

This thesis has been submitted in fulfilment of the requirements for a postgraduate degree

(e.g. PhD, MPhil, DClinPsychol) at the University of Edinburgh. Please note the following

terms and conditions of use:

• This work is protected by copyright and other intellectual property rights, which are

retained by the thesis author, unless otherwise stated.

• A copy can be downloaded for personal non-commercial research or study, without

prior permission or charge.

• This thesis cannot be reproduced or quoted extensively from without first obtaining

permission in writing from the author.

• The content must not be changed in any way or sold commercially in any format or

medium without the formal permission of the author.

• When referring to this work, full bibliographic details including the author, title,

awarding institution and date of the thesis must be given.

Dynamic and Fault Tolerant Three-

Dimensional Cellular Genetic Algorithms

Asmaa Al-Naqi

A thesis submitted for the degree of Doctor of Philosophy

The University of Edinburgh
June 2012

 ii

Declaration of Originality

I hereby declare that this thesis and all the work included herein was conducted and

originated entirely by myself, in the School of Engineering at The University of Edinburgh.

Asmaa Al-Naqi

June, 2012

 iii

Acknowledgement

It is a pleasure to thank those who made this thesis possible; I would like to acknowledge the

advice and guidance of Professor Tughrul Arslan. I also thank Dr. Ahment Erdogan for his

advice and suggestions.

This thesis was examined by Professor Klaus Mcdonald-Maier (University of Essex) and Dr.

Alister Hamilton (University of Edinburgh). Special thanks go to both.

I acknowledge the Public Authority for Applied Education and Training (PAAET) for their

financial support for this project.

I would like to thank my family members, especially my husband, Mohammad Al-Harz for

supporting and encouraging me to pursue this degree. Without my husband’s

encouragement, I would not have finished the degree.

I would like to grant this thesis to my family for their support and encouragement.

 iv

Abstract

In the area of artificial intelligence, the development of Evolutionary Algorithms (EAs) has

been very active, especially in the last decade. These algorithms started to evolve when

scientists from various regions of the world applied the principles of evolution to algorithmic

search and problem solving. EAs have been utilised successfully in diverse complex

application areas. Their success in tackling hard problems has been the engine of the field of

Evolutionary Computation (EC). Nowadays, EAs are considered to be the best solution to

use when facing a hard search or optimisation problem.

Various improvements are continually being made with the design of new operators,

hybrid models, among others. A very important example of such improvements is the use of

parallel models of GAs (PGAs). PGAs have received widespread attention from various

researchers as they have proved to be more effective than panmictic GAs, especially in terms

of efficacy and speedup.

This thesis focuses on, and investigates, cellular Genetic Algorithms (cGAs)−a

competitive variant of parallel GAs. In a cGA, the tentative solutions evolve in overlapped

neighbourhoods, allowing smooth diffusion of the solutions. The benefits derived from using

cGAs come not only from flexibility gains and their fitness to the objective target in

combination with a robust behaviour but also from their high performance and amenability

to implementation using advanced custom silicon chip technologies. Nowadays, cGAs are

considered as adaptable concepts for solving problems, especially complex optimisation

problems. Due to their structural characteristics, cGAs are able to promote an adequate

exploration/exploitation trade-off and thus maintain genetic diversity. Moreover, cGAs are

characterised as being massively parallel and easy to implement.

The structural characteristics inherited in a cGA provide an active area for investigation.

Because of the vital role grid structure plays in determining the effectiveness of the

algorithm, cellular dimensionality is the main issue to be investigated here. The

implementation of cGAs is commonly carried out on a one- or two-dimensional structure.

Studies that investigate higher cellular dimensions are lacking. Accordingly, this research

focuses on cGAs that are implemented on a three-dimensional structure. Having a structure

 v

with three dimensions, specifically a cubic structure, facilitates faster spreading of solutions

due to the shorter radius and denser neighbourhood that result from the vertical expansion of

cells. In this thesis, a comparative study of cellular dimensionality is conducted. Simulation

results demonstrate higher performance achieved by 3D-cGAs over their 2D-cGAs

counterparts. The direct implementation of 3D-cGAs on the new advanced 3D-IC

technology will provide added benefits such as higher performance combined with a

reduction in interconnection delays, routing length, and power consumption.

The maintenance of system reliability and availability is a major concern that must be

addressed. A system is likely to fail due to either hard or soft errors. Therefore, detecting a

fault before it deteriorates system performance is a crucial issue. Single Event Upsets

(SEUs), or soft errors, do not cause permanent damage to system functionality, and can be

handled using fault-tolerant techniques. Existing fault-tolerant techniques include hardware

or software fault tolerance, or a combination of both. In this thesis, fault-tolerant techniques

that mitigate SEUs at the algorithmic level are explored and the inherent abilities of cGAs to

deal with these errors are investigated. A fault-tolerant technique and several mitigation

techniques are also proposed, and faulty critical data are evaluated critical fault scenarios

(stuck at ‘1’ and stuck at ‘0’ faults) are taken into consideration. Chief among several test

and real world problems is the problem of determining the attitude of a vehicle using a

Global Positioning System (GPS), which is an example of hard real-time application. Results

illustrate the ability of cGAs to maintain their functionality and give an adequate

performance even with the existence of up to 40% errors in fitness score cells.

The final aspect investigated in this thesis is the dynamic characteristic of cGAs. cGAs,

and EAs in general, are known to be stochastic search techniques. Hence, adaptive systems

are required to continue to perform effectively in a changing environment, particularly when

tackling real-world problems. The adaptation in cellular engines is mainly achieved through

dynamic balancing between exploration and exploitation. This area has received

considerable attention from researchers who focus on improving the algorithmic

performance without incurring additional computational effort.

The structural properties and the genetic operations provide ways to control selection

pressure and, as a result, the exploration/exploitation trade-off. In this thesis, the genetic

operations of cGAs, particularly the selection aspect and their influence on the search

process, are investigated in order to dynamically control the exploration/exploitation trade-

off. Two adaptive-dynamic techniques that use genetic diversity and convergence speeds to

guide the search are proposed. Results obtained by evaluating the proposed approaches on a

 vi

test bench of diverse-characteristic real-world and test problems showed improvement in

dynamic cGAs performance over their static counterparts and other dynamic cGAs. For

example, the proposed Diversity-Guided 3D-cGA outperformed all the other dynamic cGAs

evaluated by obtaining a higher search success rate that reached to 55%.

 vii

Contents

1 Introduction ………………………………………………………………………..…. 1

1.1 Motivations………………………………………………………………………... 2

1.2 Objectives ……………………………………………………………………….... 3

1.3 Contribution to Knowledge ………………………………………………………. 5

1.4 Publications ………………………………………………………………………. 6

1.5 Thesis Structures ……………………………………………………………….… 7

2 Evolutionary Computation ……………………………………………………….…. 9

2.1 Genetic Algorithms ……………………………………………………………….10

2.1.1 Non-decentralised Genetic Algorithms ………………………………….. 13

2.1.2 Decentralised Genetic Algorithms ……………………………………….. 14

2.1.2.1 Parallel Hardware …………………………………………….….. 15

2.1.2.2 The Islands Model …………………………………………….…. 16

2.1.2.3 The Diffusion Model ……………………………………….……. 22

2.1.2.4 Hybrid Models …………………………………………………... 24

2.2 Cellular Genetic Algorithms ………………………………………………….…. 24

2.2.1 Takeover Time and Selection Pressure ……………………………...…… 26

2.2.1.1 The Influence of Grid-to-Neighbourhood Ratio ………………… 27

2.2.1.2 The Influence of Local Selection Method …………………….…. 30

2.2.2 Synchronisation ……………………………………………………..…… 31

2.2.3 Performance and Statistics Measures …………………………………….. 32

2.2.3.1 Performance Measures and Statistical Tests Used in this Research

…………………………………………………..34

2.2.4 cGAs from Hardware Perspectives ………………………………………. 35

2.2.5 3D-cGA: Pseudocode and Specification …………………………………. 37

2.2.5.1 3D Cellular versus Panmictic GAs ………………………..……. 39

2.3 Fault tolerance ………………………………………………………………...…. 41

 viii

2.4 Chapter Summary ……………………………………………………………..… 43

3 3D Architectures ……………………………………………………………………. 45

3.1 Algorithm Configuration ……………………………………………………...… 48

3.2 Experimental Results and Analysis ……………………………………………... 50

3.3 Analysis of Complexity for 2D and 3D Topologies ………...……………...…… 58

3.4 Conclusion ………………………………………………………………………. 60

3.5 Summary and Contribution to Knowledge …………………………………...…. 61

4 Fault tolerant 3D-cGA …………………………………………………………….... 63

4.1 Automatic Isolation of Faulty Cells …………………………………………..…. 64

4.1.1 Faults Design …………………………………………………………..…. 65

4.1.2 Algorithm Description and Configuration ……………………………….. 67

4.1.2.1 Genetic Diversity ………………………………………………... 69

4.1.2.2 Isolation Criteria ……………………………………………….... 70

4.1.2.3 Migration Technique …………………………………………..… 71

4.1.3 Experimental Results and Analysis ………………………………….…… 72

4.1.3.1 Stuck at ‘0’ Faults ……………………………………………….. 73

4.1.3.2 Stuck at ‘1’ Faults ……………………………………………….. 77

4.1.3.3 Study of the Failure and Expansion in Fault Rates ……………… 80

4.1.4 Conclusion ………………………………………………………………... 86

4.2 Migration as a Mitigation Technique ……..…………………………………...… 87

4.2.1 Algorithm Configuration …………………………………………….…… 88

4.2.1.1 Migration Schemes ……………………………………………… 88

4.2.2 Case study: GPS Attitude Determination ………………………………... 89

4.2.3 Experimental Results and Analysis …………………………………….… 90

4.2.4 Conclusion …………………………………………………………….…. 98

4.3 Dynamic Fault Tolerant 3D-cGA …………………………………………….…. 99

4.3.1 Algorithm Configuration …………………………………………………. 99

4.3.1.1 Dynamic Adaptation Schemes …………………………………. 101

4.3.2 Experimental Results and Analysis ……………………………………... 104

4.3.2.1 Fault-Tolerant 3D-cGA ………………………………………… 105

4.3.2.2 Dynamic Fault-Tolerant 3D-cGA ……………………………… 107

4.3.2.3 Dynamic FT 3D-cGA vs. FT 3D-cGA ……………………….… 112

 ix

4.3.3 Conclusion …………………………………………………………….… 118

4.4 Summary and Contribution to Knowledge …………………………………….. 119

5 Dynamic-Adaptive cGAs ……………………………………………………….…. 123

5.1 Study of Selection Pressure ……………………………………………………. 125

5.2 Diversity guided 3D-cGA ……………………………………………………… 127

5.2.1 Algorithm Configuration ………………………………………………... 127

5.2.2 Experimental Results and Analysis ……………………………………... 128

5.2.3 Conclusion ……………………………………………………………… 132

5.3 Convergence speed guided 3D-cGA …………………………………………… 133

5.3.1 Algorithm Configuration ………………………………………………... 133

5.3.2 Experimental Results and Analysis …………………………………...… 136

5.3.3 Conclusion ………………………………………………………………. 140

5.4 Comparison to other Static and Dynamic- Adaptive 3D-cGAs ……………...… 142

5.4.1 Conclusion ………………………………………………………………. 147

5.5 Summary and Contribution to Knowledge ………………………………..…… 148

6 Thesis Summary, Conclusion, and Future Work ………………………………... 151

6.1 Summary ……………………………………………………………………….. 151

6.2 Conclusion …………………………………………………………………...… 157

6.3 Future Work ………………………………………………………………….... 158

Appendix A. Description of the Benchmark Problems ……………………………161

Appendix B. Extended Experimental Results ……………………………………..171

References …………………………………………………………………………… 178

 x

List of Figures

Figure 2.1. Islands or distributed GA with 6 multi-individual subpopulations ……..... 17

Figure 2.2. A cGA implemented over 5 × 5 toroidal grid. The neighbourhoods marked

in dark and light blue show a possible overlapping of two neighbourhoods
……………………………………………………………..……………… 23

Figure 2.3. A hybrid parallel model of GA that combines cGA at the lowest level (each

node) with dGA at the highest level to form what can be referred to as dcGA
…………………………………………………………………...……...… 24

Figure 2.4. Two-dimensional toroidal grid topologies in cGA: (a) with rectangular

shape, (b) with square shape, and (c) with narrow shape ……………...… 28

Figure 2.5. Von Neumann neighbourhood: (a) with one distance step and (b) with two

distance steps. Moore neighbourhood: (c) with one distance step and (d)
with two distance steps ………………………..…..……………………… 28

Figure 2.6. The best individuals’ average growth rates for square, rectangular, and

narrow grids with L5 and L9 neighbourhoods ………………………...…. 30

Figure 2.7. High-level hardware architecture of a cell of the cGA in the SIMD model.35

Figure 3.1. (a) 2D square and (b) 3D cubic toroidal topologies when implemented in a

cGA. A possible Von Neumann neighbourhood is marked in dark blue
…………………………………………………………………………….. 47

Figure 3.2. 2D/3D neighbourhood to grid ratios (NGR) versus population size …...… 49

Figure 3.3. 2D/3D growth curves of the best individual ……………………………... 49

Figure 3.4. Average number of generations for Rasf ……………………………….... 51

Figure 3.5. Average number of generations for Schf ……………………………….... 52

Figure 3.6. Average number of generations for Ackf …………………………............. 53

Figure 3.7. (a) Average number of generations and (b) search success rate for Micf …54

Figure 3.8. (a) Average number of generations and (b) search success rate for Langf ...55

 xi

Figure 3.9. (a) Average number of generations and (b) search success rate for Grief …56

Figure 3.10. (a) Average number of generations and (b) search success rate for FMSf ...57

Figure 4.1. A high-level description of the Fault-Tolerant 3D-cGA showing the three

stages ………………..…………………...………………………………. 67

Figure 4.2. Computation of the genotypic diversity of an individual in generations t and

t−1; Hi is the entropy of the i th gene …………………………………...…. 70

Figure 4.3. The replacement of two faulty PEs by the corresponding ones (migrants)

from the first fault-free neighbourhood found through migration ……….. 71

Figure 4.4. Genotypic diversities of Rasf against fault rates for ‘stuck at 0’. (a) 1st (red

curves) and 3rd (blue curves) configurations; (b) 2nd (red curves) and 4th (blue
curves) configurations …………………………………………………..... 82

Figure 4.5. Genotypic diversities of Rasf against fault rates for ‘stuck at 1’. (a) 1st (red

curves) and 3rd (blue curves) configurations; (b) 2nd (red curves) and 4th (blue
curves) configurations ……………………………………………………..83

Figure 4.6. (a) Mean generations obtained by 3rd configuration for Rasf , FMSf , and SLEf ;

(b) search success rate obtained by 2nd configuration (for Rasf) and 4th

configuration (for FMSf and SLEf) with stuck at ‘0’ faults ……………..…. 84

Figure 4.7. (a) Mean generations obtained by 1st configuration for Rasf , FMSf , and SLEf ;

(b) search success rate obtained by 4th configuration (for Rasf), and 2nd

configuration (for FMSf and SLEf) with stuck at ‘1’ faults ……………….... 85

Figure 4.8. AFGA’s objective function in 2D ……………………………………...… 90

Figure 4.9. Growth curves of the best individual for various fault ratios using BT ….100

Figure 4.10. Fitness evaluations for various fault ratios. (a) 0% faults, (b) 10% faults, (c)

20% faults, (d) 30% faults, (e) 40% faults ……………………….……....101

Figure 4.11. MaxGens and fitness evaluations as a function of fault ratio for a population

size of 343 individuals …………………………………………………...102

Figure 4.12. The average genotypic diversities obtained by fault-tolerant 3D-cGA when

solving fGPS for each fault ratio ………………………………………..… 116

Figure 4.13. The average genotypic diversities obtained by dynamic fault-tolerant 3D-

cGA when solving fGPS for each fault ratio …………………………...… 117

Figure 5.1. The growth number of the best individual for different selection rates r ..126

 xii

Figure 5.2. The takeover time for different selection rates r ………………………... 126

Figure 5.3. Average genotypic diversities based on ‘Distance-to-average-point’ measure

for the Diversity-Guided 3D-cGA ………………...………………….… 132

Figure 5.4. Growth number of the best individual with different grid shapes (6 × 6 × 6, 3

× 24 × 3, and 2 × 54 × 2) and selection rates (r = 0.0, r= 0.7, and r = 1.0)
…………………………………………………………………………… 134

Figure 5.5. Alternation between different ratios: (a) cubic (NGR = 0.313), (b)

Rectangular cuboid (NGR = 0.129), (c) narrow cuboid (NGR = 0.059) ... 135

Figure 5.6. Average Diversities based on ‘distance-to-average-point’ measure when
solving fRas by Diversity-Guided 3D-cGA ……………………………… 146

Figure 5.7. Average Diversities based on ‘genotypic entropy’ when solving fRas the

dynamic and static 3D-cGAs under study ……………...……………….. 147

Figure A.1. Search space of Rastrigin function of two variables ………..………...… 162

Figure A.2. Search space of Schwefel function of two variables ………………..…... 163

Figure A.3. Search space of Griewangk function of two variables ………………….. 164

Figure A.4. Search space of Ackley function of two variables …………………….... 165

Figure A.5. Search space of Michalewicz function of two variables ………..………. 166

Figure A.6. Search space of Rosenbrock function of two variables …………….…... 167

Figure A.7. Search space of Langermann function of two variables …………..……. 168

 xiii

List of Tables

Table 2.1. Experimental parameters used for 3D-cGA, ssGA, and genGA …….…… 39

Table 2.2. Comparing 3D cellular to panmictc GAs’ performances: Convergence time

(CT), rate (CR), and speed (SP) for test and real world problems
…………………………………………………………………………….. 40

Table 3.1. Parameterization used in the experiments ………………………………... 50

Table 4.1. Parameters used in the algorithm ……………………………………….... 73

Table 4.2. Experimental Results: Convergence time (CT) and rate (CR) for test

problems ………………………………………………………………….. 75

Table 4.3. Experimental Results: Convergence time (CT) and rate (CR) for real world

problems …………………………………………………………………...75

Table 4.4. Local and global average-number-of-generations- based ranking for stuck at

‘0’ faults ………………………………………………………………..… 76

Table 4.5. Local and global search-success-rate-based ranking for stuck at ‘0’ faults

…………………………………………………………………………..….77

Table 4.6. Convergence time (CT) and rate (CR) for test problems ………………... 78

Table 4.7. Convergence time (CT) and rate (CR) for real-world problems ………… 79

Table 4.8. Local and global average-generations-based ranking for stuck at ‘1’ faults

…………………………………………………………………………….. 80

Table 4.9. Local and global search-success-rate-based ranking for stuck at ‘1’ faults

…………………………………………………………………………..….80

Table 4.10. Parameters used in the simulation ……………………………………...… 90

Table 4.11. Convergence time (CT), rate (CR), and speed (SP) for the test problems .. 92

Table 4.12. Convergence time (CT), rate (CR), and speed (SP) for test the problems .. 93

Table 4.13. Convergence time (CT), rate (CR), and speed (SP) for real-world problems

…………………………………………………………………………..… 94

 xiv

Table 4.14. Convergence time (CT), rate (CR), and speed (SP) for fGPS with stuck at ‘1’
faults …………………………………………………………..………….. 95

Table 4.15. Convergence time (CT), rate (CR), and speed (SP) for fGPS with stuck at ‘0’

faults …………………………………………………..………………..… 96

Table 4.16. Local and global convergence-time-based ranking …………………..….. 97

Table 4.17. Local and global convergence-rate-based ranking ……………………..… 97

Table 4.18. Local and global speed-based ranking ……………………………..…….. 97

Table 4.19. Convergence-time (CT), rate (CR), and speed (SP) based-ranking ……... 97

Table 4.20. Parameters used in the experiments …………………………………….. 104

Table 4.21. Convergence time (CT), rate (CR), and speed (SP) for benchmark problems

when there were no faults ….…………………………………………… 104

Table 4.22. Convergence time (CT) obtained for FT 3D-cGA with/without migration

………………………………………………………………………..….. 106

Table 4.23. Convergence rate−CR (%) obtained for FT 3D-cGA with/without migration

…………………………………………………………………………….106

Table 4.24. Speed−SP (seconds) obtained for FT 3D-cGA with/without migration ... 106

Table 4.25. Convergence time (CT) obtained for Dynamic FT 3D-cGA with MaxGens1

……………………………………………………………...……………. 108

Table 4.26. Convergence rate−CR (%) obtained for Dynamic FT 3D-cGA with

MaxGens1 ……..………………………………………………………… 109

Table 4.27. Speed−SP (seconds) obtained for Dynamic FT 3D-cGA with MaxGens1

…………………………………………………………………………… 109

Table 4.28. Convergence time (CT) obtained for Dynamic FT 3D-cGA with MaxGens2

…………………………………………………………………………….110

Table 4.29. Convergence rate−CR (%) obtained for Dynamic FT 3D-cGA with

MaxGens2 …………..…………………………………………………… 110

Table 4.30. Speed−SP (seconds) obtained for Dynamic FT 3D-cGA with MaxGens2

…………………………………………………………………………… 110

Table 4.31. Comparison of MaxGens2 versus MaxGens1 in terms of convergence time

(CT) and rate (CR)…………………………………………………….… 111

Table 4.32. Comparison of Dynamic FT 3D-cGA versus FT 3D cGA in terms of

convergence time (CT) and rate (CR) ….……………………………..… 113

 xv

Table 4.33. Ranking of the algorithms based on efficiency (CT) ….…………..……. 113

Table 4.34. Ranking of the algorithms based on efficacy (CR) ….……..…………… 114

Table 4.35. Ranking of the algorithms based on speed (SP) …..…….………….…… 114

Table 5.1. Parameterization used in the algorithms ……………………………...… 129

Table 5.2. Convergence time (CT) and rate (CR) obtained by the Diversity-Guided 3D-

cGA and 3D-cGAs with static r values …………………………….….... 130

Table 5.3. Parameters used in the experiments …………………………………….. 138

Table 5.4. Experimental Results: Convergence time (CT), rate (CT), and speed (CT)

obtained by different dynamic and static 3D-cGAs …………………….. 138

Table 5.5. Comparison of the Convergence-Speed-Guided 3D-cGA versus other

dynamic and static 3D-cGAs in terms of convergence (CT) and speed (SP)
…………………………………………………………………………… 141

Table 5.6. Comparison of the Convergence-Speed-Guided 3D-cGA versus other

dynamic and static 3D-cGAs in terms of convergence rate (CR) …….… 141

Table 5.7. Experimental Results: Convergence time (CT), rate (CT), and speed (SP)

obtained by the Diversity-Guided 3D-cGA with 666 ×× grid ……….... 143

Table 5.8. Comparison of the Diversity-Guided 3D-cGA versus other dynamic and

static 3D-cGAs in terms of convergence time (CT) .……………………. 143

Table 5.9. Comparison of the Diversity-Guided 3D-cGA versus other dynamic and

static 3D-cGAs in terms of convergence rate (CR) …………………….. 144

Table 5.10. Comparison of the Diversity-Guided 3D-cGA versus other dynamic and

static 3D-cGAs in terms of convergence speed (SP) .…………………... 144

Table B.1. Convergence time (CT) and rate (CR) obtained by 3D-cGA and 2D-cGA for

various population sizes and step distances (r) ………………….…….... 172

Table B.2. Experimental Results: Convergence time (CT) and rate (CR) obtained by

Diversity-Guided 3D-cGAs for various thresholds (γ), and 777 ×× grid
…………………………………………………………………………… 173

Table B.3. Local and global ranking of γ values based on two performance metrics

………………………………………………………………………….... 173

Table B.4. Experimental Results: Convergence time (CT), rate (CR), and speed (SP)

obtained by Diversity-Guided 3D-cGAs for various thresholds (γ), and

666 ×× grid ……………………….……………………………………. 174

Table B.5. Local and global ranking of γ values based on three performance metrics

…………………………………………………………………………… 174

 xvi

Table B.6. Experimental Results: Convergence time (CT), rate (CR), and speed (SP)

obtained by Convergence-Speed-Guided 3D-cGAs for various thresholds
(ε) ………………………………………………………….................... 175

Table B.7. Local and global ranking of ε values based on three performance metrics

…………………………………………………………….……………... 176

Table B.8. Experimental Results: Convergence time (CT), rate (CR), and speed (SP)

obtained by Dynamic 3D-cGAs based on (Alba and Dorronsoro, 2005) for
various thresholds (ε)………...……………………………………….... 176

Table B.9. Local and global rankings of ε values based on three performance metrics

…………………………………………………………….………...…… 177

 xvii

Acronyms and Abbreviations

1D One Dimension

2D Two Dimensions

2D-cGA Two-Dimensional Cellular Genetic Algorithm

3D Three Dimensions

3D-cGA Three-Dimensional Cellular Genetic Algorithm

AFM Ambiguity Function Method

ANOVA Analysis of Variance

BT Binary Tournament

CA Cellular Automata

cEA Cellular Evolutionary Algorithm

cGA Cellular Genetic Algorithm

CGA Genetic Algorithm Implemented on Cellular Automata

CR Convergence Rate

CT Convergence Time

dcGA Distributed Cellular Genetic Algorithm

dGA Distributed Genetic Algorithm

dssGA Distributed Steady-State Genetic Algorithm

EA Evolutionary Algorithm

EC Evolutionary Computation

EHW Evolvable Hardware

FMS Frequency Modulation Sound

FT 3D-cGA Fault-Tolerant Three-Dimensional Cellular Genetic Algorithm

GA Genetic Algorithm

genGA Generational Genetic Algorithm

GPS Global Positioning System

IC Integrated Circuits

MBU Multiple Bit Upset

MISD Multiple Instructions Single Data

 xviii

MIMD Multiple Instruction Multiple Data

NEWS Von Neumann Neighbourhood

NGR Neighbourhood to Grid Ratio

PE Processing Element

PGA Parallel Genetic Algorithm

SEE Single Event Effect

SEU Single Event Upset

SIMD Single Instruction Multiple Data

SISD Single Instruction Single Data

SLE System of Linear Equations

SP Speed of Convergence

ssGA Steady State Genetic Algorithm

ST Stochastic Tournament

 1

Chapter 1

Introduction

Evolutionary computation is an area of artificial intelligence that is concerned with solving

computational problems through the use of ideas from biological evolution. Computational

problems commonly involve searching a massive potential solution space to find the best

solution. In the real world, such problems require complex solutions that are usually too

difficult to solve using traditional techniques. Nowadays, the dramatic increase in computer

power enables many practical applications to become reality. Accordingly, evolutionary

algorithms are efficiently used to optimise the design of systems and to solve high-

dimensional problems. Since the nineteen-nineties, EAs have increasingly become a crucial

part of system design and implementation.

The actualization of Darwinian principles, which later evolved into evolutionary

computation, began in the nineteen-fifties for automated problem solving. However, the idea

started to take root in different areas in the nine-sixties when the first two methods of

evolutionary algorithms (the approach of evolutionary computation) were proposed. In the

USA, Lawrence Fogel proposed evolutionary programming, while in Germany, Ingo

Rechenberg and Hans-Paul Schwefel proposed evolution strategies. In the nine-seventies,

John Holland introduced Genetic Algorithms (GAs), which has become the most widely

used manifestation nowadays, and is the main focus of this research.

Genetic Algorithms are one of the most powerful tools for efficiently solving complex

problems in different application areas. Genetic Algorithms search for the optimum solution

among a large number of possible solutions, encoded as gene sequences (chromosomes), by

allowing these organisms to survive and produce (evolve) in their environments. The

evolution process occurs though random variation, crossover, and mutation operators.

Following that, natural selection occurs and plays the vital role of enabling the fittest

 2

chromosome to survive and reproduce. As a result, new genetic materials are produced to

form a new population of potential solutions, which propagate to successive generations.

This process stops in accordance with a predefined termination criteria, such as reaching a

specific number of generations and/or finding the desired solution (Goldberg, 1989).

Standard GA models are inherently parallel; however, they require frequent

communication, which is based on centralised control. Accordingly, parallel GA models

were investigated with a view towards making parallel models efficient. The parallelisation

of GA models occurs at either the computation or the population level. In the former, the

operations applied to each encoded solution (individual) are performed in parallel. Master-

slave GAs are examples of such a model. In the latter, the population is divided into

subpopulations of coarse or fine grain size such that each subpopulation evolves in parallel.

When implementing the GA model, these subpopulations are distributed over a selected grid

structure, which in turn defines the ways in which each subpopulation interacts with others.

Therefore, different parallel GA classes can be formed, and the main aim of all is to enhance

the speedup and efficiency of the search (Cantu-Paz, 2000).

In fine-grained or cellular GAs (cGAs), the population is divided into a massive number

of subpopulations, each consisting of one encoded solution (individual). The individuals are

distributed over an n-dimensional grid structure with wraparound edges (toroidal). Research

surroundings cGAs are more commonly concerned with their implementation on one- or

two-dimensional grid topology. Therefore, the interactions between the individuals occur

within their local neighbourhood. In coarse-grained or distributed GAs (dGAs), the

population is divided into several subpopulations, each consisting of a number of

individuals. Each subpopulation evolves in isolation from others, and the interaction between

the subpopulation occurs according to the employed migration policy (Cantu-Paz, 1995).

This research is concerned with the cGA models.

1.1 Motivations

The topology of the grid is the key in determining the performance of GAs. Different

topologies induce different levels of exploration or diversification of the search space and

exploitation or intensification of good solutions. Hence, the appropriate balance between

exploration and exploitation is an important issue in the rapid identification of promising

regions with high quality solutions in the search space. A typical cGA is implemented on a

two-dimensional toroidal grid topology; research concerned with higher dimensional

 3

topologies is very limited. Preliminary research on cellular dimensionality has shown

promising results. Consequently, exploring and investigating the implementation of a cGA

model on higher cellular dimensions, specifically three-dimensions (3D), is one of the

motivations underlying this research.

Another motivation relates to the field of fault tolerance. Evolutionary optimisation

engines are subject to failures; such failures target the main data structures, such as those that

store the chromosomes or their fitness values. This type of fault is known as Single Event

Effects (SEEs) and may result in either permanent or temporary errors. In this research, to

maintain the functionality and the performance of cGA engines, fault mitigation techniques

at the algorithmic level are investigated. A cGA’s inherent features, such as the diversity of

phenotype and genotype spaces, migration polices, and adapting the number of evaluations,

are utilised. In addition, information gathered based on the population diversity is used in an

attempt to automatically isolate the faults.

The last motivation relates to the balance between exploration and exploitation. This

balance is mainly achieved by means of the grid topology and/or the genetic operations.

However, real-world problems require a system to be adaptive in order to continue to

perform effectively in a changing environment. As a result, dynamic adaptation of the

exploration/exploitation trade-off is an emerging challenge in the field of evolutionary

computation. This area is intensely investigated in an attempt to improve algorithmic

performance without incurring additional computational effort. In this research the genetic

operations of cGAs, particularly the selection and their influence on the search process are

investigated in order to dynamically control the exploration/exploitation trade-off.

1.2 Objectives

The overall aim of this thesis is to investigate the inherent characteristics of cellular genetic

algorithms in order to improve their performance when dealing with complex problems, and

to introduce new techniques that add fault tolerance and dynamic adaptation features to the

algorithms. To achieve this aim, this research is carried out in three main stages−with the

primary focus being geared towards improving the performance and reliability of cGAs.

The first stage is concerned with the investigation of cGAs characteristics, in particular

the cellular dimensionality and their implications on the performance of the algorithms. Grid

topology plays a significant role in the determination of the performance of EAs. cGAs are

commonly implemented on 1D or 2D toroidal grid structures. A lack of studies concerning

 4

higher cellular dimensions provides an opportunity to further investigate the algorithm’s

behaviour and performance. Hence, the first objective of this research is to evaluate and

compare the performance of cGAs when implemented on 2D and 3D grid structures. In an

attempt to seek advantages with higher cellular dimensions, an experimental study is carried

out to compare the behaviours of 2D-cGAs and 3D-cGAs while maintaining similar

algorithmic properties. The findings will add significant benefits for future optimisation

engines. Achieving better algorithmic performance with 3D-cGAs creates a promising

opportunity to combine the algorithmic benefits with thoes of advanced custom silicon chip

technology, 3D-IC.

The second stage is concerned with increasing not only the effectiveness, but also the

reliability of cellular genetic engines. The significant reduction in system electronics and

operation in hostile environments lead these systems to be subjected to different kind of

failures. Accordingly, research on fault-tolerant and mitigation techniques is becoming

increasingly interesting. The second objective of this research is to develop an algorithm-

based mitigating technique to tolerate failures encountered, in particular SEE errors, by

utilising cGAs’ inherent features. To achieve this goal, explicit migration techniques as well

as dynamic adaptation techniques are proposed as mitigation techniques. The success of the

proposed techniques in maintaining system functionality and effectiveness will not only be

advantageous at the algorithmic level, but also at the hardware level as there will be no

hardware requirement such as is the case with hardware-based fault-tolerant techniques.

The last stage is concerned with developing cGAs to allow dynamic adaptation in order to

obtain an appropriate balance between exploration and exploitation. As pointed out earlier,

the exploration/exploitation trade-off is a crucial factor that determines the behaviour and

performance of the algorithm. The nature of EAs as being stochastic force systems to operate

in a changing environment; this creates another interesting area for research, that is, dynamic

adaptation. Thus, the final objective of this research is to introduce dynamic cGAs by

utilising the genetic operations, specifically the selection. Two different approaches are

proposed and evaluated by comparing their performance with that of other dynamic

algorithms. The attainment of an appropriate exploration and exploitation balance while

maintaining the algorithms’ performance will positively contribute to the field of dynamic

adaptation.

 5

1.3 Contribution to Knowledge

This research seeks to take advantage of the decentralised structural properties of cGAs in

order to expand the applicability of cGAs to the fields of dynamic adaptation and fault

tolerance. The unique structure of cGAs contributes to their success and universal

applicability in various application areas over standard and other parallel GA models. This

research utilises the available opportunities that are offered through the inherent features of

cGAs; namely, the structural properties that define the topologies of the local neighbourhood

and the grid and their consequences on the genetic operations; and the related

exploration/exploitation trade-off. Several studies that contribute to knowledge were carried

out and published (the publications are shown in the next subsection). The following points

highlight how this thesis contributes to existing knowledge.

• High cellular dimensions are proposed as a computationally effortless way to

improve the exploration/exploitation trade-off and the overall performance of

cGA models. The vertical expansion of the population plays an important

role in the speed and the way that solutions spread, while maintaining the

population size.

• A fault-tolerant technique is developed to mitigate SEE errors, specifically

SEUs that target phenotypes registers. The technique is based on a genetic

diversity measure, specifically the genotypic entropy, as a way to

automatically identify and therefore isolate solutions with faulty fitness

values. This technique illustrates how the faults occurring in one space (in

this study, phenotypic space) are reflected in the other (genotypic space).

• A process of excluding the isolated or faulty solutions from the evolution

process is proposed. This is in order to mitigate their impact on the search

process, although this potentially results in a lower number of potential

solutions.

• The development of adaptive migration operations with different policies as

a technique to mitigate the impact of faults that are triggered by the reduction

in the number of potential solutions and, accordingly, lead to diversity loss.

 6

The proposed policies include the first fault-free neighbourhood, the best

fault-free neighbour, and a random fault-free neighbour.

• Adaptive fault-tolerant techniques to further improve the performance of

cGAs are proposed. The technique adapts to the fault ratio and allows more

evaluations to overcome the impact of an increase in the number of faults.

• A dynamic-adaptive mechanism is proposed to balance exploration and

exploitation in order to improve the performance of cGAs. The mechanism

uses a stochastic selection operation that dynamically and gradually tunes the

rate for selection based on a diversity degree. Accordingly, different levels of

exploration and exploitation are induced at different search phases.

• An adaptive approach to dynamically control the exploration/exploitation

trade-off based on convergence speed is developed. A diversity measure is

used to compute the convergence speed, in accordance with the selection rate

is tuned.

1.4 Publications

Publications that have arisen from this work are as follows:

1. Morales-Reyes, A., Al-Naqi, A., Erdogan, A.T. and Arslan, T. (2009). Towards 3D

Architectures: A Comparative Study on Cellular GAs Dimensionality. In

Proceedings of the NASA/ESA Conference on Adaptive Hardware and Systems (AHS

'09), San Francisco, California, USA. IEEE.

2. Al-Naqi, A., Erdogan, A.T., and Arslan, T. (2010). Fault Tolerance through

Automatic Cell Isolation Using Three-Dimensional Cellular Genetic Algorithms. In

Proceedings of the IEEE Congress on Evolutionary Computation (CEC '10),

Barcelona, Spain. IEEE.

3. Al-Naqi, A., Erdogan, A.T., and Arslan, T. (2010). Balancing Exploration and

Exploitation in Adaptive Three-Dimensional Cellular Genetic Algorithm via

 7

Probabilistic Selection Operator. In Proceedings of the NASA/ESA Conference on

Adaptive Hardware and Systems (AHS '10), Anaheim, California, USA. IEEE.

4. Al-Naqi, A., Erdogan, A.T., and Arslan, T. (2011). Fault Tolerant Three-

Dimensional Cellular Genetic Algorithms with Adaptive Migration Schemes. In

Proceedings of the NASA/ESA Conference on Adaptive Hardware and Systems (AHS

'11), San Diego, California, USA. IEEE.

5. Al-Naqi, A., Erdogan, A.T., and Arslan, T. (2011). Dynamic Fault-Tolerant Three-

Dimensional Cellular Genetic Algorithms, Journal of Parallel and Distributed

Computing (submitted).

6. Al-Naqi, A., Erdogan, A.T., and Arslan, T. (2012). Adaptive Three-Dimensional

Cellular Genetic Algorithm for Balancing Exploration and Exploitation Processes.

Special Issue on Bio-inspired Algorithms with Structured Populations−Soft

Computing Journal (submitted).

1.5 Thesis Structure

This thesis is divided into six chapters. The five remaining chapters are organised as follows:

Chapter 2 provides a broad overview on the field of Evolutionary Computation. This chapter

is further divided into three main sections. A deep look at both standard and parallel

Evolutionary Algorithms, in particular the Genetic Algorithms, is provided in Section 2.1.

Section 2.2 gives a dedicated review of cellular Genetic Algorithms−the main topic of this

thesis. The different aspects that characterise cGAs are discussed in detail from both model

and implementation points of view. This section ends by characterizing three-dimensional

cGAs (the focus of this research) and gives an empirical comparison to standard GAs.

Finally, the field of fault tolerance is reviewed in Section 2.3. This section gives an

introduction to fault tolerance with a specific focus on the faults that were tackled in this

research.

Chapter 3 proposes a study of cellular dimensionality in an attempt to exploit the advantages

inherent in higher cellular dimensions. An empirical comparison is carried out to evaluate

 8

3D-cGAs versus 2D-cGAs while maintaining similar algorithmic properties. A set of test and

real-world problems that induce different levels of complexity to the search are also used to

assess the performance of the algorithms compared. This work initially began as a

collaborative effort with a previous group member in the System Level Integration research

group (SLIg) and was further investigated in this research (Morales-Reyes, 2010). This

chapter establishes the basis of this research.

Chapter 4 proposes a study on fault tolerance that aims to provide a fault-tolerant technique

to mitigate SEU errors. This chapter is divided into three main parts. The first part (Section

4.1) introduces a fault-tolerant approach that automatically identifies and isolates faulty

solutions. This section also introduces an explicit migration operation as a mitigation

technique. The approach is assessed with and without the proposed migration operation

against two fault scenarios for different test and real-world problems. Two additional

adaptive migration policies are defined in the second part of this chapter (Section 4.2). The

fault-tolerant approach proposed in Section 4.1 is then evaluated against the different

migration polices for an extended set of problems with various complexities. The last part of

the chapter, (Section 4.3) introduces an adaptive approach to fault tolerance in an attempt to

further improve the performance of the approach proposed in Section 4.1. The adaptive fault-

tolerant approach is assessed with and without migration for a similar set of problems as that

used in Section 4.2.

Chapter 5 presents a study on a dynamic adaptation that aims to induce an appropriate

balance between the exploration and the exploitation search process without incurring

additional computational efforts. Two different adaptive algorithms are proposed: in the first,

the search is guided by a diversity degree (Section 5.2) while the convergence speed guides

the search in the second (Section 5.3). The convergence speed measure is adopted from a

previous research in the same field (Alba and Dorronsoro, 2005) that proposed several static

and dynamic cGA approaches. Selected static and dynamic approaches that were proposed in

that study are compared to the approaches proposed in Sections 5.2 and 5.3 (Section 5.4). To

assess the proposed algorithms and to reach a valid conclusion, a benchmark suite of test and

real-world problems with different characteristics is used.

Chapter 6 summarises this thesis, provides conclusions, and discusses avenues for possible

future research.

 9

Chapter 2

Evolutionary Computation

This chapter provides a broad insight into the field of Evolutionary Computation (EC). The

aim of this chapter is to review the critical aspects of Evolutionary Algorithms (EAs),

especially those of Genetic Algorithms (GAs), including competitive search models of

parallel GAs in general, and theoretical and methodological contributions to cellular Genetic

Algorithms (cGAs) in particular (the main family of cellular EAscEAs). This

comprehensive view of previous research on the cGAs establishes the basis for this research.

Evolutionary Algorithms are meta-heuristic algorithms that combine basic heuristic

methods with higher-level frameworks in order to provide (sub-)optimal feasible solutions in

a reasonable search time. Meta-heuristic algorithms are approximate and non-deterministic,

and range from simple local search to complex learning processes.

EAs work on a population of encoded potential solutions (individuals) by applying a

number of genetic operatorsnamely, selection, crossover, and mutationto the individuals

at each iteration in order to generate a new population. The selection operator is the most

powerful as it guides the search process based on the selected individuals’ fitness. Two

individuals are selected to generate new individuals based on a predefined criterion. The

crossover operator recombines the selected individuals to generate offspring, which are then

modified by the mutation operator to introduce self-adaptation of individuals; these operators

are applied based on a probability distribution. The mutation is commonly applied with a

very low probability; otherwise this operator may lead to an ad-hoc search (Muhammad,

Bargiela, and King, 1997; 1999). The main aim of the genetic operators is to learn about the

connections between decision variables in order to locate areas in the search space

processing high-quality solutions.

 10

Various major branches of EAs have evolved over the past 40 years. One of the most

well-known and widely studied EA variants is Genetic Algorithms (GAs). Unlike other EA

techniques, GAs preserve a population of tentative solutions that are updated competitively

through the application of some variant operators to find the global solution. Other EAs

include Genetic Programming (GP), Evolutionary Programming (EP), and Evolution

Strategy (ES). These algorithms differ slightly in their use of the genetic operators, with the

main difference residing in their implementation and the nature of the problem to solve. GP

was proposed by John Koza in 1992 (Koza, 1992). It generates its initial population by

creating computer programs as potential solutions. As in GAs, GP assigns a fitness value to

each solution (i.e., program) and uses selection, mutation, and crossover operators to

generate a new population. ES was proposed by Ingo Rechenberg in the early 1960s and was

subsequently developed (Jacob, 2001, p.211). It represents the solution as a chromosome of

real values and considers the individuals’ phenotypes as the parameters to be optimised. In

that same year, EP was proposed by Lawrence Fogel (Jacob, 2001, p.297). EP has no

constraints on the representation that follows from the problem. EP differs from the other

EAs in that it uses no recombination mechanism (i.e., no crossover mechanism) (Jacob,

2001; Alba, 2005; Alba and Dorronsoro, 2008).

The field of EC is continually growing and evolving (Alba and Cotta, 2006). New EA

variants have recently emerged in an attempt to overcome EAs’ weakness that results in less

accurate solutions when tacking hard and real problems in some applications. In addition,

parallelisation in EAs is intensely exploited in an effort to improve performance. This

research views cGAs as being highly parallel models of GAs. Details about GAs are

provided in the subsection 2.1.

 This chapter is divided into three subsections. Subsection 2.1 focuses on sequential and

parallel GAs, while a deep insight into cGAs is provided subsection 2.2. Subsection 2.3

gives a general overview of the field of fault tolerance.

2.1 Genetic Algorithms

Genetic Algorithms are possibly the most popular class of EAs. GAs were proposed by

Holland, who aimed to design artificial systems that possess similar properties to those of

natural systems, in the early nineteen-sixties (Holland, 1992). As a result of his advanced

understanding and utilisation of natural adaptation processes, Holland successfully

introduced GAs in 1975. Subsequently, GAs widely proved their efficiency in a variety of

 11

application areas. At first, they were mainly used to optimise combinatorial problems (Back,

1996). Nowadays however, GAs are also used to solve other optimisation problems

belonging to continuous and other similar domains (Michalewicz, 1996).

GAs are iterative search techniques that apply stochastic operators on a population of

encoded solutions (individuals). GAs efficiently explore complex problem spaces (i.e.,

genotypic space) in order to find the optimum solutions. The search process is guided with

minimal information on the problem (i.e., phenotypic space). Phenotype space is evaluated

through the objective (fitness) function at which a mapping between the individuals’

phenotypes and genotypes is established.

As illustrated in Algorithm 2.1, GAs start with a random generated population)0(P (line

2), followed by fitness evaluation (line 3). The first iteration t then starts with parent

selection (line 6) in order to generate offspring. The crossover and mutation operators are

then applied on the selected parent (lines 7 and 8, respectively). An evaluation of the updated

population is then carried out, followed by the replacement of individuals to generate a

population for the next iteration)1(+tP (lines 9 and 10, respectively). These steps are

repeated until the predefined stop criterion is fulfilled (line 5).

Algorithm 2.1 Pseudo-code of a canonical GA

1: procedure GA

2: Generate_initial_population (P(0));

3: Evaluation (P(0));

4: t � 0;

5: while ! stop_condition do

6: P’(t) � Selection (P(t));

7: P’’(t) � Recombination (P’(t));

8: P’’’(t) � Mutation (P(t));

9: Evaluation (P’(t));

10: P(t+1) � Replace(P(t), P’’’(t));

11: t � t+1;

12: end while;

13: end procedure GA;

The most commonly used stop criterion is that of reaching a predefined number of fitness

evaluations and/or finding the optimal solutionsan optimum solution can be defined as

 12

those individuals having the global fitness value (f*) or a tolerable fitness value (e.g., f* ≥

threshold). However, other stop criteria could be defined. This research uses a more

restrictive stop criterion that is based on the average fitness values of the population.

A brief discussion of the basic GA operations (selection, crossover, and mutation) is

provided in the following paragraphs. A large number of selection mechanisms has been

developed, with the most common being proportionate and tournament selections (Rothlauf,

2006). With proportionate selection, the number of copies an individual possesses in the

subsequent population is proportional to its fitness; and an individual xi to be chosen for

recombination has a probability computed as follows:

∑
=

N

j
ji xfxf

1

)()((2.1)

where N is the number of individuals in a population. The probability of the individual to be

chosen increases as its fitness increases.

With tournament selection, a number of individuals (t) are randomly selected for a

tournament, which the fittest individual wins. There are two approaches for tournament

selection: without replacement and with replacement. In the former, there are t rounds and

each round has N/t tournaments. The selection of individuals for a tournament is made from

those who are not involved in the current round of the tournament. In the latter approach

however, all t individuals are selected for a tournament at the same round. This research uses

the tournament selection as the local selection method in the experimental setups. The

specific type used is the Binary Tournament (BT) selection, in which two random

individuals are selected and the fittest individual wins the tournament (i.e., t = 2). Zhong et

al. (2005) conducted a study that compared the performance of simple GA for different

selection mechanisms, particularly tournament and roulette wheel selections. They found

that the tournament selection mechanism resulted in the better algorithm performance.

Similarly, a large number of crossover and mutation operators have been proposed.

Crossover simulates the role of sexual reproduction and is operated on the selected

individuals in a population to generate offspring, while mutation imitates biological mutation

and is operated on the generated offspring to induce slight changes in an individual’s

genotype. Typically, in a GA, crossover generates two offspring from two parents, whereas

the mutation alters one or more genes (or alleles) in an individual. Both occur according to

predefined crossover and mutation probabilities. Classical crossover mechanisms include

one-point, two-point uniform, and arithmetic crossover, among others. In addition,

traditional mutation techniques include bit-flip, uniform, and non-uniform mutation, among

 13

others. The selection of a specific crossover or mutation technique highly depends on the

individuals’ encoding (binary, real, etc.) as well as the type of the problem to be solved. The

main purposes of crossover and mutation are to improve an algorithm’s performance and to

prevent trapping in local minima areas by preserving and promoting population diversity.

Unlike crossover, mutation focuses on local search as it only alters properties of individuals.

Hence, the probability of mutation should be low otherwise many genes (or alleles) will be

altered, leading to random search.

Finally, replacement strategies also play an important role in improving the performance

of algorithms in general and in enhancing population diversity in particular. The most

common standard GAs directly depend on replacement strategies. A brief discussion on non-

decentralised (panmictic) GAs is provided next.

2.1.1 Non-Decentralised GAs

This section describes the two most popular panmictic GAs, which are characterised by their

non-structured population−resulting in interactions between individuals occurring without

restrictions; that is, an individual can mate with any other individual. A brief description,

with pseudocodes, of steady state and generational GAs is provided.

