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Abstract  

 
In the area of artificial intelligence, the development of Evolutionary Algorithms (EAs) has 

been very active, especially in the last decade. These algorithms started to evolve when 

scientists from various regions of the world applied the principles of evolution to algorithmic 

search and problem solving. EAs have been utilised successfully in diverse complex 

application areas. Their success in tackling hard problems has been the engine of the field of 

Evolutionary Computation (EC). Nowadays, EAs are considered to be the best solution to 

use when facing a hard search or optimisation problem.   

Various improvements are continually being made with the design of new operators, 

hybrid models, among others. A very important example of such improvements is the use of 

parallel models of GAs (PGAs). PGAs have received widespread attention from various 

researchers as they have proved to be more effective than panmictic GAs, especially in terms 

of efficacy and speedup.  

This thesis focuses on, and investigates, cellular Genetic Algorithms (cGAs)−a 

competitive variant of parallel GAs. In a cGA, the tentative solutions evolve in overlapped 

neighbourhoods, allowing smooth diffusion of the solutions. The benefits derived from using 

cGAs come not only from flexibility gains and their fitness to the objective target in 

combination with a robust behaviour but also from their high performance and amenability 

to implementation using advanced custom silicon chip technologies. Nowadays, cGAs are 

considered as adaptable concepts for solving problems, especially complex optimisation 

problems. Due to their structural characteristics, cGAs are able to promote an adequate 

exploration/exploitation trade-off and thus maintain genetic diversity. Moreover, cGAs are 

characterised as being massively parallel and easy to implement. 

The structural characteristics inherited in a cGA provide an active area for investigation. 

Because of the vital role grid structure plays in determining the effectiveness of the 

algorithm, cellular dimensionality is the main issue to be investigated here. The 

implementation of cGAs is commonly carried out on a one- or two-dimensional structure. 

Studies that investigate higher cellular dimensions are lacking. Accordingly, this research 

focuses on cGAs that are implemented on a three-dimensional structure. Having a structure 
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with three dimensions, specifically a cubic structure, facilitates faster spreading of solutions 

due to the shorter radius and denser neighbourhood that result from the vertical expansion of 

cells. In this thesis, a comparative study of cellular dimensionality is conducted. Simulation 

results demonstrate higher performance achieved by 3D-cGAs over their 2D-cGAs 

counterparts. The direct implementation of 3D-cGAs on the new advanced 3D-IC 

technology will provide added benefits such as higher performance combined with a 

reduction in interconnection delays, routing length, and power consumption. 

The maintenance of system reliability and availability is a major concern that must be 

addressed. A system is likely to fail due to either hard or soft errors. Therefore, detecting a 

fault before it deteriorates system performance is a crucial issue. Single Event Upsets 

(SEUs), or soft errors, do not cause permanent damage to system functionality, and can be 

handled using fault-tolerant techniques. Existing fault-tolerant techniques include hardware 

or software fault tolerance, or a combination of both. In this thesis, fault-tolerant techniques 

that mitigate SEUs at the algorithmic level are explored and the inherent abilities of cGAs to 

deal with these errors are investigated. A fault-tolerant technique and several mitigation 

techniques are also proposed, and faulty critical data are evaluated critical fault scenarios 

(stuck at ‘1’ and stuck at ‘0’ faults) are taken into consideration. Chief among several test 

and real world problems is the problem of determining the attitude of a vehicle using a 

Global Positioning System (GPS), which is an example of hard real-time application. Results 

illustrate the ability of cGAs to maintain their functionality and give an adequate 

performance even with the existence of up to 40% errors in fitness score cells.    

The final aspect investigated in this thesis is the dynamic characteristic of cGAs. cGAs, 

and EAs in general, are known to be stochastic search techniques. Hence, adaptive systems 

are required to continue to perform effectively in a changing environment, particularly when 

tackling real-world problems. The adaptation in cellular engines is mainly achieved through 

dynamic balancing between exploration and exploitation. This area has received 

considerable attention from researchers who focus on improving the algorithmic 

performance without incurring additional computational effort. 

The structural properties and the genetic operations provide ways to control selection 

pressure and, as a result, the exploration/exploitation trade-off. In this thesis, the genetic 

operations of cGAs, particularly the selection aspect and their influence on the search 

process, are investigated in order to dynamically control the exploration/exploitation trade-

off. Two adaptive-dynamic techniques that use genetic diversity and convergence speeds to 

guide the search are proposed. Results obtained by evaluating the proposed approaches on a 
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test bench of diverse-characteristic real-world and test problems showed improvement in 

dynamic cGAs performance over their static counterparts and other dynamic cGAs. For 

example, the proposed Diversity-Guided 3D-cGA outperformed all the other dynamic cGAs 

evaluated by obtaining a higher search success rate that reached to 55%.         
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Chapter 1 
 

 

Introduction  
 

 

Evolutionary computation is an area of artificial intelligence that is concerned with solving 

computational problems through the use of ideas from biological evolution. Computational 

problems commonly involve searching a massive potential solution space to find the best 

solution. In the real world, such problems require complex solutions that are usually too 

difficult to solve using traditional techniques. Nowadays, the dramatic increase in computer 

power enables many practical applications to become reality. Accordingly, evolutionary 

algorithms are efficiently used to optimise the design of systems and to solve high-

dimensional problems. Since the nineteen-nineties, EAs have increasingly become a crucial 

part of system design and implementation.   

The actualization of Darwinian principles, which later evolved into evolutionary 

computation, began in the nineteen-fifties for automated problem solving. However, the idea 

started to take root in different areas in the nine-sixties when the first two methods of 

evolutionary algorithms (the approach of evolutionary computation) were proposed. In the 

USA, Lawrence Fogel proposed evolutionary programming, while in Germany, Ingo 

Rechenberg and Hans-Paul Schwefel proposed evolution strategies. In the nine-seventies, 

John Holland introduced Genetic Algorithms (GAs), which has become the most widely 

used manifestation nowadays, and is the main focus of this research.  

Genetic Algorithms are one of the most powerful tools for efficiently solving complex 

problems in different application areas. Genetic Algorithms search for the optimum solution 

among a large number of possible solutions, encoded as gene sequences (chromosomes), by 

allowing these organisms to survive and produce (evolve) in their environments. The 

evolution process occurs though random variation, crossover, and mutation operators. 

Following that, natural selection occurs and plays the vital role of enabling the fittest 
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chromosome to survive and reproduce. As a result, new genetic materials are produced to 

form a new population of potential solutions, which propagate to successive generations. 

This process stops in accordance with a predefined termination criteria, such as reaching a 

specific number of generations and/or finding the desired solution (Goldberg, 1989). 

Standard GA models are inherently parallel; however, they require frequent 

communication, which is based on centralised control. Accordingly, parallel GA models 

were investigated with a view towards making parallel models efficient. The parallelisation 

of GA models occurs at either the computation or the population level. In the former, the 

operations applied to each encoded solution (individual) are performed in parallel. Master-

slave GAs are examples of such a model. In the latter, the population is divided into 

subpopulations of coarse or fine grain size such that each subpopulation evolves in parallel. 

When implementing the GA model, these subpopulations are distributed over a selected grid 

structure, which in turn defines the ways in which each subpopulation interacts with others. 

Therefore, different parallel GA classes can be formed, and the main aim of all is to enhance 

the speedup and efficiency of the search (Cantu-Paz, 2000). 

In fine-grained or cellular GAs (cGAs), the population is divided into a massive number 

of subpopulations, each consisting of one encoded solution (individual). The individuals are 

distributed over an n-dimensional grid structure with wraparound edges (toroidal). Research 

surroundings cGAs are more commonly concerned with their implementation on one- or 

two-dimensional grid topology. Therefore, the interactions between the individuals occur 

within their local neighbourhood. In coarse-grained or distributed GAs (dGAs), the 

population is divided into several subpopulations, each consisting of a number of 

individuals. Each subpopulation evolves in isolation from others, and the interaction between 

the subpopulation occurs according to the employed migration policy (Cantu-Paz, 1995).  

This research is concerned with the cGA models.            

 

1.1 Motivations 

 

The topology of the grid is the key in determining the performance of GAs. Different 

topologies induce different levels of exploration or diversification of the search space and 

exploitation or intensification of good solutions. Hence, the appropriate balance between 

exploration and exploitation is an important issue in the rapid identification of promising 

regions with high quality solutions in the search space. A typical cGA is implemented on a 

two-dimensional toroidal grid topology; research concerned with higher dimensional 
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topologies is very limited. Preliminary research on cellular dimensionality has shown 

promising results. Consequently, exploring and investigating the implementation of a cGA 

model on higher cellular dimensions, specifically three-dimensions (3D), is one of the 

motivations underlying this research.      

Another motivation relates to the field of fault tolerance. Evolutionary optimisation 

engines are subject to failures; such failures target the main data structures, such as those that 

store the chromosomes or their fitness values. This type of fault is known as Single Event 

Effects (SEEs) and may result in either permanent or temporary errors. In this research, to 

maintain the functionality and the performance of cGA engines, fault mitigation techniques 

at the algorithmic level are investigated. A cGA’s inherent features, such as the diversity of 

phenotype and genotype spaces, migration polices, and adapting the number of evaluations, 

are utilised. In addition, information gathered based on the population diversity is used in an 

attempt to automatically isolate the faults.  

The last motivation relates to the balance between exploration and exploitation. This 

balance is mainly achieved by means of the grid topology and/or the genetic operations. 

However, real-world problems require a system to be adaptive in order to continue to 

perform effectively in a changing environment. As a result, dynamic adaptation of the 

exploration/exploitation trade-off is an emerging challenge in the field of evolutionary 

computation. This area is intensely investigated in an attempt to improve algorithmic 

performance without incurring additional computational effort. In this research the genetic 

operations of cGAs, particularly the selection and their influence on the search process are 

investigated in order to dynamically control the exploration/exploitation trade-off.        

 

1.2    Objectives 

 

The overall aim of this thesis is to investigate the inherent characteristics of cellular genetic 

algorithms in order to improve their performance when dealing with complex problems, and 

to introduce new techniques that add fault tolerance and dynamic adaptation features to the 

algorithms. To achieve this aim, this research is carried out in three main stages−with the 

primary focus being geared towards improving the performance and reliability of cGAs.  

The first stage is concerned with the investigation of cGAs characteristics, in particular 

the cellular dimensionality and their implications on the performance of the algorithms. Grid 

topology plays a significant role in the determination of the performance of EAs. cGAs are 

commonly implemented on 1D or 2D toroidal grid structures. A lack of studies concerning 
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higher cellular dimensions provides an opportunity to further investigate the algorithm’s 

behaviour and performance. Hence, the first objective of this research is to evaluate and 

compare the performance of cGAs when implemented on 2D and 3D grid structures. In an 

attempt to seek advantages with higher cellular dimensions, an experimental study is carried 

out to compare the behaviours of 2D-cGAs and 3D-cGAs while maintaining similar 

algorithmic properties. The findings will add significant benefits for future optimisation 

engines. Achieving better algorithmic performance with 3D-cGAs creates a promising 

opportunity to combine the algorithmic benefits with thoes of advanced custom silicon chip 

technology, 3D-IC.         

The second stage is concerned with increasing not only the effectiveness, but also the 

reliability of cellular genetic engines. The significant reduction in system electronics and 

operation in hostile environments lead these systems to be subjected to different kind of 

failures. Accordingly, research on fault-tolerant and mitigation techniques is becoming 

increasingly interesting. The second objective of this research is to develop an algorithm-

based mitigating technique to tolerate failures encountered, in particular SEE errors, by 

utilising cGAs’ inherent features. To achieve this goal, explicit migration techniques as well 

as dynamic adaptation techniques are proposed as mitigation techniques. The success of the 

proposed techniques in maintaining system functionality and effectiveness will not only be 

advantageous at the algorithmic level, but also at the hardware level as there will be no 

hardware requirement such as is the case with hardware-based fault-tolerant techniques.    

The last stage is concerned with developing cGAs to allow dynamic adaptation in order to 

obtain an appropriate balance between exploration and exploitation. As pointed out earlier, 

the exploration/exploitation trade-off is a crucial factor that determines the behaviour and 

performance of the algorithm. The nature of EAs as being stochastic force systems to operate 

in a changing environment; this creates another interesting area for research, that is, dynamic 

adaptation. Thus, the final objective of this research is to introduce dynamic cGAs by 

utilising the genetic operations, specifically the selection. Two different approaches are 

proposed and evaluated by comparing their performance with that of other dynamic 

algorithms. The attainment of an appropriate exploration and exploitation balance while 

maintaining the algorithms’ performance will positively contribute to the field of dynamic 

adaptation.    
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1.3    Contribution to Knowledge 

 

This research seeks to take advantage of the decentralised structural properties of cGAs in 

order to expand the applicability of cGAs to the fields of dynamic adaptation and fault 

tolerance. The unique structure of cGAs contributes to their success and universal 

applicability in various application areas over standard and other parallel GA models. This 

research utilises the available opportunities that are offered through the inherent features of 

cGAs; namely, the structural properties that define the topologies of the local neighbourhood 

and the grid and their consequences on the genetic operations; and the related 

exploration/exploitation trade-off. Several studies that contribute to knowledge were carried 

out and published (the publications are shown in the next subsection). The following points 

highlight how this thesis contributes to existing knowledge. 

 

• High cellular dimensions are proposed as a computationally effortless way to 

improve the exploration/exploitation trade-off and the overall performance of 

cGA models. The vertical expansion of the population plays an important 

role in the speed and the way that solutions spread, while maintaining the 

population size.   

 

• A fault-tolerant technique is developed to mitigate SEE errors, specifically 

SEUs that target phenotypes registers. The technique is based on a genetic 

diversity measure, specifically the genotypic entropy, as a way to 

automatically identify and therefore isolate solutions with faulty fitness 

values. This technique illustrates how the faults occurring in one space (in 

this study, phenotypic space) are reflected in the other (genotypic space). 

 

• A process of excluding the isolated or faulty solutions from the evolution 

process is proposed. This is in order to mitigate their impact on the search 

process, although this potentially results in a lower number of potential 

solutions.  

 

• The development of adaptive migration operations with different policies as 

a technique to mitigate the impact of faults that are triggered by the reduction 

in the number of potential solutions and, accordingly, lead to diversity loss. 
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The proposed policies include the first fault-free neighbourhood, the best 

fault-free neighbour, and a random fault-free neighbour. 

 

• Adaptive fault-tolerant techniques to further improve the performance of 

cGAs are proposed. The technique adapts to the fault ratio and allows more 

evaluations to overcome the impact of an increase in the number of faults.  

 

• A dynamic-adaptive mechanism is proposed to balance exploration and 

exploitation in order to improve the performance of cGAs. The mechanism 

uses a stochastic selection operation that dynamically and gradually tunes the 

rate for selection based on a diversity degree. Accordingly, different levels of 

exploration and exploitation are induced at different search phases. 

 

• An adaptive approach to dynamically control the exploration/exploitation 

trade-off based on convergence speed is developed. A diversity measure is 

used to compute the convergence speed, in accordance with the selection rate 

is tuned.       

 

1.4    Publications 

 

Publications that have arisen from this work are as follows: 

  

1. Morales-Reyes, A., Al-Naqi, A., Erdogan, A.T. and Arslan, T. (2009). Towards 3D 

Architectures: A Comparative Study on Cellular GAs Dimensionality. In 

Proceedings of the NASA/ESA Conference on Adaptive Hardware and Systems (AHS 

'09), San Francisco, California, USA. IEEE. 

 

2. Al-Naqi, A., Erdogan, A.T., and Arslan, T. (2010). Fault Tolerance through 

Automatic Cell Isolation Using Three-Dimensional Cellular Genetic Algorithms. In 

Proceedings of the IEEE Congress on Evolutionary Computation (CEC '10), 

Barcelona, Spain. IEEE. 

 

3. Al-Naqi, A., Erdogan, A.T., and Arslan, T. (2010). Balancing Exploration and 

Exploitation in Adaptive Three-Dimensional Cellular Genetic Algorithm via 
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Probabilistic Selection Operator. In Proceedings of the NASA/ESA Conference on 

Adaptive Hardware and Systems (AHS '10), Anaheim, California, USA. IEEE. 

 

4. Al-Naqi, A., Erdogan, A.T., and Arslan, T. (2011). Fault Tolerant Three-

Dimensional Cellular Genetic Algorithms with Adaptive Migration Schemes. In 

Proceedings of the NASA/ESA Conference on Adaptive Hardware and Systems (AHS 

'11), San Diego, California, USA. IEEE. 

 

5. Al-Naqi, A., Erdogan, A.T., and Arslan, T. (2011). Dynamic Fault-Tolerant Three-

Dimensional Cellular Genetic Algorithms, Journal of Parallel and Distributed 

Computing (submitted). 

 

6. Al-Naqi, A., Erdogan, A.T., and Arslan, T. (2012). Adaptive Three-Dimensional 

Cellular Genetic Algorithm for Balancing Exploration and Exploitation Processes. 

Special Issue on Bio-inspired Algorithms with Structured Populations−Soft 

Computing Journal (submitted). 

 

1.5    Thesis Structure 

 

This thesis is divided into six chapters. The five remaining chapters are organised as follows: 

 

Chapter 2 provides a broad overview on the field of Evolutionary Computation. This chapter 

is further divided into three main sections. A deep look at both standard and parallel 

Evolutionary Algorithms, in particular the Genetic Algorithms, is provided in Section 2.1. 

Section 2.2 gives a dedicated review of cellular Genetic Algorithms−the main topic of this 

thesis. The different aspects that characterise cGAs are discussed in detail from both model 

and implementation points of view. This section ends by characterizing three-dimensional 

cGAs (the focus of this research) and gives an empirical comparison to standard GAs. 

Finally, the field of fault tolerance is reviewed in Section 2.3. This section gives an 

introduction to fault tolerance with a specific focus on the faults that were tackled in this 

research.        

 

Chapter 3 proposes a study of cellular dimensionality in an attempt to exploit the advantages 

inherent in higher cellular dimensions. An empirical comparison is carried out to evaluate 
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3D-cGAs versus 2D-cGAs while maintaining similar algorithmic properties. A set of test and 

real-world problems that induce different levels of complexity to the search are also used to 

assess the performance of the algorithms compared. This work initially began as a 

collaborative effort with a previous group member in the System Level Integration research 

group (SLIg) and was further investigated in this research (Morales-Reyes, 2010). This 

chapter establishes the basis of this research.    

 

Chapter 4 proposes a study on fault tolerance that aims to provide a fault-tolerant technique 

to mitigate SEU errors. This chapter is divided into three main parts. The first part (Section 

4.1) introduces a fault-tolerant approach that automatically identifies and isolates faulty 

solutions. This section also introduces an explicit migration operation as a mitigation 

technique. The approach is assessed with and without the proposed migration operation 

against two fault scenarios for different test and real-world problems. Two additional 

adaptive migration policies are defined in the second part of this chapter (Section 4.2). The 

fault-tolerant approach proposed in Section 4.1 is then evaluated against the different 

migration polices for an extended set of problems with various complexities. The last part of 

the chapter, (Section 4.3) introduces an adaptive approach to fault tolerance in an attempt to 

further improve the performance of the approach proposed in Section 4.1. The adaptive fault-

tolerant approach is assessed with and without migration for a similar set of problems as that 

used in Section 4.2.     

 

Chapter 5 presents a study on a dynamic adaptation that aims to induce an appropriate 

balance between the exploration and the exploitation search process without incurring 

additional computational efforts. Two different adaptive algorithms are proposed: in the first, 

the search is guided by a diversity degree (Section 5.2) while the convergence speed guides 

the search in the second (Section 5.3). The convergence speed measure is adopted from a 

previous research in the same field (Alba and Dorronsoro, 2005) that proposed several static 

and dynamic cGA approaches. Selected static and dynamic approaches that were proposed in 

that study are compared to the approaches proposed in Sections 5.2 and 5.3 (Section 5.4). To 

assess the proposed algorithms and to reach a valid conclusion, a benchmark suite of test and 

real-world problems with different characteristics is used.              

 

Chapter 6 summarises this thesis, provides conclusions, and discusses avenues for possible 

future research. 
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Chapter 2 

 
 

Evolutionary Computation 
 

 

This chapter provides a broad insight into the field of Evolutionary Computation (EC). The 

aim of this chapter is to review the critical aspects of Evolutionary Algorithms (EAs), 

especially those of Genetic Algorithms (GAs), including competitive search models of 

parallel GAs in general, and theoretical and methodological contributions to cellular Genetic 

Algorithms (cGAs) in particular (the main family of cellular EAscEAs). This 

comprehensive view of previous research on the cGAs establishes the basis for this research.    

Evolutionary Algorithms are meta-heuristic algorithms that combine basic heuristic 

methods with higher-level frameworks in order to provide (sub-)optimal feasible solutions in 

a reasonable search time. Meta-heuristic algorithms are approximate and non-deterministic, 

and range from simple local search to complex learning processes.  

EAs work on a population of encoded potential solutions (individuals) by applying a 

number of genetic operatorsnamely, selection, crossover, and mutationto the individuals 

at each iteration in order to generate a new population. The selection operator is the most 

powerful as it guides the search process based on the selected individuals’ fitness. Two 

individuals are selected to generate new individuals based on a predefined criterion. The 

crossover operator recombines the selected individuals to generate offspring, which are then 

modified by the mutation operator to introduce self-adaptation of individuals; these operators 

are applied based on a probability distribution. The mutation is commonly applied with a 

very low probability; otherwise this operator may lead to an ad-hoc search (Muhammad, 

Bargiela, and King, 1997; 1999). The main aim of the genetic operators is to learn about the 

connections between decision variables in order to locate areas in the search space 

processing high-quality solutions.  
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Various major branches of EAs have evolved over the past 40 years. One of the most 

well-known and widely studied EA variants is Genetic Algorithms (GAs). Unlike other EA 

techniques, GAs preserve a population of tentative solutions that are updated competitively 

through the application of some variant operators to find the global solution. Other EAs 

include Genetic Programming (GP), Evolutionary Programming (EP), and Evolution 

Strategy (ES). These algorithms differ slightly in their use of the genetic operators, with the 

main difference residing in their implementation and the nature of the problem to solve. GP 

was proposed by John Koza in 1992 (Koza, 1992). It generates its initial population by 

creating computer programs as potential solutions. As in GAs, GP assigns a fitness value to 

each solution (i.e., program) and uses selection, mutation, and crossover operators to 

generate a new population. ES was proposed by Ingo Rechenberg in the early 1960s and was 

subsequently developed (Jacob, 2001, p.211). It represents the solution as a chromosome of 

real values and considers the individuals’ phenotypes as the parameters to be optimised. In 

that same year, EP was proposed by Lawrence Fogel (Jacob, 2001, p.297). EP has no 

constraints on the representation that follows from the problem. EP differs from the other 

EAs in that it uses no recombination mechanism (i.e., no crossover mechanism) (Jacob, 

2001; Alba, 2005; Alba and Dorronsoro, 2008).  

The field of EC is continually growing and evolving (Alba and Cotta, 2006). New EA 

variants have recently emerged in an attempt to overcome EAs’ weakness that results in less 

accurate solutions when tacking hard and real problems in some applications. In addition, 

parallelisation in EAs is intensely exploited in an effort to improve performance. This 

research views cGAs as being highly parallel models of GAs. Details about GAs are 

provided in the subsection 2.1. 

 This chapter is divided into three subsections. Subsection 2.1 focuses on sequential and 

parallel GAs, while a deep insight into cGAs is provided subsection 2.2. Subsection 2.3 

gives a general overview of the field of fault tolerance. 

    

2.1    Genetic Algorithms 

 

Genetic Algorithms are possibly the most popular class of EAs. GAs were proposed by 

Holland, who aimed to design artificial systems that possess similar properties to those of 

natural systems, in the early nineteen-sixties (Holland, 1992). As a result of his advanced 

understanding and utilisation of natural adaptation processes, Holland successfully 

introduced GAs in 1975. Subsequently, GAs widely proved their efficiency in a variety of 
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application areas. At first, they were mainly used to optimise combinatorial problems (Back, 

1996). Nowadays however, GAs are also used to solve other optimisation problems 

belonging to continuous and other similar domains (Michalewicz, 1996). 

GAs are iterative search techniques that apply stochastic operators on a population of 

encoded solutions (individuals). GAs efficiently explore complex problem spaces (i.e., 

genotypic space) in order to find the optimum solutions. The search process is guided with 

minimal information on the problem (i.e., phenotypic space). Phenotype space is evaluated 

through the objective (fitness) function at which a mapping between the individuals’ 

phenotypes and genotypes is established. 

As illustrated in Algorithm 2.1, GAs start with a random generated population )0(P  (line 

2), followed by fitness evaluation (line 3). The first iteration t  then starts with parent 

selection (line 6) in order to generate offspring. The crossover and mutation operators are 

then applied on the selected parent (lines 7 and 8, respectively). An evaluation of the updated 

population is then carried out, followed by the replacement of individuals to generate a 

population for the next iteration )1( +tP  (lines 9 and 10, respectively). These steps are 

repeated until the predefined stop criterion is fulfilled (line 5).  

 

Algorithm 2.1 Pseudo-code of a canonical GA 

1: procedure GA 

2: Generate_initial_population (P(0)); 

3: Evaluation (P(0)); 

4: t � 0; 

5:   while ! stop_condition do 

6:       P’( t) � Selection (P(t)); 

7:       P’’( t) � Recombination (P’( t)); 

8:       P’’’( t) � Mutation (P(t)); 

9:       Evaluation (P’( t)); 

10:     P(t+1) � Replace(P(t), P’’’( t)); 

11:     t � t+1; 

12:   end while; 

13: end procedure GA; 

 

The most commonly used stop criterion is that of reaching a predefined number of fitness 

evaluations and/or finding the optimal solutionsan optimum solution can be defined as 
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those individuals having the global fitness value (f*) or a tolerable fitness value (e.g., f* ≥ 

threshold). However, other stop criteria could be defined. This research uses a more 

restrictive stop criterion that is based on the average fitness values of the population. 

A brief discussion of the basic GA operations (selection, crossover, and mutation) is 

provided in the following paragraphs. A large number of selection mechanisms has been 

developed, with the most common being proportionate and tournament selections (Rothlauf, 

2006). With proportionate selection, the number of copies an individual possesses in the 

subsequent population is proportional to its fitness; and an individual xi to be chosen for 

recombination has a probability computed as follows: 

∑
=

N

j
ji xfxf

1

)()(                                                          (2.1) 

where N is the number of individuals in a population. The probability of the individual to be 

chosen increases as its fitness increases.   

With tournament selection, a number of individuals (t) are randomly selected for a 

tournament, which the fittest individual wins. There are two approaches for tournament 

selection: without replacement and with replacement. In the former, there are t rounds and 

each round has N/t tournaments. The selection of individuals for a tournament is made from 

those who are not involved in the current round of the tournament. In the latter approach 

however, all t individuals are selected for a tournament at the same round. This research uses 

the tournament selection as the local selection method in the experimental setups. The 

specific type used is the Binary Tournament (BT) selection, in which two random 

individuals are selected and the fittest individual wins the tournament (i.e., t = 2).  Zhong et 

al. (2005) conducted a study that compared the performance of simple GA for different 

selection mechanisms, particularly tournament and roulette wheel selections. They found 

that the tournament selection mechanism resulted in the better algorithm performance.      

Similarly, a large number of crossover and mutation operators have been proposed. 

Crossover simulates the role of sexual reproduction and is operated on the selected 

individuals in a population to generate offspring, while mutation imitates biological mutation 

and is operated on the generated offspring to induce slight changes in an individual’s 

genotype. Typically, in a GA, crossover generates two offspring from two parents, whereas 

the mutation alters one or more genes (or alleles) in an individual. Both occur according to 

predefined crossover and mutation probabilities. Classical crossover mechanisms include 

one-point, two-point uniform, and arithmetic crossover, among others. In addition, 

traditional mutation techniques include bit-flip, uniform, and non-uniform mutation, among 
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others. The selection of a specific crossover or mutation technique highly depends on the 

individuals’ encoding (binary, real, etc.) as well as the type of the problem to be solved. The 

main purposes of crossover and mutation are to improve an algorithm’s performance and to 

prevent trapping in local minima areas by preserving and promoting population diversity. 

Unlike crossover, mutation focuses on local search as it only alters properties of individuals. 

Hence, the probability of mutation should be low otherwise many genes (or alleles) will be 

altered, leading to random search.   

Finally, replacement strategies also play an important role in improving the performance 

of algorithms in general and in enhancing population diversity in particular. The most 

common standard GAs directly depend on replacement strategies. A brief discussion on non-

decentralised (panmictic) GAs is provided next.       

 

2.1.1    Non-Decentralised GAs 

 

This section describes the two most popular panmictic GAs, which are characterised by their 

non-structured population−resulting in interactions between individuals occurring without 

restrictions; that is, an individual can mate with any other individual. A brief description, 

with pseudocodes, of steady state and generational GAs is provided.    

 

Algorithm 2.2 Pseudocode of a ssGA  Algorithm 2.3 Pseudocode of a genGA 

1: procedure ssGA 

2: Generate_initial_population (P(0)); 

3: Evaluation (P(0)); 

4: t � 0; 

5:   while ! stop_condition do 

6:       P’( t) � Selection (P(t)); 

7:       P’’( t) � Recombination (P’( t)); 

8:       P’’’( t) � Mutation (P(t)); 

9:       Evaluation (P’( t)); 

10:     P(t+1) � Replace(P(t), P’’’( t)); 

11:     t � t+1; 

12:   end while; 

13: end procedure ssGA; 

 1: procedure genGA 

2: Generate_initial_population (P(0)); 

3: Evaluation (P(0)); 

4: t � 0; 

5:   while ! stop_condition do 

6:      for  i � 1 to popSize do 

7:        P’( t) � Selection (P(t)); 

8:        P’’( t) � Recombination (P’( t)); 

9:        P’’’( t) � Mutation (P(t)); 

10:      Evaluation (P’( t)); 

11:      Paux(t) � Add(P(t), P’’’( t)); 

12:    end for; 

13:     P(t+1) � Replace(Paux(t)); 

14:     t � t+1; 

15:   end while; 

16: end procedure GA; 
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Algorithm 2.2 illustrates the pseudo-code for steady state GA (ssGA). Typically, ssGA 

selects two parents according to a defined selection policy (line 6) to generate offspring for 

the next iteration. It recombines the parent and then mutates the generated offspring (lines 7 

and 8, respectively). Next, the new offspring is evaluated and made to compete with the 

parents. The winner is then added to the population according to a defined replacement 

policy (lines 9 and 10, respectively). In a typical ssGA, if the offspring is better than the 

worst parent in the population (Replace-if-better), the latter is replaced by the former. Other 

replacement policies include Replace-the-worst, Replace-the-oldest, Replace-random-

individual, among others. This process is reiterated until the stop condition is satisfied (line 

5).      

Generational GA (genGA) generates new offspring from individuals in the current 

population by applying the genetic operators: selection, recombination, and mutation. It then 

adds the offspring to an auxiliary population (see Algorithm 2.3). The auxiliary population is 

then replaces the current population, when the entire population has been generated, to be 

used for the next iteration.  

Thus, the difference between ssGA and genGA is that with the former only one 

individual at a time is introduced into the current population, requiring a replacement 

strategy to vacate the place for the new offspring to occupy if it survives, while with the 

latter, a whole new population is generated to replace the current one. As a result, genGAs 

are also known as ( )λµ, −GAs, while ssGAs are known as ( )1,µ −GAs, where µ  is the size 

of the population and λ  is the size of the auxiliary population (Alba and Dorronsoro, 2008).  

Next, a general discussion about decentralised (or parallel) GAs is provided followed by a 

specific discussion about cGAs. A comparison between panmictic and parallel GAs is 

provided. 

 

2.1.2    Decentralised Genetic Algorithms 

 

The complexity of most real-world problems and/or the limited resources available to solve 

them, led to the development of meta-heuristic algorithms. As mentioned earlier, meta-

heuristics give optimal, or near optimal, solutions in an adequate time. However, the high 

dimension of many tasks results in a long execution time. Hence, parallelism of meta-

heuristics was initiated to reduce resolution time as well as to improve the quality of the 

solutions (Alba, 2005). 
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The two phases beyond the introduction of panmictic GAs are the coarse-grained 

(distributed) and the fine-grained (cellular) parallel GAs. In the former, several large 

subpopulations evolve in parallel with limited interaction between subpopulations; while in 

the latter, several small subpopulations evolve in parallel with regular interaction. One 

motivation behind the parallelism is the potential decrease in the resolution time through the 

assignment of each subpopulation to a single processor in a multi-processor system. Another 

motivation is the ability to explore different areas of the search space in parallel by 

independently evolving each subpopulation, with the independent evolution of the 

subpopulation leading to enhanced the genetic diversity (Chambers, 1999).  

From the above discussion, two ways to reduce the execution time can be identified. The 

first method is to directly run the algorithm in parallel hardware, while the second is to 

utilise the GA’s inherent parallelism (Eklund, 2003). Next, a brief discussion about parallel 

hardware is provided, followed by a discussion on coarse-grained and fine-grained GA 

models.      

 

2.1.2.1    Parallel Hardware 

 

The objective of this section is to understand hardware concepts related to parallel computer 

architectures in order to establish a relation between parallel hardware and the 

implementation of parallel algorithm models. However, it is first necessary to understand 

that parallel models and parallel hardware are not the same. Parallel models describe the 

independent computation of multiple tasks and can be executed on both parallel and 

sequential computers, while parallel hardware requires physical divisions in the independent 

tasks (Alba, 2005). 

Generally, parallel architectures are classified into Single Instruction Single Data (SISD), 

Single Instruction Multiple Data (SIMD), Multiple Instruction Single Data (MISD), and 

Multiple Instruction Multiple Data (MIMD) (Culler, Singh, and Gupta, 1998; Roosta, 1999).  

SISD refers to a computer architecture in which a mono-processor runs single instruction 

on data stored in single memory. However, SISD has parallel characteristics, for example 

fetching and pipelined execution of instructions (Roosta, 1999). 

SIMD corresponds to a parallel computer architecture in which the same instruction is 

executed by several processors over multiple data. Typically, a SIMD architecture has 

hundreds or thousands of simple processors, each with a local memory. Despite its ability to 
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exploit data level parallelism, the use of SIMD architectures is limited due to their 

complexities, inflexibilities, and dependence on synchronisation (Roosta, 1999). 

Similar to SIMD, MISD refers to parallel computer architecture, but this architecture 

executes multiple instructions on the same data; an example of this architecture is a pipelined 

computer. MISD architectures are rarely found in practice due to their poor scaling and their 

excessive use of computational resources (Roosta, 1999). 

MIMD is a technique designed to achieve parallelism and is the most useful one. Most 

parallel computers fit this mould. MIMD computers have several processors that operate 

independently and asynchronously and in which different processors run different 

instructions over different data. MIMD architectures have more classifications based on the 

way the processor accesses memory. These classifications are as multiprocessors and multi-

computers (distributed system). In the former, processors access memory directly, while in 

the latter, processors need a message-passing mechanism in order to access remote 

memories. These two classes of MIMD are even further divided; multiprocessors are 

classified into uniform and non-uniform memory accesses (UMA and NUMA, respectively), 

and each is also classified based on the interconnection media between the processors (Bus-

based or switched). Although multiprocessors are widely in use, they have a limited number 

of processors. Increasing the number of processors results in an exponential increase in their 

price. Distributed systems consist of several computers that are interconnected: each 

computer has a processor, a memory, and a network adapter. A distributed system can be a 

cluster of workstations (COW) or a massively parallel processor (MPP). In the former, the 

workstations are connected by a network technology; this technology restricts the number of 

workstations to a few hundred. Conversely, MPP has thousands of processors. The 

advantages of distributed systems are mainly presented in their easy build and extension, 

better price-performance trade-off, and more scalability and flexibility (Roosta, 1999; Alba, 

2005).                        

 

2.1.2.2    The Islands Model 

 

Islands or distributed GAs (dGAs) is one of the most popular parallel models. This model is 

also known as coarse-grained GA according to grain size. In a typical dGA, the population is 

divided into multiple and relatively large subpopulations (islands) that each evolves 

independently (Alba and Troya, 1999a). Each subpopulation runs the standard GA and the 

interaction between individuals in different subpopulations is introduced and managed 
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through a migration technique (see Figure 2.1). Figure 2.1 illustrates a dGA with 6 

subpopulations; each evolves independently by running a standard GA. The interaction 

between the subpopulation occurs through individual migration over a predefined 

communication link.     

This subsection provides a broad discussion about the main issues related to dGAs. These 

issues are homogenous and heterogonous models, migration policies, synchronism, speed-

up, and implementation.   

 

Homogenous and heterogeneous dGA 

Each island or subpopulation applies the genetic operators (selection, crossover, and 

mutation) in isolation from other islands; therefore each island searches a different area in 

the search space. In addition, each island can have its own configuration (such as crossover 

and mutation probabilities, individual representation, among others). The different 

configurations among islands lead to the formation of a class of dGA called heterogeneous 

dGA, while in heterogonous dGA a similar configuration is used for each island (Alba, 

Nebro, and Troya, 2002; Alba, Luna, and Nebro, 2004).  Although heterogeneous models are 

difficult to understand and implement, they show good results in practice (Tomassini, 2005). 

A promising heterogeneous dGA that uses different crossover operators in each 

subpopulation  was  proposed  by  Herrera  and  Lozano (2000). A  comparison  between  the   

 

 

 

 

 

 

Figure 2.1. Islands or distributed GA with 6 multi-individual subpopulations. 
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proposed algorithm, panmictic GAs, and homogenous dGAs, among others, showed that the 

former outperforms the rest in terms of reliability and accuracy.  

 

Migration  

An essential issue in dGA is defining an appropriate migration policy due to its 

significant influence on the performance of the algorithm (Rebaudengo and Sonza Reorda, 

1993). Typically, the parameters of the migration technique include migration gap, migration 

rate, selection/replacement of migrants, and topology (Alba, 2005). The migration gap or 

frequency defines how many generations in each island are between two successive 

migrations. The migration gap can either be set periodically or by defining a probability MP . 

The migration rate, sometimes called migration size, defines the number of individuals 

involved in each migration, which can be a constant number or a percentage of the 

subpopulation size. The migration strategy or the selection/replacement of migrants is 

defined according to which migrants are selected and which individuals are replaced by 

migrants. Lastly, the topology defines the island’s neighbours with which each island can 

communicate; in the islands model the interaction is geographically restricted to nearby 

neighbours.    

In an early study, Rebaudengo and Sonza Reorda (1993) selected the problem of TSP to 

assess the performance of dGA against different migration frequencies, sizes, and strategies. 

They found that different migration parameters significantly affect the performance of the 

algorithm. In addition, they concluded that migration has a similar effect to that of mutation 

as both operations introduce new genetic information. However, they also found that 

mutation has an advantage in that the information introduced is better and new, which speeds 

up the algorithm without driving it to a local minimum area.         

Matsumura et al. (1997), in a later study investigated the effects of migration on different 

multiprocessor system topologies (namely, ring, tours, and hypercube). In that study, 

Matsumura et al. used two types of migration to define the migration gap: namely, 

immigration and emigration types. In the former the migration operation is activated when 

the best fitness value is not updated, while in the latter the migration is activated when the 

best fitness value is updated. They found a relationship between solution quality, migration 

types, convergence speed, and topology. Thus, in general, the combination of specific 

migration type and topology may significantly affect solution quality and convergence 

speed.    
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A theoretical study on the scalability of parallel GA was proposed by Cantu-Paz and 

Goldberg (1999). The main aim of that study was to calculate the best possible number of 

processors needed to obtain the minimum execution time. The bounding cases (maximal and 

minimal values) in terms of topology degree, migration rate, and frequency were considered. 

Cantu-Paz and Goldberg concluded that the optimal number of processors needed to 

minimise the execution time is directly proportional to the square root of the population size 

and the time of fitness evaluation. They also suggested that a large number of processors 

could be integrated in parallel GAs while significantly reducing the execution time.      

In a study similar to the previous one concerning island size, migration rates, and 

topologies, additional problems were considered to confirm the previous conclusion (Cantu-

Paz, 1999a). In that study, Cantu-Paz established a relationship between island size, 

migration rate, and topology degree (number of neighbours of each island) with search 

success rate. He showed how to identify a configuration that obtains an appropriate 

execution-time/solution-quality trade-off by deriving an equation to calculate an accurate 

island size, which in turn is used to identify the migration rate and the topology degree. The 

conclusion arrived at is similar to that of the previous study.  

At the same time, Cantu-Paz (1999b) also investigated the affect of different migration 

strategies on the selection pressure while migration rate, frequency, island size, and topology 

degree remained constant. He defined four combinations of random and fitness-based 

emigration and replacement of individuals; with the results showing that the 

selection/replacement of migrants significantly affect the convergence speed. Later, Cantu-

Paz extended the latter study to quantify the increased selection pressure, which is an 

important issue in the avoidance of search failure (Cantu-Paz, 2001).       

In summary, dGA introduced new algorithmic parameters such as number of 

subpopulations, frequency of migration, selection and replacement of migrants, and network 

topology. However, these parameters presented a major drawback of dGA as only few 

theories were proposed on how to tune these parameters (Eklund, 2004).  

 

Synchronism  

Besides migration, synchronism is another factor that influences the search time and 

speedup. In dGA, synchronism occurs through migration. If the migration uses asynchronous 

communication, then the migrants are inserted immediately when they arrive at the intended 

island. A major advantage of asynchronous communication is that it avoids blocking steps 

between the migration gaps. Conversly, synchronous islands wait for every migrant they 
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must add, consequently affecting the execution time because of the continuous waits. Several 

studies have reported faster execution and more flexibility for asynchronous communication 

(Alba and Troya, 1999b; Alba, Cotta, and Troya, 1999a; 1999b; Alba, Nebro, and Troya, 

2002; Alba, Luna, and Nebro, 2004). 

Alba and Troya (1999b) analysed the synchronism in the migration step of dGA with 

steady state or cellular modes of island evolution (dssGA and dcGA, respectively) as well as 

other panmictic and non-distributed GAs. The conclusion they reached reported that the 

asynchronous algorithms achieved considerably less search times and larger speedup than 

their synchronous counterparts. The tight coupling in dcGA demonstrated a drawback of the 

synchronisation for harder problems. However, dcGA showed better resistance to bad 

migration frequencies than dssGA. The same conclusion was obtained in (Alba, Cotta, and 

Troya, 1999a; b) in which more difficult problems were considered. In addition, they 

reported that in terms of effort and diversity, both synchronous and asynchronous versions of 

dGA with generational, steady state, and cellular islands showed no differences.      

In addition, the influence of synchronisation in heterogeneous dGAs was analysed in 

(Alba, Luna, and Nebro, 2004) to further show the importance of synchronism in different 

dGA models. The results confirmed those obtained in previous studies. The wait constraints 

induced by the synchronous versions penalise the execution time, especially for a large 

number of islands.  Consequently, better efficiency can be achieved by asynchronous 

parallelisation.   

In summary, synchronisation in dGAs is determined through migration of individuals 

between panmictic or cellular subpopulations. The investigation on the advantages of 

asynchronous commutation showed high parallel efficiency and scalability. In addition, 

implementing parallel GAs with asynchronous communication on heterogeneous parallel 

hardware has the added advantage of parallelism that avoids the bottleneck induced by the 

slowest processor.    

    

Speedup 

Speedup is an important measure in parallel algorithms. In this measure, two times are 

compared: namely, the sequential and the parallel times needed to run the same algorithm. 

Thus, the speedup of m  processors (ms ) is the ratio between execution time on a mono-

processor (1T ) and the execution time on m  processors (mT ) (Alba, 2005). For many years, 

this measure has been used to analyse the performance of deterministic algorithms. 
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However, replacing the absolute times (1T  and mT ) by the average times (1T  and mT )  

enabled it to be used to analyse the performance of non-deterministic algorithms.    

Alba and Troya (2002) identified two types of speedup: strong speedup and weak 

speedup. Researchers favour the use of the latter as the former considers the best (fastest) 

recent sequential algorithm, which is difficult to find. Furthermore, they suggest that the 

comparison of speedups between sequential and parallel GAs must be made by running both 

algorithms until similar quality solutions are arrived at. 

The three levels of speedups are: sub-linear (msm < ), linear ( msm = ), and super-linear 

( msm > ). Many researchers suggest the possibility of parallel GAs being used to achieve 

super-linear speedup, for example, the work of Alba and Troya (1999b). However, the topic 

of super-linear speed is still controversial.  

