain named fields with associated values. The A-set differs from them in 
having a variable number of fields. In THESEUS all A-sets are created empty. 
They can later have name value associations inserted into them. 

The names must be predeclared identifiers, similar to the value denotations in a 

Pascal enumerated type. They are not quite the same in that they are typed as 
shown in this example of a name declaration: 

name partnumber: integer; 

The type integer associated with partnumber acts as a constraint on the values 

with which the name can be associated. It would seem that this is necessary if 

you are to stick to Pascal type rules. Inserting name value pairs into A-sets is 
done as follows: 

put partnumber is 74151 in icval 

This inserts the association between the name partnumber and the value 74151 

into the A-set icval. There is also a remove operation to take a value out of a 
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set and a boolean valued function present which given a set and a name returns 

true if the name has a value associated with it in the set. 

Shopiro asserts that the A-set is a more powerful concept than the tuple or 
record and marks a step towards artificial intelligence practice and that it brings 

databases closer to knowledge-bases. It is a step forward from the notion of a 

fixed format record, but only a small step. As implemented in THESEUS it has 
two definite weaknesses: 

The names used in name value pairs have to be declared at compile 

time. This rules out the writing of programs which extend the 

range of associations in A-sets at run time. A knowledge base 

whose universe of discourse was known at compile time would be a 
rather mean thing. 

The syntactic constructs used to implement insertion and deletion 

from A-sets are not orthogonal with that used for assignment which 
is a corresponding operation. 

The other innovation (relative to EUCLID) in THESEUS is the introduction of 
relations as a data type. Relations are sets of A-sets in THESEUS. A-sets can 
be inserted into or deleted from relations, again by the use of special purpose 

non-orthogonal syntax. There is a facility for selection, which is termed 
restriction in THESEUS and a new iteration construct to allow the scanning of 

A-sets and relations. An interesting feature is that the programmer may dehne 

his own procedures to implement insertion and deletion. This allows checks to 

be made on insertion for attempts to insert illegal A-sets into the relation. 

There is a provision for a relation to be declared as external meaning that it will 

be bound to some external relation in a persistent database. This seems to be a 

particular weakness of the design. It results in programs that will only run 

against the external databases that are explicitly named in the program and it 

seems to rule out being able to link to databases dynamically on the basis of 
some run time condition. 
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PLAIN Is another extension of Pascal. The extensions are in two directions, 

towards a language that is better adapted for wTiting interactive programs, and 

towards a language for data intensive programming. In addition it contains all 

the now usual extensions to provide modules, sep3rate compilation and exception 

handling. The extensions for interactive programs are mainly in the area of 

string handling and input output. The most important feature here is a powerful 

pattern definition and matching capability. Patterns may be used to split up or 

combine strings, and to direct input and output. 

The database extension is the provision of a type relation and a set of operators 

that manipulate it. The way that these are provided is syntactically much deaner 

than in THESEUS and has a lot in common with Pascal R. These operators are 

as follows: 

PLAIN DATABASE OPERATORS 

Operator Operation Operand types Result type 
where selection relation, predicate relation 

=> projection relation, subset relation 
join join relation attribute relation 
* intersection relation database 
+ union relation database 
- difference relation database 

Using these operators it is possible to construct database expressions whose 

whose result can be assigned to a database variable or act as an operand for 

another expression. Much of the expressive power of Aigol-like language derives 

from the recursive nature of their expression syntax and it is important that any 

new types rntroduced into such languages should also be usable in a recursive 

expression syntax. PLAIN is much more successful in this respect than 
THESEUS. 

Pascal A 

Pascal A was the first extension of Pascal to include relational data types. 

Although the first, it is probably the most elegant. The integration of the 

relational data types with the existing types of the language is particularly well 

handled. Schmidt starts off well by basing his relations on an extension of an 

existing construct: the record. Pascal A relations are relations of records. 

Relations may have certain fields of the record designated as keys. The effect of 

this is to specify that the key fields must be unique. Only one record with the 

specified key must exist in the relation. 

The language extends the Pascal assignment operator in a consistent way. The 

existing assignment operator 

is retained for assigning one relation to another. A new operator 



roll :+ rel2 

is introduced for inserting the contents of re12 into rell. Mother operator 

roll :- rel2 

deletes all the tuples in re12 that exist in rell from rell. Replacement of tuples 

in a relation is effected by the 

i-eli :4 reI2 

operator which replaces the non-key fields of those tuples in rell whose keys 

occur in reI2 by the coransponding fields from the tuples in re12. A coercion 
operator is provided. The effect of 

(' <record> ] 

is to coerce the record into a relation of 	- cardinality one. 

Iteration over relations is handled by an extension of the Pascal for statement 
into the 

foreach rec in rel do 

where the rec is an iteration variable of the record type of the relation. The 

boolean constructions of the language have been extended with a couple of extra 
predicates 

some rec in rel (<logical expression>) 

all rec in rel ((logical expression>) 

which mean that for some or all of the records in the relation the logical 

expression yields true. Finally the language provides facilities for expressions of 

type relation, the results of which may be assigned to another relation. For 
instance 

( each rec in rel : <logical expression> ] 

yields the relation composed of all the records in the relation for which the 
logical expression is true. 

As an addition of a new type constructor to Pascal, Schmidt's proposal is still one 

of the best thought out so far. Its weakness as with the other similar languages 

above, stems from a failure to identify the autonomy of two factors: the addition 

of a new data type relation and the addition of persistence. Persistence is 

sneaked in the back door as an attribute of relations, whereas in principle there 

is no reason why relations need to be persistent. The relational data type is a 

useful addition to the language quite regardless of whether relations are made to 

persist. A consequence of persistence coming like a thief in the night is that a 

lot of data is lost: the only things kept are the relations. Secondly, not enough 

thought is given to how we are to bind programs to chunks of persistent data. 
This is not specified by Schmidt. 



APLEX 

AaePLEX Is a language developed at the Computer Corporation of America. It is 

intended to be a general purpose programming language with special extensions 

for the programming of database applications. It is the result of embedding the 

functional data language Daplex (21) in the advanced algorithmic language Ada. 

In their use of Ada as a base language Smith, Fox and Landers are in advance 

of other workers who have used Pascal. This is not 'ust an advance in terms of 

fashion or modernity for its own sake. The modular structure of Ada lends itself 

well to the addition of extended facilities, its separate compilation facilities can be 

used to advantage in arranging the binding of databases to programs that operate 

on them. These sort of facilities had to be invented for PLAIN, in Ada they are 

already there. It can be argued also that the data model they have chosen is' 
more advanced. 

The functional data model was proposed by Buneman (22) and further developed 

by Shiprnan. It is now being used for a number of projects at the Computer 

Corporation of America. In [23] it is argued that the functional model is 

sufficiently powerful itself to provide a model for relational and network 

databases. It has the great advantage of being parsimonious in its conceptual 

structure. A single concept, the function or mapping is used to provide all data 

structuring and access operations. Given that Ada supports strongly typed 

functions, a purely functional extension to the language is very attractive. 

AflÔIPLEX adds two new type constructors to Ada. The Entity constructor is 

similar to the record constructor that already exists in Ada. It builds a cartesian 

of named components. Unlike the Record type, which does the same the 

components of the cartesian are treated as functions from instances of the entity 

type to an instance or set of instances of their range type. If we consider the 

conventional record type in Ada or Pascal, it is evident that we can consider the 

syntax for field selection to be a means of constructing updatable functions from 

instances of the record type to values of the field type. What Daplex and alter 

it ADAPLEX, does is to make the functional or mapping nature of this operation 

explicit in the syntax of field selection. Although the basic intention in Daplex is 

admirable, the same cannot be said for the syntactic implementation of the 
concept in ADAPLEX. 

An example of an entity declaration in ADAPLEX is: 

type person is entity 

name : STRING (1. .30); 
age 	: INTEGER; 

phone : set of STRING (1. .11); 
end entity; 

This syntax is clearly based upon that for Ada Record declarations. The syntax 

for accessing an attribute of an entity is however based upon that of Ma 

functions. So that the name field of a person entity John would be represented 
as: 

name (John); 
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rather than as: 

John. name; 

There is a clear dislocation here between the two syntactic conventions which is 

likely to prove confusing. The other new type constructor is set. ADAPLEX 

allows the construction of sets of entities, strings or scalar types. The class of 

types from which sets can be constructed is the same as the class of types over 

which attribute functions of entities can range. The non-orthogonality of the set 

constructor is to be deplored. 

In ADAPIEX persistence is associated with type. Values of entity or set types 

persist. It follows from what we said earlier that persistence is not a property 

that may be orthogonally composed with the other type constructors in Ada. 

Instances of record or array types may not persist as these may not be members 

of sets or ranges of entity attributes. On this basis one must say that the 

database facilities of ADAPLEX are not fully integrated with the existing Ma 
factlities. 

In ADAPLEX, the binding between persistent data and a program occurs through 

the use of a new construct, the Module. A Module is an extension of an Ada 

package, with the exception that: 

A Module, and the data in it may be shared by more than one 

program. 

A Module is elaborated only once, at the occasion when it is used 

for the first time in the execution of a main program. 

It is implied, though not clearly stated, that Modules persist and hold 

their data alter the execution of a program. 

The ADAPLEX manual is silent on whether a given program may run against 

several different Modules all of the same type. It seems that the Modules with 

which it is to be run are determined at compile time, or at very least during 
linkage. 

Other Languages 

The TAXIS language proposed by Myolopolous and Bernstein is presented as an 

extension to. Pascal type languages. It seems that the system is in an early 

stage of development. As far as can be determined from the published material 

and conversations with the authors there is as yet no implementation of it. The 

design is still incomplete. Although an interesting semantic model, based upon 

semantic nets and abstract type facilities, is proposed, the syntactic and semantic 

details of how this will interface to an algorithmic language is glossed over. It is 

thus too early to give a definite judgement upon the particular points which I am 

interested in: the consistency of the interface with the existing language, the 

orthogonality of data persistence and the mechanisms for binding programs to 

databases. There is little in the published material on the language to indicate 

that the authors intended to implement persistence in an orthogonal way, it looks 
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as though they intend to limit it to the new data types that they will add to the 

existing languag.. 

A couple of old languages whose development has nothing to do with databases, 

actually implement data persistence in an orthogonal if primitive fashion. Both 

API and LISP implement persistence. API has the concept of workspaces. A 

workspace is intended to be like a notebook, it contains the definit,ons of 

functions and variables along with the values of the latter. By use of the SAVE 

command the entire context that a user has been working in can be saved as a 

workspace in a library. By use of the LOAD command, a workspace may be 

loaded from a library to become the current workspace. Users have their own 

private library to which they have read write access, they may have read access 

to other libraries. The system also provides facilities to catalogue functions etc. 

LISP provides two facilities for making programs and data persist. A users 

workspace can be printed to a file, or saved as a core image. The printing to a 

file makes use of the fact that all LISP data has a standard external 
representation. 

The popularity of both these languages owes much to their having been 

implemented as interactive systems. The provision for data persistence seems to 

have grown incidentally out of providing an interactive system. The systems have 

obvious shortcomings for database purposes. The workspaces are small. The 

facilities for sharing of data between users is poor. One cannot run a program 

against several different databases. If these faults could be overcome, this sort 

of interactive system provides a target for developers of persistence to aim at. 



Chapter 3 

Persistence as an orthogonal property. 

In the previous chapter, a number of attempts to incorporate database constructs 

into algorithmic languages were criticised because they failed to identity 

persistence as an orthogonal property. Instead it was treated as an attribute of 

particular data types which were imported from the domain of databases into 

programing languages. The consequence of this is that algorithms which are to 

use persistent data must operate on different data types from those operating on 

transitory data. There is a very large body of algorithmic techniques which have 

been developed to use the data types and type constructors available for 

transitory data in present day algorithmic languages. It would obviously be rather 

nice it these could be applied to persistent data without either having to perform 

input/output operations or having to translate or contort the algorithms to conform 

to the relational model. 

A fundamental design aim of the Data Curator Project was that programmers 

should be able to write programs in a way which is independent of the 

persistence of the data on which they operate. 

Persistence of data is a continuously variable property from the transitory 

existence of results in the evaluation of an expression, via local variables of 

successive levels of procedure application, or associated data on a heap, to data 

that is retained on backing store for periods exceeding the execution of one 

program and ultimately to data whose usefulness exceeds the working lifetime of 

various programs which operate upon it. There is no reason why some 

particular point on this spectrum of data should exist, such that, on one side of 

this point the programmer must identify and operate on data in one way, and on 

the other side a different method or notation must be used. 

Given this overall philosophy, that data has varying persistence, it is necessary 

for the owner of the data to indicate how long data should remain in existence. 

How may she do this? A number of mechanisms were considered: 

I) 	 Associate persistence with variables. 	This is 
unsatisfactory as local variables, particularly parameters 

of procedures must be capable of holding data of varying 

persistence if we are to achieve the goal of programmers 

being able to write algorithms which operate on data of 

any persistence. II we modify this idea slightly, to 

associate data with variables of global scope, it has more 

promise. It is dealt with in more detail under iii). 

ii) 	 Associate persistence with type. 	Clearly data cannot 

outlive the type which describes it. However this is 

only a bound, and not a sufficient description as within 

that bound instances of the same type may have widely 

different persistence. For example the type integer is 

3-1 



permanent In most languages. 	it would be distinctly 

embarrassing It all Integers existed indefinitely,, and 

explicit deletion would be cumbersome. 

Identify persistence by the generator used. (24] In this 

case a new generator, say db is introduced, and items 

generated with the db generator persist. This makes 
persistence two valued, or requires explicit deletion. 

Unfortunately it is not always known that an object is 

worthy of persistence at the time it is created. For 

example during the interactive design of some complex 

object, many temporary or experimental changes may be 

encountered, which will have similarly temporary data, 

but one of them, it the design is to progress, will 

become permanent. 

A fundamental problem arises from this approach. 

Suppose a number of programs are to run on different 

occasions to operate on data identified as persistent. 

How do they reach these data? That is, how is it bound 

to variables? One approach is to arrange that variables 

in the outermost block (stack frame) are the same for 

all these programs or all the executions of the same 

program, and that, when the program is started, it has 

the value of this stack frame (execution record) loaded 

in the state it was in at the termination of the previous 

run. This leaves the problem of how to indicate to the 

program whether this is a "first" run, and how to test 

or designate that condition within the program. Further 

complexity arises if two projects wish to use some 

common data (e.g. a standard parts file) and separate 

instances of the same type of structure corresponding to 

the separate developments of each project. Ad hoc 

and cumbersome methods to solve these problems lead 

to unacceptable complexity in the language. 

iv) 	 Identify persistence by. accessibility. 

The mechanism by which we have chosen to support data 

persistence is an extension of that already used in 

prog ramming languages with a heap. In these, items 

on the heap persist so long as they are accessible. An 

item is accessible if either it is refe,red to by an 

identifier that is in scope, or it is relered to by an 

accessible item. In order to support persistence it is 

necessary to: 

i) 	 Provide a sat of identifiers which persist 

between program invocations and which can 

act as the roots from which persistent 
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accessibility Is determined. 

Provide a means by which these can be 

bound to and accessed within different 

programs or program modules. 

Provide a means by which these identifiers 

may be initialised, and by which they may 

have new values assigned to them. 

In the course of our research we have investigated a number of different 

mechanisms for setting up these persistent identifiers. The rest of this chapter 

presents, more or less in order of investigation, the alternatives that have been 

looked at. 

Other Aims. 

It was considered that a persistent language should provide a combination of the 

desirable features of database systems and programming languages. We 

considered the desirable features of database systems to be: 

Precise description of data, 
Ability to construct models of real world systems, 

Identification mechanisms for data which are appropriate to large 

volumes of data, 

Data integrity - reliable long term storage, 

Enforcement of constraints on the use of data - privacy controls and 

consistency constraints, 

Provision of views of the data to allow different users appropriate 

views, 
Provision for independent change of parts of the data definition from 

the programs that use the data, 

Provision for many programs to access the data, 

Provision for concurrent access, 
Provision for identifying transactions which either achieve all their 

alterations to the data, or the data is left unchanged, 

Provision of general purpose query languages to permit convenient 

specification of simple requests for data. 

From programming languages we have: 

. strict enforcement of type rules, 

precise specification of types, 

Uniform and consistent treatment of all data objects, 

Procedural abstraction of operations, 

Provision of persistent libraries utilisedby many programs, 

Association of data specification and functions on such data into 
dasses, 
A small yet comprehensive set of basic types and operations on' 

them. 

As a further general design aim we required that the core of the language should 
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be small so that it was easily implemented and learnt. Use of an applicative 

language as a basis for the final language would have been too great a 

speclahsatlon, particularly as It Is difficult to see how a strictly applicative 

language program can update a structure so that some other concurrently 

operating program can respond to the change. The basis for the final language 

had therefore to be an algorithmic procedural language with as many of the 
required properties as could be found. 

Choice of a language to extend 

The language which most heavily influenced the early design work was Algol 68. 

There were a number of reasons for this. One was personal familiarity with the 

language. It was the only language of which we had experience that provided a 

kernel of features suitable for the addition of persistence. That it was the only 

one we were familiar with was not accidental. It was the only language readily 

available in this country that provided the sort of base that we were looking for. 

It provided, (at least in the Algol 68R implementation): 

a heap with a garbage collector 

strong type checking 

modules with abstract types (segments) 
concurrency provision 

Other possible languages were available but had fewer facilities, or had the 

facilities but were not available. Although, as will be explained later. Algol 68 

turned out to be an unsuitable language on which to implement a prototype 

persistent language, most of our initial ideas were formulated in an Algol 68 
contest. 

Persistent Segments 

Algol 68R provides a construct, the segment, which is very similar to the Ada 

module. A segment is a sequence of clauses and as such may contain 

declarations of indicants e.g., modes, procs, operators, variables. There is 

provision for the control of visibility through the use of import and export lists. 

A segment is defined as being WITH other segments in which case all of the 

exported indicants of those segments are visible within the segment being 

declared. At the end of the segment is an export list of indicants ó..b made 
visible to other segments. In adding persistence to Algol 68 the obvious starting 
point seemed to be the segment. 