Algorithm 2.2 Pseudocode of a ssGA Algorithm 2.3 Pseudocode of a genGA

1: procedure ssGA

2: Generate_initial_population (P(0));

3: Evaluation (P(0));

4: t � 0;

5: while ! stop_condition do

6: P’(t) � Selection (P(t));

7: P’’(t) � Recombination (P’(t));

8: P’’’(t) � Mutation (P(t));

9: Evaluation (P’(t));

10: P(t+1) � Replace(P(t), P’’’(t));

11: t � t+1;

12: end while;

13: end procedure ssGA;

 1: procedure genGA

2: Generate_initial_population (P(0));

3: Evaluation (P(0));

4: t � 0;

5: while ! stop_condition do

6: for i � 1 to popSize do

7: P’(t) � Selection (P(t));

8: P’’(t) � Recombination (P’(t));

9: P’’’(t) � Mutation (P(t));

10: Evaluation (P’(t));

11: Paux(t) � Add(P(t), P’’’(t));

12: end for;

13: P(t+1) � Replace(Paux(t));

14: t � t+1;

15: end while;

16: end procedure GA;

 14

Algorithm 2.2 illustrates the pseudo-code for steady state GA (ssGA). Typically, ssGA

selects two parents according to a defined selection policy (line 6) to generate offspring for

the next iteration. It recombines the parent and then mutates the generated offspring (lines 7

and 8, respectively). Next, the new offspring is evaluated and made to compete with the

parents. The winner is then added to the population according to a defined replacement

policy (lines 9 and 10, respectively). In a typical ssGA, if the offspring is better than the

worst parent in the population (Replace-if-better), the latter is replaced by the former. Other

replacement policies include Replace-the-worst, Replace-the-oldest, Replace-random-

individual, among others. This process is reiterated until the stop condition is satisfied (line

5).

Generational GA (genGA) generates new offspring from individuals in the current

population by applying the genetic operators: selection, recombination, and mutation. It then

adds the offspring to an auxiliary population (see Algorithm 2.3). The auxiliary population is

then replaces the current population, when the entire population has been generated, to be

used for the next iteration.

Thus, the difference between ssGA and genGA is that with the former only one

individual at a time is introduced into the current population, requiring a replacement

strategy to vacate the place for the new offspring to occupy if it survives, while with the

latter, a whole new population is generated to replace the current one. As a result, genGAs

are also known as ()λµ, −GAs, while ssGAs are known as ()1,µ −GAs, where µ is the size

of the population and λ is the size of the auxiliary population (Alba and Dorronsoro, 2008).

Next, a general discussion about decentralised (or parallel) GAs is provided followed by a

specific discussion about cGAs. A comparison between panmictic and parallel GAs is

provided.

2.1.2 Decentralised Genetic Algorithms

The complexity of most real-world problems and/or the limited resources available to solve

them, led to the development of meta-heuristic algorithms. As mentioned earlier, meta-

heuristics give optimal, or near optimal, solutions in an adequate time. However, the high

dimension of many tasks results in a long execution time. Hence, parallelism of meta-

heuristics was initiated to reduce resolution time as well as to improve the quality of the

solutions (Alba, 2005).

 15

The two phases beyond the introduction of panmictic GAs are the coarse-grained

(distributed) and the fine-grained (cellular) parallel GAs. In the former, several large

subpopulations evolve in parallel with limited interaction between subpopulations; while in

the latter, several small subpopulations evolve in parallel with regular interaction. One

motivation behind the parallelism is the potential decrease in the resolution time through the

assignment of each subpopulation to a single processor in a multi-processor system. Another

motivation is the ability to explore different areas of the search space in parallel by

independently evolving each subpopulation, with the independent evolution of the

subpopulation leading to enhanced the genetic diversity (Chambers, 1999).

From the above discussion, two ways to reduce the execution time can be identified. The

first method is to directly run the algorithm in parallel hardware, while the second is to

utilise the GA’s inherent parallelism (Eklund, 2003). Next, a brief discussion about parallel

hardware is provided, followed by a discussion on coarse-grained and fine-grained GA

models.

2.1.2.1 Parallel Hardware

The objective of this section is to understand hardware concepts related to parallel computer

architectures in order to establish a relation between parallel hardware and the

implementation of parallel algorithm models. However, it is first necessary to understand

that parallel models and parallel hardware are not the same. Parallel models describe the

independent computation of multiple tasks and can be executed on both parallel and

sequential computers, while parallel hardware requires physical divisions in the independent

tasks (Alba, 2005).

Generally, parallel architectures are classified into Single Instruction Single Data (SISD),

Single Instruction Multiple Data (SIMD), Multiple Instruction Single Data (MISD), and

Multiple Instruction Multiple Data (MIMD) (Culler, Singh, and Gupta, 1998; Roosta, 1999).

SISD refers to a computer architecture in which a mono-processor runs single instruction

on data stored in single memory. However, SISD has parallel characteristics, for example

fetching and pipelined execution of instructions (Roosta, 1999).

SIMD corresponds to a parallel computer architecture in which the same instruction is

executed by several processors over multiple data. Typically, a SIMD architecture has

hundreds or thousands of simple processors, each with a local memory. Despite its ability to

 16

exploit data level parallelism, the use of SIMD architectures is limited due to their

complexities, inflexibilities, and dependence on synchronisation (Roosta, 1999).

Similar to SIMD, MISD refers to parallel computer architecture, but this architecture

executes multiple instructions on the same data; an example of this architecture is a pipelined

computer. MISD architectures are rarely found in practice due to their poor scaling and their

excessive use of computational resources (Roosta, 1999).

MIMD is a technique designed to achieve parallelism and is the most useful one. Most

parallel computers fit this mould. MIMD computers have several processors that operate

independently and asynchronously and in which different processors run different

instructions over different data. MIMD architectures have more classifications based on the

way the processor accesses memory. These classifications are as multiprocessors and multi-

computers (distributed system). In the former, processors access memory directly, while in

the latter, processors need a message-passing mechanism in order to access remote

memories. These two classes of MIMD are even further divided; multiprocessors are

classified into uniform and non-uniform memory accesses (UMA and NUMA, respectively),

and each is also classified based on the interconnection media between the processors (Bus-

based or switched). Although multiprocessors are widely in use, they have a limited number

of processors. Increasing the number of processors results in an exponential increase in their

price. Distributed systems consist of several computers that are interconnected: each

computer has a processor, a memory, and a network adapter. A distributed system can be a

cluster of workstations (COW) or a massively parallel processor (MPP). In the former, the

workstations are connected by a network technology; this technology restricts the number of

workstations to a few hundred. Conversely, MPP has thousands of processors. The

advantages of distributed systems are mainly presented in their easy build and extension,

better price-performance trade-off, and more scalability and flexibility (Roosta, 1999; Alba,

2005).

2.1.2.2 The Islands Model

Islands or distributed GAs (dGAs) is one of the most popular parallel models. This model is

also known as coarse-grained GA according to grain size. In a typical dGA, the population is

divided into multiple and relatively large subpopulations (islands) that each evolves

independently (Alba and Troya, 1999a). Each subpopulation runs the standard GA and the

interaction between individuals in different subpopulations is introduced and managed

 17

through a migration technique (see Figure 2.1). Figure 2.1 illustrates a dGA with 6

subpopulations; each evolves independently by running a standard GA. The interaction

between the subpopulation occurs through individual migration over a predefined

communication link.

This subsection provides a broad discussion about the main issues related to dGAs. These

issues are homogenous and heterogonous models, migration policies, synchronism, speed-

up, and implementation.

Homogenous and heterogeneous dGA

Each island or subpopulation applies the genetic operators (selection, crossover, and

mutation) in isolation from other islands; therefore each island searches a different area in

the search space. In addition, each island can have its own configuration (such as crossover

and mutation probabilities, individual representation, among others). The different

configurations among islands lead to the formation of a class of dGA called heterogeneous

dGA, while in heterogonous dGA a similar configuration is used for each island (Alba,

Nebro, and Troya, 2002; Alba, Luna, and Nebro, 2004). Although heterogeneous models are

difficult to understand and implement, they show good results in practice (Tomassini, 2005).

A promising heterogeneous dGA that uses different crossover operators in each

subpopulation was proposed by Herrera and Lozano (2000). A comparison between the

Figure 2.1. Islands or distributed GA with 6 multi-individual subpopulations.

Subpopulation
Migrant

Migration

Communication
link

 18

proposed algorithm, panmictic GAs, and homogenous dGAs, among others, showed that the

former outperforms the rest in terms of reliability and accuracy.

Migration

An essential issue in dGA is defining an appropriate migration policy due to its

significant influence on the performance of the algorithm (Rebaudengo and Sonza Reorda,

1993). Typically, the parameters of the migration technique include migration gap, migration

rate, selection/replacement of migrants, and topology (Alba, 2005). The migration gap or

frequency defines how many generations in each island are between two successive

migrations. The migration gap can either be set periodically or by defining a probability MP .

The migration rate, sometimes called migration size, defines the number of individuals

involved in each migration, which can be a constant number or a percentage of the

subpopulation size. The migration strategy or the selection/replacement of migrants is

defined according to which migrants are selected and which individuals are replaced by

migrants. Lastly, the topology defines the island’s neighbours with which each island can

communicate; in the islands model the interaction is geographically restricted to nearby

neighbours.

In an early study, Rebaudengo and Sonza Reorda (1993) selected the problem of TSP to

assess the performance of dGA against different migration frequencies, sizes, and strategies.

They found that different migration parameters significantly affect the performance of the

algorithm. In addition, they concluded that migration has a similar effect to that of mutation

as both operations introduce new genetic information. However, they also found that

mutation has an advantage in that the information introduced is better and new, which speeds

up the algorithm without driving it to a local minimum area.

Matsumura et al. (1997), in a later study investigated the effects of migration on different

multiprocessor system topologies (namely, ring, tours, and hypercube). In that study,

Matsumura et al. used two types of migration to define the migration gap: namely,

immigration and emigration types. In the former the migration operation is activated when

the best fitness value is not updated, while in the latter the migration is activated when the

best fitness value is updated. They found a relationship between solution quality, migration

types, convergence speed, and topology. Thus, in general, the combination of specific

migration type and topology may significantly affect solution quality and convergence

speed.

 19

A theoretical study on the scalability of parallel GA was proposed by Cantu-Paz and

Goldberg (1999). The main aim of that study was to calculate the best possible number of

processors needed to obtain the minimum execution time. The bounding cases (maximal and

minimal values) in terms of topology degree, migration rate, and frequency were considered.

Cantu-Paz and Goldberg concluded that the optimal number of processors needed to

minimise the execution time is directly proportional to the square root of the population size

and the time of fitness evaluation. They also suggested that a large number of processors

could be integrated in parallel GAs while significantly reducing the execution time.

In a study similar to the previous one concerning island size, migration rates, and

topologies, additional problems were considered to confirm the previous conclusion (Cantu-

Paz, 1999a). In that study, Cantu-Paz established a relationship between island size,

migration rate, and topology degree (number of neighbours of each island) with search

success rate. He showed how to identify a configuration that obtains an appropriate

execution-time/solution-quality trade-off by deriving an equation to calculate an accurate

island size, which in turn is used to identify the migration rate and the topology degree. The

conclusion arrived at is similar to that of the previous study.

At the same time, Cantu-Paz (1999b) also investigated the affect of different migration

strategies on the selection pressure while migration rate, frequency, island size, and topology

degree remained constant. He defined four combinations of random and fitness-based

emigration and replacement of individuals; with the results showing that the

selection/replacement of migrants significantly affect the convergence speed. Later, Cantu-

Paz extended the latter study to quantify the increased selection pressure, which is an

important issue in the avoidance of search failure (Cantu-Paz, 2001).

In summary, dGA introduced new algorithmic parameters such as number of

subpopulations, frequency of migration, selection and replacement of migrants, and network

topology. However, these parameters presented a major drawback of dGA as only few

theories were proposed on how to tune these parameters (Eklund, 2004).

Synchronism

Besides migration, synchronism is another factor that influences the search time and

speedup. In dGA, synchronism occurs through migration. If the migration uses asynchronous

communication, then the migrants are inserted immediately when they arrive at the intended

island. A major advantage of asynchronous communication is that it avoids blocking steps

between the migration gaps. Conversly, synchronous islands wait for every migrant they

 20

must add, consequently affecting the execution time because of the continuous waits. Several

studies have reported faster execution and more flexibility for asynchronous communication

(Alba and Troya, 1999b; Alba, Cotta, and Troya, 1999a; 1999b; Alba, Nebro, and Troya,

2002; Alba, Luna, and Nebro, 2004).

Alba and Troya (1999b) analysed the synchronism in the migration step of dGA with

steady state or cellular modes of island evolution (dssGA and dcGA, respectively) as well as

other panmictic and non-distributed GAs. The conclusion they reached reported that the

asynchronous algorithms achieved considerably less search times and larger speedup than

their synchronous counterparts. The tight coupling in dcGA demonstrated a drawback of the

synchronisation for harder problems. However, dcGA showed better resistance to bad

migration frequencies than dssGA. The same conclusion was obtained in (Alba, Cotta, and

Troya, 1999a; b) in which more difficult problems were considered. In addition, they

reported that in terms of effort and diversity, both synchronous and asynchronous versions of

dGA with generational, steady state, and cellular islands showed no differences.

In addition, the influence of synchronisation in heterogeneous dGAs was analysed in

(Alba, Luna, and Nebro, 2004) to further show the importance of synchronism in different

dGA models. The results confirmed those obtained in previous studies. The wait constraints

induced by the synchronous versions penalise the execution time, especially for a large

number of islands. Consequently, better efficiency can be achieved by asynchronous

parallelisation.

In summary, synchronisation in dGAs is determined through migration of individuals

between panmictic or cellular subpopulations. The investigation on the advantages of

asynchronous commutation showed high parallel efficiency and scalability. In addition,

implementing parallel GAs with asynchronous communication on heterogeneous parallel

hardware has the added advantage of parallelism that avoids the bottleneck induced by the

slowest processor.

Speedup

Speedup is an important measure in parallel algorithms. In this measure, two times are

compared: namely, the sequential and the parallel times needed to run the same algorithm.

Thus, the speedup of m processors (ms) is the ratio between execution time on a mono-

processor (1T) and the execution time on m processors (mT) (Alba, 2005). For many years,

this measure has been used to analyse the performance of deterministic algorithms.

 21

However, replacing the absolute times (1T and mT) by the average times (1T and mT)

enabled it to be used to analyse the performance of non-deterministic algorithms.

Alba and Troya (2002) identified two types of speedup: strong speedup and weak

speedup. Researchers favour the use of the latter as the former considers the best (fastest)

recent sequential algorithm, which is difficult to find. Furthermore, they suggest that the

comparison of speedups between sequential and parallel GAs must be made by running both

algorithms until similar quality solutions are arrived at.

The three levels of speedups are: sub-linear (msm <), linear (msm =), and super-linear

(msm >). Many researchers suggest the possibility of parallel GAs being used to achieve

super-linear speedup, for example, the work of Alba and Troya (1999b). However, the topic

of super-linear speed is still controversial.

Obviously, the move from panmictic to distributed population plays an important role in

enhancing speedup as a lower execution time is needed for smaller subpopulations. More

interestingly, in addition to the previous speedup source, speedup can be gained from the

same distributed algorithms. Alba and Troya (2002) showed that dGA running on several

processors achieved a super-linear speedup when compared to its panmictic counterpart,

while a sub-linear speedup is achieved when it is compared to the same dGA on one

processor.

In addition, synchronism and migration in parallel GAs may significantly influence

speedup (Alba, 2002). Alba and Troya (1999b) compared the speedups of asynchronous

dGA with panmictic and cellular subpopulations to their synchronous counterparts. The

result showed the ability of the compared algorithms to obtain super-linear speedups. In

addition, an improvement was obtained when comparing asynchronous algorithms to the

synchronous dssGA and a slight improvement was noticed when synchronous dcGA was

considered (because of the highly coupled islands) for similar migration frequencies. Further,

in their study, Alba and Troya investigated the effect of different migration gaps (1, 16, and

32) on the speedup. They found that there was better speedup for larger gaps (16 and 32)

with super-linear speed for dssGA and almost linear speed for dcGA for the largest gap (32).

In conclusion, all the previous studies agreed on the possibility of parallel GAs to obtain

super-linear speedup, in theory and in practice, both in homogenous and heterogeneous

parallel hardware.

 22

Implementation

A traditional (false) assumption about parallel GAs was the mapping of parallel GA

models directly onto the parallel hardware, thereby making the model and its implementation

equivalent terms. However, a parallel model can be implemented on either mono-processor

or multi-processor machines.

From a hardware perspective, a dGA is very easy and efficient to implement in

distributed memory MIMD computers, which partly contributes to its popularity. Despite the

fact that a few independent subpopulations may limit the maximum speedup of this model, it

is still faster than panmictic GA in terms of both run and convergence times. In addition,

subpopulation structure, synchronism, and migration all influence the search time and

speedup when running parallel GAs in a MIMD machine. Furthermore, cluster

implementation of the island model is physically fairly large−resulting in the exclusion of

many applications (Eklund, 2004).

In (Alba, Cotta, and Troya, 1999b) and (Alba, Nebro, and Troya, 2002) the islands model

was implemented in homogenous and heterogeneous clusters of workstations, respectively.

Super-linear speedup was experienced not only in the homogenous but also in the

heterogeneous machine clusters. In addition, the results showed that the heterogonous cluster

was more efficient. In the next subsection, the cellular GAs (diffusion) model is discussed in

very broad terms, followed by a more profound discussion of this model in the subsequent

subsections.

2.1.2.3 The Diffusion Model

The diffusion model is also called fine-grained, cellular, and massively parallel GA. This

model distributes its population over the structure of the processing elements (nodes),

commonly a two-dimensional grid with wraparound edges (toroidal), in which each

processing element holds only a few individuals, typically one. This spatial distribution

defines and restricts the interaction between the individuals to their local neighbourhoods

(Baluja, 1993).

Figure 2.2 illustrates a diffusion or cellular GA with 5 × 5 subpopulations distributed over

a 2D-toroidal grid: each contains one individual with its neighbourhood comprising four

individuals located at the north, south, east, and west.

 23

Figure 2.2. A cGA implemented over 5 × 5 toroidal grid. The neighbourhoods marked in dark and

light blue show a possible overlapping of two neighbourhoods.

This model can also be viewed as a combination of standard GAs and Cellular Automata

(CA) as the population is distributed over an n dimensional toroidal grid in which each

individual occupies a position. Several researchers have investigated the performance and

behaviour of a GA implemented on a CA (or CGA) (Kirley, Li, and Green, 1999; Back and

Breukelaar, 2005; Olariu and Zomaya, 2006). The mutual conclusion is that CGA

outperforms standard GAs with its ability to better escape local optima. Back and Breukelaar

(2005) further investigated this model by considering multiple grid dimensions. The findings

indicated promising benefits of algorithm performance for higher grid dimensions.

Unlike the island model, the number of subpopulations is quite large which makes the

diffusion model massively parallel, consequently increasing the potential of obtaining higher

speedups. In addition, the migration in the diffusion model implicitly occurs due to the

overlapped neighbourhoods. However, an explicit migration could be defined (Lee, Park,

and Kim, 2000). All steps of the GA (evaluation, selection, and genetic operations) are

applied in parallel within each individual’s neighbourhood in which only the current

individual, the one at the centre, is updated. The massive parallelism and the absence of

explicit migration are two advantages, among others, of the diffusion model (Eklund, 2004).

Another benefit of the diffusion model is its suitability for implementation in VLSI

because of its simple, regular, and locally connected nodes. Despite the fact that cGAs were

originally designed for work in massively parallel computers, they have also been adopted

and implemented in distributed and mono-processor machines. Section 2.2 describes cGA in

more detail.

 24

Figure 2.3. A hybrid parallel model of GA that combines cGA at the lowest level (each node) with

dGA at the highest level to form what can be referred to as dcGA.

2.1.2.4 Hybrid Models

There have been various attempts to combine two of the parallel GAs in order to get the

combined advantages of both (Cantu-Paz, 1995; Nowostawski and Poli, 1999); these are

called hybrid models. One of the most well-known hybrid algorithms combines the diffusion

model at the lowest level with the island model (see Figure 2.3). The discussion in Section

2.1.2.2 included some studies relating to this hybrid model, which was referred to as dcGA.

Although hybrid models may lead to the birth of new efficient algorithms, some of these

models introduce more complexity to parallel GAs, for example the need for new additional

parameters to manage a more complex topology structure (Alba, 2005).

2.2 Cellular Genetic Algorithms

The cellular model is a class of evolutionary algorithms with structured population that

emphasises evolution at the individual level (Alba and Dorronsoro, 2008). cEAs are a kind

of stochastic CA in which the number of points in the search space in cEAs is equivalent to

the cardinality of the symbol alphabet in CA. Typically, in cGA each individual is assigned a

grid position (cell); the topology of the grid is commonly implemented on an n -dimensional

toroidal grid having a linear, square, or rectangular geometric shape. The concept of local

neighbourhood is strictly enforced and an individual only interacts with its local neighbours.

In a cGA, the diffusion of solutions occurs slowly with the aid of the overlapped local

neighbourhoods, therefore offering exploration (diversification) of the search space, while

 25

the genetic operations applied in each neighbourhood supports the exploitation

(intensification) of good solutions. Hence, a major issue in determining the effectiveness of

cGAs is the balance between exploration and exploitation, which is a direct effect of the

selection pressure. The theory and practice surrounding this issue is discussed in the next

subsection.

Algorithm 2.4 Pseudo-code of a canonical cGA

1. procedure cGA

2. Generate_initial_population (P(0));

3. Evaluation (P(0));

4. t � 0;

5. while ! stop_condition do

6. for i � 1 to ROWS do

7. for j �1 to COLUMNS do

8. neighbours � Find_neighbours (position(i,j));

9. parent1� position(i,j);

10. parent2 �Local_selection (neighbours);

11. offspring � Recombine (Pc, parent1, parent2);

12. offspring � Mutate (Pm);

13. Evaluation �Fitness(offspring);

14. Replacement (position(i,j), offspring, Paux(t));

15. end for;

16. end for;

17. P(t+1) � Paux(t); // updating

18. t � t+1;

19. end while;

20. end procedure cGA;

In a cGA, the population is usually distributed over a two-dimensional toroidal grid

topology, although lower or higher grid dimensions are possible. Algorithm 2.4 illustrates

the pseudo-code of the canonical cGAs implemented on a two-dimensional grid. A cGA

starts with a random population P(0) followed by fitness evaluations (Lines 2 and 3). Next,

each individual is updated by selecting a second parent from its neighbourhood according to

a specified local selection method (Line 10), and the first parent is the individual itself (Line

 26

9). This type of parent selection is referred to as ‘current individual + local selection’; the

other selection type selects both parents from the neighbourhood of the current individual

with or without replacement through the defined local selection method. Several local

selection methods that can be used include those implemented on standard GAs as well as

selection methods specifically designed for implementation on parallel GAs such as

anisotropic and centric selections (Simoncini et al., 2006a; 2009). A crossover operator

recombines the selected parents with a probability Pc to produce an offspring (Line 11),

which is then mutated by a non-uniform mutation operator with a probability Pm (Line 12).

The modified offspring is then evaluated and, according to the specified replacement policy,

the current individual is either kept or replaced by the newly generated offspring (Lines 13

and 14).

This process continues until all of the individuals are updated. The current population P(t)

is then replaced by the auxiliary one Paux(t) to start the next generation (Line 17). The

updating process defined here is synchronous, which means that the updated individual is

inserted into an auxiliary population following a specified replacement policy. An alternative

updating option is to apply an asynchronous update, in which the updated individual is

directly inserted into the current population. (Subsection 2.2.2 discusses the synchronism in a

cGA.) The algorithm terminates when the termination condition is met (Line 5).

2.2.1 Takeover Time and Selection Pressure

The structural properties of cGAs, including population (grid) and neighbourhood

topologies, shape, and size, as well as genetic operations such as selection, replacement, and

synchronisation may bestow several advantages on the effectiveness of the search. Two

related and major issues that directly result from the abovementioned structural properties

and operations are takeover time and selection pressure. Hence, careful attention to the

takeover times and the selection pressure in the context of structural properties and

operations is required.

The takeover time represents the speed needed by the best solution in the population to

conquer the whole population when only activating the selection operator (i.e., the growth

rate of the best individual). Goldberg and Deb (1991) theoretically derived and compared the

takeover times for panmictic GAs for different selection methods. They found that most of

selection methods considered had a similar convergence times for order of growth O(log n)

generations, where n is the population size. The proportional selection method was an

 27

exception to this as a slower convergence time was obtained for it by a factor of n . Later,

Rudolph (2000) proposed a theoretical study on takeover times in cellular EAs with one-

dimensional array and ring topologies. He derived the takeover times as a function of

population size and selection probability for both considered topologies. In addition,

Rudolph suggested that the takeover time depends to a lesser extent on the selection method

than on the radius of the neighbourhood.

A shorter takeover time denotes a higher selection pressure (intensity) leading to the

promotion of more exploitation. High selection pressure leads to quick diversity loss.

Therefore, the search may stagnate in the local minima area. Conversely, lower selection

pressure promotes more exploration and therefore more diversity. Hence, careful attention to

selection methods and other EAs settings is required. For other theoretical study on takeover

time refer to Spiessens and Manderick (1991).

The next subsection discusses the selection pressure in cGAs with respect to the structural

properties. Following that the influence of the genetic operations, specifically on the

selection pressure is demonstrated.

2.2.1.1 The Influence of Grid-to-Neighbourhood R atio

Before defining the Grid-to-Neighbourhood Ratio (NGR), a broad overview on grid and

neighbourhood topologies is provided. As mentioned previously, a cGA is usually

implemented on a two-dimensional grid topology with wraparound edges following a

toroidal shape. Depending on the number of rows and columns a 2D toroidal grid can have a

rectangular, a square, or a narrow topology; these configurations are illustrated in Figure

2.4(a)−(c), respectively. Whereas, several neighbourhood configurations can be defined, the

various configurations are commonly classified into Von Neumann (NEWS) or Moore (X-

net) neighbourhood (see Figure 2.5). In the former (also referred to as Linear (L)), the

neighbourhood of an individual comprises those individuals located to its north, east, west,

and south. With regard to the latter (also referred to as Compact (C)), in addition to the linear

ones, the individuals located on the diagonal of the current individual are also included in its

neighbourhood. The number of individuals in a neighbourhood is determined by the

predefined neighbourhood radius (distance step). For example, the linear neighbourhood can

have 5 individuals (L5) for 1 distance step (see Figure 2.5(a)), while a compact

neighbourhood contains 9 individuals (C9) for the same distance step (see Figure 2.5(c)).

 28

 (a) (b)

 (c)

Figure 2.4. Two-dimensional toroidal grid topologies in cGA: (a) with rectangular shape, (b) with

square shape, and (c) with narrow shape.

 (a) L5 (b) L9 (c) C9 (d) C13

Figure 2.5. Von Neumann neighbourhood: (a) with one distance step and (b) with two distance steps.

Moore neighbourhood: (c) with one distance step and (d) with two distance steps.

It is now possible to proceed to theoretically define NGR. The concept of NGR

establishes a numerical relationship between neighbourhood and grid radii, which is

computed by measuring the dispersion of a point pattern (an individual position) with respect

to the mean centre (yx,) of a neighbourhood (or grid) pattern of size n as follows:

n

yyxx
Rad ii∑ ∑ −+−

=
22)()(

, nxx
n

i i∑ =
=

1
, nyy

n

i i∑ =
=

1
. (2.2)

where xi is the row and yi is the column of a location of the individual i.

 29

Therefore the ratio between the neighbourhood and the grid radii is calculated as follows:

Grid

oodneighbourh

Rad

Rad
NGR= (2.3)

Many researchers conclude that different grid/neighbourhood shapes and sizes impose

different levels of selection pressure. Sarma and De Jong (1996) empirically analysed the

effect of neighbourhood size, shape, and radius on the selection pressure. They showed in

their study that NGR is a critical parameter in which different NGRs induce different global

selection pressures. In other words, algorithms that have similar ratios, even if they have

different population and neighbourhood sizes, show similar selection pressure. This

conclusion was further investigated and confirmed in subsequent studies (Dorronsoro et al.,

2004; Giacobini et al., 2005).

Alba and Troya (2002) analysed the effects of the NGR on the computational effort in

terms of the number of evaluations, efficacy (number of hits), and scalability in cGAs. In

summary, they found that thinner grids require more evaluations, provide better efficacy

(especially when solving difficult problems), and scale adequately, while square grids scale

slightly better as the size of a problem increases.

To empirically show the influence of different NGRs on the selection pressure,

experiments that included combinations of different grid shapes (square, rectangular, and

narrow) and different neighbourhood sizes (L5and L9) were carried out. The population

contained 400 individuals arranged as 20×20, 10×40, and 4×100 for square, rectangular, and

narrow grids, respectively. Figure 2.6 depicts the average growth rates of the best individual

(of 50 independent runs) for a square grid with L5 (NGR = 0.1097) and L9 (NGR = 0.1828)

neighbourhoods, rectangular grid with L5 (NGR = 0.0752) and L9 (NGR = 0.1253)

neighbourhoods, and narrow grids with L5 (NGR = 0.0310) and L9 (NGR = 0.0516)

neighbourhoods when applying the binary tournament selection only. Smaller ratio values

induced lower global selection pressures in the population (longer takeover time), while

larger ratio values induced higher selection pressures (shorter takeover time). Further, with

regard to similar neighbourhoods, square grids obtained the highest selection pressure,

leading to more exploitative search; while the lowest selection pressure was obtained by

narrow grids, leading to more explorative search.

 30

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of generations

G
ro

w
th

 r
at

e
of

 t
he

 b
es

t
in

di
vi

du
al

s

L5- square
L9- square

L5- Rectangular

L9- Rectangular

L5- Narrow
L9- Narrow

Figure 2.6. The best individuals’ average growth rates for square, rectangular, and narrow grids, each

with L5 and L9 neighbourhoods.

The latter findings led many researchers to investigate the effect of dynamic control of

the selection pressure, which leads to balancing the exploration/exploitation trade-off. The

switch between grid shapes is one way to dynamically tune the selection pressure; other

ways are also possible (Ursem, 2002; Li and Kirley, 2002; Alba and Dorronsoro, 2005).

Chapter 5 discusses this topic in more detail.

2.2.1.2 The Influence of Local Selection Method

In addition to NGR, the local selection method influences the selection pressure. De Jong and

Sarma (1995) empirically studied this effect by considering standard selection methods

(binary tournament, linear rank, and proportional selections). They found that different

selection pressures were induced by the various selection methods and that binary

tournament selection has the most desirable global search and communication overhead.

Subsequent studies investigated the effect of local selection methods as decentralising

choices. The selection methods included standard and parallel-based techniques such as

stochastic binary tournament, anisotropic, and centric selections (Simoncini et al., 2006a; b;

2007; 2009). These methods introduced new parameters on which probabilities to select a

 31

specific individual are computed. For example, considering the L5 neighbourhood,

anisotropic selection assigns probabilities for the centre (pc), north and south (pns), and east

and west (pew) individuals based on anisotropic parameter (α,α ∈ [-1 , 1]); see Equations

(2.4).

).1(
2

)1(

),1(
2

)1(

α

α

−−=

+−=

c
ew

c
ns

p
p

p
p

 (2.4)

Hence, by tuning α, different selection intensities are induced. More discussions and

experiments with respect to the influences of selection methods on selection pressure and

takeover time are provided in Chapter 5, Section 5.1.

2.2.2 Synchronisation

Earlier, the topic of synchronisation was discussed in the context of dGA. This subsection

discusses the same topic as it relates to cGA. In a cGA, the synchronism occurs through

population updating policies (Tomassini, 2005).

In a synchronous cGA, the phases of evaluation, genetic operations, and selection take

place at the same time for all cells before the next generation starts (refer to Algorithm 2.4).

Implementing the synchronous cGA model on a single machine requires an auxiliary grid to

keep the updated cells. The auxiliary grid then replaces the old population when all cells

have been updated to start the next generation.

In an asynchronous cGA model, cells are updated in sequence. Different sequences are

defined for asynchronous updating; with the most frequently used policies being fixed line

sweep (LS), fixed random sweep (FRS), new random sweep (NRS), and uniform choice

(UC). In LS the cells are updated successively according to their positions, either by row or

by column. In FRS, each cell is selected randomly for updating with uniform probability and

without replacement. Similar to FRS, NRS and UC select a cell randomly for updating;

however in NRS, a new random cell distribution is used for each cell, while in UC a uniform

probability with replacement (binomial distribution) is used.

Previous studies about synchronism in the field of Cellular Automata and dGA confirmed

the advantages of asynchronous approaches over synchronous ones (Sipper et al., 1997;

Schofisch and de Roos, 1999; Alba and Troya, 2001). These findings led Alba et al. (2002)

to investigate the respective advantages and disadvantages in synchronous and asynchronous

 32

cGAs. Although asynchronous cGAs had faster convergence time while maintaining

desirable search success rates, synchronous cGAs had higher search success

ratesconfirming the results of the previous studies.

Synchronisation and selection pressure

In addition to the shape and size of the neighbourhood (and/or grid) and local selection

mechanisms, synchronism can influence the global selection pressure. Giacobini et al. (2003;

2005) investigated the selection intensity in synchronous and asynchronous cGAs. They

successfully modelled the curves of the selection pressure on one- and two-dimensional

cGAs with toroidal grids. Accordingly, Tomassini (2005) provided a mathematical

background for understanding the models. An empirical investigation was then carried out to

validate the models. Synchronous algorithms had the weakest selection intensity, followed

by UC, NRS, FRS, and at finally LS, which had the strongest selection intensity. Thus,

synchronous algorithms are more explorative than asynchronous ones.

Dorronsoro et al. (2004) further investigated the influence of synchronous and

asynchronous update policies on the selection pressure. The results obtained confirmed those

of previous studies in showing that it is possible to control the selection pressure without the

need for additional parameters by synchronising updating policies. Moreover, asynchronous

algorithms had faster convergence times than their synchronous counterparts. However,

synchronous algorithms had higher search success rates.

The next subsection discusses the metrics most frequently used to measure the

performance of the parallel algorithms.

2.2.3 Performance and Statistic Measures

As previously discussed, the most common measure of parallel algorithms is the Speedup.

Speedups of meta-heuristics should be computed based on similar parallel and sequential

accuracies (Alba, 2005). In this case, the average mean times of the parallel model on a

single machine and the parallel model on m machines are compared in an orthodox (similar

algorithm and accuracy), practical (the best, most recent algorithm is not required) manners.

The definition and types of the speedup were discussed in Section 2.1.2.2.

Other metrics used to measure and analyse the performance of parallel algorithms include

accuracy (quality of solution) combined with search success rate or hit rate (number of

successful experiments), and computational effort (number of fitness evaluations and/or the

 33

run time). To achieve a reliable conclusion and to gather sufficient data several independent

experiments have to be carried out due to the stochastic nature of EAs. The first measure can

be used if the optimum solution is known. Thus, the search success rate indicates the number

of experiments that obtains the optimum solution. Knowing the optimum solution is not a

necessity for the computational effort. This measure is computed using the convergence time

(number of fitness evaluations or number of generations) and/or the convergence speed

(execution time). Researchers recommend the use of both methods to compute the

computational effort. The traditional assumption is that parallelism is mainly about reducing

the time rather than the number of evaluations. However, using the execution time would

bring the effects of hardware and software implementation. For empirical investigations on

the influence of the measure, please refer to (Alba, 2005, p.54).

Statistical metrics are also important when measuring the performance of the algorithms.

Common metrics include mean of solution accuracies and mean of computational efforts

over all experiments. To illustrate the benefit of the statistical metrics consider obtaining low

hit rate but with high mean accuracies, which indicates that the algorithm is robust. For

global analyses, other statistical metrics such as standard deviations (or median absolute

deviations, which is recommended for data with non-normal distribution) can also be used.

To further assess the reliability and validity of the conclusion, significance statistical tests

should be used to indicate the strength of the relation between performance measures (Alba,

2005).

Genotypic and phenotypic measures in cEAs

Capcarrere et al. (1999) introduced a number of statistical measures to analyse the

behaviour of cEAs at the genotypic (structure of individuals) and phenotypic (fitness of

individuals) levels. At both levels, the most important measure is the diversity, which can be

computed using a variety of methods. The most common method is to calculate the entropy

of the population based on individual fitness (phenotypic diversity) or structure (genotypic

diversity). Phenotypic diversity (Hp) refers to the average number of different fitness values,

while genotypic diversity (Hg) refers to the average values of the entropy of each variable

(gene) in the population. See Equations (2.5) and (2.6).

∑
=

−×=
N

j
jjg gg

N
PH

1

),log(
1

)((2.5)

where N is the size of population P, and gj is the fraction of individuals having a given

distance from the origin.

 34

∑
=

−×=
N

j
jjp ff

N
PH

1

),log(
1

)((2.6)

where fj is the fraction of individuals having fitness j.

Population diversity plays a significant role in EAs. One of the drawbacks of panmictic

EAs is their weakness in maintaining the population diversity, which causes the search to be

trapped in a local optima area, particularly when tackling hard real problems. An implicit

way to tackle this shortcoming is through the spatial structure of the population or the

decentralised EAs (Tomassini, 2005, p.37). Besides being a main measure to analyse the

performance of the algorithm, the population diversity is used to guide EAs. The use of

genetic diversity in guiding search process introduces a new class of EAs, which is the

dynamic model. This topic will be covered in detail Chapter 5.

2.2.3.1 Performance Measures and Statistical Tes ts used in this Research

This research uses the average number of generations to find a solution with a predefined

accuracy for successful runs out of 100 independent runs. This measure is referred to as

efficiency, or convergence time (CT). The second measure used is the efficacy or the

convergence rate (CR), which defines the search success rate (% hits) to a solution of a

predefined accuracy out of 100 independent runs. The final measure is the speed (SP), which

is measured as the average run or execution times in seconds (s) for successful runs. In this

thesis, CT appears first in a table cell, followed by CR, and then SP. The median absolute

deviation (mad) is added to CT and SP and appears in tables after the symbol ‘±’. All

experiments were carried out using MATLAB and GNU C compiler (Dev C++) on an IntelR

CoreTM 2 CPU at 2.4GHz with 3.12GB RAM, running Windows XP professional v. 2002.

With regard to statistical metrics and significance tests, this research uses the mean of the

efficiencies and mean run times including the standard deviations (the median absolute

deviations replace the standard deviations when data are not following a normal

distribution). The Kolmogorov-Smirnov test is applied to identify the normality of the data.

After which, the ANOVA test was applied when the data showed a normal distribution, and

the Kruskal-Wallis test when the data failed to follow a normal distribution. The latter two

tests are used to obtain the statistical significance in the efficiency and speed of the algorithm

with a 95% confidence level (p-value < 0.05). For the efficacy, the Chi-square (χ2) test for

proportions was used to obtain the significance with a 95% confidence level.

 35

2.2.4 cGAs from Hardware Perspectives

A number of comprehensive studies on parallelism in EAs were carried out to analyse the

various features of the parallel EAs such as selection pressure, efficacy, efficiency, speedup,

synchronism, among others, while stressing the difference between EA models and their

implementation (Cantu-Paz, 1995; Alba and Tomassini, 2002).

Traditionally, dGAs are best-suited and usually implemented in distributed memory

MIMD machines, while massively parallel computers (SIMD) are more suitable for the

implementation of cGAs as these models can be directly mapped onto such architectures

(Tomassini, 1999). Many massively parallel computers connect the processing elements

(PEs) in a two-dimensional grid. However, other topologies can be implemented using a

global router (Cantu-Paz, 1995). When implemented on a SIMD machine, a cGA places a

single individual at each PE or cell. Each individual selects another individual from its local

neighbourhood to mate with. The generated offspring may then replace the individual at the

central cell according to the replacement policy. Hence, there is no need for any central

control. Nevertheless, issues related to the neighbourhood topology and selection and

replacement schemes should be considered when implementing a cellular model.

A cEA model may have more cells than PEs. In this case a PE has to deal with each cell

sequentially. Today, the use of the theory of MPI message passing makes it easy to

implement cEAs, particularly the synchronous model. Each PE synchronously updates its

individuals in sequence and does not require the other’s PEs memories except for

communication involving edge values between neighbourhoods. In this case, those PEs need

to send and receive the corresponding messages as different neighbouring regions are

managed by different PEs (Tomassini, 2005, p.168).

Genetic Operators
Module

Controller
Processing Unit

Chromosome Memory Fitness Memory

Memory

Evaluation
Module

Selection
Module

Genetic Operators
Module

Controller
Processing Unit

Chromosome Memory Fitness Memory

Memory

Chromosome Memory Fitness Memory

Memory

Evaluation
Module

Selection
Module

Figure 2.7. High-level hardware architecture of a cell of the cGA in the SIMD model.

 36

In conclusion, the cGA model is well suited for VLSI implementation since the cells are

simple, regular, have small local memories, need local communication links over the defined

topology, and operate synchronously (Eklund, 2004). Figure 2.7 illustrates the two major

components of a cGA cell in the SIMD model. They are the processing and the memory

units. All cells are identical and are connected to their neighbouring cells over the defined

topology (NEWS or X-net). Each cell evaluates its unique individual, selects, and applies

crossover and mutation operators (i.e., perform the same cGA) in parallel with other cells.

A hardware architecture and implementation of a cGA for the application of the image

registration was proposed by Turton et al. (1994). In the study, a two-dimensional captured

image was compared to a reference image and a transformation between both images was

required. From an algorithmic perspective, a step was added to the cGA model such that hill

climbing was used to modify (increase or decrease) the transformation parameters by one

unit for promotion. In a subsequent study, Turton and Arslan (1995b) improved the previous

architecture to include data compression. They also proposed a cGA architecture for a disc-

scheduling problem (Turton and Arslan, 1995a). The aim was to identify the best way to

order tasks in order to minimise the access time. For more details about the previous studies

please consult the cited references.

Xu et al. (2002a) proposed a technique based on GAs to determine the attitude of a GPS.

The proposed technique resolved problems in existing methods such as the Ambiguity

Function Method (AFM), making it more efficient and immune to cycle slips. The attitude

parameters are determined using more than two antennas (of which one is used as a

reference) attached to a vehicle. More details on the problem of GPS attitude determination

are provided in Section 4.2.2. A VLSI implementation of the GPS attitude determination

based on cGAs was subsequently proposed in (Xu et al., 2002b). For implementation, issues

related to functionality and practical performance restrictions, such as speed and scalability,

were considered. The resulting architecture had low hardware complexity and the simulation

results showed a linear speedup.

Later, Stefatos and Arslan (2004a) introduced a high performance, adaptive hardware

architecture to alleviate the problem of GPS attitude determination based on cGAs. The aim

of the proposed system was mainly to optimise the speed performance. As a result, the cGA

employed a Coordinate Rotation Digital Computer (CORDIC) algorithm to further improve

the system throughput rate. Results showed the system’s potential to achieve the promised

high throughput rates.

 37

The previous studies showed different application areas of cGAs. These areas are

extended to include the design of fault-tolerant systems in (Stefatos and Arslan, 2004b) and

(Hounsell and Arslan, 2001). EAs and GAs in particular are also involved in the field of fault

tolerance. GAs have been adopted to develop fault tolerant mechanisms by combining them

with reconfigurable hardware devices. This combination leads to the concept of the

evolvable hardware (EHW). For studies on EHW refer to (Thomson and Arslan, 2002; 2003;

2005; Stefatos, Arslan, and Hamilton, 2008).

Hounsell and Arslan (2001) presented a fault-tolerant system based on the EHW platform

for the automated design and the adaptation of multiplierless digital filters. Filters were

achieved using a dedicated programmable logic array (PLA). Three PLA initialization

methods were investigated to identify the best fault recovery time. Results showed the ability

of PLA to maintain the system’s functionality despite an increasing number of faults

reaching to 25% of the PLA area.

 Stefatos and Arslan (2004b) further enhanced the GPS architecture to include a fault

tolerant technique. This novel architecture consisted of two layers. The first layer related to

the application while the second monitored the performance of the first layer and

reconfigured its computational elements when appropriate. The class of faults considered in

the study was Single Event Upsets (SEUs), which primarily originate from radiation effects

(more details about SEUs are provided in Section 2.3). Results showed the capability of the

first layer to tackle faults up to 40% of the PEs, while the second layer tackled up to 30% of

faults.

2.2.5 3D-cGAs: Pseudo-code and Specification

This section emphasises the implementation of a cGA on three-dimensional (3D) toroidal

grid. Previous studies focused on implementing cGAs on one-dimensional (1D), or most

commonly, two-dimensional (2D) toroidal grids. Consequently, there is a lack of studies

related to higher cellular dimensions. The research in this thesis is based on three-

dimensional cGAs (3D-cGAs). Higher cellular dimensions show promising benefits at both

hardware and software levels.

The previous discussion emphasised the importance of grid topology in determining the

performance of the algorithm. In this research, a 3D cubic topology is utilised. A cubic

topology allows good solutions to spread quickly to all PEs due to its shorter diameter

(Cantu-Paz, 1995), as well as diverse degrees of exploration and exploitation.

 38

In past works (Breukelarr and Back, 2005; Morales-Reyes et al., 2009), a 3D architecture

was utilised and investigated. The overall results showed improvements in the performance

of the algorithm when compared with smaller grid dimensions. A further reason for using the

3D topology is its amenability to be implemented with new advanced custom silicon chip

technologies to achieve added significant benefits, such as fast operation, reduction in power

consumption, new design possibilities, heterogeneous integration, circuit security, and wide

bandwidth (Das et al., 2003).

Algorithm 2.5 Pseudo-code for a canonical 3D-cGA

1. procedure cGA

2. Generate_initial_population (P(0));

3. Evaluation (P(0));

4. t � 0;

5. while ! stop_condition do

6. for i � 1 to ROWS do

7. for j �1 to COLUMNS do

8. for k �1 to LAYERS do

9. neighbours � Find_neighbours (position(i,j,k));

10. parent1� position(i,j,k);

11. parent2 �Local_selection (neighbours);

12. offspring � Recombine (Pc, parent1, parent2);

13. offspring � Mutate (Pm);

14. Evaluation �Fitness(offspring);

15. Replacement (position(i,j,k), offspring, Paux(t));

16. end for;

17. end for;

18. end for;

19. P(t+1) � Paux(t); // updating

20. t � t+1;

21. end while;

22. end procedure cGA;

The pseudo-code for the 3D-cGA is shown in Algorithm 2.5, in which similar steps to

other (lower or higher) cellular dimensions are followed. The steps are for finding the

 39

neighbours (line 9), selection of parents (lines 10 and 11), recombination of selected parents

(line 12), mutation of offspring (line 13), evaluation of offspring (line 14), and replacement

(line 15). In comparing Algorithm 2.4 (2D-cGA) with Algorithm 2.5, the only difference is

the addition of a third dimension (Line 8), which refers to the layers of the grid. An empirical

study along with a detailed discussion of 3D-cGA is provided in Chapter 3. The next

subsection empirically compares 3D-cGAs to panmictic GAs, while a comparison with 2D-

cGAs is provided in Chapter 3.

2.2.5.1 3D Cellular versus Panmictic GAs

An experimental study was carried out in order to demonstrate the behaviour and the

performance of the 3D-cGA with respect to panmictic algorithms (ssGA and genGA). The

test bench selected to evaluate the algorithms included the problems of Rastrigin, Schwefel,

Griewangk, Ackley, Michalewicz, Langermann, FMS, and SLE. The dimension of these

problems consists of 10 variables, except for FMS (details about the problems are provided

in Appendix A). The parameters used in all the experiments are summarised in Table 2.1.

The population consisted of 343 individuals. One hundred independent runs were performed,

allowing a maximum of 500 generations for each experimental case. The algorithms

terminated when the difference between the average fitness values (avgf) and the optimum

fitness value (optf) satisfied a specified threshold, or when the maximum number of

generations was reached. Different thresholds were assigned for each problem based on its

complexity. For all algorithms a non-uniform mutation and blended crossover operators were

applied to generate offspring.

Table 2.1. Experimental parameters used for 3D-cGA, ssGA, and genGA

Population size: 343 individuals

Parent selection:
Current individual + BT (for 3D-cGA)
BT + BT (for ssGA and genGA)

Recombination: BLX-α (α = 0.5), Pc = 0.9

Mutation: Non-uniform, Pm = 0.1

Replacement: Replace-if-better

Neighbourhood: NEWS

Lattice:
7×7×7 (for 3D-cGA)
1×343 (for ssGA and genGA)

Stop criterion: |avgf − optf| ≤ Threshold

 40

For the 3D-cGA, the population was arranged over a 7×7×7 toroidal lattice with a NEWS

neighbourhood containing the central individual plus those linearly positioned at one

distance step. The first parent was always the central one, while the second parent was

selected from the neighbourhood using BT selection. For panmictic GAs, the two parents

were selected from the whole population using BT selection. For genGA, the size of the

auxiliary population was equal to the size of the population (λ = µ).

The algorithm performance measured as convergence time, rate, and speed are reported in

Table 2.2, with the best values marked in bold (for more details about the performance

metrics refer to Section 2.2.3.1).

