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Abstract

Ca2+, including Ca2+ released from intracellular stores, plays a versatile role in

controlling many different cellular functions, including fertilisation, muscle

contraction and neuronal signalling. The inositol 1,4,5-trisphosphate receptor (IP3R)

is an important intracellular Ca2+-release channel located primarily in

sarco/endoplasmic reticulum (SR/ER). Three different IP3R genes (type I, II and III)

have been molecularly cloned and functionally studied. IP3R type I protein (IP3RI)

has been identified in many tissues, and is the predominant receptor in human brain.

In this study, a full-length human IP3RI was assembled from three overlapping

fragments obtained from a human brain cDNA library. In initial work using in vitro

coupled transcription/translation and in vivo expression in HEK293 cells, a C-

terminally truncated IP3RI was obtained. Further sequence analysis identified a

nucleotide deletion at position 6429, which caused the reading frame to be shifted

and a stop codon to be generated at position 6455 resulting in a 200 kDa protein

rather than 260 kDa. After correcting this by subcloning, full-length recombinant

human IP3RI was expressed from an in vitro system and in HEK293 cells. Indirect

immunofluorescence confirmed that overexpressed IP3RI was located in the ER. In

contrast, the FK506-binding protein FKBP12, expressed from another cloned cDNA

in the same cells, was mainly cytoplasmic. However, the overexpressed 1P3RI did not

have measurable IP3 binding activity, or channel activity when reconstituted in planar

lipid bilayers, probably because of the low expression level following transient

expression. Attempts to establish a stable cell line were unsuccessful, and a

baculovirus expression vector system was therefore used to obtain high level



expression. Full-length expressed IP3RI had an IP3 binding activity of about 0.6

pmol/mg of microsomes, which is much lower than that reported elsewhere. This

suggests that further optimisation of expression is required. However, the truncated

protein, which contained the N-terminal part of IP3RI responsible for binding IP3,

bound about 3 pmol/mg of microsomes. This is similar to results published for other

IP3Rs. Moreover, despite the absence of the C-terminus containing all the putative

membrane-spanning domains, the truncated protein still appeared to be an intrinsic

membrane protein. This suggests that there may be other membrane-spanning

domains in the human IP3RI not previously described in other IP3Rs.

FKBP12 has previously been shown to associate with IP3RI. In future studies,

coexpression of FKBP12 and IP3RI will be useful to study how FKBP12 modifies

the function of recombinant human channels.



Chapter 1

Introduction

1- 1



1.1 Ca2+ Ions in Biology

Ca2+ plays a very important role in controlling many physiological functions,

including fertilisation, cell growth, secretion, muscle contraction and neuronal

signalling (Berridge, 1993, 1997, 1998; Clapham, 1995). Why has nature chosen this

ion to mediate so many signalling processes? Unlike many other second-messengers,

Ca2+ cannot be metabolised, and cells tightly regulate intracellular levels through

numerous procedures. The intracellular level of Ca2+ must be kept low because it

precipitates phosphate, the "energy currency" of cells. The normal free intracellular

Ca2+ concentration is -100 nM in unexcited cells, but the extracellular Ca2+

concentration is ~1 mM, -10,000 fold higher. Yet if Ca2+ were distributed passively,

at electrochemical equilibrium, its concentration would be some 100 fold higher

inside the cell than outside. In fact, cells use either Ca2+-ATPases or Na7Ca2+

exchangers to transport Ca2+ out in order to maintain this low Ca2+ level. This steep

gradient presents cells with an excellent opportunity, because the cytosolic Ca2+

concentration can be raised abruptly for signalling purpose by transiently opening

calcium channels in the plasma membrane, or by releasing Ca2+ stored within

intracellular membrane-bound compartments.

Ca2+ can bind tightly to proteins, particularly to negatively charged oxygens

(from the side chains of glutamate and aspartate) and uncharged oxygens (main chain

carbonyls, and side-chain oxygens from glutamine and asparagine). This allows Ca2+

to cross-link different regions of a protein, and induces large conformational changes.

Ca2+ is able to accommodate 4-12 oxygen atoms in its primary coordination sphere,

but coordination numbers of 6-8 are most common (McPhalen et al., 1991).
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Furthermore, the binding of Ca2+ can be highly selective. Mg2+ is a potential

competitor in cells because its concentration is -1,000 fold higher than Ca2+.

However, Mg2+ does not have appreciable affinity for uncharged oxygen atoms, so it

cannot compete with Ca2+. Another difference between Ca2+ and Mg2+ ions is that

Mg2' prefers to form small and symmetric coordination shells, whereas Ca2+ can form

asymmetric complexes with a larger radius. Thus, Ca2+ is suited for binding to

irregularly shaped crevices in proteins, and can be selected for over Mg2+.

1.2 Ca2+ Efflux from the Cytoplasm

1.2.1 Plasma Membrane Ca2+-ATPases (PMCAsl

PMCAs extrude Ca2+ from the cytoplasm to extracellular regions in order to

maintain low intracellular Ca2+ levels. Four types of PMCAs with a molecular weight

of -130 kDa have been molecularly cloned from human and rat, and at least two

alternatively spliced variants are present for each type (Keeton et al., 1993; Strehler,

1991). The topological distribution of the PMCA includes ten transmembrane

domains, with minimal protein mass on the extracellular side of the membrane and a

large portion protruding from the cytosolic side of the membrane. Both the N- and C-

termini are in the cytoplasm. The C-terminus is the most diverse region of different

types of PMCA, and contains a calmodulin binding site that regulates the activity of

the transporter (Penniston and Enyedi, 1998). In the absence of calmodulin, the pump

is relatively inactive, while binding of calmodulin stimulates its activity.

Phosphorylation of the PMCA with protein kinase A or C may also modify this

regulation.
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1.2.2 Intracellular Ca2+ Pumps

Sarco/endoplasmic reticulum (SR/ER) Ca2+-ATPases (SERCAs) are found, as

the names suggested, in the SR/ER membrane. SERCAs can sequester Ca2+ from the

cytoplasm into the SR/ER lumen. At least three genes encoding SERCAs have been

molecularly cloned and isoforms arising from alternatively spliced variants have also

been identified (MacLennan et al., 1997). The molecular weight of SERCA proteins

is -110 kDa. Like PMCAs, SERCAs contain ten transmembrane segments and a

large portion of the protein on the cytosolic side of the membrane. The vectorial

movement of Ca2+ from the cytoplasm to the SR/ER lumen has been proposed to

occur as follows: (1) binding of two Ca2+ ions to the cytoplasmic domain of the

SERCA, (2) phosphorylation of an aspartate residue by one molecule ATP, (3)

change in conformation of the SERCA to cause the release of Ca2+ into the SR/ER

lumen, (4) cleavage of the phosphate bond and return to the original state. In

addition, proton countertransport has also been shown during the reaction cycle (Yu

et al., 1993). Under optimal conditions, the utilisation of one mole of ATP is

accompanied by the transport of two moles of Ca2+ into the SR/ER lumen and

ejection of two moles of luminal H+ into the cytoplasm. PMCAs may use the same

mechanism to transport Ca2+.

Mitochondria contain Ca2+ uniporters, Na7Ca2+ exchangers and "permeability

transition pores", and sequester and release large amounts of Ca2f (Babcock and

Hille, 1998). The outer mitochondrial membrane is very permeable to small

molecules, so the specific machinery for Ca2+ transports lies in the inner membrane.
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These transporters have still not been molecularly cloned or purified. It has also been

shown that mitochondria and mitochondrial Ca2+ play an important role in apoptosis.

This function will be discussed in section 1.7.

1.3 Ca2+ Influx Across the Plasma Membrane ofCells

1.3.1 Voltage-Operated Ca2+ Channels (VOCCsl

1.3.1.1 Molecular Components of VOCCs

Ca2+ channels were first purified from the transverse tubule membranes of

skeletal muscle (Curtis and Catterall, 1983, 1984), and three subunits, including a„

P, and y, were identified. Further analysis have been showed that the a, and P

subunits are substrates for cAMP-dependent protein kinases (Curtis and Catterall,

1984, 1985). An additional a2S subunit was found co-migrating with the a, subunit

(Hosey et al., 1987; Leung et al., 1987; Takahashi and Catterall, 1987). After

thorough biochemical studies, a structural model has been proposed, which includes

a major transmembrane a, subunit of 190 kDa associated with a disulfide-linked a25

subunit of 170 kDa, an intracellular P subunit of 55 kDa, and a transmembrane y

subunit of 33 kDa (Takahashi and Catterall, 1987). This model is summarised in

Figure 1-1 A.

The a, subunit contains four repeated domains (I-IV) which each has six

transmembrane segments (SI to S6) and a channel-lining loop between S5 and S6

(Figure 1-1B). This topology has also been found in the Na+ channel (Tanabe et al.,

1987). The P subunit is an intracellular protein, whereas the y subunit contains four

transmembrane segments and can be glycosylated (Jay et al., 1990; Ruth et al., 1989)
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Figure 1-1. Subunit structure of voltage-gated Ca2+ channels.

A, The subunit composition and structure of a typical Ca2+ channels. P, sites for
phosphorylation by cAMP-dependent protein kinase. T*, sites for N-linked
glycosylation. B, transmembrane folding models for the Ca2+ channel subunits.
Predicted alpha helices are depicted as cylinders. Adapted from Catterall (1998).
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(Figure 1-1B). The a2 subunit is an extracellular protein and contains many

glycosylation sites. It binds to the 5 subunit through a disulfide linkage (Gurnett et

al., 1996). Interesting, the 5 subunit is encoded by the 3'end of the coding sequence

of the same gene as the a2 subunit. The a25 subunit is formed by post-translational

proteolytic processing and disulfide linkage (De Jongh et al., 1990; Jay et al., 1991).

1.3.1.2 Subtypes of VOCCs

In cardiac, smooth and skeletal muscle, the major Ca2' currents are

distinguished by requiring highly depolarising voltages for activation, and by having

large single channel conductances and slow voltage-dependent inactivation. They are

regulated by cAMP-dependent protein kinases, and inhibited by specific Ca2+

antagonist drugs (Reuter et al., 1983). These drugs include the dihydropyridines

(DHPs), and the channels are also described as DHP receptors (DHPRs). These Ca2+

currents have been designated L-type, as they are Jong-lasting (Nowycky et al.,

1985). L-type Ca2+ currents are also recorded in endocrine cells (Milani et al., 1990)

and neurons (Bean, 1989).

A different type of VOCC has been identified in starfish eggs, cerebellar

Purkinje neurons and dorsal root ganglion neurons (Hagiwara et al., 1975; Llinas et

al., 1981; Nowycky et al., 1985; Swandulla and Armstrong, 1988). The Ca2+ currents

activate at more negative membrane potentials, inactivate rapidly, have a relatively

small single channel conductance and are insensitive to Ca2+ antagonist drugs. They

were designated low-voltage-activated Ca2+ currents or T-type channels from their

transient kinetics (Nowycky et al., 1985).
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In dorsal root ganglion neurons, additional N-type Ca2+ currents have also been

found (Nowycky et al., 1985). These Ca2+ currents have intermediate voltage

dependence, and a rate of inactivation between L- and T-type Ca2+ channels. The

activity of N-type channels can be blocked by the cone snail peptide ro-conotoxin

GVIA (McCleskey et al., 1987). This pharmacological property has become an

important method to identify N-type Ca2+ channels in different neurons, because they

are difficult to specify just by their voltage dependence and kinetics.

Furthermore, since more peptide toxins have been discovered, three additional

VOCCs have been found. P-type Ca2+ channels with high sensitivity to the spider

toxin co-agatoxin IVA have been found in Purkinje neurons (Llinas et al., 1989). On

the contrary, Q-type Ca2+ channels have a low sensitivity to co-agatoxin IVA (Randall

and Tsien, 1995). R-type Ca2+ channels are defined as resistant to all Ca2+ channel

blockers, and may contain different subtypes (Randall and Tsien, 1995; Tottene et

al., 1996). Taken as a whole, L- and T-type Ca2+ channels have been identified in a

wide variety of cells, while N-, P-, Q-, and R-type Ca2+ channels are predominant in

neurons, and play a crucial role in controlling neuron-specific functions.

1.3.1.3 Functional Roles of VOCCs in Neurons

L-type Ca2+ channels have primarily been localised to cell bodies and proximal

dendrites (Westenbroek et al., 1990) instead of nerve terminals, so it has been

assumed that they are not essential in modulating neurotransmitter release. It has

been shown that L-type Ca2+ channels play a crucial role in the regulation of gene

transcription. For example, activation of the transcription of immediate early genes
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requires Ca2+ influx through L-type Ca2+ channels (Murphy et al., 1991). Moreover,

activation of the transcription factor CREB (cAMP response element binding

protein) also relies on Ca2+ influx through L-type Ca2+ channels, rather than the influx

through N-methyl-D-aspartate (NMDA) receptors (Bading et al., 1993; Rosen et al.,

1995). These results show L-type Ca2+ channels are important in "excitation-

transcription" coupling in neurons.

In contrast to L-type Ca2+ channels, N- and P/Q-type Ca2+ channels are found in

nerve terminals, and thus they are important in the regulation of synaptic

transmission (Robitaille et al., 1990; Sugiura et al., 1995; Westenbroek et al., 1992;

1995). First, Kerr and Yoshikami (1984) found that co-conotoxin GVIA inhibits

neurotransmission at the frog neuromuscular junction. From many studies, it has

been identified that N-type Ca2+ channels are predominant at many peripheral

synapses (Olivera et al., 1994). In contrast, P/Q-type Ca2+ channels have been found

primarily at many central synapses and control synaptic transmission. Although the

difference between P- and Q-type Ca2+ channels in controlling neurotransmission is

not clear (Dunlap et al., 1995), N-, P- and Q-type Ca2+ channels play a crucial role in

"excitation-transmission" coupling in neurons.