The first idea investigated was to extend the idea of segments so that segments 

might be thought of as programs, processes or collections of data [25] 

They would be like programs in that they can be run. 

They would be like processes in that they can be considered as being 'still there' 

after having run, waiting in a suspended state. Every segment could be 

considered to have associated with it' a flag and a semaphore called FINISHED 
(6F home segment) and DELETED (of home segment). 
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When the segment's execution reaches its outermost END it would set FINSIWD to 

TRUE and execute a WAIT on PGLr). The effect of this would be Is that all 

variables, procedures and mode declarations from the outermost block level of the 

segment remain in existence until some external segment SIGNALS 

Segments would be linked to one another via WITH and EXPORT lists, the syntax 

for which is given below. 

SEGMENT 
title(WITH title-, etc FROM albname)(sec)(EXPORT name-, etc)FINISHED 

Each title in the WITH list designates a segment in the album designated by 

albname whose exported variables, modes, and procs are considered to be visible 

within the segment being declared. 

Each name in the EXPORT list designates a mode, proc,or identifier that is to be 

visible to other segments. 

No segment can execute until all segments in its WnI! list have already done. It 

the Wrn4 list refers to segments in the home album then a cascade execution may 

be initiated. 

These syntax and semantics are very similar indeed to those in Algol-68R the 

difference being that the sements were thought of as processes rather than 

components of a sequentially executing program. They were only vestigial 

processes, the notion of process just serving as a conceptual means of defining 

persistence. The result was that persistence was defined using concepts already 

present in the language (it contains the notion of process and semaphore 

already) - 

This approach had the great advantage of providing a tight binding between 

program and database. The data would be of modes defined in the segment, it 

would be operated upon by procedures and operators defined over those modes. 

The segment would provide us with both data abstraction and persistence. The 

persistent data would be the values of the variables in the segment and of 

everything on the heap reachable from these. Even at this stage in the 

investigation it was realised that there would be a necessity for the construction 

of multiple databases with the same modes and operators available in each of 

them. In Algol-68R a segment defines a set of indicants which are present in 

each program that uses the segment.  Once you introduce the idea of persistent 

segments it becomes necessary to have the idea of segment instances. The 

segment is no longer defined just in terms of its indicants, it must also take into 

account the values of the variables in the segment. This introduces the need for 

the concept of a segment invocation (26] 



Segment Definitions and Segment Invocations 

A segment definition would be created by storing the source text of the segment 

in the curator. This definition might subsequently be compiled. Neither the 

definition nor its compilation would create any storage space or cause any 

execution to occur. 

A segment would be run by invoking it. Invocation would be effected by the 

command: 

INVOKE titlel AS titie2 USING(title3title4 -, oft) 

where: 

titlel 	would be the name of a segment definition 

title2 	would be the name of the invocation being created 
title3 	would be the name of a segment definition in the wm list of 

titlel 

title4 	would be the name of a previous invocation of title3 

The invocation of a definition causes two events: 

the segment would be executed 

all of its identifiers are persistently stored in an 
activation record 

If any of the title4's have not yet been invoked the invocation will fail. 

The executable code of the segment may access any of the exported indicants in 

the invocations that it uses in its with list. This implies that it will also be able 

indirectly to change variables accesses by exported PROCs, but which are 
themselves invisible. 

An invocation cannot occur within a segment, it is a user level command. 

With the idea of invocations, the concept of the segment was moving towards the 

idea of a Simula class. The concept of a segment served three functions: 

Unit of separate compilation. 

Method of visibility control. 

Unit of persistence. 

With the existence of invocations, a segment definition became similar to a type 

or mode declaration. It defined the fields of a class of segment instances. At 

this point it became clear that there would be an element of redundancy in the 

syntax of a persistent dialect of Algol 68 built on these principles. In many ways 

the segment was beginning to look rather like a structure mode. Both contained 

named fields, both could have instances on the heap. In the interests of 

parsimony it seemed sensible to merge the two concepts [27] 

In order to get this effect one had only to drop the STRUCT concept from the 

3-6 



language and allow asported indicants of segments to be retered to In the same 

way as structure fields (with the OF construct). At this point It was felt that 
one might as well call these new constructs CLASSES and be done with It. The 

logic of persistent modules leads to Simula Ilk. constructs. 

Albums 

classes were to reside in albums. An album was to be a persistent heap with a 

directory structure in it. The entries in this were to be class definitions and 

class instances. Anything reachable from a class invocation or instance, would 

The model we had arrived at was to have databases structured into albums. 

These would contain named class instances and class definitions. The class 

definitions would provide our unit of compilation and visibility control, the class 

instances on the heap would provide our basic data structuring tool. 

Convergent Evolution 

Our arrival at this model does not seem accidental. Other attempts to deal with 

persistence in an orthogonal fashion seem to have led researchers to similar 

conclusions as to the basic architecture to be employed. 

The Smalttalk [28] system, developed at XEROX Palo Alto Research Center 

originally for computer aided learning experiments has a number of similar 

features. Srnalltalk is based upon a message passing paradigm. Objects pass 

messages between one another in order to effect computation. At first sight this 

seems to make the language very different from the procedural languages we are 

more familiar with. On closer examination one sees that message passing just 

substitutes for procedure calling; it is more powerful, but it lies along the same 

axis of the language as is normally occupied by procedures. The replacement of 

procedures by 'methods' invoked by messages is orthogonal to other aspects of 

the language design. The interesting thing for us about Smafltalk is one of its 

least remarked features - it implements data persistence in an orthogonal 

fashion. 

It is an object based system, the objects being instances of classes. Objects 

persist if they are refeirnd to from one of the roots of the system. These roots 

are the entries in a system dictionary of class names and variables. The 

variables have as values references to objects. The class acts as a means of 

defining abstract data types. its fields can only be accessed indirectly via 

methods. The main feature that Smalitalk classes have that ours did not was the 

concept of a superclass whose attributes could be inherited by its sub classes. 

Some of the same functions could be achieved by our import of segment / class 

instances. Both mechanisms allow part of an environment to be made accessible 

within another environment. The Smalitalk mechanism has the added advantage 

of providing something analogous to the database concept of a view (29] in that 

superclasses can be considered to be views of subclasses. Despite our model 

being somewhat less powerful, its general structure was very similar to that 

adopted in Smaittalk. 

Smnalltalk was developed as a novel interactive programming environment, it was 
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not specifically, intended for data intensive applications. The total address space 

provided was small, 64k of objects (30], though this may be extended in later 

implementations. It is envisaged that extensions of algorithmic languages to 

provide persistent data should allow at least 32 bit object addressing. 

ELLE 

As far as we can determine, the only system mentioned in the literature, other 

than our own, to specifically address the problem of providing data persistence as 

an orthogonal feature is ELLE developed by Orsini and his co-workers in Pica 

(31] The authors of this system point out the inhomogeneity of treatment of 

temporary data in conventional programming languages. They acknowledge that 

there have been attempts to add persistence to programming languages, but 

allege (correctly in my opinion) that most of these do no more than incorporate 

an existing relational Database Management System into a programming language. 

In contrast to this, they 

believe that there is another approach which is worth investigating. 

That is, to start with a programming language and design a 

programming system where it is possible to use persistent complex 

data structures without resorting to an expensive tool such as a 

DBMS. The system should provide an interactive environment and a 

uniform use, of all data, irrespective of its persistence or 

temporariness. 

The language that they chose to base ELLE on is ML [32] It is a strongly typed, 

higher order, expression language. It provides for references as a means for 

sharing data. It incorporates the idea of environments 

both to control the interactions among different applications using 

common data, and to deal uniformly with persistence without 

resorting to specific data types. 

The basic data structuring tools provided are labdled tuples, which are analogous 

to record or structure types, lists, and discriminated unions. 'A powerful abstract 

type facility is present which allows types to be constructed in terms of a base 

type, such that the new type is isomorphic to the base type and inherits its 

operations. The language allows overloading of operators over types. 

The language ELLE provides persistence by means of environments. An 

environment is similar to the idea of a block in Algols except that it is treated as 

an object. It is a set of bindings between names and values where the values 

can be other environments. Environments can be refined by starting with an 

environment and generating others by adding new definitions. Because they are 

objects, environments can be nested. Environments persist so long as they 

remain bound to a name in an outer environment. At the outermost level, they 

are all nested within a global environment which is the root from which all 

persistence is derived. 

It will be seen when I come to deal with our specification of NEPAL that our 

notion of what a persistent language should be like and that of the Pisa group 

are strikingly similar. 	Such convergent evolution can either be taken as 
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confirmation that our approach is basically sound, or that given the technical 

culture that at present exists in computing only certain paths of evolution are 

open to us be they good or bad. Whether the optimistic or pessimistic view of 

this convergence is justified only time will tell. 
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Chapter 4 

Forays into Persistence Architecture 

If the progress of development of database and programming language research 

had been a little laster, so that this research was started half a dozen years 

earlier, it would have been assumed that a persistent language system should be 

designed to run on a timesharing mainframe. But the spirit of the age moves 

on, even if mundane reality lags. By the time this work started (October 1979) 

it had entered the world of distributed systems, whence we attempted to follow 

it. Material constraints eventually remainded us that as Atthusser said history 

permits no essential sections [33]. We designed the system to work over a local 

area network, but since we did not have a local area network we were forced to 

operate it on a single timesharing system. 

Our basic assumption was that programs in persistent languages would be 

executed on single user personal computers. The persistent data would reside 

on a database server on the local area network. We called this machine the 

Data Curator. We assumed, as it turns out, without much Foresight, that the 

personal machines (henceforth client machines) would be short of memory and 

that the portion of the run time support for the persistent languages residing on 

these machines would have to be small and simple. The Data Curator would be 

a 32 bit machine with more memory which would hold the more complex parts of, 

the run time support. 

Our initial model for the execution of a persistent program relied upon the idea 

that in all but the most primitive computers there is some form of memory 

protection. Some addresses are legal within a given context and others are 

illegal. This was seen as a possible way of treating data on the heap in a 

uniform way independent of its persistence. A mapping would be set up between 

the set of illegal addresses on the client machine and a subset of the persistent 

data held on the Data Curator. When a client machine logged in to the data 

curator it would specify the context or environment in which it intended to run in 

terms of an album and a segment or class instance within that album [34] 

Along with information about the desired context, the client would pass 

information about its addressing structure the range of its legal and illegal 

addreàes etc. In response the curator would send to the client a seed illegal 

address. This would be treated by the client as a reference to the base of a 

data structure from which all other legally accessible heap items were to be 

reached. If this data structure wese a class instance the next action would be to 

call one of its procedural fields. This call would fail because it was directed at 

an illegal address. The address error would be trapped by the run time support 

software in the client machine which would inform the data curator that it had 

had an address fault at such and such an illegal address. - -The data curator 

would respond to this by sending to the client a persistent data item associated 

with that illegal address. Before sending it the Curator would overwrite all 

fields within the object that were references to persistent items in the database 

with illegal client addresses. The client would place this object on its heap and 

retry the instruction. By this means persistent objects held in the Data Curator 

would be brought into the legal address space as and when they were required. 

4-1 



PIOLAM Mast 1 

A key concept in this process is that of a Persistent Identifier (PID). Each 

persistent object, (string, record, array) kept by the Data Curator would have a 

PlO associated with it. In a later section the requirements for persistent address 

spaces will be examined, for the moment we will just consider PlDs to be 

persistent addresses to be used for update or recovery of persistent data 

objects. In order for the address faulting process described above to be used as 

the basis for an object oriented virtual memory, the data curator would have to 

maintain a data structure that mapped from PtDs to client machine local 

addresses. This Persistent Identifier to Local Address Map (PIDLAM) could be 

considered a relation with three columns. 

Whenever an object was sent over to the client the following algorithm would 

have to be executed: 

for each pid in object do 

if pid in PIOLAM then 

if legal. address = nil then 

field : illegal address 

else 
field : legal address 

ft 

else 
insert (pid, nil, next illegal) into PIOLAM 

ft 

Whenever a client signalled an address fault, the curator would have to execute 

proc fault (illegal addr) 

search PIDLAM for (illegal addr) 

if legal address = nil then 

send over (object) 

else 

inform client of (legal address) 

ft 

In order to carry out these functions the Data Curator was obviously going to 

need detailed information about the structure of the objects that were being sent 

over to the clients. This seemed to imply that it was going to have to have 

knowledge that would normally only be available to a compiler, which in turn 

implied that when programs were being compiled the compilers running in the 

client machine would have to enter into a dialogue with the Curator. They would 

have to inform the Curator about the types of the objects declared in segments 

under compilation, they would have to ask the curator about the types and 

procedures declared in segments that were imported into the segment . Once 

the segment had been compiled, the code and any constants associated with it 

(and perhaps also the source) would have to be stored in the curator. In short 
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the Curator would have to act as a database resource to compilers as well as 

application programs. At this point a complication was introduced. It was 

considered that persistence could be added to any Algol-like language which had 

a heap. 

Multi Language Support 

Ideally one might wish to design a new language with the requirements of 

persistent programming specifically in mind, but new languages have 

disadvantages. 
It costs time and effort to lea!n a new programming language. It takes time and 

effort to build a compiler for a new language. A new language lacks the base of 

ready written software that is available for established languages. It was 
therefore desirable to make the minimum change possible to existing languages to 

make them persistent. A few extra constructs might be necessary to handle an 

outer scope required for persistent objects, but the basic syntax of the language 

with persistence should be upwards compatible with that of the language without 

persistence. 

Given the model of the Data Curator as a server on a Local Area Network, it 

seemed desirable that it should be able to support programs in more than one 

language. A user should be able to write programs in persistent versions of Per 

instance, Pascal or A1go168, and use the Curator to store the data associated 

with these programs. From there it was easy to make the bold leap of 

demanding that the data stored from a Pascal program should be usable in an 

AIgol68 one and vice versa. This, after all, can be done if you store data in 

ordinary files. 

The big difference of course is that files are untyped, whereas program heaps 

are typed. It one were to use Pascal data in an Algol68 program, then the 

Algol68 program would need to be able to view the Pascal data in terms of an 

A19o168 type structure. The Pascal types would have to be represented to it as 

A1go168 modes. Given that we had already recognised the need for a modular 
structure that allowed modules to import and export type definitions, it did not 

seem impossible that an A1go168 segment should be able to import types originally 

declared in a Pascal module. What was required was a canonical representation 

of types. The A1go168 and Pascal compilers would inform the data curator of the 

types they encountered using this canonical representation.. When compiling a 

module in the context of other modules they would be sent information about 
these modules in canonical form. An attempt was therefore made to design such 

a canonical representation [35] 

Cannonical Representation of Types 

We wished to be able to construct types in as general a way as possible and 

have some means of specifying when types were equivalent and when they were 

not. We wanted the rules for type construction to be sufficiently general to be 

able to handle any particular type construction rules that we were likely to come 

across in the various super Algols that we were likely to support. 

We assumed that we had a pregiven set of base types and wanted to be able to 

construct new types from these. 
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A plausible set of base types would be: 

INTEGER 

REAL 

CHAR 

BuS 

VOID 

ATOM 
ALL* 

(* only refs to all were to be allowed) 

OPERATORS 

We wish to have two relational operators on types: includes and -matches . For 

all of the base types t 

t includes VOID 

and 

and for all T 

and 

ALL includes T for all types  I 

I matches I 

B matches C iff C matches 8 

A type is a set of values. The type construction operators are used to compose 

these sets out of other sets. In order to avoid self reference and Russell's 

paradox we must insist that no type may be a member of a type. 

Type Construction 

New types can be constructed out of base types by the application of the 

operations distinguishing, referencing, arraying, mapping, union, intersection, 

composition and ordering. 

Naming 

Types may be given names by the operator bind which associates a -

name with a type expression. Once a name has been bound to an 

expression then that name can stand for the expression in other 

expressions. -'It must be understood that the name becomes the 

name of a type it is not the name of a variable or constant of that 

type. 
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Let n bind T then n matches I 

Distinguishing 

In order to be able to construct enumeration types and to cater for 

the semantics of named types in Pascal we need a distinguishing 

operator diet. When this is applied to a type expression it yields a 

new type with the following properties: 

there is an isomàrphism between the values in the original type 

and the values in the type yielded by applying dist to it. 

the intersection between the set of values in the original type and 

the set of values in the type yielded by applying dist is VOID 

Refing 

There is a type construction operator ref such that: 

Let REFA= ref A and Let REFB= ref B then 

REFA matches REFB iff A matches B 

Associated with the type constructor ref there is a metaoperation on 

the set of values belonging to the class of types constructed by ret, 

dref which yields a value of the type from which the reference type 

was constructed. 

Union 

Let I = Q 	union A and Let P = R union Q 

Then 

(I' 	matches P ) and ( T includes Q 	) and'( I 

includes A) 

Intersection 

Let I = Q intersects A then 

if P = A intersects Q then 

(P matches I )and(Q includes I)and(A includes I) 

Note 
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Urnon and intersection operate on sets of values. When T is formed 

from the union of 0 and R the members of T are not 0 and R 

themselves - but the union of the members of 0 and R. 

Difference 

There is an operator minus that takes two sets of values and yields 

their difference. 

Ordering 

Languages such as Pascal provide for the construction of 

ordered types, other than the base types. The 

cannonical representation thus required some method of 

specifying that certain enumeration types were to be 

considered ordered. - 

Let T0 order P and 

Let P=R order 0 then 

I intersection P matches VOID 

and P matches I is false 

but I includes 	0 

and T includes A 

and the relation qr in I is true for all q in 0 and all r 

mR 

By extensions of ordering and intersection, subrange types may be 

constructed. We need two new operators above and below: 

Let A= I above x 

Let B= I below y 

Where x and y are values of type I and I is ordered 

Then x is a greatest lower bound on the values in A and y is a least 

upper bound on the values in B. And we can construct the 

subrange x .. y as: 

A intersection B 

Powersets 

Let P = power I 

We can form a type whose members are the powerset of the 
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members of another set. These are equivalent to the sets in 

Pascal. 