Overall, 3D-cGA outperformed the panmictic GAs in terms of convergence rate as it had

the best search success rates for 6 out of 8 problems (see Table 2.2), while it achieved the

second-best convergence times and speeds following the ssGA. For Rastrigin’s and Ackley’s

problems, all algorithms achieved almost similar efficacies. However, for more complex

problems such as Langermann and FMS, 3D-cGA achieved significantly higher hit rates than

Table 2.2. Comparing 3D cellular to panmictic GAs’ performances: Convergence time (CT),

rate (CR), and speed (SP)* for test and real-world problems

Algorithms/
Problem

ssGA genGA 3D-cGA

Rasf
128.11 ± 11.33

100%
14.23 ± 1.26

430.24 ± 00.0
99%

34.11 ± 0.98

323.77 ± 19.0
100%

49.81 ± 0.78

Schf
70.01 ± 7.18

100%
7.62 ± 0.65

408.80 ± 1.0
73%

31.96 ± 0.43

200.96 ± 16.0
100%

21.01 ± 1.61

Grief
72.45 ± 3.54

45%
7.29 ± 0.45

410.6 ± 1.0
100%

33.83 ± 0.70

290.51 ± 24.0
45%

30.91 ± 2.53

Ackf
77.66± 0.95

100%
7.20 ± 0.11

472.90 ± 00.0
100%

42.02 ± 0.49

221.62 ± 1.0
100%

25.39 ± 0.42

Micf
130.34 ± 13.9

98%
12.35 ± 1.47

−
0%

330.91 ± 17.0
37%

35.40 ± 1.68

Langf
61.15 ± 7.19

61%
6.96 ± 0.85

−
0%

201.06 ± 14.0
99%

25.61 ± 1.76

FMSf
50.28 ± 4.60

67%
6.68 ± 0.57

399.20 ± 2.0
5%

49.81 ± 0.78

207.83 ± 17.0
91%

33.08 ± 2.40

SLEf −
0%

413.00 ± 00.0
5%

34.37 ± 0.03

445.00 ± 6.00
5%

47.36 ± 0.75
* For more details about the performance measures, please refer to Section 2.2.3.1.

 41

panmictic GAs. The difference in efficiencies and speeds may correspond to the variation in

the achieved hit rates. For Schwefel and Griewangk, 3D-cGA and ssGA performed similarly

in terms of hit rate, while the latter significantly outperformed the former by obtaining a

lower number of generations reaching to 75%. The 3D-cGA showed its ability to solve all

the problems, while genGA failed to solve Michalewicz and Lanagermann problems and

ssGA failed to solve the SLE problem. However, the hit rate obtained for SLE was very low.

Section 2.2.4 provided a broad overview on the application of cGAs, particularly in the

field of the fault tolerance. The next subsection provides more detailed overview on the topic

of fault tolerance.

2.3 Fault Tolerance

The increasing use of electronic systems in critical areas such as space and medicine

increases the importance and needs for reliable systems to remain functioning with the

existence of failures. Systems operated in aggressive environments including space, ground,

and water or where human life depends on their accurate functioning have to be fault-

tolerant. Therefore, fault-tolerant systems can be defined as the ability of a system to operate

correctly in spite of hardware and/or software failures (Avizienis, 1971).

This thesis focuses on radiation-induced failures; such failures are known as Single Event

Effects (SEE). SEE errors occur when a system interact with high-energy particles at space

level or low-energy particles at ground level (Label, 1996; Gong et al., 2008). SEE are

classified into hard errors and soft errors (Mastipuram and Wee, 2004). Hard errors are

known as Single Event Latch-Ups (SELs), while soft errors are known as Single Events

Upsets (SEUs); this research explores the effect of SEU errors.

In the nineteen-seventies, SEUs (also known as transient errors) were discovered in space

(Normand, 1996). Systems operated in space are subjected to various anomalies including

plasma and radiation, among others. Such anomalies have effects on systems, which result in

different types of failures. Avionics (i.e., electronics in aircraft) SEU was first predicted in

the nineteen-eighties and later severely demonstrated to occur in flight in the nineteen-

nineties (Normand, 1996). Consequently, attention was paid to the radiation effects because

the radiation was the main contributor to failure (45%), with SEUs having the highest impact

of all possible radiation effects (80%) (Velazco et al., 2005). In addition, the considerable

reduction in the feature sizes of electronic circuits and increase in functional complexity and

sensitivity increases the possibility of transient errors occurring (Normand, 1996).

 42

Subsequently, radiation-induced SEUs have also been observed at ground level (Gong et al.,

2008. For these reasons, the demand for implementing efficient, reliable high-performance

systems that can quickly adapt to different failures is a crucial concern. This is usually

accomplished by a residual design that is resistant to, and tolerant of failures. To achieve

fault tolerance, two essential processes must be considered, they are: fault detection and fault

recovery (Greenwood, 2005; 2008). This section presents the major causes of system failures

considered in this research.

SEUs occur as single-bit (SBUs) or multiple-bit (MBUs) flip in memory or data registers

due to the passage of one or more energetic radiation particles (Mastipuram and Wee, 2004).

SEUs do not cause permanent damage to system functionality, and can be handled by fault-

tolerant techniques. There are various algorithms and approaches to fault tolerance are

introduced including hardware techniques, software techniques, or a combination of both (Su

and Spillman, 1977).

The most commonly used hardware technique to mitigate SEUs is Triple Modular

Redundancy (TMR) (Layons and Vanderkulk, 1962; Lala, 1985). However, TMR is very

area-extensive (general) and may not be able to cope with all the errors that occur. SEU

hardware fault-tolerant techniques can rapidly detect and recover faults; however, they incur

overhead, which increases the cost and complexity of the design. Further, in general,

hardware techniques cannot handle all types of random and multiple-bit errors caused by

potential transients (Pant and Joshi, 2007). These types of errors, specifically SEUs, cause

functional impacts (software faults), rather than physical impacts. Consequently, many error-

coding techniques have been proposed to solve the above-mentioned problems; however,

they are seldom implemented due to their complexity.

Nowadays, fault-tolerant techniques to mitigate SEUs are being intensely researched, not

only for aerospace applications, but also for terrestrial applications. Gong et al. (2008)

proposed a hardware approach for tolerance to SEEs where two new structures were

presented and compared with the traditional TMR. For a thorough discussion of SEEs, please

refer to (Label, 1996). Conversely, Singh et al. (2006) presented a software approach to SEU

tolerance that combined several techniques, such as checkpoint and TMR.

Pickle (1996) and Asenek et al. (1997) proposed a model to predict the rate of SEEs;

however, the latter emphasised the SEU errors at system level rather than at device level.

Asenek et al. analysed a telecommand system on a spacecraft; and found that around 50% of

the SEUs that occurred resulted in errors observed at the system level.

 43

In addition, several studies to explore the ability of cGAs to tackle SEUs have been

conducted. Research studies related to the ability of a normal cGA and a parallel cGA to deal

with SEUs that occur at fitness score registers were presented in (Morales-Reyes et al.,

2008a; 2009), while the ability of an adaptive cGA to handle SEU-targeted chromosomes

registers was explored in (Morales-Reyes et al., 2008b). In all the previous studies, EAs have

proved their capability and power to tackle SEUs, as well as in improving the performance

of the algorithm in terms of efficacy and efficiency.

Chapter 4 of this research deals with failures caused by SEUs when targeting individuals’

phenotypes, particularly when fitness scores are stuck at ‘one’ or ‘zero’. Although other

possible memory or data registers, such as chromosome and finite-state machine (FSM)

could be also targeted, this research focuses on fitness value registers due to the importance

of fitness information in guiding the search.

2.4 Chapter Summary

This chapter covered previous studies and research on GAs in general and cGAs in

particular. As mentioned previously, the focus of this thesis is on cGAs. As a result, more

attention is paid to studies relating to cGAs. A review of the literature has shown only

limited research on cellular dimensionality, in particular above two dimensions, although

previous studies have shown that a grid topology is a key that determines the performance of

GAs. Typical cGAs are implemented on 2D grid topology, while this thesis focuses on 3D

grid topology. Preliminary research on grid dimensionality that were carried out in joint

collaboration with another group member, showed promising results for higher grid

dimensions, particularly 3D, that can lead to better performance. Hence, the work in this

thesis is based on 3D cGAs.

Another area of interest is fault tolerance. Literature review showed major concerns by

researchers about the effect of SEE errors on systems functionality. As a result, hardware- or

software-based mitigating and fault tolerance techniques were intensely researched. Previous

research in this area showed that SEEs, and in particular SEUs, affect systems functionality.

However, studies on algorithm-based fault tolerant techniques are lacking. In addition,

previous studies that were carried out by other group members investigating the ability of

cGAs to tackle SEE errors show that cGA is capable of handling such errors. Therefore, this

thesis aims to develop algorithm-based fault tolerance and mitigation techniques to tackle

SEUs.

 44

Moreover, previous researches were intensely targeted with the vital issue of

exploration/exploitation trade-off, which also determines the effectiveness of GAs. These

researches suggest that for GAs to continue performing effectively when tackling real-world

problems, it should be adaptive. Previous researches proposed several techniques to

dynamically control the exploration/exploitation trade-off in an adaptive manner and

incurred lower computational costs. Consequently, this thesis also aims at developing

effortless adaptive cGAs that dynamically control exploration/exploitation trade-off.

 45

Chapter 3

3D Architectures

This chapter aims to investigate the behaviour and performance of cGAs when the cellular

dimensionality is increased to 3D. Two-dimensional topologies are commonly employed in

cGA investigations; however, this research employs 3D topology. In this chapter, a

comparison between cGAs implemented on 2D with those implemented on 3D grids will be

provided to show the advantages of increasing cellular dimensionality. The main reason for

increasing cellular dimensionality is its amenability to being implemented efficiently with

the new advanced custom silicon chip technology, in particular 3D integration technology

(Das, Chandrakasan, and Reif, 2003; Topol et al., 2006; Borkar, 2011).

Parallel EAs in general and cGAs in particular, offer a structure that establishes a

powerful connection between both software and hardware levels, while offering high

system’s performance. In a cGA, the population is distributed over an nD grid structure with

wraparound edges following a toroidal shape, such that each individual is assigned to a

grid’s position or a cell. This arrangement restricts the interactions between individuals

within their defined local neighbourhoods. In this study, the population is arranged in a 3D

toroidal grid. Therefore, the defined local neighbourhood consists of the central, the vertical

north and south, the horizontal north and south, and the east and west individuals or NEWS

(see Figure 3.1(b)).

cGAs offer numerous benefits over other GA models, in particular panmictic GAs. These

benefits can be summarised as follows. First, an ability to maintain a high diversity level for

much longer time in comparison with centralised models (Cantu-Paz, 2000). Second, an

ability to achieve not only better efficiency, but also higher efficacy in combination with the

accuracy of results.

 46

Reproduction between individuals occurs when one individual is selected from a small

neighbourhood composed of individuals located at a short distance and then mated with the

chromosome currently being evaluated. This procedure is repeated for each individual at

each grid position and in general all individuals can be updated either synchronously or

asynchronously. Thus, it is necessary to define the number of individuals belonging to the

local neighbourhood and within which radius or distance step would be contained. This also

establishes a relationship between the size of the population, the shape of the grid, and

size/shape of the local neighbourhood and the consequent effect in the search process.

In order to provide a thorough study of the behaviour of cGAs and model their

performance, the dimension of the cellular is increased from 2D to 3D; which is the main

objective of this study. Comparing 2D square and 3D cubic grid topologies while

maintaining similar processing and interaction constraints among individuals will offer a

wider overview of the effectiveness of cGAs as optimisation engines.

Breukelaar and Back (2005) did a study on evolving behaviour in multi-dimensional

cellular automata using a GA. In that study different parameters in terms of crossover rate,

mutation rate, number of iterations, tournament size, neighbourhood size, and cellular

dimension (1D, 2D, and 3D) were explored. Three different problemsthe majority,

checkerboard, and evolving bitmaps problemswere solved in order to explore the potential

of cellular automata. The overall results showed that with a multiple cellular dimension

topology, in particular 3D, GA achieved a lower number of iterations and fitter objective

values. However, there is a considerable difference between the number of individuals

defined for 2D and 3D cellular automata. The conclusion drawn suggested that GA be used

with multi-dimensional cellular automata as this combination shows great potential for

effectively solving real-world problems.

A preliminary study that investigated and compared 2D and 3D cGAs was carried out in

collaboration with another group member in SLIg (Morales-Reyes et al., 2009). In that

study, various population sizes and local neighbourhood radii were explored while

maintaining similar population sizes for both grid dimensions. Four test functions with two

each having similar characteristics were solved in order to investigate the effectiveness of

increasing cellular dimensionality. The test functions used were Rastrigin, Schwefel, Ackley,

and Griewangk (test function details are provided in Appendix A). Simulation results

showed that 3D-cGA is more efficient than 2D-cGA in terms of convergence time,

particularly when solving harder problems (i.e., Ackley and Griewangk). With regard to

search success rate, both cellular structures achieved similar hit rates, however 3D-cGA had

 47

a higher search success rate than 2D-cGA when a smaller local neighbourhood distance was

applied.

This chapter extends this previous study in order to further investigate the performance of

cGAs and obtain a wider overview. Like the prior study, different population sizes and local

neighbourhood distances were explored while maintaining similar population sizes for 2D

and 3D structures. However, a benchmark of six test functions and two real world problems

were selected to offer diverse characteristics. In addition, a higher problem dimension was

selected. The problems chosen were Rastrigin (fRas), Schwefel (fSch), Griewangk (fGrie),

Ackley (fAck), Michalewicz (fMic), Langermann (fLang), FMS (fFMS), and SLE (fSLE) (details are

provided in Appendix A).

This research aimed to explore the benefits of 3D structures on cGAs at software

(algorithmic) level and combine them with the benefits of the recently developed 3D

integration technology. Recent advances in this area have presented optimistic results at the

hardware level; therefore, combining the algorithmic approach of implementing 3D-cGAs as

optimisation engines, in order to solve hard real time problems, would bring together the

advantages that 3D integration technology has provided. Although 3D integration technology

is not yet widely commercial, it is considered to be the future of coarse- and fine-grained

reconfigurable architectures (Yarema, 2006; Xie and Ma, 2008). Moreover, 3D integration

technology offers the following benefits: reduction of the routing length, decrease in

interconnection delays, which affects not only the size of a fabric but also the performance of

a device. In addition, a significant improvement in terms of logic and memory density has

been reported. With respect to logic density, for fine-grained devices, it has been determined

that %90%80 − of their area is used for reconfigurable interconnections. Using 3D

integration technology this ratio is reduced to %60%25 − (Rahman and Das, 2003).

(a) (b)

Figure 3.1. (a) 2D square and (b) 3D cubic toroidal topologies when implemented in a cGA. A

possible Von Neumann neighbourhood is marked in dark blue.

 48

Future adaptive systems should offer characteristics such as fast adaptation, autonomous

behaviour and fault tolerance. cGAs have been shown to be adaptive as well as fault tolerant

for specific applications (Stefatos and Arslan, 2004; Morales-Reyes et al., 2008). 3D cellular

architectures will offer the added advantage of speed and package density. This study

explores several 3D-cGA architectures and compares these to their 2D counterparts.

Afterwards, a brief analysis of communication and computational complexities for both

topologies is provided. In the next section the various cGA configurations for 2D and 3D

topologies are provided.

3.1 Algorithm Configuration

cGAs are frequently implemented on 1D or 2D grid topologies. This study targets 3D grid

topology as, with the recent advance in custom silicon chip technology, it can now be

implemented efficiently. Moreover, this study compares the performance of cGAs when

implemented on 2D and 3D grid topologies. A number of cGA configurations are defined in

order to thoroughly investigate the effectiveness and compare fairly the performance of both

topologies. Figure 3.1(a) and (b) illustrate a square grid shape in 2D and a cubic grid shape

in 3D, respectively.

Several population sizes are defined for both grid dimensions. For 2D grids, the

population is arranged as 5×5, 8×8, 11×11, 15×15, and 19×19, leading to a total of 25, 64,

121, 225, and 361 individuals, respectively. Conversely, for 3D grids the population is

arranged as 3×3×3, 4×4×4, 5×5×5, 6×6×6, and 7×7×7, leading to a total of 27, 64, 125, 216,

and 343 individuals, respectively. These sizes were selected to produce almost equal

population sizes for both grid dimensions.

Although the neighbourhood topology considered is linear for both grids, the size of the

neighbourhood differs based on the dimensions of the grid. Two different neighbourhood

radii for both grid dimensions are defined. Considering one step distance from the central

cell results in 4 neighbours, positioned to the north, east, west, and south, with a radius of

0.89 for the 2D grid; while it results in six neighbours, positioned to horizontal north and

south, vertical north and south, east, and west, with a radius of 0.925 for the 3D grid.

Experiments were carried out to show the effect of grid dimensions and neighbourhood

size on NGR and growth rate of the best individual. Figure 3.2 shows NGR considering two

different radii and grid dimensions. Smaller neighbourhood size leads to smaller NGR than

larger ones, which in turn decreases as the population size increases. Low NGR implies

 49

weak global selection intensity and therefore promotes more exploration (Sarma and De

Jong, 1996; Alba and Troya, 2000, Alba and Dorronsoro, 2008). As shown in Figure 3.2,

0 50 100 150 200 250 300 350 400
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Population size

N
ei

gh
bo

ur
ho

od
 t

o
gr

id
 r

at
io

 (
N

G
R

)

r=1, 3D
r=3, 3D
r=1, 2D
r=3, 2D

Figure 3.2. 2D/3D neighbourhood to grid ratio (NGR) versus population size.

0 5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Generations

P
ro

po
rt

io
n

of
 t

he
 b

es
t

in
di

vi
du

al

r=1, 3D

r=3, 3D
r=1, 2D

r=3, 2D

Figure 3.3. 2D/3D growth curves of the best individual.

 50

NGR is not evaluated for a population size of 5× 5 (2D) individuals with three distance steps

due to the low grid dimensions. Advancing three distance steps from an individual would

result in an increase in its selection probability. Similarly, NGR is not computed for

population sizes less than 5× 5× 5 (3D) individuals.

Figure 3.3 shows the growth curves of the best individual for population sizes 19×19 (2D)

and 7× 7× 7 (3D) considering one and three distance steps. As the curves imply, 2D-cGA

with one distance step has the slowest growth rate, while 3D-cGA with three distance steps

has the fastest growth rate. 2D-cGA with three distance steps (NGR = 0.2679) produces

an almost similar growth curve to the 3D-cGA with one distance step (NGR = 0.2673) due to

similar NGR (Sarma and De Jong, 1996).

The pseudocodes of the canonical 2D-cGA and 3D-cGA were presented in Chapter 2,

Section 2.3.4. The parameters used in the experiments and the experimental results are

presented in the following section.

3.2 Experimental Results and Analysis

In order to achieve fair comparison, similar parameters were used during the experiments.

Table 3.1 summarises these parameters.

Table 3.1. Parameterization used in the experiments

Population size
25, 64, 121, and 361 individuals (for 2D)
27, 64, 125, 216 and 343 individuals (for 3D)

Parent selection Current individual + Binary Tournament

Recombination BLX−α (α = 0.5), Pc = 0.9
Mutation Non-uniform, Pm = 0.1

Replacement Replace-if-better

Neighbourhood
L5 and L9 (for 2D-cGA)
L7 and L13 (for 3D-cGA)

Lattice
5×5, 8×8, 11×11, 15×15, and 19× 19 (for 2D-cGA)
3×3×3, 4×4×4, 5×5×5, 6×6×6, and 7×7×7 (for 3D-cGA)

Stop criterion Thresholdoptfavgf ≤− ||

The first parent was the current individual while the second parent was selected by using

binary tournament selection. A blend crossover operator (BLX-α) with probability Pc = 0.9

was applied to generate an offspring (Herrera and Lozano, 2000; Dorronsoro and Alba,

2006). The offspring was then mutated by applying a non- uniform mutation operator, with

 51

0 50 100 150 200 250 300 350 400
300

350

400

450

500

550

600

650

700

Population size

M
ea

n
nu

m
be

r
of

 g
en

er
at

io
ns

2D- radius 1

3D- radius 1

2D- radius 3

3D- radius 3

Figure 3.4. Average number of generations for Rasf .

probability Pm = 0.1. The replacement policy defined here is replace-if-better, during which

the current individual is replaced if its competitor (offspring) is fitter. Finally, the algorithm

terminates if the difference between the average fitness values (avgf) and the optimum

fitness value (optf) satisfies the defined threshold. Because of the different characteristics,

different thresholds were defined for each problem. Similarly, the maximum number of

generations assigned was 1000 generations for fRas, fMic, fLang, and fSLE, while a number of

1500 generations was assigned for fSch, fGrie, fAck, and fFMS. The dimension of the considered

problems was n = 10, except for fFMS as the dimension was n = 6.

The shape of the local neighbourhood follows a linear topology with distance steps r = 1

and r =3 leading to a total of 5 (2D) / 7 (3D) and 9 (2D) / 13 (3D) individuals, respectively.

The radii of the neighbourhood were 0.8944/ 2.0755 and 0.9258/ 2.1026 for 2D and 3D,

respectively. These radii were selected to be almost similar for both topologies considering

the same distance steps. The slight differences between the radii is due to a grid connection

which assigned six neighbours in the 3D grid instead of four neighbours in the 2D grid

considering one distance step (Breukelaar and Back, 2005).

The performance of the algorithms was measured using two metrics−the average number

 52

0 50 100 150 200 250 300 350 400
180

200

220

240

260

280

300

320

Population size

M
ea

n
nu

m
be

r
of

 g
en

er
at

io
ns

2D- radius 1

3D- radius 1
2D- radius 3

3D- radius 3

Figure 3.5. Average number of generations for Schf .

of generations or efficiency and the search success rate in combination with results accuracy

or efficacy of 100 independent runs. Figures 3.4 to 3.10 illustrate the results obtained.

Figure 3.4 shows the average number of generations obtained while solving fRas. The

results obtained show that 3D-cGA achieved a lower number of generations for population

sizes greater than 64 individuals for r = 1. On the other hand, both algorithms (2D and 3D

cGAs) obtained almost similar number of generations for r = 3. With regard to search

success rate, all configurations achieved the best hit rate (100%), except for 2D-cGA with

5×5 individuals, which had a hit rate of 96%.

In Figure 3.5 the average number of generations obtained when solving fSch is illustrated.

Significantly lower number of generations was achieved by 3D-cGA for the different

configurations, in particular for r = 1. With regard to the search success rate, all the

configurations compared achieved similar hit rates (99%−100%), except for those with small

population sizes (5×5and 3×3×3 individuals) as there is a slight difference between the

obtained hit rates (79% and 84%, respectively). Slight differences between the results

obtained correspond to the slight differences between the population sizes of 2D and 3D

lattices. Another reason is the difference in the local selection intensity, which was affected

by the size of the neighbourhood, leading to a different exploration/exploitation trade-off.

 53

0 50 100 150 200 250 300 350 400
200

250

300

350

Population size

M
ea

n
nu

m
be

r
of

 g
en

er
at

io
ns

2D- radius 1
3D- radius 1
2D- radius 3

3D- radius 3

Figure 3.6. Average number of generations for Ackf .

Figure 3.6 shows the average number of generations obtained while solving fAck. With

respect to mean number of generations, a similar profile as that for the previous problem

(fSch) was obtained. On the other hand, the best hit rate (100%) was obtained by all cGA

configurations.

The average number of generations and search success rate obtained while solving fMic is

shown in Figure 3.7(a) and (b), respectively. As can be seen in Figure 3.7(a), in contrast to

the previous problems, the mean number of generations obtained increased as the population

size increased due to the problem characteristics. fMic differed from the previous problems as

it is not symmetric, which further complicates the search. In general, 3D-cGA significantly

outperformed 2D-cGA. A significant difference between the mean numbers of generations

was obtained for r = 1, especially for large population sizes; this improvement decreases for

r = 3. In general, considering the search success rate (see Figure 3.7(b)), 2D-cGA achieved

higher hit rates than 3D-cGA; however, the differences between the hit rates obtained by

both algorithms were not significant.

 54

0 50 100 150 200 250 300 350 400
400

420

440

460

480

500

520

540

560

580

Population size

M
ea

n
nu

m
be

r
of

 g
en

er
at

io
ns

2D- radius 1

3D- radius 1
2D- radius 3

3D- radius 3

(a)

0 50 100 150 200 250 300 350 400
10

20

30

40

50

60

70

80

90

Population size

S
ea

rc
h

su
cc

es
s

ra
te

 (
%

)

2D- radius 1

3D- radius 1
2D- radius 3

3D- radius 3

(b)

Figure 3.7. (a) Average number of generations and (b) search success rate for Micf .

 55

0 50 100 150 200 250 300 350 400
180

200

220

240

260

280

300

320

340

360

380

Population size

M
ea

n
nu

m
be

r
of

 g
en

er
at

io
ns

2D- radius 1

3D- radius 3
2D- radius 3

3D- radius 3

(a)

0 50 100 150 200 250 300 350 400
0

10

20

30

40

50

60

70

80

90

100

Population size

S
ea

rc
h

su
cc

es
s

ra
te

 (
%

)

2D- radius 1

2D- radius 2
2D- radius 3

3D- radius 3

(b)

Figure 3.8. (a) Average number of generations and (b) search success rate for Langf .

For fLang, 3D-cGA achieved a significantly lower average number of generations than 2D-

cGA, especially for r = 1 (see Figure 3.8(a)). However, both algorithms achieved almost

similar search success rates (see Figure 3.8(b)).

 56

0 50 100 150 200 250 300 350 400
250

300

350

400

450

500

550

600

650

Population size

M
ea

n
nu

m
be

r
of

 g
en

er
at

io
ns

2D- radius 1

3D- radius 1
2D- radius 3

3D- radius 3

(a)

0 50 100 150 200 250 300 350 400
0

10

20

30

40

50

60

Population size

S
ea

rc
h

su
cc

es
s

ra
te

 (
%

)

2D- radius 1

3D- radius 1
2D- radius 3

3D- radius 3

(b)

Figure 3.9. (a) Average number of generations and (b) search success rate for Grief .

With respect to the average number of generations, a similar profile as that for the

previous problem was obtained while solving fGrie (see Figure 3.9(a)). As can be seen in

Figure 3.9(b), 3D-cGA achieved higher search success rates than 2D-cGA with similar

distance steps for all the considered population sizes. In addition, it can be seen that the hit

 57

0 50 100 150 200 250 300 350 400
150

200

250

300

350

400

450

500

550

600

650

Population size

M
ea

n
nu

m
be

r
of

 g
en

er
at

io
ns

2D- radius 1

3D- radius 1
2D- radius 3

3D- radius 3

(a)

0 50 100 150 200 250 300 350 400
20

30

40

50

60

70

80

90

100

Population size

S
ea

rc
h

su
cc

es
s

ra
te

 (
%

)

2D- radius 1

3D- radius 1
2D- radius 3

3D- radius 3

(b)

Figure 3.10. (a) Average number of generations and (b) search success rate for FMSf .

rates obtained by 3D-cGA for r = 1 were almost similar to those obtained by 2D-cGA for

r = 3 as both algorithm configurations had similar selection pressure (refer to Figure 3.3).

Figure 3.10(a) and (b) show the average number of generations and search success rate

obtained when solving fFMS, respectively. In general, for the average number of generations,

 58

3D-cGA outperformed 2D-cGA; while for the hit rate, 2D-cGA outperformed 3D-cGA.

However, the differences were not significant.

The results obtained while solving fSLE are omitted as both algorithms either failed or

showed undesirable performance (very low search success rate). For the complete results

including those omitted, take a look at Appendix B, Table B.1.

Overall, 3D-cGA significantly surpassed 2D-cGA in terms of algorithm efficiency as a

lower average number of generations was achieved for all the problems considered.

Regarding the efficacy of the algorithm, both algorithms achieved either equal (when solving

less complex problems such as fRas, fSch, and fAck) or slightly different search success rates

(when solving more complex problems such as fMic, fLang, fGrie, and fFMS). As mentioned

previously, for similar distance steps, the 3D topology offers a bigger (denser)

neighbourhood than the 2D topology due to the vertical expansion of the cells. For example,

employing a liner neighbourhood topology with one distance step, the 2D grid results in 4

neighbours, while 6 neighbours are resulted for the 3D grid. In addition, the vertical

expansion of the cells in a 3D grid allows shorter diameter compared to that of a 2D grid,

which allows faster spreading of solutions. Therefore, the selection intensity of 3D-cGA is

stronger than that of 2D-cGA, leading to a lower convergence time (i.e., the number of

generations).

3.3 Analysis of Complexity for 2D and 3D Topologi es

In a cGA, the topology of the grid defines the communication network that the individuals

spread throughout the population over it. Different topologies induce different computational

and communication complexities. The following paragraphs provide a brief analysis that

aims to highlight the difference in the computational and communication complexities

between the topologies under investigation (i.e., 2D and 3D grids with wraparound edges).

The analysis is carried out at the level of GA basic steps, they are: evaluation, selection, and

genetic operation (recombination and mutation). Before proceeding, it is important to make

the following assumptions. First, for both grid topologies, the neighbourhood topology is

assumed to be Linear with one distance step. Second, the local selection method is assumed

to be tournament selection (the most appropriate mechanism for parallel implementation (De

Jong and Sarma, 1995; Eklund, 2003)).

 59

Evaluation

As the fitness evaluation of an individual is independent from other individuals, there is

no communication required regardless of the grid topology used. Hence, there is no

difference in communication complexities between 2D and 3D grids. On the other hand, the

computational effort needed to evaluate an individual depends on the complexity of an

individual (e.g., simpler and smaller individual requires fewer calculations than complex and

lengthy ones) (Eklund, 2003). At the individual level, there is no difference between the

computational efforts for 2D and 3D grids of similar population sizes. At the neighbourhood

level, the amount of computation needed is more for 3D as the neighbourhood in a 3D grid

consists of more individuals (in this case, 6 neighbours for 3D vs. 4 neighbours for 2D).

However, the latter difference is not considered as the fitness computation of an individual is

isolated from the others.

Selection

There are various selection mechanisms introduced, each requires different

communication and computational complexities. This analysis focuses on one of the most

common methods, which is tournament selection. Unlike other mechanisms, tournament

selection does not depend on fitness proportionate or rank (i.e., no need for the gather-

broadcast operations) as it randomly selects two or more individuals. However, this method

needs access to the all individuals in a neighbourhood. As a consequence, 3D topology

requires more (∼0.66×) communications than 2D topology. Conversely, the computational

effort needed by 3D grid are similar to those of the 2D grid as the complexity of a single

tournament depend on the tournament size k (Commonly, k = 2). In other words, the time or

computational complexity of tournament selection is O(k), where k is the tournament size

(Goldberg and Deb, 1991).

Genetic operations

With mutation, there is no communication needed as the mutation works over a single

individual in isolation of the others. The computational complexity of mutation depends on

the individual representation and the mutation technique used. In all cases, the mutation

requires marginal computational effort and no communications (Eklund, 2004). Therefore,

both grids (i.e., 2D and 3D) offer similar complexities of mutation. On contrary, crossover

requires communication with limited amount as it recombines two individuals. For 3D

topology more communications (∼0.66×) is required than with 2D grid due to the need of

 60

access to all individuals in a neighbourhood, which is bigger for the 3D case. On the other

hand, similar amount of computations is needed for both topologies as the computational

complexity of crossover depends on the individual representation and the crossover

technique used.

Overall, in cGAs, the computational and communication complexities vary according to

several parameters such as: grid topology, neighbourhood topology and size, genetic

operations techniques, population size, among others. Comparing the complexities of 2D and

3D grids while other parameters remain similar has showed more communications needed

for the 3D grid than 2D grid that reached to ∼0.66×. Mainly, the difference in

communications is due to the difference in the neighbourhood density; 3D grid offers a

denser neighbourhood leading to more communications needed. With regard to the

computational effort, both grids may require similar computational complexities. However a

difference in computational complexities between both grids may encounter based on the

selection and genetic operations employed, particularly those that need access to all the

individuals in a neighbourhood (e.g., fitness proportionate selection).

3.4 Conclusion

This study aimed to compare and analyse the performance of cGAs when two different grid

dimensions are employed, in particular 2D and 3D topologies. In order to thoroughly

investigate the algorithm performance, a benchmark of problems with diverse characteristics

and complexities was selected. Simulation results show that 3D-cGA is more efficient in

terms of convergence time than 2D-cGA for all the considered problems. With respect to the

search success rate, both algorithms achieved similar efficacy. In the 3D structure, the

interconnection between the cells leads to vertical expansion rather than the horizontal

expansion of the 2D structure. As a result, the 3D structure provides a larger neighbourhood

size than the 2D structure for similar distance steps (Breukelaar and Back, 2005). Although a

bigger neighbourhood size leads to more exploitative behaviour for the algorithm, the

balance between exploitation and exploration was maintained by selecting an appropriate

neighbourhood radius with respect to the grid topology (Alba and Troya, 2000). Thus, the

control of the selection intensity through the size of the neighbourhood would lead to the

attainment of a higher search success rate and lower convergence time.

 61

If the benefits of the performance results obtained are combined with the benefits that 3D

technology offers, the resulting architecture would offer significant advantages in terms of

reduction in routing length and interconnection delay, as well as an increase in logic and

memory density. Accordingly, it is possible to improve the performance of the current

optimisation engines at software and hardware levels to fit the requirements of the future.

3.5 Summary and Contribution to Knowledge

In this chapter the first and most basic step towards increasing the cellular dimensionality of

GAs was established. The aim was to investigate the performance of cGAs when

implemented on 3D topology. A comparative study of 2D-cGA and 3D-cGA was conducted

for similar parameters. However, with 3D topology, a higher selection intensity was

achieved due to the vertical expansion of cells that leads to a larger neighbourhood size. 3D-

cGA achieved significantly better performance results than 2D-cGA, especially in terms of

convergence time. Further benefits and investigations of the performance of cGAs when

implemented on 3D topology will be provided in subsequent chapters. The following points

summarise what this study has contributed to knowledge.

• Increasing the dimension of cellular structure improves the performance of cGAs,

mainly the convergence time, while maintaining high accuracy and search

success rates. As a consequence, multi-dimensional evolutionary algorithm

models such as 3D-cGAs can empirically offer robust and effective optimisation

engines to tackle hard, real-time problems.

• cGAs with higher cellular dimensions, specifically 3D, achieves significantly less

convergence time than their corresponding 2D algorithms when solving

multimodal problems with diverse characteristics and complexities such as the

considered problems. However, these improvements vary as each problem

presents different difficulty for the search.

• cGAs with different cellular dimensions, particularly 2D and 3D, achieve similar

efficacy as both algorithms achieved similar search success rates. However, 2D-

cGA and 3D-cGA present different exploration/exploitation trade-off due to the

way the cells are connected.

 62

• 3D topology consists of multiple 2D layers stacked on top of each other, which

results in vertical rather than horizontal expansion. Therefore, 3D topology has a

shorter diameter and a denser local neighbourhood than the corresponding 2D

topology; which leads to fast spread of good individuals. As a result, cGAs with

3D topology achieves less convergence time than 2D-cGAs.

• Although 3D-cGA shows more exploitative behaviour due to the stronger global

selection pressure, it displays a more appropriate balance between exploring the

search space and exploiting good solutions than 2D-cGA with similar distance

steps r.

• 3D-cGA with r = 1 showed a similar NGR and growth rate for the best individual

as 2D-cGA with r = 3. Consequently, a similar selection pressure could be

obtained through the control of the size of the local neighbourhood.

 63

Chapter 4

Fault Tolerant 3D-cGA

This chapter presents new cGA algorithmic approaches that introduce the essential feature of

fault tolerance to real time systems based on cGA platforms. Electronic circuits in aggressive

environments, such as space, are subjected to various anomalies, including plasma and

radiation, among others (Velazco et al., 2005). Such anomalies have effects on systems,

which result in various types of failures. In this study, radiation effects are taken into

consideration as radiation is the main contributor to failure. In particular, Single Event

Upsets are considered because they have the highest impact of all possible radiation effects

(Velazco et al., 2005; Gong et al., 2008). Radiation-induced SEUs have also been observed

at ground level due to the fact that the decrease in the feature sizes of electronic circuits leads

to increased functional complexity and sensitivity (Normand, 1996). Designing systems that

are highly reliable and efficient has become increasingly important not only for aerospace

applications but also for terrestrial ones. Therefore, designing new algorithmic models of

cGAs that maintain system reliability, even with a growing number of faulty Processing

Elements (PEs) is the main objective of this chapter. Another objective is to improve the

performance of the algorithm by mitigating the impact of the faults.

Ensuring the reliability and validity of systems requires two main operations. The first is

fault prevention which aims to avoid the occurrence of faults; and the second is fault

tolerance which aims to ensure the proper functionality of the system. In this work, only the

process of fault tolerance is considered, which in turn consists of the three complementary

stages fault detection, fault isolation, and fault recovery.

Previous studies on fault tolerance were carried out by previous members in the SLIg. An

evolutionary design based on evolvable hardware platform for the automated design and

adaptation of digital filters that adapted to faults was introduced by Hounsell and Arslan

 64

(2001). Subsequently, Stefatos and Arslan (2004) proposed a fault-tolerant VLSI architecture

based on PGA, which tackled SEU errors when targeting an individual’s phenotypes. The

fault model “Stuck at 0” was considered in that study. In a later study, Stefatos and Arslan

proposed a high performance adaptive VLSI architecture that achieved higher throughput

rates. This architecture was an improved version of their previous effort. Subsequently,

further investigations were carried out by Morales-Reyes et al. (2008a; 2008b; 2009) to

explore the ability of cGAs to tackle SEU errors by assuming that the faulty PEs were

isolated. Research studies about the ability of an ordinary cGA and a parallel cGA to deal

with SEUs that occurred at fitness score registers were presented in (Morales-Reyes et al.,

2008a; 2009), while the ability of an adaptive cGA to handle SEUs-targeted chromosomes

registers was explored in (Morales-Reyes et al., 2008b). In all previous studies, EAs proved

their capability and power to tackle SEUs, as well as in improving the performance of the

algorithm in terms of efficacy and efficiency. In this research, a new cGA algorithmic model

that automatically detects, isolates, and recovers SEU errors occurring at individual’s

phenotypes, as well as new migration schemes to mitigate the impact of faults are proposed.

This chapter consists of three main sections. In the first section, a three-stage 3D-cGA

approach that tolerates SEU faults is presented. In addition, an explicit adaptive migration

technique based on the first fault-free neighbourhood, which is integrated into the design, is

proposed in order to mitigate the impact of faults and to improve the performance of the

algorithm. The second section introduces two more migration schemes in order to further

improve the reliability and the performance of the algorithm. In the third and final section, an

improved dynamic 3D-cGA, which is tolerant to SEUs is introduced. This approach is

designed to dynamically adapt to fault ratios encountered and mainly aims to improve the

efficacy of the algorithm. As mentioned previously, the faults considered in this study are

target individuals’ phenotypes, particularly when fitness scores are stuck at either ‘1’ or ‘0’.

This study emphasises the phenotypic space due to the importance of the fitness information

in guiding the search process. The proposed algorithms are tested against a benchmark of

well-known real world and test problems to thoroughly investigate their effectiveness and

reliability.

4.1 Automatic Isolation of Faulty Cells

This section presents a fault-tolerant approach proposed for 3D-cGAs to overcome SEU

errors. The proposed approach detects, isolates, and recovers from errors encountered. The

 65

design exploits the inherent features of a cGA and uses genetic diversity as the key factor in

identifying and isolating faulty solutions. Further, an explicit migration operation is proposed

and integrated into the fault-tolerant approach as a mitigation technique. Several

configurations concerning the use of the migration operation and inducing different selection

intensities were considered. The effectiveness of the algorithm was investigated using a

benchmark of four test functions and two real-world problems, which presented different

levels of search difficulty. They are: Rastrigin (fRas), Ackley (fAck), Michalewicz (fMic),

Langermann (fLang), FMS (fFMS), and SLE (fSLE) problems (details of benchmark problems are

provided in Appendix A). The initial investigation was proposed and carried out in (Al-Naqi

et al., 2010a). In that study, only stuck at ‘0’ faults were considered. This section extends the

previous study to include other fault scenarios. Section 4.1.1 specifies fault scenarios and

design, while the pseudocode and the description of the algorithm are presented in Section

4.1.2. Section 4.1.3 illustrates and analyses the results obtained. Finally, Section 4.1.4 draws

conclusions.

4.1.1 Faults Design

The proposed algorithm deals with SEU errors, specifically when targeting fitness score

registers. SEUs occur as one or more bits in the fitness score registers flip, in a way that keep

their fitness values stuck at either a very high value ‘1’ or a very low value ‘0’. From an

algorithmic perspective, with stuck at ‘0’ faults, the local selection method selects faulty

individuals as they are considered to be the fittest (i.e., individuals with very low fitness

values are the fittest for the considered problem and have to be minimised; otherwise the

fittest individuals are those having a very high fitness value), and spreads the poor solutions

they provide over all the population, which results in system failure. Therefore, stuck at ‘0’

faults is considered to be the worst fault scenario. Another critical fault scenario is when

some individuals’ fitness scores are stuck at ‘1’. In this case, locally, the selection method

disregards those individuals and does not spread the solutions they provide, which results in

a major increase in convergence time, as well as a reduction in the accuracy of the solutions.

In this study, the fitness values are normalised between 0 and 1 for all the problems in

order to offer equal weights. Hence, the minimum and maximum fitness values are 0 and 1,

respectively. The faults are induced by a random selection of individuals asserting their

fitness values to ‘1’ or ‘0’ according to the fault scenario to be evaluated. For each fault

scenario and rate, the same fault pattern is maintained over all 100 independent runs to

 66

obtain an average, and for all the problems to achieve fair comparison. The rates of fault

considered represent 10%, 20%, 30%, and 40% of the total population size.

 Algorithm 4.1 Pseudo-code for Fault-Tolerant 3D-cGA
1: procedure FT 3D-cGA

2: Generate_initial_population(Pt=0);

3: Evaluation(Pt=0);

4: for g � 1 to gen1 do //First stage

5: for i � 1 to ROWS do

6: for j �1 to COLUMNS do

7: for k �1 to LAYERS do

8: neighbours � Find_neighbours(position(i,j,k));

9: parent1� position(i,j,k);

10: parent2 �Local_selection (neigbours);

11: offspring � Crossover (Pc, parent1, parent2);

12: offspring � Mutate(Pm);

13: Evaluation �Fitness(offspring);

14: Replace-if-Better (position(i,j,k), offspring ,Paux);

15: if g>1 && g ≤ gen1 then

16: Diversity� Genotypic_diversity(Paux, Ptemp); end if;

17: end for;

18: end for;

19: end for;

20: Ptemp � Paux;

21: end for;

22: Cond1 � Compute_differences(Diversity); //Isolation stage

23: Cond2 � Count_changes(Diversity);

24: Isolation_list � Diversity(Cond1, Cond2);

25: while !stop_condition do //Third stage

26: for i � 1 to ROWS do

27: for j �1 to COLUMNS do

28: for k �1 to LAYERS do

29: neighbours � Find_neighbours(position(i,j,k));

30: parent1� position(i,j,k);

31: parent2 �Local_selection (neighbours);

32: Migration(Isolated_list, neighbours);

33: offspring � Crossover(Pc, parent1, parent2);

34: offspring � Mutate(Pm);

35: Evaluation �Fitness(offspring);

36: Replace-if-Better(position(i,j,k), offspring, Paux);

37: end for;

38: end for;

39: end for;

40: Pt � Paux; // updating

41: end while;

42: end procedure FT 3D-cGA;

 67

Start

3D-cGA

Stop
condition?

Computing
genetic diversity

Faulty?

Update isolation
list

Last
cell?

3D-cGA

Stop
condition?

End

No

Yes

No

Yes

No

Yes

Stage 1

Stage 3

Isolation

Start

3D-cGA

Stop
condition?

Computing
genetic diversity

Faulty?

Update isolation
list

Last
cell?

3D-cGA

Stop
condition?

End

No

Yes

No

Yes

No

Yes

Stage 1

Stage

Isolation
stage

Start

3D-cGA

Stop
condition?

Computing
genetic diversity

Faulty?

Update isolation
list

Last
cell?

3D-cGA

Stop
condition?

End

No

Yes

No

Yes

No

Yes

Stage 1

Stage 3

Isolation

Start

3D-cGA

Stop
condition?

Computing
genetic diversity

Faulty?

Update isolation
list

Last
cell?

3D-cGA

Stop
condition?

End

No

Yes

No

Yes

No

Yes

Stage 1

Stage

Isolation
stage

Figure 4.1. A high-level description of the Fault-Tolerant 3D-cGA showing the three stages.

4.1.2 Algorithm Description and Configuration

Algorithm 4.1 illustrates the pseudo-code for the fault tolerant 3D-cGA, which mainly

consists of three stages. The first stage aims at monitoring the change in the genotypic

diversities of each individual among successive generations by running a cGA for a very

short period (i.e., a low number of generations). Next, the isolation stage identifies and

isolates faulty individuals using feedback information from the first stage. Finally, in the

third stage, another cGA is run to solve the given problem while excluding the faulty (i.e.,

 68

isolated) individuals from the search process. In other words, the faulty individuals are not

allowed to be updated or communicate with other fault-free individuals when it is a part of

their neighbourhood.

As in canonical cGA (described in Section 2.3), the algorithm starts with a random

generation of population followed by fitness evaluation (lines 1−3). Then the first stage

begins (lines 4−21) and computes the genotypic diversities at an individual level rather than

at the population level. The number of replacements for each individual is counted as well.

This stage lasts for a few generations, gen1. Normally, the genetic diversity is expected to be

high in the first few generations. During this stage, a normal updating process is carried out.

It starts with an individual at a cell, identifying the neighbourhood of the current individual

(line 8), choosing a second parent from the neighbours of the current individual, as the first

one is the individual itself (lines 9 and 10). The genetic operators are applied to the selected

individuals (i.e., parents) in order to generate an offspring, and either the current individual

or the offspring is added to the auxiliary population following the defined replacement policy

(lines 11−14). The genotypic diversities between successive generations are then computed

for each individual (line 17). This process is repeated to update all cells. Before starting the

next generation, a copy of the current updated population is maintained (line 20) in order to

calculate the genotypic diversity.

The isolation stage starts by computing the differences in the individuals genotypic

diversities obtained in the first stage (line 22). In addition, during this stage, the number of

replacements for an individual throughout the first stage is assessed against the defined

condition (line 23). Finally, in accordance with the isolation criteria, which are discussed

later, faulty individuals are identified and a list of the isolated individuals is created (line 24).

Figure 4.1 shows a high level diagram of the fault tolerant 3D-cGA pseudo-code presented in

Algorithm 4.1.

The third stage starts following a similar updating process (lines 26−40) as in the first

stage, and lasts until the termination condition is satisfied (line 25). In addition, an explicit

migration operator could be applied (line 32) following the migration scheme presented

below.

The local selection method used in this work is stochastic tournament (ST) selection. As

mentioned in Section 2.3.1.2, two individuals are randomly selected and the best individual

is then selected with a probability of (1− r), while the worst one is assigned a probability of

r; where r ∈ [0 , 1]. If r is 0, ST functions as a binary tournament selection, in which the best

solution is always selected. This kind of selection offers a mean for controlling the selection

 69

pressure and thus the diversity, which deeply affects the algorithm performance. As r

increases, worse solutions are more likely to be maintained in the population; thus offering

more diversity and weaker selection pressure (Simoncini et al., 2007).

4.1.2.1 Genetic Diversity

The diversity of the population is one of the main issues in determining the performance of

the algorithm and is widely used to analyse EAs. Several studies used genetic diversity to

guide EAs (Ursem, 2002; Alba and Dorronsoro, 2005). In this study, a diversity measure

based on genotypic entropy (Ht) is used to identify the faulty individuals (Tomassini, 2005).

As the main concern is to identify the faulty individuals, the genetic diversity is computed

based on an individual’s entropy rather than at the population level. Hence, the genotypic

diversity can be defined as the average entropies of an individual in successive generations,

which in turn is equal to the average of the entropies of different genes. The entropy of the j th

gene is expressed as:

PPH j log⋅−= (4.1)

where P (represented in 4.2) is the probability that the value of the j th gene (xj ∈ [A , B]) of a

chromosome in generation t is different from that of the j th gene of the same chromosome in

generation t − 1. Aj and Bj are variable (gene) limits.

jj

jj

AB

txtx
P

−

−−
−=

)1()(
1 (4.2)

Therefore, the average entropies of an individual consisting of n genes can be given as:

∑
=

×=
n

j
jH

n
H

1

1
 (4.3)

Figure 4.2 illustrates the process of computing the genotypic diversity of an individual in

successive generations. For example, considering an individual of n genes, H1 is the average

entropies of the first gene in generations t−1 and t, and so forth. The genes entropies (i.e., H1,

…, Hn) are then averaged to compute the average entropy of an individual (H).

 70

Generation t-1 Generation t

H1

H
3

Hn

H2

Figure 4.2. Computation of the genotypic diversity of an individual in generation t and t−1; Hi is

the entropy of the i th gene.

4.1.2.2 Isolation Criteria

Due to the impact of the fault models considered on the functionality of a system, the

algorithm isolates the faulty individuals in order to mitigate their impact. That is to say, the

aim of the isolation is to prevent the faulty individuals from spreading their poor solutions.

On the other hand, good individuals are migrated in order to improve the performance of the

algorithm.

In this research, two isolation criteria are proposed, with each one handling one of the

fault models discussed above. Firstly, an individual is defined as faulty when its genotypic

diversities computed in the first stage are found to be almost constant, taking into account

that the first stage lasts for only the first few generations when an individual’s genotypic

diversity is expected to be fairly variable. Assuming a maximisation problem, this criterion

handles the case where the individual fitness scores are stuck at ‘1’. Secondly, an individual

can also be defined as faulty when the replacement rate of the individual considered during

the first stage is too high. This situation occurs when the fitness score of an individual is too

low (stuck at ‘0’). When minimising, the converse is applies

The above criteria are placed based on the following facts: the fittest individuals are

always winning and thus not being replaced when they compete with other individuals

following the defined replacement policy (replace-if-better). In this case, the genotypic

diversities of those individuals are maintained. Conversely, the weakest individuals are

always being replaced, leading to high frequency of changes.