1.3.2 Ligand-Gated Non-Selective Cation Channels fLGCCsl

1.3.2.1 Ionotropic Glutamate Receptor Channels

1.3.2.1.1 N-Methvl-D-Aspartate Receptors fNMDARst

NMDAR proteins can be divided into two subfamilies: NR1 and NR2. NR1

has a large extracellular N-terminus, three putative transmembrane segments
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(TM1,TM3 and TM4) , a hydrophobic channel-lining loop (M2) and an intracellular

C-terminus. This topology is identical in all ionotropic glutamate receptor families

(Bennett and Dingledine, 1995) (Figure 1-2). They can assemble as either homo- or

hetero-pentamers. NR1 itself can form functional homomeric channels. NR1 shares

only 25-29% homology with non-NMDA glutamate receptors, but still contains the

typical structure of ligand-gated ion channels as mentioned above. NR2 contains four

subunits: NR2A, NR2B, NR2C and NR2D, which share 42-56% identity with each

other and 21-27% homology with other GluRs. Although these four subunits have

the same basic structure as NR1, they have a larger C-terminal domain. None of the

four NR2 subunits assembles into functional homomeric channels when expressed in

oocytes or cell lines (Hollmann and Heinemann, 1994). However, coexpression of

NR1 with each of the four NR2 subunits can form functional heteromeric channels.

NR1 has been found in all central neurons, and NR2 is expressed differentially in

different brain regions, which enable NMDARs to possess specific functions.

NMDARs mediate the slow excitatory postsynaptic current (EPSC). They are

highly permeable to Ca2+ with a relative Ca2+ to monovalent cation permeability of

-10. Their activity can be blocked by extracellular Mg2+ (McBain and Mayer, 1994).

It has been shown that an asparagine residue (N) in the M2 region (the Q/R/N site) of

the NR1 subunit is an important factor for the modulation of Ca2+ permeability,

single-channel conductance and voltage-dependent block by extracellular Mg2+

(Figure 1-2).

NMDAR-mediated Ca2+ influx is essential for the induction of long-term

potentiation (LTP) and long-term depression (LTD) (Bliss and Collingridge, 1993).
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Plan View

extracellular space
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cytoplasmic space

•COOH

Side View

Figure 1-2. The topology of LGCCs.

A. The topology of ionotropic GluRs. From side view, TM1, TM3 and TM4 are
transmembrane segments. The cross in M2 (channel-lining loop) shows the
Q/R/N site. From plan view, pentameric structure is formed by five subunits (from
1 to 5). P is the channel pore.
B. The topology of nAChRs. From side view, TM1 to 4 are transmembrane
segments. From plan view, pentameric skeletal muscle nAChRs are formed by
two a, one (5, one 8, and one y subunit. P is the channel pore.
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Because LTP is induced only when many synapses on a single postsynaptic neuron

are activated simultaneously, a cooperative mechanism is required. The mechanism

proposed is that during early stimulation, AMPARs (see the following section for a

description), which control the fast EPSC, are activated and depolarise the

postsynaptic membrane. The depolarisation of the membrane causes the dissociation

of Mg2+ blocker from NMDARs, making NMDARs become active with subsequent

Ca2+ influx. Ca2f then induces the synthesis of NO, which can diffuse to the

presynaptic cells and enhance the secretion of glutamate causing more postsynaptic

neurons to be activated. The exact mechanism of LTP and LTD are not yet known.

However, it has been proposed that the induction of LTP requires a fast increase of

[Ca2], while LTD is activated by a slow increase of [Ca2+] to a sufficient level (Yang

et al., 1999). Recently, it has been demonstrated that overexpression ofNR2B in the

forebrains of transgenic mice enhanced LTP, and these mice showed better

"learning" and "memory" (Tang et al., 1999).

Furthermore, the activity of NMDARs is also inhibited by intracellular Ca2+

(Kyrozis et al., 1995; Medina et al., 1995). Although the inhibition of NMDARs is

independent the source of Ca2+, the NMDAR-mediated Ca2+ influx provides a high

[Ca2+] nearby the receptor itself. It has been shown that Ca2+ influx from NMDARs is

a potent inhibitor of feedback inhibition ofNMDARs (Rosenmund et al., 1995).
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1.3.2.1.2 a-Amino-3-Hvdroxy-5-Methvl-4-Isoxazole Propionic Acid Receptors

(AMPARsl

The four AMPAR subunits GluRl-GluR4 have similar size (-900 amino acids)

and share 68-73% amino acid sequence identity. Each of the GluRl-GluR4 subunits

exits in two different forms generated by alternative splicing of a region preceding

the transmembrane segment TM4. These splicing variants are differentially

distributed in different cells (Sommer et al., 1990). It has been proposed that the

differential expression of the GluR2 in heteromeric channels may produce various

AMPARs with different Ca2+ permeability (Burnashev et al., 1992). Both homomeric

and heteromeric channels have been* identified. AMPAR subunits (GluRl, 3, and 4)

contain a glutamine residue at the Q/R/N site in M2, called Q-form channels, and

show a high Ca2+ to monovalent cation permeability ratio of ~2. However, AMPAR

subunits (GluR2) contain an arginine residue at the Q/R/N site in M2, giving R-form

channels, which show a low Ca2+ to monovalent cation permeability ratio of ~0.1

(Jonas and Burnashev, 1995).

AMPARs mediate the fast excitatory postsynaptic currents. As mentioned in

the previous section, the elevation of intracellular [Ca2+] (at the glutamatergic

synapse) is modulated by the coordination of AMPARs and NMDARs. The activity

of AMPARs has been shown to be blocked by intracellular polyamines (Bowie and

Mayer, 1995). Further studies have indicated that, during repetitive activation of

AMPARs, the amplitude of the current increases because of the release of the

activity-dependent block of polyamines (Rozov et al., 1998). Therefore, this
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phenomenon may play a critical role in controlling the functions of AMPARs during

intense synaptic stimulation.

1.3.2.1.3 Kainate Receptors (KARs)

The kainate receptor family includes KA1, KA2, and GluR5, 6, and 7 subunits.

KA1 and KA2 subunits are high-affinity kainate receptors whereas GluR5-7 subunits

show low-affinity to kainates. KA1 and KA2 subunits share 70% amino acid identity

with each other, but only 37% amino acid homology with GluRl-4 subunits and 43%

amino acid homology with GluR5-7 subunits. The GluR5-7 subunits share 75-80%

amino acid identity with each other, but only 40% amino acid homology with

GluRl-4 subunits (Hollmann and Heinemann, 1994). Both GluR5 and GluR6

subunits can form homomeric channels (Sommer and Seeburg, 1992). Either a

glutamine or an arginine residue in the Q/R/N site of the putative channel-lining

segment M2 has been identified in GluR5 and GluR6 subunits. Further analysis of

the GluR6 subunit has revealed two additional positions, located in transmembrane

segment TM1, that are generated by RNA editing (either isoleucine or valine, and

tyrosine or cysteine). Thus, there are eight different GluR6 subunits with respect to

M2 and TM1 regions (Kohler et al., 1993). For the GluR2 subunit of the AMPAR

family, less than 1% of the unedited form was found in rat and mouse brain.

However, GluR5 and GluR6 mRNA variants are abundant in cells.

The Q- and R-form GluR6 channels show similar sensitivity to polyamine

blockade as AMPARs. However, the Ca2+ to monovalent cation permeability ratio of

Q-form GluR6 channels is lower than that of Q-form AMPARs. The R-form GluR6
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channels have an even lower Ca2+ permeability, suggesting that in both AMPARs and

KARs, positively charged arginine residues reduce Ca2+ influx through these channel

types. Moreover, TM1 editing also influences the Ca2+ permeability of GluR6

channels. The Ca2r permeability of the edited TM1 form of Q-form GluR6 channels

was increased compared to the non-edited TM1 form of Q-form GluR6 channels, but

the R-form GluR6 is unaffected by TM1 editing (Kohler et al., 1993). The effect of

TM1 editing on ion permeation through GluR6 channels indicates that the specific

residue in the TM1 region may participate in lining the channel pore.

Although many KAR subunits have been cloned and studied, the functional

role of KAR channels in the nervous system is still not very clear. Recently, it has

been shown that KARs may be synaptically activated in mossy fiber-CA3 neuron

contracts (Castillo et al., 1997; Vignes et al., 1997). The functional role of Ca2+ entry

through KARs remains to be studied.

1.3.2.2 Nicotinic Acetylcholine Receptors (nAChRs1

The nAChR is proposed to have an extracellular N-terminus, four

transmembrane domains and an extracellular C-terminus (Figure 1-2B), which is

different from the ionotropic glutamate receptor that contains three transmembrane

domains and an intracellular C-terminus (Figure 1-2A). Neuronal nicotinic

acetylcholine receptors (nAChRs) subunits are divided into two major subfamilies.

The a-type subunits (a2-a9) are designated on sequence homology with the a,

subunit of the muscle nAChRs. The P-type subunits contain three members- P2, P3,

and P4, designated after the identification of P, subunits from muscle nAChRs. The
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a-type subunits apparently require coexpression with other a- and/or P-type subunits

to form functional nAChRs. "Duplex" a/p combinations and some "triplex" (i.e.

ax/ay/p or a/px/py) combinations have been identified (Colquhoun and Patrick,

1997). However, a7-a9 subunits may also form homomeric nAChRs (McGehee and

Role, 1995). The relative Ca2+ to monovalent cation permeability ratio of nAChRs,

composed from a/p subunit combinations, ranged from 1 to 1.5 (Costa et al., 1994;

Vernino et al., 1992). a7 homomeric channels in oocytes showed the highest value of

~20 (Seguela et al., 1993), which is about two-fold higher than that of NMDARs.

Recently, it has been shown that the human a5 subunits coassembled with a3P2 or

a3P4 subunits increased the Ca2+ permeability, with a similar Ca2+ to monovalent

cation permeability ratio of a7 homomeric nAChRs (Gerzanich et al., 1998). The

structural determinants of Ca2+ permeability in nAChRs are located in the second

hydrophobic M2 domain as in GluRs, which contributes to the channel-lining pore,

thus almost every mutation in M2 affects Ca2' permeability (Bertrand et al., 1993;

Ferrer-Montiel and Montal, 1993).

Functional nAChRs have a specific feature in the strong inward rectification of

the current-voltage relation. It has recently been shown that, similarly to AMPARs,

this rectification arises from the release of the voltage-dependent block by

intracellular polyamines (Haghighi and Cooper, 1998). Although there is a fast

inward current in brain in response to acetylcholine, there was evidence that the

current was not mediated by nAChRs (Edwards et al., 1992). The functional role of

nAChRs is controversial. Recently, it has been shown that nicotine can stimulate

1-16



glutamatergic synaptic transmission, which is induced by the activation of

presynaptic nAChRs (McGehee and Role, 1995).

1.3.2.3 ATP-Gated Channels (Purinoreceptorsl

ATP-gated, P2X receptor channels, are widely expressed in the central and

peripheral nervous system. Seven subunits of the P2X receptor family (P2X,_7) have

been cloned. The P2X subunits can form homo- and heteromeric channels (Buell et

al., 1996; North, 1996). The Ca2+ to monovalent cation permeability ratio is

depending on the composition of subunits. For example, the ratio for homomeric

P2X2 receptors was 2.5, whereas homomeric P2X3 or heteromeric P2X2/3 was 1.2 and

1.3, respectively (Virginio et al., 1998). Although the structural determinants of Ca24

permeability of the ATP-gated channels have not been identified, it is assumed that,

like GluRs and nAChRs, they are also located in the channel-lining M2 regions.

P2X receptor channels mediate fast synaptic transmission in peripheral ganglia

and the central nervous system (Edwards et al., 1992; Gu and MacDermott, 1997). In

dorsal root ganglion neurons, the presynaptic P2X receptors cause the release of

dopamine (Gu and MacDermott, 1997). They not only modulate transmitter release

but may also initiate sensory signals in CNS without peripheral input. This

interesting observation makes presynaptic P2X receptors a possible target for pain

therapy.
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1.3.2.4 Serotonin 5-HT, Receptors

Seven different types of serotonin 5-hydroxytryptamine (5-HT) receptors have

been molecularly cloned (Gyermek, 1996). Most are coupled to G proteins, and one,

the 5-HT3 receptor, is a cation channel that is substantially permeable to Ca2+. Similar

to many other ligand-gated ion channels, 5-HT3 receptors are probably composed of

five subunits. The exact composition of the receptor is not completely understood,

but there is evidence supporting the existence of both homo- and heteromers (Hussy

et al., 1994). The function of presynaptic 5-HT, receptors is not clear. Recently, it

has been shown that presynaptic 5-HT3 receptors can induce exocytosis by increasing

intracellular [Ca2+] (Ronde and Nichols, 1998). Thus, Ca2+ influx through 5-HT3

receptors might be important for presynaptic modulation of neurotransmission.

1.3.3 Receptor-Activated Ca2+ Channels (RACCsl

RACCs are defined as "any plasma membrane Ca2+ channel opened as a result

of the binding of an agonist to its receptor, where the receptor protein is separate

from the channel protein and the mechanism of channel opening does not involve

depolarisation of the plasma membrane" (Barritt, 1999). There are three major types

of RACC: (a) intracellular-messenger-activated non-selective cation channels, (b)

non-selective cation channels activated by a trimeric G-protein, and (c) store-

operated (capacitative) Ca2+ channels (SOCs).

