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Abstract

In the area of artificial intelligence, the deveimnt of Evolutionary Algorithms (EAs) has
been very active, especially in the last decadeesé&halgorithms started to evolve when
scientists from various regions of the world apgliiee principles of evolution to algorithmic
search and problem solving. EAs have been utilisedcessfully in diverse complex
application areas. Their success in tackling haothlpms has been the engine of the field of
Evolutionary Computation (EC). Nowadays, EAs aresidered to be the best solution to
use when facing a hard search or optimisation probl

Various improvements are continually being madehwite design of new operators,
hybrid models, among others. A very important exiangb such improvements is the use of
parallel models of GAs (PGAs). PGAs have receivedespread attention from various
researchers as they have proved to be more effgtian panmictic GAs, especially in terms
of efficacy and speedup.

This thesis focuses on, and investigates, cellfnetic Algorithms (cGAsh
competitive variant of parallel GAs. In a cGA, ttemtative solutions evolve in overlapped
neighbourhoods, allowing smooth diffusion of thtusons. The benefits derived from using
cGAs come not only from flexibility gains and thditness to the objective target in
combination with a robust behaviour but also frdmaitt high performance and amenability
to implementation using advanced custom silicomp ¢bthnologies. Nowadays, cGAs are
considered as adaptable concepts for solving pmaleespecially complex optimisation
problems. Due to their structural characteristtSAs are able to promote an adequate
exploration/exploitation trade-off and thus maintgenetic diversity. Moreover, cGAs are
characterised as being massively parallel and teasyplement.

The structural characteristics inherited in a cGévple an active area for investigation.
Because of the vital role grid structure plays ietedmining the effectiveness of the
algorithm, cellular dimensionality is the main issuo be investigated here. The
implementation of cGAs is commonly carried out ooree- or two-dimensional structure.
Studies that investigate higher cellular dimensiare lacking. Accordingly, this research

focuses on cGAs that are implemented on a threestianal structure. Having a structure



with three dimensions, specifically a cubic struefuacilitates faster spreading of solutions
due to the shorter radius and denser neighbourti@adesult from the vertical expansion of
cells. In this thesis, a comparative study of datldimensionality is conducted. Simulation
results demonstrate higher performance achieved3bycGAs over their 2D-cGAs
counterparts. The direct implementation of 3D-cGAs the new advanced 3D-IC
technology will provide added benefits such as @igperformance combined with a
reduction in interconnection delays, routing lengtid power consumption.

The maintenance of system reliability and availgbis a major concern that must be
addressed. A system is likely to fail due to eithard or soft errors. Therefore, detecting a
fault before it deteriorates system performance isrucial issue. Single Event Upsets
(SEUSs), or soft errors, do not cause permanent gart@system functionality, and can be
handled using fault-tolerant techniques. Existiagltftolerant techniques include hardware
or software fault tolerance, or a combination aofhbdn this thesis, fault-tolerant techniques
that mitigate SEUs at the algorithmic level arelesgd and the inherent abilities of cGAs to
deal with these errors are investigated. A faullrent technique and several mitigation
techniques are also proposed, and faulty critiedih cire evaluated critical fault scenarios
(stuck at ‘1’ and stuck at ‘0’ faults) are takeroirconsideration. Chief among several test
and real world problems is the problem of deterngnihe attitude of a vehicle using a
Global Positioning System (GPS), which is an exangblhard real-time application. Results
illustrate the ability of cGAs to maintain their rictionality and give an adequate
performance even with the existence of up to 40%rein fithess score cells.

The final aspect investigated in this thesis isdiieamic characteristic of cGAs. cGAs,
and EAs in general, are known to be stochasticckdachniques. Hence, adaptive systems
are required to continue to perform effectivelyaichanging environment, particularly when
tackling real-world problems. The adaptation inludal engines is mainly achieved through
dynamic balancing between exploration and exploitat This area has received
considerable attention from researchers who focus improving the algorithmic
performance without incurring additional computatibeffort.

The structural properties and the genetic operstijgmovide ways to control selection
pressure and, as a result, the exploration/exfilmitarade-off. In this thesis, the genetic
operations of cGAs, particularly the selection aspend their influence on the search
process, are investigated in order to dynamicaliytrol the exploration/exploitation trade-
off. Two adaptive-dynamic techniques that use demktersity and convergence speeds to

guide the search are proposed. Results obtaineddyating the proposed approaches on a



test bench of diverse-characteristic real-world &wst problems showed improvement in
dynamic cGAs performance over their static couraggpand other dynamic cGAs. For
example, the proposed Diversity-Guided 3D-cGA oritpened all the other dynamic cGAs

evaluated by obtaining a higher search successhrateeached to 55%.
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Chapter 1

Introduction

Evolutionary computation is an area of artificiatelligence that is concerned with solving
computational problems through the use of ideas fo@logical evolution. Computational
problems commonly involve searching a massive piatesolution space to find the best
solution. In the real world, such problems requiocenplex solutions that are usually too
difficult to solve using traditional techniques. Wadays, the dramatic increase in computer
power enables many practical applications to becosadity. Accordingly, evolutionary
algorithms are efficiently used to optimise the igesof systems and to solve high-
dimensional problems. Since the nineteen-ninekds have increasingly become a crucial
part of system design and implementation.

The actualization of Darwinian principles, whichtela evolved into evolutionary
computation, began in the nineteen-fifties for andited problem solving. However, the idea
started to take root in different areas in the ssixéies when the first two methods of
evolutionary algorithms (the approach of evolutigneomputation) were proposed. In the
USA, Lawrence Fogel proposed evolutionary programgniwhile in Germany, Ingo
Rechenberg and Hans-Paul Schwefel proposed ewvolstiategies. In the nine-seventies,
John Holland introduced Genetic Algorithms (GAshieh has become the most widely
used manifestation nowadays, and is the main fottigs research.

Genetic Algorithms are one of the most powerfullddor efficiently solving complex
problems in different application areas. Genetigokithms search for the optimum solution
among a large number of possible solutions, encadegene sequences (chromosomes), by
allowing these organisms to survive and produceol¢ey in their environments. The
evolution process occurs though random variatiamssover, and mutation operators.

Following that, natural selection occurs and plélys vital role of enabling the fittest



chromosome to survive and reproduce. As a reselt;, genetic materials are produced to
form a new population of potential solutions, whigtopagate to successive generations.
This process stops in accordance with a predefi@edination criteria, such as reaching a
specific number of generations and/or finding tesigkd solution (Goldberg, 1989).

Standard GA models are inherently parallel; howevdrey require frequent
communication, which is based on centralised can#ocordingly, parallel GA models
were investigated with a view towards making patathodels efficient. The parallelisation
of GA models occurs at either the computation er plopulation level. In the former, the
operations applied to each encoded solution (iddaf) are performed in parallel. Master-
slave GAs are examples of such a model. In therlathe population is divided into
subpopulations of coarse or fine grain size sueakh ¢lach subpopulation evolves in parallel.
When implementing the GA model, these subpopulatame distributed over a selected grid
structure, which in turn defines the ways in whith subpopulation interacts with others.
Therefore, different parallel GA classes can benfat, and the main aim of all is to enhance
the speedup and efficiency of the search (CantyZ0).

In fine-grained or cellular GAs (cGAs), the popidatis divided into a massive number
of subpopulations, each consisting of one encodedisen (individual). The individuals are
distributed over am-dimensional grid structure with wraparound eddeso{dal). Research
surroundings cGAs are more commonly concerned t#ir implementation on one- or
two-dimensional grid topology. Therefore, the iatgions between the individuals occur
within their local neighbourhood. In coarse-grained distributed GAs (dGAs), the
population is divided into several subpopulatiomsch consisting of a number of
individuals. Each subpopulation evolves in isolatimm others, and the interaction between
the subpopulation occurs according to the emplayégration policy (Cantu-Paz, 1995).

This research is concerned with the cGA models.

1.1 Motivations

The topology of the grid is the key in determinitige performance of GAs. Different
topologies induce different levels of explorationdiversification of the search space and
exploitation or intensification of good solutioridence, the appropriate balance between
exploration and exploitation is an important issnighe rapid identification of promising
regions with high quality solutions in the searplace. A typical cGA is implemented on a

two-dimensional toroidal grid topology; researchnoerned with higher dimensional



topologies is very limited. Preliminary research oellular dimensionality has shown
promising results. Consequently, exploring and stigating the implementation of a cGA
model on higher cellular dimensions, specificallyet-dimensions (3D), is one of the
motivations underlying this research.

Another motivation relates to the field of faultlexance. Evolutionary optimisation
engines are subject to failures; such failuresetattte main data structures, such as those that
store the chromosomes or their fithess values. fiipis of fault is known as Single Event
Effects (SEEs) and may result in either permanentemporary errors. In this research, to
maintain the functionality and the performance GfAcengines, fault mitigation techniques
at the algorithmic level are investigated. A cGAiberent features, such as the diversity of
phenotype and genotype spaces, migration policesadapting the number of evaluations,
are utilised. In addition, information gathereddmhsn the population diversity is used in an
attempt to automatically isolate the faults.

The last motivation relates to the balance betweguoration and exploitation. This
balance is mainly achieved by means of the gridltgy and/or the genetic operations.
However, real-world problems require a system toadeptive in order to continue to
perform effectively in a changing environment. Asresult, dynamic adaptation of the
exploration/exploitation trade-off is an emergingallenge in the field of evolutionary
computation. This area is intensely investigatedam attempt to improve algorithmic
performance without incurring additional computatibeffort. In this research the genetic
operations of cGAs, particularly the selection #émeir influence on the search process are

investigated in order to dynamically control thelexation/exploitation trade-off.

1.2 Objectives

The overall aim of this thesis is to investigate thherent characteristics of cellular genetic
algorithms in order to improve their performanceswldealing with complex problems, and
to introduce new techniques that add fault tolegagwed dynamic adaptation features to the
algorithms. To achieve this aim, this researchaisied out in three main stagegth the
primary focus being geared towards improving thdgpmance and reliability of cGAs.

The first stage is concerned with the investigatibrtGAs characteristics, in particular
the cellular dimensionality and their implicatioms the performance of the algorithms. Grid
topology plays a significant role in the determimatof the performance of EAs. cGAs are

commonly implemented on 1D or 2D toroidal grid stuwes. A lack of studies concerning



higher cellular dimensions provides an opportundyfurther investigate the algorithm’s
behaviour and performance. Hence, the first ohjectf this research is to evaluate and
compare the performance of cGAs when implemente@®mand 3D grid structures. In an
attempt to seek advantages with higher cellularedsions, an experimental study is carried
out to compare the behaviours of 2D-cGAs and 3D-sGahile maintaining similar
algorithmic properties. The findings will add sificant benefits for future optimisation
engines. Achieving better algorithmic performancghwdD-cGAs creates a promising
opportunity to combine the algorithmic benefitshwihoes of advanced custom silicon chip
technology, 3D-IC.

The second stage is concerned with increasing nigt the effectiveness, but also the
reliability of cellular genetic engines. The sigoént reduction in system electronics and
operation in hostile environments lead these systimbe subjected to different kind of
failures. Accordingly, research on fault-toleramtdamitigation techniques is becoming
increasingly interesting. The second objectivehig research is to develop an algorithm-
based mitigating technique to tolerate failuresoeintered, in particular SEE errors, by
utilising cGAs’ inherent features. To achieve thaal, explicit migration techniques as well
as dynamic adaptation techniques are proposedtagatian techniques. The success of the
proposed techniques in maintaining system funclignand effectiveness will not only be
advantageous at the algorithmic level, but alsthathardware level as there will be no
hardware requirement such as is the case with laaedlbased fault-tolerant techniques.

The last stage is concerned with developing cGAdltav dynamic adaptation in order to
obtain an appropriate balance between exploratiohexploitation. As pointed out earlier,
the exploration/exploitation trade-off is a crucfattor that determines the behaviour and
performance of the algorithm. The nature of EAbeiag stochastic force systems to operate
in a changing environment; this creates anotherasting area for research, that is, dynamic
adaptation. Thus, the final objective of this reskais to introduce dynamic cGAs by
utilising the genetic operations, specifically teelection. Two different approaches are
proposed and evaluated by comparing their perfocmawith that of other dynamic
algorithms. The attainment of an appropriate exgtion and exploitation balance while
maintaining the algorithms’ performance will posiiy contribute to the field of dynamic

adaptation.



1.3 Contribution to Knowledge

This research seeks to take advantage of the dabteed structural properties of cGAs in
order to expand the applicability of cGAs to thelds of dynamic adaptation and fault
tolerance. The unique structure of cGAs contributestheir success and universal
applicability in various application areas ovemslard and other parallel GA models. This
research utilises the available opportunities #ratoffered through the inherent features of
cGAs; namely, the structural properties that defireetopologies of the local neighbourhood
and the grid and their consequences on the germtierations; and the related
exploration/exploitation trade-off. Several studileat contribute to knowledge were carried
out and published (the publications are shown értext subsection). The following points

highlight how this thesis contributes to existinplvledge.

» High cellular dimensions are proposed as a coniputty effortless way to
improve the exploration/exploitation trade-off eheé overall performance of
cGA models. The vertical expansion of the populatadays an important
role in the speed and the way that solutions sprede maintaining the

population size.

* A fault-tolerant technique is developed to mitig&€E errors, specifically
SEUs that target phenotypes registers. The techrigbbased on a genetic
diversity measure, specifically the genotypic emroas a way to
automatically identify and therefore isolate sauof with faulty fithess
values. This technique illustrates how the faultsuoring in one space (in

this study, phenotypic space) are reflected irother (genotypic space).

» A process of excluding the isolated or faulty solg from the evolution
process is proposed. This is in order to mitigartimpact on the search
process, although this potentially results in adowumber of potential

solutions.

* The development of adaptive migration operationt wifferent policies as
a technigue to mitigate the impact of faults thrattaggered by the reduction

in the number of potential solutions and, accorginigad to diversity loss.



The proposed policies include the first fault-freeighbourhood, the best

fault-free neighbour, and a random fault-free neair.

* Adaptive fault-tolerant techniques to further impeothe performance of
cGAs are proposed. The technique adapts to therio and allows more

evaluations to overcome the impact of an increasied number of faults.

* A dynamic-adaptive mechanism is proposed to balasqaoration and
exploitation in order to improve the performancec&As. The mechanism
uses a stochastic selection operation that dyndlgnaxad gradually tunes the
rate for selection based on a diversity degreeoftingly, different levels of

exploration and exploitation are induced at différgearch phases.

* An adaptive approach to dynamically control the lesgdion/exploitation
trade-off based on convergence speed is develdpeliversity measure is
used to compute the convergence speed, in accadéticthe selection rate

is tuned.

1.4 Publications

Publications that have arisen from this work aréodsws:

1. Morales-Reyes, AAl-Nagi, A., Erdogan, A.T. and Arslan, T. (2009). Towards 3D
Architectures: A Comparative Study on Cellular GA3imensionality. In
Proceedings of the NASA/ESA Conference on Adagtwgware and Systems (AHS
'09), San Francisco, California, USA. IEEE.

2. Al-Naqgi, A., Erdogan, AT., and Arslan, T. (2010). Fault Talee through
Automatic Cell Isolation Using Three-DimensionalllGar Genetic Algorithmsin
Proceedings of the IEEE Congress on Evolutionarynatation (CEC '1Q)
Barcelona, Spain. IEEE.

3. Al-Nagqi, A., Erdogan, A.T., and Arslan, T. (2010). Balancingpleration and

Exploitation in Adaptive Three-Dimensional Celluld&enetic Algorithm via



Probabilistic Selection Operatdn Proceedings of the NASA/ESA Conference on
Adaptive Hardware and Systems (AHS,'Pd)aheim, California, USA. IEEE.

4. Al-Nagi, A., Erdogan, A.T., and Arslan, T. (2011). Fault Taldr Three-
Dimensional Cellular Genetic Algorithms with Adagmti Migration Schemesin
Proceedings of the NASA/ESA Conference on Adagéwgware and Systems (AHS
'11), San Diego, California, USA. IEEE.

5. Al-Nagqi, A., Erdogan, A.T., and Arslan, T. (2011). Dynamic IEdwlerant Three-
Dimensional Cellular Genetic Algorithmglournal of Parallel and Distributed

Computing(submitted).

6. Al-Nagi, A., Erdogan, A.T., and Arslan, T. (2012). AdaptiverddrDimensional
Cellular Genetic Algorithm for Balancing Exploratiand Exploitation Processes.
Special Issue on Bio-inspired Algorithms with Stuoed PopulationsSoft
Computing Journa{submitted).

1.5 Thesis Structure

This thesis is divided into six chapters. The figmaining chapters are organised as follows:

Chapter 2 provides a broad overview on the fiel&adlutionary Computation. This chapter
is further divided into three main sections. A ddepk at both standard and parallel
Evolutionary Algorithms, in particular the Genefidgorithms, is provided in Section 2.1.

Section 2.2 gives a dedicated review of cellulan&ie Algorithms-the main topic of this

thesis. The different aspects that characterisesc@&A discussed in detail from both model
and implementation points of view. This section €y characterizing three-dimensional
cGAs (the focus of this research) and gives an eoapicomparison to standard GAs.
Finally, the field of fault tolerance is reviewed Section 2.3. This section gives an
introduction to fault tolerance with a specific fscon the faults that were tackled in this

research.

Chapter 3 proposes a study of cellular dimensignalian attempt to exploit the advantages

inherent in higher cellular dimensions. An empiricamparison is carried out to evaluate



3D-cGAs versus 2D-cGAs while maintaining similag@ithmic properties. A set of test and
real-world problems that induce different levelscomplexity to the search are also used to
assess the performance of the algorithms comparais work initially began as a
collaborative effort with a previous group memhethe System Level Integration research
group (SLIg) and was further investigated in thesearch (Morales-Reyes, 2010). This

chapter establishes the basis of this research.

Chapter 4 proposes a study on fault tolerancedinag to provide a fault-tolerant technique
to mitigate SEU errors. This chapter is divideaitiiree main parts. The first part (Section
4.1) introduces a fault-tolerant approach that matiically identifies and isolates faulty

solutions. This section also introduces an explinigration operation as a mitigation

technique. The approach is assessed with and witiheuproposed migration operation
against two fault scenarios for different test amedl-world problems. Two additional

adaptive migration policies are defined in the selcpart of this chapter (Section 4.2). The
fault-tolerant approach proposed in Section 4.lthisn evaluated against the different
migration polices for an extended set of problenth warious complexities. The last part of
the chapter, (Section 4.3) introduces an adappypeoach to fault tolerance in an attempt to
further improve the performance of the approacip@sed in Section 4.1. The adaptive fault-
tolerant approach is assessed with and withoutatayr for a similar set of problems as that

used in Section 4.2.

Chapter 5 presents a study on a dynamic adaptét@naims to induce an appropriate
balance between the exploration and the explortaearch process without incurring
additional computational efforts. Two different atiae algorithms are proposed: in the first,
the search is guided by a diversity degree (Se&iahwhile the convergence speed guides
the search in the second (Section 5.3). The coewersyspeed measure is adopted from a
previous research in the same field (Alba and Dwooo, 2005) that proposed several static
and dynamic cGA approaches. Selected static anahtigrapproaches that were proposed in
that study are compared to the approaches propostttions 5.2 and 5.3 (Section 5.4). To
assess the proposed algorithms and to reach acaaldusion, a benchmark suite of test and

real-world problems with different characteristissised.

Chapter 6 summarises this thesis, provides comriasiand discusses avenues for possible

future research.



Chapter 2

Evolutionary Computation

This chapter provides a broad insight into thedfiel Evolutionary Computation (EC). The
aim of this chapter is to review the critical adpeof Evolutionary Algorithms (EAS),
especially those of Genetic Algorithms (GAs), imthg competitive search models of
parallel GAs in general, and theoretical and mesdhaggical contributions to cellular Genetic
Algorithms (cGAs) in particular (the main family o€ellular EA$] cEAS). This
comprehensive view of previous research on the oéstablishes the basis for this research.

Evolutionary Algorithms are meta-heuristic algomih that combine basic heuristic
methods with higher-level frameworks in order toyide (sub-)optimal feasible solutions in
a reasonable search time. Meta-heuristic algoritarasapproximate and non-deterministic,
and range from simple local search to complex legrprocesses.

EAs work on a population of encoded potential $ohg (individuals) by applying a
number of genetic operatdfsiamely, selection, crossover, and mutdifida the individuals
at each iteration in order to generate a new ptipulaThe selection operator is the most
powerful as it guides the search process basedh®rsdlected individuals’ fitness. Two
individuals are selected to generate new indivislumsed on a predefined criterion. The
crossover operator recombines the selected indilsdiw generate offspring, which are then
modified by the mutation operator to introduce -seléptation of individuals; these operators
are applied based on a probability distributione Thutation is commonly applied with a
very low probability; otherwise this operator maadl to an ad-hoc search (Muhammad,
Bargiela, and King, 1997; 1999). The main aim & ¢jfenetic operators is to learn about the
connections between decision variables in orderdotate areas in the search space

processing high-quality solutions.



Various major branches of EAs have evolved overpast 40 years. One of the most
well-known and widely studied EA variants is Geadtigorithms (GAs). Unlike other EA
techniques, GAs preserve a population of tentegolations that are updated competitively
through the application of some variant operatordirid the global solution. Other EAs
include Genetic Programming (GP), Evolutionary FPaogming (EP), and Evolution
Strategy (ES). These algorithms differ slightlytieir use of the genetic operators, with the
main difference residing in their implementatiordahe nature of the problem to solve. GP
was proposed by John Koza in 1992 (Koza, 1992)efterates its initial population by
creating computer programs as potential solutidssin GAs, GP assigns a fithess value to
each solution (i.e., program) and uses selectiontation, and crossover operators to
generate a new population. ES was proposed byReghenberg in the early 1960s and was
subsequently developed (Jacob, 2001, p.211). tesepts the solution as a chromosome of
real values and considers the individuals’ phenegyas the parameters to be optimised. In
that same year, EP was proposed by Lawrence Fdgebl§, 2001, p.297). EP has no
constraints on the representation that follows fittwe problem. EP differs from the other
EAs in that it uses no recombination mechanism, (he crossover mechanism) (Jacob,
2001; Alba, 2005; Alba and Dorronsoro, 2008).

The field of EC is continually growing and evolviriglba and Cotta, 2006). New EA
variants have recently emerged in an attempt tocomee EAs’ weakness that results in less
accurate solutions when tacking hard and real problin some applications. In addition,
parallelisation in EAs is intensely exploited in affort to improve performance. This
research views cGAs as being highly parallel mod#lsGAs. Details about GAs are
provided in the subsection 2.1.

This chapter is divided into three subsectionds8ation 2.1 focuses on sequential and
parallel GAs, while a deep insight into cGAs is\pded subsection 2.2. Subsection 2.3
gives a general overview of the field of fault talece.

2.1 Genetic Algorithms

Genetic Algorithms are possibly the most populasslof EAs. GAs were proposed by
Holland, who aimed to design artificial systemst thassess similar properties to those of
natural systems, in the early nineteen-sixties I@tol, 1992). As a result of his advanced
understanding and utilisation of natural adaptatiprocesses, Holland successfully
introduced GAs in 1975. Subsequently, GAs widelgved their efficiency in a variety of
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application areas. At first, they were mainly use@ptimise combinatorial problems (Back,
1996). Nowadays however, GAs are also used to sother optimisation problems
belonging to continuous and other similar domaMilgalewicz, 1996).

GAs are iterative search techniques that applyhsi&itcc operators on a population of
encoded solutions (individuals). GAs efficientlypéore complex problem spaces (i.e.,
genotypic space) in order to find the optimum sohg. The search process is guided with
minimal information on the problem (i.e., phenotygpace). Phenotype space is evaluated
through the objective (fitness) function at whichnaapping between the individuals’
phenotypes and genotypes is established.

As illustrated in Algorithm 2.1, GAs start with andom generated populatid®0) (line
2), followed by fitness evaluation (line 3). Thestiiterationt then starts with parent
selection (line 6) in order to generate offsprifige crossover and mutation operators are
then applied on the selected parent (lines 7 anelspectively). An evaluation of the updated
population is then carried out, followed by thelagpment of individuals to generate a

population for the next iteratiofP(t +1) (lines 9 and 10, respectively). These steps are

repeated until the predefined stop criterion ifilfetl (line 5).

Algorithm 2.1 Pseudo-code of a canonical GA

1: procedure GA

2: Generate_initial_populatio®(0));
3: Evaluation P(0));

4:1 €< 0;

5: while ! stop_conditiordo

6: P(t) € Selection P(t));

7:  P’(t) € Recombination®'(t));
8: P(t) € Mutation P(1));

9: EvaluationH'(t));

10: P(t+1) € Replacep(t), P’( 1));
11: t < t+1;

12: end whilg;

13: end procedureGA,;

The most commonly used stop criterion is that atheng a predefined number of fithess

evaluations and/or finding the optimal solutionsn optimum solution can be defined as
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those individuals having the global fitness valti ¢r a tolerable fitness value (e.§.2
threshold. However, other stop criteria could be definedhisTresearch uses a more
restrictive stop criterion that is based on theage fitness values of the population.

A brief discussion of the basic GA operations (St#b®, crossover, and mutation) is
provided in the following paragraphs. A large humbé selection mechanisms has been
developed, with the most common being proportioaats tournament selections (Rothlauf,
2006). With proportionate selection, the numbercopies an individual possesses in the
subsequent population is proportional to its fimeand an individuak; to be chosen for

recombination has a probability computed as follows
N
F0x)/ 2 f(x) (2.1)
=1

whereN is the number of individuals in a population. Tgrebability of the individual to be
chosen increases as its fitness increases.

With tournament selection, a number of individuétls are randomly selected for a
tournament, which the fittest individual wins. Teeare two approaches for tournament
selection: without replacement and with replacembnthe former, there arterounds and
each round hahll/t tournaments. The selection of individuals for art@ment is made from
those who are not involved in the current roundhef tournament. In the latter approach
however, alk individuals are selected for a tournament at #mesround. This research uses
the tournament selection as the local selectiorhodktn the experimental setups. The
specific type used is the Binary Tournament (BT)ea®n, in which two random
individuals are selected and the fittest individwats the tournament (i.e.= 2). Zhonget
al. (2005) conducted a study that compared the pedocen of simple GA for different
selection mechanisms, particularly tournament andette wheel selections. They found
that the tournament selection mechanism resultétkitetter algorithm performance.

Similarly, a large number of crossover and mutatogerators have been proposed.
Crossover simulates the role of sexual reproductond is operated on the selected
individuals in a population to generate offsprindjjle mutation imitates biological mutation
and is operated on the generated offspring to mdslght changes in an individual's
genotype. Typically, in a GA, crossover generates ¢ffspring from two parents, whereas
the mutation alters one or more genes (or alléfean individual. Both occur according to
predefined crossover and mutation probabilitiesas€ikal crossover mechanisms include
one-point, two-point uniform, and arithmetic crogmsg among others. In addition,

traditional mutation techniques include bit-flimiform, and non-uniform mutation, among
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others. The selection of a specific crossover otatian technique highly depends on the
individuals’ encoding (binary, real, etc.) as wasl the type of the problem to be solved. The
main purposes of crossover and mutation are todwgpan algorithm’s performance and to
prevent trapping in local minima areas by presenand promoting population diversity.
Unlike crossover, mutation focuses on local seasch only alters properties of individuals.
Hence, the probability of mutation should be lowestvise many genes (or alleles) will be
altered, leading to random search.

Finally, replacement strategies also play an ingadrtole in improving the performance
of algorithms in general and in enhancing poputativersity in particular. The most
common standard GAs directly depend on replacestestegies. A brief discussion on non-

decentralised (panmictic) GAs is provided next.

2.1.1 Non-Decentralised GAs

This section describes the two most popular pamri&fs, which are characterised by their
non-structured populatienesulting in interactions between individuals ocing without
restrictions; that is, an individual can mate watty other individual. A brief description,

with pseudocodes, of steady state and generati®halis provided.

Algorithm 2.2 Pseudocode of a ssGA Algorithm 2.3 Pseudocode of a genGA

1: procedure genGA

2: Generate_initial_populatiofP(0));
3: Evaluation P(0));

4:1 < 0;

5: while ! stop_conditiordo

6: fori < 1topopSizedo

7 P'(t) € Selection P(t));

8: P’(t) € RecombinationF'(t));
9: P’( t) € Mutation @(t));

10:  EvaluationR'(t));

11:  Pauft) € Add(P(t), P’( 1));

1: procedure ssGA

2: Generate_initial_populatiof(0));
3: Evaluation P(0));

4:1 < 0;

5: while ! stop_conditiordo

6: P(t) € Selection P(t));

7:  P’(t) € Recombination®'(t));
8: P(t) € Mutation P(1));

9: EvaluationH'(t));

10: P(t+1) € Replacep(t), P’ ( 1));

12: end for;
1 tetl 13:  P(t+1) € ReplacePau);
. . au ’
12: end while P
14: t € t+1;
13: end proceduressGA; .
15: end while

16: end procedureGA,;
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Algorithm 2.2 illustrates the pseudo-code for sjeathte GA (ssGA). Typically, ssGA
selects two parents according to a defined seleq@dicy (line 6) to generate offspring for
the next iteration. It recombines the parent ameh timutates the generated offspring (lines 7
and 8, respectively). Next, the new offspring isleated and made to compete with the
parents. The winner is then added to the populaticcording to a defined replacement
policy (lines 9 and 10, respectively). In a typissiGA, if the offspring is better than the
worst parent in the populatioRéplace-if-bettér the latter is replaced by the former. Other
replacement policies includdReplace-the-worst Replace-the-oldest Replace-random-
individual, among others. This process is reiterated urdilstiop condition is satisfied (line
5).

Generational GA (genGA) generates new offspringnfrimdividuals in the current
population by applying the genetic operators: siElacrecombination, and mutation. It then
adds the offspring to an auxiliary population (8dégorithm 2.3). The auxiliary population is
then replaces the current population, when theeeptipulation has been generated, to be
used for the next iteration.

Thus, the difference between ssGA and genGA is wigt the former only one
individual at a time is introduced into the currgrdpulation, requiring a replacement
strategy to vacate the place for the new offsptm@ccupy if it survives, while with the

latter, a whole new population is generated toa@plthe current one. As a result, genGAs
are also known aéﬂ,A)—GAs, while ssGAs are known i;sl,l) —-GAs, wherey is the size

of the population and is the size of the auxiliary population (Alba &@ndrronsoro, 2008).
Next, a general discussion about decentraliseddi@llel) GAs is provided followed by a
specific discussion about cGAs. A comparison betwpanmictic and parallel GAs is

provided.
2.1.2 Decentralised Genetic Algorithms

The complexity of most real-world problems andtoe timited resources available to solve
them, led to the development of meta-heuristic ritlgms. As mentioned earlier, meta-
heuristics give optimal, or near optimal, solutionsan adequate time. However, the high
dimension of many tasks results in a long executiore. Hence, parallelism of meta-
heuristics was initiated to reduce resolution tiazewell as to improve the quality of the
solutions (Alba, 2005).
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The two phases beyond the introduction of panmi@iks are the coarse-grained
(distributed) and the fine-grained (cellular) phlalGAs. In the former, several large
subpopulations evolve in parallel with limited irgetion between subpopulations; while in
the latter, several small subpopulations evolvepanallel with regular interaction. One
motivation behind the parallelism is the potentiatrease in the resolution time through the
assignment of each subpopulation to a single psoces a multi-processor system. Another
motivation is the ability to explore different aseaf the search space in parallel by
independently evolving each subpopulation, with timelependent evolution of the
subpopulation leading to enhanced the genetic siiygiChambers, 1999).

From the above discussion, two ways to reducexbewtion time can be identified. The
first method is to directly run the algorithm inrplel hardware, while the second is to
utilise the GA’s inherent parallelism (Eklund, 2Q00Blext, a brief discussion about parallel
hardware is provided, followed by a discussion @arse-grained and fine-grained GA

models.

2.1.2.1 Parallel Hardware

The objective of this section is to understand Wwaré concepts related to parallel computer
architectures in order to establish a relation betw parallel hardware and the
implementation of parallel algorithm models. Howg\ig is first necessary to understand
that parallel models and parallel hardware arethetsame. Parallel models describe the
independent computation of multiple tasks and canekecuted on both parallel and
sequential computers, while parallel hardware meguphysical divisions in the independent
tasks (Alba, 2005).

Generally, parallel architectures are classifigd Bingle Instruction Single Data (SISD),
Single Instruction Multiple Data (SIMD), Multiplenstruction Single Data (MISD), and
Multiple Instruction Multiple Data (MIMD) (CullerSingh, and Gupta, 1998; Roosta, 1999).

SISD refers to a computer architecture in whichamoaprocessor runs single instruction
on data stored in single memory. However, SISD peasllel characteristics, for example
fetching and pipelined execution of instruction®@Bta, 1999).

SIMD corresponds to a parallel computer architeciarwhich the same instruction is
executed by several processors over multiple dBypically, a SIMD architecture has

hundreds or thousands of simple processors, edbhaviocal memory. Despite its ability to
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exploit data level parallelism, the use of SIMD harectures is limited due to their
complexities, inflexibilities, and dependence ondyonisation (Roosta, 1999).

Similar to SIMD, MISD refers to parallel computerchitecture, but this architecture
executes multiple instructions on the same dataxample of this architecture is a pipelined
computer. MISD architectures are rarely found iacgice due to their poor scaling and their
excessive use of computational resources (Ro0389) 1

MIMD is a technique designed to achieve parallelemi is the most useful one. Most
parallel computers fit this mould. MIMD computeravie several processors that operate
independently and asynchronously and in which diffe processors run different
instructions over different data. MIMD architectsiiegave more classifications based on the
way the processor accesses memory. These clasific@re as multiprocessors and multi-
computers (distributed system). In the former, pssors access memory directly, while in
the latter, processors need a message-passing miguohén order to access remote
memories. These two classes of MIMD are even furtigided; multiprocessors are
classified into uniform and non-uniform memory (UMA and NUMA, respectively),
and each is also classified based on the interationemedia between the processors (Bus-
based or switched). Although multiprocessors aelyiin use, they have a limited number
of processors. Increasing the number of processstdts in an exponential increase in their
price. Distributed systems consist of several cdenguthat are interconnected: each
computer has a processor, a memory, and a netwlaqitexr. A distributed system can be a
cluster of workstations (COW) or a massively patgtirocessor (MPP). In the former, the
workstations are connected by a network technoltigy;technology restricts the number of
workstations to a few hundred. Conversely, MPP Hasusands of processors. The
advantages of distributed systems are mainly pteden their easy build and extension,
better price-performance trade-off, and more sdilabnd flexibility (Roosta, 1999; Alba,
2005).

2.1.2.2 The Islands Model

Islands or distributed GAs (dGASs) is one of the npaspular parallel models. This model is
also known as coarse-grained GA according to griam In a typical dGA, the population is
divided into multiple and relatively large subpagiidns (islands) that each evolves
independently (Alba and Troya, 1999a). Each subladipn runs the standard GA and the

interaction between individuals in different subplapions is introduced and managed
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through a migration technique (see Figure 2.1).ufgég2.1l illustrates a dGA with 6
subpopulations; each evolves independently by ngh@ standard GA. The interaction
between the subpopulation occurs through individoabration over a predefined
communication link.

This subsection provides a broad discussion albeutiin issues related to dGAs. These
issues are homogenous and heterogonous modelstimigpolicies, synchronism, speed-

up, and implementation.

Homogenous and heterogeneous dGA

Each island or subpopulation applies the genetieraiprs (selection, crossover, and
mutation) in isolation from other islands; therefaach island searches a different area in
the search space. In addition, each island can itgesvn configuration (such as crossover
and mutation probabilities, individual represemati among others). The different
configurations among islands lead to the formatiba class of dGA called heterogeneous
dGA, while in heterogonous dGA a similar configioatis used for each island (Alba,
Nebro, and Troya, 2002; Alba, Luna, and Nebro, 20@4though heterogeneous models are
difficult to understand and implement, they showdjoesults in practice (Tomassini, 2005).
A promising heterogeneous dGA that uses differemtssover operators in each

subpopulation was proposed by Herrera andah®@£2000). A comparison between the

Migrant .
/ Subpopulation

Communication
link

Figure 2.1.Islands or distributed GA with 6 multi-individuslibpopulations.
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proposed algorithm, panmictic GAs, and homogends&g] among others, showed that the

former outperforms the rest in terms of reliabibiyd accuracy.

Migration

An essential issue in dGA is defining an appropriatigration policy due to its
significant influence on the performance of theoalhym (Rebaudengo and Sonza Reorda,
1993). Typically, the parameters of the migratiechinique include migration gap, migration
rate, selection/replacement of migrants, and tapol@lba, 2005). The migration gap or
frequency defines how many generations in eachndslare between two successive
migrations. The migration gap can either be sabgarally or by defining a probabilitys, .
The migration rate, sometimes called migration ,sdefines the number of individuals
involved in each migration, which can be a constaninber or a percentage of the
subpopulation size. The migration strategy or te&dion/replacement of migrants is
defined according to which migrants are selected which individuals are replaced by
migrants. Lastly, the topology defines the islandésghbours with which each island can
communicate; in the islands model the interacti®rgéographically restricted to nearby
neighbours.

In an early study, Rebaudengo and Sonza Reord8)»@%cted the problem of TSP to
assess the performance of dGA against differentatian frequencies, sizes, and strategies.
They found that different migration parameters igantly affect the performance of the
algorithm. In addition, they concluded that migrathas a similar effect to that of mutation
as both operations introduce new genetic informatidowever, they also found that
mutation has an advantage in that the informatitmoduced is better and new, which speeds
up the algorithm without driving it to a local minim area.

Matsumureet al. (1997), in a later study investigated the effeftmigration on different
multiprocessor system topologies (namely, ring,rdpwand hypercube). In that study,
Matsumuraet al. used two types of migration to define the mignatigap: namely,
immigration and emigration types. In the former thigiration operation is activated when
the best fitness value is not updated, while inlgéitier the migration is activated when the
best fitness value is updated. They found a relaligp between solution quality, migration
types, convergence speed, and topology. Thus, mergk the combination of specific
migration type and topology may significantly affesolution quality and convergence

speed.

18



A theoretical study on the scalability of parall@A was proposed by Cantu-Paz and
Goldberg (1999). The main aim of that study wasdtrulate the best possible number of
processors needed to obtain the minimum execution The bounding cases (maximal and
minimal values) in terms of topology degree, migratrate, and frequency were considered.
Cantu-Paz and Goldberg concluded that the optinmhber of processors needed to
minimise the execution time is directly proportibt@athe square root of the population size
and the time of fithess evaluation. They also saggkthat a large number of processors
could be integrated in parallel GAs while signifitlg reducing the execution time.

In a study similar to the previous one concernislgrid size, migration rates, and
topologies, additional problems were consideredotafirm the previous conclusion (Cantu-
Paz, 1999a). In that study, Cantu-Paz establishe@laionship between island size,
migration rate, and topology degree (number of mmigirs of each island) with search
success rate. He showed how to identify a configurathat obtains an appropriate
execution-time/solution-quality trade-off by derigi an equation to calculate an accurate
island size, which in turn is used to identify thggration rate and the topology degree. The
conclusion arrived at is similar to that of thevpoeis study.

At the same time, Cantu-Paz (1999b) also investth#te affect of different migration
strategies on the selection pressure while migratite, frequency, island size, and topology
degree remained constant. He defined four comloingtiof random and fithess-based
emigration and replacement of individuals; with thesults showing that the
selection/replacement of migrants significantlyeatfthe convergence speed. Later, Cantu-
Paz extended the latter study to quantify the mmxd selection pressure, which is an
important issue in the avoidance of search faf@antu-Paz, 2001).

In summary, dGA introduced new algorithmic paramgetesuch as number of
subpopulations, frequency of migration, selectinod eeplacement of migrants, and network
topology. However, these parameters presented arndagwback of dGA as only few

theories were proposed on how to tune these pagasr@kiund, 2004).

Synchronism

Besides migration, synchronism is another factat fhfluences the search time and
speedup. In dGA, synchronism occurs through mignatif the migration uses asynchronous
communication, then the migrants are inserted imately when they arrive at the intended
island. A major advantage of asynchronous commtinitas that it avoids blocking steps

between the migration gaps. Conversly, synchronslasds wait for every migrant they
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must add, consequently affecting the execution bewause of the continuous waits. Several
studies have reported faster execution and moxéfli¢y for asynchronous communication
(Alba and Troya, 1999b; Alba, Cotta, and Troya, 98991999b; Alba, Nebro, and Troya,
2002; Alba, Luna, and Nebro, 2004).