 71

4.1.2.3 Migration Technique

As mentioned previously, cGAs offer an implicit mechanism for migration that is inherent in

their overlapping neighbourhoods; however, an explicit migration technique is defined in

this research. The main objective behind employing an explicit migration operator is to

mitigate the impact of the faults that occur. Another objective is to improve the performance

and the reliability of the algorithm.

The migration technique is introduced by defining the migration parameters. The

migration operator frequency is set to the highest (i.e., every generation) and is activated

only when there is at least one faulty individual within the current individual’s

neighbourhood. The number of migrants or migration rate is adapted, and is computed

whenever a migration is activated. This rate is equal to the number of faulty individuals,

which varies from 1 to no-of-neighbours. In this study the no-of-neighbours is 7 (the central,

vertical north and south, horizontal north and south, and the east and west individuals), as the

defined neighbourhood topology is linear with one distance step from the central individual.

The migration scheme is defined as follows. The individuals to be replaced are all those

who are faulty, and the individuals to be migrated (i.e., migrants) are chosen from the first

fault-free neighbourhood found to replace the corresponding faulty individuals (see Figure

4.3). In the worst-case scenario, if there is no fault-free neighbourhood (i.e., there is at least

one faulty individual within each possible neighbourhood), then a random neighbourhood is

selected by allowing the selection of faulty individuals.

In the following section the experimental parameters and algorithm configurations are

defined. In addition, the results obtained and their analyses are provided.

Figure 4.3. The replacement of two faulty PEs by the corresponding ones (migrants) from the first

fault-free neighbourhood found through migration.

 72

4.1.3 Experimental Results and Analysis

In this research, four algorithm configurations were defined. These configurations differed in

the use of the migration technique in combination with the selection rate r. In the first

configuration, a stochastic tournament selection with r = 0 was applied, while in the second

configuration, a stochastic tournament selection with r = 0.5 was applied in order to offer

equal chances for poor and good solutions to be involved. The migration operator was not

introduced in the preceding configurations. Hence, the first and second configurations are

represented by (ST, r = 0.0 + noMigration) and (ST, r = 0.5 + noMigration), respectively.

The third and fourth configurations are similar to the first and the second, respectively; with

the exception of introduction of the migration technique (ST, r = 0.0 + Migration; ST, r =

0.5 + Migration).

The same parameters were used for all the problems (see Table 4.1). The population size

used here was 343 individuals, which were arranged into a 7×7×7 lattice. The defined local

neighbourhood contained seven individualseast, west, vertical north and south, and

horizontal north and south individuals plus the central individual.

The first parent was the current individual while the second one was selected by

stochastic tournament with rate r. An arithmetic crossover operator (AX) with a probability

of Pc = 0.9 was applied to generate an offspring. The offspring was mutated by applying a

non-uniform mutation operator with a probability of Pm = 1/L, where L is the length of the

chromosome (the dimension of the problem). Although the dimension of the FMS problem is

6, the same mutation probability was used as with all the other problems. The replacement

policy used here was replace-if-better, during which the current individual was replaced if its

competitor (offspring) was better. The migration parameters used in the third and the fourth

configurations are described in Section 4.1.2.3. Finally, the algorithm terminated if the

average fitness value (f) of the population satisfied a threshold (≤ 0.00005). This threshold

was applied for all the problems, with the exception of the fSLE, where a less precise threshold

(≤ 0.0001) was used due to the problem’s complexity.

During the experiment, similar fault rates and patterns were injected for all the

configurations and problems. The performance of the algorithm was measured using two

metricsthe search success rate, which represents the efficacy; and the average number of

generations, which represents the efficiency of 100 independent runs. A different number of

maximum generations was assigned to each problem due to their different complexities. fLang

 73

was assigned 700 generations, whereas fRas, fMic, and fFMS were assigned 1000 generations.

Finally, fAck and fSLE were assigned 2000 generations.

The algorithm was assessed against stuck at ‘0’ and stuck at ‘1’ faults with up to 40%

faults. The results are presented in Tables 4.2, 4.3, 4.6, and 4.7, where the average number of

generations with the median absolute deviation is included after the symbol ‘±’ and the

search success rate are shown for every fault rate. For each fault rate, the best values

obtained among the four configurations are marked in bold.

Table 4.1. Parameters used in the algorithm
Population size: 343 individuals
Parent selection: Current individual + ST, Ps = r
Recombination: AX, Pc = 0.9
Mutation: Non-uniform, Pm = 1/L
Replacement: Replace-if-better
Neighbourhood: L7
Lattice: 7×7×7

Termination criterion: f ≤ 0.00005 (≤ 0.0001 for fSLE)

Additionally, the results obtained when there was no fault (0% faults) are shown in

Tables 4.2 and 4.3. For 0% faults, the results shown for the first and third algorithms

configurations were similar, while similar results were obtained for the second and fourth

algorithm configurations due to the inactive migration operator in the absence of faults. The

symbol ‘+’ in the Tables means that there exists statistical confidence in the results of the

compared algorithm configurations, while the symbol ‘•’ means there is no statistical

difference between the results obtained (for details about statistical tests refer to Section

2.2.3.1).

4.1.3.1 Stuck at ‘0’ Faults

As mentioned previously, stuck at ‘0’ is the most critical fault model as the problems

considered all need to be minimised; for the case of maximisation the converse applies.

Tables 4.2 and 4.3 show the results obtained for the test and the real-world problems,

respectively.

With regard to fRas, the best search success rate (100%) was achieved by the second and

the fourth configurations for which similar selection rates (r = 0.5) were applied with up to

30% faults (See Table 4.2). However, a major decline in the search success rate reached

almost 87% and 40% faults were observed. With regard to efficiency, the minimum average

generations were obtained by the third configuration (ST, r = 0.0 + Migration) with up to

 74

20% faults. On the other hand, the best efficiency was achieved by the second and fourth

configurations (these configurations achieved almost similar efficiency with a maximum

difference of 9 generations) with faults more than 20%. Even though fewer generations were

expected for ST, r = 0.0, a lower number of average generations were obtained for ST, r =

0.5, in particular the second configuration due to the impact of the faults. However, the

introduction of migration with ST, r = 0.0 (ST, r = 0.0 + Migration) significantly improved

the performance of the algorithm in terms of search success rates (≥ 13% with 20% and 30%

faults) and average generations (≤ 116 generations with 10%−30% faults) when compared to

the first configuration (ST, r = 0.0 + noMigration).

With regard to fAck, the third configuration (ST, r = 0.0 + Migration) achieved the highest

search success rate with up to 30% faults and the minimum average generations with up to

20% faults. With 40% faults, the algorithm failed to solve the problem due to the high fault

rate and higher problem complexity. Furthermore, from Table 4.2 it can be seen that there

are no statistical differences in the efficiency of the algorithm between the four

configurations.

The best efficacy (hit rate of 100%) was reached by all configurations with up to 10%

faults when solving fMic, while the highest search success rates were obtained by the third

configuration with up to 30% faults. Concerning the efficiency, the minimum average

generations were obtained by the third configuration with up to 30% faults. Hence the third

configuration (ST, r = 0.0 + Migration) significantly achieved the best performance of the

algorithm. Similar to fAck, the algorithm failed to solve the problem with 40% faults.

When solving fLang, the highest search success rates were obtained by the fourth

configuration (ST, r = 0.5 + Migration) with up to 30% faults; however, these hit rates

differed slightly (≤ 2%) from those obtained when no migration was introduced (ST, r = 0.5

+ noMigration). The best efficiency was reached by the third configuration (ST, r = 0.0 +

Migration) with up to 30% faults; an exception was with 20% faults. Considering 40%

faults, the algorithm is declined to solve the problem due to the high problem complexity and

high fault rate.

Solving fFMS the algorithm shows similar behaviour to that observed when solving the

previous problem (fLang), as these two problems have similar characteristics. For all fault

rates the best efficacies were achieved with ST, r = 0.5; minor difference not more than 3%

hit rate were observed with and without the use of migration. The best efficiencies were

achieved by the third configuration with up to 30% faults. Applying (ST, r = 0.5 +

noMigration; ST, r = 0.5 + Migration) configurations on fLang and fFMS, the algorithm shows a

 75

Table 4.2. Experimental Results: Convergence time (CT) and rate (CR)* for test problems
Problems/
% of faults

BT + no Migration
ST, r = 0.5 + no

Migration BT + Migration
ST, r = 0.5 +

Migration
Test

0% 355.71 ± 29.5 100% 453.78 ± 27.0 100% 355.71 ± 29.5 100% 453.78 ± 27.0 100% +

10% 539.41 ± 64.0 100% 522.73 ± 36.0 100% 423.42 ± 24.5 100% 523.23 ± 33.5 100% +

20% 784.95 ± 82.0 86% 616.01 ± 38.0 100% 598.87 ± 64.0 99% 624.78 ± 45.0 100% +

30% 887.10 ± 58.0 67% 709.61 ± 42.0 100% 728.83 ± 108 90% 700.67 ± 42.0 100% +

Rasf

40% − 0% 948.69 ± 25.0 13% 979.66 ± 3.00 3% 957.83 ± 14.5 12% •

0% 1840.1 ± 84.0 85% 1846.1 ± 78.0 58% 1840.1 ± 84.0 85% 1846.1 ± 78.0 58% •

10% 1896.2 ± 64.5 66% 1862.7 ± 48.0 47% 1860.2 ± 82.0 73% 1908.7 ± 43.5 50% •

20% 1927.7 ± 34.5 50% 1929.6 ± 35.0 23% 1872.5 ± 63.0 66% 1917.9 ± 31.5 28% •

30% 1950.5 ± 19.5 16% 1916.0 ± 29.0 21% 1924.5 ± 25.0 38% 1910.8 ± 21.5 12% •

Ackf

40% − 0% − 0% − 0% − 0% −

0% 534.48 ± 55.0 100% 711.79 ± 61.5 100% 534.48 ± 55.0 100% 711.79 ± 61.5 100% +

10% 683.77 ± 57.0 100% 769.67 ± 60.0 100% 607.22 ± 49.5 100% 774.21 ± 59.5 100% +

20% 858.51 ± 53.5 86% 842.76 ± 68.0 91% 764.95 ± 75.0 93% 859.45 ± 58.0 87% +

30% 936.49 ± 40.0 59% 929.11 ± 30.0 70% 850.27 ± 59.0 73% 921.57 ± 33.0 59% +

Micf

40% − 0% − 0% − 0% − 0% −

0% 270.45 ± 35.0 74% 359.28 ± 40.5 82% 270.45 ± 35.0 74% 359.28 ± 40.5 82% +

10% 391.20 ± 65.5 70% 397.44 ± 49.0 83% 341.00 ± 45.0 61% 409.29 ± 48.5 84% +

20% 492.05 ± 55.0 69% 448.85 ± 56.0 87% 458.10 ± 95.0 59% 465.03 ± 58.5 88% +

30% 567.55 ± 60.0 68% 522.74 ± 64.0 87% 503.64 ± 59.0 50% 513.02 ± 62.0 89% +

Langf

40% − 0% − 0% − 0% − 0% −

Table 4.3. Experimental Results: Convergence time (CT) and rate (CR)* for real-world
problems

Problems/
% of faults

BT+ no Migration
ST (r = 0.5)+ no

Migration BT+ Migration
ST (r = 0.5)+

Migration
Test

0% 326.12 ± 78.5 74% 399.54 ± 81.0 81% 326.12 ± 78.5 74% 399.54 ± 81.0 81% +

10% 410.77 ± 70.0 71% 475.38 ± 89.5 88% 360.04 ± 66.0 73% 445.44 ± 81.5 88% +

20% 579.21 ± 93.5 71% 527.45 ± 116.0 87% 449.16 ± 109.0 73% 518.75 ± 86.0 88% +

30% 722.92 ± 92.0 69% 610.43 ± 102.5 90% 545.70 ± 93.0 71% 607.47 ± 122.0 91% +

FMSf

40% 911.85 ± 67.0 7% 812.47 ± 135.0 65% 820.09 ± 113.0 52% 821.09 ± 102.5 62% •

0% 247.48 ± 28.0 41% 404.47 ± 64.0 63% 247.48 ± 28.0 41% 404.47 ± 64.0 63% +

10% 324.96 ± 36.0 27% 499.00 ± 72.0 45% 303.55 ± 59.0 27% 479.46 ± 65.5 52% +

20% 603.61 ± 105.5 18% 552.86 ± 66.0 36% 386.46 ± 61.0 15% 557.62 ± 86.0 37% +

30% 780.50 ± 133.5 12% 712.19 ± 107.0 21% 510.28 ± 62.0 7% 636.40 ± 97.0 22% •

SLEf

40% 1824.0 ± 0.0 1% 1513.0 ± 437.0 2% 1996.0 ± 0.0 1% 1478.8 ± 344.0 4% •

surprising tendency to increase the search success rate as the fault rate increases. This trend

occurred due to the selection rate (r = 0.5)which was unbiased to neither good (more

likely to be faulty) nor bad (more likely to be non-faulty) solutions. As the fault rate

* For more details about the performance measures, please refer to Section 2.2.3.1.

 76

increased the selection intensity is reduced, leading to promote more exploration, which

helps to escape the local minima and thus increases the hit rate.

At last, considering all fault rates, the highest search success rates were obtained by the

fourth configuration (ST, r = 0.5 + Migration) when solving fSLE. With regard to the

efficiency of the algorithm, with all fault rates the minimum average generations were

achieved by the third configuration (ST, r = 0.0 + Migration).

In general, the performance of the algorithm declined as the rate of faults increases. This

decline can be observed as a drop in the search success rate and/or an increase in the number

of generations required to find the desired solutions. Each fault rate represented a different

level of search difficulty, worse fault distributions and patterns were formed with higher

fault rates. The worst fault distribution occurred when a PE was surrounded by faulty

neighbours (PEs) in all possible directions.

To evaluate and compare the different algorithm configurations, two-level ranking was

performed based on two metrics: the average number of generations and the search success

rate (Tables 4.4 and 4.5, respectively). In the first level, the four configurations were ranked

for each problem independently. This task was accomplished by summing the positions of

each algorithm configuration considering each fault rate. In the Tables, these local ranks are

shown in columns 3−8. In order to obtain a global rank the second level of ranking was

performed by summing the local ranks computed in the first level. In these Tables, the global

rank and the summation values are shown in the first and last columns, respectively.

In summary, the third configuration (ST, r = 0.0 + Migration) achieved the best

performance in terms of efficiency for all the considered problems (see Table 4.4). In

contrast, the best efficacy was obtained by the fourth configuration (ST, r = 0.5 + Migration)

and the second configuration (ST, r = 0.5 + noMigration) as the difference between the

values of the sum of positions was minor (see Table 4.5). Hence, the second and fourth

configurations performed similarly in terms of both performance metrics, while the first

configuration (ST, r = 0.0 + Migration) had the worst performance.

Table 4.4. Local and global* average-generations- based ranking for stuck at ‘0’ faults
Rank Algorithms fRas fAck fMic fLang fFMS fSLE Sum

1 ST, r = 0.0 + Migration 1 1 1 1 1 1 6

2 ST, r = 0.5 + no Migration 2 3 3 2 3 3 16

3 ST, r = 0.5 + Migration 3 2 4 4 2 2 17

4 ST, r = 0.0+ no Migration 4 3 2 3 4 3 19

* Local ranks (columns 3 to 8) are performed for each problem independently; the highest rank is assigned the lowest value.
Global ranks are performed by summing the local ranks of each problem and are shown in the first column.

 77

Table 4.5. Local and global* search-success-rate-based ranking for stuck at ‘0’ faults
Rank Algorithms fRas fAck fMic fLang fFMS fSLE Sum

1 ST, r = 0.5 + Migration 2 3 3 1 1 1 11

2 ST, r = 0.5 + no Migration 1 3 2 2 2 2 12

3 ST, r = 0.0 + Migration 3 1 1 4 3 4 16

4 ST, r = 0.0+ no Migration 4 2 4 3 4 3 20

* Local ranks (columns 3 to 8) are performed for each problem independently; the highest rank is assigned the lowest value.
Global ranks are performed by summing the local ranks of each problem and are shown in the first column.

Introducing migration adds a significant improvement when combined with ST, r = 0.0 in

terms of average number of generations leading to 21−279 generations less. In addition, it

leads to an increase in the search success rate in the range 2%−45%. That is, because of the

high selection intensity induceddue to r = 0.0within the fault-free neighbourhood that

resulted from migration. However, the combination of migration with ST, r = 0.5 showed no

improvements based on the two metrics. In contrast to ST, r = 0.0, in which the fittest

individual with the minimum fitness value was favouredbearing in mind that also faulty

individuals have the minimum fitness value, ST, r = 0.5 mitigates the involvement of faulty

individuals in the reproduction process. Therefore ST, r = 0.5 plays a similar role as

migration; which is why combining them leads to no further improvements.

Since each of the problems considered presented a different level of complexity, the

amount of selection intensity needed to effectively solve each problem was also different.

Accordingly, the exploration/exploitation trade-off and the amount of diversity needed

varied. Problems with high complexity, such as fLang, fFMS, and fSLE, required more diversity,

which can be offered by tuning the rate of the selection r. The increase in the value of r

would maintain worse solutions in the population for a longer time, thus more diversity is

offered leading to an increase in the search success rate. However, the number of generations

required to solve a given problem is increased.

4.1.3.2 Stuck at ‘1’ Faults

The stuck at ‘1’ fault scenario is less critical than stuck at ‘0’ faults. However, this scenario

leads to considerable impacts on the system. These impacts mainly occur as reductions in the

accuracy of solutions and an increase in convergence time. Tables 4.6 and 4.7 summarise the

results obtained when solving the test and the real-world problems, respectively.

With regard to fRas, the best search success rate (100%) was achieved by all algorithm

configurations with up to 30% faults, except for the third configuration, as a lower rate

(86%) was achieved with 30% faults. With 40% faults, a considerable drop in the search

 78

success rate reached up to 70% is observed. However, with stuck at ‘1’ faults the drop in the

search success rate when the fault rate increases to 40% is significantly lower than the

corresponding drop with stuck at ‘0’ faults (17%), which confirms that stuck at ‘1’ fault

scenario is less destructive. Concerning the efficiency, with all fault rates the minimum

average generations were obtained by the first configuration (ST, r = 0.0 + noMigration)

with significant differences, except for 40% fault as the differences were insignificant (see

test results in Table 4.6). In contrast to stuck at ‘0’ faults, the introduction of migration

results in higher number of generations reached up to 230 while maintaining almost similar

efficacies.

When solving fAck, the differences between the average number of generations obtained

by all configurations are insignificant (see test results in Table 4.6); generally therefore, all

configurations have similar efficiencies. Concerning the efficacy of the algorithm, with all

fault rates the highest search success rates were obtained by the first configuration (ST, r =

0.0 + noMigration). Hence, as with the previous problem the introduction of migration could

not improve the performance of the algorithm. However, the efficacy obtained with

migration (ST, r = 0.0 + Migration) was insignificantly less than those obtained without

migration (ST, r = 0.0 + noMigration). Similar to stuck at ‘0’ faults, with 40% faults the

algorithm failed to solve the problem due to the high fault rate in combination with high

problem complexity.

Table 4.6. Convergence time (CT) and rate (CR)* for test problems
Problems/
% of faults

BT + no Migration
ST, r = 0.5 + no

Migration BT + Migration
ST, r = 0.5 +

Migration
Test

10% 386.23 ± 31.0 100% 541.27 ± 41.5 100% 417.17 ± 36.0 100% 507.53 ± 36.0 100% +

20% 449.69 ± 42.0 100% 616.08 ± 45.5 100% 583.27 ± 75.5 100% 616.82 ± 39.0 100% +

30% 486.22 ± 37.5 100% 667.88 ± 41.0 100% 717.19 ± 104 86% 673.83 ± 49.5 100% +

Rasf

40% 919.83 ± 48.0 36% 947.90 ± 20.5 30% 943.08 ± 34.5 24% 954.55 ± 20.0 38% •

10% 1848.3 ± 66.0 77% 1877.4 ± 57.5 40% 1820.4 ± 76.0 75% 1884.4 ± 39.0 59% •

20% 1853.1 ± 70.0 65% 1894.6 ± 37.0 21% 1833.3 ± 51.0 53% 1902.2 ± 35.0 28% •

30% 1906.2 ± 45.5 48% 1956.5 ± 15.0 15% 1886.8 ± 57.5 40% 1817.1 ± 47.0 18% •

Ackf

40% − 0% − 0% − 0% − 0% −

10% 578.69 ± 43.5 100% 769.91 ± 48.5 100% 615.23 ± 54.5 100% 773.10 ± 70.5 100% +

20% 653.80 ± 49.5 100% 863.18 ± 54.0 94% 736.67 ± 69.0 86% 844.51 ± 62.0 89% +

30% 707.26 ± 71.0 99% 891.19 ± 46.0 63% 852.47 ± 73.0 74% 914.89 ± 41.0 66% +

Micf

40% − 0% − 0% − 0% − 0% −

10% 309.00 ± 51.0 58% 409.05 ± 48.0 75% 329.94 ± 48.0 67% 402.01 ± 55.0 79% +

20% 331.02 ± 53.0 69% 468.27 ± 64.0 77% 437.43 ± 71.0 69% 484.40 ± 53.0 85% +

30% 402.25 ± 45.5 74% 525.39 ± 49.5 74% 508.36 ± 99.5 58% 518.20 ± 56.5 82% +

Langf

40% − 0% − 0% − 0% 656.00 ± 0.0 1% •

* For more details about the performance measures, please refer to Section 2.2.3.1.

 79

Table 4.7. Convergence time (CT) and rate (CR)* for real-world problems

Problems/
% of faults

BT + no Migration
ST, r = 0.5 + no

Migration BT + Migration
ST, r = 0.5 +

Migration
Test

10% 338.05 ± 73.5 68% 472.49 ± 88.0 87% 348.60 ± 87.5 76% 453.56 ± 91.0 87% +

20% 399.50 ± 79.0 65% 489.34 ± 64.0 87% 465.47 ± 106.0 73% 532.77 ± 87.0 86% +

30% 416.53 ± 95.0 73% 599.85 ± 127.5 88% 571.92 ± 110.0 68% 613.04 ± 111.0 83% +
FMSf

40% 650.98 ± 163.0 72% 806.61 ± 131.0 77% 809.77 ± 88.5 54% 766.16 ± 112.5 68% +

10% 302.89 ± 44.0 29% 479.20 ± 83.0 55% 282.43 ± 16.0 23% 485.55 ± 50.0 49% +

20% 446.53 ± 68.5 26% 543.52 ± 59.0 50% 363.47 ± 52.0 21% 568.06 ± 100.0 45% +

30% 407.76 ± 59.0 30% 630.44 ± 87.0 36% 420.84 ± 41.0 13% 669.77 ± 99.0 31% +
SLEf

40% 639.72 ± 133.0 11% 902.75 ± 130.0 20% 781.00 ± 117.0 11% 1042.1 ± 206.5 26% +

* For more details about the performance measures, please refer to Section 2.2.3.1.

With all the considered fault rates, the highest efficacy and efficiency were significantly

achieved by the first configuration (ST, r = 0.0 + noMigration) when solving fMic. Similarly,

with 40% faults the algorithm failed to solve the problem due to high fault rate.

Solving fLang, the highest search success rates were obtained by the fourth configuration

(ST, r = 0.5 + Migration), while the best efficiency was significantly reached by the first

configuration (ST, r = 0.0 + Migration). fLang differed from the previously discussed

problems as it is not only highly multimodal but also epistasis and asymmetric at the same

time, therefore it introduces more difficulty to the search. Because of the high complexity

more diversity is needed to effectively solve the problem. That is why the highest

convergence rates were obtained with the configurations that introduced more diversity (i.e.,

the second and the fourth configurations, as they had lower selection pressure). However,

more diversity increases the convergence time leading to less efficiency. Considering 40%

faults, the algorithm was unable to solve the problem due to the high problem complexity

and high fault rate.

fFMS and fSLE have similar characteristics to fLang, hence similar profiles were obtained.

Generally, the best efficiency was achieved by the first configuration (ST, r = 0.0 +

noMigration) due to the high selection pressure, while the highest search success rates were

achieved by the second configuration (ST, r = 0.5 + noMigration) due to more diversity

being offered.

As with the stuck at ‘0’ faults, the algorithm configurations are also ranked based on the

average number of generations (Table 4.8) and the search success rate (Table 4.9). In

summary, the first configuration (ST, r = 0.0 + noMigration) obtains the best algorithm

efficiency for most of the problems considered (see Table 4.8). Because of the high selection

intensity as well as the less destructive scenario of faults a main profile which contradicts the

 80

Table 4.8. Local and global* average-generations-based ranking for stuck at ‘1’ faults

Rank Algorithms fRas fAck fMic fLang fFMS fSLE Sum

1 ST, r = 0.0 + no Migration 1 2 1 1 1 1 7

2 ST, r = 0.0 + Migration 2 1 2 2 2 1 10

3 ST, r = 0.5 + Migration 4 3 3 3 3 3 19

4 ST, r = 0.5+ no Migration 3 4 3 4 3 3 20

Table 4.9. Local and global* search-success-rate-based ranking for stuck at ‘1’ faults

Rank Algorithms fRas fAck fMic fLang fFMS fSLE Sum

1 ST, r = 0.5 + Migration 1 3 2 1 2 2 11

2 ST, r = 0.5 + no Migration 3 4 2 2 1 1 13

2 ST, r = 0.0 + no Migration 2 1 1 3 3 3 13

4 ST, r = 0.0 + Migration 4 2 2 3 4 4 19

one observed with stuck at ‘0’ faults is the modest increaserather than the dramatic

increasein the number of generations against the increase in the fault rate

With regard to the efficacy, the best efficacy was obtained by the fourth and second

configurations (ST, r = 0.5 + noMigration/Migration) when solving the real-world problems

that are mainly characterised as epistasis and asymmetric. On the other hand, the best

efficacy was obtained by the first configuration (ST, r = 0.0 + noMigration) when solving

the test functions (see Table 4.9). As mentioned above, the more complex problems require

more diversity, which in this case was offered by applying lower selection pressure (i.e., ST,

r = 0.5); however more diversity leads to an increased number of generations to solve a

given problem.

4.1.3.3 Study of the Failure and Expansion in Fa ult Rates

This section aims to firstly investigate the sharp drop in the convergence rate as well as the

quick increase in the convergence time, particularly when the fault rate increases to 40%. In

order to meet the first aim, the genetic diversity obtained by the different algorithm

configurations of a selected problem (fRas) against the different fault rates were explored.

Another aim was to explore the behaviour of the algorithm with higher fault rates (45% and

50%), in particular when solving fRas, fFMS, and fSLE. In addition, a fault rate of 35% is

* Local ranks (columns 3 to 8) are performed for each problem independently; the highest rank is assigned the lowest value.
Global ranks are performed by summing the local ranks of each problem and are shown in the first column.

 81

considered to investigate the sharp decline in the performance of the algorithm. The other

problems were not considered in this investigation as the algorithm failed to solve these

problems with 35% faults. This section illustrates the impact of faults on the genotypic

diversity of the population as well as expands the results obtained in the previous sections to

include 35%, 45%, and 50% faults.

Figures 4.4(a) and (b) show the change in the genotypic diversity (computed as an

average of 100 independent runs) when solving fRas with the various considered fault rates

for stuck at ‘0’ faults.

Figure 4.4(a) illustrates the changes induced by the first and third algorithm

configurations (i.e., 3D-cGA with ST, r = 0.0 + noMigration/Migration, respectively), while

the changes in diversity incurred by the second and the fourth algorithm configurations (i.e.,

3D-cGA with ST, r = 0.5 + noMigration/Migration, respectively) are shown in Figure 4.4(b).

Similarly, Figure 4.5(a) and (b) show the change in genotypic diversities with fitness score

stuck at ‘1’.

It can be clearly seen from Figure 4.4(a) that generally the time (i.e., number of

generations) needed for population diversity to approach zero increases considerably as fault

rate increases. This observation leads to two major conclusions. First, the algorithm is likely

to fail to solve a given problem with 40% faults as the diversity level is too high and is

virtually maintained. In addition, due to the major difference between diversities obtained

with 30% and 40% faults, increasing the fault rate from 30% to 40% leads to a sharp drop in

convergence rate as well as a major increase in the convergence time. Second, the

introduction of migration (see the blue trends in Figure 4.4(a)) could slightly enhance the

convergence time when considering 10%, 20%, and 30% faults. However, migration failed

to add any improvement when considering 40% faults.

Similar profiles were obtained by the second and fourth algorithm configurations (see

Figure 4.4(b)). However, the introduction of migration (see the blue trends in Figure 4.4(b))

added neither improvement nor deterioration to the convergence time. This finding confirms

that the combination of migration and ST, r = 0.5 could not improve the performance of the

algorithm.

With stuck at ‘1’ faults (see Figure 4.5(a) and (b)) the population diversities for all

considered fault rates at the beginning were reasonable and were significantly less than the

corresponding ones when considering stuck at ‘0’ faults. Therefore, it is easier and faster for

the algorithm to solve, in particular minimise, a problem with stuck at ‘1’ faults. That is to

say, the stuck at ‘1’ faults model is less critical than the stuck at ‘0’ faults model. Moreover,

 82

(a)

(b)

Figure 4.4. Genotypic diversities of Rasf against fault rates for ‘stuck at 0’. (a) 1st (red curves) and 3rd

(blue curves) configurations; (b) 2nd (red curves) and 4th (blue curves) configurations.

0 100 200 300 400 500 600 700 800 900 1000
0

10

20

30

40

50

60

70

80

Generations

A
ve

ra
ge

 D
iv

er
si

tie
s

10%

20%
30%

40%

0 100 200 300 400 500 600 700 800 900 1000
0

10

20

30

40

50

60

70

80

Generations

A
ve

ra
ge

 D
iv

er
si

tie
s

10%

20%
30%

40%

 83

(a)

(b)

Figure 4.5. Genotypic diversities of Rasf against fault rates for ‘stuck at 1’. (a) 1st (red curves) and 3rd

(blue curves) configurations; (b) 2nd (red curves) and 4th (blue curves) configurations.

0 100 200 300 400 500 600 700 800 900 1000
0

5

10

15

20

25

30

35

40

Generations

A
ve

ra
ge

 D
iv

er
si

tie
s

10%

20%
30%

40%

0 100 200 300 400 500 600 700 800 900 1000
0

5

10

15

20

25

30

35

40

Generations

A
ve

ra
ge

 D
iv

er
si

tie
s

10%

20%
30%

40%

 84

(a)

(b)

Figure 4.6. (a) Mean generations obtained by 3rd configuration for Rasf , FMSf and SLEf ; (b) search

success rate obtained by 2nd configuration (for Rasf) and 4th configuration (for FMSf and SLEf) with

stuck at ‘0’ faults.

0 5 10 15 20 25 30 35 40 45 50
0

10

20

30

40

50

60

70

80

90

100

Fault rate(%)

S
ea

rc
h

su
cc

es
s

ra
te

(%
)

Rastrigin

FMS
SLE

0 5 10 15 20 25 30 35 40 45 50
200

400

600

800

1000

1200

1400

1600

1800

2000

Fault rate(%)

M
ea

n
ge

ne
ra

tio
ns

Rastrigin

FMS
SLE

 85

(a)

(b)

Figure 4.7. (a) Mean generations obtained by 1st configuration for Rasf , FMSf and SLEf ; (b) search

success rate obtained by 4th configuration (for Rasf), and 2nd configuration (for FMSf and SLEf) with

stuck at ‘1’ faults.

0 5 10 15 20 25 30 35 40 45 50
200

300

400

500

600

700

800

900

1000

Fault rate (%)

M
ea

n
ge

ne
ra

tio
ns

Rastrigin

FMS
SLE

0 5 10 15 20 25 30 35 40 45 50
0

10

20

30

40

50

60

70

80

90

100

Fault rate (%)

S
ea

rc
h

su
cc

es
s

ra
te

 (
%

)

Rastrigin

FMS
SLE

 86

the major difference in diversity levels obtained with 30% and 40% faults justified the sharp

decline in convergence rate as well as the large increase in convergence time. Another

observation is that the introduction of migration with stuck at ‘1’ faults could not add any

improvements. However, for some cases it leads to an increase in convergence time (see the

blue trends in Figure 4.5(a)).

Figures 4.6 and 4.7 show the experimental results when solving fRas, fFMS, and fSLE with

fault rates up to 50% considering the stuck at ‘0’ and stuck at ‘1’ faults, respectively. As

mentioned previously, the other problems were not considered as the algorithm failed to

solve them with faults more than 30%. Based on each performance metric, the best algorithm

configuration for each problem was explored with fault rates up to 50% (the best algorithm

configuration was the one with the highest rank- lowest value, refer to Tables 4.4, 4.5, 4.8,

and 4.9). For example, considering fRas, the best configuration based on the efficiency is the

third one for stuck at ‘0’ faults, while the first configuration is the best one for stuck at ‘1’

faults. The best configuration based on the efficacy is the second one for stuck at ‘0’ faults,

while the fourth configuration is the best one for stuck at ‘1’ faults.

Considering stuck at ‘0’ faults, solving fRas and fFMS shows a gradual increase in the

number of generations (see Figure 4.6(a)), while a sharp increase in convergence time was

obtained when solving fSLE, particularly for fault rates exceeding 30%. Conversely, a sharp

drop in the search success rates was obtained when solving fRas and fFMS (see Figure 4.6(b)),

in particular for fault rates exceeding 30%, while a gradual drop in the convergence rate was

obtained when solving fSLE. The algorithm failed to solve fRas and fSLE with faults more than

40%, while it converged with faults up to 50% when solving fFMS. Figure 4.7(a) and (b) show

the results obtained when solving the same problems with stuck at ‘1’ faults. Generally, the

algorithm failed to solve fRas with faults more than 40%; and showed a rapid increase in

convergence time (see Figure 4.7(a)), as well as a rapid fall in the convergence rate (see

Figure 4.7(b)) when the fault rate exceeded 30%. Solving fFMS and fSLE, the algorithm could

converge with up to 50% faults. However, the convergence rates were very low.

In conclusion, we note that the performance of the algorithm declined significantly for

fault rates of 40% or more. However, the rate of the decline differed according to the

problem to solve, as each problem introduced different difficulties into the search.

4.1.4 Conclusion

This study proposed a new algorithm for tackling soft errors that target individuals’

phenotypes. The algorithm is based on the canonical cGA, and is completely algorithmic (no

 87

hardware reconfiguration). Genetic diversity is the key metric used in our approach to

identify and isolate faulty cells.

This work took into consideration the most critical fault model, which is stuck at ‘0’

faults, together with different fault rates. In general, the proposed algorithm was successful

in recovering up to 40% faults with different performance rates when solving different

problems. In general, the performance decayed in increments in fault rate, except when

solving fLang and fFMS. In order to improve the performance of the algorithm, four

configurations offering different exploration/exploitation trade-offs were defined.

Exploration and exploitation are two important issues in the evolution process, where the

population diversity is enhanced by exploring the search space and the optimum solution can

be found by exploiting the fitness information. The results show that the best efficiency is

achieved by the third configuration (ST, r = 0.0 + Migration) for all problems. On the other

hand, the best efficacy was achieved by the fourth configuration (ST, r = 0.5 + Migration) in

3 out of the 6 problems.

The key point underlying the introduction of migration is to cover the loss in cells due to

the faults, thus enhancing the reproduction process; especially when a cell is surrounded by

faulty neighbours. The results proved that migration offers a better exploration/exploitation

trade-off, especially when combined with ST, r = 0.0.

4.2 Migration as a Mitigation Technique

This section introduces a number of adaptive migration schemes in order to mitigate the

deterioration in the performance of Fault-Tolerant 3D-cGA, the algorithm proposed in the

previous section. In addition to the migration scheme introduced in Section 4.1.2.3, the new

schemes introduced in this section are tested to show superior improvements in the

algorithm’s performance in terms of efficiency, efficacy, and speed. In this study, several

algorithm configurations related to migration are considered. The effectiveness of the

algorithm is investigated using a benchmark of four test functions and three real-world

problems with each presenting a different level of search difficulty. The problems are

Rastrigin (fRas), Ackley (fAck), Michalewicz (fMic), Langermann (fLang), FMS (fFMS), SLE (fSLE)

(for more details of the benchmark problems refer to Appendix A), and GPS (fGPS) (which

will be discussed in Section 4.2.2) problems. An investigation of the proposed migration

policies that considered the problem of GPS was proposed in (Al-Naqi et al., 2011a). Section

4.2.1 describes the algorithm configurations and also introduces the new adaptive migration

 88

schemes. Section 4.2.2 provides a brief description of the problem of GPS attitude

determination, while experimental results and analyses are presented in Section 4.2.3.

Section 4.2.4 gives our conclusion.

4.2.1 Algorithm Configuration

The algorithm description and the pseudo-code were introduced in Section 4.1.2. As

illustrated earlier, the algorithm automatically isolates the faulty individuals and consists of

three stages. The first stage aims at monitoring all individuals and computing their genetic

diversities by running cGA for a very short period (low number of generations). Next, the

isolation stage identifies and isolates the faulty individual using feedback information from

the first stage. Finally, in the third stage, another cGA is run to solve the given problem

while excluding the faulty (isolated) individuals from the process (i.e., the faulty individuals

are prevented from updating or communicating with other fault-free individuals when it is a

part of their neighbourhood). Two fault scenarios are consideredfitness score stuck at ‘0’

and fitness score stuck at ‘1’. (The fault models were previously introduced in Section 4.1.1.)

The following subsection presents two new adaptive migration schemes (schemes 2 and 3)

used in this work, while the first migration scheme (scheme 1) was defined in Section

4.1.2.3.

4.2.1.1 Migration Schemes

The new migration schemes defined are similar to the past migration scheme (i.e., scheme 1)

in the following ways. Firstly, the migration operator frequency is set to the highest (i.e.,

every generation) and in each generation is applied only when there is at least a faulty

individual within the current individual’s neighbourhood. Secondly, the number of migrants

(i.e., migration rate) is adapted and is computed whenever a migration is to be applied. This

rate is equal to the number of faulty individuals, which varies from 1 to no_of_neighbours.

Thus, all migration schemes agree in identifying which individual(s) are to be replaced. On

the other hand, the three schemes differ in choosing which individual(s) are to be migrated.

In scheme 1, the migrants are chosen from the first fault-free neighbourhood found to

replace the corresponding faulty individual(s) (refer to Figure 4.3). In contrast, in schemes 2

and 3, the migrants are chosen from within the current neighbourhood if at least one fault-

free neighbour exists. For the case where there is no fault-free neighbour, scheme 1 is

 89

employed. In addition, in the worst case, if there is no fault-free neighbourhood, a random

neighbourhood is selected, which allows the possibility of selecting faulty individual(s).

Considering scheme 2, the best fault-free neighbour (i.e., a neighbour that has the best

fitness value) is selected to replace any faulty individual within the same neighbourhood.

Conversely, in scheme 3, a random fault-free neighbour is chosen as a migrant.

The aim of proposing migration schemes 2 and 3 is mainly to save time needed to search

for a fault-free neighbourhood each time a fault is encountered.

4.2.2 Case study: GPS Attitude Determination

GPS technology is used in the determination of a vehicle’s attitude parameters, which is

achieved by calculating the correct carrier phase integer ambiguity values (Juang and Huang,

1997). One of the most efficient techniques for attitude determination using a GPS is genetic

algorithm based ambiguity function search (AFGA), which was proposed by Xu et al.

(2002). This technique is based on the observations of the GPS carrier phase and

characterised as being immune to cycle slips. AFGA outperforms other techniques such as

the ambiguity function method (AFM) in terms of the computational overheads incurred

(Hodgart and Purivigraipong, 2000). For a full description of the technique, refer to (Xu et

al., 2002).

In this study, AFGA is used to determine GPS attitude. This function aims at finding the

azimuth (ϕ) and the elevation (β) angles considering a fixed baseline (b) of 1.067 m (please

refer to (Xu et al., 2002) for more details) and is represented by equation (4.4):

 (4.4)

where j
ABDD 1Φ is the observed value of the double difference for the carrier phase, n is the

number of satellites (usually 4–6 satellites), and m is the number of epochs.

The range of ϕ is a full 360°, while the range of β is within the interval of [−15 , +15].

This function is multimodal with strong epistasis. In addition, the optimum maximum value

is very close to 1. Figure 4.8 shows the problem search space.

()∑∑
= =

























−
Φ

−
−

Φ

=
m

i

n

j

j
AB

j
AB

nm

bDD

nm

DD

bAFGA

1 2

11

)1(

),,(

1

2
cos

),,(

βϕ
λ
π

βϕ

 90

Figure 4.8. AFGA’s objective function in 2D.

4.2.3 Experimental Results and Analysis

Simulation results were obtained for four configurations of the algorithm used to solve the

previously mentioned problems. The first configuration applied the Fault-Tolerant 3D-cGA

without migration, while the second, third, and fourth configurations combined it as follows:

migration scheme 1 (first fault-free neighbourhood), scheme 2 (best fault-free neighbour),

and scheme 3 (random fault-free neighbour), respectively. The parameters used in the

experiments are explained and summarised in Table 4.10.

Table 4.10. Parameters used in the simulation
Population size: 343 individuals (125 for fGPS)

Parent selection: Centre individual + Binary tournament

Recombination: AX, Pc = 0.9

Mutation: Non-uniform, Pm

Replacement: Replace-if-better

Neighbourhood: NEWS

Lattice: 7×7×7 (5×5×5 for fGPS)
Stop criterion: Average fitness value ≤ threshold (≥ threshold for fGPS)

The same parameters were used for all configurations. The population size consisted of

343 individuals (125 individuals for fGPS) arranged over a 7×7×7 lattice (5×5×5 for fGPS). A

neighbourhood was defined as seven individuals: the central individual surrounded by six

 91

individuals (east, west, vertical north and south, and horizontal north and south). The first

parent was the current individual, while the second was selected by using a binary

tournament selection method. An arithmetic crossover operator with a probability of Pc = 0.9

was applied to generate an offspring. The offspring were mutated by applying a non-uniform

mutation operator with a probability of Pm. Different mutation probabilities were defined for

each problem due to their different characteristics and complexities. Pm of 1/2L was assigned

to fRas and fMic; 1/L was assigned to fAck, fLang, fFMS, and fGPS; and 1/10L was assigned to fSLE;

where L was chromosome length. The replacement policy defined here was replace-if-better,

during which the current individual was replaced if its competitor (offspring) was fitter. The

migration parameters used in the second, third, and fourth configurations were previously

described in Section 4.2.1.1.

Finally, the algorithm terminated if the average-fitness-value satisfied a predefined

threshold. Similarly, different thresholds were defined for each problem: a value of 5e−5 was

assigned to fRas, fLang, and fFMS; 2e−4 was assigned to fAck; 1.89e−2 was assigned to fMic; 1e−1 was

assigned to fSLE; and 9.97e−1 was assigned to fGPS.

During the simulations, similar ratios and fault patterns were injected for every

configuration. The performance of the algorithm was measured using three metricsthe

search success rate, the average number of generations, and the average run times for 100

independent runs. The defined maximum number of generations was 150 generations for

fGPS; 700 generations for fMic and fLang; 1000 generations for fRas, fFMS, and fSLE; and 2000

generations for fAck.

The experimental results are divided into two parts. The first part presents the results

obtained by the algorithm for the most critical fault model (i.e., stuck at ‘0’ faults) when

solving fRas, fAck, fMic, fLang, fFMS, and fSLE (see Tables 4.11−4.13). The second part presents the

results obtained by the algorithm when solving fGPS for both defined fault models (i.e., stuck

at‘1’ and stuck at ‘0’) (see Tables 4.14−4.15). fGPS was selected as an example to study the

algorithm’s behaviour and performance with more focus for both fault models. In addition,

fGPS differed from the other problems considered as it is a maximisation problem; resulting in

the most critical fault model being stuck at ‘1’ faults while stuck at ‘0’ faults was the less

critical model.

In Tables 4.11−4.15, the median absolute deviations mad (mad is used due to the non-

normal distribution of the results obtained) are added to the results to show the robustness of

the approach. In addition, significant differences are indicated by a plus sign (+), while a

minus sign (−) denotes non-significant differences (details of statistical tests were provided

 92

in Section 2.2.3.1). The best results achieved in terms of each performance metric for each

fault rate is highlighted in bold. Furthermore, in order to provide a reference that helps in

evaluating the algorithm’s performance, the results obtained when there were no faults are

shown for each problem; taking into account the fact that the migration operator is inactive

in the absence of faults.

Although the presence and the increase in fault rate led to deterioration in the algorithm’s

performance by increasing the convergence time and reducing the search success rate and

speed, the introduction of migration significantly reduces the convergence time and

improves search success rate and speed when solving fRas (see Table 4.11).

The most significant reductions in convergence time reaching 50% were obtained with

high fault rates. Furthermore, the search success rates were significantly improved when the

different migration schemes were introduced. This improvement reached 100% with 40%

faults. With regard to the speed, migration schemes 2 and 3 significantly reduced the running

time, particularly with faults more than 10%. Generally, migration scheme 2 obtained the

best algorithm performance in terms of efficiency, efficacy, and speed.

Table 4.11. Convergence time (CT), rate (CR), and speed (SP)* for the test problems
Problems/
% of faults

 Without migration
Migration scheme 1

(First fault-free
neighbourhood)

Migration scheme 2
(Best fault-free

neighbour)

Migration scheme3
(Random fault-free

neighbour)
Test

0%
266.14 ± 44.0

100%
0.71 ± 0.10 s

10%
372.26 ± 63.5

100%
0.95 ± 0.12 s

296.94 ± 50.5
100%

1.68 ± 0.23 s

294.86 ±49.0
100%

0.97 ±0.12 s

307.85 ± 48.5
100%

0.96 ± 0.14 s

+
•
+

20%
613.56 ± 93.0

93%
1.74 ± 0.39 s

352.23 ± 52.0
100%

2.64 ± 0.37 s

331.10 ±57.5
100%

1.11 ±0.16 s

369.17 ±60.0
100%

1.15 ± 0.17 s

+
+
+

30%
720.84 ± 105.0

82%
1.60 ± 0.20 s

392.39 ± 54.0

100%
9.18 ± 1.23 s

351.60 ± 54.0
100%

1.17 ± 0.15 s

398.86 ±77.5
100%

1.19 ± 0.20 s

+
+
+

Rasf

40% 0%
506.17 ± 76.0

100%
27.38 ± 4.18 s

401.38 ± 64.0
100%

1.20 ± 0.16 s

480.29 ±65.5
100%

1.48 ± 0.20 s

+
+
+

0%
1004.7 ± 326.0

79%
4.70 ± 1.48 s

10%
1247.62 ± 445.5

58%
7.07 ± 2.50 s

1361.03 ± 308.0
56%

9.30 ± 2.08 s

1221.77 ± 365.0
62%

5.20 ± 1.49 s

1211.0 ± 321.0
62%

5.17 ± 1.33 s

•
•
+

20%
1512.96 ± 212.0

27%
7.02 ± 1.42 s

1433.83 ± 293.5
48%

12.52 ± 2.50 s

1360.45 ± 376.0
48%

5.74 ± 1.33 s

1435.3 ± 272.0
44%

5.90 ± 1.08 s

•
+
+

30%
1481.8 ± 221.0

9%
7.07 ±1.65 s

1598.9 ± 164.0
30%

38.89 ± 4.01 s

1399.86 ± 260.5
46%

5.77 ± 1.01 s

1429.9 ± 214.0
31%

6.01 ± 0.68 s

+
+
+

Ackf

40% 0%
1733.5 ± 200.5

8%
95.16 ± 9.31 s

1552.82 ± 208.0
23%

6.59 ± 0.67 s

1511.6 ± 289.0
23%

5.96 ± 1.10 s

•
+
+

* For more details about the performance measures, please refer to Section 2.2.3.1.

 93

Table 4.12. Convergence time (CT), rate (CR), and speed (SP)* for the test problems
Problems/
% of faults

 Without migration
Migration scheme 1

(First fault-free
neighbourhood)

Migration scheme 2
(Best fault-free

neighbour)

Migration scheme3
(Random fault-free

neighbour)
Test

0%
146.55 ± 25.0

100%
1.79 ± 0.36 s

10%
201.22 ± 32.5

100%
2.33 ± 0.30 s

169.69 ± 42.0
100%

1.81 ± 0.35 s

172.05 ± 27.5
100%

1.40 ± 0.17 s

180.47 ± 28.5
100%

1.44 ± 0.18 s

+
•
+

20%
349.60 ± 58.0

98%
3.15 ± 0.71 s

197.38 ± 46.5
100%

2.39 ± 0.47 s

188.96 ± 33.5
100%

1.39 ± 0.18 s

233.39 ± 48.0
100%

1.78 ± 0.32 s

+
•
+

30%
471.62 ± 65.0

97%
34.12 ± 0.65 s

218.47 ± 41.0
100%

6.02 ± 1.10 s

201.27 ± 34.5
100%

1.47 ± 0.19 s

256.14 ± 42.5
100%

1.89 ± 0.23 s

+
•
+

Micf

40% 0%
282.07 ± 59.5

100%
16.46 ± 3.44 s

226.08 ± 38.5
100%

1.49 ± 0.20 s

290.63 ± 46.0
100%

1.94 ± 0.25 s

+
•
+

0%
266.46 ± 36.0

56%
4.02 ± 0.68 s

10%
413.22 ± 60.0

45%
6.45 ± 1.96 s

274.50 ± 51.0
51%

3.78 ± 0.60 s

285.50 ± 57.0
52%

4.37 ± 0.89 s

322.29 ± 62.0
57%

3.66 ± 0.71 s

+
•
+

20%
538.15 ± 57.0

39%
5.11 ± 0.51 s

332.39 ± 50.5
48%

4.91 ± 0.67 s

311.02 ± 54.0
49%

5.74 ± 1.54 s

371.03 ± 88.0
52%

3.87 ± 0.80 s

+
•
+

30%
614.20 ± 40.0

20%
5.80 ± 0.43 s

374.40 ± 44.0
27%

11.18 ± 1.40 s

333.22 ± 71.5
48%

5.60 ± 1.60 s

403.05 ± 76.0
50%

3.73 ± 0.56 s

+
+
+

Langf

40% 0%
438.35 ± 62.5

14%
26.40 ± 3.74 s

354.73 ± 63.0
41%

4.99 ± 1.18 s

425.05 ± 76.0
51%

3.74 ± 0.51 s

+
+
+

* For more details about the performance measures, please refer to Section 2.2.3.1.

