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Abstract 

The presence of trace contaminants in drinking water resources has been related to 

adverse health effects in living organisms and humans. Current technologies do not 

adequately remove these contaminants from water and /or require high energy supply. 

Exploring low cost, low energy processes in order to eliminate trace contaminants is 

essential considering that access to clean drinking water and energy is becoming 

more challenging in many parts of the world. Hormones and fluoride are the two 

contaminants studied in this research and hybrid systems which combine sorption 

with low pressure ultrafiltration are proposed for their removal. Sorption is a 

promising removal mechanism if efficient sorbents and operational conditions are 

selected, however, the introduction of sorbent materials can cause fouling in 

ultrafiltration. Fouling reduces the membrane permeability and increases the energy 

requirement of the system. The overall aim is to study the proposed hybrid sorbent- 

ultrafiltration systems in terms of contaminant sorption capacity and membrane 

performance. The systems are tested under varying sorbent size (52 -3000 nm for 

hormone, <38 -500 µm for fluoride removal) sorbent concentration (1.7 -84 mg /L for 

hormone, 1 -50 g/L for fluoride removal), sorbate concentration (100 ng /L hormone 

and 5 -500 mg /L fluoride) and solution pH (3 -12). The thesis can be split into two 

parts: one part for hormones and the other for fluoride. 

In the first part, a hybrid polystyrene nanoparticle -ultrafiltration system is 

investigated for hormone removal. Polystyrene nanoparticles are employed as they 

provide a large active surface area for the sorption and they can easily be 

manufactured in different sizes and with various functional groups. The results show 

that the system can only compete with the existing nanofiltration/reverse osmosis 

membrane systems if the sorption capacity of the polystyrene nanoparticles is 

increased. For this reason, carboxyl functionalized polystyrene nanoparticles were 

also tested. Contrary to expectations, even less hormone sorption is achieved with the 

functionalized particles. Further investigation of other functional groups such as 

amine /amidine for their hormone sorption capacity is recommended. 
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In the second part, laterite and bone char are selected as two sorbents for the hybrid 

sorbent -UF system for fluoride removal as they are locally sourced, low cost 

materials in parts of Ghana and Tanzania, respectively, where fluoride contamination 

is a major problem. The sorption capacity and the membrane fouling of the hybrid 

system with the two selected sorbents are compared. Fluoride sorption capacity of 

the bone char system is higher than the laterite system and this is attributed to the 

difference in the available surface area. The fouling of the membranes operated with 

laterite at high initial fluoride concentrations and alkaline solutions is linked to the 

precipitation of iron and aluminium complexes. With further system optimization, 

both hybrid laterite and bone char systems show the potential to be viable solutions 

for fluoride removal, noting that the bone char system is more feasible for high 

fluoride concentrations above 10 mg /L. Based on lab scale experimental results, two 

hybrid laterite -ultrafiltration systems are designed to be tested in Ghana. The two 

systems, one with submerged hollow fibre and the other with direct dead end tubular 

ultrafiltration membrane modules, are operated with real surface and ground waters. 

The findings indicate that the amount of sorption obtained in the field is lower than 

that which is obtained with laboratory experiments due to the presence of interfering 

co -ions in the real waters and differences in membrane systems. The systems also 

show the potential to remove arsenic, uranium and lead. The system with hollow 

fibre membranes can be suggested as an appropriate system for ground water 

applications as it did not experience any fouling and the investment cost could be 

lower compared to the tubular membranes. However, if the surface waters are to be 

treated with the proposed hybrid system, the tubular membranes offers a system with 

no fouling. The hybrid laterite -UF system shows to be a promising treatment 

technology for fluoride contaminated waters in Ghana. 
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1. Introduction 

1 Introduction 

This thesis proposes two novel hybrid sorbent -ultrafiltration (UF) systems, based on 

the integration of specific sorbent materials into UF, in order to remove hormones 

and fluoride from drinking water. 

Consumption of drinking water with fluoride concentrations exceeding World Health 

Organization (WHO) guideline, 1:5 mg /L, causes dental and skeletal fluorosis in 

humans, especially in infants [1, 2]. Fluoride is a worldwide problem occurring in 

many countries, most of which are developing countries [3, 4]. The scale of the 

problem is larger in developing countries as the drinking water sources are limited 

and there is no access to removal technologies for fluoride. 

Hormones are detected in effluents of wastewater treatment plants (WWTPs) and 

surface waters in ng /L concentrations [5]. Even present at such low concentrations, 

hormones can interfere with the endocrine regulatory systems of humans and animals 

causing feminization of male fish [6, 7] or increased risk of cancer in humans [8, 9]. 

In near future, new water quality standards are expected to be introduced to regulate 

the hormone concentrations in effluent and drinking waters. In this regard, there is a 

need to explore efficient treatment technologies for hormone removal from water. 

Current techniques available to remove hormones or fluoride from water either do 

not adequately remove these contaminants from water or require high energy supply. 

Worldwide increasing concern over water and energy scarcity drives the search for 

sustainable water treatment technologies especially in terms of energy consumption. 

Sorption seems to be the most cost -effective removal technique for both 

contaminants. There are various sorbent materials with high sorption affinity. 

Nevertheless, large scale water treatment applications using these sorbent materials 

are limited to fixed bed reactors. Within the last decade, hybrid sorbent -low pressure 

membrane filtration systems are proposed as an alternative technology for the 

removal of trace contaminants such as arsenic [10], mercury [11], copper, cobalt, 
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nickel, zinc [12], lead [13], cadmium [14], soluble organics [15] and boron [16] 

from drinking water or wastewater. 

A hybrid sorbent -membrane system has several advantages over a fixed bed sorbent 

reactor which are summarized here. A hybrid sorbent- membrane process gives the 

opportunity of using sorbent materials in the "powder" form which provides a large 

specific surface area for sorption. The usage of very fine sorbent particles in fixed 

bed reactors is not possible because of the increased pressure drop with smaller 

particle sizes [17, 18]. Pressure drop occurs in membrane systems as well, due to the 

particle deposition on the membrane surface. Nevertheless, the pressure drop can be 

much less with membrane systems if the thickness of the particle deposit on 

membrane surface is much smaller than the height of the fixed bed composed of 

particles. Additionally, by adjusting the operational parameters in a membrane 

system, the settling of the particles on the membrane surface and thus the pressure 

drop can be avoided. Koltuniewicz et al. [17] compared system performance in terms 

of pressure drop and cost for a fixed bed column and a sorbent- membrane system 

with the same size sorbent particle of 1 p.m. The results show that the pressure drop 

in the membrane system is two orders of magnitude less than that in the fixed bed 

system. The difference in the pressure drop results in a total operational cost for the 

membrane system being three orders of magnitude less than the fixed bed system. In 

the same study [17], a comparative evaluation also shows that the membrane system 

is cheaper than the fixed beds for sorbent particles with a size equal to or less than 

300 µm. The capital cost of a fixed bed reactor is likely to be less than the sorbent- 

membrane system as the membrane modules will add a considerable amount of cost, 

about $1300- 2000 /m2 [19] to the system. However, operational cost is expected to 

more than compensate the capital cost in long term application when particles less 

than 300 µm are utilized in the sorbent- membrane system. OF systems also give the 

possibility of removing suspended solids from water, if necessary. Moreover, unlike 

fixed bed reactors, ultrafiltration systems can disinfect water by removing bacteria 

and virus from water with the right pore size membranes. 
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1. Introduction 

Combination of activated carbon with membrane filtration is the only hybrid process 

proposed for the removal of hormones up to date. A powdered activated carbon 

(PAC) -Microfiltration (MF) process has been shown to be effective in removing 

estrone (El), a steroid hormone, from water [20]. In another study, the removal of 

estradiol (E2), with a PAC -UF membrane is investigated in the presence of natural 

organic matter [21]. The source and characteristics of these hormones are detailed in 

Sections 2.1.1 and 4.2, respectively. The E2 removal with a PAC -MF system is 

hindered by the deposition of PAC on the membrane surface and the deposition is 

influenced by the intensity of mixing and the hydraulic retention time [22]. 

In this study, for the hybrid sorbent -UF system, polystyrene nanoparticles are 

selected as sorbent materials for the removal of hormones. The PS nanoparticles are 

employed because first they provide a large surface area and second they are 

uniform, non -porous, can easily be manufactured in different sizes and can be 

functionalized. Moreover, they are chemically resistant enabling regeneration of the 

used materials. Hormone sorption capacity of polystyrene nanoparticles is not known 

and polystyrene nanoparticle-UF system is a novel hybrid system which has not been 

studied before. 

It is the first time that a hybrid sorbent -UF system is proposed and studied for 

fluoride removal in this study. Laterite and bone char are the two sorbent materials 

selected for this hybrid system. The selection of these sorbents is based on three 

criteria which are accessibility, cost and the possibility of regeneration of the 

sorbents with the prospect of system application in developing countries. Although 

these sorbents have been studied for their fluoride sorption capacity, filtration of 

these sorbents with OF membranes has not been systematically studied before. 

For the design of such hybrid systems, determination of certain parameters is 

essential. These design parameters, which are studied in this study, are: 

sorbent sorption capacity 

optimal sorbent size /concentration 
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optimal contact time 

contaminant concentration 

solution chemistry (pH) and 

the integration method of the sorbent. 

Determination of some of these parameters is the main research challenge in this 

study. For example, the use of smaller size sorbent materials is desired as they 

provide a larger surface area for the contaminant sorption. On the other hand, smaller 

size particles are not desired in ultrafiltration as these particles are likely to cause 

larger hydraulic resistance in the system and thus influence the membrane 

performance adversely. Other design parameters such as sorbent concentration can 

cause similar paradox in the decision process of optimum process parameters. 

Therefore, determination of an optimum sorbent size or concentration for a hybrid 

system is one of the main objectives in this study. The solution chemistry is another 

parameter which can largely influence the chemical and physical properties of the 

sorbents as well as the membrane characteristics. The changes in characteristics of 

sorbent and membranes alters the sorbent- contaminant and sorbent- membrane 

interactions which are investigated within the scope of this study. 

1.1 Sorption in a Nutshell 

Sorption occurs when the molecules (sorbate) of a fluid bind to the surface of a solid 

material (sorbent) [23]. The following steps can summarize how sorption takes place 

for a porous sorbent (adapted from [24]): 

external mass transfer: the diffusion or transport of sorbate to the external 

surface of the sorbent from bulk solution across the boundary layer around 

the sorbent particle. 

intra- particle diffusion: the transfer of the sorbate ions into the porous 

structure of the sorbent 

sorption of the sorbate on the active sites of the sorbent by the means of ion 

exchange, molecular or intermolecular interactions 
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All these steps can be influenced by many factors, such as the chemistry of the 

sorbate, physical and chemical characteristics of the sorbents and operational 

parameters such as the solution pH, temperature, initial sorbate concentrations. 

Determination of sorption equilibrium is very important as it provides an 

understanding of the sorption kinetics and the amount of sorbate accommodated by a 

sorbent [25]. Various sorption isotherms are used to describe the sorption 

equilibrium data of different sorbents and systems. Langmuir [26] and Freundlich 

[27] are the two commonly used isotherms. Sorption kinetics and capacity determine 

the efficiency of a sorbent material [25] and both can be influenced by many factors. 

Contaminant (sorbate) and sorbent characteristics influencing the physical and 

chemical interactions responsible for the sorption process are summarized in Table 

1 -1. 

Table 1 -1. Contaminant and sorbent characteristics influencing the sorption 

Characteristics Important for /as 

Contaminant 

Hydrophobicity 
as octanol -water partition coefficient (K°w) 

Intermolecular interactions 

Dipole moment 
as Debye (D) 

Intermolecular interactions 

Available functional groups Intermolecular interactions 

Disassociation constant (pKa) 
Intermolecular and mainly 

electrostatic interaction 

Solubility (g/L) 
Above the solubility limit, 

sorption is hindered 

Molecular size /weight (nm or g /L) 
Mobility and diffusivity into 

sorbent pores 

sorbent 

Surface area or micro /macro pore volume 
(cm2/g or mL /g) 

The available active sites for 
sorption 

Hydrophobicity 
as contact angle ( °) 

Intermolecular interactions 

Available functional groups 
as group density 

Intermolecular interactions 

Surface charge 
as zero -point charge (pHz,°) 

Electrostatic interactions 
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1.2 Ultrafiltration 

In an ultrafiltration (UF) process, a solution is pressurized along a membrane filter 

which is a selective barrier. This barrier restricts the transport of certain materials 

such as particles and colloids but allows the solvent to pass through. The restriction 

of the transport depends on the membrane properties and the physical and /or 

chemical characteristics of the materials in the solvent. Ultrafiltration processes are 

successfully used in water and wastewater treatment as well as industrial applications 

such as fruit juice production. The membranes can be made of organic or inorganic 

materials. Polymeric membranes are the most common membranes in waste /water 

applications [28]. 

Size exclusion, sorption and charge repulsion are the three main mechanisms playing 

a role in UF. UF membranes are classified based on their selectivity of particles or 

solutes of different size range. Depending on the preparation method, each 

membrane may have a single pore size distributed uniformly or a distribution of 

different pore sizes. In UF, membranes with an average pore size varying between 1 

and 100 nm are used. UF membranes are usually identified with their Molecular 

Weight Cut Off (MWCO) in kDa units. The MWCO of a membrane indicates the 

molecular weight (MW) at which 90% of compounds are rejected by that membrane 

based on a size exclusion mechanism [28]. The compounds with MW smaller than 

the MWCO of the membrane are expected to pass through the membrane and appear 

on the permeate side. 

UF membranes are generally used to separate the particles or solutes with MW 

ranging from 104 to 106 [28]. Particulates, macromolecules, bacteria and viruses can 

be removed from water by UF membranes due to their relatively large MW. Figure 

1 -1 presents the application range of UF membranes in comparison to other 

membrane processes. The figure also displays the size range of contaminants 

(hormones and fluoride), sorbent materials (PS nanoparticles, laterite and bone char) 

in comparison to MWCO of UF membranes used in this study. The MW of fluoride 

and hormones being 19 g /mol and 250 -350 g /mol, respectively are too small 
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compared to the MWCO of the OF membranes (1 -100 kDa: 1000 -100,000 g /L) used 

in this study. Therefore, any retention of these contaminants by OF membranes based 

on size exclusion is not expected. The role of the sorbent materials integrated into OF 

system becomes significant as the removal is based on their sorption capacity for 

hormones and fluoride. Sorbent particles are expected to be fully separated with OF 

as the size of the sorbents is larger than the pore size of the membranes. 

Contaminant/ 
Sorbent Size 

µm 

nm 

MW (g/L) 

Contaminants 

Sorbents 

Membrane 
Process 

0.001 0.01 01 1 0 10 

1.0 10 100 1000 10,000 

100 200 1000 100,000 

Aq. salt 

Metal Ion 

Hormones 

500,000 

Bacteria 

nofiltration 

Proteins 

PS-Nanoparticles 

Laterite and Bone char 

Ultrafiltration 

PL-UF 

Ing 

Zenon 

Microfiltration 

Figure 1 -1 Apprcation range of ultrafiltration in comparison to other membrane processes 
(modified from [28]. F: Fluoride ion, Membranes used in this study: PL -UF: PL series flat sheet 
OF membranes (1 -100 kDa), Inge: dead -end OF module, Zenon: submerged OF module. 

Besides the sorption on sorbent particles, OF membrane polymers can also act as a 

sorbent in the hybrid system. Sorption of hormones on OF membrane is reported in 

several studies [29 -33]. To avoid any complexity, OF membranes made of 

regenerated cellulose are selected as minimal hormone sorption on such membranes 

is expected. Sorption of fluoride on membrane polymers has not been reported. 

Selectivity and the liquid flow rate through the membrane are the two parameters 

determining the performance of a membrane process [28]. The selectivity of a 

membrane is usually expressed in terms of retention [28] which can solely be 

attributed to the size exclusion mechanism. In this study, the term removal is used 
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instead of retention, since the hybrid system relies on sorption rather than size 

exclusion of the contaminants. Contaminants removal percentage (R) is calculated as 

in Equation 1 -1, where Cp and Cf are the contaminant concentrations (mass /volume) 

of permeate and feed, respectively. 

( 
C 

R= 1 100 
Cj.i 1 -1 

Flux (J) is the volume of liquid flowing through a membrane per unit membrane 

surface area and time. The unit of flux is L /m2.h. [28]. Permeability (L,,) is defined as 

flux at a given trans -membrane pressure and its unit is L /m2.h.bar [34]. A decline in 

flux or permeability is an indication that the membrane performance is deteriorating. 

This deterioration is termed 'fouling' in membrane applications. Fouling is one of the 

major factors limiting the use of membrane processes. Fouling and the factors 

influencing fouling will be discussed in Chapter 2. 

1.3 Aim and Objectives 

The overall aim of this research is to: 

1) test a hybrid sorbent -ultrafiltration system for the removal of two trace 

contaminants: 

hormones 

fluoride 

2) evaluate the performance of each system in terms of its: 

contaminant sorption capacity 

membrane permeability 

The overall system performance is evaluated by comparing: 

the hybrid PS nanoparticle OF system for hormone removal to a NF /RO 

system 
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1. Introduction 

the hybrid laterite -UF and hybrid bone char -UF systems for fluoride 

removal to each other. 

1.4 Outline of the Thesis 

The schematic outline of the thesis is presented in Figure 1 -2. In Section 2.1 and 2.2 

a comprehensive literature review is provided on the occurrence, adverse health 

effects and current removal technologies available for hormones and fluoride. In 

Section 2.3 and 2.4, fouling in OF is discussed in relation to the characteristics of the 

particles and membranes and operational parameters. General materials and methods 

used in the experimental study are identified and described in Chapter 3. 

- 

Chapter 4 

Hormone Sorption on 
Polymers 

y 
Chapter 5 

Hormone Removal 
with Hybrid PS -UF 

r 
Chapter 6 

Hormone Removal with 
Hybrid Carboxylated 

PS -UF 

Chapter 1 

Introduction 

Chapter 2 

Fouling in Ultrafiltration 

4, 

Chapter 3 

Materials and Methodology 

Chapter 9 

I Conclusions and Future Work 

Figure 1 -2 Schematic outline of the thesis 

Considering the large differences in the nature of the contaminants (fluoride and 

hormones) and the sorbents which are selected for the removal of each contaminant, 

the thesis can be split into two parts: one part for hormones and the other for fluoride. 

The removal of hormones is explored in Chapters 4, 5 and 6 whereas Chapter 7 and 8 

are devoted to fluoride removal. 

Chapter 7 

Fluoride Removal with Hybrid, 
Laterite /Bone Char -UF 

Chapter 8 

Fluoride Removal with Hybrid 
Laterite -UF from Ghanaian 

Waters 
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Chapter 4 covers the literature on the sorption of hormones on polymeric materials as 

well as an experimental study on the comparison of various commercial polymers for 

their hormone sorption affinity. In Chapter 5, the performance of hybrid polystyrene 

(PS) nanoparticle -UF system in terms of hormone removal (sorption) and membrane 

permeability is investigated in terms of PS particle size, concentration, hormone 

type, solution pH and the integration method of PS nanoparticles. The selection of 

the PS nanoparticles is explained in Section 5.2. Chapter 6 elucidates whether the 

carboxylate functional groups of PS nanoparticles have an influence on the hormone 

sorption capacity and the membrane permeability of the hybrid system. The selection 

of the functional group for the PS particles is detailed in Section 6.2. 

A hybrid sorbent -UF system is studied for the removal of fluoride in Chapter 7. Two 

sorbents, laterite and bone char, are selected and the selection process is detailed in 

Section 7.2. The literature covering fluoride sorption on laterite and bone char is 

compiled in Section 7.3. In the rest of Chapter 7, the performance of the hybrid 

laterite -UF is compared to the performance of the bone char -UF system. The 

performance of both systems is determined in terms of fluoride sorption kinetics, 

capacity and membrane permeability at varying initial fluoride concentration, 

solution pH, sorbent size and concentration. The optimal design parameter is 

obtained for each variable. Finally, in Chapter 8, the hybrid laterite -UF system is 

designed with two different OF modules to remove fluoride from Ghanaian waters. 

The design of the system is based on the optimal parameters determined in Chapter 

7. Fluoride sorption capacity of the system tested in Ghana with Ghanaian waters is 

compared to the capacity obtained with synthetic waters under laboratory conditions 

in Edinburgh, Scotland. The removal of metals from Ghanaian waters is also 

investigated with the hybrid system and the removal percentages are compared for 

two different OF modules. Lastly the performance of the two different OF modules 

with Ghanaian surface and ground waters is studied in terms of membrane fouling. 
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2. Trace Contaminants- Fouling in Ultrafiltration 

2 Trace Contaminants -Fouling in Ultrafiltration 

2.1 Trace Contaminants: Occurrence and Adverse Health Effects 

2.1.1 Hormones 

The hormones can be classified in two categories; one being the natural steroid 

hormones secreted by human and animal bodies and the second being the synthetic 

hormones manufactured chemically. Steroid hormones including progestogens, 

glucocorticoids, ineralocorticoids, androgens and estrogens, are biologically active 

compounds and secreted by adrenal cortex, testis, ovary and placenta in human and 

animal. Estrone (El) is an example of estrogens and the daily excretion of E1 for 

males, menstruating females, menopausal females and pregnant women are given as 

3.9, 8, 4 and 600 .ig respectively [35]. Ethynylestradiol (EE2) and mestranol 

(MeEE2) are examples of synthetic steroids which are taken into body as 

contraceptives [36]. The excreted hormones end up in either wastewater treatment 

plants (WWTP) or directly in surface waters. The pathways of the hormones in 

environment reaching the surface and ground water sources are presented in Figure 

2 -1. Current wastewater treatment techniques are not able to remove hormones from 

water adequately. Hence, hormones are detected in WWTP effluents and surface 

waters in concentrations of nanogram per litre (ng /L) [5]. Even at such low 

concentrations, adverse effects on living organisms are possible [5]. Feminisation of 

male fish [6, 7], decrease in sperm counts, increasing risk of testicular cancer and 

male infertility in fish [9] has been linked to the intake of estrogens via food or 

drinking water. 

The hormones are known to be one of the most dangerous trace contaminant groups 

as their potential to disrupt the endocrine activities of the living organisms is high 

[37]. The hormones with endocrine disrupting potential, are mainly estrogens and 

contraceptives including 1713- estradiol (E2), estrone (El), estriol (E3), 17a- 

ethynylestradiol (EE2) and mestranol (MeEE2). Especially El and E2 are classified 

among the high priority trace contaminants; El being the metabolized form of E2. El 
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and E2 are reported to have higher magnitude estrogenic activity compared to some 

other endocrine disrupters [38, 39]. 
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Figure 2 -1 The pathways of hormones in environment (taken from [401) 

The presence of hormones in water sources is a worldwide problem. The estrogenic 

compounds of 17f3-estradiol (E2), 17a- estradiol, El and 17a- ethinylestradiol (EE2) 

were detected in Dutch surface waters up to 6 ng /L and in ng /L levels in WWTP 

effluents [41]. In China, E1 and E2 were found in concentrations up to 79 and 8 

ng /L, respectively in river waters [42]. Steroids were detected in WWTP effluents in 

other countries at a range of concentrations up to 76 ng /L of El in UK [43], 70 ng /L 

of E1 in Germany, 64 ng /L of E2, 42 ng /L of EE2 in Canada [44], 18 ng /L of Estriol 

(E3) in Italy [45]. Synthetic oral contraceptives, which are a group of synthetic 

hormones were also detected in the WWTP effluents in many countries even at 

higher concentrations than natural steroids [46]. For example Norethisterone was 

found in concentrations up to 188 ng /L in Malaysia [47] and Mifepristone up to 195 

ng /L in China [48]. Apart from the surface waters, the presence of steroids in ground 

water is a serious health concern considering that ground water is a direct source of 

drinking water in some countries. For example, E2 was detected in Arkansas aquifers 

in USA up to 66 ng /L [49]. 
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2. Trace Contaminants -Fouling in Ultrafiltration 

Recent rise in public awareness resulted in more studies to develop treatment 

processes for removing endocrine disrupting compounds from water [50]. Exploring 

sustainable treatment processes and /or improving the efficiency of the existing ones 

for hormone removal is necessary to address the health concerns arise from the 

presence of such contaminants in drinking water sources. 

2.1.2 Fluoride 

The natural occurrence of fluoride in ground and surface waters depends on the 

geology and the climate of the location. Fluoride is generally released to the ground 

water by the slow dissolution of the fluorine containing geological rocks such as 

granite, basalt, syenite, and shale [3, 51, 52]. Industrial discharges can contribute to 

the high fluoride concentrations in water [53, 54]. Additionally, exposure to fluoride 

can be higher in certain areas due to the consumption of brick tea and food dried or 

cooked with high fluoride coal [55]. Fluoride can also be introduced into the water 

by rainfalls as fluorine containing gases, produced by coal burning can dissolve in 

rain water [3]. 

Fluoride concentration in drinking waters between 0.5 and 1.5 mg /L is the narrow 

range which is essential for healthy bones and teeth [1, 2]. Drinking water containing 

less than 0.5 mg /L fluoride can cause cavities in the teeth. Long term ingestion of 

high doses of fluoride (1.5 -4 mg /L) results in mottling of the teeth called dental 

fluorosis. Fluoride concentrations above 4 mg/L can cause embrittlement of the 

bones which is called skeletal fluorosis and concentrations above 10 mg /L is linked 

to crippling fluorosis [1, 2]. The severity of the diseases depends on the age as well 

as the diet of the person. Apart from the dental and skeletal disorders, other health 

effects such as cancer, infertility, reproductive disorders, brain damage, and thyroid 

disorder have been linked to the excessive fluoride ingestion [56]. Considering the 

health effects, WHO set a guideline value of 1.5 mg /L in 1984 and since then the 

same value is used in WHO guidelines [55]. The regulation standards of a number of 

countries and organizations for fluoride concentrations in drinking water are given in 

Table 2 -1. 
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2. Trace Contaminants -Fouling in Ultrafiltration 

Table 2 -1 Fluoride regulation standards in drinl:it g water (adapted from 131 except *1571) 

Country/Organization Guideline 
Co 

nL) 
ion 

Comments 

WHO Guideline value 1.5 1984 guideline 

U.S. EPA Primary standard 4 Enforceable 

U.S. EPA Secondary standard 2 
Not enforceable 

(for prevention of 
dental fluorosis) 

EC 
Maximum permissible 

value 
1.5 1998 regulations 

Canada National standard 1.5 

India National standard 1 

Lowered from 1.5 mg/L 
in 1998 

China National standard 1 

Tanzania National standard 8 Interim standard 
Ghana* National standard 1.5 

Water sources containing fluoride concentrations above the WHO standard (1.5 

mg /L) have been located in many parts of the world including USA, Argentina, 

Canada, China, Israel, Japan, Norway, Nigeria and Saudi Arabia [3, 4]. The most of 

the worldwide locations where the fluoride concentrations in groundwater exceed the 

WHO standard (1.5 mg /L) is given in Figure 2 -2. 
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Figure 2 -2 Groundwater sources which has fluoride above WHO Standards (1.5 mg /L) (taken 
from 131) 

14 



2. Trace Contaminants -Fouling in Ultrafiltration 

Although it is not very common, in some regions, surface waters also contain very 

high fluoride concentrations. For example, extremely high fluoride concentrations 

were detected in Kenyan and Tanzanian soda lakes up to 2800 mg /L [58] and 690 

mg /L [59], respectively. 