Composition 

Structures can be composed by the operations of Cartesian 

composition and simple composition Simple composition is used for 
record construction in those languages in which the only way to 

access the fields of a record is by an expression or statement that 

includes the held name. Cartesian composition is used in languages 

such as Algol-68 in which assignment of a collateral clause to a 

structure is allowed. Here access to the fields is implicitly 

determined by held order. 

Simple Composition 

Let T=Q comp A then I matches A camp 0 

Cartesian 

Let T0xA then T matches AxO is false 

Fieldnames 

The fields of a Cartesian composition must and the fields of a simple 

composition may be named using the held operation. This gives 

names to fields of a composed type and must not be confused with 

the bind operator which names types. 

Maps Functions and Arrays 

LetMl mapO 

This creates a mapping type M which maps values of type I to values 

of type 0. Conceptually, arrays and functions are instances of 

mapping typos. 

If F= I fn 0 then M includes F and 
If V= I array 0 then M includes V 

A more detailed and formal specification of the semantics of the representation is 

given in [36] 
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Testing the Representation 

The canonical representation was intended to be capable of representing any type 

that could be represented by the syntaxes of Pascal or Algo168. As an initial test 
of its power it was decided that an attempt would be made to hand translate 

sections of Pascal type declarations and Algol€8 mode declarations into the the 

canonical representation. In order to ensure that the samples of Pascal and 

A1go168 should be realistic, sections of code from Pascal and Algol68 compilers 

were chosen [37] [38]. In both cases it proved possible to translate the source 

language into the canonical representation. 

An Example of The Application of the 

Canonical Type Representation to Pascal. 

Of the two test examples, the Pascal is the more readable, and is reproduced 

here to give some idea what the canonical represetnation would look like. 

We took as an example a series of typo declarations given in the book 'Structured 

System Programing' by Welsh and Mckeag [39] The types in question come from 

the type checking part of a Pascal comliler. 
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TYPENTRY = tTYPEREC ; IDENTRY = tIDREC 

TYPEFORM = (SCALARS, ARRAYS) 

TYPEREC = RECORD 

NEXT : TYPENTRY; 

REPRESENTATION GENERATE. TYPEREPRESENTATION 

CASE FORM : TYPEFORM OF 

ARRAYS 
(INDEXMIN, INDEXMAX INTEGER 

ELEMENITYPE TYPENTRY) 

END; 

IDCLASS (TYPES, CONSTS, VARS. PROCS) 

SETOFIDCLASS = SET OF IDCLASS; 

IDREC = RECORD 

NAME:ALFA; 

LEFTLINK, RIGHTLINK : IDENTRY 

IDTYPE TYPENTRY 

CASE CLASS IDCLASS OF 

CONSTS : (CONSTVALUE INTEGER) 

VARS 	(VARADRESS GENERATE.RUNTIMEADDRESS) 

PROCS : (LINKAGE 	GENERATE.PROCLINKAGE) 

END; 

Fig 4.1 Pascal Source 
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what follows is the canonical representation of the Pascal source given in Fig. 

4.1. 

TYPENTRY bind ( ref TYPEREC) 

IDENTRY bind ( ref IDREC) 

TYPEFORM bind (SCALARS order ARRAYS) 

SCALARS bind (dist ATOM 

ARRAYS bind C dist ATOM 

TYPEREC bind 

(NEXT field TYPENTRY) x 
(REPRESENTATION field GENERATE.TYPEREPRESENTATION) x 

(FORM field (ARRAYS in TYPEFORM)) x 

(INDEXMIN field INTEGER) x 

(INDEXMAX field INTEGER) x 

(ELEMENTTYPE field TYPENTAY) 

unson (FORM field (SCALARS in TYPEFORM)) 

) 

) 

TYPES bind (dist ATOM) 

CONSTS bind (dist ATOM) 

VARS bind ( dist ATOM) 

PROCS bind ( dist ATOM) 

IDCLASS bind (TYPES order CONSTS order VARS order PROCS) 

SETOFIDCLASS bind 

powerset IDCLASS) 
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IDREC bind 
(NAME field ALFA) x 

(LEFTLINK field IDENTRY) x 

(RIGHTLINK field IDENTRY) x 

(IDTYPE field TYPENTRY) x 

(CLASS field (CONSTS in IDCLASS) x 

(CONSTVALUE field INTEGER) 

union 

(CLASS field (VARS 	in IDCLASS)) x 

(VARADRESS field GENERATE. RUNTIMEADDRESS) 

union 

(CLASS field (PROCS in IDCLASS)) x 

(LINKAGE field GENERATE. PROCLINKAGE) 

union 
(CLASS field (TYPES in IDCLASS)) 

) 

Because this initial test seemed to show that it was possible to translate Pascal 

and Algol68 type declarations into our canonical representation, a detailed 

specification of the translation rules to be followed in mapping from Pascal to our 

representation was drawn up. On the basis of this specificatiOn a student hired 

over a summer vacation produced a translator that accepted Pascal type 

declarations as input, and generated an output stream of canonical representation 

of the same types. The output of this translator was taken as input to a process 

that stored the type information in a database. This process termed the Indicant 

Manager, was intended to act as a server to compilers and maintain a persistent 

compilation environment. Further details of the indicant manager are given in 

[40] [41] It was intended that the Indicant Manager would also be able to 

determine the equivalence of types. Given two type expressions in our canonical 

representation or type algebra, it would say whether they matched. 

Slightly more formally: 

Let A. P, C be the grammars of Algol68, Pascal and our canonical 

representation. 

Let a, p, c denote strings produced by these grammars. 

Given two functions: 

TAC(a -> c) 

TPC(p -> C) 

) 
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Which translate between AlgoI68 and Pascal respectively and the canonical 

representatOfl. And given two functions: 

MA(a, a -, boot) 

MP(p, p -> bool) 

Which return true if a pair of type descriptions in A1go168 or Pascal respectively 

are equivalent according to the existing semantics of these languages, we wish to 

construct a function: 

MC(C, C -, boot) 

Such that: 

MC(TAC(a 1 
	 2 	 1 	2 ), TAC(a. )) ft MA(a • a ) 

and 

MC(TPC(p 	TPC(p 2" MP(p 1' p 2 

Examination of the type matching rules of the two source languages showed that 

this would only be possible if the set of strings yielded by the application of tAC 

to A1go168 structure types and the set of strings yielded by application of TPC to 

Pascal record types were strictly disjoint, and that if 

s were an Algol68 structure type 

r was a Pascal record type 

then 

MC (TAC(s), TPC(r)) = false for all s and r 

This is because in PascaF record types are equivalent it they have the same name 

irrespective of their structure, whereas in A1go168 the types are equivalent if 

their structures are equivalent irrespective of differences in names. One might' 

expect that in Pascal all types of the same name would have the same structure, 

but a close reading of the Pascal Report(42] reveals that this is not the case. 

The following is not excluded by the Report: 
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type thingO. 9; 
function nextthing( athing:thiflg):thiflg; 

type thinglO. . 19; 

var temp:thing; 

begin 

if athing=19 then temp:10 

else temp:=athing+1; 

nexthing =temp; 

end; 

Our type algebra provided the means for constructing functions TPC and TAC that 

would abide by these rules, since we provided the operator dist that would 

construct types distinguished on the basis of their names. If this were used for 

the construction of Pascal types but not for A1go168 types the type semantics of 

the two source languages could be preserved. The question was, would it be 

useful to construct a canonical representation of types in two languages, which 

effectively prevented the - exchange of the major sort of data structures produced 

by the two languages. It would be possible to match arrays and base types, and 

thus to exchange data of these types, but a great deal of the benefits of 

nablity of data between languages would be lost. This realisation put a 

questionmark over the future of the model of data curator on which we were 

working. 

Compiler Troubles 

We finally decided that the model of a Data Curator maintaining language 

independent, typed data was infeasible after examining available compilers for 

A1go168 and Pascal. As an exercise to gain familiarity with A1g0168 compiler 

technology we implemented an Algol68C [43] compiler for Vax. This was based 

upon the existing AIgol68C compiler front end developed at Cambridge University. 

The compiler produces an intermediate code termed Z-code. 

This is a very low level abstract machine code, from which all type information 

has been deleted. Algol68C did not support a heap with a garbage collector. 

Because of the low level of Zcode and the lack of a garbage collector it was 

evident that the Algol68C compiler could not serve as a basis for a persistent 

implementation of Algol68. Two Pascal systems were also investigated. The 

UCSD Pascal compiler was examined and it was decided that this was too long 

and poorly commented to be easily modifiable. An interactive Pascal system 

termed COPAS, was obtained from Sheffield University and ported to the Vax. 

This was even longer and more difficult to modify than the UCSD compiler. It 

was concluded that the available compilers for Pascal and Algol68 were not readily 

modifiable to work in a persistent environment. Writing entire new compilers (or 

these languages would have been impossible with the labour power assigned to 

the project. Since existing compilers of AlgoI68 and Pascal could not serve as a 

basis for the research, it seemed unlikely that there would be a requirement for 

a canonical representation of the types of these languages, so research into 

canonical representations was halted. 
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Keeping it Simple 

Having thrown out canonical representation of types, it no longer seemed 
necessary for the data curator to know about the types of the data that it stored. 

The sole purpose for this had been to vet the exchange of data between different 

language systems. With this exchange ruled out, a language system should be 

able to keep track of the types of its own data. Secondly, in view of the very 

rapid tall in the costs of semiconductor memory, it no longer seemed to be 
necessary to postulate that client machines would have small memory spaces. 

Our original notion of a Data Curator was of a machine that would look alter 

persistent data, data types and compiler environments, and also the run time 
environments of programs running on client machines by means of a PIDLAM. If 

memory was cheap it would make sense to move the PIDLAM out to the client 
machine, so that advantage could be taken of parallelism in execution of 

programs. This would enable the Data Curator to be reduced to a vestigial 

machine that merely acted as a record server for run time, support systems 

running on client machines. In fact it seemed that the Data Curator could be 
reduced to the Chunk Management System to be described in a following 

chapter. 
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Chapter 5 

PS-Algol: a Prototype Persistent Language 

After it had been decided that the design of a Data Curator capable of supporting 

both Algol68 and Pascal was not a viable research project, and that there were 

no readily available Pascal or A1go168 compilers that could be readily modified to 

produce a persistent language implementation, it became necessary to search for 

some other language and compiler that could be so developed. 

The locally developed languages lMP77 (44) and ML were rejected, the first 

because of its absence of a heap and poor type protection, the second because 

the compiler was not yet available. The language chosen for further development 

was S-Algol (45). 

S-Algol is a language developed at St Andrews University, Scotland. It belongs 

to the Algol tradition, and has a very concise and orthogonal syntax. The 

guiding tenet of its design was that power is gained through simplicity and 

simplicity through generality. In expressive power and orthogonality it is 

somewhat above Pascal. Its most important features are its data structuring 

facilities. 

The base types of the language are int, bool, real, file, string and pntr. 

Strong typing is ensured by a combination of compile time and run-time checks. 

Strings support the operations of concatenation and substring selection. 

The type constructors are vector, and structure, vectors are updatable mappings 

from dynamic ranges over the integers to one of the base types, or to a vector 

type. Multidimensional arrays may be formed by composing the vector 

construction operations. Structure classes are ordered cartesians of named fields 

belonging to one of the base types, or to a vector type. 

Pointers are access descriptors which can reference instances of any of the 

structure classes but which may not reference instances of base types or 

vectors. The language provides the operations of field subscription and run-time 

type verification on pointers. This arrangement makes it possible to write 

algorithms to manipulate pointers without the need to know the type of the 

rele rend. 
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The program fragment: 

structure cons( pntr hd,tl) 
structure string.atom( stringval) 

structure nil 

let a.string = " Dumpty" 
let a.pointer = string. atom ("Humpty". +4  a.string) 

let another.poiner. 	:= cons(a.pointer. nil) 

while another.pointer. 	isnt nil do 

begin 
write if another. pointer (hd) is string.atom 

then another. pointar(hd, val) 

else "Not a string" 

write newline 
another, pointer : = another, pointer (tl) 

end 

write "End of list" 

would produce output: 

Humpty Dumpty 

End of list 

Note the following: 

ldentitter declarations are introduced by the word 'let' and are 

initialising. 

The type of an identifier is given by the type of rts initialising 

value. 

Constant identifiers are initialised using '', variables using ':'. 

The operators 'is' and 'isnt' are used to check the class currently 

referenced by a pntr. 

The declaration of a structure class implicitly declares a generator 

function of the same name, whose application yields an instance of the 

class. 

Subsription of arrays and field selection of structures is uniformly 

performed by 

<object, ( <selector> 

where <object> is a pntr or vector and the selector is a fieldname or 
index, or a list of fieldnames and indices. This syntactic form, which 

is the same as is used for function application serves to emphasise the 

somatic substitutability of subscription and function application within 

expressions. 
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The Heap 

In S-Algol all compound data objects: strings, structures, and vectors are 

generated on the heap. There is a garbage collector which preserves objects 

reachable from identifiers currently in scope. 

Implementations 

S-Algol has currently been implemented on the following sytems. 

Machine Operating System 

PDP11 Unix 

VAX VMS 

Z80 CP/M 

PE3220 Mouses 

It was chosen as the starting language because: 

It is a small simple language with a small simple compiler. 

It provides a heap with proper garbage collection. 

The generic pointer type along with run time type checking allows the 

construction of generic procedures, which were anticipated to be useful br 

database work. 

The compiler writer was within reach. 

PS-Algol: a bootstrap for Nepal 

Starting from S-Algol an extended language termed New Edinburgh Persistent 

Algorithmic Language (Nepal) was designed (46] This involved significant changes 

to the scope rules and type construction mechanisms of the language. A 

detailed account of Nepal is given in a following chapter. The existing S-Algol 

compiler, written in S-Algol, was modified over the course of a couple of weeks 

to recognise the syntax and scope rules of Nepal, though not to generate code 

for it. Nepal presupposes the existence of persistent environments called 

groups, in the context of which new program modules are compiled. We call 

this compilation in a persistent context. It implies that the compiler's symbol 

tables and type information are stored in a database, which would obviously be 

easier it the compiler itself were written in a persistent language. In the long 

run it was intended that the Nepal compiler would be written in Nepal, the 

problem was how to bootstrap ourselves into the position where that would be 

possible. The course chosen was to design a second language PS-Algol 

(Persistent S-Algol) which differed in only a minimal respect from S-Algol, but 

which supported persistent data [47] The PS-Algol compiler would be written in 

S-Algol. The Nepal compiler would then be written in PS-Algol. 

PS-Algol programs had, at least for the first versions of the compiler, to be 

compilable in a non-persistent context, because the PS-Algol compiler would be 

written in S-Algol which has no facilities for database accessing. The Nepal 
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compiler written in PS-Algol would have the necessary facilities to compile code 
in a persistent context. 

The design of PS-Algol was driven by two factors: the need to have enough 

power to provide a compilation environment for Nepal, and the need to be as 

close to S-Algol as possible in order to simplify implementation. We consider 

that the language resulting from these pressures has been pared down to just 

about the minimum set of additional features required to support persistence. 
We consider these minimum features to be: 

A persistent heap. 

A method of linking programs with preserved heaps. 

A mechanism to delimit transactions. 

An additional desirable facility is: 

An associative store. 

A persistent heap is one on which a datastructure built in one run of a program 
may be preserved to be used in other runs of the same or other programs. A 

methàd of identifying these preserved heaps and binding to them is then 

necessary. A transaction mechanism makes it possible to ensure the integrity of 

data. It ensures that all the changes made during a transaction are effected 
or that the data is restored to its original state 

Arrays indexed by scalar types provide an updatable mapping from a range of a 

discrete type to some other type. Associative store is a further generalisation of 

arrays. It allows the construction of updatable functions sparsely indexed by 
other typos  such as strings. The provision of associative store in a language 
does not imply that it is provided by hardware, just that the abstract machine 

presented to the language user by the language supports association. Although 

associative store is not necessary in a database language, since it can be 

emulated in software written within the database language itself, its effect is 
required often enough to make its inclusion desirable. 

PS-Algol as an extension to S-Algol 

PS-Algol is a derivative of the language S-Algol. Syntactically it is identical to 

S-Algol. The only visible extension to the language is the addition of a number 

of new predeclared procedures and a predeclared type. The effect of these, 

however, is to greatly increase the power and generality of the S-Algol heap. 
These procedures provide: - - 

A method of associating a program heap with a named database. 

A method of committing a transaction upon the database thus 

simultaneously updating the database and preserving a subset of data on 
the heap. 
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An associative store. 

A universal nil pointer. 

The procedures are as follows: 

procedure open. database(striflg user, name, password, db. name-bool) 

It the correct user password is supplied, this opens a database belonging 

to the specified user, with the db 'name given. 	If the database does not 

yet exist it is created. 	If another user currently has a transaction open on 

the database then the open fails. 	Any failure is indicated by returning false 

otherwise a mapping is established between the database and the 

program's heap and true returned. 

procedure root.table (-)- pntr) 

This procedure returns a pointer to an instance of the predelined class 

'table' which provides an associative store facility. 	The internal structure of 

this class is hidden from programmers using PS-Algol . 	However, the 

procedures that follow allow operations on instances of this class. Associated 

with each database there is a distinguished table that is returned by root.table. 

procedure nil (-> pntr) 

S-Algol has no predefined nil pointer, so one generally declares a local nil 

pointer and uses it to designate the end of lists etc. The weakness of this in a 

persistent environment - is that there would no longer be a unique nil 
pointer, but separate ones for each program that ran against the database. 

This procedure returns a system wide nil pointer. 

procedure enter(stnng key;pntr table,value) 

This enters the parameter value into the table. using the key. 	The value, 

being a pointer, can reference any arbitrarily complex data structure, 

including another table. The effect of entering a value/key pair is to set 

up an association between the key and the value, allowing the key to be 

used for later retrieval of the value. If the value is nil the effect is that of 

deleting the item from the table. 

procedure lookup(string key; pntr table -> pntr) 

This returns the value last associated with the key in the specified table. 	If 

no value has been associated with this key, nil is returned. 

procedure table (-> pnb) 
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This returns a pointer to an empty table 

procedure scan (pntr table, status; (string,pntr, pntr -> pntr)user) 

This scans the table by applying the function user to every key in the table. 