Considering fAck, generally, the improvement in convergence time when the migration

was introduced was not significant; except for 30% faults (see Test results in Table 4.11). On

the other hand, the introduction of migration significantly improved search success rate,

particularly for faults more than 10%. In addition, migration schemes 2 and 3 significantly

reduced the running time. Overall, the best algorithm performance was achieved with

migration schemes 2 and 3 when solving fAck.

Similarly, the introduction of migration significantly improved convergence time and

speed when solving fMic. The improvement reached 57% for convergence time and 95% for

speed (see Table 4.12). With respect to search success rate, there were no significant

differences between the algorithm configurations (see Test results); however, the algorithm

failed to solve the problem without migration for 40% faults. As with fRas, generally, the best

algorithm performance was achieved with migration scheme 2.

Moving to fLang, in general, the introduction of migration significantly improves the

algorithm’s efficiency, efficacy, and speed (see Table 4.12). The best efficiency was

obtained by migration scheme 2, especially for faults over 10%, while the best efficacy and

 94

Table 4.13. Convergence time (CT), rate (CR), and speed (SP)* for real-world problems
Problems/
% of faults

 Without migration
Migration scheme 1

(First fault-free
neighbourhood)

Migration scheme 2
(Best fault-free

neighbour)

Migration scheme3
(Random fault-free

neighbour)
Test

0%
288.66 ± 84.0

63%
26.72 ± 6.45 s

10%
404.93 ± 91.5

66%
53.05 ± 10.07 s

328.90 ± 77.0

61%
29.04 ± 6.12 s

290.69 ± 74.0
66%

25.87 ± 5.6 s

344.96 ± 101.0
64%

30.18 ± 7.40 s

+
•
+

20%
520.66 ± 124.0

51%
52.07 ± 9.04 s

364.39 ± 99.5
56%

29.41 ± 6.85 s

327.92 ± 81.0
57%

31.98 ± 8.15 s

378.81 ± 93.0
59%

29.54 ± 6.17 s

+
•
+

30%
715.88 ± 117.5

42%
48.30 ± 7.85 s

410.53 ± 91.0
47%

43.81 ± 10.34 s

364.24 ± 85.0
57%

25.51 ± 5.04 s

453.53 ± 146.5
56%

30.72 ± 9.02 s

+
+
+

FMSf

40% 0%
457.14 ± 116.0

47%
55.10 ± 16.95 s

446.51 ± 126.0
47%

26.69 ± 6.46 s

445.82 ± 130.0
58%

26.82 ± 6.68 s

•
•
+

0%
71.31 ± 17.0

44%
0.51 ± 0.20 s

10%
108.79 ± 20.0

29%
0.28 ± 0.01 s

65.40 ± 14.0

35%
0.41 ± 0.06 s

75.93 ±12.0
33%

0.30 ± 0.03 s

80.74 ±18.0
39%

0.26 ± 0.03 s

+
•
+

20%
174.21 ± 49.0

19%
0.38 ± 0.07 s

67.23 ± 13.0
17%

0.77 ± 0.10 s

81.10 ±13.0
19%

0.30 ± 0.04 s

104.05 ±20.0
20%

0.32 ± 0.04 s

+
•
+

30%
230.77 ± 31.0

9%
0.59 ± 0.12 s

94.54 ± 28.0
11%

3.27 ± 1.0 s

90.53 ±17.0
13%

0.32 ± 0.03 s

115.52 ±16.0
19%

0.37 ± 0.04 s

+
+
+

SLEf

40% 0%
69.00 ± 0.00

1%
3.65 ± 0.00 s

88.16 ± 8.0
6%

0.47 ± 0.12 s

157.44 ± 26.0
9%

0.48 ± 0.78 s

+
+
•

* For more details about the performance measures, please refer to Section 2.2.3.1.

speed were obtained by migration scheme 3. In migration scheme 2, the fittest fault-free

neighbour was selected to replace the faulty individual(s), which in turn increased the

selection intensity. Consequently, the best efficiency was achieved by this scheme. On the

other hand, highly complex problems such as fLang required more exploration, which was

offered only by migration scheme 3. Hence, migration scheme 3 obtained the best efficacy.

Table 4.13 depicts the results obtained by all algorithm configurations when solving fFMS

and fSLE. Significant reductions in the average number of generations was achieved when

migration was introduced; with the reduction reaching 49% for fFMS and 60% for fSLE.

Moreover, with migration, the running times were significantly reduced by up to 47% for

and fFMS and 45% for fSLE. With regard to search success rate, generally, non-significant

differences (see test results) were obtained when solving fFMS, except for 30% faults. With

fSLE, significant differences were obtained when migration was introduced, especially for

fault rates greater than 20%. Overall, the best algorithm performance was achieved by

migration scheme 2 when solving fFMS, while migration scheme 3 obtained the best

performance when solving fSLE.

 95

Table 4.14. Convergence time (CT), rate (CR), and speed (SP)* for fGPS with stuck at ‘1’
faults

% of
faults

Without migration
Migration scheme 1

(First fault-free
neighbourhood)

Migration scheme 2
(Best fault-free

neighbour)

Migration scheme 3
(Random fault-free

neighbour)
Test

0%
23.87 ± 6.5

100%
0.09 ± 0.015 s

10%
40.49 ± 8.0

99%
0.110 ± 0.015 s

34.00 ± 5.0
100%

0.110 ± 0.015 s

30.50 ± 5.0
100%

0.106 ± 0.015 s

32.74 ± 6.5
100%

0.107± 0.015 s

+
•
+

20%
67.88 ± 12.0

96%
0.137 ± 0.015 s

39.32 ± 6.0
98%

0.118 ± 0.015 s

38.31 ± 7.0
100%

0.113 ± 0.015 s

42.34 ± 6.5
100%

0.115 ± 0.015 s

+
+
+

30%
89.43 ± 3.0

16%
0.156 ± 0.00 s

44.36 ± 6.0
97%

0.187 ± 0.030 s

44.80 ± 8.0
98%

0.118 ± 0.015 s

54.17 ± 10.0
98%

0.125 ± 0.016 s

+
+
+

40% 0%
51.32 ± 10.0

94%
0.432 ± 0.078 s

53.13 ± 7.5
98%

0.120 ± 0.015 s

60.04 ± 12.0
94%

0.131 ± 0.016 s

+
+
+

* For more details about the performance measures, please refer to Section 2.2.3.1.

In the case of fGPS, the most critical fault scenario occurred when the fitness scores of the

individuals were stuck at ‘1’. During the update process, the local selection method selects

the fittest individuals and spreads the poor solutions they provide over the population; thus,

the algorithm isolates the faulty individuals. As a consequence, a smaller neighbourhood size

results due to the isolation, which then deteriorates the performance of the algorithm. To

maintain the population size, the migration operator is explicitly defined.

As can be seen from Table 4.14, the average number of generations increases

dramatically as the faults increase, particularly when the migration operator is not used. On

the other hand, the introduction of migration improves the efficiency and the robustness of

the algorithm with significant differences (see Test results in Table 4.14). Migration schemes

1 and 2 achieved almost similar efficiencies, where the differences are not significant.

Scheme 3 results in an almost similar performance as in the other schemes, with up to 20%

faults. While for faults > 20%, the performance deteriorates significantly as compared to

other two schemes.

In terms of search success rates, all three schemes performed similarly and were

significantly better than the results obtained without migration. For example, observe the

sharp drop in search success rate when the fault rate increased to 30% and above.

With regard to the speed, migration scheme 2 provided the best average run times,

especially for high rate of faults (≥ 30%). With schemes 2 and 3, a migrant was selected

from the current neighbourhood to replace the faulty individuals. Thus, the time needed to

search for fault-free individuals in another neighbourhood was saved. In addition, choosing

 96

Table 4.15. Convergence time (CT), rate (CR), and speed (SP)* for fGPS with stuck at ‘0’
faults

% of
faults

Without migration
Migration scheme 1

(First fault-free
neighbourhood)

Migration scheme 2
(Best fault-free

neighbour)

Migration scheme 3
(Random fault-free

neighbour)
Test

10%
29.51 ± 8.0

100%
0.104 ± 0.015 s

28.74 ± 5.0
100%

0.106 ± 0.015 s

27.68 ± 5.5
100%

0.105 ± 0.015 s

29.60 ± 7.0
100%

0.105± 0.015 s

•
•
•

20%
42.27 ± 8.5

100%
0.117 ± 0.015 s

33.31 ± 7.0
100%

0.112 ± 0.015 s

29.87 ± 5.5
100%

0.105 ± 0.015 s

36.98 ± 7.5
100%

0.113 ± 0.001 s

+
•
+

30%
50.93 ± 11.0

98%
0.121 ± 0.015 s

36.35 ± 9.0
98%

0.169 ± 0.0165 s

39.25 ± 7.0
99%

0.116 ± 0.015 s

44.07 ± 8.0
99%

0.119 ± 0.015 s

+
•
+

40%
63.44 ± 10.0

93%
0.129 ± 0.015 s

39.75 ± 7.0
96%

0.348 ± 0.047 s

41.95 ± 8.5
96%

0.116 ± 0.008 s

51.09 ± 10.0
96%

0.124 ± 0.015 s

+
•
+

* For more details about the performance measures, please refer to Section 2.2.3.1.

the fittest fault-free neighbour (scheme 2) simplified the search and thus improved the

efficiency of the algorithm, while selecting a random fault-free neighbour (scheme 3)

reduced the efficiency. However, when all neighbours were faulty, migration scheme 1 was

applied. The advantage of this scheme resides in the diversity offered as each faulty

individual is replaced by a different migrant. Thus, the efficiency and the efficacy of the

algorithm were improved, although the time needed increased due to the search for a fault-

free neighbourhood. Thus, overall, the second scheme provided the best performance.

The other critical fault scenario occurred when the fitness scores of individuals were

stuck at ‘0’. During the local selection, the weakest individuals are ignored leading to be

implicitly isolated. Although these individuals are implicitly isolated, they may negatively

affect the accuracy of solutions as they are allowed to mate with other individuals.

Therefore, an explicit isolation scheme (as the when defined in this study) is required to

maintain the accuracy of the results.

Considering the efficiency and speed of the algorithm (Table 4.15), similar results as that

for the stuck at logic ‘1’ fault model can be observed. On the other hand, with regard to

search success rate, the differences in the results obtained with or without the use of

migration were insignificant (see test results). Although this model was less critical than the

first model, it was an essential issue for fault tolerant systems to handle it due to the high

accuracy needed, especially for hard, real-time applications such as the problem of GPS

attitude determination.

In order to provide a general conclusion, two-level ranking was performed (similar to the

ranking performed in Sections 4.4.3.1 and 4.1.3.2) based on the three performance metrics

independently: convergence time, convergence rate, and speed (see Tables 4.16, 4.17, and

 97

4.18, respectively). Table 4.19 depicts a general ranks which are computed using the three

metric ranks in order to find the best algorithm configurations when considering all metrics

dependently. Similarly, this ranking is computed by summing the global ranks obtained

based on each metric and the minimum summation result is assigned the highest rank (i.e.,

the lowest value).

Table 4.16. Local and global* convergence-time-based ranking

Rank Algorithms
Rasf Ackf Micf Langf FMSf SLEf GPSf Sum

1 Migration scheme 2 1 1 1 1 1 2 1 8

2 Migration scheme 1 2 3 2 2 3 1 1 14

3 Migration scheme 3 2 1 3 3 2 3 3 17

4 Without migration 2 3 3 3 3 3 3 20

Table 4.17. Local and global* convergence-rate-based ranking
Rank Algorithms

Rasf Ackf Micf Langf FMSf SLEf GPSf Sum

1 Migration scheme 2 1 1 1 2 1 2 1 9

1 Migration scheme 3 1 2 1 1 1 1 2 9

3 Migration scheme 1 1 3 1 2 4 2 3 16

4 Without migration 4 4 4 2 3 2 4 23

Table 4.18. Local and global* speed-based ranking
Rank Algorithms

Rasf Ackf Micf Langf FMSf SLEf GPSf Sum

1 Migration scheme 2 1 1 1 2 1 1 1 8

2 Migration scheme 3 3 1 2 1 3 2 3 15

3 Migration scheme 1 3 3 2 2 2 3 2 17

4 Without migration 2 3 2 2 3 3 3 18

Table 4.19. Convergence-time (CT), rate (CR), and speed (SP) based-ranking†
Rank Algorithms Convergence-time Convergence-rate Speed Sum

1 Migration scheme 2 1 1 1 3

2 Migration scheme 3 3 1 2 6

3 Migration scheme 1 2 3 3 8

4 Without migration 4 4 4 12

In all the rankings, we considered only the worst-case fault model, which was stuck at ‘1’

faults for GPSf and stuck at ‘0’ for all other problems.

* Local ranks (columns 3 to 8) are performed for each problem independently; the highest rank is assigned the lowest value.
Global ranks are performed by summing the local ranks of each problem and are shown in the first column.
† The rankings are performed by summing the global ranks computed based on each performance metric; summation values are
shown in the last column while the ranks are shown in the first column.

 98

In summary, the introduction of the migration operator added a significant advantage as

the performance of the algorithm improved considerably, especially for high rates of faults.

In particular, migration scheme 2 achieved the best performance overall (see Table 4.19). As

mentioned previously, migration scheme 2 replaces faulty individual(s) with the fittest fault-

free one within the same neighbourhood. Therefore, this scheme saves time needed to search

other neighbourhoods as well as provides high selection intensity leading to reduce the

number of generations required to find desired solutions. However, problems with higher

complexities such as fLang and fSLE need more diversity which could be offered by reducing

the selection intensity. Therefore, due to the random selection of a fault-free neighbour to

replace faulty individual(s) migration scheme 3 is preferred for those problems in order to

improve the search success rate.

4.2.4 Conclusion

In this study, we proposed two new adaptive migration schemes in order to improve the

performance of the algorithm. Simulation results demonstrate that the new migration

schemes excelled in improving the efficiency, efficacy, and speed considerably, in particular

migration scheme 2, thereby enhancing the reliability of the algorithm, especially for high

rates of faults.

Besides being a mitigation technique, the integration of migration has played an

important role in controlling the exploration/exploitation trade-off. Exploration and

exploitation are the two main issues in enhancing the performance of evolutionary

algorithms. Population diversity is improved by exploring the search space, while the

optimum solution can be found by exploiting the fitness information. In this work, the best

overall performance in terms of efficiency, efficacy, and speed was achieved with migration

scheme 2 due to its effect in enhancing the local selection intensity and population diversity.

The grid topology (i.e., 3D grid) has also contributed to the effectiveness of the

algorithm. The vertical expansion of cells leads to shorter diameter and denser

neighbourhood compared to 2D grids with similar neighbourhood topology and equal

population size. Therefore, it can be concluded that for problems of high degree of

complexity, higher cellular dimensions could be beneficial.

 99

4.3 Dynamic Fault Tolerant 3D-cGA

This section presents a new Dynamic Fault-Tolerant 3D-cGA (Dynamic FT 3D-cGA) that is

based on the canonical cGA search model discussed earlier. In this study, the proposed

algorithm is a modified version of Fault-Tolerant 3D-cGAthe algorithm previously

proposed in Section 4.1. In order to improve the performance and reliability of Fault-

Tolerant 3D-cGA, new adaptive migration schemes were introduced in Section 4.2, while

this section introduces dynamic adaptation schemes to achieve further improvement. The

same test bench suite is used to test the performance of the Dynamic FT 3D-cGA. The suite

includes the Rastrigin (fRas), Ackley (fAck), Michalewicz (fMic), Langermann (fLang), FMS

(fFMS), SLE (fSLE), and GPS (fGPS) problems (fGPS was discussed in Section 4.2.2, while the

details of the remaining benchmark problems are provided in Appendix A). Furthermore,

different algorithm configurations are defined considering the introduction of migration and

two different dynamic adaptation schemes. The description of the algorithm, configurations,

and dynamic adaptation schemes are presented in Section 4.3.1. Section 4.3.2 discusses and

analyses the simulation results obtained with the various algorithm configurations.

Concluding remarks are given in Section 4.3.3.

4.3.1 Algorithm Configuration

As the proposed algorithm (i.e., Dynamic FT 3D-cGA) is an improved version of the FT 3D-

cGA, this section starts with a brief description of FT 3D-cGA (for more details refer to

Section 4.1). Next, a description of the dynamic features added is given. FT 3D-cGA

automatically isolates the faulty individuals and consists of three phases. In the first phase,

the changes in the genetic diversity of each individual is observed independently and

computed by running a cGA for a few generations. In the second phase (i.e., the isolation

phase), the faulty individuals are determined and isolated using genetic information from the

first phase. Finally, another cGA is run, until the termination criterion is satisfied, to solve

the given problem while excluding the faulty individuals from the process. In this study, the

Dynamic FT 3D-cGA follows the same first and second phases as in the FT 3D-cGA.

However, the difference resides in the third phase as it starts with a new derived value of

maximum number of generations (MaxGens) based on the ratio of faults encountered in the

preceding phase. The dynamic setting of MaxGens aims at balancing the number of

 100

evaluations due to the reduction in the number of individuals alive, and will be introduced

later in this section.

In Section 4.2 it has been concluded that the migration scheme 2 was the best. However,

in this section, the migration scheme 1 (was proposed in Section 4.1.2.3) is employed as the

main concern of this study is the influence of the dynamic mechanism on FT 3D-cGA. In

addition, the fault models considered and isolation criterion were proposed in Sections 4.1.1

and 4.1.2.2, respectively.

The local selection method defined in this study is the binary tournament selection (BT),

in which two random individuals are selected and the fittest individual wins the tournament.

The crucial role of the local selection method comes from its direct effect on the global

selection pressure. The selection pressure determines the convergence speed as well as

population diversity (Simoncini et al., 2007), and can be evaluated by monitoring the growth

of the best individual (by letting the selection be the only active operator) (Goldberg and

Deb, 1991). Figure 4.9 shows an average of 100 independent runs for the growth of the best

individual over a cubic grid against different fault rates, where the population size is 343 (7 ×

7 × 7).

0 10 20 30 40 50 60 70 80 90 100
0

50

100

150

200

250

300

350

Generations

G
ro

w
th

 n
um

be
r

of
 b

es
t

in
di

vi
du

al
s

0%

10%

20%
30%

40%

Figure 4.9. Growth curves of the best individual for various fault ratios using BT.

 101

As shown in Figure 4.9, the growth of the best individual without faults (0%) sharply

increases to conquer the whole population, thus promoting exploitation by increasing the

global selection intensity on the population. Although this exploitative behaviour may

improve the efficiency of the algorithm, a premature convergence may occur and negatively

affect the algorithm’s efficacy. Conversely, with faults, the behaviour tends to be more

explorative (see Figure 4.9). However, an explicit migration operator is defined in this

research not only to mitigate the impact of faults that occurred, but also to enhance the

exploration/exploitation trade-off, and thus improve the performance of the algorithm (Al-

Naqi et al., 2011a).

4.3.1.1 Dynamic Adaptation Schemes

This section presents two dynamic adaptation schemes: MaxGens1 and MaxGens2. The basic

idea is to adapt the value of MaxGens based on the fault ratio identified in the isolation

phase. In other words, the value of MaxGens is dynamically tuned at the start of the final

phase, and the initial value of MaxGens is manually set.

Figure 4.10. Fitness evaluations for various fault ratios. (a) 0% faults, (b) 10% faults, (c) 20% faults,
(d) 30% faults, (e) 40% faults.

 102

(a) Maximum number of generations (MaxGens) versus proportion of faults.

(b) Number of fitness evaluations versus proportion of faults.

Figure 4.11. MaxGens and fitness evaluations as a function of fault ratio for a population size of 343
individuals.

0 5 10 15 20 25 30 35 40
1000

1200

1400

1600

1800

2000

2200

2400

Proportion of Faults(%)

M
ax

im
um

 n
um

be
r

of
 g

en
er

at
io

ns

MaxGen2

MaxGen1

0 5 10 15 20 25 30 35 40
3.4

3.6

3.8

4

4.2

4.4

4.6

4.8

5
x 10

5

Proportion of faults (%)

N
um

be
r

of
 e

va
lu

at
io

ns

MaxGen2

MaxGen1

 103

Isolating faulty individuals reduces the number living, which reduces the virtual size of

the population. This thus minimises the chance of finding the optimum solutions, and

deteriorates the performance of the algorithm, especially when solving complex problems

(Cantu-Paz, 1995). For example, by assuming a population of 25 individuals and MaxGens

of 100, the number of fitness evolutions is 2500 for 0% faults, 2200 for 10% faults, and so

on (see Figure 4.10). Therefore, the value of MaxGens dynamically increases as a function of

fault ratio to offer a similar number of evaluations as with 0% faults (e.g., 125 generations

are needed for 20% faults (see Figure 4.10)).

The computation of the new MaxGens is shown in (4.5). The actual population size is

denoted by popSize, while the number of living individuals is indicated by aliveSize. The

initially defined maximum number of generations is indicated by gens.

()
.1 aliveSize

genspopSize
MaxGens

∗= (4.5)

In addition, we define a further increase in MaxGens to tackle added difficulties caused

by faults, although this leads to increased computation cost. Equation 4.6 describes this

situation, where Pfaults indicates the ratio of the faults.

() ().12 Pfaults
aliveSize

genspopSize
MaxGens +∗∗= (4.6)

Locally, the selection of a second parent is limited by the number of fault-free neighbours

of the current individual. The solutions provided by individuals surrounded by a considerable

number of faulty neighbours are less likely to be optimised, which introduces more difficulty

in search, particularly with high fault ratios.

Figure 4.11(a) shows the increment of MaxGens as a function of the fault ratio. For

example, if gens is 1000, MaxGens will be 1110, based on equation (4.5) and 1221, based on

equation (4.6) for 10% faults, and so on. From Figure 4.11(b), we see that the number of

evaluations is maintained for all fault ratios based on equation (4.5); thus, there is no added

computation cost. Based on equation (4.6), the number of evaluations increases in proportion

to the fault ratio (e.g., 10% for 10% faults, and so on).

 104

4.3.2 Experimental Results and Analysis

This section first introduces the parameters and performance metrics used in experiments.

Next, the results obtained for the FT 3D-cGA on the test suite described earlier are presented

and analysed. Then, the results obtained when solving all the problems using the Dynamic

FT 3D-cGA with both adaptation schemes are presented and analysed. Finally, a comparison

between the FT 3D-cGA and the Dynamic FT 3D-cGA with the best adaptation scheme is

provided.

Table 4.20 shows the parameters that were used in the experiment. For all the problems,

the same parameters were employed in order to achieve a fair comparison. A population size

of 343 individuals was used. These were arranged over a 7×7×7 lattice. As an exception, for

fGPS, a population of 125 individuals organised over a 5×5×5 lattice was used due to its low-

dimensional space (n = 3 for fGPS versus n = 10 for all other problems; except for fFMS as n =

6). The local neighbourhood contained seven individuals, which were positioned to the east,

west, vertical north and south, and horizontal north and south, plus the central one. The first

parent was the current individual, while the second parent was selected by using binary

tournament selection. An arithmetic crossover operator with a rate of Pc = 0.9 was applied to

generate an offspring. The offspring was mutated by a non-uniform mutation operator, with

rate Pm.

Table 4.20. Parameters used in the experiments
Population size: 343 individuals, 125 individuals for fGPS

Parent selection: Centre +BT

Recombination: AX, Pc = 0.9

Mutation: Non-uniform, Pm

Replacement: Replace-if-better

Neighbourhood: NEWS

Lattice: 7×7×7 (5×5×5 for fGPS)
Termination criterion: Average fitness value ≤ threshold (≥ threshold for fGPS)

Table 4.21. Convergence time (CT), rate (CR), and speed (SP)* for benchmark problems
when there were no faults

Performance
metrics Rasf Ackf Micf Langf FMSf SLEf GPSf

Average no. of
generations

266.29
± 47.00

914.94
± 428.5

153.78
± 34.00

262.42
± 36.00

294.65
± 74.0

59.83
± 9.5

23.87
± 6.5

Search success rate 100% 78% 100% 57% 63% 54% 100%

Average run times
(seconds)

0.71 4.71 1.34 4.80 49.27 0.81 0.09

* For more details about the performance measures, please refer to Section 2.2.3.1.

 105

A different value of Pm was assigned for each problem due to their different complexities:

Pm = 1/2L for fRas and fMic, Pm = 1/10L for fSLE, and Pm = 1/L for other problems; L is the

length of the chromosome. The replacement policy defined was replace-if-better, during

which the current individual was replaced if its competitor (offspring) was fitter. The

migration parameters used were previously described in Section 4.1.2.3. Finally, the

algorithm terminated if the average-fitness-value satisfied a predefined threshold. A different

threshold was defined for each problem: ≥ 0.997 for fGPS, ≤ 1e−4 for fSLE, ≤ 2e−4 for fAck, ≤

1.89e−2 for fMic, and ≤ 5e−5 for other problems*.

In addition, for each problem, the assigned value of the initial maximum number of

generations was 150 generations for fGPS, 700 generations for fLang and fMic, 1000 generations

for fRas, fFMS, and fSLE, and 2000 generations for fAck
†.

Similar ratios and fault patterns were injected for each algorithm and problem. The

performance of the algorithms was measured using three metrics: the search success rate

(i.e., the efficacy), the average number of generations (i.e., the efficiency), and the average

execution times of 100 independent runs.

Tables 4.22–4.27 present the results obtained for the FT 3D-cGA and the Dynamic FT

3D-cGA. Each algorithm was tested with and without the employment of the migration

technique introduced earlier to investigate the effectiveness of the migration. Furthermore, to

show the robustness of the algorithms, the median absolute deviations, mad, was added to

the results obtained (mad is used due to the non-normal distribution of the results obtained).

The best results achieved for each fault ratio are marked in bold. Significant improvement is

indicated by a plus sign (+), while a non-significant difference is denoted by a dot (•)

(details about the statistical tests were provided in Section 2.2.3.1). Furthermore, the results

obtained when there were no faults are shown in Table 4.21, taking into account the fact that

the migration operator and the adaptation scheme are inactive in the absence of faults.

4.3.2.1 Fault-Tolerant 3D-cGA

This subsection discusses and compares the results obtained for the FT 3D-cGA with and

without migration when solving the problems of the test suite.

Tables 4.22–4.24 depict the results obtained. In general, FT 3D-cGA showed its ability

and successfully solved different problems with up to 40% faults, especially when it was

* These thresholds were obtained by carrying out preliminary experiments which aimed to identify a single threshold for each
problem that results in the most desirable overall performance.
† Similarly, the number of generations for each problem was chosen to provide the most appropriate trade-off between
algorithm performance and time constraints.

 106

combined with the migration technique. Further, the introduction of migration provided

significant improvements in terms of all performance metrics considered.

As can be seen from Table 4.22, the efficiency of the algorithm significantly improved

with the migration to reach up to 74% for all real-world problems and most of the test

functions (see test results), except for fAck. Complex problems require high diversity levels to

achieve reliability.

Table 4.22. Convergence time (CT)* obtained for FT 3D-cGA with/without migration

Algorithms
Problem/
Fault ratio Rasf Ackf Micf Langf FMSf SLEf GPSf

10%
366.9
± 49.5

1246.4
± 322.0

215.96
± 34.0

399.60
± 53.5

348.10
± 71.5

89.24
± 10.0

40.49
± 8.0

20%
591.66
± 78.0

1343.0
± 303.0

363.86
± 62.0

540.79
± 85.0

636.82
± 137.0

187.15
± 35.0

67.88
± 12.0

30%
738.5
± 95.0

1412.3
± 183.5

466.41
± 56.0

621.25
± 41.5

723.30
± 122.0

308.73
± 88.0

89.43
± 3.0

Fault-
tolerant
3D-cGA
Without

migration

40%
-

± 0.00
-

± 0.00
-

± 0.00
-

± 0.00
-

± 0.00
-

± 0.00
-

± 0.00

10% 304.58
± 51.0

1269.0
± 341.0

175.39
± 35.5

304.51
± 63.0

319.80
± 94.5

64.75
± 12.0

29.80
± 6.0

20% 353.98
± 48.5

1426.6
± 234.0

202.8
± 44.0

340.78
± 66.0

352.89
± 85.0

74.89
± 19.0

40.48
± 8.0

30% 424.26
± 49.0

1576.7
± 170.0

222.08
± 46.5

419.89
± 64.0

359.66
± 114.0

79.91
± 9.0

47.45
± 9.0

Fault-
tolerant
3D-cGA

With
migration

40% 490.89
± 55.5

1642.8
± 166.5

289.98
± 59.0

435.79
± 49.0

492.30
± 185.0

152.60
± 31.0

48.78
± 9.5

Tests + •••• + + + + +

Table 4.23. Convergence rate−CR* (%) obtained for FT 3D-cGA with/without migration

Algorithms
Problem/
Fault ratio Rasf Ackf Micf Langf FMSf SLEf GPSf

10% 100 60 100 46 58 33 99

20% 90 23 99 34 51 26 96

30% 83 8 95 12 47 15 16

Fault-
tolerant 3D-

cGA
Without

migration 40% 0 0 0 0 0 0 0

10% 100(.) 66(.) 100(.) 45(.) 62(.) 24(.) 100(.)
20% 100(+) 45(+) 100(.) 33(.) 56(.) 19(.) 99(.)
30% 100(+) 33(+) 100(+) 29(+) 53(.) 12(.) 96(+)

Fault-
tolerant 3D-

cGA
With

migration 40% 100(+) 12(+) 100(+) 15(+) 43(+) 5(+) 94(+)

Table 4.24. Speed−SP* (seconds) obtained for FT 3D-cGA with/without migration

Algorithms
Problem/
Fault ratio Rasf Ackf Micf Langf FMSf SLEf GPSf

10% 0.88 6.35 1.56 5.42 50.59 1.09 0.110

20% 1.36 6.45 2.12 6.00 58.11 1.20 0.137

30% 1.52 6.41 2.43 5.52 75.4 1.31 0.156

Fault-tolerant
3D-cGA
Without

migration 40% - - - - - - -

10% 0.86 6.35 1.44 5.20 44.53 1.48 0.104
20% 1.14 7.50 1.55 5.80 51.81 2.20 0.114
30% 1.32 7.46 1.58 5.40 59.21 2.04 0.120

Fault-tolerant
3D-cGA

With
Migration

40% 1.50 7.81 1.85 5.40 61.05 2.26 0.125

* For more details about the performance measures, please refer to Section 2.2.3.1.

 107

The increase in fault ratio promotes exploitation by lowering the diversity level due to the

isolated individuals; thus, the reliability of the algorithm is deteriorated. For example, the

search success rates obtained without migration when solving fAck were very low, particularly

for 20% faults and above. On the other hand, the introduction of migration enhanced

diversity as the migrant individuals replaced the isolated (faulty) ones, which significantly

increased the search success rates. The significant differences between the search success

rates obtained with and without migration justify the lower number of generations achieved

without migration when solving fAck. Overall, the migration assists in obtaining robustness of

the algorithm (see mad values), especially for 20% faults and above; with the exceptions

being as a result of the very low search success rates obtained when the migration was not

employed.

Table 4.23 shows the search success rates obtained. In general, it can be seen that FT 3D-

cGA with migration obtained higher search success rates for all test functions and most real-

world problems, reaching up to 100%. However, an exception was for fSLE, where a decline

in the search success rates is observed for up to 30% faults. Nevertheless, this deterioration is

not significant (see test results). For 40% faults, a significant improvement in the search

success rate was achieved, although the rate obtained was very low (5%).

The average execution times are shown in Table 4.24. For most of the problems,

employment of the migration technique led to speeding up of the execution time, reaching up

to 35%. However, the most important exception was encountered when solving fSLE due to

low search success rate obtained. fSLE is a rather difficult problem and was extensively

affected by the faults that occurred. This fact induces a negative effect on the performance

and reliability of the algorithm.

In summary, the use of migration as a mitigation technique to achieve fault tolerance

added considerable improvements in terms of efficiency, efficacy, speed, and reliability of

the algorithm, especially for the high ratio of faults.

4.3.2.2 Dynamic Fault-Tolerant 3D-cGA

This subsection presents and analyses the results obtained for the Dynamic FT 3D-cGA

when solving the problems of the test suite. The proposed dynamic mechanism adapts the

permitted maximum number of generations to solve a given problem based on the number of

faulty individuals observed. The proposed algorithm was tested with and without migration,

as well as for each of the two adaptation schemes defined earlier, MaxGens1 and MaxGens2,

to explore the influence of migration and the increment in the number of fitness evaluations

 108

on the performance of the algorithm.

Dynamic FT 3D-cGA with MaxGens1

Tables 4.25–4.27 exhibit the results obtained. Generally, for all the problems, the

employment of the migration technique resulted in better efficiency with significant

differences (Table 4.25), except for fAck, as the improvement was not significant (see Test

results). The robustness and improvement rate of the efficiency increased together with the

increment in the fault ratio (see mad values). These improvements reached up to 42%

reduction in the number of generations, and most importantly, when similar search success

rates were obtained by both algorithm configurations. For example, when solving fMic for

20% faults, the average number of generations obtained was 340.92 without migration and

198.39 with migration, whereas a search success rate of 100% was obtained for both.

Considering the search success rate, with the use of migration, the algorithm was found to

obtain higher efficacy for most of the problems, except for fSLE (see Table 4.26). Although

migration enhanced the population diversity, the algorithm showed an exploitative behaviour

when solving fSLE as the search success rate deteriorated. Owing to the diverse characteristics

and complexities, different problems need different exploration/exportation degrees; fSLE is a

very complex problem. In addition, although the performance of the algorithm could be

improved by tuning the parameters to suit a particular problem, it is not our concern in this

study.

Table 4.25. Convergence time (CT)* obtained for Dynamic FT 3D-cGA with MaxGens1

Algorithms
Problem/
Fault ratio Rasf Ackf Micf Langf FMSf SLEf GPSf

10%
379.08
± 64.00

1468.32
± 413.0

202.89
± 28.50

364.43
± 45.00

409.15
± 86.00

104.90
± 25.00

38.82
± 7.00

20%
631.63
± 97.00

1787.13
± 359.0

340.92
± 45.00

567.23
± 83.00

606.58
± 138.0

176.38
± 40.00

58.39
± 6.00

30%
812.32
± 104.5

2180.14
± 302.5

476.36
± 66.00

718.17
± 82.00

777.31
± 159.0

249.6
± 35.50

83.26
± 5.00

Dynamic
Fault-

tolerant
3D-cGA
Without

migration
40% - -

1053.0
± 00.00

679.00
± 00.00

1289.42
± 146.5

332.00
± 00.00

-

10% 317.00
± 59.00

1406.98
± 278.0

166.30
± 33.00

299.80
± 65.00

339.79
± 101.0

78.51
± 18.00

30.10
± 6.00

20% 340.29
± 53.00

1720.50
± 384.0

198.39
± 37.50

341.04
± 58.00

318.52
± 81.00

71.68
± 14.00

38.81
± 6.00

30% 415.33
± 64.50

2013.64
± 429.0

246.30
± 42.00

387.26
± 76.50

429.0
± 132.0

83.00
± 13.00

43.88
± 7.00

Dynamic
Fault-

tolerant
3D-cGA

With
migration

40% 502.82
± 66.00

2518.65
± 345.5

284.80
± 67.50

470.12
± 66.50

502.76
± 151.0

138.00
± 00.00

49.70
± 11.50

Tests + •••• + + + + +
* For more details about the performance measures, please refer to Section 2.2.3.1.

 109

Table 4.26. Convergence rate−CR* (%) obtained for Dynamic FT 3D-cGA with MaxGens1

Algorithms
Problem/
Fault ratio Rasf Ackf Micf Langf FMSf SLEf GPSf

10% 100 55 100 48 58 33 89

20% 93 43 100 39 51 21 66

30% 92 20 98 29 55 14 19

Dynamic
Fault-tolerant 3D-

cGA
Without migration 40% 0 0 1 1 18 1 0

10% 100(.) 70(+) 100(.) 51(.) 64 25(.) 95(.)
20% 100(+) 64(+) 100(.) 41(.) 53 19(.) 95(+)
30% 100(+) 65(+) 100(.) 30(.) 56 11(.) 95(+)

Dynamic
Fault-tolerant 3D-

cGA
With migration

40% 100(+) 52(+) 100(+) 16(+) 43 1(.) 94(+)

Table 4.27. Speed−SP* (seconds) obtained for Dynamic FT 3D-cGA with MaxGens1

Algorithms
Problem/
Fault ratio Rasf Ackf Micf Langf FMSf SLEf GPSf

10% 0.91 6.90 1.52 5.33 54.68 1.16 0.115

20% 1.49 7.75 2.21 6.49 59.90 1.46 0.133

30% 1.69 8.73 2.53 6.81 65.55 1.71 0.151

Dynamic Fault-
tolerant 3D-cGA

Without
migration

40% - - 5.07 7.55 81.42 2.33 -

10% 0.89 6.85 1.40 5.16 51.68 1.58 0.106
20% 1.02 8.22 1.55 5.86 60.29 2.12 0.118
30% 1.28 9.35 1.71 5.95 64.78 2.79 0.188

Dynamic Fault-
tolerant 3D-cGA

With
migration

40% 1.52 10.90 1.87 7.71 63.35 3.92 0.421

Table 4.27 shows the average execution times. In general, for most of the problems, a

faster speed was achieved with migration, except for fAck and fSLE. Although the migration

reduced the average number of generations, the average execution times needed by the

algorithm to solve fAck was slightly increased to reach up to 6%. Furthermore, the average

execution times needed to solve fSLE was significantly increased to reach up to 40%. This

behaviour is due to the difficult search incurred when solving complex problems, especially

for high fault ratios.

Dynamic FT 3D-cGA with MaxGens2

Tables 4.28–4.30 show the results obtained. It should be noted that the algorithm shows

similar behaviour as with MaxGens1 in terms of efficiency, efficacy, and speed. In summary,

with migration, the algorithm shows significantly better efficiency and stronger robustness

for all problems (Table 4.28), as well as higher search success rates (Table 4.29).

Additionally, considerable improvement in terms of speed is achieved due to the migration

(Table 4.30).

A difference in the algorithm’s behaviour was observed when solving fAck, as the search

success rate obtained increased marginally when the fault ratio also increased. This odd

* For more details about the performance measures, please refer to Section 2.2.3.1.

 110

behaviour is due to the increase in the number of fitness evaluations, i.e., the initial

maximum number of generations defined is not the best to solve this problem. Thus, the new

MaxGens2 calculated improves the search success rates by offering more fitness evaluations.

This confirms that fAck needs more exploration, which can be promoted by offering more

generations. However, we continued with the initial maximum number of generations

defined (2000 generations for fAck) to test the algorithm, as time was a critical factor.

Table 4.28. Convergence time (CT)* obtained for Dynamic FT 3D-cGA with MaxGens2
Algorithms

Problem/
Fault ratio Rasf Ackf Micf Langf FMSf SLEf GPSf

10%
397.14
± 66.0

1328.7
± 456.5

220.55
± 32.5

380.19
± 73.0

382.14
± 72.0

96.62
± 22.0

40.02
± 7.0

20%
694.17
± 148.0

1933.2
± 495.0

340.98
± 57.0

625.93
± 110.5

581.73
± 123.0

181.83
± 33.0

69.54
± 9.0

30%
898.92
± 153.5

2523.9
± 907.0

468.95
± 70.5

764.27
± 140.5

852.33
± 169.5

219.07
± 37.0

111.52
± 13.0

Dynamic
Fault-

tolerant
3D-cGA
Without

migration
40%

977.00
± 0.0

-
± 0.0

1264.4
± 115.0

-
± 0.0

1670.7
± 282.0

1649.0
± 0.0

162.19
± 13.0

10% 294.17
± 37.5

1430.2
± 431.5

175.63
± 40.0

301.15
± 51.0

309.50
± 21.00

69.87
± 13.0

31.24
± 6.5

20% 339.45
± 52.5

1914.4
± 440.0

191.36
± 35.0

326.20
± 60.5

427.40
± 139.0

66.31
± 10.0

39.38
± 7.0

30% 414.00
± 62.5

2348.2
± 460.5

227.75
± 42.5

404.47
± 74.5

447.27
± 118.5

99.33
± 16.0

41.36
± 7.0

Dynamic
Fault-

tolerant
3D-cGA

With
migration

40% 499.11
± 37.5

3028.6
± 448.5

294.82
± 56.0

485.95
± 55.5

646.04
± 193.0

162.00
± 0.0

52.04
± 10.0

Tests + •••• + + + + +

Table 4.29. Convergence rate−CR* (%) obtained for Dynamic FT 3D-cGA with MaxGens2

Algorithms
Problem/
Fault ratio Rasf Ackf Micf Langf FMSf SLEf GPSf

10% 100 64 100 51 63 45 91

20% 97 57 100 46 60 25 87

30% 95 44 100 36 54 13 71

Dynamic
Fault-tolerant 3D-

cGA
Without migration 40% 1 0 33 0 38 1 56

10% 100(.) 78(+) 100(.) 51(.) 65(.) 31(−−−−) 100(+)
20% 100(.) 79(+) 100(.) 48(.) 55(.) 19(.) 100(+)
30% 100(+) 82(+) 100(.) 40(.) 55(.) 6(.) 99(+)

Dynamic
Fault-tolerant 3D-

cGA
With migration

40% 100(+) 84(+) 100(+) 20(+) 46(.) 1(.) 99(+)

Table 4.30. Speed−SP* (seconds) obtained for Dynamic FT 3D-cGA with MaxGens2

Algorithms
Problem/
Fault ratio Rasf Ackf Micf Langf FMSf SLEf GPSf

10% 0.97 6.50 1.58 5.63 51.51 1.06 0.11

20% 1.58 8.23 2.05 7.23 63.09 1.65 0.14

30% 1.91 10.08 2.41 8.07 79.30 2.25 0.17

Dynamic Fault-
tolerant 3D-cGA

Without
migration

40% 3.93 - 6.10 - 105.4 2.94 0.20

10% 0.89 6.73 1.43 5.77 68.60 1.46 0.105
20% 1.08 8.94 1.59 6.40 87.02 2.64 0.113
30% 1.31 10.72 1.60 7.73 62.46 3.93 0.114

Dynamic Fault-
tolerant 3D-cGA

With
migration 40% 1.51 12.94 1.85 10.51 77.56 5.14 0.126

* For more details about the performance measures, please refer to Section 2.2.3.1.

 111

Table 4.31. Comparison of MaxGens2 versus MaxGens1 in terms of convergence time (CT)
and rate (CR)*

Problem
Without

migration
With

migration

Rasf •, • •, •

Ackf •, + •, +

Micf •, • •, •

Langf •, • •, •

FMSf •, • •, •

SLEf •, • •, •

GPSf •, + •, +

* For more details about the performance measures, please refer to Section 2.2.3.1.

Let us now proceed to compare the two adaptation schemes discussed earlier (see Table

4.31). The aim of this comparison is to show the influence of increasing the number of

fitness evaluations, when the number of faults increases, on the performance of the

algorithm, in particular, the efficiency and efficacy. The speed follows similar behaviour

pattern as the efficiency.

Although the initial expectation is that better efficiency and speed is achieved with

MaxGens1, this is not always the case. The main cause of this surprising behaviour is the

existence of faults, which added more difficulty to the search, and thus more generations and

time were needed to determine the desired solutions. From the above Tables, generally better

efficiency and speed were achieved with MaxGens1 for most of the problems; however, the

differences were not significant (non-significant differences are indicated by the symbol ‘•’

in Table 4.31). Higher search success rates were obtained with MaxGens2, with differences

that were not significant for most of the problems. However, for fAck and fGPS, the

improvement in the efficacies was significant, with and without the use of migration

(significant differences are indicated by the symbol ‘+’ in Table 4.31).

In summary, the Dynamic FT 3D-cGA showed its ability to solve different problems for

up to 40% faults, and significant improvements in the performance of the algorithm were

achieved, especially with migration. The computational cost of increasing the number of

fitness evaluations was not significant, whereas significant improvements in the efficacy

were achieved for some of the problems. At this point, we can state that the best performance

was obtained with MaxGens2, and accordingly, we continued our analysis based on this

scheme.

 112

4.3.2.3 Dynamic FT 3D-cGA vs. FT 3D-cGA

This subsection compares Dynamic FT 3D-cGA based on MaxGens2 with FT 3D-cGA. The

subsequent paragraphs discuss the behaviour in terms of genetic diversity for both the

algorithms.

To simplify the comparison and to reach an accurate conclusion, the two algorithms were

compared according to statistically significant differences, and the rankings of the algorithms

in terms of efficiency, efficacy, and speed. Table 4.32 illustrates the statistically significant

differences between Dynamic FT 3D-cGA based on MaxGens2 and FT 3D-cGA in terms of

efficiency and efficacy. For example, solving Rasf without migration by both algorithms

shows no significant difference in terms of average number of generations (indicated by the

symbol ‘•’ in the middle Column of Table 4.32), while a significant difference is obtained

when considering the search success rate (indicated by the symbol ‘+’ in the middle Column

of Table 4.32). Tables 4.33–4.35 show the rankings of the algorithms in terms of the average

number of generations needed to find the solutions, search success rates, and average

execution times, respectively. Each problem is independently ranked, and these local

rankings are shown in Columns 2–8. The global ranking is shown in the last column, which

is determined based on the summation of the local rankings (Column 9) to identify the best

algorithm for all the problems in terms of each performance metric. For each fault ratio, the

local ranking is determined by adding the positions of the algorithms according to the results

obtained based on each performance metric, and the highest rank (lowest value) is assigned

to the one with the minimum summation value. For example, when solving fRas, the best

efficiency is achieved by the Dynamic Fault-Tolerant 3D-cGA with migration, while the best

speed is achieved by the FT 3D-cGA with migration; and the best efficacy is achieved by

both algorithms, because they have similar ranks. In this work, the details of the local

ranking are omitted and only the final ranks are shown.

Although the numbers of fitness evaluations were dissimilar for both the algorithms, we

continued to compare them based on the average number of generations. The aim behind this

consideration was to show how the increment in the maximum number of generations would

influence the efficiency of the algorithm, and its effect when the migration technique is

introduced. As can be seen from Table 4.33, in general, the best efficiency was achieved by

FT 3D-cGA with migration, while Dynamic FT 3D-cGA with migration achieved the second

best efficiency. However, the differences were not significant, except for fAck (see Table

4.32). The best efficacy was achieved by the Dynamic Fault-Tolerant 3D-cGA with

 113

migration for most of the problems, except for fSLE. The second best efficacy was achieved

by the Fault-Tolerant 3D-cGA with migration (see Table 4.34), and the differences were not

significant. Hence, we can confirm the effectiveness of migration in improving algorithm

performance regardless of the difference in the number of fitness evaluations.

The integration between the Dynamic Fault-Tolerant 3D-cGA and the migration

technique significantly improved the performance of the algorithm as it offered better

exploration/exploitation trade-off. A further analysis of the behaviour of the algorithms is

provided later in this section.

With regard to the execution time, the Fault-Tolerant 3D-cGA, especially with migration,

significantly surpassed the Dynamic Fault-Tolerant 3D-cGA with/without migration (see

Table 4.35). Although the obvious reason for the deterioration in the speed of the algorithm

may have been thought to be the increase in the number of fitness evaluations, the distinct

search success rates obtained were the main reason. We note that integration of the migration

technique into the Dynamic Fault-Tolerant 3D-cGA failed to provide significant

improvements in the speed, when compared with the Fault-Tolerant 3D-cGA.

Table 4.32. Comparison of Dynamic FT 3D-cGA versus FT 3D cGA in terms of
convergence time (CT) and rate (CR)*

Problem
Without

migration
With

migration

Rasf •, + •, •

Ackf +, + +, +

Micf •, + •, •

Langf •, + •, •

FMSf •, + •, •

SLEf •, • •, •

GPSf •, + •, •

Table 4.33. Ranking of the algorithms based on efficiency (CT)*
Problem /
Algorithm Rasf Ackf Micf Langf

FMSf SLEf GPSf Sum Rank

FT 3D-cGA 3 1 3 3 3 4 3 20 3
FT 3D-cGA+ mig. 2 2 1 2 1 1 1 10 1
DFT 3D-cGA 4 4 4 4 3 3 3 25 4
DFT 3D-cGA+ mig. 1 3 2 1 2 2 1 12 2

* For more details about the performance measures, please refer to Section 2.2.3.1.