Considering that many water sources with fluoride concentrations above the WHO 

guidelines are within developing countries, local and sustainable solutions are needed 

to reduce the fluoride levels to the guideline value and prevent the related health 

effects. 

2.2 Technologies to Remove Trace Contaminants from Water 

2.2.1 Technologies for Hormone Removal 

Hormones are physiologically active contaminants with small molecular weight and 

they occur in small concentrations (ng /L) in water. These characteristics cause 

challenges to remove hormones from water. Nanofiltration/reverse osmosis, 

advanced oxidation and sorption processes show potential to remove hormones from 

water effectively. 

Nanofiltration /Reverse Osmosis 

NF /RO membranes are the tightest membranes with the largest energy requirement 

in comparison to MF and OF membranes [28]. The removal of hormones with 

nanofiltration (NF) and reverse osmosis (RO) has been studied by several researchers 

and some of these studies for four natural hormones are summarized in Table 2 -2. 

Results show that hormone removal varies between 8 and 99 % depending on the 

membrane and hormone characteristics as well as the operational parameters. It 

needs to be noted that the disposal of concentrate with considerable amount of trace 

contaminant is an issue raised recently and the studies addressing this issue are very 

limited [60, 61]. Reuse, removal of contaminants, incineration, direct or indirect 

discharge in surface water, direct or indirect discharge in groundwater and discharge 

on a landfill are the possibilities reviewed to treat or discharge the concentrate of the 

pressure driven membrane processes [61]. 
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Although some of the NF /RO membranes can effectively eliminate specific 

hormones from water, energy requirement of these membrane systems is -1 kWh/m3 

[62] which is relatively high in comparison to the energy requirement of OF systems 

(0.1 -0.2 kWh/m3) [63, 64]. Another advantage of an OF over NF /RO is that OF 

system offers a specific separation of target contaminants whereas NF /RO systems 

eliminates many divalent or single ions apart from the targeted trace contaminants 

depending on the pore density. 

Table 2 -2 Published data for E2, El, T and P removal and membrane permeability for NF /RO 
systems,* taken from [651 as the permeability data is not provided 

Hormone Type yP Membrane Hormone 
Removal ( %) 

Permeability 
(L/m2hbar) 

Reference 

1713 Estradiol 
(Estradiol, E2) 

XLE (RO) 83 4 
[66] 

SC -3100 (RO) 29 1 

X20 (RO) 96 3 

[67] TS 80 (NF) 37 5 

NF 270 15 16 

NF 270 85 15 [68] 

NF 200 64 4* [69] 

ESNA (NF) 38 7 [32] 

Estrone (El) 

NF 200 80 4* [69] 
DL (NF) 15 3 [70] 
CK (NF) 8 8 [70] 

ESNA (NF) 42 7 [32] 
X20 (RO) 97 3 

[67] 
TS 80 (NF) 39 4 

NF270 19 21 

TFC -ULP 
(NF /RO) 

96 7 

[71] 

TFC -S (NF) 98 11 

TFC -SR1 (NF) 93 11 

TFC -SR2 (NF) 79 15 

X -20 (RO) 99 4 

ACM -4 (RO) 86 5 

XN -40 (NF) 73 9 

TS -80 (NF) 83 5 

Testosterone 
(T) 

NF 200 62 4* [69] 

ESNA (NF) 60 7 [32] 

Progesterone 
(P) 

NF 200 98 4* [69] 

ESNA (NF) 65 7 [32] 
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Advanced Oxidation Processes 

Advanced oxidation/ozonation processes (AOPs) are suggested as a promising 

technology for the removal of endocrine disrupting compounds including hormones 

[50, 72] and have comparable energy consumption of -0.1 kWh/m3 [62] to OF 

systems. AOPs have been studied as a removal technique for both natural and 

synthetic hormones [73 -85]. Studies show that undetectable concentrations for most 

of the hormones are achieved after the treatment depending on the ozone /hydrogen 

peroxide /ultraviolet dosage and the contact time. Nevertheless, investigation of the 

estrogenic activity of the treated water with AOPs was not conducted in many of the 

studies published [72]. Formation of by- products occurs during the oxidation 

reactions [73, 75, 86] and sometimes these by- products can be more toxic than the 

parent compound [87]. Due to the presence of these by- products, a residual 

estrogenic activity still remains in the treated water [50, 88, 89]. 

Sorption 

Sorption of hormones on surfaces is very common. High affinity of polymeric 

materials for hormones is known especially because of the studies conducted on the 

removal of hormones by polymeric membranes [67, 90 -92]. Adsorption is one of the 

mechanisms responsible for hormone removal in membrane filtration [93]. 

Characteristics of hormones and their sorption on polymeric materials will be 

reviewed and discussed in detail in Chapter 4. 

Adsorption of hormones on novel sorbents has also been reported. Estrogens were 

found to sorb on carbon nanomaterials to a high extent [94, 95]. Cai et al. [96] 

suggested that multiwalled carbon nanotubes can extract endocrine disrupting 

compounds more efficiently than C18 which is very commonly used in solid phase 

extraction (SPE) of micropollutants. Implementation of such nanomaterials in real 

water treatment processes is currently not common as the materials have high capital 

cost and the separation of the materials from water is challenging due to their nano - 

size. 
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Studies using solely sorption mechanism as a removal technique for hormones are 

very limited. Adsorption with activated carbon columns has been proposed and the 

affinity of activated carbon for hormones is studied by several researchers [97 -100]. 

The sorption capacity achieved for three different activated carbons with 100 ng /L 

initial E2 concentration is between 43 and 47 ng /g [97]. In another study, the 

sorption capacity of activated carbon for El and E2 is reported in mg /g values; such 

a high sorption capacity can be attributed to large initial hormone concentrations 

(mg /L) [98]. Although activated carbon has high affinity for hormones, its cost 

effectiveness needs to be studied further as the thermal regeneration of the activated 

carbon can be highly energy consuming [91]. Moreover, the presence of natural 

organic matter influences the hormone sorption capacity of activated carbon [91, 

101]. 

2.2.2 Technologies for Fluoride Removal 

NF /RO, electro /donnan dialysis, coagulation/precipitation and sorption processes are 

the main technologies which are used for defluoridation of water [53, 54, 102]. 

Nanofiltration /Reverse Osmosis 

Several NF /RO systems can bring fluoride concentrations down to the values less 

than 1.5 mg /L [103 -105]. The initial fluoride concentration range studied in these 

publications is within 1.5 -5 mg /L. The removal of fluoride with NF membranes 

depend on applied pressure, solution flux and initial fluoride concentration [106]. 

Similarly, Tahaikt et al. [107] reported that membrane configuration and initial 

fluoride content can influence the fluoride removal efficiency in NF. The fluoride 

removal efficiency of NF membrane varied from 78 to 95 % depending on the nature 

of the solution treated [108]. At higher initial fluoride concentrations, NF /RO 

systems may not be as effective depending on the membrane type and operational 

parameters. For example, two different MWCO NF membranes, NF90 and NF400 

were tested for their fluoride removal capacity with solutions containing four 

different concentrations varying between 1.8 and 20 mg /L [109]. NF90 membrane 

successfully brought the fluoride concentrations down to values less than 1.5 mg /L 
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for all initial concentrations studied whereas NF400 failed to achieve 1.5 mg /L for all 

initial concentrations except 1.8 mg /L. In another study with 460 mg /L initial 

fluoride concentration 98% removal was achieved with an RO system with permeate 

concentrations above 1.5 mg /L [110]. Additionally, implementation of such systems 

in developing countries is not sustainable due to the high energy requirement. 

Electro /Donnan dialysis 

Several studies performed on fluoride removal with electrodialysis show that it is an 

effective system which can bring the fluoride concentration down to less than 1.5 

mg /L for a variety of initial fluoride concentrations of 20.6 mg/L [111], 10 mg /L 

[112] and 2.2 mg /L [113]. Defluoridation efficiency in electrodialysis is influenced 

by voltage, temperature, flow rate [114] as well as current density [112]. Similarly 

Donnan dialysis can remove fluoride bringing the concentrations down to the 

acceptable levels [115]. Initial fluoride concentration, pH and the presence of 

counter -ions seem to influence the fluoride removal with Donnan dialysis [116]. 

Similar to NF /RO systems, the high energy requirement limits the application of such 

a system. 

Coagulation /Precipitation 

Lime, alum, magnesium and barium oxide are the commonly used coagulants for 

fluoride removal [54, 117 -119]. These coagulants react with fluoride and form 

insoluble fluoride complexes which precipitate out [102, 120]. Nalgonda technique, 

which involves combined use of lime and alum, is used in real applications in 

developing countries [121, 122]. Fluoride can also form soluble aluminium 

complexes which do not precipitate and this results in removal of only a small 

portion of fluoride [102]. Therefore, this process is usually not able to bring the 

concentrations down to the guideline values [102, 120]. 

Sorption 

Sorption is one of the mostly used and studied defluoridation technique as it is cost - 

effective and highly accessible [54] especially in developing countries. The sorbents 
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which have a potential for defluoridation are activated alumina [53, 54, 120] and 

bone char [120]. Literature on fluoride sorption capacity of 102 sorbent materials is 

reviewed and compiled by Bhatnagar et al. [53]. A direct comparison of sorption 

capacity between the sorbents was challenging as the sorbent characteristics and 

operational parameter vary a lot depending on the study. The main findings of the 

literature review, conducted by Bhatnagar et al. [53], are given below: 

Fluoride adsorption by activated alumina is an established treatment 

technique and classified as the best demonstrated available technology by 

WHO and USA EPA. However, it is expensive and its performance is 

influenced by pH and the presence of other ions. The leachate of aluminium 

is a health concern as aluminium is a neurotoxin. 

Rare earth oxide -based adsorbents have high fluoride sorption capacity 

however in some cases they are considered as expensive materials. 

Sorption potential of carbon -based materials is relatively low however, 

information in terms of column operations and /or pilot scale is lacking. 

Clays are studied to a great extent among various natural materials. Difficulty 

in regeneration and low sorption efficiency with high fluoride concentrations 

are reported. 

The use of biosorbents, especially chitosan and its derivatives /composites, for 

defluoridation has been studied as chitosan is a natural, environmentally 

friendly and low cost sorbent material. However, the sorption capacity is 

limited and its performance is highly influenced by the solution pH. 

Waste materials containing metal oxides are seen as alternative low cost 

sorbents; however, the leaching of toxic metals from the materials requires a 

special attention. 

Recently studied sorbents such as synthetic layered double 

hydroxides /hydrotalcite -like compounds and nanosorbents show high 

defluoridation capacity, however information on their performance under 

continuous operation is limited. 
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Detailed studies on the regeneration capacity of sorbent materials are required 

for the economic feasibility of the sorption process. 

Testing the materials under field conditions is highly necessary for the 

determination of the appropriate technology /sorbent media for real 

applications. 

Finally, the practical utility of promising sorbents on a commercial scale is 

open to exploration. 

High capacity and selectivity sorbents are commonly used in fixed bed column 

reactors [120]. The strength of the particles is an important parameter for the design 

of the fixed bed reactors, as poor strength can result in occupation of the voids with 

crumbled particles. Similarly the particle size and shape plays a big role in the design 

of the fixed beds [123]. Generally, the sorbents are in the form of fine powder and 

cannot be applied in fixed bed columns as they are too small in size and not in 

granular shape [124, 125]. Having very fine particles in a fixed bed reactor can cause 

high pressure drops and undesired fluidization where a physical adsorption probably 

becomes negligible [18]. On the other hand granulation of the fine particles can be a 

solution for the application of fine sorbents in fixed bed reactors for fluoride removal 

[125]. Possible precipitation in the fixed bed reactors can result in accumulation of 

the precipitate in the voids of the bed and again high pressure drop. For example, in 

fixed bed reactors packed with granular calcite formation of lumps in a fixed bed is 

observed [126]. Moreover, the mass transfer coefficients is very poor due to the low 

liquid velocity [127]. 

Although various sorbents show a good potential for defluoridation of water, 

practical application of these sorbents for large scale applications is very limited. 

2.3 Fouling in Ultrafiltration 

This section describes the concepts and the parameters influencing membrane 

performance in terms of flux or permeability. The decline in these parameters is an 

indication that the performance is deteriorating. This deterioration is usually called 
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fouling which is one of the major factors limiting the use of the membrane processes. 

Membrane fouling occurs when there is a physical or chemical interaction between 

the particles and the membrane. These interactions are explained further in the 

following sections. 

In this study, a hybrid sorbent -UF system is proposed for the removal of hormones 

and fluoride. Due to the small molecular size of contaminants relative to OF pore 

size, filtration of hormones and fluoride are not expected to cause fouling in the 

system; this is detailed in Section 1.2. In contrast, sorbent materials will possibly be 

the cause of fouling and influence the system performance. Hence, the literature is 

reviewed for colloidal particle ultrafiltration with the focus on nano /micro particles. 

In a membrane process where a solution of particles is filtered, different phases can 

be observed in the time dependent flux decline. These phases are described 

differently by different researchers [128 -131] but in general include: 

An initial flux decline due to the compaction of the membranes 

A sharp decline due to the concentrations polarization (if present) 

A long term steadier flux decline as the particles deposit on the membrane 

surface. Further decline can be observed due to the conformation of the 

particles on the surface. 

2.3.1 Concentration Polarization 

The rate of the particle transport in the bulk phase close to the membrane surface 

directly affects and determines the overall membrane performance. The convective 

transport of the particles to the surface occurs with the pressure driven fluid flow. If 

the particles are partially or fully retained by the membranes, they accumulate at the 

surface. Concentration polarization is the term given for this accumulation process 

and it is a consequence of filtration process with the membranes. As the particles 

accumulate a concentration gradient occurs between the bulk solution and membrane 

surface. The particle concentration increases from the one in bulk solution to the one 

in the solution at the surface of the membrane along concentration boundary 
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thickness. The concentration gradient along the concentration boundary thickness 

generates a diffusive back transport of the particles away from the membrane 

surface. Under steady conditions, a balance occurs between the convective and the 

diffusive particle transport rates and this balance results in the following Equation 

2 -1. 

Jv = k, 
C -Cp 

Ch -C 2 -1 

Where J, is the permeate flux or velocity (m/s), ks (D /8b) is the mass transfer 

coefficient of the particle and in the boundary layer (m/s), D is the particle diffusion 

coefficient (m2 /s), 6b is the boundary layer thickness and cm, C , eb are the particle 

concentrations on the membrane surface, in the permeate and in the bulk, 

respectively. The mass transfer coefficient is the ratio of the diffusive solute flux at 

the membrane surface to the overall concentration driving force for diffusion. If the 

membrane is fully retentive for the particles, cp is zero and then the equation 

becomes as in Equation 2 -2. 

exp 
Jv\_cr 

2 -2 

Knowing the particle concentration in the bulk, and the experimental flux at steady 

state, only the mass transfer coefficient needs to be calculated to be able to estimate 

the particle concentration on the membrane surface. The mass transfer coefficient 

can be obtained from the correlation of Sherwood number (Sh) that represents the 

ratio of convective to diffusive mass transport. 

Concentration polarization effect can be eliminated or minimized by adjusting 

turbulence in the system with altering design and operational parameters such as 

stirring rate, cross -flow velocity or trans membrane pressure [34, 132]. 
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2.3.2 Gel Polarization and Gel Precipitate Formation 

The gel formation happens for solutes or molecules which are instable and have the 

potential to precipitate. The concentration of the solutes increases as they accumulate 

on membrane surface due to the concentration polarization or filtration. Once the 

concentration increases above the solubility limit, then the solutes can form gels or 

crystals by precipitation. This gel/precipitate layer exerts a hydraulic resistance and 

causes a flux decline [19, 34]. 

Calcium sulfate, calcium carbonate, calcium phosphate, silica, metal oxides and 

hydroxides (especially of iron and aluminium), colloidal sulphur and other inorganic 

particulates can cause serious fouling in OF membranes by precipitating on 

membrane surface or within the porous structure [34]. Temperature and the solution 

pH are very important parameters as they can influence the solubility of these 

precipitates. 

As a result of concentration of the solutes (precipitates) on membrane surface, a 

transport of the solvent from the dilute permeate site to the concentrated membrane 

site may occur due to the osmotic pressure. Osmotic pressure, 7C (Pa) of a dilute 

solution can be estimated by the van't Hoff Equation 2 -3 where z is the number of 

ions formed if the solute dissociates, c is the solute concentration (kg /m3), r is 8.314 

x 103 kg.m2 /s2.K.kg.mol, T is the absolute temperature (K) and MW is the molecular 

weight (kg /kgmol). 

zcrT 
Tr = 

MW 
2 -3 

The equation indicates that the osmotic pressure of particles decreases proportionally 

to the increase in the MW of the particles. Osmotic effect is higher for the particles 

with very small MW at high concentrations. For example, osmotic pressure of 

sodium chloride (NaC1) with MW of 58.50 g/L is two orders of magnitude larger 

than one of casein which is a milk protein with a MW of 25000 at 30 °C with 1% 

solutions [19]. On the other hand, the relationship between the solute size and the 
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osmotic pressure seems to be not proportional due to the different hydration density 

of the solutes at different ion radius [133]. 

2.3.3 Particle Transport and Deposition 

Hydrodynamic forces active on a particle govern the deposition which is a non - 

equilibrium process. The important hydrodynamic forces acting on a particle are 

presented in Figure 2 -3. Drag, shear induced and Brownian diffusion forces and the 

velocities associated with these forces are described in Appendix A.7. 

Membrane surface 

B 

Fi ` ` FR 

Figure 2 -3 Hydrodynamic forces acting on a particle A) in solution and B) on membrane 
surface. Fd: Drag (viscous) force, FR: Repulsive forces, FA: Attractive forces, Fs: Shear induced 
forces, Fb: Brownian diffusion force, F1: Inertial lift force, F,: Tangential force (more likely for 
cross -flow systems) (adapted from 1341) 

Particle -particle and particle- membrane interactions due to the attractive and 

repulsive forces can contribute to the transport of the particles in membrane filtration 

systems. The particles in colloidal size can interact with each other by different 

mechanisms: electrostatic, van der Waals and short range forces [134]. Attractive 

forces between the particles or between the membrane and the particles would act on 

the same direction as the drag force, while the repulsive forces would act in the 

opposite direction moving the particles away from the membrane surface. These 

forces strongly depend on the surface characteristics of the particles and the 

membrane such as charge and functionality as well as the solution chemistry which 

influences these characteristics. In some cases, high repulsive forces act on 

r 
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individual particles with large surface charge. These particles get close to each other 

and form a deposit layer only when the repulsive forces are overcome [134]. The 

repulsive and attractive forces between the particles can also influence the diffusional 

transport [135]. In highly turbulent systems surface transport mechanisms such as 

tangential shear forces become effective, especially when there is a flow parallel to 

the membrane surface. Due to this parallel flow, particles tend to flow along the 

surface because of the tangential force applied on them and the growth of deposit can 

be arrested. Non spherical particles like clay, would sit on their long sides and would 

be exposed to drag force more due to the larger surface area and would not be moved 

along the membrane surface due to the tangential forces [136]. 

The particle deposition in membrane systems is highly dependent on the magnitude 

of the hydrodynamic forces acting the particle. Particle deposition happens only 

when the magnitude of the drag force and the attractive van der Waals forces 

overcome the other forces acting on the particle. Particle size and the shear rate 

influence the transport mechanisms of the particles strongly while the influence of 

changes in feed concentration is not as strong. 

2.3.4 Fouling Mechanisms 

There are several mechanisms which are responsible for the fouling of the porous 

membranes with particles. These mechanisms include pore constriction, pore 

blockage and cake filtration [34]. Pore constriction usually occurs when particles 

(solutes) enter into to the porous structure of the membrane and constrict the pores 

via either accumulation in the pores or adsorption to the pore wall. Pore constriction 

is usually valid when the particle size is smaller than the pore size of the membranes. 

When the particle size is equal or comparable to the pore size the blockage of the 

pore entrance is likely to happen. For very large particles, a deposit (cake layer) 

forms on the membrane surface which causes a resistance. The deposit layer can be 

formed of the individual or aggregates of the particles present in the suspension. The 

cake filtration mechanism also applies for the fouling caused by gel (precipitate) 

layer formation. If a membrane is considered as a porous structure, any possible pore 
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constriction or blockage changes the membrane porosity and directly influences the 

membrane resistance (R,,,) with a significant flux drop [130]. 

2.3.5 Resistance Model 

In membrane systems, the relationship between permeate flux and the pressure is 

described with Darcy's law in Equation 2 -4, where J is the flux of membrane 

(L /m2.h), AP is the trans -membrane pressure difference (bar), µ is the dynamic 

viscosity (converted into bar.h) of water at the experimental temperature and R,,, is 

the membrane resistance (1/m). 

J = 
AP 

103 
,u(Rr) 

2 -4 

Membrane has an intrinsic resistance which depends on many factors such as the 

membrane thickness, membrane morphology, membrane material and the membrane 

pore size. The resistance increases with increasing thickness and decreasing pore size 

and number density [136]. 

When particle filtration starts happening in the system additional resistances can 

cause a decline in permeate flux. During ultrafiltration particles accumulate and form 

a deposit layer on membrane surface. Formed deposit layer creates an additional 

hydraulic resistance to the solvent flow which is called deposit (cake) resistance [34, 

136]. Deposit resistance is one of the most important hydraulic hindrance for high 

permeate fluxes in ultrafiltration and the factors influencing this resistance still need 

to be better understood because of its complexity. Osmotic resistance is another 

resistance which can play a role in flux decline as the osmotic pressure increases due 

to the accumulation of the particles on the membrane surface. 

Darcy's law can be modified for particle filtration to include the osmotic and deposit 

resistance and this is given in series resistance relationship in Equation 2 -5 where 03t 

is the osmotic pressure difference, Rd is the resistance of the particle (solute) deposit 

(1/m). 
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AP - Olt 3 J = 10 2 -5 
,u(R,,, + Rd) 

A term (Rep) for the resistance due to the concentration polarization can be added to 

the equation if Rep is very large in the system. Usually the resistance caused by the 

concentration polarization is much less than the deposit resistance and in this case 

Rip can be neglected [137]. 

Osmotic effect is usually ignored since the osmotic pressure of the solutes at low 

concentration is negligible. The only case where osmotic pressure can be significant 

is when the particle concentration becomes very large due to the concentration 

polarization. At very high concentrations second and third "virial coefficients" may 

become important and result in increased osmotic resistance [19]. However, this is 

rarely the case in OF as the size of the particles is large and the feed concentrations is 

low [34, 138]. Ignoring the osmotic pressure effect the permeate flux can be 

described by Equation 2 -6 [139]. 

J = 
AP 

103 
p(R,,, + R, ) 

2 -6 

According to deposit (cake) filtration theory, the resistance of the deposit can be 

calculated with the Equation 2 -7 [34, 138] where a is the specific deposit resistance 

per unit thickness (1 /m2), 8 is the deposit 'thickness (m) and 8d is the maximum 

deposit thickness (m). 

R, = 
Jos 

ad8 2 -7 

The specific deposit resistance per unit thickness (a) can be estimated with Carman - 

Kozeny equation 2 -8 assuming the following [140]: 

1) the deposit is formed of uniform spherical particles 

2) the flow is laminar 

3) validity of Darcy's law 
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a= 180(1-02 
Dp2£3 2 -8 

where c is the porosity (void) and Dp is the diameter of the particle (m). The particle 

size, the deposit porosity and thickness are the important parameters affecting deposit 

resistance. The deposit resistance is expected to increase in proportion to the deposit 

thickness and to decrease with the increase in particle size and deposit porosity. 

The Carman -Kozeny equation is valid only if the deposit porosity is less than 0.5 

[141] and the deposit is incompressible [136]. Highly compressible deposit materials 

such as clay, and microbial cells causes a decrease in porosity and thus in deposit 

resistance. Variation in the applied pressure needs special attention as the increased 

applied pressure may result in enhanced compressibility and thus decreased porosity 

[136]. With more compressed deposit layer, a larger flux decline can be observed due 

to the reduction in porosity [142]. 

It is also important to note that the Carman -Kozeny equation can determine the 

permeability of relatively compact deposit where aggregation of the particles is not 

expected and they would pack uniformly on the membrane surface. Porosity of the 

cakes is expected to increase if the particles tend to aggregate before the deposition 

[143]. The void fraction of a randomly packed deposit is -0.4 [136]. The porosity is 

usually considered to be not dependent on the particle size but dependent on the 

packing density; however, some studies disagree with this. Lee and Clark [142] shows 

that the deposit porosity is underestimated for small particles and overestimated for 

large particles forming the deposit layer when calculated with Carman -Kozeny 

equation. Differences in the estimation and the experimental data were attributed to the 

changing interaction forces between the particles as the particle size varied. 

If the deposit layer is assumed to be homogenous then the Equation 2 -7 becomes as 

in Equation 2 -9: 

Rd = aS 2-9 
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The deposit thickness can be expressed as in Equation 2 -10 where Mp is the mass of 

the particles in the deposit layer, pp is the density of the particle /solute (kg /m3) and 

Am is the membrane surface area. 