Alba and Troya (1999b) analysed the synchronisrthé migration step of dGA with
steady state or cellular modes of island evoluf@dssGA and dcGA, respectively) as well as
other panmictic and non-distributed GAs. The cosicln they reached reported that the
asynchronous algorithms achieved considerably deasch times and larger speedup than
their synchronous counterparts. The tight couplindcGA demonstrated a drawback of the
synchronisation for harder problems. However, dc&fowed better resistance to bad
migration frequencies than dssGA. The same cormiusias obtained in (Alba, Cotta, and
Troya, 1999a; b) in which more difficult problemserg considered. In addition, they
reported that in terms of effort and diversity,tbeynchronous and asynchronous versions of
dGA with generational, steady state, and celldanids showed no differences.

In addition, the influence of synchronisation intdregeneous dGAs was analysed in
(Alba, Luna, and Nebro, 2004) to further show thpartance of synchronism in different
dGA models. The results confirmed those obtainegr@vious studies. The wait constraints
induced by the synchronous versions penalise tleeution time, especially for a large
number of islands. Consequently, better efficieweyn be achieved by asynchronous
parallelisation.

In summary, synchronisation in dGAs is determinegbuigh migration of individuals
between panmictic or cellular subpopulations. Theestigation on the advantages of
asynchronous commutation showed high parallel iefity and scalability. In addition,
implementing parallel GAs with asynchronous comroation on heterogeneous parallel
hardware has the added advantage of parallelistrattiéds the bottleneck induced by the

slowest processor.

Speedup
Speedup is an important measure in parallel algost In this measure, two times are

compared: namely, the sequential and the paraihelst needed to run the same algorithm.

Thus, the speedup ah processors &) is the ratio between execution time on a mono-

processor ;) and the execution time am processorsT,,) (Alba, 2005). For many years,

this measure has been used to analyse the perfoemah deterministic algorithms.
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However, replacing the absolute timeb @nd T.) by the average timesﬁ( and 'ITm)

enabled it to be used to analyse the performanoemleterministic algorithms.

Alba and Troya (2002) identified two types of spgedstrong speedup and weak
speedup. Researchers favour the use of the latdreaformer considers the best (fastest)
recent sequential algorithm, which is difficult iod. Furthermore, they suggest that the
comparison of speedups between sequential andgd@@@s must be made by running both

algorithms until similar quality solutions are &ad at.

The three levels of speedups are: sub-linegr{m), linear (S, = m), and super-linear

(s, >m). Many researchers suggest the possibility of [[@r&As being used to achieve

super-linear speedup, for example, the work of Albd Troya (1999b). However, the topic
of super-linear speed is still controversial.

Obviously, the move from panmictic to distributegpplation plays an important role in
enhancing speedup as a lower execution time iseefm smaller subpopulations. More
interestingly, in addition to the previous speedwprce, speedup can be gained from the
same distributed algorithms. Alba and Troya (208!%)wed that dGA running on several
processors achieved a super-linear speedup whepatecthto its panmictic counterpart,
while a sub-linear speedup is achieved when itosmpmared to the same dGA on one
processor.

In addition, synchronism and migration in parali@As may significantly influence
speedup (Alba, 2002). Alba and Troya (1999b) comegbathe speedups of asynchronous
dGA with panmictic and cellular subpopulations kit synchronous counterparts. The
result showed the ability of the compared algorghim obtain super-linear speedups. In
addition, an improvement was obtained when compaasynchronous algorithms to the
synchronous dssGA and a slight improvement wasedtivhen synchronous dcGA was
considered (because of the highly coupled islafudsimilar migration frequencies. Further,
in their study, Alba and Troya investigated theeeffof different migration gaps (1, 16, and
32) on the speedup. They found that there wasrbgpedup for larger gaps (16 and 32)
with super-linear speed for dssGA and almost lisgaed for dcGA for the largest gap (32).

In conclusion, all the previous studies agreedhenpiossibility of parallel GAs to obtain
super-linear speedup, in theory and in practiceh i homogenous and heterogeneous

parallel hardware.
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Implementation

A traditional (false) assumption about parallel G&as the mapping of parallel GA
models directly onto the parallel hardware, theneiaking the model and its implementation
equivalent terms. However, a parallel model cainfigemented on either mono-processor
or multi-processor machines.

From a hardware perspective, a dGA is very easy elfidient to implement in
distributed memory MIMD computers, which partly tdioutes to its popularity. Despite the
fact that a few independent subpopulations mayt line maximum speedup of this model, it
is still faster than panmictic GA in terms of batm and convergence times. In addition,
subpopulation structure, synchronism, and migrat@tininfluence the search time and
speedup when running parallel GAs in a MIMD machiréurthermore, cluster
implementation of the island model is physicallyrlfalarge-resulting in the exclusion of
many applications (Eklund, 2004).

In (Alba, Cotta, and Troya, 1999b) and (Alba, Nelaod Troya, 2002) the islands model
was implemented in homogenous and heterogeneosterdwf workstations, respectively.
Super-linear speedup was experienced not only @ hHbmogenous but also in the
heterogeneous machine clusters. In addition, thdteeshowed that the heterogonous cluster
was more efficient. In the next subsection, théutal GAs (diffusion) model is discussed in
very broad terms, followed by a more profound dsscon of this model in the subsequent

subsections.

2.1.2.3 The Diffusion Model

The diffusion model is also called fine-grainemtllular, and massively parallel GA. This
model distributes its population over the structofethe processing elements (nodes),
commonly a two-dimensional grid with wraparound esig(toroidal), in which each
processing element holds only a few individualgpidsdly one. This spatial distribution
defines and restricts the interaction between titviduals to their local neighbourhoods
(Baluja, 1993).

Figure 2.2 illustrates a diffusion or cellular GAthw5 x 5 subpopulations distributed over
a 2D-toroidal grid: each contains one individuathwits neighbourhood comprising four

individuals located at the north, south, east, \mast.
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Figure 2.2. A cGA implemented over % 5 toroidal grid. The neighbourhoods marked in dankl
light blue show a possible overlapping of two néighrhoods.

This model can also be viewed as a combinationamidaird GAs and Cellular Automata
(CA) as the population is distributed over andimensional toroidal grid in which each
individual occupies a position. Several researcherge investigated the performance and
behaviour of a GA implemented on a CA (or CGA) (&, Li, and Green, 1999; Back and
Breukelaar, 2005; Olariu and Zomaya, 2006). The ualutconclusion is that CGA
outperforms standard GAs with its ability to be#scape local optima. Back and Breukelaar
(2005) further investigated this model by considgninultiple grid dimensions. The findings
indicated promising benefits of algorithm perforroarfior higher grid dimensions.

Unlike the island model, the number of subpoputetics quite large which makes the
diffusion model massively parallel, consequentisr@asing the potential of obtaining higher
speedups. In addition, the migration in the difbasimodel implicitly occurs due to the
overlapped neighbourhoods. However, an explicitratign could be defined (Lee, Park,
and Kim, 2000). All steps of the GA (evaluation]estion, and genetic operations) are
applied in parallel within each individual's neigitshood in which only the current
individual, the one at the centre, is updated. Wiassive parallelism and the absence of
explicit migration are two advantages, among othafrthe diffusion model (Eklund, 2004).

Another benefit of the diffusion model is its sbildy for implementation in VLSI
because of its simple, regular, and locally coregkctodes. Despite the fact that cGAs were
originally designed for work in massively paralteimputers, they have also been adopted
and implemented in distributed and mono-processmhines. Section 2.2 describes cGA in

more detail.
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Figure 2.3.A hybrid parallel model of GA that combines cGAla¢ lowest level (each node) with
dGA at the highest level to form what can be ref@to as dcGA.

2.1.2.4 Hybrid Models

There have been various attempts to combine twihefparallel GAs in order to get the
combined advantages of both (Cantu-Paz, 1995; Newwski and Poli, 1999); these are
called hybrid models. One of the most well-knowibtgr algorithms combines the diffusion
model at the lowest level with the island modek(Bégure 2.3). The discussion in Section
2.1.2.2 included some studies relating to this igyimodel, which was referred to as dcGA.
Although hybrid models may lead to the birth of nefficient algorithms, some of these
models introduce more complexity to parallel GAs, éxample the need for new additional

parameters to manage a more complex topology steu¢Alba, 2005).

2.2 Cellular Genetic Algorithms

The cellular model is a class of evolutionary alpons with structured population that
emphasises evolution at the individual level (Atval Dorronsoro, 2008). cEAs are a kind
of stochastic CA in which the number of pointstie search space in cEAs is equivalent to
the cardinality of the symbol alphabet in CA. Tyglig, in cGA each individual is assigned a
grid position (cell); the topology of the grid ismamonly implemented on an-dimensional
toroidal grid having a linear, square, or rectanggeometric shape. The concept of local
neighbourhood is strictly enforced and an individuay interacts with its local neighbours.
In a cGA, the diffusion of solutions occurs slowiyth the aid of the overlapped local

neighbourhoods, therefore offering exploration édsification) of the search space, while
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the genetic operations applied in each neighbouth@wupports the exploitation
(intensification) of good solutions. Hence, a magaue in determining the effectiveness of
cGAs is the balance between exploration and extioit, which is a direct effect of the
selection pressure. The theory and practice sudingrthis issue is discussed in the next

subsection.

Algorithm 2.4 Pseudo-code of a canonical cGA

1. procedure cGA

2. Generate_initial_populatio(0));
3. Evaluation R(0));

4.1< 0;

5. while ! stop_conditiordo

6. fori < 1to ROWSdo

7. for j €1 to COLUMNSdo

8. neighbours Find_neighbours (positiony));
9. paren&t position(,j);

10. parent2-Local_selection (neighbours);
11. offspring~ RecombineR,, parentl, parent2);
12. offspring~ Mutate Pp);

13. Evaluatio®-Fitness(offspring);

14. Replacement (positigy)( offspring,Pauxt));
15. end for;

16. end for;

17.P(t+1) € Pau(t); // updating

18.t € t+1;

19.end while;

20.end procedure cGA,

In a cGA, the population is usually distributed 0w two-dimensional toroidal grid
topology, although lower or higher grid dimensiare possible. Algorithm 2.4 illustrates
the pseudo-code of the canonical cGAs implemente@ dwo-dimensional grid. A cGA
starts with a random populatiét{O) followed by fitness evaluations (Lines 2 and I8gxt,
each individual is updated by selecting a secomdnpdrom its neighbourhood according to

a specified local selection method (Line 10), dralfirst parent is the individual itself (Line
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9). This type of parent selection is referred tdcasrent individual + local selection’; the
other selection type selects both parents fromnesighbourhood of the current individual
with or without replacement through the definedaloselection method. Several local
selection methods that can be used include thopkeimented on standard GAs as well as
selection methods specifically designed for impletagon on parallel GAs such as
anisotropic and centric selections (Simoncahial, 2006a; 2009). A crossover operator
recombines the selected parents with a probaliityo produce an offspring (Line 11),
which is then mutated by a non-uniform mutationrape with a probabilityP,, (Line 12).
The modified offspring is then evaluated and, agdicwy to the specified replacement policy,
the current individual is either kept or replacgdthe newly generated offspring (Lines 13
and 14).

This process continues until all of the individuate updated. The current populatfe(t)
is then replaced by the auxiliary ofg,(t) to start the next generation (Line 17). The
updating process defined here is synchronous, wimiehans that the updated individual is
inserted into an auxiliary population following egified replacement policy. An alternative
updating option is to apply an asynchronous updateyhich the updated individual is
directly inserted into the current population. (Sexdtion 2.2.2 discusses the synchronism in a

cGA.) The algorithm terminates when the terminationdition is met (Line 5).

2.2.1 Takeover Time and Selection Pressure

The structural properties of cGAs, including popiola (grid) and neighbourhood
topologies, shape, and size, as well as geneti@tipes such as selection, replacement, and
synchronisation may bestow several advantages ereffiectiveness of the search. Two
related and major issues that directly result fiinm abovementioned structural properties
and operations are takeover time and selectionspres Hence, careful attention to the
takeover times and the selection pressure in th@egb of structural properties and
operations is required.

The takeover time represents the speed needecelyetit solution in the population to
conquer the whole population when only activating selection operator (i.e., the growth
rate of the best individual). Goldberg and Deb ()38eoretically derived and compared the
takeover times for panmictic GAs for different stien methods. They found that most of
selection methods considered had a similar connesgémes foorder of growth @og n)

generations, whera is the population size. The proportional selectinathod was an
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exception to this as a slower convergence time otgined for it by a factor oh. Later,
Rudolph (2000) proposed a theoretical study onaadetimes in cellular EAs with one-
dimensional array and ring topologies. He derived takeover times as a function of
population size and selection probability for batbnsidered topologies. In addition,
Rudolph suggested that the takeover time dependdesser extent on the selection method
than on the radius of the neighbourhood.

A shorter takeover time denotes a higher selegbi@ssure (intensity) leading to the
promotion of more exploitation. High selection ma® leads to quick diversity loss.
Therefore, the search may stagnate in the localnmirarea. Conversely, lower selection
pressure promotes more exploration and therefore dligersity. Hence, careful attention to
selection methods and other EAs settings is reduifer other theoretical study on takeover
time refer to Spiessens and Manderick (1991).

The next subsection discusses the selection peessuGAs with respect to the structural
properties. Following that the influence of the g@n operations, specifically on the

selection pressure is demonstrated.

2.2.1.1 The Influence of Grid-to-Neighbourhood R  atio

Before defining the Grid-to-Neighbourhood RatidGR), a broad overview on grid and
neighbourhood topologies is provided. As mentiorg@viously, a cGA is usually
implemented on a two-dimensional grid topology witmaparound edges following a
toroidal shape. Depending on the number of rowscahadmns a 2D toroidal grid can have a
rectangular, a square, or a narrow topology; tleesdigurations are illustrated in Figure
2.4(a)-(c), respectively. Whereas, several neighbourhardigurations can be defined, the
various configurations are commonly classified iWian Neumann (NEWS) or Moore (X-
net) neighbourhood (see Figure 2.5). In the forifadso referred to as LineaLk)], the
neighbourhood of an individual comprises thoseviddials located to its north, east, west,
and south. With regard to the latter (also refetceds CompaciQ)), in addition to the linear
ones, the individuals located on the diagonal efdlirrent individual are also included in its
neighbourhood. The number of individuals in a nba@irhood is determined by the
predefined neighbourhood radius (distance step)ekample, the linear neighbourhood can
have 5 individuals L(5) for 1 distance step (see Figure 2.5(a)), whilecampact

neighbourhood contains 9 individua@9) for the same distance step (see Figure 2.5(c)).
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Figure 2.4. Two-dimensional toroidal grid topologies in cGAx) (with rectangular shape, (b) with

square shape, and (c) with narrow shape.
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Figure 2.5.Von Neumann neighbourhood: (a) with one distanep and (b) with two distance steps.

Moore neighbourhood: (c) with one distance step(dhavith two distance steps.

It is now possible to proceed to theoretically defiNGR The concept ofNGR
establishes a numerical relationship between neigtiiood and grid radii, which is
computed by measuring the dispersion of a poirtepatan individual position) with respect

to the mean centrex(y ) of a neighbourhood (or grid) pattern of sizas follows:

Rad:\/Z(x - YY) x=3" % /n, y=3" y/n. 2.2)

n

wherex; is the row ang; is the column of a location of the individdal
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Therefore the ratio between the neighbourhood ledtid radii is calculated as follows:

NGR: Raqwighbourhnod 32
I:ea'dGrid

Many researchers conclude that different grid/neeginhood shapes and sizes impose
different levels of selection pressure. Sarma aedJbng (1996) empirically analysed the
effect of neighbourhood size, shape, and radiutherselection pressure. They showed in
their study thaNGRis a critical parameter in which differeNGRs induce different global
selection pressures. In other words, algorithms hiaze similar ratios, even if they have
different population and neighbourhood sizes, shsimilar selection pressure. This
conclusion was further investigated and confirmedubsequent studies (Dorronsetaal.,
2004; Giacobingt al, 2005).

Alba and Troya (2002) analysed the effects of Nl@&R on the computational effort in
terms of the number of evaluations, efficacy (numisehits), and scalability in cGAs. In
summary, they found that thinner grids require mevaluations, provide better efficacy
(especially when solving difficult problems), archke adequately, while square grids scale
slightly better as the size of a problem increases.

To empirically show the influence of differeMiGRs on the selection pressure,
experiments that included combinations of differgntl shapes (square, rectangular, and
narrow) and different neighbourhood sizé$gnd L9) were carried out. The population
contained 400 individuals arranged ax20, 140, and 4100 for square, rectangular, and
narrow grids, respectively. Figure 2.6 depictsdkierage growth rates of the best individual
(of 50 independent runs) for a square grid WiBh(NGR= 0.1097) and.9 (NGR= 0.1828)
neighbourhoods, rectangular grid witth (NGR = 0.0752) andL9 (NGR = 0.1253)
neighbourhoods, and narrow grids witth (NGR = 0.0310) andL9 (NGR = 0.0516)
neighbourhoods when applying the binary tournansefgction only. Smaller ratio values
induced lower global selection pressures in theufaijon (longer takeover time), while
larger ratio values induced higher selection pness(shorter takeover time). Further, with
regard to similar neighbourhoods, square grids inétathe highest selection pressure,
leading to more exploitative search; while the Istvselection pressure was obtained by

narrow grids, leading to more explorative search.
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Figure 2.6.The best individuals’ average growth rates forasqurectangular, and narrow grids, each

with L5 andL9 neighbourhoods.

The latter findings led many researchers to ingasti the effect of dynamic control of
the selection pressure, which leads to balanciegettploration/exploitation trade-off. The
switch between grid shapes is one way to dynaryidalhe the selection pressure; other
ways are also possible (Ursem, 2002; Li and Kir2§02; Alba and Dorronsoro, 2005).

Chapter 5 discusses this topic in more detalil.

2.2.1.2 The Influence of Local Selection Method

In addition toNGR the local selection method influences the salagbressure. De Jong and
Sarma (1995) empirically studied this effect by sidering standard selection methods
(binary tournament, linear rank, and proportionelestions). They found that different
selection pressures were induced by the variouscts®h methods and that binary
tournament selection has the most desirable gk#@ch and communication overhead.
Subsequent studies investigated the effect of lseldction methods as decentralising
choices. The selection methods included standadd pamallel-based techniques such as
stochastic binary tournament, anisotropic, andraegselections (Simoncirgét al, 2006a; b;
2007; 2009). These methods introduced new parametemwhich probabilities to select a
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specific individual are computed. For example, abersng the L5 neighbourhood,
anisotropic selection assigns probabilities for ¢katre f.), north and southpfy), and east
and west [§.,) individuals based on anisotropic parametg (0 [-1 , 1]); see Equations
(2.4).

p - (1_2pc) (1+O'),

ns

Pew :(1_72‘%)(1_0/)

Hence, by tuninga, different selection intensities are induced. Mdiscussions and
experiments with respect to the influences of ¢mleanethods on selection pressure and

takeover time are provided in Chapter 5, Sectidn 5.
2.2.2 Synchronisation

Earlier, the topic of synchronisation was discusisethe context of dGA. This subsection
discusses the same topic as it relates to cGA. ¢&A, the synchronism occurs through
population updating policies (Tomassini, 2005).

In a synchronous cGA, the phases of evaluationetgeperations, and selection take
place at the same time for all cells before thet gexeration starts (refer to Algorithm 2.4).
Implementing the synchronous cGA model on a singkehine requires an auxiliary grid to
keep the updated cells. The auxiliary grid therasgs the old population when all cells
have been updated to start the next generation.

In an asynchronous cGA model, cells are updateskquence. Different sequences are
defined for asynchronous updating; with the mosgdiently used policies being fixed line
sweep (LS), fixed random sweep (FRS), new randomepwNRS), and uniform choice
(UC). In LS the cells are updated successivelpm@leg to their positions, either by row or
by column. In FRS, each cell is selected randomtyupdating with uniform probability and
without replacement. Similar to FRS, NRS and UCGaeh cell randomly for updating;
however in NRS, a new random cell distributionsedifor each cell, while in UC a uniform
probability with replacement (binomial distributjois used.

Previous studies about synchronism in the fiel@ellular Automata and dGA confirmed
the advantages of asynchronous approaches ovehreyiotis ones (Sippest al, 1997;
Schofisch and de Roos, 1999; Alba and Troya, 20l1¢se findings led Albat al. (2002)

to investigate the respective advantages and disaalyes in synchronous and asynchronous
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cGAs. Although asynchronous cGAs had faster comrerg time while maintaining
desirable search success rates, synchronous cGAk Higher search success

rate$] confirming the results of the previous studies.

Synchronisation and selection pressure

In addition to the shape and size of the neighbmaath(and/or grid) and local selection
mechanisms, synchronism can influence the glotbetten pressure. Giacobiat al. (2003;
2005) investigated the selection intensity in syonbus and asynchronous cGAs. They
successfully modelled the curves of the selectimsgure on one- and two-dimensional
cGAs with toroidal grids. Accordingly, Tomassini 0) provided a mathematical
background for understanding the models. An engdifiovestigation was then carried out to
validate the models. Synchronous algorithms hadntbakest selection intensity, followed
by UC, NRS, FRS, and at finally LS, which had thersgest selection intensity. Thus,
synchronous algorithms are more explorative thgnasonous ones.

Dorronsoro et al. (2004) further investigated the influence of sywcious and
asynchronous update policies on the selection presghe results obtained confirmed those
of previous studies in showing that it is posstoleontrol the selection pressure without the
need for additional parameters by synchronisingatipd policies. Moreover, asynchronous
algorithms had faster convergence times than thgichronous counterparts. However,
synchronous algorithms had higher search succtsss ra

The next subsection discusses the metrics mostudrely used to measure the

performance of the parallel algorithms.

2.2.3 Performance and Statistic Measures

As previously discussed, the most common measupa@lel algorithms is the Speedup.
Speedups of meta-heuristics should be computeddb@sesimilar parallel and sequential
accuracies (Alba, 2005). In this case, the averagan times of the parallel model on a
single machine and the parallel modelmmachines are compared in an orthodox (similar
algorithm and accuracy), practical (the best, mesént algorithm is not required) manners.
The definition and types of the speedup were dssdign Section 2.1.2.2.

Other metrics used to measure and analyse therpenfice of parallel algorithms include
accuracy (quality of solution) combined with seastitcess rate or hit rate (number of

successful experiments), and computational effurtmper of fitness evaluations and/or the

32



run time). To achieve a reliable conclusion anddther sufficient data several independent
experiments have to be carried out due to the astichnature of EAs. The first measure can
be used if the optimum solution is known. Thus,gbarch success rate indicates the number
of experiments that obtains the optimum solutionoWing the optimum solution is not a
necessity for the computational effort. This meassrcomputed using the convergence time
(number of fithess evaluations or number of geinama) and/or the convergence speed
(execution time). Researchers recommend the uséotdi methods to compute the
computational effort. The traditional assumptiornhiat parallelism is mainly about reducing
the time rather than the number of evaluations. él@s, using the execution time would
bring the effects of hardware and software impletatgon. For empirical investigations on
the influence of the measure, please refer to (A085, p.54).

Statistical metrics are also important when meaguittie performance of the algorithms.
Common metrics include mean of solution accuraeie$ mean of computational efforts
over all experiments. To illustrate the benefittad statistical metrics consider obtaining low
hit rate but with high mean accuracies, which iaths that the algorithm is robust. For
global analyses, other statistical metrics suclstaadard deviations (or median absolute
deviations, which is recommended for data with nomal distribution) can also be used.
To further assess the reliability and validity betconclusion, significance statistical tests
should be used to indicate the strength of theioeldetween performance measures (Alba,
2005).

Genotypic and phenotypic measures in cEAs

Capcarrereet al. (1999) introduced a number of statistical measucesnalyse the
behaviour of cEAs at the genotypic (structure dafividuals) and phenotypic (fitness of
individuals) levels. At both levels, the most imgaot measure is the diversity, which can be
computed using a variety of methods. The most commethod is to calculate the entropy
of the population based on individual fithess (pitgpic diversity) or structure (genotypic
diversity). Phenotypic diversity,) refers to the average number of different fitnesisies,
while genotypic diversityH,) refers to the average values of the entropy oheariable

(gene) in the population. See Equations (2.5) ar@) (
1 N
Hg(P)=NX—Zgjlog(gj), (2.5)
i=1

whereN is the size of populatioR, and g; is the fraction of individuals having a given

distance from the origin.
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Hp(P):;X—i £, log(f,), (2.6)

wheref; is the fraction of individuals having fitnefss

Population diversity plays a significant role in £/0ne of the drawbacks of panmictic
EAs is their weakness in maintaining the populatosrsity, which causes the search to be
trapped in a local optima area, particularly whackling hard real problems. An implicit
way to tackle this shortcoming is through the spasiructure of the population or the
decentralised EAs (Tomassini, 2005, p.37). Beshikiag a main measure to analyse the
performance of the algorithm, the population diitgrés used to guide EAs. The use of
genetic diversity in guiding search process intcedua new class of EAs, which is the

dynamic model. This topic will be covered in de@iapter 5.
2.2.3.1 Performance Measures and Statistical Tes ts used in this Research

This research uses the average number of generdtiofind a solution with a predefined
accuracy for successful runs out of 100 independams. This measure is referred to as
efficiency, or convergence time (CT). The secondasnee used is the efficacy or the
convergence rate (CR), which defines the searchesscrate (% hits) to a solution of a
predefined accuracy out of 100 independent runs.fifial measure is the speed (SP), which
IS measured as the average run or execution timesdonds (s) for successful runs. In this
thesis, CT appears first in a table cell, followsdCR, and then SP. The median absolute
deviation (mad is added to CT and SP and appears in tables tfgesymbol ‘+'. All
experiments were carried out using MATLAB and GN@npiler (Dev C++) on an Infél
Coré™ 2 CPU at 2.4GHz with 3.12GB RAM, running WindowB Xrofessional v. 2002.

With regard to statistical metrics and significatests, this research uses the mean of the
efficiencies and mean run times including the sdadiddeviations (the median absolute
deviations replace the standard deviations whera dat not following a normal
distribution). The Kolmogorov-Smirnov test is aulito identify the normality of the data.
After which, the ANOVA test was applied when théadahowed a normal distribution, and
the Kruskal-Wallis test when the data failed tddel a normal distribution. The latter two
tests are used to obtain the statistical signifiean the efficiency and speed of the algorithm
with a 95% confidence levep{value < 0.05). For the efficacy, the Chi-squapé) (test for

proportions was used to obtain the significancé &i®5% confidence level.
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2.2.4 cGAs from Hardware Perspectives

A number of comprehensive studies on parallelisrEAs were carried out to analyse the
various features of the parallel EAs such as gelegressure, efficacy, efficiency, speedup,
synchronism, among others, while stressing theewdiffce between EA models and their
implementation (Cantu-Paz, 1995; Alba and Tomas2002).

Traditionally, dGAs are best-suited and usually lanpented in distributed memory
MIMD machines, while massively parallel compute&MD) are more suitable for the
implementation of cGAs as these models can be ttiretapped onto such architectures
(Tomassini, 1999). Many massively parallel compteonnect the processing elements
(PEs) in a two-dimensional grid. However, otherologies can be implemented using a
global router (Cantu-Paz, 1995). When implemented SIMD machine, a cGA places a
single individual at each PE or cell. Each indidtselects another individual from its local
neighbourhood to mate with. The generated offspniragy then replace the individual at the
central cell according to the replacement policgentk, there is no need for any central
control. Nevertheless, issues related to the neigtitwod topology and selection and
replacement schemes should be considered whennmaptang a cellular model.

A cEA model may have more cells than PEs. In taseca PE has to deal with each cell
sequentially. Today, the use of the theory of MRtssage passing makes it easy to
implement cEAs, particularly the synchronous modlch PE synchronously updates its
individuals in sequence and does not require thHeerst PEs memories except for
communication involving edge values between neighi@ods. In this case, those PEs need
to send and receive the corresponding messagesffasert neighbouring regions are
managed by different PEs (Tomassini, 2005, p.168).

Processing Unit
Controller
T
v v v
Evaluation N Selection | Genetic Operators
Module Module Module
v
Memory ¥ L 4
Chromosome Memory | | Fitness Memory

Figure 2.7.High-level hardware architecture of a cell of &@A in the SIMD model.
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In conclusion, the cGA model is well suited for MLiSiplementation since the cells are
simple, regular, have small local memories, needlloommunication links over the defined
topology, and operate synchronously (Eklund, 2064gure 2.7 illustrates the two major
components of a cGA cell in the SIMD model. Theg #re processing and the memory
units. All cells are identical and are connectedhiir neighbouring cells over the defined
topology (NEWS or X-net). Each cell evaluates itsque individual, selects, and applies
crossover and mutation operators (i.e., perfornstime cGA) in parallel with other cells.

A hardware architecture and implementation of a d@Athe application of the image
registration was proposed by Turtenal. (1994). In the study, a two-dimensional captured
image was compared to a reference image and ddraraion between both images was
required. From an algorithmic perspective, a stap added to the cGA model such that hill
climbing was used to modify (increase or decredlse)transformation parameters by one
unit for promotion. In a subsequent study, Turtod Arslan (1995b) improved the previous
architecture to include data compression. They piteposed a cGA architecture for a disc-
scheduling problem (Turton and Arslan, 1995a). @he was to identify the best way to
order tasks in order to minimise the access tine.nfore details about the previous studies
please consult the cited references.

Xu et al. (2002a) proposed a technique based on GAs tondigiethe attitude of a GPS.
The proposed technique resolved problems in egistirethods such as the Ambiguity
Function Method (AFM), making it more efficient amdmune to cycle slips. The attitude
parameters are determined using more than two m@ase(of which one is used as a
reference) attached to a vehicle. More detailshenproblem of GPS attitude determination
are provided in Section 4.2.2. A VLSI implementatiof the GPS attitude determination
based on cGAs was subsequently proposed irefal, 2002b). For implementation, issues
related to functionality and practical performamestrictions, such as speed and scalability,
were considered. The resulting architecture hadHamware complexity and the simulation
results showed a linear speedup.

Later, Stefatos and Arslan (2004a) introduced & ligrformance, adaptive hardware
architecture to alleviate the problem of GPS atitdetermination based on cGAs. The aim
of the proposed system was mainly to optimise ffeeed performance. As a result, the cGA
employed a Coordinate Rotation Digital Computer RBIC) algorithm to further improve
the system throughput rate. Results showed thersistpotential to achieve the promised

high throughput rates.
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The previous studies showed different applicatioeas of cGAs. These areas are
extended to include the design of fault-tolerarstesms in (Stefatos and Arslan, 2004b) and
(Hounsell and Arslan, 2001). EAs and GAs in paféicare also involved in the field of fault
tolerance. GAs have been adopted to develop faleitaint mechanisms by combining them
with reconfigurable hardware devices. This combamatleads to the concept of the
evolvable hardware (EHW). For studies on EHW ré&dgiThomson and Arslan, 2002; 2003;
2005; Stefatos, Arslan, and Hamilton, 2008).

Hounsell and Arslan (2001) presented a fault-tolesgstem based on the EHW platform
for the automated design and the adaptation ofiptielless digital filters. Filters were
achieved using a dedicated programmable logic afRiyA). Three PLA initialization
methods were investigated to identify the besttfiaadovery time. Results showed the ability
of PLA to maintain the system’s functionality ddepian increasing number of faults
reaching to 25% of the PLA area.

Stefatos and Arslan (2004b) further enhanced tR& @Grchitecture to include a fault
tolerant technique. This novel architecture coeslisif two layers. The first layer related to
the application while the second monitored the quemnce of the first layer and
reconfigured its computational elements when appaitgp The class of faults considered in
the study was Single Event Upsets (SEUs), whicimamily originate from radiation effects
(more details about SEUs are provided in Secti@h Results showed the capability of the
first layer to tackle faults up to 40% of the Pihijle the second layer tackled up to 30% of
faults.

2.2.5 3D-cGAs: Pseudo-code and Specification

This section emphasises the implementation of a c@8Ahree-dimensional (3D) toroidal
grid. Previous studies focused on implementing c@®Asone-dimensional (1D), or most
commonly, two-dimensional (2D) toroidal grids. Cegaently, there is a lack of studies
related to higher cellular dimensions. The resedrchthis thesis is based on three-
dimensional cGAs (3D-cGAs). Higher cellular dimems show promising benefits at both
hardware and software levels.

The previous discussion emphasised the importahgeidtopology in determining the
performance of the algorithm. In this research,Dac8ibic topology is utilised. A cubic
topology allows good solutions to spread quicklyalb PEs due to its shorter diameter

(Cantu-Paz, 1995), as well as diverse degreespbbmation and exploitation.
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In past works (Breukelarr and Back, 2005; Moraleydget al, 2009), a 3D architecture
was utilised and investigated. The overall ressiiswed improvements in the performance
of the algorithm when compared with smaller gricheinsions. A further reason for using the
3D topology is its amenability to be implementedhwnew advanced custom silicon chip
technologies to achieve added significant beneditsh as fast operation, reduction in power
consumption, new design possibilities, heterogeseotegration, circuit security, and wide
bandwidth (Dast al, 2003).

Algorithm 2.5 Pseudo-code for a canonical 3D-cGA

1. procedure cGA

2. Generate_initial_populatio(0));
3. Evaluation R(0));

4.1< 0;

5. while ! stop_conditiordo

6. fori < 1to ROWSdo

7. for j €1 to COLUMNSdo

8. for k €1 to LAYERSdo

9. neighbours Find_neighbours (positioni(k));
10. paren& position(,j,k);

11. parent2-Local_selection (neighbours);

12. offspring~ RecombineR,, parentl, parent2);
13. offspring~ Mutate Pp);

14. Evaluatio®-Fitness(offspring);

15. Replacement (positignk), offspring,Pau(t));
16. end for;

17. end for,

18. end for;

19. P(t+1) € Pau(t); // updating

20.t € t+1;

21.end while;

22.end procedure cGA,

The pseudo-code for the 3D-cGA is shown in AlgonitB.5, in which similar steps to

other (lower or higher) cellular dimensions areldaked. The steps are for finding the
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neighbours (line 9), selection of parents (linesah@ 11), recombination of selected parents
(line 12), mutation of offspring (line 13), evaligat of offspring (line 14), and replacement
(line 15). In comparing Algorithm 2.4 (2D-cGA) withlgorithm 2.5, the only difference is
the addition of a third dimension (Line 8), whifers to the layers of the grid. An empirical
study along with a detailed discussion of 3D-cGAp®vided in Chapter 3. The next
subsection empirically compares 3D-cGAs to panmiGtAs, while a comparison with 2D-

cGAs is provided in Chapter 3.

2.2.5.1 3D Cellular versus Panmictic GAs

An experimental study was carried out in order ndnstrate the behaviour and the
performance of the 3D-cGA with respect to panmiefigorithms (ssGA and genGA). The
test bench selected to evaluate the algorithmsidiecl the problems of Rastrigin, Schwefel,
Griewangk, Ackley, Michalewicz, Langermann, FMSdaBLE. The dimension of these
problems consists of 10 variables, except for FEIi&dils about the problems are provided
in Appendix A). The parameters used in all the expents are summarised in Table 2.1.
The population consisted of 343 individuals. Onedrad independent runs were performed,
allowing a maximum of 500 generations for each expental case. The algorithms
terminated when the difference between the avelitgess valuesgvgf and the optimum
fitness value dqptf) satisfied a specified threshold, or when the maxn number of
generations was reached. Different thresholds wassggned for each problem based on its
complexity. For all algorithms a non-uniform mutetiand blended crossover operators were

applied to generate offspring.

Table 2.1.Experimental parameters used for 3D-cGA, ssGA,gamd5A

Population size: 343 individuals

Current individual + BT (for 3D-cGA)

Parent selection: BT + BT (for ssGA and genGA)

Recombination: BLX-a (a=0.5),P.=0.9
Mutation: Non-uniform,P, = 0.1
Replacement: Replace-if-better
Neighbourhood: NEWS

7x7x7 (for 3D-cGA)
1x343 (for ssGA and genGA)
Stop criterion: lavgf- optfl < Threshold

Lattice:
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For the 3D-cGA, the population was arranged ovex7#7 toroidal lattice with a NEWS
neighbourhood containing the central individual splthose linearly positioned at one
distance step. The first parent was always theraleone, while the second parent was
selected from the neighbourhood using BT selectimr. panmictic GAs, the two parents
were selected from the whole population using BlEd®n. For genGA, the size of the
auxiliary population was equal to the size of tbeydation @ = ).

The algorithm performance measured as converganeerate, and speed are reported in
Table 2.2, with the best values markedbiold (for more details about the performance
metrics refer to Section 2.2.3.1).

Overall, 3D-cGA outperformed the panmictic GAsennis of convergence rate as it had
the best search success rates for 6 out of 8 pnsb{eee Table 2.2), while it achieved the
second-best convergence times and speeds follamngsGA. For Rastrigin’s and Ackley’s
problems, all algorithms achieved almost simildicaties. However, for more complex

problems such as Langermann and FMS, 3D-cGA adthisigmificantly higher hit rates than

Table 2.2.Comparing 3D cellular to panmictic GAs’ performascConvergence time (CT),
rate (CR), and spe€8P) for test and real-world problems

Algorithms/ ssGA genGA 3D-cGA
Problem

128.11+ 1133 430.24 4 323.77 199

fRa1s 100% 99% 100%
14.23+ 1 5 34.11 +5 4 49.81 45
70.01% ;45 408.80 + 200.96 5

fsm 100% 73% 100%
7.62+% 65 31.96 *; 43 21.01 +; ¢
72.45% 35, 410.6 +; 290.51 +,, 9

fGrie 45% 100% 45%
7.29% 545 33.83 #4579 30.91 +, 53
77.66 o5 472.90 49 221.62 + ¢

f ek 100% 100% 100%
7201‘ 0.11 4202 io_4g 2539 10_42
130.34+ 139 _ 330.91 +79

fic 98% 0% 37%
12.35% 1 47 35.40 g5
61.15+ ;49 _ 201.06 +49

fLang 61% 0% 99%
6.96+ (g5 25.61 +; 4
50.28% 4 ¢ 399.20 +, 207.83 +79

fFMS 67% 5% 91%
6.68+ (57 49.81 45 33.08 +, 49
413.00% o0 445.00 5

fSLE O; y 5% 5%

0 34.37+ 903 47.36 +475

* For more details about the performance measptease refer to Section 2.2.3.1.
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panmictic GAs. The difference in efficiencies apgads may correspond to the variation in
the achieved hit rates. For Schwefel and GriewaB8BkcGA and ssGA performed similarly
in terms of hit rate, while the latter significantbutperformed the former by obtaining a
lower number of generations reaching to 75%. ThecGA showed its ability to solve all
the problems, while genGA failed to solve Michalemviand Lanagermann problems and
ssGA failed to solve the SLE problem. However, hiigate obtained for SLE was very low.
Section 2.2.4 provided a broad overview on theiagipbn of cGAs, particularly in the
field of the fault tolerance. The next subsectiooves more detailed overview on the topic

of fault tolerance.

2.3 Fault Tolerance

The increasing use of electronic systems in cfitm@as such as space and medicine
increases the importance and needs for reliableersgsto remain functioning with the
existence of failures. Systems operated in aggressivironments including space, ground,
and water or where human life depends on their rateufunctioning have to be fault-
tolerant. Therefore, fault-tolerant systems caunldfned as the ability of a system to operate
correctly in spite of hardware and/or softwareuiab (Avizienis, 1971).

This thesis focuses on radiation-induced failuseigh failures are known as Single Event
Effects (SEE). SEE errors occur when a systemdatewrith high-energy particles at space
level or low-energy particles at ground level (LUal996; Gonget al, 2008). SEE are
classified into hard errors and soft errors (Mastyn and Wee, 2004). Hard errors are
known as Single Event Latch-Ups (SELs), while sfiors are known as Single Events
Upsets (SEUs); this research explores the effeB&t errors.

In the nineteen-seventies, SEUs (also known asiganerrors) were discovered in space
(Normand, 1996). Systems operated in space arectaljto various anomalies including
plasma and radiation, among others. Such anontaies effects on systems, which result in
different types of failures. Avionics (i.e., elemtics in aircraft) SEU was first predicted in
the nineteen-eighties and later severely demoestrad occur in flight in the nineteen-
nineties (Normand, 1996). Consequently, attentias paid to the radiation effects because
the radiation was the main contributor to failu4%), with SEUs having the highest impact
of all possible radiation effects (80%) (Velazebal, 2005). In addition, the considerable
reduction in the feature sizes of electronic cisaind increase in functional complexity and

sensitivity increases the possibility of transiestrors occurring (Normand, 1996).
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Subsequently, radiation-induced SEUs have also beserved at ground level (Goegal,
2008. For these reasons, the demand for implengeefiicient, reliable high-performance
systems that can quickly adapt to different fagure a crucial concern. This is usually
accomplished by a residual design that is resistanand tolerant of failures. To achieve
fault tolerance, two essential processes must beidered, they are: fault detection and fault
recovery (Greenwood, 2005; 2008). This sectiongiressthe major causes of system failures
considered in this research.

