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Abstract

I present a magnitude and proper motion limited catalogue of ~ 10,000 white dwarf
candidates, obtained from the SuperCOSMOS Sky Survey by means of reduced proper

1 and covers

motion selection. This catalogue extends to R ~ 19.75 and pu ~ 0705 yr—
more than three quarters of the sky. Spectroscopic follow-up observations have been
obtained for a subsample of objects, and are used to assess the reliability of the selection
procedure and contamination of the final catalogue. Photometric parallaxes provide
distance estimates accurate to ~ 50%.

This catalogue is used to measure the luminosity function (LF) for white dwarfs in
the Solar neighbourhood over the range 4 < M, < 18. A new technique is devised
to separate the LFs for disk and spheroid stars, which allows all stars to contribute to
the LF even at tangential velocities where the populations overlap. The disk LF shows
a sharp decline at M, = 15.75, in agreement with other studies, and extends over a
magnitude fainter than previously determined. The spheroid LF has a sharp peak at
My, = 15.75, then levels out and shows no sign of a drop off at faint magnitudes, as
expected for a considerably older population.

By simulating white dwarf LFs for stellar populations with a range of star formation
histories, I measure the age of the local disk and spheroid. The disk age of 9.1375:82
Gyr agrees with that measured in similar studies, and with the basic picture of galaxy
formation in a cosmological context. No reliable solution is found for the spheroid age.
By integrating the LFs, 1 investigate the local mass density of spheroid white dwarfs,
with particular reference to their contribution to the baryonic dark matter content of

the Galaxy. I also place an upper limit on their contribution to the possible MACHO

population and the microlensing events observed towards the LMC.
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CHAPTER 1

Introduction

White dwarfs are the second most common type of star in the Galaxy, and represent
the final stage in the evolution of the vast majority of all stars. Their application to
the study of the formation history of the Galaxy and stellar populations more generally
has undergone something of a renaissance in recent years, due to the confluence of
improvements in the theoretical understanding of their evolution, and their discovery in
large numbers both in modern wide angle sky surveys and deep imaging. In this chapter
I review some of the milestones in the recent history of white dwarf science, both on
the theoretical and observational frontiers, and present some of the basic concepts that

inform the field.



1.1 Introduction

The identification of white dwarfs as a distinct class of star was made in the early
decades of the twentieth century. The location in the Hertzsprung-Russell diagram
of 40 Eridani B set it apart from the rest of the ‘normal’ stars, the key distinction
being its extreme subluminosity compared to other stars of the same spectral type (see
Figure 1.1(a)). The small radius inferred by Stefan’s law, combined with the colour
of these white-hot objects, earned them the name ‘white dwarf’. The existence of a
subluminous companion to the star Sirius A had been deduced by its perturbed motion
across the sky; eventual direct observation of the companion revealed it to be a member
of this emerging class - see Figure 1.1(b). Analysis of the binary orbital parameters of
the Sirius system placed the mass of the white dwarf at ~ 1M. Indeed, a common
rule-of-thumb concerning white dwarfs is that they have a mass roughly equal to that
of the Sun, and a size roughly equal to that of the Earth. The extreme conditions
that characterise the internal structure of such an object were met with some disbelief
in the scientific community (not least from Eddington; see Koester and Chanmugam
1990), however the theory of the equation of state as laid down by Chandrasekhar
(1939) was eventually accepted, and is recognised as a major advance in the field of
stellar evolution. White dwarfs are formed from the burnt out remains of low- and
intermediate-mass main sequence stars, following ejection of the envelope at the tip of
the asymptotic giant branch. The intermediate phase is that of a planetary nebula, so
called due to the resemblance to a planet when viewed through early telescopes. These
are interesting objects in their own right, lit up as they are by ionizing radiation from the
exposed stellar core (see Figure 1.2). Most of the mass of the original star is ejected in
this process, and is returned to the interstellar medium enriched with heavier elements
produced by nucleosynthesis. It is thought that white dwarfs represent the final stage
in the evolution of stars less massive than ~ 7 — 9 times that of the Sun. This includes
the great majority of all stars; all but the most massive few percent are expected to
eventually become white dwarfs. Now devoid of nuclear energy sources, the evolution
of these objects is that of a slow cooling process, during which the residual thermal

energy of the core is radiated away through the outer layers, and the star gradually
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Figure 1.1: (a) An early HR diagram showing the position of 40 Eridani B, stuck out from the
main locus of stars at a visual magnitude of 11 and spectral type A. Figure reproduced from
Koester and Chanmugam (1990). (b) Sirius A - the ‘Dog Star’ - along with its ‘pup’ at lower

left, the white dwarf Sirius B. Credit: NASA, H.E. Bond & E. Nelan (STScI) and M. Barstow

fades over many billions of years. White dwarfs are numerous both in Galactic star
clusters and the Solar neighbourhood, where they account for about ten percent of
nearby stars!, though they are sufficiently faint that none can be seen with the naked
eye. Their relative abundance, combined with their long evolutionary timescales, makes
them suitable probes of the formation history of the various star populations within
the Galaxy. They do, however, have a whole host of applications in other areas of

astrophysics, including plasma physics, gravitational waves, dark matter and exoplanet

'www.chara.gsu.edu/RECONS/TOP100.posted.htm - "The 100 nearest star systems", courtesy of the
Research Consortium on Nearby Stars (RECONS)



Figure 1.2: The Ring nebula, M57. The ejected photosphere is ionised by ultraviolet photons
from the exposed stellar core, and shines in a dazzling array of colours due to the emission of

intense line radiation. Credit: The Hubble Heritage Team

searches to name but a few, and as the apparent progenitors of type la supernovae,

their role in the understanding of the evolution of the Universe has been profound.

1.2 Observational properties

1.2.1 Spectral classification and taxonomy

The high surface gravity of white dwarfs has two important effects on the spectral energy
distribution. Typically, only a single element is present in the spectrum, due to the
compositional stratification of the atmosphere, and absorption lines are highly pressure-
broadened compared to non-degenerate stars. Most white dwarfs can be categorised
according to a simple spectral classification scheme - those showing only hydrogen lines
(DA type) and those showing only helium lines (rare DOs at high temperatures, and
more common DBs at Tog < 30,000K), with DAs outnumbering DBs by roughly four to
one at moderate temperatures. A rare type that has had considerable attention recently
in the literature, due to the discovery of several objects at high effective temperature
(Dufour et al., 2007), shows only carbon features - these are the DQs. At low effective

temperatures atomic lines disappear, and a substantial number of white dwarfs that



may previously have appeared as one of these types now show spectra entirely devoid
of features. These are classified as DC types. An example of each type can be found
in Appendix C; SSSJ0903+0412 is a DA, SSSJ1821+1441 is a DB, SSSJ2318+2019 is
a DC, and SSSJ0235+0729 is a cool DQ showing the molecular C, Swann bands.

The relationship between these types can be broadly understood in terms of the
occurence (or not) of late thermal pulses during the ejection of the photosphere (Herwig
et al., 1999). Such an event may entirely strip the outer H or He layers, and mix
material from the core into the photosphere. However, the connection between the
spectral type and the composition of the atmosphere is not quite as straightforward as
it may appear. There is good empirical evidence that white dwarfs change spectral type
throughout their evolution, and the existence of several ranges in effective temperature
in which certain spectral types are found in very small number is well documented. This
represents an important limitation in current white dwarf age estimates - see Section
1.3.3 for details.

Many white dwarfs show metal lines in their spectra; these are the DZ types. As
metals are expected to sink rapidly below the photosphere, any features present must be
due to the continual accretion of metals, either from the interstellar medium or asteroid
impacts. Spectra with evidence of a magnetic field (e.g. Zeeman splitting) are given the
DH classification.

Finally, it is worth pointing out that the features defining each of the spectral types
are not necessarily mutually exclusive (this obviously does not apply to DCs), and
objects that show a variety of spectral features will be designated an amalgamation of
the different classes, ordered according to the relative strengths (e.g. DZA for a star

with stronger metal lines than hydrogen).

1.2.2 Mass and luminosity distribution

The very tight mass distribution of white dwarfs is a well known feature of this class
of star. Figure 1.3 shows the mass distribution for 1859 DA white dwarfs in the SDSS,
measured by Kepler et al. (2007). This is strongly peaked at around 0.6Mg, with

secondary peaks at low and high mass. The main peak represents typical C/O core



degenerates, evolving as isolated objects. The stars at lower masses are thought to
have formed through close binary star evolution, as there has not been sufficient time
for single low mass main sequence stars to produce these. The high mass component
(which makes a larger contribution when volume-corrected) is thought to represent

O/Ne core degenerates descended from high mass main sequence stars.
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Figure 1.3: The distribution of masses for DA stars hotter than Tegx = 12,000K and brighter
than g = 19 in data release 4 of the Sloan Digital Sky Survey, reproduced from Kepler et al.
(2007).

Considering the wide range of main sequence stellar masses that have had time
to contribute white dwarfs to the local population (~ 1.1 — 8Mg), the fact that
the white dwarf masses show such a tight distribution is very interesting indeed. It
suggests that the various competing processes controlling mass loss are sufficiently finely
tuned that a remnant of approximately the same mass is left behind consistently. It

also reveals that most of the mass of a star is returned to the interstellar medium



during this event. The ejected material is enriched with carbon, nitrogen and oxygen,
and white dwarf progenitors play a significant role in the chemical evolution of the
Galaxy. The relation between the initial main sequence mass and the mass of the
resulting white dwarf (the initial-final mass relation, IFMR) is an important quantity in
understanding the evolution of stars and stellar populations. The IFMR is constrained
both theoretically, using stellar models exploring the mass of the degenerate core at the
first thermal pulse, and empirically using clusters, where the masses of white dwarfs
and their associated cooling times are compared to the age of the cluster to measure
the main sequence lifetime of their progenitors, thus constraining their original main
sequence mass (Weidemann, 2000; Kalirai et al., 2009).

The luminosity function for white dwarfs has a morphology that is determined
mainly by the age of the stellar population, though cooling rates as a function of lumi-
nosity also play a significant role - see Chapter 4 for an in-depth analysis. In the solar
neighbourhood, the luminosity function is well determined at all but the faintest mag-
nitudes. Harris et al. (2006) and Krzesinski et al. (2009) used the SDSS to measure the
faint and bright ends of the luminosity function respectively, achieving good constraint

across a wide range 0 < M;,; < 16. Their combined results are presented in Figure 1.4.

1.2.3 Selection and identification

Proper motion

The fact that the proper motions of nearby stars correlate with their line-of-sight dis-
tances can be used to estimate their intrinsic luminosity. The statistic used to do this
is called the reduced proper motion, H, and a plot of H against colour can be used to
identify white dwarfs in much the same way as with the classical HR diagram - by their
extreme faintness at a given colour. Chapter 2 describes this technique in detail, with
particular reference to proper motions derived from the SuperCOSMOS Sky Survey.
Early white dwarf samples compiled in this manner were derived from the star
catalogues of Willem Luyten, in particular the Luyten Half Second (LHS) catalogue of

objects with proper motions in excess of (/5 yr~!. The study of Liebert et al. (1988)
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Figure 1.4: The luminosity function for solar neighbourhood white dwarfs, obtained from the

SDSS by Harris et al. (2006) and Krzesinski et al. (2009).

used 43 white dwarfs from the LHS catalogue, and constructed the first luminosity
function to detect the paucity of solar neighbourhood white dwarfs at faint magnitudes.

Modern digital surveys can reach much fainter than older surveys, such as those
of Luyten, that were based on photographic plates. With the aid of computerised
pairing algorithms and better resolution, much lower proper motions can be detected
and considerably larger samples compiled. Having said that, photographic material
has been crucial in extending modern proper motion sensitivity to the lowest limits,
by providing an early epoch of observation so that slow-moving objects show a larger
displacement. For example, Kilic et al. (2006) use a pairing of SDSS with USNO-B

photographic astrometry to identify several thousand white dwarfs.



Colour

Due to the lack of atmospheric metals, white dwarfs are relatively bright in the UV
with respect to disk main sequence stars, and they stand apart from the main stellar
locus in a two-colour plot employing the U band - see Figure 1.5. While there may be
contamination by metal-poor subdwarfs, colour selected samples can at least be used as
input for a spectroscopic follow up campaign. The Palomar-Green survey of UV excess
objects was used in this manner to derive the luminosity function of white dwarfs by
Fleming et al. (1986). However, white dwarfs cooler than ~ 8000K overlap with the A

and F stars in colour, and so tend to be excluded from colour-selected samples.
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Figure 1.5: Selection of white dwarf candidates according to blue colours. The dense region
on upper right is the main sequence; various white dwarf spectral types are identified by the
symbols. The three pointed stars are subdwarfs, indicating the overlap with this population.

Figure reproduced from Hansen and Liebert (2003).



Spectroscopy

The most widely accepted way to confirm the identity of a white dwarf, short of ob-
taining a trigonometric parallax, is by spectroscopy. The highly pressure-broadened
absorption lines easily distinguish this class of star from lower gravity objects. Most
large white dwarf surveys include some spectroscopy component, either to test the reli-
ability of the selection method, or as a major part of the analysis, as line profiles allow
direct measurement of the surface gravity. Large catalogues of spectroscopically con-
firmed white dwarfs have been produced from the SDSS in recent years. Eisenstein et al.
(2006) checked all spectroscopically observed objects in DR4 that fell within a selected
colour range, finding over nine thousand white dwarfs. This catalogue was used by De
Gennaro et al. (2008) to investigate the luminosity function, with the eventual aim of
using the spectroscopically determined masses to measure this function in restricted
mass ranges. However, this study was hampered by the fact that most white dwarfs
selected for SDSS spectroscopic follow up are done so inadvertently, when the imaging
pipeline mistakes them for quasars. This leads to a complex selection probability that
is hard to correct for. Also, the colour selection restricts the effective temperature range

of their sample, as noted before.

1.3 Theoretical framework
1.3.1 Basic properties

Certain general properties of white dwarf stars as a class can be obtained from a simple
analysis, using several fundamental observational parameters measured accurately for a
single example. Note that most of the following derivation is adapted from Koester and
Chanmugam (1990); Kippenhahn and Weigert (1994); Rose (1998). The star Sirius B
was one of the first white dwarfs to be discovered, and while its proximity to Sirius A
rendered its stellar parameters highly uncertain for many years, recent space based ob-
servations have significantly improved matters. Holberg et al. (1998) collate the results
of several diverse investigations including parallax, gravitational redshift and extreme

ultraviolet observations to redetermine the mass, radius and effective temperature of

10



Parameter Value

Mass (M)  1.034 & 0.026
Radius (Rg) 0.0084 + 0.00025
Teg (K) 24,790 + 100

Table 1.1: Fundamental stellar parameters of Sirius B, as determined by Holberg et al. (1998).

Sirius B. Their values are summarised in Table 1.1. It should be pointed out that Sirius
B is not strictly representative of white dwarfs in general, being of extremely high mass,
but as it is believed to possess a carbon core (in common with the vast majority of white

dwarfs), it is suitable for the following analysis.

Pressure ionisation and electron degeneracy

The mass and radius of Sirius B suggest a mean density of ~ 2.5 x 10 kg m™3. The
interiors of white dwarfs are generally believed to be composed of the products of He
burning, specifically some ratio of carbon and oxygen, and assuming a pure C compo-
sition implies a nuclear separation of ~ 2 x 10712 m. By contrast, the Bohr radius of
a carbon ion with only one remaining electron is ~ 8 x 107'2 m, and the interior must
be entirely pressure ionised.

Using the effective temperature as a zeroth-order estimate of the interior tempera-
ture, one calculates a de Broglie wavelength of ~ 6.85 x 1071° m for the (free) electrons,
several orders or magnitude greater than their mean separation of 9.85 x 1071% m.
Therefore, any attempt to understand the internal structure must involve a quantum
mechanical explanation for the electronic component. By contrast, the de Broglie wave-
length of the ions, ~ 4.63 x 10~!? m, is only about twice their average separation, and

we expect a classical description of their behaviour to suffice.
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The equation of state

The equation of state for the degenerate electronic component can be derived by first

considering the density of quantum states g(p), defined in phase space as
8 .
g(p) dpdV = ﬁpz dpdV.

This includes the degeneracy factor of two for electrons of opposite spin states. The
distribution of particles amongst the quantum states obeys Fermi-Dirac statistics, which
states that the average occuption of a state of energy € is given by

1
e = TR,
Microscopically, pressure is defined as the flux of momentum through a unit surface. If
we consider a surface element of area do with normal n, we can derive an expression
for the pressure by considering how many electrons pass through it per second into an

element of solid angle df2, in the direction s, in the momentum range p — p+dp (Figure

1.6). The number density of states in the vicinity of do is given by g(p)dp, and these are

N "o

daQ

Figure 1.6: The equation of state is derived by considering the flux of momentum across

surface element deo in the direction n

occupied according to f(e). Each electron carries a momentum equal to pcos(f) in the
direction n, and crosses the surface do with a velocity v(p) cos(8). As the distribution
function is isotropic, the fraction of electrons passing into d€2 is equal to %%. Finally,
to get the pressure on the surface, we divide out do and integrate over one hemisphere

and all momentum states:

B gmp 1 a0
P :/ / ] cos(f 21) p dp-—
0=0J6=0Jp=0 1° exp[<BTE] 41 Oy vlp)dpg
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Integrating out the angular dependency leaves:

o0 3
= —%?3/_ -ﬁv@)dp.
p=0 exp[=E=E] +1

where v(p) and €(p) are the relativistic expressions for the velocity and energy of a given
momentum state, respectively. p has dimensions of energy and is called the chemical
potential. In this context it is related to the degree to which the interior is degenerate.
This formula cannot be solved analytically for all possible conditions in the white dwarf
interior. However, there are several limiting cases in which this is possible, and these can
be used to demonstrate certain properties that extend into the analytically intractible

regimes.

Fully degenerate configurations

When all quantum states are occupied up to some momentum, and none above this, the
electron gas is said to be fully degenerate. The momentum of the highest occupied states
is denoted py and called the Fermi momentum, with the corresponding Fermi energy €.
This is equivalent to assuming a temperature of zero for the interior. This is obviously
unphysical, and any thermal energy will promote electrons to higher momentum states.
In reality, the interior of a white dwarf is only partially degenerate, and hydrostatic
equilibrium is maintained by a complex mixture of degeneracy pressure and a small but
finite thermal pressure. However, this assumption greatly simplifies the solution to the

equation of state, as in this regime the distribution function takes the following form:

4 Pf
P= —ﬁ/ pu(p)dp.
p=0

For the velocity, we rearrange the relativistic expression for momentum p = y(v)mv to

obtain
P

o(p) = c——E—
SR +1
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which, when substituted into the above formula, allows us to write for the equation of

state:
47rm4 D 64

3h3 60‘31'}'&2

where we have used the substitutions £ = -2 and z = ELC x is called the relativity

Pi=

parameter and appears widely in degeneracy pressure calculations. This integral has

the following solution:

P:ﬂg;; [ (222 — 3)\/(1 + 22) + 3sinh™ l(x)]

This is the general formula for the pressure at all values of the relativity parameter, for

the fully degenerate case. Now, the number density of electrons can be expressed as a
function of the Fermi momentum p; by integrating the density of states in phase space

over all possible values of the momentum (p = 0 — py). This gives:

_ 8w Snt) L i8ets
ne—ﬁ a5 pdp 3h310f

which can be expressed in terms of x as

8rmic® 4

3h3

Ne =

which allows one to express the pressure directly in terms of the number density of
electrons. Before making this substitution, we may further simplify the equation of
state by considering as two limiting cases the regimes of non-relativistic degeneracy
(z — 0) and relativistic degeneracy (x — oo). The parameter z is a measure of the
momentum of the electrons in the highest populated energy states, and thus measures
the importance of relativistic effects. In these two cases the general equation of state
reduces to the following forms:

8mmic® 5

“3oRs & Bl

wmic®

—3,f3—x >

Now substituting in the number density of electrons:
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These expressions give approximations to the equation of state for completely degen-
erate stellar configurations, in the limiting regimes of non-relativistic and relativistic

degeneracy.

The Mass-Radius relation and the Chandrasekhar mass limit

Putting the equation of state for the non-relativistic, fully degenerate white dwarf in-

terior into the equation for hydrostatic equilibrium yields the following approximate

M? M3
Pz )~
1

M3

Thus more massive white dwarfs are expected to be smaller, a property not observed in

result:

which has the solution:

RN

main sequence stars. High and low mass white dwarfs are correspondingly under- and
over-luminous with respect to their normal mass counterparts.

The relativistic ‘softening’ of the equation of state has profound implications for the
maztmum mass of white dwarf stars, as first noted by Chandrasekhar in 1931. Specifi-
cally, the reduction in stiffness gives rise to a limiting mass for highly relativistic white

dwarfs. Repeating the above argument for the relativistic-degenerate configuration gives

M2 M3
P -t _R 1 ~ -——1.‘-_1'33

M3 M3

Rt T RY

R cancels out, implying the existence of a unique mass for relativistic white dwarfs,

the relation:

above which hydrostatic equilibrium cannot be maintained and the star starts to col-
lapse. This unique mass is called the Chandrasekhar Mass, and has the definition given
by Chandrasekhar (1939):

Mcy, = 5.75u; 2 M



where p, is the number of nucleons per electron. My, has the value 1.44M for a

composition of pure carbon.

Decoupling of mechanical and thermal properties

It was shown earlier that the ions present in the interior of the star behave, to a good
approximation, like an ideal classical gas, and the electrons as an ideal Fermi gas. How
does the pressure in each component contribute to hydrostatic support? Using data for
Sirius B presented in Table 1.1, we can estimate the pressure of the ions and electrons
separately. The equation of state for the ions is P; = n;kgT, and for the electrons
= % (%)% ::Ti”e%! where n. = 12n; for an internal composition of pure carbon.
Putting the numbers in leads to the following ratio for the relative magnitude of the
pressures:
e o 2

Eu_zmqurwm.

Given the mean density of Sirius B, one calculates an ion number density of n; =

1.25 x 10% m™—3. Putting this into the above ratio gives:

Pg 5
< = 5.37 x 10°.
5 =537x10

1
Thus the mechanical properties of white dwarfs are completely dominated by the de-
generate electron gas.

The thermal properties can be explored by considering the heat capacities of the two
components, defined at constant volume as C,, = 2% ,- The internal energy of both the
ideal classical gas of ions and ideal Fermi gas of electrons satisfies U oc P. However, the
equation of state for the electrons has no T dependency in the fully degenerate limit,

and the total combined heat capacity of the interior is found to be:

= @ U,
S RN R
3
= 5?13]6‘

The heat capacity of the degenerate electrons is equal to zero; the thermal energy

content of the star is dominated by the ions.
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1.3.2 Modern evolutionary models

Basic picture

The basic picture of a white dwarf is that of an isolated, degenerate, isothermal core
containing all of the energy of the star and nearly all of the mass, surrounded by an
insulating non-degenerate photosphere that regulates the energy flow from the interior,
thus controlling the cooling rate and appearance. It is thought that the core is normally
composed of the products of helium burning in the progenitor, namely an admixture
of carbon and oxygen distributed according to some unknown abundance profile. High
mass progenitors may produce high mass white dwarfs with oxygen-neon-magnesium
cores, though these are rare. Stars that experience sufficient mass loss to avoid the
helium flash, either due to binary interactions or possibly an extremely metal-rich en-
vironment (see Meng et al., 2008; Kalirai et al., 2007), result in a low mass helium core
white dwarf.