Obviously, the move from panmictic to distributed population plays an important role in 

enhancing speedup as a lower execution time is needed for smaller subpopulations. More 

interestingly, in addition to the previous speedup source, speedup can be gained from the 

same distributed algorithms. Alba and Troya (2002) showed that dGA running on several 

processors achieved a super-linear speedup when compared to its panmictic counterpart, 

while a sub-linear speedup is achieved when it is compared to the same dGA on one 

processor. 

In addition, synchronism and migration in parallel GAs may significantly influence 

speedup (Alba, 2002). Alba and Troya (1999b) compared the speedups of asynchronous 

dGA with panmictic and cellular subpopulations to their synchronous counterparts. The 

result showed the ability of the compared algorithms to obtain super-linear speedups. In 

addition, an improvement was obtained when comparing asynchronous algorithms to the 

synchronous dssGA and a slight improvement was noticed when synchronous dcGA was 

considered (because of the highly coupled islands) for similar migration frequencies. Further, 

in their study, Alba and Troya investigated the effect of different migration gaps (1, 16, and 

32) on the speedup. They found that there was better speedup for larger gaps (16 and 32) 

with super-linear speed for dssGA and almost linear speed for dcGA for the largest gap (32).   

In conclusion, all the previous studies agreed on the possibility of parallel GAs to obtain 

super-linear speedup, in theory and in practice, both in homogenous and heterogeneous 

parallel hardware.          
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Implementation  

A traditional (false) assumption about parallel GAs was the mapping of parallel GA 

models directly onto the parallel hardware, thereby making the model and its implementation 

equivalent terms. However, a parallel model can be implemented on either mono-processor 

or multi-processor machines.  

From a hardware perspective, a dGA is very easy and efficient to implement in 

distributed memory MIMD computers, which partly contributes to its popularity. Despite the 

fact that a few independent subpopulations may limit the maximum speedup of this model, it 

is still faster than panmictic GA in terms of both run and convergence times. In addition, 

subpopulation structure, synchronism, and migration all influence the search time and 

speedup when running parallel GAs in a MIMD machine. Furthermore, cluster 

implementation of the island model is physically fairly large−resulting in the exclusion of 

many applications (Eklund, 2004).  

In (Alba, Cotta, and Troya, 1999b) and (Alba, Nebro, and Troya, 2002) the islands model 

was implemented in homogenous and heterogeneous clusters of workstations, respectively. 

Super-linear speedup was experienced not only in the homogenous but also in the 

heterogeneous machine clusters. In addition, the results showed that the heterogonous cluster 

was more efficient. In the next subsection, the cellular GAs (diffusion) model is discussed in 

very broad terms, followed by a more profound discussion of this model in the subsequent 

subsections.     

 

2.1.2.3    The Diffusion Model 

 

The diffusion model is  also called  fine-grained,  cellular, and massively  parallel  GA.  This 

model distributes its population over the structure of the processing elements (nodes), 

commonly a two-dimensional grid with wraparound edges (toroidal), in which each 

processing element holds only a few individuals, typically one. This spatial distribution 

defines and restricts the interaction between the individuals to their local neighbourhoods 

(Baluja, 1993).  

Figure 2.2 illustrates a diffusion or cellular GA with 5 × 5 subpopulations distributed over 

a 2D-toroidal grid: each contains one individual with its neighbourhood comprising four 

individuals located at the north, south, east, and west. 
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Figure 2.2. A cGA implemented over 5 × 5 toroidal grid. The neighbourhoods marked in dark and 

light blue show a possible overlapping of two neighbourhoods. 

 

This model can also be viewed as a combination of standard GAs and Cellular Automata 

(CA) as the population is distributed over an n  dimensional toroidal grid in which each 

individual occupies a position. Several researchers have investigated the performance and 

behaviour of a GA implemented on a CA (or CGA) (Kirley, Li, and Green, 1999; Back and 

Breukelaar, 2005; Olariu and Zomaya, 2006). The mutual conclusion is that CGA 

outperforms standard GAs with its ability to better escape local optima. Back and Breukelaar 

(2005) further investigated this model by considering multiple grid dimensions. The findings 

indicated promising benefits of algorithm performance for higher grid dimensions.      

Unlike the island model, the number of subpopulations is quite large which makes the 

diffusion model massively parallel, consequently increasing the potential of obtaining higher 

speedups. In addition, the migration in the diffusion model implicitly occurs due to the 

overlapped neighbourhoods. However, an explicit migration could be defined (Lee, Park, 

and Kim, 2000). All steps of the GA (evaluation, selection, and genetic operations) are 

applied in parallel within each individual’s neighbourhood in which only the current 

individual, the one at the centre, is updated. The massive parallelism and the absence of 

explicit migration are two advantages, among others, of the diffusion model (Eklund, 2004).     

Another benefit of the diffusion model is its suitability for implementation in VLSI 

because of its simple, regular, and locally connected nodes. Despite the fact that cGAs were 

originally designed for work in massively parallel computers, they have also been adopted 

and implemented in distributed and mono-processor machines. Section 2.2 describes cGA in 

more detail. 
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Figure 2.3. A hybrid parallel model of GA that combines cGA at the lowest level (each node) with 

dGA at the highest level to form what can be referred to as dcGA. 

 

2.1.2.4    Hybrid Models 

 

There have been various attempts to combine two of the parallel GAs in order to get the 

combined advantages of both (Cantu-Paz, 1995; Nowostawski and Poli, 1999); these are 

called hybrid models. One of the most well-known hybrid algorithms combines the diffusion 

model at the lowest level with the island model (see Figure 2.3). The discussion in Section 

2.1.2.2 included some studies relating to this hybrid model, which was referred to as dcGA.  

Although hybrid models may lead to the birth of new efficient algorithms, some of these 

models introduce more complexity to parallel GAs, for example the need for new additional 

parameters to manage a more complex topology structure (Alba, 2005).    

 

2.2    Cellular Genetic Algorithms 

 

The cellular model is a class of evolutionary algorithms with structured population that 

emphasises evolution at the individual level (Alba and Dorronsoro, 2008). cEAs are a kind 

of stochastic CA in which the number of points in the search space in cEAs is equivalent to 

the cardinality of the symbol alphabet in CA. Typically, in cGA each individual is assigned a 

grid position (cell); the topology of the grid is commonly implemented on an n -dimensional 

toroidal grid having a linear, square, or rectangular geometric shape. The concept of local 

neighbourhood is strictly enforced and an individual only interacts with its local neighbours. 

In a cGA, the diffusion of solutions occurs slowly with the aid of the overlapped local 

neighbourhoods, therefore offering exploration (diversification) of the search space, while 
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the genetic operations applied in each neighbourhood supports the exploitation 

(intensification) of good solutions. Hence, a major issue in determining the effectiveness of 

cGAs is the balance between exploration and exploitation, which is a direct effect of the 

selection pressure. The theory and practice surrounding this issue is discussed in the next 

subsection.  

 

Algorithm 2.4 Pseudo-code of a canonical cGA 

1. procedure cGA 

2. Generate_initial_population (P(0)); 

3. Evaluation (P(0)); 

4. t � 0;  

5. while ! stop_condition do 

6.     for  i � 1 to ROWS do 

7.          for  j �1 to COLUMNS do 

8.                neighbours � Find_neighbours (position(i,j)); 

9.                parent1� position(i,j); 

10.              parent2 �Local_selection (neighbours); 

11.              offspring � Recombine (Pc, parent1, parent2); 

12.              offspring � Mutate (Pm); 

13.              Evaluation �Fitness(offspring); 

14.              Replacement (position(i,j), offspring, Paux(t)); 

15.        end for; 

16.    end for; 

17. P(t+1) � Paux(t); // updating 

18. t � t+1;  

19. end while; 

20. end procedure cGA; 

 

In a cGA, the population is usually distributed over a two-dimensional toroidal grid 

topology, although lower or higher grid dimensions are possible. Algorithm 2.4 illustrates 

the pseudo-code of the canonical cGAs implemented on a two-dimensional grid. A cGA 

starts with a random population P(0) followed by fitness evaluations (Lines 2 and 3). Next, 

each individual is updated by selecting a second parent from its neighbourhood according to 

a specified local selection method (Line 10), and the first parent is the individual itself (Line 
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9). This type of parent selection is referred to as ‘current individual + local selection’; the 

other selection type selects both parents from the neighbourhood of the current individual 

with or without replacement through the defined local selection method. Several local 

selection methods that can be used include those implemented on standard GAs as well as 

selection methods specifically designed for implementation on parallel GAs such as 

anisotropic and centric selections (Simoncini et al., 2006a; 2009). A crossover operator 

recombines the selected parents with a probability Pc to produce an offspring (Line 11), 

which is then mutated by a non-uniform mutation operator with a probability Pm (Line 12). 

The modified offspring is then evaluated and, according to the specified replacement policy, 

the current individual is either kept or replaced by the newly generated offspring (Lines 13 

and 14).  

This process continues until all of the individuals are updated. The current population P(t) 

is then replaced by the auxiliary one Paux(t) to start the next generation (Line 17). The 

updating process defined here is synchronous, which means that the updated individual is 

inserted into an auxiliary population following a specified replacement policy. An alternative 

updating option is to apply an asynchronous update, in which the updated individual is 

directly inserted into the current population. (Subsection 2.2.2 discusses the synchronism in a 

cGA.) The algorithm terminates when the termination condition is met (Line 5). 

 

2.2.1    Takeover Time and Selection Pressure 

 

The structural properties of cGAs, including population (grid) and neighbourhood 

topologies, shape, and size, as well as genetic operations such as selection, replacement, and 

synchronisation may bestow several advantages on the effectiveness of the search. Two 

related and major issues that directly result from the abovementioned structural properties 

and operations are takeover time and selection pressure. Hence, careful attention to the 

takeover times and the selection pressure in the context of structural properties and 

operations is required.   

The takeover time represents the speed needed by the best solution in the population to 

conquer the whole population when only activating the selection operator (i.e., the growth 

rate of the best individual). Goldberg and Deb (1991) theoretically derived and compared the 

takeover times for panmictic GAs for different selection methods. They found that most of 

selection methods considered had a similar convergence times for order of growth O(log n) 

generations, where n is the population size. The proportional selection method was an 
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exception to this as a slower convergence time was obtained for it by a factor of n . Later, 

Rudolph (2000) proposed a theoretical study on takeover times in cellular EAs with one-

dimensional array and ring topologies. He derived the takeover times as a function of 

population size and selection probability for both considered topologies. In addition, 

Rudolph suggested that the takeover time depends to a lesser extent on the selection method 

than on the radius of the neighbourhood. 

A shorter takeover time denotes a higher selection pressure (intensity) leading to the 

promotion of more exploitation. High selection pressure leads to quick diversity loss. 

Therefore, the search may stagnate in the local minima area. Conversely, lower selection 

pressure promotes more exploration and therefore more diversity. Hence, careful attention to 

selection methods and other EAs settings is required. For other theoretical study on takeover 

time refer to Spiessens and Manderick (1991).   

The next subsection discusses the selection pressure in cGAs with respect to the structural 

properties. Following that the influence of the genetic operations, specifically on the 

selection pressure is demonstrated.       

 

2.2.1.1    The Influence of Grid-to-Neighbourhood R atio 

 

Before defining the Grid-to-Neighbourhood Ratio (NGR), a broad overview on grid and 

neighbourhood topologies is provided. As mentioned previously, a cGA is usually 

implemented on a two-dimensional grid topology with wraparound edges following a 

toroidal shape. Depending on the number of rows and columns a 2D toroidal grid can have a 

rectangular, a square, or a narrow topology; these configurations are illustrated in Figure 

2.4(a)−(c), respectively. Whereas, several neighbourhood configurations can be defined, the 

various configurations are commonly classified into Von Neumann (NEWS) or Moore (X-

net) neighbourhood (see Figure 2.5). In the former (also referred to as Linear (L)), the 

neighbourhood of an individual comprises those individuals located to its north, east, west, 

and south. With regard to the latter (also referred to as Compact (C)), in addition to the linear 

ones, the individuals located on the diagonal of the current individual are also included in its 

neighbourhood. The number of individuals in a neighbourhood is determined by the 

predefined neighbourhood radius (distance step). For example, the linear neighbourhood can 

have 5 individuals (L5) for 1 distance step (see Figure 2.5(a)), while a compact 

neighbourhood contains 9 individuals (C9) for the same distance step (see Figure 2.5(c)). 
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Figure 2.4. Two-dimensional toroidal grid topologies in cGA: (a) with rectangular shape, (b) with 

square shape, and (c) with narrow shape. 

 

 

 

 

 

                      (a) L5                      (b) L9                         (c) C9                       (d) C13          

Figure 2.5. Von Neumann neighbourhood: (a) with one distance step and (b) with two distance steps. 

Moore neighbourhood: (c) with one distance step and (d) with two distance steps.  

 

It is now possible to proceed to theoretically define NGR. The concept of NGR 

establishes a numerical relationship between neighbourhood and grid radii, which is 

computed by measuring the dispersion of a point pattern (an individual position) with respect 

to the mean centre ( yx, ) of a neighbourhood (or grid) pattern of size n as follows: 
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where xi is the row and yi is the column of a location of the individual i.  
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Therefore the ratio between the neighbourhood and the grid radii is calculated as follows: 
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Many researchers conclude that different grid/neighbourhood shapes and sizes impose 

different levels of selection pressure. Sarma and De Jong (1996) empirically analysed the 

effect of neighbourhood size, shape, and radius on the selection pressure. They showed in 

their study that NGR is a critical parameter in which different NGRs induce different global 

selection pressures. In other words, algorithms that have similar ratios, even if they have 

different population and neighbourhood sizes, show similar selection pressure. This 

conclusion was further investigated and confirmed in subsequent studies (Dorronsoro et al., 

2004; Giacobini et al., 2005). 

Alba and Troya (2002) analysed the effects of the NGR on the computational effort in 

terms of the number of evaluations, efficacy (number of hits), and scalability in cGAs. In 

summary, they found that thinner grids require more evaluations, provide better efficacy 

(especially when solving difficult problems), and scale adequately, while square grids scale 

slightly better as the size of a problem increases.      

To empirically show the influence of different NGRs on the selection pressure, 

experiments that included combinations of different grid shapes (square, rectangular, and 

narrow) and different neighbourhood sizes (L5and L9) were carried out. The population 

contained 400 individuals arranged as 20×20, 10×40, and 4×100 for square, rectangular, and 

narrow grids, respectively. Figure 2.6 depicts the average growth rates of the best individual 

(of 50 independent runs) for a square grid with L5 (NGR = 0.1097) and L9 (NGR = 0.1828) 

neighbourhoods, rectangular grid with L5 (NGR = 0.0752) and L9 (NGR = 0.1253) 

neighbourhoods, and narrow grids with L5 (NGR = 0.0310) and L9 (NGR = 0.0516) 

neighbourhoods when applying the binary tournament selection only. Smaller ratio values 

induced lower global selection pressures in the population (longer takeover time), while 

larger ratio values induced higher selection pressures (shorter takeover time). Further, with 

regard to similar neighbourhoods, square grids obtained the highest selection pressure, 

leading to more exploitative search; while the lowest selection pressure was obtained by 

narrow grids, leading to more explorative search.  
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Figure 2.6. The best individuals’ average growth rates for square, rectangular, and narrow grids, each 

with L5 and L9 neighbourhoods. 

 

The latter findings led many researchers to investigate the effect of dynamic control of 

the selection pressure, which leads to balancing the exploration/exploitation trade-off. The 

switch between grid shapes is one way to dynamically tune the selection pressure; other 

ways are also possible (Ursem, 2002; Li and Kirley, 2002; Alba and Dorronsoro, 2005). 

Chapter 5 discusses this topic in more detail.     

 

2.2.1.2    The Influence of Local Selection Method 

 

In addition to NGR, the local selection method influences the selection pressure. De Jong and 

Sarma (1995) empirically studied this effect by considering standard selection methods 

(binary tournament, linear rank, and proportional selections). They found that different 

selection pressures were induced by the various selection methods and that binary 

tournament selection has the most desirable global search and communication overhead.  

Subsequent studies investigated the effect of local selection methods as decentralising 

choices. The selection methods included standard and parallel-based techniques such as 

stochastic binary tournament, anisotropic, and centric selections (Simoncini et al., 2006a; b; 

2007; 2009). These methods introduced new parameters on which probabilities to select a 
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specific individual are computed. For example, considering the L5 neighbourhood, 

anisotropic selection assigns probabilities for the centre (pc), north and south (pns), and east 

and west (pew) individuals based on anisotropic parameter (α,α ∈ [-1 , 1]); see Equations 

(2.4). 

).1(
2

)1(

),1(
2

)1(

α

α

−−=

+−=

c
ew

c
ns

p
p

p
p

                                                (2.4) 

 

Hence, by tuning α, different selection intensities are induced. More discussions and 

experiments with respect to the influences of selection methods on selection pressure and 

takeover time are provided in Chapter 5, Section 5.1.  

 

2.2.2    Synchronisation 

 

Earlier, the topic of synchronisation was discussed in the context of dGA. This subsection 

discusses the same topic as it relates to cGA. In a cGA, the synchronism occurs through 

population updating policies (Tomassini, 2005).  

In a synchronous cGA, the phases of evaluation, genetic operations, and selection take 

place at the same time for all cells before the next generation starts (refer to Algorithm 2.4). 

Implementing the synchronous cGA model on a single machine requires an auxiliary grid to 

keep the updated cells. The auxiliary grid then replaces the old population when all cells 

have been updated to start the next generation.   

In an asynchronous cGA model, cells are updated in sequence. Different sequences are 

defined for asynchronous updating; with the most frequently used policies being fixed line 

sweep (LS), fixed random sweep (FRS), new random sweep (NRS), and uniform choice 

(UC).  In LS the cells are updated successively according to their positions, either by row or 

by column. In FRS, each cell is selected randomly for updating with uniform probability and 

without replacement. Similar to FRS, NRS and UC select a cell randomly for updating; 

however in NRS, a new random cell distribution is used for each cell, while in UC a uniform 

probability with replacement (binomial distribution) is used.   

Previous studies about synchronism in the field of Cellular Automata and dGA confirmed 

the advantages of asynchronous approaches over synchronous ones (Sipper et al., 1997; 

Schofisch and de Roos, 1999; Alba and Troya, 2001). These findings led Alba et al. (2002) 

to investigate the respective advantages and disadvantages in synchronous and asynchronous 
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cGAs. Although asynchronous cGAs had faster convergence time while maintaining 

desirable search success rates, synchronous cGAs had higher search success 

ratesconfirming the results of the previous studies.    

 

Synchronisation and selection pressure 

In addition to the shape and size of the neighbourhood (and/or grid) and local selection 

mechanisms, synchronism can influence the global selection pressure. Giacobini et al. (2003; 

2005) investigated the selection intensity in synchronous and asynchronous cGAs. They 

successfully modelled the curves of the selection pressure on one- and two-dimensional 

cGAs with toroidal grids. Accordingly, Tomassini (2005) provided a mathematical 

background for understanding the models. An empirical investigation was then carried out to 

validate the models. Synchronous algorithms had the weakest selection intensity, followed 

by UC, NRS, FRS, and at finally LS, which had the strongest selection intensity. Thus, 

synchronous algorithms are more explorative than asynchronous ones.    

Dorronsoro et al. (2004) further investigated the influence of synchronous and 

asynchronous update policies on the selection pressure. The results obtained confirmed those 

of previous studies in showing that it is possible to control the selection pressure without the 

need for additional parameters by synchronising updating policies. Moreover, asynchronous 

algorithms had faster convergence times than their synchronous counterparts. However, 

synchronous algorithms had higher search success rates.       

The next subsection discusses the metrics most frequently used to measure the 

performance of the parallel algorithms.  

 

2.2.3    Performance and Statistic Measures 

 

As previously discussed, the most common measure of parallel algorithms is the Speedup. 

Speedups of meta-heuristics should be computed based on similar parallel and sequential 

accuracies (Alba, 2005). In this case, the average mean times of the parallel model on a 

single machine and the parallel model on m machines are compared in an orthodox (similar 

algorithm and accuracy), practical (the best, most recent algorithm is not required) manners. 

The definition and types of the speedup were discussed in Section 2.1.2.2. 

Other metrics used to measure and analyse the performance of parallel algorithms include 

accuracy (quality of solution) combined with search success rate or hit rate (number of 

successful experiments), and computational effort (number of fitness evaluations and/or the 
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run time). To achieve a reliable conclusion and to gather sufficient data several independent 

experiments have to be carried out due to the stochastic nature of EAs. The first measure can 

be used if the optimum solution is known. Thus, the search success rate indicates the number 

of experiments that obtains the optimum solution. Knowing the optimum solution is not a 

necessity for the computational effort. This measure is computed using the convergence time 

(number of fitness evaluations or number of generations) and/or the convergence speed 

(execution time). Researchers recommend the use of both methods to compute the 

computational effort. The traditional assumption is that parallelism is mainly about reducing 

the time rather than the number of evaluations. However, using the execution time would 

bring the effects of hardware and software implementation. For empirical investigations on 

the influence of the measure, please refer to (Alba, 2005, p.54).   

Statistical metrics are also important when measuring the performance of the algorithms. 

Common metrics include mean of solution accuracies and mean of computational efforts 

over all experiments. To illustrate the benefit of the statistical metrics consider obtaining low 

hit rate but with high mean accuracies, which indicates that the algorithm is robust. For 

global analyses, other statistical metrics such as standard deviations (or median absolute 

deviations, which is recommended for data with non-normal distribution) can also be used. 

To further assess the reliability and validity of the conclusion, significance statistical tests 

should be used to indicate the strength of the relation between performance measures (Alba, 

2005). 

 

Genotypic and phenotypic measures in cEAs 

Capcarrere et al. (1999) introduced a number of statistical measures to analyse the 

behaviour of cEAs at the genotypic (structure of individuals) and phenotypic (fitness of 

individuals) levels. At both levels, the most important measure is the diversity, which can be 

computed using a variety of methods. The most common method is to calculate the entropy 

of the population based on individual fitness (phenotypic diversity) or structure (genotypic 

diversity). Phenotypic diversity (Hp) refers to the average number of different fitness values, 

while genotypic diversity (Hg) refers to the average values of the entropy of each variable 

(gene) in the population. See Equations (2.5) and (2.6). 
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where N is the size of population P, and  gj is the fraction of individuals having a given 

distance from the origin.  
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where fj is the fraction of individuals having fitness j.  

 

Population diversity plays a significant role in EAs. One of the drawbacks of panmictic 

EAs is their weakness in maintaining the population diversity, which causes the search to be 

trapped in a local optima area, particularly when tackling hard real problems. An implicit 

way to tackle this shortcoming is through the spatial structure of the population or the 

decentralised EAs (Tomassini, 2005, p.37). Besides being a main measure to analyse the 

performance of the algorithm, the population diversity is used to guide EAs. The use of 

genetic diversity in guiding search process introduces a new class of EAs, which is the 

dynamic model. This topic will be covered in detail Chapter 5.      

 

2.2.3.1    Performance Measures and Statistical Tes ts used in this Research 

 

This research uses the average number of generations to find a solution with a predefined 

accuracy for successful runs out of 100 independent runs. This measure is referred to as 

efficiency, or convergence time (CT). The second measure used is the efficacy or the 

convergence rate (CR), which defines the search success rate (% hits) to a solution of a 

predefined accuracy out of 100 independent runs. The final measure is the speed (SP), which 

is measured as the average run or execution times in seconds (s) for successful runs. In this 

thesis, CT appears first in a table cell, followed by CR, and then SP. The median absolute 

deviation (mad) is added to CT and SP and appears in tables after the symbol ‘±’. All 

experiments were carried out using MATLAB and GNU C compiler (Dev C++) on an IntelR 

CoreTM 2 CPU at 2.4GHz with 3.12GB RAM, running Windows XP professional v. 2002.  

With regard to statistical metrics and significance tests, this research uses the mean of the 

efficiencies and mean run times including the standard deviations (the median absolute 

deviations replace the standard deviations when data are not following a normal 

distribution). The Kolmogorov-Smirnov test is applied to identify the normality of the data. 

After which, the ANOVA test was applied when the data showed a normal distribution, and 

the Kruskal-Wallis test when the data failed to follow a normal distribution. The latter two 

tests are used to obtain the statistical significance in the efficiency and speed of the algorithm 

with a 95% confidence level (p-value < 0.05). For the efficacy, the Chi-square (χ2) test for 

proportions was used to obtain the significance with a 95% confidence level. 
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2.2.4    cGAs from Hardware Perspectives 

 

A number of comprehensive studies on parallelism in EAs were carried out to analyse the 

various features of the parallel EAs such as selection pressure, efficacy, efficiency, speedup, 

synchronism, among others, while stressing the difference between EA models and their 

implementation (Cantu-Paz, 1995; Alba and Tomassini, 2002).       

Traditionally, dGAs are best-suited and usually implemented in distributed memory 

MIMD machines, while massively parallel computers (SIMD) are more suitable for the 

implementation of cGAs as these models can be directly mapped onto such architectures 

(Tomassini, 1999). Many massively parallel computers connect the processing elements 

(PEs) in a two-dimensional grid. However, other topologies can be implemented using a 

global router (Cantu-Paz, 1995). When implemented on a SIMD machine, a cGA places a 

single individual at each PE or cell. Each individual selects another individual from its local 

neighbourhood to mate with. The generated offspring may then replace the individual at the 

central cell according to the replacement policy. Hence, there is no need for any central 

control. Nevertheless, issues related to the neighbourhood topology and selection and 

replacement schemes should be considered when implementing a cellular model.  

A cEA model may have more cells than PEs. In this case a PE has to deal with each cell 

sequentially. Today, the use of the theory of MPI message passing makes it easy to 

implement cEAs, particularly the synchronous model. Each PE synchronously updates its 

individuals in sequence and does not require the other’s PEs memories except for 

communication involving edge values between neighbourhoods. In this case, those PEs need 

to send and receive the corresponding messages as different neighbouring regions are 

managed by different PEs (Tomassini, 2005, p.168).    
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Figure 2.7. High-level hardware architecture of a cell of the cGA in the SIMD model.   
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In conclusion, the cGA model is well suited for VLSI implementation since the cells are 

simple, regular, have small local memories, need local communication links over the defined 

topology, and operate synchronously (Eklund, 2004). Figure 2.7 illustrates the two major 

components of a cGA cell in the SIMD model. They are the processing and the memory 

units. All cells are identical and are connected to their neighbouring cells over the defined 

topology (NEWS or X-net). Each cell evaluates its unique individual, selects, and applies 

crossover and mutation operators (i.e., perform the same cGA) in parallel with other cells.  

A hardware architecture and implementation of a cGA for the application of the image 

registration was proposed by Turton et al. (1994).  In the study, a two-dimensional captured 

image was compared to a reference image and a transformation between both images was 

required. From an algorithmic perspective, a step was added to the cGA model such that hill 

climbing was used to modify (increase or decrease) the transformation parameters by one 

unit for promotion. In a subsequent study, Turton and Arslan (1995b) improved the previous 

architecture to include data compression. They also proposed a cGA architecture for a disc-

scheduling problem (Turton and Arslan, 1995a). The aim was to identify the best way to 

order tasks in order to minimise the access time. For more details about the previous studies 

please consult the cited references. 

Xu et al. (2002a) proposed a technique based on GAs to determine the attitude of a GPS. 

The proposed technique resolved problems in existing methods such as the Ambiguity 

Function Method (AFM), making it more efficient and immune to cycle slips. The attitude 

parameters are determined using more than two antennas (of which one is used as a 

reference) attached to a vehicle. More details on the problem of GPS attitude determination 

are provided in Section 4.2.2. A VLSI implementation of the GPS attitude determination 

based on cGAs was subsequently proposed in (Xu et al., 2002b). For implementation, issues 

related to functionality and practical performance restrictions, such as speed and scalability, 

were considered. The resulting architecture had low hardware complexity and the simulation 

results showed a linear speedup.    

Later, Stefatos and Arslan (2004a) introduced a high performance, adaptive hardware 

architecture to alleviate the problem of GPS attitude determination based on cGAs. The aim 

of the proposed system was mainly to optimise the speed performance. As a result, the cGA 

employed a Coordinate Rotation Digital Computer (CORDIC) algorithm to further improve 

the system throughput rate. Results showed the system’s potential to achieve the promised 

high throughput rates.   
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The previous studies showed different application areas of cGAs. These areas are 

extended to include the design of fault-tolerant systems in (Stefatos and Arslan, 2004b) and 

(Hounsell and Arslan, 2001). EAs and GAs in particular are also involved in the field of fault 

tolerance. GAs have been adopted to develop fault tolerant mechanisms by combining them 

with reconfigurable hardware devices. This combination leads to the concept of the 

evolvable hardware (EHW). For studies on EHW refer to (Thomson and Arslan, 2002; 2003; 

2005; Stefatos, Arslan, and Hamilton, 2008).    

Hounsell and Arslan (2001) presented a fault-tolerant system based on the EHW platform 

for the automated design and the adaptation of multiplierless digital filters. Filters were 

achieved using a dedicated programmable logic array (PLA). Three PLA initialization 

methods were investigated to identify the best fault recovery time. Results showed the ability 

of PLA to maintain the system’s functionality despite an increasing number of faults 

reaching to 25% of the PLA area.   

 Stefatos and Arslan (2004b) further enhanced the GPS architecture to include a fault 

tolerant technique. This novel architecture consisted of two layers. The first layer related to 

the application while the second monitored the performance of the first layer and 

reconfigured its computational elements when appropriate. The class of faults considered in 

the study was Single Event Upsets (SEUs), which primarily originate from radiation effects 

(more details about SEUs are provided in Section 2.3). Results showed the capability of the 

first layer to tackle faults up to 40% of the PEs, while the second layer tackled up to 30% of 

faults. 

 

2.2.5    3D-cGAs: Pseudo-code and Specification  

 

This section emphasises the implementation of a cGA on three-dimensional (3D) toroidal 

grid. Previous studies focused on implementing cGAs on one-dimensional (1D), or most 

commonly, two-dimensional (2D) toroidal grids. Consequently, there is a lack of studies 

related to higher cellular dimensions. The research in this thesis is based on three-

dimensional cGAs (3D-cGAs). Higher cellular dimensions show promising benefits at both 

hardware and software levels.   

The previous discussion emphasised the importance of grid topology in determining the 

performance of the algorithm. In this research, a 3D cubic topology is utilised. A cubic 

topology allows good solutions to spread quickly to all PEs due to its shorter diameter 

(Cantu-Paz, 1995), as well as diverse degrees of exploration and exploitation.  
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In past works (Breukelarr and Back, 2005; Morales-Reyes et al., 2009), a 3D architecture 

was utilised and investigated. The overall results showed improvements in the performance 

of the algorithm when compared with smaller grid dimensions. A further reason for using the 

3D topology is its amenability to be implemented with new advanced custom silicon chip 

technologies to achieve added significant benefits, such as fast operation, reduction in power 

consumption, new design possibilities, heterogeneous integration, circuit security, and wide 

bandwidth (Das et al., 2003). 

 

Algorithm 2.5 Pseudo-code for a canonical 3D-cGA 

1. procedure cGA 

2. Generate_initial_population (P(0)); 

3. Evaluation (P(0)); 

4. t � 0;  

5. while ! stop_condition do 

6.     for  i � 1 to ROWS do 

7.          for  j �1 to COLUMNS do 

8.               for  k �1 to LAYERS do 

9.                neighbours � Find_neighbours (position(i,j,k)); 

10.              parent1� position(i,j,k); 

11.              parent2 �Local_selection (neighbours); 

12.              offspring � Recombine (Pc, parent1, parent2); 

13.              offspring � Mutate (Pm); 

14.              Evaluation �Fitness(offspring); 

15.              Replacement (position(i,j,k), offspring, Paux(t)); 

16.        end for; 

17.     end for; 

18.    end for; 

19. P(t+1) � Paux(t); // updating 

20. t � t+1;  

21. end while; 

22. end procedure cGA; 

 

The pseudo-code for the 3D-cGA is shown in Algorithm 2.5, in which similar steps to 

other (lower or higher) cellular dimensions are followed. The steps are for finding the 
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neighbours (line 9), selection of parents (lines 10 and 11), recombination of selected parents 

(line 12), mutation of offspring (line 13), evaluation of offspring (line 14), and replacement 

(line 15). In comparing Algorithm 2.4 (2D-cGA) with Algorithm 2.5, the only difference is 

the addition of a third dimension (Line 8), which refers to the layers of the grid. An empirical 

study along with a detailed discussion of 3D-cGA is provided in Chapter 3. The next 

subsection empirically compares 3D-cGAs to panmictic GAs, while a comparison with 2D-

cGAs is provided in Chapter 3. 

 

2.2.5.1    3D Cellular versus Panmictic GAs 

 

An experimental study was carried out in order to demonstrate the behaviour and the 

performance of the 3D-cGA with respect to panmictic algorithms (ssGA and genGA). The 

test bench selected to evaluate the algorithms included the problems of Rastrigin, Schwefel, 

Griewangk, Ackley, Michalewicz, Langermann, FMS, and SLE. The dimension of these 

problems consists of 10 variables, except for FMS (details about the problems are provided 

in Appendix A). The parameters used in all the experiments are summarised in Table 2.1. 

The population consisted of 343 individuals. One hundred independent runs were performed, 

allowing a maximum of 500 generations for each experimental case. The algorithms 

terminated when the difference between the average fitness values (avgf) and the optimum 

fitness value (optf) satisfied a specified threshold, or when the maximum number of 

generations was reached. Different thresholds were assigned for each problem based on its 

complexity. For all algorithms a non-uniform mutation and blended crossover operators were 

applied to generate offspring. 

 

Table 2.1. Experimental parameters used for 3D-cGA, ssGA, and genGA 

Population size: 343 individuals 

Parent selection: 
Current individual +  BT (for 3D-cGA) 
BT + BT (for ssGA and genGA) 

Recombination: BLX-α (α = 0.5), Pc = 0.9 

Mutation: Non-uniform, Pm = 0.1 

Replacement: Replace-if-better 

Neighbourhood: NEWS 

Lattice: 
7×7×7 (for 3D-cGA) 
1×343 (for ssGA and genGA) 

Stop criterion: |avgf − optf| ≤ Threshold  
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For the 3D-cGA, the population was arranged over a 7×7×7 toroidal lattice with a NEWS 

neighbourhood containing the central individual plus those linearly positioned at one 

distance step. The first parent was always the central one, while the second parent was 

selected from the neighbourhood using BT selection. For panmictic GAs, the two parents 

were selected from the whole population using BT selection. For genGA, the size of the 

auxiliary population was equal to the size of the population (λ = µ).    

The algorithm performance measured as convergence time, rate, and speed are reported in 

Table 2.2, with the best values marked in bold (for more details about the performance 

metrics refer to Section 2.2.3.1). 

Overall, 3D-cGA outperformed the panmictic GAs in terms of convergence rate as it had 

the best search success rates for 6 out of 8 problems (see Table 2.2), while it achieved the 

second-best convergence times and speeds following the ssGA. For Rastrigin’s and Ackley’s 

problems, all algorithms achieved almost similar efficacies. However, for more complex 

problems such as Langermann and FMS, 3D-cGA achieved significantly higher hit rates than   

 

Table 2.2. Comparing 3D cellular to panmictic GAs’ performances: Convergence time (CT), 

rate (CR), and speed (SP)* for test and real-world problems  

Algorithms/ 
Problem 

ssGA genGA 3D-cGA 

Rasf  
128.11 ± 11.33 

100% 
14.23 ± 1.26 

430.24 ± 00.0 
99% 

34.11 ± 0.98 

323.77 ± 19.0 
100% 

49.81 ± 0.78 

Schf  
70.01 ± 7.18 

100% 
7.62 ± 0.65 

408.80 ± 1.0 
73% 

31.96 ± 0.43 

200.96 ± 16.0 
100% 

21.01 ± 1.61 

Grief  
72.45 ± 3.54 

45% 
7.29 ± 0.45 

410.6 ± 1.0 
100% 

33.83 ± 0.70 

290.51 ± 24.0 
45% 

30.91 ± 2.53 

Ackf  
77.66± 0.95 

100% 
7.20 ± 0.11 

472.90 ± 00.0 
100% 

42.02 ± 0.49 

221.62 ± 1.0 
100% 

25.39 ± 0.42 

Micf  
130.34 ± 13.9 

98% 
12.35 ± 1.47 

− 
0% 

330.91 ± 17.0 
37% 

35.40 ± 1.68 

Langf  
61.15 ± 7.19 

61% 
6.96 ± 0.85 

− 
0% 

201.06 ± 14.0 
99% 

25.61 ± 1.76 

FMSf  
50.28 ± 4.60 

67% 
6.68 ± 0.57 

399.20 ± 2.0 
5% 

49.81 ± 0.78 

207.83 ± 17.0 
91% 

33.08 ± 2.40 

SLEf  − 
0% 

413.00 ± 00.0 
5% 

34.37 ± 0.03 

445.00 ± 6.00 
5% 

47.36 ± 0.75 
* For more details about the performance measures, please refer to Section 2.2.3.1. 
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panmictic GAs. The difference in efficiencies and speeds may correspond to the variation in 

the achieved hit rates. For Schwefel and Griewangk, 3D-cGA and ssGA performed similarly 

in terms of hit rate, while the latter significantly outperformed the former by obtaining a 

lower number of generations reaching to 75%. The 3D-cGA showed its ability to solve all 

the problems, while genGA failed to solve Michalewicz and Lanagermann problems and 

ssGA failed to solve the SLE problem. However, the hit rate obtained for SLE was very low. 

Section 2.2.4 provided a broad overview on the application of cGAs, particularly in the 

field of the fault tolerance. The next subsection provides more detailed overview on the topic 

of fault tolerance. 

 

2.3    Fault Tolerance 

 

The increasing use of electronic systems in critical areas such as space and medicine 

increases the importance and needs for reliable systems to remain functioning with the 

existence of failures. Systems operated in aggressive environments including space, ground, 

and water or where human life depends on their accurate functioning have to be fault-

tolerant. Therefore, fault-tolerant systems can be defined as the ability of a system to operate 

correctly in spite of hardware and/or software failures (Avizienis, 1971).  

This thesis focuses on radiation-induced failures; such failures are known as Single Event 

Effects (SEE). SEE errors occur when a system interact with high-energy particles at space 

level or low-energy particles at ground level (Label, 1996; Gong et al., 2008). SEE are 

classified into hard errors and soft errors (Mastipuram and Wee, 2004). Hard errors are 

known as Single Event Latch-Ups (SELs), while soft errors are known as Single Events 

Upsets (SEUs); this research explores the effect of SEU errors.      

In the nineteen-seventies, SEUs (also known as transient errors) were discovered in space 

(Normand, 1996). Systems operated in space are subjected to various anomalies including 

plasma and radiation, among others. Such anomalies have effects on systems, which result in 

different types of failures. Avionics (i.e., electronics in aircraft) SEU was first predicted in 

the nineteen-eighties and later severely demonstrated to occur in flight in the nineteen-

nineties (Normand, 1996). Consequently, attention was paid to the radiation effects because 

the radiation was the main contributor to failure (45%), with SEUs having the highest impact 

of all possible radiation effects (80%) (Velazco et al., 2005). In addition, the considerable 

reduction in the feature sizes of electronic circuits and increase in functional complexity and 

sensitivity increases the possibility of transient errors occurring (Normand, 1996). 
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Subsequently, radiation-induced SEUs have also been observed at ground level (Gong et al., 

2008. For these reasons, the demand for implementing efficient, reliable high-performance 

systems that can quickly adapt to different failures is a crucial concern. This is usually 

accomplished by a residual design that is resistant to, and tolerant of failures. To achieve 

fault tolerance, two essential processes must be considered, they are: fault detection and fault 

recovery (Greenwood, 2005; 2008). This section presents the major causes of system failures 

considered in this research.  

SEUs occur as single-bit (SBUs) or multiple-bit (MBUs) flip in memory or data registers 

due to the passage of one or more energetic radiation particles (Mastipuram and Wee, 2004). 

SEUs do not cause permanent damage to system functionality, and can be handled by fault-

tolerant techniques. There are various algorithms and approaches to fault tolerance are 

introduced including hardware techniques, software techniques, or a combination of both (Su 

and Spillman, 1977).  

The most commonly used hardware technique to mitigate SEUs is Triple Modular 

Redundancy (TMR) (Layons and Vanderkulk, 1962; Lala, 1985). However, TMR is very 

area-extensive (general) and may not be able to cope with all the errors that occur. SEU 

hardware fault-tolerant techniques can rapidly detect and recover faults; however, they incur 

overhead, which increases the cost and complexity of the design. Further, in general, 

hardware techniques cannot handle all types of random and multiple-bit errors caused by 

potential transients (Pant and Joshi, 2007). These types of errors, specifically SEUs, cause 

functional impacts (software faults), rather than physical impacts. Consequently, many error-

coding techniques have been proposed to solve the above-mentioned problems; however, 

they are seldom implemented due to their complexity. 

Nowadays, fault-tolerant techniques to mitigate SEUs are being intensely researched, not 

only for aerospace applications, but also for terrestrial applications. Gong et al. (2008) 

proposed a hardware approach for tolerance to SEEs where two new structures were 

presented and compared with the traditional TMR. For a thorough discussion of SEEs, please 

refer to (Label, 1996). Conversely, Singh et al. (2006) presented a software approach to SEU 

tolerance that combined several techniques, such as checkpoint and TMR.  

Pickle (1996) and Asenek et al. (1997) proposed a model to predict the rate of SEEs; 

however, the latter emphasised the SEU errors at system level rather than at device level. 

Asenek et al. analysed a telecommand system on a spacecraft; and found that around 50% of 

the SEUs that occurred resulted in errors observed at the system level.  
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In addition, several studies to explore the ability of cGAs to tackle SEUs have been 

conducted. Research studies related to the ability of a normal cGA and a parallel cGA to deal 

with SEUs that occur at fitness score registers were presented in (Morales-Reyes et al., 

2008a; 2009), while the ability of an adaptive cGA to handle SEU-targeted chromosomes 

registers was explored in (Morales-Reyes et al., 2008b). In all the previous studies, EAs have 

proved their capability and power to tackle SEUs, as well as in improving the performance 

of the algorithm in terms of efficacy and efficiency. 

Chapter 4 of this research deals with failures caused by SEUs when targeting individuals’ 

phenotypes, particularly when fitness scores are stuck at ‘one’ or ‘zero’. Although other 

possible memory or data registers, such as chromosome and finite-state machine (FSM) 

could be also targeted, this research focuses on fitness value registers due to the importance 

of fitness information in guiding the search. 

 

2.4    Chapter Summary 

 

This chapter covered previous studies and research on GAs in general and cGAs in 

particular. As mentioned previously, the focus of this thesis is on cGAs. As a result, more 

attention is paid to studies relating to cGAs. A review of the literature has shown only 

limited research on cellular dimensionality, in particular above two dimensions, although 

previous studies have shown that a grid topology is a key that determines the performance of 

GAs. Typical cGAs are implemented on 2D grid topology, while this thesis focuses on 3D 

grid topology. Preliminary research on grid dimensionality that were carried out in joint 

collaboration with another group member, showed promising results for higher grid 

dimensions, particularly 3D, that can lead to better performance. Hence, the work in this 

thesis is based on 3D cGAs. 

Another area of interest is fault tolerance. Literature review showed major concerns by 

researchers about the effect of SEE errors on systems functionality. As a result, hardware- or 

software-based mitigating and fault tolerance techniques were intensely researched. Previous 

research in this area showed that SEEs, and in particular SEUs, affect systems functionality. 

However, studies on algorithm-based fault tolerant techniques are lacking. In addition, 

previous studies that were carried out by other group members investigating the ability of 

cGAs to tackle SEE errors show that cGA is capable of handling such errors. Therefore, this 

thesis aims to develop algorithm-based fault tolerance and mitigation techniques to tackle 

SEUs.    
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Moreover, previous researches were intensely targeted with the vital issue of 

exploration/exploitation trade-off, which also determines the effectiveness of GAs. These 

researches suggest that for GAs to continue performing effectively when tackling real-world 

problems, it should be adaptive. Previous researches proposed several techniques to 

dynamically control the exploration/exploitation trade-off in an adaptive manner and 

incurred lower computational costs. Consequently, this thesis also aims at developing 

effortless adaptive cGAs that dynamically control exploration/exploitation trade-off. 
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Chapter 3 
 

 

3D Architectures 
 

 

This chapter aims to investigate the behaviour and performance of cGAs when the cellular 

dimensionality is increased to 3D. Two-dimensional topologies are commonly employed in 

cGA investigations; however, this research employs 3D topology. In this chapter, a 

comparison between cGAs implemented on 2D with those implemented on 3D grids will be 

provided to show the advantages of increasing cellular dimensionality. The main reason for 

increasing cellular dimensionality is its amenability to being implemented efficiently with 

the new advanced custom silicon chip technology, in particular 3D integration technology 

(Das, Chandrakasan, and Reif, 2003; Topol et al., 2006; Borkar, 2011).   