 114

Table 4.34. Ranking of the algorithms based on efficacy (CR)*

Problem /
Algorithm Rasf Ackf Micf Langf

FMSf SLEf GPSf Sum Rank

FT 3D-cGA 4 4 4 2 4 2 3 23 4
FT 3D-cGA+ mig. 1 2 1 2 3 3 2 14 2
DFT 3D-cGA 3 2 3 2 2 1 3 16 3
DFT 3D-cGA+ mig. 1 1 1 1 1 4 1 10 1

1 Efficacy is measured as the search rate of successful experiments (Convergence rate) out of 100 independent runs.

Table 4.35. Ranking of the algorithms based on speed (SP)*

Problem /
Algorithm Rasf Ackf Micf Langf

FMSf SLEf GPSf Sum Rank

FT 3D-cGA 3 1 3 2 2 1 3 15 2
FT 3D-cGA+ mig. 1 1 1 1 1 3 1 9 1
DFT 3D-cGA 4 3 4 4 4 1 4 24 4
DFT 3D-cGA+ mig. 2 4 2 3 3 4 1 19 3

To better demonstrate the behaviour of the algorithms and the effect on performance of

increasing the fault ratio, we focused on one problem from the test suite. The problem used

was fLang. When solving fLang for 10% faults, the results obtained for the Fault-Tolerant 3D-

cGA were 399.6 average generations, 46% search success rate, and 5.42 seconds average

execution times. For 20% faults, the results obtained were 540.79 average generations, 34%

search success rate, and 6.0 seconds average execution times. These showed a significant

deterioration in the performance of the algorithm due to the increase in the fault ratio.

However, when solving fLang for 10% faults using the Dynamic FT 3D-cGA, the average

number of generations was reduced to 380.19, the search success rate increased to 51%, and

the average execution times increased to 5.63 seconds. Consequently, we can confirm that

the increment in the number of generations can alleviate the search difficulty, despite the

increase in the time needed for the algorithm to converge (from 5.42s to 5.63s). The increase

in execution time normally results from the increase in the number of generations; however

in this case it may also refer to the variations in hit rate obtained (46% vs. 51%). For 20%

faults, the average number of generations increased to 625.93, despite the improvement in

the search success rate obtained (46%). The decline in the efficiency was resolved by

integrating the migration technique into the Dynamic Fault-Tolerant 3D-cGA; e.g., the

average number of generations decreased by 48% to reach 326.2 generations.

To summarise, in general, the Dynamic FT 3D-cGA improved algorithm reliability,

especially when it was combined with the migration technique, despite an increase in the

computation cost. Increasing the maximum number of generations was a critical factor in

increasing the probability of finding the desired solutions. However, offering more

* For more details about the performance measures, please refer to Section 2.2.3.1.

 115

generations alone was not enough due to the following reasons. First, more faults leading to

less individuals alive deteriorated the genetic diversity. Second, worse faults distribution

occurred for high fault ratios, and the worst case happened when a fault-free individual was

surrounded by faulty neighbours. Therefore, local enhancing was required, and the best and

simplest way that we came up with is to control the global selection pressure by employing

the migration technique.

fGPS was used as an example to show and understand the behaviour of the different

approaches and the influence of the migration technique by computing and plotting the

population’s diversity (genotypic entropy) as a function of generations. Figure 4.12(a) and

(b) show the average genotypic diversities obtained by the FT 3D-cGA without and with

migration, respectively; while the average genotypic diversities obtained by the Dynamic FT

3D-cGA without and with migration are shown in Figure 4.13(a) and (b), respectively. As

can be seen from Figure 4.12(a), the population diversity increased significantly as the fault

ratio increased, and this behaviour shows how the search difficulty dramatically increased

leading to an increase in the number of generations, reduction in search success rate, and

increase in execution time. It can be noted that for 40% faults, the population diversity trend

was almost steady over all the allowed number of generations (see Fig. 4.12(a)) due to the

difficulty in the convergence ability for high fault ratio. This tendency led to the sharp drop

in the search success rate. For instance, for 40% faults, the search success rate obtained when

solving not only fGPS, but also all the other problems, was 0%.

Figure 4.12(b) shows the effect of introducing the migration on the population’s diversity

and thus the performance of the algorithm. The migration technique significantly enhanced

the ability of the algorithm to converge, leading to a considerable reduction in the number of

generations. Nevertheless, a main observation is the ability of the algorithm to converge for

40% faults; e.g., for fGPS, the search success rate obtained increased significantly to 94%.

However, the efficiency deteriorated as the algorithm started to converge at a late stage. For

example, the algorithm convergence began at generation 80 (see the diversity trend in Fig.

4.12(b)).

As mentioned earlier, the main reason for increasing the number of generations is to

increase the reliability of the algorithm. Figure 4.12(b) provides a clearer illustration in this

regard, specifically the diversity trend for 40% faults. It can be seen that the diversity level at

the last generation is still too high, despite the ability of the algorithm to converge. Hence,

the increase in the maximum number of generations, in-line with fault ratio, is intended to

deal with this issue.

 116

The diversity obtained for the Dynamic FT 3D-cGA without migration is shown in Figure

4.13(a). As can be seen, the diversity trends could approach almost zero for all fault ratios

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

Generations

A
ve

ra
ge

 D
iv

rs
ity

0%

10%

20%
30%

40%

(a) Without migration.

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

Generations

A
ve

ra
ge

 D
iv

rs
ity

0%

10%

20%
30%

40%

(b) With migration.

Figure 4.12. The average genotypic diversities obtained by FT 3D-cGA when solving fGPS for each
fault ratio.

 117

0 20 40 60 80 100 120 140 160 180 200
0

5

10

15

20

25

Generations

A
ve

ra
ge

 D
iv

rs
ity

0%

10%

20%
30%

40%

(a) Without migration

0 20 40 60 80 100 120 140 160 180
0

5

10

15

20

25

Generations

A
ve

ra
ge

 D
iv

rs
ity

0%

10%

20%
30%

40%

(b) With migration

Figure 4.13. The average genotypic diversities obtained by Dynamic FT 3D-cGA when solving fGPS
for each fault ratio.

considered; however, the efficiency of the algorithm deteriorated slightly due to the

increased number of generations offered. As expected, although this approach significantly

outperformed the FT 3D-cGA without migration, it was still worse than the FT 3D-cGA with

migration (e.g., the results obtained by the dynamic algorithm were 162.19 generations and

56% search success rate, while those obtained by the latter were 48.78 average generations

and 94% search success rate). The increase only in the number of generations promoted

 118

more exploration, which in turn affected the quality of the solutions. Consequently, it could

not greatly add benefits due to the search difficulty induced by the faults. This observation

confirmed the need and the importance of employing a mitigation technique, especially in

the presence of faults.

The influence of combining the migration technique with the Dynamic FT 3D-cGA on

the population’s diversity is demonstrated in Figure 4.13(b). Commonly, the migration

enhances diversity by promoting more exploration; however, in this study, the migration

promotes the exploitation because it aims at enhancing the local selection intensity through

substituting fault-free individuals for the isolated ones. In other words, the size of the

neighbourhood is preserved leading to maintain the local selection intensity. Consequently,

this combination shows a balance between the exploration offered by increasing the number

of generations and the exploitation offered through migration. The effect of this balance can

be seen by comparing Figure 4.13(a) with 4.13(b) as the number of generations needed by

the algorithm to converge was significantly reduced while alleviating the premature

convergence. For instance, for 40% faults, the search success rate obtained was 99% within

an average of 52.04 generations and 0.126 seconds, while a search success rate of 56%

within an average of 162.19 generations and 0.2 seconds was obtained without migration.

4.3.3 Conclusion

This study proposed a new algorithm, the Dynamic FT 3D-cGA, for handling failures that

occurred at individuals’ phenotypes due to SEUs in particular. The algorithm is based on the

canonical model of cGAs and is a modified version of the past approach (FT 3D-cGA) that

uses genetic diversity to identify and isolate faulty individuals. The most critical fault model

was tackled in conjunction with different fault ratios.

Our main motivation for this study was to improve the reliability and performance of the

FT 3D-cGA through dynamic control of the exploration/exploitation trade-off. The dynamic

calculation of MaxGens based on fault ratio encountered helped to enhance the exploration.

On the other hand, the exploitation was enhanced through the use of the proposed migration

technique.

To illustrate the improvements achieved, the Dynamic FT 3D-cGA was compared with

the FT 3D-cGA in terms of efficiency, efficacy, and speed. Both the algorithms

demonstrated successful recovery of up to 40% faults, especially when the migration

technique was employed. Thus, we can confirm that the use of migration as a mitigation

technique to fault tolerance offers considerable improvements in the efficiency, efficacy,

 119

speed, and reliability of the algorithms, especially for the high ratio of faults.

Besides being a mitigation technique, the integration of migration into both algorithms

plays an important role in controlling exploration/exploitation trade-off. Exploration and

exploitation are the two main issues that determine the performance of EAs. The population

diversity is improved by exploring the search space, while the optimum solution could be

found by exploiting the fitness information. In this work, the best overall performance in

terms of efficiency, efficacy, and speed was achieved with the use of the migration technique

owing to its effect in enhancing the local selection intensity and diversity in proportion.

In conclusion, we note that the FT 3D-cGA and Dynamic FT 3D-cGA with migration

showed the best performance, and the differences between the results obtained by both

algorithms were not significant. An exception was for fAck, in which case the Dynamic FT

3D-cGA with migration significantly outperformed the FT 3D-cGA with migration mainly in

terms of efficacy and reliability. The best efficiency (or the minimum number of

generations) was achieved by the FT 3D-cGA with migration; however, the lower number of

generations was found to be due to the significant difference in the obtained search success

rate. For example, solving fAck by FT 3D-cGA with migration resulted in average number of

generations and search success rate as follows: 1269 (66%), 1426.6 (45%), 1576.7 (33%),

1642.8 (12%) for 10%, 20%, 30%, and 40% faults, respectively (refer to Tables 4.22 and

4.23). In contrast, solving the same problem by the Dynamic FT 3D-cGA with migration

resulted in 1460.2 (78%), 1914.4 (79%), 2348.2 (82%), and 3028.6 (84%) for 10%, 20%,

30%, and 40% faults, respectively (refer to Tables 4.28 and 4.29). From the previous

example it can be noticed that for all fault rates the number of generations obtained by FT

3D-cGA with migration were significantly lower than those obtained by the Dynamic FT

3D-cGA with migration. Conversely, when observing the hit rates obtained by the dynamic

algorithm, they found to be higher than those obtained by the static version, which explains

the difference in the obtained number of generations.

4.4 Summary and Contribution to Knowledge

This chapter aimed to propose a highly reliable cGA that is tolerant to failures, for SEUs in

particular. This research targeted fitness score registers due to the importance of the fitness

information in guiding the search process. Two critical fault models were consideredstuck

at ‘0’ and stuck at ‘1’ faults. The main objective was to propose an algorithm-based fault

tolerant algorithm using the inherent features of cGAs in order to deal with SEUs. Another

 120

objective was to improve the performance of the algorithm in order to effectively deal with

high fault ratios. The following points summarise what this study has contributed to

knowledge.

• The proposed FT 3D-cGA showed its ability to automatically identify and isolate

faulty cells based on genetic information such as genetic diversity. In addition, the

algorithm was successful in recovering up to 40% faults taking into consideration

the two most critical fault models (i.e., stuck at ‘0’ and stuck at ‘1’ faults). However,

the performance of the algorithm varied according to the fault model and the

problem to be solved.

• Different selection intensities were defined and assessed in order to improve the

performance of the algorithm. The different intensities came about by controlling the

selection rate r of the local selection, which is ST. The different selection pressures

showed different exploration/exploitation trade-offs, which in turn showed different

rates of improvements.

• An explicit migration technique was proposed and shown to not only mitigate the

impact of faults but also to improve the performance of the algorithm. The

technique’s main aim was to replace faulty individuals by fault-free ones, thereby

reducing the impact of faults. In addition, through migration, the genetic diversity

was enhanced, leading to improved algorithm performance.

• Several algorithm configurations concerning migration and selection intensity were

assessed. The best efficiency was achieved by the third configuration (ST, r = 0.0 +

Migration) for stuck at ‘0’ faults, while for stuck at ‘1’ faults the first configuration

(ST, r = 0.0 + noMigration) achieved the best efficiency. The best efficacy was

obtained by the fourth configuration (ST, r = 0.5 + Migration) for both fault models,

mainly due to the selection intensity provided with ST, r = 0.5. A rate of 0.5 was

selected as a way to enhance the genetic diversity and therefore promote more

exploration leading to improve the efficacy; however, the efficiency of the algorithm

was deteriorated.

 121

• Considering the most critical fault model (i.e., stuck at ‘1’ for fGPS and stuck at ‘0’

for the other problems), the combination of ST, r = 0.0 and migration showed

significant improvement mainly in the efficiency of the algorithm reaching to 35.9%.

The introduction of migration covered the loss of cells and therefore enhanced the

genetic diversity, while at the same time ST, r = 0.0 offered high selection pressure

leading to a reduction in the number of generations required to solve a problem.

Thus, this combination offered a better exploration/exploitation trade-off.

• Different migration schemes were proposed and measured to further improve the

performance of the algorithm, in particular for high fault ratios. The proposed

migration schemes were similar in their frequency and rates. However, the

difference resided in the source and/or the fitness of the migrants. Migration scheme

2, which used the fittest migrants within the current neighbourhood to replace the

faulty individuals, showed its ability to enhance the local selection intensity and

diversity in the population. Therefore, it achieved the best overall algorithm

performance in terms of efficiency, efficacy, and speed for both fault models.

• A dynamic fault tolerant approach (Dynamic FT 3D-cGA) was proposed and it

showed further improvements in the performance and the reliability of the algorithm.

Two dynamic adaptation schemes were introduced, the first scheme (MaxGens1)

aimed to balance the number of fitness evaluations due to the reduction in the

number of individuals alive. Therefore, this scheme used the number of faulty

individuals to recalculate the number of evaluations needed to solve a problem

effectively. The second scheme (MaxGens2) is similar to the first; however, this

scheme considered the impact of faults. Therefore, a further increase in the number

of evaluations was offered to tackle the added difficulty caused by faults.

• Several algorithm configurations concerning migration and dynamic adaptation were

defined and assessed. The dynamic calculation of the number of fitness evaluations

enhanced the exploration, while exploitation was enhanced by introducing

migration. The introduction of migration resulted in significant improvements, up to

66.7% in efficiency with MaxGens1 and 62% with MaxGens2, 100% in efficacy with

MaxGens1 and 99% with MaxGens2, and 32.4% in speed with MaxGens1 and 33.6%

with MaxGens2.

 122

• The proposed FT 3D-cGA was compared to the proposed Dynamic FT 3D-cGA with

and without migration. With migration, both approaches showed the best overall

performance with non-significant differences in the results obtained when solving

most of the problems. An exception was for fAck, as Dynamic FT 3D-cGA with

migration significantly outperformed FT 3D-cGA with migration in terms of

efficacy and reliability, while the latter achieved the best efficiency. However, this

less number of generations was found to be due to a significant difference in the

search success rate obtained.

 123

Chapter 5

Dynamic-Adaptive cGAs

Genetic search occupies an important position in evolutionary computation. The most

important issues in the evolution process of genetic search are exploration and exploitation

(Oei, Goldberg, and Chang, 1991). The aim of this chapter is to investigate the inherent

ability of cGAs in controlling the exploration/exploitation trade-off. Exploring the search

space enhances population diversity and helps with escaping local optima; which is provided

by the existence of overlapped neighbourhoods. At the same time, exploitation reduces

diversity by focusing on the fitter individuals inside each neighbourhood, which in turn

improves the quality of the solution. Improper balance between exploration and exploitation

leads to ineffective EA. Hence, proposing a new approach that dynamically balances

between exploration and exploitation is another aim of this chapter. The concepts of

exploration and exploitation are strongly related as an increase in one results in a

proportional decrease in the other. For example, increasing exploration (or genetic diversity)

decreases exploitation, and vice versa.

 In addition, the balance between exploration and exploitation is the key to determining

an algorithm’s behaviour and performance (Herrera and Lozano, 2000). Several studies have

been carried out to investigate and dynamically control this trade-off. One way of doing this

is to tune the relationship between the shape and/or size of the neighbourhood and the grid

(NGR) (Alba and Troya, 2000; Giacobini et al., 2005). Another way is through the use of

probabilistic selection mechanisms such as anisotropic, stochastic, and centric selections

(Simoncini et al., 2006; Simoncini et al., 2009). All the techniques cited are aimed at

controlling the global selection pressure as high selection pressure supports exploitation

while low selection pressure favours exploration (Sarma and De Jong, 1996).

 124

The selection pressure has a huge impact on the exploration/exploitation trade-off and

therefore algorithm performance. With high selection pressure, only the fittest individuals

survive and conquer the entire population, leading to reduction in convergence time.

However the quick convergence may lead to the algorithm becoming stuck in local optima.

On the other hand, low selection pressure weakens the influence of the fittest individuals on

the population, leading to algorithm divergence. A study showing the influence of the

selection pressure on the performance of cGAs was presented by Simoncini et al. (2007).

Ursem (2002) presented a diversity-guided approach (DGEA) to dynamically alternate

between exploration (mutation) and exploitation (recombination and selection). The diversity

measure used in this work is the distance-to-average-point. The DGEA was compared to

different evolutionary search models and showed outstanding improvement not only in

accuracy but also in algorithm efficiency.

Alba and Dorronsoro (2005), in their research proposed an adaptive cGA that controls the

exploration/exploitation trade-off through the interchange between three grid topologies:

square, rectangular, and narrow. These topologies were selected to present different ratios

(NGR) and thus different selection pressures. The convergence speed was used as feedback

to alternate between the exploration and exploitation phases. A shift to ‘explore’ mode

occurred if the convergence speed was too high. Conversely, a shift to ‘exploit’ mode

occurred if the convergence speed was too slow. The proposed algorithm outperformed the

other studied algorithms such as static and pre-programmed cGAs. In addition, it has been

concluded that narrow grids are well suited for multimodal and complex problems, while

wider grids are more appropriate for simple problems.

In a later study, Maeda and Li (2007) proposed a fuzzy adaptive approach that uses a

diversity measure to tune the genetic parameters of the island search model (dGA).

Simulation results showed the efficiency of the proposed algorithm.

From all the previous studies, it is believed to be more efficient to induce different levels

of exploration/exploitation trade-off in different timings of the search process. Therefore,

studies concerning the dynamic control of exploration/exploitation trade-off are increasingly

being conducted.

In this chapter, the main motivation is to design an effective algorithm that can

dynamically adapt to changes in the convergence speed through appropriate balancing

between exploring the search space and exploiting the good solutions. Two new adaptive

3D-cGAs that dynamically control exploitation/exploration trade-off are proposed (Al-Naqi

et al., 2010b; 2012). The first approach uses a probabilistic selection mechanism and

 125

gradually tunes the selection probability based on a population diversity measure (which will

be discussed in Section 5.2). In the second approach, the same metric used in the study of

Alba and Dorronsoro (2005), (population entropy) is used to guide the search process (this

will be discussed in Section 5.3). In addition, in order to validate and provide a thorough

study of the performance of the proposed algorithms, a comparison between the proposed

algorithms and other static and dynamic algorithms is provided in Section 5.4.

5.1 Study of Selection Pressure

Selection pressure is a critical factor that differentiates between the different EA search

models. Different parameters such as topology and/or size of the grid, shape and/or size of

the local neighbourhood, and the parameters of the genetic operators have an impact on the

global selection pressure. The global selection pressure determines the ability of the good

solutions to survive in the population. Therefore, the appropriate selection pressure should be

applied on the population in order to offer the best balance between exploring the search

space and exploiting good solutions. As mentioned earlier, one way to control the selection

pressure is through the use of appropriate selection parameters. Simoncini et al. (2007, 2009)

proposed new selection techniquesanisotropic and centric selectionsto appropriately

control the selection pressure. Moreover, in the former study, a stochastic binary tournament

(ST) selection was tested to show its ability to appropriately control the selection pressure. In

both studies, it was proven that the global selection pressure could be monitored by using

adequate selection parameters. In this work, the ST operator is selected as a local selection

method. Similar to the binary tournament (BT) selection, two individuals are randomly

selected and the best individual is assigned a probability of (1− r), while the worst one is

assigned a probability of r; where r ∈ [0 , 1]. ST is equivalent to BT when r = 0 as the best

solution is always favoured.

The selective pressure defines the convergence speed as well as population diversity, and

can be measured using growth curves and takeover time models. Takeover time is defined

as the time needed for the best solution to conquer the entire population. In other words, the

takeover time is reached when the growth number of the best individual is equal to the

population size (Simoncini et al., 2006). This technique is used to study the induced

selection pressure; therefore, to be used effectively the selection should be the only active

genetic operator (Goldberg and Deb, 1991). Figures 5.1 and 5.2 show an average of 100

 126

independent runs for the growth number of the best individual and takeover time,

respectively, for a cubic grid with a population size of 216 individuals arranged as 6×6×6.

In Figure 5.1, it can be observed that the increase in the selection rate r leads to slow

growth in the best individual. In other words, the opportunity for worse solutions to be

maintained in the population increases, offering more diversity and promoting more

exploration. As a result, it leads to weaker selection pressure and a longer takeover time (see

Figure 5.2). On the other hand, the global selection pressure is strengthened through the

decrease in the r value, promoting more exploitation.

Figure 5.1. The growth number of the best individual for different selection rates r.

Figure 5.2. The takeover time for different selection rates r.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

20

30

40

50

60

70

 r

T
ak

eo
ve

r
tim

e

0 10 20 30 40 50 60 70 80 90 100
0

50

100

150

200

250

Generations

N
um

be
 o

f
th

e
be

st
 in

di
vi

du
al

r=0.0
r=0.2

r=0.4

r=0.6

r=0.8
r=1.0

 127

5.2 Diversity-Guided 3D-cGA

This section presents a new adaptive gradual algorithm that is based on the 3D-cGA. The

main motivation for the proposed approach is to appropriately control the balance between

exploring the search space and exploiting the best solution. Based on diversity measure, the

proposed algorithm gradually tunes the selection pressure by modifying the genetic

parameters, specifically the selection rate r. The exploration/exploitation trade-off is a direct

effect of the selection pressure; in which there is no one appropriate pressure for all

problems. This approach will be compared to three algorithms with static genetic parameters

in turn to show and confirm the cases in which the adaptive approach surpasses the other

static ones. In order to reach valid conclusions, the algorithm is assessed using a benchmark

of six test functions and two real world problems that present variable complexities. They

are: Rastrigin (fRas), Schwefel (fSch), Rosenbrock (fRos), Ackley (fAck), Michalewicz (fMic),

Langermann (fLang), FMS (fFMS), and SLE (fSLE) problems (refer to Appendix A for details of

the benchmark problems). The algorithm description is presented in Section 5.2.1. Section

5.2.2 discusses and analyses the simulation results obtained by the Diversity-Guided 3D-

cGA and the three defined static algorithms. Concluding remarks are given in Section 5.2.3.

 5.2.1 Algorithm Configuration

This section introduces the Diversity-Guided 3D-cGA. As mentioned previously, the

approach proposed here tunes the selection rate r based on population diversity. In this study,

the employed grid topology is fixed in order to reduce computation overhead. This is unlike

the approach proposed in (Alba and Dorronsoro, 2005), in which the grid topology has to be

changed, leading to misshapen neighbourhood relations and therefore requiring the

computation of positions of new neighbours.

Before introducing the adaptive model, an explanation of some facts that lead to the

selection of the adaptive criterion is presented as follows. First, as the search process

progresses the population diversity decays to reach almost zero, in particular when a good

solution conquers the entire population. However, the diversity of the population could be

lost too quickly, leading the algorithm to get trapped into local optima. Second, although the

‘explore’ mode allows the algorithm to escape local optima, improvements in the solutions

only occur during the ‘exploit’ mode (Ursem, 2002). As a result, the proposed adaptive

criterion aims to reduce the convergence speed by gradually reducing the selection pressure

 128

as the search process progresses. The selection pressure is reduced by decreasing the

selection rate r, particularly when the computed average population diversities during the last

ten generations fall below a specified threshold. In order to calculate the population

diversity, the well-known ‘distance-to-average-point’ measure is employed (Ursem, 2002).

Algorithm 5.1 illustrates the adaptive model. The adaptive criterion is d < γ, where d is

the average population diversities of the last ten generations, and γ is the threshold.

Algorithm 5.1 Adaptive model of Diversity-Guided 3D-cGA
1. if γ<d then
2. if 0≠r then
3. Offer more exploitation1

4. end if;
5. else
6. Do not change
7. end if;

1 The exploitation is offered by decreasing the section rate r which in turn reduces the global selection pressure. Note that the

algorithm starts with r = 1.0.

The idea behind the introduced adaptive criterion is to offer adequate time to explore the

search space, which contributes to the discovery of promising areas and avoids local optima.

This is followed by gradual exploitation, which contributes to enhancing the solutions. This

gradual alteration reduces the possibilities of premature convergence. In the final stage, the

algorithm proceeds with the highest degree of exploitation (r = 0.0). Strong exploitation

makes the genetic search more effective, especially when solutions are near optimum. To

achieve the above objectives, the algorithm starts with the highest possible selection rate,

which is r = 1.0 (‘explore’ mode). This rate is then lowered when the adaptive criterion is

fulfilled. The selection rate is then decreased regularly in order to gradually introduce

exploitation until the lowest bound is reached, which is r = 0.0 (‘exploit’ mode).

5.2.2 Experimental Results and Analysis

In this section the results obtained by Diversity-Guided 3D-cGA and three configurations of

3D-cGA, each with different static selection rate, are presented and analysed. The same

parameters were used for all the considered problems (see Table 5.1). The population size

used here was 343 individuals arranged into a 7×7×7 lattice. The defined neighbourhood

contained seven individuals (east, west, vertical north and south, and horizontal north and

south, plus the one under consideration). The first parent was the current individual while the

second one was selected by ST with rate r. An arithmetic crossover operator with Pc = 0.9

 129

was applied to generate an offspring. The offspring was then mutated by a non-uniform

mutation operator, the best for real optimisation (Back, 1996), with a probability of Pm = 1/L,

where L is the dimension of a problem (i.e., the length of the chromosome). Although the

dimension of fFMS is six, the same mutation probability was used as with all the other

problems. A replace-if-better was used as a replacement policy, during which the current

individual was replaced if it competed with a better offspring. Finally, the algorithm ended

when the difference between the average fitness values (avgf) and the optimum fitness value

(optf) satisfied a specified threshold (±ε).

Table 5.1. Parameterization used in the algorithms

Population size: 343 individuals

Parent selection: Current + ST,r

Recombination: AX, Pc = 0.9

Mutation: Non-uniform, Pm = 1/L (L = individual length)

Replacement: Replace-if-better

Neighbourhood: NEWS

Lattice: 7×7×7
Stop criterion: |avgf − optf| ≤ ε

Since the complexity of the considered problems varied, different values of ε were used:

0.05 for fRos, 0.005 for fLang, 0.01 for fFMS, and 0.3 for fSLE; while a more precise ε value

(0.001) was applied for the remaining problems. Similarly, different numbers of maximum

generations were used: 1000 generations for fRas, fMic, fLang, and fSLE; 1500 generations for fSch;

and 2000 generations for fAck, fRos, and fFMS.

The performance of the algorithm was measured using two metrics, the search success

rate, or the efficacy, and the average number of generations, or the efficiency, of 100

independent experiments. Furthermore, in order to determine the significance level of the

differences in efficiencies obtained by the Diversity-Guided 3D-cGA and the static

algorithms, statistically significant tests, with 95% confidence level were applied (details

about the statistical tests were provided in Section 2.2.3.1).

The results are presented in Table 5.2, where the average number of generations and the

percentage of successful runs are shown for every problem and the best values are in bold.

The symbol ‘+’ in the Table indicates that the efficiency obtained by Diversity-Guided 3D-

cGA was significantly better than the one obtained by the corresponding algorithm, while

worse efficiency is indicated by the symbol ‘−’. The symbol ‘•’ denotes non-significant

 130

differences between the efficiencies obtained by the compared algorithms. Furthermore,

median absolute deviations (mad) are included after the symbol ‘±’.

The value of γ was selected based on preliminary experiments in which different γ values

(0.3, 0.35, 0.4, and 0.45) were tested. A value of γ = 0.4 was selected as the best one in terms

of efficiency and efficacy for most of the studied problems (in order to avoid reader

distraction the details are provided in Appendix B.2, Tables B.3 and B.4). Certainly, there is

no one best γ value for all problems, as pointed out by Alba and Dorronsoro (2005), who

also indicated that there is no global best algorithm for all problems.

In order to evaluate the Diversity-Guided 3D-cGA, it was compared to three 3D-cGAs

with static r. The first 3D-cGA used the lowest r bound (r = 0.0); while the third one used

the highest r bound (r = 1.0). The second static 3D-cGA used the mean value of r = 0.5.

As can be seen from Table 5.2, the best efficiencies to solve fRas, fSch, fMic, and fAck were

obtained by the 3D-cGA with r = 0.0 (with significant differences only for fSch and fMicsee

test results in Table 5.2). However, concerning similar efficacies the Diversity-Guided 3D-

cGA is more robust as it obtains smaller median absolute deviations; the exceptions are due

to the significant differences in the search success rates. In addition, using higher selection

rates to alleviate the exploitative behaviour of the 3D-cGA deteriorates the efficiency as well

as reduces the search success rates. The worst performance was achieved by the 3D-cGA

with r = 1.0 as it showed more explorative behaviour, which lacked the power to improve the

quality of the solutions.

Table 5.2. Convergence time (CT) and rate (CR)* obtained by the Diversity-Guided 3D-cGA
and 3D-cGAs with static r values

3D-cGA
Problem

0.0=r 5.0=r 0.1=r

Diversity-
Guided 3D-cGA

Rasf
611.14 ± 62.50 (•)

100%
717.61 ± 37.50 (+)

100%
866.31 ± 83.00 (+)

94%
641.72 ± 55.0

100%

Schf
1003.5 ± 181.5 (−)

100%
1089.8 ± 176.0 (−)

100%
1498.7 ± 1.000 (•)

3%
1209.9 ± 116.0

100%

Ackf
1848.1 ± 72.00 (•)

83%
1856.2 ± 62.00 (•)

54%
-

0%
1897.4 ± 52.0

83%

Rosf
1518.3 ± 124.5 (+)

10%
1763.1 ± 99.00 (+)

14%
1303.7 ± 309.0 (+)

15%
881.7 ± 636.5

50%

Micf
512.45 ± 46.50 (−)

100%
671.28 ± 70.00 (+)

100%
966.33 ± 3.000 (+)

3%
628.30 ± 43.0

100%

Langf 231.67 ± 20.50 (−)
70%

331.12 ± 39.00 (•)
83%

707.91 ± 67.00 (+)
95%

308.45 ± 14.5
96%

FMSf
1317.7 ± 259.5 (•)

74%
1360.5 ± 316.0 (•)

89%
1220.9 ± 261.0 (•)

47%
1294.7 ± 381.5

100%

SLEf
330.86 ± 51.00 (•)

15%
471.63 ± 68.00 (+)

33%
917.33 ± 35.50 (+)

12%
341.48 ± 35.0

39%
* For more details about the performance measures, please refer to Section 2.2.3.1.

 131

Regarding fRos and fFMS, the Diversity-Guided 3D-cGA outperformed the other static

algorithms based on the two metrics, with a significant difference in the efficiency for fRos

and a non-significant difference for fFMS. Concerning the static algorithms, although higher

values of r (i.e., r = 0.5 and r = 1.0) should result in a higher average number of generations,

fRos and fFMS showed exceptions. This was due to the exploration/exploitation trade-off

offered by the algorithm, as well as the problems geometry. More exploration improves both

the efficiency and efficacy of the algorithm when solving fRos, while only the algorithm

efficiency is improved when solving fFMS (remember that the best exploration/exploitation

trade-off is problem dependant).

Finally, concerning fLang and fSLE, the Diversity-Guided 3D-cGA significantly

outperformed the 3D-cGA with r = 0.5 and r = 1.0 in terms of both metrics, while it

considerably outperformed the static algorithms with r = 0.0 in terms of efficacy. This latter

improvement reached 24% when solving fSLE and 26% when solving fLang. Furthermore, the

Diversity-Guided 3D-cGA showed more robust behaviour although the difference in

efficiencies comparing to 3D-cGA with r = 0.0 is non-significant (see test results in Table

5.2).

Figure 5.3 shows the average genotypic diversity trends of 100 runs, which were obtained

by the Diversity-Guided 3D-cGA for the considered problems. From the figure, it is clearly

observed that the speed of the population diversity loss is differed between the considered

problems. These differences confirm that each problem introduces a different level of

difficulty to the search, which therefore requires different exploration/exploitation tradeoffs.

In addition, it can be seen from Figure 5.3 that problems with higher complexity level such

as fLang and fFMS, show two distinctive trends as the diversity level started with an increase

rather than a reduction. The difference between these trends is the speed of the diversity loss,

which started at later stages; for fLang the diversity level steeply decreases, while this

reduction is gentler for fFMS.

In general, 3D-cGA with r = 0.0 achieved the best efficiency (in 6 out of 8 problems),

while the Diversity-Guided 3D-cGA showed more robust behaviour. In addition, the

statistically significant results assert that the Diversity-Guided 3D-cGA is favoured for most

the problems. With respect to the efficacy of the algorithm, the Diversity-Guided 3D-cGA

obtained the best search success rates for all the studied problems. Hence, it can be

concluded that the Diversity-Guided 3D-cGA provides the best efficacy with adequate

computation cost (i.e., number of generations).

 132

0 200 400 600 800 1000 1200 1400
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Generations

A
ve

ra
g

D
iv

er
si

tie
s

f(Lang)

f(Ack)
f(FMS)

f(Mic)

f(Ras)

f(Ros)
f(Sch)

f(SLE)

Figure 5.3. Average genotypic diversities based on ‘Distance-to-average-point’ measure for the

Diversity-Guided 3D-cGA.

Furthermore, the Diversity-Guided 3D-cGA confirms the common belief referred to in

(Alba and Dorronsoro, 2005), which states that “a good optimisation algorithm must initially

seek promising regions, and then gradually search in neighbourhood of the best so far

points”. That is because the Diversity-Guided 3D-cGA starts with an ‘explore’ mode (i.e.,

low selection pressure) and then shifts to ‘exploit’ mode in an adaptive and gradual manner.

5.2.3 Conclusion

This section presented a new dynamic 3D-cGA, Diversity-Guided 3D-cGA, which uses

diversity measure to control the exploration/exploitation trade-off. The main idea behind the

adaptivity is to control and provide an appropriate balance between the exploration and the

exploitation for an algorithm. This goal is achieved by tuning a genetic parameter, which is

the rate of the local selection mechanism.

The Diversity-Guided 3D-cGA showed superior performance, mainly in terms of the

efficacy of the algorithm. In addition, the dynamic algorithm outperformed the static

approaches for most of the problems studied. The exceptions either did not have statistically

significant differences or showed more erratic behaviour (see mad values). Hence, in

 133

general, the proposed adaptive model could achieve a suitable balance between enhancing

population diversity (to escape local optimaefficacy) and tuning good solutions (to

improve solution qualityaccuracy).

5.3 Convergence-Speed-Guided 3D-cGA

This section proposes another adaptive algorithm that aims to control the

exploration/exploitation trade-off dynamically. The algorithm is designed based on 3D-cGAs

because of their high performance features. In this section, the methodology is based on the

change in the global selection pressure induced by dynamic tuning of the local selection rate.

The parameter tuning of the local selection method is a way to define the global selection

pressure. A diversity speed measure is used to guide the algorithm. This measure is adapted

from (Alba and Dorronsoro, 2005). A benchmark of well-known test functions and real

world problems was selected to investigate the effectiveness of the algorithm proposed. They

are: Rastrigin (fRas), Rosenbrock (fRos), Ackley (fAck), FMS (fFMS), SLE (fSLE), and GPS (fGPS)

problems (details about fGPS are provided in Section 4.2.2, while details about the other

problems are provided in Appendix A). In addition, in this Section a comparison between the

proposed algorithm and other static and dynamic algorithms are provided in order to study

the different effects on the performance of the algorithms.

Section 5.3.1 describes the configuration of the proposed algorithm as well as other static

and dynamic approaches, which are used in the comparison. The experimental parameters

and results are provided in Section 5.3.2, while Section 5.3.3 gives the conclusion.

5.3.1 Algorithm Configuration

In this section, three different static 3D-cGAs are first discussed; then they are evaluated

against the static algorithms proposed in (Alba and Dorronsoro, 2005). Following that, the

Convergence-Speed-Guided 3D-cGA is introduced and the similarities and differences

between the proposed algorithm and the dynamic-adaptive algorithm proposed in (Alba and

Dorronsoro, 2005) are outlined.

In previous discussion, the influence of using different selection rates on the behaviour of

the algorithm was observed (refer to Section 5.1). Furthermore, in order to investigate these

effects on the performance of the algorithm, first two groups of static algorithms consisting of

three distinct 3D-cGAs are described. The algorithms in the first group use different static

 134

selection rates while the algorithms in the second group use different static NGRs, in

particular, different grid shapes (Alba and Dorronsoro, 2005).

The local selection method used in the first algorithmic group is ST with r = 0.0, r = 0.7,

and r = 1.0; while the same grid and neighbourhood topologies are defined for all algorithms.

In contrast, for the second group, Alba and Dorronsoro (2005) defined three 2D-cGAs that

use different static NGRs, while the same selection method (BT) is used in all algorithms. In

order to carry out a fair comparison, these algorithms are implemented over 3D grid

topologies. The first algorithm works over a cubic grid topology arranged as 6 × 6 × 6 with an

NGR of 0.313. The second algorithm employs a rectangular cuboid arranged as 3 × 24 × 3

with an NGR of 0.129. Finally, a narrow cuboid grid arranged as 2 × 54 × 2 is used by the

third algorithm with an NGR of 0.059. The grid dimensions were chosen based on two

reasons: the first is to produce an equivalent population size of 216 for the different shapes

(i.e., narrow, rectangle, and square), and the second is to produce selection pressures similar

to those obtained by the algorithms in the first group. More discussion about the latter issue is

provided below.

The choice of the selection rates and NGRs above are made to offer the closest selection

pressure between the compared algorithms. As can be seen from Figure 5.4, the same growth

curve is obtained by the first algorithms in each group as they have similar parameters, most

importantly the cubic grid and selection intensity (as illustrated earlier, ST with r = 0.0 is

0 10 20 30 40 50 60 70 80 90 100
0

50

100

150

200

250

Generations

N
um

be
r

of
 t

he
 b

es
t

in
di

vi
du

al

6*6*6/ r=0.0

3*24*3

2*54*2
r=1.0

r=0.7

Figure 5.4. Growth number of the best individual with different grid shapes (6 × 6 × 6, 3 × 24 × 3, and

2 × 54 × 2) and selection rates (r = 0.0, r= 0.7, and r = 1.0).

 135

 (a) (b) (c)

Figure 5.5. Alternation between different ratios: (a) cubic (NGR = 0.313), (b) Rectangular cuboid
(NGR = 0.129), (c) narrow cuboid (NGR = 0.059).

equivalent to BT). In contrast, the growth curves obtained by the second and third algorithms

in each group are slightly different. For example, the takeover time (i.e., the point where both

curves started to stabilise) reached with different NGRs was two generations prior to the

algorithms with different selection rates. However, those curves are significantly different in

the way they change. For instance, the growth curves obtained with different topologies show

almost linear trends while the curves obtained with different selection rates are nonlinear.

As pointed out earlier, increasing r results in more exploration while more exploitation is

observed when r is decreased (refer to Figure 5.1). Hence, the proposed adaptive algorithm,

the Convergence-Speed-Guided 3D-cGA, tunes the value of r for a specific convergence

speed in order to control the exploration/exploitation trade-off.

A similar approach in determining the convergence speed is followed and the same

adaptive pattern is used as in (Alba and Dorronsoro, 2005). The only difference between the

dynamic-adaptive algorithm proposed in (Alba and Dorronsoro, 2005) and the proposed

Convergence-Speed-Guided 3D-cGA is in the way the exploration/exploitation trade-off is

controlled. Alba and Dorronsoro (2005) defined three different grid shapessquare,

rectangular, and narrowin order to alternate between the exploration and exploitation

modes on the basis of the convergence speed (remember that in this study these are

implemented over 3D grid topologies). Similar grid shapes are defined as in the static

algorithms discussed previously; the cubic grid is used to promote more exploitation while the

narrow cuboid grid is used to offer more exploration. A middle point between exploration and

exploitation is provided by the use of the rectangular cuboid grid (see Figure 5.5).

In contrast, the Convergence-Speed-Guided 3D-cGA alternates between different selection

rates, which are similar to the ones defined for the static algorithms. The exploitation is

promoted through r = 0.0, r = 0.7 presents the middle point, and r = 1.0 promotes the

exploration.

 136

The convergence speed is measured through the calculation of genotypic diversity, in

particular, the population entropy (Ht). Besides being an inexpensive metric, it efficiently

represents the state of the search (Alba and Dorronsoro, 2005). Ht is calculated as the average

values of the entropy of each gene in the population. Hence, the convergence speed is

determined by the difference in the population entropies of two successive generations

(1−∆−∆ tt HH , 1−−=∆ ttt HHH). If the difference decreases by a factor of ε, then the

convergence speed is fast; otherwise, the convergence speed is slow when the difference

increases by (1 − ε) (refer to (Alba and Dorronsoro, 2005) for more details).

The adaptive pattern defined is summarised in Algorithm 5.2 (Alba and Dorronsoro,

2005). According to the convergence speed, in order to promote more exploitation, the

proposed algorithm changes to the next lower r value (in (Alba and Dorronsoro, 2005), next

wider grid shape) while it changes to the next higher r value (in (Alba and Dorronsoro, 2005),

next narrower grid shape) to promote more exploration.

Algorithm 5.2 Dynamic adaptive pattern
1. if C1 then
2. Promote more exploitation; // change r to lower
value
3. else if C2 then
4. Promote more exploration; //change r to higher
value
5. else
6. No change;
7. end if;

C1 and C2 are the convergence speed measures such that C1 is satisfied when the

convergence speed is fast and C2 is satisfied when the convergence speed is slow. C1 and C2

are defined as follows (refer to (Alba and Dorronsoro, 2005) for more details):

.)2(

,)1(

12

11

−

−

∆⋅−∆≡
∆⋅+∆≡

tt

tt

HHC

HHC

ε
ε

f

p
 (5.1)

5.3.2 Experimental Results and Analysis

In this section, first the parameters and performance metrics used in the experiments are

presented. Next, the results obtained for the static and the dynamic 3D-cGAs proposed in the

previous section are presented and analysed. Finally, a comparison between the

 137

Convergence-Speed-Guided 3D-cGA and the other static and dynamic 3D-cGAs are

provided.

The same parameters are used during the experiment in order to arrive at a fair

comparison. Table 5.3 summarises these parameters. For all problems, a population size of

216 individuals is used. These are arranged over a 6×6×6 lattice. An exception is made for

fGPS, as a population size of 64 individuals organised over a 4×4×4 lattice is used because of

its lower complexity compared to the other problems.

The local neighbourhood defined contains seven individuals, which are positioned on the

east, west, vertical north and south, horizontal north and south, and the centre. The first

parent was the current individual while the second parent was selected by using ST with rate

r. An arithmetic crossover operator with probability Pc = 0.9 was applied to generate an

offspring. The offspring was mutated by applying a non-uniform mutation operator, with

probability Pc = 0.1. The replacement policy defined here was replace-if-better, during

which the current individual was replaced if its competitor (offspring) was fitter. Finally, the

algorithm terminated if the difference between the average fitness values avgf and the

optimum fitness value optf satisfied a specified threshold. Because of the different

characteristics, we used different thresholds for each problem: 003.0 for fGPS, 3.0 for fSLE,

05.0 for fFMS, 1.0 for fRos, and 005.0 for the other two problems. Similarly, the maximum

number of generations assigned was 150 generations for fGPS; 1000 generations for fSLE, fRas,

and fRos; and 2000 generations for fFMS and fAck.

The performance of the algorithms was measured using three metrics: the search success

rate (efficacy), the average number of generations (efficiency), and the average execution

times (speed) of 100 independent runs.

Preliminary experiments were carried out taking into consideration the proposed

algorithm (i.e., The Convergence-Speed-Guided 3D-cGA) and the dynamic 3D-cGA based

on (Alba and Dorronsoro, 2005), in which different ε values (0.05, 0.15, 0.25, and 0.3) were

tested. Based on these tests, ε = 0.05 was selected for both algorithms as the best one in

terms of efficiency, efficacy, and speed for most the problems considered (to avoid reader

distraction the details are provided in Appendix B.3, Tables B.6–B.9).

Table 5.4 presents the results obtained for all the algorithms compared. For each algorithm

and problem, the average number of generations, the search success rate, and the average run

times are illustrated. In addition, in order to show the robustness of the algorithms, the median

absolute deviations mad are added to the results obtained (mad is used because of the non-

normal distribution of the results obtained). The best results achieved for each problem are

 138

marked in bold. The symbol ‘+’ in Table 5.4 indicates that generally there are significant

differences between all the compared algorithms in terms of all performance metrics (details

about the statistical tests were provided in Section 2.2.3.1).

Table 5.3. Parameters used in the experiments
Population size: 216 individuals (64 individuals for fGPS)

Parent selection:
Current + ST, r (BT for the algorithms in (Alba &
Dorronsoro, 2005))

Recombination: AX, 9.0=cP

Mutation: Non-uniform, Pm = 0.1

Replacement: Replace-if-better

Neighbourhood: NEWS

Lattice:
Cubic: 6×6×6 (4×4×4 for fGPS)
Rectangular cuboid: 3×24×3 (2×8×4 for fGPS)
Narrow cuboid: 2× 54× 2 (2×16×2 for fGPS)

Termination criterion: |avgf − optf| ≤ threshold

Table 5.4. Experimental Results: Convergence time (CT), rate (CR), and speed (SP)*
obtained by different dynamic and static 3D-cGAs

Dynamic 3D-cGAs Static 3D-cGAs

P
ro

bl
e

m

The
convergence

-Speed-
Guided

The
approach in

(Alba &
Dorronsoro,

2005)

r = 0.0/
cubic

r = 0.7 r = 1.0

Rectangular
cuboid

(Alba &
Dorronsoro,

2005)

Narrow
cuboid

(Alba &
Dorronsoro,

2005)

Test

Rasf

752.89 ± 65.5
100%

51.25 ± 4.61

541.43 ± 59.5

100%
37.68 ± 4.10

561.19 ± 41.0
100%

41.17 ± 2.89

781.32 ± 68.5
100%

58.33 ± 5.69

949.64 ± 27.0
57%

46.48 ± 1.68

521.68 ± 47.5
100%

34.15 ± 3.19

635.06 ± 27.5
100%

44.74 ± 3.47

+

Ackf

1598.1 ± 143.0
99%

117.7 ± 10.3

1337.5 ± 189.5
100%

100.54 ± 13.76

1256.8 ± 203.5
100%

97.36 ± 15.9

1592.2 ± 151.5
100%

116.57 ± 10.94

1991.0 ± 0.00
1%

128.3 ± 0.00

1224.4 ± 255.0
100%

91.98 ± 18.8

1168.2 ± 201.0
100%

88.71 ± 15.5

+

Rosf

661.68 ± 192.0
22%

45.39 ± 13.05
0%

610.09 ± 125.0
11%

44.72 ± 9.70

728.41 ± 173.5
12%

53.23 ± 12.2

679.71 ± 177.0
14%

46.24 ± 11.8

953.0 ± 8.0
3%

60.44 ± 0.50

869.66 ± 10.0
6%

57.7 ± 0.78

+

FMSf

981.41 ± 342.0
72%

94.41 ± 32.5

944.53 ± 380.0
54%

90.65 ± 35.3

1039.1 ± 252.0
58%

114.13 ± 27.9

1127.5 ± 284.0
69%

105.9 ± 27.7

1533.1 ± 315.0
61%

143.3 ± 31.2

1022.3 ± 383.0
64%

113.1 ± 41.3

1317.0 ± 254.0
81%

144.3 ± 29.2

+

SLEf

535.46 ± 99.0
26%

37.91 ± 7.02

228.2 ± 3.00
5%

16.27 ± 0.28

278.0 ± 0.00
1%

19.5 ± 0.00

565.71 ± 67.5
28%

45.5 ± 5.20

866.62 ± 40.5
8%

59.27 ± 2.75

632.00 ± 0.00
1%

41.42 ± 0.00

0%

+

GPSf

93.02 ± 9.00
100%

1.76 ± 0.16

70.57 ± 9.00
97%

1.38 ± 0.15

71.52 ± 8.5
96%

1.44 ± 0.17

113.44 ± 11.0
97%

2.36 ± 0.25

137.63 ± 5.00
11%

2.88 ± 0.10

74.48 ± 7.5
100%

1.57 ± 0.15

91.65 ± 7.0
100%

1.95 ± 0.28

+

* For more details about the performance measures, please refer to Section 2.2.3.1.

 139

In general, the dynamic algorithm based on (Alba and Dorronsoro, 2005) achieved the best

performance in terms of efficiency and speed when solving most problems concerned, while

the Convergence-Speed-Guided 3D-cGA achieved the best performance in terms of efficacy.

Complex problems need a high level of diversity to converge to the global optimum.