SEUs occur as single-bit (SBUs) or multiple-bit (M8 flip in memory or data registers
due to the passage of one or more energetic radigérticles (Mastipuram and Wee, 2004).
SEUs do not cause permanent damage to systemdoality, and can be handled by fault-
tolerant techniques. There are various algorithmd approaches to fault tolerance are
introduced including hardware techniques, softwacniques, or a combination of both (Su
and Spillman, 1977).

The most commonly used hardware technique to nbitiggEUs is Triple Modular
Redundancy (TMR) (Layons and Vanderkulk, 1962; | 4885). However, TMR is very
area-extensive (general) and may not be able te wvoth all the errors that occur. SEU
hardware fault-tolerant techniques can rapidly ded@d recover faults; however, they incur
overhead, which increases the cost and compleXityhe design. Further, in general,
hardware techniques cannot handle all types ofamndnd multiple-bit errors caused by
potential transients (Pant and Joshi, 2007). Tigses of errors, specifically SEUs, cause
functional impacts (software faults), rather théwygcal impacts. Consequently, many error-
coding techniques have been proposed to solve ibeeamentioned problems; however,
they are seldom implemented due to their complexity

Nowadays, fault-tolerant techniques to mitigate SEBtk being intensely researched, not
only for aerospace applications, but also for sdrigl applications. Gongt al. (2008)
proposed a hardware approach for tolerance to SHiese two new structures were
presented and compared with the traditional TMR.a&thorough discussion of SEEs, please
refer to (Label, 1996). Conversely, Singthal. (2006) presented a software approach to SEU
tolerance that combined several techniques, suchexkpoint and TMR.

Pickle (1996) and Asenedt al. (1997) proposed a model to predict the rate of SEE
however, the latter emphasised the SEU errors sdemylevel rather than at device level.
Aseneket al. analysed a telecommand system on a spacecraffpand that around 50% of

the SEUs that occurred resulted in errors obseavéite system level.

42



In addition, several studies to explore the abibfycGAs to tackle SEUs have been
conducted. Research studies related to the abfliynormal cGA and a parallel cGA to deal
with SEUs that occur at fithess score registersewsesented in (Morales-Reyes al,
2008a; 2009), while the ability of an adaptive c@Ahandle SEU-targeted chromosomes
registers was explored in (Morales-Regésl, 2008b). In all the previous studies, EAs have
proved their capability and power to tackle SEUswell as in improving the performance
of the algorithm in terms of efficacy and efficignc
Chapter 4 of this research deals with failures edusy SEUs when targeting individuals’
phenotypes, particularly when fithess scores aweksat ‘one’ or ‘zero’. Although other
possible memory or data registers, such as chram®sand finite-state machine (FSM)
could be also targeted, this research focusestioes value registers due to the importance

of fitness information in guiding the search.

2.4 Chapter Summary

This chapter covered previous studies and researnchGAs in general and cGAs in
particular. As mentioned previously, the focus i tthesis is on cGAs. As a result, more
attention is paid to studies relating to cGAs. Aiew of the literature has shown only
limited research on cellular dimensionality, in tparar above two dimensions, although
previous studies have shown that a grid topologykey that determines the performance of
GAs. Typical cGAs are implemented on 2D grid togglowhile this thesis focuses on 3D
grid topology. Preliminary research on grid dimensility that were carried out in joint
collaboration with another group member, showedmpsig results for higher grid
dimensions, particularly 3D, that can lead to eperformance. Hence, the work in this
thesis is based on 3D cGAs.

Another area of interest is fault tolerance. Litera review showed major concerns by
researchers about the effect of SEE errors onmegsienctionality. As a result, hardware- or
software-based mitigating and fault tolerance tepes were intensely researched. Previous
research in this area showed that SEEs, and iicglart SEUs, affect systems functionality.
However, studies on algorithm-based fault tolerathniques are lacking. In addition,
previous studies that were carried out by otheugrmembers investigating the ability of
cGAs to tackle SEE errors show that cGA is capableandling such errors. Therefore, this
thesis aims to develop algorithm-based fault toleeaand mitigation techniques to tackle
SEUs.
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Moreover, previous researches were intensely tadgewith the vital issue of
exploration/exploitation trade-off, which also detnes the effectiveness of GAs. These
researches suggest that for GAs to continue peifgreffectively when tackling real-world
problems, it should be adaptive. Previous researghmposed several techniques to
dynamically control the exploration/exploitationadee-off in an adaptive manner and
incurred lower computational costs. Consequentlys thesis also aims at developing

effortless adaptive cGAs that dynamically contegbleration/exploitation trade-off.
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Chapter 3

3D Architectures

This chapter aims to investigate the behaviour @arfiormance of cGAs when the cellular
dimensionality is increased to 3D. Two-dimensiaimglologies are commonly employed in
cGA investigations; however, this research empl@p topology. In this chapter, a
comparison between cGAs implemented on 2D withahoglemented on 3D grids will be
provided to show the advantages of increasing leelllimensionality. The main reason for
increasing cellular dimensionality is its amenapilo being implemented efficiently with
the new advanced custom silicon chip technologyparticular 3D integration technology
(Das, Chandrakasan, and Reif, 2003; Tapall, 2006; Borkar, 2011).

Parallel EAs in general and cGAs in particular,eoffa structure that establishes a
powerful connection between both software and hardwevels, while offering high
system’s performance. In a cGA, the populationis&rithuted over amD grid structure with
wraparound edges following a toroidal shape, shett €ach individual is assigned to a
grid’s position or a cell. This arrangement ressrithe interactions between individuals
within their defined local neighbourhoods. In tkisidy, the population is arranged in a 3D
toroidal grid. Therefore, the defined local neightimod consists of the central, the vertical
north and south, the horizontal north and soutt,the east and west individuals or NEWS
(see Figure 3.1(b)).

cGAs offer numerous benefits over other GA modelparticular panmictic GAs. These
benefits can be summarised as follows. First, dityatp maintain a high diversity level for
much longer time in comparison with centralised eiedCantu-Paz, 2000). Second, an
ability to achieve not only better efficiency, @iso higher efficacy in combination with the

accuracy of results.
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Reproduction between individuals occurs when oulividual is selected from a small
neighbourhood composed of individuals located sat distance and then mated with the
chromosome currently being evaluated. This proeedsirrepeated for each individual at
each grid position and in general all individuaés de updated either synchronously or
asynchronously. Thus, it is necessary to definentimaber of individuals belonging to the
local neighbourhood and within which radius or aiste step would be contained. This also
establishes a relationship between the size ofptmulation, the shape of the grid, and
size/shape of the local neighbourhood and the cese effect in the search process.

In order to provide a thorough study of the behaviof cGAs and model their
performance, the dimension of the cellular is iasexd from 2D to 3D; which is the main
objective of this study. Comparing 2D square and @&lbic grid topologies while
maintaining similar processing and interaction ¢@ists among individuals will offer a
wider overview of the effectiveness of cGAs asmpation engines.

Breukelaar and Back (2005) did a study on evolMitpaviour in multi-dimensional
cellular automata using a GA. In that study différparameters in terms of crossover rate,
mutation rate, number of iterations, tournament,sizeighbourhood size, and cellular
dimension (1D, 2D, and 3D) were explored. Thredediint problems the majority,
checkerboard, and evolving bitmaps problemgere solved in order to explore the potential
of cellular automata. The overall results showeat thith a multiple cellular dimension
topology, in particular 3D, GA achieved a lower ran of iterations and fitter objective
values. However, there is a considerable differelpegveen the number of individuals
defined for 2D and 3D cellular automata. The cosioln drawn suggested that GA be used
with multi-dimensional cellular automata as thismtdnation shows great potential for
effectively solving real-world problems.

A preliminary study that investigated and compa2&dand 3D cGAs was carried out in
collaboration with another group member in SLIg (®les-Reyeset al, 2009). In that
study, various population sizes and local neighbood radii were explored while
maintaining similar population sizes for both gdinensions. Four test functions with two
each having similar characteristics were solvedroter to investigate the effectiveness of
increasing cellular dimensionality. The test fuort used were Rastrigin, Schwefel, Ackley,
and Griewangk (test function details are providadAppendix A). Simulation results
showed that 3D-cGA is more efficient than 2D-cGA terms of convergence time,
particularly when solving harder problems (i.e. kiky and Griewangk). With regard to

search success rate, both cellular structures\aghigmilar hit rates, however 3D-cGA had
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a higher search success rate than 2D-cGA when Beshagal neighbourhood distance was
applied.

This chapter extends this previous study in orddutther investigate the performance of
cGAs and obtain a wider overview. Like the priardst, different population sizes and local
neighbourhood distances were explored while maimrtgi similar population sizes for 2D
and 3D structures. However, a benchmark of sixftesttions and two real world problems
were selected to offer diverse characteristicaaddition, a higher problem dimension was
selected. The problems chosen were Rastrifig,( Schwefel {s.), Griewangk fgrie),
Ackley (facy), Michalewicz {wic), Langermannf(a.g), FMS (rvs), and SLE fs.) (details are
provided in Appendix A).

This research aimed to explore the benefits of &Dckires on cGAs at software
(algorithmic) level and combine them with the béisebf the recently developed 3D
integration technology. Recent advances in thia aeve presented optimistic results at the
hardware level; therefore, combining the algorithagpproach of implementing 3D-cGAs as
optimisation engines, in order to solve hard r&aktproblems, would bring together the
advantages that 3D integration technology has gealiAlthough 3D integration technology
Is not yet widely commercial, it is considered ® the future of coarse- and fine-grained
reconfigurable architectures (Yarema, 2006; Xie Bfaj 2008). Moreover, 3D integration
technology offers the following benefits: reductiafi the routing length, decrease in
interconnection delays, which affects not only skee of a fabric but also the performance of
a device. In addition, a significant improvementienms of logic and memory density has
been reported. With respect to logic density, fioefgrained devices, it has been determined
that 80%6—-90% of their area is used for reconfigurable interamtions. Using 3D

integration technology this ratio is reduced®®%o-60% (Rahman and Das, 2003).

=

(@) (b)
Figure 3.1. (a) 2D squareand (b) 3Dcubic toroidal topologies when implemented in a cGA. A

possible Von Neumann neighbourhood is marked ik bare.
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Future adaptive systems should offer charactesistich as fast adaptation, autonomous
behaviour and fault tolerance. cGAs have been stiovie adaptive as well as fault tolerant
for specific applications (Stefatos and Arslan,£0@orales-Reyest al, 2008). 3D cellular
architectures will offer the added advantage ofedpand package density. This study
explores several 3D-cGA architectures and compdhnese to their 2D counterparts.
Afterwards, a brief analysis of communication aramputational complexities for both
topologies is provided. In the next section theiowws cGA configurations for 2D and 3D

topologies are provided.

3.1 Algorithm Configuration

cGAs are frequently implemented on 1D or 2D grigologies. This study targets 3D grid
topology as, with the recent advance in cusgilicon chip technology, it can now be
implemented efficiently. Moreover, this study comgsthe performance of cGAs when
implemented on 2D and 3D grid topologies. A numiifetGA configurations are defined in
order to thoroughly investigate the effectivenass eompare fairly the performance of both
topologies. Figure 3.1(a) and (b) illustrate a squgid shape in 2D and a cubic grid shape
in 3D, respectively.

Several population sizes are defined for both gtichensions. For 2D grids, the
population is arranged as% 8x8, 11x11, 15«15, and 1819, leading to a total of 25, 64,
121, 225, and 361 individuals, respectively. Coselyr, for 3D grids the population is
arranged as»X8x3, 4x4x4, 5x5x5, 6x6x6, and ®7x7, leading to a total of 27, 64, 125, 216,
and 343 individuals, respectively. These sizes wagkected to produce almost equal
population sizes for both grid dimensions.

Although the neighbourhood topology consideredriedr for both grids, the size of the
neighbourhood differs based on the dimensions efgtid. Two different neighbourhood
radii for both grid dimensions are defined. Consitle one step distance from the central
cell results in 4 neighbours, positioned to thetmoeast, west, and south, with a radius of
0.89 for the 2D grid; while it results in six nelgdurs, positioned to horizontal north and
south, vertical north and south, east, and wedh, avradius of 0.925 for the 3D grid.

Experiments were carried out to show the effeagred dimensions and neighbourhood
size onNGRand growth rate of the best individual. Figure 8h»wsNGR considering two
different radii and grid dimensions. Smaller neighithood size leads to small&IiGR than

larger ones, which in turn decreases as the populaize increases. LOWGR implies
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weak global selection intensity and therefore primsanore exploration (Sarma and De
Jong, 1996; Alba and Troya, 2000, Alba and Dmsowo, 2008). As shown in Figure 3.2,
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NGRis not evaluated for a population size &f%(2D) individuals with three distance steps
due to the low grid dimensions. Advancing thredagise steps from an individual would
result in an increase in its selection probabili&milarly, NGR is not computed for
population sizes less thar 5% 5 (3D) individuals.

Figure 3.3 shows the growth curves of the besviddal for population sizes ¥39 (2D)
and & 7x 7 (3D) considering one and three distance stepsthA curves imply, 2D-cGA
with one distance step has the slowest growth vetde 3D-cGA with three distance steps
has the fastest growth rate. 2D-cGA wlifeé distance stepGR= 0.2679) produces
an almost similar growth curve to the 3D-cGA witleddistance stepNGR= 0.2673) due to
similar NGR(Sarma and De Jong, 1996).

The pseudocodes of the canonical 2D-cGA and 3D-e@&fe presented in Chapter 2,
Section 2.3.4. The parameters used in the expetsmmmd the experimental results are

presented in the following section.

3.2 Experimental Results and Analysis

In order to achieve fair comparison, similar parserseewere used during the experiments.

Table 3.1 summarises these parameters.

Table 3.1.Parameterization used in the experiments

25, 64, 121, and 361 individuals (for 2D)
27, 64, 125, 216 and 343 individuals (for 3D)

Parent selection Current individual + Binary Tournament
Recombination  BLX-a (a=0.5),P.=0.9

Mutation Non-uniform,P,, = 0.1

Replacement Replace-if-better

L5 andL9 (for 2D-cGA)

Population size

Neighbourhood "2 2141 13 (for 3D-cGA)

Lattice 5x5, 88, 1111, 1515, and 18 19 (for 2D-cGA)
3x3x3, 4xdxd, 5x5x5, 6x6x6, and K7x7 (for 3D-CGA)

Stop criterion | avgf —optf |< Threshold

The first parent was the current individual white tsecond parent was selected by using
binary tournament selection. A blend crossover ajper(BLX-q) with probabilityP. = 0.9
was applied to generate an offspring (Herrera aodaho, 2000; Dorronsoro and Alba,

2006). The offspring was then mutated by apgiymon- uniform mutation operator, with
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probability P,, = 0.1. The replacement policy defined hereejgace-if-better during which
the current individual is replaced if its compatifoffspring) is fitter. Finally, the algorithm
terminates if the difference between the averageds valuegavgf) and the optimum
fitness value qptf) satisfies the defined threshold. Because of ffferdnt characteristics,
different thresholds were defined for each probl&milarly, the maximum number of
generations assigned was 1000 generation$z{ofyic, flang andfs.g while a number of
1500 generations was assignedftQk ferie, fack andfeys. The dimension of the considered
problems was = 10, except fofrys as the dimension was= 6.

The shape of the local neighbourhood follows adirtepology with distance steps- 1
andr =3 leading to a total of 5 (2D) / 7 (3D) and 9 j2[1.3 (3D) individuals, respectively.
The radii of the neighbourhood were 0.8944/ 2.0a88 0.9258/ 2.1026 for 2D and 3D,
respectively. These radii were selected to be dlsioslar for both topologies considering
the same distance steps. The slight differencesedeet the radii is due to a grid connection
which assigned six neighbours in the 3D grid indte& four neighbours in the 2D grid
considering one distance step (Breukelaar and B4x)5).

The performance of the algorithms was measuredjusio metricsthe average number

51



320 ;
— — — 2D-radius 1
3D- radius 1
— — — 2D-radius 3
300 - 3D- radius 3

280 ! B

260 -

240 -

Mean number of generations

200 -

180 | | | | | | 1
0 50 100 150 200 250 300 350 400
Population size

Figure 3.5.Average number of generations fég ..

of generations or efficiency and the search sua@dssn combination with results accuracy
or efficacy of 100 independent runs. Figures 8.3.10 illustrate the results obtained.

Figure 3.4 shows the average number of generatbtagined while solvingres The
results obtained show that 3D-cGA achieved a lawanber of generations for population
sizes greater than 64 individuals for 1. On the other hand, both algorithms (2D and 3D
cGAs) obtained almost similar number of generatitmsr = 3. With regard to search
success rate, all configurations achieved the hiesate (100%), except for 2D-cGA with
5x5 individuals, which had a hit rate of 96%.

In Figure 3.5 the average number of generationaimdd when solvindse is illustrated.
Significantly lower number of generations was acbte by 3D-cGA for the different
configurations, in particular for = 1. With regard to the search success rate, hall t
configurations compared achieved similar hit r§&&96-100%), except for those with small
population sizes ¢gand *3x3 individuals) as there is a slight difference esw the
obtained hit rates (79% and 84%, respectively)gilidifferences between the results
obtained correspond to the slight differences betwthe population sizes of 2D and 3D
lattices. Another reason is the difference in theal selection intensity, which was affected

by the size of the neighbourhood, leading to sedgfit exploration/exploitation trade-off.
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Figure 3.6 shows the average number of generatibtained while solvingac. With
respect to mean number of generations, a similaiil@ras that for the previous problem
(fscy was obtained. On the other hand, the best hat (#0%) was obtained by all cGA
configurations.

The average number of generations and search su@tesobtained while solvirfg;. is
shown in Figure 3.7(a) and (b), respectively. As ba seen in Figure 3.7(a), in contrast to
the previous problems, the mean number of genesabbtained increased as the population
size increased due to the problem characteridtjediffered from the previous problems as
it is not symmetric, which further complicates search. In general, 3D-cGA significantly
outperformed 2D-cGA. A significant difference beemethe mean numbers of generations
was obtained for = 1, especially for large population sizes; thigpiovement decreases for
r = 3. In general, considering the search succdeqsae Figure 3.7(b)), 2D-cGA achieved
higher hit rates than 3D-cGA; however, the diffeesn between the hit rates obtained by
both algorithms were not significant.
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For fLang, 3D-CGA achieved a significantly lower average bemof generations than 2D-
CcGA, especially for = 1 (see Figure 3.8(a)). However, both algorittambieved almost

similar search success rates (see Figure 3.8(b)).
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With respect to the average number of generatiansimilar profile as that for the

previous problem was obtained while solvifag. (see Figure 3.9(a)). As can be seen in
Figure 3.9(b), 3D-cGA achieved higher search sigeages than 2D-cGA with similar

distance steps for all the considered populatinessiln addition, it can be seen that the hit
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rates obtained by 3D-cGA far= 1 were almost similar to those obtained by 2DAdGr
r = 3 as both algorithm configurations had simiklestion pressure (refer to Figure 3.3).

Figure 3.10(a) and (b) show the average numbeepnégtions and search success rate

obtained when solvinfys, respectively. In general, for the average nunadbeyenerations,
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3D-cGA outperformed 2D-cGA; while for the hit rateD-cGA outperformed 3D-cGA.
However, the differences were not significant.

The results obtained while solvirfg e are omitted as both algorithms either failed or
showed undesirable performance (very low searcbhesscrate). For the complete results
including those omitted, take a look at AppendixiBble B.1.

Overall, 3D-cGA significantly surpassed 2D-cGA errhs of algorithm efficiency as a
lower average number of generations was achievedaliothe problems considered.
Regarding the efficacy of the algorithm, both aithons achieved either equal (when solving
less complex problems such fag fscn andfag) or slightly different search success rates
(when solving more complex problems suchf@s fiang fere, andfems). As mentioned
previously, for similar distance steps, the 3D topg offers a bigger (denser)
neighbourhood than the 2D topology due to the e&réxpansion of the cells. For example,
employing a liner neighbourhood topology with oristahce step, the 2D grid results in 4
neighbours, while 6 neighbours are resulted for 3k grid. In addition, the vertical
expansion of the cells in a 3D grid allows shodemeter compared to that of a 2D grid,
which allows faster spreading of solutions. Themefdhe selection intensity of 3D-cGA is
stronger than that of 2D-cGA, leading to a lowenwargence time (i.e., the number of

generations).

3.3 Analysis of Complexity for 2D and 3D Topologi  es

In a cGA, the topology of the grid defines the cammication network that the individuals
spread throughout the population over it. Differeologies induce different computational
and communication complexities. The following paeguips provide a brief analysis that
aims to highlight the difference in the computatibrand communication complexities
between the topologies under investigation (i.B.,a&d 3D grids with wraparound edges).
The analysis is carried out at the level of GA baseps, they are: evaluation, selection, and
genetic operation (recombination and mutation).oBefroceeding, it is important to make
the following assumptions. First, for both grid ebpgies, the neighbourhood topology is
assumed to bkinear with one distance step. Second, the local selectiethod is assumed
to be tournament selection (the most appropriateham@sm for parallel implementation (De
Jong and Sarma, 1995; Eklund, 2003)).
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Evaluation
As the fitness evaluation of an individual is indedent from other individuals, there is

no communication required regardless of the gridokmgy used. Hence, there is no
difference in communication complexities betweené&tidl 3D grids. On the other hand, the
computational effort needed to evaluate an ind@iddepends on the complexity of an
individual (e.g., simpler and smaller individuatjtéres fewer calculations than complex and
lengthy ones) (Eklund, 2003). At the individual éévthere is no difference between the
computational efforts for 2D and 3D grids of simifepulation sizes. At the neighbourhood
level, the amount of computation needed is more3fvras the neighbourhood in a 3D grid
consists of more individuals (in this case, 6 nkairs for 3D vs. 4 neighbours for 2D).

However, the latter difference is not considerethaditness computation of an individual is

isolated from the others.

Selection

There are various selection mechanisms introducedch requires different
communication and computational complexities. Tdmglysis focuses on one of the most
common methods, which is tournament selection. Kenbther mechanisms, tournament
selection does not depend on fitness proportionateank (i.e., no need for the gather-
broadcast operations) as it randomly selects twoare individuals. However, this method
needs access to the all individuals in a neighbmah As a consequence, 3D topology
requires more[{0.66x) communications than 2D topology. Conversely, ¢cbenputational
effort needed by 3D grid are similar to those @& #D grid as the complexity of a single
tournament depend on the tournament kiggommonly k = 2). In other words, the time or
computational complexity of tournament selectiorO{k), wherek is the tournament size
(Goldberg and Deb, 1991).

Genetic operations

With mutation, there is no communication neededhasmutation works over a single
individual in isolation of the others. The compidgatl complexity of mutation depends on
the individual representation and the mutation népie used. In all cases, the mutation
requires marginal computational effort and no comitations (Eklund, 2004). Therefore,
both grids (i.e., 2D and 3D) offer similar compkss of mutation. On contrary, crossover
requires communication with limited amount as itambines two individuals. For 3D

topology more communication§ll.66x) is required than with 2D grid due to the need of
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access to all individuals in a neighbourhood, whghigger for the 3D case. On the other
hand, similar amount of computations is neededbfith topologies as the computational
complexity of crossover depends on the individuapresentation and the crossover

technique used.

Overall, in cGAs, the computational and communaraitomplexities vary according to
several parameters such as: grid topology, neighiood topology and size, genetic
operations techniques, population size, among sti&rmparing the complexities of 2D and
3D grids while other parameters remain similar slaswed more communications needed
for the 3D grid than 2D grid that reached i®.66<. Mainly, the difference in
communications is due to the difference in the mieigirhood density; 3D grid offers a
denser neighbourhood leading to more communicatioesded. With regard to the
computational effort, both grids may require simgamputational complexities. However a
difference in computational complexities betweenhbgrids may encounter based on the
selection and genetic operations employed, paailyuthose that need access to all the

individuals in a neighbourhood (e.qg., fithess prtipoate selection).

3.4 Conclusion

This study aimed to compare and analyse the peafiocenof cGAs when two different grid
dimensions are employed, in particular 2D and 3polimgies. In order to thoroughly
investigate the algorithm performance, a benchroapeoblems with diverse characteristics
and complexities was selected. Simulation resuitsvsthat 3D-cGA is more efficient in
terms of convergence time than 2D-cGA for all tbasidered problems. With respect to the
search success rate, both algorithms achievedasinafficacy. In the 3D structure, the
interconnection between the cells leads to vertegdansion rather than the horizontal
expansion of the 2D structure. As a result, thes8Dcture provides a larger neighbourhood
size than the 2D structure for similar distancesi@reukelaar and Back, 2005). Although a
bigger neighbourhood size leads to more explogatdehaviour for the algorithm, the
balance between exploitation and exploration wastaaed by selecting an appropriate
neighbourhood radius with respect to the grid togpl(Alba and Troya, 2000). Thus, the
control of the selection intensity through the sifehe neighbourhood would lead to the

attainment of a higher search success rate and mweergence time.
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If the benefits of the performance results obtaiaedcombined with the benefits that 3D
technology offers, the resulting architecture woafter significant advantages in terms of
reduction in routing length and interconnectionagielas well as an increase in logic and
memory density. Accordingly, it is possible to irope the performance of the current

optimisation engines at software and hardware $eteefit the requirements of the future.

3.5 Summary and Contribution to Knowledge

In this chapter the first and most basic step tdwamcreasing the cellular dimensionality of
GAs was established. The aim was to investigate ghdformance of cGAs when
implemented on 3D topology. A comparative studgbfcGA and 3D-cGA was conducted
for similar parameters. However, with 3D topology, higher selection intensity was
achieved due to the vertical expansion of cells léeds to a larger neighbourhood size. 3D-
cGA achieved significantly better performance resthan 2D-cGA, especially in terms of
convergence time. Further benefits and investigatiof the performance of cGAs when
implemented on 3D topology will be provided in sedpsent chapters. The following points

summarise what this study has contributed to kndgde

* Increasing the dimension of cellular structure ioyas the performance of cGAs,
mainly the convergence time, while maintaining higbcuracy and search
success rates. As a consequence, multi-dimensievalutionary algorithm
models such as 3D-cGAs can empirically offer rotzust effective optimisation

engines to tackle hard, real-time problems.

e cGAs with higher cellular dimensions, specificap, achieves significantly less
convergence time than their corresponding 2D dlgms when solving
multimodal problems with diverse characteristicel @omplexities such as the
considered problems. However, these improvementy @s each problem

presents different difficulty for the search.

* cGAs with different cellular dimensions, particil§a2D and 3D, achieve similar
efficacy as both algorithms achieved similar seanatcess rates. However, 2D-
cGA and 3D-cGA present different exploration/exation trade-off due to the

way the cells are connected.
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3D topology consists of multiple 2D layers stackedtop of each other, which
results in vertical rather than horizontal expansitherefore, 3D topology has a
shorter diameter and a denser local neighbourhbad the corresponding 2D
topology; which leads to fast spread of good intlgils. As a result, cGAs with

3D topology achieves less convergence time thacGBs.

Although 3D-cGA shows more exploitative behaviouedo the stronger global
selection pressure, it displays a more approphatance between exploring the
search space and exploiting good solutions thart@B-with similar distance

steps.
3D-cGA withr = 1 showed a simildGRand growth rate for the best individual

as 2D-cGA withr = 3. Consequently, a similar selection pressurgldcde

obtained through the control of the size of thalewighbourhood.

62



Chapter 4

Fault Tolerant 3D-cGA

This chapter presents new cGA algorithmic approswthat introduce the essential feature of
fault tolerance to real time systems based on claigoms. Electronic circuits in aggressive
environments, such as space, are subjected tougadaomalies, including plasma and
radiation, among others (Velazed al, 2005). Such anomalies have effects on systems,
which result in various types of failures. In thstudy, radiation effects are taken into
consideration as radiation is the main contributorfailure. In particular, Single Event
Upsets are considered because they have the highgestt of all possible radiation effects
(Velazcoet al, 2005; Gonget al, 2008). Radiation-induced SEUs have also beenrodde
at ground level due to the fact that the decraasled feature sizes of electronic circuits leads
to increased functional complexity and sensitigifpormand, 1996). Designing systems that
are highly reliable and efficient has become insirggly important not only for aerospace
applications but also for terrestrial ones. Themfaesigning new algorithmic models of
cGAs that maintain system reliability, even withgeowing number of faulty Processing
Elements (PEs) is the main objective of this chapd@other objective is to improve the
performance of the algorithm by mitigating the iropaf the faults.

Ensuring the reliability and validity of systemsjuires two main operations. The first is
fault prevention which aims to avoid the occurremfefaults; and the second is fault
tolerance which aims to ensure the proper funclitynaf the system. In this work, only the
process of fault tolerance is considered, whickum consists of the three complementary
stages fault detection, fault isolation, and fasttovery.

Previous studies on fault tolerance were carrigdgprevious members in the SLIg. An
evolutionary design based on evolvable hardwardopia for the automated design and

adaptation of digital filters that adapted to faultas introduced by Hounsell and Arslan
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(2001). Subsequently, Stefatos and Arslan (200zpgsed a fault-tolerant VLSI architecture
based on PGA, which tackled SEU errors when targedn individual’'s phenotypes. The
fault model “Stuck at 0” was considered in thatdgtuln a later study, Stefatos and Arslan
proposed a high performance adaptive VLSI architecthat achieved higher throughput
rates. This architecture was an improved versiorthefr previous effort. Subsequently,
further investigations were carried out by MordResyeset al. (2008a; 2008b; 2009) to
explore the ability of cGAs to tackle SEU errors &gsuming that the faulty PEs were
isolated. Research studies about the ability obrinary cGA and a parallel cGA to deal
with SEUs that occurred at fitness score registene presented in (Morales-Reyetsal,
2008a; 2009), while the ability of an adaptive c@Ahandle SEUs-targeted chromosomes
registers was explored in (Morales-Reg¢sl, 2008b). In all previous studies, EAs proved
their capability and power to tackle SEUs, as wasllin improving the performance of the
algorithm in terms of efficacy and efficiency. g research, a new cGA algorithmic model
that automatically detects, isolates, and recoM&4s) errors occurring at individual's
phenotypes, as well as new migration schemes fgatetthe impact of faults are proposed.
This chapter consists of three main sections. énfifst section, a three-stage 3D-cGA
approach that tolerates SEU faults is presenteddtition, an explicit adaptive migration
technigue based on the first fault-free neighboodhavhich is integrated into the design, is
proposed in order to mitigate the impact of faadt&l to improve the performance of the
algorithm. The second section introduces two moigration schemes in order to further
improve the reliability and the performance of éhgorithm. In the third and final section, an
improved dynamic 3D-cGA, which is tolerant to SEldsintroduced. This approach is
designed to dynamically adapt to fault ratios emtexed and mainly aims to improve the
efficacy of the algorithm. As mentioned previoudlye faults considered in this study are
target individuals’ phenotypes, particularly whéndss scores are stuck at either ‘1’ or ‘0'.
This study emphasises the phenotypic space dim tionportance of the fitness information
in guiding the search process. The proposed digositare tested against a benchmark of
well-known real world and test problems to thordyghvestigate their effectiveness and

reliability.

4.1 Automatic Isolation of Faulty Cells

This section presents a fault-tolerant approacipgsed for 3D-cGAs to overcome SEU

errors. The proposed approach detects, isolatésremovers from errors encountered. The
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design exploits the inherent features of a cGA aseb genetic diversity as the key factor in
identifying and isolating faulty solutions. Furthan explicit migration operation is proposed
and integrated into the fault-tolerant approach asmitigation technique. Several
configurations concerning the use of the migratperation and inducing different selection
intensities were considered. The effectivenesshef d@lgorithm was investigated using a
benchmark of four test functions and two real-wqguldblems, which presented different
levels of search difficulty. They are: Rastrigifk.d, Ackley (ac), Michalewicz i),
Langermannf(ang, FMS (rvs), and SLE fs g problems (details of benchmark problems are
provided in Appendix A). The initial investigatiomas proposed and carried out in (Al-Nagqi
et al, 2010a). In that study, only stuck at ‘0’ faultene considered. This section extends the
previous study to include other fault scenario®cti®n 4.1.1 specifies fault scenarios and
design, while the pseudocode and the descriptidheofilgorithm are presented in Section
4.1.2. Section 4.1.3 illustrates and analysesdhelts obtained. Finally, Section 4.1.4 draws

conclusions.

4.1.1 Faults Design

The proposed algorithm deals with SEU errors, $ipedy when targeting fithess score
registers. SEUs occur as one or more bits in theds score registers flip, in a way that keep
their fitness values stuck at either a very higluedl’ or a very low value ‘0’. From an
algorithmic perspective, with stuck at ‘0’ faulthe local selection method selects faulty
individuals as they are considered to be the fitfes., individuals with very low fitness
values are the fittest for the considered problemh bave to be minimised; otherwise the
fittest individuals are those having a very higindss value), and spreads the poor solutions
they provide over all the population, which resuttsystem failure. Therefore, stuck at ‘0’
faults is considered to be the worst fault scenakimother critical fault scenario is when
some individuals’ fitness scores are stuck at Ii’'this case, locally, the selection method
disregards those individuals and does not spreaddhutions they provide, which results in
a major increase in convergence time, as wellraglaction in the accuracy of the solutions.
In this study, the fitness values are normalisevéen 0 and 1 for all the problems in
order to offer equal weights. Hence, the minimurd araximum fithness values are 0 and 1,
respectively. The faults are induced by a randohactien of individuals asserting their
fitness values to ‘1’ or ‘0’ according to thaufiascenario to be evaluated. For each fault

scenario and rate, the same fault pattern is maadaover all 100 independent runs to

65



obtain an average, and for all the problems toeaehfair comparison. The rates of fault
considered represent 10%, 20%, 30%, and 40% dbtakpopulation size.

Algorithm 4.1 Pseudo-code for Fault-Tolerant 3D-cGA
1: procedure FT 3D-cGA

2: Generate_initial_populatidP{o);

3: EvaluationPi);

4:for g < 1togenl do /[First stage
5: fori €« 1toROWSdo

6: for j €1toCOLUMNSdo

7. for k<€1toLAYERSIO

8: neighbours& Find_neighbours(positionj(k));

9: parentl& position(,j,k);

10:  parent2<Local_selectionr{eigbours;

11: offspring& CrossoverRc, parentl, parent2;

12: offspring& MutatePrm);

13: Evaluatior-Fitness(offspring);

14: Replace-if-Better (positidtj(k), offspring Pauy);

15: if g>1 && g<genlthen

16: Diversity& Genotypic_diversitfauy, Pemp;  end if;

17: end for;

18: end for;

19: end for;

20: Pemp € Paux

21:end for;

22:Cond1< Compute_differenceBfversity); /lIsolation stage
23:Cond2< Count_changeBjversity);

24:1solation_list& Diversity(Condl Cond2);

25:while !stop_conditiordo /[Third stage
26: for i € 1toROWSdo

27: for j €1toCOLUMNSdo

28: for k <1toLAYERSIo

29: neighbours¢& Find_neighbours(positionj(k));

30: parentl& position(,j,k);

31: parent2<Local_selectionr{eighbour$;

32: Migrationisolated_list neighbours;

33: offspring& CrossovefRc, parentl, parent2);

34: offspring& MutatePm);

35: Evaluatior&-Fitness(offspring);

36: Replace-if-Better(positia(k), offspring,Pauy);

37:  end for;

38: end for;

39: end for;

40: P; € Paus /I updating
41:end while;

42:end procedureFT 3D-cGA;
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Stage 1

Stop
condition?

Computing
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Update isolation
list
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Figure 4.1.A high-level description of the Fault-Tolerant 8G-A showing the three stages.

4.1.2 Algorithm Description and Configuration

Algorithm 4.1 illustrates the pseudo-code for tlailf tolerant 3D-cGA, which mainly

consists of three stages. The first stage aims atitoring the change in the genotypic
diversities of each individual among successiveegaions by running a cGA for a very
short period (i.e., a low number of generationsgxtN the isolation stage identifies and
isolates faulty individuals using feedback inforinatfrom the first stage. Finally, in the

third stage, another cGA is run to solve the gipesblem while excluding the faulty (i.e.,
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isolated) individuals from the search process.thepwords, the faulty individuals are not
allowed to be updated or communicate with otheltfiaee individuals when it is a part of
their neighbourhood.

As in canonical cGA (described in Section 2.3), #igorithm starts with a random
generation of population followed by fitness evéilwa (lines +3). Then the first stage
begins (lines 421) and computes the genotypic diversities at dividual level rather than
at the population level. The number of replacemémt®ach individual is counted as well.
This stage lasts for a few generatiogenl Normally, the genetic diversity is expected to be
high in the first few generations. During this gag normal updating process is carried out.
It starts with an individual at a cell, identifyirige neighbourhood of the current individual
(line 8), choosing a second parent from the neighbof the current individual, as the first
one is the individual itself (lines 9 and 10). Tdenetic operators are applied to the selected
individuals (i.e., parents) in order to generateotiapring, and either the current individual
or the offspring is added to the auxiliary popuatfollowing the defined replacement policy
(lines 1+14). The genotypic diversities between successivei@ations are then computed
for each individual (line 17). This process is raeel to update all cells. Before starting the
next generation, a copy of the current updated latipn is maintained (line 20) in order to
calculate the genotypic diversity.

The isolation stage starts by computing the diffeess in the individuals genotypic
diversities obtained in the first stage (line 2R)addition, during this stage, the number of
replacements for an individual throughout the fetige is assessed against the defined
condition (line 23). Finally, in accordance withetisolation criteria, which are discussed
later, faulty individuals are identified and a ligtthe isolated individuals is created (line 24).
Figure 4.1 shows a high level diagram of the fealirant 3D-cGA pseudo-code presented in
Algorithm 4.1.

The third stage starts following a similar updatprgcess (lines 2610) as in the first
stage, and lasts until the termination conditiosasisfied (line 25). In addition, an explicit
migration operator could be applied (line 32) fallog the migration scheme presented
below.

The local selection method used in this work iglsé&stic tournament (ST) selection. As
mentioned in Section 2.3.1.2, two individuals aaedomly selected and the best individual
is then selected with a probability of(t), while the worst one is assigned a probability of
r; wherer [0, 1]. Ifr is O, ST functions as a binary tournament selectrowhich the best

solution is always selected. This kind of selectiffiers a mean for controlling the selection
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pressure and thus the diversity, which deeply tdféhe algorithm performance. As
increases, worse solutions are more likely to bent@i@ed in the population; thus offering

more diversity and weaker selection pressure (Somoat al, 2007).
4.1.2.1 Genetic Diversity

The diversity of the population is one of the migisues in determining the performance of
the algorithm and is widely used to analyse EAsef# studies used genetic diversity to
guide EAs (Ursem, 2002; Alba and Dorronsoro, 200%)this study, a diversity measure
based on genotypic entropyl] is used to identify the faulty individuals (Torsas, 2005).

As the main concern is to identify the faulty indivals, the genetic diversity is computed
based on an individual's entropy rather than atgbpulation level. Hence, the genotypic
diversity can be defined as the average entrogies andividual in successive generations,
which in turn is equal to the average of the erie®mpf different genes. The entropy of jfie

gene is expressed as:
H, =-PlogP (4.1)

whereP (represented in 4.2) is the probability that takie of thg™ gene X O[A,B])ofa
chromosome in generatiaris different from that of th§” gene of the same chromosome in

generatiort — 1. Ay andB; are variable (gene) limits.

le_\xj (t) = x; (t=1)

4.2
5 A (4.2

Therefore, the average entropies of an individoaktsting ofn genes can be given as:
1 n
H==x Z H i (4.3)
n =

Figure 4.2 illustrates the process of computingghmeotypic diversity of an individual in
successive generations. For example, consideririgdavidual ofn genesHjs is the average
entropies of the first gene in generatiors andt, and so forth. The genes entropies (Hg,,

..., Hp) are then averaged to compute the average entfay individual H).
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Figure 4.2. Computation of the genotypic diversity of an indwal in generation andt-1; H; is

the entropy of thé" gene.

4.1.2.2 Isolation Criteria

Due to the impact of the fault models consideredtlom functionality of a system, the
algorithm isolates the faulty individuals in ordermitigate their impact. That is to say, the
aim of the isolation is to prevent the faulty indivals from spreading their poor solutions.
On the other hand, good individuals are migratedriter to improve the performance of the
algorithm.

In this research, two isolation criteria are pramhswith each one handling one of the
fault models discussed above. Firstly, an individsalefined as faulty when its genotypic
diversities computed in the first stage are foumdbé¢ almost constant, taking into account
that the first stage lasts for only the first feengrations when an individual's genotypic
diversity is expected to be fairly variable. Assngia maximisation problem, this criterion
handles the case where the individual fithess scare stuck at ‘1’. Secondly, an individual
can also be defined as faulty when the replacena¢atof the individual considered during
the first stage is too high. This situation oconten the fitness score of an individual is too
low (stuck at ‘0’). When minimising, the converseapplies

The above criteria are placed based on the follpwatts: the fittest individuals are
always winning and thus not being replaced whery tt@mpete with other individuals
following the defined replacement policyeplace-if-bette). In this case, the genotypic
diversities of those individuals are maintained.n@osely, the weakest individuals are

always being replaced, leading to high frequencghainges.
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4.1.2.3 Migration Technique

As mentioned previously, cGAs offer an implicit rhaaism for migration that is inherent in

their overlapping neighbourhoods; however, an ekphigration technique is defined in

this research. The main objective behind employangexplicit migration operator is to

mitigate the impact of the faults that occur. Arestbbjective is to improve the performance
and the reliability of the algorithm.