Parallel EAs in general and cGAs in particular, offer a structure that establishes a 

powerful connection between both software and hardware levels, while offering high 

system’s performance. In a cGA, the population is distributed over an nD grid structure with 

wraparound edges following a toroidal shape, such that each individual is assigned to a 

grid’s position or a cell. This arrangement restricts the interactions between individuals 

within their defined local neighbourhoods. In this study, the population is arranged in a 3D 

toroidal grid. Therefore, the defined local neighbourhood consists of the central, the vertical 

north and south, the horizontal north and south, and the east and west individuals or NEWS 

(see Figure 3.1(b)). 

cGAs offer numerous benefits over other GA models, in particular panmictic GAs. These 

benefits can be summarised as follows. First, an ability to maintain a high diversity level for 

much longer time in comparison with centralised models (Cantu-Paz, 2000). Second, an 

ability to achieve not only better efficiency, but also higher efficacy in combination with the 

accuracy of results.  
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Reproduction between individuals occurs when one individual is selected from a small 

neighbourhood composed of individuals located at a short distance and then mated with the 

chromosome currently being evaluated. This procedure is repeated for each individual at 

each grid position and in general all individuals can be updated either synchronously or 

asynchronously. Thus, it is necessary to define the number of individuals belonging to the 

local neighbourhood and within which radius or distance step would be contained. This also 

establishes a relationship between the size of the population, the shape of the grid, and 

size/shape of the local neighbourhood and the consequent effect in the search process.  

In order to provide a thorough study of the behaviour of cGAs and model their 

performance, the dimension of the cellular is increased from 2D to 3D; which is the main 

objective of this study. Comparing 2D square and 3D cubic grid topologies while 

maintaining similar processing and interaction constraints among individuals will offer a 

wider overview of the effectiveness of cGAs as optimisation engines.  

Breukelaar and Back (2005) did a study on evolving behaviour in multi-dimensional 

cellular automata using a GA. In that study different parameters in terms of crossover rate, 

mutation rate, number of iterations, tournament size, neighbourhood size, and cellular 

dimension (1D, 2D, and 3D) were explored. Three different problemsthe majority, 

checkerboard, and evolving bitmaps problemswere solved in order to explore the potential 

of cellular automata. The overall results showed that with a multiple cellular dimension 

topology, in particular 3D, GA achieved a lower number of iterations and fitter objective 

values. However, there is a considerable difference between the number of individuals 

defined for 2D and 3D cellular automata. The conclusion drawn suggested that GA be used 

with multi-dimensional cellular automata as this combination shows great potential for 

effectively solving real-world problems.       

A preliminary study that investigated and compared 2D and 3D cGAs was carried out in 

collaboration with another group member in SLIg (Morales-Reyes et al., 2009). In that 

study, various population sizes and local neighbourhood radii were explored while 

maintaining similar population sizes for both grid dimensions. Four test functions with two 

each having similar characteristics were solved in order to investigate the effectiveness of 

increasing cellular dimensionality. The test functions used were Rastrigin, Schwefel, Ackley, 

and Griewangk (test function details are provided in Appendix A). Simulation results 

showed that 3D-cGA is more efficient than 2D-cGA in terms of convergence time, 

particularly when solving harder problems (i.e., Ackley and Griewangk). With regard to 

search success rate, both cellular structures achieved similar hit rates, however 3D-cGA had 
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a higher search success rate than 2D-cGA when a smaller local neighbourhood distance was 

applied. 

This chapter extends this previous study in order to further investigate the performance of 

cGAs and obtain a wider overview. Like the prior study, different population sizes and local 

neighbourhood distances were explored while maintaining similar population sizes for 2D 

and 3D structures. However, a benchmark of six test functions and two real world problems 

were selected to offer diverse characteristics. In addition, a higher problem dimension was 

selected. The problems chosen were Rastrigin (fRas), Schwefel (fSch), Griewangk (fGrie), 

Ackley (fAck), Michalewicz (fMic), Langermann (fLang), FMS (fFMS), and SLE (fSLE) (details are 

provided in Appendix A). 

This research aimed to explore the benefits of 3D structures on cGAs at software 

(algorithmic) level and combine them with the benefits of the recently developed 3D 

integration technology. Recent advances in this area have presented optimistic results at the 

hardware level; therefore, combining the algorithmic approach of implementing 3D-cGAs as 

optimisation engines, in order to solve hard real time problems, would bring together the 

advantages that 3D integration technology has provided. Although 3D integration technology 

is not yet widely commercial, it is considered to be the future of coarse- and fine-grained 

reconfigurable architectures (Yarema, 2006; Xie and Ma, 2008). Moreover, 3D integration 

technology offers the following benefits: reduction of the routing length, decrease in 

interconnection delays, which affects not only the size of a fabric but also the performance of 

a device. In addition, a significant improvement in terms of logic and memory density has 

been reported. With respect to logic density, for fine-grained devices, it has been determined 

that %90%80 −  of their area is used for reconfigurable interconnections. Using 3D 

integration technology this ratio is reduced to %60%25 −  (Rahman and Das, 2003).  

 

 
 

(a) (b) 

Figure 3.1. (a) 2D square and (b) 3D cubic toroidal topologies when implemented in a cGA. A 

possible Von Neumann neighbourhood is marked in dark blue.  
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Future adaptive systems should offer characteristics such as fast adaptation, autonomous 

behaviour and fault tolerance. cGAs have been shown to be adaptive as well as fault tolerant 

for specific applications (Stefatos and Arslan, 2004; Morales-Reyes et al., 2008). 3D cellular 

architectures will offer the added advantage of speed and package density. This study 

explores several 3D-cGA architectures and compares these to their 2D counterparts. 

Afterwards, a brief analysis of communication and computational complexities for both 

topologies is provided. In the next section the various cGA configurations for 2D and 3D 

topologies are provided. 

 

3.1    Algorithm Configuration 

 

cGAs are frequently implemented on 1D or 2D grid topologies. This study targets 3D grid 

topology as, with  the  recent  advance  in  custom  silicon  chip  technology, it  can  now  be 

implemented efficiently. Moreover, this study compares the performance of cGAs when 

implemented on 2D and 3D grid topologies. A number of cGA configurations are defined in 

order to thoroughly investigate the effectiveness and compare fairly the performance of both 

topologies. Figure 3.1(a) and (b) illustrate a square grid shape in 2D and a cubic grid shape 

in 3D, respectively. 

Several population sizes are defined for both grid dimensions. For 2D grids, the 

population is arranged as 5×5, 8×8, 11×11, 15×15, and 19×19, leading to a total of 25, 64, 

121, 225, and 361 individuals, respectively. Conversely, for 3D grids the population is 

arranged as 3×3×3, 4×4×4, 5×5×5, 6×6×6, and 7×7×7, leading to a total of 27, 64, 125, 216, 

and 343 individuals, respectively. These sizes were selected to produce almost equal 

population sizes for both grid dimensions. 

Although the neighbourhood topology considered is linear for both grids, the size of the 

neighbourhood differs based on the dimensions of the grid. Two different neighbourhood 

radii for both grid dimensions are defined. Considering one step distance from the central 

cell results in 4 neighbours, positioned to the north, east, west, and south, with a radius of 

0.89 for the 2D grid; while it results in six neighbours, positioned to horizontal north and 

south, vertical north and south, east, and west, with a radius of 0.925 for the 3D grid. 

Experiments were carried out to show the effect of grid dimensions and neighbourhood 

size on NGR and growth rate of the best individual. Figure 3.2 shows NGR considering two 

different radii and grid dimensions. Smaller neighbourhood size leads to smaller NGR than 

larger ones, which in turn decreases as the population size increases. Low NGR implies 
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weak global selection intensity and therefore promotes more exploration (Sarma and De 

Jong, 1996; Alba and  Troya, 2000,  Alba and  Dorronsoro, 2008). As  shown  in  Figure 3.2,  
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Figure 3.2. 2D/3D neighbourhood to grid ratio (NGR) versus population size. 
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Figure 3.3. 2D/3D growth curves of the best individual. 
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NGR is not evaluated for a population size of 5× 5 (2D) individuals with three distance steps 

due to the low grid dimensions. Advancing three distance steps from an individual would 

result in an increase in its selection probability. Similarly, NGR is not computed for 

population sizes less than 5× 5× 5 (3D) individuals. 

Figure 3.3 shows the growth curves of the best individual for population sizes 19×19 (2D) 

and 7× 7× 7 (3D) considering one and three distance steps. As the curves imply, 2D-cGA 

with one distance step has the slowest growth rate, while 3D-cGA with three distance steps   

has   the   fastest   growth   rate.  2D-cGA with three distance steps (NGR = 0.2679) produces 

an almost similar growth curve to the 3D-cGA with one distance step (NGR = 0.2673) due to 

similar NGR (Sarma and De Jong, 1996). 

The pseudocodes of the canonical 2D-cGA and 3D-cGA were presented in Chapter 2, 

Section 2.3.4. The parameters used in the experiments and the experimental results are 

presented in the following section.   

 

3.2    Experimental Results and Analysis 

 

In order to achieve fair comparison, similar parameters were used during the experiments. 

Table 3.1 summarises these parameters. 

 

Table 3.1. Parameterization used in the experiments 

Population size 
25, 64, 121, and 361 individuals (for 2D) 
27, 64, 125, 216 and 343 individuals (for 3D) 

Parent selection Current individual +  Binary Tournament 

Recombination BLX−α (α = 0.5), Pc = 0.9 
Mutation Non-uniform, Pm = 0.1 

Replacement Replace-if-better 

Neighbourhood 
L5 and L9 (for 2D-cGA) 
L7 and L13 (for 3D-cGA) 

Lattice 
5×5, 8×8, 11×11, 15×15, and 19× 19 (for 2D-cGA) 
3×3×3, 4×4×4, 5×5×5, 6×6×6, and 7×7×7 (for 3D-cGA) 

Stop criterion Thresholdoptfavgf ≤− ||  

 

 

The first parent was the current individual while the second parent was selected by using 

binary tournament selection. A blend crossover operator (BLX-α) with probability Pc = 0.9 

was applied to generate an offspring (Herrera and Lozano, 2000; Dorronsoro and Alba, 

2006). The  offspring  was  then mutated by applying a non- uniform mutation operator, with  
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Figure 3.4. Average number of generations for Rasf . 

 

probability Pm = 0.1. The replacement policy defined here is replace-if-better, during which 

the current individual is replaced if its competitor (offspring) is fitter. Finally, the algorithm 

terminates if the difference between the average fitness values (avgf) and the optimum 

fitness value (optf) satisfies the defined threshold. Because of the different characteristics, 

different thresholds were defined for each problem. Similarly, the maximum number of 

generations assigned was 1000 generations for fRas, fMic, fLang, and fSLE, while a number of 

1500 generations was assigned for fSch, fGrie, fAck, and fFMS. The dimension of the considered 

problems was n = 10, except for fFMS as the dimension was n = 6. 

The shape of the local neighbourhood follows a linear topology with distance steps r = 1 

and r =3 leading to a total of 5 (2D) / 7 (3D) and 9 (2D) / 13 (3D) individuals, respectively. 

The radii of the neighbourhood were 0.8944/ 2.0755 and 0.9258/ 2.1026 for 2D and 3D, 

respectively. These radii were selected to be almost similar for both topologies considering 

the same distance steps. The slight differences between the radii is due to a grid connection 

which assigned six neighbours in the 3D grid instead of four neighbours in the 2D grid 

considering one distance step (Breukelaar and Back, 2005).  

The performance of the algorithms was measured using two metrics−the average number  
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Figure 3.5. Average number of generations for Schf . 

 

of generations or efficiency and the search success rate in combination with results accuracy 

or efficacy of 100 independent runs.  Figures 3.4 to 3.10 illustrate the results obtained.  

Figure 3.4 shows the average number of generations obtained while solving fRas. The 

results obtained show that 3D-cGA achieved a lower number of generations for population 

sizes greater than 64 individuals for r = 1. On the other hand, both algorithms (2D and 3D 

cGAs) obtained almost similar number of generations for r = 3. With regard to search 

success rate, all configurations achieved the best hit rate (100%), except for 2D-cGA with 

5×5 individuals, which had a hit rate of 96%. 

In Figure 3.5 the average number of generations obtained when solving fSch is illustrated. 

Significantly lower number of generations was achieved by 3D-cGA for the different 

configurations, in particular for r = 1. With regard to the search success rate, all the 

configurations compared achieved similar hit rates (99%−100%), except for those with small 

population sizes (5×5and 3×3×3 individuals) as there is a slight difference between the 

obtained hit rates (79% and 84%, respectively). Slight differences between the results 

obtained correspond to the slight differences between the population sizes of 2D and 3D 

lattices. Another reason is the difference in the local selection intensity, which was affected 

by the size of the neighbourhood, leading to a different exploration/exploitation trade-off. 



 53 

 

 

0 50 100 150 200 250 300 350 400
200

250

300

350

Population size

M
ea

n 
nu

m
be

r 
of

 g
en

er
at

io
ns

 

 

2D- radius 1
3D- radius 1
2D- radius 3

3D- radius 3

 

Figure 3.6. Average number of generations for Ackf . 

 

Figure 3.6 shows the average number of generations obtained while solving fAck. With 

respect to mean number of generations, a similar profile as that for the previous problem 

(fSch) was obtained. On the other hand, the best hit rate (100%) was obtained by all cGA 

configurations. 

The average number of generations and search success rate obtained while solving fMic is 

shown in Figure 3.7(a) and (b), respectively. As can be seen in Figure 3.7(a), in contrast to 

the previous problems, the mean number of generations obtained increased as the population 

size increased due to the problem characteristics. fMic differed from the previous problems as 

it is not symmetric, which further complicates the search. In general, 3D-cGA significantly 

outperformed 2D-cGA. A significant difference between the mean numbers of generations 

was obtained for r = 1, especially for large population sizes; this improvement decreases for 

r = 3. In general, considering the search success rate (see Figure 3.7(b)), 2D-cGA achieved 

higher hit rates than 3D-cGA; however, the differences between the hit rates obtained by 

both algorithms were not significant.      
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Figure 3.7. (a) Average number of generations and (b) search success rate for Micf . 
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Figure 3.8. (a) Average number of generations and (b) search success rate for Langf . 

 

For fLang, 3D-cGA achieved a significantly lower average number of generations than 2D-

cGA, especially for r = 1 (see Figure 3.8(a)). However, both algorithms achieved almost 

similar search success rates (see Figure 3.8(b)). 
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Figure 3.9. (a) Average number of generations and (b) search success rate for Grief . 

 

With respect to the average number of generations, a similar profile as that for the 

previous problem was obtained while solving fGrie (see Figure 3.9(a)). As can be seen in 

Figure 3.9(b), 3D-cGA achieved higher search success rates than 2D-cGA with similar 

distance steps for all the considered population sizes. In addition, it  can be  seen  that  the hit  
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Figure 3.10. (a) Average number of generations and (b) search success rate for FMSf . 

 

rates obtained by 3D-cGA for r = 1 were almost similar to those obtained by 2D-cGA for      

r = 3 as both algorithm configurations had similar selection pressure (refer to Figure 3.3). 

Figure 3.10(a) and (b) show the average number of generations and search success rate 

obtained when solving fFMS, respectively. In general, for the average number of generations, 
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3D-cGA outperformed 2D-cGA; while for the hit rate, 2D-cGA outperformed 3D-cGA. 

However, the differences were not significant.  

The results obtained while solving fSLE are omitted as both algorithms either failed or 

showed undesirable performance (very low search success rate). For the complete results 

including those omitted, take a look at Appendix B, Table B.1. 

Overall, 3D-cGA significantly surpassed 2D-cGA in terms of algorithm efficiency as a 

lower average number of generations was achieved for all the problems considered. 

Regarding the efficacy of the algorithm, both algorithms achieved either equal (when solving 

less complex problems such as fRas, fSch, and fAck) or slightly different search success rates 

(when solving more complex problems such as fMic, fLang, fGrie, and fFMS). As mentioned 

previously, for similar distance steps, the 3D topology offers a bigger (denser) 

neighbourhood than the 2D topology due to the vertical expansion of the cells. For example, 

employing a liner neighbourhood topology with one distance step, the 2D grid results in 4 

neighbours, while 6 neighbours are resulted for the 3D grid. In addition, the vertical 

expansion of the cells in a 3D grid allows shorter diameter compared to that of a 2D grid, 

which allows faster spreading of solutions. Therefore, the selection intensity of 3D-cGA is 

stronger than that of 2D-cGA, leading to a lower convergence time (i.e., the number of 

generations).     

 

3.3   Analysis of Complexity for 2D and 3D Topologi es 

 

In a cGA, the topology of the grid defines the communication network that the individuals 

spread throughout the population over it. Different topologies induce different computational 

and communication complexities. The following paragraphs provide a brief analysis that 

aims to highlight the difference in the computational and communication complexities 

between the topologies under investigation (i.e., 2D and 3D grids with wraparound edges). 

The analysis is carried out at the level of GA basic steps, they are: evaluation, selection, and 

genetic operation (recombination and mutation). Before proceeding, it is important to make 

the following assumptions. First, for both grid topologies, the neighbourhood topology is 

assumed to be Linear with one distance step. Second, the local selection method is assumed 

to be tournament selection (the most appropriate mechanism for parallel implementation (De 

Jong and Sarma, 1995; Eklund, 2003)). 
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Evaluation 

As the fitness evaluation of an individual is independent from other individuals, there is 

no communication required regardless of the grid topology used. Hence, there is no 

difference in communication complexities between 2D and 3D grids. On the other hand, the 

computational effort needed to evaluate an individual depends on the complexity of an 

individual (e.g., simpler and smaller individual requires fewer calculations than complex and 

lengthy ones) (Eklund, 2003). At the individual level, there is no difference between the 

computational efforts for 2D and 3D grids of similar population sizes. At the neighbourhood 

level, the amount of computation needed is more for 3D as the neighbourhood in a 3D grid 

consists of more individuals (in this case, 6 neighbours for 3D vs. 4 neighbours for 2D). 

However, the latter difference is not considered as the fitness computation of an individual is 

isolated from the others.          

 

Selection 

There are various selection mechanisms introduced, each requires different 

communication and computational complexities. This analysis focuses on one of the most 

common methods, which is tournament selection. Unlike other mechanisms, tournament 

selection does not depend on fitness proportionate or rank (i.e., no need for the gather-

broadcast operations) as it randomly selects two or more individuals. However, this method 

needs access to the all individuals in a neighbourhood. As a consequence, 3D topology 

requires more (∼0.66×) communications than 2D topology. Conversely, the computational 

effort needed by 3D grid are similar to those of the 2D grid as the complexity of a single 

tournament depend on the tournament size k (Commonly, k = 2). In other words, the time or 

computational complexity of tournament selection is O(k), where k is the tournament size 

(Goldberg and Deb, 1991).  

 

Genetic operations 

With mutation, there is no communication needed as the mutation works over a single 

individual in isolation of the others. The computational complexity of mutation depends on 

the individual representation and the mutation technique used. In all cases, the mutation 

requires marginal computational effort and no communications (Eklund, 2004). Therefore, 

both grids (i.e., 2D and 3D) offer similar complexities of mutation. On contrary, crossover 

requires communication with limited amount as it recombines two individuals. For 3D 

topology more communications (∼0.66×) is required than with 2D grid due to the need of 
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access to all individuals in a neighbourhood, which is bigger for the 3D case. On the other 

hand, similar amount of computations is needed for both topologies as the computational 

complexity of crossover depends on the individual representation and the crossover 

technique used.       

 

Overall, in cGAs, the computational and communication complexities vary according to 

several parameters such as: grid topology, neighbourhood topology and size, genetic 

operations techniques, population size, among others. Comparing the complexities of 2D and 

3D grids while other parameters remain similar has showed more communications needed 

for the 3D grid than 2D grid that reached to ∼0.66×. Mainly, the difference in 

communications is due to the difference in the neighbourhood density; 3D grid offers a 

denser neighbourhood leading to more communications needed. With regard to the 

computational effort, both grids may require similar computational complexities. However a 

difference in computational complexities between both grids may encounter based on the 

selection and genetic operations employed, particularly those that need access to all the 

individuals in a neighbourhood (e.g., fitness proportionate selection). 

 

3.4    Conclusion 

 

This study aimed to compare and analyse the performance of cGAs when two different grid 

dimensions are employed, in particular 2D and 3D topologies. In order to thoroughly 

investigate the algorithm performance, a benchmark of problems with diverse characteristics 

and complexities was selected. Simulation results show that 3D-cGA is more efficient in 

terms of convergence time than 2D-cGA for all the considered problems. With respect to the 

search success rate, both algorithms achieved similar efficacy. In the 3D structure, the 

interconnection between the cells leads to vertical expansion rather than the horizontal 

expansion of the 2D structure. As a result, the 3D structure provides a larger neighbourhood 

size than the 2D structure for similar distance steps (Breukelaar and Back, 2005). Although a 

bigger neighbourhood size leads to more exploitative behaviour for the algorithm, the 

balance between exploitation and exploration was maintained by selecting an appropriate 

neighbourhood radius with respect to the grid topology (Alba and Troya, 2000). Thus, the 

control of the selection intensity through the size of the neighbourhood would lead to the 

attainment of a higher search success rate and lower convergence time.  
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If the benefits of the performance results obtained are combined with the benefits that 3D 

technology offers, the resulting architecture would offer significant advantages in terms of 

reduction in routing length and interconnection delay, as well as an increase in logic and 

memory density. Accordingly, it is possible to improve the performance of the current 

optimisation engines at software and hardware levels to fit the requirements of the future.  

 

3.5    Summary and Contribution to Knowledge 
 

In this chapter the first and most basic step towards increasing the cellular dimensionality of 

GAs was established. The aim was to investigate the performance of cGAs when 

implemented on 3D topology. A comparative study of 2D-cGA and 3D-cGA was conducted 

for similar parameters. However, with 3D topology, a higher selection intensity was 

achieved due to the vertical expansion of cells that leads to a larger neighbourhood size. 3D-

cGA achieved significantly better performance results than 2D-cGA, especially in terms of 

convergence time. Further benefits and investigations of the performance of cGAs when 

implemented on 3D topology will be provided in subsequent chapters. The following points 

summarise what this study has contributed to knowledge.   

 

• Increasing the dimension of cellular structure improves the performance of cGAs, 

mainly the convergence time, while maintaining high accuracy and search 

success rates. As a consequence, multi-dimensional evolutionary algorithm 

models such as 3D-cGAs can empirically offer robust and effective optimisation 

engines to tackle hard, real-time problems.    

 

• cGAs with higher cellular dimensions, specifically 3D, achieves significantly less 

convergence time than their corresponding 2D algorithms when solving 

multimodal problems with diverse characteristics and complexities such as the 

considered problems. However, these improvements vary as each problem 

presents different difficulty for the search. 

 

• cGAs with different cellular dimensions, particularly 2D and 3D, achieve similar 

efficacy as both algorithms achieved similar search success rates. However, 2D-

cGA and 3D-cGA present different exploration/exploitation trade-off due to the 

way the cells are connected. 
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• 3D topology consists of multiple 2D layers stacked on top of each other, which 

results in vertical rather than horizontal expansion. Therefore, 3D topology has a 

shorter diameter and a denser local neighbourhood than the corresponding 2D 

topology; which leads to fast spread of good individuals. As a result, cGAs with 

3D topology achieves less convergence time than 2D-cGAs.  

 

• Although 3D-cGA shows more exploitative behaviour due to the stronger global 

selection pressure, it displays a more appropriate balance between exploring the 

search space and exploiting good solutions than 2D-cGA with similar distance 

steps r. 

 

• 3D-cGA with r = 1 showed a similar NGR and growth rate for the best individual 

as 2D-cGA with r = 3. Consequently, a similar selection pressure could be 

obtained through the control of the size of the local neighbourhood.   
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Chapter 4 
 

 

Fault Tolerant 3D-cGA  
 

 

This chapter presents new cGA algorithmic approaches that introduce the essential feature of 

fault tolerance to real time systems based on cGA platforms. Electronic circuits in aggressive 

environments, such as space, are subjected to various anomalies, including plasma and 

radiation, among others (Velazco et al., 2005). Such anomalies have effects on systems, 

which result in various types of failures. In this study, radiation effects are taken into 

consideration as radiation is the main contributor to failure. In particular, Single Event 

Upsets are considered because they have the highest impact of all possible radiation effects 

(Velazco et al., 2005; Gong et al., 2008). Radiation-induced SEUs have also been observed 

at ground level due to the fact that the decrease in the feature sizes of electronic circuits leads 

to increased functional complexity and sensitivity (Normand, 1996). Designing systems that 

are highly reliable and efficient has become increasingly important not only for aerospace 

applications but also for terrestrial ones. Therefore, designing new algorithmic models of 

cGAs that maintain system reliability, even with a growing number of faulty Processing 

Elements (PEs) is the main objective of this chapter. Another objective is to improve the 

performance of the algorithm by mitigating the impact of the faults.  

Ensuring the reliability and validity of systems requires two main operations. The first is 

fault prevention which aims to avoid the occurrence of faults; and the second is fault 

tolerance which aims to ensure the proper functionality of the system. In this work, only the 

process of fault tolerance is considered, which in turn consists of the three complementary 

stages fault detection, fault isolation, and fault recovery.   

Previous studies on fault tolerance were carried out by previous members in the SLIg. An 

evolutionary design based on evolvable hardware platform for the automated design and 

adaptation of digital filters that adapted to faults was introduced by Hounsell and Arslan 
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(2001). Subsequently, Stefatos and Arslan (2004) proposed a fault-tolerant VLSI architecture 

based on PGA, which tackled SEU errors when targeting an individual’s phenotypes. The 

fault model “Stuck at 0” was considered in that study. In a later study, Stefatos and Arslan 

proposed a high performance adaptive VLSI architecture that achieved higher throughput 

rates. This architecture was an improved version of their previous effort. Subsequently, 

further investigations were carried out by Morales-Reyes et al. (2008a; 2008b; 2009) to 

explore the ability of cGAs to tackle SEU errors by assuming that the faulty PEs were 

isolated. Research studies about the ability of an ordinary cGA and a parallel cGA to deal 

with SEUs that occurred at fitness score registers were presented in (Morales-Reyes et al., 

2008a; 2009), while the ability of an adaptive cGA to handle SEUs-targeted chromosomes 

registers was explored in (Morales-Reyes et al., 2008b). In all previous studies, EAs proved 

their capability and power to tackle SEUs, as well as in improving the performance of the 

algorithm in terms of efficacy and efficiency. In this research, a new cGA algorithmic model 

that automatically detects, isolates, and recovers SEU errors occurring at individual’s 

phenotypes, as well as new migration schemes to mitigate the impact of faults are proposed.        

This chapter consists of three main sections. In the first section, a three-stage 3D-cGA 

approach that tolerates SEU faults is presented. In addition, an explicit adaptive migration 

technique based on the first fault-free neighbourhood, which is integrated into the design, is 

proposed in order to mitigate the impact of faults and to improve the performance of the 

algorithm. The second section introduces two more migration schemes in order to further 

improve the reliability and the performance of the algorithm. In the third and final section, an 

improved dynamic 3D-cGA, which is tolerant to SEUs is introduced. This approach is 

designed to dynamically adapt to fault ratios encountered and mainly aims to improve the 

efficacy of the algorithm. As mentioned previously, the faults considered in this study are 

target individuals’ phenotypes, particularly when fitness scores are stuck at either ‘1’ or ‘0’. 

This study emphasises the phenotypic space due to the importance of the fitness information 

in guiding the search process. The proposed algorithms are tested against a benchmark of 

well-known real world and test problems to thoroughly investigate their effectiveness and 

reliability. 

 

4.1    Automatic Isolation of Faulty Cells 

 

This section presents a fault-tolerant approach proposed for 3D-cGAs to overcome SEU 

errors. The proposed approach detects, isolates, and recovers from errors encountered. The 
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design exploits the inherent features of a cGA and uses genetic diversity as the key factor in 

identifying and isolating faulty solutions. Further, an explicit migration operation is proposed 

and integrated into the fault-tolerant approach as a mitigation technique. Several 

configurations concerning the use of the migration operation and inducing different selection 

intensities were considered. The effectiveness of the algorithm was investigated using a 

benchmark of four test functions and two real-world problems, which presented different 

levels of search difficulty. They are: Rastrigin (fRas), Ackley (fAck), Michalewicz (fMic), 

Langermann (fLang), FMS (fFMS), and SLE (fSLE) problems (details of benchmark problems are 

provided in Appendix A). The initial investigation was proposed and carried out in (Al-Naqi 

et al., 2010a). In that study, only stuck at ‘0’ faults were considered. This section extends the 

previous study to include other fault scenarios.  Section 4.1.1 specifies fault scenarios and 

design, while the pseudocode and the description of the algorithm are presented in Section 

4.1.2. Section 4.1.3 illustrates and analyses the results obtained. Finally, Section 4.1.4 draws 

conclusions.   

 

4.1.1    Faults Design 

 

The proposed algorithm deals with SEU errors, specifically when targeting fitness score 

registers. SEUs occur as one or more bits in the fitness score registers flip, in a way that keep 

their fitness values stuck at either a very high value ‘1’ or a very low value ‘0’. From an 

algorithmic perspective, with stuck at ‘0’ faults, the local selection method selects faulty 

individuals as they are considered to be the fittest (i.e., individuals with very low fitness 

values are the fittest for the considered problem and have to be minimised; otherwise the 

fittest individuals are those having a very high fitness value), and spreads the poor solutions 

they provide over all the population, which results in system failure. Therefore, stuck at ‘0’ 

faults is considered to be the worst fault scenario. Another critical fault scenario is when 

some individuals’ fitness scores are stuck at ‘1’. In this case, locally, the selection method 

disregards those individuals and does not spread the solutions they provide, which results in 

a major increase in convergence time, as well as a reduction in the accuracy of the solutions.   

In this study, the fitness values are normalised between 0 and 1 for all the problems in 

order to offer equal weights. Hence, the minimum and maximum fitness values are 0 and 1, 

respectively. The faults are induced by a random selection of individuals asserting their 

fitness values to  ‘1’  or  ‘0’ according to the fault scenario to be evaluated.  For each fault 

scenario and rate, the same fault pattern is maintained over all 100 independent runs to 
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obtain an average, and for all the problems to achieve fair comparison. The rates of fault 

considered represent 10%, 20%, 30%, and 40% of the total population size. 

   

     Algorithm 4.1 Pseudo-code for Fault-Tolerant 3D-cGA 
1: procedure FT 3D-cGA 

2: Generate_initial_population(Pt=0); 

3: Evaluation(Pt=0); 

4: for  g � 1 to gen1  do                                                                    //First stage 

5:   for  i � 1 to ROWS do        

6:     for  j �1 to COLUMNS do 

7:       for  k �1 to LAYERS do 

8:         neighbours � Find_neighbours(position(i,j,k)); 

9:         parent1� position(i,j,k); 

10:       parent2 �Local_selection (neigbours); 

11:       offspring � Crossover (Pc, parent1, parent2); 

12:       offspring � Mutate(Pm); 

13:       Evaluation �Fitness(offspring); 

14:       Replace-if-Better (position(i,j,k), offspring ,Paux); 

15:       if   g>1 && g ≤ gen1 then              

16:         Diversity� Genotypic_diversity(Paux, Ptemp);    end if; 

17:     end for; 

18:   end for; 

19:  end for; 

20:  Ptemp � Paux; 

21: end for; 

22: Cond1 � Compute_differences(Diversity);                           //Isolation stage 

23: Cond2 � Count_changes(Diversity); 

24: Isolation_list � Diversity(Cond1, Cond2); 

25: while !stop_condition do                                                        //Third stage 

26:   for  i � 1 to ROWS do        

27:     for  j �1 to COLUMNS do 

28:       for  k �1 to LAYERS do 

29:         neighbours � Find_neighbours(position(i,j,k)); 

30:         parent1� position(i,j,k); 

31:         parent2 �Local_selection (neighbours); 

32:         Migration(Isolated_list, neighbours); 

33:         offspring � Crossover(Pc, parent1, parent2); 

34:         offspring � Mutate(Pm); 

35:         Evaluation �Fitness(offspring); 

36:         Replace-if-Better(position(i,j,k), offspring, Paux); 

37:       end for; 

38:     end for; 

39:   end for; 

40:   Pt � Paux;                                                               // updating 

41: end while; 

42: end procedure FT 3D-cGA; 



 67 

Start

3D-cGA

Stop 
condition?

Computing 
genetic diversity

Faulty?

Update isolation 
list

Last 
cell?

3D-cGA

Stop 
condition?

End

No

Yes

No

Yes

No

Yes

Stage 1

Stage 3

Isolation 

Start

3D-cGA

Stop 
condition?

Computing 
genetic diversity

Faulty?

Update isolation 
list

Last 
cell?

3D-cGA

Stop 
condition?

End

No

Yes

No

Yes

No

Yes

Stage 1

Stage 

Isolation 
stage

Start

3D-cGA

Stop 
condition?

Computing 
genetic diversity

Faulty?

Update isolation 
list

Last 
cell?

3D-cGA

Stop 
condition?

End

No

Yes

No

Yes

No

Yes

Stage 1

Stage 3

Isolation 

Start

3D-cGA

Stop 
condition?

Computing 
genetic diversity

Faulty?

Update isolation 
list

Last 
cell?

3D-cGA

Stop 
condition?

End

No

Yes

No

Yes

No

Yes

Stage 1

Stage 

Isolation 
stage

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1. A high-level description of the Fault-Tolerant 3D-cGA showing the three stages. 

 

4.1.2    Algorithm Description and Configuration 

 

Algorithm 4.1 illustrates the pseudo-code for the fault tolerant 3D-cGA, which mainly 

consists of three stages. The first stage aims at monitoring the change in the genotypic 

diversities of each individual among successive generations by running a cGA for a very 

short period (i.e., a low number of generations). Next, the isolation stage identifies and 

isolates faulty individuals using feedback information from the first stage. Finally, in the 

third stage, another cGA is run to solve the given problem while excluding the faulty (i.e., 
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isolated) individuals from the search process. In other words, the faulty individuals are not 

allowed to be updated or communicate with other fault-free individuals when it is a part of 

their neighbourhood.  

As in canonical cGA (described in Section 2.3), the algorithm starts with a random 

generation of population followed by fitness evaluation (lines 1−3). Then the first stage 

begins (lines 4−21) and computes the genotypic diversities at an individual level rather than 

at the population level. The number of replacements for each individual is counted as well. 

This stage lasts for a few generations, gen1. Normally, the genetic diversity is expected to be 

high in the first few generations. During this stage, a normal updating process is carried out. 

It starts with an individual at a cell, identifying the neighbourhood of the current individual 

(line 8), choosing a second parent from the neighbours of the current individual, as the first 

one is the individual itself (lines 9 and 10). The genetic operators are applied to the selected 

individuals (i.e., parents) in order to generate an offspring, and either the current individual 

or the offspring is added to the auxiliary population following the defined replacement policy 

(lines 11−14). The genotypic diversities between successive generations are then computed 

for each individual (line 17). This process is repeated to update all cells. Before starting the 

next generation, a copy of the current updated population is maintained (line 20) in order to 

calculate the genotypic diversity. 

The isolation stage starts by computing the differences in the individuals genotypic 

diversities obtained in the first stage (line 22). In addition, during this stage, the number of 

replacements for an individual throughout the first stage is assessed against the defined 

condition (line 23). Finally, in accordance with the isolation criteria, which are discussed 

later, faulty individuals are identified and a list of the isolated individuals is created (line 24). 

Figure 4.1 shows a high level diagram of the fault tolerant 3D-cGA pseudo-code presented in 

Algorithm 4.1. 

The third stage starts following a similar updating process (lines 26−40) as in the first 

stage, and lasts until the termination condition is satisfied (line 25). In addition, an explicit 

migration operator could be applied (line 32) following the migration scheme presented 

below. 

The local selection method used in this work is stochastic tournament (ST) selection. As 

mentioned in Section 2.3.1.2, two individuals are randomly selected and the best individual 

is then selected with a probability of (1− r), while the worst one is assigned a probability of 

r; where r ∈ [0 , 1]. If r is 0, ST functions as a binary tournament selection, in which the best 

solution is always selected. This kind of selection offers a mean for controlling the selection 
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pressure and thus the diversity, which deeply affects the algorithm performance. As r 

increases, worse solutions are more likely to be maintained in the population; thus offering 

more diversity and weaker selection pressure (Simoncini et al., 2007).   

 

4.1.2.1    Genetic Diversity  

 

The diversity of the population is one of the main issues in determining the performance of 

the algorithm and is widely used to analyse EAs. Several studies used genetic diversity to 

guide EAs (Ursem, 2002; Alba and Dorronsoro, 2005). In this study, a diversity measure 

based on genotypic entropy (Ht) is used to identify the faulty individuals (Tomassini, 2005). 

As the main concern is to identify the faulty individuals, the genetic diversity is computed 

based on an individual’s entropy rather than at the population level. Hence, the genotypic 

diversity can be defined as the average entropies of an individual in successive generations, 

which in turn is equal to the average of the entropies of different genes. The entropy of the j th 

gene is expressed as: 

 
PPH j log⋅−=                                                                    (4.1) 

 
where P (represented in 4.2) is the probability that the value of the j th gene (xj ∈ [A , B]) of a 

chromosome in generation t is different from that of the j th gene of the same chromosome in 

generation t − 1. Aj and Bj are variable (gene) limits.  
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Therefore, the average entropies of an individual consisting of n genes can be given as: 
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Figure 4.2 illustrates the process of computing the genotypic diversity of an individual in 

successive generations. For example, considering an individual of n genes, H1 is the average 

entropies of the first gene in generations t−1 and t, and so forth. The genes entropies (i.e., H1, 

…, Hn) are then averaged to compute the average entropy of an individual (H).    
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Figure 4.2. Computation of the genotypic diversity of an individual in generation t and t−1; Hi is 

the entropy of the i th gene. 

 

4.1.2.2    Isolation Criteria  

 

Due to the impact of the fault models considered on the functionality of a system, the 

algorithm isolates the faulty individuals in order to mitigate their impact. That is to say, the 

aim of the isolation is to prevent the faulty individuals from spreading their poor solutions. 

On the other hand, good individuals are migrated in order to improve the performance of the 

algorithm. 

In this research, two isolation criteria are proposed, with each one handling one of the 

fault models discussed above. Firstly, an individual is defined as faulty when its genotypic 

diversities computed in the first stage are found to be almost constant, taking into account 

that the first stage lasts for only the first few generations when an individual’s genotypic 

diversity is expected to be fairly variable. Assuming a maximisation problem, this criterion 

handles the case where the individual fitness scores are stuck at ‘1’. Secondly, an individual 

can also be defined as faulty when the replacement rate of the individual considered during 

the first stage is too high. This situation occurs when the fitness score of an individual is too 

low (stuck at ‘0’). When minimising, the converse is applies    

The above criteria are placed based on the following facts: the fittest individuals are 

always winning and thus not being replaced when they compete with other individuals 

following the defined replacement policy (replace-if-better). In this case, the genotypic 

diversities of those individuals are maintained. Conversely, the weakest individuals are 

always being replaced, leading to high frequency of changes. 
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4.1.2.3    Migration Technique 

 

As mentioned previously, cGAs offer an implicit mechanism for migration that is inherent in 

their overlapping neighbourhoods; however, an explicit migration technique is defined in 

this research. The main objective behind employing an explicit migration operator is to 

mitigate the impact of the faults that occur. Another objective is to improve the performance 

and the reliability of the algorithm. 

The migration technique is introduced by defining the migration parameters. The 

migration operator frequency is set to the highest (i.e., every generation) and is activated 

only when there is at least one faulty individual within the current individual’s 

neighbourhood. The number of migrants or migration rate is adapted, and is computed 

whenever a migration is activated. This rate is equal to the number of faulty individuals, 

which varies from 1 to no-of-neighbours. In this study the no-of-neighbours is 7 (the central, 

vertical north and south, horizontal north and south, and the east and west individuals), as the 

defined neighbourhood topology is linear with one distance step from the central individual.   

The migration scheme is defined as follows. The individuals to be replaced are all those 

who are faulty, and the individuals to be migrated (i.e., migrants) are chosen from the first 

fault-free neighbourhood found to replace the corresponding faulty individuals (see Figure 

4.3). In the worst-case scenario, if there is no fault-free neighbourhood (i.e., there is at least 

one faulty individual within each possible neighbourhood), then a random neighbourhood is 

selected by allowing the selection of faulty individuals. 

In the following section the experimental parameters and algorithm configurations are 

defined. In addition, the results obtained and their analyses are provided. 

 

 

Figure 4.3. The replacement of two faulty PEs by the corresponding ones (migrants) from the first 

fault-free neighbourhood found through migration. 
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4.1.3    Experimental Results and Analysis 

 

In this research, four algorithm configurations were defined. These configurations differed in 

the use of the migration technique in combination with the selection rate r. In the first 

configuration, a stochastic tournament selection with r = 0 was applied, while in the second 

configuration, a stochastic tournament selection with r = 0.5 was applied in order to offer 

equal chances for poor and good solutions to be involved. The migration operator was not 

introduced in the preceding configurations. Hence, the first and second configurations are 

represented by (ST, r = 0.0 + noMigration) and (ST, r = 0.5 + noMigration), respectively. 

The third and fourth configurations are similar to the first and the second, respectively; with 

the exception of introduction of the migration technique (ST, r = 0.0 + Migration; ST, r = 

0.5 + Migration). 

The same parameters were used for all the problems (see Table 4.1). The population size 

used here was 343 individuals, which were arranged into a 7×7×7 lattice. The defined local 

neighbourhood contained seven individualseast, west, vertical north and south, and 

horizontal north and south individuals plus the central individual.  

The first parent was the current individual while the second one was selected by 

stochastic tournament with rate r. An arithmetic crossover operator (AX) with a probability 

of Pc = 0.9 was applied to generate an offspring. The offspring was mutated by applying a 

non-uniform mutation operator with a probability of Pm = 1/L, where L is the length of the 

chromosome (the dimension of the problem). Although the dimension of the FMS problem is 

6, the same mutation probability was used as with all the other problems.  The replacement 

policy used here was replace-if-better, during which the current individual was replaced if its 

competitor (offspring) was better. The migration parameters used in the third and the fourth 

configurations are described in Section 4.1.2.3. Finally, the algorithm terminated if the 

average fitness value (f ) of the population satisfied a threshold (≤ 0.00005). This threshold 

was applied for all the problems, with the exception of the fSLE, where a less precise threshold 

(≤ 0.0001) was used due to the problem’s complexity.  

During the experiment, similar fault rates and patterns were injected for all the 

configurations and problems. The performance of the algorithm was measured using two 

metricsthe search success rate, which represents the efficacy; and the average number of 

generations, which represents the efficiency of 100 independent runs. A different number of 

maximum generations was assigned to each problem due to their different complexities. fLang 
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was assigned 700 generations, whereas fRas, fMic, and fFMS were assigned 1000 generations. 

Finally, fAck  and fSLE were assigned 2000 generations.   

The algorithm was assessed against stuck at ‘0’ and stuck at ‘1’ faults with up to 40% 

faults. The results are presented in Tables 4.2, 4.3, 4.6, and 4.7, where the average number of 

generations with the median absolute deviation is included after the symbol ‘±’ and the 

search success rate are shown for every fault rate. For each fault rate, the best values 

obtained among the four configurations are marked in bold.  

 

Table 4.1. Parameters used in the algorithm 
Population size: 343 individuals 
Parent selection: Current individual + ST, Ps = r 
Recombination: AX, Pc = 0.9 
Mutation: Non-uniform, Pm = 1/L 
Replacement: Replace-if-better 
Neighbourhood: L7 
Lattice: 7×7×7 

Termination criterion: f  ≤ 0.00005 ( ≤ 0.0001 for fSLE) 
 

Additionally, the results obtained when there was no fault (0% faults) are shown in 

Tables 4.2 and 4.3. For 0% faults, the results shown for the first and third algorithms 

configurations were similar, while similar results were obtained for the second and fourth 

algorithm configurations due to the inactive migration operator in the absence of faults. The 

symbol ‘+’ in the Tables means that there exists statistical confidence in the results of the 

compared algorithm configurations, while the symbol ‘•’ means there is no statistical 

difference between the results obtained (for details about statistical tests refer to Section 

2.2.3.1).   