This function takes as its parameters a key, a table and a pntr to a status 

record. It returns a new status record. The purpose of the status record is to 

achieve the same effect as an own variable in Algol 60. The iteration ceases if 

the function returns nil or all the keys have been provided as a parameter to 

'user' once. When the procedure exits, each key in the table will have been 

provided as a parameter to 'user' once. By means of side effects the 

user procedure can gather statistics about, print or modify the entries in the 

table. For example: 

17 

procedure Iist.table( pntr t) 

begin 

structure stats( mt count) 

procedure print( string key; pntr tab, state ->pntr) 

begin 

write " — ",key,nl 

state (count):=state (count)+1 

state 

end 

let statestats(0) 

scan (t, state, print) 

write state(count), " entries in table",nI 

end 

The above procedure list.table causes the procedure print to be applied to the 

table in order to print out every key in the table. 

procedure commit 

This causes all the objects which can be reached from the root table to be 

saved in the database and then terminates the program. If the program 

terminates without invoking commit, none of the changes made to the database 

during the run of this program will take effect. 

This very simple set of routines is enough to implement orthogonal persistence. 

Any item on the heap reachable from the entries in the root table at commit time 

is defined to be persistent. Although only pointers can be stored in the root 

table these refer to instances of structure classes. In S-Algol a structure class 

can be a cartesian composition of any of the types of the language. By keeping 

pointers to instances of structure classes it is therefore possible to make data of 

any type persist. It should be noted that the table handling routines are not 

/ 
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strictly necessary. 	A persistent heap 	requires only one distinguished 

pointer to act as a root for the database. 	A more parsimonious 

implementation would define the open. database routine as returning a pntr to 

the root of the database. 	In that case the only other routines required 

would be nil and commit. 	Table handling could then be an optional library. 

Prototype Implementation. 

The syntactic differences between S-Algol and PS-Algol are non existent. This 

allows the existing S-Algol compiler to be used to compile PS-Algol, providing it 

is given an appropriate predeclaration tile including the new PS-Algol routines. 

The implementation of the prototype PS-Algol system thus fell into two parts: 

Writing an interpreter for PS-Algol. 

Implementing a Data Curator to store the persistent data. 

The prototype system was designed to operate in a network environment. We 

were not lucky enough to have a network environment, so we simulated one on a 

Perkin Elmer 3220. 

The Portable s-code Interpreter 

S-Algol has been implemented on several machines: Z80. PDP 11, Vax. 

Unfortunately it had not been implemented on Perkin Elmer machines. The 

S-Algol compiler generates an intermediate code termed s-code. An s-Algol 

system must provide either an interpreter for this s-code or an s-code to 

machine code translator. For our implementation we decided that an 

interpreter would be a better initial vehicle. 

We wrote our interpreter in 1MP77, a high level systems implementation 

language [48]. It was chosen because as against assembler it is portable, 

IMP77 being available on a wide range of machines, and as against Pascal it 

allows easy access to machine level features. 1MP77 allows the insertion of in 

line assembler in time critical loops. Our final interpreter has some dozen lines 

of assembler out of 1500 lines of code. These are used only in the main 

instruction fetch loop. 

The interpreter is divided into a number of modules: the instruction fetch 

module, the i/o module, the initialisation module, the instruction 

execution module and the heap module. All operating system dependencies are 

concentrated in the I/O module and the initialisation module. 	The heap 

module provides storage allocation, 	garbage collection and all primitive 

operations on heap objects. 	These include 	structure 	held 	selection, 

vector 	indexing, 	string concatenation and run time type verification. 

We verified the portability of this interpreter by porting it to Vax at a cost of 2 

man days. 
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The persistent heap module. 

The implementation of a run time system for a persistent S-Algol heap merely 

involved replacing the existing heap module with a persistent heap module, 

and providing a small number of new predefined S-Algol procedures. The 

interface between the heap package and the rest of the system was 

unchanged. The internal design of the heap module is dealt with later. 

The Data Curator 

The Data Curator is a set of software modules that provide persistent data 

storage and transaction management for PS-Algol. Its facilities are also used 

from Pascal and IMP-fl by other applications. 

It provides: 

A large persistent disk-based heap upon which untyped, variably sized 

chunks of data may be securely stored. It provides the operations of 

creating a chunk of storage, writing to that storage, reading it, extending 

it, and deleting it. Associated with each chunk of persistent storage is a 

Persistent Identifier or PID which is used as a key or address in all chunk 

access or update operations. 

Subdivisions of this heap referred to as bags. Bags are named and have 

password protection associated with them. In PS-Algol a bag corresponds 

to one of the databases opened by the function open.database. 

An associative indexing facility termed Tables. These have the same 

characteristics as PS-Algol tables which are implemented in terms of them. 

A multi-user transaction facility, some of whose facilities are used to 

implement PS-Algol transactions. This uses the techniques described in 

.[49] 

The Data Curator is made up of 4 modules: 

	

1. 	The User Interface procedures or UIP (50] 

The message transport facility or SWITCHER (51] (52] [53] (54] 

The request handler or Communications Interface Package (CIP) (55] 

The Chunk Management System (CMS). 

The combined effect of these modules is to provide programs and processes 

using the Data Curator with a remote procedure call interface to database 

facilities that is functionally equivalent to the Ada rendez-vous construct. 

The CMS is a set of routines that provide the system's storage management 

facilities, transaction management and table handling. 

heir functions are described in [56]. The CIP is a program that runs as a 

process on the PE 3220 and in conjunction with the UIP and the SWiTCHER 

allows client processes on the same or other machines to make remote procedure 

calls (57] on the tacilites provided by the CMS. For each service provided by 

the CMS there is a corresponding user interface procedure in the UIP. When 

called, this user interface procedure dispatches a message via the SWITCHER to 

Chunky. This message has the procedure encoded as a request number followed 

by a record containing the procedure parameters. When this message arrives at 
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Chunky, the CIP unpacks the message and after doing some validation checks, 

issues a call on the corresponding CMS routine. The result returned by this 

routine is then packed into another massage by the CIP and relayed to the calling 

process where it is returned as the result of the UIP call. The SWITCHER 

provides the underlying transport mechanism to support remote procedure calls. 

In itself the SWITCHER contains no significant innovations. It is worth recording 

our experience with it mainly because it shows the limitations involved in 

attempting to construct a system of this sort on top of a conventional multi-user 

operating system. Secondly the SWITCHER provided a means by which we could 

support shared access to the data maintained by the CMS. The scheduling of 

requests For CMS services into a serial stream of UIP calls was ensured by the 

message interface. 

InternaJ/External Transparency 

It was decided that in order to postpone decisions about where processes would 

reside, we would use a communications protocol that was independent of the 

particular processor on which a curator process might happen to be executing. It 

should be a matter of indifference to a curator process whether the client it was 

serving resided in the same physical machine as itself or not. 

Message Format 

The Computer Science department was intending to acquire a local area 

communications network. This did not materialise during the research project. 

Nonetheless we designed our communications level on the assumption that such a 

network was about to arrive. The SWITCHER was designed to provide a uniform 

way of passing messages between processes irrespective of the machine or 

machines on which the processes resided. The message format as seen by 

programs using the message interface could be expressed in Pascal as: 

CONST 

maxstring=127 

netaddr= 0. .65535; 

message =RECORD 

dest, src: netaddr; 

body 	:array (0. . maxstring) of char; 

END; 

The messages actually transmitted over the network would contain additional fields 

to type the messages, which are ignored for our purposes. 

The Notion of Net Addresses 

The dest and src fields of messages identify the processes to which the message 

is directed and from which it has come, respectively. The mechanism of 

identification is of no concern to user processes, but at present it is provided the 

following way. A net address is a 16 bit integer split into two fields. The 8 
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most significant bits are the machine address which will be recognised by the 

network statiofl. The least significant 8 bits specify the process within the 

machine. 

Processes within a machine may have several net addresses allocated to them, 

but no net address can be allocated to more than 1 process 

In order to maintain the transparency of destination, it is necessary that on each 

of the processors on which the curator software runs, there should be a 

mechanism to ensure that messages directed at processes on the same machine 

get to them. So far the software has only run on two machines : a Perkin 

Elmer 3220 and a DEC Vax 780, and these are only linked via a point to point 

connection rather than over a local area net. On these, SWITCHER processes 
have been implemented which accept messages in net format, check whether 

they are directed at an net address within the set of addresses allocated to the 

machine on which the Switcher is running, and if so relay the message to the 

internal process currently owning that net address. Currently as a simplification 

it is assumed that the set of net addresses allocated to a machine will be a 

contiguous range. If the message is not directed at an internal net address it is 

sent into the network. 

The Switchers also act as Name Servers. Processes that wish to use the 

network must log onto the Switcher of their machine, and obtain an net address. 

The Switcher assigns them a free net address from the set of addresses assigned 

to the host machine. These net addresses are similar in function to the 

communication ports supported by Accent (58] 

Basic Operations 

The two primitive communications operations are: 

wait(net address) 

Which causes the calling process to be suspended until either a message directed 

at that net address has arrived or a timeout period has elapsed. 

send(message, net address) 

This transmits a message to the specified net address. The sending process can 
continue unless the message buffers associated with the receiving- address are 

full, in which case it is suspended until a space becomes available. 

Transport and Flow control 

A communications interface of the type described, is predicated upon there being 

some lower level communications facility or transport mechanism to support it. 

For the machine to machine communication, the local area net is considered to 

be a reliable "black box" that - will accept and deliver messages. For 

intra-machine communication between processes the host operating system has to 
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provide the transport mechanism. 

On the Mouses operating system (591 message transport is effected via a 
common buffer segment connected to all processes using the SWIICHER. 

Associated with each net address within the machine is a slot in this buffer. 

Send places the message in the sender's slot, and causes an operating system 
message to be sent to the Switcher which then copies the message onto the 

input queue of the destination net address. If the queue was not empty the 

Switcher reschedules the sending process. 

Wait sends an operating system message to the Switcher asking for a message, 

when one becomes available it is copied into the receiver's input slot and the 

receiver rescheduled. 

These primitives depend upon the operating system to provide a lower level 

scheduling system to be used in flow control. On Vax the net addresses are 

mapped onto Mailboxes and the standard operating system services used to 

transport the message. 

In order to provide security, it is desirable that users should not be able to forge 

net addresses and pretend to be someone else. To prevent this, the sender's 

net address is automatically filled in by the switcher software on transmission. In 

order to allow a process to have several net addresses, the process is provided 

with process local tokens for net addresses termed channels. The mapping from 

channels to net addresses is carried out behind the scenes -  by switcher library 

software. 

Prototype performerice 

The performence of the prototype was not impressive. Its performance was 
dependent upon three components, the interpreter, the communications 

subsystem, and the CMS. 

The interpreter was written in a high level language and could not be expected to 

be very fast. Interpreted S-Algol programs on the 3220 ran at 1/8 of the speed 

of compiled S-Algol on a Vax 780. This was the maximum speed attained by the 

3220 s-code interpreter after considerable effort at optimisation. Table 5.1 and 
Fig 5.4 show the improvements attained in successive versions of the 
interpreter. As can be seen, the improvement in performance was quite 

significant. 
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3220 Soode Interpreter Performanoo 

The following table shows the improvement in the performance of the scode 

interpreter with as it was gradually optimised. Timings are in seconds. 

Ver Compile Run 

1.1 276 22 

1.2 157 11 

1.3 112 7 

1.4 110 7 

1.5 90 6 

1.6 84 6 

1.7 83 5 

1.8 63 5 

1.10 60. 5 

1.12 58 5 

1.14 49 4 

1.20 43 3 

1.21 39 	 . 3 

1.22 32 2 

Table 5.1 

It can be seen that an overall tenfold improvement was obtained. The 

benchmark for which these results were obtained was the compilation and 

execution of the following S-Algol program 

PAM 



PICs C5F4 

Improv.msnt. in Int.rpr.t.r Performance 
With Successive Version. 

276 

Seo8 

Vers i on 

Fig 5.4 

5-114 



let array = vector 1: :99 of 0 

procedure squiggle (slat a -, Int) a rem 31 

for n = 1 to 99 do array (n) := squiggle (n) 

write "Array initialised'n" 

structure list.fm (mt value; pntr link) 

structure NIL 

let nil = NIL, let base : = nil 

for n = 1 to 99 do base : = list. fm  (array (n ) • base) 

let radices : = vector 0: :9 of nil 

procedure queue.up (cint power) 

begin 

let p : base 

while p 	nil do 

begin 

let number = p (value) 

procedure ten . to. the (dat p -> mat) 
If p = 0 then 1 else 10 * ten.to.thö (p - 1) 

let digit := number rem ten.to.the(power);let shifter:power 

while shiften1 do{ digit:=digit dlv 1O;shifter:shifter-1} 

base:base(link) 
p(link):=radices (digit) 

radices (digit):= p 

p:= base 

end 

end 

procedure reque 
takes items off radix queues and re queues them on base 

begin 
for i 0 to 9 do 

begin 

while radices(i) 	nil do 

begin 
let transradices(i) 

radices(i):=radices(i, link) 

trans (link) :=base 

base:=trans 

end 

end 

end 

for i= 1 to 2 do (queue.up(i);reque) 

while base"nildo write base(value), (base:=base(link);"n"} 

Some of the more significant improvements were: 
1.1-1.4 Removal of debugging and reporting facilities from the interpreter. 

g-'3 



1.5-1.7 Replacing main interpreter subroutines with inline code. 

	

1.8 	Singl, character strings no longer created on the heap. 

	

1.20 	Pull and Push operations handled by inline code. 

	

1.21 	Instruction fetch loop recoded in assembler. 

	

1.22 	Use of direct access file for code loading. 

The performance of the switcher was monitored by sending 1000 messages from 

one process to another. The test was carried out on the 3220 when the only 

active processes were the switcher, the sender and the receiver. The results 

obtained are shown in table 2. 

12 byte messages 24 byte messages 

41 	secs 41 	secs 

0.88 sees 0.91 	secs 

0.91 sees 0.85 	secs 

8.15 secs 8.28 	sees 

9.94 sees 	24 % 10.04 secs24 % 

0.009 5OCS 	 0.01 secs 

31.06 sees 76 % 	30.96 secs76 % 

0.031 sees 	 0.031 secs 

Elapsed time 

Sender Cpu time 

Receiver cpu time 

Switcher cpu time 

Total cpu time 

in user processes 

per message 

Total system Cpu time 

per message 

Table 2. Switcher performance for 1000 messages 

It can be seen from the tables that the greater part of the elapsed time is 

system overhead. As all tasks were memory resident for the test it would seem 

that the main overhead was in context switching and rescheduling of processes. 

Although optimisation of the switcher code was able to produce a reduction of the 

switcher cpu time per message to 6 milliseconds, the effect of this was just to 

increase the system overhead percentage. 

It was considered that the performance obtained from the communications 

software was not adequate. Certain phases of execution of PS-Algol programs 

would be anticipated to generate high volume of messages. The elapsed time 

required to switch these would have been prohibitively high. It was therefore 

decided to reimplement the system as a single process package. The CMS would 

run in the same process as the user program and communicate over a simple 

procedure call interface rather than a remote procedure call interface. The 

second version of PS-Algol on the 3220 and the Vex implementation followed this 

single process model. Nonetheless, the network server model of the CMS 

remained attractive for a genuinely distributed system. We were, however, able 

to conclude that this would demand careful attention to interprocess 

communication over the network with an efficient implementation of interprocess 

communication in the operating system kernel. 
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YIELDS 

0 

0 

0 

0 

0 

CMS-CPU TPI 

11036 10.0 

678 22.6 

520 20.3 

11697 10.5 

1668 18.13 

c$S Perfonnance 

The third component of the system was the chunk management system. We are 

not directly concerned with the design of the CMS in this thesis, but its 

performance as part of the PS-Algol system is of interest. Table 3 gives a 

summary of results obtained in a number of benchmark tests using the CMS from 

PS-Algol. 

CMS performance part 1 
	

10.55.04 

TEST-NO TIME CMS-VER BYTES REQUESTS CREATES GETS 

4 10.16.37 3.1 	20525 1107 	280 273 

1 10.51.31 3.1 	485 30 	9 0 

3 10.51.51 3.1 	485 30 	9 0 

4 10.52.25 3.1 	20569 1110 	281 273 

7 10.54.52 3.1 	3333 92 	16 24 

Key 
BYTES number of bytes stored or fetched 

REQUESTS number of calls on CMS services 

CREATES number of chunks created 

GETS number of chunks fetched 

CMS performance part 2 
	

10.55.05 

TEST-NO TIME 	PUTS 	CAT-TABS INSERTS 

4 	10.16.37 290 	0 	 1 

1' 	10.51.31 9 	 0 	 0 

3 	10.51.51 9 	 0 	 0 

4 	10.52.25 291 	0 	 1 

7 	10.54.52 32 	0 	 1 

Key 
PUTS number of chunks put 
CRT-TABS number of tables created 

INSERTS number of entries inserted into tables 

YiELDS number of table lookups 
CMS CPU cpu time in 1/1000 ths of a second 

TPR time per request in 1/000 ths of a second 

Table 3. CMS performance tests 

It can be seen from these tables that the time taken to service a request on the 

CMS varies between 10 and 22 milliseconds. The total time including system 

overhead, to pass the messages necessary for such a request would be of the 

order of 60 milliseconds. We can therefore assume that the improvement in 

performance gained by going from remote to direct procedure calls would be of 

the order of 2 to 3 times. It must be said that the performance of the prototype 

still left a lot to be desired. 
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The PS-Algol prototype demonstrated the technicai feasibility of adding persistence 

to an Algol. The performance of the prototype was as much as could be 

expected of a first attempt, but no more, it was not usable for budding senous 

applications on top of. It did, however, allow the exploration of problems 

involved in the design of such systems, such as whether they should be single 

process or muttiprocess, what sort of heap they should have, what sort of name 

space should be supported. Some of these issues wiH be discussed in folIOwrng 

chapters. 
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chaptsr 6 

Algorithms for a paraistant hemp 

This chapt.r wW present a detailed account at the design at the prototype 
PS-Algol hemp Implemented on the Perkin Elmer 3220. A second PS-Algol 
system was subsequently Implemented on the Vax. An examination of the 
differences between these implementatIons and the rationale for these differences 
will be presented; 

The standard S-Algol heap. 