The migration technique is introduced by definirffge tmigration parameters. The
migration operator frequency is set to the higl{est, every generation) and is activated
only when there is at least one faulty individuaithm the current individual's
neighbourhood. The number of migrants or migratiate is adapted, and is computed
whenever a migration is activated. This rate isabqo the number of faulty individuals,
which varies from 1 tmo-of-neighboursin this study theo-of-neighbourss 7 (the central,
vertical north and south, horizontal north and Bpanhd the east and west individuals), as the
defined neighbourhood topology is linear with oigahce step from the central individual.

The migration scheme is defined as follows. Theviddals to be replaced are all those
who are faulty, and the individuals to be migrafed., migrants) are chosen from the first
fault-free neighbourhood found to replace the apoading faulty individuals (see Figure
4.3). In the worst-case scenario, if there is nidtfiiee neighbourhood (i.e., there is at least
one faulty individual within each possible neighdmod), then a random neighbourhood is
selected by allowing the selection of faulty indivals.

In the following section the experimental paramgetend algorithm configurations are

defined. In addition, the results obtained andrtaralyses are provided.

Migrants —m

A

Neighborhood with 2- Free-fault neighborhood
faulty PEs

Figure 4.3. The replacement of two faulty PEs by the corredpanones (migrants) from the first

fault-free neighbourhood found through migration.
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4.1.3 Experimental Results and Analysis

In this research, four algorithm configurations evdefined. These configurations differed in
the use of the migration technique in combinatiathvthe selection rate. In the first
configuration, a stochastic tournament selectioth w= O was applied, while in the second
configuration, a stochastic tournament selectiotih wi= 0.5 was applied in order to offer
equal chances for poor and good solutions to belied. The migration operator was not
introduced in the preceding configurations. Heribe, first and second configurations are
represented by (ST,= 0.0 +noMigration) and (ST, = 0.5 +noMigration), respectively.
The third and fourth configurations are similaithe first and the second, respectively; with
the exception of introduction of the migration teiue (ST, r = 0.0 +Migration; ST, r =
0.5 +Migration).

The same parameters were used for all the problseesTable 4.1). The population size
used here was 343 individuals, which were arranmgeda &7x7 lattice. The defined local
neighbourhood contained seven individuaast, west, vertical north and south, and
horizontal north and south individuals plus thetcarnndividual.

The first parent was the current individual whileetsecond one was selected by
stochastic tournament with rateAn arithmetic crossover operator (AX) with a pabbity
of P, = 0.9 was applied to generate an offspring. Thigpohg was mutated by applying a
non-uniform mutation operator with a probability R = 1L, whereL is the length of the
chromosome (the dimension of the problem). Althotighdimension of the FMS problem is
6, the same mutation probability was used as wWittha other problems. The replacement
policy used here wagplace-if-better during which the current individual was repladfeits
competitor (offspring) was better. The migratiomgmaeters used in the third and the fourth

configurations are described in Section 4.1.2. 3wy, the algorithm terminated if the
average fitness valuef() of the population satisfied a threshatlQ,00005). This threshold

was applied for all the problems, with the excaptib thefs g, where a less precise threshold
(< 0.0001) was used due to the problem’s complexity.

During the experiment, similar fault rates and qrat$ were injected for all the
configurations and problems. The performance ofalgerithm was measured using two
metricg] the search success rate, which represents thaaffiand the average number of
generations, which represents the efficiency of ibd@pendent runs. A different number of

maximum generations was assigned to each problemadihneir different complexitie§i.ang
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was assigned 700 generations, wheffgasfy., andfgys were assigned 1000 generations.
Finally, fack andfs e were assigned 2000 generations.

The algorithm was assessed against stuck at ‘O’'stumck at ‘1’ faults with up to 40%
faults. The results are presented in Tables 43446, and 4.7, where the average number of
generations with the median absolute deviatiomm@uded after the symbol ‘' and the
search success rate are shown for every fault Faie.each fault rate, the best values

obtained among the four configurations are markdabid.

Table 4.1.Parameters used in the algorithm

Population size: 343 individuals

Parent selection: Current individual + STRs=r
Recombination: AX, P,=0.9

Mutation: Non-uniform,P,, = 1L
Replacement: Replace-if-better
Neighbourhood: 14

Lattice: TXTX7

Termination criterion: f <0.00005 & 0.0001 forfs, g

Additionally, the results obtained when there wasfault (0% faults) are shown in
Tables 4.2 and 4.3. For 0% faults, the results shfov the first and third algorithms
configurations were similar, while similar result&re obtained for the second and fourth
algorithm configurations due to the inactive migratoperator in the absence of faults. The
symbol ‘+' in the Tables means that there existsigtical confidence in the results of the
compared algorithm configurations, while the symbdl means there is no statistical
difference between the results obtained (for detablout statistical tests refer to Section
2.2.3.1).

41.3.1 Stuck at ‘0O’ Faults

As mentioned previously, stuck at ‘0O’ is the mositical fault model as the problems
considered all need to be minimised; for the cdsenaximisation the converse applies.
Tables 4.2 and 4.3 show the results obtained fertést and the real-world problems,
respectively.

With regard tdfr.s the best search success rate (100%) was achigvilet second and
the fourth configurations for which similar selectirates { = 0.5) were applied with up to
30% faults (See Table 4.2). However, a major declinthe search success rate reached
almost 87% and 40% faults were observed. With tegaefficiency, the minimum average

generations were obtained by the third configurafi®T,r = 0.0 +Migration) with up to
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20% faults. On the other hand, the best efficieweyg achieved by the second and fourth
configurations (these configurations achieved atnsisilar efficiency with a maximum
difference of 9 generations) with faults more t28&6. Even though fewer generations were
expected for ST, = 0.0, a lower number of average generations wbtained for STy =
0.5, in particular the second configuration duethte impact of the faults. However, the
introduction of migration with ST, = 0.0 (ST,r = 0.0 +Migration) significantly improved
the performance of the algorithm in terms of seargttess rates(13% with 20% and 30%
faults) and average generatioasl{L6 generations with 10980% faults) when compared to
the first configuration (ST, = 0.0 +noMigration).

With regard tda, the third configuration (ST,= 0.0 +Migration) achieved the highest
search success rate with up to 30% faults and thamemm average generations with up to
20% faults. With 40% faults, the algorithm failexigolve the problem due to the high fault
rate and higher problem complexity. FurthermoremfiTable 4.2 it can be seen that there
are no statistical differences in the efficiency tfe algorithm between the four
configurations.

The best efficacy (hit rate of 100%) was reachedalbyonfigurations with up to 10%
faults when solvindyi, while the highest search success rates werenebtdy the third
configuration with up to 30% faults. Concerning th#iciency, the minimum average
generations were obtained by the third configuratigth up to 30% faults. Hence the third
configuration (STy = 0.0 +Migration) significantly achieved the best performance @ th
algorithm. Similar tdag, the algorithm failed to solve the problem witld@aults.

When solving flang, the highest search success rates were obtainethébyfourth
configuration (ST = 0.5 +Migration) with up to 30% faults; however, these hit rates
differed slightly € 2%) from those obtained when no migration wasohiced (STr = 0.5
+ noMigration). The best efficiency was reached by the thirdfigomation (ST,r = 0.0 +
Migration) with up to 30% faults; an exception was with 208&alts. Considering 40%
faults, the algorithm is declined to solve the feaibdue to the high problem complexity and
high fault rate.

Solving feys the algorithm shows similar behaviour to that obsd when solving the
previous problemf(,,y), as these two problems have similar charactesistror all fault
rates the best efficacies were achieved withrST0.5; minor difference not more than 3%
hit rate were observed with and without the usenajration. The best efficiencies were
achieved by the third configuration with up to 30%alts. Applying (ST,r = 0.5 +

noMigratiory ST,r = 0.5 +Migration) configurations offi_,ng andfeys, the algorithm shows a
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Table 4.2.Experimental Results: Convergence time (CT) atel (@R) for test problems

Problems/ ST,r=0.5+no ST,r=05+

% of faults BT + no Migration Migration Migration Test

BT + Migration

0% 355.71 95 100% 453.78 4,70  100% 355.71 495 100% 453.78 4,70 100%  +

10%  539.41%,0 100% 52273450 100% 42342 45 100% 52323 435 100%  +
fras 20% 784954, 86%  616.0L#go 100% 598.87 4o 99% 6247845, 100%  +
30%  887.10%s0 67%  709.61 4,0 100% 728.83#4 90%  700.67 fp0 100% +
40% - 0%  948.69 +xo 13%  979.66 4500 3% 957.83445 12% o
0%  1840.1y, 85% 184615 58%  1840.1%4 85%  1846.1+5, 58% o
10%  1896.2 445 66%  1862.7 g0 47%  1860.2 450 73%  1908.7 +uzs 50%
fak 20% 1927745 50%  1929.6 450 23% 1872550 66%  1917.9+ns 28% e
30%  1950.5405 16%  1916.0 %50 21% 1924545, 38%  1910.8 45 12% e
40% - 0% - 0% - 0% - 0% -
0% 53448455, 100% 71179455 100% 534.48 4550 100% 71179 45 100%  +
10%  683.77470 100% 769.67 400 100% 607.22 g5 100% 77421 4595 100%  +
fuc 20%  858514ss 86%  842.764s0 91% 764955, 93%  859.454ym, 87%  +
30%  936.49#0o 59%  929.11 % 70%  850.27 4500 73% 92157 4o 59%  +
40% - 0% - 0% - 0% - 0% -
0%  270.45+:, 74% 35928 405 82% 2704545, 74%  359.28 4o 82% = +
10%  391.20 455 70%  397.44 49, 83%  341.00 £450 61%  409.29 4g5 84%  +
fLang 20%  492.05+4s0 69%  448.85 45, 87%  458.10 450 59% = 465.03 55 88%  +
30%  567.55%00 68%  522.74 4. 87%  503.64 450 50%  513.02%,0 89% = +
40% - 0% - 0% - 0% - 0% -
Table 4.3.Experimental Results: Convergence time (CT) atel (@R5 for real-world
problems
OZ rgfblf(;mtssl BT+ no Migration STI\(Zi;rzoat.iE(,))rT no BT+ Migration S;\rlligr:at?(.)iﬁ Test

0%  326.12 35 74% 39954 4,0 81% 326.12 x55 74% 399.54 439 81% +

10%  410.77 %o 71% 475.38 95 88%  360.04 4560 73% 445.44 %, 5 88% +
fFMS 20% 579.21%35 71% 527.45 4160 87%  449.16 £1000 73% 518.75 %60 88% +
30% 72292 %, 69% 610.43 4025 90% 54570 430 71% 607.47 500  91% +
40% 911.85%70 7% 812.47 #1350 65%  820.09 #1330 52% 821.09 4025 62% o
0%  247.48 30 41% 40447 %40 63%  247.48 50 41% 404.47 %40 63% +
10% 32496 %0 27% 499.00 #,0 45% 3035515, 27% 479.46 %555 52% +
fSLE 20% 603.61 %055 18% 552.86 460 36%  386.46 +510 15% 557.62 %60 37% +

30%  780.50 %335 12% 712.19 4570 21% 51028 4550 7% 636.40 %7, 22% °
40%  1824.0 1o 1% 1513.0 %1370 2% 1996.0 %, 1% 1478.8 t3440 4% °

surprising tendency to increase the search sucaessas the fault rate increases. This trend
occurred due to the selection rate= 0.5)] which was unbiased to neither good (more

likely to be faulty) nor bad (more likely to be nfaulty) solutions. As the fault rate

" For more details about the performance measureas@lrefer to Section 2.2.3.1.
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increased the selection intensity is reduced, tepdd promote more exploration, which
helps to escape the local minima and thus incrahsdst rate.

At last, considering all fault rates, the highesargh success rates were obtained by the
fourth configuration (STr = 0.5 + Migration) when solvingfs e With regard to the
efficiency of the algorithm, with all fault ratebe minimum average generations were
achieved by the third configuration (ST= 0.0 +Migration).

In general, the performance of the algorithm dedlias the rate of faults increases. This
decline can be observed as a drop in the searckessicate and/or an increase in the number
of generations required to find the desired sohgidzach fault rate represented a different
level of search difficulty, worse fault distributis and patterns were formed with higher
fault rates. The worst fault distribution occurredhen a PE was surrounded by faulty
neighbours (PESs) in all possible directions.

To evaluate and compare the different algorithmfigamations, two-level ranking was
performed based on two metrics: the average nuwibgenerations and the search success
rate (Tables 4.4 and 4.5, respectively). In th&t fevel, the four configurations were ranked
for each problem independently. This task was aptished by summing the positions of
each algorithm configuration considering each featie. In the Tables, these local ranks are
shown in columns -38. In order to obtain a global rank the second ll®feanking was
performed by summing the local ranks computed @fitist level. In these Tables, the global
rank and the summation values are shown in theedirg last columns, respectively.

In summary, the third configuration (ST, = 0.0 + Migration) achieved the best
performance in terms of efficiency for all the ciolesed problems (see Table 4.4). In
contrast, the best efficacy was obtained by thetficconfiguration (STt = 0.5 +Migration)
and the second configuration (ST= 0.5 +noMigration) as the difference between the
values of the sum of positions was minor (see Tdl#. Hence, the second and fourth
configurations performed similarly in terms of bagtkerformance metrics, while the first

configuration (STr = 0.0 +Migration) had the worst performance.

Table 4.4.Local and globalaverage-generations- based ranking for stuck &ults

Rank Algorithms fras  fack fwmic fiang fems foie  Sum
1 ST,r =0.0 + Migration 1 1 1 1 1 1 6
2 ST,r = 0.5 + no Migration 2 3 3 2 3 3 16
3 ST,r = 0.5 + Migration 3 2 4 4 2 2 17
4 ST,r = 0.0+ no Migration 4 3 2 3 4 3 19

* Local ranks (columns 3 to 8) are performed focte@roblem independently; the highest rank is assighe lowest value.
Global ranks are performed by summing the locatsarf each problem and are shown in the first colum
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Table 4.5.Local and globalearch-success-rate-based ranking for stuck &aults

Rank Algorithms fras  fack fmic flang fewms fsie  Sum
1 ST,r = 0.5 + Migration 2 3 3 1 1 1 11
2 ST,r = 0.5 + no Migration 1 3 2 2 2 2 12
3 ST,r =0.0 + Migration 3 1 1 4 3 4 16
4 ST,r = 0.0+ no Migration 4 2 4 3 4 3 20

* Local ranks (columns 3 to 8) are performed focte@roblem independently; the highest rank is assighe lowest value.
Global ranks are performed by summing the locaksaf each problem and are shown in the first calum

Introducing migration adds a significant improveitnahen combined with ST,= 0.0 in
terms of average number of generations leadinglt@Z9 generations less. In addition, it
leads to an increase in the search success rite nange 2%45%. That is, because of the
high selection intensity induceddue tor = 0.07J within the fault-free neighbourhood that
resulted from migration. However, the combinatiémagration with STy = 0.5 showed no
improvements based on the two metrics. In contt@s$T,r = 0.0, in which the fittest
individual with the minimum fitness value was faved] bearing in mind that also faulty
individuals have the minimum fitness value, $F, 0.5 mitigates the involvement of faulty
individuals in the reproduction process. Theref&E, r = 0.5 plays a similar role as
migration; which is why combining them leads tofadher improvements.

Since each of the problems considered presenteiffesiedt level of complexity, the
amount of selection intensity needed to effectivawve each problem was also different.
Accordingly, the exploration/exploitation trade-odihd the amount of diversity needed
varied. Problems with high complexity, suchfas, fems, andfs g required more diversity,
which can be offered by tuning the rate of the ct&da r. The increase in the value of
would maintain worse solutions in the population &longer time, thus more diversity is
offered leading to an increase in the search sage¢s. However, the number of generations

required to solve a given problem is increased.

4.1.3.2 Stuck at ‘1’ Faults

The stuck at ‘1’ fault scenario is less criticahthstuck at ‘0’ faults. However, this scenario
leads to considerable impacts on the system. Tihgsacts mainly occur as reductions in the
accuracy of solutions and an increase in convemygéne. Tables 4.6 and 4.7 summarise the
results obtained when solving the test and thewedld problems, respectively.

With regard tofr,s the best search success rate (100%) was achiigved algorithm
configurations with up to 30% faults, except foe tthird configuration, as a lower rate
(86%) was achieved with 30% faults. With 40% faultsconsiderable drop in the search
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success rate reached up to 70% is observed. Howeitlerstuck at ‘1’ faults the drop in the
search success rate when the fault rate increasd8% is significantly lower than the
corresponding drop with stuck at ‘0’ faults (17%hich confirms that stuck at ‘1’ fault
scenario is less destructive. Concerning the efiicy, with all fault rates the minimum
average generations were obtained by the firstigordtion (ST,r = 0.0 +noMigration)
with significant differences, except for 40% faalt the differences were insignificant (see
test results in Table 4.6). In contrast to stucKOatfaults, the introduction of migration
results in higher number of generations reachetb 80 while maintaining almost similar
efficacies.

When solvingfaq, the differences between the average number afrgéans obtained
by all configurations are insignificant (see tesguits in Table 4.6); generally therefore, all
configurations have similar efficiencies. Concegnthe efficacy of the algorithm, with all
fault rates the highest search success rates vataed by the first configuration (ST =
0.0 +noMigration). Hence, as with the previous problem the intréidacof migration could
not improve the performance of the algorithm. Hoerevthe efficacy obtained with
migration (ST,r = 0.0 +Migration) was insignificantly less than those obtained wuith
migration (ST,r = 0.0 +noMigration). Similar to stuck at ‘O’ faults, with 40% faultke
algorithm failed to solve the problem due to thghhfault rate in combination with high

problem complexity.

Table 4.6.Convergence time (CT) and rate (CRY test problems

Problems/ ST,r=0.5+no ST,r=05+

% of faults BT +no Migration Migration Migration Test

BT + Migration

10%  386.23 #5310 100% 541.27 #4155 100% 417.17 4550 100% 507.53 4350 100%  +
20%  449.69 4,0 100% 616.08 455 100% 583.27 #55 100% 616.82 #350 100% +
Ras 3006  486.22 s 100% 667.88 410 100% 717.19 #104  86% 673.83 495 100% +
40%  919.83 x5, 36% 947.90 5  30% 943.08 145  24% 954.55 %0 38% L

10% 1848.3 460 77% 1877.4 575  40% 1820.4 60 75% 1884.4 199 59% o
20% 1853.1 %0 65% 1894.6 370  21% 1833.3 410 53% 1902.2 50 28% o

Fack 30%  1906.2 455 48%  1956.5%5, 15%  1886.8 475 40%  1817.1%y, 18%
40% - 0% - 0% - 0% - 0% -

10%  578.69 i35 100% 769.91 +i5s 100% 61523 45 100% 773.10 05 100% +

f 20%  653.80 g5 100% 863.18 440 94%  736.67 400 86% 844514, 89%  +
MC 3006  707.26 410 99%  891.19 tio 63% 85247 s, T74% 914894, 66%  +
40% - 0% - 0% - 0% - 0% -

10%  309.00 #510 58%  409.054g0 75%  329.94 450 67%  402.01%so 79%  +

f 20%  331.0245, 69%  468.27 440 T77% 43743 %, 69% 4844045, 85%  +
LN 3006 4022545 74% 5253945 T4%  508.36 405 58%  518.20 465 82%  +
40% - 0% - 0% - 0%  656.004, 1% .

* For more details about the performance measpiease refer to Section 2.2.3.1.
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Table 4.7.Convergence time (CT) and rate (CRY real-world problems

Problems/ ST,r=0.5+no ST,r=05+

% of faults BT + no Migration Migration Migration Test

BT + Migration

10%  338.05 #35 68%  472.49 5 87% 348.60 #3715 76%  453.56 110 87% +
20%  399.50 790 65%  489.34 %49 87%  465.47 ti060 73%  532.77 %70 86%
30% 416.53 950 73%  599.85 4575 88% 571.92 #1300 68%  613.04 4110 83%
40% 650.98 #1630 72%  806.61 #3109 77% 809.77 tgg5  54%  766.16 4125 68%

fFMS

10%  302.89 40 29%  479.20 30 55% 28243 #60 23%  48555%00 49%
20%  446.53 %gs 26%  543.52 %90 50% 363.47 #520 21%  568.06 #1000 45%
30% 407.76 %500 30%  630.44 %70 36% 42084130 13%  669.77 1o 31%
40% 639.72 #1330 11%  902.75 #3000 20%  781.00 #1170 11%  1042.1 Hpes 26%

fSLE

+ + + +|+ + +

* For more details about the performance measpiease refer to Section 2.2.3.1.

With all the considered fault rates, the highefita€y and efficiency were significantly
achieved by the first configuration (ST= 0.0 +noMigration) when solvingfui.. Similarly,
with 40% faults the algorithm failed to solve thelgem due to high fault rate.

Solving fLang the highest search success rates were obtainguepurth configuration
(ST, r = 0.5 +Migration), while the best efficiency was significantly read by the first
configuration (ST,r = 0.0 + Migration). fi.,g differed from the previously discussed
problems as it is not only highly multimodal bus@lepistasis and asymmetric at the same
time, therefore it introduces more difficulty toetlsearch. Because of the high complexity
more diversity is needed to effectively solve theolyem. That is why the highest
convergence rates were obtained with the configamatthat introduced more diversity (i.e.,
the second and the fourth configurations, as treey Iower selection pressure). However,
more diversity increases the convergence time mgath less efficiency. Considering 40%
faults, the algorithm was unable to solve the moblue to the high problem complexity
and high fault rate.

fems andfs e have similar characteristics fo,,, hence similar profiles were obtained.
Generally, the best efficiency was achieved by firgt configuration (ST,r = 0.0 +
noMigration) due to the high selection pressure, while théadsg search success rates were
achieved by the second configuration ($T5 0.5 +noMigration) due to more diversity
being offered.

As with the stuck at ‘0’ faults, the algorithm capfrations are also ranked based on the
average number of generations (Table 4.8) and ¢aeck success rate (Table 4.9). In
summary, the first configuration (ST,= 0.0 +noMigration) obtains the best algorithm
efficiency for most of the problems considered (Fable 4.8). Because of the high selection

intensity as well as the less destructive sceradraults a main profile which contradicts the
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Table 4.8.Local and globakverage-generations-based ranking for stuck dadilts
Rank Algorlthms fRas fAck fMic fLang fFMS fSLE Sum

1 ST,r = 0.0 + no Migration 1 2 1 1 1 1 7
2 ST,r = 0.0 + Migration 2 1 2 2 2 1 10
3 ST,r = 0.5 + Migration 4 3 3 3 3 3 19
4 ST,r = 0.5+ no Migration 3 4 3 4 3 3 20

Table 4.9.Local and globalkearch-success-rate-based ranking for stuck &aults

Rank Algorithms fras  fack fmic flang fems fsie  Sum
1 ST,r = 0.5 + Migration 1 3 2 1 2 2 11
2 ST,r = 0.5 + no Migration 3 4 2 2 1 1 13
2 ST,r = 0.0 + no Migration 2 1 1 3 3 3 13
4 ST,r = 0.0 + Migration 4 2 2 3 4 4 19

one observed with stuck at ‘0’ faults is the modestreasél rather than the dramatic
increasé] in the number of generations against the increaseei fault rate

With regard to the efficacy, the best efficacy widained by the fourth and second
configurations (STt = 0.5 +noMigration’Migration) when solving the real-world problems
that are mainly characterised as epistasis and rasjymc. On the other hand, the best
efficacy was obtained by the first configuratiom($ = 0.0 +noMigration) when solving
the test functions (see Table 4.9). As mentionex/@bthe more complex problems require
more diversity, which in this case was offered pplging lower selection pressure (i.e., ST,
r = 0.5); however more diversity leads to an incedasumber of generations to solve a
given problem.

4.1.3.3 Study of the Failure and Expansion in Fa ult Rates

This section aims to firstly investigate the shdrpp in the convergence rate as well as the
quick increase in the convergence time, particulatien the fault rate increases to 40%. In
order to meet the first aim, the genetic diversifytained by the different algorithm
configurations of a selected problefa,d against the different fault rates were explored.
Another aim was to explore the behaviour of theadlgm with higher fault rates (45% and

50%), in particular when solvintr,s frws, and fsi e In addition, a fault rate of 35% is

" Local ranks (columns 3 to 8) are performed for gablem independently; the highest rank is assighe lowest value.
Global ranks are performed by summing the locatsanrf each problem and are shown in the first colum
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considered to investigate the sharp decline inpmormance of the algorithm. The other

problems were not considered in this investiga@isnthe algorithm failed to solve these
problems with 35% faults. This section illustratee impact of faults on the genotypic

diversity of the population as well as expandsrd=ilts obtained in the previous sections to
include 35%, 45%, and 50% faults.

Figures 4.4(a) and (b) show the change in the gpiidiversity (computed as an
average of 100 independent runs) when sol¥iggwith the various considered fault rates
for stuck at ‘0’ faults.

Figure 4.4(a) illustrates the changes induced bg flrst and third algorithm
configurations (i.e., 3D-cGA with ST,= 0.0 +noMigration’Migration, respectively), while
the changes in diversity incurred by the secondtaedourth algorithm configurations (i.e.,
3D-cGA with ST,r = 0.5 +noMigration’Migration, respectively) are shown in Figure 4.4(b).
Similarly, Figure 4.5(a) and (b) show the changgeémotypic diversities with fithess score
stuck at ‘1’

It can be clearly seen from Figure 4.4(a) that galhe the time (i.e., number of
generations) needed for population diversity torapgh zero increases considerably as fault
rate increases. This observation leads to two n@joclusions. First, the algorithm is likely
to fail to solve a given problem with 40% faults the diversity level is too high and is
virtually maintained. In addition, due to the magbfference between diversities obtained
with 30% and 40% faults, increasing the fault faden 30% to 40% leads to a sharp drop in
convergence rate as well as a major increase inctreergence time. Second, the
introduction of migration (see the blue trends igufe 4.4(a)) could slightly enhance the
convergence time when considering 10%, 20%, and f2Qfits. However, migration failed
to add any improvement when considering 40% faults.

Similar profiles were obtained by the second anattfo algorithm configurations (see
Figure 4.4(b)). However, the introduction of migpa (see the blue trends in Figure 4.4(b))
added neither improvement nor deterioration tocttrevergence time. This finding confirms
that the combination of migration and ST= 0.5 could not improve the performance of the
algorithm.

With stuck at ‘1’ faults (see Figure 4.5(a) and)(the population diversities for all
considered fault rates at the beginning were redsderand were significantly less than the
corresponding ones when considering stuck at ‘@Git§aTherefore, it is easier and faster for
the algorithm to solve, in particular minimise, @ipem with stuck at ‘1’ faults. That is to

say, the stuck at ‘1’ faults model is less crititan the stuck at ‘0’ faults model. Moreover,
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the major difference in diversity levels obtainedm30% and 40% faults justified the sharp
decline in convergence rate as well as the largee@se in convergence time. Another
observation is that the introduction of migratioithastuck at ‘1’ faults could not add any
improvements. However, for some cases it leads to@ease in convergence time (see the
blue trends in Figure 4.5(a)).

Figures 4.6 and 4.7 show the experimental resuttsmwsolvingfras frus, andfs g with
fault rates up to 50% considering the stuck atafd stuck at ‘1’ faults, respectively. As
mentioned previously, the other problems were motsitlered as the algorithm failed to
solve them with faults more than 30%. Based on pacformance metric, the best algorithm
configuration for each problem was explored withlfaiates up to 50% (the best algorithm
configuration was the one with the highest rankvdst value, refer to Tables 4.4, 4.5, 4.8,
and 4.9). For example, considerifags the best configuration based on the efficiencthés
third one for stuck at ‘0’ faults, while the firsbnfiguration is the best one for stuck at ‘1’
faults. The best configuration based on the effidadhe second one for stuck at ‘0’ faults,
while the fourth configuration is the best onedtrck at ‘1’ faults.

Considering stuck at ‘0’ faults, solvinfy,s and frys shows a gradual increase in the
number of generations (see Figure 4.6(a)), whisdarp increase in convergence time was
obtained when solvings g, particularly for fault rates exceeding 30%. Casedy, a sharp
drop in the search success rates was obtained sdheing fr,s andfrys (see Figure 4.6(b)),
in particular for fault rates exceeding 30%, wialgradual drop in the convergence rate was
obtained when solving e The algorithm failed to solvig,s andfs g with faults more than
40%, while it converged with faults up to 50% wisatvingfrys. Figure 4.7(a) and (b) show
the results obtained when solving the same probigitfisstuck at ‘1’ faults. Generally, the
algorithm failed to solvdr,s with faults more than 40%; and showed a rapidease in
convergence time (see Figure 4.7(a)), as well eapil fall in the convergence rate (see
Figure 4.7(b)) when the fault rate exceedeeh. Solving frys andfs g the algorithm could
converge with up to 50% faults. However, the cogeace rates were very low.

In conclusion, we note that the performance ofdhlywrithm declined significantly for
fault rates of 40% or more. However, the rate a thecline differed according to the

problem to solve, as each problem introduced diffedifficulties into the search.

4.1.4 Conclusion

This study proposed a new algorithm for tacklindgt serrors that target individuals’

phenotypes. The algorithm is based on the canoo@Al and is completely algorithmic (no
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hardware reconfiguration). Genetic diversity is #ey metric used in our approach to
identify and isolate faulty cells.

This work took into consideration the most critiédallt model, which is stuck at ‘O’
faults, together with different fault rates. In geal, the proposed algorithm was successful
in recovering up to 40% faults with different perfance rates when solving different
problems. In general, the performance decayed ¢reients in fault rate, except when
solving fiang @nd fews. In order to improve the performance of the aldon, four
configurations offering different exploration/exjédion trade-offs were defined.
Exploration and exploitation are two important ssun the evolution process, where the
population diversity is enhanced by exploring tharsh space and the optimum solution can
be found by exploiting the fitness information. Tiesults show that the best efficiency is
achieved by the third configuration (ST 0.0 +Migration) for all problems. On the other
hand, the best efficacy was achieved by the faotifiguration (STr = 0.5 +Migration) in
3 out of the 6 problems.

The key point underlying the introduction of migoat is to cover the loss in cells due to
the faults, thus enhancing the reproduction proeessecially when a cell is surrounded by
faulty neighbours. The results proved that migrawéfers a better exploration/exploitation

trade-off, especially when combined with $F 0.0.

4.2 Migration as a Mitigation Technique

This section introduces a number of adaptive mignaschemes in order to mitigate the
deterioration in the performance of Fault-Tolerd8®:-cGA, the algorithm proposed in the
previous section. In addition to the migration sokeantroduced in Section 4.1.2.3, the new
schemes introduced in this section are tested tww sbuperior improvements in the
algorithm’s performance in terms of efficiency,iedicy, and speed. In this study, several
algorithm configurations related to migration arensidered. The effectiveness of the
algorithm is investigated using a benchmark of ftast functions and three real-world
problems with each presenting a different levelsefirch difficulty. The problems are
Rastrigin {ra9, Ackley (acy, Michalewicz {wic), Langermannf(a.g), FMS (ems), SLE (sie)
(for more details of the benchmark problems redeAppendix A), and GPSd{r9 (which
will be discussed in Section 4.2.2) problems. Awestigation of the proposed migration
policies that considered the problem of GPS wapgsed in (Al-Naqget al, 2011a). Section

4.2.1 describes the algorithm configurations asg aitroduces the new adaptive migration

87



schemes. Section 4.2.2 provides a brief descripbbnthe problem of GPS attitude
determination, while experimental results and as®dyare presented in Section 4.2.3.

Section 4.2.4 gives our conclusion.

4.2.1 Algorithm Configuration

The algorithm description and the pseudo-code weteduced in Section 4.1.2. As
illustrated earlier, the algorithm automaticallpleges the faulty individuals and consists of
three stages. The first stage aims at monitorihghdividuals and computing their genetic
diversities by running cGA for a very short perigow number of generations). Next, the
isolation stage identifies and isolates the fairtyividual using feedback information from
the first stage. Finally, in the third stage, a®otobGA is run to solve the given problem
while excluding the faulty (isolated) individual®m the process (i.e., the faulty individuals
are prevented from updating or communicating witheo fault-free individuals when it is a
part of their neighbourhood). Two fault scenarios @onsidered fitness score stuck at ‘0’
and fitness score stuck at ‘1’. (The fault modetgenpreviously introduced in Section 4.1.1.)
The following subsection presents two new adaptivgration schemes (schemes 2 and 3)
used in this work, while the first migration scheifsgheme 1) was defined in Section
4.1.2.3.

4.2.1.1 Migration Schemes

The new migration schemes defined are similar égpiist migration scheme (i.e., scheme 1)
in the following ways. Firstly, the migration op&eafrequency is set to the highest (i.e.,
every generation) and in each generation is appidg when there is at least a faulty
individual within the current individual’'s neighbdwod. Secondly, the number of migrants
(i.e., migration rate) is adapted and is computeenever a migration is to be applied. This
rate is equal to the number of faulty individualdich varies from 1 tmo_of_neighbours
Thus, all migration schemes agree in identifyingoltindividual(s) are to be replaced. On
the other hand, the three schemes differ in chgoshrich individual(s) are to be migrated.

In scheme 1, the migrants are chosen from the ffugt-free neighbourhood found to
replace the corresponding faulty individual(s) éretb Figure 4.3). In contrast, in schemes 2
and 3, the migrants are chosen from within theexurneighbourhood if at least one fault-

free neighbour exists. For the case where themeoigault-free neighbour, scheme 1 is
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employed. In addition, in the worst case, if ther@o fault-free neighbourhood, a random
neighbourhood is selected, which allows the poldsilaf selecting faulty individual(s).
Considering scheme 2, the best fault-free neighifioer, a neighbour that has the best
fitness value) is selected to replace any faultividual within the same neighbourhood.
Conversely, in scheme 3, a random fault-free na@ghks chosen as a migrant.
The aim of proposing migration schemes 2 and 3amiynto save time needed to search

for a fault-free neighbourhood each time a fauirisountered.

4.2.2 Case study: GPS Attitude Determination

GPS technology is used in the determination of lclkes attitude parameters, which is
achieved by calculating the correct carrier phasegier ambiguity values (Juang and Huang,
1997). One of the most efficient techniques fatwade determination using a GPS is genetic
algorithm based ambiguity function search (AFGAhiehh was proposed by Xet al.
(2002). This technique is based on the observatiohdhe GPS carrier phase and
characterised as being immune to cycle slips. ARBfoerforms other techniques such as
the ambiguity function method (AFM) in terms of tbemputational overheads incurred
(Hodgart and Purivigraipong, 2000). For a full dggon of the technique, refer to (Xt
al., 2002).

In this study, AFGA is used to determine GPS atéturhis function aims at finding the
azimuth @) and the elevationdj angles considering a fixed baselig ¢f 1.067 m (please
refer to (Xuet al, 2002) for more details) and is represented bytopu (4.4):

AFGAQ, 5,b) =
0. &, [ 271/ DD®Y,  DDPY (4, B.b)
éi:zzco£7{ﬁ(n-1) m(n-1) D (4.4)

whereDD®Y is the observed value of the double differencettfier carrier phase is the
number of satellites (usually 4—6 satellites), emd the number of epochs.

The range ofp is a full 360°, while the range @ is within the interval of 15 , +15].
This function is multimodal with strong epistadis.addition, the optimum maximum value

is very close to 1. Figure 4.8 shows the probleanespace.
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Figure 4.8. AFGA’s objective function in 2D.

4.2.3 Experimental Results and Analysis

Simulation results were obtained for four confidimas of the algorithm used to solve the
previously mentioned problems. The first configimatapplied the Fault-Tolerant 3D-cGA
without migration, while the second, third, andrthuconfigurations combined it as follows:
migration scheme 1 (first fault-free neighbourhgaabheme 2 (best fault-free neighbour),
and scheme 3 (random fault-free neighbour), resmdgt The parameters used in the

experiments are explained and summarised in TabG 4

Table 4.10.Parameters used in the simulation
Population size: 343 individuals (125 fofgpg
Parent selection:  Centre individual + Binary tournament
Recombination: AX, P.=0.9

Mutation: Non-uniform,P,

Replacement: Replace-if-better

Neighbourhood:  NEWS

Lattice: TX7X7 (5x5%5 for fgpg

Stop criterion: Average fitness valug threshold( > thresholdfor fgpg

The same parameters were used for all configusti®he population size consisted of
343 individuals (125 individuals fdgpg arranged over ax#x7 lattice (55x5 for fgpg. A

neighbourhood was defined as seven individuals:cémral individual surrounded by six

90



individuals (east, west, vertical north and sowthgl horizontal north and south). The first
parent was the current individual, while the secamals selected by using a binary
tournament selection method. An arithmetic crossoperator with a probability d?. = 0.9
was applied to generate an offspring. The offspwege mutated by applying a non-uniform
mutation operator with a probability &, Different mutation probabilities were defined for
each problem due to their different characterisiied complexitiesP,, of 1/2. was assigned
to fras @andfyic; LIL was assigned tf, flang frvs, @andfges and 1/1Q was assigned ty g
whereL was chromosome length. The replacement policynddfhere waseplace-if-better
during which the current individual was replacedsfcompetitor (offspring) was fitter. The
migration parameters used in the second, third,fandh configurations were previously
described in Section 4.2.1.1.

Finally, the algorithm terminated if thaverage-fithess-valuesatisfied a predefined
threshold. Similarly, different thresholds wereideél for each problem: a value of Sevas
assigned tdras frang andfeys, 26 was assigned tiag, 1.89&2 was assigned tig;c; 1€* was
assigned tés £ and 9.97€ was assigned tiaps

During the simulations, similar ratios and faultttpens were injected for every
configuration. The performance of the algorithm wasasured using three metiicthe
search success rate, the average number of gemsratind the average run times for 100
independent runs. The defined maximum number otigagions was 150 generations for
feprs 700 generations foyc andfia,g 1000 generations fdkas fevs, andfsig and 2000
generations fofa.

The experimental results are divided into two pafise first part presents the results
obtained by the algorithm for the most critical Ifamodel (i.e., stuck at ‘O’ faults) when
solvingfras fack fuic, flang frms, @andfs e (see Tables 4.14.13). The second part presents the
results obtained by the algorithm when solvigg; for both defined fault models (i.e., stuck
at'l’ and stuck at ‘0’) (see Tables 4-#415).fsps Was selected as an example to study the
algorithm’s behaviour and performance with moreutofor both fault models. In addition,
fepsdiffered from the other problems considered &s dt maximisation problem; resulting in
the most critical fault model being stuck at ‘1ufis while stuck at ‘0’ faults was the less
critical model.

In Tables 4.13#4.15, the median absolute deviationad (madis used due to the non-
normal distribution of the results obtained) ardextito the results to show the robustness of
the approach. In addition, significant differenege indicated by a plus sigri-{, while a

minus sign €) denotes non-significant differences (details tafistical tests were provided
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in Section 2.2.3.1). The best results achieveeims of each performance metric for each
fault rate is highlighted imold. Furthermore, in order to provide a reference tps in
evaluating the algorithm’s performance, the resolitained when there were no faults are
shown for each problem; taking into account the fhat the migration operator is inactive
in the absence of faults.

Although the presence and the increase in fawdtlest to deterioration in the algorithm’s
performance by increasing the convergence timeraddcing the search success rate and
speed, the introduction of migration significanttgduces the convergence time and
improves search success rate and speed when sfyvitepe Table 4.11).

The most significant reductions in convergence tmegching 50% were obtained with
high fault rates. Furthermore, the search suaedss were significantly improved when the
different migration schemes were introduced. Thiprovement reached 100% with 40%
faults. With regard to the speed, migration schetnasd 3 significantly reduced the running
time, particularly with faults more than 10%. Geallyr, migration scheme 2 obtained the

best algorithm performance in terms of efficiengfficacy, and speed.