The large surface gravity causes lighter elements to float to the surface on short
timescales, giving rise to a highly stratified photosphere composed of any light elements
remaining after ejection of the envelope. Even tiny amounts of lighter elements are
sufficient to cloak the star and conceal the underlying layers, and it is for this reason
that most white dwarfs show nothing but hydrogen in their spectrum. The approximate
thickness of the H/He layers has a strong effect on the cooling rate, and while current
wisdom favours ‘thick’ layers of ¢y = -?.;"ﬁ = 10~* and gy = 1072, it is known from
pulsating white dwarfs that this does not hold in all cases.

The early evolution of a white dwarf is driven by energy released from a variety
of processes, including gravitational contraction and residual nuclear burning. Energy
loss due to neutrino emission may be orders of magnitude larger than radiative losses
at early times. Settling of the photosphere causes changes in the surface composition
and spectral type, as sedimentation is followed by convective mixing at high effective
temperatures. However, these processes are relatively short-lived, and the main evolu-
tionary phase of a white dwarf is characterised by the slow transfer of residual thermal

energy from the degenerate core to the surface through the insulating outer layers. To
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reflect this, the terms evolution and cooling are often used interchangeably in white
dwarf literature.

A significant event in the later stages of evolution is the onset of crystallisation in the
core. This is a first order phase transition, and the accompanying release of latent heat
slows the cooling process. Also, the crystallised material is oxygen-rich compared to the
original C/O mixture, and in the high gravitational field the release of energy associated
with the sedimentation of the heavier element can be substantial. The magnitude of
these effects depends closely on the precise C/O composition and abundance profile,

something that is not currently well understood.

Next generation models

Before the late nineties, the standard reference white dwarf models were those of Berg-
eron et al. (1995), used by e.g. Oswalt et al. (1996) and Knox et al. (1999) to investigate
the age of the Galactic disk via the white dwarf luminosity function. These coupled
the evolutionary models of Wood (1995), describing the structure and energy content
of the star, to atmosphere models describing the radiative transfer through the outer
non-degenerate layers, thus linking stellar colours to cooling ages.

However, the treatment of the core and photosphere as essentially separate entities
resulted in some built-in deficiencies in the models. The fact that the crystallisation of
the core could not penetrate into the photosphere meant that ages had to be extrapo-
lated for the coolest (Togq < 4000K) objects. Also, the surface convection zone extends
into the degenerate region at low luminosities, increasing energy transport through the
outer layers and significantly reducing the cooling rate (‘convective coupling’). The
importance of this process was not recognised until new models were developed around
2001.

A significant milestone was reached by Hansen (1998), who successfully extended
his models down to Teg = 1500K. This revealed that the collision induced opacity
of Hy molecules in the cool, high density atmospheres of hydrogen rich white dwarfs
causes a strong departure from a blackbody form for the emergent flux. This is in stark

contrast to helium atmospheres, which cool as blackbodies to the lowest temperatures
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(see Figure A.3). The optical colours of hydrogen rich white dwarfs, which were thought
to become redder with age, thus turn back to the blue cooler than Teg ~ 3000K. With
the subsequent identification of faint blue objects in the Hubble deep field (Méndez and
Minniti, 2000), and the suggestion of a large population of faint, ~ 0.5M¢ objects in
the Galactic halo from microlensing results (Alcock et al., 2000), this discovery caused
quite a stir.

The current generation of white dwarf models were developed by the Montreal group,
and presented to the astronomical community in a review paper (Fontaine et al., 2001)
and a comprehensive study of a large sample of cool white dwarfs (Bergeron et al.,
2001). Their evolutionary code included the full structure of the star from the centre
to the top of the photosphere, and was thus able to track both the advancement of
crystallisation into the photosphere, and the extension of the superficial convection zone
into the degenerate core. This revealed that the convective coupling of the photosphere
and core introduces a significant delay in the cooling rate, resulting in a strong feature
in the theoretical luminosity function that had not previously been identified. These
models remain the standard reference in the field, and have been used throughout this

work.

1.3.3 Current frontiers

In the opinion of Fontaine et al. (2001), there are no fundamental limitations to the
application of white dwarf cosmochronology. However, they identify several deficiencies
in the current understanding of white dwarf evolution that, at present, render the
technique less accurate than other methods, such as the main sequence turn-off age
for clusters. Some of these are long standing problems; others have only recently been
identified. In this section I outline some of the present limitations on white dwarf
cosmochronology, with reference to the theoretical understanding of their evolutionary

timescales.
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Photosphere layer thickness

The current ‘standard model’ for the outer photosphere of a hydrogen white dwarf has a
helium layer of mass fraction gz, = 1072 surrounded by a hydrogen layer of g = 1074
However, seismology of pulsating ZZ Ceti stars would appear to indicate a wide range
of thicknesses, e.g. Castanheira and Kepler (2009) find gy = 10763%1-6_ A5 the cooling
time to a given luminosity depends sensitively on the layer thicknesses (e.g. changing
qre to 1073 results in a factor of ~ 19 difference in cooling time to My, ~ 16; Fontaine
et al. 2001), this must be regarded as a significant source of systematic error in the

cooling ages.

Initial chemical profile

The exact C/O composition of the core at birth, and the distribution of elements therein,
has an effect on the cooling rate in a number of ways. All other things begin equal,
increasing the C content increases the total specific heat, leading to longer cooling
times to a given luminosity. The liberation of energy during the crystallisation process
is influenced by the distribution of C and O in the core, and while the amount of energy
released is small, the fact it generally occurs at low luminosity can considerably delay
the cooling time. Salaris et al. (1997) found that uncertainty in the C/O profile was
due mainly to uncertainty in the *C(a,~)®O reaction rate in the progenitor star, with
cooling ages at My, ~ 16.5 differing by as much as a Gyr depending on whether a low

or high rate was adopted.

Spectral evolution

The existance of effective temperature ranges in which certain white dwarf spectral
types are found in very small numbers is well known. The ‘DB gap’ at high effective
temperatures is understood to be a consequence of a very thin H layer masking a
larger He layer in a purely radiative atmosphere; when convective mixing sets in below
~ 30,000K, the H is sufficiently diluted into the He layer that it disappears from the
spectrum, and the star becomes a DB type. A second DB gap is seen from Teg ~ 6000 K

to Teg ~ H000K; this one is not quite so well understood. An explanation in terms of
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a difference in cooling times between H and He atmosphere white dwarfs cannot be
reconciled with the reappearance of He-rich white dwarfs below ~ 5000K. Bergeron
et al. (1997) hypothesise an elaborate accretion/quenching mechanism to explain this,
whereby small amounts of hydrogen could be concealed in the high-pressure atmosphere
of a helium rich star, only to appear at around ~ 6000K due to a drop in atmospheric
pressure.

Regardless of the precise interplay between convective mixing, sedimentation, accre-
tion and energy-level quenching in photospheres of varying layer thickness, the point is
that the cooling age at a given luminosity is determined by the entire spectral history,
rather than the present appearance. For example, a 0.6M¢, star that has cooled with a
He photosphere until reaching 6000/K and is then observed as a DA at 5500K will have
its cooling age underestimated by ~ 1 Gyr. The unknown spectral evolution history of

a white dwarf therefore introduces a large uncertainty in the cooling age.

Ultracool white dwarfs

The coolest white dwarfs currently observed show unusual optical spectra with large
flux suppresion at red wavelengths. This is broadly understood to be a consequence of
collision-induced absorption by neutral Hy molecules (H2CIA). However, the handful of
stars currently studied in detail show spectral energy distributions that deviate signif-
icantly from models incorporating H2CIA (e.g. Bergeron and Leggett, 2002), with the
atmospheric composition particularly difficult to estimate. As these stars are crucial in
constraining age estimates of the local Galactic populations, addressing this problem is

of fundamental importance.

1.4 Applications

1.4.1 Cosmochronology

The fact that white dwarfs cool at a rate that can be calculated from theory makes them
suitable for use as chronometers. The total integrated cooling time of a white dwarf

depends mainly on its present luminosity, with the mass and atmosphere composition
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important second parameters, especially at low luminosities. In order to obtain accurate
age estimates for individual objects it is therefore necessary to measure all three of
these, which requires a range of high quality data including high resolution spectroscopy
and broadband photometry extending into the infra-red. Trigonometric parallaxes are
desirable in order to provide superior mass constraint to spectral line fitting. The time
spent evolving as a main sequence star has to be included; this is obtained using an
IFMR to estimate the main sequence mass, and another relation for the corresponding
lifetime. Studies that have used stellar ages obtained in this manner include that of
Monteiro et al. (2006), who used the white dwarf components of two subdwarf-white
dwarf binaries to assign a thick disk origin to each system. Analysis of a control object
suggested an external accuracy of ~ 10% for the ages.

Larger studies typically lack the broad observational base necessary to date individ-
ual stars, and instead focus on groups of stars with a common origin, using only the
distribution in luminosity to constrain the age of the population as a whole. The notion
that the star formation history of a stellar population is encoded in the luminosity dis-
tribution of its white dwarf members was introduced by Schmidt (1959). In Chapter 4,
I explore in detail the development of the underlying theory over the last few decades
to the level of practical application; in this Section I provide a brief review of important
works and areas of research.

With respect to the Galactic disk, the first such study was that of Winget et al.
(1987), who used a preliminary version of the Liebert et al. (1988) luminosity function
to estimate a disk age of 9.3+£2.0 Gyr. This work revealed the need for deep observations,
as only the faintest few luminosity bins show sensitivity to the absolute age. Brighter
bins can indicate the occurence of bursts in star formation in the more recent past, as
investigated from a theoretical point of view by Noh and Scalo (1990). The sample
of Liebert et al. (1988) was later revisited by Leggett et al. (1998), who used updated
white dwarf models and theoretical luminosity function techniques to redetermine the
disk age at 8 + 1.5 Gyr. Oswalt et al. (1996) used measurements of 50 white dwarfs
found in binary systems to place a lower limit on the age of the disk of 9.5 Gyr. By

integrating the luminosity function, they measure a total local density of 5.3 x 1073
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pe™3 for white dwarfs in binaries, and 7.6 x 1073 pc=3 for all white dwarfs by adding
those single members of the Liebert et al. (1988) sample. A similar number of stars
were used by Knox et al. (1999) to obtain a disk age of 1072 Gyr, with the rather large
uncertainty due to a significant difference in age estimates depending on which of two
independent sets of theoretical luminosity functions were used.

An important testbed for white dwarf cosmochronology is the Galactic cluster pop-
ulation, where this technique can be checked against ages derived in other ways, often
in the same study. Indeed, Fontaine et al. (2001) suggest that the most fruitful ap-
plication of white dwarf cosmochronology at present is likely to be in comparing ages
derived by different means, due to several sources of uncertainty in white dwarf evolu-
tionary models. A recent example from the literature concerns the open cluster NGC
6791, which has independent age estimates from isochrone fits to an eclipsing binary
(Grundahl et al., 2008) and the main sequence turn off (Bedin et al., 2008a), and from
a luminosity function fit to the white dwarf members (also Bedin et al., 2008a). The
unexpectedly bright peak in the white dwarf luminosity function, and the existence of
a secondary peak at fainter magnitudes, led to an age younger by up to a factor 3 than
that obtained from the main sequence stars. This fact, along with the observation of
several He core white dwarfs suggested that extreme mass loss driven by the cluster’s
high metallicity ([4€] ~ +0.4) may be forming He core white dwarfs in large numbers.
As these stars cool ~ 3 times slower than their C/O counterparts, this hypothesis natu-
rally explains the age discrepancy. However, follow up observations with Spitzer failed
to find the large quantities of circumstellar dust that this scenario predicted (van Loon
et al., 2008). Bedin et al. (2008b) showed that a high binary fraction naturally explained
the form of the luminosity function, and when properly accounted for removed most of
the age difference. They note that the remaining difference may be accounted for by
updated white dwarf models using a new estimate of the 2C(a,~)'®O reaction rate.

The application of this technique can be observationally challenging, due to the
requirement of observing the faintest white dwarfs. However, younger clusters have
cooling sequences that terminate at brighter magnitudes, and are therefore more acces-

sible to this approach. Also, the morphology of the lumiosity function changes more
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rapidly for younger populations, and the uncertainties in white dwarf evolutionary mod-
els increase with age, so younger populations can be dated more accurately. Bedin et al.
(2010) measure the age of NGC 2158 using both the main sequence turn off method
and luminosity function fits to the white dwarfs, finding nice agreement with ages of
1.9 + 0.2 Gyr and between ~ 1.8 and 2.0 Gyr, respectively.

Jeffery et al. (2007) suggest that the morphology of the white dwarf cooling sequence
at the hot end may be used to constrain the age. This is an attractive idea as it avoids
the need to observe the faintest white dwarfs, thus opening the technique up to older
and more distant clusters. However, it is worth pointing out that this method relies on
the fact that in a single burst cluster population, the masses of newly forming white
dwarfs are unique. This precludes any application to the cosmochronology of the disk,
because as a continuous population newly forming disk white dwarfs have a range of

masses. This method has yet to be applied in the field.

1.4.2 Galactic structure

The contribution to the local mass density from Galactic disk white dwarfs is relatively
well known, at around ~ 0.002 — 0.003 M pc=? (Leggett et al. 1998; Knox et al. 1999;
Harris et al. 2006). Halo white dwarfs are not quite so well understood, due partly to
the small samples that most studies are based on, but also the fact that the uncertain
kinematic properties and lack of metallicity measurements make secure identification
of white dwarfs among the known Galactic populations difficult. Liebert et al. (1989)
measure ~ 1.5 x 107° My pc from a sample size of five; a more modern value is
~ 2.5 x 107® Mg pc~? from Harris et al. (2006), based on around twenty stars.

Great interest in halo white dwarfs was stirred around the year 2000, when several
lines of evidence suggested the existance of a vast and hitherto undetected halo popula-
tion. The observation of excess microlensing events in the direction of the LMC, above
that expected from the canonical thick disk and stellar halo, was attributed to compact
stellar mass objects residing in a halo surrounding the Galaxy (Alcock et al., 1997). A
second epoch of observation in the Hubble deep field identified two faint, blue objects

with significant proper motions, and a further three marginal detections (Ibata et al.,

24



1999). Given that Hansen (1998) showed that the colours of ancient, cool white dwarfs
turn back to the blue, the identification of these stars as white dwarfs would naturally
explain the microlensing observations. Such a population could also account for the
entire missing dynamical mass of the Galaxy - the dark matter. Though not ‘dark
matter’ in the strict sense of the phrase, these objects would count as such having been
missed in previous luminous mass inventories of the Galaxy. These objects would also
be found in the solar neighbourhood, and the proper motion survey of Oppenheimer
et al. (2001) claimed the discovery of a substantial population of old white dwarfs too
faint to have been detected in previous surveys. 38 of these objects were assigned halo

3 an order of

membership, which indicated a local mass density of 1.3 x 104 Mgpc™
magnitude higher than that expected from subdwarf starcounts and a standard initial
mass function.

However, most of these conclusions were later revised in the light of new studies.
A third epoch in the Hubble deep field north failed to confirm any of the previous
proper motion claims (Kilic et al., 2004), and found instead two disk white dwarfs. The
local halo white dwarf sample of Oppenheimer et al. (2001) was analysed by several
authors; Reid (2005) concluded that the prograde orbits of most of these stars indicated
a thick disk origin, and that no additional Galactic component was required to explain
them. Flynn et al. (2003) reached the same conclusions based on a simulation of the
Oppenheimer et al. (2001) survey in conjunction with a model of the existing Galactic
populations. While the microlensing events still stand, the optical depth of the lensing
population has been revised downwards by a factor ~ 2, and it is thought that a
substantial fraction of the events are due to self-lensing by stars in the LMC, rather
than objects in a dark milky way halo (Calchi Novati et al., 2006).

Still, the list of confirmed halo white dwarfs remains sparse, and further investigation

of a larger sample is required before firm conclusions can be drawn.



1.4.3 Broader context
Extrasolar planets

Several surveys have been carried out to look for planetary companions to white dwarf
stars (Hogan et al. 2009; Kilic et al. 2010; Friedrich et al. 2005), and more are planned
(e.g. Subasavage, 2010). White dwarfs probe an interesting range of progenitor mass
(Myms > 2Mg), in which all present observing techniques fail, but where planets are
expected to be found in significant number based on the correlation observed at lower
mass between stellar mass and the existance of planetary systems (Johnson et al., 2007;
Gould and Kilic, 2008). However, at present there have been no confirmed detections.

All current surveys use either ground- or space-based IR imagers, and employ quite
different observing techniques to main sequence exoplanet searches. This is because
the broad absorption lines of white dwarfs are unsuitable for measuring small radial
velocity shifts, and their small projected radii greatly reduce the probability of transiting
planets. Instead, the expected properties of white dwarf planetary systems enable direct
detection of the planetary component.

White dwarfs are up to 10* times fainter than their main sequence progenitors, which
greatly improves the contrast and makes young, massive planets (> 5Mjy;,) detectable
as a photometric excess in the IR, where the planet spectrum peaks. Also, planets with
white dwarf primaries have significantly larger orbits than those around main sequence

stars, due to close-in planets (@ < 3 — 5 AU) being swallowed up during the red giant

phase, and any further out migrating to larger orbits (;mm = ;%7[\1;15[)-) during ejection of

the envelope. This makes the planets potentially resolveable; at 20pc, a 20AU orbit has
a projected radius of around an arcsecond. The Leicester group have been pioneering the
ground-based search for resolved, IR planetary companions (e.g. Hogan et al.; Burleigh
et al. 2006), and have used their non-detections around 23 stars to place an upper limit
of < 5% on the number of white dwarfs with Tog > 500K, a ~ 60 — 200AU substellar
companions.

From space, HST and Spitzer have been used to look for planets around Hyades

white dwarfs (Friedrich et al., 2005) and pulsating white dwarfs (Mullally et al., 2009).
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Mullally et al. obtained the most convincing detection of a planet so far, by measuring
a sinusoidal variation in the arrival times of stellar pulsations. However, attempts at

directly imaging the planet in the IR found no evidence of a companion.

Supernovae la progenitors

The existence of an upper mass limit on the range of stable white dwarf configurations
(the Chandrasekhar mass) is well established. It is thought that if a white dwarf exceeds
this limit, it will be disrupted in a supernova explosion of type la (SN1a). The intrinsic
luminosity of these events correlates with the decay timescale from peak brightness,
and SNla provide an important standard candle that can be seen across vast distances.
For this reason they are important cosmological probes (e.g. Perlmutter et al., 1999).
Mechanisms that have been proposed to describe how a white dwarf might exceed the
Chandrasekhar limit include the accretion of matter from an evolved secondary, and
the coalesence of binary white dwarfs after orbital decay. Understanding the nature of
the progenitors of SN1a would help to constrain systematics in their use as a distance
indicator, and to explain the origin of inhomogeneities in their detonations (e.g. the
progenitor of supernova 2003fg, at ~ 2M,, appears to have been considerably above
the Chandrasekhar limit).

The Supernova Progenitor surveY (SPY - Napiwotzki et al. 2003) is a systematic
radial velocity search for SN1a progenitors that follow the double-degenerate formation
channel. They have checked over 1000 supposedly single white dwarfs for evidence of
a degenerate companion. Double line binaries allow the total mass of the system to be
measured, as well as the orbital decay time, which in turn allows the identification of
supernova progenitors by the criteria that the total mass exceeds the Chandrasekhar
limit, and that the binary system merges within a Hubble time. Recent results (Napi-
wotzki et al., 2007) reveal no firm detections, though several single-lined binaries fall in
the selection region as SN1la progenitors when the average inclination angle is used to

solve the orbit.
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Gravitational wave sources

Short period binaries consisting of double white dwarfs are expected to be strong sources
of gravitational wave radiation. Indeed, the orbital energy loss associated with this emis-
sion is what causes the eventual merger of SN1a progenitors discussed in the preceeding
Section. The next generation of space-based gravitational wave observatories are ex-
pected to routinely observe gravitational waves emitted by double white dwarf binaries,
which the Laser Interferometer Space Antenna (LISA) should observe as both resolved

sources and unresolved Galactic foreground emission (Liu, 2009).

The interstellar medium

The exceptionally unpolluted spectra of white dwarfs makes them ideal background
sources for studies of the local interstellar medium. Due to their highly stratified atmo-
spheres, species heavier than hydrogen are generally not present in the photosphere, and
any absorption lines that appear are due to interstellar material. The column densities
of different elements can be obtained by analysis of the line profiles, allowing both the
chemical and ionization structure of the local interstellar medium to be investigated.
Moos et al. (2002) measured the relative abundance of deuterium, nitrogen and oxygen
along seven lines of sight, five of which were towards hot DA and DO type white dwarfs.
They suggest that the constant ratio of D/H within 100pc of the Sun can be used to
place constraints on the rate of supernovae, given various assumptions about mixing
timescales within the local bubble, and that the variation across larger distances may
reveal significantly different histories of nucleosynthesis.

OVI is widely believed to form along the interface between hot (~ 106K) and cool
(~ 10*K) gas clouds. The number of clouds in the vicinity of the sun is such that the
lines of sight towards nearby (50-100pc) white dwarfs should intersect several clouds.
Oegerle et al. (2005) observed 29 white dwarfs, finding a wide range in interstellar OVI
abundance in different directions. In particular, they find no increase in column density
for stars closer to the wall of the local bubble, which they find hard to reconcile with any
existing model of OVI formation. However, recent work by Barstow et al. (2009) has

discovered that OVI may be present in white dwarf spectra after all. They observed OVI
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absorption in the direction of 18 white dwarfs, and managed to determine the origin by
measuring the velocity shift of the line relative to both the star and ISM. In all but 4
cases, the OVI was found to reside in the star, casting into doubt previous studies that

use OVI, and even the whole question of the presence of hot gas in the local bubble.

Astroparticle physics

The emission of neutrinos is an important energy sink in white dwarfs at Mj,; < 9, where
the neutrino luminosity can be orders of magnitude higher than the photon luminosity.
The transition from neutrino dominated cooling to photon dominated cooling causes a
distinct change in slope of the luminosity function. Extending this idea, it is thought
that the extreme conditions in the interior of white dwarfs may create other types of
weakly interacting particles, which may be indirectly observed as a change in the cooling
rate compared to that expected from standard theory.