It has been shown that in non-excitable cells, RACCs are regulated by the

action of cGMP, cAMP, inositol 1,4,5-trisphosphate (IP3), inositol 1,3,4,5-

tetrakisphosphate (IP4), and arachidonic acid (or arachidonic acid metabolites) (Finn
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et al., 1996; Irvine and Moor, 1986; Kiselyov et al., 1997; Shuttleworth and

Thompson, 1998). The most thoroughly studied RACCs are the cGMP-activated

non-selective cation channels found in mammalian retinal cells. This kind of channel

was also identified in olfactory and gustatory cells (Finn et al., 1996), as well as in

heart and kidney (Ahmad et al., 1990).

The cGMP-activated channels in retinal rod and cone photoreceptors have an

important role in visual transduction. In darkness, a relatively high concentration of

cGMP in the cells maintains cGMP-activated cation channels in the open state.

Closure of these channels in response to the absorption of light by rhodopsin, and

subsequent decrease in the concentration of cGMP, leads to hyperpolarisation of the

plasma membrane and decreases the release of neurotransmitters. An important

characteristic of the rod and cone cGMP-activated channels is that they show no

desensitisation in the presence of ligand (Yau and Baylor, 1989). This property

allows the channels to stay open in darkness, and to be closed only by light.

The olfactory cyclic nucleotide-activated channel has similar properties to

those of the rod and cone cGMP-activated channels, except that it is activated by a

much lower cyclic nucleotide concentration (Nakamura and Gold, 1987). The

photoreceptor channels are activated much more readily by cGMP than cAMP, but

the olfactory channel is only slightly more sensitive to cGMP than cAMP. Similar to

photoreceptor channels, the olfactory channel is highly permeable to Ca2+. The

topology of the cyclic-nucleotide-activated cation channel is shown in Figure 1-3A.

Plasma membrane Ca2+ channels activated by inositol 1,4,5-trisphosphate (IP3)

have been found in isolated membrane patches (Kiselyov et al., 1997). There is also
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c.

Figure 1-3. The topology of RACCs.

A. The topology of cyclic-nucleotide-activated cation channels containing six
transmembrane segments (TM1 to TM6) and a pore-forming loop between TM5
and TM6. The cross shows the cGMP/cAMP binding site. The arrow indicates
the pore-forming regions.
B. The topology ofDrosophila TRP channels is similar to A. The cross shows
the calmodulin binding site. The arrow indicates the pore-forming regions.
C. Tetrameric RACCs are formed by four subunits (from 1 to 4), and either homo-
or heterotetramers are proposed. P is the channel pore.

1-20



other evidence suggesting that some IP3 receptors (IP3Rs) are located on the plasma

membrane (Khan et al., 1996), although it is very difficult to differentiate between

IP3Rs located in the ER close to the plasma membrane, and IP3-activated Ca2+

channels located in the plasma membrane (Putney, 1997).

IP4-activated Ca2+ channels in the plasma membrane have also been proposed

(Parekh and Penner, 1997). There is no clear evidence to show that IP4 directly

activates any plasma membrane Ca2+ channels, but it has been assumed that the

interaction of IP4 with either an 1P3R or with an IP4-binding protein located in the ER

near the plasma membrane, or with an IP4-binding protein in the plasma membrane

may exert its effects. Thus, the subsequent interaction of IP3Rs or IP4-binding

proteins with RACCs in the plasma membrane may open plasma membrane Ca2+

channels (Irvine, 1990).

Arachidonic acid or arachidonic acid metabolites can induce the opening of

plasma membrane Ca2+ channels in many cell types. The generation of the

arachidonic acid metabolite leukotriene C4 by epidermal growth factor activates a

Ca2, channel with a conductance of ~10 pS (Peppelenbosch et al., 1992). It has been

shown that arachidonic acid itself activates plasma membrane Ca2+ channels in

HEK293 cells when human M3-muscarinic receptors were stably transfected

(Shuttleworth and Thompson, 1998). It has also been proposed that arachidonic acid

may regulate the activation of some SOCs (Wolf et al., 1997).

It has been shown that guanosine 5'-[y-thio]trisphosphate, an activator of

trimeric G-proteins, activates non-selective cation channels in mast cells (von zur

Muhlen et al., 1991). The binding of carbachol to M3-muscarinic receptors leads to
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an increase in intracellular Ca2+ concentration, which suggests that RACCs are

activated by direct interaction with a trimeric G-protein (Singer-Lahat et al., 1996;

1997). It has also been shown that the third cytoplasmic loop of the M3-muscarinic

receptor, which associated with G-proteins, is required for the activation of Ca2+

inflow but not for the release of Ca2+ from the ER. Another example is the

Drosophila transient receptor potential like (TRPL) non-specific cation channel,

which is opened in response to a direct interaction between Glla and the TRPL

(Obukhov et al., 1996).

SOCs were first described by Putney (1986), who found that the depletion of

intracellular stores activates a calcium entry mechanism at the plasma membrane

called "capacitative" calcium entry. Use of patch-clamp techniques provided a way to

examine the properties of SOCs. In lymphocytes and mast cells, plasma membrane

Ca2+ channels could be opened by inducing the release of Ca2+ from the ER by adding

thapsigargin, IP3 or ionomycin (Parekh and Penner, 1997). These SOCs were called

Ca2+-release-activated Ca2+ channels (CRACs), and the current was designated ICRAC.

CRACs are very specific to Ca2+, and contain some other distinctive characteristics,

including a very low unitary conductance (~ 20 fiS) and a dependence of ICRAC on

extracellular [Ca2+] (Parekh and Penner, 1997).

One or more subtypes of SOC are present in a wide variety of non-excitable

and excitable cells. Channels with the characteristics of CRACs have so far only

been detected in lymphocytes and mast cells (Parekh and Penner, 1997). However,

other types of SOCs with characteristics similar to CRACs were identified in

macrophages, megakaryocytes, MDCK cells, 3T3 fibroblasts, hepatocytes, pancreatic
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acinar cells, endothelial cells and Xenopus oocytes (Fasolato and Nilius, 1998; Yao

and Tsien, 1997). SOCs conduct Ca2+ with the exception of those Na+ channels that

are activated by a decrease in ER [Ca2+] (Krause et al., 1996), and they may play a

crucial role in intracellular Ca2+ homeostasis.

Transient receptor potential (TRP), a plasma-membrane Ca2+ channel, and also

TRPL (as memtioned earlier), have been identified from the Drosophila

photoreceptor cell (Montell, 1997) (Figure 1-3B). The absorption of light by

rhodopsin leads to an increase in the open-probability of TRP and TRPL, and the

subsequent influx of Na" and Ca2+ depolarise the plasma membrane of the

photoreceptor cell. In addition, the absorption of light by rhodopsin also leads to the

activation of a phospholipase C isoform (encoded by the Drosophila NorpA gene)

and the formation of IP3. It has been proposed that the function of the channel protein

was regulated directly by IP3 or through an IP3-induced Ca2<-release from the ER

(Hardie and Minke, 1993). Therefore, TRP and TRPL are considered as possible

models for SOCs in animal cells.

Following the discovery of mammalian homologues of Drosophila TRP gated

by Ca2-store depletion, they became the channels of choice for studying gating by

store depletion. HEK293 cells stably transfected with human TRP3 (hTRP3) have

recently been used to demonstrate functional coupling between hTRP3 and IP3Rs

(Kiselyov et al., 1998). The activation of hTRP3 by store depletion was inhibited by

the inhibition of IP3Rs. In excised patches, the regulation of hTRP3 by IP3 could be

"washed away" and then completely reconstituted by incubating the patches with

native or partially purified recombinant IP3Rs. The discovery of hTRP3 channels
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forming stable complexes with IP3Rs, and the specific sequences of the two proteins

interacting in vitro, provides strong evidence to support the regulation of hTRP3

channels by IP3Rs (Kiselyov et al., 1999; Vannier et al., 1999). On the basis of these

findings, it has been proposed that coupling of SOCs to IP3Rs provides a molecular

mechanism for gating by Ca2+-store depletion.

1.4 Ca2+ Efflux from Intracellular Stores

1.4.1 Inositol 1.4.5-Trisphosphate Receptors (IP3Rs)

Receptors for the second messenger inositol 1,4,5-trisphosphate (IP3) constitute

a family of Ca2+ channels responsible for the mobilisation of Ca2+ from intracellular

Ca2< stores. IP3 receptors (IP3Rs) have been purified from a variety of sources

(Chadwick et al., 1990; Dasgupta et al., 1997; Mourey et al., 1990; Supattapone et

al., 1988) and were first cloned from mouse cerebellum (Furuichi et al., 1989). IP3Rs

are thought to reside in the ER membrane. However, in some tissues, IP3Rs have

been localised to the plasma membrane (Khan et al., 1992) and nuclear membrane

(Gerasimenko et al., 1995; Stehno-Bittel et al., 1995). The latter localisation is not

surprising, since the outer nuclear membrane is continuous with the ER membrane in

cells. Recently, it has been suggested that IP3Rs may also mediate Ca2+ release from

secretory vesicles (Petersen, 1996; Yule et al., 1997) and the Golgi apparatus (Pinton

et al., 1998). IP3 induces Ca2+ fluxes from biochemical studies and the reconstitution

of purified protein in planar lipid bilayers gives rise to Ca2+ channels (Ferris et al.,

1989; Mayrleitner et al., 1991).
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Three distinct IP3R genes (I-III) have been molecularly cloned from rodent and

human tissues (Blondel et al., 1993; Furuichi et al., 1989; Harnick et al., 1995;

Maranto, 1994; Mignery et al., 1990; Nucifora et al., 1995; Sudhof et al., 1991;

Yamada et al., 1994; Yamamoto-Hino et al., 1994) and form both homo- (Hirota et

al., 1995) and hetero-tetrameric assemblies (Monkawa et al., 1995; Wojcikiewicz

and He, 1995). Two additional isoforms, type IV (De Smedt et al., 1994; Ross et al.,

1992) and V (De Smedt et al., 1994), are proposed to exist based on the result ofRT-

PCR. However, IP3RIV may be a splice variant of IP3RII (Parys et al., 1995; Ross et

al., 1992). IP3RI is spliced at three regions, termed SI (Nakagawa et al., 1991), S2

(Danoff et al., 1991; Nakagawa et- al., 1991) and S3 (Nucifora et al., 1995). S2

contains five distinct variants resulting from alternative splicing (Iida and

Bourguignon, 1994; Nakagawa et al., 1991). IP3Rs have also been cloned from

Drosophila (Sinha and Hasan, 1999; Yoshikawa et al., 1992) and Xenopus (Kume et

al., 1993). The predicted molecular weight of IP3Rs is -300 kDa, but the apparent

molecular weight of IP3Rs from SDS-PAGE is -260 kDa. Using non-denaturing

polyacrylamide gel electrophoresis, the apparent molecular weight of IP3Rs is

approximately four times that estimated under denaturing conditions. This suggests

that native IP3Rs form a tetramer (Supattapone et al., 1988). Both homomeric and

heteromeric complexes have been found (Joseph et al., 1995; Monkawa et al., 1995;

Wojcikiewicz and He, 1995). From deletion analysis, IP3Rs are divided into three

regions; a large N-terminal IP3-binding domain, an intervening regulatory domain

and a short C-terminal hydrophobic domain (Figure 1-4).
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Figure 1-4. Domain structure of the IP3RI.

The IP3RI consists of an N-terminal ligand-binding domain, a central regulatory domain
and a C-terminal channel domain containing six membrane-spanning regions. Ca2+-binding
sites are highlighted throughout the sequence. The accessory proteins, chromogranin A
(CGA), ankyrin, FK506-binding protein (FKBP12) and calmodulin (CAM) are depicted as
large open circles. Cytosolic phosphorylation sites for cAMP-dependent protein kinase
(PKA) and tyrosine kinase (TK) are depicted as small solid circles. ATP-binding regions
and sites for N-glycosylation (^P) are also shown. SI, S2 and S3 represent the alternative
splicing sites. Adapted from Patel et al. (1999).
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A series of deletion mutants showed that IP3RI binds IP, within the N-terminal

650 amino acids, independently of tetramer formation (Mignery and Sudhof, 1990;

Miyawaki et al., 1991). More detailed deletion analysis has defined amino acids 226-

578 as the minimal region required for high affinity IP3 binding (Yoshikawa et al.,

1996). Recently, it has been shown that the IP3-binding pocket consists of two non-

covalently but tightly associated structural domains each of which has a discrete

function: the C-terminal domain (341-604) alone has low affinity for IP3, whereas the

N-terminus alone (1-343) is incapable of binding but is able to potentiate binding

affinity (Yoshikawa et al., 1999).

The regulatory domain contains several Ca2+-binding sites (Sienaert et al.,

1996; 1997), two ATP-binding sites and sites for phosphorylation by different

protein kinases (Furuichi et al., 1989). In addition, several accessory protein have

been identified for the regulation of the IP3R (see section 1.5). A critical property of

the IP3R is its regulation by cytosolic Ca2+. Many Ca2+-binding sites have been

identified throughout the IP3R (Mignery et al., 1992; Sienaert et al., 1997). Two of

these regions (residues 304-381 and 378-450) fall within the IP3-binding domain,

suggesting that Ca2+ binding at these sites may exert complex effects on IP3 binding

(Pietri et al., 1990). Biphasic effects of cytosolic Ca2+ on IP3-stimulated Ca2+ flux

were first described by lino (lino, 1990). During sustained exposure to Ca2+,

responses to submaximal concentrations of IP3 are enhanced by modest increases in

cytosolic Ca2+ (<300 nM), while more substantial increases in Ca2+ concentration

inhibit responses to most IP3 concentrations. Although there are tissues in which

IP3Rs do not show a biphasic effect with Ca2+, there is no doubt that in many tissues
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physiological changes in cytosolic Ca2+ concentration biphasically modulate IP3Rs.