Table 4.11.Convergence time (CT), rate (CR), and speed @@®P)he test problems

Migration scheme 1 Migration scheme 2 Migration scheme3

02 rgft)][(;mtssl Without migration (Fi_rst fault-free (Bes_t fault-free (Rand_om fault-free  Test
neighbourhood) neighbour) neighbour)
266.144 440
0% 100%
0.71.010S8
372.26:635 296.94. 505 294.86.490 307.85; 485 +
10% 100% 100% 100% 100% .
0.95.0.12S 1.68.023S 0.97.40.128 0.96.0.14S +
f 613.56. 930 352.23: 520 331.10s575 369.17:60.0 +
Ras 20% 93% 100% 100% 100% +
1.74, 039S 2.64.0378 11140168 1.15,0478 +
720.84+ 1050 392.39; 540 351.60; 540 398.86.:775 +
30% 82% 100% 100% 100% +
1.60.0.20S 9.18. 1238 1.17.015S8 1.19.0.20S +
506171 76.0 401383 64.0 480-29165.5 +
40% 0% 100% 100% 100% +
27.38:4.18S 1.2040.16S 1.48.0.20S +
1004.7: 3260
0% 79%
4.704+1.48S
1247.62: 4455 1361.03: 3080 1221.77: 3650 1211.0: 3210 .
10% 58% 56% 62% 62% .
7.074250S 9.3042.08S 5.20.1.49S 5.17+133S +
f 1512.96. 2120 1433.83. 2035 1360.45; 3760 1435.3. 2720 .
Ack 20% 27% 48% 48% 44% +
7.02:1.428 12.52, 7508 574t 1.33S 5.90:1.08S +
1481.8: 2210 1598.9: 1640 1399.86. 2605 1429.9: 2140 +
30% 9% 30% 46% 31% +
7.07+1655 38.89. 4018 577t 1.01S 6.01.068S +
1733.5: 2005 1552.82: 2080 1511.6. 2890 .
40% 0% 8% 23% 23% +
95.16.931S 6.59.067S 5.96.110S +

* For more details about the performance measpiease refer to Section 2.2.3.1.
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Table 4.12.Convergence time (CT), rate (CR), and speed (®P}he test problems

Migration scheme 1 Migration scheme 2 Migration scheme3

0,/3 roblems/ Without migration (First fault-free (Best fault-free (Random fault-free  Test
6 of faults - . h
neighbourhood) neighbour) neighbour)
146.55. 250
0% 100%

1.79:036S
201.22: 35 169.69; 42,0 172.05: 775 180.47. 285 +
10% 100% 100% 100% 100% .
2.334030S 1.81.035S 1.40.017S 1.44.018S +
f 349.60: 58,0 197.38. 465 188.96: 335 233.39: 480 +
Mic 20% 98% 100% 100% 100% .
3.15:0718 2.39:0478 1.39:0.185 1.78:0.325 +
471.62; 650 218.47. 410 201.27:345 256.14, 425 +
30% 97% 100% 100% 100% .
34.12. 0658 6.02.110S l47t 0.19S 1.89.0238 +
282.07:505 226.08. 355 290.63: 46,0 +
40% 0% 100% 100% 100% .
16.46. 3.44S 1.49.0.20S 1.94. 0255 +

266.46: 360

0% 56%

4.02.0.688
413.22, 600 274504510 285.50. 57,0 322.29; 620 +
10% 45% 51% 52% 57% .
6.45.196S 3.78:060S 4.37+0.80S 3.664071S +
f 538.15:570 332.39: 505 311.02: 540 371.03: 880 +
Lang 20% 39% 48% 49% 52% D
5.11.05:8 4.91.067S 5.74. 1548 3.87+080S +
614.20; 400 374.40; 440 333.22: 7115 403.05; 760 +
30% 20% 27% 48% 50% +
5.80:0.438 11.18:1.408 5.60:1.60S 3.73:056S +
438.35: 625 354.73: 630 425.05; 760 +
40% 0% 14% 41% 51% +
26.40.374S 4.99.1.18S 3.74.:05S +

* For more details about the performance measptease refer to Section 2.2.3.1.

Consideringfas, generally, the improvement in convergence timeswkhe migration
was introduced was not significant; except for JaUts (see Test results in Table 4.11). On
the other hand, the introduction of migration siigaintly improved search success rate,
particularly for faults more than 10%. In additianigration schemes 2 and 3 significantly
reduced the running time. Overall, the best algoritperformance was achieved with
migration schemes 2 and 3 when solving

Similarly, the introduction of migration significiy improved convergence time and
speed when solvinfy;.. The improvement reached 57% for convergence ante95% for
speed (see Table 4.12). With respect to searcbessicrate, there were no significant
differences between the algorithm configuratiorese ($est results); however, the algorithm
failed to solve the problem without migration fd94 faults. As withfr,s generally, the best
algorithm performance was achieved with migraticimesne 2.

Moving to fiang in general, the introduction of migration sigoéntly improves the
algorithm’s efficiency, efficacy, and speed (seebl€ad.12). The best efficiency was

obtained by migration scheme 2, especially fortfaover 10%, while the best efficacy and
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Table 4.13.Convergence time (CT), rate (CR), and speed (®P}eal-world problems

Migration scheme 1 Migration scheme 2 Migration scheme3

0,/3 roblems/ Without migration (First fault-free (Best fault-free (Random fault-free  Test
6 of faults - . h
neighbourhood) neighbour) neighbour)
288.66: 840
0% 63%

26.72+6.455
404.93:015 328.90; 77,0 290.69; 740 344.96. 1010 +
10% 66% 61% 66% 64% .
53.05. 10078 29.04.6.12S 25871 56S 30.18.7.40S +
f 520.66: 1240 364.39; 995 327.92:510 378.81:930 +
FMS 20% 51% 56% 57% 59% .
52.07+9.04S 29.41.685S 31.98.315S 29.54.6.17S +
715.88. 1175 410.53: 010 364.24. 850 453.53: 1465 +
30% 42% 47% 57% 56% +
48.30. 7855 43.81. 10345 2551t 5.04S 30.72: 9028 +
457.14. 1160 446.51. 1260 445.82, 1300 .
40% 0% 47% 47% 58% .
55.10. 16.955 26.69.6.46S 26.82.6.68S +

71.31:170

0% 44%

0.51.0208
108.79: 200 65.40. 140 75.93.4120 80.74.4180 +
10% 29% 35% 33% 39% .
0.28.001S 0.41.006S 0.3040.03S 0.26+003S +
f 174.21: 490 67.23+130 81.101130 104.05:20,0 +
SLE 20% 19% 17% 19% 20% .
0.38:0.078 0.77+0.108 0.30:0.048 0.32:0.048 +
230.77+310 94.54, 780 90.53.170 115.52416.0 +
30% 9% 11% 13% 19% +
0.59:0.128 3.27:108 0.32:0.038 0.37:0.048 +
69.00. 0,00 88.16. 30 157.44, 550 +
40% 0% 1% 6% 9% +
3.65.0.00S 0.47.012S 0.48.0.78S .

* For more details about the performance measptease refer to Section 2.2.3.1.

speed were obtained by migration scheme 3. In itnograscheme 2, the fittest fault-free
neighbour was selected to replace the faulty iddi&i(s), which in turn increased the
selection intensity. Consequently, the best efficjewas achieved by this scheme. On the
other hand, highly complex problems suchfag, required more exploration, which was
offered only by migration scheme 3. Hence, migraioheme 3 obtained the best efficacy.
Table 4.13 depicts the results obtained by allrélym configurations when solvirfgys
andfg e Significant reductions in the average number @fegations was achieved when
migration was introduced; with the reduction reaghi49% forfrys and 60% forfs e
Moreover, with migration, the running times wergrsficantly reduced by up to 47% for
and frpys and 45% forfs e With regard to search success rate, generally;significant
differences (see test results) were obtained wbaring frys, except for 30% faults. With
fsig significant differences were obtained when migratwas introduced, especially for
fault rates greater than 20%. Overall, the besordlgn performance was achieved by
migration scheme 2 when solvinfgys, while migration scheme 3 obtained the best

performance when solvirfg e
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Table 4.14.Convergence time (CT), rate (CR), and speed (®Pjspswith stuck at ‘1’
faults

% of Migration scheme 1 Migration scheme 2 Migration scheme 3

Without migration (First fault-free (Best fault-free (Random fault-free  Test
faults - : h
neighbourhood) neighbour) neighbour)
23.87:65
0% 100%
0.09:0.0158

40.49.: 50 34.00:5, 30.50:50 32.74:65 +
10% 99% 100% 100% 100% .
0.110:0.0158 0.110:0.015S 0.106:0.015S 0.10% 00158 +
67.88:120 39.32.60 38.31:70 423465 +
20% 96% 98% 100% 100% +
0.137+0015S 0.118.0015S 0.11310,0155 0.115. 00158 +
89.43: 30 44,3660 44.80: 50 54.17+ 100 +
30% 16% 97% 98% 98% +
0.156:0.008 0.187+0.0308 0.118.:0.015S 0.125: 00168 +
51.32: 100 53.13.75 60.04. 120 +
40% 0% 94% 98% 94% +
0.432.0078S 0.120+0.015S 0.131. 00165 +

* For more details about the performance measpiease refer to Section 2.2.3.1.

In the case ofsps the most critical fault scenario occurred whem filness scores of the
individuals were stuck at ‘1’. During the updat®gess, the local selection method selects
the fittest individuals and spreads the poor sohgithey provide over the population; thus,
the algorithm isolates the faulty individuals. Asansequence, a smaller neighbourhood size
results due to the isolation, which then deterggahe performance of the algorithm. To
maintain the population size, the migration opere@xplicitly defined.

As can be seen from Table 4.14, the average nurobegenerations increases
dramatically as the faults increase, particularhew the migration operator is not used. On
the other hand, the introduction of migration imme the efficiency and the robustness of
the algorithm with significant differences (see fliesults in Table 4.14). Migration schemes
1 and 2 achieved almost similar efficiencies, where differences are not significant.
Scheme 3 results in an almost similar performascie ahe other schemes, with up to 20%
faults. While for faults > 20%, the performanceedirates significantly as compared to
other two schemes.

In terms of search success rates, all three scheradsrmed similarly and were
significantly better than the results obtained withmigration. For example, observe the
sharp drop in search success rate when the faglinereased to 30% and above.

With regard to the speed, migration scheme 2 pealithe best average run times,
especially for high rate of faults (30%). With schemes 2 and 3, a migrant was selected
from the current neighbourhood to replace the Yaultlividuals. Thus, the time needed to

search for fault-free individuals in another neighithood was saved. In addition, choosing
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Table 4.15.Convergence time (CT), rate (CR), and speed (®PJspswith stuck at ‘0’
faults

% of Migration scheme 1 Migration scheme 2 Migration scheme 3

faults Without migration (First fault-free (Best fault-free (Random fault-free  Test
neighbourhood) neighbour) neighbour)

29.51:40 28.74.5, 27.68:55 29.60: 70 .
10% 100% 100% 100% 100% .
0.104+0.015S 0.106:0.015S 0.105.0,015S 0.1050.015S .
42.27:¢5 33.31:70 29.87:55 36.98:75 +
20% 100% 100% 100% 100% .
0.117:0.015S 0.112:0015S 0.105. 00155 0.113:0001S +
50.93:110 36.35:90 39.25.70 44.07:350 +
30% 98% 98% 99% 99% .
0.121, 00155 0.169. 0.0165S 0.116:0015S 0.119. 00155 +
63.44+ 100 39.75:70 41.95.35 51.09: 100 +
40% 93% 96% 96% 96% .
0.129. 00155 0.348.0.047S 0.116+0.008S 0.124. 00155 +

* For more details about the performance measptease refer to Section 2.2.3.1.

the fittest fault-free neighbour (scheme 2) siniptif the search and thus improved the
efficiency of the algorithm, while selecting a rand fault-free neighbour (scheme 3)

reduced the efficiency. However, when all neighbowere faulty, migration scheme 1 was
applied. The advantage of this scheme resides endiliersity offered as each faulty

individual is replaced by a different migrant. Thtise efficiency and the efficacy of the

algorithm were improved, although the time needmnleiased due to the search for a fault-
free neighbourhood. Thus, overall, the second selmvided the best performance.

The other critical fault scenario occurred when fitieess scores of individuals were
stuck at ‘0’. During the local selection, the westkindividuals are ignored leading to be
implicitly isolated. Although these individuals airaplicitly isolated, they may negatively
affect the accuracy of solutions as they are altbwe mate with other individuals.
Therefore, an explicit isolation scheme (as the wtlefined in this study) is required to
maintain the accuracy of the results.

Considering the efficiency and speed of the algori{Table 4.15), similar results as that
for the stuck at logic ‘1’ fault model can be ohsst. On the other hand, with regard to
search success rate, the differences in the reebt&wsned with or without the use of
migration were insignificant (see test resultsthaugh this model was less critical than the
first model, it was an essential issue for fauletant systems to handle it due to the high
accuracy needed, especially for hard, real-timdiegipns such as the problem of GPS
attitude determination.

In order to provide a general conclusion, two-leaglking was performed (similar to the
ranking performed in Sections 4.4.3.1 and 4.1.Bé9ed on the three performance metrics

independently: convergence time, convergence gaite,speed (see Tables 4.16, 4.17, and
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4.18, respectively). Table 4.19 depicts a genanaks which are computed using the three
metric ranks in order to find the best algorithnmfogurations when considering all metrics
dependently. Similarly, this ranking is computed saynming the global ranks obtained
based on each metric and the minimum summatioritrissassigned the highest rank (i.e.,

the lowest value).

Table 4.16.Local and globalconvergence-time-based ranking

Rank Algorithms fRas fAck fMic fl_ang fews fSLE fGPS Sum
1 Migration scheme 2 1 1 1 1 1 2 1 8
2 Migration scheme 1 2 3 2 2 3 1 1 14
3 Migration scheme 3 2 1 3 3 2 3 3 17
4 Without migration 2 3 3 3 3 3 3 20

Table 4.17.Local and globalconvergence-rate-based ranking

Rank Algorithms fRas fAck fMic fl_ang fFMS fSLE fGPS Sum
1 Migration scheme 2 1 1 1 2 1 2 1
1 Migration scheme 3 1 2 1 1 1 1 2
3 Migration scheme 1 1 3 1 2 4 2 3 16
4 Without migration 4 4 4 2 3 2 4 23

Table 4.18.Local and globalspeed-based ranking

Rank Algorithms fRas fAck fMic fl_ang fews fSLE fGPS Sum
1 Migration scheme 2 1 1 1 2 1 1 1 8
2 Migration scheme 3 3 1 2 1 3 2 3 15
3 Migration scheme 1 3 3 2 2 2 3 2 17
4 Without migration 2 3 2 2 3 3 3 18

Table 4.19.Convergence-time (CT), rate (CR), and speed (888dranking

Rank Algorithms Convergence-time  Convergence-rate pee8  Sum
1 Migration scheme 2 1 1 1 3
2 Migration scheme 3 3 1 2 6
3 Migration scheme 1 2 3 3 8
4 Without migration 4 4 4 12

In all the rankings, we considered only the woestecfault model, which was stuck at ‘1’

faults for f. . and stuck at ‘0’ for all other problems.

GPS

" Local ranks (columns 3 to 8) are performed forhepmblem independently; the highest rank is agsighe lowest value.
Global ranks are performed by summing the locatsaf each problem and are shown in the first colum

" The rankings are performed by summing the globaks computed based on each performance metrignatiom values are
shown in the last column while the ranks are shiovthe first column.
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In summary, the introduction of the migration operadded a significant advantage as
the performance of the algorithm improved considgtraespecially for high rates of faults.
In particular, migration scheme 2 achieved the pedibrmance overall (see Table 4.19). As
mentioned previously, migration scheme 2 replaag#y individual(s) with the fittest fault-
free one within the same neighbourhood. Theretbie,scheme saves time needed to search
other neighbourhoods as well as provides high Befedntensity leading to reduce the
number of generations required to find desiredtgwia. However, problems with higher
complexities such afang andfs.e need more diversity which could be offered by g
the selection intensity. Therefore, due to the oamcelection of a fault-free neighbour to
replace faulty individual(s) migration scheme Jisferred for those problems in order to

improve the search success rate.

4.2.4 Conclusion

In this study, we proposed two new adaptive migratichemes in order to improve the
performance of the algorithm. Simulation resultandastrate that the new migration
schemes excelled in improving the efficiency, effig, and speed considerably, in particular
migration scheme 2, thereby enhancing the reltgbif the algorithm, especially for high
rates of faults.

Besides being a mitigation technique, the integratof migration has played an
important role in controlling the exploration/exjpédion trade-off. Exploration and
exploitation are the two main issues in enhancihg performance of evolutionary
algorithms. Population diversity is improved by kExmg the search space, while the
optimum solution can be found by exploiting thed$s information. In this work, the best
overall performance in terms of efficiency, effigaand speed was achieved with migration
scheme 2 due to its effect in enhancing the loglaicion intensity and population diversity.

The grid topology (i.e., 3D grid) has also conttdui to the effectiveness of the
algorithm. The vertical expansion of cells leads gborter diameter and denser
neighbourhood compared to 2D grids with similarghbiburhood topology and equal
population size. Therefore, it can be concluded flea problems of high degree of

complexity, higher cellular dimensions could be dfaal.
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4.3 Dynamic Fault Tolerant 3D-cGA

This section presents a new Dynamic Fault-ToleB&®tGA (Dynamic FT 3D-cGA) that is
based on the canonical cGA search model discusseigre In this study, the proposed
algorithm is a modified version of Fault-ToleranD-8GAO the algorithm previously
proposed in Section 4.1. In order to improve thefgsmance and reliability of Fault-
Tolerant 3D-cGA, new adaptive migration schemesewstroduced in Section 4.2, while
this section introduces dynamic adaptation schetmeschieve further improvement. The
same test bench suite is used to test the perfaenainthe Dynamic FT 3D-cGA. The suite
includes the Rastriginfd,), Ackley (ac), Michalewicz {vic), Langermann f(a,g), FMS
(fems), SLE (sie), and GPSfgpg problems fgps was discussed in Section 4.2.2, while the
details of the remaining benchmark problems arevigeal in Appendix A). Furthermore,
different algorithm configurations are defined ddesing the introduction of migration and
two different dynamic adaptation schemes. The dasmn of the algorithm, configurations,
and dynamic adaptation schemes are presented fioisdc3.1. Section 4.3.2 discusses and
analyses the simulation results obtained with tleious algorithm configurations.

Concluding remarks are given in Section 4.3.3.

4.3.1 Algorithm Configuration

As the proposed algorithm (i.e., Dynamic FT 3D-cG&an improved version of the FT 3D-
cGA, this section starts with a brief descriptidnF@ 3D-cGA (for more details refer to
Section 4.1). Next, a description of the dynamiatdees added is given. FT 3D-cGA
automatically isolates the faulty individuals arahsists of three phases. In the first phase,
the changes in the genetic diversity of each inddial is observed independently and
computed by running a cGA for a few generationsthin second phase (i.e., the isolation
phase), the faulty individuals are determined &othied using genetic information from the
first phase. Finally, another cGA is run, until tieemination criterion is satisfied, to solve
the given problem while excluding the faulty indivals from the process. In this study, the
Dynamic FT 3D-cGA follows the same first and secqiithses as in the FT 3D-cGA.
However, the difference resides in the third phasdt starts with a new derived value of
maximum number of generationgldxGen3} based on the ratio of faults encountered in the

preceding phase. The dynamic setting M&xGensaims at balancing the number of
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evaluations due to the reduction in the numbemdividuals alive, and will be introduced
later in this section.

In Section 4.2 it has been concluded that the magracheme 2 was the best. However,
in this section, the migration scheme 1 (was pregos Section 4.1.2.3) is employed as the
main concern of this study is the influence of tiy@mamic mechanism on FT 3D-cGA. In
addition, the fault models considered and isolatioterion were proposed in Sections 4.1.1
and 4.1.2.2, respectively.

The local selection method defined in this studshes binary tournament selection (BT),
in which two random individuals are selected arelfitiest individual wins the tournament.
The crucial role of the local selection method cerfrem its direct effect on the global
selection pressure. The selection pressure detesntime convergence speed as well as
population diversity (Simoncirét al, 2007), and can be evaluated by monitoring thevtjro
of the best individual (by letting the selection the only active operator) (Goldberg and
Deb, 1991). Figure 4.9 shows an average of 10Qoemident runs for the growth of the best
individual over a cubic grid against different faxdtes, where the population size is 343 (7 x
7 x7).
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Figure 4.9.Growth curves of the best individual for varioasiif ratios using BT.
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As shown in Figure 4.9, the growth of the best\vidlial without faults (0%) sharply
increases to conquer the whole population, thusptimg exploitation by increasing the
global selection intensity on the population. Aligb this exploitative behaviour may
improve the efficiency of the algorithm, a premateonvergence may occur and negatively
affect the algorithm’s efficacy. Conversely, withufts, the behaviour tends to be more
explorative (see Figure 4.9). However, an explinigration operator is defined in this
research not only to mitigate the impact of fathat occurred, but also to enhance the
exploration/exploitation trade-off, and thus impeothe performance of the algorithm (Al-
Nagiet al, 2011a).

4.3.1.1 Dynamic Adaptation Schemes

This section presents two dynamic adaptation scheMexGens andMaxGens. The basic
idea is to adapt the value dfaxGensbased on the fault ratio identified in the isaati
phase. In other words, the value M&xGensis dynamically tuned at the start of the final

phase, and the initial value BfaxGends manually set.

25*100 = 250C evaluations
(e

Fauli-free PEs

‘ Faulty PEs

17*100 = 1700 evaluations 156*100 = 1500 evaluations
(c) (€]

Figure 4.10.Fitness evaluations for various fault ratios.q#j faults, (b) 10% faults, (c) 20% faults,
(d) 30% faults, (e) 40% faults.
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Figure 4.11.MaxGensand fitness evaluations as a function of faulorfdr a population size of 343
individuals.
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Isolating faulty individuals reduces the numbeing; which reduces the virtual size of
the population. This thus minimises the chance indiifig the optimum solutions, and
deteriorates the performance of the algorithm, @afdg when solving complex problems
(Cantu-Paz, 1995). For example, by assuming a papalof 25 individuals anWaxGens
of 100, the number of fitness evolutions is 25000&o faults, 2200 for 10% faults, and so
on (see Figure 4.10). Therefore, the valuMakGensdynamically increases as a function of
fault ratio to offer a similar number of evaluatioas with 0% faults (e.g., 125 generations
are needed for 20% faults (see Figure 4.10)).

The computation of the neMaxGensis shown in (4.5). The actual population size is
denoted bypopSize while the number of living individuals is indieat by aliveSize The

initially defined maximum number of generationsnidicated bygens

(popSiz& gens). (4.5)
aliveSiz

MaxGeng=
In addition, we define a further increaseMiaxGensto tackle added difficulties caused
by faults, although this leads to increased contfmrtacost. Equation 4.6 describes this

situation, wherdéfaultsindicates the ratio of the faults.

MaxGens = (pop.Sizd-Z.gené O(1+ Pfaults) (4.6)
aliveSiz

Locally, the selection of a second parent is lichibg the number of fault-free neighbours
of the current individual. The solutions providedibdividuals surrounded by a considerable
number of faulty neighbours are less likely to b&rnised, which introduces more difficulty
in search, particularly with high fault ratios.

Figure 4.11(a) shows the increment MaxGensas a function of the fault ratio. For
example, ifgensis 1000,MaxGenswill be 1110, based on equation (4.5) and 1224et@n
equation (4.6) for 10% faults, and so on. From Ffegd.11(b), we see that the number of
evaluations is maintained for all fault ratios lthea equation (4.5); thus, there is no added
computation cost. Based on equation (4.6), the murmbevaluations increases in proportion
to the fault ratio (e.g., 10% for 10% faults, and).
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4.3.2 Experimental Results and Analysis

This section first introduces the parameters antbpaance metrics used in experiments.
Next, the results obtained for the FT 3D-cGA ontist suite described earlier are presented
and analysed. Then, the results obtained whenrgphdi the problems using the Dynamic
FT 3D-cGA with both adaptation schemes are predearte analysed. Finally, a comparison
between the FT 3D-cGA and the Dynamic FT 3D-cGAhwitite best adaptation scheme is
provided.

Table 4.20 shows the parameters that were usdwiexperiment. For all the problems,
the same parameters were employed in order toachidair comparison. A population size
of 343 individuals was used. These were arranged @k 7x7 lattice. As an exception, for
feps, @ population of 125 individuals organised overx&¥ lattice was used due to its low-
dimensional spacen(= 3 forfgps versusn = 10 for all other problems; except fipys asn =
6). The local neighbourhood contained seven indiaisl, which were positioned to the east,
west, vertical north and south, and horizontalmarid south, plus the central one. The first
parent was the current individual, while the secpadent was selected by using binary
tournament selection. An arithmetic crossover dpenaith a rate o, = 0.9 was applied to

generate an offspring. The offspring was mutatea loypn-uniform mutation operator, with

ratePp,.
Table 4.20.Parameters used in the experiments
Population size: 343 individuals, 125 individuals fdgps
Parent selection: Centre +BT
Recombination: AX, P.=0.9
Mutation: Non-uniform,P,,
Replacement: Replace-if-better
Neighbourhood: NEWS
Lattice: TXTX7 (5%x5x5 for fgpg

Termination criterion: Average fitness value threshold( > thresholdfor fgpg

Table 4.21.Convergence time (CT), rate (CR), and speed (®Ppenchmark problems
when there were no faults

Performance
metrics fRas fAck fMic fLang fFMS fSLE fGPS
Average no. of 266.29 914.94 153.78 262.42 294.65 59.83 23.87
generations * 47.00 * 4285 * 3400 * 3600 * 740 s 65
Search success rate 100% 78% 100% 57% 63% 54% 100%
Average run times ) 74 4.71 1.34 4.80 49.27 0.81 0.09
(seconds)

* For more details about the performance measptease refer to Section 2.2.3.1.
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A different value ofP,, was assigned for each problem due to their difftecemplexities:
P = 1/ for frasandfyic, Pm = 1/1Q for fs 5 andPy, = 1L for other problemst is the
length of the chromosome. The replacement polidynee wasreplace-if-bettey during
which the current individual was replaced if itsngmetitor (offspring) was fitter. The
migration parameters used were previously descrimedection 4.1.2.3. Finally, the
algorithm terminated if thaverage-fitness-valugatisfied a predefined threshold. A different
threshold was defined for each problem0.997 forfges < 1€* for fg g < 26 for fag, <
1.89€2 for fyic, and< 5e for other problems

In addition, for each problem, the assigned valfighe initial maximum number of
generations was 150 generationsffgg 700 generations fdy.,g andfyic, 1000 generations
for fras frms, @ndfs g and 2000 generations fag, .

Similar ratios and fault patterns were injected &arch algorithm and problem. The
performance of the algorithms was measured usirgetimetrics: the search success rate
(i.e., the efficacy), the average number of gemnamat(i.e., the efficiency), and the average
execution times of 100 independent runs.

Tables 4.22—-4.27 present the results obtainedhii=T 3D-cGA and the Dynamic FT
3D-cGA. Each algorithm was tested with and withthe employment of the migration
technique introduced earlier to investigate theaiveness of the migration. Furthermore, to
show the robustness of the algorithms, the medimolate deviationgnad was added to
the results obtainednadis used due to the non-normal distribution of riésults obtained).
The best results achieved for each fault rationgaieked inbold. Significant improvement is
indicated by a plus signH), while a non-significant difference is denoted dydot ¢ )
(details about the statistical tests were provige8ection 2.2.3.1). Furthermore, the results
obtained when there were no faults are shown ifel4l21, taking into account the fact that

the migration operator and the adaptation schem@active in the absence of faults.

4.3.2.1 Fault-Tolerant 3D-cGA

This subsection discusses and compares the redidmed for the FT 3D-cGA with and
without migration when solving the problems of thst suite.
Tables 4.22—-4.24 depict the results obtained. megd, FT 3D-cGA showed its ability

and successfully solved different problems withtapt0% faults, especially when it was

" These thresholds were obtained by carrying outmirghry experiments which aimed to identify a sentiireshold for each
problem that results in the most desirable ovgefformance.

T Similarly, the number of generations for each peobivas chosen to provide the most appropriate-oédeetween
algorithm performance and time constraints.
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combined with the migration technique. Further, thi#oduction of migration provided
significant improvements in terms of all performamoetrics considered.

As can be seen from Table 4.22, the efficiencyhef algorithm significantly improved
with the migration to reach up to 74% for all readrld problems and most of the test
functions (see test results), exceptfigr. Complex problems require high diversity levels to

achieve reliability.

Table 4.22.Convergence time (CTpbtained for FT 3D-cGA with/without migration

Algorithms 28:? lfa?é f ras f pck fyic f Lang fems  Toie  fops
10% 366.9 1246.4 21596 399.60 348.10 89.24 40.49
LY * 3000 T aac T 53¢ 71 T 10c Tsc
tglzlﬁght 20% 591.66 1343.0 363.86 540.79 636.82 187.15 67.88
3D-cGA * 780 * 33 * 620 * 850 * 137 %350 *12¢
Without 20% 7385 14123 46641 62125 72330 308.73  89.43
migration T os5¢ * 183 * 56 LR T 122¢ T g8.c *sc
0,
40% % 0.00 * 0.00 % 0.00 % 0.00 * 0.00 % 0.00 * 0.00
10% 30458 1269.0 175.39 304.51 319.80 64.75 29.80
510 * 341( T35 T 63 T T a2c *ec
tgl?el:el:;lt 20% 353.98 1426.6 202.8 340.78 352.89 74.89 40.48
3D-cGA * 48 * 234 * sac * 66. * 850 %100 sc
With 30% 42426  1576.7 222.08 419.89 359.66 79.91 47.45
migration T 49.c * 170c * g6 T 6ac * 1140 Toc Toc
40% 490.89 1642.8 289.98 435.79 49230 152.60 48.78
tss5 * 1665 T 500 * 490 * 1850 * 310 o5
Tests + . + + + + +

Table 4.23.Convergence rat€R (%) obtained for FT 3D-cGA with/without migration

Algorithms ;:FZS |kt) 'fargf) f Ras f ack fic f Lang  TFws fsie faps
Fault- 10% 10C 60 10¢ 46 58 33 99
tolerant 3D- 20% 90 23 99 34 51 26 96
on 30% 83 8 95 12 47 15 16
migration 40% 0 0 0 0 0 0 0
Fault- 10% 10¢(.) 66(.) 10¢(.) 45() 62(.) 24() 10¢(.)
tolerant 3D- 20% 10C(+) 45(+) 10C(.) 33() 56(.) 19() 99(.)
\C,\(/?tAh 3C% 10((+) 33(+) 100(+) 29(+) 53() 12() 96(+)
migration 40% 100(+) 12(+) 10Q(+) 15(+) 43(+) 5(+) 94(+)

Table 4.24.SpeedSP (seconds) obtained for FT 3D-cGA with/without ngition

Algorithms E;S |tt) I:}arzé fras f pck fue  f tang  Tems  fsie  fops
Fault-tolerant 10% 0.8¢ 6.3t 1.5¢ 5.4% 50.5¢ 1.0¢ 0.11¢
3D-cGA 20% 1.3€ 6.4E 2.1z 6.0C 58.11 1.2¢ 0.137
Without 30% 1.52 6.41 2.47 5.52 75.4 1.31 0.15¢
migration 20% ) } ) ) ) ) )
Fault-tolerant 10% 0.8€ 6.3¢ 1.44 5.2( 44.5¢ 1.4¢ 0.10¢
3D-cGA 20% 1.14 7.5 1.5¢ 5.8( 51.81 2.2C 0.11¢
‘With 30% 1.32 7.4¢ 1.5¢ 5.4( 59.21 2.0¢ 0.12(
Migration 40% 1.50 7.81 1.85 5.40 61.05 2.26 0.125

“ For more details about the performance measulesserefer to Section 2.2.3.1.
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The increase in fault ratio promotes exploitatigridwering the diversity level due to the
isolated individuals; thus, the reliability of tlaégorithm is deteriorated. For example, the
search success rates obtained without migratiomwbbringfa. were very low, particularly
for 20% faults and above. On the other hand, theoduction of migration enhanced
diversity as the migrant individuals replaced theldted (faulty) ones, which significantly
increased the search success rates. The signifilifietences between the search success
rates obtained with and without migration justifietlower number of generations achieved
without migration when solvinfy.. Overall, the migration assists in obtaining rahess of
the algorithm (seenad values), especially for 20% faults and above; it exceptions
being as a result of the very low search succdes abtained when the migration was not
employed.

Table 4.23 shows the search success rates obténngeheral, it can be seen that FT 3D-
cGA with migration obtained higher search succasssrfor all test functions and most real-
world problems, reaching up to 100%. However, atepkion was fofs g, where a decline
in the search success rates is observed for updtof8ults. Nevertheless, this deterioration is
not significant (see test results). For 40% faudtssignificant improvement in the search
success rate was achieved, although the rate ebtaias very low (5%).

The average execution times are shown in Table. &4 most of the problems,
employment of the migration technique led to spegdip of the execution time, reaching up
to 35%. However, the most important exception wasoantered when solvinfg, due to
low search success rate obtaingge is a rather difficult problem and was extensively
affected by the faults that occurred. This factuireks a negative effect on the performance
and reliability of the algorithm.

In summary, the use of migration as a mitigatiochtéque to achieve fault tolerance
added considerable improvements in terms of effeyje efficacy, speed, and reliability of

the algorithm, especially for the high ratio oflfau

4.3.2.2 Dynamic Fault-Tolerant 3D-cGA

This subsection presents and analyses the reduitsned for the Dynamic FT 3D-cGA
when solving the problems of the test suite. Thappsed dynamic mechanism adapts the
permitted maximum number of generations to solgévan problem based on the number of
faulty individuals observed. The proposed algorithes tested with and without migration,
as well as for each of the two adaptation scheraératl earlierMaxGeng andMaxGeng

to explore the influence of migration and the imeeat in the number of fithess evaluations
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on the performance of the algorithm.

Dynamic FT 3D-cGA with MaxGens

Tables 4.25-4.27 exhibit the results obtained. @dlye for all the problems, the
employment of the migration technique resulted ettdy efficiency with significant
differences (Table 4.25), except fiap, as the improvement was not significant (see Test
results). The robustness and improvement rateeokftficiency increased together with the
increment in the fault ratio (semad values). These improvements reached up to 42%
reduction in the number of generations, and mogbimantly, when similar search success
rates were obtained by both algorithm configuratidfor example, when solvirg;. for
20% faults, the average number of generations mddaivas 340.92 without migration and
198.39 with migration, whereas a search succesfdt00% was obtained for both.
Considering the search success rate, with the fuségeation, the algorithm was found to
obtain higher efficacy for most of the problemscept forfs e (see Table 4.26). Although
migration enhanced the population diversity, tlgoathm showed an exploitative behaviour
when solvindgs g as the search success rate deteriorated. Owihg tiverse characteristics
and complexities, different problems need differexpploration/exportation degreds;e is a
very complex problem. In addition, although thefpenance of the algorithm could be
improved by tuning the parameters to suit a pdercproblem, it is not our concern in this

study.

Table 4.25.Convergence time (CTdbtained foDynamic FT 3D-cGA witiVlaxGens

) Problem/
Algorithms - oo f Ras fAck f Mic f Lang f FMS fSLE fGPS
10% 379.08 1468.32 202.89 364.43 409.15 10490 38.82
Dynamic + 6a.00 * 3¢ + 2850 + 4500 * g6.00 + 2500 * 70
Fault- 20% 631.63 1787.13 340.92 567.23 606.58 176.38 58.39
tolerant + 97.00 * 350 + 4500 + g3.00 * 138¢ + 40,00 * 600
3D-cGA 30% 812.32 2180.14 476.36 718.17 77731 2496  83.26
W'thO,Ut 0 * 104 * 302 * 66.00 * 8200 * 150 * 355 * 500
migration 0% 1053.0 679.00 1289.42 332.00
b - - -
* 00.00 * 00.00 * 1465 * 00.00
10% 317.00 1406.98 166.30 299.80 339.79 78.51 30.10
Dynamic + 59,00 * 278.( + 3300 + g5.00 * 101¢ + 18.0¢ * 600
Fault- 20% 340.29 1720.50 198.39 341.04 318.52 71.68 38.81
tolerant * 5300 * 384c * 375 * 580 * 5100 * 140 * 6.00
3D-cGA 30% 41533 2013.64 24630 387.26 4290  83.00  43.88
_Wlth_ 0 + 64.50 t 420, + 4200 + 76,50 + 132¢ + 1300 + 7.0
migration 0% 502.82 2518.65 284.80 470.12 502,76 138.00  49.70
0 + 66.00 T 355 * 6750 * 6650 * 1510 + 00.00 * 1150
Tests + . + + + + +

* For more details about the performance measpiease refer to Section 2.2.3.1.
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Table 4.26.Convergence rat€R (%) obtained for Dynamic FT 3D-cGA witlaxGens

. Problem/

Algorithms Fault ratio fRas fAck fMic fLang fFMS fSLE fGPS

Dynamic 10% 10C 55 10C 48 58 33 89

Fault-tolerant 3D-  20% 93 43 10C 39 51 21 66

~ CcGA 30% 92 20 98 29 55 14 19

Without migration 40% 0 0 1 1 18 1 0
Dynamic 10% 10C(.) 70(+) 10¢() 51() 64 25(.) 95(.)
Fault-tolerant 3D-  20% 10C(+) 64(+) 100(.) 41(.) 53 19() 95(+)
~CGA 30% 10C(+) 65(+) 10C(.) 30() 56 11() 95(+)

With migration o

40% 100(+) 52(+) 10Q(+) 16(+) 43 1() 94(+)

Table 4.27.SpeedSP (seconds) obtained for Dynamic FT 3D-cGA wliflaxGensg

Algorithms .:FZSE Irearzé fras  Tac fue  f tang  Tems  fsie  fops
Dynamic Fault-  10% 0.91 6.9C 1.5 53t 5466 116  0.11°
tolerant 3D-cGA  20% 1.4¢ 7.7¢ 2.21 6.4¢  59.9(  1.4€  0.13¢
Without 30% 1.6¢ 8.7¢ 252 6.81 65.5¢ 1.71 0.151
migration 40% - - 5.07 7.55 81.42 2.33 -
Dynamic Fault-  10% 0.8¢ 6.8¢ 1.4 51€ 5166 156  0.10€
tolerant 3D-cGA  20% 1.0z 8.2z 1.5¢ 58  60.2¢ 21z  0.11¢
With 30% 1.2¢ 9.3t 1.71 5.9t 64.7¢ 2.7¢ 0.18¢
migration 40% 152 10.90 187 771 6335 392 0421

Table 4.27 shows the average execution times. hergé for most of the problems, a
faster speed was achieved with migration, excepfsfp andfs.e Although the migration
reduced the average number of generations, theagevezxecution times needed by the
algorithm to solvefae was slightly increased to reach up to 6%. Furtheemthe average
execution times needed to solfge: was significantly increased to reach up to 40%isTh
behaviour is due to the difficult search incurreldew solving complex problems, especially

for high fault ratios.

Dynamic FT 3D-cGA with MaxGens

Tables 4.28-4.30 show the results obtained. It Ishba noted that the algorithm shows
similar behaviour as witMaxGensg in terms of efficiency, efficacy, and speed. Imsoary,
with migration, the algorithm shows significantletter efficiency and stronger robustness
for all problems (Table 4.28), as well as highearsh success rates (Table 4.29).
Additionally, considerable improvement in termsspked is achieved due to the migration
(Table 4.30).