One potential candidate for detection by this method is the ‘axion’. These would
be produced in a variety of astrophysical environments including the interiors of white
dwarfs and non-degenerate stars. Zioutas et al. (2005) observed the Sun for six months
using a laboratory based ‘axion helioscope’ in an attempt to directly detect solar axions,
but found no signal above the background. Isern et al. (2008) investigated the effect
on the cooling of white dwarfs by axion emission, finding a slight change in the slope
of the luminosity function at intermediate magnitudes (M, < 12). They rule out
axion masses greater than 10 meV, finding a best fit to the luminosity function of
Harris et al. (2006) for a mass of ~5 meV. However, the changes in the luminosity
function are within the range of uncertainty in cooling rates due to conventional physics,
e.g. core composition profiles and photospheric layer thickness. Improvements in the
input physics for white dwarf evolutionary models would be required before the reliable

detection of a new cooling mechanism can be claimed.

1.5 Summary

White dwarfs are the most common endpoint in the evolution of stars, and are highly

numerous in the solar neighbourhood where they represent the fossil remains of inter-
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mediate to high mass stars. With recent advances in the theoretical understanding of
their evolution, and the advent of wide-angle surveys and deep pencil-beam imaging,

their application in the fields of Galactic structure and formation has reached maturity.
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CHAPTER 2

A Catalogue of White Dwarfs in the
SuperCOSMOS Sky Survey

Wide angle proper motion surveys provide a great resource for identifying white dwarfs
in the solar neighbourhood. Photometry to faint magnitudes combined with sensitive
proper motion enables the identification of large numbers of these stars, and the ho-
mogeneous nature of wide-field data can be exploited to construct large, statistically
complete catalogues. In this chapter, I describe in detail the construction of such a
catalogue, including the techniques used in survey astronomy and the considerations

involved in maximising catalogue size while ensuring completeness and reliability.
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2.1 The SuperCOSMOS Sky Survey

Introduction

The SuperCOSMOS Sky Survey (SSS) was compiled by digitizing several generations of
photographic Schmidt plate surveys. The source material includes the second genera-
tion POSSII-B, R, I and SERC-J/EJ, ER,I/AAO-R surveys, observed by the Palomar
Oschin Schmidt Telescope in the northern hemisphere and the United Kingdom Schmidt
Telescope in the south. These were performed in the photographic b; rsor iy bands.
The subscripts refer to particular combinations of filter and photographic emulsion used
by the surveys; we ignore the small differences in response between the northern and
southern hemisphere. While photography cannot compete with CCD astronomy in
terms of photometric accuracy, it has been noted in the literature (e.g. Salim et al.,
2004) that insofar as digitized photographic surveys go, SSS photometry is of the highest
quality with uncertainties as low as o,, ~ 0.07.

The first generation POSSI-E and ESO-R surveys provide an early epoch for astro-
metric constraint. The photometry is mostly redundant due to a similar response to
rs9F, but we will nevertheless refer to magnitudes in these surveys as rjp3.p and rg3p
when distinction has to be made. Note that 73, and rg3p are identical in response,
but we do expect differences in the survey characteristics due to different copying his-
tory etc. These surveys cross over at § ~ —18°, thus the sky is divided into three regions
of common photographic material. This has implications for the charcteristics of the
digitized survey. Over 1700 fields are required to cover the whole sky, with each field
being observed in each of the four photographic bands to a depth of r ~ 21. Relevant
technical details of these bands are provided in Appendix A and references therein. The
four observations in each field are spread over a wide time baseline in the latter half of

the twentieth century, with up to fifty years between epochs in the extreme.

Digitization scheme

Schmidt plates were digitized by the SuperCOSMOS scanning machine, scanning at

0.67 arcsecond pixel size and 15 bit digitization. SuperCOSMOS was operated at the
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Royal Observatory of Edinburgh - see Hambly et al. (2001a) for an introduction to
SuperCOSMOS and brief historical census of scanning programs. In some cases, glass or
film copies of survey plates were scanned rather than originals. This includes the entire
northern hemisphere. The use of copies was not thought to significantly degrade the
quality of the scanned data, however we regard each of the surveys as having independent
completeness and contamination characteristics in case any differences arise due to the
copying history. Image Analysis Mode software was used to convert the raw pixel data
into parameterised object catalogues, which were then merged across the four epochs

to measure proper motion and colours.

Data access & technical info

The SSS data are housed in a relational database at the Wide Field Astronomy Unit,
Royal Observatory of Edinburgh. The original SSS is now contained within the Super-
COSMOS Science Archive, with access provided via a web-based SQL query form at
http://surveys.roe.ac.uk/ssa/. Parametrised object information is dispensed from
two large tables; the detection table contains roughly 6.4 billion individual object
detections, which are merged into around 1.9 billion multi-colour, multi-epoch observa-
tions in the source table. A comprehensive description, user-guide and technical notes

for the SSS were released in a series of three papers - see Hambly et al. 2001a,b,c.

2.1.1 Low proper motion data

As described in Hambly et al. 2001¢, a pairing radius of 6 arcseconds was applied to all
objects in the merged source catalogue. This results in a maximum proper motion limit
that varies from field to field, depending on the epoch difference of the corresponding
four observations. As outlined in Section 2.1.2, we have access to a superior high proper
motion catalogue based on SSS data that covers motions greater than 0718 yr~!. We
therefore impose our own maximum proper motion limit of 0718 yr~! on data drawn
from the SuperCOSMOS Science Archive, although note that fields with long time
baselines between epochs may have limits lower than this.

We impose a lower proper motion limit on our catalogue such that all objects have
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at least a 50, proper motion detection, defined by

pacos(8)\? , BEN"
poz Sl e e ol =, )

where f14,005(5) and ps are the angular motions parallel and perpendicular to the equator.

This is desirable in order to reduce scatter in the reduced proper motion diagram that
is used to select WD candidates. Due to a spread in the proper motion errors of objects,
many > 50, detections fail the lower proper motion limit, an unfortunate consequence
of demanding catalogue completeness. The appropriate lower proper motion limit is set
on a field-by-field basis by analysing the proper motion errors, as explained in detail

later. These limits define our low proper motion sample of stars.

2.1.2 High proper motion data

We base our high proper motion catalogue on the results of a large automated search
for high proper motion objects described in Hambly et al. (2004). The search algorithm
works on a field-by-field basis, and starts with the complete set of parameterized object
detections on each of the four plates. Any sources that have been succesfully merged
and included in the default SSS catalogue at motions lower than the selected limit
of 0718 yr~! are thrown away. The remaining objects are then paired in all possible
combinations within a search radius set by the upper proper motion limit of 1070 yr—1
and the epoch difference between plates. The primary pairing is between the two r
epochs, which are subject to a magnitude limit of rsop < 19.75, but any detections
in by and iy are also folded into the analysis to improve the astrometric solution. To
produce an all sky catalogue, we take the entire object catalogue and purge multiple
observations appearing in plate overlap regions, keeping whichever appears closest to its
respective field centre in order to match the seaming of the low proper motion catalogue.
This is far more rigorous than the object pairing in the low proper motion catalogue,
and is designed to maximise completeness of high proper motion objects at the expense
of introducing large numbers of spurious objects. Judicious selection of astrometric and

image statistics is necessary to reduce the contamination to a tolerable level.
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2.1.3 Detections

Detections on at least by, rsop and iy plates are required in order to obtain photometric
parallaxes for WD candidates. In the case of the high proper motion stars, the primary
object pairing is between the two r epochs, so in effect all objects are required to have
4 plate detections. This is also true for the low proper motion stars, because objects

not detected on the rgzp/103. plate have much larger proper motion errors.

2.1.4 Image quality criteria

The Image Analysis Mode (IAM) software used to convert digitized Schmidt plate data
into object catalogues measures a set of 32 parameters for each detected image. We
restrict several of these in order to ensure that objects in our final sample have reliable,

high quality stellar images. The criteria applied are as follows.

Profile classification statistic

The profile classification statistic 1 provides a magnitude-independent measure of the
'stellarness’ of each image (but check the caveat in Section 2.2.2). It quantifies the
deviation of the radial profile slope from that of a mean stellar template, calculated
during an earlier stage of image classification. 7 is given in terms of a unit Gaussian

statistic, and we accept images with |n| < 4o.

Blend number

The IAM software checks for blended images by looking for image fragmentation over a
range of intensity thresholds, and employs a deblending algorithm to separate blended
objects. However, the deblending process introduces systematic defects in the image
parameters that may be large (~ 0.6 mag) for objects of high contrast (Beard et al.,
1990). We therefore reject any objects that have been deblended, indicated by non-zero

values of the blend number.



Quality number

The quality number is an integer that indicates various situations encountered during
image analysis, such as proximity to a bright star or plate boundary, that may adversely
affect the image quality. It is set such that increasingly severe circumstances are assigned

higher values. We restrict this parameter to values less than 128.

Ellipticities

Previous studies utilising digitized Schmidt plate data have placed cuts on the elliptici-
ties e of images, in order to limit contamination from faint galaxies and noise. However,
we have found that the ellipticities fitted by the TAM software are extremely noisy at
intermediate to faint magnitudes, and that any intuitively sensible cut will result in a
seriously incomplete sample of stars. For example, real stellar images in the b; band
are often assigned e > 0.5 within two magnitudes of the plate detection limit. This may
be a consequence of the eight-fold nearest neighbour pixel connectivity employed by the
IAM software. Therefore, we have decided to ignore this parameter when constructing

our catalogue of stars.

2.1.5 Sky coverage

Individual field areas

The pointings used for the ~ 1700 fields comprising the SSS use the ESO/SERC system
of field centres, which is based on a 5° pitch angle plus some small adjustments to allow
for locating guide stars. This results in ~ 0.5° overlap between neighbouring fields, given
the ~ 6° x 6° field of view of Schmidt plates. Objects observed multiple times in overlap
regions are assigned to the field whose centre they are closest to along a Great Circle,
providing a ‘seamless’ catalogue. However, the POSS-I survey adopted the Palomar
system of field centres, which uses a 6° pitch and results in very little overlap between
fields. POSS-1 data are ‘re-mossaiced’ onto the ESO/SERC field system for inclusion
in the SSS, resulting in § > —18° rg3p fields that are really a composite of several

pointings. This has implications for measurement of the completeness limits of SSS
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fields.

I have measured the solid angle for all SSS fields, based on the ESO/SERC field
system. This was done numerically by dividing the sky into small elements of solid
angle, accounting for any excluded regions close to the plane, and assigning each element
to the field it lies closest to along a Great Circle. The average field of view for fields in

the SSS is ~ 0.007 sr, with a significant spread as shown in Figure 2.1.
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Figure 2.1: Frequency of SSS field areas in seamless catalogue.

Bright star haloes and diffraction spikes

Certain structures within the telescope give rise to spurious ‘ghost’ images associated
with each real star, mostly attributed to internal reflections within the optical system.
Bright stars are accompanied by large haloes and diffraction spikes arising from, re-
spectively, reflections within the Schmidt plate itself and the spider arms supporting
the plateholder assembly.

These images effectively ‘drill out’ regions of sky from the survey, and must be
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accounted for in order to accurately calculate the survey volume. The drilling fraction
is measured exclusively from the b; plates, on which these images have the greatest
areal extent, and ranges from a few percent at high Galactic latitude to more than 50%

in the plane.

Rejection of crowded fields

The SSS nominally covers the entire sky. However, in dusty regions at low Galactic
latitude the photometric calibration can be adversely affected by differential extinction
across the field. Also, the process by which merged images are deblended into separate
catalogue objects is dubious, and results in unreliable stellar parameters. Image pairing
across epochs is also tricky in crowded regions, where mis-pairings can result in large
amounts of contamination.

For these reasons, we avoid the Galactic plane by 10° and the Galactic centre by 20°.
We also reject 49 fields lying slightly outside this region that show a large amount of
contamination, manifest in highly dense regions of stars bounded by field edges. Seven

fields centred on the cores of the Magellanic clouds are also excluded.

Rejection of fields with a poor epoch spread from high proper motion survey

In most fields, the earliest epoch of observation is 73103,z The remaining three
epochs are distributed over a ~ 10 to 20 year period with a varying spread in time. The
primary object pairing is between the two r epochs, and if the b; and i observations are
taken very close to the rs9r observation, they provide very little astrometric constraint.
For example, in northern field 103 the rg3p observation is made in July 1952, and by,
rsor and iy are all taken within three weeks of each other in April 1991. In such cases,
a large number of first-epoch pairings are generated for every real high proper motion
object, as the search algorithm proceeds through every possible combination within the
search radius, and the single correct image pairing is swamped by noise.

This is not a problem with the low proper motion catalogue, as the search radius for
image pairing is much smaller. For certain fields in the high proper motion catalogue

however, the effect is catastrophic. We therefore reject from our high proper motion
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Survey Q(sr) Fraction of whole sky

p<0’18 yr=!  9.86 0.78
u>018 yr1  9.52 0.76

Table 2.1: Total sky coverage of the low and high proper motion surveys.

catalogue any fields that have bj,rsor and iy plates taken within 1.5 years. 58 fields

fall into this category, and are excluded.

Total sky coverage

The total sky footprint contained in both the low and high proper motion surveys is
given in Table 2.1. This excludes the Galactic plane and centre regions, accounts for

the stellar halo drilling fraction, and all fields rejected from each of the two surveys.

2.2 Proper motion completeness limits
2.2.1 The low proper motion stars

Upper proper motion limits

The low proper motion data are limited to motions less than (18 yr~!. However, indi-
vidual fields in the SSS may be incomplete at motions lower than this, due to the epoch
spread and pairing radius combination, as explained in Section 2.1.1. To locate the up-
per proper motion completeness limit in each field, we look at the cumulative number
counts as a function of proper motion, which drop off as log(N) oc —3log(p) towards
high proper motions for a uniform, complete sample. We allow for non-uniformity by
measuring the gradient in each field, and fit a straight line to the distribution over
the mid range where the number counts are assumed complete. We compare the ob-
served number counts towards high proper motions to the expected counts based on
our power-law extrapolation, and fix the proper motion limit at the point where the
ratio of observed to expected counts falls below or above a certain threshold, indicating

incompleteness or extreme contamination. The threshold was set to 0.8 and 0.87! for
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Figure 2.2: 2.2(a) above shows field 259N from the low proper motion survey. The blue line
corresponds to the external high proper motion limit of 0’18 yr~! applied across all fields; the
green line is the completeness limit for proper motion in this field, measured according to the

method is Section 2.2.1. 2.2(b) shows the upper proper motion limit frequency histogram for

all fields in the low proper motion survey.

the two cases.

40



Lower proper motion limits

The requirement of at least 50, proper motion detection excludes non-moving objects
from our catalogue, and limits scatter in reduced proper motion. However, we cannot
simply select all objects with > 50, detections, because the proper motion errors show
significant scatter at constant magnitude. The resulting survey volume limits at given
tangential velocity would be unknown, as it would be impossible to measure the distance
at which the star dropped below the required 50, detection threshold. Therefore, we
wish to find the mazimum proper motion error as a function of magnitude, and use
this to fix the lower proper motion limit. This guarantees that all objects that pass
the limit also have > 50, detections. The proper motion error o, varies from field to
field, due to differences in plate quality and time baseline. It is also a strong function of
magnitude, and at constant magnitude shows a significant spread. Figure 2.3(a) shows
the distribution of o, with b; for a representative field. We use b; for these figures
because it is the highest quality photometry available. Objects in the upper locus have
been missed at one of the four epochs, usually rgzp, and have inferior astrometric fits.
For this reason we restrict our low proper motion sample to objects with four plate
detections. To fix the proper motion limit, we fit functions to the upper boundaries
of the bj,o, locus. The procedure for each field is as follows. We start at the bright
end of the distribution, and bin objects on magnitude interactively so that all bins
contain one hundred objects. The mean by and maximum o, in each bin is located,
after rejecting the top 5% of o, as outliers. The full set of UL”“'*“?(IJJ) points defines the
rough upper boundary of the locus, but shows considerable noise on small scales. The
raw fit is then processed through one stage of smoothing to obtain the desired function.
We use a Savitzky-Golay technique to smooth the data, generalized from their original
prescription (Savitzky and Golay, 1964) to allow for non-uniform points on the abscissa.
This removes small-scale noise while preserving any low-frequency features, such as the
mid-magnitude turning point seen in most fields. Figure 2.3(b) shows the same field as
(a), but restricted to four plate detections, and with the fitted functions shown. The

final, smoothed function obtained for each field is denoted o};**(b;), and is used to set
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Figure 2.3: Field 772S proper motion errors and fitted o,(by) function. (a) includes objects
not detected at rgsp, which form the locus of points at higher g,. (b) is restricted to objects
with full four plate detections, and shows the function fitted to the upper boundary of the

0. by locus.

the lower proper motion limit according to
Hmin(by) = 50.::1(1.2(3)'])_ (2.2)

The set of points defining o' (by) is tabulated for each field, and interpolated using

i
cubic splines to obtain the proper motion limit at arbitrary apparent magnitude. Thus
the lower proper motion limit is a piecewise function of apparent magnitude, which
complicates the measurement of the survey volume, but maximises the sample size by
fully exploiting the variable proper motion accuracy. The mean lower proper motion
limit across the survey is shown in Figure 2.4. This is divided into the three sky regions
where the source photographic data are the same. It is interesting to note that the
lower quality northern data attains a similar proper motion accuracy as the southern
region that shares the same first epoch r material, that of the POSSI-E survey. The

ESO-R survey has a much later average epoch, with the result that proper motion

measurements are considerably more uncertain at equal p.
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Figure 2.4: Mean lower proper motion limits in the three sky regions of uniform photographic

source data.

2.2.2 Astrometric contamination of low proper motion data

The magnitude completeness limits defined in Section 2.3.3 (later on) were used to draw
an initial catalogue of stars. Upon early analysis of the reduced proper motion diagram,
it was apparent that the low proper motion catalogue was highly contaminated at
faint magnitudes by objects with erroneous proper motion measurements. A significant
fraction of stars have spurious large proper motions, which cause the highly numerous
disk main sequence stars to scatter to high values of reduced proper motion, completely
swamping the region where we expect to find cool white dwarfs. As can be seen in Figure
2.5(a), objects start to scatter from the dense disk main sequence locus at around the
colour of the old disk turnoff. Redwards of this, the Galactic stellar populations merge
in reduced proper motion (RPM), as RPM no longer correlates with distance.

We selected a sample of objects from the highly contaminated region to investigate
ways to exclude them. The proper motion errors for these objects are of the same order
as those for well-measured objects, but the distribution of astrometric residuals shows
a highly non-y? form, indicating that the assumption of Gaussian positional errors is
breaking down as presumably the image centroiding is being compromised. Analysis
of the image statistics for these objects shows a tendency towards a larger 7 than
expected for point sources, indicative of a shallower radial profile. The contamination is

significantly worse in the north, where the data are of lower quality, but is also present
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in the south at intolerable levels and with the same characteristics. We investigated
whether undetected blended objects were responsible, by comparing equal size regions
of sky in opposite Celestial hemispheres, but at equal Galactic longitude and absolute
latitude |b| to ensure similar levels of crowding. Number counts show a consistently
larger number of blended objects in the south than the north, suggesting that the
source of contamination may be blended objects that have not been detected as such.
The image parameters and astrometry for such an object are likely to be significantly

affected. Getting rid of these objects proved to be tricky. They are found at magnitudes
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Figure 2.5: (a) Depicts an early reduced proper motion diagram showing significant contam-
ination redwards of by — r59r. In (b) we have applied a rsop < 19.75 cut and restricted the

astrometric residuals in order to weed out the contaminating objects.

well within the completeness limits of the Schmidt plates, and at a wide range of proper
motion. We investigated whether a combination of n and astrometric x? per degree

of freedom (x2) could be used to devise a new statistic to identify these objects, but
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Statistic ~ Limit P(<x2)

X?,, north 0.8 0.83
X2, south 1.7 0.99

Table 2.2: Limits on x2 selected for low proper motion catalogue.

unfortunately it was discovered that 7 is slightly magnitude dependent and that any
new statistic would select against faint stars. Tighter proper motion limits are not an
option, because the contamination is present at all proper motions to some extent, and
reducing contamination to tolerable levels in this way results in a very small catalogue
of stars.

The only remaining option is to limit the range of magnitude. We decided to use the
same magnitude constraint as that applied externally to the high proper motion cata-
logue, which shows no sign of this contamination. Thus, we restrict r595 to magnitudes
brighter than 19.75. This removes nearly all of the contamination while maintaining a
suitable catalogue size. As a final constraint, residual contamination at brighter mag-
nitudes is reduced by setting cuts on x2. These cuts are different in the northern and
southern hemispheres, and are set by checking the RPMD over a range of limits until
contamination is judged to be tolerable. The adopted limits are given in Table 2.2.
As a side note, we discovered that the x2 values given in the SSA are precisely half
what they should be given the number of degrees of freedom in the astrometric fit, so
the third column in the table gives the corresponding fraction of real stars that pass
the adopted x2 limit, given the halved statistic. In the end, spectroscopic analysis of a

sub-sample of RPM selected objects is required to judge overall contamination.

2.2.3 The high proper motion stars
Low proper motion limit

The high proper motion catalogue is constructed using a rigorous object pairing algo-
rithm, and we expect completeness around the 0718 yr~! transition between the low

and high p catalogues to be much better on the high u side. Indeed, all-sky cumulative
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proper motion counts for the high u catalogue show 100% completeness right down to

0718 yr=! (see Figure 2.6). We fix this as the low proper motion limit across all fields.

High proper motion limit

It is apparent from Figure 2.6 that spurious detections are creeping into the high proper
motion catalogue above ~ 1”5 yr~!. We fix the all-sky upper proper motion limit in an
identical fashion as for individual fields in the low proper motion catalogue. A straight
line is fitted to the low proper motion range of the log-number counts, and used to
extrapolate the expected observed counts to high proper motions. The proper motion
limit is set at the point where the ratio of observed to expected counts passes below 0.8

1

or above 0.8~ 1. This occurs at a proper motion of ~ 17485 yr~!, and is adopted as the

upper proper motion limit for the survey.
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Figure 2.6: Proper motion completeness of high ;o catalogue. The green line shows the
0718 yr~! boundary between the low and high proper motion catalogues, used as the lower
proper motion limit. Beyond ~ 1”5 yr—!, contamination starts to appear. The blue line

corresponds to ~ 17485 yr~! and is the upper proper motion limit chosen for the high u survey.