Changes in ER luminal [Ca2+] may also regulate IP3R activity (Missiaen et al., 1991;

Nunn and Taylor, 1992). The multiple effects of Ca2+ have attracted considerable

attention, since they are clearly a key element in the modulation of Ca2+ oscillations.

ATP also exerts biphasic effects on IP3Rs. The activity of IP3Rs is increased by

adding ATP to the micromolar concentration range, and decreased when the

concentration of ATP reaches millimolar levels (Bezprozvanny and Ehrlich, 1993;

Ehrlich and Watras, 1988; lino, 1991). These effects are thought to be mediated by

two independent binding sites (residues 1773-1780 and 2016-2021 of mouse IP3RI).

Because of its high charge, ATP is a competitive antagonist at the IP3-binding site at

higher concentration, exerting inhibitory effects (Nunn and Taylor, 1990; Willcocks

et al., 1987).

In addition to the property of autophosphorylation (Ferris et al., 1992), IP3Rs

are substrates for several protein kinases, including cAMP-dependent protein kinase

(PKA), cGMP-dependent protein kinase (PKG), protein kinase C (PKC) and Ca2+-

calmodulin dependent protein kinase II (CaMKII). In hepatocytes, activation of PKG

induces Ca2+ oscillations (Rooney et al., 1996). The activation of PKA has similar

effects (Burgess et al., 1991). It has been shown that cGMP potentiated the effects of

IP3-forming agonists and increased the sensitivity of intracellular stores to IP3

(Guihard et al., 1996; Rooney et al., 1996). PKC and CaMKII have been shown to

increase the sensitivity of Ca2+ flux to IP3 (Cameron et al., 1995). The activity of

IP3Rs is also regulated by tyrosine phosphorylation (Jayaraman et al., 1996).

Following T cell activation, non-receptor tyrosine kinases have been shown to
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associate with and phosphorylate IP3Rs, increasing their open probability. One of

these phosphorylation sites falls within the IP3-binding site. Therefore, the binding of

IP3 may be modulated by tyrosine phosphorylation.

The three major isoforms of the IP3R can be found in variety of tissues and cell

lines with different expression levels (De Smedt et al., 1994; Wojcikiewicz, 1995).

Cerebellar Purkinje cells express exclusively IP3RI, whereas IP3RII and IP3RIII

predominate in AR4-2J cells (a rat pancreatic acinar cell line) and RIN-5F cells (a rat

hepatocyte cell line), respectively. However, most cells express all three isoforms to

a different degree. Promoter regions for IP3Rs have been cloned and analysed

(Furutama et al., 1996; Kirkwood et al., 1997; Morikawa et al., 1997). The tissue

distribution of a LacZ gene fused to the promoter of the IP3RI in transgenic mice is

very similar to that of the native protein (Furutama et al., 1996). Hence,

transcriptional regulation of IP3Rs may underlie the differences in the expression of

IP3Rs observed throughout the body. IP3Rs can also be down regulated post-

transcriptionally. In SH-SY5Y cells (a human neuroblastoma cell line), IP3R

degradation has been proposed to be mediated by the Ca2+-sensitive protease, calpain

(Wojcikiewicz and Oberdorf, 1996). Down regulation of IP3Rs may function to limit

the effects of chronic agonist stimulation on Ca2+-release.

1.4.2 Ryanodine Receptors flRvRsl

Ryanodine is an insecticidal plant alkaloid, which affects the function of

skeletal and cardiac muscle. Three different ryanodine receptor genes have been

identified in mammals, and they are designated as the skeletal, cardiac and brain
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ryanodine receptor genes or ryrl, ryr2 and ryr3, respectively (McPherson and

Campbell, 1993). In fact, skeletal muscle SR contains mainly the RyRl protein with

some RyR3, while RyR2 is predominant in cardiac muscle. Brain contains all three

isoforms, which are also widely distributed in other tissues, ryrl was specifically

localised to region 19ql3.1 on the long arm of human chromosome 19 (MacKenzie

et al., 1990), whereas ryr2 was localised to human chromosome 1 (Otsu et al., 1990).

ryr3 was localised to human chromosome 15 at a locus between ql4 and q 15

(Sorrentino et al., 1993). Each of the three genes encodes an mRNA of ~16 kilobases

and a predicted protein of -5,000 amino acid residues, with an estimated molecular

weight of -560 kDa (Hakamata et al., 1992; Nakai et al., 1990; Otsu et al., 1990;

Zorzato et al., 1990).

There are some common features to be found in the three proteins. A motif of

-100 amino acid residues is repeated four times in each protein with unknown

function (Hakamata et al., 1992; Nakai et al., 1990; Otsu et al., 1990; Zorzato et al.,

1990). An N-terminal signal sequence is not present in any of the proteins, indicating

that the N-terminus is cytoplasmic. Four (Takeshima et al., 1989) or twelve (Zorzato

et al., 1990) putative transmembrane domains have been proposed near the C-

terminus of the proteins. The N-terminus and central part of each protein is

hydrophilic, and is therefore believed to form the cytoplasmic "foot process"

(Takeshima et al., 1989; Zorzato et al., 1990). Within this region, possible locations

of ATP, Ca2+ and calmodulin binding sites have been proposed. Many of these sites

appear to reside approximately halfway between the N-terminus and the first

transmembrane segment (Chen et al., 1992; Otsu et al., 1990; Treves et al., 1990).
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In skeletal muscle SR, Ca2+-induced Ca2+ release is stimulated by adenine

nucleotides and inhibited by Mg2+. The Ca2+ dependence of the efflux rate forms a

bell-shaped curve with a maximum near pCa 6 (Donoso and Hidalgo, 1993; Kim et

al., 1983; Meissner, 1984; Sumbilla and Inesi, 1987). Efflux rates decrease as

extravesicular free Ca2+ concentration approach a pCa 9 or 3. The rate of Ca2+ release

from cardiac SR is also a biphasic function of free Ca2f concentration, with a similar

maximum at 5-20 pM Ca2+ (Chamberlain et al., 1984; Chu et al., 1993; Meissner and

Henderson, 1987; Rousseau et al., 1986). The bell-shaped Ca2+ dependence of release

has been hypothesised to result from different Ca2+-binding sites, a high-affinity site

that stimulates Ca2f release and a low-affinity site that inhibits release (Meissner and

Henderson, 1987; Nagasaki and Kasai, 1983). The mechanism of Mg2+ inhibition

(Ashley and Williams, 1990) appears to be a competitive displacement of Ca2+ from

the high-affinity stimulatory site. In contrast to its effect on skeletal SR, Mg2' in the

millimolar range does not completely block Ca2+ release in cardiac SR (Meissner and

Henderson, 1987; Rousseau et al., 1986). Adenine nucleotides and nonhydrolysable

ATP analogues, such as (ky-methyleneadenosine 5'-triphosphate (AMP-PCP), have

been shown to counteract the inhibition by Mg2f (Calviello and Chiesi, 1989; Moutin

and Dupont, 1988).

The insecticide ryanodine has been shown to either stimulate or inhibit Ca2+

fluxes in skeletal or cardiac SR (Gilchrist et al., 1992; Hasselbach and Migala, 1987;

Humerickhouse et al., 1993). At ryanodine concentrations in the range of 0.01-10

pM, Ca2+ release was stimulated; whereas, at higher concentration in the range of 10-

300 pM ryanodine, release was inhibited. In addition, cyclic ADP ribose (cADPR)
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mobilises Ca2+ from intracellular stores (Galione et al., 1993). It has been shown that

cADPR, like caffeine, potentiated Ca2+-induced Ca2+ release in sea urchin eggs (Lee

et al., 1993). It has been suggested that cADPR may be an endogenous ligand of the

RyR. However, its actions appear to be restricted to regulation of non-skeletal muscle

RyRs. For example, high concentrations of cADPR (up to 50 pM) failed to increase

the open probability of skeletal RyR in planar bilayers (Morrissette et al., 1993).

Another group of Ca2+-release agents that affect RyRs are fatty acids and their

metabolites. For example, the glycolipid sphingosine had a dual effect. It induced

release at high concentrations but inhibited caffeine-induced Ca2+ release at low

concentrations (Sabbadini et al., 1992). Arachidonic acid, stearic acid, palmitoyl

carnitine and palmitoyl coenzyme A also stimulated Ca2+ release from skeletal or

cardiac SR (Cardoso and De Meis, 1993; Dettbam and Palade, 1993; el-Hayek et al.,

1993).

In skeletal and cardiac muscle, excitation-contraction (EC) coupling is defined

as the process by which an action potential propagated along the surface membrane

and the transverse tubules in junctional SR, triggers the rapid release of Ca2+ from SR

(Martin et al., 1994; Rios et al., 1991). The released Ca2+ binds to troponin located in

the thin filaments, resulting in activation of the contractile apparatus. Like hTRP3

coupling to the IP3R, skeletal muscle RyRs couple to DHPRs for EC coupling (Nakai

et al., 1996). Depolarisation-induced movements of charged protein domains in

DHPRs (see section 1.3.1.2) in the transverse tubule membrane are thought to induce

reciprocal movements in charged regions of RyRs in the SR membrane, and

subsequent Ca2+ release from the SR. However, cardiac muscle RyRs do not couple
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to DHPRs. In the heart, EC coupling relies heavily on Ca2+-dependent activation of

RyR2 by the Ca2' which enters during the prolonged "plateau" phase of the action

potential. This Ca2+-induced Ca2+ release (CICR) is also present in many

noncontractile and nonexcitable cells, and plays a crucial role in the generation of

calcium spikes and calcium waves (Berridge, 1997). Some of the properties of IP3Rs

and RyRs are compared in Table 1-1.

1.5 Accessory Proteins that Regulate Intracellular Ca2+ Channels

Calreticulin and calsequestrin are structurally similar Ca2+ storage proteins

located within the lumen of the SR/ER (Niki et al., 1996). The high-capacity Ca2+-

binding property enables them to bind -40 mole of Ca2+ per mole of protein. The

binding of Ca2> induces large conformational changes in calreticulin and

calsequestrin. It has been shown that calsequestrin plays an important role in

mediating Ca2+ fluxes in skeletal muscle SR. When RyRs in skeletal muscle SR are

activated, there is a transient Ca2+ influx preceding the expected Ca2+ efflux,

suggesting reciprocal coupling between RyRs and intraluminal protein. After

calsequestrin is removed from the SR, these changes in intraluminal [Ca2+]

disappeared (Gilchrist et al., 1992). From planar lipid bilayer studies, adding

calsequestrin to the luminal side of the SR increases the open probability of RyRs

(Kawasaki and Kasai, 1994). Thus, it has been proposed that calsequestrin may bind

directly to RyRs and regulate Ca2+ release. The functional roles of calreticulin in the

regulation of Ca2+ fluxes from SR/ER are not clear. Calreticulin has been found in the

cytoplasm and the nucleus, and modulates integrin function and transcription factors
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Property RyRs IP3Rs

Subunit molecular mass

(deduced from cDNA)
-565 kDa -320 kDa

Subunit structure Homotetrameric Homo/heterotetrameric

Glycosylation ?No Yes

Transmembrane segments At least 4 6

Conductance

(50 mM luminal [Ca24])
lOOpS 10-20 pS

Activators Voltage
Ca2+
IP3 (slight)
Adenine nucleotides
Caffeine
cADP-ribose

Ca2+
IP3
Adenine nucleotides

(variably)

Inhibitors Ryanodine
Ca2+
Ruthenium red

Heparin
Ca2+
IP3

Table 1-1. Properties of IP3Rs and RyRs. Adapted from Ashley (1995).
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(Meldolesi et al., 1996). In addition, calreticulin inhibits IP3-induced Ca2+ oscillations

when overexpressed in Xenopus oocytes, suggesting it is coupled to IP3Rs (Camacho

and Lechleiter, 1995). Calreticulin also increases Ca2' accumulation in intracellular

stores when expressed in cells (Mery et al., 1996). However, calreticulin knock-out

mice show no detectable change in intracellular Ca2+ stores (Coppolino et al., 1997).

Triadin is an integral membrane protein of the junctional SR of skeletal muscle

triads. The C-terminus of triadin has been shown to interact with both the

intraluminal face of the RyR and with calsequestrin (Guo et al., 1996), but not to

DHPRs. Thus, it has been proposed that triadin anchors calsequestrin to the skeletal

muscle RyR instead of coupling RyRs to DHPRs. In this way, stored Ca2+ is close to

channel-opening sites of RyRs, which enables the Ca2+ released from RyRs more

efficient. The interaction between triadin and calsequestrin is inhibited by increasing

[Ca2+], whereas its binding to the RyR is Ca2+-independent. Like triadin, junctin is

also an integral membrane protein and interacts with calsequestrin, triadin and RyRs

(Zhang et al., 1997). The interaction between junctin and calsequestrin is inhibited

by increasing [Ca2+], whereas its interaction with RyRs or triadin is Ca2+-

independent. It has been proposed that the RyR, junctin, calsequestrin and triadin

form a quaternary complex involved in the accumulation and release of Ca2 ' from the

SR.

FK506-binding proteins (FKBPs) are target proteins for the

immunosuppressant drugs FK506 and rapamycin. Although several members of this

family have been identified, a 12 kDa isoform known as FKBP12 predominates in

many cells and tissues. FKBP12 catalyses peptidylpropyl cis-trans isomerisation,
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which is essential for protein folding. However, it has been shown that this isomerase

activity is not critical for modulating either RyR or IP3R function (Timerman et al.,

1995). FK506 and rapamycin inhibit this isomerase activity, but they act by altering

the association of FKBP12 with RyRs and IP3Rs, rather than by preventing protein

folding (Marks, 1996). For example, the interaction between FKBP12 and RyRl can

be disrupted by treatment with FK506 or rapamycin, and RyRl then shows long-

lasting subconductance states in planar lipid bilayer studies (Brillantes et al., 1994).