 

4.1.3.1    Stuck at ‘0’ Faults 

 

As mentioned previously, stuck at ‘0’ is the most critical fault model as the problems 

considered all need to be minimised; for the case of maximisation the converse applies. 

Tables 4.2 and 4.3 show the results obtained for the test and the real-world problems, 

respectively.  

With regard to fRas, the best search success rate (100%) was achieved by the second and 

the fourth configurations for which similar selection rates (r = 0.5) were applied with up to 

30% faults (See Table 4.2). However, a major decline in the search success rate reached 

almost 87% and 40% faults were observed. With regard to efficiency, the minimum average 

generations were obtained by the third configuration (ST, r = 0.0 + Migration) with up to 
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20% faults. On the other hand, the best efficiency was achieved by the second and fourth 

configurations (these configurations achieved almost similar efficiency with a maximum 

difference of 9 generations) with faults more than 20%. Even though fewer generations were 

expected for ST, r = 0.0, a lower number of average generations were obtained for ST, r = 

0.5, in particular the second configuration due to the impact of the faults. However, the 

introduction of migration with ST, r = 0.0 (ST, r = 0.0 + Migration) significantly improved 

the performance of the algorithm in terms of search success rates ( ≥ 13% with 20% and 30% 

faults) and average generations (≤ 116 generations with 10%−30% faults) when compared to 

the first configuration (ST, r = 0.0 + noMigration).     

With regard to fAck, the third configuration (ST, r = 0.0 + Migration) achieved the highest 

search success rate with up to 30% faults and the minimum average generations with up to 

20% faults. With 40% faults, the algorithm failed to solve the problem due to the high fault 

rate and higher problem complexity. Furthermore, from Table 4.2 it can be seen that there 

are no statistical differences in the efficiency of the algorithm between the four 

configurations. 

The best efficacy (hit rate of 100%) was reached by all configurations with up to 10% 

faults when solving fMic, while the highest search success rates were obtained by the third 

configuration with up to 30% faults. Concerning the efficiency, the minimum average 

generations were obtained by the third configuration with up to 30% faults. Hence the third 

configuration (ST, r = 0.0 + Migration) significantly achieved the best performance of the 

algorithm. Similar to fAck, the algorithm failed to solve the problem with 40% faults. 

When solving fLang, the highest search success rates were obtained by the fourth 

configuration (ST, r = 0.5 + Migration) with up to 30% faults; however, these hit rates 

differed slightly (≤ 2%) from those obtained when no migration was introduced (ST, r = 0.5 

+ noMigration). The best efficiency was reached by the third configuration (ST, r = 0.0 + 

Migration) with up to 30% faults; an exception was with 20% faults. Considering 40% 

faults, the algorithm is declined to solve the problem due to the high problem complexity and 

high fault rate.   

Solving fFMS the algorithm shows similar behaviour to that observed when solving the 

previous problem (fLang), as these two problems have similar characteristics. For all fault 

rates the best efficacies were achieved with ST, r = 0.5; minor difference not more than 3% 

hit rate were observed with and without the use of migration. The best efficiencies were 

achieved by the third configuration with up to 30% faults. Applying (ST, r = 0.5 + 

noMigration; ST, r = 0.5 + Migration) configurations on fLang and fFMS, the algorithm shows a  
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Table 4.2. Experimental Results: Convergence time (CT) and rate (CR)* for test problems 
Problems/  
% of faults 

BT + no Migration 
ST, r = 0.5 + no 

Migration BT +  Migration 
ST, r = 0.5 + 

Migration 
Test  

0%   355.71 ± 29.5 100% 453.78 ± 27.0 100% 355.71 ± 29.5 100% 453.78 ± 27.0 100% +  

10%   539.41 ± 64.0 100% 522.73 ± 36.0 100% 423.42 ± 24.5 100% 523.23 ± 33.5 100% +  

20%   784.95 ± 82.0 86% 616.01 ± 38.0 100% 598.87 ± 64.0 99% 624.78 ± 45.0 100% +  

30%   887.10 ± 58.0   67% 709.61 ± 42.0 100% 728.83 ± 108 90% 700.67 ± 42.0 100% +  

 

Rasf
 

40% − 0% 948.69 ± 25.0 13% 979.66 ± 3.00 3% 957.83 ± 14.5 12% •  

0%   1840.1 ± 84.0 85% 1846.1 ± 78.0 58% 1840.1 ± 84.0 85% 1846.1 ± 78.0 58% •  

10%   1896.2 ± 64.5 66% 1862.7 ± 48.0 47% 1860.2 ± 82.0 73% 1908.7 ± 43.5 50% •  

20%   1927.7 ± 34.5  50% 1929.6 ± 35.0 23% 1872.5 ± 63.0 66% 1917.9 ± 31.5 28% •  

30%   1950.5 ± 19.5  16% 1916.0 ± 29.0 21% 1924.5 ± 25.0 38% 1910.8 ± 21.5 12% •  

 

Ackf
 

40% − 0% − 0% − 0% − 0% − 

0%   534.48 ± 55.0   100% 711.79 ± 61.5 100% 534.48 ± 55.0   100% 711.79 ± 61.5 100% +  

10%   683.77 ± 57.0   100% 769.67 ± 60.0 100% 607.22 ± 49.5 100% 774.21 ± 59.5 100% +  

20%   858.51 ± 53.5  86% 842.76 ± 68.0 91% 764.95 ± 75.0 93% 859.45 ± 58.0 87% +  

30%   936.49 ± 40.0  59% 929.11 ± 30.0 70% 850.27 ± 59.0 73% 921.57 ± 33.0 59% +  

 

Micf
 

40% − 0% − 0% − 0% − 0% − 

0%   270.45 ± 35.0  74% 359.28 ± 40.5 82% 270.45 ± 35.0 74% 359.28 ± 40.5 82% +  

10%   391.20 ± 65.5  70% 397.44 ± 49.0 83% 341.00 ± 45.0 61% 409.29 ± 48.5 84% +  

20%   492.05 ± 55.0  69% 448.85 ± 56.0 87% 458.10 ± 95.0 59% 465.03 ± 58.5 88% +  

30%   567.55 ± 60.0  68% 522.74 ± 64.0 87% 503.64 ± 59.0 50% 513.02 ± 62.0 89% +  

 

Langf

 
40% − 0% − 0% − 0% − 0% − 

 
 
Table 4.3. Experimental Results: Convergence time (CT) and rate (CR)* for real-world 
problems 

Problems/  
% of faults 

BT+ no Migration 
ST (r = 0.5)+ no 

Migration BT+  Migration 
ST (r = 0.5)+ 

Migration 
Test  

0% 326.12 ± 78.5 74% 399.54 ± 81.0 81% 326.12 ± 78.5 74% 399.54 ± 81.0 81% +  

10% 410.77 ± 70.0 71% 475.38 ± 89.5 88% 360.04 ± 66.0 73% 445.44 ± 81.5 88% +  

20% 579.21 ± 93.5 71% 527.45 ± 116.0 87% 449.16 ± 109.0 73% 518.75 ± 86.0 88% +  

30% 722.92 ± 92.0 69% 610.43 ± 102.5 90% 545.70 ± 93.0 71% 607.47 ± 122.0 91% +  

FMSf  

40% 911.85 ± 67.0 7% 812.47 ± 135.0 65% 820.09 ± 113.0 52% 821.09 ± 102.5 62% •  

0% 247.48 ± 28.0 41% 404.47 ± 64.0 63% 247.48 ± 28.0 41% 404.47 ± 64.0 63% +  

10% 324.96 ± 36.0 27% 499.00 ± 72.0 45% 303.55 ± 59.0 27% 479.46 ± 65.5 52% +  

20% 603.61 ± 105.5 18% 552.86 ± 66.0 36% 386.46 ± 61.0 15% 557.62 ± 86.0 37% +  

30% 780.50 ± 133.5 12% 712.19 ± 107.0 21% 510.28 ± 62.0 7% 636.40 ± 97.0 22% •  

SLEf  

40% 1824.0 ± 0.0 1% 1513.0 ± 437.0 2% 1996.0 ± 0.0 1% 1478.8 ± 344.0 4% •  

 

surprising tendency to increase the search success rate as the fault rate increases. This trend 

occurred due to the selection rate (r = 0.5)which was unbiased to neither good (more 

likely to be faulty) nor bad (more likely to be non-faulty) solutions. As the fault rate 

                                                 
* For more details about the performance measures, please refer to Section 2.2.3.1. 
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increased the selection intensity is reduced, leading to promote more exploration, which 

helps to escape the local minima and thus increases the hit rate.  

At last, considering all fault rates, the highest search success rates were obtained by the 

fourth configuration (ST, r = 0.5 + Migration) when solving fSLE. With regard to the 

efficiency of the algorithm, with all fault rates the minimum average generations were 

achieved by the third configuration (ST, r = 0.0 + Migration). 

In general, the performance of the algorithm declined as the rate of faults increases. This 

decline can be observed as a drop in the search success rate and/or an increase in the number 

of generations required to find the desired solutions. Each fault rate represented a different 

level of search difficulty, worse fault distributions and patterns were formed with higher 

fault rates. The worst fault distribution occurred when a PE was surrounded by faulty 

neighbours (PEs) in all possible directions. 

To evaluate and compare the different algorithm configurations, two-level ranking was 

performed based on two metrics: the average number of generations and the search success 

rate (Tables 4.4 and 4.5, respectively). In the first level, the four configurations were ranked 

for each problem independently. This task was accomplished by summing the positions of 

each algorithm configuration considering each fault rate. In the Tables, these local ranks are 

shown in columns 3−8. In order to obtain a global rank the second level of ranking was 

performed by summing the local ranks computed in the first level. In these Tables, the global 

rank and the summation values are shown in the first and last columns, respectively.  

In summary, the third configuration (ST, r = 0.0 + Migration) achieved the best 

performance in terms of efficiency for all the considered problems (see Table 4.4). In 

contrast, the best efficacy was obtained by the fourth configuration (ST, r = 0.5 + Migration) 

and the second configuration (ST, r = 0.5 + noMigration) as the difference between the 

values of the sum of positions was minor (see Table 4.5). Hence, the second and fourth 

configurations performed similarly in terms of both performance metrics, while the first 

configuration (ST, r = 0.0 + Migration) had the worst performance.  

 

Table 4.4. Local and global* average-generations- based ranking for stuck at ‘0’ faults 
Rank Algorithms fRas fAck fMic fLang fFMS fSLE Sum 

1 ST, r = 0.0 +  Migration 1 1 1 1 1 1 6 

2 ST, r = 0.5 + no Migration 2 3 3 2 3 3 16 

3 ST, r = 0.5 + Migration 3 2 4 4 2 2 17 

4 ST, r = 0.0+ no Migration 4 3 2 3 4 3 19 

* Local ranks (columns 3 to 8) are performed for each problem independently; the highest rank is assigned the lowest value. 
Global ranks are performed by summing the local ranks of each problem and are shown in the first column. 
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Table 4.5. Local and global* search-success-rate-based ranking for stuck at ‘0’ faults 
Rank Algorithms fRas fAck fMic fLang fFMS fSLE Sum 

1 ST, r = 0.5 + Migration 2 3 3 1 1 1 11 

2 ST, r = 0.5 + no Migration 1 3 2 2 2 2 12 

3 ST, r = 0.0 +  Migration 3 1 1 4 3 4 16 

4 ST, r = 0.0+ no Migration 4 2 4 3 4 3 20 

* Local ranks (columns 3 to 8) are performed for each problem independently; the highest rank is assigned the lowest value. 
Global ranks are performed by summing the local ranks of each problem and are shown in the first column. 

 

Introducing migration adds a significant improvement when combined with ST, r = 0.0 in 

terms of average number of generations leading to 21−279 generations less. In addition, it 

leads to an increase in the search success rate in the range 2%−45%. That is, because of the 

high selection intensity induceddue to r = 0.0within the fault-free neighbourhood that 

resulted from migration. However, the combination of migration with ST, r = 0.5 showed no 

improvements based on the two metrics. In contrast to ST, r = 0.0, in which the fittest 

individual with the minimum fitness value was favouredbearing in mind that also faulty 

individuals have the minimum fitness value, ST, r = 0.5 mitigates the involvement of faulty 

individuals in the reproduction process. Therefore ST, r = 0.5 plays a similar role as 

migration; which is why combining them leads to no further improvements.  

Since each of the problems considered presented a different level of complexity, the 

amount of selection intensity needed to effectively solve each problem was also different. 

Accordingly, the exploration/exploitation trade-off and the amount of diversity needed 

varied. Problems with high complexity, such as fLang, fFMS, and fSLE, required more diversity, 

which can be offered by tuning the rate of the selection r. The increase in the value of r 

would maintain worse solutions in the population for a longer time, thus more diversity is 

offered leading to an increase in the search success rate. However, the number of generations 

required to solve a given problem is increased.  

 

4.1.3.2    Stuck at ‘1’ Faults 

 
The stuck at ‘1’ fault scenario is less critical than stuck at ‘0’ faults. However, this scenario 

leads to considerable impacts on the system. These impacts mainly occur as reductions in the 

accuracy of solutions and an increase in convergence time. Tables 4.6 and 4.7 summarise the 

results obtained when solving the test and the real-world problems, respectively.  

With regard to fRas, the best search success rate (100%) was achieved by all algorithm 

configurations with up to 30% faults, except for the third configuration, as a lower rate 

(86%) was achieved with 30% faults. With 40% faults, a considerable drop in the search 
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success rate reached up to 70% is observed. However, with stuck at ‘1’ faults the drop in the 

search success rate when the fault rate increases to 40% is significantly lower than the 

corresponding drop with stuck at ‘0’ faults (17%), which confirms that stuck at ‘1’ fault 

scenario is less destructive. Concerning the efficiency, with all fault rates the minimum 

average generations were obtained by the first configuration (ST, r = 0.0 + noMigration) 

with significant differences, except for 40% fault as the differences were insignificant (see 

test results in Table 4.6). In contrast to stuck at ‘0’ faults, the introduction of migration 

results in higher number of generations reached up to 230 while maintaining almost similar 

efficacies.   

When solving fAck, the differences between the average number of generations obtained 

by all configurations are insignificant (see test results in Table 4.6); generally therefore, all 

configurations have similar efficiencies. Concerning the efficacy of the algorithm, with all 

fault rates the highest search success rates were obtained by the first configuration (ST, r = 

0.0 + noMigration). Hence, as with the previous problem the introduction of migration could 

not improve the performance of the algorithm. However, the efficacy obtained with 

migration (ST, r = 0.0 + Migration) was insignificantly less than those obtained without 

migration (ST, r = 0.0 + noMigration). Similar to stuck at ‘0’ faults, with 40% faults the 

algorithm failed to solve the problem due to the high fault rate in combination with high 

problem complexity.  

 

Table 4.6. Convergence time (CT) and rate (CR)* for test problems 
Problems/  
% of faults 

BT + no Migration 
ST, r = 0.5 + no 

Migration BT +  Migration 
ST, r = 0.5 + 

Migration 
Test  

10%   386.23 ± 31.0 100% 541.27 ± 41.5 100% 417.17 ± 36.0 100% 507.53 ± 36.0 100% +  

20%   449.69 ± 42.0 100% 616.08 ± 45.5 100% 583.27 ± 75.5 100% 616.82 ± 39.0 100% +  

30%   486.22 ± 37.5   100% 667.88 ± 41.0 100% 717.19 ± 104 86% 673.83 ± 49.5 100% +  

 

Rasf
 

40% 919.83 ± 48.0 36% 947.90 ± 20.5 30% 943.08 ± 34.5 24% 954.55 ± 20.0 38% •  

10%   1848.3 ± 66.0 77% 1877.4 ± 57.5 40% 1820.4 ± 76.0 75% 1884.4 ± 39.0 59% •  

20%   1853.1 ± 70.0  65% 1894.6 ± 37.0 21% 1833.3 ± 51.0 53% 1902.2 ± 35.0 28% •  

30%   1906.2 ± 45.5  48% 1956.5 ± 15.0 15% 1886.8 ± 57.5 40% 1817.1 ± 47.0 18% •  

 

Ackf
 

40% − 0% − 0% − 0% − 0% − 

10%   578.69 ± 43.5   100% 769.91 ± 48.5 100% 615.23 ± 54.5   100% 773.10 ± 70.5 100% +  

20%   653.80 ± 49.5  100% 863.18 ± 54.0 94% 736.67 ± 69.0 86% 844.51 ± 62.0 89% +  

30%   707.26 ± 71.0  99% 891.19 ± 46.0 63% 852.47 ± 73.0 74% 914.89 ± 41.0 66% +  

 

Micf
 

40% − 0% − 0% − 0% − 0% − 

10%   309.00 ± 51.0  58% 409.05 ± 48.0 75% 329.94 ± 48.0 67% 402.01 ± 55.0 79% +  

20%   331.02 ± 53.0  69% 468.27 ± 64.0 77% 437.43 ± 71.0 69% 484.40 ± 53.0 85% +  

30%   402.25 ± 45.5  74% 525.39 ± 49.5 74% 508.36 ± 99.5 58% 518.20 ± 56.5 82% +  

 

Langf

 
40% − 0% − 0% − 0% 656.00 ± 0.0 1% •  

* For more details about the performance measures, please refer to Section 2.2.3.1. 
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Table 4.7. Convergence time (CT) and rate (CR)* for real-world problems 

Problems/  
% of faults 

BT + no Migration 
ST, r = 0.5 + no 

Migration BT +  Migration 
ST, r = 0.5 + 

Migration 
Test  

10% 338.05 ± 73.5 68% 472.49 ± 88.0 87% 348.60 ± 87.5 76% 453.56 ± 91.0 87% +  

20% 399.50 ± 79.0 65% 489.34 ± 64.0 87% 465.47 ± 106.0 73% 532.77 ± 87.0 86% +  

30% 416.53 ± 95.0 73% 599.85 ± 127.5 88% 571.92 ± 110.0 68% 613.04 ± 111.0 83% +  
FMSf  

40% 650.98 ± 163.0 72% 806.61 ± 131.0 77% 809.77 ± 88.5 54% 766.16 ± 112.5 68% +  

10% 302.89 ± 44.0 29% 479.20 ± 83.0 55% 282.43 ± 16.0 23% 485.55 ± 50.0 49% +  

20% 446.53 ± 68.5 26% 543.52 ± 59.0 50% 363.47 ± 52.0 21% 568.06 ± 100.0 45% +  

30% 407.76 ± 59.0 30% 630.44 ± 87.0 36% 420.84 ± 41.0 13% 669.77 ± 99.0 31% +  
SLEf  

40% 639.72 ± 133.0 11% 902.75 ± 130.0 20% 781.00 ± 117.0 11% 1042.1 ± 206.5 26% +  

* For more details about the performance measures, please refer to Section 2.2.3.1. 
 

 

With all the considered fault rates, the highest efficacy and efficiency were significantly 

achieved by the first configuration (ST, r = 0.0 + noMigration) when solving fMic. Similarly, 

with 40% faults the algorithm failed to solve the problem due to high fault rate.  

Solving fLang, the highest search success rates were obtained by the fourth configuration 

(ST, r = 0.5 + Migration), while the best efficiency was significantly reached by the first 

configuration (ST, r = 0.0 + Migration). fLang differed from the previously discussed 

problems as it is not only highly multimodal but also epistasis and asymmetric at the same 

time, therefore it introduces more difficulty to the search. Because of the high complexity 

more diversity is needed to effectively solve the problem. That is why the highest 

convergence rates were obtained with the configurations that introduced more diversity (i.e., 

the second and the fourth configurations, as they had lower selection pressure). However, 

more diversity increases the convergence time leading to less efficiency. Considering 40% 

faults, the algorithm was unable to solve the problem due to the high problem complexity 

and high fault rate.   

fFMS and fSLE have similar characteristics to fLang, hence similar profiles were obtained. 

Generally, the best efficiency was achieved by the first configuration (ST, r = 0.0 + 

noMigration) due to the high selection pressure, while the highest search success rates were 

achieved by the second configuration (ST, r = 0.5 + noMigration) due to more diversity 

being offered.   

As with the stuck at ‘0’ faults, the algorithm configurations are also ranked based on the 

average number of generations (Table 4.8) and the search success rate (Table 4.9). In 

summary, the first configuration (ST, r = 0.0 + noMigration) obtains the best algorithm 

efficiency for most of the problems considered (see Table 4.8). Because of the high selection 

intensity as well as the less destructive scenario of faults a main profile which contradicts the  
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Table 4.8. Local and global* average-generations-based ranking for stuck at ‘1’ faults 

Rank Algorithms fRas fAck fMic fLang fFMS fSLE Sum 

1 ST, r = 0.0 + no Migration 1 2 1 1 1 1 7 

2 ST, r = 0.0 + Migration 2 1 2 2 2 1 10 

3 ST, r = 0.5 + Migration 4 3 3 3 3 3 19 

4 ST, r = 0.5+ no Migration 3 4 3 4 3 3 20 

 

 
Table 4.9. Local and global* search-success-rate-based ranking for stuck at ‘1’ faults 

Rank Algorithms fRas fAck fMic fLang fFMS fSLE Sum 

1 ST, r = 0.5 + Migration 1 3 2 1 2 2 11 

2 ST, r = 0.5 + no Migration 3 4 2 2 1 1 13 

2 ST, r = 0.0 + no Migration 2 1 1 3 3 3 13 

4 ST, r = 0.0 + Migration 4 2 2 3 4 4 19 

 

one observed with stuck at ‘0’ faults is the modest increaserather than the dramatic 

increasein the number of generations against the increase in the fault rate  

With regard to the efficacy, the best efficacy was obtained by the fourth and second 

configurations (ST, r = 0.5 + noMigration/Migration) when solving the real-world problems 

that are mainly characterised as epistasis and asymmetric. On the other hand, the best 

efficacy was obtained by the first configuration (ST, r = 0.0 + noMigration) when solving 

the test functions (see Table 4.9). As mentioned above, the more complex problems require 

more diversity, which in this case was offered by applying lower selection pressure (i.e., ST, 

r = 0.5); however more diversity leads to an increased number of generations to solve a 

given problem.  

 

4.1.3.3    Study of the Failure and Expansion in Fa ult Rates 

 

This section aims to firstly investigate the sharp drop in the convergence rate as well as the 

quick increase in the convergence time, particularly when the fault rate increases to 40%. In 

order to meet the first aim, the genetic diversity obtained by the different algorithm 

configurations of a selected problem (fRas) against the different fault rates were explored. 

Another aim was to explore the behaviour of the algorithm with higher fault rates (45% and 

50%), in particular when solving fRas, fFMS, and fSLE. In addition, a fault rate of 35% is 

                                                 
* Local ranks (columns 3 to 8) are performed for each problem independently; the highest rank is assigned the lowest value. 
Global ranks are performed by summing the local ranks of each problem and are shown in the first column. 
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considered to investigate the sharp decline in the performance of the algorithm. The other 

problems were not considered in this investigation as the algorithm failed to solve these 

problems with 35% faults. This section illustrates the impact of faults on the genotypic 

diversity of the population as well as expands the results obtained in the previous sections to 

include 35%, 45%, and 50% faults.  

Figures 4.4(a) and (b) show the change in the genotypic diversity (computed as an 

average of 100 independent runs) when solving fRas with the various considered fault rates 

for stuck at ‘0’ faults.  

Figure 4.4(a) illustrates the changes induced by the first and third algorithm 

configurations (i.e., 3D-cGA with ST, r = 0.0 + noMigration/Migration, respectively), while 

the changes in diversity incurred by the second and the fourth algorithm configurations (i.e., 

3D-cGA with ST, r = 0.5 + noMigration/Migration, respectively) are shown in Figure 4.4(b). 

Similarly, Figure 4.5(a) and (b) show the change in genotypic diversities with fitness score 

stuck at ‘1’. 

It can be clearly seen from Figure 4.4(a) that generally the time (i.e., number of 

generations) needed for population diversity to approach zero increases considerably as fault 

rate increases. This observation leads to two major conclusions. First, the algorithm is likely 

to fail to solve a given problem with 40% faults as the diversity level is too high and is 

virtually maintained. In addition, due to the major difference between diversities obtained 

with 30% and 40% faults, increasing the fault rate from 30% to 40% leads to a sharp drop in 

convergence rate as well as a major increase in the convergence time. Second, the 

introduction of migration (see the blue trends in Figure 4.4(a)) could slightly enhance the 

convergence time when considering 10%, 20%, and 30% faults. However, migration failed 

to add any improvement when considering 40% faults. 

Similar profiles were obtained by the second and fourth algorithm configurations (see 

Figure 4.4(b)).  However, the introduction of migration (see the blue trends in Figure 4.4(b)) 

added neither improvement nor deterioration to the convergence time. This finding confirms 

that the combination of migration and ST, r = 0.5 could not improve the performance of the 

algorithm. 

With stuck at ‘1’ faults (see Figure 4.5(a) and (b)) the population diversities for all 

considered fault rates at the beginning were reasonable and were significantly less than the 

corresponding ones when considering stuck at ‘0’ faults. Therefore, it is easier and faster for 

the algorithm to solve, in particular minimise, a problem with stuck at ‘1’ faults. That is to 

say, the stuck at ‘1’ faults model is less critical than the stuck at ‘0’ faults model. Moreover,  



 82 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(b) 

 

Figure 4.4. Genotypic diversities of Rasf against fault rates for ‘stuck at 0’. (a) 1st (red curves) and 3rd 

(blue curves) configurations; (b) 2nd (red curves) and 4th (blue curves) configurations. 
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Figure 4.5. Genotypic diversities of Rasf  against fault rates for ‘stuck at 1’. (a) 1st (red curves) and 3rd 

(blue curves) configurations; (b) 2nd (red curves) and 4th (blue curves) configurations. 
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Figure 4.6. (a) Mean generations obtained by 3rd configuration for Rasf , FMSf  and SLEf ; (b) search 

success rate obtained by 2nd configuration (for Rasf ) and 4th configuration (for FMSf  and SLEf ) with 

stuck at ‘0’ faults. 
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Figure 4.7. (a) Mean generations obtained by 1st configuration for Rasf , FMSf  and SLEf ; (b) search 

success rate obtained by 4th configuration (for Rasf ), and 2nd configuration (for FMSf  and SLEf ) with 

stuck at ‘1’ faults. 
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the major difference in diversity levels obtained with 30% and 40% faults justified the sharp 

decline in convergence rate as well as the large increase in convergence time. Another 

observation is that the introduction of migration with stuck at ‘1’ faults could not add any 

improvements. However, for some cases it leads to an increase in convergence time (see the 

blue trends in Figure 4.5(a)). 

Figures 4.6 and 4.7 show the experimental results when solving fRas, fFMS, and fSLE with 

fault rates up to 50% considering the stuck at ‘0’ and stuck at ‘1’ faults, respectively. As 

mentioned previously, the other problems were not considered as the algorithm failed to 

solve them with faults more than 30%. Based on each performance metric, the best algorithm 

configuration for each problem was explored with fault rates up to 50% (the best algorithm 

configuration was the one with the highest rank- lowest value, refer to Tables 4.4, 4.5, 4.8, 

and 4.9). For example, considering fRas, the best configuration based on the efficiency is the 

third one for stuck at ‘0’ faults, while the first configuration is the best one for stuck at ‘1’ 

faults. The best configuration based on the efficacy is the second one for stuck at ‘0’ faults, 

while the fourth configuration is the best one for stuck at ‘1’ faults.     

Considering stuck at ‘0’ faults, solving fRas and fFMS shows a gradual increase in the 

number of generations (see Figure 4.6(a)), while a sharp increase in convergence time was 

obtained when solving fSLE, particularly for fault rates exceeding 30%. Conversely, a sharp 

drop in the search success rates was obtained when solving fRas and fFMS (see Figure 4.6(b)), 

in particular for fault rates exceeding 30%, while a gradual drop in the convergence rate was 

obtained when solving fSLE. The algorithm failed to solve fRas and fSLE with faults more than 

40%, while it converged with faults up to 50% when solving fFMS. Figure 4.7(a) and (b) show 

the results obtained when solving the same problems with stuck at ‘1’ faults. Generally, the 

algorithm failed to solve fRas with faults more than 40%; and showed a rapid increase in 

convergence time (see Figure 4.7(a)), as well as a rapid fall in the convergence rate (see 

Figure 4.7(b)) when the fault rate exceeded 30%. Solving fFMS and fSLE, the algorithm could 

converge with up to 50% faults. However, the convergence rates were very low.  

In conclusion, we note that the performance of the algorithm declined significantly for 

fault rates of 40% or more. However, the rate of the decline differed according to the 

problem to solve, as each problem introduced different difficulties into the search. 

 

4.1.4    Conclusion   

 

This study proposed a new algorithm for tackling soft errors that target individuals’ 

phenotypes. The algorithm is based on the canonical cGA, and is completely algorithmic (no 
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hardware reconfiguration). Genetic diversity is the key metric used in our approach to 

identify and isolate faulty cells.  

This work took into consideration the most critical fault model, which is stuck at ‘0’ 

faults, together with different fault rates. In general, the proposed algorithm was successful 

in recovering up to 40% faults with different performance rates when solving different 

problems. In general, the performance decayed in increments in fault rate, except when 

solving fLang and fFMS. In order to improve the performance of the algorithm, four 

configurations offering different exploration/exploitation trade-offs were defined. 

Exploration and exploitation are two important issues in the evolution process, where the 

population diversity is enhanced by exploring the search space and the optimum solution can 

be found by exploiting the fitness information. The results show that the best efficiency is 

achieved by the third configuration (ST, r = 0.0 + Migration) for all problems. On the other 

hand, the best efficacy was achieved by the fourth configuration (ST, r = 0.5 + Migration) in 

3 out of the 6 problems. 

The key point underlying the introduction of migration is to cover the loss in cells due to 

the faults, thus enhancing the reproduction process; especially when a cell is surrounded by 

faulty neighbours. The results proved that migration offers a better exploration/exploitation 

trade-off, especially when combined with ST, r = 0.0. 

 

4.2    Migration as a Mitigation Technique 

 

This section introduces a number of adaptive migration schemes in order to mitigate the 

deterioration in the performance of Fault-Tolerant 3D-cGA, the algorithm proposed in the 

previous section. In addition to the migration scheme introduced in Section 4.1.2.3, the new 

schemes introduced in this section are tested to show superior improvements in the 

algorithm’s performance in terms of efficiency, efficacy, and speed. In this study, several 

algorithm configurations related to migration are considered. The effectiveness of the 

algorithm is investigated using a benchmark of four test functions and three real-world 

problems with each presenting a different level of search difficulty. The problems are 

Rastrigin (fRas), Ackley (fAck), Michalewicz (fMic), Langermann (fLang), FMS (fFMS), SLE (fSLE) 

(for more details of the benchmark problems refer to Appendix A), and GPS (fGPS) (which 

will be discussed in Section 4.2.2) problems. An investigation of the proposed migration 

policies that considered the problem of GPS was proposed in (Al-Naqi et al., 2011a). Section 

4.2.1 describes the algorithm configurations and also introduces the new adaptive migration 
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schemes. Section 4.2.2 provides a brief description of the problem of GPS attitude 

determination, while experimental results and analyses are presented in Section 4.2.3. 

Section 4.2.4 gives our conclusion. 

 

4.2.1    Algorithm Configuration 

 

The algorithm description and the pseudo-code were introduced in Section 4.1.2. As 

illustrated earlier, the algorithm automatically isolates the faulty individuals and consists of 

three stages. The first stage aims at monitoring all individuals and computing their genetic 

diversities by running cGA for a very short period (low number of generations). Next, the 

isolation stage identifies and isolates the faulty individual using feedback information from 

the first stage. Finally, in the third stage, another cGA is run to solve the given problem 

while excluding the faulty (isolated) individuals from the process (i.e., the faulty individuals 

are prevented from updating or communicating with other fault-free individuals when it is a 

part of their neighbourhood). Two fault scenarios are consideredfitness score stuck at ‘0’ 

and fitness score stuck at ‘1’. (The fault models were previously introduced in Section 4.1.1.) 

The following subsection presents two new adaptive migration schemes (schemes 2 and 3) 

used in this work, while the first migration scheme (scheme 1) was defined in Section 

4.1.2.3.  

 

4.2.1.1    Migration Schemes 

 

The new migration schemes defined are similar to the past migration scheme (i.e., scheme 1) 

in the following ways. Firstly, the migration operator frequency is set to the highest (i.e., 

every generation) and in each generation is applied only when there is at least a faulty 

individual within the current individual’s neighbourhood. Secondly, the number of migrants 

(i.e., migration rate) is adapted and is computed whenever a migration is to be applied. This 

rate is equal to the number of faulty individuals, which varies from 1 to no_of_neighbours. 

Thus, all migration schemes agree in identifying which individual(s) are to be replaced. On 

the other hand, the three schemes differ in choosing which individual(s) are to be migrated.  

In scheme 1, the migrants are chosen from the first fault-free neighbourhood found to 

replace the corresponding faulty individual(s) (refer to Figure 4.3). In contrast, in schemes 2 

and 3, the migrants are chosen from within the current neighbourhood if at least one fault-

free neighbour exists. For the case where there is no fault-free neighbour, scheme 1 is 
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employed. In addition, in the worst case, if there is no fault-free neighbourhood, a random 

neighbourhood is selected, which allows the possibility of selecting faulty individual(s). 

Considering scheme 2, the best fault-free neighbour (i.e., a neighbour that has the best 

fitness value) is selected to replace any faulty individual within the same neighbourhood. 

Conversely, in scheme 3, a random fault-free neighbour is chosen as a migrant.  

The aim of proposing migration schemes 2 and 3 is mainly to save time needed to search 

for a fault-free neighbourhood each time a fault is encountered. 

 

4.2.2    Case study: GPS Attitude Determination 

 

GPS technology is used in the determination of a vehicle’s attitude parameters, which is 

achieved by calculating the correct carrier phase integer ambiguity values (Juang and Huang, 

1997). One of the most efficient techniques for attitude determination using a GPS is genetic 

algorithm based ambiguity function search (AFGA), which was proposed by Xu et al. 

(2002). This technique is based on the observations of the GPS carrier phase and 

characterised as being immune to cycle slips. AFGA outperforms other techniques such as 

the ambiguity function method (AFM) in terms of the computational overheads incurred 

(Hodgart and Purivigraipong, 2000). For a full description of the technique, refer to (Xu et 

al., 2002).   

In this study, AFGA is used to determine GPS attitude. This function aims at finding the 

azimuth (ϕ) and the elevation (β) angles considering a fixed baseline (b) of 1.067 m (please 

refer to (Xu et al., 2002) for more details) and is represented by equation (4.4):  

 

 

 

                                                            (4.4) 

 

where j
ABDD 1Φ is the observed value of the double difference for the carrier phase, n is the 

number of satellites (usually 4–6 satellites), and m is the number of epochs.  

The range of ϕ is a full 360°, while the range of β is within the interval of [−15 , +15]. 

This function is multimodal with strong epistasis. In addition, the optimum maximum value 

is very close to 1. Figure 4.8 shows the problem search space. 
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Figure 4.8.  AFGA’s objective function in 2D. 

 

 

4.2.3    Experimental Results and Analysis 

 

Simulation results were obtained for four configurations of the algorithm used to solve the 

previously mentioned problems. The first configuration applied the Fault-Tolerant 3D-cGA 

without migration, while the second, third, and fourth configurations combined it as follows: 

migration scheme 1 (first fault-free neighbourhood), scheme 2 (best fault-free neighbour), 

and scheme 3 (random fault-free neighbour), respectively. The parameters used in the 

experiments are explained and summarised in Table 4.10. 

 

Table 4.10. Parameters used in the simulation  
Population size: 343 individuals (125 for fGPS)  

Parent selection: Centre individual + Binary tournament  

Recombination: AX, Pc = 0.9 

Mutation: Non-uniform, Pm 

Replacement: Replace-if-better 

Neighbourhood: NEWS 

Lattice: 7×7×7 (5×5×5 for fGPS) 
Stop criterion: Average fitness value ≤ threshold ( ≥ threshold for fGPS) 

 

The same parameters were used for all configurations. The population size consisted of 

343 individuals (125 individuals for fGPS) arranged over a 7×7×7 lattice (5×5×5 for fGPS). A 

neighbourhood was defined as seven individuals: the central individual surrounded by six 
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individuals (east, west, vertical north and south, and horizontal north and south). The first 

parent was the current individual, while the second was selected by using a binary 

tournament selection method. An arithmetic crossover operator with a probability of Pc = 0.9 

was applied to generate an offspring. The offspring were mutated by applying a non-uniform 

mutation operator with a probability of Pm. Different mutation probabilities were defined for 

each problem due to their different characteristics and complexities. Pm of 1/2L was assigned 

to fRas and fMic; 1/L was assigned to fAck, fLang, fFMS, and fGPS; and 1/10L was assigned to fSLE; 

where L was chromosome length. The replacement policy defined here was replace-if-better, 

during which the current individual was replaced if its competitor (offspring) was fitter. The 

migration parameters used in the second, third, and fourth configurations were previously 

described in Section 4.2.1.1. 

Finally, the algorithm terminated if the average-fitness-value satisfied a predefined 

threshold. Similarly, different thresholds were defined for each problem: a value of 5e−5 was 

assigned to fRas, fLang, and fFMS; 2e−4 was assigned to fAck; 1.89e−2 was assigned to fMic; 1e−1 was 

assigned to fSLE; and 9.97e−1 was assigned to fGPS. 

During the simulations, similar ratios and fault patterns were injected for every 

configuration. The performance of the algorithm was measured using three metricsthe 

search success rate, the average number of generations, and the average run times for 100 

independent runs. The defined maximum number of generations was 150 generations for 

fGPS; 700 generations for fMic and fLang; 1000 generations for fRas, fFMS, and fSLE; and 2000 

generations for fAck. 

The experimental results are divided into two parts. The first part presents the results 

obtained by the algorithm for the most critical fault model (i.e., stuck at ‘0’ faults) when 

solving fRas, fAck, fMic, fLang, fFMS, and fSLE (see Tables 4.11−4.13). The second part presents the 

results obtained by the algorithm when solving fGPS for both defined fault models (i.e., stuck 

at‘1’ and stuck at ‘0’) (see Tables 4.14−4.15). fGPS was selected as an example to study the 

algorithm’s behaviour and performance with more focus for both fault models. In addition, 

fGPS differed from the other problems considered as it is a maximisation problem; resulting in 

the most critical fault model being stuck at ‘1’ faults while stuck at ‘0’ faults was the less 

critical model.    

In Tables 4.11−4.15, the median absolute deviations mad (mad is used due to the non-

normal distribution of the results obtained) are added to the results to show the robustness of 

the approach. In addition, significant differences are indicated by a plus sign (+ ), while a 

minus sign (−) denotes non-significant differences (details of statistical tests were provided 
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in Section 2.2.3.1). The best results achieved in terms of each performance metric for each 

fault rate is highlighted in bold. Furthermore, in order to provide a reference that helps in 

evaluating the algorithm’s performance, the results obtained when there were no faults are 

shown for each problem; taking into account the fact that the migration operator is inactive 

in the absence of faults. 

Although the presence and the increase in fault rate led to deterioration in the algorithm’s 

performance by increasing the convergence time and reducing the search success rate and 

speed, the introduction of migration significantly reduces the convergence time and 

improves search success rate and speed when solving fRas (see Table 4.11). 

The most significant reductions in convergence time reaching 50% were obtained with 

high fault rates.   Furthermore, the search success rates were significantly improved when the 

different migration schemes were introduced. This improvement reached 100% with 40% 

faults. With regard to the speed, migration schemes 2 and 3 significantly reduced the running 

time, particularly with faults more than 10%. Generally, migration scheme 2 obtained the 

best algorithm performance in terms of efficiency, efficacy, and speed. 

 

Table 4.11. Convergence time (CT),  rate (CR), and speed (SP)* for the test problems 
Problems/ 
% of faults 

 Without migration 
Migration scheme 1 

(First fault-free 
neighbourhood) 

Migration scheme 2 
(Best fault-free 

neighbour) 

Migration scheme3 
(Random fault-free 

neighbour) 
Test 

0% 
266.14 ± 44.0 

100% 
0.71 ± 0.10 s 

 

10% 
372.26 ± 63.5 

100% 
0.95 ± 0.12 s 

296.94 ± 50.5 
100% 

1.68 ± 0.23 s 

294.86 ±49.0  
100% 

0.97 ±0.12 s 

307.85 ± 48.5 
100% 

0.96 ± 0.14 s 

+ 
• 
+ 

20% 
613.56 ± 93.0 

93% 
1.74 ± 0.39 s 

352.23 ± 52.0 
100% 

2.64 ± 0.37 s 

331.10 ±57.5 
100% 

1.11 ±0.16 s 

369.17 ±60.0 
100% 

1.15 ± 0.17 s 

+ 
+ 
+ 

30% 
720.84 ± 105.0 

82% 
1.60 ± 0.20 s 

392.39 ± 54.0 

100% 
9.18 ± 1.23 s 

351.60 ± 54.0 
100% 

1.17 ± 0.15 s 

398.86 ±77.5 
100% 

1.19 ± 0.20 s 

+ 
+ 
+ 

Rasf  

 

40% 0% 
506.17 ± 76.0 

100% 
27.38 ± 4.18 s 

401.38 ± 64.0 
100% 

1.20 ± 0.16 s 

480.29 ±65.5 
100% 

1.48 ± 0.20 s 

+ 
+ 
+ 

0% 
1004.7 ± 326.0 

79% 
4.70 ± 1.48 s 

 

10% 
1247.62 ± 445.5 

58% 
7.07 ± 2.50 s 

1361.03 ± 308.0 
56% 

9.30 ± 2.08 s 

1221.77 ± 365.0 
62% 

5.20 ± 1.49 s 

1211.0 ± 321.0 
62% 

5.17 ± 1.33 s 

• 
• 
+ 

20% 
1512.96 ± 212.0 

27% 
7.02 ± 1.42 s 

1433.83 ± 293.5 
48% 

12.52 ± 2.50 s 

1360.45 ± 376.0 
48% 

5.74 ± 1.33 s 

1435.3 ± 272.0 
44% 

5.90 ± 1.08 s 

• 
+ 
+ 

30% 
1481.8 ± 221.0 

9% 
7.07 ±1.65 s 

1598.9 ± 164.0 
30% 

38.89 ± 4.01 s 

1399.86 ± 260.5 
46% 

5.77 ± 1.01 s 

1429.9 ± 214.0 
31% 

6.01 ± 0.68 s 

+ 
+ 
+ 

Ackf  

 

40% 0% 
1733.5 ± 200.5 

8% 
95.16 ± 9.31 s 

1552.82 ± 208.0 
23% 

6.59 ± 0.67 s 

1511.6 ± 289.0 
23% 

5.96 ± 1.10 s 

• 
+ 
+ 

* For more details about the performance measures, please refer to Section 2.2.3.1. 
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Table 4.12. Convergence time (CT), rate (CR), and speed (SP)* for the test problems 
Problems/ 
% of faults 

 Without migration 
Migration scheme 1 

(First fault-free 
neighbourhood) 

Migration scheme 2 
(Best fault-free 

neighbour) 

Migration scheme3 
(Random fault-free 

neighbour) 
Test 

0% 
146.55 ± 25.0 

100% 
1.79 ± 0.36 s 

 

10% 
201.22 ± 32.5 

100% 
2.33 ± 0.30 s 

169.69 ± 42.0 
100% 

1.81 ± 0.35 s 

172.05 ± 27.5 
100% 

1.40 ± 0.17 s 

180.47 ± 28.5 
100% 

1.44 ± 0.18 s 

+ 
• 
+ 

20% 
349.60 ± 58.0 

98% 
3.15 ± 0.71 s 

197.38 ± 46.5 
100% 

2.39 ± 0.47 s 

188.96 ± 33.5 
100% 

1.39 ± 0.18 s 

233.39 ± 48.0 
100% 

1.78 ± 0.32 s 

+ 
• 
+ 

30% 
471.62 ± 65.0 

97% 
34.12 ± 0.65 s 

218.47 ± 41.0 
100% 

6.02 ± 1.10 s 

201.27 ± 34.5 
100% 

1.47 ± 0.19 s 

256.14 ± 42.5 
100% 

1.89 ± 0.23 s 

+ 
• 
+ 

Micf  

 

40% 0% 
282.07 ± 59.5 

100% 
16.46 ± 3.44 s 

226.08 ± 38.5 
100% 

1.49 ± 0.20 s 

290.63 ± 46.0 
100% 

1.94 ± 0.25 s 

+ 
• 
+ 

0% 
266.46 ± 36.0 

56% 
4.02 ± 0.68 s 

 

10% 
413.22 ± 60.0 

45% 
6.45 ± 1.96 s 

274.50 ± 51.0  
51% 

3.78 ± 0.60 s 

285.50 ± 57.0 
52% 

4.37 ± 0.89 s 

322.29 ± 62.0 
57% 

3.66 ± 0.71 s 

+ 
• 
+ 

20% 
538.15 ± 57.0 

39% 
5.11 ± 0.51 s 

332.39 ± 50.5 
48% 

4.91 ± 0.67 s 

311.02 ± 54.0 
49% 

5.74 ± 1.54 s 

371.03 ± 88.0 
52% 

3.87 ± 0.80 s 

+ 
• 
+ 

30% 
614.20 ± 40.0 

20% 
5.80 ± 0.43 s 

374.40 ± 44.0 
27% 

11.18 ± 1.40 s 

333.22 ± 71.5  
48% 

5.60 ± 1.60 s 

403.05 ± 76.0 
50% 

3.73 ± 0.56 s 

+ 
+ 
+ 

Langf  

 

40% 0% 
438.35 ± 62.5 

14% 
26.40 ± 3.74 s 

354.73 ± 63.0 
41% 

4.99 ± 1.18 s 

425.05 ± 76.0 
51% 

3.74 ± 0.51 s 

+ 
+ 
+ 

* For more details about the performance measures, please refer to Section 2.2.3.1. 