Changing the grid shapes requires a recalculation of the positions of the individuals, which

introduces a kind of migration. This migration offers more diversity; however, it is limited by

good solutions because of BT. The combination of different selection intensities induced by

the alternation between different grid shapes and the more diversity induced by the migration

leads to significant reduction in convergence time (i.e., number of generations), and thus the

run time. For example, the improvement in the efficiency and speed reached up to 28% and

26%, respectively, for fRas when compared to the Convergence-Speed-Guided 3D-cGA.

However, this approach failed to solve more complex problems such as fRos, and achieved low

search success rates when solving real world problems, in particular fSLE, in which the inter-

parameter linkage is very strong.

In contrast, the Convergence-Speed-Guided 3D-cGA controls the selection intensity and

the level of diversity by allowing worse solutions to be involved in the update process, which

induces a positive effect on problems with high degrees of complexity. Looking back at

Figure 5.4, it can be seen that there is a difference between the trends obtained with r > 0.0

and those obtained with the cuboid shapes. The trends obtained with r > 0.0 show more

gradual growth in the number of the best individuals that leads to a better

explorative/exploitative behaviour. Good exploration is essential especially at initial stages in

order to discover promising areas, while gradual offering of exploitation is crucial at later

stages in order to improve the quality of solutions (Alba and Dorronsoro, 2005). Thus, the

behaviour observed helps to raise the search success rate; however, it increases the

convergence time.

Regarding static algorithms, in general, the worst performance is achieved with 0.1=r in

most problems because poor solutions are always favoured, which leads to weak exploitation

and premature convergence. In contrast, the best performance is achieved with the different

cuboid shapes in most problems. Exceptions are fRos and fSLE, as the best efficacy is achieved

with r = 1.0 and r = 0.7, respectively, because of these problems’ higher complexities.

The proposed Convergence-Speed-Guided 3D-cGA was compared with all other dynamic

and static algorithms considered. The results are shown in Tables 5.5 and 5.6, in which the

symbol ‘+’ indicates that the proposed Convergence-Speed-Guided 3D-cGA is significantly

better than its counterpart, the symbol ‘•’ denotes no statistical difference and the symbol ‘−’

 140

indicates that the proposed Convergence-Speed-Guided 3D-cGA did worse than its

counterpart.

Table 5.5 compares the Convergence-Speed-Guided 3D-cGA to all other algorithms in

terms of average number of generations and average run times, as similar results are obtained

with both metrics. Concerning fSLE, fRos, and fFMS, the efficiency and speed obtained by the

proposed algorithm were either significantly better or had no significant statistical differences

to those compared. An exception is for fSLE, as the dynamic 3D-cGA based on (Alba and

Dorronsoro, 2005) outperformed the proposed Convergence-Speed-Guided 3D-cGA. With

regard to other problems, the efficiency and speed achieved by the proposed algorithm were

worse than those achieved by other algorithms, except for static algorithms with r = 0.7 and r

= 1.0. An exception is for fGPS, as the efficiency and speed obtained by the proposed algorithm

were statistically insignificant compared to the ones obtained by the static algorithm with

narrow cuboid. Based on the problems’ characteristics, fRas and fAck are considered to be less

complex than other problems concerned. Thus, the level of diversity needed to solve the two

problems efficiently is less than the one needed to solve the other problems; however, fAck

requires more diversity than fRas. The high diversity provided by the proposed algorithm (refer

to Figure 5.4) is the main cause that leads to additional cost in terms of convergence time and

speed. Another additional cost in efficiency and speed were observed for fGPS; although fGPS is

of high complexity, the problem’s dimension is considerably lower than other problems.

Hence, the efficiency and speed obtained by the proposed algorithm are either significantly

better or have insignificant differences, especially when solving problems of high complexity.

Table 5.6 evaluates the Convergence-Speed-Guided 3D-cGA in terms of search success

rate. The proposed algorithm achieves superior efficacy for most problems; the improvements

are either significantly better or similar to the other algorithms compared.

To summarise, we note that for most cases the proposed Convergence-Speed-Guided 3D-

cGA does either significantly better or similar to the other algorithms in terms of all

performance metrics; the exceptions are mainly for fRas and fAck. Thus, it can be concluded

that the proposed Convergence-Speed-Guided 3D-cGA has the most desirable behaviour

among all the compared algorithms.

5.3.3 Conclusion

This study analysed the behaviour of a 3D-cGA against different grid shapes and selection

rates over several problems with variable difficulties to investigate their influence on the

 141

performance of the algorithm. Next, a new dynamic-adaptive 3D-cGA, the Convergence-

Speed-Guided 3D-cGA was proposed, which aims to dynamically balance the

exploration/exploitation trade-off. The proposed algorithm is compared to the first dynamic-

adaptive cGA reported in (Alba and Dorronsoro, 2005).

The proposed Convergence-Speed-Guided 3D-cGA provides higher search success rates

than all the other algorithms compared. In addition, it provides adequate efficiency,

particularly when solving problems of high complexity. Thus, in general, it can be stated that

the Convergence-Speed-Guided 3D-cGA could successfully achieve an appropriate balance

between the exploration and exploitation.

Table 5.5. Comparison of the Convergence-Speed-Guided 3D-cGA versus other dynamic
and static 3D-cGAs in terms of convergence time (CT) and speed (SP)*

Problem

The
approach

in (Alba &
Dorronsoro

, 2005)

r = 0.0/
cubic

r = 0.7 r = 1.0

Rectangular
cuboid

(Alba &
Dorronsoro,

2005)

Narrow
cuboid

(Alba &
Dorronsoro

, 2005)

Rasf − − • + − −

Ackf − − • • − −

Rosf • • • • • •

FMSf • • • + • +

SLEf − • • + • +

GPSf − − + + − •

Note that the comparison results based on the two metrics (CT and SP) are merged as the results obtained were similar.

Table 5.6. Comparison of the Convergence-Speed-Guided 3D-cGA versus other dynamic
and static 3D-cGAs in terms of convergence rate (CR)*

Problem

The
approach

in (Alba &
Dorronsoro

, 2005)

r = 0.0/
cubic

r = 0.7 r = 1.0

Rectangular
cuboid

(Alba &
Dorronsoro,

2005)

Narrow
cuboid

(Alba &
Dorronsoro

, 2005)

Rasf • • • + • •

Ackf • • • + • •

Rosf + + • • + +

FMSf + + • • • •

SLEf + + • + + +

GPSf • + • + • •

* For more details about the performance measures, please refer to Section 2.2.3.1.

 142

5.4 Comparison of Diversity-Guided versus Other Dynamic

and Static 3D-cGAs

This section compares the Diversity-Guided 3D-cGA proposed in Section 5.2 to other

dynamic and static 3D-cGAs that were discussed in Section 5.3. They are as follows:

Convergence-Speed-Guided 3D-cGA, Dynamic and static 3D-cGAs based on (Alba and

Dorronsoro, 2005), and 3D-cGAs with static selection rate (r = 0.0, r = 0.7, and r = 1.0). In

order to obtain a fair comparison, in this section the Diversity-Guided 3D-cGA are re-

evaluated such that similar test suite and experimental parameters to those defined in Section

5.3 are used. The aim of the comparison is to study the behaviour of the different algorithms

by exploring the influence of the exploration/exploitation trade-off on the search.

The benchmark chosen for evaluating the compared algorithms consisted of the following

test and real-world problems: Rastrigin (fRas), Rosenbrock (fRos), Ackley (fAck), FMS (fFMS),

SLE (fSLE), and GPS (fGPS) problems (details about fGPS are provided in Section 4.2.2, while

details about the other problems are provided in Appendix A).

The experimental parameters defined for the Diversity-Guided 3D-cGA were similar to

the parameters illustrated in Table 5.1, the only difference being the population size as in this

section a population of 216 individuals arranged as 6×6×6 was used to provide similar

number of individuals to those offered by the other compared algorithms. Preliminary

experiments were performed in order to select the best value of γ (recall that in this section

the population size is smaller than the one defined in Section 5.2, therefore another set of

preliminary experiments were needed to select the best γ); the best chosen γ value based on

the convergence time, rate, and speed is also 0.4 (refer to Appendix B.2, Tables B.4 and B.5

for more details). The parameters defined for the Convergence-Speed-Guided and other

dynamic and static 3D-cGAs are summarised in Table 5.3.

The comparison was performed in terms of the following performance metrics:

convergence time, rate, and speed. Statistically significant tests were used as approaches to

compare the different algorithms. These tests determined the significance level of the

differences between the compared algorithms (details about the statistical tests were

provided in Section 2.2.3.1). The significance levels are indicated using the following

symbols. A plus sign ‘+’ denotes that the Diversity-Guided 3D-cGA significantly

outperformed its counterpart, while a non-significant difference is denoted by the symbol ‘•’.

The symbol ‘−’ indicates that the Diversity-Guided 3D-cGA did worse than its counterpart

(see Tables 5.8−5.10).

 143

Table 5.7 presents the results obtained for the Diversity-Guided 3D-cGA with 6×6×6 grid

topology rather than the 7×7×7 grid used in Section 5.2. The comparison results based on

each metric: convergence time, rate, and speed are illustrated in Tables 5.8−5.10,

respectively.

Table 5.7. Experimental Results: Convergence time (CT), rate (CR), and speed (SP)*
obtained by the Diversity-Guided 3D-cGA with 6×6×6 grid

Problem γ = 0.4

Rasf
570.83 ±49.5

100%
36.80 ±3.23

Ackf
1399.0 ±190.0

100%
89.58 ±12.34

Rosf
445.87 ±256.0

55%
27.83 ±15.9

FMSf
981.65 ±336.5

52%
89.77 ±31.91

SLEf
300.80 ±36.0

10%
20.28 ±2.56

GPSf
96.26 ±6.5

100%
1.88 ±0.11

Table 5.8. Comparison of the Diversity-Guided 3D-cGA versus other dynamic and static
3D-cGAs in terms of convergence time (CT)*

Problem

The
Convergence

-Speed-
Guided

The
approach

in (Alba &
Dorronsoro

, 2005)

r = 0.0/
cubic

r = 0.7 r = 1.0

Rectangular
cuboid

(Alba &
Dorronsoro,

2005)

Narrow
cuboid

(Alba &
Dorronsoro

, 2005)

Rasf + • • + + − +

Ackf + • • + • − −−−−

Rosf • + • + • + +

FMSf • • • • + • +

SLEf + • • + + + +

GPSf • − − + + − •

* For more details about the performance measures, please refer to Section 2.2.3.1.

 144

Looking at Table 5.8, in general, it can be seen that in most cases the Diversity-Guided

3D-cGA outperforms the other compared algorithms in terms of efficiency (see the ‘+’ sign),

in particular the ones that show more explorative behaviour such as 3D-cGA with r = 0.7, r

= 1.0, and narrow cuboid; while there are only few cases in which the Diversity-Guided 3D-

cGA does worse than the algorithms compared (indicated by the symbol ‘−’). The remaining

cases show non-significant differences between the compared algorithms (see the symbol

‘•’). The reduced selection pressure induced by 3D-cGA with r = 0.7, r = 1.0, and a narrow

cuboid assists the exploration leading to increase in the convergence time; however the

dynamic control of the selection pressure overcomes this issue.

Table 5.9. Comparison of the Diversity-Guided 3D-cGA versus other dynamic and static
3D-cGAs in terms of convergence rate (CR)*

Problem

The
Convergence

-Speed-
Guided

The
approach

in (Alba &
Dorronsoro

, 2005)

r = 0.0/
cubic

r = 0.7 r = 1.0

Rectangular
cuboid

(Alba &
Dorronsoro,

2005)

Narrow
cuboid

(Alba &
Dorronsoro

, 2005)

Rasf • • • • + • •

Ackf • • • • + • •

Rosf + + + + + + +

FMSf − • • • • • +

SLEf − • + − • + +

GPSf • • + • + • •

Table 5.10. Comparison of the Diversity-Guided 3D-cGA versus other dynamic and static
3D-cGAs in terms of convergence speed (SP)*

Problem

The
Convergence

-Speed-
Guided

The
approach

in (Alba &
Dorronsoro

, 2005)

r = 0.0/
cubic

r = 0.7 r = 1.0

Rectangular
cuboid

(Alba &
Dorronsoro,

2005)

Narrow
cuboid

(Alba &
Dorronsoro

, 2005)

Rasf + • + + + • +

Ackf + + • + • • •

Rosf + + • + • • +

FMSf • • • • + • +

SLEf + • • + + • +

GPSf • − − + + − +

* For more details about the performance measures, please refer to Section 2.2.3.1.

 145

With regard to the efficacy, by inspecting Table 5.9, generally, it can be observed that in

most cases the differences between the compared algorithms are insignificant (observe the

‘•’ symbol), while very few cases show the deterioration of the Diversity-Guided 3D-cGA

(observe the ‘−’ symbol). The significant success of the Diversity-Guided 3D-cGA (observe

the ‘+’ symbol) is mainly noticed when compared to the algorithms that strongly support the

‘explore’ mode (i.e., have weak selection pressure) such as the ones with r = 1.0 and narrow

cuboid, or the ones that support the ‘exploit’ mode (i.e., have strong selection pressure) such

as 3D-cGA with r = 0.0/cubic. As mentioned earlier, the exploration may lead to reduction in

solutions accuracy, while the exploitation may lead to premature convergence, with both

situations the algorithm would fail to find the best solutions leading to divergence and hence

reduction in the search success rate.

Table 5.10 compares the different algorithms in terms of the execution time (speed).

Overall, for most cases, the Diversity-Guided 3D-cGA outperformed the other compared

algorithms (observe the ‘+’ sign). Very few cases show a decline in the speed obtained by

the Diversity-Guided 3D-cGA (observe the ‘−’ symbol), while the rest of the cases show

non-significant differences (see the symbol ‘•’). As with the case for the algorithm’s

efficiency, most cases that show the superior improvements of the Diversity-Guided 3D-

cGA are acquired by the algorithms with more explorative behaviour (i.e., 3D-cGA with r =

0.7, r = 1.0, and narrow cuboid). Hence, a relation between the efficiency and the speed of

the algorithm could be determined.

As each of the problems considered possessed different characteristics, which presented

different levels of difficulty, there is no one globally best algorithm for all problems. Hence,

different exploration/exploitation tradeoffs are needed to effectively solve a given problem.

More complex problems require more diversity and hence more exploration, however too

much exploration leads to a reduction in the quality of the solutions. That is why the

algorithms with dynamic balancing between exploration and exploitation are favoured. A

general conclusion that was drawn from the previous sections stated that the dynamic

algorithms showed superior improvement in terms of all performance metrics comparing to

the static algorithms; this conclusion also conforms to that of (Alba and Dorronsosro, 2005).

The above discussion has provided a general indication about the benefits gained by the

dynamic algorithms as these show the best performance. Now, in order to provide a deep

insight into the behaviours of the different algorithms, the problem of Rastrigin (fRas) is

selected for use in a case study of the behaviour of the algorithms by inspecting the change

in the population diversities (remember that the diversity loss trends are diverse among the

 146

different problemsrefer to Figure 5.3). Figures 5.6 and 5.7 show trends in the average

genotypic diversities obtained by the Diversity-Guided 3D-cGA and the other compared

algorithms, respectively.

Solving fRas, the lowest numbers of generations were obtained by the algorithms based on

(Alba and Dorronsoro, 2005), particularly the dynamic and static 3D-cGAs with cubic and

rectangular cuboids (refer to Table 5.4). Although the measure of diversity used was

different, the Diversity-Guided 3D-cGA obtained the next better number of generations (see

Table 5.7). These achievements could be justified by looking at Figures 5.6 and 5.7; the

diversity obtained by the Diversity-guided 3D-cGA starts reaching almost zero at generation

400 (see Figure 5.6), while for the dynamic and static 3D-cGAs with cubic and rectangular

cuboids (based on (Alba and Dorronsoro, 2005)) it starts to reach zero slightly before

generation 400 (see Figure 5.7). On the other hand, the diversity reaches zero at extremely

later stages with the other compared algorithms (i.e., the Convergence-Speed-Guided 3D-

cGA and the static 3D-cGAs with r = 0.7, r = 1.0, and narrow cuboid); the worst efficiency

was obtained by 3D-cGA with r = 1.0 as it shows the most explorative behaviour. For that

reason, 3D-cGA with r = 1.0 also obtained the worst search success rate. As is well known,

the diversity is reaches almost zero when the best-found solution conquers the entire

population.

Figure 5.6. Average Diversities based on ‘distance-to-average-point’ measure when solving fRas by

Diversity-Guided 3D-cGA.

0 100 200 300 400 500 600 700 800
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Generations

A
ve

ra
ge

 D
iv

er
si

ty

Diversity-Guided 3D-cGA

 147

0 100 200 300 400 500 600 700 800 900 1000
0

5

10

15

20

25

30

35

40

45

50

Generations

A
ve

ra
ge

 d
iv

er
si

ty

Convergence-Speed-Guided 3D-cGA
Dynamic 3D-cGA in (Alba & Dorronsoro, 2005)

3D-cGA with r = 0.0/cubic

3D-cGA with r = 0.7

3D-cGA with r = 1.0

3D-cGA with rectangular cuboid
3D-cGA with narrow cuboid

Figure 5.7. Average Diversities based on ‘genotypic entropy’ when solving fRas by the dynamic and

static 3D-cGAs under study.

5.4.1 Conclusion

This section analysed and compared several dynamic and static algorithms based on

canonical cGA while maintaining similar parameters and test suite. The main motivation for

this comparison was to study the influences of introducing different exploration/exploitation

tradeoffs on the performance of the algorithms. Furthermore, the comparison provided has

been validated through the use of statistical significance tests.

Theoretically, although there is no one adaptive criterion which is best and appropriate

for all problems, in general, the Diversity-Guided 3D-cGA achieves the most desirable

performance for the most considered problems (has been confirmed by the statistical

significance tests). In addition, the Diversity-Guided 3D-cGA not only improves the existing

performance, but also incurs no implementation costs (no grid shape change is needed).

Hence, it can be concluded that the Diversity-Guided 3D-cGA is an effective algorithm that

balances between the exploration and the exploitation in a dynamic and continuous manner.

 148

5.5 Summary and Contribution to Knowledge

This chapter emphasised the field of dynamic-adaptation in structured EAs, specifically

cGAs. The class of the adaptation considered for this work was the adaptive-dynamic in

which the change occurs according to feedback information from the algorithm. The

importance of dynamic cGAs is growing due to their capability for self-adapting their

exploration/exploitation trade-off. In the literature, several ways have been investigated in

order to enhance the population diversity and accordingly the global selection pressure. A

simple way was to rearrange the locations of the individuals through the change in the grid

shape. Another way is through the control of genetic parameters such as the selection rate

(which is the method used in this work). The main motivation for this work was to introduce

new and effective algorithmic variants with low computation costs that contribute to the field

of dynamic adaptation in EAs. Two new dynamic algorithms have been proposed, namely:

the Diversity-Guided and Convergence-Speed-Guided 3D-cGA, which are mainly differing

in the adaptive criterion used. These algorithms were compared with other dynamic and

static algorithms from the literature. The Diversity-Guided 3D-cGA achieved the most

desirable performance over the other compared algorithms for problems considered. The

following points sum-up the main contributions of this study to existing knowledge.

• The stochastic binary selection operator is used as a mechanism to dynamically

balance between the exploration and the exploitation. The selection operator

guides the search towards exploration by increasing the rate of the selection (i.e.,

offer more chances for even worse solutions to survive), or guides the search

towards exploitation by reducing the rate of selection (i.e., focus on fitter

solutions).

• The Diversity-Guided 3D-cGA showed superior improvement in terms of

efficacy and reached up to 35% compared with static 3D-cGAs for the most

studied problems, and in specific problems with higher complexity. This

improvement varied due to different problem complexities. With regard to

algorithm efficiency, the Diversity-Guided 3D-cGA showed the most robust

behaviour although the best efficiencies were achieved by 3D-cGA with r = 0.0.

However, the differences in the efficiencies obtained were not significant for the

 149

most studied problems; the exceptions could be referred to the differences in the

search success rate obtained.

• The Diversity-Guided 3D-cGA demonstrated its capability to offer the most

suitable balance between enhancing population diversity (exploration) and

tuning good solutions (exploitation) for the most studied problems. The

following example confirms the conclusion stated above. For fLang and fFMS, the

algorithm tended to promote exploration after the initial stage (refer to Figure

5.3) instead of starting by introducing the exploitation, as is the case with the

other considered problems (less complex).

• The Convergence-Speed-Guided 3D-cGA used similar adaptive criterion

compared to the dynamic algorithm in (Alba and Dorronsoro, 2005). The

mechanisms used to swap between ‘explore’ and ‘exploit’ modes for the former

was the change in the selection rate, while the change in the grid shapes was

used for the latter. The change in the grid shape leads to a rearrangement of the

positions of individuals, which therefore induces a kind of individual migration

that contributes to improvement. In contrast, the proposed algorithm was

successful in obtaining an appropriate balance between exploration and

exploitation without affecting other genetic operations.

• The proposed algorithms (i.e., the Diversity-Guided and the Convergence-

Speed-Guided 3D-cGA) showed their capability in balancing exploration and

exploitation. Improvements in the performance presented as a reduction in the

convergence time and an increase in the convergence rate were achieved.

However, the rates of the improvements varied mainly due to the different

problems’ characteristics. In both algorithms the adjacency of the individuals

were maintained, which awards any improvement achieved to the change in

selection rates.

• The comparative analysis of the proposed algorithms (the Diversity-Guided and

the Convergence-Speed-Guided 3D-cGA) and other dynamic and static

algorithms, showed that the most desirable performance for the most studied

problems was achieved by the Diversity-Guided 3D-cGA. Therefore, the start

 150

with ‘explore’ mode following a gradual introduction of the exploitation resulted

in the best balance between exploration and exploitation (recall that the other

dynamic algorithms alternated between the two modes).

• In the Diversity-Guided 3D-cGA, the gradual introduction of the ‘exploit’ mode

was carried out by a reduction in the selection rate. This reduction only occurred

when the adaptive criterion was satisfied. This mechanism conforms to cGAs

inherent features as cGAs starts with an exploration of promising areas followed

by an exploitation of good solutions. The dynamic control of the move towards

exploitation added a significant advantage to cGAs.

 151

Chapter 6

Thesis Summary, Conclusion, and Future

Work

This thesis aimed to utilise the unique embedded features of cGAs in order to further

improve their performance, particularly when tackling hard real-world optimisation

problems. As a result, the structural characteristics of cGAs, genetic operations, and critical

fault scenarios were investigated form static and dynamic perspectives. From the structural

point of view, the topology of the grid on which a cGA should be implemented was targeted

as one way to improve the performance of cellular optimisation engines. From a fault

tolerance point of view, genetic characteristics such as diversity were investigated to cope

with faults encountered. Critical fault scenarios and mitigation techniques to tackle these

scenarios were targeted through the utilisation of the genetic operations. In addition, the

genetic operations were investigated from a dynamic point of view in order to obtain further

improvements. The changes that occur in the genetic diversity as the search process progress

was used as a guide and a key factor to induce a dynamic alternation between exploration

and exploitation modes.

In this chapter the works presented in this thesis are summarised (Section 6.1). Section

6.2 draws overall and study-specific conclusions. Finally, guidelines for future works are

presented in Section 6.3.

6.1 Summary

This thesis demonstrated the effectiveness of cellular optimisation engines in tackling

problems of diverse complexities such as highly multimodal, epistasis, asymmetry problems.

The most well known standard GAs, ssGAs and genGAs, were compared to three-

 152

dimensional cGAsthe basis for this research (refer to Section 2.2.5.1). Similar algorithmic

parameters and benchmark problems were used to achieve a fair comparison. The

comparative results indicated the advantage of cGAs in that higher efficacy was achieved

while maintaining desirable efficiency. Further, cGAs proved their ability to solve problems

of different characteristics, while standard GAs failed to solve some of these problems.

Chapter 3 analysed the performance of cellular GAs implemented on grids with different

cellular dimensions. The expectation that cGAs with higher cellular dimensions may offer

advantages over lower cellular dimensions was the main motivation. This study is a

continuation of a preliminary study that was carried out with other members in the System

Level Integration research group. In this research, an experimental study was carried out by

considering an extended test bench including test functions of higher dimensions and real-

world problems to compare the performance of cGAs when implemented on 3D and 2D grid

structures. In addition to the cellular dimensions, the experimental settings included different

population and neighbourhood sizes.

In summary, the various configurations of the 3D-cGA have proven to be more efficient

than the 2D-cGAs in terms of convergence time when tackling all the considered problems.

With respect to the efficacy, both cellular structures showed similar success rates. However,

the 3D-cGA showed improvement over the 2D-cGAs when a smaller local neighbourhood

radius was applied. A 3D grid provides a larger neighbourhood size than a 2D grid

considering similar population sizes. This is a consequence of the cell arrangement as it

consists of several 2D-layers. Interconnections between the cells result in vertical expansion,

instead of horizontal expansion as in a 2D grid. Although this interconnection causes the

algorithm to be more exploitative, the balance between exploitation and exploration is kept

by choosing an appropriate neighbourhood radius with respect to the grid’s topology.

Therefore, if the selection pressure is controlled by these parameters, higher search success

rates and better convergence time are reached.

If the benefits of the performance results obtained are merged with the advantages that

3D technology brings, the resulting architecture offers significant advantages in terms of the

following: routing length decrease, interconnection delay reduction, and logic and memory

density increase. As a result, in the future, it will be possible to improve the performance of

today’s optimisation engines at both software and hardware levels.

Chapter 4 has targeted the area of fault tolerance. The fault looked at in this research was

SEU and the phenotypes were the data targeted by faults. This study focused on faults that

targeted phenotypes due to their significant role in guiding the search process. If SEU affects

 153

essential system data, the system will fail. Accordingly, isolation approaches and several

mitigation techniques were introduced. These techniques were assessed against a benchmark

suite of well-known test and real-world problems. These problems were selected to include

diverse characteristics, which presented different difficulties to the search. Two fault

scenarios were considered in this research. These scenarios were defined as being the most

critical. This chapter was divided into three parts, with each part introducing and adding new

mechanisms in order to increase the reliability of a system and to improve its performance.

In the first part (Section 4.1), a new algorithmic approach that tackled SEU errors

targeting individuals’ phenotypes was proposed. The proposed approach, Fault-Tolerant 3D-

cGA, is based on the canonical cGA, and genetic diversity is the key metric used to identify

and isolate faulty cells (individuals). For both fault scenarios, different fault ratios were

considered; the ratio of the faults varied from 0% to 40% of the population. The use of

genetic diversity demonstrated success in identifying and therefore isolating faulty cells. In

addition, the integration of an explicit migration operation played a significant role in

mitigating the impact of faults. The proposed migration operation in this research was

designed to adapt to fault ratio encountered and showed significant improvement in the

performance of a system. Another operation that was used to mitigate faults was the

selection operation. In this study a stochastic binary tournament selection was used, two

selection rates that have different effects on the exploration and the exploitation were

assessed. These rates were selected to provide lower opportunity for faulty individuals to be

selected and involved while updating a fault-free cell. Hence, different algorithmic

configurations offering different exploration/exploitation tradeoffs were evaluated. These

configurations mainly differed in the defined selection rate and the use of the migration

operation. Overall, the proposed algorithm demonstrated success in recovering up to 40% of

faults. However, the level of improvement in performance varied according to the type of

problem and declined following the increment in fault rates. For all problems, the best

efficiency was achieved by the configuration that employed the highest selection pressure

with migration. Conversely, the best efficacy was achieved by the configurations that used a

lower selection pressure, in this case the integration of the migration operation showed no

significant improvement.

In the second part of Chapter 4, two new migration schemes were proposed in order to

further improve the performance of the algorithm proposed in the previous section. The only

difference between the newly introduced schemes and the one proposed in the first part was

the source of the migrants. Using the first defined migration policy, the migrants were

 154

selected from the first fault-free neighbourhood identified, while using the new policies the

migrants were selected from the current neighbourhood (the one for the currently updated

individual). However, the new schemes differed as one selected the fittest fault-free

individual while the other selected a random fault-free individual from the current

neighbourhood. In this study, the different migration policies were compared for similar fault

scenarios and ratios. Simulation results demonstrated the approach’s success in recovering

up to 40% of faults. In addition, the use of migration as a mitigation technique for fault

tolerance offered considerable improvements in the efficiency, efficacy, speed, and

reliability of the algorithm, especially for a high ratio of faults. In addition to being a

mitigation technique, the integration of migration played an important role in controlling the

exploration/exploitation trade-off. Exploration and exploitation are the two main issues in

enhancing the performance of evolutionary algorithms. Overall, the best performance in

terms of efficiency, efficacy, and speed was achieved with the migration operation that

selected the fittest neighbour from the current neighbourhood due to its effect in enhancing

the local selection intensity and diversity in the population.

The last part of Chapter 4 proposed a new algorithm, the Dynamic FT 3D-cGA, for

handling failures that occurred at individuals’ phenotypes, in particular, due to SEUs.

Similarly, the approach is based on the canonical model of cGAs and is a modified version

of the past approach (FT 3D-cGA) that used genetic diversity to identify and isolate faulty

individuals. The most critical fault models were tackled in conjunction with different fault

ratios. The main motivation for this study was to improve the reliability and performance of

the FT 3D-cGA through dynamic control of exploration/exploitation trade-off. The dynamic

calculation of the maximum allowed number of generations based on fault ratio encountered

helped in enhancing the exploration. On the other hand, the exploitation was enhanced

through the use of the proposed migration technique. In this study, several configurations

concerning dynamic adaptation and migration were defined and evaluated. In addition, to

illustrate the improvements achieved, the Dynamic FT 3D-cGA was compared to the FT 3D-

cGA in terms of efficiency, efficacy, and speed. The results indicated that both algorithms

demonstrate successful recovery of up to 40% of faults, especially when the migration

technique was employed. Thus, it was confirmed that the use of migration as a mitigation

technique to fault tolerance offers considerable improvements in the efficiency, efficacy,

speed, and reliability of the algorithms, especially for the high ratio of faults. Overall, the

best performance in terms of efficiency, efficacy, and speed was achieved with the use of the

migration technique owing to its effect in enhancing the local selection intensity and

 155

diversity in proportion. The FT 3D-cGA and the Dynamic FT 3D-cGA both with migration

showed the best performance. The differences between the results obtained by the compared

algorithms were not significant. An exception was for Ackley’s problem as the Dynamic FT

3D-cGA with migration significantly outperformed the FT 3D-cGA with migration mainly in

terms of efficacy and reliability. The best efficiency was achieved by the FT 3D-cGA with

migration. However, this lower number of generations was found to be due to the significant

difference in the obtained search success rate.

Chapter 5 emphasised the area of dynamic adaptation. The main idea behind the

adaptivity was to dynamically control and provide an appropriate balance between

exploration and exploitation for an algorithm. Exploration and exploitation are vital issues in

improving the effectiveness and the performance of evolutionary algorithms. Population

diversity is improved by exploring the search space, while the optimum solution can be

found by exploiting the fitness information. Inappropriate balance between exploration and

exploitation leads to inefficient search. This chapter was mainly divided into three parts.

The first part of Chapter 5 discussed the concept of selection pressure. In this part, the

selection operation, the stochastic binary tournament selection, was used to induce different

selection pressures through the use of different selection rates. An experimental setup was

carried out to demonstrate the affect of only the selection operation on the selection intensity

and the takeover time. The selection rates that were evaluated varied between 0 and 1. The

results showed an indirect proportion between selection pressure and selection rate. In other

words, the selection pressure decreased as the selection rate increased. This section

established the basis for the subsequent parts.

The second part of Chapter 5 presented a new dynamic 3D-cGA that used genetic

diversity measure to activate the control of the exploration/exploitation trade-off (Diversity-

guided 3D-cGA). In this study, tuning the genetic operator parameters, specifically the

selection rate, is the way to dynamically control the exploration/exploitation trade-off. A set

of diverse characteristic problems was used to assess the performance of the algorithm. The

dynamic algorithm was also compared to three static versions, each using a constant

selection rate. These selection rates were selected to offer strongest, moderate, and weakest

selection pressures. Simulation results showed that the dynamic algorithm outperformed the

static ones with significant improvement for most of the problems studied. The exceptions

either did not have statistical differences or showed more erratic behaviour. In general, the

proposed adaptive criteria showed the ability to achieve a suitable balance between

 156

enhancing population diversity (to escape local optimaefficacy) and tuning solutions (to

improve solution qualityaccuracy).

The last part of Chapter 5 analysed the behaviour of a 3D-cGA against various grid

shapes and selection rates over several problems with variable difficulty to investigate their

influence on the performance of the algorithm. Next, a new dynamic-adaptive 3D-cGA

(Convergence-speed-guided 3D-cGA) that aimed at dynamically balancing the

exploration/exploitation trade-off was presented. The proposed algorithm used convergence

speed to activate the dynamic control, the measure of the convergence speed and the

adaptive criteria used in this study were adopted from the work of Alba and Dorronsoro

(2005). In their work, the alternation between shapes of grid structure was the way to

dynamically tune the exploration/exploitation trade-off. Three different shapes were

definedsquare, narrow, and rectangular gridsto promote more exploration (change to

next narrower shape) or more exploitation (change to next wider shape), while the proposed

algorithm in this study alternated between three selection rates to tune the

exploration/exploitation trade-off. These selection rates were selected to induce similar effect

to that of the one induced by the alternation between grid shapes. The proposed algorithm

was assessed against a benchmark of tests and real-world problems and was compared to the

static and dynamic-adaptive cellular algorithm that were reported in (Alba and Dorronsoro,

2005), and the static algorithms from the previous section. Simulation results showed that the

proposed adaptive algorithm provided higher search success rates than all other compared

algorithms, as well as providing adequate efficiency, particularly when solving problems of

high complexity. Generally, it can be stated that the proposed adaptive algorithm

successfully achieved a suitable balance between exploration and exploitation.

In addition, the two proposed dynamic algorithms (Diversity-guided 3D-cGA and

Convergence-speed-guided 3D-cGA) were compared. Similar parameters and test suites

were compared to enable fair comparison. The motivation for this comparison was to study

the different effects of introducing different exploration/exploitation tradeoffs on the

performance of the algorithms. This comparison was validated through the use of statistical

significance tests. In general, comparative results showed that Diversity-Guided 3D-cGA

achieved the most desirable performance for most of the problems considered. In addition,

the Diversity-Guided 3D-cGA incurred no implementation costs (no grid shape change was

needed). Hence, it can be stated that the Diversity-Guided 3D-cGA is an effective algorithm

that balances between exploration and exploitation in a dynamic and continuous manner.

 157

6.2 Conclusion

The overall aim of this thesis was to investigate the inherent characteristics and the ability of

cellular genetic algorithms to improve their performance and reliability when tackling hard

optimisation problems. New techniques that added the features of fault tolerance and

dynamic adaptation to the algorithms were introduced. Structural characteristics,

decentralised population, the shape and the size of the population and neighbourhood

topologies, implicit and explicit migration operations, genetic diversity, selection operation,

and selection pressure were all utilised to achieve the aim of this research. This research was

carried out in three main stages.

The first stage explored the cellular dimensionality and their implications on the

performance of the algorithms. Several problems from the real world and test functions were

tackled. These problems have diverse characteristics and thus introduced different

complexity to the search. As the topology of the grid plays a significant role in determining

the performance of EAs, a comparative analysis between cGAs with two-dimensional grid

(the most common grid topology) and three-dimensional grid (rarely investigated) was

developed. cGAs are commonly implemented on 1D or 2D toroidal grid structures. The

comparison between 2D-cGA and 3D-cGA showed that the 3D-cGA is more efficient in

terms of convergence time than 2D-cGA for all the problems considered, while both

algorithms achieved similar efficacies. Due to the vertical expansion, the 3D structure

provided a larger neighbourhood size than the 2D structure with similar distance steps. This

led 3D-cGA to show more exploitative behaviour; however, a balance between exploitation

and exploration was maintained by selecting an appropriate neighbourhood radius with

respect to the grid topology. In conclusion, the control of the selection intensity through the

size of the neighbourhood led to the attainment of higher search success rate and less

convergence time. The findings will add significant benefits for future optimisation engines.

Achieving better algorithmic performance with 3D-cGA creates a promising opportunity to

combine the algorithmic benefits with the benefits of advanced custom silicon chip

technology, 3D-IC.

The second stage was concerned with improving the effectiveness as well as the

reliability of cellular genetic engines. Due to the significant miniaturisation of systems’

electronics and its operation in hostile environments, systems are subjected to different kind

of failures. Hence, in this stage fault-tolerant approaches and mitigation techniques were

proposed. The first approach utilised cGAs’ inherent features such as genetic diversity and

 158

the selection operation. An algorithmic-based approach for tolerating SEE errors as well as

an explicit migration operation were developed. A set of diverse-characteristic problems

were tackled and critical fault models together with different fault rates were considered.

Results showed that the algorithm was successful in isolating faults and showed the ability of

the algorithm to converge with up to 40% faults. The best performance was achieved when

an explicit migration operation was integrated into the algorithm. The migration aimed at

covering the loss in cells due to the faults, which enhanced the reproduction process. In

conclusion, the explicit migration operation played a vital role in mitigating faults and

offered a better exploration/exploitation trade-off.

Subsequently, two more migration operations were proposed with the aim of further

improving the performance. The best overall performance was achieved when the migration

scheme that selected fault-free and fittest migrants from the current neighbourhood was

utilised. A final improvement of the proposed fault tolerant 3D-cGA was carried out by

introducing a dynamic adaptation technique as a mitigation measure. Several algorithm

configurations were defined and assessed which also concerned the integration of migration.

Results confirmed the previous findings, especially the vital role of the migration operation.

During the final stage of this research, adaptive-dynamic 3D-cGAs were developed in

order to obtain an appropriate balance between exploration and exploitation. A first approach

was introduced by utilising the genetic diversity. The dynamic search was guided by the

genetic diversity and the selection rate was dynamically tuned according to the degree of

diversity. The other proposed approach was guided by the convergence speed and

accordingly the selection rate was tuned. The two proposed approaches were evaluated and

compared with other static and dynamic 3D-cGAs. Results demonstrated the high

performance of the first proposed approach with respect to other compared algorithms. The

achievement of appropriate exploration and exploitation balance while maintaining

algorithms’ performance will positively contribute to the field of dynamic adaptation.

6.3 Future Work

This thesis focused on the inherent features of cGAs and their ability to improve cGAs

performance. Three main aspects were explored: the structural characteristics including the

cellular dimension and the topologies, size, and shape of the population and local

neighbourhoods, the area of fault tolerance, and the dynamic adaptation. Although this

 159

research thoroughly explored cGAs from various aspects, several aspects are still available

for research.

This thesis has explored the effectiveness of cGAs when implemented on 3D cubic grid,

while a little attention was paid to other 3D grid shapes. Therefore, the main opportunity to

work in the future is to investigate the performance of cGAs when implemented over other

3D gird shapes such as narrow and rectangular cuboids. Different grid shapes offers different

exploration/exploitation tradeoffs and therefore the use of a particular grid shape may allow

more efficient optimisation for a specific type of problems. Previous researchers have

showed the influence of using various grid shapes on the performance of cGAs when solving

problems of various complexities; however, these studies concerned 2D grid topology. Thus,

there is a need to extend previous studies to 3D grids. In addition, this thesis has showed that

the use of higher cellular dimensions (i.e., 3D) offers promising results, in particular when

solving problems of high complexity (i.e., real-world problems). This finding encourages the

investigation of use even higher cellular dimensions such as 4D topology. Increasing the

cellular dimensionality would result in more interconnections between cells producing a

denser neighbourhood and faster spreading of individuals. Such configurations may offer

advantageous for even harder problems. However, a careful selection of the genetic

operations and other parameters should b made; these issues open a wide research area that is

worth studying.

The next opportunities for further investigations concern the area of fault tolerance. The

proposed fault tolerant approach focused on SEEs when targeting only the phenotypic space.

This approach can be further extended to tackle errors targeting the genotypic space in

conjunction with the phenotypic space. The changes that occur in one space are clearly

reflected in the other. Hence, further investigation is needed to develop isolation criteria that

tackle faults in both spaces. Another opportunity is to investigate other fault scenarios as the

research on fault tolerance only considered the two most critical fault scenarios. Moreover,

besides the phenotypic and genotypic spaces, the Finite State Machine is a potential structure

of cGAs for faults to occur. Therefore, fault tolerant technique can be further investigated to

consider other critical internal cGA structures.

Other opportunities can also focus on the area of dynamic adaptation. This research

focused on the diversity and convergence speed genotypic-based measures. Therefore,

further investigations are needed to evaluate phenotypic- or hybrid-based measures for

diversity and convergence speed. In addition, the approaches proposed to dynamically

balance between exploration and exploitation used the selection operation as a way to

 160

achieve the dynamic control. Other genetic operations such as crossover and mutation can

play an important role in the dynamic adaptation. Exploring the ability of these operations to

dynamically tune the exploration/exploitation trade-off may result in less computation time.

 161

Appendix A

Description of the Benchmark Problems

The algorithms, which were proposed and investigated in this research, were evaluated with

a careful selection of performance benchmark problems in order to avoid an ad-hoc

conclusion. The problems considered are selected as they possess diverse characteristics

such as multimodality, epistasis, regularity, and asymmetry, introducing different levels of

difficulty into the search (GEATbx, 2005; Alba and Dorronsoro, 2008). The details of these

problems were omitted from the previous chapters so readers can pay more attention without

any distraction. This Appendix presents a brief description of all the problems used in this

research. All of the problems studied were belong to the field of continuous optimisation due

to their complex features are commonly acquired by real-world problems. Some of the

problems selected were from well-known academic test functions, while others were

obtained from the real world.

Details about the test functions selected are presented in Section A.1, while Section A.2

gives the details of the real-world problems.

A.1 Test Functions

In this section seven benchmark test functions from well-known continuous minimisation

functions are illustrated. They are: Rastrigin, Schwefel, Griewangk, Ackley, Michalewicz,

Rosenbrock, and Langermann problemsthe details are provided below.

Rastrigin’s problem)(Rasf :

Rasf is non-linear, multimodal, separable, and symmetric function. Multimodalitya

 162

Figure A.1. Search space of Rastrigin function of two variables.

large number of local optimaincurs more complexity into search process. That is because,

during the search process, an algorithm tries to escape local optima to avoid stagnation.

Separability indicates the inter-dependency of genes; therefore, a separable function has no

epistatic interactions between its decision variables. Consequently, an algorithm tackles each

variable independently. The objective function of Rastrigin’s problem is provided in (A.1).

.))2cos(10(10)(
1

2∑
=

−+=
n

i
iiRas xxnxf πr

 (A.1)

where n is the number of variables (i.e., problem dimension) and x
r

 represents the encoded

variables with each variable ix ranges within the interval of]12.5,12.5[+− . The global

minimum value is located at)0,...,0(min =x such that 0)(min =xfRas .

This function is comparatively difficult because of its large search space and its large

number of local minima; however these local minima are regularly distributed. Figure A.1

illustrates the search space of a two-variableRasf .

 163

Figure A.2. Search space of Schwefel function of two variables.

Schwefel’s problem)(Schf :

Schf is also highly multimodal, regular, and separable function. It is characterised by its

global minimum is geometrically far from the next best local minima. Consequently, it is

catalogued as a difficult test function for most optimisation techniques as these may trapped

in a local minimum region. Equation (A.2) illustrates the objective function of Schf .

.)sin(..9829.418)(
1
∑

=

+=
n

i
iiSch xxnxf

r
 (A.2)

where n is the dimension of the function. The variables x
r

 are delimited within a range of

]500,500[+− . This function has its global minimum located at)420.9687,...,420.9687(min =x

and has a value 0)(min =xfSch . Figure A.2 shows the search space of two variables Schf .

Griewangk’s problem)(Grif :

Grif is a highly multimodalhas many local minima, regular, and non-separable

function. Non-separable functions are highly epistaticstrong interactions between genes

 164

Figure A.3. Search space of Griewangk function of two variables.

and has the ability of modifying one gene by the joined effect of one or more genes.

Therefore, this kind of functions is more difficult to optimise since moving from one point to

another in the search space highly depends on the joint action of two or more genes. Thus,

the phenotype of an individual is affected by one or more genes. The objective function of

Grif is defined in (A.3).

.)cos(
4000

1)(
1 1

2

∑ ∏
= =

−+=
n

i

n

i

ii
Gri

i

xx
xf
r

 (A.3)

where n is the dimension of the function. The search space is delimited within a range of

]600,600[+− units per variable ix . The global minimum is located at)0,...,0(min =x with a

value 0)(min =xfGri . The number of local minima grows exponentially when the number of

variables increases. Figure A.3 shows Grif search space of two variables.

 165

Figure A.4. Search space of Ackley function of two variables.

Ackley’s problem)(Ackf :

Ackf possesses similar characteristics as those of Grif : multimodal, regular, symmetric,

and non-separable. This function has moderate complexity; however algorithms that only use

the gradient steepest descent are likely be trapped in local minima areas. Therefore, the best

algorithms to solve this problem should efficiently balance between the exploration and the

exploitation. To solve this problem the objective function shown in (A.4) has to be

minimised.

).)2cos(
1

exp()
1

2.0exp(2020)(
11

2 ∑∑ ==
−−⋅−+= n

i i

n

i iAck x
n

x
n

exf πr
 (A.4)

where n is the dimension of the function. The search space is delimited within the range of

]30,30[+− units per variable ix , and the global minimum is located at)0,...,0(min =x with a

value 0)(min =xf Ack . The search space of two variables Ackf is shown in Figure A.4.

 166

Figure A.5. Search space of Michalewicz function of two variables.

Michalewicz’s problem)(Micf :

The main characteristic of Micf is its asymmetry. Consequently, this function is added to

the test suite in order to avoid the exploitation of the symmetry possessed by the above

problems. In addition, Micf is a separable and multimodal function. The number of local

minima grows, in a factorial manner, as the dimension n of the problem increases, leading

to a total of !n local minima. The objective function is provided in (A.5).

.sin)sin()(
1

2
2

∑
=

⋅


















 ⋅⋅−=
n

i

m

i
iMich

xi
xxf

π
r (A.5)

where n is the dimension of the function and the parameter m defines the sharpness of

valleys. Larger value of m introduces more difficulty into search process; in this research a

value of 10=m is used. The global minimum value is 66.9)(min −=xfMic for a problem’s

dimension 10=n . (The location and value of the global minimum vary according to the

dimension of the problem.) The search space is delimited within the range of],0[π units per

variable ix . The search space of two-dimensional Micf is illustrated in Figure A.5.

 167

Figure A.6. Search space of Rosenbrock function of two variables.

Rosenbrock’s problem)(Rosf :

Rosf is a multimodal and non-separable test function. It is characterised as its global

minimum is located inside a narrow, long, and flat valley. Although most optimisation

techniques can easily locate this valley, the global minimum is difficult to reach. The

objective function is shown in (A.6).

() .1)(100)(
1

1

222
1∑

−

=
+ −+−⋅=

n

i
iiiRos xxxxf

r
 (A.6)

where n is the dimension of the function, and the global minimum is located at)1,...,1(min =x

with a value 0)(min =xfRos . The variables x
r

 range in the interval of]10,5[− . The

visualization of the non-convex search space of Rosenbrock function is illustrated in Figure

A.6. The plot focuses on the area around the global minimum for two variables.

 168

Figure A.7. Search space of Langermann function of two variables.

Langermann’s problem)(Langf :

Langf is also a multimodal and non-separable function; its local minima are irregularly

distributed. Equation (A.7) demonstrates the objective function.

.)(cos)(
1

2
)(

1

1

1

2











−

∑
−= ∑∑

=

−−

=

=
n

j
ijj

axm

i
iLang axecxf

n

j
iji

ππr (A.7)

where n is the dimension of the function. The values of vector C (ic ; mi ,...,1=) and matrix

A (ija ; nj ,...,1= ; mi ,...,1=) are randomly generated in order to obtain a random

distribution of the minima. However, in this research these values were constant numbers

fixed in advance from (Bersini et al., 1996) for 5=m . The variables x
r

 range in the interval

of]10,0[. The global minimum value varies and depends on vector C and matrix A . In this

research, the global minimum value is 49.1)(min −=xfLang . Figure A.7 shows the search

space of theLangf in 2D.

 169

A.2 Real-World Problems

This section describes the benchmark problems selected from the real world: frequency

modulation sound parameter identification (FMSf) and systems of linear equations (SLEf)

(Alba and Dorronsoro, 2008). The third real-world problem considered in this research (GPS

attitude determination GPSf) was introduced in Chapter 4, Section 4.2.2.

Frequency modulation sound parameter identification (FMSf):

In this problem, six parameters must be determined),,,,,(332211 ωωω aaax =r
of the

frequency modulation sound model represented by (A.8) in order to approximate it to the

sound wave represented by (A.9) with 1002 πθ ⋅= . The parameters range within the

interval of]35.6,4.6[+− .

))).sin(sin(sin()(332211 θωθωθω ⋅⋅⋅+⋅⋅⋅+⋅⋅⋅= tatataty (A.8)

))).9.4sin(0.28.4sin(5.10.5sin(0.1)(0 θθθ ⋅⋅⋅+⋅⋅⋅−⋅⋅⋅= tttty (A.9)

The fitness function is defined as the summation of square errors represented by (A.10).

This problem is a highly complex multimodal one, non-symmetric, and with strong epistasis.

The optimum minimum value is 0.0)(min =xfFMS .