M 
S = 

r 
2 -10 

(1- Opp A, 

Equation 2 -10 assumes a minimum back transport of the particles and thus the 

particles in the concentration -polarization layer to be negligible and the deposit 

homogenous. Equation 2 -11 is obtained by combining specific deposit resistance 

(Equation 2 -8) with the deposit thickness (Equation 2 -10) in Equation 2 -9. 

Rd= 
180(1- s) 
pnDnz£3 

MP 

A,,, 
2 -11 

In dead -end filtration, a continuous increase of deposit mass (Mr) is expected. 

Equation 2 -11 allows us to directly relate the deposit resistance to the particle mass 

in the deposit and to the feed particle concentration. At the end of the filtration 

process, the deposit layer can be washed off and the initial permeate flux can be 

retained. Harmant and Aimar [134] suggested that there is a threshold above which 

the particles form irreversible deposit layers. This threshold is called "critical mass" 

and is shown to be dependent on the flux and ionic strength of the solution. 

The deposit layer is assumed to be homogenous for particle filtration in unstirred cell 

systems [142]. Shear rate is an important parameter which determines the formation 

of the deposits. In systems with high shear rates, the homogeneity of the deposit 

thickness is questionable. The heterogeneity of the deposit thickness and porosity 

depending on the wall shear rate is confirmed by Gaucher et al. [144]. Glover and 

Brooker [145] examined the deposit layer of proteins on membrane surface and 

observed an asymmetric deposit layer. 

A direct correlation between the physically measured deposit thickness and 

experimentally calculated deposit resistance is difficult to make as it is challenging to 

get an accurate thickness of the deposits by characterisation methods without 

30 



2. Trace Contaminants- Fouling in Ultrafiltration 

disturbing the deposit layer [142]. It is even more challenging to measure the 

thickness of a non -homogenous deposit layer. 

2.4 Parameters Affecting Fouling 

The parameters which can strongly influence the particle- particle and particle - 

membrane interactions and thus the extent of the membrane fouling can be classified 

as membrane and particle characteristics, solution chemistry and operational 

parameters. 

2.4.1 Membrane Characteristics 

The characteristics of OF membranes such as pore size (or MWCO), hydrophobicity, 

surface charge and roughness influence fouling. 

The surface charge of the polymeric membranes is generally measured as zeta 

potential with streaming potential methods. The charge interactions between the 

membrane and the charged particles can play a significant role in membrane fouling. 

In general membranes with a more negative zeta potential are less likely to foul by 

negatively charged particles [14]. 

The relative flux decline is proportional to the ratio of resistance of the fouling layer 

to the resistance of the membrane. Therefore, the membranes with smaller pore size, 

thus higher intrinsic hydraulic resistance experience less flux decline due to the 

colloidal fouling compared to the ones with lower resistance [146]. In OF 

membranes, although a nominal pore size is usually presented, there is a distribution 

of pore sizes [28]. Larger pores are likely to experience higher degree of 

concentration polarization and pore plugging compared to the smaller pores as water 

flow is biased towards the larger pores [130]. Similarly the fouling of the larger pore 

size membranes due to the pore constriction or pore blockage is more likely 

compared to the ones with smaller pore size. Filtration of very small silver 

nanoparticles showed a larger flux decline with larger pore size membranes [143] 

and this is due to the fact that the particles deposited within the membrane structure 
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as they had more access to the internal voids. In another study, when nanoparticles 

are filtered with two different MWCO OF membranes, 100 kDa membrane 

experienced a larger flux decline compared to 5 kDa membranes [14] 

Although a different pore size is used for the filtration of the same size PS particles, 

no difference in critical flux is observed. This is attributed to the fact that the drag 

force applied is the same and thus the particle deposition for all pore size membranes 

as the system is operated at the same permeate flux for all pore sizes [147]. 

The surface energy of the membranes influences the membrane -particle interactions 

which plays an important role in membrane fouling [148]. Less fouling is observed 

with hydrophilic membranes compared to the hydrophobic ones [130]. The 

deposition of the particles on rough membrane surfaces is more likely compared to 

the smooth ones due to the lower interaction energy created in the valleys of the 

rough surfaces [149]. 

2.4.2 Particle Characteristics 

The particle size, surface charge and feed concentration are the main characteristics 

which influence particle- membrane and particle -particle interactions and thus 

membrane fouling. 

Particle size is an important parameter determining the deposit resistance which can 

cause a severe flux decline OF applications. Looking at the Carman -Kozeny equation 

(Equation 2 -8), the deposit resistance is inversely proportional to the square of 

particle size (dp2) meaning the decrease in permeability is larger as the particle size 

decreases. Lee and Clark [142] observed larger flux decline as the size of polystyrene 

particles forming the deposit is decreased. No flux decline is observed when a 

mixture of TiO2 particles with a size range of 0.1 -10 µm is filtered by a OF 

membrane. This is attributed to the possibility of the cake layer being porous enough 

not to exert any resistance [150]. 
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The surface charge interactions determine the formation of the deposit layers and are 

influenced by the particle size. For example, [142] suggested that the deposit 

porosity is larger for smaller size particles and this was attributed to the larger ratio 

of the double -layer thickness to particle size for smaller particles if it is assumed that 

the double -layer thickness does not change with the size of the particles. 

The dependence on the transport mechanisms on the particle size is also known. 

Shear -induced diffusion theory predicted the long -term flux decline the best for the 

latex (polymeric) particles of 0.64, 0.95 and 1.39 pm in diameter [151]. 

The influence of particle size on flux is also studied in terms of the determination of 

critical flux. An empirical approach for the definition of critical flux is taken by 

[152] as "a flux below which a decline of flux with time does not occur; above it 

fouling is observed ". In order to have an accurate analysis on the influence of particle 

size on the flux decline, particles with different size but the same surface properties 

are required [132]. A decrease in critical flux is reported when the size of the 

polystyrene nanoparticles is increased from 0.1 to 0.46 pm while the critical flux 

increased with increase in particle size from 0.46 to 11.9 pm [147]. In the study of 

Harmant and Aimar [134], the results show that there is a minimum critical flux at a 

certain particle size which is within the size range of 10 -100 nm. A similar trend is 

observed in the study of [153] where a decline in flux is observed when the particle 

size is increased from 0.025 pm to 0.125 pm and the flux increased when the particle 

size is changed from 0.125 to 5 and 20 pm. In all studies the change in the flux 

decline trend with different size particles is attributed to the fact that for smaller 

particles Brownian diffusion is dominant and for the larger size range shear- induced 

and inertial lift play a significant role in particle transport. In another research where 

the influence of particle size on the permeability of one deposit layer is studied, 60 

nm is found to be the size for the minimum permeability [154]. However, in the 

study of Petsev et al. [154] higher permeability at lower particle size is attributed to 

the larger voids created due to the larger repulsion forces between the small particles. 
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Belfort et al. [136] studied these mechanisms under typical conditions and predicted 

the influence of these parameters on the long term flux. It is suggested that the 

dominating mechanisms are Brownian diffusion for particles less than 1 gm, shear - 

induced diffusion for particles with a size range of 1 -30 gm and inertial lift for larger 

particles >40 gm. Zeman et al. [34] adapted the mechanisms from [136] and 

suggested slightly different size ranges being <0.1 gm for Brownian diffusion, 1 -10 

gm for shear -induced diffusion and >100 gm for inertial lift. 

Most of the colloids and particles are negatively charged in nature; this is an 

advantage as negatively charged particles are repelled by the membranes which have 

a fixed negative surface charge [136]. A decrease in flux is observed for gold 

nanoparticles as the zeta potential of the particles is increased due to the increased 

pH [155]. The zeta potential of the particles is changed by varying the pH and a 

minimum flux was observed as the zeta potential of the particles increased. [156]. 

Large flux values are attributed to the electro- kinetic enhancement of the back 

diffusion for the particles with larger zeta potential and to the formation of deposit 

layers with smaller specific resistance due to the particle aggregations for the 

particles with low zeta potential. Critical flux studies generally show that an increase 

in pH above isoelectric point results in an increase in critical flux [132]. The 

influence of pH related surface charge on critical flux is studied and generally an 

increase. The critical flux with silica particles increased as pH is increased from 3 to 

5 [157]. 

Increased feed concentration generally causes an exponential decline in permeate 

flux as predicted by concentration polarization theory [19, 158]. Increase in the feed 

concentration of polystyrene nanoparticles resulted in flux decline in unstirred dead - 

end filtration [142]. The flux decline was attributed to the increase in the deposit 

mass and the deposit layer thickness while no influence was observed on specific 

deposit resistance. It is more likely that there will be more particles depositing on the 

membrane surface at higher feed concentrations [159]. The feed particle 

concentration may also play role on the hydrodynamic forces affecting the deposition 

of the particles [147]. 
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2.4.3 Solution pH and Ionic Strength 

Solution pH and ionic strength are two very important factors influencing the 

stability of the colloidal particles. The dissociation of the functional groups on 

particles as well as the membrane surface can result in significant changes in charge 

and charge interactions. The attractive and repulsive charge interactions between the 

particles influence the formation of the deposit and thus the deposit resistance. pH is 

a also very important factor for the formation of precipitates and thus gel layer 

deposition. Low stability of the solutes can be seen as the underlying mechanism for 

the formation of the precipitates and the crystallisation [132]. 

The ionic strength of the solution can influence the physical characteristics of the 

deposit layer and thus the flow rate [160]. Similarly, Faibish et al. suggested that a 

denser deposit layer is formed at higher ionic strength [161]. This is because the 

ionic strength influences the shape and the charge of the colloids such as proteins 

[130]. 

2.4.4 Turbulence in the System 

The turbulence created in the system influences the accumulation of the particles as 

well as the concentration polarization. Stirring, recirculation or moving the 

membranes determines the turbulence. Turbulence can be expressed as recirculation 

rate, velocity, shear rate, pressure drop or Reynolds number [19]. Determination of 

the Reynolds number (Re) is a common way of defining the flow regime in the 

systems. The Reynolds number for the stirred vessels can be calculated using 

Equation 2 -12 where p is the density of water (kg /m3), N is the stirring rate 

(revolution/s), D; is the diameter of the impeller (m), µ is the dynamic viscosity of 

water (kg /m.$) [162, 163]. 

Re = 
pND; 2 

2 -12 

The higher stirring rates causes higher Re numbers and higher shear rate at the 

membrane surface. It needs to be noted that most fluid mechanical analyses are based 
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on laminar flow in open channel. This severely limits their application to real 

membrane systems, which often operate under turbulent flow conditions [34]. 

In stirred cell systems, the stirring plays a big role in concentration polarization and 

particle deposition. Stirring the solution just at the membrane surface can prevent or 

minimize the concentration polarization. The rate of stirring also contributes to the 

inertial lift and shear induced forces. For example Fane [153] observed larger flux 

with stirring compared to unstirred conditions while filtering nanoparticles with UF. 

Larger flux is obtained when 50 nm gold colloidal particles were filtered by UF 

under stirred conditions compared to unstirred conditions [155]. In the study of 

Madaeni [155] for 10 nm gold particles, larger flux is obtained for unstirred 

condition and this is attributed to the increased aggregation of the small particles due 

to the lack of stirring. 

The turbulence can differ a lot depending on the system configuration. The 

turbulence and the shear rate created in cross -flow system are very different from 

stirred dead end filtrations. In cross -flow systems a shear is created parallel to 

membrane surface and it changes along the membrane. Stirring is the cause of the 

shear in stirred cell systems where the rate is more likely to be higher at the outer 

circle and close to the middle of the circle. In unstirred dead -end filtration, the 

formation of deposit continues to grow until the process is stopped whereas in 

systems where tangential flow affects the deposit growth such as in cross -flow 

systems under certain shear rates the deposit growth is arrested [136]. 
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3 Materials and Methodology 

3.1 Membranes and Membrane Characterisation 

3.1.1 Membranes 

Commercially available polymeric flat sheet OF membranes were supplied by 

Millipore (Bedford, US) and were made of a regenerated cellulose active layer on a 

nonwoven polypropylene support layer. Prior to use for experiments and 

characterisation, the membrane coupons were soaked in 0.1 M sodium hydroxide 

(NaOH) (Fisher, UK) solution for 30 minutes to remove the glycerine preservative 

present on the surface. Afterwards they were rinsed with plenty of tap water followed 

by 2.5 L of ultra -pure water. The list of the flat sheet OF membranes and the chapters 

where each membrane was used are given in Table 3 -1. 

Table 3 -1 The list of flat sheet OF membranes 

Product code MWCO 
(kDa) 

Operating Pressure (bar) Used in 

PLAC 1 5 Chapter 5 

PLBC 3 5 Chapter 5 

PLCC 5 5 Chapter 5 

PLGC 10 5 Chapter 5 

PLTK 30 1 Chapter 5 

PLHK 100 0.5 Chapter 5 and 6 

PLHTK 100 0.5 Chapter 7 

3.1.2 Surface Charge 

The streaming potential of some of the flat sheet membranes was measured over a 

pH range (2 -14) using an electro- kinetic analyser (Anton Paar KG, Gratz, Austria). 

The instrument consisted of an autotitrator for pH adjustment, a pump to circulate the 

solution through the system and a measuring cell where the Ag /AgCI- electrodes (SE 

4.2, Senortechnik Meinsberg, Waldheim/Sa., Germany) were connected. The 

instrument was connected to a PC which had a programme controlling the titration, 

measurement and recording the results. 
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The membrane was cut into two pieces (7.5 cm x 2.5 cm) and each piece was 

attached to a microscope slide with a double sided sticky tape. The membrane pieces 

were soaked in 20 mM NaC1 and 1 mM NaHCO3 background electrolyte solution 

overnight. The background and titration solutions were prepared with the same 

chemicals and at the same concentrations as the solutions used for the filtration 

experiments. The system was rinsed with ultra -pure water for five times until the 

conductivity was stable at 1.15 Ms /cm and pH was between 5 and 6. The ultra -pure 

water was discharged from the system and the tubes. The membrane slides were 

assembled in the cell and the cell was connected to the instrument as well as the 

electrodes. The system was flushed with the background electrolyte solution for three 

times. Afterwards, it was rinsed with the background electrolyte solution for 30 

minutes and the conductivity, pH and especially the voltage were monitored for the 

stabilization. The pH adjustment was conducted in two steps with an autotitrator: 

step one, by adding 0.1 M hydrochloric acid (HC1) (AlfaAesar, USA) and step two, 

by adding 0.1 M NaOH (Fisher, UK). Six measurements were taken at each pH and 

the average value was taken with the variability based on the standard deviation. 

Between each pH adjustment step, the system was rinsed with ultra -pure water for 

five times until the conductivity was stable at 1.15 Ms /cm and pH was between 5 and 

6. 

3.1.3 Surface Roughness 

Membrane surface roughness was estimated using an atomic force microscopy 

(AFM) instrument (Bruker Corporation, formally Veeco, USA). Measurements were 

performed in a liquid contact mode with a silicon probe (Mikromasch CSC38 /AL BS 

type C). The probe had a force constant of 0.005 -0.21 N /m, a resonance frequency of 

6 -23 kHz, nominal tip radius of 8 nm and cantilever length of 300 p.m. 

The roughness analysis considers that the membrane surface occupies a x -y plane 

area, which in this study mostly had size of 2.5 x 2.5 and 1.0 x 1.0 µm. The 

cantilever tip measures the relative height z at each x, y location. The surface 

roughness was measured as the average roughness, Ra, and the root -mean square 
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roughness, Rq. Ra is the average of the measured z- values, while Rq describes the 

standard deviation of the z- values. The average of two measurements for both Ra and 

Rq was presented in this study. 

3.2 Sorbents 

Various materials were used as sorbent for the trace contaminants. Polymers, plain 

polystyrene and carboxylated polystyrene nanoparticles were employed for the 

sorption of hormones while for fluoride sorption, laterite and bone char were studied. 

3.2.1 Polymers 

Commercially available polymers; polysulphone (PSu), polypropylene (PP), 

polyethylene high density (HDPE), polyamide (PA), polystyrene (PS), polyethylene 

terephthalate (PET), polyethylene naphthalate (PEN) and polyethersulphone (PES 

GF) were purchased from Goodfellow (Huntingdon, UK) in the form of 2 -3 mm 

granules. Polysulphone UDEL (PSu U) and polyvinylidene difluoride (PVDF), 

polyethersulphone (PES Radel) were obtained from Solvay (Brussels, Belgium) in 

granular form and cellulose (CEL), poly(methyl methacrylate) (PMMA) and poly(2,6 

dimethyl 1,4- phenylene oxide) (PPO) were purchased from Sigma Aldrich 

(Gillingham, UK) in powder form. Polymers in granular form were with Retsch Ultra 

Centrifugal Mill ZM 200 (Leeds, UK), in three stages using sieves with 1.00, 0.75 

and 0.50 mm openings. The final size of the polymers used in the experiments were 

less than 500µm for PA, PSu, PP, PEN, PS, PET, PVDF, HDPE, PES GF, PSu U and 

PES Radel, 15µm for CEL, 51.1m for PPO, 36µm for PMMA. 

The grinding process of the polymers in granular forum was rather challenging. As a 

result of strong rotation of the mill, a large amount of heat was produced and this 

heat caused the polymers to melt and deform. Melted polymer pieces stacked on the 

rotating units and caused interruption in the operation of the mill. In order to prevent 

the polymers to melt, polymers samples and each component of the rotating unit 

which had a contact with the polymers such as the blade and the sieves were 

immersed in liquid nitrogen for about half a minute prior to the grinding process. A 
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very small amount of granules (4 -5 pellets) was placed in the rotating unit at a time. 

For some of the polymers which have a very low melting point, cooling process with 

liquid nitrogen had to be repeated several times until all the samples could be grinded 

and a single pellet was placed in the rotating unit at a time. 

3.2.2 Polystyrene Nanoparticles 

The plain (non -functionalized) (52, 81, 465 and 3000 nm), non -functionalized 

fluorescent (43 nm) and carboxyl -functionalized (48 nm) polystyrene (PS) 

nanoparticles were purchased from Polysciences, Inc. (Eppelheim, Germany). Prior to 

experiments and instrumental analysis, the nanoparticle solutions were sonicated for 5- 

10 seconds with 150 W ultrasonic cleaner (Sonic Wave, UK) to break any possible 

aggregates. 

3.2.3 Laterite 

Laterite (LA) was extracted in Bongo, Upper East Region, Ghana (GPS: N10.89522 

W0.77871). Laterite was air -dried and the larger fragments were crushed with a 

hammer (inside a bag). An orbital grinder (TEMA, Italy) was used to grind the 

materials. Grinding time was changed between ten seconds and a minute depending 

on the size fraction required. 

Sieves were used to separate the laterite into the following size fractions: 500 -710 

µm, 250 -500 µm, 125 -250 µm, <125 µm, 63 -125 µm, 38 -63 µm, <38 µm. 

Grinding /sieving was an iterative procedure to get the desired size fractions. Laterite 

was not washed or treated prior to any characterisation analysis or experiment. 

3.2.4 Bone char 

Bone char (BC) was collected on December 2010 from Ngurdoto Defluoridation 

Research Station, Arusha Region, Tanzania, where it was treated and prepared. The 

detailed description of the treatment is given in the study of Mjengera and Mkongo 

[164]. Duration of the ignition depends on the size of the kiln and thus the amount of 

the raw bones treated such as 6, 8, 24 hours (including cooling time), respectively in 

40 



3. Materials and Methodology 

10, 20 and 150 kg kilns. The kilns were fuelled by about 1 kg of wood charcoal with 

a controlled air supply. The treatment temperature changed between 400 and 550 °C. 

A ratio of charcoal /raw bone used was 8 %. 

The same grinding and sieving methods used for laterite were applied to bone char. 

For some of the bone char experiments <63 and <150 µm size fractions were used 

exceptionally. The other size ranges tested were exactly the same ones used for 

laterite. Bone char was not washed prior to any characterisation analysis or 

experiment. 

3.3 Sorbent Characterisation 

3.3.1 Particle Size Analysis 

The size of the sorbents was analysed with two different instruments depending on 

the sensitivity of the instrument for the size range. 

The effective diameter of the PS nanoparticles was determined by Zeta Plus and 

90Plus/BI -MAS Particle Size (Brookhaven Instruments, New York, USA) by taking 

the mean of 10 measurements. The size of the 52 nm plain PS nanoparticles was 

measured for three samples prepared at different times and the relative variability 

obtained was used for all other nanoparticle sizes. The instrument is effective for the 

particle size range of 2 nm to 2 µm. The size of the PS nanoparticles was measured 

in experimental background solution of 1 mM NaHCO3 and 20 mM NaCI unless 

stated otherwise. 

The particle micro size distribution of the laterite and bone char samples, ground and 

sieved with different mesh sizes, was measured using LS230 Particle Size Analyser 

(Beckmann Coulter, UK). 0.3 g laterite/bone char was mixed into 25 mL ultra -pure 

water and was stirred for five minutes prior to the analysis. 

The particle size distribution of the polymeric particles was analysed using program 

Image J_1.40 on FE -SEM images assuming a spherical shape for the particles. The 
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microscopic imaging of the polymeric particles was detailed in Section 3.3.4. The 

particle size distribution of six selected polymers was presented in Appendix A.3 and 

the data is used to calculate the average particle diameter. 

3.3.2 Surface Charge Analysis 

Titration Method 

The zero point charge of laterite and bone char was determined by using titration 

method adapted from Wang and Reardon [165]. 0.2 g of sorbent and 0.1 M KC1 was 

added into 10 mL ultra -pure water. 150 -212 µm and < 38 µm size ranges were used 

for bone char and laterite, respectively. The solution pH was adjusted using 1 M HC1 

and 0.1 M NaOH and the reading was recorded after 15 minutes, while swirling. The 

solutions were mixed for one hour in a shaker at 25 °C and 200 rpm. The solution pH 

in each bottle was recorded. 0.5 mL of 2 M KC1 was added into each bottle and the 

pH was recorded for the last time while swirling the solution. 

Zeta Potential Analysis 

Zeta potential measurement was performed with Zeta Plus (Brookhaven Instruments, 

New York, USA) by taking the mean of a set of 10 measurements. 1.5 mL sample 

was placed in a 3 mL sample cuvette. The temperature of the samples was let to 

equilibrate in the machine at least for five minutes. The measurements were 

conducted in the experimental background electrolyte solution of 1 mM NaHCO3 

and 20 mM NaCl, unless otherwise stated. The pH of the solutions was adjusted with 

1M HCl and 1M NaOH. 

The concentrations of -0.60 % v/v for fluorescent (43 nm), carboxylated (48 nm), 

plain (52 and 81 nm) and 0.15 % v/v for plain (465 and 3000 nm) size were used for 

the zeta potential measurements of PS nanoparticles. The influence of the pH on the 

surface charge was studied varying the pH of the solution. 

The laterite samples were measured in the concentration of 0.01% v /v. After the pH 

adjustment the solutions were mixed and let to settle for 10 minutes. 
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3.3.3 Chemical Composition 

X -Ray Diffraction 

X -Ray Diffraction (XRD) was used to characterize the crystalline phase of laterite 

and bone char. For the measurements, <125 µm particle size was used. To carry out 

the XRD analysis, D8- Advance X -ray Diffractometer (Bruker AXS, Germany), 

which employs a 2 -theta configuration in which the X -rays are generated by a Cu- 

anode x -ray tube operating at 40KV and a tube current of 40mA, was used. The 

scanning range of the samples was 20 =2 -60° at a scanning rate of 0.01°/sec. EVA 

analysis package was used to compare the diffractogram results with the 2012 issue 

of the International Centre for Diffraction Data (ICDD) diffractogram database 

library. 

X -Ray Fluorescence 

X -Ray Fluorescence (XRF) method was used to determine the major element 

composition of laterite and bone char. For the measurements, <125 µm particle size 

was used. Before the samples were analysed with PW2404 automatic XRF 

the Netherlands) with a Rh -anode X -ray tube, they were fused 

with a lithium borate flux containing La2O3 as a heavy absorber by a method similar 

to that of Norrish and Hutton [166]. 

3.3.4 Sorbent and Deposit Morphology 

The morphology and the size of the sorbents and the thickness of sorbent deposit on 

membranes were analysed using Scanning Electron Microscopy (SEM). The scale, 

magnification, beam accelerating voltage (kV) and working distance (WD) are 

provided on each image in the results sections. 

Morphology of Polymeric Particles 

The size and the shape of the polymeric particles were analysed imaging the samples 

with 4700 II cold field emission SEM (FE -SEM) (Hitachi, UK). Each polymer 

sample was mounted on Leit conductive double -sided carbon adhesive disc (Agar 

Scientific, UK) which was stuck on SEM specimen stub (Agar Scientific, UK). The 
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edges of the disc and the specimen were painted with conductive carbon cement (Leit 

C) (Agar Scientific, UK). The samples were coated with about 8nm of 60% 

gold /40% palladium alloy (Testbourne, UK) before imaging. The particle size 

distribution of the polymers was analysed using program Image J_1.40 on SEM 

images assuming a spherical shape for the particles. 

Thickness of PS Nanoparticle Deposit 

The membranes with nanoparticle deposit layers were preserved in a petri dish on a 

wet cotton tissue to prevent the membranes and the deposit from drying out. FE- 

SEM imaging with freeze drying technique was conducted at DRIAM facilities in 

Manchester University using Supra 40V field emission SEM (Carl Zeiss, UK) with a 

freeze drying unit (Quorum Technologies, UK). The freeze drying technique was 

required due to the nature of the membrane samples. Once the membranes were 

soaked in aqueous solution, they could not be air dried as this would interfere with 

the membrane structure and the regenerated cellulose active layer would come off 

the support layer. By freeze drying the membrane sample with means of liquid 

nitrogen prevented such damage to the membrane structure. Additionally imaging of 

the regenerated cellulose membranes was required to be under low beam accelerating 

voltage as regenerated cellulose is a very unstable material [167]. Hence, for the 

characterisation of the nanoparticle deposits on membranes, a beam voltage of 1 kV 

was used. A rectangular piece of membrane was cut from the middle of the 

membrane coupon prepared with deposited nanoparticles. Three square membrane 

samples with the size of about 5 x 5 mm were cut with a spatula from different 

locations of the rectangular piece. All three samples were placed between two silicon 

plates and the silicon plates were clamped perpendicular to the sample holder so that 

the cross sections could be imaged. The sample holder was connected to a transfer 

rod which had a unit where the sample holder could be enclosed. The samples 

together with the sample holder were immersed in liquid nitrogen for about half a 

minute. The temperature on the holder was between -80 and -100 °C. It was then 

transferred to the freeze drying unit. The sample holder was placed in the unit 

without any contact to the air. In the freeze drying unit, the samples were let to dry at 
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low temperature under the vacuum pressure of -0.02 torr (2.67 Pa). The drying 

process lasted for about 2.5 hours. When the samples were warmed up to 3 -5 °C, the 

samples were transferred into the imaging chamber. The samples were imaged 

without coating the samples. The deposit thickness was measured using program 

Image J_1.40 on FE -SEM images. 