2.3 Magnitude completeness limits

The SSS literature provides completeness estimates for a selection of by and 759 plates
in the first SSS data release, the South Galactic Cap (SGC). These are measured by

comparing SSS star and galaxy counts with those obtained from deeper prime-focus and
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CCD data in overlapping regions, and estimate near 100% completeness within ~ 1.5
mags of the plate detection limits. However, our all-sky survey uses northern Schmidt
plate data not included in the SGC, those of the POSS-I and POSS-II surveys. Also,
the re3r/103¢z and in plates are shallower and of lower signal to noise than b; and
rs9p, and, given the colours of the objects we are interested in, will likely determine the
overall completeness limits of the SSS fields when considering objects detected on all
four plates.

Therefore, it was necessary to estimate new completeness limits for all plates used in
the SSS. We obviously cannot obtain deeper imaging for all fields, and so an alternative
approach is required. We decided to follow the method of Tinney et al. (1993); this
involves simulating star and galaxy counts along the line of sight, and comparing these
to observed counts derived from the corresponding plate material.

We assume that the completeness characteristics of plates within the same photo-
graphic survey are identical, due to uniform quality control, emulsion grade and copying
history prior to digitization. This allows us to restrict our analysis to a representative
sample of plates from each of the eight photographic surveys used in the SSS. Although
the plate detection limit varies within each survey, we assume that the plates have a
common completeness function, which we define as the ratio of detected objects to real
objects as a function of magnitude relative to the plate detection limit. We decided
to analyse five plates from each survey, drawn from five fields in each of the celestial

hemispheres. A summary of the fields selected for analysis is given in Table 2.3.

2.3.1 Synthetic star and galaxy counts.

Stars

Differential star counts along the line of sight to each field are obtained using the
Besancon Galaxy model (see Robin et al., 2003). This employs a population synthesis
approach to produce a self-consistent model of the Galactic stellar populations, which
can be ‘observed’ to obtain theoretical data sets useful for testing various Galactic
structure and formation scenarios. We use the coordinates, solid angles and passbands

of our selected fields as inputs, and select an output number count range that goes
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Field b Q Surveys

= f
411S  -86.89 0.00756 SERC — J/EJ
350S  -80.18 0.00749
SERC — R/AAO — R
2418 -69.38 0.00538 ¢
_ SERC — 1
149S  -60.60 0.00591
237S  -50.23 0.00731 \ B8O —R
507N 87.85 0.00759 POSSI — E
382N  80.98 0.00751
POSSII - B
270N 70.38 0.00750  {
) POSSII - R
273N 59.44 0.00750
135N 49.36  0.00723 | POSSII -1

Table 2.3: Fields used to measure the completeness function for each photographic survey. b

and  are the Galactic latitude and solid angle subtended by each field.

several magnitudes fainter than the plate limits. The SuperCOSMOS filter system is
not included in the Besangon model; instead we use the CFHT Megacam bands g and r
to approximate by and rs9r/63F/1030, and Johnson-Cousins I to approximate iy. The

similarity between the filter response curves is demonstrated in Appendix A.

Galaxies

Within a few magnitudes of the plate limits, galaxies appear as unresolved, point-like
objects and have image parameters that overlap with stars. We therefore have to in-
clude galaxies in our synthetic number counts. Galaxy counts to faint magnitudes
are well determined from many independent studies. We use counts provided by the
Durham Cosmology Group that combine their own results (see e.g. Jones et al., 1991;
Metcalfe et al., 1991) with those of many other authors. These are available online
at http://astro.dur.ac.uk/ " nm/pubhtml/counts/counts.html, along with transfor-
mations to photographic bands. They are provided in terms of log-number counts per

square degree per half-magnitude; we fit straight lines to obtain functional forms for
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the galaxy counts in each band, and transform these to 0.1M for comparison to our
observed counts. Note that the ~ 25 square degree field of view of each Schmidt plate
smooths out any anisotropies in the faint galaxy counts. The fitted functions are given
in Equations 2.3 to 2.6 (r = 759p/63r/1030)- We multiply these functions by the solid
angle of each field, then add them to the star counts to obtain our theoretical counts

for each plate.

log(Ny,deg™20.1IM 1) = 0.471 by — 7.890 (16 < by < 26) (2.3)
log(N,deg~20.1M™1) = 0.379 r — 5.351 (17 < r < 25) (2.4)
log(N;,deg™20.1M 1) = 0.606 iy — 9.132 (12 < iy < 17.75) (2.5)
= 0.346 iy — 4.397 (17.75 < iy < 25) (2.6)

2.3.2 Observed star and galaxy counts.

For each field selected for analysis, we obtain object counts to the detection limit on all
four plates, binned at 0.1 magnitude intervals server-side using an efficient SQL query
on the SSA interface. We widen the i and e range to include partially resolved galaxies,

though at the plate limits everything is pointlike.

2.3.3 Completeness functions

In Figure 2.7 we show observed and modelled differential object counts for field 270 in
the north and 149 in the south. The ratio of these quantities relative to the detection
limit gives the completeness function; these are inlaid for comparison. Total model
counts are normalised to the observed number at two magnitudes above the detection
limit, where the plates are assumed 100% complete. The superior quality of SERC-J and
SERC-R is evident, due to the use of original glass survey plates in the SuperCOSMOS
scanning program. These plates show ~ 100% completeness to within a few tenths of a
magnitude of the detection limit. All other surveys were copied photographically at least
once before digitizing, which has resulted in noise creeping in within a magnitude of the
plate limit. This makes completeness assessment difficult due to real detections being

indistinguishable from spurious ones. The POSSII-I survey was copied twice before
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scanning, and the noise is noticeably worse on this plate. The POSSI-E plate shows
large numbers of spurious detections within up to two magnitudes of the detection limit.
A double peak is often seen in the distribution; this is due to the mosaicking of two or
more Palomar fields onto one ESO-SERC field for inclusion in the SSS catalogue. To
estimate the global completeness function for each survey, we repeat the above analysis
for five fields and take an unweighted average of the individual completeness functions.
These are shown in Figure 2.8.

As mentioned above, the noise at faint magnitudes makes completeness assesment
of the plates tricky. Real objects are often dwarfed in number by spurious detections,
seriously compromising any star catalogue drawn from this magnitude range on an
individual plate. However, by restricting our white dwarf catalogue to objects that have
been detected on all four plates in a field, contamination by noise can be considerably
reduced, as noise is eliminated by the image pairing criterion. This allows us to push
our catalogue magnitude limits into the noisy regions, and investigate the completeness
of the catalogue as a whole using statistical methods. We avoid the worst of the noise
just above the plate limit, and set a plate limit offset for each survey that will define the
field-by-field magnitude limits for our WD catalogue. The magnitude offsets chosen,

and the resulting mean depths for each survey, are given in Table 2.4.

2.3.4 Bright magnitude limits

The selection of the bright limits on apparent magnitude is not as important, due to
the low probability of white dwarfs being found at these magnitudes. We fix the bright
limits at 12 for all bands and across all fields. This is within the complete range of the

Schmidt plates.
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Figure 2.7: Example completeness analysis for two fields in the SSS, covering all eight of the
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Figure 2.8: Completeness functions averaged over five plates in each photographic survey.
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Survey Mofiset  Mean mag limit

Northern hemisphere:

POSSI-E 1.0 19.7
POSSII-B 04 222
POSSII-R 0.5  20.6 (19.7)
POSSII-I 0.8 18.8

Southern hemisphere:

ESO-R 0.7 202

SERC-J 04 224

SERC-R 03  20.7 (19.7)
SERC-I 0.8 18.5

Table 2.4: Offsets defining the magnitude limit for each field in the eight constituent pho-
tographic surveys. Column three gives the average survey magnitude limit on applying these
offsets globally. The number in brackets is the corresponding average when the rsor < 19.75

constraint is applied to the second epoch r data, as explained in Section 2.2.2.

2.4 Survey methods
2.4.1 Identification of white dwarf candidates

Reduced proper motion

The proper motions of nearby stars correlate with distance, in the sense that closer
objects are more likely to show large angular velocities. The proper motion can be
combined with apparent magnitude to obtain a statistic called the reduced proper motion

H, which provides a crude estimate of the absolute magnitude.

= M +5logy, Vir — 3.38 (2.8)

Although useless for obtaining accurate stellar distances, H is sufficient to distinguish
populations of stars with distinctly different luminosity calibrations or kinematic proper-

ties. The classical tool for exploiting this is the reduced proper motion diagram (RPMD),
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which plots colour against H. The RPMD is topologically equivalent to the HR dia-
gram, though with considerable vertical scatter due to the weak correlation between H
and M. At around ten magnitudes fainter than main sequence stars of the same colour,

white dwarfs are ideally suited to identification based on H.

Tangential velocity selection

Equation 2.8 suggests that with an appropriate colour-magnitude relation, regions of
the RPMD inhabited by white dwarfs of different tangential velocity can be isolated.
This allows us to perform rigorous selections on H to produce catalogues of white dwarf
candidates within a well-defined tangential velocity range. However, cool, low velocity
white dwarfs can have identical colours and H values to high velocity subdwarfs from
the Galactic halo, and these two populations overlap to some extent in the RPMD.
Contamination by subdwarfs can be reduced by applying a minimum tangential veloc-
ity threshold to stars identified as white dwarf candidates. This produces a cleaner
sample of white dwarfs by restricting selection to regions of the RPMD more widely
separated from the subdwarf locus. Figure 2.9 demonstrates the selection of white dwarf
candidates based on reduced proper motion. The fact that low velocity white dwarfs
are lost from the survey is of course a drawback of this technique; however, the fraction
of stars that fall below the chosen threshold can be calculated, if the kinematic proper-
ties of the population are known. This is done in each field by projecting the velocity
ellipsoid onto the tangent plane, correcting for the mean motion relative to the sun, and
marginalising over the position angle to obtain the distribution in tangential velocity.
This is covered in detail in Appendix B.

The values adopted for the mean reflex motions and velocity dispersion tensors are
given in Table 2.5. These are derived by Hawley et al. (1996) for the thin disc and Chiba
and Beers (2000) for the thick disk and halo. Mean motions are relative to the local
standard of rest; the usual Galactic frame is used in which the velocity dispersion tensor
is diagonal in 0%, 0¥, of,. We use the Dehnen and Binney (1998b) determination of

the solar motion from Hipparcos data.
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Figure 2.9: Reduced proper motion diagrams for high (a) and low (b) proper motion cat-
alogues. Also shown are colour-magnitude relations in reduced proper motion for 0.6Mg H
(black lines) and He (red line) white dwarfs, for two adopted values for the tangential velocity
according to Equation 2.8. The 20kms—! H track is used to select white dwarf candidates for
our catalogue, which are indicated by red dots. Objects rejected based on RPM are indicated

by blue dots.



Population (U) (V) (W) oy oy ow

Thin disc 09 -180 -04 406 26.7 21.2
Thick disc  -1.0 -37.0 -5.0 50.0 56.0 34.0
Halo -16.0 -194.0 -5.0 141.0 106.0 94.0
Sun 100 5.25 7.17 - - -

Table 2.5: Kinematic quantities adopted in this work. The usual Galactic coordinate axes
UVW are used, with U pointing towards the Galactic centre, V' in the direction of rotation,
and W towards the NGP. The velocity dispersion tensor is assumed diagonal in this frame.

Mean motions are relative to the local standard of rest.

2.4.2 Photometric parallaxes

Photometric distances are obtained by fitting the two-colour photometry to the
white dwarf model atmospheres and cooling sequences described in Fontaine et al.
(2001) and updated in Bergeron et al. (2001) and references therein (see also
http://www.astro.umontreal.ca/ bergeron/CoolingModels). They were provided
in the SuperCOSMOS bands by Dr. Bergeron on request. The models consist of cooling
sequences for white dwarfs of different surface gravity and H/He atmosphere type. The
gravity and atmosphere effect the fitted distances by changing the absolute magnitude
at a given colour, but with only two data points each we cannot fit these for our stars.
Instead, we assume logg = 8.0 for all our stars, and fit both hydrogen and helium
atmospheres. It is well known that the gravities of white dwarfs are tightly distributed
about this value (for example, Bergeron et al. (2001) find (logg) = 8.070 & 0.014), a
consequence of their tight mass distribution. Low and high mass white dwarfs exist in
roughly equal numbers (~ 10% and 15%), and fitting to log ¢ = 8.0 models has opposite
effects on the photometric parallax.

Also, the H/He atmosphere type has very little effect on the luminosity above around
6,000K (by — rs9r ~ 0.8). Below this, the assumption of a H atmosphere for a He at-
mosphere star will cause the absolute magnitude to be considerably overestimated, and

the distance underestimated. In general, optical spectra are useless for distinguishing
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the atmosphere type, because below around 5000K all the absorption lines are washed
out. There is therefore some ambiguity over the nature of the coolest white dwarfs in

our survey.

Fitting procedure

The best fitting log ¢ = 8.0 H and He atmospheres are found in a straightforward manner
by variance-weighted least squares, after interpolating the models at 10K intervals. We
fit the by — rs0p, by — iy photographic colours to the predictions of the models, with
photometric uncertainty assigned according to the relation in Appendix A.1.2. The
models corresponding to the upper and lower lo confidence boundaries are found by
X3y = XZin+1. We take no account of redenning, and do not expect it have a significant
effect due to the proximity of our stars. Objects with x2,, > 5 are rejected from the
survey; these are mostly unresolved binaries as explained at the end of this section.
Overall distances are estimated by taking a minimum-variance combination of the
estimates from each photometric band by, rsor and iy. Note that we avoid rg3p/103.£
in this calculation. Uncertainty on the overall distance estimate is assigned by averaging
the upper and lower confidence boundaries. A two-colour diagram showing the location

and status of our stars relative to the models is presented in Figure 2.10.

Calibration of photometric parallaxes

In order to measure the success, or otherwise, of our photometric parallaxes, we compare
the photometric distances to those obtained by trigonometric parallax for a subset of our
white dwarfs. Bergeron et al. (2001) presented an analysis of 152 cool white dwarfs with
accurate trigonometric parallaxes (2= < 0.3), all but four of which fall within the proper
motion and magnitude range of our high proper motion data. Of the remaining 148, 115
have SSS counterparts. We investigated the missing stars by searching individual plate
records for proper-motion corrected positions; mostly stars are excluded due to lack of
a detection at 7635103, Note that when cross identifying stars, we do not apply the
completeness limits from Sections 2.2 and 2.3, as the identification is done manually

and contamination is not a problem. We do, however, apply the usual restrictions on
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Figure 2.10: Two colour plots for high (a) and low (b) proper motion catalogues. Red squares
indicate stars that pass the x> < 5.0 cut on the model atmosphere fit; green crosses indicate

failures. Objects with spectroscopic follow-ups are marked with circles.
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blend and quality number, as these directly affect the quality of the photometry. We
also require stars to be detected at all four epochs, which is necessary for the fit. These
constraints reduce the sample to 74 stars.

We fit atmosphere models to the remaining stars, in each case using the appropriate
H/He atmosphere as measured by Bergeron et al. (2001). We place the same cut on
the residuals as is used in the main survey, in order to remove any stars with spurious
photometry. This results in a sample of 67 stars with adequately fitted photometric
distances. A comparison of the distances obtained by the two methods is presented in
Figure 2.11. The correlation between the two is r = 0.76, and %Ei = 1.07 £ 0.54. The
error in g—;—“ﬁ is likely to be lower than this, due to uncertainty in dy;y, and we estimate
the accuracy of our photometric parallaxes og4,,,, to be around 50%.

We compared the results of fitting (by — rs9r, 759F — in) and (by — 7505, by — in)
colours to the models. The (by — 595, 7508 — i) colours resulted in a slightly worse
fit (r = 0.74, ‘&%ﬁf} = 1.09 £ 0.55) presumably due to the superior quality of b, so we
adopt (by — rs9p, by — i) for performing our photometric parallax fits. We also tried
relaxing the x? cut to 6 then 7; in both cases the sample was increased to 69 stars

with d%f: = 1.07 £ 0.53. Therefore, all but a few percent of white dwarfs with reliable

photometry will pass the survey y? < 5.0 threshold.

Cool white dwarf atmosphere types

At colours where the choice of atmosphere has a significant effect on the absolute magni-
tude, a dichotomy arises in the photometric distance estimate that must be addressed.
Knox et al. (1999) deal with the unknown atmosphere type by assigning half of the
stars H atmospheres and half He. However, as He WDs are brighter at a given colour
they will be sampled over a larger volume and are expected to be present in greater
numbers than a simple 50:50 ratio. Harris et al. (2006) use this fact to estimate the
relative numbers of the two types they expect to find in their survey, in several bolo-
metric magnitude bins. They also avoid strict atmosphere assignments for each object,
choosing instead to attach a weight to each atmosphere and allow stars to contribute

as both types.
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Figure 2.11: We compare the distances obtained by our photometric parallaxes to those

obtained by trigonometric means, for a subsample of stars analysed by Bergeron et al. (2001).

We follow the lead of Harris et al. (2006), and assign weights to each star depending
on colour. However, instead of using a few discrete magnitude ranges, we derive a
continuous weight function based on the survey volume for each each type as a function
of colour. The relative fraction of He to H stars at a given by — 59 colour is estimated
from the corresponding absolute magnitudes Ry and Ry, assuming a spherical survey
volume and uniform density profile. We obtain the following formulae for the weights

wy and wpy for each type;

M He
= R 2.9
il NHe + NH 2:9)
1
= 2.10
1+ C-110% (Rue—Rn) 40
wg=1—wge (2.11)

where C is the ratio %‘f—f of helium to hydrogen white dwarfs. C is likely an evolving
function of colour, due to spectral evolution (see e.g. Tremblay and Bergeron, 2008),
however here we simply set it equal to 0.5. The helium weight as a function of colour is
plotted in Figure 2.12(b) for several assumed values of C, along with reference weights

obtained if H and He white dwarfs did not diverge in absolute magnitude. The colour-

60



magnitude relations used to calculate the weights are shown in Figure 2.12(a).
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Figure 2.12: (a) Colour-magnitude relations for 0.6My H and He white dwarf models, showing
the divergence beyond b; —rsep ~ 0.8. (b) Weights calculated for cool helium atmosphere white
dwarfs, under different assumptions for the ratio 2= in the solar neighbourhood. The curves
correspond to C = 0.1,0.5,2.0 (bottom to top), and the straight lines are the weights if the H

and He colour-magnitude relations did not diverge.

Known ultracool white dwarfs

Of the dozen or so ultracool (Tug < 4000K) white dwarfs that have been reported in
the literature, seven pass the survey constraints and are included in our white dwarf
catalogue. These are LHS 3250 (Harris et al., 1999; Bergeron and Leggett, 2002),
CE 51 (Ruiz and Bergeron, 2001), LHS 1402 (Bergeron et al., 2005), SDSSJ0947 (Gates
et al., 2004), SSSJ1556 (Rowell et al., 2008), SDSSJ1452+45 and SDSSJ1632-+24 (Harris
et al., 2008). Our default photometric parallax method is inappropriate for these stars
for two reasons. Firstly, although detailed analysis of stars of this class is currently,
and necessarily, restricted to only a couple of examples, it is clear that their properties
are quite different to what one would expect based on an extrapolation from higher
temperatures. In particular, it would appear that most of these objects have extremely

He rich atmospheres, which is difficult to reconcile with the expected accretion rates of
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H from the interstellar medium. Also, the single object with a trigonometric parallax
(LHS 3250) appears over-luminous for its temperature, and has been interpeted either as
an unresolved double degenerate or an extremely low mass single white dwarf. Secondly,
models fail to reproduce the SEDs of these objects for any set of parameters, indicating
incomplete input physics. To quote Harris et al. (2008), writing with reference to their

own objects but applicable more generally,

"It is premature to add these new ultracool white dwarfs to any analysis of
the space density and luminosity function of white dwarfs for two reasons:
we do not yet have models to fit the spectra adequately to give accurate
temperatures and H/He abundances, and we do not yet have distances to

get luminosities, masses, and ages."

While this may be true, these stars are present in our survey and must be dealt with in
some way. And so with these caveats, we proceed to estimate distances and luminsoties
for these objects, though note that our adopted values should be treated with caution.

Of the seven white dwarfs, only three have anything close to a reliable distance
estimate. LHS 3250 has a trigonometric parallax as noted above, and CE 51 and LHS
1402 have photometric parallaxes based on spectroscopy and multiband photometry,
extending into the IR in the latter case. SSSJ1556 has a SED very similar to that of LHS
3250, and Rowell et al. (2008) invoked their similarity to assign a distance by assuming
these stars also shared identical luminosities. Gates et al. (2004) performed a similar
analysis for SDSSJ0947 using superior Sloan photometry. We continue in this way for
the final two stars. SDSSJ1452+45 is closest in colour to LHS3250, though 759 — in
differs by ~ 0.4 and this star is most likely warmer. SDSSJ1632-+24 has identical colours
to CE 51 (to ~ 0.01m), and we use this star as a reference in this case. The distances
and bolometric magnitudes adopted for these objects are presented in Table 2.6. We
have used SSS proper motions to calculate corresponding tangential velocities. Note
that on the basis of this distance estimate, SDSSJ0947 has vy, = 18kms™! and drops
out of the sample. To be clear, it passes the vig, > 20kms~' RPM threshold for the

survey, but when the extra (dubious) distance information is added at this stage it falls
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Star distance vVign Mpal Teg Method

CE 51 14.7 4 17.5 2730 Photometric 7

LHS 3250  30.3 80 16.17 <4000 Trigonometric 7

LHS 1402 25 58 16.8 3240 Photometric 7
SSSJ1556 32 63 16.17 <4000 Reference to LHS 3250
J1632+24 23 38 17.5 <3000 Reference to CE-51
SDSSJ0947 47 18 16.17 <4000 Reference to LHS 3250

via SDSS colours

J1452+45 57 28 16.17 <4000 Reference to LHS 3250

Table 2.6: Distances and bolometric magnitudes for ultracool white dwarfs appearing in our

survey.

below the cut.

Unresolved binaries

Selection of white dwarf candidates is made on by, rsoF and p, so objects with unusual
iy magnitudes turn up at this point when their by — iy colours are compared to the
models. The large populations of objects at red b; — iy in Figure 2.10 show excess flux
in i, due to an unresolved cool main sequence companion. Figure A.1 shows how the
1 band is sensitive to the flux from the cool star. These WD+dM binaries are ejected
from the survey by the restriction on the photometric parallax residuals, as with at
least one of three bands polluted no reliable white dwarf fit is possible. This therefore
represents a source of incompleteness in the survey. Spectra of some of these objects
were taken as part of our spectroscopic follow up program to confirm their nature; see
Section 2.4.3. Similarly, Sirius-like systems consisting of a hof main sequence star and
white dwarf will fail reduced proper motion selection as white dwarf candidates.
Unresolved double degenerates often have combined spectral energy distributions
that closely resemble single stars of intermediate temperature. They will therefore be

successfully fitted to the models and pass into the white dwarf catalogue as apparently
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single objects. However, with two stars contributing to the flux the derived photometric
distance will be underestimated by up to a factor v/2.