A difference in the algorithm’s behaviour was oleerwhen solvindac as the search

success rate obtained increased marginally wherfathie ratio also increased. This odd

" For more details about the performance measureas@lrefer to Section 2.2.3.1.
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behaviour is due to the increase in the numberitokds evaluations, i.e., the initial
maximum number of generations defined is not trst teesolve this problem. Thus, the new
MaxGens calculated improves the search success ratesfé&aynogf more fitness evaluations.
This confirms thatfax Needs more exploration, which can be promoted fisring more

generations. However, we continued with the initlahximum number of generations

defined (2000 generations flagy) to test the algorithm, as time was a criticatdac

Table 4.28.Convergence time (CTdbtained foDynamic FT 3D-cGA witilaxGens

. Problem/

Algorithms 1+ atio fras f ack fue  f tang  Tems  fsie  fops
10% 397.14 1328.7 22055 380.19 382.14 96.62 40.02

Dynamic * 66. * 456 R PX: * 73¢ * 720 *2a¢ *7c
Fault- 20% 694.17 1933.2 340.98 625.93 581.73 181.83 69.54

tolerant * 148¢ T 495.¢ T s7c * 110 * 1230 * 53¢ Toc
3D-cGA 300 898.92 25239 468.95 76427 852.33 219.07 11152

V_VlthO_Ut ° + 153 * 907 *70c + 140 * 160 *37c + 13¢
migration 0% 977.00 - 1264.4 - 1670.7 1649.0 162.19

° oo * o0 * 1150 oo * 2820 oo 130
10% 294.17 1430.2 175.63 301.15 309.50 69.87 31.24

: 0 + + + + + + +

Dynamic *a7e * 431e * 40c ts1c * 2100 *13c toc
Fault- 20% 339.45 19144 191.36 326.20 42740 66.31 39.38

tolerant tsoe * a0 *3sc * 60 T 130, * 10c ¢
3D-cGA 300 41400 23482 227.75 404.47 447.27 9933  41.36

_W'th_ ° L PX: * 460 LPY: *74s * 118 *16¢ *7c
migration 0% 49911 3028.6 294.82 48595 64604 162.00 52.04

’ 375 T 85 * 560 555 * 1930 oo * 100

Tests + . + + + + +

Table 4.29.Convergence rat€R (%) obtained for Dynamic FT 3D-cGA witlaxGens

. Problem/

Algorithms Fault ratio f ras f pck fic fLang fems fsie faps

Dynamic 10% 10C 64 10C 51 63 45 91

Fault-tolerant 3D- 20% 97 57 10C 46 60 25 87

~ CcGA 30% 95 44 10C 36 54 13 71

Without migration 40% 1 0 33 0 38 1 56
Dynamic 10% 10C(.) 78(+) 10C(.) 51() 65(.) 31() 10C(+)
Fault-tolerant 3D-  20% 10C(.) 79(+) 10C(.) 48() 55(.) 19() 10C(+)
cGA 30% 10C(+) 82(+) 10C(.) 40() 55(.) 6(.) 99(+)

With migration 40% 100(+) 84(+) 100(+) 20(+) 46() 1() 99(+)

Table 4.30. SpeedSP (seconds) obtained for Dynamic FT 3D-cGA witlaxGens

. Problem/
Algorithms Fault ratio fras  Tac fue  f tang  Tems  fsie  fops
Dynamic Fault-  10% 0.97 6.5¢ 1.5¢ 5.6% 51.5] 1.0¢ 0.11
tolerant 3D-cGA  20% 1.5¢ 8.2: 2.08 7.2% 63.0¢ 1.6¢ 0.14
Without 30% 1.91 10.0¢ 2.41 8.07 79.3( 2.2¢ 0.17
migration 40% 3.93 - 6.10 - 1054 2.94 0.20
Dynamic Fault-  10% 0.8¢ 6.7¢ 1.4¢ 5.7 68.6( 1.4¢€ 0.10¢
tolerant 3D-cGA  20% 1.0¢ 8.9 1.5¢ 6.4C 87.0: 2.6¢ 0.11¢
With 30% 1.31 10.7: 1.6¢ 7.7¢ 62.4¢ 3.9 0.11¢
mlgratlon

40% 1.51 12.94 1.85 1051 7756 514  0.126

" For more details about the performance measureas@lrefer to Section 2.2.3.1.

110



Table 4.31.Comparison oMaxGensg versusMaxGensg in terms of convergence time (CT)
and rate (CR)

Problem n\?i/gitrgct)i%tn migV\fe:?ion
fRas
fAck + +
fMic
fLang
fFMS
fSLE
fors s s

* For more details about the performance measpiease refer to Section 2.2.3.1.

Let us now proceed to compare the two adaptatibames discussed earlier (see Table
4.31). The aim of this comparison is to show thduence of increasing the number of
fitness evaluations, when the number of faults éases, on the performance of the
algorithm, in particular, the efficiency and effoga The speed follows similar behaviour
pattern as the efficiency.

Although the initial expectation is that betteri@@ncy and speed is achieved with
MaxGens, this is not always the case. The main cause isfsilrprising behaviour is the
existence of faults, which added more difficultythe search, and thus more generations and
time were needed to determine the desired solutknasn the above Tables, generally better
efficiency and speed were achieved withxGens for most of the problems; however, the
differences were not significant (non-significanffetences are indicated by the symbeol *
in Table 4.31). Higher search success rates wegenelol withMaxGens, with differences
that were not significant for most of the problentéowever, forfay and fgps the
improvement in the efficacies was significant, weind without the use of migration
(significant differences are indicated by the syimbbin Table 4.31).

In summary, the Dynamic FT 3D-cGA showed its apild solve different problems for
up to 40% faults, and significant improvementsha performance of the algorithm were
achieved, especially with migration. The computaiocost of increasing the number of
fitness evaluations was not significant, wheregmi8cant improvements in the efficacy
were achieved for some of the problems. At thisipave can state that the best performance
was obtained wittMaxGeng, and accordingly, we continued our analysis basedhis

scheme.
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4.3.2.3 Dynamic FT 3D-cGA vs. FT 3D-cGA

This subsection compares Dynamic FT 3D-cGA baseMlaxGens with FT 3D-cGA. The
subsequent paragraphs discuss the behaviour irs tefngenetic diversity for both the
algorithms.

To simplify the comparison and to reach an accuwatelusion, the two algorithms were
compared according to statistically significanfeliénces, and the rankings of the algorithms
in terms of efficiency, efficacy, and speed. Ta#l82 illustrates the statistically significant
differences between Dynamic FT 3D-cGA basedvaxGeng and FT 3D-cGA in terms of

efficiency and efficacy. For example, solvinfy,, without migration by both algorithms

shows no significant difference in terms of averagmber of generations (indicated by the
symbol *’ in the middle Column of Table 4.32), while a sigrant difference is obtained
when considering the search success rate (inditgtélde symbol ‘+' in the middle Column
of Table 4.32). Tables 4.33—4.35 show the rankofgbe algorithms in terms of the average
number of generations needed to find the soluti@esrch success rates, and average
execution times, respectively. Each problem is pedelently ranked, and these local
rankings are shown in Columns 2-8. The global ragks shown in the last column, which
is determined based on the summation of the l@#ings (Column 9) to identify the best
algorithm for all the problems in terms of eachfpenance metric. For each fault ratio, the
local ranking is determined by adding the positiohthe algorithms according to the results
obtained based on each performance metric, andighest rank (lowest value) is assigned
to the one with the minimum summation value. Foaregle, when solvindr,s the best
efficiency is achieved by the Dynamic Fault-Told¢raD-cGA with migration, while the best
speed is achieved by the FT 3D-cGA with migratiangd the best efficacy is achieved by
both algorithms, because they have similar ranksthls work, the details of the local
ranking are omitted and only the final ranks arewshn

Although the numbers of fithess evaluations wessidiilar for both the algorithms, we
continued to compare them based on the averagearwhigenerations. The aim behind this
consideration was to show how the increment imtlagimum number of generations would
influence the efficiency of the algorithm, and @fect when the migration technique is
introduced. As can be seen from Table 4.33, in iggnthe best efficiency was achieved by
FT 3D-cGA with migration, while Dynamic FT 3D-cGAitlv migration achieved the second
best efficiency. However, the differences were sighificant, except forffa (see Table
4.32). The best efficacy was achieved by the Dynaffault-Tolerant 3D-cGA with
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migration for most of the problems, except fgi= The second best efficacy was achieved
by the Fault-Tolerant 3D-cGA with migration (seeblea4.34), and the differences were not
significant. Hence, we can confirm the effectivene$ migration in improving algorithm
performance regardless of the difference in thelbmamof fitness evaluations.

The integration between the Dynamic Fault-Toler@m-cGA and the migration
technique significantly improved the performancetoé algorithm as it offered better
exploration/exploitation trade-off. A further ansiy of the behaviour of the algorithms is
provided later in this section.

With regard to the execution time, the Fault-Tahkr2D-cGA, especially with migration,
significantly surpassed the Dynamic Fault-Toler@aBt-cGA with/without migration (see
Table 4.35). Although the obvious reason for theederation in the speed of the algorithm
may have been thought to be the increase in thébeuwf fithess evaluations, the distinct
search success rates obtained were the main ra&somote that integration of the migration
technique into the Dynamic Fault-Tolerant 3D-cGAilefédh to provide significant

improvements in the speed, when compared with #uit-H olerant 3D-cGA.

Table 4.32.Comparison of Dynamic FT 3D-cGA versus FT 3D cGAdrms of
convergence time (CT) and rate (CR)

Problem rt\f\i/gitrgct)i%tn migV\fe:?ion

fras +

fACk + + +, +
fMic ot

fLang ot

fems +

fsie

faps ' F

Table 4.33.Ranking of the algorithms based on efficiency (CT)

ngoobrli?;,nm/ fras  fack  Tuic  frang  Trws  fsie  fops SUum  Rank
FT 3D-cGA 3 1 3 3 3 4 3 20 3
FT 3D-cGA+ mig. 2 2 1 2 1 1 1 10 1
DFT 3D-cGA 4 4 4 4 3 3 3 25 4
DFT 3D-cGA+ mig. 1 3 2 1 2 2 1 12 2

" For more details about the performance measureas@lrefer to Section 2.2.3.1.
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Table 4.34.Ranking of the algorithms based on efficacy (CR)

/zrgoobrlifrr]nm/ fras  fack  fwic  fimg  fews  fsie  fops Sum  Rank
FT 3D-cGA 4 4 4 2 4 2 3 23 4
FT 3D-cGA+ mig. 1 2 1 2 3 3 2 14 2
DFT 3D-cGA 3 2 3 2 2 1 3 16 3
DFT 3D-cGA+ mig. 1 1 1 1 1 4 1 10 1

1 Efficacy is measured as the search rate of ssitdexperiments (Convergence rate) out of 100pedéent runs.

Table 4.35.Ranking of the algorithms based on speed’(SP)

ngoobrli?;,nm/ fras  fack  Tuic  frang  Tews  fsie  fops Sum  Rank
FT 3D-cGA 3 1 3 2 2 1 3 15 2
FT 3D-cGA+ mig. 1 1 1 1 1 3 1 9 1
DFT 3D-cGA 4 3 4 4 4 1 4 24 4
DFT 3D-cGA+ mig. 2 4 2 3 3 4 1 19 3

To better demonstrate the behaviour of the algmstland the effect on performance of
increasing the fault ratio, we focused on one mwbfrom the test suite. The problem used
wasflang When solving ., for 10% faults, the results obtained for the Faiallerant 3D-
cGA were 399.6 average generations, 46% searclessicate, and 5.42 seconds average
execution times. For 20% faults, the results olethiwere 540.79 average generations, 34%
search success rate, and 6.0 seconds averageiexdoues. These showed a significant
deterioration in the performance of the algorithoe do the increase in the fault ratio.
However, when solvingiang for 10% faults using the Dynamic FT 3D-cGA, theeage
number of generations was reduced to 380.19, trelssuccess rate increased to 51%, and
the average execution times increased to 5.63 dec@onsequently, we can confirm that
the increment in the number of generations carvialie the search difficulty, despite the
increase in the time needed for the algorithm toveoge (from 5.42s to 5.63s). The increase
in execution time normally results from the inceeds the number of generations; however
in this case it may also refer to the variation$iinrate obtained (46% vs. 51%). For 20%
faults, the average number of generations increas&25.93, despite the improvement in
the search success rate obtained (46%). The deicliribe efficiency was resolved by
integrating the migration technique into the Dynanfiault-Tolerant 3D-cGA; e.g., the
average number of generations decreased by 488a¢b 826.2 generations.

To summarise, in general, the Dynamic FT 3D-cGA rionpd algorithm reliability,
especially when it was combined with the migrattenhnique, despite an increase in the
computation cost. Increasing the maximum numbegesferations was a critical factor in

increasing the probability of finding the desiredlusions. However, offering more

" For more details about the performance measureas@lrefer to Section 2.2.3.1.
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generations alone was not enough due to the fallpweasons. First, more faults leading to
less individuals alive deteriorated the geneticetsity. Second, worse faults distribution

occurred for high fault ratios, and the worst chappened when a fault-free individual was

surrounded by faulty neighbours. Therefore, locddamcing was required, and the best and
simplest way that we came up with is to control ghebal selection pressure by employing

the migration technique.

feps was used as an example to show and understantetieviour of the different
approaches and the influence of the migration teckenby computing and plotting the
population’s diversity (genotypic entropy) as adtion of generations. Figure 4.12(a) and
(b) show the average genotypic diversities obtaimgdhe FT 3D-cGA without and with
migration, respectively; while the average genatyjiversities obtained by the Dynamic FT
3D-cGA without and with migration are shown in Figuwt.13(a) and (b), respectively. As
can be seen from Figure 4.12(a), the populatiorrdity increased significantly as the fault
ratio increased, and this behaviour shows how #aechk difficulty dramatically increased
leading to an increase in the number of generatimduction in search success rate, and
increase in execution time. It can be noted tha#@86 faults, the population diversity trend
was almost steady over all the allowed number oegions (see Fig. 4.12(a)) due to the
difficulty in the convergence ability for high fauktio. This tendency led to the sharp drop
in the search success rate. For instance, for 40Msf the search success rate obtained when
solving not onlyfgps but also all the other problems, was 0%.

Figure 4.12(b) shows the effect of introducing mhigration on the population’s diversity
and thus the performance of the algorithm. The atign technique significantly enhanced
the ability of the algorithm to converge, leadingat considerable reduction in the number of
generations. Nevertheless, a main observatioreigliity of the algorithm to converge for
40% faults; e.g., fofgps the search success rate obtained increased sanilfi to 94%.
However, the efficiency deteriorated as the alparmistarted to converge at a late stage. For
example, the algorithm convergence began at géner@0 (see the diversity trend in Fig.
4.12(b)).

As mentioned earlier, the main reason for increpsire number of generations is to
increase the reliability of the algorithm. Figurd2(b) provides a clearer illustration in this
regard, specifically the diversity trend for 40%ilfs. It can be seen that the diversity level at
the last generation is still too high, despite alhdity of the algorithm to converge. Hence,
the increase in the maximum number of generatiorne with fault ratio, is intended to

deal with this issue.
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The diversity obtained for the Dynamic FT 3D-cGAlwaut migration is shown in Figure
4.13(a). As can be seen, the diversity trewdsdc approach almost zero for all fault ratios
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Figure 4.12.The average genotypic diversities obtained by BIc&A when solvindgpsfor each
fault ratio.
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Figure 4.13.The average genotypic diversities obtained by Dnind&T 3D-cGA when solvinfsps
for each fault ratio.

considered; however, the efficiency of the algamnitideteriorated slightly due to the
increased number of generations offered. As exgeetéhough this approach significantly
outperformed the FT 3D-cGA without migration, itsvstill worse than the FT 3D-cGA with
migration (e.g., the results obtained by the dywaatgorithm were 162.19 generations and
56% search success rate, while those obtainedeblatter were 48.78 average generations

and 94% search success rate). The increase ortheimumber of generations promoted
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more exploration, which in turn affected the quabf the solutions. Consequently, it could
not greatly add benefits due to the search diffjciiduced by the faults. This observation
confirmed the need and the importance of emplogngitigation technique, especially in
the presence of faults.

The influence of combining the migration techniquiéh the Dynamic FT 3D-cGA on
the population’s diversity is demonstrated in Fegur.13(b). Commonly, the migration
enhances diversity by promoting more exploratiooyvéver, in this study, the migration
promotes the exploitation because it aims at enihgrtbe local selection intensity through
substituting fault-free individuals for the isoldte@nes. In other words, the size of the
neighbourhood is preserved leading to maintainighal selection intensity. Consequently,
this combination shows a balance between the esqpbor offered by increasing the number
of generations and the exploitation offered throuoggration. The effect of this balance can
be seen by comparing Figure 4.13(a) with 4.13(bbhasnumber of generations needed by
the algorithm to converge was significantly reducetile alleviating the premature
convergence. For instance, for 40% faults, thecbesuccess rate obtained was 99% within
an average of 52.04 generations and 0.126 secwidle a search success rate of 56%

within an average of 162.19 generations and 0.@mekcwas obtained without migration.

4.3.3 Conclusion

This study proposed a new algorithm, the Dynamic3BPFcGA, for handling failures that
occurred at individuals’ phenotypes due to SEUgarticular. The algorithm is based on the
canonical model of cGAs and is a modified versibthe past approach (FT 3D-cGA) that
uses genetic diversity to identify and isolate tiaindividuals. The most critical fault model
was tackled in conjunction with different faulticast.

Our main motivation for this study was to improwe teliability and performance of the
FT 3D-cGA through dynamic control of the explorafiexploitation trade-off. The dynamic
calculation ofMaxGensbased on fault ratio encountered helped to enhtrecexploration.
On the other hand, the exploitation was enhancexigfn the use of the proposed migration
technique.

To illustrate the improvements achieved, the DymaRT 3D-cGA was compared with
the FT 3D-cGA in terms of efficiency, efficacy, amgpeed. Both the algorithms
demonstrated successful recovery of up to 40% Sawspecially when the migration
technique was employed. Thus, we can confirm thatuse of migration as a mitigation

technique to fault tolerance offers considerablgrovements in the efficiency, efficacy,
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speed, and reliability of the algorithms, espegi#dl the high ratio of faults.

Besides being a mitigation technique, the integrabf migration into both algorithms
plays an important role in controlling exploratiexploitation trade-off. Exploration and
exploitation are the two main issues that deterrtiieeperformance of EAs. The population
diversity is improved by exploring the search spadkile the optimum solution could be
found by exploiting the fitness information. In ghivork, the best overall performance in
terms of efficiency, efficacy, and speed was adaiewith the use of the migration technique
owing to its effect in enhancing the local selettiotensity and diversity in proportion.

In conclusion, we note that the FT 3D-cGA and DyiwaRl 3D-cGA with migration
showed the best performance, and the differencegeba the results obtained by both
algorithms were not significant. An exception was i, in which case the Dynamic FT
3D-cGA with migration significantly outperformedeltT 3D-cGA with migration mainly in
terms of efficacy and reliability. The best efficey (or the minimum number of
generations) was achieved by the FT 3D-cGA withratign; however, the lower number of
generations was found to be due to the signifidéfférence in the obtained search success
rate. For example, solving. by FT 3D-cGA with migration resulted in averagemier of
generations and search success rate as followS: (B886), 1426.6 (45%), 1576.7 (33%),
1642.8 (12%) for 10%, 20%, 30%, and 40% faultspeesvely (refer to Tables 4.22 and
4.23). In contrast, solving the same problem by Dyeamic FT 3D-cGA with migration
resulted in 1460.2 (78%), 1914.4 (79%), 2348.2 (B28d 3028.6 (84%) for 10%, 20%,
30%, and 40% faults, respectively (refer to Tae®8 and 4.29). From the previous
example it can be noticed that for all fault ratles number of generations obtained by FT
3D-cGA with migration were significantly lower thahose obtained by the Dynamic FT
3D-cGA with migration. Conversely, when observihg thit rates obtained by the dynamic
algorithm, they found to be higher than those oiatdiby the static version, which explains

the difference in the obtained number of generation
4.4 Summary and Contribution to Knowledge

This chapter aimed to propose a highly reliable d&a# is tolerant to failures, for SEUs in
particular. This research targeted fitness scayesters due to the importance of the fitness
information in guiding the search process. Twadaaltfault models were considefédtuck

at ‘0’ and stuck at ‘1’ faults. The main objectivas to propose an algorithm-based fault

tolerant algorithm using the inherent features®As in order to deal with SEUs. Another
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objective was to improve the performance of th@llgm in order to effectively deal with
high fault ratios. The following points summariséhav this study has contributed to

knowledge.

* The proposed FT 3D-cGA showed its ability to autboadly identify and isolate
faulty cells based on genetic information such exsegic diversity. In addition, the
algorithm was successful in recovering up to 40Ult$ataking into consideration
the two most critical fault models (i.e., stucKGitand stuck at ‘1’ faults). However,
the performance of the algorithm varied accordingthe fault model and the

problem to be solved.

» Different selection intensities were defined andeased in order to improve the
performance of the algorithm. The different intéiesicame about by controlling the
selection rate of the local selection, which is ST. The differsetection pressures
showed different exploration/exploitation tradespfivhich in turn showed different

rates of improvements.

« An explicit migration technique was proposed andwshto not only mitigate the
impact of faults but also to improve the performranaf the algorithm. The
technique’s main aim was to replace faulty indiaduby fault-free ones, thereby
reducing the impact of faults. In addition, througiigration, the genetic diversity

was enhanced, leading to improved algorithm peréorce.

« Several algorithm configurations concerning mignatand selection intensity were
assessed. The best efficiency was achieved byhittedonfiguration (STr = 0.0 +
Migration) for stuck at ‘0’ faults, while for stuck at ‘laftilts the first configuration
(ST, r = 0.0 +noMigration) achieved the best efficiency. The best effica@sw
obtained by the fourth configuration (9T5 0.5 +Migration) for both fault models,
mainly due to the selection intensity provided w@f,r = 0.5. A rate of 0.5 was
selected as a way to enhance the genetic diveasitly therefore promote more
exploration leading to improve the efficacy; howevbke efficiency of the algorithm

was deteriorated.
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Considering the most critical fault model (i.eydk at ‘1’ for fgps and stuck at ‘0’
for the other problems), the combination of $T= 0.0 and migration showed
significant improvement mainly in the efficiencytbie algorithm reaching to 35.9%.
The introduction of migration covered the loss efilx and therefore enhanced the
genetic diversity, while at the same time $F 0.0 offered high selection pressure
leading to a reduction in the number of generatimtgiired to solve a problem.

Thus, this combination offered a better explordgaploitation trade-off.

Different migration schemes were proposed and nmedsto further improve the
performance of the algorithm, in particular for Migault ratios. The proposed
migration schemes were similar in their frequenayd aates. However, the
difference resided in the source and/or the fitredghe migrants. Migration scheme
2, which used the fittest migrants within the catraeighbourhood to replace the
faulty individuals, showed its ability to enhande tlocal selection intensity and
diversity in the population. Therefore, it achievéte best overall algorithm

performance in terms of efficiency, efficacy, apéead for both fault models.

A dynamic fault tolerant approach (Dynamic FT 3DA)Gwas proposed and it
showed further improvements in the performancethadeliability of the algorithm.
Two dynamic adaptation schemes were introduced fithe scheme KlaxGensg)
aimed to balance the number of fithess evaluatduns to the reduction in the
number of individuals alive. Therefore, this schemsed the number of faulty
individuals to recalculate the number of evaluatioreeded to solve a problem
effectively. The second schemMgxGensg) is similar to the first; however, this
scheme considered the impact of faults. Theretfeyther increase in the number

of evaluations was offered to tackle the addedadlify caused by faults.

Several algorithm configurations concerning mignatand dynamic adaptation were
defined and assessed. The dynamic calculationeohtimber of fitness evaluations
enhanced the exploration, while exploitation washagited by introducing
migration. The introduction of migration resultedsignificant improvements, up to
66.7% in efficiency wititMaxGeng and 62% witiMaxGeng, 100% in efficacy with
MaxGeng and 99% withMaxGensg, and 32.4% in speed witlaxGeng and 33.6%
with MaxGens.
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The proposed FT 3D-cGA was compared to the propDyedmic FT 3D-cGA with
and without migration. With migration, both apprbas showed the best overall
performance with non-significant differences in tlesults obtained when solving
most of the problems. An exception was fay, as Dynamic FT 3D-cGA with
migration significantly outperformed FT 3D-cGA witigration in terms of
efficacy and reliability, while the latter achievéte best efficiency. However, this
less number of generations was found to be due digrdficant difference in the
search success rate obtained.
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Chapter 5

Dynamic-Adaptive cGAs

Genetic search occupies an important position ialutonary computation. The most
important issues in the evolution process of gergtarch are exploration and exploitation
(Oei, Goldberg, and Chang, 1991). The aim of tlmapter is to investigate the inherent
ability of cGAs in controlling the exploration/exjation trade-off. Exploring the search
space enhances population diversity and helpsesithping local optima; which is provided
by the existence of overlapped neighbourhoods.h&t $ame time, exploitation reduces
diversity by focusing on the fitter individuals ides each neighbourhood, which in turn
improves the quality of the solution. Improper Inala between exploration and exploitation
leads to ineffective EA. Hence, proposing a newraggh that dynamically balances
between exploration and exploitation is another amthis chapter. The concepts of
exploration and exploitation are strongly relatesl @ increase in one results in a
proportional decrease in the other. For examptaeasing exploration (or genetic diversity)
decreases exploitation, and vice versa.

In addition, the balance between exploration axgloitation is the key to determining
an algorithm’s behaviour and performance (Herraichlaozano, 2000). Several studies have
been carried out to investigate and dynamicallytrobithis trade-off. One way of doing this
is to tune the relationship between the shape amife of the neighbourhood and the grid
(NGR (Alba and Troya, 2000; Giacobiet al, 2005). Another way is through the use of
probabilistic selection mechanisms such as anigirestochastic, and centric selections
(Simoncini et al, 2006; Simonciniet al, 2009). All the techniques cited are aimed at
controlling the global selection pressure as higledion pressure supports exploitation

while low selection pressure favours exploratioar(® and De Jong, 1996).
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The selection pressure has a huge impact on theraipn/exploitation trade-off and
therefore algorithm performance. With high selactmyessure, only the fittest individuals
survive and conquer the entire population, leadiogreduction in convergence time.
However the quick convergence may lead to the algorbecoming stuck in local optima.
On the other hand, low selection pressure weakkenmfluence of the fittest individuals on
the population, leading to algorithm divergence.situdy showing the influence of the
selection pressure on the performance of cGAs wesepted by Simoncimit al. (2007).

Ursem (2002) presented a diversity-guided apprdB¢BEA) to dynamically alternate
between exploration (mutation) and exploitatiort@rabination and selection). The diversity
measure used in this work is the distance-to-aeepamint. The DGEA was compared to
different evolutionary search models and showedstantling improvement not only in
accuracy but also in algorithm efficiency.

Alba and Dorronsoro (2005), in their research psgloan adaptive cGA that controls the
exploration/exploitation trade-off through the imteange between three grid topologies:
square, rectangular, and narrow. These topologare welected to present different ratios
(NGR and thus different selection pressures. The cgeviee speed was used as feedback
to alternate between the exploration and explomagphases. A shift to ‘explore’ mode
occurred if the convergence speed was too high.vé&wsaly, a shift to ‘exploit’ mode
occurred if the convergence speed was too slow.pfoposed algorithm outperformed the
other studied algorithms such as static and prgrpromed cGAs. In addition, it has been
concluded that narrow grids are well suited for tmaodal and complex problems, while
wider grids are more appropriate for simple proldem

In a later study, Maeda and Li (2007) proposedzzyfiadaptive approach that uses a
diversity measure to tune the genetic parametershefisland search model (dGA).
Simulation results showed the efficiency of thepmsed algorithm.

From all the previous studies, it is believed tatmre efficient to induce different levels
of exploration/exploitation trade-off in differetimings of the search process. Therefore,
studies concerning the dynamic control of explordtxploitation trade-off are increasingly
being conducted.

In this chapter, the main motivation is to desigm effective algorithm that can
dynamically adapt to changes in the convergencedspbrough appropriate balancing
between exploring the search space and exploitieggbod solutions. Two new adaptive
3D-cGAs that dynamically control exploitation/exgdtion trade-off are proposed (Al-Naqi

et al, 2010b; 2012). The first approach uses a prolstililiselection mechanism and
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gradually tunes the selection probability base@ @opulation diversity measure (which will

be discussed in Section 5.2). In the second appydhe same metric used in the study of
Alba and Dorronsoro (2005), (population entropyused to guide the search process (this
will be discussed in Section 5.3). In addition,oirer to validate and provide a thorough
study of the performance of the proposed algorithmsomparison between the proposed

algorithms and other static and dynamic algoritisnzovided in Section 5.4.

5.1 Study of Selection Pressure

Selection pressure is a critical factor that ddferates between the different EA search
models. Different parameters such as topology arsize of the grid, shape and/or size of
the local neighbourhood, and the parameters ogémetic operators have an impact on the
global selection pressure. The global selectiorsquee determines the ability of the good
solutions to survive in the population. Therefdhe appropriate selection pressure should be
applied on the population in order to offer thetlemance between exploring the search
space and exploiting good solutions. As mentioraatie, one way to control the selection
pressure is through the use of appropriate setepwameters. Simonciet al. (2007, 2009)
proposed new selection techniquesnisotropic and centric selectiah$o appropriately
control the selection pressure. Moreover, in thenér study, a stochastic binary tournament
(ST) selection was tested to show its ability tprapriately control the selection pressure. In
both studies, it was proven that the global sedacpressure could be monitored by using
adequate selection parameters. In this work, th@@&Fator is selected as a local selection
method. Similar to the binary tournament (BT) setet; two individuals are randomly
selected and the best individual is assigned aaghibty of (1- r), while the worst one is
assigned a probability of wherer O [0, 1]. ST is equivalent to BT whar= 0 as the best
solution is always favoured.

The selective pressure defines the convergencel siseeell as population diversity, and
can be measured using growth curves and takeaowerrtiodels. Takeover time is defined
as the time needed for the best solution to contiigeentire population. In other words, the
takeover time is reached when the growth numbethefbest individual is equal to the
population size (Simoncinet al, 2006). This technique is used to study the induce
selection pressure; therefore, to be used effdgtihe selection should be the only active

genetic operator (Goldberg and Deb, 1991). Fig&tésand 5.2 show an average of 100
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independent runs for the growth number of the HLasdividual and takeover time,
respectively, for a cubic grid with a populationesdf 216 individuals arranged as6%6.

In Figure 5.1, it can be observed that the increaghe selection rate leads to slow
growth in the best individual. In other words, tbeportunity for worse solutions to be
maintained in the population increases, offeringrendiversity and promoting more
exploration. As a result, it leads to weaker s@decpressure and a longer takeover time (see
Figure 5.2). On the other hand, the global selacpoessure is strengthened through the

decrease in thevalue, promoting more exploitation.
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5.2 Diversity-Guided 3D-cGA

This section presents a new adaptive gradual #hgorihat is based on the 3D-cGA. The
main motivation for the proposed approach is torayppately control the balance between
exploring the search space and exploiting the $mstion. Based on diversity measure, the
proposed algorithm gradually tunes the selectioasgure by modifying the genetic
parameters, specifically the selection ratel'he exploration/exploitation trade-off is a dire
effect of the selection pressure; in which therends one appropriate pressure for all
problems. This approach will be compared to thigerdhms with static genetic parameters
in turn to show and confirm the cases in which ddaptive approach surpasses the other
static ones. In order to reach valid conclusions,&lgorithm is assessed using a benchmark
of six test functions and two real world problerhattpresent variable complexities. They
are: Rastrigin fk.d, Schwefel fs.), Rosenbrock fk.d, Ackley (ac), Michalewicz {uic),
Langermannf(a,g, FMS (evs), and SLE fs.g) problems (refer to Appendix A for details of
the benchmark problems). The algorithm descripisopresented in Section 5.2.1. Section
5.2.2 discusses and analyses the simulation resbttsned by the Diversity-Guided 3D-

cGA and the three defined static algorithms. Catioly remarks are given in Section 5.2.3.
5.2.1 Algorithm Configuration

This section introduces the Diversity-Guided 3D-cGAs mentioned previously, the

approach proposed here tunes the selectiom tzeed on population diversity. In this study,
the employed grid topology is fixed in order towed computation overhead. This is unlike
the approach proposed in (Alba and Dorronsoro, R00%vhich the grid topology has to be
changed, leading to misshapen neighbourhood refatiand therefore requiring the
computation of positions of new neighbours.

Before introducing the adaptive model, an explamaf some facts that lead to the
selection of the adaptive criterion is presentedfaddl®ws. First, as the search process
progresses the population diversity decays to redtlost zero, in particular when a good
solution conquers the entire population. Howevee, diversity of the population could be
lost too quickly, leading the algorithm to get fpag into local optima. Second, although the
‘explore’ mode allows the algorithm to escape laggiima, improvements in the solutions
only occur during the ‘exploit mode (Ursem, 2002s a result, the proposed adaptive

criterion aims to reduce the convergence speeddguglly reducing the selection pressure
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as the search process progresses. The selectisaupgreis reduced by decreasing the
selection rate, particularly when the computed average populaliearsities during the last
ten generations fall below a specified threshold.order to calculate the population
diversity, the well-known ‘distance-to-average-gbmeasure is employed (Ursem, 2002).
Algorithm 5.1 illustrates the adaptive model. Tiiagative criterion isd < y; whered is

the average population diversities of the lastgemerations, angis the threshold.

Algorithm 5.1 Adaptive model of Diversity-Guided 3D-cGA
1.if d<y then

2. if rz0then

3. Offer more exploitatioh

4. end if;

5.else

6. Do not change

7.end if;
1 The exploitation is offered by decreasing thaiseaater which in turn reduces the global selection pressiote that the

algorithm starts witl = 1.0.

The idea behind the introduced adaptive critereotoioffer adequate time to explore the
search space, which contributes to the discoveprarhising areas and avoids local optima.
This is followed by gradual exploitation, which ¢obutes to enhancing the solutions. This
gradual alteration reduces the possibilities ofrf@ire convergence. In the final stage, the
algorithm proceeds with the highest degree of etgilon ( = 0.0). Strong exploitation
makes the genetic search more effective, especidign solutions are near optimum. To
achieve the above objectives, the algorithm staitis the highest possible selection rate,
which isr = 1.0 (‘explore’ mode). This rate is then lowerghen the adaptive criterion is
fulfilled. The selection rate is then decreasedulady in order to gradually introduce

exploitation until the lowest bound is reached,shhisr = 0.0 (‘exploit’ mode).

5.2.2 Experimental Results and Analysis

In this section the results obtained by Diversityided 3D-cGA and three configurations of
3D-cGA, each with different static selection raséee presented and analysed. The same
parameters were used for all the considered prablsee Table 5.1). The population size
used here was 343 individuals arranged intox@x7 lattice. The defined neighbourhood
contained seven individuals (east, west, verticathand south, and horizontal north and
south, plus the one under consideration). The fiase€nt was the current individual while the

second one was selected by ST with ratdn arithmetic crossover operator with = 0.9
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was applied to generate an offspring. The offspiag then mutated by a non-uniform
mutation operator, the best for real optimisatiBadgk, 1996), with a probability &, = 1L,
wherelL is the dimension of a problem (i.e., the lengtht@f chromosome). Although the
dimension offgys is six, the same mutation probability was usedwéh all the other
problems. Areplace-if-betterwas used as a replacement policy, during whichctireent
individual was replaced if it competed with a bettffspring. Finally, the algorithm ended
when the difference between the average fithessesdivgf) and the optimum fitness value

(optf) satisfied a specified thresholdg+

Table 5.1.Parameterization used in the algorithms
Population size: 343 individuals
Parent selection: Current + STg
Recombination: AX, P.=0.9

Mutation: Non-uniform,P,, = 1L (L = individual length)
Replacement: Replace-if-better

Neighbourhood: NEWS

Lattice: TXTxT7

Stop criterion: [avgf—optfi < &

Since the complexity of the considered problemsedadifferent values of were used:
0.05 forfres 0.005 forfiang 0.01 forfeys, and 0.3 forfs.g while a more precise value
(0.001) was applied for the remaining problems.ilaity, different numbers of maximum
generations were used: 1000 generation$:f@ifvic, fLang, andfs.g 1500 generations fdgc,
and 2000 generations gy, fros andfeys.

The performance of the algorithm was measured usuegmetrics, the search success
rate, or the efficacy, and the average number ofeiggions, or the efficiency, of 100
independent experiments. Furthermore, in ordereterchine the significance level of the
differences in efficiencies obtained by the Divgr€buided 3D-cGA and the static
algorithms, statistically significant tests, witlb% confidence level were applied (details
about the statistical tests were provided in Seci@.3.1).

The results are presented in Table 5.2, wherewbemge number of generations and the
percentage of successful runs are shown for evalylgm and the best values arebimid.
The symbol ‘+’ in the Table indicates that the @éincy obtained by Diversity-Guided 3D-
cGA was significantly better than the one obtaibgdhe corresponding algorithm, while

worse efficiency is indicated by the symbef.' The symbol ¢’ denotes non-significant
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differences between the efficiencies obtained k® dbmpared algorithms.

Furthermore,

median absolute deviation®éd are included after the symbol ‘+'.

The value ofywas selected based on preliminary experimentshinhwdifferenty values

(0.3, 0.35, 0.4, and 0.45) were tested. A valug00.4 was selected as the best one in terms

of efficiency and efficacy for most of the studigdoblems (in order to avoid reader

distraction the details are provided in Appendi?,Blables B.3 and B.4). Certainly, there is

no one besy value for all problems, as pointed out by Alba @&uwafronsoro (2005), who

also indicated that there is no global best algoritor all problems.

In order to evaluate the Diversity-Guided 3D-cGAwas compared to three 3D-cGAs

with staticr. The first 3D-cGA used the lowestbound ( = 0.0); while the third one used
the highest bound ¢ = 1.0). The second static 3D-cGA used the meamevair = 0.5.

As can be seen from Table 5.2, the best efficiesntbesolvefrag fsch fuic, andfac were

obtained by the 3D-cGA with= 0.0 (with significant differences only fés, andfy,.0 see

test results in Table 5.2). However, concerningilainefficacies the Diversity-Guided 3D-

cGA is more robust as it obtains smaller mediarplalbs deviations; the exceptions are due

to the significant differences in the search sugcgates. In addition, using higher selection

rates to alleviate the exploitative behaviour & 8D-cGA deteriorates the efficiency as well

as reduces the search success rates. The worstnpanice was achieved by the 3D-cGA

with r = 1.0 as it showed more explorative behaviourcivitédcked the power to improve the

quality of the solutions.

Table 5.2.Convergence time (CT) and rate (CBbtained by the Diversity-Guided 3D-cGA

and 3D-cGAs with static values

Problem

3D-cGA

r=00

r=05

r=10

Diversity-
Guided 3D-cGA

f

Ras
fSch
fAck
fRos
fMic
fLang

fFMS

fSLE

611.14+ 62.50 (')
100%

1003.5% 1515 (-)
100%

1848.1+ 72.00 (')
83%

1518.3 #1045 (+)
10%

512.45% 4650(-)
100%

231.67% 50(-)
70%

1317.7 H505(¢)
74%

330.86+ 51.00 (')
15%

717.61 #3750 (+)
100%

1089.8 #760(-)
100%

1856.2 %5200 (*)
54%
1763.1 #9900(+)
14%
671.28 #7000(+)
100%
331.12 #3900(°)
83%
1360.5 316.0(¢)
89%

471.63 #55.00(+)
33%

866.31 #g300(+)
94%

1498.7 11_000 (')
%

0%
1303.7 *309.0(*)
15%
966.33 #3000 (+)
3%
707.91 #5700 (+)
95%

1220.9% 261.0(*)
47%

917.33 #3550 (+)
12%

641.72 550
100%

1209.9 #3160
100%

1897.4 5,0
83%
881.7+ 6365
50%
628.30 430
100%
308.45 445
96%
1294.7 #3515
100%

341.48 1350
39%

* For more details about the performance measptease refer to Section 2.2.3.1.
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Regardingfros and frys, the Diversity-Guided 3D-cGA outperformed the otlstatic
algorithms based on the two metrics, with a sigaifit difference in the efficiency fdgos
and a non-significant difference féiys. Concerning the static algorithms, although higher
values ofr (i.e.,r = 0.5 and = 1.0) should result in a higher average numbejeoferations,
fros @nd frys showed exceptions. This was due to the explor@imhoitation trade-off
offered by the algorithm, as well as the problemsrngetry. More exploration improves both
the efficiency and efficacy of the algorithm whenlving fro,s While only the algorithm
efficiency is improved when solvinfyys (remember that the best exploration/exploitation
trade-off is problem dependant).

Finally, concerning flang and fsig the Diversity-Guided 3D-cGA significantly
outperformed the 3D-cGA with = 0.5 andr = 1.0 in terms of both metrics, while it
considerably outperformed the static algorithmdwit 0.0 in terms of efficacy. This latter
improvement reached 24% when solvigg: and 26% when solvinfj.,, Furthermore, the
Diversity-Guided 3D-cGA showed more robust behavialthough the difference in
efficiencies comparing to 3D-cGA with= 0.0 is non-significant (see test results in €abl
5.2).

Figure 5.3 shows the average genotypic diverséiyds of 100 runs, which were obtained
by the Diversity-Guided 3D-cGA for the consideradlgems. From the figure, it is clearly
observed that the speed of the population divefsity is differed between the considered
problems. These differences confirm that each probintroduces a different level of
difficulty to the search, which therefore requickBerent exploration/exploitation tradeoffs.
In addition, it can be seen from Figure 5.3 thatbpems with higher complexity level such
asfiang andfems, show two distinctive trends as the diversity lestarted with an increase
rather than a reduction. The difference betweesethiends is the speed of the diversity loss,
which started at later stages; fbk,y the diversity level steeply decreases, while this
reduction is gentler fdgys.

In general, 3D-cGA withr = 0.0 achieved the best efficiency (in 6 out girBblems),
while the Diversity-Guided 3D-cGA showed more rabuehaviour. In addition, the
statistically significant results assert that thedpsity-Guided 3D-cGA is favoured for most
the problems. With respect to the efficacy of thgodthm, the Diversity-Guided 3D-cGA
obtained the best search success rates for allstidied problems. Hence, it can be
concluded that the Diversity-Guided 3D-cGA providiee best efficacy with adequate

computation cost (i.e., number of generations).
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Figure 5.3. Average genotypic diversities based on ‘Distameaxerage-point’ measure for the
Diversity-Guided 3D-cGA.

Furthermore, the Diversity-Guided 3D-cGA confirniee tcommon belief referred to in
(Alba and Dorronsoro, 2005), which states thatdadyoptimisation algorithm must initially
seek promising regions, and then gradually seamcheighbourhood of the best so far
points”. That is because the Diversity-Guided 3DAcS€arts with an ‘explore’ mode (i.e.,

low selection pressure) and then shifts to ‘exphoitde in an adaptive and gradual manner.