In S-Algol all compound objects: strings, structures and vectors, are created on 
the heap. Local variables that reference compound objects are Implemented as 
pointers to objects upon the heap. Unlike Algol6a where It Is possible to 
have pointers to objects on the stack or to individual fields of objects, S-Algol 
only allows pointers to objects on the heap and the pointer must reference the 
entire object. S-Algol Implementations maintain two stacks. 	One holds all 
integer, boolean or real variables. 	The other, the pointer stack, holds all 
variables that are implemented as pointers. 

These restrictions make the ImplementatIon at a garbage collector relatively 
simple - No information Is required at run time about the types of variables in 
individual stack frames. 	The garbage collector merely has to preserve 
everything reachable from the pointer stack. 	This requires additional 
information about the types of objects on the heap, which is obtained by tagging 
the objects. 

Object Formats 

All heap objects are tagged to Indicate their type. The system recognlses 
3 types of objects: 

Structures 
Strings 
Vectors 

Vectors 

These have two header words with the format given in FIg 1, followed by 
the main body of the vector.  - 
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The.. have one header word with the same fields as for a vector head., 
word 0 except that the type is set to 2 and the size ftald Indicates the 
number of characters In the string. NB this will be less than the spece 
occupied on the heap because It does not Include the header word or any 
pacldng bytes needed to maintain word alignment of the heap objects. 

Single character strings have special provision made for them. At the start at 
the PS-Algol program, all possible one character strings are predeclared and 
placed on the heap. These are then accessed via an array of pointers termed 
the string table. This significantly reduces the number of calls on the 
space allocator to create string.. This In turn reduces the frequency of 
garbage collections. 

These have a two word header. 	The first word is like that of a vector 
except that the type is set to 15. The second word Is the "trademark". 
Each structure class has a distinct trademark. The trademark is used to 
index a "structure table" which describes for each class: 

Its size in words. 
The number of pointer fields it contains. 

The pointer fields, if any, of the structure are concentrated in contiguous 
locations at the start of the structure. The garbage collector thus has 
sufficient Information to find the objects referenced by an instance of a 
structure class 

Local Object Addressing 

Consider that the heap Is divided Into two portions, the local heap which Is 
currently resident In main memory and the global heap which is in the 
database. All addressing of local heap objects goes via a structure called the 
Persistent Identifier to Local Address Map (PIDLAM). This is a table 
indexed on Local Object Numbers, that stores for each local object number the 
address on the heap at which that object is stored, the database address or 
Persistent Identifier of the object, and two flag bits termed the LI flag and the 
OC flag. 

The PIDI..AM Is optimised for mapping Local Object Numbers to heap 
addresses on the assumption that most references In the course of a program 
will be via Local Object Numbers. However, it is sometimes necessary to 
dereference Persistent identifiers. This can happen under two circumstances: 

A pointer returned by one of the interface procedures 
Is being dereferenced. 

A pointer field of an Imported object Is derelerenced. 
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In either case an att.mpt is made to look up the PID In the PIDLAM. If the 
PID Is found the corr.sponding local address is r.turn.d. If it I. not 
present in the PIDLAM the object I. loaded Into the heap from the database and 
an entry made In the PIDLAM associating a new local object number with 
the PID and the address of the Item on the heap. 

Sthrag. frjlocatlon and Recovery 

The local heap Is managed by a compacting garbag. collector. 

Garbage collection may occur for either of two reasons: because heap spece 
has been exhausted or because the PIDLAM Is full. In the event of garbage 
collection not satisfying the request for space, the entire local heap Is returned 
to the data curator. 

As with S-Algol the interpreter maintains two stacks, the main stack which 
holds all integers reals and booleans, and the pointer stack on which all variables 
referencing strings, vectors or structures are located. Obviously, everything 
reachable from the pointer stack must be preserved during garbage collection. 
The pointer stack is not the only root for the garbage collector, in addition all 
the one character strings on the string table must be kept. Also since 
we are maintaining a persistent heap, all the objects brought over from the 
database and all the things on the heap that are reachable from them must be 
kept. The LI flag in PIDL.AM entries indicate whether an object is Local 
or Imported. 	All objects whose LI flag is set are database objects that have 
been imported. 	The garbage collector can be characterised by the following 
notional algorithm: 

procedure collect (tnt space.required) 
begin 

mark all reachable from pstack 
mark all reachable from imports 
mark all reachable from string table 
recover and compact free space 
It free space < space required then 
begin 

send all marked items back to database 
convert pstack to PIDs 
relnitialise PIDLAM 

end 
ala. 

unmark all objects 
end 

The marking Is done by a recursive routine in a fairly straightforward way: 
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procedure mark(pntr p) 

boon 
unless p Is PlO or PIDLAM(p, go) then 
begin 

PIOLAM(p, gc): = true 
store p at end of item 
if pointer bit of item do 

for all pntr In Item do mark (pntr) 

end 

The only unusual features of this marking algorithm are the use of the PIDLAM 
to hold the mark bits, and the storage of the tern's LON immediately after 
it in RAM as shown in Fig 4. This Is an optlmlaatlon For use in the compaction 
phase. Compaction Is achieved by a linear scan through the heap that copies 
down all the marked items and simultaneously updates. the local address fields 

of their PIDLAM entries. This requires that having found a marked object on the 
heap, we can Find its PIDLAM entry. As the PIDLAM is only optimised for 
access via LONe, this patching of the LON at the end of- each marked item 
enables updating of the local address fields to be faster. When objects are 
created or moved down, space is left to hold their LONs during the marking 
phase. The space is initialised to zero, since LONs are all non-zero it is 
possible to distinguish a marked from an unmarked item given its local 
address. 

if the garbage collector runs out of apace either on the heap or in the 
PIDLAM It sends everything on the heap back to the database. The algorithm 
that does this has the following notional structure: 

procedure send all back 
begin 

for all Ions in PIDLAM do begin 
If Ion is used do 

if marked do 
begin 

for all pntrs In Item do 
unless nuillile, nitstring or 1 char string do 

If pntr is Ion do convert to pid 
send back Item 

and 
end 

and 
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CommlWng a Transaction 

A program in PS-Algol can terminate in one of three ways: 

reaching the and of th. program 
executing an abort statement 
executing the commit routine 

in the first two cases the run time system signals an abort 
transaction to the database system and all changes made to the database since 
the start of the program are Invalidated. The implementation of this rollback is 
very efficient. In the final case, the program must go through a more 
elaborate close down sequence. Whilst the program has been running the 
storage management system has been maIntaining 2 lists referred to as the N list 
and the 0 hit. 

The N (for New) list is a list of the new Pids created during the run of this 
program. The 0 (for Old) list is a list of the Pids of all of the items brought 
over from the database in the course of this run of the program. These items 
are themselves persistent, so it Is assumed that anything reachable from them 
must also persist. As an extension of this, any item inserted Into a table Is 
assumed to be persistent and is put on the 0 lIst. Because the garbage 
collector may have run out of space and sent the entire heap back one or more 
times, the N list may contain Items that are not reachable from already 
persistent Items. These items, which have been given a database 
Identifier temporarily, must be deleted from the database as they will be 
unreachable from the database root. The strategy followed is to delete 
from the N list all the items which can be reached from the 0 list, and then 
delete the Items that are left in the N list from the database. The removal of 
these temporary items is called 'threshing'. 

The close down algorithm is complicated by the fact that the 0 and N lists may 
get to big to keep in RAM. We therefore maintain the lists on the database 
as a linked list of database records, each of which may hold 20 pids. 
However, the algorithm would run prohibitively slowly if the lists remained on 
disk whilst it ran. We have therefore compromised by first emptying the heap 
onto the database, then loading the lists into the space freed In RAM. What Is 
left of the heap space is used as a heap for the evaluation of the 
algorithm, since the marking phase of the algorithm requires the use of the 
heap. Sending everything back before threshing has the advantage of making 
sure that all items that are candidates for persistence are assigned PIDs. We 
can therefore present an outline algorithm to carry out this close down: 
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procedure class 
b.gio 

mark all reachable from Imports; 
send all back; 
pull N list Into RAM; 
initialise heap with remaining store; 
thresh; 
commit transaction; 

and 

The procedure thresh does the sorting of the wheat of items reachable from the 
database root from the chaff of temporary variables and has the following 
outline: 



procedure thresh 
begin 

I mark all referents of 0 list item 
while 0. list. head -= nil do begin 

I loop A 
mark referents in N (O.list.head (pid)) 
O.iist.head := O.$ist.head (next) 

and 
I now mark Items In N list recursively reachable from 

marked items 
l.t number marked: 
while  

I loop B 
let n: N.list.head 

while n 	nil do begin 
I loop C 
If marked (n) do begin 

number marked plus 1 
mark referents in N (n) 
I remove It from the list 
n(next):n(ne)t, next) 

end 
n: =n(next) 

end 
number marked > 

do number marked:) 
I delete the remaining items on the N list from the database 

while N. list, head -= nil do begin 
lloopD; 
delete (N.iist.head(pld)) 
N. list, head: =N . list, head (next) 

end 
and 

Note that the recursive marking of the Items reachable from the N list is 

performed by 	a wldthwlse rather than depthwlae traversal of the 

reachability tree. 	This is done because It reduces the traffic to and from the 

disc. 	Items are fetched Into memory one at a time and then their pointer 
fields are compared with the pointers on the N list which is held in memory. if 
we carried out a depthwise traversal of the tree there would be the danger that 
the number of items on a sub tree would be so great that the heap would 
fill up whilst it was being traversed, which could lead to the root node being 
swapped out before all Its dependents were marked. With a traversal of the 
type we have chosen, each item referred to on the N list is brought into 

memory from disk only once. 
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of the Algorithm 

The algorithm is limited in the size of transaction It can handle. It the number 
of new items created in the course of executing a program grows too great the N 
list will not fit into memory and the transaction will, in consequence, be unable 
to commit. 

The algorithm Is optimistic. it preserves all items which could be persistent. 
It will preserve some Items which are not reachable from the database root. it 
fails to detect when some of the already persistent database becomes 
unreachable due to a change In the chain of persistent references leading to it 
from the database root. The algorithm only threshes out newly created items 
that are not reachable from the database root. The database will thus tend to 
accrue wasted space. This can only be resolved In the end by doing a 
garbage collect of the entire database. 

The algorithm Is also rather slow. its exact performance will depend upon the 
proportion of items on the N list that are on the trees of reachable items 
growing out from the 0 lIst and upon the length of the paths from the 0 list to 
these items. If we assume that marldng of items on the N list is done by 
marking the list elements rather than the items in the database that these paint 
at, then the procedure that marks all referents of an object In the N list will 
have a time penalty of: 

kN + F 

where 
N 	is the number of items on the N list 
k 	Is the number of pointers in the root object 
F 	is the cost of fetching the root object from the database. 

Thus the cost of loop A will be: 

O(KN + F) 

where 
0 	is the number of Items on the 0 lIst 
K 	is the average number of pointers in an item 

The cost of loop B will be determined by the cost of loop C times the 
maximum depth of the tree from 0 lIst to the farthest reachable branch 
ontheN list. The cost of going round loopCfortheithtimewould 
be: 

Pd 	+ F) • N - Pd 

where 
Pd 	is the number of marked items on N list for ith iteration 
N 	is the number of items on the N list for the ith iteration 

For small N this will be dominated by the disk transfer time to fetch 
items from the database, for larger N it may become dominated by the 
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time to scan the list. The total cost of loop B is thus: 

Of 

F N 1  (KN •F)+N 1 -N 1  

00 

where 
d 	Is the maximum depth of the reachability tree 

But N 
1+1 = I 

N - U 
I 
 so that the cost of d iterations reduces to: 

N 	N 

d(m(- + F) + -) 
2 	2 

where 
m 	is the average number of items marked per iteration. 

6-9 



If we consider the worst case, where all items are eventually found to 
be reachable from the 0 lIst and must therefore be kept, we obtain an 
upper bound on d: 

N 
d 	- 

m 

This gives an upper bound for the cost of loop B of: 

N 2 	 N 2  
- +FN 4• - 

2 	 2.m 

The cost of the final loop will be: 

ND 
d.1 

where 
is the cost of deleting an item from the database. 

Loop B Is clearly the most costly unless the number of reachable items2on the N 
list is very small. 	In the worst case this algorithm Is of order2  N . 	If the 
structure of the N list was changed to a. binary tree the N terms would 
be reduced to N log N. At this point the linear component of the cost due to 
fetches from the database will be the dominant cost. If we assume that the 
cost of deleting an Item from the database is approximately the same as a fetch, 
then the sum of the costs of loop D and the linear component of loop B will be 
independent of the fraction of the new items that are to persist. 

For interactive use the delay on committing a transaction Is Irritating. 
This could be reduced If the work of evaluating the close down algorithm was 
farmed out to a machine acting as a database server where It could run as an 
asynchronous process after the heap had been cleared out. 

Var Implementation 

The pertinent difference between the Vex and the P20 Is that the former has 
a large virtual memory space, whereas the latter has a much smaller segmented 
memory "Co. A basic assumption made in the design of the Vax 
implementation was that the heap could be made large enough to greatly reduce 
the risk of the heap or PIDLAM filling up. It the heap never fills up, then it 
never has to be sent back In the course of the program, only at the end when a 
commit occurs. This makes It unnecessary to go through the old rigmarole of N 
and 0 lIsts. At commit the system must merely discover which things on the 
heap are currently reachable from imports. This can be done by chasing down 
the PIDLAM recursively marking everything whose imported bit Is set. 
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The Vex implementation also differs In the actions taken when an item is imported 
from the persistent heap. In the 3220 case thw item was copIed over unchanged 
from the database to the heap, a P10 was assigned to It, and a PIDLAM entry 
mad. In the Vax case, In addition to assigning a PID to the Item, all of Its 
pointer fields are converted from PlO, to LOP4s. This may invohe the allocation 
of LON5 to Items that have not yet been brought Into the heap from the 
databass.Ths has the advantage of making access to Imported Items faster, as all 
items are accessed via their IONS, and LON access Is done by a simple indexIng 
operation whereas PID aocss Involves a table look up. 

The added speed is bought at the usual price: space. But on Vax we have 
spare space to pay for our speed. The extra 'space requIrement arises because 
the PIDLAM grows faster, having to have entries for Items not yet on the heap. 

For any finite sized heap there will .tIll be a risk of Its overflowing In the course 
of a program. One can take the attitude that this happens In any system with a 
heap, and that the best you can do Is make the heap big so that It is rare. In 
any case, the database cannot be damaged by the heap overflowing and the 
program aborting, since the transaction will have been abandoned and no 
changes will have been recorded In the database. StIll. It is possible to reduce 
the probability of the heap overflowing by taking simple prophylactic measures. 
There are three overflow scenarios to be considered: 

A program builds up a huge temporary run time data structure which 
exceeds the size of the heap. 
A program goes through a large portion of the database and changes 
it. If the database is much bigger than the heap the heap will 
overflow. 
A program scans the database for report generation, or statistical 
purposes, touching but not modifying much of the data. 

The first case can only be solved by having a bigger heap. It Is Identical to the 
problem that arises with an ordinary non-persistent heap if you try to use too 
much memory. 

The second example can be solved by keeping a changed bit In the PIDLAM 
Which IS set whenever an item Is changed. Then when you run out of space you 
throw away all the unchanged Imported items on the heap. It will always be 
possible to recover them from the database if they are required. This has the 
problem however, that In the Vax model of addressing the PIDLAM entry for the 
thrown away Items must be retained. This is because there may still be items 
on the heap containIng IONs that point at the discarded items, and the PIDLAM 
entry corresponding to that LON must be kept. 

The solution to this problem enables us to deal with the thIrd example as well. 
It uses the following algorithm: 

-1 I 



mark everything recursively reachable train imports -. 
for all Ions in PIDLAM do 

It marked (Ion) do 
If changed (Ion) then send.b.ck (lon) ala. discard(lon) 

clear mark bits 
mark everything recursively reachable from P. stack 
for all Ions in PIDLAM do 

unl.ss marked (Ion) do 
unless present (Ion) do 

delete Ion from PIDLAM 

The effect of this is to leave on the heap only local items. The PIDLAM will 
contain entries only for those Items reachable from the P. stack or from local 
heap items, but will contain no entries for Items only reachable from persistent 
objects. 

The mechanism used for the persistent heap on the Vax implementation, along 
with the improved algorithm to handle heap overflow (not yet tested) seems to 
be the best way of supporting a persistent heap so tar examined. It is likely 
that future machines will all have big enough virtual memory spaces to support 
it. The 3220 approach suffers from a slow close down, and slow accessing of 
even heap resident Imported items. 