 

Considering fAck, generally, the improvement in convergence time when the migration 

was introduced was not significant; except for 30% faults (see Test results in Table 4.11). On 

the other hand, the introduction of migration significantly improved search success rate, 

particularly for faults more than 10%. In addition, migration schemes 2 and 3 significantly 

reduced the running time. Overall, the best algorithm performance was achieved with 

migration schemes 2 and 3 when solving fAck. 

Similarly, the introduction of migration significantly improved convergence time and 

speed when solving fMic. The improvement reached 57% for convergence time and 95% for 

speed (see Table 4.12).  With respect to search success rate, there were no significant 

differences between the algorithm configurations (see Test results); however, the algorithm 

failed to solve the problem without migration for 40% faults. As with fRas, generally, the best 

algorithm performance was achieved with migration scheme 2. 

Moving to fLang, in general, the introduction of migration significantly improves the 

algorithm’s efficiency, efficacy, and speed (see Table 4.12). The best efficiency was 

obtained by migration scheme 2, especially for faults over 10%, while  the  best efficacy and 
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Table 4.13. Convergence time (CT), rate (CR), and speed (SP)* for real-world problems 
Problems/ 
% of faults 

 Without migration 
Migration scheme 1 

(First fault-free 
neighbourhood) 

Migration scheme 2 
(Best fault-free 

neighbour) 

Migration scheme3 
(Random fault-free 

neighbour) 
Test 

0% 
288.66 ± 84.0 

63% 
26.72 ± 6.45 s 

 

10% 
404.93 ± 91.5 

66% 
53.05 ± 10.07 s 

328.90 ± 77.0 

61% 
29.04 ± 6.12 s 

290.69 ± 74.0 
66% 

25.87 ± 5.6 s 

344.96 ± 101.0 
64% 

30.18 ± 7.40 s 

+ 
• 
+ 

20% 
520.66 ± 124.0 

51% 
52.07 ± 9.04 s 

364.39 ± 99.5 
56% 

29.41 ± 6.85 s 

327.92 ± 81.0 
57% 

31.98 ± 8.15 s 

378.81 ± 93.0 
59% 

29.54 ± 6.17 s 

+ 
• 
+ 

30% 
715.88 ± 117.5 

42% 
48.30 ± 7.85 s 

410.53 ± 91.0 
47% 

43.81 ± 10.34 s 

364.24 ± 85.0 
57% 

25.51 ± 5.04 s 

453.53 ± 146.5 
56% 

30.72 ± 9.02 s 

+ 
+ 
+ 

FMSf  

 

40% 0% 
457.14 ± 116.0 

47% 
55.10 ± 16.95 s 

446.51 ± 126.0 
47% 

26.69 ± 6.46 s 

445.82 ± 130.0 
58% 

26.82 ± 6.68 s 

• 
• 
+ 

0% 
71.31 ± 17.0 

44% 
0.51 ± 0.20 s 

 

10% 
108.79 ± 20.0 

29% 
0.28 ± 0.01 s 

65.40 ± 14.0 

35% 
0.41 ± 0.06 s 

75.93 ±12.0 
33% 

0.30 ± 0.03 s 

80.74 ±18.0 
39% 

0.26 ± 0.03 s 

+ 
• 
+ 

20% 
174.21 ± 49.0 

19% 
0.38 ± 0.07 s 

67.23 ± 13.0 
17% 

0.77 ± 0.10 s 

81.10 ±13.0 
19% 

0.30 ± 0.04 s 

104.05 ±20.0 
20% 

0.32 ± 0.04 s 

+ 
• 
+ 

30% 
230.77 ± 31.0 

9% 
0.59 ± 0.12 s 

94.54 ± 28.0  
11% 

3.27 ± 1.0 s 

90.53 ±17.0 
13% 

0.32 ± 0.03 s 

115.52 ±16.0 
19% 

0.37 ± 0.04 s 

+ 
+ 
+ 

SLEf  

 

40% 0% 
69.00 ± 0.00 

1% 
3.65 ± 0.00 s 

88.16 ± 8.0 
6% 

0.47 ± 0.12 s 

157.44 ± 26.0  
9% 

0.48 ± 0.78 s 

+ 
+ 
• 

* For more details about the performance measures, please refer to Section 2.2.3.1. 
 

speed were obtained by migration scheme 3. In migration scheme 2, the fittest fault-free 

neighbour was selected to replace the faulty individual(s), which in turn increased the 

selection intensity. Consequently, the best efficiency was achieved by this scheme. On the 

other hand, highly complex problems such as fLang required more exploration, which was 

offered only by migration scheme 3. Hence, migration scheme 3 obtained the best efficacy.   

Table 4.13 depicts the results obtained by all algorithm configurations when solving fFMS 

and fSLE. Significant reductions in the average number of generations was achieved when 

migration was introduced; with the reduction reaching 49% for fFMS and 60% for fSLE. 

Moreover, with migration, the running times were significantly reduced by up to 47% for 

and fFMS and 45% for fSLE. With regard to search success rate, generally, non-significant 

differences (see test results) were obtained when solving fFMS, except for 30% faults. With 

fSLE, significant differences were obtained when migration was introduced, especially for 

fault rates greater than 20%. Overall, the best algorithm performance was achieved by 

migration scheme 2 when solving fFMS, while migration scheme 3 obtained the best 

performance when solving fSLE.  
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Table 4.14. Convergence time (CT), rate (CR), and speed (SP)* for fGPS with stuck at ‘1’ 
faults 

% of 
faults 

Without migration 
Migration scheme 1 

(First fault-free 
neighbourhood) 

Migration scheme 2 
(Best fault-free 

neighbour) 

Migration scheme 3 
(Random fault-free 

neighbour) 
Test 

0% 
23.87 ± 6.5 

100% 
0.09 ± 0.015 s 

 

10% 
40.49 ± 8.0 

99% 
0.110 ± 0.015 s 

34.00 ± 5.0 
100% 

0.110 ± 0.015 s 

30.50 ± 5.0 
100% 

0.106 ± 0.015 s 

32.74 ± 6.5 
100% 

0.107± 0.015 s 

+ 
• 
+ 

20% 
67.88 ± 12.0 

96% 
0.137 ± 0.015 s 

39.32 ± 6.0 
98% 

0.118 ± 0.015 s 

38.31 ± 7.0 
100% 

0.113 ± 0.015 s 

42.34 ± 6.5 
100% 

0.115 ± 0.015 s 

+ 
+ 
+ 

30% 
89.43 ± 3.0 

16% 
0.156 ± 0.00 s 

44.36 ± 6.0 
97% 

0.187 ± 0.030 s 

44.80 ± 8.0 
98% 

0.118 ± 0.015 s 

54.17 ± 10.0 
98% 

0.125 ± 0.016 s 

+ 
+ 
+ 

40% 0% 
51.32 ± 10.0 

94% 
0.432 ± 0.078 s 

53.13 ± 7.5 
98% 

0.120 ± 0.015 s 

60.04 ± 12.0 
94% 

0.131 ± 0.016 s 

+ 
+ 
+ 

* For more details about the performance measures, please refer to Section 2.2.3.1. 

 

In the case of fGPS, the most critical fault scenario occurred when the fitness scores of the 

individuals were stuck at ‘1’. During the update process, the local selection method selects 

the fittest individuals and spreads the poor solutions they provide over the population; thus, 

the algorithm isolates the faulty individuals. As a consequence, a smaller neighbourhood size 

results due to the isolation, which then deteriorates the performance of the algorithm. To 

maintain the population size, the migration operator is explicitly defined.  

As can be seen from Table 4.14, the average number of generations increases 

dramatically as the faults increase, particularly when the migration operator is not used. On 

the other hand, the introduction of migration improves the efficiency and the robustness of 

the algorithm with significant differences (see Test results in Table 4.14). Migration schemes 

1 and 2 achieved almost similar efficiencies, where the differences are not significant. 

Scheme 3 results in an almost similar performance as in the other schemes, with up to 20% 

faults. While for faults > 20%, the performance deteriorates significantly as compared to 

other two schemes.  

In terms of search success rates, all three schemes performed similarly and were 

significantly better than the results obtained without migration. For example, observe the 

sharp drop in search success rate when the fault rate increased to 30% and above.  

With regard to the speed, migration scheme 2 provided the best average run times, 

especially for high rate of faults (≥ 30%). With schemes 2 and 3, a migrant was selected 

from the current neighbourhood to replace the faulty individuals. Thus, the time needed to 

search for fault-free individuals in another neighbourhood was saved. In addition,  choosing 
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Table 4.15. Convergence time (CT), rate (CR), and speed (SP)* for fGPS with stuck at ‘0’ 
faults 

% of 
faults 

Without migration 
Migration scheme 1 

(First fault-free 
neighbourhood) 

Migration scheme 2 
(Best fault-free 

neighbour) 

Migration scheme 3 
(Random fault-free 

neighbour) 
Test 

10% 
29.51 ± 8.0 

100% 
0.104 ± 0.015 s 

28.74 ± 5.0 
100% 

0.106 ± 0.015 s 

27.68 ± 5.5 
100% 

0.105 ± 0.015 s 

29.60 ± 7.0 
100% 

0.105± 0.015 s 

• 
• 
• 

20% 
42.27 ± 8.5 

100% 
0.117 ± 0.015 s 

33.31 ± 7.0 
100% 

0.112 ± 0.015 s 

29.87 ± 5.5 
100% 

0.105 ± 0.015 s 

36.98 ± 7.5 
100% 

0.113 ± 0.001 s 

+ 
• 
+ 

30% 
50.93 ± 11.0 

98% 
0.121 ± 0.015 s 

36.35 ± 9.0 
98% 

0.169 ± 0.0165 s 

39.25 ± 7.0 
99% 

0.116 ± 0.015 s 

44.07 ± 8.0 
99% 

0.119 ± 0.015 s 

+ 
• 
+ 

40% 
63.44 ± 10.0 

93% 
0.129 ± 0.015 s 

39.75 ± 7.0 
96% 

0.348 ± 0.047 s 

41.95 ± 8.5 
96% 

0.116 ± 0.008 s 

51.09 ± 10.0 
96% 

0.124 ± 0.015 s 

+ 
• 
+ 

* For more details about the performance measures, please refer to Section 2.2.3.1. 
 

the fittest fault-free neighbour (scheme 2) simplified the search and thus improved the 

efficiency of the algorithm, while selecting a random fault-free neighbour (scheme 3) 

reduced the efficiency. However, when all neighbours were faulty, migration scheme 1 was 

applied. The advantage of this scheme resides in the diversity offered as each faulty 

individual is replaced by a different migrant. Thus, the efficiency and the efficacy of the 

algorithm were improved, although the time needed increased due to the search for a fault-

free neighbourhood. Thus, overall, the second scheme provided the best performance.         

The other critical fault scenario occurred when the fitness scores of individuals were 

stuck at ‘0’. During the local selection, the weakest individuals are ignored leading to be 

implicitly isolated. Although these individuals are implicitly isolated, they may negatively 

affect the accuracy of solutions as they are allowed to mate with other individuals. 

Therefore, an explicit isolation scheme (as the when defined in this study) is required to 

maintain the accuracy of the results.  

Considering the efficiency and speed of the algorithm (Table 4.15), similar results as that 

for the stuck at logic ‘1’ fault model can be observed. On the other hand, with regard to 

search success rate, the differences in the results obtained with or without the use of 

migration were insignificant (see test results). Although this model was less critical than the 

first model, it was an essential issue for fault tolerant systems to handle it due to the high 

accuracy needed, especially for hard, real-time applications such as the problem of GPS 

attitude determination. 

In order to provide a general conclusion, two-level ranking was performed (similar to the 

ranking performed in Sections 4.4.3.1 and 4.1.3.2) based on the three performance metrics 

independently: convergence time, convergence rate, and speed (see Tables 4.16, 4.17, and 
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4.18, respectively).  Table 4.19 depicts a general ranks which are computed using the three 

metric ranks in order to find the best algorithm configurations when considering all metrics 

dependently. Similarly, this ranking is computed by summing the global ranks obtained 

based on each metric and the minimum summation result is assigned the highest rank (i.e., 

the lowest value).  

 
Table 4.16. Local and global* convergence-time-based ranking 

Rank Algorithms 
Rasf  Ackf  Micf  Langf  FMSf  SLEf  GPSf  Sum 

1 Migration scheme 2 1 1 1 1 1 2 1 8 

2 Migration scheme 1 2 3 2 2 3 1 1 14 

3 Migration scheme 3 2 1 3 3 2 3 3 17 

4 Without migration 2 3 3 3 3 3 3 20 

 

Table 4.17. Local and global* convergence-rate-based ranking 
Rank Algorithms 

Rasf  Ackf  Micf  Langf  FMSf  SLEf  GPSf  Sum 

1 Migration scheme 2 1 1 1 2 1 2 1 9 

1 Migration scheme 3 1 2 1 1 1 1 2 9 

3 Migration scheme 1 1 3 1 2 4 2 3 16 

4 Without migration 4 4 4 2 3 2 4 23 

 

Table 4.18. Local and global* speed-based ranking 
Rank Algorithms 

Rasf  Ackf  Micf  Langf  FMSf  SLEf  GPSf  Sum 

1 Migration scheme 2 1 1 1 2 1 1 1 8 

2 Migration scheme 3 3 1 2 1 3 2 3 15 

3 Migration scheme 1 3 3 2 2 2 3 2 17 

4 Without migration 2 3 2 2 3 3 3 18 

 
 

Table 4.19. Convergence-time (CT), rate (CR), and speed (SP) based-ranking† 
Rank Algorithms Convergence-time Convergence-rate Speed Sum 

1 Migration scheme 2 1 1 1 3 

2 Migration scheme 3 3 1 2 6 

3 Migration scheme 1 2 3 3 8 

4 Without migration 4 4 4 12 

 

In all the rankings, we considered only the worst-case fault model, which was stuck at ‘1’ 

faults for GPSf  and stuck at ‘0’ for all other problems. 

                                                 
* Local ranks (columns 3 to 8) are performed for each problem independently; the highest rank is assigned the lowest value. 
Global ranks are performed by summing the local ranks of each problem and are shown in the first column. 
† The rankings are performed by summing the global ranks computed based on each performance metric; summation values are 
shown in the last column while the ranks are shown in the first column.  



 98 

In summary, the introduction of the migration operator added a significant advantage as 

the performance of the algorithm improved considerably, especially for high rates of faults. 

In particular, migration scheme 2 achieved the best performance overall (see Table 4.19). As 

mentioned previously, migration scheme 2 replaces faulty individual(s) with the fittest fault-

free one within the same neighbourhood. Therefore, this scheme saves time needed to search 

other neighbourhoods as well as provides high selection intensity leading to reduce the 

number of generations required to find desired solutions. However, problems with higher 

complexities such as fLang and fSLE need more diversity which could be offered by reducing 

the selection intensity. Therefore, due to the random selection of a fault-free neighbour to 

replace faulty individual(s) migration scheme 3 is preferred for those problems in order to 

improve the search success rate.      

 

4.2.4    Conclusion   

 

In this study, we proposed two new adaptive migration schemes in order to improve the 

performance of the algorithm. Simulation results demonstrate that the new migration 

schemes excelled in improving the efficiency, efficacy, and speed considerably, in particular 

migration scheme 2, thereby enhancing the reliability of the algorithm, especially for high 

rates of faults.   

Besides being a mitigation technique, the integration of migration has played an 

important role in controlling the exploration/exploitation trade-off. Exploration and 

exploitation are the two main issues in enhancing the performance of evolutionary 

algorithms. Population diversity is improved by exploring the search space, while the 

optimum solution can be found by exploiting the fitness information. In this work, the best 

overall performance in terms of efficiency, efficacy, and speed was achieved with migration 

scheme 2 due to its effect in enhancing the local selection intensity and population diversity.  

The grid topology (i.e., 3D grid) has also contributed to the effectiveness of the 

algorithm. The vertical expansion of cells leads to shorter diameter and denser 

neighbourhood compared to 2D grids with similar neighbourhood topology and equal 

population size. Therefore, it can be concluded that for problems of high degree of 

complexity, higher cellular dimensions could be beneficial.     
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4.3    Dynamic Fault Tolerant 3D-cGA 

 

This section presents a new Dynamic Fault-Tolerant 3D-cGA (Dynamic FT 3D-cGA) that is 

based on the canonical cGA search model discussed earlier. In this study, the proposed 

algorithm is a modified version of Fault-Tolerant 3D-cGAthe algorithm previously 

proposed in Section 4.1. In order to improve the performance and reliability of Fault-

Tolerant 3D-cGA, new adaptive migration schemes were introduced in Section 4.2, while 

this section introduces dynamic adaptation schemes to achieve further improvement. The 

same test bench suite is used to test the performance of the Dynamic FT 3D-cGA. The suite 

includes the Rastrigin (fRas), Ackley (fAck), Michalewicz (fMic), Langermann (fLang), FMS 

(fFMS), SLE (fSLE), and GPS (fGPS) problems (fGPS was discussed in Section 4.2.2, while the 

details of the remaining benchmark problems are provided in Appendix A). Furthermore, 

different algorithm configurations are defined considering the introduction of migration and 

two different dynamic adaptation schemes. The description of the algorithm, configurations, 

and dynamic adaptation schemes are presented in Section 4.3.1. Section 4.3.2 discusses and 

analyses the simulation results obtained with the various algorithm configurations. 

Concluding remarks are given in Section 4.3.3.  

 

4.3.1    Algorithm Configuration 

 

As the proposed algorithm (i.e., Dynamic FT 3D-cGA) is an improved version of the FT 3D-

cGA, this section starts with a brief description of FT 3D-cGA (for more details refer to 

Section 4.1). Next, a description of the dynamic features added is given. FT 3D-cGA 

automatically isolates the faulty individuals and consists of three phases. In the first phase, 

the changes in the genetic diversity of each individual is observed independently and 

computed by running a cGA for a few generations. In the second phase (i.e., the isolation 

phase), the faulty individuals are determined and isolated using genetic information from the 

first phase. Finally, another cGA is run, until the termination criterion is satisfied, to solve 

the given problem while excluding the faulty individuals from the process. In this study, the 

Dynamic FT 3D-cGA follows the same first and second phases as in the FT 3D-cGA. 

However, the difference resides in the third phase as it starts with a new derived value of 

maximum number of generations (MaxGens) based on the ratio of faults encountered in the 

preceding phase. The dynamic setting of MaxGens aims at balancing the number of 
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evaluations due to the reduction in the number of individuals alive, and will be introduced 

later in this section. 

In Section 4.2 it has been concluded that the migration scheme 2 was the best. However, 

in this section, the migration scheme 1 (was proposed in Section 4.1.2.3) is employed as the 

main concern of this study is the influence of the dynamic mechanism on FT 3D-cGA. In 

addition, the fault models considered and isolation criterion were proposed in Sections 4.1.1 

and 4.1.2.2, respectively.  

The local selection method defined in this study is the binary tournament selection (BT), 

in which two random individuals are selected and the fittest individual wins the tournament. 

The crucial role of the local selection method comes from its direct effect on the global 

selection pressure. The selection pressure determines the convergence speed as well as 

population diversity (Simoncini et al., 2007), and can be evaluated by monitoring the growth 

of the best individual (by letting the selection be the only active operator) (Goldberg and 

Deb, 1991). Figure 4.9 shows an average of 100 independent runs for the growth of the best 

individual over a cubic grid against different fault rates, where the population size is 343 (7 × 

7 × 7). 
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Figure 4.9. Growth curves of the best individual for various fault ratios using BT. 
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As shown in Figure 4.9, the growth of the best individual without faults (0%) sharply 

increases to conquer the whole population, thus promoting exploitation by increasing the 

global selection intensity on the population. Although this exploitative behaviour may 

improve the efficiency of the algorithm, a premature convergence may occur and negatively 

affect the algorithm’s efficacy. Conversely, with faults, the behaviour tends to be more 

explorative (see Figure 4.9). However, an explicit migration operator is defined in this 

research not only to mitigate the impact of faults that occurred, but also to enhance the 

exploration/exploitation trade-off, and thus improve the performance of the algorithm (Al-

Naqi et al., 2011a). 

 

4.3.1.1    Dynamic Adaptation Schemes 

 

This section presents two dynamic adaptation schemes: MaxGens1 and MaxGens2. The basic 

idea is to adapt the value of MaxGens based on the fault ratio identified in the isolation 

phase. In other words, the value of MaxGens is dynamically tuned at the start of the final 

phase, and the initial value of MaxGens is manually set. 

 

  

 
Figure 4.10. Fitness evaluations for various fault ratios. (a) 0% faults, (b) 10% faults, (c) 20% faults, 
(d) 30% faults, (e) 40% faults. 
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(a) Maximum number of generations (MaxGens) versus proportion of faults. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(b) Number of fitness evaluations versus proportion of faults. 
 

Figure 4.11. MaxGens and fitness evaluations as a function of fault ratio for a population size of 343 
individuals. 
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Isolating faulty individuals reduces the number living, which reduces the virtual size of 

the population. This thus minimises the chance of finding the optimum solutions, and 

deteriorates the performance of the algorithm, especially when solving complex problems 

(Cantu-Paz, 1995). For example, by assuming a population of 25 individuals and MaxGens 

of 100, the number of fitness evolutions is 2500 for 0% faults, 2200 for 10% faults, and so 

on (see Figure 4.10). Therefore, the value of MaxGens dynamically increases as a function of 

fault ratio to offer a similar number of evaluations as with 0% faults (e.g., 125 generations 

are needed for 20% faults (see Figure 4.10)). 

The computation of the new MaxGens is shown in (4.5). The actual population size is 

denoted by popSize, while the number of living individuals is indicated by aliveSize. The 

initially defined maximum number of generations is indicated by gens. 

 

( )
.1 aliveSize

genspopSize
MaxGens

∗=                                                    (4.5) 

 

In addition, we define a further increase in MaxGens to tackle added difficulties caused 

by faults, although this leads to increased computation cost. Equation 4.6 describes this 

situation, where Pfaults indicates the ratio of the faults. 

 

( ) ( ).12 Pfaults
aliveSize

genspopSize
MaxGens +∗∗=                                     (4.6) 

 

Locally, the selection of a second parent is limited by the number of fault-free neighbours 

of the current individual. The solutions provided by individuals surrounded by a considerable 

number of faulty neighbours are less likely to be optimised, which introduces more difficulty 

in search, particularly with high fault ratios. 

Figure 4.11(a) shows the increment of MaxGens as a function of the fault ratio. For 

example, if gens is 1000, MaxGens will be 1110, based on equation (4.5) and 1221, based on 

equation (4.6) for 10% faults, and so on. From Figure 4.11(b), we see that the number of 

evaluations is maintained for all fault ratios based on equation (4.5); thus, there is no added 

computation cost. Based on equation (4.6), the number of evaluations increases in proportion 

to the fault ratio (e.g., 10% for 10% faults, and so on). 
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4.3.2    Experimental Results and Analysis 

 

This section first introduces the parameters and performance metrics used in experiments. 

Next, the results obtained for the FT 3D-cGA on the test suite described earlier are presented 

and analysed. Then, the results obtained when solving all the problems using the Dynamic 

FT 3D-cGA with both adaptation schemes are presented and analysed. Finally, a comparison 

between the FT 3D-cGA and the Dynamic FT 3D-cGA with the best adaptation scheme is 

provided. 

Table 4.20 shows the parameters that were used in the experiment. For all the problems, 

the same parameters were employed in order to achieve a fair comparison. A population size 

of 343 individuals was used. These were arranged over a 7×7×7 lattice. As an exception, for 

fGPS, a population of 125 individuals organised over a 5×5×5 lattice was used due to its low-

dimensional space (n = 3 for fGPS versus n = 10 for all other problems; except for fFMS as n = 

6). The local neighbourhood contained seven individuals, which were positioned to the east, 

west, vertical north and south, and horizontal north and south, plus the central one. The first 

parent was the current individual, while the second parent was selected by using binary 

tournament selection. An arithmetic crossover operator with a rate of Pc = 0.9 was applied to 

generate an offspring. The offspring was mutated by a non-uniform mutation operator, with 

rate Pm. 

 

Table 4.20. Parameters used in the experiments 
Population size: 343 individuals, 125 individuals for fGPS 

Parent selection: Centre +BT 

Recombination: AX, Pc = 0.9 

Mutation: Non-uniform, Pm 

Replacement: Replace-if-better 

Neighbourhood: NEWS 

Lattice: 7×7×7 (5×5×5 for fGPS) 
Termination criterion: Average fitness value ≤ threshold ( ≥ threshold for fGPS)  

 
 
Table 4.21. Convergence time (CT), rate (CR), and speed (SP)* for benchmark problems 
when there were no faults 

Performance 
metrics Rasf  Ackf  Micf  Langf  FMSf  SLEf  GPSf  

Average no. of 
generations 

266.29 
± 47.00 

914.94 
± 428.5 

153.78 
± 34.00 

262.42 
± 36.00 

294.65 
± 74.0 

59.83 
± 9.5 

23.87 
± 6.5 

Search success rate 100% 78% 100% 57% 63% 54% 100% 

Average run times 
(seconds) 

0.71 4.71 1.34 4.80 49.27 0.81 0.09 

* For more details about the performance measures, please refer to Section 2.2.3.1. 
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A different value of Pm was assigned for each problem due to their different complexities: 

Pm = 1/2L for fRas and fMic, Pm = 1/10L for fSLE, and Pm = 1/L for other problems; L is the 

length of the chromosome. The replacement policy defined was replace-if-better, during 

which the current individual was replaced if its competitor (offspring) was fitter. The 

migration parameters used were previously described in Section 4.1.2.3. Finally, the 

algorithm terminated if the average-fitness-value satisfied a predefined threshold. A different 

threshold was defined for each problem: ≥ 0.997 for fGPS, ≤ 1e−4 for fSLE, ≤ 2e−4 for fAck, ≤ 

1.89e−2 for fMic, and ≤ 5e−5 for other problems*.  

In addition, for each problem, the assigned value of the initial maximum number of 

generations was 150 generations for fGPS, 700 generations for fLang and fMic, 1000 generations 

for fRas, fFMS, and fSLE, and 2000 generations for fAck
†. 

Similar ratios and fault patterns were injected for each algorithm and problem. The 

performance of the algorithms was measured using three metrics: the search success rate 

(i.e., the efficacy), the average number of generations (i.e., the efficiency), and the average 

execution times of 100 independent runs. 

Tables 4.22–4.27 present the results obtained for the FT 3D-cGA and the Dynamic FT 

3D-cGA. Each algorithm was tested with and without the employment of the migration 

technique introduced earlier to investigate the effectiveness of the migration. Furthermore, to 

show the robustness of the algorithms, the median absolute deviations, mad, was added to 

the results obtained (mad is used due to the non-normal distribution of the results obtained). 

The best results achieved for each fault ratio are marked in bold. Significant improvement is 

indicated by a plus sign (+ ), while a non-significant difference is denoted by a dot (• ) 

(details about the statistical tests were provided in Section 2.2.3.1). Furthermore, the results 

obtained when there were no faults are shown in Table 4.21, taking into account the fact that 

the migration operator and the adaptation scheme are inactive in the absence of faults. 

 
4.3.2.1    Fault-Tolerant 3D-cGA 

 

This subsection discusses and compares the results obtained for the FT 3D-cGA with and 

without migration when solving the problems of the test suite. 

Tables 4.22–4.24 depict the results obtained. In general, FT 3D-cGA showed its ability 

and successfully solved different problems with up to 40% faults, especially when it was 

                                                 
* These thresholds were obtained by carrying out preliminary experiments which aimed to identify a single threshold for each 
problem that results in the most desirable overall performance. 
† Similarly, the number of generations for each problem was chosen to provide the most appropriate trade-off between 
algorithm performance and time constraints.   
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combined with the migration technique. Further, the introduction of migration provided 

significant improvements in terms of all performance metrics considered. 

As can be seen from Table 4.22, the efficiency of the algorithm significantly improved 

with the migration to reach up to 74% for all real-world problems and most of the test 

functions (see test results), except for fAck. Complex problems require high diversity levels to 

achieve reliability.  

 
Table 4.22. Convergence time (CT)* obtained for FT 3D-cGA with/without migration 

Algorithms 
Problem/ 
Fault ratio Rasf  Ackf  Micf  Langf  FMSf  SLEf  GPSf  

10% 
366.9 
± 49.5 

1246.4 
± 322.0 

215.96 
± 34.0 

399.60 
± 53.5 

348.10 
± 71.5 

89.24 
± 10.0 

40.49 
± 8.0 

20% 
591.66 
± 78.0 

1343.0 
± 303.0 

363.86 
± 62.0 

540.79 
± 85.0 

636.82 
± 137.0 

187.15 
± 35.0 

67.88 
± 12.0 

30% 
738.5 
± 95.0 

1412.3 
± 183.5 

466.41 
± 56.0 

621.25 
± 41.5 

723.30 
± 122.0 

308.73 
± 88.0 

89.43 
± 3.0 

Fault-
tolerant 
3D-cGA 
Without 

migration 

40% 
- 

± 0.00 
- 

± 0.00 
- 

± 0.00 
- 

± 0.00 
- 

± 0.00 
- 

± 0.00 
- 

± 0.00 

10% 304.58 
± 51.0 

1269.0 
± 341.0 

175.39 
± 35.5 

304.51 
± 63.0 

319.80 
± 94.5 

64.75 
± 12.0 

29.80 
± 6.0 

20% 353.98 
± 48.5 

1426.6 
± 234.0 

202.8 
± 44.0 

340.78 
± 66.0 

352.89 
± 85.0 

74.89 
± 19.0 

40.48 
± 8.0 

30% 424.26 
± 49.0 

1576.7 
± 170.0 

222.08 
± 46.5 

419.89 
± 64.0 

359.66 
± 114.0 

79.91 
± 9.0 

47.45 
± 9.0 

Fault-
tolerant 
3D-cGA 

With 
migration 

40% 490.89 
± 55.5 

1642.8 
± 166.5 

289.98 
± 59.0 

435.79 
± 49.0 

492.30 
± 185.0 

152.60 
± 31.0 

48.78 
± 9.5 

Tests  + •••• + + + + + 

 
Table 4.23. Convergence rate−CR* (%) obtained for FT 3D-cGA with/without migration 

Algorithms 
Problem/ 
Fault ratio Rasf  Ackf  Micf  Langf  FMSf  SLEf  GPSf  

10% 100 60 100 46 58 33 99 

20% 90 23 99 34 51 26 96 

30% 83 8 95 12 47 15 16 

Fault-
tolerant 3D-

cGA 
Without 

migration 40% 0 0 0 0 0 0 0 

10% 100(.) 66(.) 100(.) 45(.) 62(.) 24(.) 100(.) 
20% 100(+) 45(+) 100(.) 33(.) 56(.) 19(.) 99(.) 
30% 100(+) 33(+) 100(+) 29(+) 53(.) 12(.) 96(+) 

Fault-
tolerant 3D-

cGA 
With 

migration 40% 100(+) 12(+) 100(+) 15(+) 43(+) 5(+) 94(+) 

 
Table 4.24. Speed−SP* (seconds) obtained for FT 3D-cGA with/without migration 

Algorithms 
Problem/ 
Fault ratio Rasf  Ackf  Micf  Langf  FMSf  SLEf  GPSf  

10% 0.88 6.35 1.56 5.42 50.59 1.09 0.110 

20% 1.36 6.45 2.12 6.00 58.11 1.20 0.137 

30% 1.52 6.41 2.43 5.52 75.4 1.31 0.156 

Fault-tolerant 
3D-cGA 
Without 

migration 40% - - - - - - - 

10% 0.86 6.35 1.44 5.20 44.53 1.48 0.104 
20% 1.14 7.50 1.55 5.80 51.81 2.20 0.114 
30% 1.32 7.46 1.58 5.40 59.21 2.04 0.120 

Fault-tolerant 
3D-cGA 

With 
Migration 

40% 1.50 7.81 1.85 5.40 61.05 2.26 0.125 

 

                                                 
* For more details about the performance measures, please refer to Section 2.2.3.1. 
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The increase in fault ratio promotes exploitation by lowering the diversity level due to the 

isolated individuals; thus, the reliability of the algorithm is deteriorated. For example, the 

search success rates obtained without migration when solving fAck were very low, particularly 

for 20% faults and above. On the other hand, the introduction of migration enhanced 

diversity as the migrant individuals replaced the isolated (faulty) ones, which significantly 

increased the search success rates. The significant differences between the search success 

rates obtained with and without migration justify the lower number of generations achieved 

without migration when solving fAck. Overall, the migration assists in obtaining robustness of 

the algorithm (see mad values), especially for 20% faults and above; with the exceptions 

being as a result of the very low search success rates obtained when the migration was not 

employed. 

Table 4.23 shows the search success rates obtained. In general, it can be seen that FT 3D-

cGA with migration obtained higher search success rates for all test functions and most real-

world problems, reaching up to 100%. However, an exception was for fSLE, where a decline 

in the search success rates is observed for up to 30% faults. Nevertheless, this deterioration is 

not significant (see test results). For 40% faults, a significant improvement in the search 

success rate was achieved, although the rate obtained was very low (5%). 

The average execution times are shown in Table 4.24. For most of the problems, 

employment of the migration technique led to speeding up of the execution time, reaching up 

to 35%. However, the most important exception was encountered when solving fSLE due to 

low search success rate obtained. fSLE is a rather difficult problem and was extensively 

affected by the faults that occurred. This fact induces a negative effect on the performance 

and reliability of the algorithm. 

In summary, the use of migration as a mitigation technique to achieve fault tolerance 

added considerable improvements in terms of efficiency, efficacy, speed, and reliability of 

the algorithm, especially for the high ratio of faults. 

 
4.3.2.2   Dynamic Fault-Tolerant 3D-cGA 
 
This subsection presents and analyses the results obtained for the Dynamic FT 3D-cGA 

when solving the problems of the test suite. The proposed dynamic mechanism adapts the 

permitted maximum number of generations to solve a given problem based on the number of 

faulty individuals observed. The proposed algorithm was tested with and without migration, 

as well as for each of the two adaptation schemes defined earlier, MaxGens1 and MaxGens2, 

to explore the influence of migration and the increment in the number of fitness evaluations 
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on the performance of the algorithm. 

 

Dynamic FT 3D-cGA with MaxGens1 

 

Tables 4.25–4.27 exhibit the results obtained. Generally, for all the problems, the 

employment of the migration technique resulted in better efficiency with significant 

differences (Table 4.25), except for fAck, as the improvement was not significant (see Test 

results). The robustness and improvement rate of the efficiency increased together with the 

increment in the fault ratio (see mad values). These improvements reached up to 42% 

reduction in the number of generations, and most importantly, when similar search success 

rates were obtained by both algorithm configurations. For example, when solving fMic for 

20% faults, the average number of generations obtained was 340.92 without migration and 

198.39 with migration, whereas a search success rate of 100% was obtained for both. 

Considering the search success rate, with the use of migration, the algorithm was found to 

obtain higher efficacy for most of the problems, except for fSLE (see Table 4.26). Although 

migration enhanced the population diversity, the algorithm showed an exploitative behaviour 

when solving fSLE as the search success rate deteriorated. Owing to the diverse characteristics 

and complexities, different problems need different exploration/exportation degrees; fSLE is a 

very complex problem. In addition, although the performance of the algorithm could be 

improved by tuning the parameters to suit a particular problem, it is not our concern in this 

study. 

 
Table 4.25. Convergence time (CT)* obtained for Dynamic FT 3D-cGA with MaxGens1 

Algorithms 
Problem/ 
Fault ratio Rasf  Ackf  Micf  Langf  FMSf  SLEf  GPSf  

10% 
379.08 
± 64.00 

1468.32 
± 413.0 

202.89 
± 28.50 

364.43 
± 45.00 

409.15 
± 86.00 

104.90 
± 25.00 

38.82 
± 7.00 

20% 
631.63 
± 97.00 

1787.13 
± 359.0 

340.92 
± 45.00 

567.23 
± 83.00 

606.58 
± 138.0 

176.38 
± 40.00 

58.39 
± 6.00 

30% 
812.32 
± 104.5 

2180.14 
± 302.5 

476.36 
± 66.00 

718.17 
± 82.00 

777.31 
± 159.0 

249.6 
± 35.50 

83.26 
± 5.00 

Dynamic 
Fault-

tolerant 
3D-cGA 
Without 

migration 
40% - - 

1053.0 
± 00.00 

679.00 
± 00.00 

1289.42 
± 146.5 

332.00 
± 00.00 

- 

10% 317.00 
± 59.00 

1406.98 
± 278.0 

166.30 
± 33.00 

299.80 
± 65.00 

339.79 
± 101.0 

78.51 
± 18.00 

30.10 
± 6.00 

20% 340.29 
± 53.00 

1720.50 
± 384.0 

198.39 
± 37.50 

341.04 
± 58.00 

318.52 
± 81.00 

71.68 
± 14.00 

38.81 
± 6.00 

30% 415.33 
± 64.50 

2013.64 
± 429.0 

246.30 
± 42.00 

387.26 
± 76.50 

429.0 
± 132.0 

83.00 
± 13.00 

43.88 
± 7.00 

Dynamic 
Fault-

tolerant 
3D-cGA 

With 
migration 

40% 502.82 
± 66.00 

2518.65 
± 345.5 

284.80 
± 67.50 

470.12 
± 66.50 

502.76 
± 151.0 

138.00 
± 00.00 

49.70 
± 11.50 

Tests   + •••• + + + + + 
* For more details about the performance measures, please refer to Section 2.2.3.1. 
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Table 4.26. Convergence rate−CR* (%) obtained for Dynamic FT 3D-cGA with MaxGens1 

Algorithms 
Problem/ 
Fault ratio Rasf  Ackf  Micf  Langf  FMSf  SLEf  GPSf  

10% 100 55 100 48 58 33 89 

20% 93 43 100 39 51 21 66 

30% 92 20 98 29 55 14 19 

Dynamic 
Fault-tolerant 3D-

cGA 
Without migration 40% 0 0 1 1 18 1 0 

10% 100(.) 70(+) 100(.) 51(.) 64 25(.) 95(.) 
20% 100(+) 64(+) 100(.) 41(.) 53 19(.) 95(+) 
30% 100(+) 65(+) 100(.) 30(.) 56 11(.) 95(+) 

Dynamic 
Fault-tolerant 3D-

cGA 
With migration 

40% 100(+) 52(+) 100(+) 16(+) 43 1(.) 94(+) 

 
Table 4.27. Speed−SP* (seconds) obtained for Dynamic FT 3D-cGA with MaxGens1 

Algorithms 
Problem/ 
Fault ratio Rasf  Ackf  Micf  Langf  FMSf  SLEf  GPSf  

10% 0.91 6.90 1.52 5.33 54.68 1.16 0.115 

20% 1.49 7.75 2.21 6.49 59.90 1.46 0.133 

30% 1.69 8.73 2.53 6.81 65.55 1.71 0.151 

Dynamic Fault-
tolerant 3D-cGA 

Without 
migration 

40% - - 5.07 7.55 81.42 2.33 - 

10% 0.89 6.85 1.40 5.16 51.68 1.58 0.106 
20% 1.02 8.22 1.55 5.86 60.29 2.12 0.118 
30% 1.28 9.35 1.71 5.95 64.78 2.79 0.188 

Dynamic Fault-
tolerant 3D-cGA 

With 
migration 

40% 1.52 10.90 1.87 7.71 63.35 3.92 0.421 

 
Table 4.27 shows the average execution times. In general, for most of the problems, a 

faster speed was achieved with migration, except for fAck and fSLE. Although the migration 

reduced the average number of generations, the average execution times needed by the 

algorithm to solve fAck was slightly increased to reach up to 6%. Furthermore, the average 

execution times needed to solve fSLE was significantly increased to reach up to 40%. This 

behaviour is due to the difficult search incurred when solving complex problems, especially 

for high fault ratios. 

 
Dynamic FT 3D-cGA with MaxGens2 

 

Tables 4.28–4.30 show the results obtained. It should be noted that the algorithm shows 

similar behaviour as with MaxGens1 in terms of efficiency, efficacy, and speed. In summary, 

with migration, the algorithm shows significantly better efficiency and stronger robustness 

for all problems (Table 4.28), as well as higher search success rates (Table 4.29). 

Additionally, considerable improvement in terms of speed is achieved due to the migration 

(Table 4.30). 

A difference in the algorithm’s behaviour was observed when solving fAck, as the search 

success rate obtained increased marginally when the fault ratio also increased. This odd 

                                                 
* For more details about the performance measures, please refer to Section 2.2.3.1. 
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behaviour is due to the increase in the number of fitness evaluations, i.e., the initial 

maximum number of generations defined is not the best to solve this problem. Thus, the new 

MaxGens2 calculated improves the search success rates by offering more fitness evaluations. 

This confirms that fAck needs more exploration, which can be promoted by offering more 

generations. However, we continued with the initial maximum number of generations 

defined (2000 generations for fAck) to test the algorithm, as time was a critical factor. 