Indications from the local (20pc) white dwarf population are that ~ 70% of white
dwarfs exist as single objects (Holberg, 2009). Around 20% are members of either a
WD-+dM or Sirius-like binary system, and so ejection of these may result in incom-
pleteness of up to 20%, depending on what fraction are unresolved by SuperCOSMOS.
Around 10% of white dwarfs exist in double degenerate binaries, which translates to
a double degenerate-to-single star fraction of up to 7% among our catalogue objects,

again depending on what fraction are not spatially resolved.

2.4.3 Evaluation of spectroscopic subsample

In order to assess the integrity of our survey method and white dwarf catalogue, we have
undertaken a program of spectroscopic follow-up observations for a subset of objects
selected from our catalogue. Our observations were made over four nights using the
CTIO 4m Blanco telescope with the R-C spectrograph, eleven nights in total on the
Isaac Newton Telescope using IDS, and eleven hours using the ISIS spectrograph on
the William Herschel Telescope in service mode. All spectra were taken with a similar
instrument set up, obtaining a resolution of ~ 5A with a wavelength coverage of ~
3000 — 9000A. Data were reduced using standard IRAF packages. Briefly, using the
ccdproc task, images were trimmed, corrected for overscan and bias, flatfielded and a
slit illumination correction applied using twilight sky exposures. Spectra were extracted
using the apall task, wavelength calibrated using appropriate arc lamp exposures, and
flux calibrated with observations of spectrophotometric standards. Observations of early
type stars were used to remove atmospheric absorption features (telluric correction). In
most cases, three exposures were taken and combined in median to remove cosmic rays
and reduce noise.

Of the 148 objects for which we measured spectra, 75 are included in our final
white dwarf catalogue, and are presented in Appendix C. Of these, only three are
identifiable as non-white dwarfs: SSSJ1126+ 1433 and SSSJ0206-+1836 are M dwarfs,
and SSSJ1717+3026 is a subdwarf. This suggests that our catalogue may be contam-
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inated by non-white dwarf stars at the level of a few percent. The remaining stars
show a wide range in spectral type, including hot hydrogen (e.g. SSSJ1248-+4153,
SSSJ1248+4153) and helium (e.g. SSSJ1248+4153) atmosphere stars (DA and DB
types), featureless DC types (SSSJ1248-+4153, SSSJ1248+4153, SSSJ1248+4153), DZ
stars with only metal lines (SSSJ1248+4-4153) or DZAs with both hydrogen and metals
(SSSJ1248+4153), stars with strong collision-induced absorption (SSSJ1556-0805) and
a sole cool DQ showing only the Swann bands of carbon (SSSJ1248+4153).

The 73 stars that do not end end up in our final catalogue, and that are presented
in Appendix D, were targeted for a number of reasons. Some were present in early
catalogues before the survey limits were refined, and now lie outside the survey range.
These are a mixture of bonafide white dwarfs (SSSJ1248+4153), expected subdwarf
contaminants (SSSJ1248+4153) and objects that must have spurious photometry, e.g
the catalclysmic variable SSSJ1248+4-4153. We also targeted a number of stars we sus-
pected of being white dwarfs with unresolved, low mass main sequence companions.
These tend to be selected as white dwarfs based on their by — rz9F colour and reduced
proper motion, but then fail the photometric fitting procedure due to excess flux at iy.
The spectra confirmed our suspisions - for example, SSSJ1248+4153, SSSJ1248+44153
and SSSJ1248+4153 show both the broad Balmer lines characteristic of the high tem-
perature, high pressure atmospheres of white dwarfs, and the TiO bandheads associated
with the low temperature, low pressure atmospheres of M dwarfs. The position of these

features relative to our photographic filters is shown in Figure A.l.

2.5 Catalogue summary

To bring this chapter to a close, I briefly review the main results of the preceeding
sections and summarise the final white dwarf catalogue. I have undertaken a proper
motion and magnitude limited survey for white dwarfs in the SuperCOSMOS Sky Sur-
vey, using two distinct datasets of low and high proper motion stars. The high proper
survey is limited mainly by the 0/18yr~! low proper motion limit; the low proper mo-

tion survey, probing more distant stars, is limited mainly on iy magnitude. In light of
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Section 2.4.2, the catalogue may be up to 50% incomplete due to exclusion of blended
objects and those for which no first epoch detection exists. However, Section 2.4.3 in-
dicates that contamination of the final catalogue by non-white dwarfs is limited to a

I cut in reduced proper motion, I obtain

few percent. On applying a v, > 20kms™
10,929 white dwarf candidates with photometric parallaxes accurate to around 50%.
Increasing the v,y threshold results in a cleaner catalogue; vgan > 30kms™! gives 8558
stars, and vy, > 40kms™! gives 6463. Note that these numbers are based on reduced
proper motion selected samples; later, I will draw velocity subsamples using the pho-
tometric parallaxes to determine velocities, and the numbers will be slightly different.
Sky projections of white dwarf candidates that pass the v, > 20kms™! cut are shown

in Figure 2.13. Tangential velocity and distance distributions are presented in Figures

2.14 and 2.15.

Figure 2.13: Sky projection of white dwarfs in the high (a) and low (b) proper motion surveys.
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Figure 2.14: Tangential velocity distribution of white dwarfs in our high (a) and low (b)

proper motion surveys.
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surveys.






CHAPTER 3

The Luminosity Function for White
Dwarfs in the SuperCOSMOS Sky

survey

The white dwarf luminosity function is of fundamental importance in the cosmochronol-
ogy of stellar populations. A whole host of astrophysical phenomena influence its mor-
phology, including white dwarf cooling rates, the initial mass function and the star
formation history for the population under study. Reconciling the observed luminos-
ity function with that reconstructed from theory allows one to investigate the various
parameters that go into the mix. However, it is usually the absolute age of the popu-
lation that is of greatest interest. In this chapter, we focus on the measurement of the

luminosity function using our catalogue of white dwarfs.
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3.1 Luminosity function methods

3.1.1 The y-— density estimator

There exists a variety of statistical methods for estimating luminosity functions, includ-
ing both parametric and non-parametric methods, maximum likelihood estimators and
simple number counts. The Tfn}Tx technique (Schmidt, 1968) has been used in every
major study of the white dwarf luminosity function, due largely to tradition and to the
relative simplicity of the approach, although it has the advantage of easily incorporat-
ing proper motion selected samples, as well as the non-uniform distribution of objects
within the Galactic disk. Its performance alongside other methods has been analysed
by Geijo et al. (2006) and found to be satisfactory; it provides an unbiased estimate of
the true density, and for large enough samples (> 300) accurately characterises both
the rising slope and faint peak of the luminosity function. Its particular relevance

to cosmochronology has also been investigated. Wood and Oswalt (1998) found that
1

Vinaz

statistical uncertainty alone in

luminosity functions resulted in 15% (10%) age un-
certainty for 50 (200) point samples, and that uncertainties in white dwarf and Galactic
evolutionary models contributed a further 10 — 15%. Therefore, using the ~ 9,000 ob-
jects with vy > 30 kms™!, we expect the uncertainty in age estimates arising from
statistical uncertainty in the observed luminosity function to be negligible compared to
the theoretical uncertainties associated with calculating the reconstructed luminosity
function.

The

method obtains an estimate for the number density of objects ¢ by sum-

‘{PRGI

ming the inverse of the maximum volume in which each object could reside and still be

accessible to the survey,

6= — (3.1)

Vmaa:,-i

i=1
Uncertainties are conventionally assigned assuming Poisson statistics, where the stan-
dard error in each —vni: term is equal to the term itself (e.g. 1 & 1 events). These are
then summed in quadrature to obtain the error on ¢,
N

B=Y (32

i=1 @ mazxi
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A more accurate approach would be to use the Gehrels (1986) upper and lower confi-
1+

dence limits for Poisson statistics, which would result in a 173 3; contribution from each
star for a 68.27% confidence interval. It is to allow comparison with other studies that
we adopt an uncertainty of +1 on the number of stars; all previous measurements of
the white dwarf luminosity function have used this.

Objects are binned on bolometric magnitude, and the density associated with each
bin is calculated in this manner to obtain the luminosity function. As in Knox et al.
(1999), we plot the luminosity function points at the mean magnitude of the objects
in each bin. This is more realistic, and shifts the observed luminosity function slightly
in regions where the number counts change rapidly with magnitude, such as at the

downturn. We also assign horizontal error bars to each point, calculated by averaging

the lower and upper bolometric magnitude errors separately, e.g.

O—up =

with oyp; and 0y4,; assigned from the 1o photometric models.
This method relies on being able to calculate the appropriate survey volume for
each star, and correct for various sources of incompleteness introduced by the survey

procedure. We turn to this now.

3.1.2 Calculating V,ax

Our survey is limited on both apparent magnitude and proper motion. The intrinsic
stellar properties, namely the absolute magnitude and tangential velocity, lead to re-
strictions on the distance at which each star could reside and still pass the survey limits.
The apparent magnitude limits are fixed in each field, and the corresponding distance

limits are found according to

bjmaz—BJ T59F, maz — fls9F r63F,maz — 63 F iN,maz —IN
n s : -
ey = min (10 5 , 10 5 , 10 5 , 1073 (3.4)
by min—BJ r59F,min —fs9F T63F, min —FRg3F iNmin—IN =
d’mm = max | 10 5 , 10 5 , 10 5 .10 5 (3_3)



The high proper motion stars

Our high proper motion sample also has fixed proper motion limits, which are converted

into distance limits similar to those above given above using the star’s tangential velocity

v by
n = Ut
d?‘ﬂﬂ.ﬁ’: 4'74 #min (3'6)
Ut
din = o 37
min 4.74 Ty ( ()

where p is in “yr=!, v; is in kms™! and d is in parsecs. The overall distance limits are
found by combining these with Equations 3.4, with the condition that the star has to
pass both sets of limits to be included in the survey. Vj,q; is then found by integrating

the appropriate density profile along the line of sight

d‘m ar

Vinax = ZQ/ —r dr (3.8)

dmzn

where the summation is over all survey fields, and ;% is the normalised density profile for
the Galactic disk. This method for V4, follows that of Stobie et al. (1989), generalised
to arbitrary Galactic latitudes by Tinney et al. (1993).

The low proper motion stars

Our low proper motion sample has lower proper motion limits that are piecewise func-
tions of apparent magnitude in each field, and no simple expression (cf. Equation 3.6)
for the corresponding distance limits can be derived. Indeed, if the lower limit changes
rapidly with apparent magnitude there may even be several ranges of distance in which
the star passes the survey limits. V., must be calculated by integrating numerically
along the line of sight between the magnitude distance limits (Equation 3.4), at each
step evaluating whether the star passes the proper motion limits, which are calculated

from the star’s by magnitude at that distance. This leads to the integral
i ax

Vi — ZQ / P(r)r?.dr (3.9)
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where

L if pmin(bs(r)) < 5% < tmaa
P(r) =

0 otherwise.

Exponential density profiles

The density profile of disk stars in the solar neighbourhood is that of an exponential
decay law in both perpendicular distance from the Galactic plane, and radial distance
from the centre. The decay constants are called the scaleheight H and radial scalelength
Rq, with H having a value of < 100 to ~ 500pc depending on the spectral type and
R4 about an order of magnitude larger.

As our stars are all within a few hundred parsecs, we expect to see no variation in
density arising from the change in radial distance from the Galactic centre across the
survey volume. However, the scaleheight has the effect of truncating the survey volume
away from the Galactic plane, and will be observed given the distances involved in our

survey. An appropriate form for B% is thus

®

p —|2«]
— =exp—— (3.10)
Pe H

B —|rsin(b) + 2|

= exp 7 (3.11)

where b, r are the Galactic latitude and line of sight distance, and zs is the Galactic

plane distance of the Sun.

Adopted z; and H

We adopt a scaleheight of 250pc for the thin disk, which is in line with the result of
Mendez and Guzman (1998) obtained for faint main sequence stars. These are likely
of similar age to the white dwarfs in our catalogue and are expected to show a similar
spatial distribution, having been subjected to the same kinematic heating. This is also
the value used in most other studies of the white dwarf luminosity function, and thus
allows more meaningful comparison with other works. There is some empirical evidence
that the scaleheight of white dwarfs increases towards fainter magnitudes (see Harris

et al., 2006) where the stars are on average older, but we ignore this here. Indeed, at the
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faintest magnitudes all observed white dwarfs are so close to the Sun that the chosen
scaleheight makes very little difference.

The Solar distance from the Galactic plane, 25, is often omitted in studies like this
(e.g. Tinney et al., 1993), which is equivalent to setting its value equal to zero. However,
the consensus of many star count investigations is that in fact 2z lies close to ~ 20pc

(Reed, 2006). Therefore, we adopt this value in our density profile for the disk.

Corrections

Several steps in the compilation of our white dwarf catalogue have the side effect of
excluding a fraction of target stars. We correct our density estimate for the ejected
objects, under the assumption that the exclusion is uniform with luminosity and does
not bias the survey towards bright /faint or blue/red stars. The fraction of stars that
pass the lower tangential velocity threshold is called the discovery fraction and is usually
denoted x. It is calculated from the velocity ellipsoid and line of sight to the field in
which the star was discovered, according to the method outlined in Appendix B. The

contribution of each star to the total density is adjusted according to

AR
o=2 (3.12)
1=1

1 Vmam,f

A similar adjustment arises from the restriction on astrometric residuals. The fraction
of stars that pass the cut can be calculated from the appropriate x? distribution and
the chosen threshold, and the correction is applied in an identical manner.

In order to account for the unknown H/He atmosphere types of cool white dwarfs,
stars are allowed to contribute as both types, with a weight set by the probability of ob-
serving either type given the survey volume and relative luminosities. The contribution
of each type to its respective luminosity function bin is multiplied by the appropriate

wh /whe weight, calculated from the by — r59p colour according to Equation 2.9.

The <Vr‘.: ) test

ax

The

method provides a useful statistic for checking the completeness of the sample.

Vm axr

A complete catalogue has the property that objects are distributed uniformly within the
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observable survey volume Vj,,, (provided that the correct density profile is used), and it

follows that the statistic ﬁ is drawn from U|0, 1]. We therefore expect (pﬁ) = 0.5,

to within a statistical uncertainty of o = i for N objects.

For the 7315 stars in our low proper motion catalogue with v > 30kms™!,

<V:u) = 0.497 + 0.003 and is consistent with being drawn from a complete sam-
ple. Note that the velocities used to define the subsamples drawn in this section are
obtained from the full photometric parallax, rather than simply the reduced proper mo-
tion cuts. Also, stars are included if either their H or He atmosphere solution leads to a
velocity that is included in the sample, and the weight for the corresponding atmosphere
is non-zero.

The 1450 objects in our corresponding high proper motion catalogue show
(,'—f}i:) = 0.532 £ 0.008, and would appear to be either incomplete (missing nearby
stars) or contaminated by spurious objects masquerading as white dwarfs at large dis-
tances. We think the second explanation is correct, but that far from being spurious
objects, the extra stars are in fact white dwarfs from an extended population that does
not follow the 250pc decay of the thin disk. These objects would on average lie at large
V,‘/ﬁ This would seem to be confirmed by the analysis of Section 3.3, which estimates

that ~ 165 stars in the high proper motion catalogue are of spheroid origin.

3.2 The white dwarf luminosity function

In Figure 3.1 we present the luminosity functions measured for both the high and low
proper motion catalogues, on adopting a 250pc scaleheight and minimum tangential
velocity threshold of 30kms~!. The high proper motion catalogue has fewer stars, but
probes intrinsically fainter objects due to the large upper proper motion limit allow-
ing nearby stars to enter the sample. This gives a better constraint on the luminosity
function at fainter magnitudes around the peak and dropoff. The low proper motion
catalogue contains objects of fainter apparent magnitude, due to relatively bright white
dwarfs entering the sample at larger distances. This results in more uncertain pho-

tometric parallaxes, which is apparent in the wider horizontal errors bars on the low



proper motion luminosity function. The structure in the luminosity function at the faint
end is easily discernible - beyond the peak, there is a sharp drop off followed by a slow
decline. Theory predicts that high mass white dwarfs cool faster than their normal mass
counterparts, and, all other things being equal, fall in the region beyond the peak where
the luminosity function for normal mass white dwarfs terminates. Good constraint in
this region is vital for obtaining accurate age estimates, and the number of datapoints
beyond the peak is encouraging. However, a quantitative analysis is only possible in
conjunction with theoretical luminosity functions.

Figure 3.1(a) shows the effect on the luminosity function when the lower tangential
velocity threshold is varied. Ideally, the discovery fraction of Section 3.1.2 corrects for
the excluded stars and there would be no systematic difference. This is the case at
brighter magnitudes, if we ignore random errors due to small number counts in a few
bins. At the faint end, the v; > 20kms™! luminosity functions rise slightly, indicating
either over-correction due to an inappropriate velocity ellipsoid, or that contamination
from subdwarfs is creeping in. As the v; > 30,40kms—! luminosity functions show
agreement, we conclude that the v; > 20kms~! sample is mildly contaminated by

subdwarfs.

3.2.1 The luminosity function for high velocity white dwarfs

Any spheroid white dwarfs present in our catalogue may be identified by their large
tangential velocities. Precisely how large a velocity is sufficient to reliably determine
spheroid membership is a matter of some debate, as discussed in the following section.
Figure 3.3 shows the tangential velocity distributions for the thin disk, thick disk and
spheroid along the line of sight to one of our survey fields, as determined from M dwarfs
and low metallicity stars (see Hawley et al., 1996; Chiba and Beers, 2000). A cut of
v¢ > 200kms~! is often considered to cleanly separate the spheroid and disk populations,
and the luminosity function obtained on applying this cut to our catalogue is presented
in Figure 3.4(a). The discovery fraction used to correct for the excluded low velocity
stars is calculated from the spheroid velocity ellipsoid, and the density profile is that

of a uniform population. The effect of varying the velocity threshold is investigated in
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Figure 3.1: Luminosity functions for v; > 30kms~! white dwarfs in the high (red points) and
low (green points) proper motion surveys. Figures (b) and (c) show these separately for more

clarity around the faint peak.
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Figure 3.2: Luminosity functions for white dwarfs on adopting a range of lower tangential
velocity cuts, for the high (a) and low (b) proper motion catalogues. The rise in the v, >
20kms~' LF at faint magnitudes indicates that contamination from subdwarfs may be present,

and that by v; > 30,40kms~! this has disappeared.

Figure 3.4(b). The fact that the v; > 160kms™! luminosity function sits at a slightly
higher density suggests that there is some residual contamination from the disk even at

these velocities.

The origin of the high velocity stars

Attributing individual stars to a particular kinematic population based on tangential
velocity alone is tricky. The kinematic properties of cool white dwarfs are relatively
uncertain, and it is possible that the high velocity tail of the disk population(s) overlaps
considerably with the spheroid (see Reid, 2005). Ideally, radial velocities would complete
the full 3D space motion in Galactic coordinates, allowing far better discrimination for
individual stars. However, with only proper motions it is still possible to measure the
mean motion in Galactic coordinates for the population as a whole, which is sufficient
to distinguish a spheroid sample from one drawn from a rotating disk. This is done by
deprojecting the proper motions, according to the method used by Dehnen and Binney

(1998b) to analyse the kinematics of stars in the Hipparcos catalogue.
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Figure 3.3: Tangential velocity distributions for the three major kinematic populations, along

the line of sight to field 362 in the southern hemisphere. A cut of v; > 200kms™! is often
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Figure 3.4: Luminosity functions for high tangential velocity white dwarfs. Figure (a) shows

the LFs for v; > 200kms™"! stars in the high (red points) and low (green points) proper motion

samples. Figure (b) compares the LFs obtained when the lower velocity limit is varied.

79



On doing so, we find that the 48 stars in the high proper motion catalogue with
vy > 200kms~! have (UVW) = (—51,—204,12) kms™!, and the 23 stars in the low
proper motion catalogue have (UVW) = (—61,—162, —88) kms™!. These would suggest
that both samples are drawn from a non-rotating population, i.e. that of the spheroid.
We therefore conclude that the luminosity function presented in Figure 3.4(a) is repre-

sentative of the spheroid white dwarf population.

3.2.2 Local disk and spheroid white dwarf densities

Integrating the luminosity functions presented in Figures 3.1(b) and 3.1(c) give total
local densities for white dwarfs in the solar neighbourhood of (2.48 £ 0.10) x 10 3pc—3
and (2.88+0.34) x 10 2pc3. A minimum variance combination of these obtains (2.5
0.1) x 10~3pc~3

The spheroid white dwarf luminosity function of Figure 3.4(a) integrates out to
(3.440.9) x 10~°pc 3, resulting in a disk-to-spheroid ratio of 74420 disk stars to every
spheroid star.

These densities are significantly lower than those obtained by other studies, e.g.
Harris et al. (2006) find 4.6 x 1073pc™ and Leggett et al. (1998) find 3.4 x 10~ 3pc—3
for the local density of disk white dwarfs, and Harris et al. (2006) find 4 x 10~°pc— for
those of the spheroid. If we recall from Sections 2.4.2 and 2.5, our catalogues may be
up to 50% incomplete due to blended objects and those missed at first epoch r, which
explains the disagreement between these numbers. This incompleteness is expected to
be uniform with bolometric magnitude, and therefore will not affect the disk-to-spheroid
ratio, nor will it affect any conclusions about the age of these two populations, as this

is insensitive to the normalisation of the luminosity function.

3.3 Untangling the disk and spheroid

Section 3.2.1 indicates that white dwarfs from the Galactic spheroid are present in our
catalogue, albeit in smaller numbers than those of the disk. As chemical tagging is

not possible for white dwarfs, due to any photospheric metals sinking rapidly below
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the envelope, the only way to distinguish disk and halo stars is on their kinematics.
Spheroid stars have, on average, much larger space velocities than disk stars, and as
this population has no angular momentum about the Galactic centre they usually show
a large rotational lag behind the local standard of rest. Working in projection, their
high space velocities translate into mean tangential velocities much larger than disk
stars, although the two populations overlap considerably at low speeds (cf. Figure 3.3).
Velocities of ~ 200kms ™! are often used to separate a clean sample of spheroid stars from
a mixed catalogue. Of course, the drawback of this approach is that many spheroid stars
are thrown out with the disk stars, at tangential velocities where the two populations
overlap. A spheroid luminosity function measured from a sample of stars drawn in this
manner thus wastes lots of good information.