5.2.3 Conclusion

This section presented a new dynamic 3D-cGA, DitefGuided 3D-cGA, which uses
diversity measure to control the exploration/exlibon trade-off. The main idea behind the
adaptivity is to control and provide an appropribéance between the exploration and the
exploitation for an algorithm. This goal is achidvay tuning a genetic parameter, which is
the rate of the local selection mechanism.

The Diversity-Guided 3D-cGA showed superior perfante, mainly in terms of the
efficacy of the algorithm. In addition, the dynamidgorithm outperformed the static
approaches for most of the problems studied. Tleepions either did not have statistically

significant differences or showed more erratic vaha (seemad values). Hence, in
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general, the proposed adaptive model could achaesuitable balance between enhancing
population diversity (to escape local optimafficacy) and tuning good solutions (to

improve solution qualityl accuracy).

5.3 Convergence-Speed-Guided 3D-cGA

This section proposes another adaptive algorithmat traims to control the
exploration/exploitation trade-off dynamically. Takorithm is designed based on 3D-cGAs
because of their high performance features. Ingbgion, the methodology is based on the
change in the global selection pressure inducedlybhgmic tuning of the local selection rate.
The parameter tuning of the local selection metisod way to define the global selection
pressure. A diversity speed measure is used taedgba algorithm. This measure is adapted
from (Alba and Dorronsoro, 2005). A benchmark ofllskaown test functions and real
world problems was selected to investigate thectffeness of the algorithm proposed. They
are: Rastriginfk.d, Rosenbrockfg.y, Ackley fac), FMS (rus), SLE si5), and GPSfEpg
problems (details abodtps are provided in Section 4.2.2, while details abtha other
problems are provided in Appendix A). In additiomthis Section a comparison between the
proposed algorithm and other static and dynamiordlgns are provided in order to study
the different effects on the performance of the@athms.

Section 5.3.1 describes the configuration of ttwppsed algorithm as well as other static
and dynamic approaches, which are used in the atsopa The experimental parameters

and results are provided in Section 5.3.2, whiletiBe 5.3.3 gives the conclusion.
5.3.1 Algorithm Configuration

In this section, three different static 3D-cGAs &rst discussed; then they are evaluated
against the static algorithms proposed in (Alba Badronsoro, 2005). Following that, the
Convergence-Speed-Guided 3D-cGA is introduced dral dimilarities and differences
between the proposed algorithm and the dynamictagaglgorithm proposed in (Alba and
Dorronsoro, 2005) are outlined.

In previous discussion, the influence of usingadi#ht selection rates on the behaviour of
the algorithm was observed (refer to Section F=lijthermore, in order to investigate these
effects on the performance of the algorithm, finad groups of static algorithms consisting of

three distinct 3D-cGAs are described. The algoritimthe first group use different static

133



selection rates while the algorithms in the secgnoup use different statiblGRs, in
particular, different grid shapes (Alba and Doranas 2005).

The local selection method used in the first atbamic group is ST withh = 0.0,r = 0.7,
andr = 1.0; while the same grid and neighbourhood togies are defined for all algorithms.
In contrast, for the second group, Alba and Domomg2005) defined three 2D-cGAs that
use different statiNGRs, while the same selection method (BT) is useallinlgorithms. In
order to carry out a fair comparison, these algor# are implemented over 3D grid
topologies. The first algorithm works over a cui topology arranged as 6 x 6 x 6 with an
NGR of 0.313. The second algorithm employs a rectamgeiiboid arranged as 3 x 24 x 3
with anNGR of 0.129. Finally, a narrow cuboid grid arranged2ax 54 x 2 is used by the
third algorithm with anNGR of 0.059. The grid dimensions were chosen basedwon
reasons: the first is to produce an equivalenufadion size of 216 for the different shapes
(i.e., narrow, rectangle, and square), and thengkito produce selection pressures similar
to those obtained by the algorithms in the firgtugr. More discussion about the latter issue is
provided below.

The choice of the selection rates &@Rs above are made to offer the closest selection
pressure between the compared algorithms. As caediefrom Figure 5.4, the same growth
curve is obtained by the first algorithms in eacbug as they have similar parameters, most

importantly the cubic grid and selection n##y (as illustrated earlier, ST with= 0.0 is

250

100~

Number of the best individual

50

666/ 1=0.0 ||
-~ 343
—e— 2¢5472

——1r=1.0

——r=0.7

0 LEafeceooc | | | | | |
0 10 20 30 40 50 60 70 80 90 100
Generations

Figure 5.4.Growth number of the best individual with diffetemid shapes (6 x 6 x 6, 3 x 24 x 3, and
2 x 54 x 2) and selection rates<0.0,r= 0.7, and = 1.0).
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@ (b) ©

Figure 5.5. Alternation between different ratios: (a) cubM@R = 0.313), (b) Rectangular cuboid
(NGR=0.129), (c) narrow cuboidNGR= 0.059).

equivalent to BT). In contrast, the growth curvetamed by the second and third algorithms
in each group are slightly different. For examgihe takeover time (i.e., the point where both
curves started to stabilise) reached with diffefd@®@Rs was two generations prior to the
algorithms with different selection rates. Howeubgse curves are significantly different in
the way they change. For instance, the growth supitained with different topologies show
almost linear trends while the curves obtained ditferent selection rates are nonlinear.

As pointed out earlier, increasing results in more exploration while more exploitatig
observed whem is decreased (refer to Figure 5.1). Hence, tbpgsed adaptive algorithm,
the Convergence-Speed-Guided 3D-cGA, tunes theevallr for a specific convergence
speed in order to control the exploration/expl@tatrade-off.

A similar approach in determining the convergenpeesd is followed and the same
adaptive pattern is used as in (Alba and Dorrons2005). The only difference between the
dynamic-adaptive algorithm proposed in (Alba andrrbrsoro, 2005) and the proposed
Convergence-Speed-Guided 3D-cGA is in the way #poeation/exploitation trade-off is
controlled. Alba and Dorronsoro (2005) defined ¢hrdifferent grid shapéssquare,
rectangular, and narrdawin order to alternate between the exploration axglogation
modes on the basis of the convergence speed (remnethbét in this study these are
implemented over 3D grid topologies). Similar gstlapes are defined as in the static
algorithms discussed previously; the cubic gridsed to promote more exploitation while the
narrow cuboid grid is used to offer more explonati& middle point between exploration and
exploitation is provided by the use of the rectdagauboid grid (see Figure 5.5).

In contrast, the Convergence-Speed-Guided 3D-c@haites between different selection
rates, which are similar to the ones defined fa $tatic algorithms. The exploitation is
promoted throughr = 0.0,r = 0.7 presents the middle point, and= 1.0 promotes the

exploration.
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The convergence speed is measured through thelatadouof genotypic diversity, in
particular, the population entropy§. Besides being an inexpensive metric, it effitien
represents the state of the search (Alba and Dswron2005)H, is calculated as the average
values of the entropy of each gene in the popudatidence, the convergence speed is
determined by the difference in the population @mes of two successive generations

(AH, -AH,,, AH,=H,-H, ). If the difference decreases by a factor&pfthen the

convergence speed is fast; otherwise, the conveegepeed is slow when the difference
increases by (% ¢) (refer to (Alba and Dorronsoro, 2005) for mor¢ads).

The adaptive pattern defined is summarised in Atigor 5.2 (Alba and Dorronsoro,
2005). According to the convergence speed, in otdepromote more exploitation, the
proposed algorithm changes to the next lowealue (in (Alba and Dorronsoro, 2005), next
wider grid shape) while it changes to the next éighvalue (in (Alba and Dorronsoro, 2005),

next narrower grid shape) to promote more explomnati

Algorithm 5.2 Dynamic adaptive pattern

1.if C;then

2. Promote more exploitation; /[ oher to lower
value

3.else ifC, then

4.  Promote more exploration; /lcheandp higher
value

5.else

6. No change;

7.end if;

C, and C, are the convergence speed measures suchCth#& satisfied when the
convergence speed is fast abdis satisfied when the convergence speed is <lvandC,

are defined as follows (refer to (Alba and Dorrans@005) for more details):

C =AH, < (1+¢&)[AH,_,,
C,=AH, > (2-¢)[AH,_,.

(.1
5.3.2 Experimental Results and Analysis
In this section, first the parameters and perforgeametrics used in the experiments are

presented. Next, the results obtained for thecstatd the dynamic 3D-cGAs proposed in the

previous section are presented and analysed. ¥inall comparison between the
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Convergence-Speed-Guided 3D-cGA and the othercstatid dynamic 3D-cGAs are
provided.

The same parameters are used during the experimeotder to arrive at a fair
comparison. Table 5.3 summarises these paraméwrall problems, a population size of
216 individuals is used. These are arranged ow6a6 lattice. An exception is made for
feps @s a population size of 64 individuals organiseer a 4«4x4 |attice is used because of
its lower complexity compared to the other problems

The local neighbourhood defined contains severviddals, which are positioned on the
east, west, vertical north and south, horizontatmand south, and the centre. The first
parent was the current individual while the secpacent was selected by using ST with rate
r. An arithmetic crossover operator with probabilRy = 0.9 was applied to generate an
offspring. The offspring was mutated by applyingi@-uniform mutation operator, with
probability P. = 0.1. The replacement policy defined here weglace-if-better during
which the current individual was replaced if itsnqetitor (offspring) was fitter. Finally, the
algorithm terminated if the difference between thesrage fitness valuesvgf and the
optimum fitness valueoptf satisfied a specified threshold. Because of thiéerént
characteristics, we used different thresholds &mheproblem:0.003 for fgps 0.3 for fs g
005 for fews, 0.1 for fres @nd 0.005 for the other two problems. Similarly, the maximum
number of generations assigned was 150 generdtiofisss 1000 generations fdg g fras
andfr.s and 2000 generations ffafs andfac.

The performance of the algorithms was measuredyubiree metrics: the search success
rate (efficacy), the average number of generat{efficiency), and the average execution
times (speed) of 100 independent runs.

Preliminary experiments were carried out takingoirtdonsideration the proposed
algorithm (i.e., The Convergence-Speed-Guided 3Bjc&d the dynamic 3D-cGA based
on (Alba and Dorronsoro, 2005), in which differentvalues (0.05, 0.15, 0.25, and 0.3) were
tested. Based on these tests; 0.05 was selected for both algorithms as the bestin
terms of efficiency, efficacy, and speed for mdwt problems considered (to avoid reader
distraction the details are provided in Appendi8,B.ables B.6-B.9).

Table 5.4 presents the results obtained for alatherithms compared. For each algorithm
and problem, the average number of generationsehieh success rate, and the average run
times are illustrated. In addition, in order tostthe robustness of the algorithms, the median
absolute deviationmad are added to the results obtainethdis used because of the non-

normal distribution of the results obtained). Thestbresults achieved for each problem are
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marked inbold. The symbol ‘+' in Table 5.4 indicates that getigréhere are significant
differences between all the compared algorithm=ims of all performance metrics (details

about the statistical tests were provided in Se@i@.3.1).

Table 5.3.Parameters used in the experiments
Population size: 216 individuals (64 individuals fdgpg
Current + STy (BT for the algorithms in (Alba &
Dorronsoro, 2005))
AX, P.=09

Parent selection:

Recombination:

Mutation: Non-uniform,P,,= 0.1
Replacement: Replace-if-better
Neighbourhood: NEWS
Cubic: 6x6x6 (4x4x4 for fgpg
Lattice: Rectangular cuboid:x24x3 (2x8x4 for fgpg

Termination criterion:

Narrow cuboid: & 54x 2 (2x16x2 for fgpg

[avgf- optfl < threshold

Table 5.4. Experimental Results: Convergence time (CT), r&@®&)( and speed (SP)
obtained by different dynamic and static 3D-cGAs

Dynamic 3D-cGAs Static 3D-cGAs
E The The Rectangular Narrow
g convergence approach in r =00/ cuboid cuboid Test
& _Spege o (Alba & bl r=07 r=1.0 (Alba & (Alba &
Guided Dorronsoro, Dorronsoro, | Dorronsoro,
2005) 2005) 2005)
f 752.89: 455 541.43, 595 561.19: 410 781.32. 685 949.64. 70 521.68. 475 635.06: 275
Ras 100% 100% 100% 100% 57% 100% 100% +
51.25.461 37.68.: 410 41.17. 289 58.33. 569 46.48.: 168 34.15. 319 4474347
f 1598.1: 1430 | 1337.5:1805 || 1256.8:2035 | 1592.2, 1515 | 1991.0:000 | 1224.442550 | 1168.2:2010
Ack 99% 100% 100% 100% 1% 100% 100% +
117.7:103 | 100.54.1376 | 97.36:159 | 116.57:1004 | 128.3.0.00 91.98. 188 88.71:155
f 661.68: 1920 610.09; 1250 | 728.4141735 | 679.71:1770 953.0:380 869.66. 100
Ros 22% 0% 11% 12% 14% 3% 6% +
45.39: 1305 44.72. 970 53.23:122 46.24.118 60.44. 050 57.7+078
f 981.41:3420 | 944.53:3800 | 1039.1i2500 | 1127.5:2840 | 1533.1s3150 | 1022.3:3830 | 1317.0:2540
FMS 2% 54% 58% 69% 61% 64% 81% +
94.41. 35 90.65. 353 114.13, 279 105.9: 277 143.3: 312 113.1. 43 144.3. 29
f 535.46. 99.0 228.2:300 278.0:000 | 565.71i675 | 866.62:405 632.00: 0.00
SLE 26% 5% 1% 28% 8% 1% 0% +
37.91:702 16.27.028 19.5:0.00 45.5,5.20 59.27. 275 41.42. 000
f 93.02:9.00 70.57+ 900 71.52.85 113.44, 110 | 137.63:500 74.48. 5 91.65.70
GPS 100% 97% 96% 97% 11% 100% 100% +
1.76+0.16 1.38:015 1.44.017 2.3640.25 2.8840.10 1.57+015 1.95.0.28

* For more details about the performance measptease refer to Section 2.2.3.1.
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In general, the dynamic algorithm based on (AlbéRarronsoro, 2005) achieved the best
performance in terms of efficiency and speed whavirsg most problems concerned, while
the Convergence-Speed-Guided 3D-cGA achieved ttepleeformance in terms of efficacy.

Complex problems need a high level of diversitycamverge to the global optimum.
Changing the grid shapes requires a recalculatidheopositions of the individuals, which
introduces a kind of migration. This migration affenore diversity; however, it is limited by
good solutions because of BT. The combination fiéint selection intensities induced by
the alternation between different grid shapes hadrore diversity induced by the migration
leads to significant reduction in convergence t{ive, number of generations), and thus the
run time. For example, the improvement in the &dfficy and speed reached up to 28% and
26%, respectively, foffr,s when compared to the Convergence-Speed-GuidedGID-c
However, this approach failed to solve more compi@blems such dg.s and achieved low
search success rates when solving real world prahlen particularfs g in which the inter-
parameter linkage is very strong.

In contrast, the Convergence-Speed-Guided 3D-cGArals the selection intensity and
the level of diversity by allowing worse solutioimsbe involved in the update process, which
induces a positive effect on problems with highrdeg of complexity. Looking back at
Figure 5.4, it can be seen that there is a differdretween the trends obtained with 0.0
and those obtained with the cuboid shapes. Theldrebtained withr > 0.0 show more
gradual growth in the number of the best individuahat leads to a better
explorative/exploitative behaviour. Good exploratie essential especially at initial stages in
order to discover promising areas, while gradu&rofg of exploitation is crucial at later
stages in order to improve the quality of solutigAtba and Dorronsoro, 2005). Thus, the
behaviour observed helps to raise the search slo@#s; however, it increases the
convergence time.

Regarding static algorithms, in general, the wpestormance is achieved with=1.0 in
most problems because poor solutions are alwaysifad, which leads to weak exploitation
and premature convergence. In contrast, the befirpmnce is achieved with the different
cuboid shapes in most problems. Exceptiondgs@andfs g as the best efficacy is achieved
withr =1.0 and = 0.7, respectively, because of these problengidticomplexities.

The proposed Convergence-Speed-Guided 3D-cGA wapared with all other dynamic
and static algorithms considered. The results logvs in Tables 5.5 and 5.6, in which the
symbol ‘+' indicates that the proposed ConvergeBpeed-Guided 3D-cGA is significantly

better than its counterpart, the symboldenotes no statistical difference and the symbol
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indicates that the proposed Convergence-Speed-GuBia-cGA did worse than its
counterpart.

Table 5.5 compares the Convergence-Speed-GuidedG32Dto all other algorithms in
terms of average number of generations and aveuaigiemes, as similar results are obtained
with both metrics. Concerninfy g fros @andfrys, the efficiency and speed obtained by the
proposed algorithm were either significantly betiehad no significant statistical differences
to those compared. An exception is fgr; as the dynamic 3D-cGA based on (Alba and
Dorronsoro, 2005) outperformed the proposed ComvergrSpeed-Guided 3D-cGA. With
regard to other problems, the efficiency and spdieved by the proposed algorithm were
worse than those achieved by other algorithms,mxoe static algorithms with = 0.7 and
=1.0. An exception is fdps as the efficiency and speed obtained by the jsegbalgorithm
were statistically insignificant compared to theesrobtained by the static algorithm with
narrow cuboid. Based on the problems’ charactesidti,s andfacx are considered to be less
complex than other problems concerned. Thus, tred te diversity needed to solve the two
problems efficiently is less than the one neededalwe the other problems; howevéiy
requires more diversity thdg,s The high diversity provided by the proposed atban (refer
to Figure 5.4) is the main cause that leads totiaddi cost in terms of convergence time and
speed. Another additional cost in efficiency aneespwere observed féfps althoughfepsis
of high complexity, the problem’s dimension is adesably lower than other problems.
Hence, the efficiency and speed obtained by thpqsed algorithm are either significantly
better or have insignificant differences, espegiathen solving problems of high complexity.

Table 5.6 evaluates the Convergence-Speed-GuideciG2Din terms of search success
rate. The proposed algorithm achieves superiaraf§i for most problems; the improvements
are either significantly better or similar to ther algorithms compared.

To summarise, we note that for most cases the peapGonvergence-Speed-Guided 3D-
cGA does either significantly better or similar tlee other algorithms in terms of all
performance metrics; the exceptions are mainlyffarandfa.. Thus, it can be concluded
that the proposed Convergence-Speed-Guided 3D-c&Atle most desirable behaviour

among all the compared algorithms.

5.3.3 Conclusion

This study analysed the behaviour of a 3D-cGA agadlifferent grid shapes and selection

rates over several problems with variable diffigdtto investigate their influence on the
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performance of the algorithm. Next, a new dynandagive 3D-cGA, the Convergence-
to amycally balance the
exploration/exploitation trade-off. The proposedaaithm is compared to the first dynamic-

Speed-Guided 3D-cGA was proposed, which aims

adaptive cGA reported in (Alba and Dorronsoro, 3005

The proposed Convergence-Speed-Guided 3D-cGA msuihher search success rates
than all the other algorithms compared. In addjtian provides adequate efficiency,
particularly when solving problems of high comptgxiThus, in general, it can be stated that

the Convergence-Speed-Guided 3D-cGA could sucdbssithieve an appropriate balance

between the exploration and exploitation.

Table 5.5.Comparison of the Convergence-Speed-Guided 3D-e&sus other dynamic
and static 3D-cGAs in terms of convergence time)(@1¥d speed (SP)

The Rectangular Narrow

approach r=00/ cuboid cuboid

Problem | in (Alba & e r=0.7 r=1.0 (Alba & (Alba &

cubic
Dorronsoro Dorronsoro, | Dorronsoro

, 2005) 2005) , 2005)
fRas - - . * - -
fAck - - * ‘ - -
froe . . . . . .
fFMS ° y : + . +
foc - . . + . +
fGPS - - + + - .

Note that the comparison results based on the tetdes (CT and SP) are merged as the results @otaiere similar.

Table 5.6.Comparison of the Convergence-Speed-Guided 3D-w&sus other dynamic
and static 3D-cGAs in terms of convergence rate)(CR

The Rectangular| Narrow

approach r =00/ cuboid cuboid

Problem | in (Alba & c_ubi.c r=07 r=1.0 (Alba & (Alba &

Dorronsoro Dorronsoro, | Dorronsoro

, 2005) 2005) , 2005)
frne . . . + . .
f o . . . + . .
fRos + + . . + +
fus + . . . ) i
f SLE + + . + + +
fGPS : + . + . .

“ For more details about the performance measulesserefer to Section 2.2.3.1.
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5.4 Comparison of Diversity-Guided versus Other Dynamic
and Static 3D-cGAs

This section compares the Diversity-Guided 3D-cGrppsed in Section 5.2 to other
dynamic and static 3D-cGAs that were discussed dnti@ 5.3. They are as follows:
Convergence-Speed-Guided 3D-cGA, Dynamic and s@iliccGAs based on (Alba and
Dorronsoro, 2005), and 3D-cGAs with static selettiate ( = 0.0,r = 0.7, and = 1.0). In
order to obtain a fair comparison, in this secttbe Diversity-Guided 3D-cGA are re-
evaluated such that similar test suite and expetiah@arameters to those defined in Section
5.3 are used. The aim of the comparison is to stiveyoehaviour of the different algorithms
by exploring the influence of the exploration/extation trade-off on the search.

The benchmark chosen for evaluating the compagaatitims consisted of the following
test and real-world problems: RastrigiR.d, Rosenbrockfged, Ackley Fac), FMS (rus),
SLE (s.9), and GPSfEpg problems (details abotips are provided in Section 4.2.2, while
details about the other problems are provided ipefalix A).

The experimental parameters defined for the DityeGuided 3D-cGA were similar to
the parameters illustrated in Table 5.1, the oiffgigence being the population size as in this
section a population of 216 individuals arranged6aéx6 was used to provide similar
number of individuals to those offered by the otlsempared algorithms. Preliminary
experiments were performed in order to select #st talue ofy (recall that in this section
the population size is smaller than the one define8ection 5.2, therefore another set of
preliminary experiments were needed to select &st by the best chosepvalue based on
the convergence time, rate, and speed is alsaé€fer (o Appendix B.2, Tables B.4 and B.5
for more details). The parameters defined for tlemv@rgence-Speed-Guided and other
dynamic and static 3D-cGAs are summarised in Talde

The comparison was performed in terms of the falhgwperformance metrics:
convergence time, rate, and speed. Statisticallyifstant tests were used as approaches to
compare the different algorithms. These tests oetexd the significance level of the
differences between the compared algorithms (detablout the statistical tests were
provided in Section 2.2.3.1). The significance Isvare indicated using the following
symbols. A plus sign ‘+' denotes that the DiversByided 3D-cGA significantly
outperformed its counterpart, while a non-signifiicdifference is denoted by the symbodl
The symbol = indicates that the Diversity-Guided 3D-cGA did nge than its counterpart
(see Tables 5-6.10).
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Table 5.7 presents the results obtained for theBity-Guided 3D-cGA with 86x6 grid

topology rather than thex7x7 grid used in Section 5.2. The comparison reddsed on

each metric: convergence time, rate, and speed ilgrated in Tables 5:8.10,

respectively.

Table 5.7. Experimental Results: Convergence time (CT), @®), and speed (SP)
obtained by the Diversity-Guided 3D-cGA with@x6 grid

Problem

y=04

f

Ras
f Ack
Ros
fevs
foe

fGPS

570.8314955
100%
36.80:3.23

1399.0.190.0
100%
89.58.11234

445.87.256.0
55%
27.83459

981.65.336.5
52%
89.77:31.01

300.80.36.0
10%
20.28.5 56

96.26.65
100%
1.88.011

Table 5.8. Comparison of the Diversity-Guided 3D-cGA versuiken dynamic and static
3D-cGAs in terms of convergence time (CT)

The The Rectangular Narrow
| approach _ cuboid cuboid
Problem | COnvergence . tohag | "0 1 1207 | r=10 | (Abag (Alba &
-Speed- cubic
Guided Dorronsoro Dorronsoro, | Dorronsoro
, 2005) 2005) , 2005)
fRas + . D + + - +
frak + . . . . _ -
fRos ° + ° + . + +
fFMS . . 0 . + ° +
fSLE + . . + + + +
f GPS . - - + + - .

“ For more details about the performance measulesserefer to Section 2.2.3.1.
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Looking at Table 5.8, in general, it can be seex iih most cases the Diversity-Guided

3D-cGA outperforms the other compared algorithmieims of efficiency (see the ‘+’ sign),

in particular the ones that show more exploratighdviour such as 3D-cGA with= 0.7,r

= 1.0, and narrow cuboid; while there are only f@ges in which the Diversity-Guided 3D-

cGA does worse than the algorithms compared (itelichy the symbol-’). The remaining

cases show non-significant differences betweenctimepared algorithms (see the symbol

‘¢’). The reduced selection pressure induced by 3B-a@h r = 0.7,r = 1.0, and a narrow

cuboid assists the exploration leading to increasthe convergence time; however the

dynamic control of the selection pressure overcatmssssue.

Table 5.9. Comparison of the Diversity-Guided 3D-cGA versuikeo dynamic and static
3D-cGAs in terms of convergence rate (CR)

The Rectangular Narrow
The : .
Convergence _approach r =00/ cuboid cuboid
Problem in (Alba & N r=0.7 r=1.0 (Alba & (Alba &
-Speed- D cubic
Guided 0rronsoro Dorronsoro, | Dorronsoro
, 2005) 2005) , 2005)
e . . . . + . .
f oo . . . . + . .
fROS + + + + + + +
fFM s - . . . . . +
f SLE - . + - . + +
fGPS . . + . + . .

Table 5.10.Comparison of the Diversity-Guided 3D-cGA verstisen dynamic and static
3D-cGAs in terms of convergence speed (SP)

The Rectangular Narrow
The approach cuboid cuboid
Problem | COnvergence \ topag | "0 1 07 | r=10 | (Abag (Alba &
-Speed- cubic
Guided Dorronsoro Dorronsoro, | Dorronsoro
, 2005) 2005) , 2005)
fRas + . + + + . +
f Ack + + . + . . B
fROS + + . + . . +
fFMS . . 0 . + " +
fSLE + . . + + D +
f GPS . - - + + - +

“ For more details about the performance measulesserefer to Section 2.2.3.1.
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With regard to the efficacy, by inspecting Tabl8, generally, it can be observed that in
most cases the differences between the comparedthigs are insignificant (observe the
‘e’ symbol), while very few cases show the deteriorabf the Diversity-Guided 3D-cGA
(observe the-’ symbol). The significant success of the Diversiyided 3D-cGA (observe
the ‘+’ symbol) is mainly noticed when comparedhe algorithms that strongly support the
‘explore’ mode (i.e., have weak selection presssoeh as the ones with= 1.0 and narrow
cuboid, or the ones that support the ‘exploit’ m@ide, have strong selection pressure) such
as 3D-cGA withr = 0.0/cubic. As mentioned earlier, the exploratioety lead to reduction in
solutions accuracy, while the exploitation may ldadoremature convergence, with both
situations the algorithm would fail to find the beslutions leading to divergence and hence
reduction in the search success rate.

Table 5.10 compares the different algorithms imerof the execution time (speed).
Overall, for most cases, the Diversity-Guided 3DAcGutperformed the other compared
algorithms (observe the ‘+’ sign). Very few casbsws a decline in the speed obtained by
the Diversity-Guided 3D-cGA (observe the' 'symbol), while the rest of the cases show
non-significant differences (see the symbel).’ As with the case for the algorithm’s
efficiency, most cases that show the superior ingm@nts of the Diversity-Guided 3D-
cGA are acquired by the algorithms with more exgioe behaviour (i.e., 3D-cGA with=
0.7,r = 1.0, and narrow cuboid). Hence, a relation betwine efficiency and the speed of
the algorithm could be determined.

As each of the problems considered possessedadtiffeharacteristics, which presented
different levels of difficulty, there is no one gllly best algorithm for all problems. Hence,
different exploration/exploitation tradeoffs areeded to effectively solve a given problem.
More complex problems require more diversity anddeemore exploration, however too
much exploration leads to a reduction in the quatit the solutions. That is why the
algorithms with dynamic balancing between explomatand exploitation are favoured. A
general conclusion that was drawn from the previsastions stated that the dynamic
algorithms showed superior improvement in termalbperformance metrics comparing to
the static algorithms; this conclusion also confetmthat of (Alba and Dorronsosro, 2005).

The above discussion has provided a general indicabout the benefits gained by the
dynamic algorithms as these show the best perfazenadow, in order to provide a deep
insight into the behaviours of the different al¢jums, the problem of Rastrigifz{) is
selected for use in a case study of the behavibtireoalgorithms by inspecting the change

in the population diversities (remember that theediity loss trends are diverse among the
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different problems refer to Figure 5.3). Figures 5.6 and 5.7 showdseim the average
genotypic diversities obtained by the Diversity-Gd 3D-cGA and the other compared
algorithms, respectively.

Solvingfras the lowest numbers of generations were obtailyettid algorithms based on
(Alba and Dorronsoro, 2005), particularly the dyinam@ind static 3D-cGAs with cubic and
rectangular cuboids (refer to Table 5.4). Althoudpe measure of diversity used was
different, the Diversity-Guided 3D-cGA obtained thext better number of generations (see
Table 5.7). These achievements could be justifiedobking at Figures 5.6 and 5.7; the
diversity obtained by the Diversity-guided 3D-cGtarss reaching almost zero at generation
400 (see Figure 5.6), while for the dynamic andicc@D-cGAs with cubic and rectangular
cuboids (based on (Alba and Dorronsoro, 2005))tdtts to reach zero slightly before
generation 400 (see Figure 5.7). On the other hitneddiversity reaches zero at extremely
later stages with the other compared algorithnes, (the Convergence-Speed-Guided 3D-
cGA and the static 3D-cGAs with= 0.7,r = 1.0, and narrow cuboid); the worst efficiency
was obtained by 3D-cGA with = 1.0 as it shows the most explorative behavibor.that
reason, 3D-cGA witht = 1.0 also obtained the worst search successAates. well known,
the diversity is reaches almost zero when the foesstd solution conquers the entire

population.

T T
Diversity-Guided 3D-cGA

Average Diversity
o o o o o o
w B ol (=2 ~ =]
T
I I
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o
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0 ! ! ! ! ! !
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Generations

Figure 5.6. Average Diversities based on ‘distance-to-aveamjat’ measure when solvirfg,sby
Diversity-Guided 3D-cGA.
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Figure 5.7. Average Diversities based on ‘genotypic entropiiew solvingfr.s by the dynamic and

static 3D-cGAs under study.

5.4.1 Conclusion

This section analysed and compared several dynamit static algorithms based on
canonical cGA while maintaining similar parametansl test suite. The main motivation for
this comparison was to study the influences obuhiicing different exploration/exploitation
tradeoffs on the performance of the algorithmstiarmore, the comparison provided has
been validated through the use of statistical fitarice tests.

Theoretically, although there is no one adaptiveegon which is best and appropriate
for all problems, in general, the Diversity-Guid8®-cGA achieves the most desirable
performance for the most considered problems (heen bconfirmed by the statistical
significance tests). In addition, the Diversity-Gedl 3D-cGA not only improves the existing
performance, but also incurs no implementationsc¢sb grid shape change is needed).
Hence, it can be concluded that the Diversity-Gdi@B-cGA is an effective algorithm that

balances between the exploration and the exploitati a dynamic and continuous manner.
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5.5 Summary and Contribution to Knowledge

This chapter emphasised the field of dynamic-adimptan structured EAs, specifically
cGAs. The class of the adaptation considered fiar work was the adaptive-dynamic in
which the change occurs according to feedback nimtion from the algorithm. The
importance of dynamic cGAs is growing due to theapability for self-adapting their
exploration/exploitation trade-off. In the literagy several ways have been investigated in
order to enhance the population diversity and abiogly the global selection pressure. A
simple way was to rearrange the locations of tliéviduals through the change in the grid
shape. Another way is through the control of genptirameters such as the selection rate
(which is the method used in this work). The mawtiwation for this work was to introduce
new and effective algorithmic variants with low qauation costs that contribute to the field
of dynamic adaptation in EAs. Two new dynamic alipons have been proposed, namely:
the Diversity-Guided and Convergence-Speed-Guided@GA, which are mainly differing

in the adaptive criterion used. These algorithmsewsompared with other dynamic and
static algorithms from the literature. The Diveysiuided 3D-cGA achieved the most
desirable performance over the other compared itligts for problems considered. The

following points sum-up the main contributions biststudy to existing knowledge.

» The stochastic binary selection operator is used m&chanism to dynamically
balance between the exploration and the exploitafithe selection operator
guides the search towards exploration by increa$iagate of the selection (i.e.,
offer more chances for even worse solutions toigeyyor guides the search
towards exploitation by reducing the rate of sétect(i.e., focus on fitter

solutions).

* The Diversity-Guided 3D-cGA showed superior impnoemt in terms of
efficacy and reached up to 35% compared with staiflecGAs for the most
studied problems, and in specific problems withhbig complexity. This
improvement varied due to different problem comjilex. With regard to
algorithm efficiency, the Diversity-Guided 3D-cGAimved the most robust
behaviour although the best efficiencies were aghidy 3D-cGA withr = 0.0.

However, the differences in the efficiencies okddimvere not significant for the
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most studied problems; the exceptions could berefeo the differences in the

search success rate obtained.

The Diversity-Guided 3D-cGA demonstrated its caliigbto offer the most
suitable balance between enhancing population sltyerexploration) and
tuning good solutions (exploitation) for the modudied problems. The
following example confirms the conclusion statedwab Forfia.g andfeys, the
algorithm tended to promote exploration after thitidl stage (refer to Figure
5.3) instead of starting by introducing the exg@itdn, as is the case with the

other considered problems (less complex).

The Convergence-Speed-Guided 3D-cGA used similaaptaeg criterion
compared to the dynamic algorithm in (Alba and Dosoro, 2005). The
mechanisms used to swap between ‘explore’ and ogkphodes for the former
was the change in the selection rate, while thexgdadn the grid shapes was
used for the latter. The change in the grid shapdd to a rearrangement of the
positions of individuals, which therefore inducekid of individual migration
that contributes to improvement. In contrast, thheppsed algorithm was
successful in obtaining an appropriate balance dstwexploration and

exploitation without affecting other genetic opéras.

The proposed algorithms (i.e., the Diversity-Guidaad the Convergence-
Speed-Guided 3D-cGA) showed their capability inabalng exploration and
exploitation. Improvements in the performance pre=g as a reduction in the
convergence time and an increase in the convergesiee were achieved.
However, the rates of the improvements varied mpathle to the different
problems’ characteristics. In both algorithms tligaeency of the individuals
were maintained, which awards any improvement aeligo the change in

selection rates.

The comparative analysis of the proposed algorittthes Diversity-Guided and
the Convergence-Speed-Guided 3D-cGA) and other rdgnaand static
algorithms, showed that the most desirable perfoomdor the most studied

problems was achieved by the Diversity-Guided 3xcGherefore, the start
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with ‘explore’ mode following a gradual introducti@f the exploitation resulted
in the best balance between exploration and espioit (recall that the other

dynamic algorithms alternated between the two modes

In the Diversity-Guided 3D-cGA, the gradual intraetlan of the ‘exploit’ mode

was carried out by a reduction in the selectioa.r@his reduction only occurred
when the adaptive criterion was satisfied. This ma@ism conforms to cGAs
inherent features as cGAs starts with an explanadfgoromising areas followed
by an exploitation of good solutions. The dynandatcol of the move towards

exploitation added a significant advantage to cGAs.
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Chapter 6

Thesis Summary, Conclusion, and Future
Work

This thesis aimed to utilise the unique embeddedufes of cGAs in order to further
improve their performance, particularly when tacgli hard real-world optimisation
problems. As a result, the structural charactesstf cGAs, genetic operations, and critical
fault scenarios were investigated form static ayilachic perspectives. From the structural
point of view, the topology of the grid on whiclt@A should be implemented was targeted
as one way to improve the performance of cellulptingisation engines. From a fault
tolerance point of view, genetic characteristicshsas diversity were investigated to cope
with faults encountered. Critical fault scenariogl anitigation techniques to tackle these
scenarios were targeted through the utilisatiorthef genetic operations. In addition, the
genetic operations were investigated from a dynguaint of view in order to obtain further
improvements. The changes that occur in the gedetizsity as the search process progress
was used as a guide and a key factor to inducenandaig alternation between exploration
and exploitation modes.

In this chapter the works presented in this thassssummarised (Section 6.1). Section
6.2 draws overall and study-specific conclusionsalfy, guidelines for future works are

presented in Section 6.3.
6.1 Summary

This thesis demonstrated the effectiveness of leellaptimisation engines in tackling
problems of diverse complexities such as highlytimadal, epistasis, asymmetry problems.

The most well known standard GAs, ssGAs and genGawere compared to three-
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dimensional cGAS the basis for this research (refer to Section 2L2.Similar algorithmic
parameters and benchmark problems were used teevacha fair comparison. The
comparative results indicated the advantage of c®Abat higher efficacy was achieved
while maintaining desirable efficiency. Further,A$proved their ability to solve problems
of different characteristics, while standard GAefhto solve some of these problems.

Chapter 3 analysed the performance of cellular &#fdemented on grids with different
cellular dimensions. The expectation that cGAs \higfher cellular dimensions may offer
advantages over lower cellular dimensions was tlen nmotivation. This study is a
continuation of a preliminary study that was catrait with other members in the System
Level Integration research group. In this reseaachexperimental study was carried out by
considering an extended test bench including wsttfons of higher dimensions and real-
world problems to compare the performance of cGAsmimplemented on 3D and 2D grid
structures. In addition to the cellular dimensidhs, experimental settings included different
population and neighbourhood sizes.

In summary, the various configurations of the 3DAck&ave proven to be more efficient
than the 2D-cGAs in terms of convergence time wiaekling all the considered problems.
With respect to the efficacy, both cellular struesishowed similar success rates. However,
the 3D-cGA showed improvement over the 2D-cGAs waesmaller local neighbourhood
radius was applied. A 3D grid provides a largerghbourhood size than a 2D grid
considering similar population sizes. This is asamuence of the cell arrangement as it
consists of several 2D-layers. Interconnections/éen the cells result in vertical expansion,
instead of horizontal expansion as in a 2D gridhéligh this interconnection causes the
algorithm to be more exploitative, the balance leetvexploitation and exploration is kept
by choosing an appropriate neighbourhood radius wéispect to the grid's topology.
Therefore, if the selection pressure is controbgdhese parameters, higher search success
rates and better convergence time are reached.

If the benefits of the performance results obtaiaesl merged with the advantages that
3D technology brings, the resulting architecturesf significant advantages in terms of the
following: routing length decrease, interconnecta®tay reduction, and logic and memory
density increase. As a result, in the future, It @ possible to improve the performance of
today’s optimisation engines at both software asdiare levels.

Chapter 4 has targeted the area of fault tolerafoe fault looked at in this research was
SEU and the phenotypes were the data targetedultg.fahis study focused on faults that

targeted phenotypes due to their significant nolguiding the search process. If SEU affects
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essential system data, the system will fail. Acowly, isolation approaches and several
mitigation techniques were introduced. These teples were assessed against a benchmark
suite of well-known test and real-world problem$e$e problems were selected to include
diverse characteristics, which presented differdificulties to the search. Two fault

scenarios were considered in this research. Thes®sos were defined as being the most
critical. This chapter was divided into three pantgh each part introducing and adding new
mechanisms in order to increase the reliabilitg afystem and to improve its performance.

In the first part (Section 4.1), a new algorithndpproach that tackled SEU errors
targeting individuals’ phenotypes was proposed. fitogposed approach, Fault-Tolerant 3D-
cGA, is based on the canonical cGA, and genetierdity is the key metric used to identify
and isolate faulty cells (individuals). For bothultascenarios, different fault ratios were
considered; the ratio of the faults varied from @8040% of the population. The use of
genetic diversity demonstrated success in identfyand therefore isolating faulty cells. In
addition, the integration of an explicit migratimperation played a significant role in
mitigating the impact of faults. The proposed miigna operation in this research was
designed to adapt to fault ratio encountered amvetl significant improvement in the
performance of a system. Another operation that wsed to mitigate faults was the
selection operation. In this study a stochastiatyinournament selection was used, two
selection rates that have different effects on élploration and the exploitation were
assessed. These rates were selected to provide dgpertunity for faulty individuals to be
selected and involved while updating a fault-freell.cHence, different algorithmic
configurations offering different exploration/exjpdion tradeoffs were evaluated. These
configurations mainly differed in the defined sélec rate and the use of the migration
operation. Overall, the proposed algorithm demaistr success in recovering up to 40% of
faults. However, the level of improvement in penfiance varied according to the type of
problem and declined following the increment inlfaates. For all problems, the best
efficiency was achieved by the configuration thaipioyed the highest selection pressure
with migration. Conversely, the best efficacy wahiaved by the configurations that used a
lower selection pressure, in this case the integraif the migration operation showed no
significant improvement.