 

Table 4.28. Convergence time (CT)* obtained for Dynamic FT 3D-cGA with MaxGens2 
Algorithms 

Problem/ 
Fault ratio Rasf  Ackf  Micf  Langf  FMSf  SLEf  GPSf  

10% 
397.14 
± 66.0 

1328.7 
± 456.5 

220.55 
± 32.5 

380.19 
± 73.0 

382.14 
± 72.0 

96.62 
± 22.0 

40.02 
± 7.0 

20% 
694.17 
± 148.0 

1933.2 
± 495.0 

340.98 
± 57.0 

625.93 
± 110.5 

581.73 
± 123.0 

181.83 
± 33.0 

69.54 
± 9.0 

30% 
898.92 
± 153.5 

2523.9 
± 907.0 

468.95 
± 70.5 

764.27 
± 140.5 

852.33 
± 169.5 

219.07 
± 37.0 

111.52 
± 13.0 

Dynamic 
Fault-

tolerant 
3D-cGA 
Without 

migration 
40% 

977.00 
± 0.0 

- 
± 0.0 

1264.4 
± 115.0 

- 
± 0.0 

1670.7 
± 282.0 

1649.0 
± 0.0 

162.19 
± 13.0 

10% 294.17 
± 37.5 

1430.2 
± 431.5 

175.63 
± 40.0 

301.15 
± 51.0 

309.50 
± 21.00 

69.87 
± 13.0 

31.24 
± 6.5 

20% 339.45 
± 52.5 

1914.4 
± 440.0 

191.36 
± 35.0 

326.20 
± 60.5 

427.40 
± 139.0 

66.31 
± 10.0 

39.38 
± 7.0 

30% 414.00 
± 62.5 

2348.2 
± 460.5 

227.75 
± 42.5 

404.47 
± 74.5 

447.27 
± 118.5 

99.33 
± 16.0 

41.36 
± 7.0 

Dynamic 
Fault-

tolerant 
3D-cGA 

With 
migration 

40% 499.11 
± 37.5 

3028.6 
± 448.5 

294.82 
± 56.0 

485.95 
± 55.5 

646.04 
± 193.0 

162.00 
± 0.0 

52.04 
± 10.0 

Tests   + •••• + + + + + 

 
Table 4.29. Convergence rate−CR* (%) obtained for Dynamic FT 3D-cGA with MaxGens2 

Algorithms 
Problem/ 
Fault ratio Rasf  Ackf  Micf  Langf  FMSf  SLEf  GPSf  

10% 100 64 100 51 63 45 91 

20% 97 57 100 46 60 25 87 

30% 95 44 100 36 54 13 71 

Dynamic 
Fault-tolerant 3D-

cGA 
Without migration 40% 1 0 33 0 38 1 56 

10% 100(.) 78(+) 100(.) 51(.) 65(.) 31(−−−−) 100(+) 
20% 100(.) 79(+) 100(.) 48(.) 55(.) 19(.) 100(+) 
30% 100(+) 82(+) 100(.) 40(.) 55(.) 6(.) 99(+) 

Dynamic 
Fault-tolerant 3D-

cGA 
With migration 

40% 100(+) 84(+) 100(+) 20(+) 46(.) 1(.) 99(+) 

 
Table 4.30.  Speed−SP* (seconds) obtained for Dynamic FT 3D-cGA with MaxGens2 

Algorithms 
Problem/ 
Fault ratio Rasf  Ackf  Micf  Langf  FMSf  SLEf  GPSf  

10% 0.97 6.50 1.58 5.63 51.51 1.06 0.11 

20% 1.58 8.23 2.05 7.23 63.09 1.65 0.14 

30% 1.91 10.08 2.41 8.07 79.30 2.25 0.17 

Dynamic Fault-
tolerant 3D-cGA 

Without 
migration 

40% 3.93 - 6.10 - 105.4 2.94 0.20 

10% 0.89 6.73 1.43 5.77 68.60 1.46 0.105 
20% 1.08 8.94 1.59 6.40 87.02 2.64 0.113 
30% 1.31 10.72 1.60 7.73 62.46 3.93 0.114 

Dynamic Fault-
tolerant 3D-cGA 

With 
migration 40% 1.51 12.94 1.85 10.51 77.56 5.14 0.126 

                                                 
* For more details about the performance measures, please refer to Section 2.2.3.1. 
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Table 4.31. Comparison of MaxGens2 versus MaxGens1 in terms of convergence time (CT) 
and rate (CR)* 

Problem 
Without 

migration 
With 

migration 

Rasf  •, • •, • 

Ackf  •, + •, + 

Micf  •, • •, • 

Langf  •, • •, • 

FMSf  •, • •, • 

SLEf  •, • •, • 

GPSf  •, + •, + 

* For more details about the performance measures, please refer to Section 2.2.3.1. 
 
Let us now proceed to compare the two adaptation schemes discussed earlier (see Table 

4.31). The aim of this comparison is to show the influence of increasing the number of 

fitness evaluations, when the number of faults increases, on the performance of the 

algorithm, in particular, the efficiency and efficacy. The speed follows similar behaviour 

pattern as the efficiency. 

Although the initial expectation is that better efficiency and speed is achieved with 

MaxGens1, this is not always the case. The main cause of this surprising behaviour is the 

existence of faults, which added more difficulty to the search, and thus more generations and 

time were needed to determine the desired solutions. From the above Tables, generally better 

efficiency and speed were achieved with MaxGens1 for most of the problems; however, the 

differences were not significant (non-significant differences are indicated by the symbol ‘•’ 

in Table 4.31). Higher search success rates were obtained with MaxGens2, with differences 

that were not significant for most of the problems. However, for fAck and fGPS, the 

improvement in the efficacies was significant, with and without the use of migration 

(significant differences are indicated by the symbol ‘+’ in Table 4.31). 

In summary, the Dynamic FT 3D-cGA showed its ability to solve different problems for 

up to 40% faults, and significant improvements in the performance of the algorithm were 

achieved, especially with migration. The computational cost of increasing the number of 

fitness evaluations was not significant, whereas significant improvements in the efficacy 

were achieved for some of the problems. At this point, we can state that the best performance 

was obtained with MaxGens2, and accordingly, we continued our analysis based on this 

scheme. 
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4.3.2.3    Dynamic FT 3D-cGA vs. FT 3D-cGA 
 

This subsection compares Dynamic FT 3D-cGA based on MaxGens2 with FT 3D-cGA. The 

subsequent paragraphs discuss the behaviour in terms of genetic diversity for both the 

algorithms. 

To simplify the comparison and to reach an accurate conclusion, the two algorithms were 

compared according to statistically significant differences, and the rankings of the algorithms 

in terms of efficiency, efficacy, and speed. Table 4.32 illustrates the statistically significant 

differences between Dynamic FT 3D-cGA based on MaxGens2 and FT 3D-cGA in terms of 

efficiency and efficacy. For example, solving Rasf  without migration by both algorithms 

shows no significant difference in terms of average number of generations (indicated by the 

symbol ‘•’ in the middle Column of Table 4.32), while a significant difference is obtained 

when considering the search success rate (indicated by the symbol ‘+’ in the middle Column 

of Table 4.32). Tables 4.33–4.35 show the rankings of the algorithms in terms of the average 

number of generations needed to find the solutions, search success rates, and average 

execution times, respectively. Each problem is independently ranked, and these local 

rankings are shown in Columns 2–8. The global ranking is shown in the last column, which 

is determined based on the summation of the local rankings (Column 9) to identify the best 

algorithm for all the problems in terms of each performance metric. For each fault ratio, the 

local ranking is determined by adding the positions of the algorithms according to the results 

obtained based on each performance metric, and the highest rank (lowest value) is assigned 

to the one with the minimum summation value. For example, when solving fRas, the best 

efficiency is achieved by the Dynamic Fault-Tolerant 3D-cGA with migration, while the best 

speed is achieved by the FT 3D-cGA with migration; and the best efficacy is achieved by 

both algorithms, because they have similar ranks. In this work, the details of the local 

ranking are omitted and only the final ranks are shown. 

Although the numbers of fitness evaluations were dissimilar for both the algorithms, we 

continued to compare them based on the average number of generations. The aim behind this 

consideration was to show how the increment in the maximum number of generations would 

influence the efficiency of the algorithm, and its effect when the migration technique is 

introduced. As can be seen from Table 4.33, in general, the best efficiency was achieved by 

FT 3D-cGA with migration, while Dynamic FT 3D-cGA with migration achieved the second 

best efficiency. However, the differences were not significant, except for fAck (see Table 

4.32). The best efficacy was achieved by the Dynamic Fault-Tolerant 3D-cGA with 
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migration for most of the problems, except for fSLE. The second best efficacy was achieved 

by the Fault-Tolerant 3D-cGA with migration (see Table 4.34), and the differences were not 

significant. Hence, we can confirm the effectiveness of migration in improving algorithm 

performance regardless of the difference in the number of fitness evaluations. 

The integration between the Dynamic Fault-Tolerant 3D-cGA and the migration 

technique significantly improved the performance of the algorithm as it offered better 

exploration/exploitation trade-off. A further analysis of the behaviour of the algorithms is 

provided later in this section. 

With regard to the execution time, the Fault-Tolerant 3D-cGA, especially with migration, 

significantly surpassed the Dynamic Fault-Tolerant 3D-cGA with/without migration (see 

Table 4.35). Although the obvious reason for the deterioration in the speed of the algorithm 

may have been thought to be the increase in the number of fitness evaluations, the distinct 

search success rates obtained were the main reason. We note that integration of the migration 

technique into the Dynamic Fault-Tolerant 3D-cGA failed to provide significant 

improvements in the speed, when compared with the Fault-Tolerant 3D-cGA. 

 

Table 4.32. Comparison of Dynamic FT 3D-cGA versus FT 3D cGA in terms of 
convergence time (CT) and rate (CR)* 

Problem 
Without 

migration 
With 

migration 

Rasf  •, + •, • 

Ackf  +, + +, + 

Micf  •, + •, • 

Langf  •, + •, • 

FMSf  •, + •, • 

SLEf  •, • •, • 

GPSf  •, + •, •  

 
 
 

Table 4.33. Ranking of the algorithms based on efficiency (CT)*  
Problem / 
Algorithm Rasf  Ackf  Micf  Langf  

FMSf  SLEf  GPSf  Sum Rank  

FT 3D-cGA 3 1 3 3 3 4 3 20 3 
FT 3D-cGA+ mig.  2 2 1 2 1 1 1 10 1 
DFT 3D-cGA 4 4 4 4 3 3 3 25 4 
DFT 3D-cGA+ mig. 1 3 2 1 2 2 1 12 2 

 
 

 

                                                 
* For more details about the performance measures, please refer to Section 2.2.3.1. 
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Table 4.34. Ranking of the algorithms based on efficacy (CR)* 

Problem / 
Algorithm Rasf  Ackf  Micf  Langf  

FMSf  SLEf  GPSf  Sum Rank  

FT 3D-cGA 4 4 4 2 4 2 3 23 4 
FT 3D-cGA+ mig.  1 2 1 2 3 3 2 14 2 
DFT 3D-cGA 3 2 3 2 2 1 3 16 3 
DFT 3D-cGA+ mig. 1 1 1 1 1 4 1 10 1 

1 Efficacy is measured as the search rate of successful experiments (Convergence rate) out of 100 independent runs. 

 
Table 4.35. Ranking of the algorithms based on speed (SP)* 

Problem / 
Algorithm Rasf  Ackf  Micf  Langf  

FMSf  SLEf  GPSf  Sum Rank  

FT 3D-cGA 3 1 3 2 2 1 3 15 2 
FT 3D-cGA+ mig.  1 1 1 1 1 3 1 9 1 
DFT 3D-cGA 4 3 4 4 4 1 4 24 4 
DFT 3D-cGA+ mig. 2 4 2 3 3 4 1 19 3 

 
 

To better demonstrate the behaviour of the algorithms and the effect on performance of 

increasing the fault ratio, we focused on one problem from the test suite. The problem used 

was fLang. When solving fLang for 10% faults, the results obtained for the Fault-Tolerant 3D-

cGA were 399.6 average generations, 46% search success rate, and 5.42 seconds average 

execution times. For 20% faults, the results obtained were 540.79 average generations, 34% 

search success rate, and 6.0 seconds average execution times. These showed a significant 

deterioration in the performance of the algorithm due to the increase in the fault ratio. 

However, when solving fLang for 10% faults using the Dynamic FT 3D-cGA, the average 

number of generations was reduced to 380.19, the search success rate increased to 51%, and 

the average execution times increased to 5.63 seconds. Consequently, we can confirm that 

the increment in the number of generations can alleviate the search difficulty, despite the 

increase in the time needed for the algorithm to converge (from 5.42s to 5.63s). The increase 

in execution time normally results from the increase in the number of generations; however 

in this case it may also refer to the variations in hit rate obtained (46% vs. 51%). For 20% 

faults, the average number of generations increased to 625.93, despite the improvement in 

the search success rate obtained (46%). The decline in the efficiency was resolved by 

integrating the migration technique into the Dynamic Fault-Tolerant 3D-cGA; e.g., the 

average number of generations decreased by 48% to reach 326.2 generations. 

To summarise, in general, the Dynamic FT 3D-cGA improved algorithm reliability, 

especially when it was combined with the migration technique, despite an increase in the 

computation cost. Increasing the maximum number of generations was a critical factor in 

increasing the probability of finding the desired solutions. However, offering more 

                                                 
* For more details about the performance measures, please refer to Section 2.2.3.1. 
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generations alone was not enough due to the following reasons. First, more faults leading to 

less individuals alive deteriorated the genetic diversity. Second, worse faults distribution 

occurred for high fault ratios, and the worst case happened when a fault-free individual was 

surrounded by faulty neighbours. Therefore, local enhancing was required, and the best and 

simplest way that we came up with is to control the global selection pressure by employing 

the migration technique. 

fGPS was used as an example to show and understand the behaviour of the different 

approaches and the influence of the migration technique by computing and plotting the 

population’s diversity (genotypic entropy) as a function of generations. Figure 4.12(a) and 

(b) show the average genotypic diversities obtained by the FT 3D-cGA without and with 

migration, respectively; while the average genotypic diversities obtained by the Dynamic FT 

3D-cGA without and with migration are shown in Figure 4.13(a) and (b), respectively. As 

can be seen from Figure 4.12(a), the population diversity increased significantly as the fault 

ratio increased, and this behaviour shows how the search difficulty dramatically increased 

leading to an increase in the number of generations, reduction in search success rate, and 

increase in execution time. It can be noted that for 40% faults, the population diversity trend 

was almost steady over all the allowed number of generations (see Fig. 4.12(a)) due to the 

difficulty in the convergence ability for high fault ratio. This tendency led to the sharp drop 

in the search success rate. For instance, for 40% faults, the search success rate obtained when 

solving not only fGPS, but also all the other problems, was 0%. 

Figure 4.12(b) shows the effect of introducing the migration on the population’s diversity 

and thus the performance of the algorithm. The migration technique significantly enhanced 

the ability of the algorithm to converge, leading to a considerable reduction in the number of 

generations. Nevertheless, a main observation is the ability of the algorithm to converge for 

40% faults; e.g., for fGPS, the search success rate obtained increased significantly to 94%. 

However, the efficiency deteriorated as the algorithm started to converge at a late stage. For 

example, the algorithm convergence began at generation 80 (see the diversity trend in Fig. 

4.12(b)). 

As mentioned earlier, the main reason for increasing the number of generations is to 

increase the reliability of the algorithm. Figure 4.12(b) provides a clearer illustration in this 

regard, specifically the diversity trend for 40% faults. It can be seen that the diversity level at 

the last generation is still too high, despite the ability of the algorithm to converge. Hence, 

the increase in the maximum number of generations, in-line with fault ratio, is intended to 

deal with this issue. 
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The diversity obtained for the Dynamic FT 3D-cGA without migration is shown in Figure 

4.13(a). As  can  be seen,  the diversity  trends could  approach almost zero for all fault ratios  
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(b) With migration. 

 
Figure 4.12. The average genotypic diversities obtained by FT 3D-cGA when solving fGPS for each 
fault ratio. 
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(b) With migration 

 
Figure 4.13. The average genotypic diversities obtained by Dynamic FT 3D-cGA when solving fGPS 
for each fault ratio. 

 

considered; however, the efficiency of the algorithm deteriorated slightly due to the 

increased number of generations offered. As expected, although this approach significantly 

outperformed the FT 3D-cGA without migration, it was still worse than the FT 3D-cGA with 

migration (e.g., the results obtained by the dynamic algorithm were 162.19 generations and 

56% search success rate, while those obtained by the latter were 48.78 average generations 

and 94% search success rate). The increase only in the number of generations promoted 
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more exploration, which in turn affected the quality of the solutions. Consequently, it could 

not greatly add benefits due to the search difficulty induced by the faults. This observation 

confirmed the need and the importance of employing a mitigation technique, especially in 

the presence of faults. 

The influence of combining the migration technique with the Dynamic FT 3D-cGA on 

the population’s diversity is demonstrated in Figure 4.13(b). Commonly, the migration 

enhances diversity by promoting more exploration; however, in this study, the migration 

promotes the exploitation because it aims at enhancing the local selection intensity through 

substituting fault-free individuals for the isolated ones. In other words, the size of the 

neighbourhood is preserved leading to maintain the local selection intensity. Consequently, 

this combination shows a balance between the exploration offered by increasing the number 

of generations and the exploitation offered through migration. The effect of this balance can 

be seen by comparing Figure 4.13(a) with 4.13(b) as the number of generations needed by 

the algorithm to converge was significantly reduced while alleviating the premature 

convergence. For instance, for 40% faults, the search success rate obtained was 99% within 

an average of 52.04 generations and 0.126 seconds, while a search success rate of 56% 

within an average of 162.19 generations and 0.2 seconds was obtained without migration. 

 
4.3.3   Conclusion 

 

This study proposed a new algorithm, the Dynamic FT 3D-cGA, for handling failures that 

occurred at individuals’ phenotypes due to SEUs in particular. The algorithm is based on the 

canonical model of cGAs and is a modified version of the past approach (FT 3D-cGA) that 

uses genetic diversity to identify and isolate faulty individuals. The most critical fault model 

was tackled in conjunction with different fault ratios. 

Our main motivation for this study was to improve the reliability and performance of the 

FT 3D-cGA through dynamic control of the exploration/exploitation trade-off. The dynamic 

calculation of MaxGens based on fault ratio encountered helped to enhance the exploration. 

On the other hand, the exploitation was enhanced through the use of the proposed migration 

technique. 

To illustrate the improvements achieved, the Dynamic FT 3D-cGA was compared with 

the FT 3D-cGA in terms of efficiency, efficacy, and speed. Both the algorithms 

demonstrated successful recovery of up to 40% faults, especially when the migration 

technique was employed. Thus, we can confirm that the use of migration as a mitigation 

technique to fault tolerance offers considerable improvements in the efficiency, efficacy, 
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speed, and reliability of the algorithms, especially for the high ratio of faults. 

Besides being a mitigation technique, the integration of migration into both algorithms 

plays an important role in controlling exploration/exploitation trade-off. Exploration and 

exploitation are the two main issues that determine the performance of EAs. The population 

diversity is improved by exploring the search space, while the optimum solution could be 

found by exploiting the fitness information. In this work, the best overall performance in 

terms of efficiency, efficacy, and speed was achieved with the use of the migration technique 

owing to its effect in enhancing the local selection intensity and diversity in proportion. 

In conclusion, we note that the FT 3D-cGA and Dynamic FT 3D-cGA with migration 

showed the best performance, and the differences between the results obtained by both 

algorithms were not significant. An exception was for fAck, in which case the Dynamic FT 

3D-cGA with migration significantly outperformed the FT 3D-cGA with migration mainly in 

terms of efficacy and reliability. The best efficiency (or the minimum number of 

generations) was achieved by the FT 3D-cGA with migration; however, the lower number of 

generations was found to be due to the significant difference in the obtained search success 

rate. For example, solving fAck by FT 3D-cGA with migration resulted in average number of 

generations and search success rate as follows: 1269 (66%), 1426.6 (45%), 1576.7 (33%), 

1642.8 (12%) for 10%, 20%, 30%, and 40% faults, respectively (refer to Tables 4.22 and 

4.23). In contrast, solving the same problem by the Dynamic FT 3D-cGA with migration 

resulted in 1460.2 (78%), 1914.4 (79%), 2348.2 (82%), and 3028.6 (84%) for 10%, 20%, 

30%, and 40% faults, respectively (refer to Tables 4.28 and 4.29). From the previous 

example it can be noticed that for all fault rates the number of generations obtained by FT 

3D-cGA with migration were significantly lower than those obtained by the Dynamic FT 

3D-cGA with migration. Conversely, when observing the hit rates obtained by the dynamic 

algorithm, they found to be higher than those obtained by the static version, which explains 

the difference in the obtained number of generations.  

 

4.4    Summary and Contribution to Knowledge 

 

This chapter aimed to propose a highly reliable cGA that is tolerant to failures, for SEUs in 

particular. This research targeted fitness score registers due to the importance of the fitness 

information in guiding the search process. Two critical fault models were consideredstuck 

at ‘0’ and stuck at ‘1’ faults. The main objective was to propose an algorithm-based fault 

tolerant algorithm using the inherent features of cGAs in order to deal with SEUs.  Another 
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objective was to improve the performance of the algorithm in order to effectively deal with 

high fault ratios. The following points summarise what this study has contributed to 

knowledge.  

 

• The proposed FT 3D-cGA showed its ability to automatically identify and isolate 

faulty cells based on genetic information such as genetic diversity. In addition, the 

algorithm was successful in recovering up to 40% faults taking into consideration 

the two most critical fault models (i.e., stuck at ‘0’ and stuck at ‘1’ faults). However, 

the performance of the algorithm varied according to the fault model and the 

problem to be solved. 

 

• Different selection intensities were defined and assessed in order to improve the 

performance of the algorithm. The different intensities came about by controlling the 

selection rate r of the local selection, which is ST. The different selection pressures 

showed different exploration/exploitation trade-offs, which in turn showed different 

rates of improvements.    

 

• An explicit migration technique was proposed and shown to not only mitigate the 

impact of faults but also to improve the performance of the algorithm. The 

technique’s main aim was to replace faulty individuals by fault-free ones, thereby 

reducing the impact of faults. In addition, through migration, the genetic diversity 

was enhanced, leading to improved algorithm performance.  

 

• Several algorithm configurations concerning migration and selection intensity were 

assessed. The best efficiency was achieved by the third configuration (ST, r = 0.0 + 

Migration) for stuck at ‘0’ faults, while for stuck at ‘1’ faults the first configuration 

(ST, r = 0.0 + noMigration) achieved the best efficiency. The best efficacy was 

obtained by the fourth configuration (ST, r = 0.5 + Migration) for both fault models, 

mainly due to the selection intensity provided with ST, r = 0.5. A rate of 0.5 was 

selected as a way to enhance the genetic diversity and therefore promote more 

exploration leading to improve the efficacy; however, the efficiency of the algorithm 

was deteriorated. 
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• Considering the most critical fault model (i.e., stuck at ‘1’ for fGPS and stuck at ‘0’ 

for the other problems), the combination of ST, r = 0.0 and migration showed 

significant improvement mainly in the efficiency of the algorithm reaching to 35.9%. 

The introduction of migration covered the loss of cells and therefore enhanced the 

genetic diversity, while at the same time ST, r = 0.0 offered high selection pressure 

leading to a reduction in the number of generations required to solve a problem.  

Thus, this combination offered a better exploration/exploitation trade-off. 

 

• Different migration schemes were proposed and measured to further improve the 

performance of the algorithm, in particular for high fault ratios. The proposed 

migration schemes were similar in their frequency and rates. However, the 

difference resided in the source and/or the fitness of the migrants. Migration scheme 

2, which used the fittest migrants within the current neighbourhood to replace the 

faulty individuals, showed its ability to enhance the local selection intensity and 

diversity in the population. Therefore, it achieved the best overall algorithm 

performance in terms of efficiency, efficacy, and speed for both fault models.  

 

• A dynamic fault tolerant approach (Dynamic FT 3D-cGA) was proposed and it 

showed further improvements in the performance and the reliability of the algorithm. 

Two dynamic adaptation schemes were introduced, the first scheme (MaxGens1) 

aimed to balance the number of fitness evaluations due to the reduction in the 

number of individuals alive. Therefore, this scheme used the number of faulty 

individuals to recalculate the number of evaluations needed to solve a problem 

effectively. The second scheme (MaxGens2) is similar to the first; however, this 

scheme considered the impact of faults. Therefore, a further increase in the number 

of evaluations was offered to tackle the added difficulty caused by faults.   

 

• Several algorithm configurations concerning migration and dynamic adaptation were 

defined and assessed. The dynamic calculation of the number of fitness evaluations 

enhanced the exploration, while exploitation was enhanced by introducing 

migration. The introduction of migration resulted in significant improvements, up to 

66.7% in efficiency with MaxGens1 and 62% with MaxGens2, 100% in efficacy with 

MaxGens1 and 99% with MaxGens2, and 32.4% in speed with MaxGens1 and 33.6% 

with MaxGens2. 
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• The proposed FT 3D-cGA was compared to the proposed Dynamic FT 3D-cGA with 

and without migration. With migration, both approaches showed the best overall 

performance with non-significant differences in the results obtained when solving 

most of the problems. An exception was for fAck, as Dynamic FT 3D-cGA with 

migration significantly outperformed FT 3D-cGA with migration in terms of 

efficacy and reliability, while the latter achieved the best efficiency. However, this 

less number of generations was found to be due to a significant difference in the 

search success rate obtained.   
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Chapter 5 
 

 

Dynamic-Adaptive cGAs 
 

 

Genetic search occupies an important position in evolutionary computation. The most 

important issues in the evolution process of genetic search are exploration and exploitation 

(Oei, Goldberg, and Chang, 1991). The aim of this chapter is to investigate the inherent 

ability of cGAs in controlling the exploration/exploitation trade-off. Exploring the search 

space enhances population diversity and helps with escaping local optima; which is provided 

by the existence of overlapped neighbourhoods. At the same time, exploitation reduces 

diversity by focusing on the fitter individuals inside each neighbourhood, which in turn 

improves the quality of the solution. Improper balance between exploration and exploitation 

leads to ineffective EA. Hence, proposing a new approach that dynamically balances 

between exploration and exploitation is another aim of this chapter. The concepts of 

exploration and exploitation are strongly related as an increase in one results in a 

proportional decrease in the other. For example, increasing exploration (or genetic diversity) 

decreases exploitation, and vice versa.   

 In addition, the balance between exploration and exploitation is the key to determining 

an algorithm’s behaviour and performance (Herrera and Lozano, 2000). Several studies have 

been carried out to investigate and dynamically control this trade-off. One way of doing this 

is to tune the relationship between the shape and/or size of the neighbourhood and the grid 

(NGR) (Alba and Troya, 2000; Giacobini et al., 2005). Another way is through the use of 

probabilistic selection mechanisms such as anisotropic, stochastic, and centric selections 

(Simoncini et al., 2006; Simoncini et al., 2009). All the techniques cited are aimed at 

controlling the global selection pressure as high selection pressure supports exploitation 

while low selection pressure favours exploration (Sarma and De Jong, 1996).  
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The selection pressure has a huge impact on the exploration/exploitation trade-off and 

therefore algorithm performance. With high selection pressure, only the fittest individuals 

survive and conquer the entire population, leading to reduction in convergence time. 

However the quick convergence may lead to the algorithm becoming stuck in local optima. 

On the other hand, low selection pressure weakens the influence of the fittest individuals on 

the population, leading to algorithm divergence. A study showing the influence of the 

selection pressure on the performance of cGAs was presented by Simoncini et al. (2007).      

Ursem (2002) presented a diversity-guided approach (DGEA) to dynamically alternate 

between exploration (mutation) and exploitation (recombination and selection). The diversity 

measure used in this work is the distance-to-average-point. The DGEA was compared to 

different evolutionary search models and showed outstanding improvement not only in 

accuracy but also in algorithm efficiency. 

Alba and Dorronsoro (2005), in their research proposed an adaptive cGA that controls the 

exploration/exploitation trade-off through the interchange between three grid topologies: 

square, rectangular, and narrow. These topologies were selected to present different ratios 

(NGR) and thus different selection pressures. The convergence speed was used as feedback 

to alternate between the exploration and exploitation phases. A shift to ‘explore’ mode 

occurred if the convergence speed was too high. Conversely, a shift to ‘exploit’ mode 

occurred if the convergence speed was too slow. The proposed algorithm outperformed the 

other studied algorithms such as static and pre-programmed cGAs. In addition, it has been 

concluded that narrow grids are well suited for multimodal and complex problems, while 

wider grids are more appropriate for simple problems. 

In a later study, Maeda and Li (2007) proposed a fuzzy adaptive approach that uses a 

diversity measure to tune the genetic parameters of the island search model (dGA). 

Simulation results showed the efficiency of the proposed algorithm.  

From all the previous studies, it is believed to be more efficient to induce different levels 

of exploration/exploitation trade-off in different timings of the search process. Therefore, 

studies concerning the dynamic control of exploration/exploitation trade-off are increasingly 

being conducted.     

In this chapter, the main motivation is to design an effective algorithm that can 

dynamically adapt to changes in the convergence speed through appropriate balancing 

between exploring the search space and exploiting the good solutions. Two new adaptive 

3D-cGAs that dynamically control exploitation/exploration trade-off are proposed (Al-Naqi 

et al., 2010b; 2012). The first approach uses a probabilistic selection mechanism and 
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gradually tunes the selection probability based on a population diversity measure (which will 

be discussed in Section 5.2). In the second approach, the same metric used in the study of 

Alba and Dorronsoro (2005), (population entropy) is used to guide the search process (this 

will be discussed in Section 5.3). In addition, in order to validate and provide a thorough 

study of the performance of the proposed algorithms, a comparison between the proposed 

algorithms and other static and dynamic algorithms is provided in Section 5.4. 

 

5.1    Study of Selection Pressure 
 

Selection pressure is a critical factor that differentiates between the different EA search 

models. Different parameters such as topology and/or size of the grid, shape and/or size of 

the local neighbourhood, and the parameters of the genetic operators have an impact on the 

global selection pressure. The global selection pressure determines the ability of the good 

solutions to survive in the population. Therefore, the appropriate selection pressure should be 

applied on the population in order to offer the best balance between exploring the search 

space and exploiting good solutions. As mentioned earlier, one way to control the selection 

pressure is through the use of appropriate selection parameters. Simoncini et al. (2007, 2009) 

proposed new selection techniquesanisotropic and centric selectionsto appropriately 

control the selection pressure. Moreover, in the former study, a stochastic binary tournament 

(ST) selection was tested to show its ability to appropriately control the selection pressure. In 

both studies, it was proven that the global selection pressure could be monitored by using 

adequate selection parameters. In this work, the ST operator is selected as a local selection 

method. Similar to the binary tournament (BT) selection, two individuals are randomly 

selected and the best individual is assigned a probability of (1− r), while the worst one is 

assigned a probability of r; where r ∈ [0 , 1]. ST is equivalent to BT when r = 0 as the best 

solution is always favoured.  

The selective pressure defines the convergence speed as well as population diversity, and 

can be measured using growth curves and takeover time models.  Takeover time is defined 

as the time needed for the best solution to conquer the entire population. In other words, the 

takeover time is reached when the growth number of the best individual is equal to the 

population size (Simoncini et al., 2006). This technique is used to study the induced 

selection pressure; therefore, to be used effectively the selection should be the only active 

genetic operator (Goldberg and Deb, 1991). Figures 5.1 and 5.2 show an average of 100 



 126 

independent runs for the growth number of the best individual and takeover time, 

respectively, for a cubic grid with a population size of 216 individuals arranged as 6×6×6.   

In Figure 5.1, it can be observed that the increase in the selection rate r leads to slow 

growth in the best individual. In other words, the opportunity for worse solutions to be 

maintained in the population increases, offering more diversity and promoting more 

exploration. As a result, it leads to weaker selection pressure and a longer takeover time (see 

Figure 5.2). On the other hand, the global selection pressure is strengthened through the 

decrease in the r value, promoting more exploitation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1. The growth number of the best individual for different selection rates r. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.2. The takeover time for different selection rates r. 
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5.2    Diversity-Guided 3D-cGA 
 

This section presents a new adaptive gradual algorithm that is based on the 3D-cGA. The 

main motivation for the proposed approach is to appropriately control the balance between 

exploring the search space and exploiting the best solution. Based on diversity measure, the 

proposed algorithm gradually tunes the selection pressure by modifying the genetic 

parameters, specifically the selection rate r.  The exploration/exploitation trade-off is a direct 

effect of the selection pressure; in which there is no one appropriate pressure for all 

problems. This approach will be compared to three algorithms with static genetic parameters 

in turn to show and confirm the cases in which the adaptive approach surpasses the other 

static ones. In order to reach valid conclusions, the algorithm is assessed using a benchmark 

of six test functions and two real world problems that present variable complexities. They 

are: Rastrigin (fRas), Schwefel (fSch), Rosenbrock (fRos), Ackley (fAck), Michalewicz (fMic), 

Langermann (fLang), FMS (fFMS), and SLE (fSLE) problems (refer to Appendix A for details of 

the benchmark problems). The algorithm description is presented in Section 5.2.1. Section 

5.2.2 discusses and analyses the simulation results obtained by the Diversity-Guided 3D-

cGA and the three defined static algorithms. Concluding remarks are given in Section 5.2.3. 

 

 5.2.1    Algorithm Configuration 

 

This section introduces the Diversity-Guided 3D-cGA. As mentioned previously, the 

approach proposed here tunes the selection rate r based on population diversity. In this study, 

the employed grid topology is fixed in order to reduce computation overhead. This is unlike 

the approach proposed in (Alba and Dorronsoro, 2005), in which the grid topology has to be 

changed, leading to misshapen neighbourhood relations and therefore requiring the 

computation of positions of new neighbours.  

Before introducing the adaptive model, an explanation of some facts that lead to the 

selection of the adaptive criterion is presented as follows. First, as the search process 

progresses the population diversity decays to reach almost zero, in particular when a good 

solution conquers the entire population. However, the diversity of the population could be 

lost too quickly, leading the algorithm to get trapped into local optima. Second, although the 

‘explore’ mode allows the algorithm to escape local optima, improvements in the solutions 

only occur during the ‘exploit’ mode (Ursem, 2002). As a result, the proposed adaptive 

criterion aims to reduce the convergence speed by gradually reducing the selection pressure 
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as the search process progresses. The selection pressure is reduced by decreasing the 

selection rate r, particularly when the computed average population diversities during the last 

ten generations fall below a specified threshold. In order to calculate the population 

diversity, the well-known ‘distance-to-average-point’ measure is employed (Ursem, 2002). 

Algorithm 5.1 illustrates the adaptive model. The adaptive criterion is d  < γ, where d  is 

the average population diversities of the last ten generations, and γ is the threshold. 

 

Algorithm 5.1 Adaptive model of Diversity-Guided 3D-cGA 
1. if   γ<d  then               
2.     if  0≠r  then 
3.        Offer more exploitation1 

4.     end if; 
5. else 
6.      Do not change 
7. end if; 

1 The exploitation is offered by decreasing the section rate r which in turn reduces the global selection pressure. Note that the 

algorithm starts with r = 1.0. 

 

The idea behind the introduced adaptive criterion is to offer adequate time to explore the 

search space, which contributes to the discovery of promising areas and avoids local optima. 

This is followed by gradual exploitation, which contributes to enhancing the solutions. This 

gradual alteration reduces the possibilities of premature convergence. In the final stage, the 

algorithm proceeds with the highest degree of exploitation (r = 0.0). Strong exploitation 

makes the genetic search more effective, especially when solutions are near optimum. To 

achieve the above objectives, the algorithm starts with the highest possible selection rate, 

which is r = 1.0 (‘explore’ mode). This rate is then lowered when the adaptive criterion is 

fulfilled. The selection rate is then decreased regularly in order to gradually introduce 

exploitation until the lowest bound is reached, which is r = 0.0 (‘exploit’ mode). 

 

5.2.2    Experimental Results and Analysis 

 

In this section the results obtained by Diversity-Guided 3D-cGA and three configurations of 

3D-cGA, each with different static selection rate, are presented and analysed. The same 

parameters were used for all the considered problems (see Table 5.1). The population size 

used here was 343 individuals arranged into a 7×7×7 lattice. The defined neighbourhood 

contained seven individuals (east, west, vertical north and south, and horizontal north and 

south, plus the one under consideration). The first parent was the current individual while the 

second one was selected by ST with rate r. An arithmetic crossover operator with Pc = 0.9 
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was applied to generate an offspring. The offspring was then mutated by a non-uniform 

mutation operator, the best for real optimisation (Back, 1996), with a probability of Pm = 1/L, 

where L is the dimension of a problem (i.e., the length of the chromosome). Although the 

dimension of fFMS is six, the same mutation probability was used as with all the other 

problems. A replace-if-better was used as a replacement policy, during which the current 

individual was replaced if it competed with a better offspring. Finally, the algorithm ended 

when the difference between the average fitness values (avgf) and the optimum fitness value 

(optf) satisfied a specified threshold (±ε).  

 

 
Table 5.1. Parameterization used in the algorithms 

Population size: 343 individuals 

Parent selection: Current + ST,r  

Recombination: AX, Pc = 0.9 

Mutation: Non-uniform, Pm = 1/L (L = individual length) 

Replacement: Replace-if-better 

Neighbourhood: NEWS 

Lattice: 7×7×7 
Stop criterion: |avgf − optf| ≤ ε 

 
 

Since the complexity of the considered problems varied, different values of ε were used: 

0.05 for fRos, 0.005 for fLang, 0.01 for fFMS, and 0.3 for fSLE; while a more precise ε value 

(0.001) was applied for the remaining problems. Similarly, different numbers of maximum 

generations were used: 1000 generations for fRas, fMic, fLang, and fSLE; 1500 generations for fSch; 

and 2000 generations for fAck, fRos, and fFMS.  

The performance of the algorithm was measured using two metrics, the search success 

rate, or the efficacy, and the average number of generations, or the efficiency, of 100 

independent experiments. Furthermore, in order to determine the significance level of the 

differences in efficiencies obtained by the Diversity-Guided 3D-cGA and the static 

algorithms, statistically significant tests, with 95% confidence level were applied (details 

about the statistical tests were provided in Section 2.2.3.1).  

The results are presented in Table 5.2, where the average number of generations and the 

percentage of successful runs are shown for every problem and the best values are in bold. 

The symbol ‘+’ in the Table indicates that the efficiency obtained by Diversity-Guided 3D-

cGA was significantly better than the one obtained by the corresponding algorithm, while 

worse efficiency is indicated by the symbol ‘−’. The symbol ‘•’ denotes non-significant 
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differences between the efficiencies obtained by the compared algorithms.  Furthermore, 

median absolute deviations (mad) are included after the symbol ‘±’. 

The value of γ was selected based on preliminary experiments in which different γ  values 

(0.3, 0.35, 0.4, and 0.45) were tested. A value of γ = 0.4 was selected as the best one in terms 

of efficiency and efficacy for most of the studied problems (in order to avoid reader 

distraction the details are provided in Appendix B.2, Tables B.3 and B.4). Certainly, there is 

no one best γ value for all problems, as pointed out by Alba and Dorronsoro (2005), who 

also indicated that there is no global best algorithm for all problems.  

In order to evaluate the Diversity-Guided 3D-cGA, it was compared to three 3D-cGAs 

with static r. The first 3D-cGA used the lowest r bound (r = 0.0); while the third one used 

the highest r bound (r = 1.0). The second static 3D-cGA used the mean value of r = 0.5. 

As can be seen from Table 5.2, the best efficiencies to solve fRas, fSch, fMic, and fAck were 

obtained by the 3D-cGA with r = 0.0 (with significant differences only for fSch and fMicsee 

test results in Table 5.2). However, concerning similar efficacies the Diversity-Guided 3D-

cGA is more robust as it obtains smaller median absolute deviations; the exceptions are due 

to the significant differences in the search success rates. In addition, using higher selection 

rates to alleviate the exploitative behaviour of the 3D-cGA deteriorates the efficiency as well 

as reduces the search success rates. The worst performance was achieved by the 3D-cGA 

with r = 1.0 as it showed more explorative behaviour, which lacked the power to improve the 

quality of the solutions.  

 

Table 5.2. Convergence time (CT) and rate (CR)* obtained by the Diversity-Guided 3D-cGA 
and 3D-cGAs with static r values 

3D-cGA 
Problem 

0.0=r  5.0=r  0.1=r  

Diversity-
Guided 3D-cGA 

Rasf  
611.14 ± 62.50 (•) 

100% 
717.61 ± 37.50 (+) 

100% 
866.31 ± 83.00 (+) 

94% 
641.72 ± 55.0 

100% 

Schf  
1003.5 ± 181.5 (−) 

100% 
1089.8 ± 176.0 (−) 

100% 
1498.7 ± 1.000 (•) 

3% 
1209.9 ± 116.0 

100% 

Ackf  
1848.1 ± 72.00 (•) 

83% 
1856.2 ± 62.00 (•) 

54% 
- 

0% 
1897.4 ± 52.0 

83% 

Rosf  
1518.3 ± 124.5 (+) 

10% 
1763.1 ± 99.00 (+) 

14% 
1303.7 ± 309.0 (+) 

15% 
881.7 ± 636.5 

50% 

Micf  
512.45 ± 46.50 (−) 

100% 
671.28 ± 70.00 (+) 

100% 
966.33 ± 3.000 (+) 

3% 
628.30 ± 43.0 

100% 

Langf  231.67 ± 20.50 (−) 
70% 

331.12 ± 39.00 (•) 
83% 

707.91 ± 67.00 (+) 
95% 

308.45 ± 14.5 
96% 

FMSf  
1317.7 ± 259.5 (•) 

74% 
1360.5 ± 316.0 (•) 

89% 
1220.9 ± 261.0 (•) 

47% 
1294.7 ± 381.5 

100% 

SLEf  
330.86 ± 51.00 (•) 

15% 
471.63 ± 68.00 (+) 

33% 
917.33 ± 35.50 (+) 

12% 
341.48 ± 35.0 

39% 
* For more details about the performance measures, please refer to Section 2.2.3.1. 
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Regarding fRos and fFMS, the Diversity-Guided 3D-cGA outperformed the other static 

algorithms based on the two metrics, with a significant difference in the efficiency for fRos 

and a non-significant difference for fFMS. Concerning the static algorithms, although higher 

values of r (i.e., r = 0.5 and r = 1.0) should result in a higher average number of generations, 

fRos and fFMS showed exceptions. This was due to the exploration/exploitation trade-off 

offered by the algorithm, as well as the problems geometry. More exploration improves both 

the efficiency and efficacy of the algorithm when solving fRos, while only the algorithm 

efficiency is improved when solving fFMS (remember that the best exploration/exploitation 

trade-off is problem dependant).  

Finally, concerning fLang and fSLE, the Diversity-Guided 3D-cGA significantly 

outperformed the 3D-cGA with r = 0.5 and r = 1.0 in terms of both metrics, while it 

considerably outperformed the static algorithms with r = 0.0 in terms of efficacy. This latter 

improvement reached 24% when solving fSLE and 26% when solving fLang. Furthermore, the 

Diversity-Guided 3D-cGA showed more robust behaviour although the difference in 

efficiencies comparing to 3D-cGA with r = 0.0 is non-significant (see test results in Table 

5.2). 

Figure 5.3 shows the average genotypic diversity trends of 100 runs, which were obtained 

by the Diversity-Guided 3D-cGA for the considered problems. From the figure, it is clearly 

observed that the speed of the population diversity loss is differed between the considered 

problems. These differences confirm that each problem introduces a different level of 

difficulty to the search, which therefore requires different exploration/exploitation tradeoffs. 

In addition, it can be seen from Figure 5.3 that problems with higher complexity level such 

as fLang and fFMS, show two distinctive trends as the diversity level started with an increase 

rather than a reduction. The difference between these trends is the speed of the diversity loss, 

which started at later stages; for fLang the diversity level steeply decreases, while this 

reduction is gentler for fFMS.      

In general, 3D-cGA with r = 0.0 achieved the best efficiency (in 6 out of 8 problems), 

while the Diversity-Guided 3D-cGA showed more robust behaviour. In addition, the 

statistically significant results assert that the Diversity-Guided 3D-cGA is favoured for most 

the problems. With respect to the efficacy of the algorithm, the Diversity-Guided 3D-cGA 

obtained the best search success rates for all the studied problems. Hence, it can be 

concluded that the Diversity-Guided 3D-cGA provides the best efficacy with adequate 

computation cost (i.e., number of generations). 
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Figure 5.3. Average genotypic diversities based on ‘Distance-to-average-point’ measure for the 

Diversity-Guided 3D-cGA. 

 

Furthermore, the Diversity-Guided 3D-cGA confirms the common belief referred to in 

(Alba and Dorronsoro, 2005), which states that “a good optimisation algorithm must initially 

seek promising regions, and then gradually search in neighbourhood of the best so far 

points”. That is because the Diversity-Guided 3D-cGA starts with an ‘explore’ mode (i.e., 

low selection pressure) and then shifts to ‘exploit’ mode in an adaptive and gradual manner. 

 

5.2.3    Conclusion   

 

This section presented a new dynamic 3D-cGA, Diversity-Guided 3D-cGA, which uses 

diversity measure to control the exploration/exploitation trade-off. The main idea behind the 

adaptivity is to control and provide an appropriate balance between the exploration and the 

exploitation for an algorithm. This goal is achieved by tuning a genetic parameter, which is 

the rate of the local selection mechanism.  

The Diversity-Guided 3D-cGA showed superior performance, mainly in terms of the 

efficacy of the algorithm. In addition, the dynamic algorithm outperformed the static 

approaches for most of the problems studied. The exceptions either did not have statistically 

significant differences or showed more erratic behaviour (see mad values).  Hence, in 
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general, the proposed adaptive model could achieve a suitable balance between enhancing 

population diversity (to escape local optimaefficacy) and tuning good solutions (to 

improve solution qualityaccuracy). 

 

5.3    Convergence-Speed-Guided 3D-cGA 

 

This section proposes another adaptive algorithm that aims to control the 

exploration/exploitation trade-off dynamically. The algorithm is designed based on 3D-cGAs 

because of their high performance features. In this section, the methodology is based on the 

change in the global selection pressure induced by dynamic tuning of the local selection rate. 