Addition of FKBP12 or coexpression of FKBP12 with RyRs enables channel gating

to fully open or closed states, rather than subconductance states. RyR2 has been

found to interact with another FKBP* isoforms, FKBP12.6 (Timerman et al., 1996).

FKBP12 knock-out mice show apparently normal skeletal muscle, but severe dilated

cardiomyopathy (Shou et al., 1998). However, abnormal gating properties were

identified in both RyRl and RyR2. The phenotype may come from the different

mechanism in EC coupling between cardiac and skeletal muscle (see section 1.4.2).

Thus, FKBP12 is essential for regulation of RyR2, while RyRl may interact with

DHPRs to modulate Ca2+ fluxes.

The association of the Ca2+-dependent phosphatase calcineurin with IP3Rs is

inhibited by FK506 or rapamycin, indicating that calcineurin is anchored to IP3Rs via

FKBP12 (Cameron et al., 1995). FKBP12 binds IP3Rs at residues 1400-1401, a

leucine-proline dipeptide that is structurally similar to FK506. Similar motifs are

present in all IP3R and RyR isoforms. Use of the yeast three-hybrid assay suggests

the formation of ternary complexes between IP3Rs, FKBP 12 and calcineurin

(Cameron et al., 1997). However, the interaction between FKBP12 and RyRl might
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not be dependent on calcineurin, since re-addition of FKBP12 is sufficient to restore

normal gating properties after depletion with FK506. It has recently been proposed

that binding of FKBP12 causes long-range conformational changes of RyRl

(Wagenknecht et al., 1997).

1.6 Spatial and Temporal Signalling by Ca2+

With advances in imaging technology, it has become possible to see the

elementary events which constitute Ca2+ signalling. These elementary events have a

variety of names often reflecting their spatiotemporal properties, such as "sparks",

"puffs", "bumps" and "quantum eihission domains" (QEDs) (Klein et al., 1996;

Sugimori et al., 1994; Wong et al., 1982; Yao et al., 1995). These specific events

have been identified as the spontaneous transient outward currents (STOCs)

(Benham and Bolton, 1986; Zholos et al., 1994) or the spontaneous miniature

outward currents (SMOCs) (Marrion and Adams, 1992), depending on the property

of Ca2' current. As the channel opens, Ca2+ diffuses out rapidly to produce a plume,

which then dissipates more slowly by diffusion once the channel closes. As described

in section 1.4.1 and 1.4.2, the opening and closing of IP3Rs and RyRs is modulated

by the positive and negative feedback effects of Ca2+. The elementary events have at

least three basic functions. They are essential to maintaining the resting level of Ca2+.

They can also produce highly localised [Ca2^] to regulate many physiological

processes such as exocytosis or the activation of ion channels, or they can coordinate

with each other for the production of global Ca2+ signals to activate more distant

sites. It has been shown that the small amount of Ca2+ released into the cytoplasm
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during each elementary event can exert a critical effect on the resting level of Ca2+.

This elevation in Ca2+ will enhance the excitability of the intracellular receptors, and

thus set up the platform for producing global Ca2+ signals (Figure 1-5).

Elementary events generate highly concentrated and localised Ca2+ signals that

can produce a variety of functions, depending on where they occur. As discussed

previously, exocytosis is activated by a Ca2+ influx entering through VOCCs (Llinas

et al., 1992). In smooth muscle, increases in [Ca2+] arising near the plasma membrane

activate K' channels, causing the muscle to relax. However, when these elementary

events deeper in the cell are coordinated to create a global Ca2+ signal, the muscle

contracts (Nelson et al., 1995). Therefore, elementary events not only contribute to

global Ca2+ signals, they may also have very precise localised signalling functions

such as relaxation and contraction of smooth muscle or exocytosis of secretory

vesicles. In order to produce global Ca2+ signalling, the elementary events must be

tightly coordinated with each other (Bootman and Berridge, 1995). In muscle cells,

channel opening is tightly coupled to an action potential in the plasma membrane.

However, in non-excitable cells, channels may coordinate their own activity through

CICR. This process is much slower because the signal is Ca2+ itself diffusing from

one channel to another, usually as Ca2+ waves. If cells are connected, such

intracellular waves can spread into neighbouring cells and become intercellular

waves to coordinate cellular responses within a tissue (Figure 1-5).

Ca2+ signalling can also be modulated by the engineering principles of

amplitude and frequency modulation (AM/FM). Recently, Dolmetsch et al. (1997)

have clearly demonstrated that differential gene transcription in B lymphocytes is
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a Elementary events
As4f' "f' i>, v, t -*-s.it ' I. -

ER/SR

Fertilization
Smooth muscle contraction
Skeletal muscle contraction
Cardiac muscle contraction
Liver metabolism
Gene transcription
Cell proliferation

1 I I -

Growth-cone migration
Membrane excitability
Mitochondrial metabolism
Vesicle secretion
Smooth muscle relaxation
Mitosis
Synaptic plasticity

Wound healing
Ciliary beating
Glial cell function
Bile flow
Insulin secretion
Smooth muscle-induced nitric
oxide synthesis in endothelium

If' < „.v**;

Figure 1-5. Spatial aspects of Ca2+ signalling.

a, Elementary events result from the entry of external Ca2+ across the plasma membrane or release
from internal stores in the ER/SR. They can activate many processes, including export of cellular
material (1), opening ofK+ channels (2), metabolism in the mitochondria (3) and Ca2+ entry to the
nucleus (4). b, Global Ca2+ signals are produced by coordinating the activity of elementary events
to produce a Ca2+ wave, c, The activity of neighbouring cells within a tissue can be coordinated
by an intercellular wave. Adapted from Berridge et al. (1998).
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achieved through amplitude modulation (AM) of the Ca2+ signalling system. They

found that a low concentration of Ca2+ activates the nuclear factor of activated T cells

(NF-ATs), whereas a much higher concentration stimulates a different set of

transcriptional regulators, such as NF-kB and c-Jun kinase. This differential gene

activation using AM signalling mode provides an excellent explanation of how B

cells respond differently when they are presented with the same antigen. Naive B

cells, which have had no previous contact with the antigen, produce a large Ca2'

signal that induces proliferation and positive selection. However, self-tolerant B cells

that have responded previously and are thus tolerant to the antigen, generate a much

smaller signal which fails to stimulate proliferation. Instead, the cells display

negative selection by blocking cell differentiation and antibody secretion.

It was shown some time ago that insect salivary glands use frequency

modulation to control fluid secretion (Rapp et al., 1981). In addition, the calmodulin-

dependent protein kinase II regulates other enzymes depending on the frequency of

[Ca2+] oscillations (De Koninck and Schulman, 1998). Three transcription factors,

NF-AT, Oct/OAP and NF-kB, have also been shown to be regulated by [Ca2+]

oscillations (Dolmetsch et al., 1998). [Ca2+] oscillations reduced the effective Ca2+

threshold for activating transcription factors, thereby increasing signal detection at

low levels of stimulation. Rapid Ca2+ oscillations stimulated all three transcription

factors, whereas infrequent Ca2+ oscillations only activated NF-kB.
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1.7 Ca2+. Cell Division and Cell Death

There are two major kinds of death process: apoptosis and necrosis. Apoptosis

is a tightly regulated process and characterised by some specific events, including

chromatin condensation, regular DNA fragmentation pattern, protein degradation by

proteases, cell shrinkage and no mitochondria swelling. However, necrosis is poorly

regulated and performs different pathological events, including leakage of cell

content, cell inflammation and swelling of cytoplasm and mitochondria (Kroemer et

al., 1998). Although the relation between apoptosis and necrosis is controversial

(Leist and Nicotera, 1997; Raffray and Cohen, 1997), generally apoptosis is a tightly

controlled programmed cell death, whereas necrosis happens accidentally because of

homeostatic failure.

Ca2+ is a versatile second messenger, which regulates a wide variety of

molecular, genetic and enzymatic functions during apoptosis. For example, calpains

are a family of heterodimeric proteases, which contain Ca2+-binding domains. The

importance of calpains is that they act on a very wide range of cellular substrates,

including cytoskeletal proteins, membrane-associated proteins, enzymes and

transcription factors (Carafoli and Molinari, 1998). Thus, calpain-induced proteolysis

may be essential for the regulation of apoptosis.

Chromatin condensation and the nuclear fragmentation are two important

events during apoptosis. The precise mechanisms are not fully understood. However,

the formation of distinct DNA fragments of 180-200 bp in size is performed by an

endogenous Ca27Mg2*-dependent endonuclease (e.g. DNase I) which induces the
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DNA fragmentation (Hale et al., 1996). Inhibition of its activity reduces the DNA

laddering, whereas its overexpression induces nuclear apoptosis.

Mitochondria have been shown to play a central role in apoptosis. The

disruption of the mitochondrial membrane potential is an early and irreversible event

in apoptosis. This pre-apoptosis event is closely related with the opening of the

permeability transition pore (Mignotte and Vayssiere, 1998). Two factors released

from mitochondria have been shown to be apoptotic signalling molecules. One is the

apoptosis-inducing factor (AIF), a flavoprotein (Susin et al., 1999), and the other

factor is cytochrome c. In fact, cytochrome c itself is not a apoptosis inducer, while it

can cooperate with other factors to activate caspases and nuclear endonucleases (Liu

et al., 1996). Bcl-2 families constitute two groups of apoptosis regulatory proteins

that may be either a death antagonist (e.g. Bcl-2) or a death agonist (e.g. Bax, Bak)

(Kroemer et al., 1998). The relative amount of these proteins establishes a regulatory

switch whose function is determined by selective protein-protein interactions (Sedlak

et al., 1995). Bcl-2 is located in the outer mitochondrial membrane and may thus

exert its actions through preventing the opening of the permeability transition pore

(Murphy et al., 1996).

Mitochondria are an important cellular Ca2+ compartment, and respond rapidly

to changes in cytosolic [Ca2+], Limited Ca2+ uptake increases the speed of electron

transfer through the respiratory chain, providing a functional coupling between cell

activation and ATP production. In contrast, larger increases in mitochondrial [Ca2+]

lead to an eventual inhibition of the respiratory chain, opening of the permeability

transition pore and collapse of ATP production (White and Reynolds, 1996). These
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events cause cell death. Ca2+ signalling thus controls a variety of cellular processes.

However, any of these signalling events can be switched on to activate a programme

that leads to cell death. To understand how Ca2+ signalling suddenly transforms from

"being a signal for life to a signal for death" will be a crucial topic in the future

(Berridge et al., 1998).

1.8 Aims of This Study

At the outset of this project, the human IP3RI had not been cloned and

expressed. The IP3RI is the most abundant IP3R, and it is also the predominant type

in human brain. The main aim of this project was to clone and express a functional

IP3RI from human brain. The first objective was to assemble a full-length human

IPjRI from three overlapping cDNA clones. By using in vitro or in vivo expression

systems, the full-length IP3RI can then be overexpressed, and functionally studied by

IP3 binding assays. Further study of single channel activity of the expressed IP3RI

reconstituted into planar lipid bilayers would also be possible. In addition, FKBP12,

a cytosolic protein, which is relatively small (12 kDa) compared to IP3RI, has been

shown to bind to IP3RI. In addition to cloning and expression experiments with

FKBP12 in parallel with IP3RI, to test the methods used, future coexpression of

FKBP12 and IP3RI would be useful to investigate how FKBP12 affects the function

of the Ca2+-release channel.
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Chapter 2

Materials and Methods
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2.1 Materials and Suppliers

2.1.1 Chemicals and Reagents

All chemicals were the best available grade and supplied by Sigma-Aldrich

Company Ltd., Dorset, England except where otherwise stated.

2.1.2 Molecular Biology Reagents

There were obtained from suppliers as follows:

Amersham. Little Chalfont. Bucks. UK.

[a35S]-dATP radiolabelled nucleotides, Hybond-C pure nitrocellulose

membrane, ECL detection kit, Sequenase II DNA sequencing kit, D-myo-[3H]inositol

1,4,5-trisphosphate, potassium salt.

Boehringer Mannheim. Lewes. Sussex. UK.

Calf intestinal alkaline phosphatase, Complete protease inhibitor.

Difco Laboratories. Surrey. UK.

All media components for bacterial cell culture.

Flowgen. Staffordshire. UK.

Sequagel polyacrylamide reagent system, SeaKem LE agarose, SeaPlaque

agarose.

GIBCO BRL. Paisley. IJK.

All reagents and media for cell culture, lkb DNA ladder, Lipofectin reagent,

Lipofectamine reagent.

ICN Pharmaceuticals, Irvine, CA. USA.

TRAN35S-Label.
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Invitrogen. Leek. The Netherlands.

MaxBac 2.0 kit, plasmid vector pcDNA3.1.

New England Biolabs. Hitchin. Hertfordshire. UK.

All restriction endonucleases.

OSWgL Ltd., Southampton, UK-

All DNA synthesis and automated DNA sequencing.

Pharmacia Biotech. St. Albans. UK.

dNTPs.

Promega Corporation UK. Southampton. UK.

T4 DNA ligase, Taq DNA polymerase, TnT coupled transcription/translation

kit, plasmid vectors pCI and pCI-neo.

OIAGEN Ltd. Dorking. Surrey. UK.

Qiagen 500 plasmid purification kit, miniprep spin columns, QIAEX II DNA

extraction kit.

Stratagene. La Jolla. CA. USA,

Plasmid vector pBluescript II KS (+/-), E. coli strain XLl-Blue MRF', Pfu

DNA polymerase.