An alternative approach, one that avoids the use of severe tangential velocity cuts,
is based on modelling the survey volume for each of the two populations. Varying the
survey limits alters both the number of stars that are found and the sampled survey
volume for each of the two populations. By using the change in the number of stars
in conjunction with the change in the survey volume, it is possible to solve for the
local number density of each population in a weighted least squares manner. This
method is best described by considering how the two populations contribute stars to
the survey. The total number of survey stars, N,, is determined by the local number

density multiplied by the sampled volume of space, separately for the two populations,
Ny = ngise X Viise + Nsph. X Vsph. (313)

In a narrow range of magnitude, such as one of our luminosity function bins, the factor
that determines V for each of the two populations is the tangential velocity distribution
combined with the survey proper motion and tangential velocity limits. The magni-
tude limits are effectively decoupled from the analysis, because stars belonging to each
population have identical absolute magnitudes over the small ranges considered. The
kinematics differ considerably however, and for equal survey limits each population will
be sampled over a different volume of space. By varying the survey tangential veloc-

ity limit, and recalculating Vs and V. for the new N, a set of linear equations in
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the two unknowns ngin, and ngy, can be generated. In general, the equation set is
non-singular and solvable by weighted least squares.

The power of this approach lies in the fact that individual stars are not assigned
conclusively to either population. Instead, it simply measures the fraction of stars
that belong to each population, as a function of v;. Note that we will refer to this
method further on as a ‘two component decomposition’ in order to distinguish it from

el AN
the conventional {~— approach.

3.3.1 Modelling Vgjsc and Vg

The survey volumes used in this analysis are calculated in a rather different manner to
Vinae from Section 3.1.2. This is because neither the absolute magnitude nor tangential
velocity are directly observed from the survey objects. Rather, the absolute magnitude
is now the average for all stars in the LF bin (under the assumption that the LF is flat
over the width of the bin), and we marginalise over the tangential velocity to obtain
the volume for all stars that pass the v; and p limits.

The procedure for doing this is as follows. First, the mean absolute magnitudes
of white dwarfs in each luminosity function bin are found by integrating synthetic
M (Myy) relations over the width of the bin. We use a standard log(g) = 8.0 hydrogen
rich model for this, and obtain the mean absolute magnitudes in each of the four Su-
perCOSMOS bands. These are then used in conjunction with the apparent magnitude
limits in each survey field to place limits on the distance at which this hypothetical star

could lie and still pass the magnitude limits. These are found according to

. by maz—{(BJ) "59F,mz::c‘<R59F) r63F,maz —{Re3F) "'NJma:_uN>

di = aning 10 5 ,10 5 , 10 5 ,10 5
bymin—{By) T59F,min — (RsoF) rg3F,min—{Re3F) iNmin—{IN)

diias — aagli] 5 .10 5 ,10 5 , 10 5

We now compute the effective survey volume contained between these limits, under
the assumption that the star belongs to each of the two populations, i.e. using the
appropriate density profile to correct the disk volume for the scaleheight effect, and

the appropriate velocity ellipsoid to correct for the fraction of recovered stars. The
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computation of the total survey volume is thus

N m
V=ngd’
=1 =

naxr
f dm

min

L2 y(r)dr (3.14)
Po

where x(r) is the discovery fraction of stars that pass the proper motion limits at

distance r, and is calculated from the cumulative tangential velocity distribution by

cdf(4.74 pmaz 7) — cdf(vmin) otherwise

The factor ;}% is the normalised stellar density profile, and is an exponential decay in

|z] in the case of the disk (cf. Section 3.1.2) and uniform (= 1) for the spheroid.

3.3.2 Solution for ng;sx and ng,, by least squares

Adjusting vy, enables us to generate several instances of Equation 3.13, which can be
used to solve for the unknowns. Investigations indicate that a suitable range of values
is from 30 to 100kms™! in steps of roughly 10-20kms™!, then up to 200kms™! in steps
of ~50kms™!, thus evenly sampling the range over which the relative contributions of
each population change rapidly, and probing the region of pure spheroid stars at the

extreme. The set of equations can be cast in matrix form like

Vidisc(ve > v1)  Vipn.(ve > 1) Ni(vy > 1)
Viise(ve > v2)  Vipn.(ve > v2) N, (v > v3)
Ndisk
Vdisc('ut > '03) Vs‘ph.(vt > "'33) = N*(Ut > US) (315)
. Tsph. ;
_Vdisc(vt > Upn) Vsph.(vt > Um)_ _N* (v > Um)_

where v 23... are the chosen lower tangential velocity cuts. In short hand,
Vn=N (3.16)
The weighted least squares solution for n, denoted 1, is given by

n=WViwv)"Y(ViwnN) (3.17)
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where T denotes the matrix transpose (Martin, 1971). W is the matrix of weights, which

we set according to

1
o g .0 0
1
0 15 0
W=l @ 0, == (3.18)
JN:!

i.e. inverse variance weights, adopting Poisson statistics to estimate the noise on the ob-
served number counts. The uncertainties on fi are obtained from the variance-covariance
matrix V calculated

V= Viwy)! (3.19)

and we adopt these as the formal uncertainties on the luminosity function points.

3.3.3 The disk and spheroid luminosity functions

The luminosity functions obtained on applying this technique to our white dwarf cata-
logues are presented in Figures 3.5(a) and 3.5(b), for the high and low proper motion
samples respectively. The high proper motion luminosity functions show very good
agreement with those obtained by conventional ﬁ methods. The spheroid luminos-
ity function in particular agrees on almost all datapoints to within the errors (Figure
3.6(b)), and has considerably smaller uncertainties due to the fact that low velocity stars
are included in the density estimate. The sharp peak observed at My, = 15.25 appears
to be confirmed by this analysis, and is the only structure in an otherwise monotonic rise
towards fainter magnitudes. This will be an important feature when interpreting this
luminosity function in terms of the age of the spheroid. The disk luminosity function
deviates slightly over the mid luminosity range (Figure 3.6(a)), which could be due sim-
ply to statistical fluctuation, or to the fact that the ﬁ luminosity function includes
all spheroid stars and therefore is not a true representation of the disk. Nevertheless,
the agreement is very good, and it is interesting to note that the peak of the luminos-

ity function is adjusted slightly by the removal of a relatively large group of spheroid
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Figure 3.5: Luminosity functions for the disk and spheroid in the high (a) and low (b) proper
motion surveys, obtained by applying the two component decomposition technique described

in the preceeding section.

stars that lie at the same luminosity. This may be of significance when comparing to
theoretical luminosity functions.

In contrast, the low proper motion sample fails to obtain a reliable measurement of
the spheroid luminosity function. This is perhaps unsurprising, as in light of Figures
2.14(b) and 3.3 any spheroid stars in the sample will be present at tangential velocities
where they are heavily outnumbered by disk stars, and the small excess in the number
counts at high v; due to the spheroid component will be swamped by noise in the
disk counts. Fainter than M, = 13 the uncertainty on ngy, is very large, due to
the small survey volume for spheroid stars, and beyond M, = 14.25 the method fails
altogether as the solutions for ng,, become negative. Although there appears to be
good constraint at higher luminosities, the function deviates significantly from that
obtained by either ,;nt or this approach applied to the high proper motion sample.
Our two component decomposition will generally be sensitive to whatever kinematic
components are present, and we suspect that in the absence of significant numbers of

spheroid stars, we are measuring instead an intermediate population between that of
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Figure 3.6: Comparison of luminosity functions for the disk (a) and spheroid (b) obtained from

the high proper motion sample using both conventional T,",l_ and two component decomposition

T

techniques.

the thin disk and spheroid, i.e. the thick disk. However, we repeated this analysis using
thick disk parameters in place of the spheroid, and obtained very noisy results. This
may indicate that the density profile and velocity ellipsoid we have adopted are not
suitable for the white dwarf component of the thick disk (being closer to those of the
spheroid), or that they are not present in sufficient numbers to be distinguishable from
noise in the thin disk number counts. The disk luminosity function is therefore also

unreliable, as the measured densities of the two components are coupled in the analysis.

3.4 Comparison to other works

The most directly comparable white dwarf luminosity function to this study, in terms
of number of stars and survey technique, is that of Harris et al. (2006). These authors
used proper motions derived from a combination of SDSS and USNO-B astrometry to
obtain a sample of 6000 white dwarfs with v; > 30kms ™!, with photometric parallaxes

obtained from superior 5 band SDSS photometry. Their disk luminosity function is
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shown in Figure 3.7(a), alongside our own reproduced from Figure 3.1(a). Ignoring the
vertical offset, which is due to the incompleteness of our sample discussed in Section
3.2.2, these functions agree very well. They agree on the location and depth of the drop
off in the disk luminosity function, and on the slope at brighter magnitudes. This lends
credence to our faintest luminosity function bins, which lie in a region that has not been
probed before.

The spheroid luminosity function measured by Harris et al. (2006) is reproduced in
Figure 3.7(b), alongside our own from Figure 3.5(a). Again these show good agreement
on both the slope of the luminosity function and the location of the single notable feature
- the sharp peak at My, = 15. Again, this would suggest that our fainter luminosity

function bins are reliable.

3.5 Summary

Using our catalogue of 8765 white dwarfs with v; > 30kms~!, we have measured both
the disk and spheroid luminosity functions to the faintest limits thus far obtained.
These reach deeper than the next deepest study by 1.5 and 2.5 magnitudes respectively,
due to our large survey volume for faint and high velocity stars, and the inclusion of
most known ultracool white dwarfs. The downturn in the disk luminosity function at
faint magnitudes is clearly resolved, and its location at My, = 15.75 is now surely a
secure result. Structure in the spheroid luminosity function has been revealed by the
extended depth of our study, and the sharp peak observed at My, ~ 15 will provide
useful constraint on the age by anchoring theoretical luminosity functions. The sample
of spheroid white dwarfs has been confirmed as such by their large tangential velocities
and lack of a net rotation about the Galactic centre.

We have introduced a new technique for decomposing the luminosity function de-
rived from a single mixed catalogue of stars into the contributions from each kinematic
component separately. We have used this to obtain a spheroid luminosity function with
greater accuracy than the conventional ﬁ-%; approach, due to the inclusion of low ve-

locity spheroid stars in the density estimate. This technique relies rather heavily on
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shows the Harris et al. (2006) luminosity function for white dwarfs with v; > 200kms ™!, as well
as our spheroid luminosity function measured from the high proper motion sample using the

two component decomposition method.
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knowing the density profile and velocity ellipsoid a priori, and the failure to obtain
a thick disk luminsity function could be due to the uncertain properties of thick disk
white dwarfs, or that they are simply too similar to their thin disk counterparts to prise
these populations apart with ~ 9,000 stars.

The incompleteness of our catalogue gives rise to a vertical offset between our lu-
minosity functions and those derived by other authors, and the integrated densities
of ~ 2.5 x 1073pc~! are therefore underestimated by up to 50%. However, age esti-
mates based on the luminosity function are insensitive to the normalisation, and the

disk-to-spheroid ratio of ~ 70 is likewise unaffected.
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CHAPTER 4

White Dwarf Cosmochronology of
the Galactic Disk and Spheroid

The potential use of white dwarfs as chronometers was first recognised by Maarten
Schmidt (Schmidt, 1959), who noted that basic cooling theory predicted a shortfall of
stars at cooling times equal to the age of the Galaxy. Since then, much progress has
been made on both the theoretical and observational fronts, and the cosmochronology
of stellar populations using their white dwarf members is now an established field. In
this chapter, 1 investigate the age of the Galactic disk and spheroid by applying the
techniques of white dwarf cosmochronology to the catalogue of white dwarfs derived

from the SuperCOSMOS Sky Survey.
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4.1 Introduction

White dwarfs are typically much fainter than the main sequence turn off, especially
the coolest objects that are vital for accurate age determination. They are also far
less numerous. For example, in an 8 Gyr population the overwhelming majority of
stars - all those less massive than ~ 1.1Mg, - are still on the main sequence. As such,
they would not seem like an obvious choice for cosmochronology from either an obser-
vational or statistical point of view. However, white dwarfs are insensitive to several
sources of random and systematic error that plague ages based on the main sequence
turn off method. White dwarf age estimates have only a very weak dependency on
the metallicity, the distance modulus (for clusters), and in particular the treatment of
convection in the progenitor stars, which is currently the largest source of uncertainty
in main sequence ages. The point is that for most populations, the cool white dwarfs
are the remnants of high mass stars with relatively very short main sequence lifetimes,
and the evolution of such objects is completely dominated by the white dwarf cool-
ing phase. The existing sources of uncertainty, beyond the observational, are mainly
systematic and arise from the detailed physics of white dwarf evolution, including the
chemical abundance profile of the core at birth, the convective coupling of the outer
layers and degenerate core during the late stages, and the spectral evolution of white
dwarfs with unknown envelope thickness. Indeed, recent advances in evolutionary mod-
els have revealed the cooling of white dwarfs to be not quite the ‘simple’ process it
was once considered. In a thorough review of the topic, Fontaine et al. (2001) note
that the physics of white dwarf evolution is considerably more complex, and therefore
more uncertain, than for main sequence and giant star evolution. As a result, white
dwarf based age estimates are unlikely to yield measurements more accurate than those
derived from main sequence stars or other methods until some of these problems are
addressed, either by observation (e.g. asteroseismology to measure envelope layer thick-
ness) or theory (e.g. improvements on the C'?(a, )0 reaction rate to constrain the
initial core composition). At present, it is the comparison of this approach with others
that is providing the most interesting results - see Section 1.4.1 for some examples from

the literature.
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4.2 Theoretical luminosity functions

The white dwarf luminosity function (WDLF) is the standard diagnostic tool for in-
vestigating the star formation history of a stellar population based on its degenerate
component. The WDLF is an evolving function of time, with a precise morphology
determined by a number of important inputs. Several authors have investigated meth-
ods for modelling the WDLF, including Winget et al. (1987) who used their models
in conjunction with an observed WDLF derived from the LHS catalogue to obtain the
first estimate of the age of the Galaxy using this method. However, their models as-
sumed a constant rate of white dwarf production, and obtained the white dwarf mass
distribution as a function of magnitude by evolving the present-day mass distribution
for hot white dwarfs to faint magnitudes. They then added the cooling time of their
faintest populated LF bin to the main sequence lifetime for the mean mass in this bin
to obtain their estimate of the disk age. Although a groundbreaking study, the method
of Winget et al. (1987) was criticised for failing to take into account mass-dependent
progenitor lifetimes, which will affect both the rate of white dwarf production and the
mass distribution of newly forming white dwarfs, both of which evolve over time for a
given rate of main sequence star production.

A holistic approach was laid down by Iben and Laughlin (1989), who included the
past rate of star formation, the initial mass function and the relation between the
progenitor and white dwarf mass (initial-final mass relation) explicitly in the models.
This revealed structure in the WDLF beyond the downturn, at magnitudes where high
mass and helium atmosphere white dwarfs, which cool faster, tend to accumulate. A
useful derivation of the Iben & Laughlin model was presented by Noh and Scalo (1990),
who examined the WDLF with particular reference to the star formation history of the
Milky Way, showing that it is more sensitive to changes in the rate of star production
than changes in the initial mass function. We now reproduce the Noh & Scalo formula

for the theoretical WDLF, with a couple of small changes;

M,

dt
n(Mpor) = CMCTZOI{ [Mpot, m(M)] [Ty — teoot(Mpor, m(M)) — tars(M, Z)] o[M] dM
)
M=M,

(4.1)
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The WDLF is parameterized in terms of the progenitor mass M, the white dwarf mass
m, the star formation rate #/(¢) as a function of time, and the initial mass function
G(M). teoor refers to the time taken for a white dwarf of mass m to cool to bolometric
magnitude Mp,. The cooling rates are also an important input, and here gﬁﬁﬁ is taken
inside the integral as it is a function of the white dwarf mass, and hence progenitor mass.
tars is the total pre-WD evolutionary time for progenitors of mass M, and we include
the metallicity Z here as we are interested in modelling the low-metallicity spheroid.
Finally, Tp is the age of the stellar population, or more correctly, the time since the
onset of major star formation.

The integral is over the progenitor mass, from the highest mass star capable of
producing a white dwarf, to the lowest mass star that has had time to contribute a
white dwarf of the given bolometric magnitude. The quantity Tp — tcoot(Mpor, m(M)) —
tars(M, Z) is simply the time after the onset of star formation that progenitors of mass
M must form in order to produce white dwarfs of magnitude Mj,;, and M is calculated

by solving the equation
To — teoot(Mpol, m(My)) — tams(My, Z) = 0 (4.2)

i.e. stars of mass M; would have to have formed at t=0 in order to have had time to
complete their main sequence evolution and cool as white dwarfs to magnitude M.
Stars with masses lower than M; have not had time to contribute white dwarfs of

magnitude Mp,, and are not included in the integral.

4.2.1 Forward modelling the luminosity function

The integral equation presented in Equation 4.1 is of a general form encountered com-
monly across all branches of the physical sciences - namely, the data (n(Mp,)) are the
integral of some desired function (in this case the star formation rate, ¢(¢)) multiplied
by a known, or at least estimated, kernel (in this case, the initial mass function and
WD cooling rates). The smoothing effect of the kernel causes information to be lost,
which makes the inverse problem, that of obtaining the desired function from the data,

ill-posed. This is particularly true when the data are discretely sampled, as is the case
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with our WDLF. Specifically, a given choice of model parameters (¢)(t)) results in a
single solution for the observed data, while any given data set can generally be pro-
duced by a range of model parameters, and the inverse problem has no unique solution.
Also, small changes in the data, such as those introduced by noise, may lead to large
changes in the solution. While the literature on solving inverse problems is extensive,
each distinct equation has its own pitfalls and method of solution, and a suitable tech-
nique for the WDLF has not been investigated. For the purposes of this study, I use
the forward modelling approach, where a set of model parameters is adopted and used
to model the data. The integrity of the adopted parameters can then be assessed by
comparing the model to the observations. In the context of the WDLF, the model pa-
rameter(s) concern the star formation rate, which I parameterise in terms of the time
since the onset of star formation and a particular time-dependent functional form. I
also assume certain relations concerning white dwarf and main sequence evolutionary
timescales, and other values relating to the kernel. All quantities adopted in modelling

the luminosity function are described in the next few paragraphs.

The main sequence stars: lifetimes and mass

I use the stellar evolutionary tracks of Girardi et al. (2000) to provide total pre-white
dwarf lifetimes for stars as a function of mass. The models extend from 0.15M to
7.0Mg), in steps of 0.05M at low masses increasing to 1.0M; towards the high mass
end. I consider the pre-white dwarf phase to last from the zero age main sequence to
either the first thermal pulse or the onset of carbon burning, depending on mass. For
low mass stars 1 include the time spent on the horizontal branch. I adopt the mass of
the most massive model, 7.0M,, as the maximum mass for white dwarf formation. This
forms the upper integration limit for all of my models. The lower mass limit varies,
as described previously, but never falls below 0.6M, for the range of population ages

considered.



The main sequence stars: metallicity

The Girardi et al. (2000) models are computed for a number of different metallicities,
and for the disk models we adopt a constant value of Z = 0.019, i.e. solar metallicity.
For the spheroid, I adopt the value Z = 0.001 used by the TRILEGAL population
synthesis code (Girardi et al., 2005), which is based on the same stellar models. This

value is derived from an [Fe/H] of -1.6, with an o enhancement of 0.3 dex.

The white dwarfs: masses

The initial-final mass relation (IFMR) is constrained observationally using a handful
of nearby binaries and star clusters, where the masses of recently formed WDs are
compared to those of the most massive stars still on the main sequence. Open clusters
supply points at progenitor masses above ~ 1M (Weidemann, 2000); a single point
at 0.8My is contributed by the globular cluster M4 (Kalirai et al., 2009). The existing
data are well fitted within the uncertainties by a straight line, and here I adopt the

linear fit of Kalirai et al., which includes the globular cluster point at low mass:
my = 0.101m; + 0.463 (4.3)

It is worth pointing out that below m; ~ 0.52M,, this relation returns a final WD mass
greater than the initial MS mass, and therefore breaks down. However, stars of this
mass have main sequence lifetimes well in excess of the age of the universe, and do not

contribute white dwarfs to any of the theoretical luminosity functions.

The white dwarfs: cooling times and atmosphere type

I use the white dwarf evolutionary models of Pierre Bergeron to provide cooling tracks
as a function of mass. These are based on the same code as those used in Chapters
2 and 3, and again were provided in the SuperCOSMOS bands by Dr. Bergeron on
request. The H/He atmosphere type has a strong effect on the cooling age at a given
magnitude, altering the morphology of the luminosity function at the faint end where
the difference is greatest. In order to include both atmosphere types, 1 synthesise

luminosity functions for pure H and pure He white dwarf populations, then obtain
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that for a mixed population by taking a weighted average of the two. I use a 50:50
ratio of hydrogen to helium atmospheres, identical to that used in Section 2.4.2 in the

observational determination of the luminosity function.

The initial mass function

The initial mass function (IMF) is well determined over the range of masses of relevance
to this study - namely, those main sequence stars that form white dwarfs within a Hubble
time. I adopt the IMF of Kroupa (2001), which is a three segment power law with index

-2.3 for masses larger than 0.5M. This covers the entire range of interest.

The star formation rate

I consider three possibilities for the star formation rate (SFR): (1) a single burst of
constant amplitude and duration 1 Gyr, (2) an exponentially decaying formation rate
with a decay constant of 1 Gyr, and (3) a rate that is constant over the entire history of
the population. These cover the main paradigms of star formation in the Galaxy, with
the single burst model appropriate for the spheroid, and the exponentially decaying and

constant rates two possibilities for the disk.

4.2.2 Method for solution

The main sequence lifetime at arbitrary mass is obtained by cubic spline interpolation
within the range of available stellar models. The white dwarf cooling time at arbitrary
mass and bolometric magnitude is obtained by bi-cubic spline interpolation within the
two dimensional grid of cooling tracks. Equation 4.2 for the lower mass integration limit
is transcendental, and is solved using an efficient interval-halving approach that rapidly
converges on the unique solution. Figure 4.1 displays the solution for M; graphically.
The integral in Equation 4.1 is, of course, non-analytic, and must be solved by numerical
means. | investigated two ways to do this. The first used a Monte Carlo method that
involved simulating a population of stars endowed with properties (mass, formation
time etc.) drawn from appropriate PDFs, and tracking their evolution over time via an

object-based Java program. The second method was to directly solve the integral, using
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Figure 4.1: The solution to Equation 4.2 lies at the mass where Ty — tcoot(Mpor, m(M)) =

tys(M, Z). The solution can be found to arbitrary precision using an interval-halving approach.

the trapezium rule with extrapolation to reduce higher order errors. The Monte Carlo
approach avoids the need to solve Equation 4.2, but requires many more interpolations
to evaluate each luminosity function. This proved to be very time consuming to compute
to the necessary precision, and gave results that agreed well with the (considerably
faster) trapezium method, so I adopted the trapezium method with extrapolation to

solve the theoretical luminosity function integral.