The parameter tuning of the local selection method is a way to define the global selection 

pressure. A diversity speed measure is used to guide the algorithm. This measure is adapted 

from (Alba and Dorronsoro, 2005). A benchmark of well-known test functions and real 

world problems was selected to investigate the effectiveness of the algorithm proposed. They 

are: Rastrigin (fRas), Rosenbrock (fRos), Ackley (fAck), FMS (fFMS), SLE (fSLE), and GPS (fGPS) 

problems (details about fGPS are provided in Section 4.2.2, while details about the other 

problems are provided in Appendix A). In addition, in this Section a comparison between the 

proposed algorithm and other static and dynamic algorithms are provided in order to study 

the different effects on the performance of the algorithms.  

Section 5.3.1 describes the configuration of the proposed algorithm as well as other static 

and dynamic approaches, which are used in the comparison. The experimental parameters 

and results are provided in Section 5.3.2, while Section 5.3.3 gives the conclusion.  

 

5.3.1    Algorithm Configuration 

 

In this section, three different static 3D-cGAs are first discussed; then they are evaluated 

against the static algorithms proposed in (Alba and Dorronsoro, 2005). Following that, the 

Convergence-Speed-Guided 3D-cGA is introduced and the similarities and differences 

between the proposed algorithm and the dynamic-adaptive algorithm proposed in (Alba and 

Dorronsoro, 2005) are outlined.  

In previous discussion, the influence of using different selection rates on the behaviour of 

the algorithm was observed (refer to Section 5.1). Furthermore, in order to investigate these 

effects on the performance of the algorithm, first two groups of static algorithms consisting of 

three distinct 3D-cGAs are described. The algorithms in the first group use different static 



 134 

selection rates while the algorithms in the second group use different static NGRs, in 

particular, different grid shapes (Alba and Dorronsoro, 2005). 

The local selection method used in the first algorithmic group is ST with r = 0.0, r = 0.7, 

and r = 1.0; while the same grid and neighbourhood topologies are defined for all algorithms. 

In contrast, for the second group, Alba and Dorronsoro (2005) defined three 2D-cGAs that 

use different static NGRs, while the same selection method (BT) is used in all algorithms. In 

order to carry out a fair comparison, these algorithms are implemented over 3D grid 

topologies. The first algorithm works over a cubic grid topology arranged as 6 × 6 × 6 with an 

NGR of 0.313. The second algorithm employs a rectangular cuboid arranged as 3 × 24 × 3 

with an NGR of 0.129. Finally, a narrow cuboid grid arranged as 2 × 54 × 2 is used by the 

third algorithm with an NGR of 0.059. The grid dimensions were chosen based on two 

reasons:  the first is to produce an equivalent population size of 216 for the different shapes 

(i.e., narrow, rectangle, and square), and the second is to produce selection pressures similar 

to those obtained by the algorithms in the first group. More discussion about the latter issue is 

provided below.  

The choice of the selection rates and NGRs above are made to offer the closest selection 

pressure between the compared algorithms. As can be seen from Figure 5.4, the same growth 

curve is obtained by the first algorithms in each group as they have similar parameters, most 

importantly  the  cubic  grid  and  selection  intensity  (as illustrated earlier, ST  with r = 0.0 is  
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Figure 5.4. Growth number of the best individual with different grid shapes (6 × 6 × 6, 3 × 24 × 3, and 

2 × 54 × 2) and selection rates (r = 0.0, r= 0.7, and r = 1.0). 
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                                   (a)                                          (b)                                                  (c) 

Figure 5.5. Alternation between different ratios: (a) cubic (NGR = 0.313), (b) Rectangular cuboid 
(NGR = 0.129), (c) narrow cuboid (NGR = 0.059). 

 

equivalent to BT). In contrast, the growth curves obtained by the second and third algorithms 

in each group are slightly different. For example, the takeover time (i.e., the point where both 

curves started to stabilise) reached with different NGRs was two generations prior to the 

algorithms with different selection rates. However, those curves are significantly different in 

the way they change. For instance, the growth curves obtained with different topologies show 

almost linear trends while the curves obtained with different selection rates are nonlinear.  

As pointed out earlier, increasing r  results in more exploration while more exploitation is 

observed when r  is decreased (refer to Figure 5.1).  Hence, the proposed  adaptive algorithm, 

the Convergence-Speed-Guided 3D-cGA, tunes the value of r  for a specific convergence 

speed in order to control the exploration/exploitation trade-off. 

A similar approach in determining the convergence speed is followed and the same 

adaptive pattern is used as in (Alba and Dorronsoro, 2005). The only difference between the 

dynamic-adaptive algorithm proposed in (Alba and Dorronsoro, 2005) and the proposed 

Convergence-Speed-Guided 3D-cGA is in the way the exploration/exploitation trade-off is 

controlled. Alba and Dorronsoro (2005) defined three different grid shapessquare, 

rectangular, and narrowin order to alternate between the exploration and exploitation 

modes on the basis of the convergence speed (remember that in this study these are 

implemented over 3D grid topologies). Similar grid shapes are defined as in the static 

algorithms discussed previously; the cubic grid is used to promote more exploitation while the 

narrow cuboid grid is used to offer more exploration. A middle point between exploration and 

exploitation is provided by the use of the rectangular cuboid grid (see Figure 5.5).    

In contrast, the Convergence-Speed-Guided 3D-cGA alternates between different selection 

rates, which are similar to the ones defined for the static algorithms. The exploitation is 

promoted through r = 0.0, r = 0.7 presents the middle point, and r = 1.0 promotes the 

exploration. 
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The convergence speed is measured through the calculation of genotypic diversity, in 

particular, the population entropy (Ht). Besides being an inexpensive metric, it efficiently 

represents the state of the search (Alba and Dorronsoro, 2005). Ht is calculated as the average 

values of the entropy of each gene in the population. Hence, the convergence speed is 

determined by the difference in the population entropies of two successive generations 

( 1−∆−∆ tt HH , 1−−=∆ ttt HHH ). If the difference decreases by a factor of ε, then the 

convergence speed is fast; otherwise, the convergence speed is slow when the difference 

increases by (1 − ε) (refer to (Alba and Dorronsoro, 2005) for more details).   

The adaptive pattern defined is summarised in Algorithm 5.2 (Alba and Dorronsoro, 

2005). According to the convergence speed, in order to promote more exploitation, the 

proposed algorithm changes to the next lower r value (in (Alba and Dorronsoro, 2005), next 

wider grid shape) while it changes to the next higher r value (in (Alba and Dorronsoro, 2005), 

next narrower grid shape) to promote more exploration. 

 

 

Algorithm 5.2 Dynamic adaptive pattern 
1. if  C1 then 
2.     Promote more exploitation;            // change r to lower 
value 
3. else if C2 then 
4.     Promote more exploration;            //change r to higher 
value 
5. else 
6.     No change; 
7. end if; 

 

C1 and C2 are the convergence speed measures such that C1 is satisfied when the 

convergence speed is fast and C2 is satisfied when the convergence speed is slow. C1 and C2 

are defined as follows (refer to (Alba and Dorronsoro, 2005) for more details): 

 

.)2(

,)1(

12

11

−

−

∆⋅−∆≡
∆⋅+∆≡

tt

tt

HHC

HHC

ε
ε

f

p
                                               (5.1) 

 

5.3.2    Experimental Results and Analysis 

 

In this section, first the parameters and performance metrics used in the experiments are 

presented. Next, the results obtained for the static and the dynamic 3D-cGAs proposed in the 

previous section are presented and analysed. Finally, a comparison between the 
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Convergence-Speed-Guided 3D-cGA and the other static and dynamic 3D-cGAs are 

provided. 

The same parameters are used during the experiment in order to arrive at a fair 

comparison. Table 5.3 summarises these parameters. For all problems, a population size of 

216 individuals is used. These are arranged over a 6×6×6 lattice. An exception is made for 

fGPS, as a population size of 64 individuals organised over a 4×4×4 lattice is used because of 

its lower complexity compared to the other problems.   

The local neighbourhood defined contains seven individuals, which are positioned on the 

east, west, vertical north and south, horizontal north and south, and the centre. The first 

parent was the current individual while the second parent was selected by using ST with rate 

r. An arithmetic crossover operator with probability Pc = 0.9 was applied to generate an 

offspring. The offspring was mutated by applying a non-uniform mutation operator, with 

probability Pc = 0.1. The replacement policy defined here was replace-if-better, during 

which the current individual was replaced if its competitor (offspring) was fitter. Finally, the 

algorithm terminated if the difference between the average fitness values avgf and the 

optimum fitness value optf satisfied a specified threshold. Because of the different 

characteristics, we used different thresholds for each problem: 003.0  for fGPS, 3.0  for fSLE, 

05.0  for fFMS, 1.0  for fRos, and 005.0  for the other two problems. Similarly, the maximum 

number of generations assigned was 150 generations for fGPS; 1000 generations for fSLE, fRas, 

and fRos; and 2000 generations for fFMS and fAck. 

The performance of the algorithms was measured using three metrics: the search success 

rate (efficacy), the average number of generations (efficiency), and the average execution 

times (speed) of 100 independent runs.   

Preliminary experiments were carried out taking into consideration the proposed 

algorithm (i.e., The Convergence-Speed-Guided 3D-cGA) and the dynamic 3D-cGA based 

on (Alba and Dorronsoro, 2005), in which different ε  values (0.05, 0.15, 0.25, and 0.3) were 

tested. Based on these tests, ε = 0.05 was selected for both algorithms as the best one in 

terms of efficiency, efficacy, and speed for most the problems considered (to avoid reader 

distraction the details are provided in Appendix B.3, Tables B.6–B.9).  

Table 5.4 presents the results obtained for all the algorithms compared. For each algorithm 

and problem, the average number of generations, the search success rate, and the average run 

times are illustrated. In addition, in order to show the robustness of the algorithms, the median 

absolute deviations mad are added to the results obtained (mad is used because of the non-

normal distribution of the results obtained). The best results achieved for each problem are 
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marked in bold. The symbol ‘+’ in Table 5.4 indicates that generally there are significant 

differences between all the compared algorithms in terms of all performance metrics (details 

about the statistical tests were provided in Section 2.2.3.1). 

 
 

Table 5.3. Parameters used in the experiments 
Population size: 216 individuals (64 individuals for fGPS) 

Parent selection: 
Current + ST, r (BT for the algorithms in (Alba & 
Dorronsoro, 2005)) 

Recombination: AX, 9.0=cP  

Mutation: Non-uniform, Pm = 0.1 

Replacement: Replace-if-better 

Neighbourhood: NEWS 

Lattice: 
Cubic: 6×6×6 (4×4×4 for fGPS) 
Rectangular cuboid: 3×24×3 (2×8×4 for fGPS) 
Narrow cuboid: 2× 54× 2 (2×16×2 for fGPS) 

Termination criterion: |avgf − optf| ≤ threshold 
 

 

 

Table 5.4. Experimental Results: Convergence time (CT), rate (CR), and speed (SP)* 
obtained by different dynamic and static 3D-cGAs 

Dynamic 3D-cGAs Static 3D-cGAs 

P
ro

bl
e

m
 

The 
convergence

-Speed-
Guided 

The 
approach in 

(Alba & 
Dorronsoro, 

2005) 

r = 0.0/  
cubic  

r = 0.7 r = 1.0 

Rectangular 
cuboid  

(Alba & 
Dorronsoro, 

2005) 

Narrow 
cuboid 

(Alba & 
Dorronsoro, 

2005) 

Test 

Rasf
 

752.89 ± 65.5 
100% 

51.25 ± 4.61 

541.43 ± 59.5 

100% 
37.68 ± 4.10 

561.19 ± 41.0 
100% 

41.17 ± 2.89 

781.32 ± 68.5 
100% 

58.33 ± 5.69 

949.64 ± 27.0 
57% 

46.48 ± 1.68 

521.68 ± 47.5 
100% 

34.15 ± 3.19 

635.06 ± 27.5 
100% 

44.74 ± 3.47 

 
+ 

Ackf
 

1598.1 ± 143.0 
99% 

117.7 ± 10.3 

1337.5 ± 189.5 
100% 

100.54 ± 13.76 

1256.8 ± 203.5 
100% 

97.36 ± 15.9 

1592.2 ± 151.5 
100% 

116.57 ± 10.94 

1991.0 ± 0.00 
1% 

128.3 ± 0.00 

1224.4 ± 255.0 
100% 

91.98 ± 18.8 

1168.2 ± 201.0 
100% 

88.71 ± 15.5 

 
+ 

Rosf
 

661.68 ± 192.0 
22% 

45.39 ± 13.05 
0% 

610.09 ± 125.0 
11% 

44.72 ± 9.70 

728.41 ± 173.5 
12% 

53.23 ± 12.2 

679.71 ± 177.0 
14% 

46.24 ± 11.8 

953.0 ± 8.0 
3% 

60.44 ± 0.50 

869.66 ± 10.0 
6% 

57.7 ± 0.78 

 
+ 

FMSf
 

981.41 ± 342.0 
72% 

94.41 ± 32.5 

944.53 ± 380.0 
54% 

90.65 ± 35.3 

1039.1 ± 252.0 
58% 

114.13 ± 27.9 

1127.5 ± 284.0 
69% 

105.9 ± 27.7 

1533.1 ± 315.0 
61% 

143.3 ± 31.2 

1022.3 ± 383.0 
64% 

113.1 ± 41.3 

1317.0 ± 254.0 
81% 

144.3 ± 29.2 

 
+ 

SLEf
 

535.46 ± 99.0 
26% 

37.91 ± 7.02 

228.2 ± 3.00 
5% 

16.27 ± 0.28 

278.0 ± 0.00 
1% 

19.5 ± 0.00 

565.71 ± 67.5 
28% 

45.5 ± 5.20 

866.62 ± 40.5 
8% 

59.27 ± 2.75 

632.00 ± 0.00 
1% 

41.42 ± 0.00 

 
0% 

 
+ 

GPSf
 

93.02 ± 9.00 
100% 

1.76 ± 0.16 

70.57 ± 9.00 
97% 

1.38 ± 0.15 

71.52 ± 8.5 
96% 

1.44 ± 0.17 

113.44 ± 11.0 
97% 

2.36 ± 0.25 

137.63 ± 5.00 
11% 

2.88 ± 0.10 

74.48 ± 7.5 
100% 

1.57 ± 0.15 

91.65 ± 7.0 
100% 

1.95 ± 0.28 

 
+ 

* For more details about the performance measures, please refer to Section 2.2.3.1. 
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In general, the dynamic algorithm based on (Alba and Dorronsoro, 2005) achieved the best 

performance in terms of efficiency and speed when solving most problems concerned, while 

the Convergence-Speed-Guided 3D-cGA achieved the best performance in terms of efficacy. 

Complex problems need a high level of diversity to converge to the global optimum. 

Changing the grid shapes requires a recalculation of the positions of the individuals, which 

introduces a kind of migration. This migration offers more diversity; however, it is limited by 

good solutions because of BT. The combination of different selection intensities induced by 

the alternation between different grid shapes and the more diversity induced by the migration 

leads to significant reduction in convergence time (i.e., number of generations), and thus the 

run time. For example, the improvement in the efficiency and speed reached up to 28% and 

26%, respectively, for fRas when compared to the Convergence-Speed-Guided 3D-cGA. 

However, this approach failed to solve more complex problems such as fRos, and achieved low 

search success rates when solving real world problems, in particular fSLE, in which the inter-

parameter linkage is very strong.  

In contrast, the Convergence-Speed-Guided 3D-cGA controls the selection intensity and 

the level of diversity by allowing worse solutions to be involved in the update process, which 

induces a positive effect on problems with high degrees of complexity. Looking back at 

Figure 5.4, it can be seen that there is a difference between the trends obtained with r > 0.0 

and those obtained with the cuboid shapes. The trends obtained with r > 0.0 show more 

gradual growth in the number of the best individuals that leads to a better 

explorative/exploitative behaviour. Good exploration is essential especially at initial stages in 

order to discover promising areas, while gradual offering of exploitation is crucial at later 

stages in order to improve the quality of solutions (Alba and Dorronsoro, 2005). Thus, the 

behaviour observed helps to raise the search success rate; however, it increases the 

convergence time.           

Regarding static algorithms, in general, the worst performance is achieved with 0.1=r  in 

most problems because poor solutions are always favoured, which leads to weak exploitation 

and premature convergence. In contrast, the best performance is achieved with the different 

cuboid shapes in most problems. Exceptions are fRos and fSLE, as the best efficacy is achieved 

with r = 1.0 and r = 0.7, respectively, because of these problems’ higher complexities.  

The proposed Convergence-Speed-Guided 3D-cGA was compared with all other dynamic 

and static algorithms considered. The results are shown in Tables 5.5 and 5.6, in which the 

symbol ‘+’ indicates that the proposed Convergence-Speed-Guided 3D-cGA is significantly 

better than its counterpart, the symbol ‘•’ denotes no statistical difference and the symbol ‘−’ 
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indicates that the proposed Convergence-Speed-Guided 3D-cGA did worse than its 

counterpart.   

Table 5.5 compares the Convergence-Speed-Guided 3D-cGA to all other algorithms in 

terms of average number of generations and average run times, as similar results are obtained 

with both metrics. Concerning fSLE, fRos, and fFMS, the efficiency and speed obtained by the 

proposed algorithm were either significantly better or had no significant statistical differences 

to those compared. An exception is for fSLE, as the dynamic 3D-cGA based on (Alba and 

Dorronsoro, 2005) outperformed the proposed Convergence-Speed-Guided 3D-cGA. With 

regard to other problems, the efficiency and speed achieved by the proposed algorithm were 

worse than those achieved by other algorithms, except for static algorithms with r = 0.7 and r 

= 1.0. An exception is for fGPS, as the efficiency and speed obtained by the proposed algorithm 

were statistically insignificant compared to the ones obtained by the static algorithm with 

narrow cuboid. Based on the problems’ characteristics, fRas and fAck are considered to be less 

complex than other problems concerned. Thus, the level of diversity needed to solve the two 

problems efficiently is less than the one needed to solve the other problems; however, fAck 

requires more diversity than fRas. The high diversity provided by the proposed algorithm (refer 

to Figure 5.4) is the main cause that leads to additional cost in terms of convergence time and 

speed. Another additional cost in efficiency and speed were observed for fGPS; although fGPS is 

of high complexity, the problem’s dimension is considerably lower than other problems. 

Hence, the efficiency and speed obtained by the proposed algorithm are either significantly 

better or have insignificant differences, especially when solving problems of high complexity.  

Table 5.6 evaluates the Convergence-Speed-Guided 3D-cGA in terms of search success 

rate. The proposed algorithm achieves superior efficacy for most problems; the improvements 

are either significantly better or similar to the other algorithms compared.    

To summarise, we note that for most cases the proposed Convergence-Speed-Guided 3D-

cGA does either significantly better or similar to the other algorithms in terms of all 

performance metrics; the exceptions are mainly for fRas and fAck. Thus, it can be concluded 

that the proposed Convergence-Speed-Guided 3D-cGA has the most desirable behaviour 

among all the compared algorithms. 

 

5.3.3    Conclusion 

 

This study analysed the behaviour of a 3D-cGA against different grid shapes and selection 

rates over several problems with variable difficulties to investigate their influence on the 
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performance of the algorithm. Next, a new dynamic-adaptive 3D-cGA, the Convergence-

Speed-Guided 3D-cGA was proposed, which aims to dynamically balance the 

exploration/exploitation trade-off. The proposed algorithm is compared to the first dynamic-

adaptive cGA reported in (Alba and Dorronsoro, 2005).    

The proposed Convergence-Speed-Guided 3D-cGA provides higher search success rates 

than all the other algorithms compared. In addition, it provides adequate efficiency, 

particularly when solving problems of high complexity. Thus, in general, it can be stated that 

the Convergence-Speed-Guided 3D-cGA could successfully achieve an appropriate balance 

between the exploration and exploitation. 

 

Table 5.5. Comparison of the Convergence-Speed-Guided 3D-cGA versus other dynamic 
and static 3D-cGAs in terms of convergence time (CT) and speed (SP)* 

Problem 

The 
approach 

in (Alba & 
Dorronsoro

, 2005) 

r = 0.0/  
cubic  

r = 0.7 r = 1.0 

Rectangular 
cuboid  

(Alba & 
Dorronsoro, 

2005) 

Narrow 
cuboid 

(Alba & 
Dorronsoro

, 2005) 

Rasf  − − • + − − 

Ackf  − − • • − − 

Rosf  • • • • • • 

FMSf  • • • + • + 

SLEf  − • • + • + 

GPSf  − − + + − • 

Note that the comparison results based on the two metrics (CT and SP) are merged as the results obtained were similar. 

 

Table 5.6. Comparison of the Convergence-Speed-Guided 3D-cGA versus other dynamic 
and static 3D-cGAs in terms of convergence rate (CR)* 

Problem 

The 
approach 

in (Alba & 
Dorronsoro

, 2005) 

r = 0.0/ 
cubic 

r = 0.7 r = 1.0 

Rectangular 
cuboid 

(Alba & 
Dorronsoro, 

2005) 

Narrow 
cuboid 

(Alba & 
Dorronsoro

, 2005) 

Rasf  • • • + • • 

Ackf  • • • + • • 

Rosf  + + • • + + 

FMSf  + + • • • • 

SLEf  + + • + + + 

GPSf  • + • + • • 

 
 

                                                 
* For more details about the performance measures, please refer to Section 2.2.3.1. 
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5.4    Comparison of Diversity-Guided versus Other Dynamic 

and Static 3D-cGAs    

 

This section compares the Diversity-Guided 3D-cGA proposed in Section 5.2 to other 

dynamic and static 3D-cGAs that were discussed in Section 5.3. They are as follows: 

Convergence-Speed-Guided 3D-cGA, Dynamic and static 3D-cGAs based on (Alba and 

Dorronsoro, 2005), and 3D-cGAs with static selection rate (r = 0.0, r = 0.7, and r = 1.0). In 

order to obtain a fair comparison, in this section the Diversity-Guided 3D-cGA are re-

evaluated such that similar test suite and experimental parameters to those defined in Section 

5.3 are used. The aim of the comparison is to study the behaviour of the different algorithms 

by exploring the influence of the exploration/exploitation trade-off on the search.   

The benchmark chosen for evaluating the compared algorithms consisted of the following 

test and real-world problems: Rastrigin (fRas), Rosenbrock (fRos), Ackley (fAck), FMS (fFMS), 

SLE (fSLE), and GPS (fGPS) problems (details about fGPS are provided in Section 4.2.2, while 

details about the other problems are provided in Appendix A).  

The experimental parameters defined for the Diversity-Guided 3D-cGA were similar to 

the parameters illustrated in Table 5.1, the only difference being the population size as in this 

section a population of 216 individuals arranged as 6×6×6 was used to provide similar 

number of individuals to those offered by the other compared algorithms. Preliminary 

experiments were performed in order to select the best value of γ (recall that in this section 

the population size is smaller than the one defined in Section 5.2, therefore another set of 

preliminary experiments were needed to select the best γ); the best chosen γ value based on 

the convergence time, rate, and speed is also 0.4 (refer to Appendix B.2, Tables B.4 and B.5 

for more details). The parameters defined for the Convergence-Speed-Guided and other 

dynamic and static 3D-cGAs are summarised in Table 5.3.  

The comparison was performed in terms of the following performance metrics: 

convergence time, rate, and speed. Statistically significant tests were used as approaches to 

compare the different algorithms. These tests determined the significance level of the 

differences between the compared algorithms (details about the statistical tests were 

provided in Section 2.2.3.1). The significance levels are indicated using the following 

symbols. A plus sign ‘+’ denotes that the Diversity-Guided 3D-cGA significantly 

outperformed its counterpart, while a non-significant difference is denoted by the symbol ‘•’. 

The symbol ‘−’ indicates that the Diversity-Guided 3D-cGA did worse than its counterpart 

(see Tables 5.8−5.10). 
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Table 5.7 presents the results obtained for the Diversity-Guided 3D-cGA with 6×6×6 grid 

topology rather than the 7×7×7 grid used in Section 5.2. The comparison results based on 

each metric: convergence time, rate, and speed are illustrated in Tables 5.8−5.10, 

respectively. 

 
 
Table 5.7. Experimental Results: Convergence time (CT), rate (CR), and speed (SP)* 
obtained by the Diversity-Guided 3D-cGA with 6×6×6 grid 

Problem γ = 0.4 

Rasf  
570.83 ±49.5 

100% 
36.80 ±3.23 

Ackf  
1399.0 ±190.0 

100% 
89.58 ±12.34 

Rosf  
445.87 ±256.0 

55% 
27.83 ±15.9 

FMSf  
981.65 ±336.5 

52% 
89.77 ±31.91 

SLEf  
300.80 ±36.0 

10% 
20.28 ±2.56 

GPSf  
96.26 ±6.5 

100% 
1.88 ±0.11 

 

 

 

Table 5.8. Comparison of the Diversity-Guided 3D-cGA versus other dynamic and static 
3D-cGAs in terms of convergence time (CT)* 

Problem 

The 
Convergence

-Speed-
Guided 

The 
approach 

in (Alba & 
Dorronsoro

, 2005) 

r = 0.0/  
cubic  

r = 0.7 r = 1.0 

Rectangular 
cuboid  

(Alba & 
Dorronsoro, 

2005) 

Narrow 
cuboid 

(Alba & 
Dorronsoro

, 2005) 

Rasf  + • • + + − + 

Ackf  + • • + • − −−−− 

Rosf  • + • + • + + 

FMSf  • • • • + • + 

SLEf  + • • + + + + 

GPSf  • − − + + − • 

 
 
 
 

                                                 
* For more details about the performance measures, please refer to Section 2.2.3.1. 
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Looking at Table 5.8, in general, it can be seen that in most cases the Diversity-Guided 

3D-cGA outperforms the other compared algorithms in terms of efficiency (see the ‘+’ sign), 

in particular the ones that show more explorative behaviour such as 3D-cGA with r = 0.7, r 

= 1.0, and narrow cuboid; while there are only few cases in which the Diversity-Guided 3D-

cGA does worse than the algorithms compared (indicated by the symbol ‘−’). The remaining 

cases show non-significant differences between the compared algorithms (see the symbol 

‘•’). The reduced selection pressure induced by 3D-cGA with r = 0.7, r = 1.0, and a narrow 

cuboid assists the exploration leading to increase in the convergence time; however the 

dynamic control of the selection pressure overcomes this issue.  

 
 
Table 5.9. Comparison of the Diversity-Guided 3D-cGA versus other dynamic and static 
3D-cGAs in terms of convergence rate (CR)* 

Problem 

The 
Convergence

-Speed-
Guided 

The 
approach 

in (Alba & 
Dorronsoro

, 2005) 

r = 0.0/  
cubic  

r = 0.7 r = 1.0 

Rectangular 
cuboid  

(Alba & 
Dorronsoro, 

2005) 

Narrow 
cuboid 

(Alba & 
Dorronsoro

, 2005) 

Rasf  • • • • + • • 

Ackf  • • • • + • • 

Rosf  + + + + + + + 

FMSf  − • • • • • + 

SLEf  − • + − • + + 

GPSf  • • + • + • • 

 

 
 
Table 5.10. Comparison of the Diversity-Guided 3D-cGA versus other dynamic and static 
3D-cGAs in terms of convergence speed (SP)* 

Problem 

The 
Convergence

-Speed-
Guided 

The 
approach 

in (Alba & 
Dorronsoro

, 2005) 

r = 0.0/  
cubic  

r = 0.7 r = 1.0 

Rectangular 
cuboid  

(Alba & 
Dorronsoro, 

2005) 

Narrow 
cuboid 

(Alba & 
Dorronsoro

, 2005) 

Rasf  + • + + + • + 

Ackf  + + • + • • • 

Rosf  + + • + • • + 

FMSf  • • • • + • + 

SLEf  + • • + + • + 

GPSf  • − − + + − + 

 

 

                                                 
* For more details about the performance measures, please refer to Section 2.2.3.1. 
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With regard to the efficacy, by inspecting Table 5.9, generally, it can be observed that in 

most cases the differences between the compared algorithms are insignificant (observe the 

‘•’ symbol), while very few cases show the deterioration of the Diversity-Guided 3D-cGA 

(observe the ‘−’ symbol). The significant success of the Diversity-Guided 3D-cGA (observe 

the ‘+’ symbol) is mainly noticed when compared to the algorithms that strongly support the 

‘explore’ mode (i.e., have weak selection pressure) such as the ones with r = 1.0 and narrow 

cuboid, or the ones that support the ‘exploit’ mode (i.e., have strong selection pressure) such 

as 3D-cGA with r = 0.0/cubic. As mentioned earlier, the exploration may lead to reduction in 

solutions accuracy, while the exploitation may lead to premature convergence, with both 

situations the algorithm would fail to find the best solutions leading to divergence and hence 

reduction in the search success rate.  

Table 5.10 compares the different algorithms in terms of the execution time (speed). 

Overall, for most cases, the Diversity-Guided 3D-cGA outperformed the other compared 

algorithms (observe the ‘+’ sign). Very few cases show a decline in the speed obtained by 

the Diversity-Guided 3D-cGA (observe the ‘−’ symbol), while the rest of the cases show 

non-significant differences (see the symbol ‘•’). As with the case for the algorithm’s 

efficiency, most cases that show the superior improvements of the Diversity-Guided 3D-

cGA are acquired by the algorithms with more explorative behaviour (i.e., 3D-cGA with r = 

0.7, r = 1.0, and narrow cuboid). Hence, a relation between the efficiency and the speed of 

the algorithm could be determined.  

As each of the problems considered possessed different characteristics, which presented 

different levels of difficulty, there is no one globally best algorithm for all problems. Hence, 

different exploration/exploitation tradeoffs are needed to effectively solve a given problem. 

More complex problems require more diversity and hence more exploration, however too 

much exploration leads to a reduction in the quality of the solutions. That is why the 

algorithms with dynamic balancing between exploration and exploitation are favoured. A 

general conclusion that was drawn from the previous sections stated that the dynamic 

algorithms showed superior improvement in terms of all performance metrics comparing to 

the static algorithms; this conclusion also conforms to that of (Alba and Dorronsosro, 2005).            

The above discussion has provided a general indication about the benefits gained by the 

dynamic algorithms as these show the best performance. Now, in order to provide a deep 

insight into the behaviours of the different algorithms, the problem of Rastrigin (fRas) is 

selected for use in a case study of the behaviour of the algorithms by inspecting the change 

in the population diversities (remember that the diversity loss trends are diverse among the 
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different problemsrefer to Figure 5.3). Figures 5.6 and 5.7 show trends in the average 

genotypic diversities obtained by the Diversity-Guided 3D-cGA and the other compared 

algorithms, respectively.      

Solving fRas, the lowest numbers of generations were obtained by the algorithms based on 

(Alba and Dorronsoro, 2005), particularly the dynamic and static 3D-cGAs with cubic and 

rectangular cuboids (refer to Table 5.4). Although the measure of diversity used was 

different, the Diversity-Guided 3D-cGA obtained the next better number of generations (see 

Table 5.7). These achievements could be justified by looking at Figures 5.6 and 5.7; the 

diversity obtained by the Diversity-guided 3D-cGA starts reaching almost zero at generation 

400 (see Figure 5.6), while for the dynamic and static 3D-cGAs with cubic and rectangular 

cuboids (based on (Alba and Dorronsoro, 2005)) it starts to reach zero slightly before 

generation 400 (see Figure 5.7). On the other hand, the diversity reaches zero at extremely 

later stages with the other compared algorithms (i.e., the Convergence-Speed-Guided 3D-

cGA and the static 3D-cGAs with r = 0.7, r = 1.0, and narrow cuboid); the worst efficiency 

was obtained by 3D-cGA with r = 1.0 as it shows the most explorative behaviour. For that 

reason, 3D-cGA with r = 1.0 also obtained the worst search success rate. As is well known, 

the diversity is reaches almost zero when the best-found solution conquers the entire 

population.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.6. Average Diversities based on ‘distance-to-average-point’ measure when solving fRas by 

Diversity-Guided 3D-cGA. 
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Figure 5.7. Average Diversities based on ‘genotypic entropy’ when solving fRas by the dynamic and 

static 3D-cGAs under study.  

 

 

5.4.1    Conclusion 

 

This section analysed and compared several dynamic and static algorithms based on 

canonical cGA while maintaining similar parameters and test suite. The main motivation for 

this comparison was to study the influences of introducing different exploration/exploitation 

tradeoffs on the performance of the algorithms. Furthermore, the comparison provided has 

been validated through the use of statistical significance tests.    

Theoretically, although there is no one adaptive criterion which is best and appropriate 

for all problems, in general, the Diversity-Guided 3D-cGA achieves the most desirable 

performance for the most considered problems (has been confirmed by the statistical 

significance tests). In addition, the Diversity-Guided 3D-cGA not only improves the existing 

performance, but also incurs no implementation costs (no grid shape change is needed).  

Hence, it can be concluded that the Diversity-Guided 3D-cGA is an effective algorithm that 

balances between the exploration and the exploitation in a dynamic and continuous manner.   
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5.5    Summary and Contribution to Knowledge 

 

This chapter emphasised the field of dynamic-adaptation in structured EAs, specifically 

cGAs. The class of the adaptation considered for this work was the adaptive-dynamic in 

which the change occurs according to feedback information from the algorithm. The 

importance of dynamic cGAs is growing due to their capability for self-adapting their 

exploration/exploitation trade-off. In the literature, several ways have been investigated in 

order to enhance the population diversity and accordingly the global selection pressure. A 

simple way was to rearrange the locations of the individuals through the change in the grid 

shape. Another way is through the control of genetic parameters such as the selection rate 

(which is the method used in this work). The main motivation for this work was to introduce 

new and effective algorithmic variants with low computation costs that contribute to the field 

of dynamic adaptation in EAs. Two new dynamic algorithms have been proposed, namely: 

the Diversity-Guided and Convergence-Speed-Guided 3D-cGA, which are mainly differing 

in the adaptive criterion used. These algorithms were compared with other dynamic and 

static algorithms from the literature. The Diversity-Guided 3D-cGA achieved the most 

desirable performance over the other compared algorithms for problems considered. The 

following points sum-up the main contributions of this study to existing knowledge. 

 

• The stochastic binary selection operator is used as a mechanism to dynamically 

balance between the exploration and the exploitation. The selection operator 

guides the search towards exploration by increasing the rate of the selection (i.e., 

offer more chances for even worse solutions to survive), or guides the search 

towards exploitation by reducing the rate of selection (i.e., focus on fitter 

solutions).     

 

• The Diversity-Guided 3D-cGA showed superior improvement in terms of 

efficacy and reached up to 35% compared with static 3D-cGAs for the most 

studied problems, and in specific problems with higher complexity. This 

improvement varied due to different problem complexities. With regard to 

algorithm efficiency, the Diversity-Guided 3D-cGA showed the most robust 

behaviour although the best efficiencies were achieved by 3D-cGA with r = 0.0. 

However, the differences in the efficiencies obtained were not significant for the 
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most studied problems; the exceptions could be referred to the differences in the 

search success rate obtained. 

 

• The Diversity-Guided 3D-cGA demonstrated its capability to offer the most 

suitable balance between enhancing population diversity (exploration) and 

tuning good solutions (exploitation) for the most studied problems. The 

following example confirms the conclusion stated above. For fLang and fFMS, the 

algorithm tended to promote exploration after the initial stage (refer to Figure 

5.3) instead of starting by introducing the exploitation, as is the case with the 

other considered problems (less complex).     

 

• The Convergence-Speed-Guided 3D-cGA used similar adaptive criterion 

compared to the dynamic algorithm in (Alba and Dorronsoro, 2005). The 

mechanisms used to swap between ‘explore’ and ‘exploit’ modes for the former 

was the change in the selection rate, while the change in the grid shapes was 

used for the latter. The change in the grid shape leads to a rearrangement of the 

positions of individuals, which therefore induces a kind of individual migration 

that contributes to improvement. In contrast, the proposed algorithm was 

successful in obtaining an appropriate balance between exploration and 

exploitation without affecting other genetic operations.   

 

• The proposed algorithms (i.e., the Diversity-Guided and the Convergence-

Speed-Guided 3D-cGA) showed their capability in balancing exploration and 

exploitation. Improvements in the performance presented as a reduction in the 

convergence time and an increase in the convergence rate were achieved. 

However, the rates of the improvements varied mainly due to the different 

problems’ characteristics. In both algorithms the adjacency of the individuals 

were maintained, which awards any improvement achieved to the change in 

selection rates.   

 

• The comparative analysis of the proposed algorithms (the Diversity-Guided and 

the Convergence-Speed-Guided 3D-cGA) and other dynamic and static 

algorithms, showed that the most desirable performance for the most studied 

problems was achieved by the Diversity-Guided 3D-cGA. Therefore, the start 
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with ‘explore’ mode following a gradual introduction of the exploitation resulted 

in the best balance between exploration and exploitation (recall that the other 

dynamic algorithms alternated between the two modes).   

 

• In the Diversity-Guided 3D-cGA, the gradual introduction of the ‘exploit’ mode 

was carried out by a reduction in the selection rate. This reduction only occurred 

when the adaptive criterion was satisfied. This mechanism conforms to cGAs 

inherent features as cGAs starts with an exploration of promising areas followed 

by an exploitation of good solutions. The dynamic control of the move towards 

exploitation added a significant advantage to cGAs.       

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 151 

 

 

Chapter 6 
 

 

Thesis Summary, Conclusion, and Future 

Work 
 

This thesis aimed to utilise the unique embedded features of cGAs in order to further 

improve their performance, particularly when tackling hard real-world optimisation 

problems. As a result, the structural characteristics of cGAs, genetic operations, and critical 

fault scenarios were investigated form static and dynamic perspectives. From the structural 

point of view, the topology of the grid on which a cGA should be implemented was targeted 

as one way to improve the performance of cellular optimisation engines. From a fault 

tolerance point of view, genetic characteristics such as diversity were investigated to cope 

with faults encountered. Critical fault scenarios and mitigation techniques to tackle these 

scenarios were targeted through the utilisation of the genetic operations. In addition, the 

genetic operations were investigated from a dynamic point of view in order to obtain further 

improvements. The changes that occur in the genetic diversity as the search process progress 

was used as a guide and a key factor to induce a dynamic alternation between exploration 

and exploitation modes.       

In this chapter the works presented in this thesis are summarised (Section 6.1). Section 

6.2 draws overall and study-specific conclusions. Finally, guidelines for future works are 

presented in Section 6.3.      

 

6.1    Summary 

 

This thesis demonstrated the effectiveness of cellular optimisation engines in tackling 

problems of diverse complexities such as highly multimodal, epistasis, asymmetry problems. 

The most well known standard GAs, ssGAs and genGAs, were compared to three-
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dimensional cGAsthe basis for this research (refer to Section 2.2.5.1). Similar algorithmic 

parameters and benchmark problems were used to achieve a fair comparison. The 

comparative results indicated the advantage of cGAs in that higher efficacy was achieved 

while maintaining desirable efficiency. Further, cGAs proved their ability to solve problems 

of different characteristics, while standard GAs failed to solve some of these problems.    

Chapter 3 analysed the performance of cellular GAs implemented on grids with different 

cellular dimensions. The expectation that cGAs with higher cellular dimensions may offer 

advantages over lower cellular dimensions was the main motivation. This study is a 

continuation of a preliminary study that was carried out with other members in the System 

Level Integration research group. In this research, an experimental study was carried out by 

considering an extended test bench including test functions of higher dimensions and real-

world problems to compare the performance of cGAs when implemented on 3D and 2D grid 

structures. In addition to the cellular dimensions, the experimental settings included different 

population and neighbourhood sizes.     

In summary, the various configurations of the 3D-cGA have proven to be more efficient 

than the 2D-cGAs in terms of convergence time when tackling all the considered problems. 

With respect to the efficacy, both cellular structures showed similar success rates. However, 

the 3D-cGA showed improvement over the 2D-cGAs when a smaller local neighbourhood 

radius was applied. A 3D grid provides a larger neighbourhood size than a 2D grid 

considering similar population sizes. This is a consequence of the cell arrangement as it 

consists of several 2D-layers. Interconnections between the cells result in vertical expansion, 

instead of horizontal expansion as in a 2D grid. Although this interconnection causes the 

algorithm to be more exploitative, the balance between exploitation and exploration is kept 

by choosing an appropriate neighbourhood radius with respect to the grid’s topology. 

Therefore, if the selection pressure is controlled by these parameters, higher search success 

rates and better convergence time are reached.  

If the benefits of the performance results obtained are merged with the advantages that 

3D technology brings, the resulting architecture offers significant advantages in terms of the 

following: routing length decrease, interconnection delay reduction, and logic and memory 

density increase. As a result, in the future, it will be possible to improve the performance of 

today’s optimisation engines at both software and hardware levels. 

Chapter 4 has targeted the area of fault tolerance. The fault looked at in this research was 

SEU and the phenotypes were the data targeted by faults. This study focused on faults that 

targeted phenotypes due to their significant role in guiding the search process. If SEU affects 
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essential system data, the system will fail. Accordingly, isolation approaches and several 

mitigation techniques were introduced. These techniques were assessed against a benchmark 

suite of well-known test and real-world problems. These problems were selected to include 

diverse characteristics, which presented different difficulties to the search. Two fault 

scenarios were considered in this research. These scenarios were defined as being the most 

critical. This chapter was divided into three parts, with each part introducing and adding new 

mechanisms in order to increase the reliability of a system and to improve its performance.   

In the first part (Section 4.1), a new algorithmic approach that tackled SEU errors 

targeting individuals’ phenotypes was proposed. The proposed approach, Fault-Tolerant 3D-

cGA, is based on the canonical cGA, and genetic diversity is the key metric used to identify 

and isolate faulty cells (individuals). For both fault scenarios, different fault ratios were 

considered; the ratio of the faults varied from 0% to 40% of the population. The use of 

genetic diversity demonstrated success in identifying and therefore isolating faulty cells. In 

addition, the integration of an explicit migration operation played a significant role in 

mitigating the impact of faults. The proposed migration operation in this research was 

designed to adapt to fault ratio encountered and showed significant improvement in the 

performance of a system. Another operation that was used to mitigate faults was the 

selection operation. In this study a stochastic binary tournament selection was used, two 

selection rates that have different effects on the exploration and the exploitation were 

assessed. These rates were selected to provide lower opportunity for faulty individuals to be 

selected and involved while updating a fault-free cell. Hence, different algorithmic 

configurations offering different exploration/exploitation tradeoffs were evaluated. These 

configurations mainly differed in the defined selection rate and the use of the migration 

operation. Overall, the proposed algorithm demonstrated success in recovering up to 40% of 

faults. However, the level of improvement in performance varied according to the type of 

problem and declined following the increment in fault rates. For all problems, the best 

efficiency was achieved by the configuration that employed the highest selection pressure 

with migration. Conversely, the best efficacy was achieved by the configurations that used a 

lower selection pressure, in this case the integration of the migration operation showed no 

significant improvement. 

In the second part of Chapter 4, two new migration schemes were proposed in order to 

further improve the performance of the algorithm proposed in the previous section. The only 

difference between the newly introduced schemes and the one proposed in the first part was 

the source of the migrants. Using the first defined migration policy, the migrants were 
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selected from the first fault-free neighbourhood identified, while using the new policies the 

migrants were selected from the current neighbourhood (the one for the currently updated 

individual). However, the new schemes differed as one selected the fittest fault-free 

individual while the other selected a random fault-free individual from the current 

neighbourhood. In this study, the different migration policies were compared for similar fault 

scenarios and ratios. Simulation results demonstrated the approach’s success in recovering 

up to 40% of faults. In addition, the use of migration as a mitigation technique for fault 

tolerance offered considerable improvements in the efficiency, efficacy, speed, and 

reliability of the algorithm, especially for a high ratio of faults. In addition to being a 

mitigation technique, the integration of migration played an important role in controlling the 

exploration/exploitation trade-off. Exploration and exploitation are the two main issues in 

enhancing the performance of evolutionary algorithms. Overall, the best performance in 

terms of efficiency, efficacy, and speed was achieved with the migration operation that 

selected the fittest neighbour from the current neighbourhood due to its effect in enhancing 

the local selection intensity and diversity in the population.   

The last part of Chapter 4 proposed a new algorithm, the Dynamic FT 3D-cGA, for 

handling failures that occurred at individuals’ phenotypes, in particular, due to SEUs. 