Morphology of PS nanoparticles 

The size and the shape of 52, 81 and 465 nm PS nanoparticles deposited on 

regenerated cellulose membranes were imaged with analytical field emission SEM 

(FE -SEM) (Carl Zeiss, UK). The sample preparation and imaging method was the 

same as the one described above for deposit thickness measurements. The beam 

voltage used for these measurements was <5 kV. The size of the particles was 

measured using program Image J_1.40 on FE -SEM images. 

Morphology of Laterite and Bone Char 

The morphology of laterite and bone char was determined using an analytical SEM 

(Carl Zeiss, UK). Each powder sample (not washed) was placed on a sticky carbon 

disc attached to aluminium specimen sub (Agar scientific, UK). The sample was not 

coated and was imaged under high vacuum using secondary electron imaging (SE2). 

3.3.5 Total Surface Area and Micropore Volume Analysis 

The specific surface area analysis of laterite and bone char was performed using 

Multi point BET analysis with an Autosorb -iQ (Quantachrome (USA) and nitrogen. 

For the BET method [168], the weight of the nitrogen adsorbed at a relative pressure 

(P /Po) was determined usually for a pressure range of 0.05 -0.30. A sample of laterite 

and bone char with the size range of <125 gm was used. The average of the 

measurements of three different samples was used and the largest difference between 

a single measurement and the average was used as the variability. For micropore 

analysis, a lower P /Po range was used whereas for mesopore analysis a larger P /Po 

range is required. The Dubinin -Astakhov (DA) method, proposed for materials with 

heterogenous micropores, was used to determine the micropore size distribution and 
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volume. Micropore analysis was performed with Dubinin Radushkevich (DR) 

method as well to have a confirmation of the DA method. For both methods a 

pressure range of 7.64x10-5 -0.075 P /Po was used. Barrett, Joyner & Halenda (BJH) 

method which takes the P /Po range of >0.35 was used to determine the mesopore 

volume of the samples. 

3.4 Chemicals 

Analytical grade chemicals were used for the preparation of the experimental 

solutions, the pH adjustment and buffer solutions for analytical measurements. All 

solutions were prepared with ultra -pure water (conductivity: 18.2 Ms /cm) obtained 

from a laboratory purification system (Elga LabWater, UK). 

Tritium labelled [2, 4, 6, 7 -3H] estrone (2.449 TBq /mmol), [2,4,6,7 -3H] 17ß- 

estradiol (2.59 TBq /mmol), [1, 2, 6, 7 -3H] testosterone (2.7 TBq /mmol), and 

[1,2,6,7 -3H] progesterone (2.74 TBq /mmol) with a radioactive activity of 37 

MBq /mL was obtained from Perkin Elmer (Beaconsfield, UK). Non -labelled estrone 

(> 98% purity) was purchased from Sigma Aldrich (Gillingham, UK). 

Sodium fluoride (NaF) ( >99 % Sigma Aldrich, UK) was dissolved in ultra -pure 

water to the required fluoride concentration to prepare a fluoride stock solution of 

1000 mg /L. The required fluoride concentrations were diluted from this stock 

solution. 

Hydrochloric acid (HC1) (Fisher, UK) and sodium hydroxide (NaOH) (Fisher, UK) 

were used to prepare the solutions for pH adjustment. For the characterisation, batch 

and filtration experiments, the pH was adjusted with 1 M and 0.1 M HC1 and 1 M 

and 0.1 M NaOH. 

Unless stated otherwise, all the solutions for batch and membrane filtration 

experiments were prepared in a background electrolyte solutions of 1 mM sodium 

bicarbonate (NaHCO3) (Fisher, UK), 20 mM sodium chloride (NaCI) (Fisher, UK) 

using ultra -pure water. 
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3.5 Analytical Instruments and Equipment 

The analytical instruments are presented in this section. The calibration curves of 

hormones and fluoride determined for scintillation counter, ion selective electrode 

and ion chromatography are displayed in Appendix A.1. 

3.5.1 pH, Conductivity, Oxidation Reduction Potential and Dissolved Oxygen 

Meter 

pH, conductivity, oxidation -reduction potential (ORP) and dissolved oxygen (DO) of 

the samples were measured with pH /Cond 340i meter (WTW, Germany) using the 

corresponding probe. The probes; SenTix 41 (WTW,UK), TetraCon 325, Cellox 325 

(WTW, Germany) and Elit ORP 31 C (NICO 2000, UK) used for pH, conductivity, 

DO and ORP respectively. The pH probe was calibrated every 2 -3 days with pH 

buffer solutions at pH 4, 7 and 10 (Fisher Scientific, UK) and the conductivity probe 

was calibrated when required with 0.01 M KC1 (Fisher Scientific, UK). ORP 

electrode was calibrated every 2 -3 days, using buffer solutions of pH 4 and 7. DO 

probe was calibrated every 2 -3 days with its Oxical -SL calibration and storage 

vessel. 

3.5.2 Alkalinity meter 

Alkalinity of the samples were analysed with alkalinity test kit AL -DT, digital 

titrator with reagent kit (Hach Lange, UK). For the analysis total alkalinity method 

was used for a range of 10 -4000 mg /L as CaCO3. Total alkalinity included carbonate, 

bicarbonate and hydroxide and was determined by titration to a pH between 3.7 and 

5.1. 

3.5.3 Turbidity meter 

The turbidity of the samples was measured with portable turbidimeter TN -100 

(Eutech Instruments, USA). The turbidimeter was calibrated daily with the standards 

provided by the manufacturer. The sample was placed in the instrument and the 

turbidity value was recorded once the reading was stable. 
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The turbidimeter TN -100 was also used to determine the PS nanoparticle 

concentration in feed, permeate and concentrate samples. A calibration curve was 

prepared by measuring the turbidity of PS nanoparticle solutions with 2.0, 7.9, 16, 

31, 50 and 79 mg /L concentrations and determining a correlation between the PS 

concentration in mg /L and turbidity (ntu). 

3.5.4 Scintillation Counter 

The radioactivity of the tritium labelled hormones was measured in disintegration per 

minute (dpm) with Beckman LS 6500 scintillation counter (Fullerton, USA) after 

mixing 0.5 mL of sample with 3.5 mL of Ultima Gold LLT (Perkin Elmer, UK) in 20 

mL scintillation vials (Perkin Elmer, UK) . Each sample was counted three times, each 

10 minutes and the average value was used. The instrument was calibrated each time a 

new hormone stock solution was prepared. A calibration curve was prepared with 

solutions of 0.1, 1, 10, 100 and 100 ng /L hormone concentrations and used to convert 

dpm into ng /L. The detection limit of the instrument for the hormones was 1 ng /L. 

3.5.5 Ion Selective Electrode 

Fluoride concentration in the samples was determined using an ion selective 

electrode (ISE) for fluoride in conjunction with an Ag /AgCI reference electrode 

connected to an ion meter 826 (Ion Meter, Metrohm, UK) was immersed in well 

mixed 2.5 mL of samples and 2.5 mL of TISAB (total ionic strength adjustment 

buffer) solution. The conductance of the fluoride ions was measured in millivolt 

(mV) and the value was recorded after one minute once the reading on ion meter was 

stabilized. A calibration curve was prepared daily with standard fluoride solutions of 

0.1, 0.3, 1, 3, 10, 30 and 100 mg /L and used to convert mV into mg /L. Calibration 

solutions were prepared for each fluoride stock solution separately. The detection 

limit for fluoride electrode was 0.1 mg /L. 

TISAB was prepared by adding 57 mL glacial acetic acid (99 ± %) (Fisher, UK), 58 g 

NaCI (99.9 %) (Fisher, UK) and 4 g of 1, 2- cyclohexanedinitrilo- tetraacetic acid 

(CDTA) (98 %) (Anachemia, UK) into approximately 500 mL ultra -pure water. The 
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solution was stirred until a homogenous solution was obtained and the solution 

temperature cooled down to room temperature. 5 M NaOH (Fisher, UK) was added 

until pH was adjusted to 5 -5.5 and then the solution was completed to 1 L. 

The pH, ionic strength and the presence of metals, especially aluminium in the 

samples are very important parameters which may interfere with the fluoride 

measurements with ISE. In order to eliminate these interferences TISAB must be 

used and must include CDTA. 

3.5.6 Ion Chromatography 

Anion concentrations in the samples were measured with a Basic Plus Ion 

Chromatography 883 (IC) (MetrOhm UK). The samples were introduced to the 

instrument with an eluent, reagent solutions and ultra -pure water as a rinsing 

solution. Eluent solution was composed of 3.2 mM sodium carbonate (Na2CO3) 

(Fisons Scientific, UK) and 1 mM sodium bicarbonate (NaHCO3) (Fisher, UK). 

Reagent solution included 150 mM sulphuric acid (98 %) (Fisher, UK), 100 mM 

oxalic acid (BDH Chemicals, UK) and 5% acetone (Fisher, UK). 

Standard solutions of sodium bromide (NaB), sodium fluoride (NaF), sodium nitrate 

(NaNO3) and sodium chloride (NaC1) all from Fisher Scientifics (UK), sodium 

phosphate (Na2PO4.7H20) and sodium sulfate (Na2SO4) both from Acros Organics 

(UK) prepared with ultra -pure water were used to calibrate the IC. The 

concentrations of the standard solutions used for calibration were 0.1, 0.3, 1, 3 and 5 

mg /L for fluoride, bromide and phosphate, 2, 6, 20, 60 and 100 mg /L for nitrate and 

sulfate and 10, 30, 100, 300 and 500 mg /L for chloride. The calibration curve for 

fluoride is given in Figure A 1 -2 in Appendix A.1. Calibration curves were generated 

with the instrument software for each anion. The correlation coefficient (r2) of the 

calibration curves for each anion was 0.999 or better. The limit of detection (LOD) 

was calculated using the Equation A 2 -1 in Appendix A.2 and is given for each anion 

in Table 3 -2. The LOD was calculated using the slope (m) of the full calibration 

curve. 
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Table 3 -2 LOD for anions with IC 

Specie Symbol LOD (mg/L) 
Fluoride F- 0.05 
Bromide Br 0.77 
Chloride Cl- 0.23 
Nitrate NO3 0.20 
Sulfate SO4-2 0.15 

Phosphate P042" 0.62 

Prior to the analysis of the samples, the accuracy of the calibration was determined 

by analysing a certified standard IC anion solution (10 mg /L F, Cl, Br, NO3, SO4, 

PO4) (Sigma Aldrich, UK). One of the standard solutions and blank (ultra -pure 

water) were analysed about every eight samples in order to control for any drift 

during analysis. 

3.5.7 Inductively -Coupled Plasma Optical Emission and Plasma Mass 

Spectroscopies 

For calcium, potassium and magnesium, inductively coupled plasma- optical 

emission spectroscopy (ICP -OES) (Perkin Elmer Optima 5300 DV, USA) was used 

since the concentrations were mostly higher than 1 mg /L. For the rest of the cations 

the samples were analysed with inductively coupled plasma -mass spectroscopy (ICP- 

MS) (Agilent 7500ce, Japan). The details of the instruments and the methodology of 

the inorganic analysis are given in Appendix A.2. 

3.6 Experimental Protocols 

3.6.1 Batch Sorption Protocol for Polymers 

60 mL of 100 ng/L 1713- estradiol solutions were prepared in 100 mL glass bottles. 

2.5 g of each polymer was added into each estradiol solution and the solutions were 

mixed in a Certomat BS -1 UHK -25 shaker (Göttingen, Germany) at 200 rpm and 25 

°C. Samples of 1 mL were taken with 1 mL syringes at certain time intervals and 

filtered through 0.7 p.m glass microfibre filters (Fisher, Loughborough, UK) which 

was placed in Millipore Swinnex filter support (Ireland). Based on the results of 

preliminary experiments where glassfibre filters were chosen due to their lowest 

sorption of estradiol, after the third sample filtration, the filter reached saturation and 
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the adsorption calculated was due to polymer adsorption. Experiments were stopped 

after about 8000 minutes. 

3.6.2 Batch Sorption Protocol for Nanoparticles 

Hormone solutions are prepared in 100 mL glass bottles and the solution pH was 

adjusted before the addition of nanoparticles. Following the addition of the particles, 

the solution was mixed for an hour at 200 rpm at 20 °C in an Certomat BS -1 orbital 

shaker (Sartorius, Germany). Sorption equilibrium for PS particles was expected to be 

reached within an hour. The solution was then ultra- centrifuged for 4 hours at 686700 

m /s2 (70,000xG) and 20 °C in 16 mL polycarbonate centrifuge bottles (Beckman 

Coulter, UK). Samples were taken from the initial and supernatant solutions after the 

centrifugation and analysed for hormone concentration. 

Fluorescent non functionalized PS particles were used to determine the required 

centrifugation time for the >95 % of the nanoparticles to settle. The UV absorbance of 

fluorescent PS nanoparticles was scanned over a wavelength range between 200 and 

800 nm using a Cary 100 Scan UV visible spectrophotometer (Palo Alto, USA) and 

the result is presented in Figure 3 -1, on the left. 
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Figure 3 -1 Left: Scan of the fluorescent polystyrene nanoparticles, Right: Absorbance of VG 

dye on fluorescent nanoparticles with changing particle concentration 
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The peak absorbance for the yellow green (YG) dye of the fluorescent particles was 

measured at the wavelength of 444 nm and this wavelength was used for the 

determination of the PS nanoparticle concentrations. The absorbance was measured at 

different fluorescent PS concentrations and a correlation curve, presented in Figure 3 -1 

on the right, was obtained between the PS particle concentration (mg /L) and the YG 

dye absorbance. Initial and supernatant PS concentrations were calculated using this 

curve. 

3.6.3 Batch Kinetic Protocol for Laterite and Bone Char 

Laterite or bone char was added into 400 mL of fluoride solution which was stirred 

on a magnetic stirrer at 300 rpm and room temperature (22 ±2 °C). The solutions 

were prepared in a background solution of 1 mM NaHCO3 and 20 mM NaCl. pH of 

the solution was monitored, recorded and adjusted (if required) throughout the 

experiments by adding 1M NaOH or IM HCI. 10 mL samples were taken with a 20 

mL polypropylene syringe at certain time intervals and the sorbent was filtered with 

0.45 µm disposable syringe filters (CA, Sartoris). Fluoride concentration in both feed 

and the filtrates were measured. The sorption equilibrium was considered once the 

last two consecutive filtrate samples had the same fluoride concentration. Initial and 

final pH and conductivity of the solution were measured. 

3.7 Membrane Filtration System: Stirred Cells 

The dead end filtration experiments with flat sheet membranes were conducted using 

stainless steel stirred cells. A photograph of the cells is given in Figure 3 -2. Each cell 

had a volume of 990 mL, a diameter of 70 mm and a magnetic stirrer assembly 

(Millipore, Watford, UK). The dimensions of the stirring unit were provided in 

Figure 3 -3. The membrane coupons were cut to the size required to fit into the stirred 

cells. The membrane surface area exposed to the pressurized solution was 0.0033 m2. 

The cells were placed on a magnetic stirrer (Fisher Scientific, Loughborough, UK) 

which was adjusted to 300 rpm for all experiments to minimize the concentration 

polarization effect. 
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Figure 3 -2 Photograph of the stirred cells connected to the computer system 

Each permeate line had a valve to control the flow. Permeate of each cell was 

collected in a beaker placed on a balance (Fisher Scientific, Loughborough, UK) and 

the weight and hence the volume of the permeate was monitored continuously. 

Stirred Cell . 

Magnetic stirrer . 
Valve 

Permeate 
line 

70 mm 

Di :63 mm 

4 
Dc :65 mm 

Membrane 

Figure 3 -3 Schematic of the stainless steel stirred cells and the magnetic stirrer (not to scale), D;: 

impeller diameter, D,: stirred cell diameter, bi,: height of the blade 
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The cells contained a pressure transducer and a thermocouple which were connected 

to a data acquisition system (OMB- DAQ -56), all purchased from Omega 

Engineering (Irlam, UK). The data from the acquisition system and the balances 

were transferred to the computer and processed using the program Labview 8.0 

(National Instruments, Newbury, UK). The filtration protocols are described 

individually in the material and methods section of each chapter. 

3.8 Data Analysis 

Standard calculations used for the data analysis in all chapters are given in this 

section. 

3.8.1 Calculation of the Contaminant Mass Adsorbed 

The contaminant (sorbate) mass adsorbed (Maas) in milligram (mg) for fluoride and 

nanogram (ng) for hormones was calculated with Equation 3 -1 where Vf, Vp and Vc 

are the volume (L) of feed, sample permeate, concentrate, respectively, Cf, C1 and Cc 

are the contaminant concentration (ng /L for hormones and mg /L for fluoride) of feed, 

sample permeate and concentrate, respectively, mads is the contaminant mass 

adsorbed on the membrane, ; is the identity number of permeate samples and n is the 

total number of the permeate samples. 

Mads -Vf.Cf -p,.CP, -Vc.C-mads 3 -1 

mads was determined with blank experiments, where no sorbent was added to the 

system, using the same Equation 3 -1 but substituting the Mads with zero. An example 

of the El mass adsorbed is calculated in a sample experiment was presented in 

Appendix A.4. 

3.8.2 Flux, Permeability and Deposit Resistance 

Membrane water flux (J) (L /m2.h) was calculated using Equation 3 -2 where dV /dt is 

the volume of the permeate in a specific time interval and Am is the surface area of 

the membrane exposed to the solution. Am is 0.0033 m2 for the stirred cell system. 
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J 
dt A 3 -2 

m 

The permeability (Lv,) (L /m2.h.bar) was calculated with Equation 3 -3 where AP is the 

operational pressure (bar). The sorbent deposit resistance (Rd) (1/m) was determined 

using the same equation where µ is the dynamic viscosity (converted into bar.h) of 

water at the experimental temperature, Rd is the resistance of the sorbent deposit 

(1 /m) and R,,, is the membrane resistance (1 /m). R,,, was calculated from the data 

obtained from ultra -pure water filtration using the same Equation 3 -3 by substituting 

Rd with zero. 

L == 1 103 3 -3 
AP 11(¡¡ Rm + Rd ) 

The flux data was corrected for the average experimental temperature (21±2 °C) for 

some experiments where the temperature was lower or higher than the experimental 

standard deviation (±2), using the corresponding viscosity data and replacing it in the 

Equation 3 -3. The dynamic viscosity corresponding to the average temperature was 

calculated using the Vogel Equation 3 -4 where µ is dynamic viscosity (Pa.$) and T is 

the temperature (K) [169]. 

= el 
10.5+ 

530 ¡ 
T-146 

3.9 Experimental Quality Control and Assurance 

3 -4 

The practices employed to assure and control the experimental quality are described 

in this section. The methodology used to estimate the variability in the experimental 

results is also explained. 

It is known that polymeric materials have sorption affinity for organic compounds 

while inorganic compounds chemically interact with glass materials. In order to 

prevent analyte sorption on laboratory equipment, for hormone sorption experiments, 

glass and for fluoride sorption, plastic equipment was used. Similarly appropriate 

cleaning agents were used for organics and inorganics. Solutions of acetic acid (8% 

in volume) were used to rinse the equipment utilized for fluoride experiments. 
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Equipment used with radiolabelled hormone was de- contaminated with solution of 

RBS® (Sigma Aldrich, UK) while NaOH (5% in weight) was used to clean the non - 

labelled hormone contaminations. After cleaning with the appropriate cleaning 

solutions all equipment was rinsed with ultra -pure water and dried either with hot air 

in ambient conditions. 

All chemicals used were of analytical grade, stored in appropriate conditions, dated 

once opened and discarded when outdated. The instruments were calibrated regularly 

or on a daily basis depending on the specific requirement with the appropriate 

standard solutions and a references standard was measured prior to the sample 

analysis to confirm the accuracy. A standard solution and blank samples with only 

ultra -pure water were regularly analysed to monitor if any analyte carry -over or 

contamination happened in the instrument. Limit of detection was determined for 

each analyte and the instrumental results were presented accordingly. 

Analyte sorption on sorbent materials was quantified taking the equipment and 

membrane sorption into account. Prior to both batch adsorption and filtration 

experiments with the sorbents, blank experiments where no sorbents were added to 

the system were performed in order to quantify the sorption on equipment and the 

system. The mass of analyte sorbed on membranes or equipment was subtracted from 

the final mass adsorbed to quantify the sorption only on sorbent materials. Attaining 

the sorption equilibrium was an important parameter for the comparison of the 

analyte mass sorbed especially for filtration experiments conducted with hormones 

where the duration varied depending on the MWCO of the membrane. The sorption 

equilibrium is confirmed by monitoring the consecutive permeate samples. 

For interpretation of the experimental results accurately, estimating the error is 

mandatory. In this study, sorption and the membrane permeability are the main 

experimental results presented and the estimation of the error for these results was 

challenging. Several estimation methods were tried and an example is presented for a 

single experiment for permeability in Table 3 -3. 
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Table 3 -3 Relative permeability data and estimation of error and variability for the data point 

Error propagation 
based on the error in 
each measured data 

Variability 
estimation based on 
variability in each 

measured data 

Variability of 
ex erimental data 
repeated 5 times 

Experiment 
Permeability/ Initial 
Permeability (LV /Lo) 

0.34±0.009 0.34 ±0.02 0.41±0.07 

When a quantity is a function of measured quantities and each measured quantity has 

its own uncertainty (error), an error for the function can be propagated using 

individual errors. The analyte (contaminant) mass sorbed is a function of measured 

contaminant concentration and volume of the feed, permeate and concentrate 

samples. Permeability is a function of measured volume of permeate, time and the 

membrane surface area. Error was propagated for both sorption and permeability 

using individual error in each measured data. Error propagation for permeability of a 

single data point was conducted and was based on the instrumental error in measured 

water flow with balance ( ±0.2 g) and pressure in the stirred cell measured with 

pressure transducer ( ±0.001 mV). Calculated error (±0.009) is presented in the 

second column in Table 3 -3 and was less than the other two uncertainties 

calculated with different methods, this is not surprising as other 

variables can influence the permeability of sorption. For example, permeability 

depends on the variability in pressure and temperature while variability in initial 

contaminant concentration can influence the sorption to a great extent. 

A variability approach, similar to the one of De Munari [170], was used to determine 

the variability of each parameter influencing the sorption or permeability. Overall 

variability in sorption or permeability was estimated (propagated) using variability in 

each parameter. Estimation result for a single experiment for permeability ( ±0.02) is 

presented in the third column in Table 3 -3. Although the presented variability 

estimation ( ±0.02) is larger than the propagated error ( ±0.009), it is still smaller than 

the variability based on the repeated experiments. 
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3. Materials and Methodology 

In membrane science, sometimes each data point is repeated twice or three times and 

the error is estimated using the standard deviation. In this study, each data point 

could not be repeated three times as the available membrane coupons were limited. 

For sorption and permeability, an experimental variability was calculated for each 

data series where a single parameter was varied. In each data series, a single 

experimental data point was repeated at least three times. Instead of standard 

deviation, variability is estimated for that specific point by taking the largest 

difference among individual experimental data and the mean value. Variability in 

permeability ( ±0.07) calculated from five repeated experiments of a single data point 

is presented in the last column in Table 3 -3 and is the largest compared to the other 

estimation results of the other methods. Therefore, estimated variability based on 

repeated experiments was used as an absolute variability for the rest of the data 

points in the specific series. In some data series, variability was estimated for 

additional data points and was presented individually. The additional data points 

were selected due to the experimental complexity and the expectancy of additional 

variability. 

For deposit or foulant resistance data, it was observed that there was a linear 

correlation between the magnitude of the resistance and the magnitude of the specific 

variability, therefore a relative variability rather than absolute was used for resistance 

data series throughout the thesis. 
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4 Hormone Sorption on Polymers 

4.1 Introduction 

This chapter aims to provide a literature review on the polymeric materials which 

have hormone sorption affinity and the factors responsible for the hormone sorption 

on polymers. Additionally an experimental study on hormone sorption affinity of 

commercial polymers is conducted to enrich the discussion of the review. 

The experimental study is conducted by testing the hormone sorption affinity of 

various commercial polymers with known surface area. Considering its high 

endocrine disrupting potential [38, 39], E2 is selected as the representative hormone 

for this experimental study. 

4.2 General Characteristics of Hormones 

The physical and chemical characteristics of the selected hormones are given in 

Table 4 -1. Although it is known that the characteristics contribute to interaction 

mechanisms, no direct correlation between a single characteristic of the hormone and 

its sorption behaviour could be made. A major difficulty in removing hormones from 

water is not only the small concentration in which they occur and are physiologically 

active, but also their small size or molecular weight (MW). The MW of the 

hormones is very similar, varying between 268 and 315 g /mol. 

The Log KoW parameter measures the hydrophobicity of the hormones by partitioning 

between octanol and water. As a general rule of thumb, compounds with Log 

KoW >2.5 are expected to accumulate in solid phases instead of being soluble in the 

aqueous phase. The Log KoW values for the hormones given in Table 4 -1 are above 

2.5. 
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4 Hormone Sorption on Polymers 

The water solubility and the dipole moment can also give an indication on the 

hydrophobicity of the molecule although they are not strong indicators like the 

parameter K0 [188]. Less soluble and less polar molecules are unlikely to interact 

with water molecules and thus show hydrophobic properties. 