 ()∑
=

−=
100

0

2
0 .)()()(

t
FMS tytyxf (A.10)

Systems of linear equations (SLEf):

In this problem, ten parameters of a vector x
r

 are to be determined such that bxA
rr =⋅ , in

order to minimise the objective function represented by (A.11). The global minimum value is

0.0)(min =xfSLE . The matrix A and the vector b
r

 are given by (A.12), and the ten parameters

are in the range]0.11,0.9[+− .

∑∑
= =

−⋅=
n

i

n

j
ijijSLE bxaxf

1 1

)()(. (A.11)

 170

;

1 4, 4, 7, 8, 9, 2, 2, 1, 2,

5 7, 2, 7, 8, 3, 5, 8, 2, 8,

1 8, 1, 7, 4, 3, 6, 8, 3, 9,

8 4, 8, 7, 4, 1, 8, 7, 5, 1,

3 3, 3, 6, 6, 7, 1, 3, 2, 1,

9 3, 3, 2, 4, 3, 6, 1, 5, 9,

5 9, 9, 3, 5, 7, 3, 7, 3, 8,

6 1, 2, 4, 7, 9, 6, 8, 1, 3,

9 6, 6, 2, 2, 7, 1, 1, 7, 9,

1 3, 2, 4, 5, 9, 2, 5, 4, 5,







































=A

.

40

55

50

53

35

45

59

47

50

40







































=b
 (A.12)

SLEf is a complex and quite difficult real-world problem, with inter-parameter linkage

(i.e., non-separable). This problem is unlikely to be used to assess the performance of GAs as

these techniques are not the most suitable to solve this problem. However, some authors still

believe in using this problem to evaluate GAs (Herrera and Lozano, 2000; Alba and

Dorronsoro, 2008; El−Emary and El−Kareem, 2008).

 171

Appendix B

Extended Experimental Results

In order to make this research comprehensive, this appendix is added to provide extended

and preliminary results that may be useful. These results were omitted from main chapters in

order to avoid reader distraction. Section B.1 gives the entire results from the experiment in

Chapter 3; some of these results were omitted as either were not desirable (i.e., had very low

search success rate) or had no significant influences on the analysis. This section (B.1) aims

to support the decision made about what to consider or to disregard. The remaining sections

(B.2 and B.3) give the results from preliminary experiments that are related to the selection

of a single threshold for adaptive algorithms proposed in Chapter 5. These sections aim to

give detailed justification on how to choose a single value for all problems under

consideration (recall that there is no one best value for all problems). Section B.2 provides

the results and criteria on which the selection is made for Diversity-Guided 3D-cGA (refer to

Section 5.2), while those for Convergence-Speed-Guided 3D-cGA and Dynamic 3D-cGA

based on (Alba and Dorronsoro, 2005) are given in Section B.3 (refer to Section 5.3).

B.1 Comparison of 3D and 2D cGAs

In Chapter 3, 3D-cGAs were compared to 2D-cGAs; part of the results were omitted such as

search success rates for fRas, fSch, and fAck as they were either similar or only differed slightly.

Other results omitted from Chapter 3 relate to those obtained for fSLE as they had undesirable

performance. In this section, these results are included in order to show the slight

improvements achieved. Table B.1 summarises all results.

Various configurations concerning population and neighbourhood sizes were defined for

both algorithms (i.e., 2D and 3D cGAs); the parameters used were summarised in Table 3.1.

Various population sizes were selected in order to introduce similar number of individuals

for both grid topologies (i.e., 2D and 3D grids). For more details, refer to Chapter 3.

 172

Table B.1. Convergence time (CT) and rate (CR)* obtained by 3D-cGA and 2D-cGA for

various population sizes and step distances (r)

5×5
3×3×3

8×8
4×4×4

11×11
5×5×5

15×15
6×6×6

19×19
7×7×7

Population
size/

Problem r =1 r =1 r =3 r =1 r =3 r =1 r =3 r =1 r =3

492.61
± 39.5
96%

416.24
± 26.0

100%

381.93
± 35.5

100%

398.31
± 22.0

100%

358.85
± 29.5

100%

401.52 ±
19.5

100%

354.38
± 30.5

100%

406.57
± 18.5

100%

360.42
± 20.0

100%
Rasf

685.22
± 102.5
100%

450.46
± 46.0

100%
−

377.12
± 35.0

100%

356.21
± 35.5

100%

366.02 ±
27.5

100%

350.72
± 20.0

100%

362.12
± 27.0

100%

345.17
± 29.5

100%

302.89
± 32.0
79%

245.01
± 21.0
99%

215.15
± 18.0
99%

234.02
± 16.0

100%

203.03
± 16.0

100%

226.77
± 13.5

100%

193.00
± 13.5
100%

231.13
± 10.5

100%

190.99
± 12.5

100%
Schf

258.46
± 33.5
84%

227.97
± 21.0
99%

−
212.69

± 17.5
100%

200.53
± 16.5

100%

205.28
± 13.5

100%

189.09
± 15.5

100%

199.87
± 12.5

100%

181.9
± 14.5

100%

448.00
± 0.00
1%

511.11
± 48.0
9%

431.90
± 2.50
10%

408.63
± 82.0
11%

324.50
± 39.0
18%

604.87
± 116.0
31%

366.92
± 23.0
39%

489.78
± 53.0
42%

353.35
± 30.0
53%

Grief
386.50

± 2.00
4%

475.15
± 75.0
13%

−
345.36

± 49.0
19%

300.40
± 28.5
22%

426.47
± 38.0
34%

331.86
± 33.5
44%

303.54
± 29.0
51%

298.52
± 22.0
57%

343.21
± 23.0

100%

263.41
± 5.0

100%

216.96
± 5.0

100%

261.78
± 4.0

100%

210.79
± 3.5

100%

259.01
± 3.5

100%

207.63
± 2.0

100%

258.83
± 2.5

100%

209.01
± 2.0

100%
Ackf

 275.82
± 18.0

100%

230.56
± 5.5

100%
−

225.07
± 3.0

100%

211.36
± 3.0

100%

223.61
± 2.0

100%

204.59
± 2.0

100%

222.01
± 2.0

100%

200.17
± 2.0

100%

445.62
± 51.0
16%

481.00
± 66.0
33%

444.17
± 48.0
41%

488.79
± 51.0
43%

446.15
± 51.5
60%

548.60
± 58.0
75%

442.92
± 45.0
81%

560.44
± 43.0
89%

461.78
± 43.0
84%

Micf
419.31

± 90.0
19%

435.05
± 46.0
35%

−
453.83

± 55.5
54%

437.85
± 47.0
56%

457.67
± 44.0
65%

433.05
± 41.0
72%

467.40
± 46.0
80%

433.13
± 50.5
82%

260.50
± 47.0
4%

292.57
± 49.0
28%

193.80
± 24.0
35%

358.21
± 33.5
65%

221.68
± 25.5
64%

361.56
± 60.0
93%

213.16
± 23.0
89%

327.44
± 26.0
97%

205.47
± 16.0
96%

Langf
205.87

± 29.5
8%

226.33
± 30.5
30%

−
251.94

± 25.0
76%

218.30
± 20.5
62%

228.19
± 22.0
91%

204.01
± 25.0
85%

239.83
± 22.0
99%

186.83
± 15.0
99%

602.40
± 198.0
25%

264.38
± 57.5
44%

196.14
± 35.5
42%

258.64
± 37.0
62%

170.58
± 19.0
65%

270.62
± 32.0
87%

190.07
± 18.0
77%

296.11
± 25.0
96%

209.97
± 22.0
89%

FMSf

 442.93
± 202.0
33%

208.95
± 37.0
49%

−
207.69

± 29.0
63%

186.75
± 23.0
68%

202.41
± 17.0
81%

184.06
± 21.5
72%

220.63
± 22.0
92%

197.77
± 21.5
80%

0% 0% 0% 0%
382.00

± 62.0
2%

662.00
± 0.00
1%

657.50
± 106.5
2%

823.00
± 78.0
2%

625.50
± 89.5
6%

SLEf

0% 0% −
891.00

± 0.00
1%

556.50
± 173.5
2%

744.00
± 0.00
1%

668.85
± 167.0
7%

752.16
± 14.0
6%

567.66
± 37.0
6%

* For more details about the performance measures, please refer to Section 2.2.3.1.
Note: For each problem, the results obtained by 2D-cGA are shown above the results obtained by 3D-cGA. The symbol ‘−’
means that the corresponding algorithm configuration has not been evaluated.

 173

For each problem studied, convergence time and convergence rate obtained for 2D-cGAs

and 3D-cGAs of various configurations are given in Table B.1. The discussion and analysis

of results were provided in Chapter 3.

B.2. Selection of γ Diversity-Guided 3D-cGA

This section studies the behaviour of the adaptive criterion under different γ values (refer

to Chapter 5, Section 5.2). Four γ values: 0.3, 0.35, 0.4, and 0.45, which represented high to

low restrictive conditions to reduce the selection rate were tested. The purpose is to select

single γ value for all of the problems considered.

Table B.2. Experimental Results: Convergence time (CT) and rate (CR)* obtained by
Diversity-Guided 3D-cGAs for various thresholds (γ), and 777 ×× grid

Problem γ = 0.3 γ = 0.35 γ = 0.4 γ = 0.45

Rasf
678.22 ± 65.5

100%

683.94 ± 54.5

100%

641.72 ± 55.0

100%

675.61 ± 48.5

100%

Schf
1259.2 ± 97.5

100%

1247.3 ± 100.0

100%

1209.9 ± 116.0

100%

1207.3 ± 126.0

100%

Ackf
1854.9 ± 70.0

70%

1850.4 ± 72.00

76%

1897.4 ± 52.0

83%

1872.2 ± 50.0

79%

Rosf
908.47 ± 534.0

42%

861.21 ± 603.0

41%

881.7 ± 636.5

50%

1010.7 ± 470.5

44%

Micf
712.63 ± 32.5

100%

664.62 ± 40.5

100%

628.30 ± 43.0

100%

599.69 ± 47.5

100%

Langf 340.57 ± 25.5

84%

346.01 ± 16.0

94%

308.45 ± 14.5

96%

320.13 ± 23.0

92%

FMSf
1386.1 ± 278.0

68%

1396.7 ± 250.0

61%

1294.7 ± 381.5

100%

1337.6 ± 267.5

70%

SLEf
345.91 ± 32.0

37%

320.97 ± 33.5

34%

341.48 ± 35.0

39%

323.33 ± 31.0

21%

Table B.3. Local and global† ranking of γ values based on two performance metrics
Convergence

time
Convergence

rate
γ Sum Rank

1. 0.35 1. 0.40 0.30 6 4
1. 0.40 2. 0.30 0.35 3 2
3. 0.45 2. 0.35 0.40 2 1
4. 0.30 2. 0.45 0.45 5 3

* For more details about the performance measures, please refer to Section 2.2.3.1.
† Local ranking is performed for each performance metric independently. Local ranks are marked in bold in the first two
columns. Global ranking is performed for all performance metrics and is shown in the last column. It is computed by summing
the local ranks for each γ. Sum of local ranking values are shown in the column prior to the last.

 174

Table B.2 shows the results obtained. For each problem, the best results are marked in

bold. In order to select one γ value two-level ranking was performed (see Table B.3). In the

first levellocal ranking, γ values were ranked based on convergence time and rate

independently. The value of γ that resulted in the lowest convergence time for most cases

was assigned the highest rank (i.e., the smallest number) (column 1), and so forth. Similarly,

γ value that resulted in the highest convergence rate for most cases was assigned the highest

rank (column 2) , and so forth. In the second levelglobal ranking, γ values were ranked

based on their local ranks; the value of γ that resulted in the minimum sum of local ranks

was assigned the highest rank (the last column). Consequently, the best γ value was 0.4.

Table B.4. Experimental Results: Convergence time (CT), rate (CR), and speed (SP)*
obtained by Diversity-Guided 3D-cGAs for various thresholds (γ), and 666 ×× grid

Problem γ = 0.05 γ = 0.15 γ = 0.25 γ = 0.30 γ = 0.40

Rasf
576.32 ± 63.5

100%
36.34 ± 4.01

581.6 ± 54.5
100%

37.31 ± 3.5

586.86 ± 51.0
100%

38.01 ± 3.12

576.91 ± 52.5
100%

37.49 ± 3.74

570.83 ± 49.5
100%

36.80 ± 3.23

Ackf
1430.4 ± 173.5

100%
90.93 ± 10.96

1406.7 ± 188.5
100%

90.53 ± 12.23

1411.8 ± 163.5
100%

90.29 ± 10.5

1457.5 ± 180.0
100%

95.69 ± 12.6

1399.0 ± 190.0
100%

89.58 ± 12.34

Rosf
632.45 ± 159.0

42%
40.87 ± 10.2

510.66 ± 281.0
48%

33.25 ± 18.03

452.34 ± 254.5
46%

29.18 ± 16.13

497.74 ± 325.5
50%

31.57 ± 20.64

445.87 ± 256
55%

27.83 ± 15.9

FMSf
872.55 ± 314.0

58%
80.02 ± 28.81

899.31 ± 261.0
48%

82.85 ± 24.35

1001.6 ± 248.5
52%

91.54 ± 23.41

979.00 ± 213.0
49%

89.95 ± 19.57

981.65 ± 336.5
52%

89.77 ± 31.91

SLEf
365.8 ± 42.0

15%
24.34 ± 2.80

321.07 ± 33.0
13%

21.74 ± 2.56

338.18 ± 51.0
16%

22.75 ± 3.64

291.40 ± 14.5
10%

19.61 ± 0.96

300.80 ± 36.0
10%

20.28 ± 2.56

GPSf
125.58 ± 6.00

99%
2.45 ± 0.109

102.40 ± 7.00
99%

2.00 ± 0.14

96.45 ± 6.00
99%

1.91 ± 0.109

96.06 ± 7.00
99%

1.89 ± 0.15

96.26 ± 6.5
100%

1.88 ± 0.11

Table B.5. Local and global† ranking of γ values based on three performance metrics
Convergence

time
Convergence

Rate
Convergence

speed
γ Sum Rank

1. 0.40 1. 0.40 1. 0.40 0.05 7 2
2. 0.30 2. 0.25 2. 0.05 0.15 12 5
3. 0.05 2. 0.05 3. 0.30 0.25 10 4
4. 0.15 4. 0.15 4. 0.15 0.30 9 3
4. 0.25 4. 0.30 4. 0.25 0.40 3 1

* For more details about the performance measures, please refer to Section 2.2.3.1.
† Local ranking is performed for each performance metric independently. Local ranks are marked in bold in the first three
columns. Global ranking is performed for all performance metrics and is shown in the last column. It is computed by summing
the local ranks for each γ. Sum of local ranking values are shown in the column prior to the last.

 175

In Chapter 5, Diversity-Guided 3D-cGA was compared with other algorithms. To

perform fairness comparison, similar parameters for algorithms compared were used; a size

of 216 individuals arranged as 666 ×× was used. Consequently, experiments to select single

γ value were repeated for the reduced size of population. Population size can significantly

influence algorithm performance; larger populations offer more diversity and therefore

promote more exploration.

Table B.4 shows the results. Values of γ included: 0.05, 0.15, 0.25, 0.3, and 0.4. The

best results achieved for each problem are marked in bold. Two-level ranking was

performed. Locally, γ values that achieved the lowest convergence time, the highest rate,

and the fastest convergence in parallel was assigned the highest rank (Table B.5, columns 1,

2, and 3, respectively). Globally, the highest rank was assigned to the γ that resulted in the

best overall performance (the last column). Consequently, the best γ value is 0.4.

B.3. Selection of ε for Convergence-Speed-Guided 3D-cGA

This section examines the performance of the adaptive criteria defined for the Convergence-

Speed-Guided 3D-cGA and the Dynamic 3D-cGA based on (Alba and Dorronsoro, 2005)

against different ε values to facilitate the selection of single ε value for all the considered

problems (refer to Chapter 5, Section 5.3).

Table B.6. Experimental Results: Convergence time (CT), rate (CR), and speed (SP)*
obtained by Convergence-Speed-Guided 3D-cGAs for various thresholds (ε)

Problems ε = 0.3 ε = 0.25 ε = 0.15 ε = 0.05

Rasf
755.55 ±46.5

100%
53.11 ±3.53

777.21 ±70.0
99%

51.61 ±4.45

735.97 ±61.0
100%

50.86 ±3.67

752.89 ±65.5
100%

51.25 ±4.61

Ackf
1609.0 ±153.5

100%
106.25 ±9.44

1519.6 ±144.5
100%

106.83 ±9.69

1566.7 ±141.0
99%

105.29 ±9.76

1598.1 ±143.0
99%

117.7 ±10.3

Rosf
599.70 ±235.0

10%
40.15 ±15.46

686.75 ±135.0
16%

46.54 ±9.41

692.69 ±203.0
13%

46.73 ±11.82

661.68 ±192.0
22%

45.39 ±13.05

FMSf
1161.8 ±308.0

69%
108.86 ±29.92

1167.3 ±272.0
64%

109.63 ±25.46

1127.7 ±300.0
68%

105.93 ±28.35

944.53 ±380.0
54%

90.65 ±35.3

SLEf
515.08 ±50.0

24%
34.33 ± 3.35

522.95 ±66.0
23%

36.33 ±4.54

498.95 ±67.0
20%

33.80 ±4.44

535.46 ±99.0
26%

37.91 ±7.02

GPSf
106.70 ±14.0

99%
2.02 ±0.281

95.77 ±10.5
96%

1.82 ±0.203

102.15 ±13.0
98%

1.84 ±0.226

93.02 ±9.00
100%

1.76 ±0.16
* For more details about the performance measures, please refer to Section 2.2.3.1.

 176

Table B.7. Local and global* ranking of ε values based on three performance metrics

Convergence
time

Convergence
rate

Convergence
speed ε Sum Rank

1. 0.05 1. 0.05 1. 0.15 0.05 4 1
1. 0.15 2. 0.30 2. 0.05 0.15 5 2
3. 0.25 3. 0.15 3. 0.30 0.25 10 4
3. 0.30 3. 0.25 4. 0.25 0.30 8 3

Four ε values0.3, 0.25, 0.15, and 0.05were assessed, representing low to high

restrictive adaptive conditions. Table B.6 shows the results obtained. The best results for

each problem are marked in bold. To select single ε value, two-level ranking was

performed based on convergence time, rate, and speed. Locally, the highest rank was

assigned to ε value that achieved the lowest convergence time, the highest rate, and fastest

convergence in parallel (Table B.7, columns 1, 2, and 3, respectively). Globally, the highest

rank was assigned to ε value that achieved the best overall performance (Table B.7, the last

column). Consequently, the best ε value is 0.05.

Similarly, the same ε values were tested for Dynamic 3D-cGA based on (Alba and

Dorronsoro, 2005). Table B.8 shows the results obtained. For each problem considered, the

best results achieved are marked in bold.

Table B.8. Experimental Results: Convergence time (CT), rate (CR), and speed (SP)†
obtained by Dynamic 3D-cGAs based on (Alba and Dorronsoro, 2005) for various thresholds
(ε)

Problems ε = 0.3 ε = 0.25 ε = 0.15 ε = 0.05

Rasf
547.27 ±61.0

100%
37.51 ±3.91

564.64 ±59.5
100%

40.05 ±4.32

544.21 ±51.5
100%

36.07 ±3.19

541.43 ±99.5
100%

37.68 ±4.10

Ackf
1298.4 ±200.0

100%
88.27 ±13.5

1399.4 ±203.0
100%

93.92 ±13.18

1301.6 ±195.0
100%

87.97 ±12.94

1337.5 ±189.5
100%

100.54 ±13.76

Rosf
998.0 ±0.0

1%
66.25 ±0.0

995.00 ±2.0
2%

66.82 ±0.23
0% 0%

FMSf
905.38 ±340.0

50%
86.25 ±31.94

880.08 ±261.0
50%

83.35 ±24.76

839.90 ±273.0
54%

79.34 ±26.63

981.41 ±342.0
72%

94.41 ±32.5

SLEf
209.33 ±42.0

3%
14.75 ±1.68

219.3 ±23.5
10%

15.43 ±1.46

216.81 ±43.0
11%

15.14 ±3.0

228.2 ±3.0
5%

16.27 ±0.28

GPSf
70.80 ±7.0

97%
1.37 ±0.125

72.65 ±9.0
100%

1.42 ±0.156

72.17 ±7.0
98%

1.42 ±0.12

71.79 ±8.0
100%

1.40 ±0.15

* Local ranking is performed for each performance metric independently (marked in bold). Global ranking is performed for all
performance metrics (last column). It is computed by summing the local ranks for each ε.
† For more details about the performance measures, please refer to Section 2.2.3.1.

 177

Table B.9. Local and global* rankings of ε values based on three performance metrics

Convergence
time

Convergence
rate

Convergence
speed ε Sum Rank

2. 0.05 3. 0.15 1. 0.30 0.05 6 1
2. 0.15 1. 0.25 1. 0.15 0.15 6 1
2. 0.25 4. 0.30 3. 0.05 0.25 6 1
1. 0.30 1. 0.05 3. 0.25 0.30 6 1

* Local ranking is performed for each performance metric independently (marked in bold). Global ranking is performed for all
performance metrics (last column). It is computed by summing the local ranks for each ε.

To choose single ε value, two-level ranking was performed based on performance

metrics: convergence time, rate, and speed. Locally, the highest rank was allocated to ε

value that resulted in: the lowest convergence time, the highest convergence rate, and the

fastest convergence in parallel (Table B.9, columns 1, 2, and 3, respectively). Globally, the

highest (or final) rank was assigned to ε value that obtained the best overall performance

(Table B.9, the last column). From Table B.9, it can be seen that all of the ε values tested

obtained similar global ranks. A value of ε = 0.05 that represented the most restrictive

condition was selected for Convergence-Speed-Guided 3D-cGA (refer to Table B.9). In

addition, for Dynamic 3D-cGA based on (Alba and Dorronsoro, 2005), a similar ε

value0.05was selected.

 178

References

Alba, E. (2002). Parallel Evolutionary Algorithms Can Achieve Super-Linear Performance.

In Information Processing Letters, 82(1), pp. 7–13. Elsevier.

Alba, E. (2005). Parallel Metaheuristics a New Class of Algorithms. John Wiley & Sons

Publication. 978-0-471-67806-9.

Alba, E. and Cotta, C. (2006). Evolutionary Algorithms. In Handbook of Bioinspired

Algorithms and Applications, Olariu, S. and Zomaya, A. Y., eds. pp. 3−19. Chapman &

Hall/CRC.

Alba, E., Cotte, C., and Troya, J. M. (1999a). Numerical and Real Time Analysis of Parallel

Distributed GAs with Structured and Panmictic Populations. In IEEE Transactions on

Evolutionary Computation, pp. 1019−1026. IEEE.

Alba, E., Cotte, C., and Troya, J. M. (1999b). Entropic and Real-Time Analysis of the Search

with Pancmictic, Structured, and Parallel Distributed Genetic Algorithms. In LCC Technical

Report ITI 99-7, pp. 1−9. Universidad de Malaga.

Alba, E. and Dorronsoro, B. (2005). The Exploration/Exploitation Tradeoff in Dynamic

Cellular Genetic Algorithms. IEEE Transaction on Evolutionary Computation, 9(2), pp.

126−142. IEEE.

Alba, E. and Dorronsoro, B. (2008). Cellular Genetic Algorithms. New York: Springer

Sciences + Business Media. 978-0-387-77609-5.

Alba, E., Giacobini, M., Tomassini, M., and Romero, S. (2002). Comparing Synchronous

and Asynchronous Cellular Genetic Algorithms. In Proceedings of the Parallel Problem

 179

Solving from Nature−PPSN VII, Granada, Spain, LNCS 2439, pp. 601−610. Springer-

Verlag.

Alba, E., Luna, F., and Nebro, A. (2004). Advances in Parallel Heterogeneous Genetic

Algorithms for Continues Optimization. International Journal of Applied Mathematics and

Computer Science, 14(3), pp. 101−117. AMCS.

Alba, E., Nebro, A., and Troya, J. (2002). Heterogeneous Computing and Parallel Genetic

Algorithms. Journal of Parallel and Distributed Computing, 62(9), pp. 1362−1385. Elsevier.

Alba, E. and Tomassini, M. (2002). Parallelism and Evolutionary Algorithms. IEEE

Transactions on Evolutionary Computation, 6(5), pp.443−462. IEEE.

Alba, E. and Troya, J. M. (1999a). A Survey of Parallel Distributed Genetic Algorithms.

Complexity, 4(4), pp. 31–52. John Wiley & Sons.

Alba, E. and Troya, J. M. (1999b). An Analysis of Synchronous and Asynchronous Parallel

Distributed Genetic Algorithms with Structured and Panmictic Islands. In Proceedings of the

11th IPPS/SPDP99 Workshops, pp. 248–256.

Alba E. and Troya, J. M. (2000). Cellular Evolutionary Algorithms: Evaluating the Influence

of Ratio. In proceedings of the 6th International Conference on Parallel Problem Solving from

Nature−PPSN VI, pp. 29−38. Springer-Verlag.

Alba, E. and Troya, J. M. (2001). Analyzing Synchronous and Asynchronous Parallel

Distributed Genetic Algorithms. Future Generation Computer Systems, 17(2001), pp. 451–

465. Elsevier.

Alba, E. and Troya, J. M. (2002). Improving Flexibility and Efficiency by Adding

Parallelism to Genetic Algorithms. Statistics and Computing, 12(2), pp. 91–114. Kluwer

Academic Publishers.

 180

Al-Naqi, A., Erdogan, A.T., and Arslan, T. (2010a). Fault Tolerance through Automatic Cell

Isolation Using Three-Dimensional Cellular Genetic Algorithms. In Proceedings of the IEEE

Congress on Evolutionary Computation (CEC '10), Barcelona, Spain, pp. 1−8. IEEE.

Al-Naqi, A., Erdogan, A.T., and Arslan, T. (2010b). Balancing Exploration and Exploitation

in Adaptive Three-Dimensional Cellular Genetic Algorithm via Probabilistic Selection

Operator. In Proceedings of the NASA/ESA Conference on Adaptive Hardware and Systems

(AHS '10), Anaheim, California, USA, pp. 258−264. IEEE.

Al-Naqi, A., Erdogan, A.T., and Arslan, T. (2011a). Fault Tolerant Three-Dimensional

Cellular Genetic Algorithms with Adaptive Migration Schemes. In Proceedings of the

NASA/ESA Conference on Adaptive Hardware and Systems (AHS '11), San Diego,

California, USA, pp. 352−359. IEEE.

Al-Naqi, A., Erdogan, A.T., and Arslan, T. (2012). Adaptive Three-Dimensional Cellular

Genetic Algorithm for Fine Balancing Exploration and Exploitation Processes. Special Issue

on Bio-inspired Algorithms with Structured Populations−Soft Computing Journal

(submitted).

Asenek, A.V., Underwood, C.I., and Oldffield, M.K. (1997). Predicting the Rate and Effects

of Single Event Upsets on Satellite Application Software using a Microprocessor Simulator.

BMUS, The Microsatellite Baumanetz, [online] Available at:

<http://microsat.sm.bmstu.ru/e-library/ccdh/eccdh.htmv>.

Avizienis, A. (1971). Fault Tolerant Computing: An Overview. IEEE Transactions of

computer, 4(1), pp. 5−8. IEEE.

Back, T. (1996). Evolutionary Algorithms in Theory and Practice. Oxford University Press.

978-0-19-509971-3.

Back, Th. And Breukelaar, R. (2005). Using Genetic Algorithms to Evolve Behaviour in

Cellular Automata. In Proceedings of the 4th International Conference on Unconventional

Computation, LNCS 3699, pp. 1−10. Springer-Verlag.

 181

Baluja, S. (1993). Structure and Performance of Fine-Grain Parallelism in Genetic Search. In

Proceedings of 5th International Conference on Genetic Algorithms−ICGA93, pp. 155−162.

Morgan Kaufmann.

Borkar, S. (2011). 3D Integration for Energy Efficient System Design. In Proceedings of

Design Automated Conference−DAC’11, San Diego, California, USA, 5−10 June, pp.

214−219. IEEE.

Breukelaar, R. and Back, Th. (2005). Using a Genetic Algorithm to Evolve Behaviour in

Multi Dimensional Cellular Automata. In Proceedings of GECCO’05, Washington, DC,

USA, 25−29 June 2005, pp. 107−114. ACM.

Cantu-Paz, E. (1995). A Summary of Research on Parallel Genetic Algorithms. In IlliGAL

report no. 95007, pp. 1−17. University of Illinois at Urbana-Champaign.

Cantu-Paz, E. (1999a). Topologies, Migration Rates, and Multi-Population Parallel Genetic

Algorithms. In proceedings of the 1999 Genetic and Evolutionary Computation Conference.

San Mateo, California, USA, 13−17 July 1999, pp. 91−98. Morgan Kaufmann.

Cantu-Paz, E. (1999b). Migration Policies and Takeover Times in Parallel Genetic

Algorithms. In IlliGAL report no. 99008, pp. 1−11. University of Illinois at Urbana-

Champaign.

Cantu-Paz, E. (2000). Efficient and Accurate Parallel Genetic Algorithms.

Boston/Dordrecht/London: Kluwer Academic Publisher. 978-0-7923-7221-9.

Cantu-Paz, E. (2001). Migration Policies, Selection Pressure, and Parallel Evolutionary

Algorithms. In Journal of Heuristics, 7(4), pp. 311−334. Kluwer Academic Publisher.

Cantu-Paz, E. and Goldberg, D. E. (1999). On the Scalability of Parallel Genetic Algorithms.

In Evolutionary Computation, 7(4), pp. 429– 449. MIT Press.

 182

Capcarrere, M., Tomassini, M., Tettamanzi, A., and Sipper, M. (1999). A Statistical Study of a

Class of Cellular Evolutionary Algorithms. Evolutionary Computation, 7(3), pp. 255−274.

MIT Press.

Culler, D. E., Singh, J. P., and Gupta, A. (1998). Parallel Computer Architecture: A

Hardware/Software Approach. USA: Morgan Kaufmann. 978-1558603433.

Das, S., Chandrakasan, A., and Reif, R. (2003). Three-Dimensional Integrated Circuits:

Performance, Design Methodology, and CAD Tools. In Proceedings of IEEE Computer

Society Annual Symposium on VLSI, Tampa, Florida, USA, 20−21 Feb., pp. 13−18. IEEE.

De Jong, K. and Sarma, J. (1995). On Decentralizing Selection Algorithms. In Proceedings

of the Sixth International Conference on Genetic Algorithms, Pittsburgh, PA, pp. 17−23.

Morgan Kaufmann.

Dorronsoro, B. and Alba, E. (2006). A Simple Cellular Genetic Algorithm for Continuous

Optimization. In Proceedings of Congress on Evolutionary Computation −CEC’06, 16-21

July 2006, pp. 2838−2844. IEEE.

Dorronsoro, B., Alba, E., Giacobini, M., and Tomassini, M. (2004). The Influence of Grid

Shape and Asynchronicity on Cellular Evolutionary Algorithms. In Proceedings of Congress

on Evolutionary Computation −CEC’04, 19-23 June 2004, pp. 2152−2158. IEEE.

Eklund, S. E. (2004). A Massively Parallel Architecture for Distributed Genetic Algorithms.

Parallel Computing, 30(2004), pp. 647−676. Elsevier.

El-Emary, I. M. M. and Abd El-Kareem, M. M. (2008). Towards Using Genetic Algorithm

for Solving Nonlinear Equation Systems. World Applied Sciences Journal, 5(3), pp.

282−289. IDOSI Publications.

GEATbx (2005). GEATbx Examples: Examples of Objective Functions. [online] Genetic

and Evolutionary Algorithm Toolbox for use with Matlab, November 2005, Available at: <

http://www.geatbx.com >.

 183

Giacobini, M., Alba, E., and Tomassini, M. (2003). Selection Intensity in Asynchronous

Cellular Evolutionary Algorithms. In Proceedings of the Genetic and Evolutionary

Computation Conference −GECCO’03, pp. 955–966. Springer-Verlag.

Giacobini, M., Tomassini, M., Tettamanzi, A. G. B., and Alba, E. (2005). Selection Intensity

in Cellular Evolutionary Algorithms for Regular Lattices. IEEE Transactions on

Evolutionary Computation, 9(5), pp. 489−505. IEEE.

Goldberg, E. (1989). Genetic Algorithms in Search, Optimization, and Machine Learning.

Addison-Wesley Publishers. 978-0-20-115767-3.

Goldberg, E. and Deb, K. (1991). A Comparative Analysis of Selection Schemes Used in

Genetic Algorithms. In Foundations of Genetic Algorithms, 1(90007), pp. 69−93. Morgan

Kaufmann.

Gong, R., Chen, W., Liu, F., Dai, K. and Wang, Z. (2008). A New Approach to Single Event

Effect Tolerance Based on Asynchronous Circuit Technique. Journal of Electronic Testing:

Theory and Applications, 24(1−3) pp. 57−65. Springer-Verlag.

Greenwood, G. (2005). On the Practicality of Using Intrinsic Reconfiguration for Fault

Recovery. In IEEE Transactions on Evolutionary Computation, 9(4), pp. 398–405. IEEE.

Greenwood, G. (2008). Attaining Fault Tolerance through Self-Adaptation: The Strengths

and Weaknesses of Evolvable Hardware Approaches. In World Congress on Computational

Intelligence, Plenary Invited Lecture, J. Z. et al., Ed. LNCS, pp. 368–387. Springer-Verlag.

Herrera, F. and Lozano, M. (2000). Gradual Distributed Real-Coded Genetic Algorithms.

IEEE Transaction on Evolutionary Computation, 4(1), pp. 43−63. IEEE.

Herrera, F., Lozano, M., Verdegay, J. L. (1998). Tackling Real-Coded Genetic Algorithms:

Operators and Tools for Behavioural Analysis. Artificial Intelligence Review, 12, pp.

265−319. Kluwer Academic Publishers.

 184

Hodgart, M. and Purivigraipong, S. (2000). New Approach to Resolving Instantaneous

Integer Ambiguity Resolution for Spacecraft Attitude Determination using GPS Signals. In

IEEE Position, Location and Navigation Symposium, pp. 132–139. IEEE.

Holland, J. H. (1992). Adaptation in Natural and Artificial Systems: an Introductory

Analysis with Applications to Biology, Control, and Artificial Intelligence. USA: MIT Press.

0262082136.

Hounsell, B. I. and Arslan, T. (2001). Evolutionary Design and Adaptation of Digital Filters

Within an Embedded Fault Tolerant Hardware Platform. In 3rd NASA/DoD Workshop on

Evolvable Hardware, Long Beach, CA, 12−14 July 2001, pp. 127–135. IEEE.

Jacob, C. (2001). Illustrating Evolutionary Computation with Mathematica. USA: Morgan

Kaufmann. 978-1-55860-637-1.

Juang, J. and Huang, G. (1997). Development of GPS-based Attitude Determination

Algorithms. In IEEE Transactions on Aerospace and Electronics Systems, 33(3), pp. 968–

976. IEEE.

Kirley, M., Li, X., and Green, D. G. (1999). Investigation of a Cellular Genetic Algorithm

that Mimics Landscape Ecology. In Lecture Notes in Computer Sciences, 1585, pp. 90−97.

Springer-Verlag.

Koza, J. (1992). Genetic Programming- on the Programming of Computers by Means of

Natural Selection. England: MIT Press. 0-262-11170-5.

Label, K.A. (1996). Single Event Effect Criticality Analysis. In NASA HQ/code QW. 16 Feb.

1996. NASA.

Lala, P.K. (1985). Fault Tolerant and Fault Testable Hardware Design. Prentice Hall

International. 0-13-308248-2.

 185

Lee, C.-H., Park, S.-H., and Kim, J.-H. (2000). Topology and Migration Policy of Fine-

Grained Parallel Evolutionary Algorithms for Numerical Optimization. In Proceedings of the

Congress on Evolutionary Computation, La Jolla, CA, USA, 16−19 July 2000, pp. 70−76.

IEEE.

Li, X. and Kirley, M. (2002). The Effects of Varying Density in a Fine-Grained Parallel

Genetic Algorithm. In Proceedings of the Congress on Evolutionary Computation, Honolulu,

HI, USA, 12−17 May 2002, pp. 1709−1714. IEEE.

Lyons, R. and Vanderkulk, W. (1962). The Use of Triple-Modular Redundancy to Improve

Computer Reliability. IBM Journal of Research and Development, 6(2), pp. 200−209. IBM.

Mastipuram, R. and Wee, E.C. (2004). Soft Errors’ Impact on System Reliability. [online]

EDN, 30 September 2004, Available at: < http://www.edn.com/article/CA454636 >.

Matsumura, T., Nakamura, M., Miyazato, D., Onaga, K., and Okech, J. (1997). Effects of

Chromosome Migration on Parallel and Distributed Genetic Algorithm. In Proceedings of

the 3rd International Symposium on Parallel Architectures, Algorithms, and Networks,

Taipei, Taiwan, 18−20 December 1997, pp. 357−361. IEEE.

Michalewicz, Z. (1996). Genetic Algorithms + Data Structures = Evolution Programs.

Springer Series: Artificial Intelligence. 3540606769.

Morales-Reyes, A. (2010). Fault Tolerant and Dynamic Evolutionary Optimization Engines.

In PhD Thesis. The University of Edinburgh.

Morales-Reyes, A., Al-Naqi, A., Erdogan, A. T., and Arslan, T. (2009). Towards 3D

Architectures: A Comparative Study on Cellular GAs Dimensionality. In Proceedings of the

NASA/ESA Conference on Adaptive Hardware and Systems, San Francisco, California, USA,

29 July − 1 August 2009, pp. 223−229. IEEE.

Morales-Reyes, A., Stefatos, E., Erdogan, A. T., and Arslan, T. (2008a). Fault Tolerant

Cellular Genetic Algorithm. In IEEE Congress on Evolutionary Computation, Hong Kong,

1−6 June 2008, pp. 2676−2682. IEEE.

 186

Morales-Reyes, A., Erdogan, A. T., Arslan, T., and Stefatos, E. (2008b). Towards Fault

Tolerant Systems Based on Adaptive Cellular Genetic Algorithms. In Proceedings of IEEE

NASA/ESA Conference on Adaptive and Hardware and Systems, Noordwijk, the Netherlands,

22−25 June 2008, pp. 398−405. IEEE.

Morales-Reyes, A., Haridas, N., Erdogan, A. T., and Arslan, T. (2009). Fault Tolerant and

Adaptive GPS Attitude Determination System. In IEEE Aerospace conference, Big Sky, MT,

7−14 March 2009, pp. 1−8. IEEE.

Muhammad, A., Bargiela, A., and King, G. (1997). Fine-Grained Parallel Genetic

Algorithm: A Stochastic Optimisation Method. In Proceedings of the 1st World Congress on

System Simulations, Singapore, September 1997, pp. 199−203.

Muhammad, A., Bargiela, A., and King, G. (1999). Fine-Grained Parallel Genetic

Algorithm: A Global Convergence Criterion. In International Journal in Computer

Mathematics, pp. 139–155. Gordon and Breach Science.

Normand, E. (1996). Single Event Upset at Ground Level. IEEE Transaction Nuclear

Science, 43(6), pp.2742−2750. IEEE.

Nowostawski, M. and Poli, R. (1999). Parallel Genetic Algorithm Taxonomy. In the

Proceedings of the 3RD International Conference on Knowledge-Based Intelligent

Information Engineering Systems, Adelaide, Australia, 31 August − 1 September 1999, pp.

1−5.

Oei, C., Goldberg, D., and Chang, S.-J. (1991). Tournament Selection, Niching and the

Preservation of Diversity. In IlliGAL Report No. 91011, pp. 1−11. University of Illinois.

Olariu, S. and Zomaya, A. Y. (2006). Handbook of Bioinspired Algorithms and Applications.

Chapman and Hall/CRC. 9781584884750.

Pant, D. and Joshi, K.C. (2007). Software Fault Tolerant computing: Needs and Prospects. In

Ubiquity, 8(16). ACM.

 187

Pickle, J.C. (1996). Single-Event Effects Rate Prediction. IEEE Transactions on Nuclear
Science, 43(2), pp. 483−495. IEEE.

Rahman, A., Das, S., Chandrakasan, A. P., and Reif, R. (2003). Wiring Requirement and

Three-Dimensional Integration Technology for Field Programmable Gate Arrays. IEEE

Transactions on Very large Scale Integration Systems, 11(1), pp.44−54. IEEE.

Rebaudengo, M. and Sonza Reorda, M. (1993). An Experimental Analysis of the Effects of

Migration in Parallel Genetic Algorithms. In proceedings of Euromicro Workshop on Parallel

and Distributed Processing, Gran Canaria, Spain, 27−29 January, pp. 232−238. IEEE.

Roosta, S. H. (1999). Parallel Processing and Parallel Algorithms: Theory and Computation.

USA: Springer-Verlag. 978-0387987163.

Rothlauf, F. (2006). Representations for Genetic and Evolutionary Algorithms. 2nd ed. Berlin

Heidelberg: Springer-Verlag. 978-3-540-25059-3.

Rudolph, G. (2000). On Takeover Times in Spatially Structured Populations: Array and Ring.

In Proceedings of the 2nd Asia-Pacific Conference on Genetic Algorithms and Applications,

Hong Kong, pp. 144−151. Global-Link Publishing Company.

Sarma, J. and De Jong, K. (1996). An Analysis of the Effects of Neighbourhood Size and

Shape on Local Selection Algorithms. In Proceedings of the 4th International Conference on

Parallel Problem Solving from Nature, LNCS 1141, pp. 236−244. Springer-Verlag.

Schofisch, B. and de Roos, A. (1999). Synchronous and Asynchronous Updating in Cellular

Automata. BioSystems, 51(1999), pp. 123−143. Elsevier.

Simoncini, D., Collard, P., Verel, S., and Clergue, M. (2006b). From Cells to Islands: An

Unified Model of Cellular Parallel Genetic Algorithms. In Proceedings of the 7th

International Conference on Cellular Automata for Research and Industry, pp. 248−257.

Springer-Verlag.

 188

Simoncini, D., Collard, P., Verel, S., and Clergue, M. (2007). On the Influence of Selection

Operators on Performances in Cellular Genetic Algorithms. In IEEE Congress on

Evolutionary Computation−CEC’07, Singapore, 25−28 Sept. 2007, pp. 4706−4713. IEEE.

Simoncini, D., Verel, S., Collard, P., and Clergue, M. (2006a). Anisotropic Selection in

Cellular Genetic Algorithms. In Proceedings of the Genetic and Evolutionary Computation

Conference−GECCO’06, Seattle, Washington, USA, 8−12 July 2006, pp. 559−566. ACM.

Simoncini, D., Verel, S., Collard, P., and Clergue, M. (2009). Centric Selection: A Way to

Tune the Exploration/Exploitation Trade-Off. In Proceedings of the Genetic and

Evolutionary Computation Conference−GECCO’09, Montréal Québec, Canada, 8−12 July

2009, pp. 1−20. ACM.

Singh, K., Agbaria, A., Kang, D.-I., and French, M. (2006). Tolerating SEU Faults in the

Raw Architecture. In Proceedings of the 3rd International Workshop on Dependable Embedded

Systems, Leeds, UK, October 2006, pp. 35−40.

Sipper, M., Tomassini, M., and Capcarrere, M. S. (1997). Evolving Asynchronous and

Scalable Non-Uniform Cellular Automata. In Proceedings of International Conference on

Artificial Neural Networks and Genetic Algorithms−ICANNGA97, pp. 67−71. Springer-

Verlag.

Spiessens, P. and Manderick, B. (1991). A Massively Parallel Genetic Algorithm:

Implementation and First Analysis. In Proceedings of the 4th International Conference on

Genetic Algorithms, San Diego, CA, July 1991, pp. 279−286. Morgan Kaufmann.

Stefatos E. and Arslan, T. (2004a). High-performance Adaptive GPS Attitude Determination

VLSI Architecture. In IEEE Workshop on Signal Processing Systems, Austin, Texas, USA,

13−15 Oct. 2004, pp. 233−238. IEEE.

Stefatos, E. and Arslan, T. (2004b). An Efficient Fault-Tolerant VLSI Architecture Using

Parallel Evolvable Hardware Technology. In NASA/DoD Conference on Evolvable

Hardware, Seattle, 24−26 June 2004, pp. 97−103. IEEE.

 189

Stefatos, E., Arslan, T., and Hamilton, A. (2008). Enhanced Evolutionary Techniques for

Precise and Real-Time Implementation of Low-Power FIR Filters. In IEEE Congress on

Evolutionary Computation−CEC’08, pp. 2701−2708. IEEE.

Su, S. Y. H. and Spillman, R. J. (1977). An Overview of Fault-Tolerant Digital System

Architecture. In Proceedings of National Computer Conference, 13−16 June 1977, pp.

19−26. ACM.

Thomson, R. and Arslan, T. (2002). An Evolutionary Algorithm for the Multi-Objective

Optimization of VLSI Primitive Operator Filters. In Congress on Evolutionary

Computation−CEC’02, May 2002, pp. 37−42. IEEE.

Thomson, R. and Arslan, T. (2003). On the Impact of Modelling, Robustness, and Diversity

to the Performance of a Multi-Objective Evolutionary Algorithm for Digital VLSI System

Design. In Congress on Evolutionary Computation−CEC’03, December 2003, pp. 382−389.

IEEE.

Thomson, R. and Arslan, T. (2005). Techniques for the Evolution of Pipelined Linear

Transforms. In IEEE Congress on Evolutionary Computation−CEC’05, September 2005, pp.

2476−2482. IEEE.

Tomassini, M. (1999). Parallel and Distributed Evolutionary Algorithms: A. In: Miettinen,

K., Neittaanmaki, P., Makela, M. M., and Periaux, J., eds. (1999). Evolutionary Algorithms

in Engineering and Computer Science Recent Advances in Genetic Algorithms Evolution

Strategies Evolutionary Programming Genetic Programming and Industrial Applications.

England: John Wiley & Sons. Ch. 7. 978-0471999027.

Tomassini, M. (2005). Spatially Structured Evolutionary Algorithms: Artificial Evolution in

Space and Time. Germany: Springer-Verlag. 978-3540241935.

Topol, A. W., La Tulipe, D. C., Shi, L., Frank, D. J., Bernstein, K., Steen, S. E., Kumar, A.,

Singco, G. U., Young, A. M., Guarini, K. W., and Leong, M. (2006). Three-Dimensional

Integrated Circuits. IBM Journal of Research and Development, 50(4/5), pp. 491−506. IBM

 190

Turton, B. C. H. and Arslan, T. (1995a). A Parallel Genetic VLSI Architecture for

Combinatorial Real-Time Applications - Disc Scheduling. In the 1st IEE/IEEE International

Conference on Genetic Algorithms in Engineering Systems: Innovations and Applications

−GALESIA '95, 12−14 September 1995, Sheffield, UK, pp. 493−498. IEEE.

Turton, B.C.H. and Arslan, T. (1995b). An Architecture for Enhancing Image Processing via

Parallel Genetic Algorithms and Data Compression. In IEE/IEEE International Conference

on Genetic Algorithms in Engineering Systems: Innovations and Applications −GALESIA

'95, 12−14 September 1995, Sheffield, UK, pp. 337−342. IEEE.

Turton, B. C. H., Arslan, T., and Horrocks, D. H. (1994). A Hardware Architecture for a

Parallel Genetic Algorithm for Image Registration. In Digest of IEE Colloquium on Genetic

Algorithms in Image Processing and Vision, 20 October 1994, London, UK, pp. 1−6. IEEE.

Ursem, R. K. (2002). Diversity-Guided Evolutionary Algorithms. In Proceedings of the 7th

International Conference on Parallel Problem Solving from Nature, 2439, pp. 462−471,

Springer-Verlag.

Velazco, R., Ecoffet, R., and Faure, F. (2005). How to Characterise the Problem of SEU in

Processors & Representative Errors Observed on Flight. In the 11th IEEE International On-

Line Testing Symposium−IOLTS’05, 6−8 July 2005, pp. 303−308. IEEE.

Xie, Y. and Ma, Y. (2008). Design Space Exploration for 3D Integrated Circuits. In the 9th

International Conference on Solid-State and Integrated-Circuit Technology, Beijing, 20−23

Oct. 2008, pp. 2317−2320. IEEE.

Xu, J., Arslan, T., Wan, D., and Wang, Q. (2002a). GPS Attitude Determination using a

Genetic Algorithm. In Congress on Evolutionary Computation−CEC’02, Honolulu, HI,

USA, 12−17 May 2002, pp. 998−1002. IEEE.

Xu, J., Arslan, T., Wang, Q., and Wan, D. (2002b). An EHW Architecture for Real-Time

GPS Attitude Determination based on Parallel Genetic Algorithm. In Proceedings of

Conference on Evolvable Hardware− NASA/DoD’02, Washington DC, USA, 15−18 July

2002, pp. 133−141. IEEE.

 191

Yarema, R. (2006). Fermilab Initiatives in 3D Integrated Circuits and SOI Design for HEP.

In ILC Vertex Workshop, Ringberg, Germany, 29−31 May 2006, pp. 1−38.

Zhong, J., Hu, X., Gu, M., and Zhang, J. (2005). Comparison of Performance between

Different Selection Strategies on Simple Genetic Algorithms. In Proceedings of IEEE

International Conference on Computational Intelligence for Modelling, Control and

Automation and International Conference on Intelligent Agents, Web Technologies and

Internet Commerce, Vienna, Austria, 28−30 November 2005, pp. 1115−1121. IEEE.

	PhD coversheet April 2012
	PhD-Thesis-Asmaa