2.1.3 Antibodies

Calbiochem. Beeston. Nottingham. UK.

Rabbit anti-human IP3R N-terminal polyclonal antibody

Pierce & Warriner. Chester. UK.

Goat anti-rabbit IgG (H+L), horseradish peroxidase conjugate.
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Santa Cruz Biotechnology. USA.

Goat anti-human FKBP12 C-terminal polyclonal antibody.

2.2 Details of Eschericia coli strains

XLl-Blue MRF': A(rncrA) 183, A(mcrCB-hsdSMR-mrr) 173, endAl, supE44, thi-1,

recAl, gyrA96, relAl, lacfF'proAB, lacFZAM15, TnlOJ

JM109: endAl, recAl, gyrA96, thi, hsdR17, (rk, mk'), relAl, supE44, A(lac-proAB),

[F\ tra D36, proAB, lacFZAM15]

2.3 DNA Protocols

2.3.1 Standard Recombinant DNA Protocols

Standard recombinant DNA protocols followed the procedures described by

Sambrook et al. (1989), including restriction enzyme digestion of DNA,

phenol/chloroform extraction of DNA, ethanol precipitation of DNA, and DNA

ligation.

2.3.2 Preparation of Competent Bacterial Cells

A single colony was picked up using a sterile pipette tip from an Luria-Bertani

(LB) medium plate containing appropriate antibiotics and inoculated into 5 ml of LB

medium containing the same antibiotics, and incubated at 37°C in a shaking

incubator overnight with shaking at 250 rpm. The overnight culture was diluted 100

fold in 20 ml culture medium containing antibiotics and incubated at 37°C until the

OD600 reached 0.5. The culture was centrifuged at 3000 x g for 5 min at 4°C, the
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supernatant was discarded, and the pellet was placed immediately on ice. The cell

pellet was resuspended very gently with 10 ml of 100 mM ice cold CaCl2 by

inverting the tube several times, and incubated on ice for 30 min. The suspension was

re-centrifuged at 3000 x g for 5 min at 4°C and the pellet was resuspended in 2 ml ice

cold 100 mM CaCl2. Competent cells were used after 1 h incubation on ice or 15%

glycerol (v/v) was added before freezing 100 pi aliquots in liquid nitrogen and

storing at -70°C for up to six months.

2.3.3 Transformation of Competent Bacterial Cells

Competent bacterial cells taken from one frozen 100 pi aliquot was thawed on

ice. 10 ng of DNA were added to the tube and mixed by gently swirling the pipette

tip, and incubated on ice for 30 min. The tube was transferred to a 42°C water bath

for 1 min, and then placed on ice for 2 min. 800 pi of LB medium were added to the

tube and incubated for 45 min at 37°C in a shaking incubator with shaking at 250

rpm. 100 pi of the mixture was added to a LB medium plate containing appropriate

antibiotics, and spreaded evenly on the surface of the agar by using glass beads.

When the medium were almost absorbed by the agar, the plate was inverted and

incubated at 37°C for 12-16 h until the colonies appeared.

2.3.4 Small Scale Plasmid Preparation fMini-Prep)

Two different methods were used for small-scale plasmid preparation. The first

was the alkaline lysis method (Birnboim and Doly, 1979) described in the Protocols

and Applications Guide (Promega, 1996, p 47). The second method used a QIAprep
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Spin miniprep kit (Qiagen), according to the manufacturer's manual. This method

also used the alkaline solution to lyse the bacteria. Instead of the phenol/chloroform

extraction and ethanol precipitation of DNA used in method one, this kit included a

silica-gel membrane in a spin column for DNA binding, and DNAs were eluted by

distilled water.

2.3.5 Large Scale Plasmid Preparation (Maxi-Prep)

The QIAfilter plasmid maxi kit (Qiagen) was used for large-scale plasmid

preparation, according to the manufacturer's manual. This method was based on a

modified alkaline lysis procedure, followed by binding of plasmid DNA to an anion-

exchange resin under appropriate low-salt and pH conditions. RNA, proteins, and

low-molecular-weight impurities were removed by a salt wash. Plasmid DNA was

eluted in a high-salt buffer, and then concentrated and desalted by isopropanol

precipitation.

2.3.6 DNA Gel Electrophoresis

This method was described by Sambrook et al. (1989, 6.1-6.62). An agarose

gel was used for separating DNA fragments of different lengths. Gel electrophoresis

was performed in the tank containing 45 mM Tris-borate and 1 mM EDTA (TBE).

Because the DNA is negatively charged, it moved from cathode to anode. DNA was

visualised under ultraviolet (UV) light by staining the gel with ethidium bromide, or

by adding ethidium bromide directly to the gel.
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2.3.7 Purification ofDNA Fragments

DNA was digested by restriction endonucleases, and the solution was loaded

on agarose gels (0.8-1.2% (w/v), as stated) to separate any undigested circular DNA.

When each DNA band was separated clearly, the desired fragments were cut out and

purified using the QIAEX II gel extraction kit (Qiagen), according to the

manufacturer's manual. This method used silica-gel particles for binding DNAs. The

gels were washed before DNAs were eluted by distilled water.

2.3.8 Dephosphorvlation of 5'-DNA Ends

The reaction was set up by adding the following components to the digested

vector DNA: 5 pi calf intestinal alkaline phosphatase (CIAP) 10 X buffer (0.5 M

Tris-HCl, 1 mM EDTA, pH 8.5), 1 pi CIAP (1 U/pl), and distilled water to a final

volume of 50 pi. The samples were incubated at 37°C for 1 h before

phenol:chloroform:isoamyl alcohol (25:24:1) extraction and ethanol precipitation.

Samples were resuspended in distilled water to give a final concentration of 50 ng/pl.

2.3.9 DNA Sequencing

The Sequenase version 2.0 DNA sequencing kit (Amersham) was used for

DNA sequencing. This method was based on the dideoxy-mediated chain termination

method described by Sanger et al. (1977).

Sequenase version 2.0 is a form of bacteriophage T7 DNA polymerase. It is a

genetically engineered form of Sequenase that entirely lacks 3'-» 5' exonuclease

activity, is extremely stable, and has a threefold higher specific activity than the
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chemically modified enzyme (Tabor and Richardson, 1989). This enzyme also has

high processivity and an enhanced rate of polymerisation, making it useful for DNA

sequencing. 2',3' ddNTPs differ from conventional dNTPs in that they lack a

hydroxyl residue at the 3' position of deoxyribose. The absence of a 3'-hydroxyl

residue prevents formation of a phosphodiester bond with the succeeding dNTP.

Further extension of the growing DNA chain is therefore impossible. Thus, when a

small amount of one ddNTP is included with the four conventional dNTPs in a

reaction mixture for DNA synthesis, there is competition between extension of the

chain and infrequent, but specific, termination. By using the four different ddNTPs in

four separate enzymatic reactions, populations of oligonucleotides are generated that

terminate at positions occupied by every A, C, G, or T in the template strand. The

sequences can be read by incorporating radiolabeled dNTPs, followed by

autoradiography.

DNA (3-5 pg) was denatured by adding 0.1 volumes of 2 M NaOH containing

2 mM EDTA, and incubated for 30 min at 37°C. The mixture was neutralised by

adding 0.1 volumes of 3 M sodium acetate (pH 4.5-5.5), and the DNA precipitated

with 2-4 volumes of ethanol for 15 min at -70°C. After spinning at 14,000 x g for 20

min, the pelleted DNA was washed with 70% ethanol and dissolved in 7 pi of

distilled water. Annealing was carried out by adding 2 pi of reaction buffer and 1 pi

of primer (100 ng/pl) to 7 pi of denatured DNA, and the mixture was incubated for 2

min at 65°C on a hot plate. The heating block was then placed at room temperature to

cool slowly to below 35°C over 15-30 min. The mixture was then centrifuged briefly

and chilled on ice for 5 min. 2.5 pi of each termination mixture was added to
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individual, labelled wells in a microtitre plate pre-warmed by floating the plate in a

37°C water bath. The labelling reaction was carried out by adding the following

components to the denatured DNA/primer mixture and incubating at room

temperature for 5 min: 1 pi, 0.1 M DTT, 2 pi of diluted labelling mix (1:5 dilution in

water), 0.5 pi of [35S]dATP and 2 pi of diluted Sequence Polymerase (1:8 dilution, in

enzyme dilution buffer). 3.5 pi of labelled reaction mixture was transferred to each

well of a microtitre plate and incubated at 37°C for 5 min. The reaction was stopped

by adding 4 pi of stop solution (95% (v/v) formamide, 20 mM EDTA, 0.05% (w/v)

bromophenol blue, and 0.05% (w/v) xylene cyanol FF) to each well of the microtitre

plate.

2.3.10 Denaturing polyacrylamide gel electrophoresis

Polyacrylamide gels were prepared from Sequagel (Flowgen) for DNA

sequencing. The components of the system were mixed appropriately to give a

uniform 6% (w/v) polyacrylamide gel. Gels were cast in a Bio-Rad Sequi-Gen

apparatus, using 0.4 mm uniform spacers and a sharks-tooth comb. The samples to be

electrophoresed were heat-denatured before loading by placing the microtitre plate on

a heated block at 90°C for 3 min, before chilling quickly on ice. The gels were pre-

run in 1 X TBE at a constant power of 75 W for 30 min to equilibrate and pre-warm

them. Immediately before loading, the wells of the gel were flushed with 1 X TBE to

remove excess urea, and 2.5 pi of each termination reaction was loaded in a separate

well. Gels were run at 75 W constant power, maintaining an even gel temperature

throughout the run. When the bromophenol blue dye front reached the bottom of the
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gel, the run was stopped and the gel was dismantled before fixation in 10% (v/v)

methanol, 10% (v/v) acetic acid for 5 min. The gels were then dried under vacuum

with a paper backing before autoradiography.

2.4 RNA Protocols

2.4.1 In vitro Transcription

The mCAP RNA Capping Kit (Stratagene) was used for in vitro transcription,

according to the manufacturer's manual.

2.4.2 Denaturing Formaldehyde-Agarose Gel Electrophoresis

The method used was adapted from that of Sambrook et al. (1989, pp 7.43-

7.45). A 1% (w/v) agarose gel was prepared by melting agarose in 1 X formaldehyde

running buffer (FRJB), 20 X concentrate comprising: 0.4 M MOPS, 0.1 M sodium

acetate, and 0.02 M EDTA by boiling. The gel was allowed to cool to approximately

55°C, and 17 ml of formaldehyde (37% (v/v)) were added, resulting in a final

concentration of 2.2 M. The gel was cast and allowed to cool until firmly set. The

RNA samples were prepared by incubating at 65°C for 15 min in an equal volume of

RNA Loading Buffer (50% (v/v) formamide, 1 X FRB, 2.2 M formaldehyde and

0.01% (w/v) bromophenol blue), and loaded and electrophoresed at 5 V/cm in 1 X

FRB, 2.2 M formaldehyde. RNAs moved from cathode to anode. Constant

recircularisation of running buffer from the anode to the cathode prevented the

generation of a salt gradient. After electrophoresis, the gel was rinsed briefly in

diethyl pyrocarbonate (DEPC)-treated distilled water, and stained with ethidium
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bromide (0.5 pg/ml in DEPC-treated distilled water) for 15 min. After staining, the

gel was destained for 12 h in DEPC-treated distilled water.

2.5 Protein Protocols

2.5.1 Sodium Dodecylsulfate-Polyacrvlamide Gel Electrophoresis ( SDS-PAGE I

Protein electrophoresis followed the method of Laemmli (1970). The SDS-

polyacrylamide gels were poured in a Mini-Protean II system (Bio-Rad), which was

assembled according to the manufacturer's instructions. The solutions for separating

gels (total volume 10 ml) were prepared in the order shown in Table 2-1. The

separating gels were mixed well and then poured between the glass plates of the gel

apparatus and overlaid with water. After the gels polymerised (about 20 min), the

overlaid water was poured out and the gels were washed three times with water. A

3.5% (w/v) of stacking gel (total volume 5 ml) was prepared and poured over the

separating gel (Table 2-2). Before the stacking gels polymerised (about 15 min), a

comb was inserted to allow the wells to form. The samples were denatured by

heating at 100°C for 5 min in an equal volume of 2 X SDS gel sample buffer (2%

(w/v) SDS, 5% (v/v) 2-mercaptoethanol, 10% (v/v) glycerol, 62.5 mM Tris-HCl, pH

6.8), and then placed on ice. Once the stacking gels had polymerised, the comb was

carefully removed and the wells were washed with water to remove unpolymerised

acrylamide. The samples were loaded and voltage applied to the gel at 8 V/cm until

the dye front moved into the stacking gel, and then 15 V/cm until the dye front

reached the bottom of the separating gel. Proteins moved from cathode to anode.
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mis added for stated percentage of gels

component 5% 10% 15%

H20 4.79 3.53 2.28

40% (w/v) acrylamide/bisacrylamide 1.25 2.5 3.75

1 M Tris-HCl, pH 8.8 3.76 3.76 3.76

10% (w/v) SDS 0.1 0.1 0.1

10% (w/v) ammonium persulphate 0.1 0.1 0.1

TEMED 0.01 0.01 0.01

Table 2-1: The composition of separating gels in SDS-PAGE

component mis added

H20 3.2

0.5 M Tris-HCl, pH 6.8 1.25

40% (w/v) acrylamide/bisacrylamide 0.44

10% (w/v) SDS 0.05

10% (w/v) ammonium persulphate 0.05

TEMED 0.005

Table 2-2: The composition of stacking gels in SDS-PAGE
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2.5.2 Staining and Destaining of Protein Gels

SDS-polyacrylamide gels were stained in a solution containing 0.25% (w/v)

Coomassie Brilliant Blue R250, 90% (v/v) methanol:H20 (1:1 v/v), and 10% (v/v)

glacial acetic acid for 30 min at room temperature. The gels were then destained by

immersing them in 90% (v/v) methanol:H20 (1:1 v/v) and 10% (v/v) glacial acetic

acid for 24 h, changing the destaining solution twice. To make a permanent record,

the gels were dried on a vacuum gel drier (Hoefer), according to the manufacturer's

manual.