Estrogen solubility in water (0.3 to 441 mg /L) has a remarkable variability in 

published data but is relatively low. Low solubility usually indicates larger sorption 

coefficients [189]. Dipole moments give an indication on the polarity of the 

molecules and vary from 1.6 to 4.6 Debye. The molecules with larger difference 

between positive and negative electrical charges have a higher dipole moment values 

[190]. Dipole moments of the molecules are important considering that considerable 

attractive interactions may occur because of the alignment of one dipole molecule 

with another [191]. 

Other characteristics considered have been molecular shape and size [66, 192 -194]. 

The diffusivity of the molecules changes depending on its molecular weight. 

Enhanced sorption can be achieved if the molecules can diffuse into the polymeric 

material and interact with the internal active sites and this mostly the case for porous 

sorbents such as activated carbon [100]. Molecular shape can be exploited to prepare 

molecular imprints in polymers to create specific sorption sites [195]. Information on 

molecular surface area of hormone molecules (given as solvent accessible surface 

area) gives an indication on the number and mass of hormone molecules sorbed on 

polymeric sorbents with a known surface area, based on mono or mutli -layer 

coverage. 

Proton donor and acceptor characteristics are further characteristics that may affect 

interaction with polymers, in particular the ability to form hydrogen bonds. H- 

bonding has been attributed to play a predominant role in the transport of hormones 

in biological systems [29, 196 -200]. Electronegative atoms with a lone pair of 

electrons (as an acceptor) and hydrogen atom, which is bonded to an electronegative 

atom such as nitrogen (N) or oxygen (0), (as a donor) are the indications of the 

capability of hydrogen bonding [191]. The hydrogen bonding capacity of the 
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4. Hormone Sorption on Polymers 

estrogens has been reported before. It is suggested that some hormones with 

hydroxyl groups, such as 17f3 estradiol [201] are able to make hydrogen bonding 

[202]. Nghiem et al. [176] reported results indicating that the oxygen atoms at the 

first ring of E 1 and E2 have predominantly the potential to be involved in hydrogen 

bonding with membrane polymers. The hydrogen bonding capacity of progesterone 

with its electronegative oxygen atom acting as hydrogen acceptor in hydrogen 

bonding is also reported [203]. The similarity in the chemical structure of 

testosterone with the other hormone molecules and the existence of electronegative 

oxygen and a hydroxyl group indicate that T may have hydrogen bonding capacity as 

well. Hormones such as El and E2 possess a phenol group which is electron -rich 

[204] and can therefore form 7E-7E bonding with electron deficient phenyl groups 

[191]. 

The pKa shows the acid dissociation constant at which the hormones loose a 

hydrogen atom and become negatively charged. The hormones that have a phenolic 

hydroxyl group all dissociate in the same pH range; between 10.2 and 10.5. When 

the solution pH increases above the pKa, the hormone molecules deprotonate and 

become negatively charged and this can influence their charge interaction with the 

polymeric sorbents. Dissociation may also cause loss of H- bonding capacity of 

hormones. 

The given characteristics of the hormones indicate that sorption has a potential to be 

used as an efficient process for the removal of the hormones from water. 

4.3 Hormone Sorption on Polymeric Materials 

Sorption of hormones on polymeric materials was first noticed due to the interactions 

with laboratory equipment. For example, Petri dishes (PVC) were found to adsorb 

significant amounts of hormones and results were verified with grinded PVC [205]. 

One study established that polystyrene plastic ware adsorbed 38% and 43% of 17ß- 

estradiol and progesterone, respectively [206], while another study reported that 

parathyroid hormone sorbed to borosilicate glass tubes, polycarbonate and cellulose 
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nitrate [207]. Sorption to polypropylene tubes was lower and equilibrium was 

reached within 4 hours [207]. Packaging materials equally have an adsorption 

capacity for hormones. Results using granular materials found very high adsorption 

capacities for polystyrol (6 ng /cm2), for glass (18 ng /cm2 and 105 ng/cm2 depending 

on the glass type), for polypropylene (60 ng /cm2), for polyethylene (PE, 75 ng /cm2), 

for Lupolen (low density polyethylene, 180 ng /cm2) and for Cellidor 

(Celluloseacetobutyrat, more than 420 ng /cm2) [208]. While concentration values 

were not provided in the study with packaging materials, the high adsorption most 

likely indicates a relatively high concentration of contaminants used. 

Sorption has also been observed for filters used in sample preparation resulting in 

significant losses of analytes. Different types of filter materials were tested for 

estradiol adsorption and the results showed that cellulose acetate and cellulose nitrate 

adsorbed the most estradiol compared to glass fibre and paper materials [208]. 

Adsorption of up to 50% of feed estradiol concentration on a cellulose acetate filter 

was observed [209]. 

Sorption interactions are exploited for analytical purposes for example in 

chromatography as well as sample preparation. Solid phase extraction (SPE) is used 

for the concentration of analytes in samples. The most widely used SPE sorbents for 

micropollutants are alkyl- bonded silicas (C18 silica, C2 silica), copolymer sorbents 

such as cross -linked polystyrene divinylbenzene, and hydrophilic lipophilic balanced 

polymers. Each has specific contaminant applications [210, 211]. C18 resins and 

other polymeric sorbents have been used in several studies, separate or in 

combination, for purification and determination of pesticides, estrogens and 

progestogens with SPE [44, 212]. Solid phase micro -extraction (SPME) sorbs a 

fraction of the analyte and can be used for the quantification of analytes and analyte 

interactions with other dissolved molecules. Polyacrylate has been used for the 

detection of estrogens in water and their interactions with organic matter [213, 214]. 

Polydimethylsiloxane (PDMS), divinylbenzene (DB), polyacrylate (PA), as well as 

Carboxen (CAR; a carbon molecular sieve) and Carbowax (CW; polyethylene 

glycol) are other commonly used coating polymers for SPME of organics [215]. 
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Recently developed molecularly imprinted polymers (MIPs) show potential for 

specific adsorption of hormone molecules, especially estrogens [195, 201, 202, 216- 

219]. 

Sorption is studied as one of the mechanisms which are responsible for the removal 

of hormones from water in polymeric membrane filtration. Hormone sorption on 

membrane polymers are known for both large MWCO membranes (UF and MF) and 

dense membranes (NF and RO). 

Sorption of hormones on UF membranes is highly dependent on the membrane 

polymer material. For example, >34% of 170 estradiol is adsorbed on a UF 

membrane [220]. Adsorption of estrone, progesterone and testosterone is determined 

as -45, 55 and 30% on ultrathin polyimide coated sulfonated polyethersulfone UF 

membrane respectively [32]. In another study on recovery of 6- a- methylprednisolone 

(a type of steroid) from heat -treated cell suspension of Arthtobacter simplex, UF 

membranes are used and results show that 27% and 31% of hormone is adsorbed on 

two different MWCO UF polysulfone membranes respectively [30]. The solution pH 

also plays an important role on the sorption process. Bisphenol A (BPA) is 

recognized as an artificial estrogen with similar characteristics [221]. Lyko et al. 

demonstrated that there was no removal of bisphenol (BPA) with UF membrane at 

pH >5 while 36% removal was achieved at pH 5. Schäfer et al. state 30% BPA 

adsorption at pH values 4 -9 [29, 31]. Considering that BPA has a pKa values of 9.28, 

charge repulsion due to dissociation is potentially hindering the adsorption process at 

higher pH values. 

Sorption on polyamide NF and RO membranes is stated as a main mechanism 

responsible for removal of hormones such as estradiol, 170 estradiol, estriol, estrone, 

17a ethynyl estradiol, testosterone and androstenedione in several studies [67, 90, 

91]. The sorption of 170 -Estradiol on polyamide NF membrane is estimated as 0.12 

µg /cm2 by McCallum 2008 [68]. The results suggested that the adsorption of E2 is 

mainly occurring on the polysulfone layer of the membrane rather than the 

polyamide and the adsorption mechanism is suggested to be hydrophobic. The 
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sorption is found to be influenced strongly by the operating conditions and the water 

quality. In another study, the retention of El and E2 on porous membranes is found 

to be less due to the decreased adsorption compared to the denser NF /RO membranes 

[176]. This can be due to the portioning of the trace contaminants on membrane 

surfaces and diffusion into the dense membrane structure as it is the case for El 

[222]. The adsorption of El, E2, T and P on NF membranes with polyamide active 

layer and polysulfone support layer is reported [223]. 22 -46% of adsorption occurred 

for progesterone, testosterone, 17a- ethinylestradiol, estriol and estradiol on 

polyamide NF membrane [69] and similar sorption rates of 27% is reported for 

estrone on polyamide NF membrane by Hu et al. [70]. 

The literature review shows that polymers have a sorption affinity for hormones and 

the affinity depends on hormone and polymer type as well as the solution chemistry. 

4.4 Hormone Sorption on Polymer Surface Area 

The surface area of the sorbents gives an indication on the availability of active sites 

for the sorption of hormones. The importance of the active surface area for hormone 

sorption on polymeric materials is studied in membrane filtration and adsorption. 

The membrane adsorption is usually presented in hormone mass adsorbed per unit 

surface area (ng /cm2) and the area in the unit usually refers to the top surface area of 

the membrane. However, the internal surface area of the membrane structure is 

expected to influence the adsorption as well. The retention of hormones by different 

membrane material and MWCO is given in the following increasing order of 

adsorption: X20 (MWCO <200 Da, polyamide) > TS80 (MWCO <200 Da, 

polyamide) > NF270 (MWCO 400 Da, polyamide) > UE10 (MWCO 10000 Da, 

polysulphone) [224]. Results show that the membrane which has the highest 

retention has the smallest pore size and at the same time has the lowest adsorption 

indicating that the adsorption is larger for the membranes with larger pore. However, 

the difference can be attributed to both the differences in material type as well as the 

pore size of the membranes. Semiáo [93] studied the influence of pore size on E2 

adsorption with the same membrane NF270 but different batches which have 
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different pore sizes and showed that larger pore size membrane has a larger amount 

of hormone adsorbed. This was attributed to the larger amount of hormone having 

access to the internal active sites of the membrane. It is also noted that for the 

membranes with similar pore size, the membrane providing a larger internal surface 

area adsorbs more hormone [93]. The membranes are usually made of several 

polymeric materials and the internal surface area can vary a lot due to its physical 

characteristics such as thickness, pore size and porosity. Therefore, investigating the 

influence of surface area on the hormone sorption on polymeric membranes is 

challenging. 

A simpler and systematic study is required for understanding the influence of surface 

area on the hormone sorption by polymeric materials as particles. Besides the 

available surface area of the polymer, type of polymeric material plays a significant 

role on the extent of adsorption and this is due to the various intermolecular 

interactions happening between specific polymers and hormones. 

4.5 Intermolecular Interactions in Hormone Sorption on Polymers 

Sorption of hormones on polymeric materials is commonly exploited in the 

application of chromatography and solid phase extraction (SPE) beyond membrane 

filtration. Hydrophobic effect, dipole -dipole, dipole -induced dipole and dispersive 

interactions, hydrogen bonding and ionic interactions are the mechanisms mentioned 

to be playing role in the adsorption process for these applications [225]. 

Looking at the intermolecular interactions three main mechanisms are considered to 

be playing a role in the adsorption of hormones on polymer materials. These 

mechanisms are hydrophobic interactions, hydrogen (H) bonding and 7C-7C stacking 

and illustrated in Figure 4 -1. The strength of the interactions between the hormone 

molecules and the sorbent materials can change significantly depending on the 

solution chemistry [226]. 
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Hydrophobic molecules, in this case hormone and polymers, in water tend to 

agglomerate as they are squeezed out of the way of the strong interactions between 

the water molecules. 
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Figure 4 -1 Selected possible intermolecular interactions between hormones and polymers. A) 

hydrophobic interaction between polypropylene (PP) and estrone (El), B) hydrogen bonding 
between polyamide (PA) and estrone (El), C) n -n interaction between aromatic rings of 
polystyrene (PS) and estrone (El). Interaction mechanisms adapted from 11911 

This hydrophobic effect can resemble an attraction between two hydrophobic 

molecules. With hydrophobic interactions, the molecules tend to form a host guest 

complex instead of forming individual "holes" in the structure of bulk water and this 

results in a lower overall free energy with an entropic gain [191]. 

Hydrophobic molecules and polymers are expected to interact with each other when 

they are found in aqueous solution. The adsorption of the estrogens on MIPs is 
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attributed to the hydrophobic interactions and it is suggested that the estrogens with 

higher K. has higher possibility of sorption due to the enhanced hydrophobic 

interactions [219]. Camerton et al. [227] reported a correlation between the K. of 

17a estradiol, 17ß estradiol, estriol, estrone, 17a ethynyl estradiol and their sorption 

on hydrophobic polysulfone OF and polyamide NF membranes. Similar correlation 

was obtained by other authors [33, 228] for the adsorption of hormones on aromatic 

polyamide NF or sulfonated polyethersulfone OF membranes coated with an 

ultrathin polyimide. The adsorption of hormone mimicking compounds, nonylphenol 

(NP), tertbutylphenol (TBP), and bisphenol A (BPA) by [229] due to the 

hydrophobic interactions is also stated. Similar results are obtained for the sorption 

of other dissolved organic matters on membrane polymers as well [188, 230]. It is 

suggested that the strength of the interactions between hydrophobic compounds and 

some polymers is much higher in water rich solutions compared to water poor 

environments [226]. Despite of its known importance on the hormone sorption, 

hydrophobic interaction is not necessarily the dominant mechanism. 

Hydrogen bonding is another interaction which can influence the partitioning of the 

estrogens [231]. Hydrogen bonding can be defined as a particular type of dipole - 

dipole interaction involving a hydrogen atom attached to an electronegative atom 

usually bearing a free electron pair and this hydrogen being attracted by a similarly 

electronegative atom. Hydrogen bonds are usually illustrated as X -H... Y where X is 

the electronegative atom attached to the hydrogen atom and acting as a donor 

whereas Y is the similarly electronegative atom such as N or O as the acceptor. The 

strength of normal hydrogen bonds changes typically between 4 and 60 kJ /mol. 

Hydrogen bonding can be classified into three categories being strong, moderate and 

weak. Hydrogen atoms shared between electronegative atoms and t electrons of 

aromatic rings or C -H groups is an example of weak hydrogen bonding [191]. 

Nghiem et al. [176] reported that hydrogen bonding can form between the 3- oxygen 

atoms of the first ring of estrone and estradiol and membrane polymer. The sorption 

of E1, E2, EE2 and BPA on polyamide MF membranes is attributed to the hydrogen 

bonds forming between the amide groups of PA and proton- donating moieties of the 

estrogens [232]. 
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The self -assembly of the estrogens used as a template for MIPs was based on 

hydrogen bonding mechanism considering that these molecules have predominantly 

carbonyl and hydroxy groups [195]. Specific functionalization of the MIPs with 

groups which may have high hydrogen bonding capacity with hormones is under 

investigation. For example, it is observed that MIPs functionalized with amide 

groups have a stronger hydrogen bonding capacity compared to carboxyl groups 

[233]. Buszewski et al. [217] suggested that the hydrogen bonding is a dominant 

interaction between the MIP and 17p Estradiol. The solvent seems to be playing an 

important role on the strength of these hydrogen bonds [217, 233, 234]. It is 

suggested that the hydrogen bonding capacity of the molecules can be higher in non - 

polar solvents as non -polar solvents favour hydrogen bonding whereas in water, 

hydrogen acceptors and donor becomes surrounded by water molecules which lead 

the hydrophobic interaction to be dominant [191]. Sanbe and Haginaka [201] also 

reported that hydrogen bonds formed by hormones are more important (compared to 

hydrophobic interactions) in the absence of the water. 

The importance of hydrogen bonding for the retention of the estrogenic compounds 

on polymers in high performance liquid chromatography (HPLC) applications is also 

reported and it is suggested that the bonding can form between the diethylamino 

groups on a MIP and the weakly acidic phenolic groups on the estrogens [216]. 

Both interaction mechanisms, hydrophobic and hydrogen bonding, are held 

responsible for the adsorption of hormones on membrane polymers in membrane 

filtration [176, 222, 223]. In the case of the MIPs, the electrostatic interactions are 

the main driving force while hydrogen bonding and hydrophobic interactions are 

considered to be contributing to the binding, especially in water rich environments 

[226]. The relatively high adsorption of El, E2, EE2 and BPA onto MIPs can be 

explained by the hydrophobic properties of both the estrogens and MIP itself. 

Hydrogen bonding through carbonyl, carboxyl groups and the phenolic groups as 

well as van der Waals forces are also contributing to the adsorption [235] 
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In addition to hydrophobic interactions and H- bonding, 7C-7C interaction is a possible 

mechanism to be considered. The difference between the It densities of the adsorbent 

and the corresponding adsorbate determines the stability of the 7C-7C interaction. 7C 

density is determined by electron rich and deficient aromatic fragments [236]. 7C-7C 

interactions and strong hydrophobic interactions are involved in the sorption 

mechanisms of methylene and phenyl groups to hypercrosslinked polystyrene [236]. 

Sychov et al. [237] states that it -ir interactions between the hypercrosslinked 

polystyrene and the molecules with n- systems of electrons such as aromatic rings, 

carboxyl groups and alike governs the retention mechanisms in HPLC application 

with non -polar solvents. In fact, hypercrosslinked polystyrene has a strong 7c- electron 

donating- accepting ability in non -polar organic solvents. This ability results in high 

sorption capacity of compounds which contain aromatic it- systems or functional 

groups with free electron pairs in HPLC application [238]. Sorbents used in SPE 

with phenyl groups (such as polystyrene divinlybenzene) have the capacity to 

interact with steroids through it -n interactions. The number and positioning of phenyl 

groups in this phase determine the level of 7L-ii interactions and the sorption capacity. 

It was suggested that the 7C-7C interaction between the phenyl phase and the steroid 

occurs when the double bonds of steroid and phenyl group overlap [238]. 

The reasons why specific polymers have higher affinity for certain hormones are still 

not understood completely. Beyond the uncertainty in active surface area due to 

variability in material size, shape and porosity the responsible intermolecular 

interactions need to be clarified. 

In this study, several commercially available polymers are purchased and tested for 

their sorption capacity in order to enrich the discussion on the hormone sorption on 

polymeric materials based on the literature review. For the comparison the polymer 

particles are reduced to the similar size by grinding process except for the few that 

could only be purchased in small sizes. Having similar particle size for the polymers 

has provided a relatively more reliable comparison in terms of available surface area. 
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4.6 Materials and Methods 

The supplier, preparation method and the final particle size of the 13 polymers used 

in this chapter were given in Section 3.2.1. The surface morphology and the size of 

the polymer particles were analysed and measured with field emission electron 

microscopy (FESEM) as described in Section 3.3.4. 

1713- estradiol (E2) was selected as the representative hormone for the experimental 

study in this chapter and tritium labelled E2, [1, 2, 6, 7 -3H] was used to prepare the 

solutions. No background electrolyte was used in order to prevent its interference on 

hormone sorption on polymers. The characteristics of the E2 are given in Table 4 -1. 

The batch adsorption protocol is described in Section 3.6.1. The hormone 

concentration in feed and filtrate samples were measured with scintillation counter as 

described in Section 3.5.4. 

4.7 Characteristics of the Polymers 

The chemical and physical properties of the polymers are compiled in Table 4.2. The 

chemical structure gives an indication about the kind of interaction each polymer can 

make with E2. The contact angle is usually measured with a water droplet and it is 

the angle where a water interface meets a solid surface. The solid surfaces with 

contact angle larger than 90° are considered hydrophobic whereas the hydrophilic 

surfaces usually have values less than 90° [28]. As the surface characteristics highly 

depend on the manufacturing process, the contact angle values obtained from the 

literature may not necessarily describe the specific polymer properties well. 

PES Radel A, PS, PP and HDPE are hydrophobic polymers. PPO can be considered 

both hydrophobic and hydrophilic as it has a contact angle very close to 90 °. 

Cellulose seems to be the most hydrophilic polymer with a contact angle of 24 °. The 

rest of the polymers have similar contact angle values and show hydrophilic 

characteristics. 
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4. Hormone Sorption on Polymers 

4.8 Estradiol Sorption on Polymers 

E2 sorption is studied for various commercially available polymers in order to 

provide a better understanding of the underlying mechanisms governing the sorption. 

The sorption affinity of the polymers for E2 is presented in Figure 4 -2. The affinity is 

presented in two different ways by normalising the E2 mass adsorbed (ng) by first 

mass of polymer (g) and second by the polymer surface area (cm2). The surface area 

of the polymer was calculated from the particle size distribution data obtained from 

FE -SEM. It needs to be noted that this measurement takes only the external surface 

area into account and the possible internal surface area due to the polymer porosity is 

neglected. If a polymeric surface can be measured including the pores then the 

surface area related sorption can be evaluated better. 

Mass and surface area normalized affinities (ng /g and ng /cm2) are presented in 

Figure 4 -2A -B and Figure 4 -2C -D, respectively. The results show that PA has the 

largest affinity (2.30 ng /g) for E2 with relatively fast kinetics. Fast kinetics of PA 

indicates that the sorption is a surface phenomenon. PES R is the second polymer 

which has a high affinity (1.50 ng /g) for E2. Although PPO seems to adsorb a 

comparable amount of E2 (2.29 ng /g) with PA, when the sorption is normalized with 

surface area, the sorption affinity of PPO (0.001 ng /cm2) is one of the smallest 

among the other polymers. Similarly, E2 sorption is the smallest for PVDF (0.22 

ng /g), however when normalized with surface area, its sorption affinity (0.006 

ng /cm2) is comparable to most of the polymers. Cellulose (0.001 ng /cm2) and PMMA 

(0.001 ng /cm2) are the other two polymers besides PPO which have almost no 

sorption affinity for E2. There is not an obvious difference among the rest of the 

polymers for E2 sorption. The difference between the mass and surface area 

normalized affinity show that the surface area is a very important parameter playing 

role in the hormone sorption on polymers. 

Hydrophobic interactions are considered to be one of the main mechanisms 

responsible for the hormone sorption on polymeric materials. Surprisingly polymers, 

which have a larger contact angle indicating high hydrophobicity such as HDPE 
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(0.61 ng /g), have less sorption affinity for E2 compared to hydrophilic polymers such 

as PA (2.30 ng /g). 
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Figure 4 -2 Estradiol (E2) adsorption on different polymers. A -B: E2 mass adsorbed /polymer 
mass, C -D: E2 mass adsorbed /polymer surface area. 2.5 g of polymer in 60 mL of 100 ng /L E2 

solution 

In order to find out if there is a correlation between the hydrophobicity of the 

polymers and the E2 affinity, E2 mass adsorbed is plotted against the contact angle 

of the tested polymers in Figure 4 -3. It is observed that there is no correlation 

between the experimental sorption results and the hydrophobicity of the polymers. 
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Figure 4 -3 The relationship between E2 mass adsorbed and the contact angle of the polymers 
(taken from Table 4 -2) 

Looking at the literature review on the possible interaction mechanisms between the 

polymers and the hormones (Figure 4 -1), different sorption affinities by various 

polymers can be explained better. PA is the strongest adsorbent of the polymers 

tested due to its quite polar nature and ability to act as both hydrogen acceptor and 

donor. The possibility of the amide functional groups on polymer chains acting as a 

hydrogen acceptor for phenolic compounds or steroids is also mentioned by Saitoh et 

al. [251]. High hormone sorption capacity of membranes with polyamide active 

surface agrees with the observed result. PVDF is known to dislike interactions with 

either hydrophobic or hydrophilic compounds. The adsorption on PVDF is indeed 

relatively low. Polysulphone and polyethersulphone radel (PES R) have similar 

functional groups but the hormone sorption onto these polymers is very different. 

This difference can be explained by the fact that polysulphone has more diluted 

functional groups in the structure compared to PES R. The sulphone group of PES R 

makes the polymer polar and available for H- bonding. Although cellulose has a high 

capacity for H- bonding it does not like to H -bond with other molecules which is 

confirmed with the estrogen results. It does, however, interact with its own functional 

groups. After PA and PES, PS is one of the polymers which have a relatively high 

sorption capacity. As the distribution of the n electrons is even around the top and 

0.004 
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bottom face of the carbon ring in benzene [252] the aromatic ring in PS is expected 

to be electron neutral while the benzene rings in estrone and estradiol are electron 

rich. If aromatic rings on the polymer are electron deficient then 7t -1t stacking would 

be expected. As a consequence 7C-7C interaction is anticipated to be a contributing 

mechanism while hydrophobic interaction is possibly the main mechanism 

responsible for the relatively strong affinity of PS for estrogens. 

4.9 Conclusions 

In this chapter, the polymeric materials which have sorption affinity for hormones 

are reviewed and the factors /mechanisms responsible for their hormone sorption are 

discussed. One of the important factors seems to be the surface area of the polymeric 

particles determining the hormone sorption capacity of the polymers. The size of the 

polymeric particles as well as the microporosity (if exists) and pore size determines 

the available area for the sorption to take place, thus influences the sorption capacity 

of the polymers. 

As important as the polymeric surface area, intermolecular interactions seem to 

influence the hormone sorption capacity of polymers. As stated in the literature, the 

interaction mechanisms are governed most likely by molecular and supramolecular 

interactions such as hydrophobic interactions, hydrogen bonding, ir-ir interaction, 

ion -dipole and dipole -dipole interactions. Type of polymer, hormone characteristics 

and solution chemistry can influence these interactions to a great extent. 

Determination of the dominant interaction mechanism responsible for the hormone 

sorption on polymeric materials is rather challenging. Experimental results in this 

chapter show that there is no correlation between the hydrophobic properties of 

several polymeric materials and their E2 sorption capacity indicating that 

hydrophobic interaction is not the dominant mechanism. In parallel, it is observed 

that a hydrophobic polymer such as PP has a much smaller hormone sorption 

capacity than a polymer such as PA which is hydrophilic. 

78 



4. Hormone Sorption on Polymers 

Polyamide is experimentally shown to have the highest sorption capacity for E2 

among the tested polymers and in the literature this strong affinity is attributed to the 

ability of polyamide forming hydrogen bonding with hormone molecules. Literature 

suggests that hydrophobic interactions are expected to be dominant in comparison to 

hydrogen bonding and 7C-7C stacking between hormone molecules and polymeric 

particles in polar solvents like water. Nevertheless, strong affinity of hydrophilic PA 

for hormones in comparison to hydrophobic polymers indicates the importance of 

hydrogen bonding as an interaction mechanism for the sorption, especially in the 

case of PA. 