Mother: approach reported In the literature, the Small-talk virtual memory 
system, accesses all items whether persistent or not by means of their P10* 
(termed object pointers In Small-talk). This means that all pointer accessing has 
to be done by hashing into the Resident Object Table (Small-talk for PIDLAM). 
In the Small-talk system pids are not converted into Ions when an object is 
loaded onto the heap. 
When running on special hardware this hashing can be speeded up by using 
microcode, but for a given hardware configuration this will always be slower than 
the Indexing of the PIDLAM used for all accessing on Vax PS-Algol. Let us 
assume that the accessing algorithm Is written In micro-code. Then the cost of 
an access method can be approxltiated by the number of memory fetches 
required, on the assumption that these are the rate limiting step of the process; 
Let's look at the costs involved In the two methods: 
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STEP 	 VAX-PS-Algol 	 SMALLTALK 

Hashpld 	 0 	 0 

Look up using 
hash 	 .0 	 1.5approx 

Fetch local address 	 1 	 1 

Access fIeld 	 1 	 1 

Total cost 	 2 	 3.5 

Another possible approach would be one based upon a conventional paged virtual 
memory system. In this the cost of findIng an object Is divided Into the coat of 
finding the page In which the object Is located, and then the cost of fetching the 
field of the object from within that page. The cost of finding the page and 
finding an object Is the same provided that they are both resident. In each case 
it is an Indexing operation. The difference arises in the probability that an object 
will turn out to be resIdent. In the case of a traditional paging mechanism this 
probability falls as the ratio of vIrtual to physical memory rises, unless you have 
good locality of access. In the case of a heap this locality of access Is difficult 
to ensure. In PS-Algol the probability of residence is determined by the ratio of 
physical memory to objects touched in this program. On the assumption that the 
set of objects touched will be a subset of the total database. It can be 
hypothesised that the probability of finding an object in memory will be better In 
PS-Algol than In a tradItional paging system. Confirmation of this assumption 
would have to be made by means of a controlled experiment involving the 
construction of two PS-Algol systems running on a machine with paging facilltes, 
one of which used these and the other of which used our algorIthms. 
Comparative tests of the two methods would then be possible. 
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NEPAL 

As was mentioned earlier,, the language PS-Algol was conceived ass step on the 
road to greater things. Our earlier research into ways of providing persistence 

for programming languages had led to the ConclUsion that the Incorporation of 

persistence required a number of structural changes to languages It full advantage 

was to be taken of it. The language NEPAL was designed In the light of these 

conclusions. PS-Algol was to be the way to bootstrap NEPAL. 

The experience of building PS-Algol showed that In practice it was possibl, to set 

up a persistent Algol with far fewer changes to the original language than we had 

at first suspected. However, in the light of our original alms, PS-Algol can be 

seen to be deficient in a number of respects. This Is not to deny that it is a 

very useful system in its own right. It does implement persistence as an 

orthgonal property. Data of any type may be made to persist so long as it Is 

reachable from the root table. Such experience as we have with it SO tar, 
indicates that it does make it much easier to write database type software. 

Indeed it is proposed to make it a public product, and to carry out serious 

investigation into the productivity that can be attained using It to implement a 

number of database systems. But on a-priori theoretical grounds there are 

reasons to suspect that a number of weaknesses will be exposed in the system. 

PS-Algol Weaknesses 

1. 	 lnhomogeneoua Scope Rules. The table facility can be considered 

as providing a new means of declaring variables. These variables 

are in an outer persistent scope that is common to all programs 

using a given database. It differs from other torms of declaration in 
three respects: - 

variables are declared at run time not compile time; 

variables can be deleted from a scope, as well as 
introduced 

into it; 

the declaration facility is nonorthogonal over types, in that the 

only type that can be declared is type pointer. Of 

course it would be relatively easy to introduce a set of 
routines corresponding to enter, 	lookup etc, for each 
of the base types of the language. This would be 

aesthetically unappealing, besides tailing to solve the 

problem. Thanks to the vectoring operation over types,. 

an infinite set of types can be generated within S-Algol 

by successive application of this operation. We could by 

providing additional routines, go only a small way 
towards covering this infinite set. 

Of these features, the first two can be considered desirable in a 

persistent language, the latter can not. Why are they desirable ? 

Consider the normal process of program development. In this 

programs are weighed in the balance and found wanting, so they are 
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modified and put once more to the test. When considered 

satisfactory they are put Into use. After a whIle It Is discovered that 

some further features would be desIrable. it Is modified again, 

more variables are added and more procedures to act upon them. I 

we consider this In a persistent context. It is dear that we will want 

to declare new Identifiers In a persistent scope after It has been 

created and has been in use for some time. This Implies some form 

of dynamic declaration facility. 

Poor Sharing. The facilities for sharing data are very primitive. 

Data can be shared between programs by running them against the 

same database. But they must be run seqrentlalty against the 

database. Simultaneously running programs may not run against the 

same data. 

Poor Facilities for Data Abstraction. This Is one of the weak 

points of the original language S-Algol. It provided no means for 

the declaration of abstract data types. The representation of a 

structure class can only be hidden via the normal Algol scope rules, 

i.e. • by declaring it inside a procedure or block. However, this 

means that only one procedure can act upon that structure. In the 

Vax version of PS-Algol some extensions to the scope rules have 

been made to improve on this  (601, but these are still limited. It 

needs hardly be emphasised that data abstraction facilities are likely 

to be important in data intensive persistent programming. The 

fundamental weakness of the data abstraction facilities stems from 

the next point: 

Procedures Not First Class Citizens. To provide good data 

abstraction facilities you need to be able to tightly bind data to the 

code that acts upon it. It you have persistent data you should have 

persistent procedures bound to it. This implies having procedures as 

objects on the persistent heap, rather than as parts of a program 

tile that is outside of your database system. There are other 

advantages to making procedures objects, in that you can theA 

construct higher order functions, but this was not really considered 

when designing NEPAL. 

Compiler Not Interactive. We observed in an earlier chapter that 

insofar as persistence has been incorporated into programming 

languages, it has been interactive languages like Lisp. API and 

Smailtalk that have taken the first steps. It one is implementing a 

persistent programming system, it seems highly desirable that it 

present an integrated view of programs and data. At one level both 

of them are persistent data structures. The program should be kept 

in the same heap as the data. The notion of compiling a program Is 

a hangover from the days of cards which had to put through the 

computer to be compiled. What one wants is to have a persistent 

store containing a structured collection of functions and data. Editing 

a tunction can then be considered as the same type of operation as 

modifying any other part of the database such as a structure field, a 

tupie of a relation etc. 
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6. 	 Data Definitions Not Updatable. Just as programs are now 

right, neither are data definitions. Sooner or later you want to 

chang. them. You want to add new fields to structure classes for 

instance. - PS-Algol does provide an updatable data type In the 
table. A table can be treated as a record with strings as Its field 
names. Data structures using tables can readily be redefined to  
have additional fields, but suffer from the Inefficiency of having to 

do all accesses by tree search. It would be desirable to be able to 
modify the definitions of structure classes In order to add new fields 

to them. This gets you into the whole area of database 

reorganlsatlon. It should be possible to provide for this In the 
language design. 

These were some of the design problems NEPAL was Intended to solve. In what 

follows examples are given of NEPAL syntax. 8ecause of the restrictions of the 

mode of presentation In a printed text, these are made to look like ordinary 

program texts for a batch programming system. It was intended however, that 

NEPAL function and class definitions be considered as data structures that could 

be presented to the programmer in a number of ways other than the simple 

textual form. Program syntax is a method of mapping a graph structure onto a 

linear sequence of characters. In a persistent programming system the program 

can be held as a graph, and displayed In a varIety of ways. The form of 

presentation given here is highly provisional and should not be taken as defining 
that used in an actual NEPAL system. 

Groups 

A Group is a persistent scope that holds a set of identifiers. These identifiers 

may be of any one of the base types (mt, real, string and pntr), or may be 

vectors, classes, procedures or other groups. Identifiers are Introduced into 

groups by the normal S-Algol forms of declaration. There is a form of 
declaration to allow for the creation of new groups. 

group.decl: 	group <Identifier> '- <identifiar.list> 

This declares a new group with the specified identifier, from which the identifiers 

in the identifier list will be visible. The identifiers in the Identifier list are 

referred to as the imported Identifiers, as they are imported Into the scope of 

the new group. The imported identifiers must currently be in scope. 

Group level commands 

The Nepal compiler would be interactive. On initiation the compiler is in the 
context of the distinguished group TOP. 

Any valid Nepal statement typed by the user will immediately be executed. The 
set of valid statements Is specified by the following syntax: 
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-c statement). =< dedaration 

cclasa.decb 

cgroup.decb 

I (Clause) 

I be < identlfier> 

I forget cidentifien 

I get (filename) 

I quit 
I stop 

view cidentitlen 

The be statement takes as its parameter a groupname that Is currently In scope 
and causes that group to become the current scope. 

The quit statement causes the group enclosing the current scope to become the 

current scope. 

The forget statement causes the identifier that it takes as a parameter to be 

removed from the current scope. 

The get statement causes the file that it takes as its parameter to become the 

current compiler input stream. On encountering an end of file the current Input 

stream reverts to the previous one. These get statements may be nested. 

The view statement causes the type of the identifier it takes as argument to be 

printed. 

The stop statement causes compilation to cease. 
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group scrabble 

be scrabble 
dais letter.constants 

let a = I 

let z = 26 
let letter.score = 0 1 of (1,4,3,2,1,3,2,4,1, 

8,3,2,1,1,1,1,10.1,1,1,1,3,4, 10,4,8 

class word ( 

let bit 	default of 

let next: = default nil 

-txt, next) 

class utilities 
archetype letter. constants 

proc a 

proc b 

class lexicon 
archetype lefterconstants, utilities 

Import word 	 Iwords in the language 

let vocab = vector 1:: 15 of 	lindex on length 

vector a z of nil 	Ithen on first letter 

proc find, word (string a -' pntr) 

f .....} 
proc insert,word (string a) 

(... 	abort. ,.} 

trans add.word (string 5-> default false) 

t..... 1 
trans add. list. word (string file) 

(.....I 
proc Iind,all (string template,using -> pntr) 

C ..... I 
proc print.words (string query) 

C ..... I 
--> add.word, find, all, add, list.words, print, words 

l.t English = lexicon; English (lexiconadd . word) ("fish") 

quit 

atop 

SESSION 1 - CREATING A GROUP 

Example 7.1 

Example 7.1 shows a sequence of text which creates a new group called 
"scrabble". It is made to possess 5 identifiers: "latter.constants", "word", 

"utilities" and "lexicon" which all identify classes, and "English" which identifies 

an instance of the class "lexicon". The internal structure of these classes and 

the statement adding the word 'tish" to the "English" language are explained 

below. 

) 

.1 
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be scrabble 

English (lexlconadd. list wds )!"Chamera!J 

let Amerlcan=texhcon 

American (lexlconaddJ!st ordsli'WbsW'1 
class board(. ...) 

class tile.box (. ...) 

class game 
import lexicon, tile, box, board 

let language: =nil 

let tiles 	: nil 

let board 	: nil; let my. turn: = false 

let started: = false; let my. score: ); let your. score: 

trans start ( .... } Ichoose language then play 

trans resume ( .... ) icontinue play 

-.%start, resume) 

group play c- game 

be play 
let g = game 

quit 

quit 

SESSION 2 - EXTENDING A GROUP 

Example 7.2 

The example session shown as Example 7.2 illustrates the persistence of the data 

structure for "English", and shows a new instance of a lexicon being created. 

Roth are populated with vocabularies. 	Two more classes are created then the 

class game is created to record the current state of play. 	It provides two 

operations on a game. 	They will use operations on lexicons already provided. 

Note that many instances of game may exist simultaneously, each referring to 

and operating upon one common lexicon, as various games proceed in the same 

language. Each application of "start" or 'resume" on each one of these games 

is analogous to running a transaction (such as a CAD design step) against a 

database composed of a specific part and a common part. Thus aspects of 

concurrency, transaction and structured databases are accommodated. 

Finally a subgroup "play" of this group is created. 	It only has an instance of a 

game in it. Users of this group would therefore, only be able to play the game 

with start and resume, and would not be able to pry into or amend the 

vocabulary of the language they were playing. This illustrates some of the 

protection mechanisms available. It is now appropriate to look more closely at 

the provision of classes. 

Classes perform a number of functions in the language. They provide: 
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I) A unit of design of data structure and program. They may be 

designed independently, or may be composed from one another. 

Two composition rules are possible. A class may Import 

Identifiers including the names of other classes so that It may 

reference or create instances of them. A class may also be the 

concatenation of its list of archetypes plus the fields defined within 

that particular class. This provides in one mechanism both 

aggregation and speclalisation. 	 - 

An association between data and function. The only data which 

a procedure, transaction, or initialisation code may operate on. Is 

data instances of the class in which that code is defined or In the 

archetypes of that class. Similarly the only code which may directly 

operate on an item of data Is code associated with the class of which 

that data Is an instance. 

A basis for data structure description. 	The fields within a 

classes define all the data which may exist, and the procedures 

within the class define its semantics and constraints. 

A unit of data generation. 	Data may only be generated by 

creating an instance of a class. 	The class name invokes the 

generator. 	The class definition rules are so arranged that this 

ensures that all data elements are initialised. 

A logical unit of data locking. 	Whenever a transaction Is 

invoked, the referenced instance is automatically locked to prevent 

other transactions interfering. 	This means that data only accessible 

via that instance is also made accessible only to the one transaction. 

hence the data designer has the possibility of arranging economic 

locking strategies. (In the example above update operations on 

words (insert words) need not be designated as a transaction, since 

a word can only be in one lexicon and updates only occur within 

transactions on a lexicon (add. word, add, list, word)). 

A unit of compilation. 	The environment imported by a class is 

entirely defined within the class. 	Similarly Its exported environment 

is defined. 

A program or constant library. 	If a class has no variable fields 

then when used as an archetype it costs nothing in the storage at 

instances, but provides a library of procedures, transactions and 

constants. 	This is illustrated in the preceding examples where the 

classes "letter.constants" and "utilities" are set up for this purpose, 

then used In the class "lexicon". 
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A Syntax and S.mantics for Claim 

A class has the syntactic form 

<class.decb: := class <identifier> (CS.spec>) 

S.spec>: :=[cexternals> ](<squence][carrowcexportllst>] 

C sequence: : = declaration, [; <sequence>] 

c clause) [;sequence] 

(empty> 

'cexternals>: 

( archetype .ctypelist>] 

( import cidentifier.list> 1 

e.g. 

class person( 

let narne= default "unknown" 

let sex = default "female" 

let spouse:= nil 

trans marry( pntr partner) (......) 

proc spouse. of ( -> pntr) spouse 

-> name, sex, marry, spouse. of) 

The above declares a structure class person with 5 fIelds, two of which are 

constant strings, one of which is a pntr variable, one of which is a transaction 

and one of which is an ordinary procedure. this expression yields a result of type 

pntr. Each declaration declares a field: 

let c identifier> = (expression> 

declares a constant field of the type yielded by the expression. Special 

expressions of the form. 

default <expression> 

indicate that the initialisation expression is merely a default that can 

be redefined at instance creation. 

let <identifier> : = <expression> 

declares a variable field in a similar way. 	The class "word" In the 

preceding example has both a constant and a variable field. 

proc <identifier> <parameter pack> <body> 

declares a procedure field. 	Examples shown are all the fields In 

"utility" and tind.word, inset.word and find.ail un "lexicon". 
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trans cldentlfler .c parameter pack cbody 

declares a transaction. A transaction is Identical with a procedure 

except for locldng and completion mechanisms which are defined below. 

iostancs Creation 

The S-Algol syntax for creating an instance of a class has been extended to allow 

for the default initialisation of fields. In S-Algol, all fields of a structure had to 

be provided with initialising values at creation time. In NEPAL it Is not necessary 

to explicitly provide initiallslng values at Instance creation as all fields have default 

values declared at class definition. The default values can, however, be 

overridden. 

So we could say: 

let Ms.Xperson 

let Mr. X=person (sexmale) 

let John. Doeperson (sexmale, name="John. Doe") 

Archetypes 

The notion of archetypes permits the construction of semantic hierarchies. A 

class inherits all the fields of its archetypes. Thus in the class student: 

or 

or 
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class student( 

archetype person 

let year.ot.enrolement = default 1980 

let year.of.study := 1 

let course : = nil 

proc accommodation. requirement(-). string) 

If spouse = nil 

then "single room" 

else "double room" 

- year. of . enrolement, year. of. study, course, 

eccommodation. requirement) 

the spouse field of the class person is available. Further, all instances of the 

class student will also be instances of the class person. 

e.g. 

let John=student 

Then the expression: 

John is student and John Is person 

would yield the result true. 

A class may have several archetypes. An instance of a class is an instance of 

each of its archetypes. This "is a" relationship is transitive. 

If a student Is a person then any code that operates on persons must be able to 

operate on students. This in turn Implies that the exported fields of person must 

be available: 

e.g. 

John(porson. name). "John" 

is permissible. 

Indexing 

IC 

In Nepal all structured objects whether instances of structure classes or vectors 

exist on the heap, and the generators for these objects yield pointers to them. 

To obtain the elements of a vector or the fields of a structure Indexing Is 

used. For a vector, the index is an integer. 

< name (c clause)-) 

Before any indexing is performed the bounds of the vector are checked against 

the index For legality. 

In the case of structures indexing is done using one of the fleldnaznes mentioned 

in the exportllst. However, since several structure classes may have fields with 

the same names it Is necessary to prefix the fieldname with the classname, to 

enable the class of the structure to be checked. This isa change to the S-Algol 
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naming convention which made the fleldnames of structure classes simultaneously 

In scop. unique. 

<name> (<Identifier> 	c identifier,) 

The language also provides the binary operators Is and lent for checking 

whether or not a pointer refers to a member of a particular structure class. 

class scop. rules 

The introduction of classes involves certain modifications of classical Algol scope 

rules. Within the body of a class the following names are visible: 

the names declared earlier in the body of the class; 

the names declared in the bodies of the claSses mentioned in its archetype 

list; 

'u) the names explicitly introduced via the import list. 

In the classical scope rules a name may be redefined In an inner scope so that 

the new definition hides the previous one. A similar rule applies with 

archetypes. A name defined within a class hides any definitions of the same 

name within its archetypes. By extension a definition of a name within the body 

of a class occurring earlier in the archetype list is hidden by a definition of the 

same name within the body of a class that occurs later in the archetype list. 

Note that a pntr may be passed about or stored as if it were an untyped 

relerence, but that any operation on the reterend involves proper type checking 

since the type is given when identifying the field. This provides the mechanism 

sought in (61] of programs being able to store and pass tokens for objects In 

the data without needing to have access or know of their internal structure. 

Such a mechanism is necessary for information hiding and proper partitioning of 

the design and specification of the collected data. This feature is not a NEPAL 

innovation but a carryover of one of the powerful features of S-Algol. 