4.2.3 Results

I present some representative examples of my theoretical luminosity functions. Fig-
ure 4.2 shows the solar-metallicity models appropriate for the Galactic disk, covering
both constant and exponentially decaying star formation rates. These are normalised
at My, = 12. The vertical scale is dimensionless, and will be calibrated to number
density per magnitude on normalisation to the observed luminosity function. The con-

stant SFR models are plotted at 0.5 Gyr intervals from 6-14 Gyrs; the exponentially
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Figure 4.2: Theoretical luminosity functions for constant (a) and exponentially decaying (b)

star formation rates, as described in text.

decaying models, which overlap more, are plotted every 1 Gyr. Figure 4.3 shows the
low-metallicity, single burst models appropriate for the Galactic spheroid, plotted at

1 Gyr intervals from 6-16 Gyrs. It is evident from these plots that the slope of the
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Figure 4.3: Theoretical luminosity functions for single burst star formation rate, as described

in text.

luminosity function on the bright side of the peak is degenerate with age. This unfor-
tunately means that all of the age constraint available in the observational luminosity
function is at faint magnitudes, where the data are most uncertain. The sharp rise seen
around Mjp,; = 14 in the theoretical luminosity functions coincides with the convective
coupling of the photosphere and degenerate core, which slows the rate of cooling and
causes white dwarfs to pile up in the fainter magnitude bins. This feature is somewhat
less apparent in the constant star formation rate models, because the bright slope is
constantly replenished with white dwarfs and the rise does not stand out as clearly.

The drop at faint magnitudes occurs when the cooling sequence for normal mass
white dwarfs terminates. High mass white dwarfs cool faster and tend to populate the
region beyond the peak, but in relatively low numbers due to their intrinsic rarity. The
cooling of massive white dwarfs is very rapid once the core is fully crystallised, and
leads to a flattening in the luminosity function at faint magnitudes.

A similar effect arises from the differing opacities of H and He atmospheres at faint
magnitudes. The relative contributions of H and He atmosphere white dwarfs to the

total luminosity function is presented in Figure 4.4. At moderate to high temperatures,
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Figure 4.4: Relative contributions of H and He white dwarfs to the total luminosity function.

the bolometric magnitudes and cooling rates of these objects are almost identical, and
very little difference is seen in the pure H and pure He luminosity functions. At lower
temperatures, the formation of atmospheric Ho molecules raises the opacity and slows
the cooling rate of H white dwarfs relative to their He counterparts, causing a sharper
drop off in the pure H luminosity function. As a result, He atmosphere white dwarfs

dominate at the faintest magnitudes.

4.3 The age of the Galactic disk and halo

4.3.1 Weighting scheme and the star formation rate

A straightforward fit of these models to the data results in a large X2 statistic, due to
structure in the bright luminosity function that is not reproduced in the models. In
order to extract meaningful age estimates from the data, this discrepancy has to be
understood and a suitable workaround devised. The inability of my theoretical LFs to
synthesise short period features in the observed LF is, most likely, due to the simplistic
model of the star formation history of the Galaxy. In the case of the disk, although a

constant SFR is commonly assumed when modelling the WDLF, independent studies of
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the SFR using, for example, chromospheric age distributions (e.g. Rocha-Pinto et al.,
2000) indicate an irregular rate characterised by a series of bursts and lulls of varying
duration. The SFR can likely only be considered constant if the WDLF is insensitive to
bursts shorter than several Gyr. Noh and Scalo (1990) investigated the effect of bursts
on the morphology of the WDLF, finding that bursts of strength W =10
and duration 0.1 Gyr lead to features in the rising side of the WDLF of amplitude
Alog® ~ 0.3 and width AM;, ~ 1. Bursts of this nature are consistent with the
observed SFR of Rocha-Pinto et al. (2000) (given that their age resolution of 0.4 Gyr
would tend to smooth over shorter duration bursts), and features fitting this description
are indeed seen in both the disk and spheroid WDLFs. Interestingly, the study of Iben
and Laughlin (1989) found that the shape of the WDLF at luminosities fainter than the
peak is virtually independent of any changes in the SFR after the earliest epoch. This
would suggest that the best way to extract an age estimate from the observed WDLF is
to simply ignore the rising side altogether. However, this region is important for fixing
the normalization of the model LF, and if disregarded completely in the fit results in a
model that diverges wildly from the observations. Although the small scale structure in
the observed LF brighter than the peak is not reproduced by the models, I expect the
overall form to be correct. Therefore, I proceed by artificially inflating the error bars
on the bright side of the peak, which reduces sensitivity to small scale irregularities in
this region while maintaining a good overall fit. At the faint end, where the models are
likely a true representation of the WDLF structure, I leave the errors alone in order to

maximise the constraint.

4.3.2 Fitting technique and age estimates

The adopted forms for the observed disk and spheroid WDLFs are those of Section
3.3.3, Figure 3.5, derived from the high proper motion catalogue by means of the two
population decomposition method. These were chosen because they are deeper than
those from the low proper motion catalogue, and isolate the disk and spheroid popu-
lations more successfully than a simple tangential velocity cut. Theoretical WDLFs

were generated at 100Myr intervals, and fitted in turn to the observed WDLFs using a
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(a) and exponentially decaying (b) SFR. A clear minimum is seen in (a); no such feature is
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Figure 4.6: Residuals for the fits of our single burst, Z = 0.001 models to the spheroid WDLF.

Two distinct minima are seen at roughly equal x2.
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minimum y? approach. The errors on points brighter than My, = 15.5 were inflated
by a factor 3, decreasing the (inverse-variance) weight assigned to these points by a
factor 9. The distributions of reduced x? for each of the two disk models are shown in
Figure 4.5. It is clear that the assumption of a constant SFR is far more consistent with
the data than an exponentially decaying rate, for which no convincing minimum in the
(considerably larger) residuals is seen. I therefore adopt the constant SFR models for
my investigation of the disk age, and proceed no further with the exponentially decaying
models. The distribution of the residuals for the single-burst, low metallicity models
fitted to the spheroid WDLF is shown in Figure 4.6. Two distinct minima with roughly
equal x2 are seen, indicating a degeneracy in the age estimate. This is investigated
further later on.

The best fitting ages are obtained by interpolating the residuals around the minima
using cubic polynomials, and 68% confidence regions are assigned using Ax? = 2.3 for
my two parameter models (normalisation and age). For the disk, I find a best fit age of
9.13'_"8:%5 Gyr for a constant SFR - but see below for the inclusion of systematic errors.
A plot of this fit is shown in Figure 4.7. In the case of the spheroid, I treat each minima
separately and obtain ages of 9.0870¢7 Gyr and 14.8712 Gyr. Note that no upper age
limit on the old spheroid solution is found within the range considered. Older than
~ 16 Gyr, the models start to break down as certain evolutionary tracks have to be
extrapolated beyond their computed range. The fits of these models to the data are
shown in Figure 4.8. It is clear that the age degeneracy arises from the uncertain status
of the faintest WDLF points. Although the young solution fits the peak of the WDLF
better than the old solution, it should be born in mind that this region may still contain

the signatures of starbursts ocurring after the intitial epoch of formation.

4.3.3 Systematic errors

The errors on the age estimates quoted in the previous Section are simply the statistical
uncertainties in the fits of our luminosity function models to the data. As is well
known (see Section 1.3.3), white dwarf based age estimates are subject to a number of

systematic errors that must be considered. The thickness of the hydrogen layer is one

104



"25 ¥ T £ 1 . I ¥ 1 o 1 E 1
[ Disk WDLF —
-3 | 9.13 Gyr model -
8.84 Gyr model
| 9.40 Gyr model
L. 35 5
B
= 4l _
o
‘o
o
% 4 S - -
& ;
50
Q
-
51 =
‘-5.5 = '; .
6 i L L L L I L I L I L I
6 8 10 12 14 16 18

My

Figure 4.7: The observed disk WDLF, including the best fitting model (blue) and upper/lower
one sigma confidence limits (cyan/magenta). Note that the error bars on the observed points

have not been inflated in this plot.

of the main sources; Bergeron et al. (2001) find a difference of ~ 2 Gyr in the ages
of their oldest models depending on whether thin (¢z = 10719) or thick (¢g = 10™%)
hydrogen layers are used. It is worth noting, however, that there is good observational
evidence (e.g. Castanheira and Kepler, 2009) that the mean layer thickness is closer
to the gy = 10~* assumed in this study. The rate of the 2C(a,~)'®O reaction and
the initial chemical profile of the core also affect the age; Salaris et al. (1997) find a
difference of ~ 0.4 Gyr in the ages of their oldest models depending on whether a high or
low rate is assumed. I conclude that an outside estimate of the systematic uncertainty
on these ages is o ~ 1.0 Gyr, but may be as low as o ~ 0.6 assuming some of these
effects wash out when averaged over a large sample. Indeed, it is for this reason that
the changing spectral signature of a white dwarf, which introduces a large uncertainty

on individual age estimates, has a limited effect on the luminosity function age for an
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Figure 4.8: The observed spheroid WDLF, with the young (a) and old (b) solution. The
best fitting models (blue) are plotted along with the upper/lower one sigma confidence limits
(cyan/magenta). The old solution finds no upper age limit in the range of available models.
Again, the error bars on the observed points have not been inflated in these plots.
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ensemble of stars. The high o agrees with that considered by Wood and Oswalt (1998)
in their analysis of white dwarf luminosity function ages, but considerable progress has
been made since then in addressing some of the sources of error that they considered
(e.g. crystallisation, sedimentation), and the low estimate derived here is probably more

realistic.

4.4 Summary

In this chapter I have identified an appropriate integral equation for the white dwarf
luminosity function, and forward modelled my observations using a variety of adopted
inputs and assumptions concerning the star formation history of the Galactic disk and
spheroid. I find that exponentially decaying and single burst models of star formation
lead to WDLFs more strongly peaked than those obtained for a constant rate. This
is consistent with the observations, which reveal a smoothly rising WDLF for the disk
and a sharply peaked WDLF for the spheroid. I also find that He atmosphere white
dwarfs tend to dominate the number counts at the faint end, where most of the age
information lies.

The simple star formation histories considered result in smooth model luminosity
functions that fail to reproduce small scale irregularities in the observations at bright
magnitudes. By shifting the weight to the faint end, where the form of the luminosity
function is independent of the star formation rate after the earliest times, I fit an age
for the local Galactic disk of 9.13:’8:22 Gyr, including several sources of systematic error
that affect white dwarf age estimates. This is likely to be representative of an annulus
in the disk centred on the Solar radius, assuming that stars remain at roughly their
birth radii throughout their lifetime. For the spheroid, I find two roughly degenerate
age solutions of 9.0870 22 Gyr and 14.8>12 Gyr. This degeneracy could be broken either
by improved constraint at the faint end of the WDLF where the number counts are low
and distances uncertain, or by an improved model of the star formation history, which

would indicate whether the peak in the WDLF is a relic from the earliest period of star

formation or the result of a later burst.
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CHAPTER 5

Conclusions
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5.1 The SuperCOSMOS white dwarf catalogue

I have conducted a wide angle magnitude and proper motion limited survey for white
dwarfs, using data from the SuperCOSMOS Sky Survey. This survey covers ~ 75% of
the sky to R ~ 19.75 and p ~ 50 mas yr—!, and identifies over ten thousand white dwarf
candidates based on reduced proper motion. Follow up spectroscopy indicates a con-
tamination rate by non-degenerate stars of around a few percent. Although it appears
that the catalogue may be up to 50% incomplete due to the exclusion of blended objects,
the incompleteness is uniform with colour and bolometric magnitude, and does not bias
the selection towards any particular type of white dwarf. Photometric parallaxes are
obtained by fitting the photographic colours to grids of atmosphere models, and have
been shown to be accurate to ~ 50%. The unknown atmosphere type of each white
dwarf is accounted for by fitting both types, and attaching a weight proportional to the
likely contribution to the survey from each type as a function of colour. Most known
ultracool white dwarfs are present in this catalogue, and have had distances estimated
by a variety of techniques due to the failure of photometric parallaxes for these stars.
This white dwarf catalogue is significantly larger than that obtained from the SDSS
DR4 by reduced proper motion selection (Kilic et al. 2006, Harris et al. 2006), due to the
fact that identification in the USNO-B survey was required for their survey technique.
SDSS has identified a large number (> 9000) of white dwarfs spectroscopically (Eisen-
stein et al., 2006), although these are generally only observed accidentally because of
their similar colours to QSOs, and the problem of estimating the detection probability
and completeness has restricted their usefulness for measuring derived statistical quan-
tities. Other compilations of white dwarfs gathered from a variety of sources (e.g. the
Villanova catalogue, McCook and Sion 1999) suffer the same limitation. It is therefore
likely that this will remain the largest homogenous white dwarf sample until a later

data release of SDSS is paired with USNO-B.
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5.2 The white dwarf luminosity function

The white dwarf luminosity function presented in this work is measured using the largest
homogenous sample of white dwarfs to date (8765 with v; > 30kms~!). The large sample
size is due mostly to the large footprint of the SuperCOSMOS Sky Survey (see Figure
2.13 (a) and (b)). For example, Harris et al. (2006) have significantly wider proper
motion limits over the same range in magnitude, but cover just one sixth of the area
of the present study and find 6000 white dwarfs with v; > 30kms™~'. The large survey
volume for faint stars allows nearly all known ultracool white dwarfs to be included
in the complete catalogue (Table 2.6), pushing the luminosity function to the deepest

magnitudes yet obtained.

5.2.1 The disk

The drop in the disk luminosity function at the faint end has the same position (~
My, = 15.75) and magnitude (Alog® ~ 1.0) as found by other surveys (e.g. Liebert
et al. 1988, Harris et al. 2006) - see Figure 3.7 (a). The identification of this drop
in the local density of degenerate stars with that predicted by Schmidt (1959) is now
beyond doubt. This feature is a result of both the finite age of the Galaxy, and the
rapid cooling experienced by white dwarfs at fainter magnitudes. The morphology
beyond the peak bears a direct imprint of the earliest epoch of star formation in the
disk, and the luminosity function is essentially unexplored at these magnitudes; the
observations presented here are the first to investigate this region at any appreciable
level of constraint, and I feel that this is one of the main results of this work. At
brighter magnitudes, the slope of the luminosity function agrees well with that of the
two studies cited previously, and is punctuated by features that may correspond to
bursts in star formation in the recent history of the Galaxy. However, the accuracy
of our photometric parallaxes is such that these features are probably not sufficiently
resolved to draw any firm conclusions. Finally, as pointed out by Reid (2005), the thick
disk is expected to dominate the number counts in the faintest luminosity bins, due to

its white dwarfs having ~ 1 Gyr longer to cool. Therefore, cosmochronology of the disk
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using the turnover in the white dwarf luminosity function likely measures the age of the

thick disk, not the thin disk.

5.2.2 The spheroid

The measurement of a separate luminosity function for the spheroid is an important
result. The large upper proper motion limit of our survey enables many high velocity

! sample has nearly three times

stars to enter the catalogue, and our v; > 200kms™
as many objects as the previous largest study (Harris et al., 2006). Deprojecting the
proper motions of these stars (Dehnen and Binney, 1998b) suggests an origin in a
non-rotating population, thus confirming their spheroid membership. This has been a
particularly contested point in previous studies claiming to detect spheroid white dwarfs
(Oppenheimer et al. 2001, Reid 2005). The luminosity function agrees qualitatively with
that of Liebert et al. (1989) and Harris et al. (2006), while achieving considerably better
constraint and extending 2.5 magnitudes fainter. I have improved the accuracy of the
spheroid luminosity function by introducing a new survey technique that allows all
spheroid stars to be used to measure the density, including those at tangential velocities
that overlap considerably with the disk. This allows more information to be extracted
from a proper motion catalogue than traditional means. Application of this technique
reveals structure in the spheroid white dwarf luminosity function that has not been seen
before, in particular a distinct peak at ~ My, = 15.25 and no sign of a drop off at the
faintest magnitudes unlike for the disk, as shown in Figure 3.5 (a). The introduction

of this technique and the measurement of the spheroid white dwarf luminosity function

are significant results.

5.2.3 Incompleteness

Incompleteness in the underlying white dwarf catalogue causes a vertical offset of
Alog® ~ 0.5 between the luminosity functions measured in the present work, and
those obtained by others (Figure 3.7). This is due to the rejection of blended objects
and those missed at the first observation epoch. The incompleteness is uniform with

My and can be corrected for where necessary by normalisation to other studies, al-
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though the luminosity function ages and disk-to-spheroid ratio are insensitive to the

incompleteness, assuming it is the same between the two populations.

5.2.4 Caveats

I feel there are two important caveats that should be attached to these luminosity
functions. The first concerns the method by which white dwarfs are selected based
on their reduced proper motion. White dwarfs with helium dominated atmospheres
cool as blackbodies to the faintest magnitudes, and their colours do no turn back to
the blue as with hydrogen dominated atmospheres (see Figure A.3). They are also
brighter at a given colour, and at cool effective temperatures overlap considerably in
reduced proper motion with both spheroid subdwarfs and disk main sequence stars.
As this survey, along with all others that perform a rigorous reduced proper motion
selection, uses a hydrogen atmosphere cooling track to select white dwarf candidates,
helium atmosphere white dwarfs will not be selected once they have reached redder
colours than the reddest point in the cooling track. This occurs at by — rzop ~ 1.6,
which corresponds to Tog ~ 4500K and My, ~ 15.4 for a helium atmosphere. It is for
this reason that the prototypical old halo white dwarf WD 0346246 (Hambly et al.
1997, Bergeron 2001) is not included in our survey. Although it is likely that most cool
white dwarfs have enough hydrogen in their atmospheres to undergo the blue turn (see
Bergeron, 2001, and arguments therein), and that excluding pure helium stars likely has
little effect on the luminosity function, it is worth pointing out that this survey method
is not sensitive to them.

Secondly, the faintest luminosity bins are inhabited by stars whose stellar parameters
are rather more uncertain than those consituting the bulk of the sample. These are the
‘ultracool’ white dwarfs, with Tog < 4000K . As no atmosphere models can convincingly
reproduce the unusual spectral energy distributions of these objects, their bolometric
magnitudes and distances have been estimated by the rather ad-hoc means presented
in Section 2.4.2. While their status as the faintest white dwarfs in the survey is sound,
their true parameters may be sufficiently different to the estimates that the morphology

of the faintest ~3 or 4 bins is changed significantly when better values become available.
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5.3 The age of the disk and spheroid

The age of the disk obtained in Section 4.3 is 9.131“8:2? Gyr. This agrees well with
several other white dwarf luminosity function based age estimates, for example Winget
et al. (1987) (9.3 £ 2.0 Gyr), Oswalt et al. (1996) (9.57%4 Gyr), Leggett et al. (1998)
(8.0 £ 1.5 Gyr) and Knox et al. (1999) (1Uf§’ Gyr). It is also consistent with that
obtained by a range of independent methods - Lineweaver (1999) conducted a meta-
analysis of five studies and calculated a disk age of 8.7+ 0.4 Gyr. A disk ~ 9 Gyr old
fits into the broad picture of Galaxy formation in the ACDM paradigm (Freeman and
Bland-Hawthorn 2002, Lineweaver 1999). In this picture, the Big Bang occured ~ 13.4
Gyr ago, followed by formation of the spheroid roughly a Gyr later. Around ~ 3.5 Gyr
after that, dissipation caused most of the baryons to settle into a rotating disk, creating
the stars that would eventually make their way into our proper motion survey as white
dwarfs.

For the spheroid, two degenerate age solutions of 9.084:8:;2 and 14.82%:% Gyr are
found. This is the first time that any significant number of white dwarfs have been used
to date the spheroid , and the results are somewhat ambiguous. The young solution is
highly inconsistent with the age estimate of Lineweaver (1999) (12.2 + 0.5 Gyr) based
on main sequence ages and isotope analysis. It also disagrees with the only other
white dwarf based age estimate, the tentative result of ~ 13 Gyr claimed by Fontaine
et al. (2001), and is impossible to reconcile with the current understanding of Galaxy
formation, in which stellar haloes certainly form before disks. The old solution certainly
shows better agreement with these predictions, and while it is tempting to accept this as
a valid age estimate, the only firm conclusion we can draw is that we cannot distinguish
between the two with the data available. Better constraint in the observed luminosity
function at the faintest magnitudes is required before this degeneracy can be broken.

Most of the uncertainty on the disk age is systematic, as detailed in Section 4.3.
The statistical error is only ~ 3% percent, which broadly agrees with the predictions
of Wood and Oswalt (1998), who examined the statistical uncertainty in white dwarf
luminosity function age estimates that employ the r,;l; method. An extrapolation

of their results to our sample size predicts < 1% statistical uncertainty. Finally, the
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spheroid age errors are rather smaller than those predicted by the Wood and Oswalt
(1998) investigation (~ 5 — 8% compared to > 10%). This may be due to the fact
that Wood et al. restricted their analysis to disk luminosity functions, but may also
be down to the use of the least-squares decomposition method to derive the observed
spheroid luminosity function. Either this method achieves greater statistical accuracy
than a straightforward application of “V,:T‘ or, more likely, it underestimates the errors
due to overlapping via, ranges not providing independent star count estimates. See the

Further Work section at the end of this chapter.

5.4 Galactic structure

5.4.1 Disk to spheroid normalisation

The total integrated number densities for disk and spheroid white dwarfs in the solar
neighbourhood are (2.5 & 0.1) x 1073pc™ and (3.4 £ 0.9) x 10~5pc—3, respectively.
These are taken from Section 3.2.2; the disk number density quoted here is a variance-
weighted combination of the two independent measures. Due to incompleteness these
are likely underestimated by up to 50%, however the relative number density should
not be affected by this. We thus obtain a total disk-to-spheroid ratio of 74 4 20 by
number. This is significantly lower than for non-degenerate stars, and is a direct result
of the greater age of the spheroid population - a larger fraction of its stars have moved
off the main sequence. For example, a brief review of the literature finds a wide range
of density normalisations for main sequence stars; combining Stobie et al. (1989) and
Digby et al. (2003) gives (%fff)mg ~ 200, Tinney et al. (1993) and Gould et al. (1998)
give (’;i—‘ff)ms ~ 700 and Robin et al. (2003) find (’;’;;—‘?:)n.,rg > 1500, although in the
latter two cases the local spheroid density is inferred from deep star counts, and is

perhaps not truly representative of the solar neighbourhood.

5.4.2 Spheroid white dwarf number and mass density

The local number density of disk white dwarfs is well constrained by other studies, and

we can use this in conjunction with our disk-to-spheroid normalisation to correct the
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spheroid number density for incompleteness. Using the value of (4.6 £0.5) x 10~ 3pc™3
obtained by Harris et al. (2006), we find a corrected local number density for spheroid
white dwarfs of (6.241.8) x 10~°pc—3. This is consistent with the value of 5x 10~ %pc—3
argued for by Reid (2005); this is mid way between the low value of 2.2 x 10~ °pc~3
predicted by the spheroid model of Gould et al. (1998), and the 7.6x 10~°pc 2 estimated
by Reid using the local subdwarf density and intial mass function. This value disagrees
with the 1.8 x 10~*pc™3 measured by Oppenheimer et al. (2001), due to the more
rigorous exclusion of thick disk white dwarfs employed here. The spheroid white dwarf
density measured in the present work has the advantage of being calculated from a
directly observed sample of stars, and thus supercedes previous estimates based on star
count models.