Similarly, the approach is based on the canonical model of cGAs and is a modified version 

of the past approach (FT 3D-cGA) that used genetic diversity to identify and isolate faulty 

individuals. The most critical fault models were tackled in conjunction with different fault 

ratios. The main motivation for this study was to improve the reliability and performance of 

the FT 3D-cGA through dynamic control of exploration/exploitation trade-off. The dynamic 

calculation of the maximum allowed number of generations based on fault ratio encountered 

helped in enhancing the exploration. On the other hand, the exploitation was enhanced 

through the use of the proposed migration technique. In this study, several configurations 

concerning dynamic adaptation and migration were defined and evaluated. In addition, to 

illustrate the improvements achieved, the Dynamic FT 3D-cGA was compared to the FT 3D-

cGA in terms of efficiency, efficacy, and speed. The results indicated that both algorithms 

demonstrate successful recovery of up to 40% of faults, especially when the migration 

technique was employed. Thus, it was confirmed that the use of migration as a mitigation 

technique to fault tolerance offers considerable improvements in the efficiency, efficacy, 

speed, and reliability of the algorithms, especially for the high ratio of faults. Overall, the 

best performance in terms of efficiency, efficacy, and speed was achieved with the use of the 

migration technique owing to its effect in enhancing the local selection intensity and 
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diversity in proportion. The FT 3D-cGA and the Dynamic FT 3D-cGA both with migration 

showed the best performance. The differences between the results obtained by the compared 

algorithms were not significant. An exception was for Ackley’s problem as the Dynamic FT 

3D-cGA with migration significantly outperformed the FT 3D-cGA with migration mainly in 

terms of efficacy and reliability. The best efficiency was achieved by the FT 3D-cGA with 

migration. However, this lower number of generations was found to be due to the significant 

difference in the obtained search success rate. 

Chapter 5 emphasised the area of dynamic adaptation. The main idea behind the 

adaptivity was to dynamically control and provide an appropriate balance between 

exploration and exploitation for an algorithm. Exploration and exploitation are vital issues in 

improving the effectiveness and the performance of evolutionary algorithms. Population 

diversity is improved by exploring the search space, while the optimum solution can be 

found by exploiting the fitness information. Inappropriate balance between exploration and 

exploitation leads to inefficient search. This chapter was mainly divided into three parts.  

The first part of Chapter 5 discussed the concept of selection pressure. In this part, the 

selection operation, the stochastic binary tournament selection, was used to induce different 

selection pressures through the use of different selection rates. An experimental setup was 

carried out to demonstrate the affect of only the selection operation on the selection intensity 

and the takeover time. The selection rates that were evaluated varied between 0 and 1. The 

results showed an indirect proportion between selection pressure and selection rate. In other 

words, the selection pressure decreased as the selection rate increased. This section 

established the basis for the subsequent parts.    

The second part of Chapter 5 presented a new dynamic 3D-cGA that used genetic 

diversity measure to activate the control of the exploration/exploitation trade-off (Diversity-

guided 3D-cGA). In this study, tuning the genetic operator parameters, specifically the 

selection rate, is the way to dynamically control the exploration/exploitation trade-off. A set 

of diverse characteristic problems was used to assess the performance of the algorithm. The 

dynamic algorithm was also compared to three static versions, each using a constant 

selection rate. These selection rates were selected to offer strongest, moderate, and weakest 

selection pressures. Simulation results showed that the dynamic algorithm outperformed the 

static ones with significant improvement for most of the problems studied. The exceptions 

either did not have statistical differences or showed more erratic behaviour.  In general, the 

proposed adaptive criteria showed the ability to achieve a suitable balance between 
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enhancing population diversity (to escape local optimaefficacy) and tuning solutions (to 

improve solution qualityaccuracy). 

The last part of Chapter 5 analysed the behaviour of a 3D-cGA against various grid 

shapes and selection rates over several problems with variable difficulty to investigate their 

influence on the performance of the algorithm. Next, a new dynamic-adaptive 3D-cGA 

(Convergence-speed-guided 3D-cGA) that aimed at dynamically balancing the 

exploration/exploitation trade-off was presented. The proposed algorithm used convergence 

speed to activate the dynamic control, the measure of the convergence speed and the 

adaptive criteria used in this study were adopted from the work of Alba and Dorronsoro 

(2005). In their work, the alternation between shapes of grid structure was the way to 

dynamically tune the exploration/exploitation trade-off. Three different shapes were 

definedsquare, narrow, and rectangular gridsto promote more exploration (change to 

next narrower shape) or more exploitation (change to next wider shape), while the proposed 

algorithm in this study alternated between three selection rates to tune the 

exploration/exploitation trade-off. These selection rates were selected to induce similar effect 

to that of the one induced by the alternation between grid shapes. The proposed algorithm 

was assessed against a benchmark of tests and real-world problems and was compared to the 

static and dynamic-adaptive cellular algorithm that were reported in (Alba and Dorronsoro, 

2005), and the static algorithms from the previous section. Simulation results showed that the 

proposed adaptive algorithm provided higher search success rates than all other compared 

algorithms, as well as providing adequate efficiency, particularly when solving problems of 

high complexity. Generally, it can be stated that the proposed adaptive algorithm 

successfully achieved a suitable balance between exploration and exploitation.  

In addition, the two proposed dynamic algorithms (Diversity-guided 3D-cGA and 

Convergence-speed-guided 3D-cGA) were compared. Similar parameters and test suites 

were compared to enable fair comparison. The motivation for this comparison was to study 

the different effects of introducing different exploration/exploitation tradeoffs on the 

performance of the algorithms. This comparison was validated through the use of statistical 

significance tests. In general, comparative results showed that Diversity-Guided 3D-cGA 

achieved the most desirable performance for most of the problems considered. In addition, 

the Diversity-Guided 3D-cGA incurred no implementation costs (no grid shape change was 

needed).  Hence, it can be stated that the Diversity-Guided 3D-cGA is an effective algorithm 

that balances between exploration and exploitation in a dynamic and continuous manner.   
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6.2    Conclusion 

 

The overall aim of this thesis was to investigate the inherent characteristics and the ability of 

cellular genetic algorithms to improve their performance and reliability when tackling hard 

optimisation problems. New techniques that added the features of fault tolerance and 

dynamic adaptation to the algorithms were introduced. Structural characteristics, 

decentralised population, the shape and the size of the population and neighbourhood 

topologies, implicit and explicit migration operations, genetic diversity, selection operation, 

and selection pressure were all utilised to achieve the aim of this research. This research was 

carried out in three main stages. 

The first stage explored the cellular dimensionality and their implications on the 

performance of the algorithms. Several problems from the real world and test functions were 

tackled. These problems have diverse characteristics and thus introduced different 

complexity to the search. As the topology of the grid plays a significant role in determining 

the performance of EAs, a comparative analysis between cGAs with two-dimensional grid 

(the most common grid topology) and three-dimensional grid (rarely investigated) was 

developed. cGAs are commonly implemented on 1D or 2D toroidal grid structures. The 

comparison between 2D-cGA and 3D-cGA showed that the 3D-cGA is more efficient in 

terms of convergence time than 2D-cGA for all the problems considered, while both 

algorithms achieved similar efficacies. Due to the vertical expansion, the 3D structure 

provided a larger neighbourhood size than the 2D structure with similar distance steps. This 

led 3D-cGA to show more exploitative behaviour; however, a balance between exploitation 

and exploration was maintained by selecting an appropriate neighbourhood radius with 

respect to the grid topology. In conclusion, the control of the selection intensity through the 

size of the neighbourhood led to the attainment of higher search success rate and less 

convergence time. The findings will add significant benefits for future optimisation engines. 

Achieving better algorithmic performance with 3D-cGA creates a promising opportunity to 

combine the algorithmic benefits with the benefits of advanced custom silicon chip 

technology, 3D-IC.         

The second stage was concerned with improving the effectiveness as well as the 

reliability of cellular genetic engines. Due to the significant miniaturisation of systems’ 

electronics and its operation in hostile environments, systems are subjected to different kind 

of failures. Hence, in this stage fault-tolerant approaches and mitigation techniques were 

proposed. The first approach utilised cGAs’ inherent features such as genetic diversity and 
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the selection operation. An algorithmic-based approach for tolerating SEE errors as well as 

an explicit migration operation were developed. A set of diverse-characteristic problems 

were tackled and critical fault models together with different fault rates were considered. 

Results showed that the algorithm was successful in isolating faults and showed the ability of 

the algorithm to converge with up to 40% faults. The best performance was achieved when 

an explicit migration operation was integrated into the algorithm. The migration aimed at 

covering the loss in cells due to the faults, which enhanced the reproduction process. In 

conclusion, the explicit migration operation played a vital role in mitigating faults and 

offered a better exploration/exploitation trade-off.  

Subsequently, two more migration operations were proposed with the aim of further 

improving the performance. The best overall performance was achieved when the migration 

scheme that selected fault-free and fittest migrants from the current neighbourhood was 

utilised. A final improvement of the proposed fault tolerant 3D-cGA was carried out by 

introducing a dynamic adaptation technique as a mitigation measure. Several algorithm 

configurations were defined and assessed which also concerned the integration of migration. 

Results confirmed the previous findings, especially the vital role of the migration operation.  

During the final stage of this research, adaptive-dynamic 3D-cGAs were developed in 

order to obtain an appropriate balance between exploration and exploitation. A first approach 

was introduced by utilising the genetic diversity. The dynamic search was guided by the 

genetic diversity and the selection rate was dynamically tuned according to the degree of 

diversity. The other proposed approach was guided by the convergence speed and 

accordingly the selection rate was tuned. The two proposed approaches were evaluated and 

compared with other static and dynamic 3D-cGAs. Results demonstrated the high 

performance of the first proposed approach with respect to other compared algorithms. The 

achievement of appropriate exploration and exploitation balance while maintaining 

algorithms’ performance will positively contribute to the field of dynamic adaptation.    

 

6.3    Future Work 

 

This thesis focused on the inherent features of cGAs and their ability to improve cGAs 

performance. Three main aspects were explored: the structural characteristics including the 

cellular dimension and the topologies, size, and shape of the population and local 

neighbourhoods, the area of fault tolerance, and the dynamic adaptation.  Although this 
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research thoroughly explored cGAs from various aspects, several aspects are still available 

for research.  

This thesis has explored the effectiveness of cGAs when implemented on 3D cubic grid, 

while a little attention was paid to other 3D grid shapes. Therefore, the main opportunity to 

work in the future is to investigate the performance of cGAs when implemented over other 

3D gird shapes such as narrow and rectangular cuboids. Different grid shapes offers different 

exploration/exploitation tradeoffs and therefore the use of a particular grid shape may allow 

more efficient optimisation for a specific type of problems. Previous researchers have 

showed the influence of using various grid shapes on the performance of cGAs when solving 

problems of various complexities; however, these studies concerned 2D grid topology. Thus, 

there is a need to extend previous studies to 3D grids. In addition, this thesis has showed that 

the use of higher cellular dimensions (i.e., 3D) offers promising results, in particular when 

solving problems of high complexity (i.e., real-world problems). This finding encourages the 

investigation of use even higher cellular dimensions such as 4D topology. Increasing the 

cellular dimensionality would result in more interconnections between cells producing a 

denser neighbourhood and faster spreading of individuals. Such configurations may offer 

advantageous for even harder problems. However, a careful selection of the genetic 

operations and other parameters should b made; these issues open a wide research area that is 

worth studying.        

The next opportunities for further investigations concern the area of fault tolerance. The 

proposed fault tolerant approach focused on SEEs when targeting only the phenotypic space. 

This approach can be further extended to tackle errors targeting the genotypic space in 

conjunction with the phenotypic space. The changes that occur in one space are clearly 

reflected in the other. Hence, further investigation is needed to develop isolation criteria that 

tackle faults in both spaces.  Another opportunity is to investigate other fault scenarios as the 

research on fault tolerance only considered the two most critical fault scenarios. Moreover, 

besides the phenotypic and genotypic spaces, the Finite State Machine is a potential structure 

of cGAs for faults to occur. Therefore, fault tolerant technique can be further investigated to 

consider other critical internal cGA structures. 

Other opportunities can also focus on the area of dynamic adaptation. This research 

focused on the diversity and convergence speed genotypic-based measures. Therefore, 

further investigations are needed to evaluate phenotypic- or hybrid-based measures for 

diversity and convergence speed. In addition, the approaches proposed to dynamically 

balance between exploration and exploitation used the selection operation as a way to 
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achieve the dynamic control. Other genetic operations such as crossover and mutation can 

play an important role in the dynamic adaptation. Exploring the ability of these operations to 

dynamically tune the exploration/exploitation trade-off may result in less computation time.       
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Appendix A 
 

 

Description of the Benchmark Problems 
 

 

The algorithms, which were proposed and investigated in this research, were evaluated with 

a careful selection of performance benchmark problems in order to avoid an ad-hoc 

conclusion. The problems considered are selected as they possess diverse characteristics 

such as multimodality, epistasis, regularity, and asymmetry, introducing different levels of 

difficulty into the search (GEATbx, 2005; Alba and Dorronsoro, 2008). The details of these 

problems were omitted from the previous chapters so readers can pay more attention without 

any distraction. This Appendix presents a brief description of all the problems used in this 

research. All of the problems studied were belong to the field of continuous optimisation due 

to their complex features are commonly acquired by real-world problems. Some of the 

problems selected were from well-known academic test functions, while others were 

obtained from the real world. 

Details about the test functions selected are presented in Section A.1, while Section A.2 

gives the details of the real-world problems.  

 

A.1 Test Functions 

 

In this section seven benchmark test functions from well-known continuous minimisation 

functions are illustrated. They are: Rastrigin, Schwefel, Griewangk, Ackley, Michalewicz, 

Rosenbrock, and Langermann problemsthe details are provided below.  

 

Rastrigin’s problem )( Rasf : 

Rasf  is non-linear, multimodal, separable, and symmetric function.  Multimodalitya   
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Figure A.1. Search space of Rastrigin function of two variables.  

 

large number of local optimaincurs more complexity into search  process. That is because, 

during the search process, an algorithm tries to escape local optima to avoid stagnation. 

Separability indicates the inter-dependency of genes; therefore, a separable function has no 

epistatic interactions between its decision variables. Consequently, an algorithm tackles each 

variable independently. The objective function of Rastrigin’s problem is provided in (A.1). 

 

.))2cos(10(10)(
1

2∑
=

−+=
n

i
iiRas xxnxf πr

                                    (A.1) 

 

where n  is the number of variables (i.e., problem dimension) and x
r

 represents the encoded 

variables with each variable ix  ranges within the interval of ]12.5,12.5[ +− . The global 

minimum value is located at )0,...,0(min =x  such that 0)( min =xfRas .  

This function is comparatively difficult because of its large search space and its large 

number of local minima; however these local minima are regularly distributed.  Figure A.1 

illustrates the search space of a two-variableRasf .  
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Figure A.2. Search space of Schwefel function of two variables. 

 

Schwefel’s problem )( Schf : 

Schf  is also highly multimodal, regular, and separable function. It is characterised by its 

global minimum is geometrically far from the next best local minima. Consequently, it is 

catalogued as a difficult test function for most optimisation techniques as these may trapped 

in a local minimum region. Equation (A.2) illustrates the objective function of Schf . 

 

.)sin(..9829.418)(
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i
iiSch xxnxf

r
                                  (A.2) 

 

where n  is the dimension of the function. The variables x
r

 are delimited within a range of 

]500,500[ +− . This function has its global minimum located at )420.9687,...,420.9687(min =x  

and has a value 0)( min =xfSch . Figure A.2 shows the search space of two variables Schf . 

 

Griewangk’s problem )( Grif : 

Grif  is a highly multimodalhas many local minima, regular, and non-separable 

function. Non-separable functions are highly epistaticstrong interactions between genes 
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Figure A.3. Search space of Griewangk function of two variables. 

 

and has the ability of modifying one gene by the joined effect of one or more genes. 

Therefore, this kind of functions is more difficult to optimise since moving from one point to 

another in the search space highly depends on the joint action of two or more genes. Thus, 

the phenotype of an individual is affected by one or more genes. The objective function of 

Grif  is defined in (A.3). 
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                                      (A.3) 

 

where n  is the dimension of the function. The search space is delimited within a range of 

]600,600[ +−  units per variable ix . The global minimum is located at )0,...,0(min =x  with a 

value 0)( min =xfGri . The number of local minima grows exponentially when the number of 

variables increases. Figure A.3 shows Grif  search space of two variables. 

 

 



 165 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A.4. Search space of Ackley function of two variables. 

 

Ackley’s problem )( Ackf : 

Ackf  possesses similar characteristics as those of Grif : multimodal, regular, symmetric, 

and non-separable. This function has moderate complexity; however algorithms that only use 

the gradient steepest descent are likely be trapped in local minima areas. Therefore, the best 

algorithms to solve this problem should efficiently balance between the exploration and the 

exploitation. To solve this problem the objective function shown in (A.4) has to be 

minimised.  
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              (A.4) 

 

where n  is the dimension of the function. The search space is delimited within the range of 

]30,30[ +−  units per variable ix , and the global minimum is located at )0,...,0(min =x  with a 

value 0)( min =xf Ack .  The search space of two variables Ackf  is shown in Figure A.4.  
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Figure A.5. Search space of Michalewicz function of two variables. 

 

Michalewicz’s problem )( Micf : 

The main characteristic of Micf  is its asymmetry. Consequently, this function is added to 

the test suite in order to avoid the exploitation of the symmetry possessed by the above 

problems. In addition, Micf  is a separable and multimodal function. The number of local 

minima grows, in a factorial manner, as the dimension n  of the problem increases, leading 

to a total of !n  local minima. The objective function is provided in (A.5). 
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where n  is the dimension of the function and the parameter m  defines the sharpness of 

valleys. Larger value of m  introduces more difficulty into search process; in this research a 

value of 10=m  is used. The global minimum value is 66.9)( min −=xfMic  for a problem’s 

dimension 10=n . (The location and value of the global minimum vary according to the 

dimension of the problem.) The search space is delimited within the range of ],0[ π  units per 

variable ix . The search space of two-dimensional Micf  is illustrated in Figure A.5. 
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Figure A.6. Search space of Rosenbrock function of two variables. 

 

Rosenbrock’s problem )( Rosf : 

Rosf  is a multimodal and non-separable test function. It is characterised as its global 

minimum is located inside a narrow, long, and flat valley. Although most optimisation 

techniques can easily locate this valley, the global minimum is difficult to reach. The 

objective function is shown in (A.6). 
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                                          (A.6) 

 

where n  is the dimension of the function, and the global minimum is located at )1,...,1(min =x  

with a value 0)( min =xfRos . The variables x
r

 range in the interval of ]10,5[− . The 

visualization of the non-convex search space of Rosenbrock function is illustrated in Figure 

A.6. The plot focuses on the area around the global minimum for two variables.  
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Figure A.7. Search space of Langermann function of two variables. 

 

Langermann’s problem )( Langf : 

Langf  is also a multimodal and non-separable function; its local minima are irregularly 

distributed. Equation (A.7) demonstrates the objective function. 

  

.)(cos)(
1

2
)(

1

1

1

2











−

∑
−= ∑∑

=

−−

=

=
n

j
ijj

axm

i
iLang axecxf

n

j
iji

ππr                                         (A.7) 

 

where n  is the dimension of the function. The values of vector C  ( ic ; mi ,...,1= ) and matrix 

A  ( ija ; nj ,...,1= ; mi ,...,1= ) are randomly generated in order to obtain a random 

distribution of the minima. However, in this research these values were constant numbers 

fixed in advance from (Bersini et al., 1996) for 5=m . The variables x
r

 range in the interval 

of  ]10,0[ . The global minimum value varies and depends on vector C  and matrix A . In this 

research, the global minimum value is 49.1)( min −=xfLang . Figure A.7 shows the search 

space of theLangf  in 2D. 
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A.2    Real-World Problems 

 

This section describes the benchmark problems selected from the real world: frequency 

modulation sound parameter identification ( FMSf ) and systems of linear equations ( SLEf ) 

(Alba and Dorronsoro, 2008). The third real-world problem considered in this research (GPS 

attitude determination GPSf ) was introduced in Chapter 4, Section 4.2.2. 

 

Frequency modulation sound parameter identification ( FMSf ): 

In this problem, six parameters must be determined ),,,,,( 332211 ωωω aaax =r
of the 

frequency modulation sound model represented by (A.8) in order to approximate it to the 

sound wave represented by (A.9) with 1002 πθ ⋅= . The parameters range within the 

interval of ]35.6,4.6[ +− . 

 

))).sin(sin(sin()( 332211 θωθωθω ⋅⋅⋅+⋅⋅⋅+⋅⋅⋅= tatataty                        (A.8)   

                                              

))).9.4sin(0.28.4sin(5.10.5sin(0.1)(0 θθθ ⋅⋅⋅+⋅⋅⋅−⋅⋅⋅= tttty                (A.9) 

 

The fitness function is defined as the summation of square errors represented by (A.10). 

This problem is a highly complex multimodal one, non-symmetric, and with strong epistasis. 

The optimum minimum value is 0.0)( min =xfFMS .   
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Systems of linear equations ( SLEf ): 

In this problem, ten parameters of a vector x
r

 are to be determined such that bxA
rr =⋅ , in 

order to minimise the objective function represented by (A.11). The global minimum value is 

0.0)( min =xfSLE . The matrix A  and the vector b
r

 are given by (A.12), and the ten parameters 

are in the range ]0.11,0.9[ +− . 
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;

1 4, 4, 7, 8, 9, 2, 2, 1, 2,

5 7, 2, 7, 8, 3, 5, 8, 2, 8,

1 8, 1, 7, 4, 3, 6, 8, 3, 9,

8 4, 8, 7, 4, 1, 8, 7, 5, 1,

3 3, 3, 6, 6, 7, 1, 3, 2, 1,

9 3, 3, 2, 4, 3, 6, 1, 5, 9,

5 9, 9, 3, 5, 7, 3, 7, 3, 8,

6 1, 2, 4, 7, 9, 6, 8, 1, 3,

9 6, 6, 2, 2, 7, 1, 1, 7, 9,

1 3, 2, 4, 5, 9, 2, 5, 4, 5,







































=A
      

.

40

55

50

53

35

45

59

47

50

40







































=b
                                          (A.12) 

 

SLEf  is a complex and quite difficult real-world problem, with inter-parameter linkage 

(i.e., non-separable). This problem is unlikely to be used to assess the performance of GAs as 

these techniques are not the most suitable to solve this problem. However, some authors still 

believe in using this problem to evaluate GAs (Herrera and Lozano, 2000; Alba and 

Dorronsoro, 2008; El−Emary and El−Kareem, 2008).  
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Appendix B 
 

Extended Experimental Results 
 

In order to make this research comprehensive, this appendix is added to provide extended 

and preliminary results that may be useful. These results were omitted from main chapters in 

order to avoid reader distraction. Section B.1 gives the entire results from the experiment in 

Chapter 3; some of these results were omitted as either were not desirable (i.e., had very low 

search success rate) or had no significant influences on the analysis. This section (B.1) aims 

to support the decision made about what to consider or to disregard. The remaining sections 

(B.2 and B.3) give the results from preliminary experiments that are related to the selection 

of a single threshold for adaptive algorithms proposed in Chapter 5. These sections aim to 

give detailed justification on how to choose a single value for all problems under 

consideration (recall that there is no one best value for all problems). Section B.2 provides 

the results and criteria on which the selection is made for Diversity-Guided 3D-cGA (refer to 

Section 5.2), while those for Convergence-Speed-Guided 3D-cGA and Dynamic 3D-cGA 

based on (Alba and Dorronsoro, 2005) are given in Section B.3 (refer to Section 5.3).   

 

B.1    Comparison of 3D and 2D cGAs 
 

In Chapter 3, 3D-cGAs were compared to 2D-cGAs; part of the results were omitted such as 

search success rates for fRas, fSch, and fAck as they were either similar or only differed slightly. 

Other results omitted from Chapter 3 relate to those obtained for fSLE as they had undesirable 

performance. In this section, these results are included in order to show the slight 

improvements achieved. Table B.1 summarises all results. 

Various configurations concerning population and neighbourhood sizes were defined for 

both algorithms (i.e., 2D and 3D cGAs); the parameters used were summarised in Table 3.1. 

Various population sizes were selected in order to introduce similar number of individuals 

for both grid topologies (i.e., 2D and 3D grids). For more details, refer to Chapter 3. 
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Table B.1. Convergence time (CT) and rate (CR)* obtained by 3D-cGA and 2D-cGA for 

various population sizes and step distances (r) 

5×5 
3×3×3 

8×8  
4×4×4 

11×11 
5×5×5 

15×15 
6×6×6 

19×19 
7×7×7 

Population 
size/ 

Problem r =1 r =1 r =3 r =1 r =3 r =1 r =3 r =1 r =3 

492.61  
± 39.5 
96% 

416.24  
± 26.0 

100% 

381.93  
± 35.5 

100% 

398.31  
± 22.0 

100% 

358.85  
± 29.5 

100% 

401.52 ± 
19.5 

100% 

354.38  
± 30.5 

100% 

406.57  
± 18.5 

100% 

360.42  
± 20.0 

100% 
Rasf  

685.22  
± 102.5 
100% 

450.46  
± 46.0 

100% 
− 

377.12  
± 35.0 

100% 

356.21  
± 35.5 

100% 

366.02 ± 
27.5 

100% 

350.72  
± 20.0 

100% 

362.12  
± 27.0 

100% 

345.17  
± 29.5 

100% 

302.89  
± 32.0 
79% 

245.01  
± 21.0 
99% 

215.15  
± 18.0 
99% 

234.02  
± 16.0 

100% 

203.03  
± 16.0 

100% 

226.77  
± 13.5 

100% 

193.00  
±  13.5 
100% 

231.13  
± 10.5 

100% 

190.99  
± 12.5 

100% 
Schf  

258.46  
± 33.5 
84% 

227.97  
± 21.0 
99% 

− 
212.69  

± 17.5 
100% 

200.53  
± 16.5 

100% 

205.28  
± 13.5 

100% 

189.09  
± 15.5 

100% 

199.87  
± 12.5 

100% 

181.9  
± 14.5 

100% 

448.00  
± 0.00 
1% 

511.11  
± 48.0 
9% 

431.90  
± 2.50 
10% 

408.63  
± 82.0 
11% 

324.50  
± 39.0 
18% 

604.87  
± 116.0 
31% 

366.92  
± 23.0 
39% 

489.78  
± 53.0 
42% 

353.35  
± 30.0 
53% 

Grief  
386.50  

± 2.00 
4% 

475.15  
± 75.0 
13% 

− 
345.36  

± 49.0 
19% 

300.40  
± 28.5 
22% 

426.47  
± 38.0 
34% 

331.86  
± 33.5 
44% 

303.54  
± 29.0 
51% 

298.52  
± 22.0 
57% 

343.21  
± 23.0 

100% 

263.41  
± 5.0 

100% 

216.96  
± 5.0 

100% 

261.78  
± 4.0 

100% 

210.79  
± 3.5 

100% 

259.01  
± 3.5 

100% 

207.63  
± 2.0 

100% 

258.83  
± 2.5 

100% 

209.01  
± 2.0 

100% 
Ackf  

 275.82  
± 18.0 

100% 

230.56  
± 5.5 

100% 
− 

225.07  
± 3.0 

100% 

211.36  
± 3.0 

100% 

223.61  
± 2.0 

100% 

204.59  
± 2.0 

100% 

222.01  
± 2.0 

100% 

200.17  
± 2.0 

100% 

445.62  
± 51.0 
16% 

481.00  
± 66.0 
33% 

444.17  
± 48.0 
41% 

488.79  
± 51.0 
43% 

446.15  
± 51.5 
60% 

548.60  
± 58.0 
75% 

442.92  
± 45.0 
81% 

560.44  
± 43.0 
89% 

461.78  
± 43.0 
84% 

Micf  
419.31  

± 90.0 
19% 

435.05  
± 46.0 
35% 

− 
453.83  

± 55.5 
54% 

437.85  
± 47.0 
56% 

457.67  
± 44.0 
65% 

433.05  
± 41.0 
72% 

467.40  
± 46.0 
80% 

433.13  
± 50.5 
82% 

260.50  
± 47.0 
4% 

292.57  
± 49.0 
28% 

193.80  
± 24.0 
35% 

358.21  
± 33.5 
65% 

221.68  
± 25.5 
64% 

361.56  
± 60.0 
93% 

213.16  
± 23.0 
89% 

327.44  
± 26.0 
97% 

205.47  
± 16.0 
96% 

Langf  
205.87  

± 29.5 
8% 

226.33  
± 30.5 
30% 

− 
251.94  

± 25.0 
76% 

218.30  
± 20.5 
62% 

228.19  
± 22.0 
91% 

204.01  
± 25.0 
85% 

239.83  
± 22.0 
99% 

186.83  
± 15.0 
99% 

602.40  
± 198.0 
25% 

264.38  
± 57.5 
44% 

196.14  
± 35.5 
42% 

258.64  
± 37.0 
62% 

170.58  
± 19.0 
65% 

270.62  
± 32.0 
87% 

190.07  
± 18.0 
77% 

296.11  
± 25.0 
96% 

209.97  
± 22.0 
89% 

FMSf  

 442.93  
± 202.0 
33% 

208.95  
± 37.0 
49% 

− 
207.69  

± 29.0 
63% 

186.75  
± 23.0 
68% 

202.41  
± 17.0 
81% 

184.06  
± 21.5 
72% 

220.63  
± 22.0 
92% 

197.77  
± 21.5 
80% 

0% 0% 0% 0% 
382.00  

± 62.0 
2% 

662.00  
± 0.00 
1% 

657.50  
± 106.5 
2% 

823.00  
± 78.0 
2% 

625.50  
± 89.5 
6% 

SLEf  

0% 0% − 
891.00  

± 0.00 
1% 

556.50  
± 173.5 
2% 

744.00  
± 0.00 
1% 

668.85  
± 167.0 
7% 

752.16  
± 14.0 
6% 

567.66  
± 37.0 
6% 

* For more details about the performance measures, please refer to Section 2.2.3.1. 
Note: For each problem, the results obtained by 2D-cGA are shown above the results obtained by 3D-cGA. The symbol ‘−’ 
means that the corresponding algorithm configuration has not been evaluated.  
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For each problem studied, convergence time and convergence rate obtained for 2D-cGAs 

and 3D-cGAs of various configurations are given in Table B.1. The discussion and analysis 

of results were provided in Chapter 3. 

 

B.2.    Selection of γ  Diversity-Guided 3D-cGA 

 

This section studies the behaviour of the adaptive criterion under different γ   values (refer 

to Chapter 5, Section 5.2). Four γ  values: 0.3, 0.35, 0.4, and 0.45, which represented high to 

low restrictive conditions to reduce the selection rate were tested. The purpose is to select 

single γ  value for all of the problems considered.  

 
Table B.2. Experimental Results: Convergence time (CT) and rate (CR)* obtained by 
Diversity-Guided 3D-cGAs for various thresholds (γ ), and 777 ××  grid 

Problem γ = 0.3 γ = 0.35 γ =  0.4 γ = 0.45 

Rasf  
678.22 ± 65.5 

100% 

683.94 ± 54.5 

100% 

641.72 ± 55.0 

100% 

675.61 ± 48.5 

100% 

Schf  
1259.2 ± 97.5 

100% 

1247.3 ± 100.0 

100% 

1209.9 ± 116.0 

100% 

1207.3 ± 126.0 

100% 

Ackf  
1854.9 ± 70.0 

70% 

1850.4 ± 72.00 

76% 

1897.4 ± 52.0 

83% 

1872.2 ± 50.0 

79% 

Rosf  
908.47 ± 534.0 

42% 

861.21 ± 603.0 

41% 

881.7 ± 636.5 

50% 

1010.7 ± 470.5 

44% 

Micf  
712.63 ± 32.5 

100% 

664.62 ± 40.5 

100% 

628.30 ± 43.0 

100% 

599.69 ± 47.5 

100% 

Langf  340.57 ± 25.5 

84% 

346.01 ± 16.0 

94% 

308.45 ± 14.5 

96% 

320.13 ± 23.0 

92% 

FMSf  
1386.1 ± 278.0 

68% 

1396.7 ± 250.0 

61% 

1294.7 ± 381.5 

100% 

1337.6 ± 267.5 

70% 

SLEf  
345.91 ± 32.0 

37% 

320.97 ± 33.5 

34% 

341.48 ± 35.0 

39% 

323.33 ± 31.0 

21% 

 
 

 

Table B.3. Local and global† ranking of γ  values based on two performance metrics 
Convergence 

time 
Convergence 

rate 
γ  Sum Rank 

1. 0.35 1. 0.40 0.30 6 4 
1. 0.40 2. 0.30 0.35 3 2 
3. 0.45 2. 0.35 0.40 2 1 
4. 0.30 2. 0.45 0.45 5 3 

 

 

                                                 
* For more details about the performance measures, please refer to Section 2.2.3.1. 
† Local ranking is performed for each performance metric independently. Local ranks are marked in bold in the first two 
columns. Global ranking is performed for all performance metrics and is shown in the last column. It is computed by summing 
the local ranks for each γ. Sum of local ranking values are shown in the column prior to the last.   
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Table B.2 shows the results obtained. For each problem, the best results are marked in 

bold. In order to select one γ  value two-level ranking was performed (see Table B.3). In the 

first levellocal ranking, γ  values were ranked based on convergence time and rate 

independently. The value of γ  that resulted in the lowest convergence time for most cases 

was assigned the highest rank (i.e., the smallest number) (column 1), and so forth. Similarly, 

γ  value that resulted in the highest convergence rate for most cases was assigned the highest 

rank (column 2) , and so forth. In the second levelglobal ranking, γ  values were ranked 

based on their local ranks; the value of γ  that resulted in the minimum sum of local ranks 

was assigned the highest rank (the last column). Consequently, the best γ  value was 0.4. 

 

Table B.4. Experimental Results: Convergence time (CT), rate (CR), and speed (SP)* 
obtained by Diversity-Guided 3D-cGAs for various thresholds (γ ), and 666 ××  grid 

Problem γ = 0.05 γ = 0.15 γ =  0.25 γ =  0.30 γ = 0.40 

Rasf  
576.32 ± 63.5 

100% 
36.34 ± 4.01 

581.6 ± 54.5 
100% 

37.31 ± 3.5 

586.86 ± 51.0 
100% 

38.01 ± 3.12 

576.91 ± 52.5 
100% 

37.49 ± 3.74 

570.83 ± 49.5 
100% 

36.80 ± 3.23 

Ackf  
1430.4 ± 173.5 

100% 
90.93 ± 10.96 

1406.7 ± 188.5 
100% 

90.53 ± 12.23 

1411.8 ± 163.5 
100% 

90.29 ± 10.5 

1457.5 ± 180.0 
100% 

95.69 ± 12.6 

1399.0 ± 190.0 
100% 

89.58 ± 12.34 

Rosf  
632.45 ± 159.0 

42% 
40.87 ± 10.2 

510.66 ± 281.0 
48% 

33.25 ± 18.03 

452.34 ± 254.5 
46% 

29.18 ± 16.13 

497.74 ± 325.5 
50% 

31.57 ± 20.64 

445.87 ± 256 
55% 

27.83 ± 15.9 

FMSf  
872.55 ± 314.0 

58% 
80.02 ± 28.81 

899.31 ± 261.0 
48% 

82.85 ± 24.35 

1001.6 ± 248.5 
52% 

91.54 ± 23.41 

979.00 ± 213.0 
49% 

89.95 ± 19.57 

981.65 ± 336.5 
52% 

89.77 ± 31.91 

SLEf  
365.8 ± 42.0 

15% 
24.34 ± 2.80 

321.07 ± 33.0 
13% 

21.74 ± 2.56 

338.18 ± 51.0 
16% 

22.75 ± 3.64 

291.40 ± 14.5 
10% 

19.61 ± 0.96 

300.80 ± 36.0 
10% 

20.28 ± 2.56 

GPSf  
125.58 ± 6.00 

99% 
2.45 ± 0.109 

102.40 ± 7.00 
99% 

2.00 ± 0.14 

96.45 ± 6.00 
99% 

1.91 ± 0.109 

96.06 ± 7.00 
99% 

1.89 ± 0.15 

96.26 ± 6.5 
100% 

1.88 ± 0.11 

 

Table B.5. Local and global† ranking of γ  values based on three performance metrics 
Convergence 

time 
Convergence 

Rate 
Convergence 

speed 
γ  Sum Rank 

1. 0.40 1. 0.40 1. 0.40 0.05 7 2 
2. 0.30 2. 0.25 2. 0.05 0.15 12 5 
3. 0.05 2. 0.05 3. 0.30 0.25 10 4 
4. 0.15 4. 0.15 4. 0.15 0.30 9 3 
4. 0.25 4. 0.30 4. 0.25 0.40 3 1 

 

 

 

                                                 
* For more details about the performance measures, please refer to Section 2.2.3.1. 
† Local ranking is performed for each performance metric independently. Local ranks are marked in bold in the first three 
columns. Global ranking is performed for all performance metrics and is shown in the last column. It is computed by summing 
the local ranks for each γ. Sum of local ranking values are shown in the column prior to the last.   
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In Chapter 5, Diversity-Guided 3D-cGA was compared with other algorithms. To 

perform fairness comparison, similar parameters for algorithms compared were used; a size 

of 216 individuals arranged as 666 ××  was used. Consequently, experiments to select single 

γ  value were repeated for the reduced size of population. Population size can significantly 

influence algorithm performance; larger populations offer more diversity and therefore 

promote more exploration.  

Table B.4 shows the results. Values of γ  included: 0.05, 0.15, 0.25, 0.3, and 0.4. The 

best results achieved for each problem are marked in bold. Two-level ranking was 

performed. Locally, γ  values that achieved the lowest convergence time, the highest rate, 

and the fastest convergence in parallel was assigned the highest rank (Table B.5, columns 1, 

2, and 3, respectively). Globally, the highest rank was assigned to the γ  that resulted in the 

best overall performance (the last column). Consequently, the best γ  value is 0.4. 

 

B.3.    Selection of ε  for Convergence-Speed-Guided 3D-cGA   
 

This section examines the performance of the adaptive criteria defined for the Convergence-

Speed-Guided 3D-cGA and the Dynamic 3D-cGA based on (Alba and Dorronsoro, 2005) 

against different ε  values to facilitate the selection of single ε  value for all the considered 

problems (refer to Chapter 5, Section 5.3).  

 
 
 

Table B.6. Experimental Results: Convergence time (CT), rate (CR), and speed (SP)* 
obtained by Convergence-Speed-Guided 3D-cGAs for various thresholds (ε ) 

Problems ε = 0.3 ε = 0.25 ε = 0.15 ε = 0.05 

Rasf  
755.55 ±46.5 

100% 
53.11 ±3.53 

777.21 ±70.0 
99% 

51.61 ±4.45 

735.97 ±61.0 
100% 

50.86 ±3.67 

752.89 ±65.5 
100% 

51.25 ±4.61 

Ackf  
1609.0 ±153.5 

100% 
106.25 ±9.44 

1519.6 ±144.5 
100% 

106.83 ±9.69 

1566.7 ±141.0 
99% 

105.29 ±9.76 

1598.1 ±143.0 
99% 

117.7 ±10.3 

Rosf  
599.70 ±235.0 

10% 
40.15 ±15.46 

686.75 ±135.0 
16% 

46.54 ±9.41 

692.69 ±203.0 
13% 

46.73 ±11.82 

661.68 ±192.0 
22% 

45.39 ±13.05 

FMSf  
1161.8 ±308.0 

69% 
108.86 ±29.92 

1167.3 ±272.0 
64% 

109.63 ±25.46 

1127.7 ±300.0 
68% 

105.93 ±28.35 

944.53 ±380.0 
54% 

90.65 ±35.3 

SLEf  
515.08 ±50.0 

24% 
34.33 ± 3.35 

522.95 ±66.0 
23% 

36.33 ±4.54 

498.95 ±67.0 
20% 

33.80 ±4.44 

535.46 ±99.0 
26% 

37.91 ±7.02 

GPSf  
106.70 ±14.0 

99% 
2.02 ±0.281 

95.77 ±10.5 
96% 

1.82 ±0.203 

102.15 ±13.0 
98% 

1.84 ±0.226 

93.02 ±9.00 
100% 

1.76 ±0.16 
* For more details about the performance measures, please refer to Section 2.2.3.1. 
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Table B.7. Local and global* ranking of ε  values based on three performance metrics 

Convergence 
time 

Convergence 
rate 

Convergence 
speed ε Sum Rank 

1. 0.05 1. 0.05 1. 0.15 0.05 4 1 
1. 0.15 2. 0.30 2. 0.05 0.15 5 2 
3. 0.25 3. 0.15 3. 0.30 0.25 10 4 
3. 0.30 3. 0.25 4. 0.25 0.30 8 3 

 
 

Four ε  values0.3, 0.25, 0.15, and 0.05were assessed, representing low to high 

restrictive adaptive conditions. Table B.6 shows the results obtained. The best results for 

each problem are marked in bold. To select single ε  value, two-level ranking was 

performed based on convergence time, rate, and speed. Locally, the highest rank was 

assigned to ε  value that achieved the lowest convergence time, the highest rate, and fastest 

convergence in parallel (Table B.7, columns 1, 2, and 3, respectively). Globally, the highest 

rank was assigned to ε  value that achieved the best overall performance (Table B.7, the last 

column). Consequently, the best ε  value is 0.05. 

Similarly, the same ε  values were tested for Dynamic 3D-cGA based on (Alba and 

Dorronsoro, 2005). Table B.8 shows the results obtained. For each problem considered, the 

best results achieved are marked in bold. 

 

 

Table B.8. Experimental Results: Convergence time (CT), rate (CR), and speed (SP)† 
obtained by Dynamic 3D-cGAs based on (Alba and Dorronsoro, 2005) for various thresholds 
(ε ) 

Problems ε = 0.3 ε = 0.25 ε = 0.15 ε = 0.05 

Rasf  
547.27 ±61.0 

100% 
37.51 ±3.91 

564.64 ±59.5 
100% 

40.05 ±4.32 

544.21 ±51.5 
100% 

36.07 ±3.19 

541.43 ±99.5 
100% 

37.68 ±4.10 

Ackf  
1298.4 ±200.0 

100% 
88.27 ±13.5 

1399.4 ±203.0 
100% 

93.92 ±13.18 

1301.6 ±195.0 
100% 

87.97 ±12.94 

1337.5 ±189.5 
100% 

100.54 ±13.76 

Rosf  
998.0 ±0.0 

1% 
66.25 ±0.0 

995.00 ±2.0 
2% 

66.82 ±0.23 
0% 0% 

FMSf  
905.38 ±340.0 

50% 
86.25 ±31.94 

880.08 ±261.0 
50% 

83.35 ±24.76 

839.90 ±273.0 
54% 

79.34 ±26.63 

981.41 ±342.0 
72% 

94.41 ±32.5 

SLEf  
209.33 ±42.0 

3% 
14.75 ±1.68 

219.3 ±23.5 
10% 

15.43 ±1.46 

216.81 ±43.0 
11% 

15.14 ±3.0 

228.2 ±3.0 
5% 

16.27 ±0.28 

GPSf  
70.80 ±7.0 

97% 
1.37 ±0.125 

72.65 ±9.0 
100% 

1.42 ±0.156 

72.17 ±7.0 
98% 

1.42 ±0.12 

71.79 ±8.0 
100% 

1.40 ±0.15 

 
 
 

                                                 
* Local ranking is performed for each performance metric independently (marked in bold). Global ranking is performed for all 
performance metrics (last column). It is computed by summing the local ranks for each ε.    
† For more details about the performance measures, please refer to Section 2.2.3.1. 
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Table B.9. Local and global* rankings of ε  values based on three performance metrics  

Convergence 
time 

Convergence 
rate 

Convergence 
speed ε Sum Rank 

2. 0.05 3. 0.15 1. 0.30 0.05 6 1 
2. 0.15 1. 0.25 1. 0.15 0.15 6 1 
2. 0.25 4. 0.30 3. 0.05 0.25 6 1 
1. 0.30 1. 0.05 3. 0.25 0.30 6 1 

* Local ranking is performed for each performance metric independently (marked in bold). Global ranking is performed for all 
performance metrics (last column). It is computed by summing the local ranks for each ε.    

 

To choose single ε  value, two-level ranking was performed based on performance 

metrics: convergence time, rate, and speed. Locally, the highest rank was allocated to ε  

value that resulted in: the lowest convergence time, the highest convergence rate, and the 

fastest convergence in parallel (Table B.9, columns 1, 2, and 3, respectively). Globally, the 

highest (or final) rank was assigned to ε  value that obtained the best overall performance 

(Table B.9, the last column). From Table B.9, it can be seen that all of the ε  values tested 

obtained similar global ranks. A value of ε = 0.05 that represented the most restrictive 

condition was selected for Convergence-Speed-Guided 3D-cGA (refer to Table B.9). In 

addition, for Dynamic 3D-cGA based on (Alba and Dorronsoro, 2005), a similar ε  

value0.05was selected.  
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