2.5.3 Western Blotting

Proteins were sized fractionated using 5% (w/v) SDS-PAGE then transferred to

Hybond C-Pure nylon membranes (Amersham) using a wet transfer apparatus

(Hoefer) at a constant current of 300 mA for 2 h. Proteins transferred from gel to

membrane in the direction of cathode to anode. Membranes were incubated with

blocking buffer (5% (w/v) skimmed milk in PBS) overnight at 4°C. Rabbit anti-

human IP3R N-terminal antibodies (Calbiochem) were added at 1:2000 dilution in

blocking buffer. After 2 h incubation at room temperature, membranes were washed

4 times for 5 min each time, with gentle agitation, with 50 ml PBS, and incubated at

room temperature for 1 h with goat anti-rabbit IgG-horseradish peroxidase conjugate

at 1:1000 dilution in blocking buffer. After 1 h incubation, membranes were washed

4 times for 5 min each time, with gentle agitation, with 50 ml PBS. Signals were

detected using the ECL method (Amersham), followed by exposure to photographic

film.
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2.5.4 In vitro Translation

The in vitro transcription/translation reactions were performed using either a

TnT Coupled Reticulocyte Lysate System (Promega), or a TnT Quick Coupled

Transcription/Translation System (Promega), according to the manufacturer's

instruction. The scale of the reaction was reduced to 25 pi.

2.5.5 Preparation ofMicrosomal Membranes

The method followed the procedures described by Yoneshima et al. (1997)

with some modifications. Three 90 mm plates of transfected cells were homogenised

in 3 ml homogenisation buffer (0.32 M sucrose, 5 mM Tris-HCl, pH 7.4, 0.2 mM 4-

(2-aminoethyl) benzenesulfonyl fluoride (AEBSF), 1 pg/ml leupeptin, 0.5 pg/ml

pepstatin, 0.5 pg/ml aprotinin, 10 pg/ml trypsin inhibitor, 150 pg/ml benzamidine).

After 30 strokes using a tight-fitting glass-teflon homogeniser, the homogenates were

centrifuged in a TLA-100.3 rotor using a TL-100 centrifuge (Beckman) at 1,000 x g

for 10 min at 4°C. The supernatant was re-centrifuged at 105,000 x g for 45 min at

4°C. The pellet was resuspended in 80 pi homogenisation buffer to be used

immediately or quick frozen in liquid nitrogen then stored at -70°C.

2.6 Cell Culture Protocols

2.6.1 Mammalian Cell Culture

COS7 cells (a transformed monkey fibroblast cell line) (Gluzman, 1981) and

HEK293 cells (a transformed human embryonic kidney cell line) (Graham et al.,
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1977) were cultured in DMEM (Gibco BRL) supplemented with 10% (v/v) foetal

calf serum (Gibco BRL), 2 mM L-glutamine, 2 mM sodium pyruvate, 100 units

penicillin, and 100 pg/ml streptomycin. Cells were cultured and passaged according

to standard procedures (Doyle et al., 1994).

2.6.2 Transfection ofMammalian Cells

Transfection was performed by using liposomes including Lipofectin (Gibco

BRL), Tfx-20 (Promega), Lipofectamine (Gibco BRL), or electroporation (Bio-Rad)

and the manufacturer's instruction were followed precisely.

2.6.3 Insect Cell Culture

Sf9 cells derived from fall armyworm ovaries (Myers et al., 1992) were

cultured in supplemented Grace's medium (Gibco BRL) including 10% (v/v) foetal

bovine serum (Gibco BRL), 2.5 pg/ml Fungizone (Gibco BRL), 100 units penicillin,

and 100 pg/ml streptomycin. Sf21 cells (Vaughn et al., 1977) were cultured in Sf-

900 II medium (Gibco BRL) including 2.5 pg/ml Fungizone (Gibco BRL), 100 units

penicillin, and 100 pg/ml streptomycin. Insect cells were passaged by gently tapping

the culture flasks and using a stream ofmedium from a 10 ml pipette to dislodge the

cells from the surface.

2.6.4 Transfection of Insect Cells

Insect cells were transfected by using the MaxBac 2.0 Transfection kit

(Invitrogen). The day before transfection, cells were plated in a 60 mm dish to give
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-60% confluence. The transfection mixture was prepared by adding the following

components to a 1.5 ml screw-capped tube containing 10 pi (0.5 pg) of Bac-N-Blue

DNA:

Recombinant transfer plasmid (1 pg/pl) 4 pi

Grace's medium (without supplements or FBS) 1 ml

InsectinPlus liposomes 20 pi

The mixture was vortexed and incubated at room temperature for 15 min. The

medium was removed without disrupting the monolayer and the cells were washed

with 2 ml of fresh Grace's medium, without supplements or FBS. The transfection

mixture was added dropwise to the cells, and the dishes were incubated at room

temperature for 4 h on a side-to-side, rocking platform (about 2 side-to-side motions

per minute). Following the 4 h incubation period, 1 ml of complete Grace's medium

was added to the dish and the dish was incubated at 28°C for 4-5 days. After 5 days,

the supernatant was collected and stored at 4°C for screening the recombinant virus.

2.6.5 Plaque Assay

The day before plaque assay, six 10 mm plates were seeded with insect cells to

give -70% confluence. The transfection viral stock was diluted to 1 in 10"2, 1 in 10~3,

and 1 in 10"4 in 2 ml of complete medium. The medium was removed from the cells

to leave only about 2 ml. One ml of each viral dilution was added to the plates, and

the plates were incubated at room temperature on a slowly rocking platform (about 2

side-to-side motions per minute) for 1 h. During the 1 h incubation period, a 37()C

water bath was placed in a tissue culture hood. 3% (w/v) SeaPlaque low melting
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temperature agarose (Flowgen) was prepared by adding 0.69 g of agarose to 23 ml of

distilled water, and melted completely by microwaving then incubated at 37°C in the

water bath. 207 pi of 50 mg/ml 5-bromo-4-chloro-3-indolyl-(3-D-galactopyranoside

(X-gal) was added to 46 ml of complete medium and this was pre-warmed to 37°C.

The molten 3% (w/v) SeaPlaque agarose and complete medium were mixed to

produce 1% (w/v) agarose. Following the 1 h incubation period, the inoculums were

aspirated and the cells were carefully overlaid with 10 ml of 1% (w/v) agarose

mixture. After the agarose had solidified, the plates were sealed with parafilm and

incubated at 28°C until plaques were well-formed (about 5-7 days).

2.6.6 Preparation of Primary Virus Stock

Insect cells were plated in 12-well culture plate to give -50% confluence. Well-

separated plaques were picked up by sucking a plug of agarose from above the

plaque into a Pasteur pipette, and these plaques were transferred to each well of the

plate. After 5 to 6 days, the medium was collected and centrifuged at 3000 x g for 10

min. The supernatant was collected and stored at 4°C as "primary virus stock".

2.6.7 Extraction ofViral DNAs

100 pi of the primary virus stock were mixed with 350 pi of TE buffer (10 mM

Tris-HCl, pH 7.8, 1 mM EDTA) and 50 pi of 10% (w/v) SDS. 500 pi of

phenol:chloroform:isoamyl alcohol (25:24:1) were added to extract viral DNA

followed by ethanol precipitation. The DNA pellet was resuspended in 50 pi of TE

buffer.
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2.6.8 Amplification of Virus Stock

The day before amplification, the insect cells were plated in a 75 cm2 flask to

give -70% confluence. 100 pi of the primary virus stock was added and the flask was

incubated at 28°C for 5 to 6 days until more than 90% cells were lysed. The cell

debris was removed by centrifugation at 3000 x g for 10 min. The supernatant was

collected and stored at 4°C. This give the "high titre", small-scale vims stock. Large-

scale vims stock was obtained by infection of a 150 cm2 flask of cells with 150 pi of

small-scale vims stock, following the same procedures.

2.6.9 End Point Dilution Assay

Insect cells were seeded at -30% confluence in each well of a 12-well plate.

For each vims titre to be tested, 100, 10, and 1 pi of vims stock were added to each

well, and cells were incubated at 28°C for three days. Control wells contained no

vims stock. Successful transfections and high titre vims stock resulted in uniformly

large infected cells in the 100, 10, and 1 pi experimental wells. The cells in the

control wells did not appear infected, and remained as normal controls.

2.6.10 Indirect Immunofluorescence

HEK293 cells were cultured in a six-well tissue culture plate containing 10

mm2 glass coverslips. This permitted the transfer of cells adhered to coverslips to

other vessels for fixation and antibody binding. After 48 h of transfection, the culture

medium was removed from cells by aspiration. Cells were washed 3 times with 3 ml
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of PBS. Coverslips with cells attached to them were transferred to a well of a six-

well tissue culture plate. 3 ml of 4% (w/v) paraformaldehyde in PBS, pH 7.0 was

added to fix cells and incubated at room temperature for 10 min. After the

incubation, the solution was removed by aspiration, and the fixed cells were washed

3 times with 3 ml of PBS. The cells were then incubated in 3 ml of 50 mM NH4C1 in

PBS for 10 min to quench potential autofluorescence. The cells were again washed 3

times with 3 ml of PBS, and 3 ml of 0.1% (v/v) Triton X-100 in PBS were added and

incubated for 5 min to permeabilise the cells. After 3 times washes with 3 ml of PBS,

the coverslips were inverted onto 100 pi of antibody (diluted 1:100 in 0.2% (v/v) fish

skin gelatin in PBS) on a piece of parafilm and incubated for 1 hr. The coverslips

were washed 3 times with 3 ml of 0.2% (v/v) fish skin gelatin in PBS for over 5 min,

followed by 3 times washes with 3 ml of PBS. The coverslips were then inverted

onto 100 pi of fluorochrome-labelled secondary antibody (rhodamine-conjugated

anti-rabbit IgG diluted 1:400 in 0.2% (v/v) fish skin gelatin in PBS), and incubated at

room temperature for 1 hr. The coverslips were washed 3 times with 3 ml of 0.2%

(v/v) fish skin gelatin in PBS and 3 times with 3 ml of PBS. The cells were also

stained with the dye Di-0-C5(3), by placing them in 50 pi of 1 pg/ml dye in ethanol

for 20 min. After the incubation, the coverslips were washed 3 times with 3 ml of

PBS. The coverslips were mounted using 20 pi of Aquamount (BDH) and allowed

them to set for 2 hr before examination using a Leitz Ortholux fluorescence

microscope with standard FITC/rhodamine block. Photographs were taken using

confocal fluorescence microscope and analysed by Paint Shop Pro (Jasc Software).
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2.7 Other Protocols

2.7.1 IP3 Binding Assay

Protein samples were incubated with 10 nM [3H]IP3 in the binding buffer (50

mM Tris-HCl, pH 8.8, 1 mM EDTA, 1 mM DTT, 100 mM NaCl) for 10 min at 4°C.

The IP3/protein mixture was added to 4 pi of y-globulin (50 mg/ml) and 100 pi of

polyethylene glycol (PEG) precipitation buffer (30% (w/v) PEG6000, 1 mM EDTA,

50 mM Tris-HCl, pH 8.8) and incubated for 5 min at 4°C. The protein-PEG

complexes were pelleted by centrifugation at 18,000 x g for 10 min at 4°C. The pellet

was quickly washed with 100 pi of binding buffer and resuspended in 200 pi of

dH20. The radioactivity of the samples was measured by mixing 3.5 ml of

Ultimagold (Packard) followed by counting in a liquid scintillation counter (Packard

1900CA). The specific binding was defined as total binding minus non-specific

binding that was measured in the presence of 25 pM cold IP3.

2.7.2 Planar Lipid Bilaver Reconstitution

The bilayer set-up is similar to those described by Williams (1995) and shown

in Figure 2-1. 7.5 pi each of 50 mg/ml phosphatidyl ethanolamine and phosphatidyl

serine (Avanti Polar Lipids) prepared in chloroform was mixed, and the chloroform

was evaporated under a stream of nitrogen. 25 pi of n-decane was then added to the

dried phospholipids to give a final phospholipid concentration of 30 mg/ml. A small

amount of phospholipid (~3 pi) was painted using a flexible plastic stick around the

300 pm hole of the cup. This "primed" cup was then used for bilayer reconstitution.

The block containing the trans chamber and the circular hole into which the cup
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Figure 2-1. Reconstitution of IP3RI in planar lipid bilayer

(a) The set-up of a planar lipid bilayer. The cis chamber is voltage-clamped at a
given potential (Vc) relative to the trans chamber, which is grounded. The
transmembrane currents are measured by (minus)[VB-Vc]/Rf (Ohm's law). A stirbar
and vesicles are also shown in the cis chamber.

(b) Microscopic view ofmembrane/vesicle fusion, with a single channel property, is shown.
Adapted from Ashley (1995).
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containing cis chamber fits. Block and "primed" cup were assembled, and electrodes

and bridges were connected with each chamber. 600 pi of 110 mM Tris-HCl, 250

mM HEPES, pH 7.35 was added to each chamber, and ~1 pi of phospholipid was

drawn across the hole. Bilayers formed spontaneously as observed by monitoring the

increase in membrane capacitance which accompanied thinning. The bilayer

capacitance was measured using a triangle wave of 100 Hz at 100 mV. All the

bilayers used had a capacitance of >250 pS. The cis chamber was voltage clamped at

a potential relative to the trans chamber using a Biologic RK-300 patch clamp

amplifier (Intracel). The relative potential applied across the bilayer was termed the

"holding potential" or "voltage clamp potential". The current was filtered and

digitally recorded.