In order to provide a better understanding of the dominant sorption mechanisms for a 

specific polymer, quantification of the interaction energies is required. However, a 

systematic quantification of the contribution of each interaction is challenging given 

the low energies of the interactions, the complexity of the system and the possibility 

of several interactions taking place simultaneously. Such an investigation within the 

scope of future work will be very valuable. 
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5 Hybrid Polystyrene Nanoparticle- Ultrafiltration System for 
Hormone Removal 

5.1 Introduction 

A hybrid polystyrene (PS) nanoparticle -UF system is proposed for the first time to 

remove hormones from water in this research. The aim of this chapter is to: 

study the fundamental design parameters of a hybrid PS nanoparticle -UF 

system to remove hormones from water and 

evaluate the performance of the hybrid system in comparison to NF /RO 

system in terms of hormone removal and membrane permeability. 

The PS nanoparticles are employed as the sorbent in the hybrid system because 

firstly they provide a large surface area and secondly they are uniform, non -porous, 

can easily be manufactured in different sizes and be functionalized. Cross -linked 

polystyrene divinlybenzene (PS -DVB) is one of the widely used sorbents in solid 

phase extraction (SPE) for concentration of the trace contaminants [210, 211]. 

Sorption of steroids on PS -DVB has been reported [238]; however, hormone 

adsorption capacity of the plain PS nanoparticles at environmental hormone 

concentrations has not been studied before. 

El and E2 are reported to have higher magnitude estrogenic activity compared to 

many other endocrine disrupters [38, 39]. The concentrations of estrogens detected in 

WWTP effluents and surface waters are in ng /L [5]. Therefore, El and 100 ng /L are 

chosen as the representative hormone and hormone concentration to be studied. 

Finding an optimum nanoparticle size and concentration is the biggest research 

challenge of the system design as there is an expected trade -off between adsorption 

and membrane permeability. It is expected that smaller particle size or higher particle 

concentration will result in higher hormone sorption. However, the limitations of the 

sorption onto PS nanoparticles in the hybrid system are not known. In contrast, 
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smaller particle size or higher particle concentrations are likely to cause fouling and 

decrease the permeability of the OF membranes. 

The adsorption is highly influenced by the hormone type and the solution chemistry 

such as pH [171, 199, 253]. Simultaneously, solution pH is an important parameter 

for particle stability and thus permeability since the amount of particles deposited 

and deposit porosity can be influenced by pH [155, 158, 254]. Therefore, the 

influence of variation in solution pH is required to be studied for a better 

understanding of the system operation. 

The chemical and physical characteristics of the hormone determine the interaction 

mechanisms responsible for the sorption. Studying the sorption capacity of the PS 

particles for different hormones is essential to investigate whether the system is 

applicable for a wider range of hormones rather than one specific one. For this 

specific investigation, E2, T and P are selected besides El. 

The method that the PS nanoparticles are integrated into the hybrid system is very 

important as it can influence hormone sorption as well as the membrane 

permeability. In this study, PS nanoparticles are pre- deposited on OF membrane 

surface in order to provide a systematic, controlled study of the membrane fouling. 

Nevertheless, El sorption capacity is studied with two integration methods for PS 

nanoparticles: pre- deposited and pre- mixed, to elucidate whether the method has an 

influence on the sorption. 

The sorption capacity of PS nanoparticles is studied with changing particle size, 

concentration, solution pH and hormone type as well as the permeability of 

ultrafiltration membranes with molecular weight cut off ranging between 1 and 100 

kDa. Based on the experimental results obtained, a model has been developed to 

predict the hormone mass adsorbed and the permeability with changing PS particle 

size and the feed concentration. The potential of the proposed system for practical 

application is discussed for each changed parameter. 
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5.2 Selection of the Sorbent 

In order to make a selection of the polymeric sorbent material for the proposed 

hybrid sorbent -UF system for hormone removal, the availability of the surface area is 

chosen as the main selection criteria. The importance of the surface area for hormone 

sorption on polymeric materials is detailed in Section 4.4 and 4.8. 

Nanomaterials are considered as a new research area for water purification processes 

considering they provide large surface area and their enhanced reactivity and 

selectivity for specific compounds [255]. The chemical stability of polymeric 

nanoparticles could allow the regeneration of the particles for large scale application. 

While there are no studies where polymeric nanomaterials are used as sorbent 

materials for hormones, they have been applied to the removal of dissolved organic 

matter and other trace contaminants. One of the applications of polymeric 

nanoparticles in water treatment is using the particles as a pre- adsorption process 

prior to the membrane filtration. Polysulfone nanoparticles are used in a pre - 

adsorption process prior to the membrane filtrations and found to be very effective in 

removing the natural organic matter fraction which is responsible for membrane 

fouling [256]. Application of non -polymeric nanoparticles for micropollutant 

removal also exists and the importance of the nano -sizes for these applications is 

emphasized. Jawor and Hoek [14] studied the cadmium sorption capacity of 

polymeric and non -polymeric nanoparticles. Zeng et al. [257] stated that the 

adsorption affinity of nanosized hematite particles for uranium increased as the 

particle size decreased. In another study with microscale adsorbents, the metal uptake 

of tree fern particles increased per unit mass of sorbent with a decrease in the particle 

size [258]. 

Among the available polymeric nanoparticles, the PS nanoparticles are the most 

commonly and cheaply manufactured particles. Beyond the cost and availability, PS 

nanoparticles are very uniform, non -porous and easily adjustable in size and surface 

functionality. The uniformity and availability of a wide size range enable a 

systematic and fundamental investigation of the hormone adsorption in correlation 
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with the available surface area. As the particles are non -porous, the sorption will be 

mainly governed by adsorption on the particle surface. Moreover, commercial 

availability of the particles with various functional groups make it possible (if 

necessary) to study whether the sorption capacity of the particles can be increased by 

enhancing the intermolecular interactions between the particles and the hormone 

molecules. Therefore, PS nanoparticles are selected as the sorbent material for the 

hybrid polymeric sorbent -UF system. 

5.3 Materials and Methods 

5.3.1 Nanoparticles and Characterisation 

Plain PS nanoparticles of 52, 81, 465 and 3000 nm and fluorescent PS nanoparticles 

of 43 nm from Polysciences were employed in the experiments. The effective 

diameter and the zeta potential of the particles were measured as it is described in 

Section 3.3.1 and 3.3.2 respectively. The size of the 52, 81 and 465 nm particles as 

well as their morphology was studied with FE -SEM analysis. The average diameter 

of the 15 different particles measured on a sample image was taken as the effective 

diameter. Methodology used in microscopic analysis is detailed in Section 3.3.4. A 

turbidimeter was used to measure the nanoparticle concentration in the samples as 

explained in Section 3.5.3. 

FE -SEM was used to image the nanoparticle deposit on membrane surface in order to 

analyse the homogeneity and thickness. The methodology is described in Section 

3.3.4. 

5.3.2 Solution Chemistry 

Radiolabelled [2, 4, 6, 7 -3H] estrone (El), [2, 4, 6, 7 -3H] 17ß- estradiol (E2), [1, 2, 6, 

7 -3H] testosterone (T), and [1, 2, 6, 7 -3H] progesterone (P) and non -labelled El were 

used to prepare the hormone solutions. The chemical and physical characteristics of 

the estrogens are given in Table 4 -l. All hormone solutions were prepared in a 

background electrolyte solutions of 1 mM NaHCO3, 20 mM NaCI and the solutions 

were adjusted to pH 7 with 1 M HCI and 1 M NaOH unless stated otherwise. 
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Hormone concentration in the samples was analysed with a scintillation counter as 

described in Section 3.5.4. 

5.3.3 Batch Adsorption Protocol 

For the sorption isotherm, batch sorption experiments were conducted with 16 mg /L 

plain PS (52 nm) particles at varying concentrations of El solution (50, 100, 500 and 

5000 ng /L) and solution pH of 5, 7 and 12. El concentrations higher than 500 ng /L 

radio labelled El was mixed with non -labelled El. For determining the El adsorption 

capacity at varying PS nanoparticle concentration, a range of 1.6 -7.9 mg /L of 52 nm 

PS particles was added into 100 ng /L radiolabelled El solutions. The adsorption 

experiments for El, E2, T and P were performed with 16 mg /L of fluorescent (43 nm) 

and plain (52 nm) PS particles and 100 ng /L hormone solution. The experiments for all 

hormones were also conducted with 100 mg /L of fluorescent (43 nm) PS particles. The 

protocol is detailed in Section 3.6.2. 

5.3.4 Membranes and Characterisation 

The list of the ultrafiltration membranes used in this chapter is presented in Section 

3.1.1. The surface charge characterisation was conducted with streaming potential 

method as described in Section 3.1.2 and the surface morphology was studied with 

Atomic Force Microscopy (AFM) (Section 3.1.3). 

5.3.5 Membrane Filtration Protocol 

The stirred cell system, described in Section 3.7 was used for the filtration 

experiments. Flat sheet OF membranes were compacted for 30 minutes and then pure 

water flux was recorded for an hour. 

PS nanoparticles were mixed into 100 mL ultra -pure water and the solution was 

filtered until there was no water left in the cell and all the particles were deposited on 

the membrane surface. Following the deposition, the ultra -pure water flux of the 

membrane with nanoparticle deposit was recorded for an hour. For all the membrane 

filtration experiments, 450 mL of 100 ng /L hormone solutions were filtered until 50 
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mL of concentrate was left in the cell. During this filtration, 8 samples of 50 mL 

permeate were collected in glass bottles. The pressure applied for different MWCO 

membranes are given in Table 5 -1. Membrane sorption (blank) experiments were 

performed using the same protocol without nanoparticle deposition. Hormone 

concentration in feed, permeate and the concentrate samples were analysed. 

For the premixing experiments, the PS particles were added into 100 ng /L of hormone 

solution and the solution was mixed for 3 hours at 300 rpm in a glass bottle on a 

magnetic stirrer at room temperature (21 ±2 °C) prior to the filtration. 

5.3.6 Kinetic Experiment Protocol 

The kinetics of the E1 sorption on PS nanoparticles was determined by static filtration 

experiments using 3 kDa membranes. Unlike continuous filtration experimental set up, 

manually controlled valves were used to control the sampling of the permeate samples 

(see Figure 3 -3). 450 mL of 100 ng /L El solution was placed in the stirred cell. Two 

different concentrations of 16 and 31 mg /L of 52 nm PS nanoparticles were added into 

hormone solutions and stirred at 300 rpm by magnetic stirrer. The valves were kept 

closed throughout the experiments except when 6 mL of samples were collected from 

the permeate line at certain time intervals. Kinetics of the membrane (3 kDa) sorption 

was determined with the same protocol without particle addition. 

5.3.7 Data Analysis 

For the batch (centrifuge) experiments in order to calculate the hormone mass 

adsorbed, Mads (ng) on PS nanoparticles, a simple mass balance (Equation 5 -1) was 

used where V; is the initial volume (L), C; and Cs are the initial and supernatant El 

concentrations (ng /L) respectively, mads(tube) is the mass adsorbed onto the centrifuge 

tube. 

Muds = (Ci - C, )V - macisti abe) 5 -1 

mads(tube) was determined conducting blank sorption experiments where no 

nanoparticles were added in the tube. Based on these blank experiments, a correlation 
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between the equilibrium hormone concentration and the mads(cube) was obtained. This 

correlation is presented for all hormones in Figure 5 -1. In order to calculate the El 

mass adsorbed (Maus) on PS nanoparticles during the filtration experiments, Equation 

3 -1 was used where n is equal to 8. 
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Hormone Equilibrium Concentration (ng /L) 
Figure 5 -1 Hormone sorption isotherm onto centrifuge tubes: batch experiment, hormone 
solution with 1 mM NaHCO3 and 20 mM NaCI background electrolyte, pH 7 

The PS surface area available was calculated using Equation 5 -2 where, cf is the 

particle feed concentration (g /L) which can be replaced by c, for batch adsorption 

experiments, Vf is the volume of the feed solution (L) which can be replaced by V; for 

batch adsorption experiments, pp is the particle density (g /cm3) and Dp is the diameter 

of a particles (cm) 

6cfVf 
SAI,, = 5 -2 

PpDp 

The mass of the particles in the deposit (Md) was calculated using Equation 5 -3, where 

cf, cp, c, are the concentrations of the nanoparticles in the feed, permeate and the 

concentrate respectively and Vf, Vp, Vc and Vd are the volume of the feed, permeate, 

concentrate and particle deposit on the membrane surface. For the deposition 

experiments, the amount of PS particles in the concentrate was assumed to be 
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negligible, thus cc is equal to zero since all the particles were deposited on the 

membrane before the solution filtration. 

Md =C1 V1. -cpVp -c,.(V. -Vd) 5 -3 

Deposit resistance of the PS nanoparticles (Rd) was calculated using Equation 3 -3. The 

relationship between the Rd, specific deposit resistance (given by Equation 2 -8) and 

deposit thickness is described in Equation 5 -4 where E is the porosity (void) and Dp is 

the diameter of the particle (m) and 8 is the nanoparticle deposit thickness (m). In this 

study, an average porosity was calculated with Equation 5 -4, using Rd determined 

experimentally, replacing Dp with the average nanoparticle diameter measured and 6 

with average deposit thickness determined with FE -SEM images. 

R 
[180(1 -s)2] 

S 5 -4 cl 

[Dr7£3 ] 

The deposit thickness (8) determined with FE -SEM images was compared to the 

deposit thickness value calculated with Equation 5 -5, where Md is the mass of 

particles in the deposit (kg), pp is the density of the nanoparticle (kg /m3), Am is the 

membrane surface area (m2) and E is the porosity (void). 

M 
8 - Md 

p, A,» 0.- S) 

5.4 Membrane Characteristics 

5 -5 

The operational conditions and the characteristics of the flat sheet OF membranes are 

given in Table 5 -1. Regenerated cellulose membranes with their hydrophilic 

properties have shown relatively minimal organic sorption [158, 259]. Moreover, 

regenerated cellulose membrane is reported as one of the membranes which have 

minimal hormone sorption among many tested MF membrane made of different 

polymers [260]. As the hormone sorption capacity of the PS nanoparticles is the 

focus of this study, regenerated cellulose OF membrane with minimal hormone 

sorption affinity was selected. For particles larger than the membrane pore size, the 

penetration of the particles into the pores can be ignored [147]. The MWCO of the 
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membranes were chosen considering that the particles will not penetrate through the 

membranes. The internal fouling with particle sizes of 52 -3000 nm is unlikely as the 

smallest particle size is at least 2 times larger than the largest average pore size. 

Table 5 -1 OF membrane characteristics and operational conditions 

MWCO 
Pore 

Radiusa 
Operating 
Pressure 

Average 
Pure 

Water 
Flux 

Pure Water 
Permeability 

Clean 
Membrane 
Resistanceb 

Rq Ra 

kDa nm Bar L /m2.h L /m2.h.bar 1/m nm nm 
1 0.94 5 22±4 4 8.27E +13 
3 1.42 5 39±5 8 4.69E +13 0.85 0.67 
5 1.91 5 56 ±9 11 3.24E +13 1.2 0.93 
10 2.59 5 109 ±9 22 1.68E +13 1.3 1.0 

30 4.81 1 326±19 326 1.07E +12 2.8 2.2 
100 9.1 0.5 433±55 865 4.30E +11 2.2 1.8 

a taken from [167] ca culated after [261], b calculated using average operation temperature (21 
°C), the viscosity is calculated using Equation 3 -4, Rq: root -mean square roughness, Ra: average 
roughness 

The streaming potential measurements of the membranes (presented in Figure 5 -2) 

indicate that 30 and 100 kDa membranes are negatively charged within the pH range 

of 3 -13. 
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Figure 5 -2 Surface zeta potential of OF membranes with changing pH in 1 mM NaHCO3 and 20 

mM NaCI background electrolyte solution 
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The surface charge analysis was only conducted for 30 and 100 kDa membranes as 

they have a higher potential of fouling compared to the smaller MWCO membranes 

due to their lower intrinsic membrane resistance. The isoelectric point of the 

membranes is found to be between pH 2 and 3 which agree well with the literature 

[167, 262]. There is not an obvious difference between the surface charge of 30 and 

100 kDa membranes. A difference in zeta potential between different coupons of the 

same MWCO membrane is observed at pH between 3 and 7. Larger absolute zeta 

potential values for 30 and 100 kDa Ml are attributed to the higher ionic strength of 

the background electrolyte solution at pH between pH 4 and 7. The nominal value for 

the zeta potential of the membranes is higher than the results obtained by Schäfer 

[167], who studied exactly the same membranes but in a different background 

electrolyte solution of 1 mM KC1. This difference can also be attributed to the 

influence of the ionic strength and the type of the ions present in the solution on the 

measured surface charge [263]. 

AFM results for surface roughness of 3 -100 kDa membranes show that average 

roughness, Ra is changing between 0.67 and 2.2 nm depending on the MWCO of the 

membranes. Roughness data for OF membranes is usually changing between 1 and 

20 nm [264] which agrees with the results obtained in this study. 

5.5 PS Nanoparticle Characteristics 

The size of the particles is important for the availability of active sites for the 

sorption to take place. Information on the surface charge gives an understanding of 

the possible physical interactions between the hormones and the particles. Moreover, 

the extent of membrane fouling can be influenced by the particle size and charge in 

comparison to membrane pore size and surface charge. The size, surface charge and 

the polydispersity of the particles are presented in Table 5 -2. The measured size 

values in ultra -pure water and in background electrolyte solution as well as the ones 

obtained with FE -SEM analysis are comparable to each other confirming the values 

provided by the manufacturer. Therefore particle sizes provided by the manufacturer 

are used this study. The polydispersity data for 465 nm particles being smaller than 
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0.02, suggests that the particles are monodisperse. For the other size particles, values 

between 0.020 and 0.080 indicate a narrow distribution of particles. The microscopic 

images of 52, 81 and 465 mn particles confirm that the particles are spherical, 

uniform and have a narrow size distribution (Figure 5 -3). 

Table 5 -2 Characterisation of the PS nanoparticles 

Diametern (nm) 
4315.9 

(fluorescent) 
52+7.9 81 +10 465+11 3000 +65 

Diameter' (nm) 49.3+2.5 51.1+2.6 78.0+4.0 495.5+25.2 - 
Diameter` (nm) 49.1 +2.5 49.0 +2.5 71.8 +3.7 469.8 +23.9 

Polydispersity 0.064 +0.006 0.046 +0.005 0.074 +0.005 0.007 +0.002 - 
Diameterd (nm) - 49.4 +9.8 73.3 +17.7 476.1 +17.9 - 

Zeta Potential' (mV) -46.79 +6.0 -49.3 +6.3 -56.6 +7.3 -74.4 +9.6 -87.6 +11.3 

Zeta Potential` (mV) -62.7 +8.0 -52.2 +6.7 -64.1 +8.2 -106.7 +13.7 -92.9+11.9 
a according to the manufacturer, b measured at pH 7 in pure water with size analyser, 
measured in 20 mM NaCI and 1 mM NaHCO3 with size analyser, d size obtained from FESEM 
images (Figure 5 -3) with Image J program 

Zeta potentials measured in solutions with or without background electrolyte (Table 

5 -2), show that the absolute surface charge of the larger particles (465 and 3000 nm) 

is higher compared to 43, 52 and 81 nm particles. Elimelech 1990 [265] reported 

similar results; zeta potential of 121 nm PS nanoparticles was measured as 

approximately -60 mV while for 378 and 753 nm particles, approximately -80 mV 

was obtained. Higher zeta potential of the larger particles in this study can be 

attributed to the higher surface charge density [266]. 
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Figure 5 -3 FE -SEM images of A) 52, B) 81 and C) 465 nm PS particles 

Comparable zeta potential values for 52 nm PS nanoparticles, presented in Figure 

5 -4, imply that solution pH between 3 and 12 does not influence the surface charge 
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of the particles. Stable zeta potential of PS nanoparticles in solution with pH between 

4 and 6 [266] and 3.5 and 10 [265] was reported and agree well with the findings of 

this study. 
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Figure 5 -4 Zeta potential of PS particle in background electrolyte solution of 1 mM NaHCO3 
and 20 mM NaCI with varying pH, line represents the mean of the zeta potential values. 

10 12 

5.6 El Adsorption Capacity of PS Nanoparticles 

Prior to studying the hormone adsorption in the proposed hybrid PS nanoparticle OF 

system, El sorption only on PS nanoparticles was studied with batch experiments in 

order to understand the limitations of the adsorption. Determining the adsorption 

capacity of PS particles enables a better explanation of the sorption results which are 

obtained with the hybrid system in the following sections. 

Adsorption capacity is studied by varying El concentration to elucidate whether PS 

surface area is limited for the sorption at higher concentrations. El adsorption 

isotherms for PS particles at pH 5, 7 and 12 are given in Figure 5 -5, on the left. The 

adsorption capacity at 100 ng /L initial El concentration (0.001 ng /cm2) is the same at 

pH 5 and 7 however; it declines to 0.00002 ng /cm2 as the solution pH is increased to 

12. This decline is attributed to the disassociation of the El at pH 12 which is above 

the pKa of El (10.23) and becoming negatively charged. At pH 12, PS nanoparticles 

92 



5. Hybrid Polystyrene Nanoparticle- Ultrafiltration System for Hormone Removal 

are also negatively charged as it can be seen in Figure 5 -4. Negatively charged El is 

repulsed by negatively charged particles and therefore the sorption is hindered. 
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Figure 5 -5 Left: El sorption isotherms of PS nanoparticles at pH 7, 9 and 12: batch experiments 
with 16 mg /L PS (52m) particle concentration, Right: El mass adsorbed on PS nanoparticles at 
varying PS particle concentration in comparison to sorption isotherm at pH 7: batch 
experiments with 7.9, 16, 31, 50 and 79 mg /L plain PS (52 nm) particle concentration, 100 ng /L 
El solution with 1 mM NaHCO3 and 20 mM NaCI background electrolyte, pH 7 

The adsorption capacity increases linearly with the hormone concentration at pH 7 

and 9 studied. This linearity indicates that the active sites of the PS nanoparticles do 

not reach saturation within the El concentration range of 50 -5000 ng /L. The surface 

area is not a limiting factor for the studied El concentration range at 16 mg /L PS 

particle concentration. The linear isotherm is given in Equation 5 -8, where Q is the 

El mass adsorbed on PS nanoparticles (ng /cm2), Ce is the equilibrium El 

concentration and k is the sorption constant, 1.22x10"5 obtained from the linear fit to 

the experimental data obtained at pH 7 in Figure 5 -5, on the left. 

Q = kCe 5-8 

In order to check the availability of the PS surface area in comparison to the 

molecular surface area of El, the mass of El forming a monolayer on PS surface 

particles at the concentration of 16 mg /L is calculated in Appendix A.B. Theoretical 

El mass adsorbed based on a monolayer coverage is compared to the El mass 

adsorbed data obtained experimentally at the same given PS particle concentrations 

for increasing initial El concentration. The results, presented in Table A 8 -1, indicate 
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that El sorption estimated based on monolayer coverage is an order of magnitude 

larger than the one determined experimentally, even at the highest El equilibrium 

concentration when the highest El mass adsorbed is achieved. This difference 

indicates that the monolayer coverage is not achieved and thus PS particles do no 

reach saturation at the tested El equilibrium concentration range, confirming the 

linear El sorption isotherm on PS nanoparticles. 

The sorption capacity of the PS particles is also studied under varying PS ,particle 

concentration while keeping the El concentration the same. Results presented in 

Figure 5 -5 on the right, confirms that the sorption capacity (ng /cm2) has a linear 

relationship with El equilibrium concentration under varying PS particle 

concentration as well. 

5.7 El Sorption Kinetics of the PS Nanoparticles 

The required time for the sorption equilibrium to be reached is an important parameter 

for the system design as this time will determine how long the particles will be kept in 

contact with the hormone solution. Determination of the sorption kinetics for PS 

particles is challenging as the separation method of the particles from the solution may 

take longer than the time for sorption equilibrium to be reached. Separation by the 

means of centrifugation takes four hours which is longer than the equilibrium time. 

Therefore, static filtration experiments using 3 kDa OF membranes were conducted to 

have some information on how much time is required to achieve sorption equilibrium. 

Prior to the experiments with PS nanoparticles, a blank kinetic experiment, where no 

nanoparticles are added, is conducted to check if there is any E 1 sorption in the 

system. Afterwards, the sorption kinetic is studied at two different PS nanoparticle 

concentrations of 16 and 31 mg /L. 
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Figure 5 -6 The kinetics of the El sorption on PS nanoparticles in stirred cell: static stirred cell 
experiment with 52 nm PS particles, 100 ng /L El with 1 mM NaHCO3 and 20 mM NaCI 
background electrolyte, pH 7 

Results presented in Figure 5 -6 show that in the absence of the particles, the 

equilibrium El concentration is 9 % lower than the initial concentration indicating that 

membrane itself has a sorption affinity for E1. Similarly, less than 20 % of El and E2 

removal is obtained with regenerated cellulose MF membranes due to the sorption 

[260]. Membrane sorption needs to be taken into account for the evaluation of the 

hormone sorption on PS nanoparticles in the hybrid system. 

300 400 

Results also show that sorption equilibrium in the system is reached within 50 

minutes regardless of the fact that PS nanoparticles are present in the solution or not. 

It is likely that the sorption equilibrium takes longer time for the membranes than 

that for PS nanoparticles indicating that El sorption on PS nanoparticles reaches the 

equilibrium in less than 50 minutes. El equilibrium concentration depends on the PS 

concentration available in the cell and is 71 ng /L for 31 mg PS /L and 80 ng /L for 16 

mg PS /L. However, the kinetics in a static filtration is different than continuous 

filtration in dead end system as both particle and El concentration change in time 

when a continuous filtration is performed. The kinetics and the variation in PS 

particle concentration in the cell during continous filtration experiments will be 

studied later in Section 5.10.1. 
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For the evaluation of the sorption, firstly it is required to know that the sorption 

equilibrium is reached in all experiments. Sorption equilibrium in filtration 

experiments is confirmed by monitoring the consecutive permeate sample 

concentrations as explained in Appendix A.5. 