This number density translates to a mass density of (3.7 £ 1.1) x 107> Mgpc 2, on
adopting a mass of 0.6M, for spheroid white dwarfs. This equates to 0.4% to 0.7%
of the local dark matter density, assuming ppys = 0.005 — 0.01Mgpce=3 (Weber and
de Boer, 2009). I thus find no evidence for a significant contribution to the local dark
matter density from a population of ancient white dwarfs, and do not need to invoke

extra Galactic components to explain my observations.

5.4.3 White dwarf contribution to the MACHO observations

A long standing controversy has surrounded the question of to what extent halo white
dwarfs are responsible for the observed microloensing events towards the LMC. Proper
motion surveys have placed upper limits on the likely contribution, but these are often
based on the non-detection of halo white dwarfs in a relatively small survey volume
(e.g. Goldman et al., 2002, find a 5% upper limit). With this large survey, I can place
tighter constraints on the white dwarf microlensing contribution.

If the microlensing events are due to MACHOs in the Galactic halo, Alcock et al.
(2000) estimate that they constitute 20% to the dark matter, and that the total mass
in MACHOs out to 50 kpc is 91’3 x 1019M. Assuming the high velocity white dwarfs
this survey has detected are part of an extended ‘dark halo’ population, their total mass

out to 50 kpc can be estimated using the halo density law (model ‘S’) of Alcock et al.,
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normalised to the solar neighbourhood density measured in this work. This gives a total
mass of Mpsorpe ~ 1.9 X 10° My, for dark halo white dwarfs. If, more likely, these white
dwarfs are regular stellar halo objects, 1 estimate their total mass using the spheroid
density law of Dehnen and Binney (1998a) (model 2b, so that the adopted R matches

that of Alcock et al., and with a flattening parameter € = 0.76) to be

Mp<sorpe ~ 1.2 x 10° Mg

Therefore, an extended population of white dwarfs may contribute to the MACHO
microlensing events at the level of ~ 1% with an upper limit of ~ 2 — 3%, allowing for
the possibility of a more extended density profile and the existance of extremely faint

objects that have cooled beyond the detection limit of our survey (see Section 5.5.2).

5.5 Discussion

5.5.1 Scaleheight and kinematics

It seems appropriate to report a null result from another measurement I attempted to
make on this white dwarf catalogue. The scaleheight of the disk is a parameter that
appears in the density profile used to calculate the generalised volume for each star
(Section 3.1.2). The scaleheight is relatively well known for main sequence stars - it is
a function of spectral type, and increases from ~ 100pc for OB stars (Kong and Zhu,
2008) to ~ 250pc for M dwarfs (e.g. Mendez and Guzman, 1998). This increase is
well understood in terms of kinematic heating of the disk; the fainter stars are older
and have experienced more heating. However, it is not clear what value is appropriate
for white dwarfs, or how the scaleheight changes with luminosity, and it is typical to
adopt a value measured for main sequence stars. I therefore attempted to measure this
quantity for the white dwarfs in each luminosity function bin using star count modelling
techniques, i.e. for each bin, I calculated the distribution of generalised survey volume
as a function of distance from the plane and scaleheight, and fitted these models to my
data to see which scaleheight most closely matched the observed distribution of stars.

Unfortunately, 1 could not get enough constraint from the data to obtain a convincing
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result at any luminosity. At bright magnitudes there are too few stars to get much of a
signal, and at faint magnitudes the stars are all too close to the Sun for the scaleheight to
have a significant effect on the number counts. At the least, an encouraging conclusion
from this is that the luminosity function is rather insensitive to the adopted scaleheight,
and is unlikely to change much when an appropriate value is measured.

The kinematic properties assumed (velocity ellipsoids and mean motions) in the
analysis of these white dwarfs also had to be ‘borrowed’ from main sequence stars, as
a large analysis of the motions of white dwarfs has not been conducted. Unfortunately,
the minimum tangential velocity threshold probably rules out reduced proper motion
selected white dwarf samples from a statistical analysis of velocities, especially for disk
stars. Also, once all spectral lines have disappeared below Teg ~ 5000K , radial velocities
are unobtainable - although deprojection of proper motions could recover the velocity
moments. Hypothetically, if a large, statistically complete sample of white dwarfs with
full 3D (or even 2D) velocity measurements were available, it would be interesting to
look for a feature equivalent to Parenago’s discontinuity in main sequence stars (Dehnen
and Binney, 1998b), where the velocity dispersion saturates redwards of the old disk
turn off at B —V ~ 0.6. A similar feature could be expected to appear in a plot
of the velocity dispersion against bolometric magnitude for white dwarfs (for which
colour does not necessarily correlate with age). A significant difference to the main
sequence equivalent would be that beyond the discontinuity, all white dwarfs would
be of a uniform age, and would correspond to stars created right at the onset of star
formation in the disk. This could be used to date the disk in a manner independent of

the luminosity function.

5.5.2 Looking beyond the survey limits

It is interesting to speculate, at this point, on the possible existence of white dwarfs even
fainter than those detected in our survey. The spheroid white dwarf luminosity function
measured in this work does not appear to turn over like that of the disk, and presumably
extends beyond the faintest detected objects to magnitudes where our survey volume

is very small. I can estimate the probable numbers of these objects using the same
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techniques employed to model the theoretical luminosity function. Although it is not
possible to predict the morphology of the luminosity function beyond Mj,; ~ 18, because
the input evolutionary tracks are not computed further than around this magnitude, it
is still possible to calculate the number of stars that have cooled fainter than this. To do
this, I used the Monte Carlo code mentioned in Section 4.2.2 to simulate a population of
stars, and measured how many of the resulting white dwarfs cooled beyond M;, = 18
in 9.08 and 14.8 Gyr. These correspond to the two degenerate age solutions for the
spheroid. I found that for a 9.08 Gyr population, 99% of all white dwarfs are brighter
than Mp, = 18. For a 14.8 Gyr population, this figure is 60%, meaning that nearly half
of all white dwarfs have cooled to magnitudes undetectable by current surveys, and that
the local density may be almost double that calculated from M, < 18 stars. However,
neither of these ages are standard for the spheroid. Using the age of 12.2 Gyr calculated
by Lineweaver (1999), I find that 93% of white dwarfs have My, < 18 and are likely
to be included in the density estimate measured above. Therefore, the existence of a
substantial population of white dwarfs lying beyond the detection limits of this survey

is unlikely.

5.6 Further work

5.6.1 Faint white dwarfs

The most pressing extension to this work is a thorough observational analysis of the
white dwarfs at the faint end of the luminosity function, where all of the age informa-
tion lies. High mass and helium atmosphere white dwarfs are expected to dominate
at this end, and the application of our photometric parallax method to these stars
will give results far more error prone than for objects at brighter magnitudes. Optical
spectroscopy, combined with CCD photometry from the B band to the infra red JHK
bands would provide the effective temperature, surface gravity and atmospheric compo-
sition for these objects. Note that IR photometry for some stars may soon be available
‘for free’ from the VISTA Hemisphere Survey and the UKIDSS Large Area Survey, in

particular the ultracool white dwarf SSSJ1556-0806 which was discovered in the course
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of this survey, and the various ultracool objects discovered in the SDSS. In conjunction
with trigonometric parallaxes, these observations would enable mass and bolometric

magnitude estimates, greatly improving the constraint on the faint luminosity function.

5.6.2 The luminosity function inverse problem

The formula for the luminosity function presented in Equation 4.1 is a classic inverse
problem (Press et al. e.g. 2007, see Chapter 19; Binney and Merrifield 1998, Appendix
C). In this work, I have investigated the star formation rate by forward modelling the
luminosity function, where a particular star formation rate model is assumed and used
to predict the data, which in turn is used to falsify the model. The inverse problem - that
of using the data to measure the star formation rate - is considerably more challenging,
and typically requires high quality data and a unique method of solution tailored to
the precise form of the problem. Many different types of inverse problem exist, each
with their own methods of solution. It would be interesting to investigate a solution to
Equation 4.1 that would allow the star formation rate to be directly measured from the

white dwarf luminosity function.

5.6.3 Decomposition of the luminosity function

The technique of measuring the survey volume separately for different kinematic pop-
ulations, and recovering the local density of each by checking the star counts against
varying survey limits, is worthy of some closer analysis. An investigation similar to

that applied to the straightforward -—— method by Wood and Oswalt (1998) might be

Vmaz

a good place to start. This would involve simulating several distinct but overlapping
populations of stars, endowing them with positions and velocities drawn from different
underlying distributions, then ‘observing’ this population synthetically and testing how
well the luminosity function technique recovers the numbers of stars contributed by each
population to the total observed sample. In the same way, it would be possible to inves-
tigate what size of sample is required to separate significantly overlapping populations
such as the thin and thick disks.

A review of the method itself could possibly improve the results it obtains. The
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matrix equation that provides the density estimate might be better solved by singular
value decomposition rather than straightforward inversion, especially considering that
when star counts are low the design matrix becomes ill-conditioned. Also, at present
the varying survey limits overlap each other, which might result in underestimated or
correlated errors in the luminosity function. For example, instances of Equation 3.13
are generated using v; > 20, 30, 40...kms™! cuts to vary the survey volume and number
of stars. However, because e.g. the v; > 20kms™! sample includes all stars present in
the v; > 30kms™! sample, they are not truly independent. Distinct ranges such as
20kms! < v < 30kms™!, 30kms~! < v; < 40kms™! etc. might be better. Also, as
the local density of each population cannot be negative, some form of constrained least

squares might provide a better solution when the number counts are low.

5.6.4 Future surveys

Looking ahead, it is interesting to ask what kind of advances might be made in this
field based on the data products of certain sky surveys that are planned for the near

future.

PanSTARRS

The prototype telescope for the PanSTARRS (Panoramic Survey Telescope & Rapid
Response System) project has begun observations from Hawai’i. While its primary
mission is to detect potentially hazardous objects in the Solar System, it will produce
huge amounts of data suitable for a whole host of astrophysical science purposes. As
part of the PS1 37 survey, over the next ~ 3.5 years the telescope will observe the entire
sky north of & ~ —30°, returning to each location 12 times in each of 5 filters (Magnier
et al., 2008). The final set of co-added images will reach a limiting magnitude (50) of
m, ~ 23, and measure proper motions to an accuracy of y ~ 1.2 mas yr~!.

It is possible to estimate what kind of increase in star counts might be achieved

over the present survey. The increase in survey depth on extending the magnitude and
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proper motion limits is

(dPSI) _ jolhesigmsss
dsss ) m

(dzs_l) _ Hsss
dsss), ~ kpsi

where mgss = 19.75 and pusgs = 0704 yr—!

are the approximate limits of the present
survey. mpg; = 20.3 is the approximate single-epoch magnitude limit of PS1, which is
appropriate for proper motion objects, and pupgi1 = 0701 yr~! is a conservative estimate
of the proper motion limit for a secure detection. The 3w survey subtends a solid
angle roughly equal to this survey, so the expected number of disk white dwarfs is
Npg1 ~ Nggs X (%5;“—;)1 X (%?SE;) 2, with the exponent of 2 arising from the scaleheight
effect. Spheroid white dwarfs ha\tle a uniform spatial distribution, and will have an
exponent of 3 in this formula. Putting the numbers into these equations, and adopting
9000 and 100 as the number of disk and spheroid white dwarfs in the present survey, I

find

Ngisk wps ~ 25 x 10*

Nspheroid WDs 1.4 x 104

for the number of disk and spheroid white dwarfs obtainable from the PS1 37 survey, by
means of reduced proper motion selection. These should be interpreted both as lower
limits, given that the SSS counts are probably ~ 50% incomplete, and a first order
estimate, as many contributing factors have been omitted. A more accurate estimate
could be obtained by Monte Carlo analysis of a Galactic model, taking into account
extinction, differential rotation and detailed density profiles, similar to that carried out
by Garcia-Berro et al. (2005) for the Gaia satellite. Assuming the statistics of Wood
and Oswalt (1998) hold to this limit, the sample sizes derived here would translate to

disk and spheroid statistical age uncertainties of ~ 0.2% and ~ 1%, respectively.
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Gaia

The Gaia! astrometric satellite is due for launch in 2012, and over 5-6 years will produce
an incredibly precise three dimensional map of around one billion stars in the Milky
Way. It will measure positions, proper motions, parallaxes and spectra for stars down
to my ~ 20 with unprecedented accuracy, with radial velocities for a subset to my ~ 17
(Lindegren, 2010). The number of white dwarfs expected to be found by Gaia is around
4x10%, including nearly 100% of objects within 100pc (Garcia-Berro et al., 2005; Jordan,
2007). While these will undoubtedly be interesting from a luminosity function point
of view, the real breakthrough will come from the parallax measurements, which will
provide accurate mass determinations. These will allow extensive tests of the theoretical
mass-radius relation, focusing in particular on how it varies with surface temperature

and composition.

'http://www.esa.int/science/gaia
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APPENDIX A

SuperCOSMOS Photometry

A.1 Photographic passbands
A.1.1 Transmission functions

Transmission functions for the photographic bands used in the SuperCOSMOS Sky Sur-
vey have been obtained from Evans (1989) (by) and Bessell (1986) (7635/1030£ T59F and
in). The two first epoch r bands rgzp and rigzqr are assumed to be identical in re-
sponse. These are plotted in Figure A.1, along with the spectrum of SSSJ1016-0109.
This WD-+dM binary was discovered by our survey, and is included in the plot to show
how the unresolved MS companion contributes flux to the iy filter.

The Besangon Galaxy model does not include these photographic bands in it’s se-
lection of filter systems. This is fairly common for modern astronomical applications
(e.g. TRILEGAL) which are designed to complement CCD surveys. Therefore it is
useful to identify certain photoelectric bands that closely resemble the photographic
bands. Figure A.2 depicts the bands adopted as SSS proxies in this work, for use with

the Besan¢on model.
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Figure A.1: SSS filter functions. Also shown is the spectrum of the WD+dM binary SSSJ1016-
0109.

A.1.2 Photometric uncertainty

Rough estimates of the external error on the photographic colours at by ~ 16.5 and
by ~ 20 are given in Hambly et al. (2001b). We fit a straight line for the error at
intermediate and fainter magnitudes, and use the uncertainty at b; ~ 16.5 for all
brighter magnitudes. The relation we obtain is

0.07 if by <16.5

Ob—r,b-i(by) =

0.026b; — 0.35 otherwise.
Due to the particular way in which the photometric scale is calibrated, colours are more
accurate than single magnitudes (see Hambly et al. (2001b) for details). Uncertainty in
single passbands is necessary however for deriving minimum-variance estimates of the
photometric distance, by comparing model and observed magnitudes. These are taken

from Table 12 in Hambly et al. (2001b).
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Normalised response function

Figure A.2: CCD bands used to approximate SSS photographic bands. (a) shows the CFHT
g band (green line) alongside by, (b) shows CFHT r alongside 59 and (c) shows Cousins [

alongside iy.

A.2 Synthetic photometry

The magnitude in a given band can be synthesised from the spectral energy distribution,
and vice-versa, by means of synthetic photometry. The integrated flux in band m is
denoted fi* and is calculated from the wavelength flux density f\(\) and associated

transmission function Sy, () according to

= I A Sm(A).dA
AT TS

(A1)
This is placed on the magnitude scale by
m = —2.51og(f\") + ¢m

where ¢, is a constant that sets the zero point of the scale and remains to be determined.

A.2.1 Vega flux constants

SSS magnitudes are defined on a Vega-type photometric scale, such that A0 type stars

have all colours zero. We use the Vega spectrum from Bohlin and Gilliland (2004),

127



Band o

by -20.624
Te3F/103aE -21.724
Pelr -21.629
i 292,349

Table A.1: Magnitude zeropoints for SuperCOSMOS photographic passbands.

used to calibrate HST spectrophotometry and accurate in absolute flux to ~ 1%. The

constants ¢, are determined from the Vega spectrum via

in L. f()m Favega(A)Sm(A).dA
fahde T Sm(N)-dX

em = —2.510g(f{Vega)

The values we determine for the photographic passbands used in the SuperCOSMOS
Sky Survey are given in Table A.1.

A.2.2 Blackbody colours

With knowledge of ¢,,, the photographic colours of a blackbody source can be calculated
by replacing the stellar spectral energy distribution in Equation A.1 with the Planck
function for the desired temperature. It is instructive to compare in colour space the
cooling track of a blackbody with that of the synthetic white dwarf models used in
this work. As can be seen in Figure A.3, at high temperatures white dwarf colours
very closely resemble that of a blackbody at the same temperature. Below 5000K they
start to diverge, and cooler than around 4000K the optical spectra of H atmosphere
white dwarfs become highly non-Planckian, as collisionally induced absorption extends

to visible wavelengths.
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APPENDIX B

Tangential Velocity Distributions

B.1 Coordinate systems

A number of different coordinate systems are used in this work. The Galactic coordinate
system is defined by the ‘Galactic triad’ of unit vectors [UVW], denoted G. U points
to the Galactic centre, V' in the direction of rotation and W to the north Galactic pole.
Positions on the sky can be specified in terms of the Galactic latitude and longitude b
and [. The equatorial coordinate system is defined by the ‘Normal triad’ [lmn], denoted
N. [ points to the vernal equinox, n to the north celestial pole and m completes the

set. They are related by the orthogonal transformation

in(dge) sin(axae) cos(dnap ) —
cos(age) cos(dgc) sin(8c) sin(ace) cos(dwae) cos(angp) €os(dxap)
sin(dnap) sin(age) cos(dae)

N'G = sin(dxap) cos(age) cos(dge)—
sin(age) cos(dae) (Onae) cos(@cc) c08(Gec) sin(ayep) cos(dnap)
cos(anar) os(dxap) sin(dge)

sin(dgc) cos(dge) cos(dxap) sin(age — nap) sin(dxap)

The Normal coordinate system is defined by the triad of unit vectors [pgr], denoted

R. r points along the line of sight, and pq lie in the tangent plane with p pointing to the
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north celestial pole and ¢ parallel to the equator with positive east. The transformation
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Figure B.2: Equatorial and Normal triads
between the normal and equatorial systems varies according to the line of sight, and is
defined in terms of the equatorial coordinates (erp,0rp) of the chosen tangent point by

—sin(app) —sin(drp) cos(arp) cos(drp) cos(arp)
N'R = | cos(arp) —sin(dyp)sin(arp) cos(drp)sin(arp)

0 COs (5'11- ) si 11( 6Tp)
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B.2 The distribution of stellar velocities in the Solar neigh-

bourhood

Ignoring the effect of differential rotation, the peculiar velocity of a star relative to the

LSR can be expressed as the sum of a mean velocity and a residual velocity:
v={()+n

The mean velocity vector differs between the kinematic populations within the
Galaxy, and is characterised mainly by an asymmetric drift, the tendency for the mean
rotation velocity of stars to lag behind that of the LSR. The residual velocity vector n

is assumed to follow a Schwarzschild distribution of the form

where X denotes the covariance matrix for the components of the residual velocity, and
defines the wvelocity ellipsoid for a given kinematic population. In a frame constructed
from unit vectors pointing along the axes of the velocity ellipsoid, X is diagonal. It is
conventional to assume that the principal axes of the velocity ellipsoid point along the
axes of the Galactic coordinate system. Any difference is referred to as vertez deviation,
and is likely to be small. In this case, X is diagonal in the Galactic frame, and can be
written

UE, 0 0

2=G|0 o} 0]|G

0 0 &

It is worth pointing out that in the case where cr'('"} = g% S, S(n) reduces to the

Maxwell-Boltzmann velocity distribution.
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B.3 Obtaining the velocity ellipse in the tangent plane

Transforming 1 and ¥ to the normal triad gives the distribution of residual velocities

along the line of sight and in the tangent plane, written as

Tlp Cop Cpg Crp
n=R|n, 2=R|Cy Cy Cq R (B-2)
Ty crp Cq'r Cr'r

Because X has trixial asymmetry, different lines of sight see different velocity distribu-
tions. The bivariate distribution of 7, and 7, in the tangent plane is called the velocity

ellipse, and is obtained by marginalising S(7)) over the radial velocity 7,. Explicitly,

3 1 Cop Cpg Crp| |"hp
R e =
S(n) = o =] &R i [ﬂp Mg ??r] Cpg Cqq Cor| |Tlg

Crp Cgr Cpr Tr

where ¢;; denote elements of the matrix X! referred to the triad R. This can be
written

1
= 1\2 qu??ﬁ Iz Cpp"'?g + 2CpqMpTg —Crr CqrTlg + Crpllp :
ATl (ﬂ) (ﬁ) e ( Q(ng = CppCaq) i 7 A & Crr

which can be integrated over all 77, to obtain the velocity ellipse

X:
1 2 1 Coame + Copns +2C,
S ( ) axp ( qq"lp pplly pq??pnq)

wjce

B.4 Correcting for the mean motion and obtaining P (v;4,)

The mean motion of the Sun relative to a given kinematic population is simply the

difference between the solar motion and the mean population velocity relative to the

LSR;

(vo) = v — (v)

The contribution to the tangent plane velocity of a star that arises from the relative

solar motion can be found by referring (vs) to the normal triad
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(”_G))p
(vo) =R | (ve)q
(vo)r
The velocity ellipse is now transformed to P(vian,8), the bivariate distribution of

tangential velocity and position angle, using the prescription

Np — Vtan Sin(0) + (U_G)>p

g — Vtan €05(0) + (vo)q,
and the distribution over vie, can be obtained by marginalising over 6

2n
P('Utcm) = i P(vtamg)-dg

In practise this must be done numerically, and is implemented in this work using

the trapezium rule with Richardson’s extrapolation to reduce higher order errors.
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APPENDIX C

Spectroscopic Data for Catalogue

Objects

In this Appendix I present astrometric, photometric and spectroscopic data, including
spectral classifications where possible, for 75 objects included in my observational follow-

up campaign that are present in the final white dwarf catalogue.
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APPENDIX D

Spectroscopic Data for

Non-Catalogue Objects

In this Appendix I present astrometric, photometric and spectroscopic data, includ-
ing spectral classifications where possible, for 73 objects included in my observational
follow-up campaign that are not present in the final white dwarf catalogue. These were
included in early samples before the survey limits were fixed; there are many obvi-
ous white dwarfs amongst these objects, including several white dwarf and cool main

sequence star binaries, and they may be of interest to the white dwarf community.
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