With these explicit controls on the use of identifiers, most of the access and 

control mechanism are achieved, and much of the checking happens during 
compilation. 	In particular the fields which care exported can be limited to those 

which only perform legitimate transformations on the data. 	In the "lexicon" 
example the two transactions "add.word" and "add. list. words" can ensure that 

attempting to add a new word to the vocabulary which is already In the 

vocabulary has no effect. Any constraints on data may be preserved in this 

way. 

Transactions 

Whenever operations occur on data of large volume and long persistence, or on 

data that is shared, the notion of transaction must be Introduced. A transaction 

provides two functions: 
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I) It designates a unit of change. AU changes In the data within 

this unit must be recorded or the data must be left 
unchanged. 

When a transaction Is started all changes are accumulated. I 
the end of the tranSaction Is reached then all changes are 
committed. it the  abort statement is encountered at any 
procedural depth then all changes so accumulated are 

forgotten and an Immediate exit from the transaction takes 
place. 

It the transaction was intended to yield a result then the 

result is the default value Indicated in the transaction 

parameters pack. See "add.word" in 'lexicon" in figure 1. 

ii) It establishes some lock to prevent destructive interference 

between concurrent changes. The mechanism iw well known. 

Since a programmer should be able to write a transaction not knowing the context 

in which it should be used it is important to permit transactions to be nested. 

A nested transaction when committed will be an incremental change in the next 

outer transaction. The ability to abort individual increments at each level could 

be particularly useful when writing interactive design programs. it also could be 
the very devil to implement. 

Provision of Views of Data 

The archetype and export lists of a class may be used to define a derived class 
with apparently limited or different fields. For example 

class sub, lexicon 

archetype lexicon 

proc sub, find, all ( string t, u-) ,  pntr) 
I this finds all non-4 letter words 

If length(t)4 then nil else 

tind.all(t,u) 

) 

class dictionary( 

archetype sub, lexicon 

proc find, all (string template, using-> pntr) 

sub,find, all (template, using) 

-> tlnd.all) 

would provide a new view of the "lexicon" class which restricts its users to only 

obtaining lists of words which match a given template and use only a given 
collection of letters. 

The class may be arbitrarily transformed by the interposition of procedures and 

transactions. A group composed of a collection of such classes would then 

provide a defined working context similar to the view mechanism in databases. 

Access rights to groups must be controlled. Given this, the procedures within 
the classes can impose any desired privacy constraints. 
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Mcommodatisg and oontaisleg change 

With a small collection of data or with temporary data It Is acceptable to recover 
from errors In the original system design or adapt to changing needs by 

modifying the data description and repopulatlng the data. With large scale 

persistent data this Is wholly unacceptable. Apart from the computational cost, 

much of the data will have been derived from sources no longer available, such 

as people at terminals or from sensors. 

In this context it Is necessary to be able to make changes without catastrophic 

consequences rippling through the rest of the system. Change must be locailsed 

- e.g. so that coda not directly effected need not be changed. Costs must be 

minimlaed - e.g. In a database describing 300000 race horses (many of which 

are dead) a change to the data describing horses need not propagate 

immediately to all horses, since most of them will never be referenced, or will 

not be referenced before the next change In the data description. 

In Nepal, the unit of data description and of program is the class. Arrangements 

are made to permit a class to evolve to meet its needs. The programming 

environment of Nepal was to Include an integrated editor and compiler. The 

edits would perform one of the following: 

I) 	 Change an existing procedure or transaction 

Add a new field (procedure, transaction, variable or 

constant) 

Remove such a field 

Change the initialisation arrangements of an existing 
field 

Change the list of imported archetypes or of Imported 
types 

Change the list of exported fields. 

The first two of these have no effect on the existing population of instances of 
the class changed. The remainder may have an effect. To achieve the 

necessary effects, the editor/compiler treat the edit session as a transaction. 
At the end of the transaction a new version of the class is created. It has at 
present an empty population of instances. 

Let us suppose that an editing session added a new field to a class. If a 
procedure Is compiled In the context of this new class definition It may "know" 
about the new field. Suppose It contains code to dereference this new field. 

What will happen if the procedure Is called with an existing instance of the class, 
which does not contain the new field? 

The run time type checking will determine that the type of the instance was not 

what was expected, the instance does not contain the desired field. But all Is 

not lost. The language syntax compels the declaration of an Initialisation 

expression for all fields. The run time error handler has only (I) to execute that 

initialisation expression to get a meaningful default value for the field. It then 
merely has to extend the structure to include the new field. 

All creations will result in latest versions. 
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An examp4. to Illustrate this Is given as fIgure 3. Editing Is an essentially 
dynamic process which cannot be shown as text so we show a text corresponding 
to the and of the transaction, which progresses "lexicon" from the state it was 
left in after sessIon 1. (Figure 1) 
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be scrabble 

edit lexicon ( 

archetype letter.constanta, utilities 

import word 

let vocab = vector 1.. 15 of 	lindex on length 

vector a. • z of nil Ithen on first letter 

proc total(-> let) 	 Icounta no. of words In vocab 

(. ........ I 

let count:total 	 linitialised to number there 

laiready then Incremented by 

linsert word 

proc find, word ( string a-> pntr) 

C ................. ) 
proc insert.word( string a) 

C ........... 
abort 

count:count+1;...) 

trans add.word (string a -, default false) 

C ................................. I 
trans add.liat.words (string file) 

C ..................................) 
proc tind.all (string template, using-> pntr) 

C .................................. I 
proc print.words (string query) 

C ................................. ) 
-, add. word, find. all, add. list.words, print .words, count) 

quit 

Session 3 - To Amend the Class Lexicon 

Example 7.3 

Here a new procedure "total" has been added to lexicon and the variable field 

count. An initialisation given is applicable to existing vocabularies, so that, 

should someone refer to 

English (lexicon_count) 

then the existing instance will be transformed and the words counted, the correct 

value of count being yielded. The new instance is now associated with the 

revised class which contains a revised version of insert.word which will maintain 

this count. 
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Delayed Evaluation 

In order to allow class redefinition the Idea was introduced of invoking the 

initialisation expression for a field if a particular Instance of a class did not yet 

have that field. it was then realised that this mechanism could be goneralised. 

It is never necessary to Initialise a field until the first time it is read from. Why 
not build in delayed field evaluation as a standard feature of all fields, and if it is 

being applied to fields why not to all Identifiers? 

It would obviously complicate the Implementation to introduce delayed evaluation if 

it were not for the fact that it was going to be necessary in some cases anyway. 

If we made delayed evaluation the general rule, it would have the effect of 

imposing a data flow order of evaluation (62] rather than a textual order of 

evaluation on the procedures and class bodies in a database. This idea seems 

attractive in that it distinguishes the abstract structure of a NEPAL procedure or 

class body from its textual representation. 

This whole edifice of delayed evaluation is based upon the Idea that the provision 

of initialisation expressions is the appropriate way to deal with unknown values. 

Initialisation expressions with delayed evaluation would certainly be a very powerful 

way of dealing with unknown values, since an expression could be any arbitrarily 

complex algorithm. The possibility remains however that the value of the field 

might be not only unknown but unknowable. What if the field was date of death 

and the person was still alive ? 

There is a strong case to be made out for the introduction of a definite unknown 

or null value into the language to deal with such instances. Codd has recently 

proposed a mechanism for dealing with unknown values (63]. The essence of his 

idea is to add one more member, the unknown member, to the sets of values 

that may be assumed by any type. This involves modifications to the semantics 

of the standard operators over the prodefined types to handle the case where 

one or both of their arguments is unknown. However, provided that this is done 

consistently throughout this extension provides no problem. From an 

implementation viewpoint. Codd's approach has definite attractions. 

Possible problems with Nepal 

1. It could be argued that the archetyping mechanism violates the principle of 

abstract data types that function should be separated from implementation. 

It the class student has the class person as an archetype then it is possible 
to treat a student as a person. In which case the implementation of the 

class student as a specialisation of the class person is revealed. It may be 

objected that this means that one has no guarantee of the validity of a class 

as a abstract type, since the exported fields of its archetypes are not 

protected from modification. 

Whilst this isaserious objection it Is not overwhelming. We would argue that 

Nepal provides adequate mechanisms for the çonstriztlon of fully protected 

abstract data types and that semantic hierarchies are a worthwhile additional 

feature. 
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There are two distinct means by which full separation of function and 

implementation can be achieved. The first does not use archetypes. 

Consider the class dictionary defined above. In this case, the lexicon from 

which it is created Is 'unprotected'. We can easily create a class definition 

in which the implementation of the dictionary using a lexicon Is completely 

hidden, it we use a pointer., 

class dictionary( 

Import lexicon 

1st my.lexicon= default lexicon 

proc flnd.alI( string template, using -), pntr) 

my. lexicon (lexicon find. aiD ttemDlata.jIaineI 

-, find.aIl) 

Alternatively using the old definition of dictionary we could use the group 

mechanism to construct a scope in which the class lexicon was Invisible. 

let English.dlctionary = dictionary 

English. dictionary (lexicon - addjlat.wordaj ("Qljmbers). 

group English. space <- dictionary, English. dictionary 

The group English.space will now have access to the English dictionary but 

lacking access to the class lexicon it will be unable to coerce the English 

dictionary to its underlying lexicon. 

2. The transitive nature of the archetype relationship poses certain problems. 

We have defined the classes person and student. It we have the further 

ctasses 

class graduate. student(archetype student 

let first.degree= default "Sac" 

-> first, degree) 

class woman (archetype person 

l.t children : = default vector 1: :0 of person 

-), children) 

class female, graduate. student C 

archetype graduate. student, woman 

) 

Here we find that a female graduate student is coercible to a person via two 

routes: as a woman or as a graduate student and then a student. But the 

person that we arrive at by these two routes must be the same. In 

practice this means that the compiler when producing code for the generator 

For a class must ensufe that there are no duplicates created of any of the 

archetypes. It must therefore evaluate the transitive closure of the 

archetypes as a lattice, and then recursively generate code for the greatest 
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upper bounds of all the sub lattices. 

It is because of the problem of duplicated archetypes that we do not provide 

any operator to produce a class from Its archetypes. it we provided this we 

would have to rely purely upon good programming to avoid duplicates. 

3. 	The first criticism of the archetype mechanism 1* made from the standpoint 

of the Ada, Mesa school of modular programming (In fact It was made by 

A. Birrell of Xerox Park). An alternative and I think more telling criticism 

of the NEPAL scope rules can be made from the standpoint of those In love 

with classical Algol scope rules. This would be that the whole edifice of 

NEPAL scope rules Is inordinately complex and Inhomogeneous, a pastiche of 

inconsistent and confusing concepts. The resulting syntax Is a mass of 

exceptions. Groups can be declared within groups but nowhere else. 

Classes can only be declared in groups. Procedures can be declared 

anywhere as can integers, strings, vectors etc., why not classes? 

In NEPAL two incompatible scope graphs: the Algol nesting tree and the 

archetype lattice, are superimposed and the resulting conflicts require 

elaborate rules to resolve. It can be argued, indeed this thesis has 

argued, that languages should gain their power through simplicity and 

generality rather than through special features. Since one Is starting out 

from Algol would it not be better to build upon what the Algols are strong 

in, rather than mixing in another paradigm? 

One form of abstraction that Algol does support is functional abstraction. 

DAPLEX has shown the power that can arise from consistent and orthogonal 

application of functional abstraction to persistent data. it has been argued. 

I think convincingly, that by making procedures into first class citizens and 

consistently applying Algol scope rules. PS-Algol can be extended to achieve 

most of the effects desired from NEPAL [64] 

Suppose we wish 	In an 	extended S-Algol 	to create 	an 	abstract type 
bank, account with the operations create, 	credit and debit available on it. 
Crediting 	an account will 	only be 	possible if 	another 	account Is 
simultaneously debited, and 	If 	the keycode for the debited 	account is 
known. 	The use of procedures as first class citizens allows this to be 
implemented as follows: 

7-18 



structure account. ops ( o C tnt - pntr) create; 

c ( pntr, 	pntr, 	tnt, 	tnt) transfer)) 

structure account ( cpntr account, data) 

procedure build, account, package C -> pM,) 

begin 

structure acc.data( tnt keycode, balance) 

procedure New.acc (tnt kc) 

account (acc.data(kc, 0)) 

procedure transfer( pntr creditor, debtor; tnt amount, kc) 

begin 

let d. datadebtor(account. data) 

It d. data (keycode)=kc and d. data (balance)> =amount do 

begin 

let c. datacreditor(account. data) 

data (balance): c. data (balance )+amount 

data (balance): d . data (balance )-amount 
end 

end 

account. ops (New. aoc, transfer) 

end 

This results in a a new abstract type with two operations on it, create and 

transfer which can not be forged by any other code as no other code knows 

about the private structure class acc. data. 

4. The protection of shared data provided in the language is weak. The basic 

mechanism is the transaction procedure which locks the context within which 

it is located. The idea is that a portion of a shared database that is to be 

protected will have a single root, all actions on it will be encapsulated within 

transaction procedures declared within the class an instance of which 

provides the database root. This then becomes not only the root but the 

only route into the (sub)database. Only one process at a time can then 
affect the shared data. 

In a sense this mechanism is not so much weak but strong. Its very 

generality gives It power. With it one can construct any protection graph 

that one wants. The problem is that It may leave too much to good 

programming practice. A protected route into a subdatabase Is not much 

good if one of the transaction procedures returns a result that, however 

indirectly, provides a pointer into the supposedly protected data structure. 

There is a need here for a simple but safe transaction mechanism. It Is 

also worth noticing that the proposed mechanism provides no way of 

detecting or preventing deadlocks, though as the next chapter will show one 

could construct deadlock free protection graphs using it. 
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Status of Nepal. 

Implementation of Nepal has been postponed until more experience has been 

gained with PS-Algol. An attempt was made to develop an Interactive compiler 

based upon the S-Algol compiler. The modification of this to handle the syntax 

and scope rules of NEPAL was not difficult. A difficulty came when an attempt 

was made to Incorporate an interactive editing facility into the compiler. It 

became evident that the basic structure of a batch compiler was ill suited to 

running as an interactive one so further attempts at the use of force were 

abandoned. It was decided that the first release of the Nepal compiler would not 

implement any facilities for editing data or program definitions. This compiler 

was developed to the stage where It would car,y out syntactic and semantic 

checks on Nepal programs, and translate them into standard S-code. At this 

point a second difficulty was encountered. It was thought that some extensions 

to S-code would be needed. In particular It was thought that the doreferencing 

instructions would have to be modified and it was considered that it would be 

premature to settle upon a new standard for S-code until more experience had 

been gained with the implementation of PS-Algol. The Nepal compiler was 
implemented in S-Algol. For it to be operational it would have to be converted 

to run as PS-Algol. For both those reasons, priority was given to the 

development of the PS-Algol system. 

The success of the PS-Algol implementation, though it took much longer than 

anticipated, raises the question of whether an attempt should be made to 

implement NEPAL. The wisdom of such an attempt Is now open to doubt. 

PS-Algol is not enough, but theze are sufficient doubts about the wisdom of the 

NEPAL scope rules, to justify another attempt at designing an Improvement on 

S-Algol rather than going on immediately with a Nepal Implementation. 
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Problems of Large Persistent Address 8pces. 

Chapter presented an account of the run time environment used to support the 

persistent heap in PS-Algol. This area Is now fairly well understood. The 

problems that remain are to do with how one manages the larger part of the 

address space, the address space In its persistent form. We have to ask what 

sort of addressing topology we will allow in this larger global address space. In 

the current PS-Algol implementations we deal with only one database at a time, 

and this database is an exact model of the store assumed by the S-Algol 

language - with one exception: it Is finite. The addresaability rules for the store 

we as defined by the scope rules of the language and the contingent 

dstastructure that may have been constructed on the heap. In fact, given the 

current implomentation of the CMS the space available in a database is limited to 

one megabyte. Without changing the interface between the CMS and the rest of 

the system this could be upped to an address space of 8 millIon objects. That Is 

the maximum number of. objocts provided within a CMS "bag", given the existing 

format of a PID. P10*, however, are capable of tranabag addressing, so the 

number of objects addressable within a bag must be multiplied by the number of 

simultaneously addressable bags in order to arrive at 'the total object address 

space. This total address space is 32 bits split between S bag bits and 24 bIts 

to specify the number of objects within a bag. 

At present we are only capable of using a fraction of that total address space. 

What I now wish to examine is how to partition such large address spaces. The 

problems that have to be dealt with in this context are those of data sharing and 

concurrency on the one hand, and global garbage collection on the other. It is 

assumed that programs in languages supporting persistence may be run in a 

distributed environment. 

I would not claim to have done more than investigate some possibilities in this 

area. 

Large Distributed Address Spaces and Concurrency 

In what follows I am only dealing with integrated progmseing/persistence 

management systems. 

Minimal Groups 

The basic unit of address space is assumed to be something like a Nepal group. 

It may be assumed to have the following minimum attributes. 

. 	It may contain definitions of classes or abstract types. 

It may contain named Instances of those types. 

It may contain unnamed but indirectly accessible 

instances of these types. 
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Graphs and loop, rules. 

I hypotheslse that In a persistent programming environment, the fact that the 

programs and data form part of a homogeneous typed environment enables the 

use of language features such as scope rules to Impose compile time constraints 

which can reduce concurrency control and garbage collection problems. This 

should provide an alternative to such methods as the manual definition of 

transaction classes for conflict graph analysis [65] • or the maintainence of global 
time to aerialise transactions [66] 

If identifiers or classes In one group are visible within another, then it is possible 

to represent the visiblity conditions as a directed graph. 

In Fig 8.1 the nodes Indicate groups 01 and 02. The edge from 01 to 02 

indicates that there is some identifier declared in 01 that Is visible within 02. In 

languages supporting a heap (the only ones that are interesting) there need to 

be additional rules concerned with procedure calling to impose these visiblity rules 

on the heaps of 01 and 02. Those are gone into later. 