5.8 El Sorption on OF Membranes 

Hydrophilic OF membranes with the expectation of minimum hormone sorption are 

selected in this study. However, in Figure 5 -6, it is observed that 3 kDa membrane 

has sorption affinity for El. Therefore, El sorption on all MWCO OF membranes 

needs to be known to have an accurate determination of the sorption capacity of the 

PS nanoparticles in the hybrid system. The data presented in Figure 5 -7, are adapted 

from the work of Neale [267] and show that the El mass adsorbed is higher for 

smaller pore size membranes. Lower El sorption by higher MWCO membranes, 

during filtration experiments, is attributed to the shorter contact time between the 

solution and the membrane. It is also possible that smaller MWCO membranes are 

denser and provides a larger polymer area for the sorption. 
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Figure 5 -7 El sorption on OF membranes with different MWCO: filtration experiments with 
100 ng /L El solution with 1 mM NaHCO3 and 20 mM NaCI background electrolyte, pH 7 data 
adapted from [267 
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5.9 The influence of PS Nanoparticle Size on El Sorption and OF 

Permeability 

In this section, the influence of PS nanoparticle size on El sorption and OF 

permeability of the hybrid system is studied by varying the particle size and keeping 

the particle concentration constant at 17 mg /L with 30 and 100 kDa membranes. The 

experiments with 52, 81 and 465 nm particles are also conducted at 50 mg /L particle 

concentration with 3, 5 and 10 kDa. The results for El sorption and OF permeability 

are presented in Figure 5 -8A and Figure 5 -8B respectively. 
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Figure 5 -8 The influence of particle size on El adsorbed and permeability: filtration 
experiments with 52, 81, 465 and 3000 nm particles, 17 and 50 mg /L PS particle concentration, 
100 ng /L El solution with 1 mM NaHCO3 and 20 mM NaCI background electrolyte, pH 7. 
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Carman -Kozeny model with the assumption, deposit porosity is 0.4 (independent of particle 
size). Estimated: Based on the sorption isotherm obtained with the batch experiments and the 
experimental equilibrium El concentration 

5.9.1 El Sorption with Changing PS Nanoparticle Size 

Results presented in Figure 5 -8A show that El mass adsorbed decreases with the 

decrease in particle size forming the deposit. At the same concentration, the smaller 

particle sizes provide larger amounts of active sites for the hormones to interact 

chemically and physically. When the particle size is decreased from 465 nm to 81 nm 

at 50 mg /L concentration, the El mass adsorbed is increased from 3 to 13 ng. For the 

particles larger than 465 nm, the surface area available becomes very small that El 

sorption is negligible. 

The equilibrium El concentrations obtained in the filtration experiments are used to 

estimate El mass adsorbed using the linear isotherm obtained in Figure 5 -5, on the 

left. The estimated results, given in Figure 5 -8A, seems to agree with the most of the 

data except the ones obtained with 52 nm PS particles at 50 mg /L. Under these 

particular conditions, the available surface area is the largest and the El mass 

adsorbed based on the linear sorption isotherm seems to overestimate the El mass 

adsorbed obtained in the filtration experiment. 

5.9.2 OF Permeability with Changing PS Nanoparticle Size 

The permeability declines as the size of the particles forming the deposit decreases 

for both 30 and 100 kDa membranes as presented in Figure 5 -8B. The pure water 

flux data show that PS deposition structure does not change when the hormone 

solution is introduced to the cell as there is no difference between the ultra -pure 

water flux after the PS particle deposition and flux during the hormone solution 

filtration (Figure 5 -9). Permeability decline is higher for 100 kDa OF membrane than 

30 kDa. Both PS particles and surface of the regenerated cellulose membranes are 

negatively charged. The membranes with larger negative zeta potential usually have 

more resistance against fouling due to the enhanced electrostatic repulsion between 

the negatively charged PS and membrane surface. The surface charge of 30 and 100 

kDa membranes as displayed in Figure 5 -2 are comparable to each other. Thus the 
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difference in permeability decline cannot be attributed to the surface characteristics 

of the membranes. Comparing the pure water flux of 30 and 100 kDa membranes, 

the average convective flux of 100 lc Da (433 L /m2.h) is higher than 30 kDa (326 

L /m2.h). Therefore, it is possible that more compact particle deposit is formed on 100 

kDa due to the higher drag force and thus larger deposit resistance. 

With the spherical particles, it is expected that more pores are constricted as the 

particle size decreases as the adjacent distance between the particles decreases [268]. 

Nevertheless, pore constriction is not expected to play a big role in this study as the 

smallest particle size is at least twice the size of the largest pore size. 

1.0 

0.8 

0.6 
O 

0.4 

0.2 

0.0 

% 

% 

r Pure Water Flux 
PS Flux 
Exp Flux 

Kpa Ka ls 
0 g: a l5 lg1 rml 

Figure 5 -9 Comparison of pure water, PS flux and experimental flux for different particle size 
and MWCO membrane: PS flux: pure water flux of the membrans with PS nanoparticle 
deposit, Exp flux: experimental solution flux of the membrane with PS nanoparticle deposit, 100 
ng /L El with 1 mM NaHCO3 and 20 mM NaCl background electrolye, pH 7, 17 mg/L PS 
concentration 

The decline in permeability as the particle size forming the deposit decreases can be 

explained by the increased deposit resistance. The calculated deposit resistance for 

different particle size is presented in Figure 5 -10. The results show that the deposits 

formed on 30 and 100 kDa membrane exert similar resistances as the differences are 

within the error. The reason of the higher permeability decline with 100 kDa 

compared to 30 kDa can be attributed to the fact that the deposit resistance makes a 

bigger contribution to the overall resistance considering that the intrinsic membrane 
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resistance of 100 kDa membrane is an order of magnitude smaller than the 30 kDa 

membrane. 

E 1.4x1012 

1.2x1012 

C-2 1.0x1012 

aD 8.0x1011 
U 

6.0x1011 
T . 11 4.0x10 

2.0x1011 ' 0.0 
0 

-2.0x1 011 

0 

Exp (30 kDa) 
Exp (100 kDa) 
Carman -Kozeny 

Best Fit Carman Kozeny (R2 =1) 

- Best Fit to all exp data (R2 =0.89) 

100 1000 

Particle Size (nm) 
Figure 5 -10 Deposit resistance with changing PS particle size: filtration experiments, 52, 81, 465 
and 3000 nm particles, 17 mg/L PS concentration, 100 ng /L El solution 1 mM NaHCO3 and 20 
mM NaCI background electrolye, pH 7. Carman -Kozeny calculations assumptions, porosity is 

0.4 (randomly packed deposit porosity), full particle mass retention (7.1 mg) and homogenous 
deposit thickness, porosity and thickness doesn't change with the particle size. 

Using best fit line to the resistance data in Figure 5 -10, a relationship is obtained 

between the particle size forming the deposit and the resistance applied by the 

deposit. The relationship is formulated into Equation 5 -6, where Rd is deposit 

resistance (1 /m), a and b are coefficients and dp is the particle diameter (nm). 

Coefficients a and b are obtained from the best fit of the Rd data against the particle 

size and they are 2.0x1014 and 1.36 respectively. 

- Rd 
a , D nn 5 -6 

Equation 5 -6 is an empirical formula and is a simplified version of the Carman - 

Kozeny equation (Equation 5 -4). Coefficient a can be expressed as in Equation 5 -7, 

where c is the deposit porosity (void fraction) and 8 is the deposit thickness (1 /m). 

ca - 180(1- s)'" 
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In the Carman -Kozeny equation, the deposit resistance is inversely proportional to 

the second power of particle size (Dp2). The coefficient b which represents the power 

of particle size is 1.36 and it is less than 2.0 indicating that the experimental data do 

not agree with the Carman -Kozeny in that respect. Deposit resistance obtained by 

Carman -Kozeny equation seems to underestimate the deposit resistance for larger 

particles and overestimates for the smaller ones as already stated by Lee and Clark 

[142]. 

Carman -Kozeny results in Figure 5 -10 are based on the assumptions that the flow is 

laminar, the particles are uniform, spherical and randomly packed (porosity: 0.4), full 

retention of the particles is achieved, the deposit thickness is homogenous and the 

porosity and the thickness do not change as the particle size changes. The uniform 

and spherical shape of the particles is confirmed by SEM images (Figure 5 -3). In 

order to determine the turbulence in the stirred cell system, Reynolds number is 

calculated with Equation A 6 -1 in Appendix A.5. Re is found to be 20100 which 

indicates a laminar flow in the cell considering that the flow is laminar for 

8000 <Re <32000 and is turbulent for 32000 <Re [269]. 

The results show that for both membranes, the experimental resistance results for 52 

nm are lower than the theoretical values. In order to understand this difference deposit 

thickness is analysed with electron microscopy for the deposit of 52 nm particles at 17 

mg /L on 100 kDa membranes. Two of the FESEM images are given in Figure 5 -11. 

Images show that the deposit is not homogenous and the deposit thickness varies over 

the membrane surface. Non homogenous deposit for PS nanoparticles is also reported 

by Wutzel and Samhaber [270]. Considering the fluid dynamics in the stirred cell, 

formation of non -homogenous deposit is not surprising. The shear stress in the stirred 

cell is calculated and presented in Figure A 6 -1 in Appendix A.5. The shear stress 

increases along the radius from the centre outwards and there is a slow decline at the 

end of the circle indicating that the deposition of the particles varies on different 

locations of the membrane surface. 
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Figure 5 -11 PS nanoparticle deposit of 52 nm at 17 mg /L concentration on 100 kDa membrane? 

The average deposit thickness measured for 100 kDa is 3.5 ±1.6 µm. The porosity is 

calculated as 0.48 ± 0.06 which is higher than the porosity used for the Carman - 

Kozeny equation. Smaller particles, having smaller surface charge, are less stable 

compared to larger particles and tend to overcome the repulsion charges easier and 

aggregate more. Aggregated ones act like bigger particles, so the deposit resistance 

decreases as the particle size increases. As there is no difference in the deposit 

resistance deposited on 30 and 100 kDa membranes it is expected that the deposit 

characteristics such as deposit thickness and porosity will be the same. The deposit 

thickness is also calculated using Equation 5 -5 where Md is estimated with the mass 

balance equation (Equations 5 -3) and the calculated value of 0.48 is used as deposit 

porosity. The calculated deposit thickness, 4.2 µm agrees with the average thickness 

value measured with microscopic images. 

The velocities associated with different transport mechanisms depending on particle 

size are predicted for a size range from 10 to 3000 nm and shown in Table A 7 -1 in 

Appendix A.7. The results show that the velocity associated with Brownian diffusion 

is larger than the convective flow velocity for the particles between 10 and 81 nm. 

Considering that the diffusional transport becomes more significant for the particles 

with the size less than 100 nm, it could have been expected that the flux decline 

would have been more severe with 81 nm particles compared to 52 nm as the 

diffusion velocity of 52 nm particles is higher than 81 nm particles. In this study the 

particles are filtered through the membrane until all the particles are deposited and 
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there is no water left in the system. For particles in such a packed deposit, extreme 

changes can be observed in their collective properties such as their diffusion 

coefficient and stability [132]. No diffusional force is expected to be exerted on the 

particles at the point that the particles are not in solution anymore. Therefore, the 

flux decline can solely be attributed to the increase in the deposit resistance 

following the resistance model theory. 

5.10 The Influence of PS Nanoparticle Concentration on El sorption 

and OF Permeability 

Expected trade -off between the El adsorption and OF permeability is studied for the 

hybrid system with varying concentration of 52 nm PS nanoparticles. The results for 

El mass adsorbed and OF permeability are given in Figure 5 -12A and B 

respectively. 
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Figure 5 -12 The effect of PS concentration on; A) El mass adsorbed and B) permeability of 
different MWCO OF membranes: filtration experiments, 1.7, 8.4, 17, 34 and 84 mg /L PS (52 
nm) concentration, 100 ng /L El concentration with 1 mM NaHCO3 and 20 mM NaCI 
background electrolyte, pH 7. Estimated: Based on the sorption isotherm obtained with the 
batch experiments and the experimental equilibrium El concentration 

5.10.1 El Adsorption with Changing PS Nanoparticle Concentration 

Results, presented in Figure 5 -12A. show that El mass adsorbed is not dependent on 

the MWCO of the OF membrane used in the system indicating that the sorption 

equilibrium is reached in the system with all MWCO membranes. In order to 

understand the kinetics of the El sorption in the system better, the change in the 

permeate El concentration is studied for each MWCO membrane with different 

initial PS concentrations. The El equilibrium concentration for each MWCO 
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membrane with the same initial PS concentration is displayed against time and PS 

concentration in the cell at the time of the sampling and presented in Figure 5 -13. 

When the El permeate concentration is plotted against time, it is observed that the 

sorption equilibrium with different membranes is reached at different times. 

However, it needs to be noted that in a dead -end filtration system, PS cell 

concentration increases with time and the rate of increase depends on the MWCO of 

the membrane. Each MWCO membrane has a different flow rate, thus the system 

reaches the same PS cell concentration at different times even if the initial PS 

concentration is the same. 
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Figure 5 -13 Permeate (P) El concentration change in time and PS (52 nm) concentration in the 
cell: 8.4 mg /L (A), 16.8 mg /L (B), 33.5 mg /L (C) and 84 mg /L (D): filtration experiments, 100 
ng/L El concentration with 1 mM NaHCO3 and 20 mM NaCI background electrolyte, pH 7 

PS cell concentration is calculated for each sampling time and the El permeate 

concentration is re- plotted against this parameter. It is then observed for all 

membranes studied that sorption equilibrium is reached at the same PS cell 

concentration. It is also observed that the specific PS cell concentration at which 

sorption equilibrium is reached increases with the initial PS concentration. Variation 

in PS nanoparticle and El concentration in the cell, due to the nature of filtration, 

alters the adsorption and desorption equilibrium. It is observed after the initial 

decline, El permeate concentration starts increasing until it reaches the equilibrium. 

The increase in El permeate concentration can possibly be attributed to desorption of 
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the hormones from the particles when the El concentration in the cell becomes lower 

than the El concentration in the bulk phase of the particles. 

For a comparison with the batch sorption experiments, equilibrium El concentrations 

obtained with the experiments presented in Figure 5 -12A are used to estimate the El 

mass adsorbed based on the linear sorption isotherm (Equation 5 -8) and the 

estimated values are given in Figure 5 -12A. The filtration results agree well with the 

results of the batch sorption experiments only up to PS particle concentration of 17 

mg /L, above which the isotherm seems to overestimate the El mass adsorbed in the 

filtration system. This overestimation is possibly due to the differences in the 

equilibrium dynamics of a batch and a filtration system and requires further 

investigation in the scope of further research. 

5.10.2 OF Permeability with Changing PS Nanoparticle Concentration 

Results, presented in Figure 5 -12B the permeability declines for 30 and 100 kDa 

membranes as the PS concentration increases due to the increase in the deposit 

resistance. There is a linear relationship between the feed mass of the particles and the 

deposit resistance (Figure 5 -14) confirming the cake filtration theory. 
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Figure 5 -14 Deposit resistance with changing feed PS concentration: filtration experiments, 1.7, 8.4, 

17, 34 and 84 mg /L PS (52 nm) concentration 
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In order to confirm this linear relationship, FE -SEM analysis is performed to 

determine the thickness of the deposit on 100 kDa membrane tested with three 

different initial PS concentrations. FE -SEM images are presented in Appendix A.7. 

The measured average thickness values are given in Figure 5 -15. The linearity of the 

values confirms that the increase in the deposit resistance is due to the increased 

deposit thickness. Measured thickness values for each particle concentration are used 

to calculate the deposit porosity. The calculated porosities being 0.53 +0.08, 0.48 +0.06 

and 0.46 +0.06 for 8.4, 17 and 34 mg /L of initial PS particle concentrations show that 

the deposit porosity does not depend on the initial particle concentration [142]. The 

deposit porosity is not expected to change unless the particle characteristics or the 

applied pressure in the system is varied [136] and both 30 and 100 kDa membranes 

were operated under 1 and 0.5 bar, respectively for all the initial PS concentrations. 
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5.11 The Influence of Solution pH on El Sorption and OF Permeability 

The influence of solution pH on El sorption and membrane permeability is presented 

in Figure 5 -16A and B respectively. El adsorption is less on PS nanoparticles at pH 

above 10 due to electrostatic repulsion between the deprotonated El and negatively 

charged PS particles. As a consequence, El sorption on PS nanoparticle deposit 
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declines at pH above 10. The results agree well with the results of the batch sorption 

experiments conducted only with PS nanoparticles at varying pH (presented in 

Figure 5 -5, on the left). 

As it can be seen in Figure 5 -16B, the deposit resistance does not change with 

changing pH indicating that there is no influence of pH on the deposit packing density. 
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Figure 5 -16 The influence of pH on: A) El mass adsorbed for 3 and 100 kDa B) Permeability 
and deposit resistance for 100 kDa. Filtration experiments: 17 mg /L PS (52 nm) concentration, 3 
and 100 kDa, 100 ng /L El solution with 1 mM NaHCO3 and 20 mM NaCI background 
electrolyte, pH 7 

As the surface charge of the PS nanoparticles remains the same within the pH range, 

the interaction behaviour of the particles is not expected to change. The isoelectric 
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point of 100 kDa membrane is between pH 3 and 4. The surface charge of the 

membrane decreases from -12.5 to -20 mV as the pH increases from 5 to 10 

respectively. The repulsion between the particles and the membrane might increase as 

the pH increases and fewer particles may accumulate in the deposit; however, this is 

not observed in this study. Therefore, it can be concluded that the pH only influences 

the El sorption in the system. 

5.12 Sorption of Different Hormones in Hybrid PS Nanoparticle -UF 

El is selected as the representative hormone to be studied in this chapter. However, 

studying the sorption affinity of PS nanoparticles for more than one hormone is 

mandatory to have an understanding whether the particles can be used as a sorbent 

for the removal of hormones in general. Therefore, the sorption of three other 

hormones, E2, P and T is studied in comparison to El with both batch and filtration 

experiments in this section. 

For a direct comparison between the filtration and batch adsorption experiments, 

sorption is normalised by surface area (ng /cm2) and compared in Figure 5 -17. Results 

of batch and filtration experiments agree with each other. Figure 5 -17 shows that the 

affinity of the PS nanoparticles for P is higher than the one for E2, T and P while a 

difference is not observed between E2, T and P. Preferential sorption of P on various 

polymers has been reported in other studies as well. Nghiem [271 ] showed that the 

sorption affinity of the hormones onto NF membrane with polyamide active layer is 

P >E1 >T >E2. The work of Banasiak [272] on the sorption of steroids onto ion 

exchange membrane made of polystyrene divinlybenzene (PS -DVB) showed that the 

sorption affinity for each exchange membrane is as follows: for anionic exchange 

membrane (AEM) T <P <E2 <E1 and for cationic exchange membrane (CEM) E2 <T 

<E1 <P. The sorption difference between the AEM and CEM is explained by the fact 

that each membrane has different hydrogen bonding capacity depending on the donor 

or acceptor groups they possess. Jansen et al. [273] stated that the P has a higher 

sorption affinity onto PS nanoparticles in the absence of surfactant compared to T 

since P is more hydrophobic than testosterone. The high affinity of PS particles for P 
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[274] is attributed to that fact that P has a finite degree of solubility in the polymer 

matrix [275]. 

4x103 
E 
U 

3x10-3 
-0 
a 

ó 2x10-3 
U) 

(/) 1x10-3 
c 

w 0 

Filtration (52 nm PS_Stirred Cell) 
Batch (52 nm PS) 

El E2 

Figure 5 -17. Hormone (El: Estrone, E2: Estradiol, T: Testosterone, P: Progesterone) mass 
adsorbed per PS surface area: Filtration (3 kDa membrane) and batch experiments: 17 mg /L PS (52 
nm) concentration, 100 ng /L El solution with with 1 mM NaHCO3 and 20 mM NaCI background 
electrolyte, pH 7 

Although hydrophobic interactions are expected to be the main responsible 

mechanism between the PS nanoparticles and hormones, a direct correlation between 

the hydrophobicity of the hormones and the sorption cannot be made. The chemical 

and physical characteristics of the four hormones are presented in Table 4 -1. P and 

El are both hydrophobic compounds with relatively high and comparable Kos,, 

values; however adsorption of P is significantly higher than El. Similarly, charge 

interaction is not expected to play a role in preferential sorption of P as the dipole 

moment of P, T and El are very similar. 

7c -7t stacking is another mechanism held responsible for the interaction of polystyrene 

based sorbents with sorbates [236 -238, 276]. The difference between the 7c densities 

of the adsorbent and the corresponding sorbate determines the stability of the 71 -7r 

interaction depending on whether the aromatic fragment is electron rich or deficient 

[236]. Although the benzene rings in El and E2 are electron rich, the aromatic ring in 

polystyrene is electron neutral. Therefore, 7r -7r interaction is not expected to be a 
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major sorption mechanism for PS nanoparticles and estrogens especially for P since 

it does not have any benzene ring. 

Although it is expected that PS nanoparticles are free of functional groups, due to the 

polymerization process some charged functional groups may be present on the 

surface [266] and these groups can undergo intermolecular interactions with the 

hormones such as H- bonding. The technical notes of the manufacturer state that 

sulfate functional groups are present on the particle surface [277] possibly to. prevent 

the particles from aggregation. Considering that the pKa value of sulfate is between 1 

and 2 [266], H- bonding between P and sulfate is not expected as both P and sulfate 

groups are H acceptors [203] at the studied solution pH. 

In conclusion, PS nanoparticles have similar sorption affinity for El, E2, T and to a 

larger extent for P, indicating that various hormones can be removed with the hybrid 

PS nanoparticle -UF system. 

5.13 Comparison of PS Nanoparticle Integration Method in terms of El 

Sorption 

In this section, the PS nanoparticles are introduced to the system with two integration 

methods: pre- mixing and pre- deposition, for comparison. Figure 5 -18 gives the El 

mass distribution in permeate, concentrate and adsorbed on PS in concentrate and 

adsorbed on membrane, for both methods. The mass distribution is calculated using 

the mass balance (Equation 5 -3). Results show that, there is no obvious difference in 

overall El sorption between the two integration methods. For pre -mixed 

experiments, the results illustrates that the El mass in the concentrate and adsorbed 

on PS particles in concentrate is more than the double of the El mass on the 

deposited PS particles showing that the majority of the particles stay in the solution 

and do not deposit when the particles are premixed. 
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Figure 5 -18 The El mass distribution in the system for premixing and deposition experiments: 
Premixed (for 3 hours) and deposition experiments, 3 kDa 100 ng /L El solution with with 1 mM 
NaHCO3 and 20 mM NaCI background electrolyte, pH 7, El mass in the feed: 45 ng 
corresponding to 100 % mass 

In pre- deposition experiments, the El mass adsorbed onto PS particles deposited is 

higher than the El mass in the concentrate and adsorbed on PS in concentrate 

showing that the PS particles are mostly deposited. This specific study is conducted 

only with 3 kDa membrane where no permeability decline is observed. Within the 

scope of future work, studying different integration methods with large MWCO 

membranes will enable having a better evaluation of the impact on membrane 

fouling. 

5.14 Prediction of El sorption and Permeability for Changing PS Size 

and Concentration 

The goal of this section is to predict the hormone adsorption (removal) and the OF 

permeability for the hybrid system with 100 kDa membrane designed with different 

size and concentration of PS particles. The results and the understanding obtained in 

the previous sections are used to do this prediction. 

5.14.1 Prediction Methodology 

Rd is calculated from the data obtained in the experiments of 17 mg /L nanoparticle 

concentration with 52, 81, 465 and 3000 nm particles filtrated through 100 kDa 
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membrane. A relationship between the calculated Rd and particle size at this specific 

particle concentration is obtained in Figure 5 -10 and is described with Equation 5 -6. 

For each particle size an S value is calculated using the Rd and Mp, the mass of 

particles applied (kg), with Equation 5 -8 where s is the porosity (void fraction), pp is 

the density of the nanoparticle (kg /m3), Am is the membrane surface area (m2) and Dp 

is the diameter of the particle (m). 

S = 
[180(1 - s)] 1 Rd 

[Dn2c3J PnA, Mp 5 -8 

The S value represents the deposit characteristics including porosity specific to each 

particle size. Mp is calculated as for the experiment with 100 kDa membrane at 17 

mg /L concentration of 52 nm particles assuming that all the particles will be deposited 

on the membrane surface. This assumption is made considering that the measured 

permeate particle concentration is negligible and the measured flux after the particle 

deposition and during the experiment is the same (Figure 5 -9). The deposit mass will 

be the same for all particle size at the same concentration. 

The validity of the cake filtration theory depends on the concentration of particles in 

the concentrate being much smaller than the concentration of the solids in the deposit 

[278]. In this experimental study, the particles are deposited on the membrane surface 

until no water was left in the system, therefore all the particles are in the deposit and 

Mp can be used as the mass of the particles in the deposit (Md). 

The change in Rd at different concentrations of 52 nm particles is calculated following 

the cake filtration theory where the particle mass is directly proportional to the deposit 

resistance [34]. The linear relationship between initial particle mass and the Rd is 

experimentally shown for 30 and 100 kDa membranes at particles concentrations of 

1.7, 8.4, 17, 34 and 84 mg /L (Figure 5 -14). The linear relationship cannot be 

considered if the deposit is compressible, however considering that the deposit 

compressibility is dependent on the changes in the applied pressure (AP) [279] and AP 

is not changing during the experiments, the theory can be applied. Even further, the 

linear increase in the deposit resistance due to the linear increase in deposit thickness 
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was confirmed previously with the average deposit thickness measurements presented 

in Figure 5 -15. 

Rd is predicted at different concentrations for each particle size by substituting S for 

each particle size and the MP, corresponding to each concentration in Equation 5 -9. S 

value is assumed to be constant when the feed particle concentration increases for each 

particle size since the porosity and thus the specific deposit resistance is not changing. 