In the second part of Chapter 4, two new migrasonemes were proposed in order to
further improve the performance of the algorithragmsed in the previous section. The only
difference between the newly introduced schemestamdne proposed in the first part was

the source of the migrants. Using the first defimigiration policy, the migrants were
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selected from the first fault-free neighbourhoodnified, while using the new policies the
migrants were selected from the current neighbaah@he one for the currently updated
individual). However, the new schemes differed a® celected the fittest fault-free
individual while the other selected a random fdwde individual from the current
neighbourhood. In this study, the different migvatpolicies were compared for similar fault
scenarios and ratios. Simulation results demorestriite approach’s success in recovering
up to 40% of faults. In addition, the use of migmtas a mitigation technique for fault
tolerance offered considerable improvements in éificiency, efficacy, speed, and
reliability of the algorithm, especially for a higlatio of faults. In addition to being a
mitigation technique, the integration of migratiolayed an important role in controlling the
exploration/exploitation trade-off. Exploration aedploitation are the two main issues in
enhancing the performance of evolutionary algorghi®verall, the best performance in
terms of efficiency, efficacy, and speed was addewith the migration operation that
selected the fittest neighbour from the currengiiedourhood due to its effect in enhancing
the local selection intensity and diversity in gapulation.

The last part of Chapter 4 proposed a new algoritte@ Dynamic FT 3D-cGA, for
handling failures that occurred at individuals’ pbgpes, in particular, due to SEUSs.
Similarly, the approach is based on the canonicadehof cGAs and is a modified version
of the past approach (FT 3D-cGA) that used gerditiersity to identify and isolate faulty
individuals. The most critical fault models werekied in conjunction with different fault
ratios. The main motivation for this study wasngprove the reliability and performance of
the FT 3D-cGA through dynamic control of explorafexploitation trade-off. The dynamic
calculation of the maximum allowed number of getiers based on fault ratio encountered
helped in enhancing the exploration. On the otrendh the exploitation was enhanced
through the use of the proposed migration technitjuehis study, several configurations
concerning dynamic adaptation and migration wetfinee and evaluated. In addition, to
illustrate the improvements achieved, the DynanTfiS@B-cGA was compared to the FT 3D-
cGA in terms of efficiency, efficacy, and speedeTiesults indicated that both algorithms
demonstrate successful recovery of up to 40% oltfaespecially when the migration
technique was employed. Thus, it was confirmed thatuse of migration as a mitigation
technique to fault tolerance offers considerablgrovements in the efficiency, efficacy,
speed, and reliability of the algorithms, espegi&tlr the high ratio of faults. Overall, the
best performance in terms of efficiency, efficaagd speed was achieved with the use of the

migration technique owing to its effect in enhagcithe local selection intensity and

154



diversity in proportion. The FT 3D-cGA and the Dyma FT 3D-cGA both with migration
showed the best performance. The differences battheeresults obtained by the compared
algorithms were not significant. An exception was Ackley’s problem as the Dynamic FT
3D-cGA with migration significantly outperformedealirT 3D-cGA with migration mainly in
terms of efficacy and reliability. The best efficey was achieved by the FT 3D-cGA with
migration. However, this lower number of generadiaras found to be due to the significant
difference in the obtained search success rate.

Chapter 5 emphasised the area of dynamic adaptafibe main idea behind the
adaptivity was to dynamically control and provide appropriate balance between
exploration and exploitation for an algorithm. Exaition and exploitation are vital issues in
improving the effectiveness and the performances\aflutionary algorithms. Population
diversity is improved by exploring the search spaghile the optimum solution can be
found by exploiting the fithess information. Inappriate balance between exploration and
exploitation leads to inefficient search. This deapvas mainly divided into three parts.

The first part of Chapter 5 discussed the concépelection pressure. In this part, the
selection operation, the stochastic binary tourmdareelection, was used to induce different
selection pressures through the use of differelecten rates. An experimental setup was
carried out to demonstrate the affect of only #lection operation on the selection intensity
and the takeover time. The selection rates tha¢ wealuated varied between 0 and 1. The
results showed an indirect proportion between selepressure and selection rate. In other
words, the selection pressure decreased as thetigeleate increased. This section
established the basis for the subsequent parts.

The second part of Chapter 5 presented a new dgn8dicGA that used genetic
diversity measure to activate the control of thplesation/exploitation trade-off (Diversity-
guided 3D-cGA). In this study, tuning the genetjeator parameters, specifically the
selection rate, is the way to dynamically contha exploration/exploitation trade-off. A set
of diverse characteristic problems was used tosagbe performance of the algorithm. The
dynamic algorithm was also compared to three stetitsions, each using a constant
selection rate. These selection rates were sel¢éateffer strongest, moderate, and weakest
selection pressures. Simulation results showedthigatlynamic algorithm outperformed the
static ones with significant improvement for mostttte problems studied. The exceptions
either did not have statistical differences or shdwnore erratic behaviour. In general, the

proposed adaptive criteria showed the ability thiewe a suitable balance between
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enhancing population diversity (to escape localnagifl efficacy) and tuning solutions (to
improve solution qualityl accuracy).

The last part of Chapter 5 analysed the behaviéum 8D-cGA against various grid
shapes and selection rates over several problethsvaiiable difficulty to investigate their
influence on the performance of the algorithm. Nextnew dynamic-adaptive 3D-cGA
(Convergence-speed-guided 3D-cGA) that aimed at amjeally balancing the
exploration/exploitation trade-off was presentetle proposed algorithm used convergence
speed to activate the dynamic control, the meastirthe convergence speed and the
adaptive criteria used in this study were adoptedhfthe work of Alba and Dorronsoro
(2005). In their work, the alternation between &wapf grid structure was the way to
dynamically tune the exploration/exploitation treafé Three different shapes were
defined] square, narrow, and rectangular gride promote more exploration (change to
next narrower shape) or more exploitation (chawogeeixt wider shape), while the proposed
algorithm in this study alternated between thredectien rates to tune the
exploration/exploitation trade-off. These selectiates were selected to induce similar effect
to that of the one induced by the alternation betwgrid shapes. The proposed algorithm
was assessed against a benchmark of tests andaddlproblems and was compared to the
static and dynamic-adaptive cellular algorithm tvatre reported in (Alba and Dorronsoro,
2005), and the static algorithms from the previsertion. Simulation results showed that the
proposed adaptive algorithm provided higher searattess rates than all other compared
algorithms, as well as providing adequate efficyernmarticularly when solving problems of
high complexity. Generally, it can be stated thhe tproposed adaptive algorithm
successfully achieved a suitable balance betwegloration and exploitation.

In addition, the two proposed dynamic algorithmsivésity-guided 3D-cGA and
Convergence-speed-guided 3D-cGA) were comparedilgBiparameters and test suites
were compared to enable fair comparison. The mixdiveor this comparison was to study
the different effects of introducing different eaption/exploitation tradeoffs on the
performance of the algorithms. This comparison walglated through the use of statistical
significance tests. In general, comparative ressittswed that Diversity-Guided 3D-cGA
achieved the most desirable performance for moshefproblems considered. In addition,
the Diversity-Guided 3D-cGA incurred no implemergatcosts (no grid shape change was
needed). Hence, it can be stated that the Diye@&iided 3D-cGA is an effective algorithm

that balances between exploration and exploitatiadynamic and continuous manner.
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6.2 Conclusion

The overall aim of this thesis was to investigate inherent characteristics and the ability of
cellular genetic algorithms to improve their penfiance and reliability when tackling hard
optimisation problems. New techniques that addeal femtures of fault tolerance and
dynamic adaptation to the algorithms were introducestructural characteristics,
decentralised population, the shape and the sizéhefpopulation and neighbourhood
topologies, implicit and explicit migration opexais, genetic diversity, selection operation,
and selection pressure were all utilised to achibgeaim of this research. This research was
carried out in three main stages.

The first stage explored the cellular dimensiogakind their implications on the
performance of the algorithms. Several problemsiftiee real world and test functions were
tackled. These problems have diverse characteristiod thus introduced different
complexity to the search. As the topology of thiel glays a significant role in determining
the performance of EAs, a comparative analysis &etmcGAs with two-dimensional grid
(the most common grid topology) and three-dimerdiagrid (rarely investigated) was
developed. cGAs are commonly implemented on 1D Drt@oidal grid structures. The
comparison between 2D-cGA and 3D-cGA showed thatab-cGA is more efficient in
terms of convergence time than 2D-cGA for all thbpems considered, while both
algorithms achieved similar efficacies. Due to thextical expansion, the 3D structure
provided a larger neighbourhood size than the 2lxstre with similar distance steps. This
led 3D-cGA to show more exploitative behaviour; leeer, a balance between exploitation
and exploration was maintained by selecting an @gpjate neighbourhood radius with
respect to the grid topology. In conclusion, thatoa of the selection intensity through the
size of the neighbourhood led to the attainmenthigher search success rate and less
convergence time. The findings will add significlenefits for future optimisation engines.
Achieving better algorithmic performance with 3DA@reates a promising opportunity to
combine the algorithmic benefits with the beneftts advanced custom silicon chip
technology, 3D-IC.

The second stage was concerned with improving ffectweness as well as the
reliability of cellular genetic engines. Due to thignificant miniaturisation of systems’
electronics and its operation in hostile environteggaystems are subjected to different kind
of failures. Hence, in this stage fault-toleranp@aches and mitigation techniques were

proposed. The first approach utilised cGAs’ inhéffeatures such as genetic diversity and
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the selection operation. An algorithmic-based aaghnofor tolerating SEE errors as well as
an explicit migration operation were developed. &t of diverse-characteristic problems
were tackled and critical fault models togetherhwdifferent fault rates were considered.
Results showed that the algorithm was successfablating faults and showed the ability of
the algorithm to converge with up to 40% faultseTdest performance was achieved when
an explicit migration operation was integrated itite algorithm. The migration aimed at
covering the loss in cells due to the faults, whigthanced the reproduction process. In
conclusion, the explicit migration operation playadvital role in mitigating faults and
offered a better exploration/exploitation trade-off

Subsequently, two more migration operations wep@sed with the aim of further
improving the performance. The best overall perfomoe was achieved when the migration
scheme that selected fault-free and fittest migrdram the current neighbourhood was
utilised. A final improvement of the proposed fatdterant 3D-cGA was carried out by
introducing a dynamic adaptation technique as agation measure. Several algorithm
configurations were defined and assessed whichcalsoerned the integration of migration.
Results confirmed the previous findings, especidléyvital role of the migration operation.

During the final stage of this research, adaptiyeashic 3D-cGAs were developed in
order to obtain an appropriate balance betweeroeagdn and exploitation. A first approach
was introduced by utilising the genetic diversithe dynamic search was guided by the
genetic diversity and the selection rate was dynaltyi tuned according to the degree of
diversity. The other proposed approach was guidgdtHe convergence speed and
accordingly the selection rate was tuned. The trap@sed approaches were evaluated and
compared with other static and dynamic 3D-cGAs. uResdemonstrated the high
performance of the first proposed approach witipegesto other compared algorithms. The
achievement of appropriate exploration and expgioita balance while maintaining

algorithms’ performance will positively contribute the field of dynamic adaptation.

6.3 Future Work

This thesis focused on the inherent features of £@Ad their ability to improve cGAs
performance. Three main aspects were exploredstthietural characteristics including the
cellular dimension and the topologies, size, andpshof the population and local

neighbourhoods, the area of fault tolerance, amddynamic adaptation. Although this
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research thoroughly explored cGAs from various espeseveral aspects are still available
for research.

This thesis has explored the effectiveness of c@Asn implemented on 3D cubic grid,
while a little attention was paid to other 3D gsidapes. Therefore, the main opportunity to
work in the future is to investigate the performawndé cGAs when implemented over other
3D gird shapes such as narrow and rectangular dsibbifferent grid shapes offers different
exploration/exploitation tradeoffs and therefore tise of a particular grid shape may allow
more efficient optimisation for a specific type pfoblems. Previous researchers have
showed the influence of using various grid shapethe performance of cGAs when solving
problems of various complexities; however, thesediss concerned 2D grid topology. Thus,
there is a need to extend previous studies to 813.gn addition, this thesis has showed that
the use of higher cellular dimensions (i.e., 3Cfei promising results, in particular when
solving problems of high complexity (i.e., real-dbproblems). This finding encourages the
investigation of use even higher cellular dimensignch as 4D topology. Increasing the
cellular dimensionality would result in more intenmections between cells producing a
denser neighbourhood and faster spreading of mhgils. Such configurations may offer
advantageous for even harder problems. Howeverarafud selection of the genetic
operations and other parameters should b mades tbsmses open a wide research area that is
worth studying.

The next opportunities for further investigatiormcern the area of fault tolerance. The
proposed fault tolerant approach focused on SEEsmwdrgeting only the phenotypic space.
This approach can be further extended to tacklererargeting the genotypic space in
conjunction with the phenotypic space. The chartas occur in one space are clearly
reflected in the other. Hence, further investigai® needed to develop isolation criteria that
tackle faults in both spaces. Another opportuisitio investigate other fault scenarios as the
research on fault tolerance only considered thertwst critical fault scenarios. Moreover,
besides the phenotypic and genotypic spaces, tiiie Mtate Machine is a potential structure
of cGAs for faults to occur. Therefore, fault t@et technique can be further investigated to
consider other critical internal cGA structures.

Other opportunities can also focus on the areayofuahic adaptation. This research
focused on the diversity and convergence speedtyg@indased measures. Therefore,
further investigations are needed to evaluate pigpime or hybrid-based measures for
diversity and convergence speed. In addition, thpr@aches proposed to dynamically

balance between exploration and exploitation us$exrl delection operation as a way to
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achieve the dynamic control. Other genetic opematiguch as crossover and mutation can
play an important role in the dynamic adaptatioxpl&ring the ability of these operations to

dynamically tune the exploration/exploitation traafémay result in less computation time.
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Appendix A

Description of the Benchmark Problems

The algorithms, which were proposed and investijatehis research, were evaluated with
a careful selection of performance benchmark problen order to avoid an ad-hoc
conclusion. The problems considered are selectethegs possess diverse characteristics
such as multimodality, epistasis, regularity, asgnametry, introducing different levels of
difficulty into the search (GEATbx, 2005; Alba abadrronsoro, 2008). The details of these
problems were omitted from the previous chapteneaders can pay more attention without
any distraction. This Appendix presents a briefcdption of all the problems used in this
research. All of the problems studied were belanthé field of continuous optimisation due
to their complex features are commonly acquiredrdsi-world problems. Some of the
problems selected were from well-known academi¢ faactions, while others were
obtained from the real world.

Details about the test functions selected are pteden Section A.1, while Section A.2

gives the details of the real-world problems.
A.1 Test Functions

In this section seven benchmark test functions fueefi-known continuous minimisation
functions are illustrated. They are: Rastrigin, \Betel, Griewangk, Ackley, Michalewicz,

Rosenbrock, and Langermann probléhtlke details are provided below.

Rastrigin’s problem(f_J):

f. . is non-linear, multimodal, separable, and symrodtmction. Multimodality] a

Ras
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Figure A.1. Search space of Rastrigin function of two variable

large number of local optimhaincurs more complexity into search process. Thakecause,
during the search process, an algorithm tries tapes local optima to avoid stagnation.
Separability indicates the inter-dependency of getteerefore, a separable function has no
epistatic interactions between its decision vaeabConsequently, an algorithm tackles each

variable independently. The objective function asRigin’s problem is provided in (A.1).
fres(X) =100+ Y" (x* ~10C0S@7,)). (A1)
i=1

wheren is the number of variables (i.e., problem dimens&nd X represents the encoded

variables with each variable ranges within the interval of-512+512]. The global

minimum value is located & .. = (0,...0) such thatf__(x_.)=0.

Ras\“*min
This function is comparatively difficult because itd large search space and its large
number of local minima; however these local miniama regularly distributed. Figure A.1

illustrates the search space of a two-varidple
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Figure A.2. Search space of Schwefel function of two variables

Schwefel’s problengf,,):
f., IS also highly multimodal, regular, and separdhlection. It is characterised by its

global minimum is geometrically far from the nexsb local minima. Consequently, it is

catalogued as a difficult test function for mostimgsation techniques as these may trapped

in a local minimum region. Equation (A.2) illusteatthe objective function of,.

fo(X) = 4189829n+zn:xi sing/[x|): (A.2)
i=1

where n is the dimension of the function. The variablkesare delimited within a range of

[-500+50( . This function has its global minimum locatedx@}, = (420.9687...420.9687%

and has a valué(x..,) =0. Figure A.2 shows the search space of two vasablg.

GriewangK’s problenf,,):
fo; is a highly multimodal has many local minima, regular, and non-separable

function. Non-separable functions are highly episiastrong interactions between genes
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Figure A.3. Search space of Griewangk function of two variable

and has the ability of modifying one gene by thimgd effect of one or more genes.
Therefore, this kind of functions is more diffictdt optimise since moving from one point to
another in the search space highly depends orothegction of two or more genes. Thus,
the phenotype of an individual is affected by onenore genes. The objective function of

is defined in (A.3).

1:Gri

cos X' (A.3)

Gri

4000

where n is the dimension of the function. The search spaalimited within a range of

[-600+60( units per variablex . The global minimum is located &, = (0,...0) with a
valuef, (x,,) =0. The number of local minima grows exponentiallyewithe number of

variables increases. Figure A.3 showsg search space of two variables.
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Figure A.4. Search space of Ackley function of two variables.
Ackley’s problem(f,,):
fa POSSESSes similar characteristics as thosé,of multimodal, regular, symmetric,
and non-separable. This function has moderate @ity however algorithms that only use
the gradient steepest descent are likely be trappkxtal minima areas. Therefore, the best
algorithms to solve this problem should efficieribiglance between the exploration and the
exploitation. To solve this problem the objectivendtion shown in (A.4) has to be

minimised.

fae(X) = 20+ e-20[&xp(-0.2, /% X)) - exp(%Zin:lcost )). (A.4)

wheren is the dimension of the function. The search spackelimited within the range of

[-30,+30] units per variablex , and the global minimum is located &t = (0,...0) with a

value f, (x,,)=0. The search space of two variablgg, is shown in Figure A.4.

'min

165



fixl %2

Figure A.5. Search space of Michalewicz function of two vaesb

Michalewicz’s problentf,, ) :

The main characteristic of,  is its asymmetry. Consequently, this functiondsled to

Mic
the test suite in order to avoid the exploitatidnttee symmetry possessed by the above

problems. In addition,f,,. is a separable and multimodal function. The nunifelocal

minima grows, in a factorial manner, as the dimamsi of the problem increases, leading

to a total ofn! local minima. The objective function is provided(A.5).

foyen (X) = —Zn:sin(xi) EEsin[i ?;2 D : (A.5)

where n is the dimension of the function and the parametedefines the sharpness of
valleys. Larger value ofm introduces more difficulty into search processthis research a

value of m=10 is used. The global minimum value s, (x,,) =-966 for a problem’s

dimensionn=10. (The location and value of the global minimumyaccording to the

dimension of the problem.) The search space isnttelil within the range of0, 7] units per

variable x . The search space of two-dimensiomg|. is illustrated in Figure A.5.
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Figure A.6. Search space of Rosenbrock function of two vaegbl

Rosenbrock’s problertf,, ) :

f... IS @ multimodal and non-separable test functioris Icharacterised as its global

Ros
minimum is located inside a narrow, long, and flatley. Although most optimisation
techniques can easily locate this valley, the dlah@mimum is difficult to reach. The

objective function is shown in (A.6).

n-1
Fros(X) = D 100X, — X*)? +(1- % ). (A.6)

i=1

wheren is the dimension of the function, and the globalimum is located ak . = (1,...1)

with a value f )=0. The variablesx range in the interval off-510]. The

Ros(xmin
visualization of the non-convex search space ofeRlock function is illustrated in Figure
A.6. The plot focuses on the area around the glofi@imum for two variables.
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Figure A.7. Search space of Langermann function of two vaegbl

Langermann’s problengf, , ):

f is also a multimodal and non-separable functitgjacal minima are irregularly

Lang

distributed. Equation (A.7) demonstrates the objedunction.

ln
= _12)

fLang () =—Zm:c,e G co{ﬂi(xj —aj)zJ. (A7)

i=1

wheren is the dimension of the function. The values afteeC (¢ ; i =1...,m) and matrix

A (a;; j=1..n; i=1..m) are randomly generated in order to obtain a remdo

distribution of the minima. However, in this resgathese values were constant numbers
fixed in advance from (Bersimit al, 1996) form=5. The variablesk range in the interval

of [010]. The global minimum value varies and depends atoveC and matrixA. In this

research, the global minimum value fs, (x,) =-149. Figure A.7 shows the search

space of thé, _ in 2D.

Lang
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A.2 Real-World Problems

This section describes the benchmark problems teeleicom the real worldfrequency

modulation sound parameter identificatig¢ri,,;) andsystems of linear equatior{sf, . )

(Alba and Dorronsoro, 2008). The third real-wortdlgem considered in this resear@RS

attitude determination f,;) was introduced in Chapter 4, Section 4.2.2.

Frequency modulation sound parameter identifica{iép, ):

In this problem, six parameters must be determied(a ,w ,a,,w,,a;,w;)of the
frequency modulation sound model represented b8)(M order to approximate it to the
sound wave represented by (A.9) with=2[77/100. The parameters range within the
interval of [-6.4,+635] .

y(t) = a Sin(w TP+ a, [Sin(w, H[F + &, [Sin(w, {1 [H))). (A.8)
Yo(t) =1.08in(5.0 1 [ - 1.55in(4.81 [F + 20[3in(4.9 1 [9))). (A.9)

The fitness function is defined as the summatiospfare errors represented by (A.10).
This problem is a highly complex multimodal oneprsymmetric, and with strong epistasis.

The optimum minimum value i$_,,(x.,,) = 00.

100

frus (%) = 2, (V) = o(0))" (A.10)

Systems of linear equatio(s,, .):

In this problem, ten parameters of a veckoare to be determined such tidk = 6, in
order to minimise the objective function represdrig (A.11). The global minimum value is

f.(X,,) = 00. The matrixA and the vectob are given by (A.12), and the ten parameters

are in the rangg-9.0,+11.0] .

n n

> > (8 x)-h| (A.11)

i=1 j=1

fSLE(;() =
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5452954231
9,711,7,2,2,6,6,9
318,69,74,21,6
8,3,7,3,75,399,5
9516342339
1,2,31,7,6,6,3,3,3
15,781,4,78,4,8
9,38,6,3,4,718,1
8,28,5,38,7,2,7,5
21,2298,74,41

fSLE

40
50
47
59
45

35/

53
50
55
40

(A.12)

is a complex and quite difficult real-world probie with inter-parameter linkage

(i.e., non-separable). This problem is unlikelyo®used to assess the performance of GAs as

these techniques are not the most suitable to sleisgroblem. However, some authors still

believe in using this problem to evaluate GAs (Esrand Lozano, 2000; Alba and

Dorronsoro, 2008; EEmary and EtKareem, 2008).
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Appendix B

Extended Experimental Results

In order to make this research comprehensive,apgendix is added to provide extended
and preliminary results that may be useful. Theselts were omitted from main chapters in
order to avoid reader distraction. Section B.1 gjitree entire results from the experiment in
Chapter 3; some of these results were omittedthsrevere not desirable (i.e., had very low
search success rate) or had no significant inflegron the analysis. This section (B.1) aims
to support the decision made about what to considés disregard. The remaining sections
(B.2 and B.3) give the results from preliminary esments that are related to the selection
of a single threshold for adaptive algorithms prsgzbin Chapter 5. These sections aim to
give detailed justification on how to choose a kngalue for all problems under
consideration (recall that there is ho one bestiesdbr all problems). Section B.2 provides
the results and criteria on which the selectiomasle for Diversity-Guided 3D-cGA (refer to
Section 5.2), while those for Convergence-Speedt&li3D-cGA and Dynamic 3D-cGA
based on (Alba and Dorronsoro, 2005) are givereuti@n B.3 (refer to Section 5.3).

B.1 Comparison of 3D and 2D cGAs

In Chapter 3, 3D-cGAs were compared to 2D-cGAst phathe results were omitted such as
search success rates fey, fscn andfac as they were either similar or only differed stigh
Other results omitted from Chapter 3 relate to ¢holstained fofs g as they had undesirable
performance. In this section, these results ardudiecd in order to show the slight
improvements achieved. Table B.1 summarises alltes

Various configurations concerning population anaynleourhood sizes were defined for
both algorithms (i.e., 2D and 3D cGAs); the pararetised were summarised in Table 3.1.
Various population sizes were selected in ordantimduce similar number of individuals

for both grid topologies (i.e., 2D and 3D gridsdr Fnore details, refer to Chapter 3.
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Table B.1. Convergence time (CT) and rate (CRptained by 3D-cGA and 2D-cGA for

various population sizes and step distanckes (

Population 5x5 8x8 11x11 15x15 19%x19
size/ 3x3x3 Ax4x4 5x5x5 6x6x6 TXTX7
Problem r=1 r=1 r=3 r=1 r=3 r=1 r=3 r=1 r=3
492.61 416.24 381.93 398.31 358.85 401.52, 354.38 406.57 360.42
+395 +26.0 +355 +220 +295 195 +305 +185 +200
f 96% 100% 100% 100% 100% 100% 100% 100% 100%
R
as 685.22 450.46 377.12 356.21 366.02. 350.72 362.12 345.17
+1025 +46.0 - +350 +355 275 +200 +27.0 +295
100% 100% 100% 100% 100% 100% 100% 100%
302.89 | 24501 | 21515 | 23402 | 203.03 | 22677 | 193.00 | 231.13 | 190.99
+320 +210 +180 +16.0 +16.0 +135 + 135 +105 +125
f 79% 99% 99% 100% 100% 100% 100% 100% 100%
Sch
¢ 258.46 227.97 212.69 200.53 205.28 189.09 199.87 181.9
+335 +210 - +175 +165 +135 +155 +125 +145
84% 99% 100% 100% 100% 100% 100% 100%
448.00 511.11 431.90 408.63 324.50 604.87 366.92 489.78 353.35
+0.00 +480 +2.50 +820 +39.0 +116.0 +230 +530 +300
f 1% 9% 10% 11% 18% 31% 39% 42% 53%
Gri
ne 386.50 475.15 345.36 300.40 426.47 331.86 303.54 298.52
+2.00 +750 - +49.0 +285 +380 +335 +29.0 +220
4% 13% 19% 22% 34% 44% 51% 57%
343.21 263.41 216.96 261.78 210.79 259.01 207.63 258.83 209.01
+ 23.0 + 5.0 + 5.0 + 4.0 + 3.5 + 3.5 + 2.0 + 25 + 2.0
fAck 100% 100% 100% 100% 100% 100% 100% 100% 100%
275.82 230.56 225.07 211.36 223.61 204.59 222.01 200.17
+180 +55 - +30 +30 +20 +20 +20 +20
100% 100% 100% 100% 100% 100% 100% 100%
445.62 481.00 444.17 488.79 446.15 548.60 442.92 560.44 461.78
+ 51.0 + 66.0 + 48.0 + 51.0 + 515 + 58.0 + 45.0 + 43.0 +43.0
f 16% 33% 41% 43% 60% 75% 81% 89% 84%
M
© 419.31 435.05 453.83 437.85 457.67 433.05 467.40 433.13
+90.0 + 46.0 - + 55.5 + 47.0 +44.0 +41.0 + 46.0 + 50.5
19% 35% 54% 56% 65% 72% 80% 82%
260.50 292.57 193.80 358.21 221.68 361.56 213.16 327.44 205.47
+ 47.0 +49.0 +24.0 + 335 + 255 + 60.0 +23.0 + 26.0 + 16.0
f 4% 28% 35% 65% 64% 93% 89% 97% 96%
L
ang 205.87 226.33 251.94 218.30 228.19 204.01 239.83 186.83
+29.5 + 30.5 - + 25.0 +20.5 +22.0 + 25.0 +22.0 +15.0
8% 30% 76% 62% 91% 85% 99% 99%
602.40 264.38 196.14 258.64 170.58 270.62 190.07 296.11 209.97
+ 198.0 + 575 + 35.5 + 37.0 +19.0 + 32.0 +18.0 + 25.0 +22.0
fFMS 25% 44% 42% 62% 65% 87% T7% 96% 89%
442.93 208.95 207.69 186.75 202.41 184.06 220.63 197.77
+ 202.0 + 37.0 - +29.0 + 23.0 +17.0 + 215 +22.0 + 215
33% 49% 63% 68% 81% 72% 92% 80%
382.00 662.00 657.50 823.00 625.50
0% 0% 0% 0% +62.0 +0.00 +106.5 + 780 +895
f 2% 1% 2% 2% 6%
SLE
891.00 556.50 744.00 668.85 752.16 567.66
0% 0% - + 0.00 + 1735 + 0.00 + 167.0 + 14.0 + 37.0
1% 2% 1% 7% 6% 6%

* For more details about the performance measptease refer to Section 2.2.3.1.
Note: For each problem, the results obtained byc@B-are shown above the results obtained by 3D-cG# symbol +
means that the corresponding algorithm configunatias not been evaluated.
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For each problem studied, convergence time andezgence rate obtained for 2D-cGAs
and 3D-cGAs of various configurations are giveifable B.1. The discussion and analysis

of results were provided in Chapter 3.

B.2. Selection of V Diversity-Guided 3D-cGA

This section studies the behaviour of the adaptnterion under differenty values (refer
to Chapter 5, Section 5.2). Fogrvalues: 0.3, 0.35, 0.4, and 0.45, which represehigh to

low restrictive conditions to reduce the selectiate were tested. The purpose is to select

single y value for all of the problems considered.

Table B.2. Experimental Results: Convergence time (CT) arté €R) obtained by

Diversity-Guided 3D-cGAs for various thresholds)(and7x7x 7 grid

Problem y=03 y=0.35 y=04 ) =0.45

f 678.22 £ 655 683.94 + 545 641.72 * 559 675.61 485
Ras 100% 100% 100% 100%

f 12592 £ g75 1247.3 £ 1000 1209.9 + 1160 1207.3 % 1260
Sch 100% 100% 100% 100%

f 1854.9 + 700 1850.4 £ 7200 18974 £ 520 1872.2 £ 500
Ack 70% 76% 83% 79%

f 908.47 + 5340 861.21 £ 6030 881.7 6365 1010.7 £ 4705
Ros 42% 41% 50% 44%

f 712.63 325 664.62 + 405 628.30 + 43,0 599.69 * 475
Mic 100% 100% 100% 100%

f 340.57 * 25 346.01 % 160 308.45 * 145 320.13 £ 230
Lang 84% 94% 96% 92%

f 1386.1 £ 2780 1396.7 + 2500 1294.7 £ 3315 1337.6 £ 2675
FMS 68% 61% 100% 70%

f 34591 + 320 320.97 * 335 341,48 + 350 323.33 £ 310
SLE 37% 34% 39% 21%

Table B.3.Local and globalranking of y values based on two performance metrics

Convergence|

Convergence

time rate y Sum Rank
1.0.35 1.0.40 0.30 6 4
1.0.40 2.0.30 0.35 3 2
3.0.45 2.0.35 0.40 2 1
4.0.30 2.0.45 0.45 5 3

" For more details about the performance measureas@lrefer to Section 2.2.3.1.

" Local ranking is performed for each performancerim@idependently. Local ranks are markedatd in the first two
columns. Global ranking is performed for all penfiance metrics and is shown in the last columrs. domputed by summing

the local ranks for each Sum of local ranking values are shown in the molyprior to the last.
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Table B.2 shows the results obtained. For eachlgmhthe best results are marked in

bold. In order to select ong value two-level ranking was performed (see Tab®.Bn the
first leveld local ranking, y values were ranked based on convergence time ated r
independently. The value gf that resulted in the lowest convergence time fostntases

was assigned the highest rank (i.e., the smalleasber) (column 1), and so forth. Similarly,

y value that resulted in the highest convergenaefoatmost cases was assigned the highest
rank (column 2) , and so forth. In the second lewvglbbal ranking,y values were ranked
based on their local ranks; the value)ofthat resulted in the minimum sum of local ranks

was assigned the highest rank (the last columms€guently, the begt value was 0.4.

Table B.4. Experimental Results: Convergence time (CT), @®), and speed (SP)

obtained by Diversity-Guided 3D-cGAs for variousetsholds §/), and6x6x6 grid

Problem J = 0.05 y=015 y=025 y =030 y = 0.40
576.32 +555 581.6 +s45 586.86 %510 576.91 456 570.83 %105
f s 100% 100% 100% 100% 100%
36.34 4401 37.31 455 38.01 431, 37.49 437, 36.80 +32
1430.4 4,735 1406.7 41655 1411.8 41635 1457.5 #1900 1399.0 1500
fack 100% 100% 100% 100% 100%
90.93 *10.96 90.53 *1223 90.29 *105 95.69 *106 89.58 +1534
; 632.45 +1500 510.66 %5510 452.34 +5s4 5 497.74 %355 445 87 455
42% 48% 46% 50% 55%
R
0s 40.87 +105 33.25 41505 29.18 *1615 31.57 +x06 27.83 4156
872.55 %3140 899.31 610 1001.6 #5455 979.00 #5130 981.65 #5365
fevs 58% 48% 52% 49% 52%
80.02 tog81 82.85 5435 91.54 5341 89.95 +1957 89.77 +3101
365.8 +470 321.07 %350 338.18 %510 291.40 4145 300.80 %350
foe 15% 13% 16% 10% 10%
24.34 +,4 21.74 4,56 22.75 4364 19.61 006 20.28 4556
125.58 .00 102.40 +76 96.45 5.0 96.06 +7.00 96.26 o5
feps 99% 99% 99% 99% 100%
2.45 +0.100 2.00 *0.14 1.91 *0.100 1.89 *0.15 1.88 +011

Table B.5.Local and globalranking of y values based on three performance metrics

Con\_/ergence Convergence| Convergence y sum Rank
time Rate speed
1.0.40 1.0.40 1.0.40 0.05 7 2
2.0.30 2.0.25 2.0.05 0.15 12 5
3.0.05 2.0.05 3.0.30 0.25 10 4
4.0.15 4.0.15 4.0.15 0.30 9 3
4.0.25 4.0.30 4.0.25 0.40 3 1

" For more details about the performance measureas@lrefer to Section 2.2.3.1.

" Local ranking is performed for each performancerim@dependently. Local ranks are markedbatd in the first three
columns. Global ranking is performed for all penfiance metrics and is shown in the last columrs. domputed by summing
the local ranks for each Sum of local ranking values are shown in the molyprior to the last.
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In Chapter 5, Diversity-Guided 3D-cGA was companedh other algorithms. To
perform fairness comparison, similar parametersafgorithms compared were used; a size
of 216 individuals arranged &x 6x 6 was used. Consequently, experiments to seledesing
y value were repeated for the reduced size of ptipolaPopulation size can significantly
influence algorithm performance; larger populatiosffer more diversity and therefore

promote more exploration.
Table B.4 shows the results. Values jofincluded: 0.05, 0.15, 0.25, 0.3, and 0.4. The

best results achieved for each problem are markedoid. Two-level ranking was

performed. Locally,)y values that achieved the lowest convergence tiheehighest rate,

and the fastest convergence in parallel was agsitireehighest rank (Table B.5, columns 1,

2, and 3, respectively). Globally, the highest rargs assigned to thg that resulted in the

best overall performance (the last column). Consstiy, the besy value is 0.4.

B.3.

Selection of € for Convergence-Speed-Guided 3D-cGA

This section examines the performance of the adaptiteria defined for the Convergence-
Speed-Guided 3D-cGA and the Dynamic 3D-cGA basedAdima and Dorronsoro, 2005)

against differents values to facilitate the selection of singtevalue for all the considered

problems (refer to Chapter 5, Section 5.3).

Table B.6. Experimental Results: Convergence time (CT), @®), and speed (SP)
obtained by Convergence-Speed-Guided 3D-cGAs faows thresholdsg)

Problems £=03 £=0.25 £=0.15 £ =0.05
755.55.465 777.214700 735.97.610 752.89:655
fras 100% 99% 100% 100%
53.11:353 51.61:4.45 50.86.3.67 51.25u6
1609.041535 1519.6:1445 1566.7+1410 1598.1:1430
fack 100% 100% 99% 99%
106.25:9.44 106.83:0.60 105.2949.76 117. 74103
599.704235.0 686.75.135.0 692.69:203.0 661.68.192.0
f ros 10% 16% 13% 22%
40.15.15.46 46.54.49.41 46.73.1182 45.39 %305
1161.8.308.0 1167.3:2720 1127 7.300.0 944.53.330.0
frws 69% 64% 68% 54%
108.86.20.9 109.63:25.46 105.93:2835 90.65.353
515.08:500 522.95.66.0 498.95.¢670 535.46.990
fsie 24% 23% 20% 26%
34.33:335 36.33.454 33.80:4.44 3791702
106.70:140 95.771105 102.15.130 93.02.9.00
fops 99% 96% 98% 100%
2.02.0.281 1.82.0.203 1.84.0.26 1.760.6

* For more details about the performance measptease refer to Section 2.2.3.1.
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Table B.7.Local and globalranking of &£ values based on three performance metrics

Convergence| Convergencel Convergence
time rate speed € Sum Rank
1.0.05 1.0.05 1.0.15 0.05 4 1
1.0.15 2.0.30 2.0.05 0.15 5 2
3.0.25 3.0.15 3.0.30 0.25 10 4
3.0.30 3.0.25 4.0.25 0.30 8 3

Four £ value$l 0.3, 0.25, 0.15, and 0.0bwere assessed, representing low to high
restrictive adaptive conditions. Table B.6 shows tasults obtained. The best results for
each problem are marked imold. To select singles value, two-level ranking was
performed based on convergence time, rate, anddspaexally, the highest rank was
assigned tas value that achieved the lowest convergence tihehtghest rate, and fastest
convergence in parallel (Table B.7, columns 1,r2] 3, respectively). Globally, the highest
rank was assigned t& value that achieved the best overall performameblé B.7, the last
column). Consequently, the bestvalue is 0.05.

Similarly, the sameg values were tested for Dynamic 3D-cGA based orbdAdnd
Dorronsoro, 2005). Table B.8 shows the resultsinbth For each problem considered, the

best results achieved are markedatd.

Table B.8. Experimental Results: Convergence time (CT), 1@®&), and speed (SP)
obtained by Dynamic 3D-cGAs based on (Alba and @woro, 2005) for various thresholds

(€)

Problems £=03 £=0.25 £=0.15 £ =0.05
54727610 564.64.50 5 54421515 541.43.995
f oo 100% 100% 100% 100%
37.51:301 40.05.4.3, 36.07:3.19 37.68:4.10
1298.4.500.0 1399.4.503.0 1301.64195.0 1337.54895
f ok 100% 100% 100% 100%
88.27.135 93.92.1318 87.97.1204 100.54.1376
998.0.00 995.00.2,0
f ros 1% 2% 0% 0%
66.25.00 66.82.0.23
905.38.340.0 880.08.261.0 839.90.273.0 981.41:3420
fews 50% 50% 54% 72%
86.25.31 04 83.35.24.76 79.34.42663 94.41.325
209.33.420 219.3.035 216.81.430 228.2.30
fse 3% 10% 11% 5%
14.75.1 68 15.43.146 15.14.39 16.2710.28
70.80.470 72.65.90 721770 71.79.80
feps 97% 100% 98% 100%
1.37:0125 1.42.0.156 1424012 1.4040.15

" Local ranking is performed for each performancériméndependently (marked told). Global ranking is performed for all
performance metrics (last column). It is computggibmming the local ranks for eagh
" For more details about the performance measulessegrefer to Section 2.2.3.1.
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Table B.9.Local and globalrankings ofe values based on three performance metrics

Convergence| Convergencel Convergence
time rate speed € Sum Rank
2.0.05 3.0.15 1.0.30 0.05 6 1
2.0.15 1.0.25 1.0.15 0.15 6 1
2.0.25 4.0.30 3.0.05 0.25 6 1
1.0.30 1.0.05 3.0.25 0.30 6 1

* Local ranking is performed for each performancetnc independently (marked bold). Global ranking is performed for all
performance metrics (last column). It is computgdibmming the local ranks for eagh

To choose singles value, two-level ranking was performed based orfopmance

metrics: convergence time, rate, and speed. LqcHilly highest rank was allocated &

value that resulted in: the lowest convergence tithe highest convergence rate, and the

fastest convergence in parallel (Table B.9, coluhn®, and 3, respectively). Globally, the

highest (or final) rank was assigned govalue that obtained the best overall performance
(Table B.9, the last column). From Table B.9, it ¢ee seen that all of the values tested

obtained similar global ranks. A value @&f= 0.05 that represented the most restrictive

condition was selected for Convergence-Speed-GugiedGA (refer to Table B.9). In
addition, for Dynamic 3D-cGA based on (Alba and Dosoro, 2005), a similaE

valud 0.09] was selected.
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