The scope/visibility rules of the system dofine the class of directed graphs onto 

which visibility conditions subject to these rules can be mapped. 

Problems with scope rules 

Scope rules for distributed address systems have to address themselves to the 
following problems. 

User convenience. 

Garbage collection. 

Concurrency control 

The garbage collection problem is how to do garbage collection on a large 

distributed disk based heap in a reasonable amount of time. I assume that a 

hopeful approach to this would be to allow piecemeal garbage collection of parts 

of the heap. This implies that there must be some way of partitioning the heap 

into compartments whose garbage collection can be carried out without prejudice 

to information held in other compartments. This approach has already been 

advocated by Bishop in [67] He termed these compartments areas, and proposed 

that each area have associated with it a table of references made from within the 
area out to other areas. 

One can of course just hope that the garbage collection problem will go away by 

the time we are in a position to construct large distributed systems, due to 
advances in storage technology making it impossible or unnecessary to recover 

space. Let us look at various possible scope rules and thelr implications. 

A rule that says no identifier is visible outside a group, and that only one 

process may exist at a time in a group, simplifies garbage collection and 

concurrency control, but lacks user convenience. This is what we have with 
PS-Algol. 
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At the opposite extreme a rule that an Identifiers In a group are visible from all 

other groups and that only  one process can exist per group 1  is powerful but 
deprives users of the advantages of protection besides being impossible to 
garbage collect. 

From the users point of view It would. probably be best If: 

A user could make Identifiers available to selected 
others. 

A user could make some idontifiers available publicly. 

Users could have as many processes as they wanted in 

their 

address space. 

This is a hard set of requirements to meet. 

A conservative approseh 

In the Nepal design we pursued what we thought would be a safe approach. In 

so doing we imposed a number of restrictions which may be undesirable. The 

visibility conditions induced by the Nepal scope rules can be exemplified by a 
graph of the sort shown in Fig 8.2. 

This is similar to a tree except that there may be direct links from a root to a 

leaf bypassing intermediate levels. From the point of view of managing the 
garbage collection problem this structure has definite advantages. Assume that 

we try to garbage collect individual groups (since goups can have processes in 

them I treat them as subjects). When collecting garbage a group need only ask 

those groups below it if they have any references to items that it holds. For 
most groups this means that garbage collection can occur without reference to 

any other groups as most goups are leaf nodes. 

From the point of view of concurrency control we still have problems. Let us 

make the simplifying assumption that for each group there exists some object 

table that must be locked to carry out a transaction on any item in the group. 

This pushes the locking granularity up to 'group level. This would not be 

appropriate in some applications, but in others. CAD for example, such coarse 
locking would be adequate. 

A partial ordering is imposed upon the groups. 

If we define the root as the UPS under this ordering, 

then access paths are monotonically increasing under the 
ordering. 

The interaction of access paths from processes in 

different groups is deadlock free. 

The Nopal scope rules can thus in a sense be considered safe. It is still 

necessary to specify the rules that prevent anything in a leaf group's heap being 

visible from the root groups. What is the problem here? 
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In essence it arises from the existence of reference or pointer variables in the 

root group. Consider the following example. 

group one b.gin 

class cons begin 

let hd: = default nil 

lot U: = default nil 

-, hd,tl end 

let apntr:=cons 

group two - cons, apntr 

begin 

procedure build, list ( -> pntr) 

begin 

end 

apntr: -build, list 

end 

end 

In this example, a lint built in group Iwo is assigned to a variable in group one. 

Group one ends up with a pointer into group two. How could we avoid 	this? 

We could decide that only constants in group one could be visible in group two, 

but this wouldn't work. A constant pointer could refer to structures with variable 

fields. It you had access to the pointer you would have access to the variable 

fields. So much for that idea. 

We could hide all idontifiers except for functions from inner groups. The problem 

with this is that Nepal or• S-algol functions can have side effects. A function 

declared in group one would have access to all, the identifiers of that group. It 

could potontially be called in group two and assign a heap object in group two to 

a variable in group one. Even if we were to insist that only pure functions 

without side effects were to be visiblo, this would still not solve the problem, as 

a hinction declared In group one could deliver as its result some object on group 

one's heap. If this object had ,aetable fields In it we have broken our rules 
again. 

In the end the only solution seems to be to rule that groups are only to have 

road access to their mother group. With the sort of run time support that in 

provided by the CMS, this I. a trivial rule to enforce. If a process starts in 

group two, we allow it to do what it likes to group one, but just do not commit 

the transaction on group one at the and. As a result, the publicly visible version 

of group one does not change, and can never acquire any pointers into a higher 

group. If we never allowed daughter groups to alter the state of the mother 

groups, than there would be no concurrency problem left. 

But we can not be this strict. The usefulness of the system would be greatly 

restricted if there was no write access to data shared between groups. We need 

to provide a loophole for such updates. The idea of transaction procedures can 

8-4 



be developed into a a suitably safe loophole. A traaactidn procedure should have 

the following properties: 

It should have the effect of locking the group In which It I. declared. 

In the original NEPAL proposal we only intended It to lock the class 

Instance Inside which it was declared. 

Its parameters would have to be called by value If the transaction 

was called from another group. By this we mean that If the 

parameters were pointers then a copy must be taken of the 

datastruoture that they refer to. In fact the copy would have to be 

of the transitive closure of the parameters on the heap under 

reachability. 	 - 

This tightening up of the semantics of transaction procedures, along with making 
them the only form of write access to ancestor groups makes the Nepal scope 

rules sale for concurrency and garbage collection. 

An Adventurous Approach 

The Nepal structure may be safe but it is pretty limiting If you are going to have 

a distributed environment. For distributed systems it would be difficult to have a 

tree structure. It would be preferable to have a general network. The question 

arises: can we impose constraints upon a network so that it models a tree but is 

not as restrictive as a tree. 

I will try to define this environment in DAPLEX. 

DECLARE TypeO=,ENTlTY  
DECLARE BaaatypeO=>Type  
DECLARE Components(Type)= 	Type  

DECLARE GroupO>ENTITY  
DECLARE Owntypes(Group) 	Type  
DECLARE Exporttypes(Group) 	Type  
DECLARE Importtypes(Qroup)>Type  
DEFINE Locals(Group) 

UNION OF Owntypes(Group),Baaetype  
DEFINE CONSTRAINT Valldexport(Group) 

TRANSITIVE OF 

Components (Exporttypes (Group)) 

SUBSET 

Locals(Group)  
DEFINE CONSTRAINT Validimport (Group ) 

Importtypes(Group) SUBSET Exporttypes  
DEFINE CONSTRAINT VaIldowntype(group) 

Owntypes (group) 

DISJOINT FROM lmportypes(group)  
DEFINE Components (basetype) 	NULL  

This sets up a set of groups each of which owns a set of types. In addition a 

group may export or import types. The important thing is the constraints. A 

group can only import a type that has been exported. A group can only export a 
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type If that type references only locals or base types. We now set up the 

definitions for Identifiers. 

DECLARE ldOENTlTY 	 (13) 

DECLARE Ownlda(Group)3ld 	 (14) 
DECLARE Typeof(ld)=Type 	 (15) 

DECLARE Exportids(Group)= Id 	 (16) 

DECLARE Importids(Group)=Id 	 (17) 

DEFINE CONSTRAINT Validexpid(Group)= 

Typeof (Exportlds (Group)) MEMBER Exporttypes(Group) (18) 

DEFINE CONSTRAINT VaIidimpld(Group)= 

Importids(Group) SUBSET Exportida 	 (19) 

Those constraints protect us against the dreaded funny loops. What do I mean 

by funny loops? 

Funny toops are the 	basis of deadlock and garbage collection problems in a 

network. Lets look at Garbage collection first 

In Fig 8.3 we have two groups A and B. A has an object 	x visible in B. B 

has an object 	y visible in A. The two objects x and y refer to each other. 

Since a distributed garbage collector must work by A asking B "which of my Ida 

do you roference" and B doing the same to A when B garh.e collects, the pair 

x and y cannot be garbage colloctod even it no other iteni points at either of 

them. 

To transform this into a concurrency funny loop we must: 

Introduce two now groups C,D. 

Assume that the objects x and y have transaction fields. 

Assume that transactions operate on the groups in which 

they occur. 

Assume that the transaction fields of x attempts to 

access y and vice versa for the transaction field of y. 

If C starts a transaction on x and D starts a transaction on y, then you get 

deadlock. 

The type visibility rules outlined above should outlaw these funny loops. We can 

show this as follows. In the examplo above: 

x is an export of A and y is an export of B 

so from rule 17 

typeof(x) Is a member of oxportypes(A) 	 (20) 

typoof(y) is a member of exporttypes(B) 	 (21) 
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If x refers to y then assuming • typed language 

typeof(y) Is a member of componenta(typeof(x)) 	(22) 

and thus from 20 and 9 

typeof(y) Is a member of locals(A) 	 (23) 

but we already have it that 

typeof(y) is a member of locals(B) 	 (24) 

from 21 and 9 which leads us to the contradiction that typeof(y) Is local to two 
different groups. 

We can conclude that the scope rules specified do protect us against 

uncollectable or deadlock producing loops. They do have the disadvantage of 

excluding the use of Groups as a tool for successive abstraction In the provision 

of library types. One cannot have an abstract typo in A that is refined In B an) 
then the refined type used in C. 

By working at the level of language design, and employing strongly typed 

languages, it is possible to impose constraints upon the types of connectivity that 

can be formed between objects in large partitioned persistent address spaces. 
Type rules and scope rules, by abstractly defining the range of legal operations 

in the language, can constrain run time programs to construct only such 

structures as are incrementally garbage çolloctable, and deadlock free. The price 
that is paid for this, as with all strong typing,  is a loss of power. 
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chapter 9 

Results and Prospects 

The research project upon which this thesis is based started out with some 

elevated goals. Experience has shown that these were rather too elevated at 

some points, but that one of these goals, the most fundamental, is attainable. 

It was hoped that it would be possible to build a network environment for 

persistent programming. This was to be based around a database server or 

chunk manager. This would provide reliable storage of chunks of data sent to it 

by client machines on a Local Area Network. These client machines would be 

running programs In Pascal and Algol-68 and their heaps would be looked after 

by the Data Curator. 

This was going to demand a considerable level of intelligence on the part of the 

Data Curator. It was going to have to know about the typed environments 

generated by all of the various Pascal and Algol-86 programs on all of the client 

machines. This in turn implied that the compilers for these and any other 

languages supported would have to enter into a dialogue with the data curator 

during the course of compilation, to inform it of what types were defined in the 

program under compilation. The hope was that by creating this new environment 

a large body of software, particularly CAD software, written in these languages 

could with Only slight modification be made to run with a persistent heap. It was 

further hoped that existing compilers for these languages could be used, again 

with only small modifications to cause them to save their symbol tables in the 

Data Curator. 

As if this were not hubris enough, it was hoped that the data stored in the Data 

Curator would be accessible to programs in multiple languages on multiple 

machine architectures. Data generated in an Algol-68 program running on Vax 

was to be usable by a Pascal program running on an Interdata. 

The implementation of the program of research has shown most of these goals to 

be either too ambitious, not feasible or not worth-while. 

1. 	 A Network Environment 

With the advantage of hindsight it looks as if this idea was little more 

than a kow-towing to the fashions of the day, necessary perhaps to 

attract funding, but essentially tangential or even orthogonal to the 

main purpose of investigating persistence in programming languages. 

As it turned out, lack of equipment in the early stages of the project 

prevented the Data Curator being connected to a network. Despite 

this, all the Data Curator software was initially written on the 

assumption that it was going to work over a network. In the 

absence of an adequate message passing facility in the operating 

system, this was found to impose a excessive overhead cost on 

calling Data Curator facilities. The Vax version of the software 

abandoned even the pretence that it was designed to work over a 

network, and was much the better for it. If this experience shows 

anything, it is that it is unwise to pursue mutually independent. 

research goals within a single program of research. 
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An Intelligent Data Curator 

The Idea of making the Data Curator Intelligent, In the sense that it 

should know about types, names, environments etc, turned out to 

be based upon a mistaken idea of the future evolution of computing 

costs. It was thought that the translation of Persistent Identifiers to 

Local Object Numbers would always be an expensive task both In 

terms of memory and cpu cycles. It was assumed that the client 

machines would have limited cpu power and small address spaces, 

making it impossible for them to carry out this translation. In fact 

cpu power and memory are the components of computers whose 

price is falling most rapidly. Moreover, they are cheaper for small 

computers than for large ones. The cost of a given amount of 

memory and processing power in the form of 16 bit micro computers 

is a fraction of what you have to pay for an equivalent power in the 

form of 32 bit minicomputers. 

What remains expensive is disk storage. It Is thus sensible for a 

Data Curator to have the minimum of intelligence but a high 

input/output capacity and a large disk capacity. The only Data 

Curator software that was actually put into use was the untyped 

Chunk Management System, aimed to meet this requirement. 

Use of Existing Popular Languages 

The two initial target languages of the research were Pascal and 

Algol-68. These were widely known and had existing user 

communities. It was hoped that it would be possible to add 

persistence to the languages with only minimal modifications to their 

syntax and semantics. Investigation revealed that the changes 

required were not trivial. It would be necessary to create some 

form of persistent scope within which the types and roots of the 

persistent datastructures would be declared. If one made such 

changes, it would be a touch of sophistry to claim that one still had 

the same language. A considerable effort would have to be 

expended to convert programs from the old non-persistent form to 

the new. 

The reason why such changes to the language become necessary are. 

that these languages are strongly typed and type checking is done at 

compile time. Thus all types used in the persistent heap and all 

roots of the heap must be explicitly declared at compile time, hence 

the need for a persistent scope for these declarations. In the 

language acutuy used in the research. S-Algol, there is an element 

of run time type checking that is just sufficient to allow the provision 

of a set of generic procedures as the means by which roots into the 

persistent heap can be established. 

We have shown that it is possible to take an Algol and make no 

change to its syntax yet still provide it with a persistent heap. But 

it was only possible to do this because we chose a version of Algol 

with a rather modern and elegant design. The hypothesis that any 

Algol-like language could be given a persistent heap with only 

minimal syntactic changes, has not been proved valid. It has not 
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been proved false, since it is not clear how one can disprove such a 

hypothesis. An inablility to see any way of doing something does 

not Imply that there is no way of doing It. However, on the basis 

of over a year spent attempting to modify the syntax of Pascal and 

Algol-Ge to support persistence it does seem unlikely that this can be 

done without such big changes to the syntax and scope rules of the 

language as to rule out the use of existing compilers. 

Use of Existing Compilers 

The hope that existing compilers could be used has, paradoxically, 

proved both true and false. It is true that we have been able to 

use the existing S-Algol compiler unmodified, but this has only been 

possible because the compiler provides the necessary information for 

run-time type checking. This was vital for the new garbage 

collection algorithms and allowed us to postpone until run time, the 

binding between roots and their symbolic representations. 

Examination of other compilers showed them to be too monolithic to 

permit ready modification to handle their symbol tables as a 

persistent database. 

Cross Language Porbility of Data 

This has proved to be infeasible. The differences between the type 

rules of the languages under investigation prevent the construction of 

a more general set of type rules under which Canonical 

representations of types may be unambigously compared. In the 

absence of some method for evaluating type equivalence, no secure 

cross language portability of typed data seems possible. 

S. 	 Orthogonal Persistence 

One thing which has been proved is that it is technically feasible to 

implement persistence as an orthogonal property of data. S-Algol 

with a persistent heap has been implemented on two machines. 

Addressing mechanisms and garbage collection algorithms have been 

developed which support transparent access to and secure storage of 

persistent data-structures. These implementations are constantly 

being improved as we gain a better understanding of the practicalities 

of supporting persistent heaps. Moreover, the subjective experience 

of those who have worked with PS-Algol is that it is much easier to 

write programs that work on persistent data in PS-Algol than in 

Pascal. 

It can therefore be concluded that the most fundamental hypothesis 

at the research program has been justified. 

It is possible to construct an Algol with a transparently persistent 

heap, and that such a language is of help in the development of 

programs operating on persistent data. 

7. 	 Longer Term Persistence 

PS-Algol provides no means of modifying datastructure definitions 

whilst still being able to preserve persistent data, nor does it provide 

a structured enough access to the persistent data. In the long 

term, any software system using persistent data will require some 
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means of modifying Its data definitions. Any serious mutti user 

system will require a controlled and partitioned access to shared data 

and the provision of views of data. These features cannot be 

provided by minor extensions to some existing language. They 

necessitate the development of a language supporting the same set 

of features as NEPAL, though these need not be provided In the 

same way. PS-Algol should provide a base upon which such a 

language can be developed. 

Prospects 

In my first chapters I argued that a large part of what Is euphemistically called 

computing, is still tied up with the processing of serial data files. The greater 

part of data processing is still in the age of the Turing machine. Whether it is a 

matter of commercial applications, editing or compiling, it is the persistent store, 

the disks not the RAM that holds the significant data. So long as this Is 

represented within programming languages as serial data streams, or at best 

untyped random access store, the main body of computing cannot be said to 

have entered the Von Neumann age. The Von Neumann model of computing has 

so far only been applied to volatile store. Around this there has grown up a 

whole linguistic culture to provide sophisticated abstract representations of this 

store. The development of orthogonal persistence liberates the full potential both 

of the Von Neumann model and its linguistic culture, and puts this at the 

disposal of applications programmers. 

The smashing of the Turing bottleneck, making persistence trivially available 

should produce a greatly enriched computing culture. We can foresee the 

demise of files, and of the whole body of computing techniques that are 

predicated upon them. Ask yourself for instance: how much of language design 

and compiler technology is based upon the assumption that the definitive form of 

a program is a serial file? 

How much of the much vaunted Unix culture is just a collection of programs that 

do things to text files? 

To make revolution it is first necessary to create revolutionary public opinion 

[68]. In the context of computing we must make persistent programming 

available cheaply and efficiently on widely used brands of micros. In doing this 

we can create among the broad mass of new computer users, a culture and 

climate of opinion that takes persistence for granted. Win the peasants and the 

citadels must fall. 
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