Rd = SMn 5 -9 

The El sorption and membrane permeability were predicted for each particle size of 

52, 81, 100, 200, 300 and 465 nm at the concentrations of 1.7, 8.4, 17, 34, 50, 84, 100 

and 150 mg /L. The permeability of a PS deposit of different size and feed 

concentrations is calculated using Rd values calculated as described above and 

dynamic viscosity of water at average operational temperature (21 °C) and the average 

membrane resistance using Equation 3 -3 for 100 kDa membrane. Linear isotherm 

equation (Equation 5 -8) is used to predict the equilibrium El concentration and El 

mass adsorbed on PS nanoparticles at various PS particle concentration. 

5.14.2 Prediction Results and Validation 

The results of the predicted El mass adsorbed and permeability of the system with 

100 kDa membrane designed with different size and concentration of PS particles is 

given in Figure 5 -19. In order to validate the predicted values, experiments with 465 

nm PS particles were conducted at 17, 50, 79 and 100 mg /L initial particle 

concentrations with 100 ng /L El feed concentration. The data obtained in the 

previous sections with 52 nm PS particles at 1.7, 8.4, 17 and 84 mg /L initial particle 

concentrations is also presented. The prediction for the El mass adsorbed agrees with 

the most of the experimental data validating the Equation 5 -8, which is determined 

based on linear sorption isotherm. However, when there is a large PS particle surface 

area available in the system such as 84 mg /L of 52 nm PS particles, the isotherm 

overestimates the El mass adsorbed in the filtration system as explained before. 
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Predicted permeability data does not agree with the experimental data as well as 

expected. Higher permeability data obtained experimentally may indicate that the 

predicted relationship between the Rd and the particle size (Figure 5 -10) 

overestimates the Rd of the deposits formed of 52 or 465 nm particles. 
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Figure 5 -19 Predicted El mass adsorbed and permeability with changing PS size and 
concentration: filtration experiments, 100 kDa OF membrane, 100 ng /L El solution with 1 mM 
NaHCO3 and 20 mM NaCI background electrolyte 

In order to increase the hormone removal in the hybrid system, larger PS surface area 

is required. Larger surface area could either be obtained by using smaller size 

particles or increasing the particle concentration. Increased PS concentration results 

in lower OF permeability due to the increased deposit resistance. Less permeability 

decline was obtained with larger particles at the same particle loads. However, due to 

the smaller area provided by large particles, larger particle load was required for the 

system to obtain the same hormone removal as the smaller particles. A system with a 
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large sorbent load with large particles would result in similar permeability decline as 

the one with small concentration with small particles. 

5.15 Evaluation of the System and Conclusions 

The hybrid PS nanoparticle -UF system has a El removal capacity of 40% and a final 

permeability of 75 L/m2hbar when operated with 100 ng /L initial El concentration and 

84 mg /L PS (52 nm) nanoparticle concentration. At such conditions, El sorption 

capacity of 52 nm PS particles is 476 ng /g (0.0004 ng /cm2) which is higher than the E2 

sorption capacity of activated carbon which is 47 ng /g showing that PS nanoparticles 

are more efficient than activated carbon. Hormone removal and the permeability of 

NF /RO systems (presented in Table 2 -2) are compared to the results obtained with the 

hybrid system. El removal of 40% is comparable to some but lower than most of the 

NF /RO systems but the permeability (75 L/m2hbar) is at least 5 times higher than most 

of the NF /RO systems. 

The sorption capacity of the hybrid system is the same for El, E2, T and P whereas it 

is higher for P indicating that the system is applicable for various hormones. Solution 

pH does not play a role on El sorption or OF permeability as long as it is below the 

pKa values of the hormones. The permeability of the 100 kDa membrane with 52 nm 

particles deposit is not influenced by pH due to the stable particle surface 

characteristic. El mass adsorbed in the system is the same regardless if the PS 

nanoparticles are integrated into the system with a pre- mixing or pre- deposition 

method. 

Considering that some NF and RO systems can remove El up to 99 %, a feasible 

hybrid system can only be achieved by employing nanoparticles with higher sorption 

affinity. Surface functionalized PS nanoparticles can provide the required high 

sorption affinity. 
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6 Hybrid Carboxylate Functionalized Polystyrene 

Nanoparticle- Ultrafiltration System for Hormone Removal 

6.1 Introduction 

The investigation in this chapter focuses on whether additional carboxylate groups on 

PS nanoparticles have an influence on the hybrid PS nanoparticle -ultrafiltration 

system performance in terms of El sorption and membrane permeability. The results 

obtained in the previous chapter concludes that the hybrid PS nanoparticle -UF 

system can compete with the existing NF/R0 systems only if the sorption capacity of 

the PS particles for hormones is improved. One of the important reasons to choose 

PS nanoparticles as sorbent material for the system was that the particles are 

commercially available with various functional groups. 

Ideally all the functional groups need to be studied for a better understanding of the 

underlying sorption mechanisms and a more reliable selection. However, in the scope 

of this study, one functional group is required to be selected for the experimental 

study. The carboxylate group is chosen as a suitable functional group of PS 

nanoparticles based on the expectation of enhanced hormone sorption due to the 

hydrogen bonding capacity of the carboxyl group and the fact that the particles are 

commercially available at the same size as the plain polystyrene particles allowing a 

fair comparison for their hormone sorption capacity. 

Carboxlyate groups form when the solution pH increases above the dissociation 

constant (pKa) of the carboxyl group. pKa of the carboxyl group is between pH 4 and 

5 [280, 281], indicating that variation in solution pH can result in important changes 

in particle functionality and stability. Therefore, carboxylated PS nanoparticles are 

required to be tested and compared to plain PS particles in terms of hormone sorption 

and membrane fouling under varying solution pH and particle concentration. 
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6.2 Selection of the Functional Group for PS Nanoparticle 

Commercially available PS particles with specific functional groups are compiled 

and their bonding capacities with hormone molecules, mainly estrogens are explored. 

The commercially available functionalized PS nanoparticles and their chemical 

characteristics are given in Table 6 -1. PS nanoparticles with two different functional 

groups or a group combined with an element are also available but are not included 

in the table. The functional groups for such PS nanoparticles . include 

aldehyde /amidine, aldehyde /sulfate, carboxyl -bromo, chloromethly, sulfate /epoxy, 

sulfate -bromo and carboxyl functionalized DVB crosslinked. As these additional 

groups or elements increase the complexity of the adsorption process and make it 

more difficult to understand the underlying mechanisms, they are not considered for 

the selection process. 

The chemical structure of the functional groups and DVB -cross linking unit is 

illustrated in Table 6 -1. As no information could be obtained from the manufacturer 

on the chemical structure of the functionalized particles, the location where the 

functional groups are attached to the repeating units of the polymer is not known. 

Therefore, the chemical structure of PS with functionalized group cannot be 

provided. It is important to note that the solution chemistry, which can easily change 

by addition of surfactants, salts or other chemicals, during the manufacturing 

process, can influence the bonding between the functional groups and the main 

polymer to a great extent. Depending on where the functional groups attach to the 

polymer, the chemical properties of PS such as hydrophobicity and overall polarity 

may change. The technical note of the Bangs Laboratory, which is the manufacturer 

of many of the listed functionalized PS nanoparticles, state that sulfate groups as well 

as surfactants can be present on the particle surface for plain and functionalized 

particles [277]. 

The possible interaction mechanisms between the hormones and the functional 

groups are studied by looking at the chemical structure and characteristics of the 

functional groups (Table 6 -1) and hormones (Table 4 -1). While most of the 
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functional groups presented have hydrophilic properties, the polystyrene still possess 

hydrophobic properties. Although hydrophobic interactions might be hindered due to 

the attached hydrophilic groups, they can still play a role as an underlying 

mechanism on the sorption of the hormones on functionalized PS particles. 

Many functional groups have the potential to undergo ionic bonding which happens 

between two oppositely charged molecules. If the hormone is negatively charged, 

like it is the case when pH is above the pKa of the hormone, then it can be attracted to 

the positively charged functional groups. Similarly, positively charged hormones 

such as adrenaline [282] can be attracted to the negatively charged groups. When pH 

is less than the pKa, estrogens are uncharged and ionic interactions are not expected 

to contribute to the sorption. As estrogens are the focus of this experimental study, 

ionic bonding potential of the groups are not considered for the selection. 

Carboxylic acid is a weak base and neutral when pH is below the pKa of the 

carboxylic acid. Once the solution pH is above the pKa which is about 4 -5 [280, 281], 

it deprotonates and carboxylate forms as it can be seen in Equation 6 -1. The 

carboxylate group is polar and negatively charged. 

high pH /p 

OH low pH 0 6 -1 

Carboxylic Carboxylate 
acid anion 

Neutral carboxylic acids are known to form strong intermolecular hydrogen bonds 

[283]. Both the carboxylic acid and the carboxylate group are therefore considered to 

have a high potential to adsorb hormones via hydrogen bonding in case of the 

carboxylic acid or ion -reinforced hydrogen bonding in case of the carboxylate. 
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a 12831, b based on its tetrahedral structure similarity to methanes 1284], ` based on the 
information on sulfate salts [2851, a 12861, C based on the carboxylate groups in soap 12871, 

r 

based on the pKa of the groups and their structure g [2881, h based on the information on 
surfactant in soap 12891, 12901, 12911, k 12921, I [2931,1° [2941, " [2951, ° 12761 

Of all the functional groups in Table 6 -1, the carboxylic acid is the only one which 

makes the benzene ring electron deficient and thus more likely to make 7C-it 

interactions with the electron rich benzene ring of the hormones like E 1. 

Hydrophilic primary amine groups are polar due to the difference in electronegativity 

between nitrogen and hydrogen atoms. The polarity and the free pair of electrons 

over the nitrogen atom make the group reactive. In amine functional group, nitrogen 

with a free pair of electron can make hydrogen bonding as well as the two hydrogen 

atoms which can be shared with electronegative oxygen atoms in the hormone 

molecules. Therefore amines are both hydrogen donors and acceptors. When the 

amine group is attached to the aromatic ring, the availability of the lone pair on 

nitrogen atom is less as the electrons are delocalized around the ring. Aliphatic amine 

groups, which have no aromatic ring attached directly to the nitrogen atom, are more 

likely to form hydrogen bonds with other molecules since they are not directly 

attached to the benzene ring. Typical pKa of an aliphatic amine is about 9 -10, 

meaning at a pH< pKa, the amine groups will be protonated and positively charged 

[296]. 

high pH 
-NH3 ' -NH2 

low pH 

Ammonium Amine 
group 

6 -2 

In addition, a PS with amine group can react with ketone groups of the hormone 

molecules as it is presented in chemical Equation 6 -3 [296]. 

R-NH2 

Amine 

O 

Ketone 

acid catalysis 

122 

N,R 

Imine 

6 -3 
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Additionally it may provide a structure with PS retaining its hydrophobic properties 

as the hydrophilic group is not attached directly on the aromatic group and this can 

enhance the sorption of hormone on the particle. 

Amidine groups have two nitrogen atoms and are positively charged up to the pKa of 

the amidine which is 11 [297]. Like guanidine groups in the amino acid arginine, 

they form strong hydrogen bonds with carboxylate anions, acting both as hydrogen 

donor and acceptor as it can be seen in Equation 6 -4 [191]. 

H 

H+ - 

Amidine Carboxylate 

The overall polarity depends on the final structure and chemical stabilization of the 

group on PS particles as it is the case for the rest of the groups as well. Amidine 

functionalized PS particles are reported to be relatively more hydrophobic compared 

to carboxylated PS [285]. 

6 -4 

The polar hydroxyl group is capable of acting as a hydrogen bond donor (through its 

H) or hydrogen acceptor (through oxygen). 

Although sulfate has a tetrahedral structure and it has an equal distribution of charge 

in all of its resonance structures, once the sulfate is attached to a polymer (usually by 

reacting a polymer with OH), it has only a single charge left and resembles more a 

sulfonate rather than the original sulfate as it can be seen in Equation 6 -5. 

OH 

Polymer with OH 
functional group 

123 

O 

O -S -O 
O 

Sulfate 

6 -5 
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Sulfonate is a polar hydrophilic group. Although the structure suggests two double 

bonded oxygen atoms and a negatively charged oxygen atom, the negative charge is 

delocalised equally over all three oxygen atoms. The sulfonate group may have the 

capacity to act as a hydrogen bond acceptor [292]. Similar properties are expected 

for sulfate functional group. Although there are some statements that sulfate forms 

hydrogen bonds with water molecules [298] and fatty acids [299], the sulfate and 

sulfonate groups are not expected to react with neutral hormone molecules like 

estrogens, hence they are disregarded. 

In general the presence of oxygen atoms in a functional group makes the bond more 

polar compared to nitrogen atoms as oxygen is more electronegative than nitrogen. It 

can be estimated by looking at the periodic table that N -H bond is less polar than C- 

O. The polarity of the bonds gives an indication on the strength of the hydrogen bond 

that the functional groups can make such as the more polar a molecule is, the 

stronger the hydrogen bonding. Therefore it is more likely that carboxyl groups will 

interact with the hormone molecules via hydrogen bonding more than the nitrogen 

containing functional groups such as amine or amidine. 

PS -DVB, hyper -crosslinked polystyrene with divinyl- benzene, is a hydrophobic 

polymer. Depending on the degree of crosslinking, porosity and surface 

characteristics of the PS -DVB can change to a great extent. The water contact angle 

varies from 100 -110° depending on the degree of the crosslinking [300]. Moreover 

the hydrophobicity of the internal and external surface area can be different as well 

[276]. It is likely that enhanced hydrophobicity and porosity due to the crosslinking 

of the PS particles can result in more hydrophobic interaction with the hormone 

molecules. Apart from the hydrophobic interactions the 7C-7r interactions can also 

contribute to the adsorption to a certain extent [236]. 

Following the evaluation of the bonding capacity of all of the options, carboxylate, 

amine, amidine functionalized and DVB crosslinked PS particles seem to have more 

potential for interacting with hormone molecules. For the carboxylated PS particles it 
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is expected that hydrogen bonding will enhance the adsorption of the hormones. 

Besides, as it is mentioned before, among all the groups in Table 6 -1, carboxylic acid 

is the only group which makes the benzene ring electron deficient and thus more 

likely to make 7C-7r interactions with the electron rich benzene ring of the hormones 

like El [301]. DVB crosslinked PS particles may enhance adsorption due to the 

increased hydrophobic and possible 7C-7C interactions. On the other hand amine and 

amidine groups show potential for hydrogen bonding with estrogens while 

maintaining hydrophobic characteristics of the PS nanoparticles. In order to make the 

final decision, the size and the manufacturing process were taken into account. 

Carboxyl /ate functionalized PS particles were selected as they are available from the 

same manufacturer at the same size ( -50 nm) as the plain PS particles. The smallest 

available size for DVB -crosslinked and amine functionalized PS particles is 200 and 

100 nm, respectively. Amidine functionalized PS particles can be purchased in 

custom size, however, they are more expensive compared to the other commercial 

particles. In order to study the influence of the functional group on the sorption any 

other variability in the system such as available surface area due to the particle size 

and the chemistry due to the differences in the manufacturing method are avoided 

with this selection. 

6.3 Materials and Methods 

Plain (52 nm) and carboxylated (48 nm) PS nanoparticles purchased from 

Polysciences were used in this chapter. The effective diameter and the zeta potential 

of the particles were measured as described in Section 3.3.1 and 3.3.2 respectively. 

Field Emission Scanning Electron Microscopy (FESEM) was used to image the 

nanoparticle deposit on membrane surface in order to analyse the homogeneity and 

thickness. The methodology is described in Section 3.3.4. 

Radiolabelled [2, 4, 6, 7 -3H] estrone (El) was used to prepare the hormone solutions. 

The chemical and physical characteristics of El are given in Table 4 -1. Hormone 

solutions were prepared in a background electrolyte solutions of 1 mM NaHCO3, 20 

mM NaCI. The solution was adjusted to pH 7 with 1 M HCl and 1 M NaOH unless 

125 



6. Hybrid Carboxylate Functionalized Polystyrene Nanoparticle- Ultrafiltration for 
Hormone Removal 

otherwise stated. Hormone concentration in the samples was analysed with a 

scintillation counter as described in Section 3.5.4. 

Batch adsorption experiments were conducted to test the El sorption on plain and 

carboxylated PS nanoparticles at different particle concentrations (8 -79 mg /L). The 

pH experiments were performed only with carboxylated PS by varying pH between 3 

and 12. For pH experiments, 29 mg /L of carboxylated PS particles were added into 

100 mL of 100 ng /L El solutions. This concentration was chosen to have the same 

surface area as the area provided by 31 mg /L of 52 nm plain particles. This enabled a 

direct comparison of El sorption between the plain and carboxylated PS particles. 

The static adsorption protocol is explained in Section 3.6.2 in detail. 

100 kDa PLHK membranes were used in this chapter, characteristics of which are 

given in Table 5 -1. The information on the surface charge and morphology of the 

membrane is given in Section 5.4. The membrane filtration protocol used in this 

chapter is the same as the protocol described in Section 5.3.5 in order to have the 

same conditions to compare plain and carboxylated PS particles directly. 

6.4 PS Nanoparticle Characteristics 

The characteristics of the plain and the carboxylated PS nanoparticles are 

summarized in Table 6 -2. Surface charge of the particles is studied by measuring the 

zeta potential. Figure 6 -1 displays how zeta potential is changing within a pH range 

of 2 -12. The results indicate that particles have a negative zeta potential value within 

the studied pH range while the variation is within the instrumental error. No 

difference in the zeta potential values is found between the plain and carboxylated PS 

particles. Obtained results for carboxylated particles contradict with the literature as 

carboxyl groups are expected to have a pKa value at acidic pH. The neutral carboxyl 

group (COOH) is expected to deprotonate and become a negatively charged 

carboxylate (COO -) when the pH value increases above the pKa as presented in 

Table 6 -2. 
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Table 6 -2 Physical and chemical characteristics of plain and carboxylated PS particles 

Characteristics Plain PS Carboxyl /ated PS 
Size a (nm) 52 ±8 48 ±7 

Size measured b (nm) 48.5±0.2 47.5±0.4 
Polydispersity 0.046 ±0.005 0.112 ±0.005 

Chemical structure 

all 
® 

O 

pH >PKa 

el 
O 

* 

O 

pH `pKa 

OH 

Hydrophobicity Hydrophobic ° 
Hydrophilic functional group d 

Hydrophobic PS polymer 

Possible 
intermolecular 

interactions 

Hydrophobic - interactions 
(unlikely) 

Hydrogen bonding 
Carboxyl (2 H acceptor& 1 donor) 
7C-7T interactions (more likely than 

carboxylate) 
Carboxylate (2 H acceptor) 

ir -it interactions (likely) 
a according to the manufacturer, b measured in background electrolyte of 20 mM NaCI and 1 

mM NaHCO3, ` [302], d [280] 

The pKa of the carboxyl groups on the carboxylated polystyrene nanoparticles is 

reported as 4.9 [281] and 4.64 [280]. The speciation of the carboxyl group is 

displayed in Figure 6 -1 assuming that the pKa is 5, considering the reported values. 

Absolute zeta potential and mobility of carboxylated particles is expected to increase 

as the pH increases above pKa. However, this is not the case for the carboxylated 

particles studied. The negative zeta potential values can be attributed to the presence 

of these sulfate groups on the surface for both plain and carboxylated particles 

remaining from the synthesis, as the pKa of the e.g. lauryl sulfate is around -1.5 to -2 

[303]. The negatively charged sulfate groups could explain the invariable negative 

charge over the pH range studied for carboxylated particles. PS particles with 

carboxylate groups are hydrophilic [304] and relatively more hydrophilic compared 

to the particles with carboxyl groups. Both surface charge and the hydrophobicity of 

the particles play an important role for the hormone sorption. 
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Figure 6 -1 Zeta potential of carboxylated PS particles in 1 mM NaHCO3 and 20 mM NaCI 
background electrolyte solution with changing pH and expected speciation of carboxyl groups 
(assumed pKe: 5) 

6.5 El Adsorption Capacity of Carboxylated PS Nanoparticles 

The amount of El mass adsorbed on carboxylated PS particles, within a pH range of 

3 -11, is shown in Figure 6 -2, on the left. El mass adsorbed does not change in the 

pH range of 3 -10. Above pH 10, El mass adsorbed declines as El deprotonates and 

becomes negatively charged. Electrostatic repulsion between the negatively charged 

particle surface and deprotonated El is the reason of the decline in sorption. 

The change in the El sorption capacity is plotted against El equilibrium 

concentration for the experiments where the available surface area for plain and 

carboxylated PS particles is increased by varying the initial particle concentration. 

The results given in Figure 6 -2, on the right show that El sorption on carboxylated 

PS particles follow a linear isotherm like plain particles. Based on the linear fit of the 

experimental data presented in Figure 6 -2, on the right, sorption constant (k) is 

determined as 7.13x10 
-6 

which is an order of magnitude smaller than the k of plain 

PS particles (1.22x10 -5) indicating that the sorption capacity of the carboxylated PS 

particles is lower. 
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Hindered El mass adsorption may indicate that the adsorption is mainly due to 

nonpolar effects as the El is relatively nonpolar /lipophilic, as is the polystyrene (or 

most parts of the carboxyl functionalised PS). Considering that the carboxylated 

particles are negatively charged and relatively hydrophilic [252, 302] this may imply 

that the hydrophobicity of the PS particles play a bigger role in the El sorption than 

the capability of hydrogen bonding. 

--10 
Q 

-0 8- 
a) 
.Q 

ó 6- 
u) 
-o 
< 4- 
v7 
cß 2 

0 

El initial mass: 10 ng 

2 4 6 8 
pH 

10 12 

E 

1.5E-3 
E 

-0 
1.0E-3 

<5.0E-4 
u) 
rn 
cß 

0.0 

48 nm Carboxylated PS 
52 nm Plain PS 

-- -- Linear Fit (R2= 0.997) 

Linear Fit (R2= 0.997) 

,o- 
á .. 

I I 

W 0 20 40 60 80 100 

El Equilibrium Concentration (ng /L) 

Figure 6 -2 Left: El mass adsorbed with changing pH: batch experiments, 29 mg /L PS particles 
(48 nm), Right: Sorption isotherm determined by changing PS particle concentration: batch 
experiments, 100 ng /L El solution with 1 mM NaHCO3 and 20 mM NaCI background 
electrolyte, 8 -79 mg /L PS particles, pH 7 

The interaction of the benzene rings in PS and hormone molecule via hydrogen or n- 

7C bonding is unlikely as the ring in PS is electron neutral. Nevertheless, PS 

nanoparticles with carboxylate groups are expected to make 7C-7r interactions with the 

electron rich benzene ring of El as these groups are expected to make the benzene 

ring of PS electron deficient. However, 7C-7C interactions do not seem to contribute to 

the El sorption as the presence of carboxylate groups does not enhance the sorption. 

Besides sulfate groups, mainly carboxylate functional groups are present on the 

carboxylated PS particles at neutral pH. The COO- and S03" functional groups are 

polar and therefore hydrophilic [123] whereas some of the benzene ring of the plain 

PS nanoparticles still carry hydrophobic properties as they do not possess additional 
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COO- groups. Considering that the maximum amount of El adsorbed onto plain and 

carboxylated PS particles is the same, the hydrogen bonding may not be a 

contributing mechanism to the adsorption process in this case and hydrophobic 

interaction is possibly the dominant underlying mechanism. The addition of the 

carboxylated groups on PS surface seems to cause a lower sorption per surface area 

compared to the plain particles. It is likely that hydrophilic properties of the 

additional carboxylate groups prevent estrone molecules to approach the 

hydrophobic surface sites for the sorption to take place. Therefore, sorption capacity 

of the carboxylated PS particles is smaller than the plain particles. 

6.6 The Influence of Carboxylate Functionality of PS on El Sorption 

and OF Permeability 

Figure 6 -3A and B present how El mass adsorbed and OF permeability, respectively, 

change with increasing concentration of carboxylated PS particles in comparison to 

plain PS particles. The trend in increase of El mass adsorbed is in parallel with the 

results obtained from the batch experiments. The El sorption capacity of 

carboxylated PS particles being smaller than the plain ones shows that a larger 

surface area is required for carboxylated PS to reach the same amount of sorption 

that can be achieved with the plain particles. 

The permeability of the 100 kDa membrane is comparable for plain and carboxylated 

PS at different particle concentrations and the results are given in Figure 6 -3B. The 

decline in the permeability with carboxylated particles follows the same trend of the 

plain particles. The permeability declines as the amount of carboxylated PS particles 

increases due the increased deposit thickness. This implies that the existence of the 

carboxyl groups on particle surface does not cause any changes in the particle - 

particle and particle- membrane interactions. 
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Figure 6 -3 A) El mass adsorbed and B) permeability of 100 kDa with PS particle concentrations 
of 1.7, 8.4, 17, 34 and 84: filtration experiments, 100 ng /L El concentration with 1 mM NaHCO3 
and 20 mM NaCI background electrolyte, pH 7 

In order to confirm this, the deposit resistance, thickness and porosity is compared 

for the experiment where the particles are deposited on 100 kDa membrane at 17 

mg /L concentration (Table 6 -3). 

Table 6 -3 Resistance, thickness and porosity for plain and carboxylated PS deposits on 100 kDa 
at 17 mg /L concentration 

PS Type 
Deposit Resistance (Rd) Deposit Thickness 

Deposit Porosity 
(1/m) (µm) 

Plain 100 kDa 5.94x1011 ±1.53x10" 3.54+1.62 0.48+0.06 
Carboxylated_100 kDa 4.56x10'' +1.25x10" 3.76 +1.76 0.53 +0.09 
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The comparable thickness and porosity values indicate that there is no difference in 

the deposit characteristics between the plain and carboxylated PS particles. This is 

not surprising as both plain and carboxylated -PS particles have similar size and zeta 

potential values. 

6.7 Evaluation of the System and Conclusions 

Additional carboxylate groups on PS nanoparticles do not have any influence on the 

membrane permeability and do not enhance the El removal of the hybrid PS 

nanoparticle -UF system. Linear sorption model shows that a larger amount of 

carboxylated particles is required for the system to achieve the same El removal as 

the plain particles would do at certain concentration. At 84 mg /L nanoparticle 

concentration with 100 ng /L initial El concentration, El removal is 40 and 33 % and 

the permeability is 78 and 81 L /m2hbar for plain and carboxylated PS particles, 

respectively. 
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