After an ideal bilayer formed, the trans chamber was perfused with 3 ml of 250

mM HEPES, 53 mM Ba(OH)2, pH 7.35. To incorporate channels, 5 pi of

microsomes were added to the cis chamber in the presence of a salt gradient

containing 800 mM KC1, 2 mM CaCl2. After the incorporation were identified, the

cis chamber was perfused with 6 ml of 110 mM Tris-HCl, 250 mM HEPES, pH 7.35,

0.2 pM free Ca2+ buffered with 1 mM EGTA and 0.7 mM CaCl2, 1 mM ATP, and 2

pM IP3. Single channel currents were recorded and analysed using pClamp (Axon

Instruments).
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Chapter 3

Assembly and In vitro Expression ofHuman Type IIP3R cDNA
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3.1 Introduction

IP3 produced via the hydrolysis of phosphatidylinositol 4,5-bisphosphate by

phospholipase C (PLC) acts as an intracellular second messenger that triggers the

release of Ca2+ from cell stores. There are two pathways for PLC activation

(Berridge, 1993): (1) activation of G protein-linked seven-membrane-spanning

receptors for neurotransmitters, neuropeptides, odorants, or light, followed by

activation of a G protein which then activates PLC-pi, and (2) activation of tyrosine

kinase-linked receptors for growth factors and neurotrophins, followed by the

activation of PLC-yl. Therefore, IP3 signalling is involved in diverse cellular

responses to many kinds of extracellular information.

IP3 is physiologically effective only on the IP3R. The IP3R transduces this

intermediate signal to a Ca2+ signal. Three distinct IP3R genes (I-III) have been

molecularly cloned from both rodent and human tissues. Within this family, IP3RI is

the best characterised (Ferris and Snyder, 1992; Mikoshiba, 1993), and it is the

predominant type in brain.

The IP3RI is structurally divided into three domains: a large N-terminal

cytoplasmic domain (-83% of the receptor), six putative membrane-spanning-

domains (MSDs) clustered near the C-terminus, and a short C-terminal cytoplasmic

domain (-5%) (Furuichi et al., 1989; Mignery et al., 1990). The N-terminal tip (-650

amino acids) is the ligand-binding domain for IP3 (Mignery and Sudhof, 1990;

Miyawaki et al., 1991; Yoshikawa et al., 1999). The central portion is the

modulatory domain containing binding sites for various modulators, including: Ca2"

(Sienaert et al., 1996; 1997), calmodulin (CaM) (Yamada et al., 1995), and ATP
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(Furuichi et al., 1989); two sites phosphorylated by cyclic AMP-dependent protein

kinase (PKA) (Ferris et al., 1991; Supattapone et al., 1988); one site phosphorylated

by cyclic GMP-dependent protein kinase (PKG) (Komalavilas and Lincoln, 1994);

and potential phosphorylation sites for Ca27Calmodulin-dependent protein kinase II

(CaMKII) (Ferris et al., 1991) and protein kinase C (PKC) (Ferris et al., 1991; Matter

et al., 1993). Autophosphorylaton of IP3RI has also been reported (Ferris et al.,

1992). In addition, this central portion probably functions as the transducing domain

involved in the transduction of 1P3 binding to channel opening (Mignery and Sudhof,

1990).

Three alternative splicing sites (SI, SII, and SIII) have been identified in IP3RI

mRNA (Danoff et al., 1991; Mignery et al., 1990; Nakagawa et al., 1991; Nucifora

et al., 1995). The splice variants are found unequally in various mouse and human

tissues. SI splicing, in the middle of the ligand-binding domain, may alter IP3 binding

activity. SII splicing, which occurs between the two PKA phosphorylation sites,

probably affects PKA phosphorylation kinetics and PKA-dependent sites. SIII

splicing may create an additional consensus protein kinase C phosphorylation site

(Figure 1-4).

3.2 Assembly of Full-Length Human IP2RI cDNA

Three overlapping cDNAs cloned from a human brain cDNA library

(Stratagene, #936212) and encoding the entire human IP3RI cDNA (SI" SIF SIIF)

were obtained from Professor C. A. Ross (Nucifora et al., 1995, Genbank accession

number U23850). This is the first ZP^/cDNA cloned from human brain, and it also
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contains a novel SIII splicing site, which may be important in regulating channel

activity. These three clones comprised: 5'-3 Lll in pcDNA3 (ligation product of

"HCB-5'-3" and "HCX-L11"), HGB-6 in pGEM, and HC-8 in pBlueScript. The

most 5'-clone was obtained using PCR with total RNA extracted from human

cerebellum as a template. These cDNAs were assembled using the procedures shown

in Figure 3-1, using a strategy optimised with Lasergene software (DNASTAR). The

single line diagram of each clone was also shown in Fig 3-2. 5'-3 LI 1 was digested

with Kpnl and Xbal to remove the insert from the pcDNA3 vector, and Sail was

subsequently used to digest the vector into two fragments in order to separate it from

the insert. The 5.4 kbp insert (5'Kpnl—>Xbal 3') was extracted from a 0.8% (w/v)

agarose gel using the QIAEX II (Qiagen) and ligated with Kpnl and Abal-digested

pBlueScript-SK. This ligation product was called pBSl. Dideoxy sequencing using a

T7 sequencing primer was carried out to check the sequence around the start codon.

This was found to be ACCCATG, which is not a "good" Kozak consensus sequence

for the initiation of transcription (Kozak, 1987a; 1987b), i.e. A/GCCATG. It was also

different from the published sequence (the changes were: G18T, T21C, A79G). A

pair of primers of the "correct" sequence were designed in order to match the Kozak

consensus sequence: forward primer: 5'-TGGGGTACCATGTCTGACAAAA

TGTCTAGGTTCC-3'; reverse primer: 5'-CAGTTGATGGCTGCTAGCATG-3',

and PCR was used to produce a 600 bp fragment. The PCR reaction was set up as

follows:

10 X reaction buffer 5 pi

dNTPs (10 mM) 1 pi
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Figure 3-1. Assembly of full-length human IP3R1 cDNA
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Full-length IP3R1

PpuMI Xmal PpuMI Stop Xmal
Kpnl 1 .[ 1 1 | Xbal

1 5284 5296 6115 8232 8763

Kpnl
5'-3 Lll

Xbal

5430

EcoRI
HGB-6

EcoRI

4771 6357

EcoRI
HC-8

EcoRI

5530
8789

Kpnl
Mutant IP3R1 Stop

Xbal

6455

Figure 3-2. Single line diagram of full-length and mutant IPJU

The assembly procedures of full-length IP3RI from plasmid 5'-3 Lll, HGB-6, and HC-8
were shown in Figure 3-1. Here it shows that each plasmid corresponds to the position of
full-length IPJU. The translation ofmutant IPJU stops at position 6455.
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forward primer (10 pM) 1 pi

reverse primer (10 pM) 1 pi

dsH,0 36 pi

pBSl (1 ng/pl) 5 pi

Pfu (2.5 U/pl) 1 pi

All the reagents were well mixed and the thermocycler was set as follows:

94°C, 2 min 1 cycle

94°C, 30 sec; 45°C, 30 sec; 72°C, 1 min 30 sec 2 cycles

94°C, 30 sec; 50°C, 30 sec; 72°C, 1 min 28 cycles

Pfu DNA polymerase was used for its high fidelity (the error rate of Pfu DNA

polymerase is significantly lower than for other proofreading enzymes, DNA

polymerase mixtures, and Taq DNA polymerase) (Cline et al., 1996). 10 X reaction

buffer contains 200 mM Tris-HCl, pH 8.8, 20 mM MgS04, 100 mM KC1, 100 mM

(NH4)2S04, 1% (v/v) Triton X-100, 1 mg/ml BSA. The annealing temperature of the

first two cycles was set at 45°C to enable the two overhanging primers to anneal to

the template DNA properly in order to produce the desired template for subsequent

PCR cycles.

This 600 bp fragment was then digested with Kpnl and NheI to recreate these

sites and ligated with Kpnl and Mzel-digested pBSl. The ligation product was called

pBS2, and the ligation site was again checked by manual sequencing. HGB-6 was

digested with PpuMl and the 832 bp insert (from position 5284 to 6115) was ligated

to the PpuMI-digested HC-8. The ligation product TK1 was digested with Xmal and

Seal and the 3468 bp insert (from position 5296 to 8763) was ligated to Xmal-
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digested pBS2. Using either Bgtl digestion or PCR to check the orientation of the

inserts, a full-length human IP}RI cDNA was cloned in pBlueScript-SK. This was

called pBS-IP3. The exact sequence of the inserts is: 5'-Kpnl 1 —>8763 + 5296-»5430

Xbal-V.

3.2.1 Creation pfAdditional Expression Constructs

pBlueScript-SK was chosen as a basic cloning vector because it contains both

T3 and T7 promoters for in vitro transcription of RNA. pBS-IP3 was digested with

Kpnl and Xbal and subcloned into pcDNA3. This was called pcDNA3-IP3.

pcDNA3 is a mammalian expression vector that contains the cytomegalovirus

(CMV) enhancer-promoter for high level expression (Andersson et ai, 1989; Boshart

et al., 1985; Nelson, 1987), a bovine growth hormone (BGH) polyadenylation signal

and transcription termination sequence to enhance mRNA stability (Goodwin and

Rottman, 1992), the SV40 origin for episomal replication and simple vector rescue in

cell lines expressing the large T antigen (i.e. COS 1 and COS 7), and a T7 RNA

polymerase promoter. pcDNA3-IP3 was digested with Kpnl and Notl and subcloned

into pCI. This was called pCI-IP3.

pCI is also a mammalian expression vector. It also contains the human

cytomeglovirus (CMV) immediate-early enhancer/promoter for strong expression, a

chimeric intron composed of the 5'-splice site from the P-globin intron and the 3'-

splice site from an IgG intron for increased expression levels of cDNAs, the SV40

late polyadenylation signal for efficient RNA processing, and a T7 RNA polymerase

promoter. pCI-IP3 was digested with Sail and Notl and subcloned into pCITE. This
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was called pCITE-IP3.

pCITE contains both T7 and SP6 RNA polymerase promoters and a copy of the

encephalomyocarditis virus (EMC) RNA 5' non-coding region, which functions as

an internal entry point for initiation of translation by eukaryotic ribosomes (Duke et

al., 1992; Elroy-Stein et al., 1989; Kaminski et al., 1990; Parks et al., 1986). This

Cap-Independent Translation Enhancer (CITE) sequence has been shown to increase

reporter gene expression up to 10-fold in transfected mammalian cells, and has a

similar effect when used in the translation of synthetic RNA in vitro by rabbit

reticulocyte lysates (Elroy-Stein et al., 1989).

None of the constructs contained 5'-UTR sequence, which could be important

for transcription. The sequence of the corresponding mouse 5'-UTR is known

(Furuichi et al., 1989; Miyawaki et al., 1991), and in order to add mouse 5'-UTR to

the cDNA encoding human IP3RI, two primers were designed (forward primer: 5'-

AACCGCTCGAGGCTGAAGCGTTTCCTCAAGC-3'; reverse primer: 5'-

CGGGGTACCGTCCGTGTTGGAAAGCCTG-3'). Using mouse IP3R cDNA

(obtained as a gift from Professor K. Mikoshiba) as a template for PCR (as described

previously), a 328bp fragment was purified from a 1% (w/v) agarose gel and digested

with Xhol and Kpnl and subcloned into pCI-IP3. This construct was called pCI-IP3-

UTR.
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3.3 In vitro Expression of Full-Length Human IP3RI mRNA and Protein

3.3.1 Introduction to In vitro Expression

The rabbit reticulocyte in vitro translation system, originally described by

Pelham and Jackson (1976) has become a standard tool for in vitro expression of

proteins from cloned genes. The primary advantage of in vitro translation over in

vivo protein expression is that in vitro systems allow the use of a defined template to

direct protein synthesis. In this way, it is possible to greatly reduce or eliminate the

background resulting from endogenous RNA that occurs with in vivo systems. In

vitro systems also allow the specific labelling of gene products so that individual

proteins can be monitored in complex reaction mixtures. In addition, in vitro systems

provide a very rapid means for protein analysis as templates need not necessarily be

cloned before expression.

There are two basic approaches to in vitro translation: programming systems

that use RNA templates (two-step transcription/translation), and programming

systems using DNA templates (coupled transcription/translation). Protein production

in these systems can be monitored in a variety of ways. Usually, a radioactive amino

acid is added to the translation reaction and, after incorporation, the gene product is

identified by autoradiography following SDS-polyacrylamide gel electrophoresis

(SDS-PAGE). Alternatively, a non-radioactive labelling method may be used. If

antibodies to the protein are available, then techniques such as immunoblotting or

immunoprecipitation can be used to identify products directly from the in vitro

translation reaction.
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3.3.2 Two-Step Transcription/Translation Expression

All eukaryotic mRNAs have a methylated cap structure at the 5' end. This is

formed by hydrolysing a phosphate group from the first nucleotide, usually a purine

(A or G). The diphosphate 5' end then attacks the a phosphorus atom of GTP to form

a very unusual 5'-5' triphosphate linkage. This special terminus is called a cap. The

N-7 nitrogen of the terminal guanine is then methylated by S-adenosyl-methionine to

form cap 0. The adjacent riboses may be methylated to form cap 1 or cap 2. Caps

contribute to the stability of mRNAs by protecting their 5' ends from phosphatases

and nucleases. In addition, caps enhance the translation efficiency ofmRNA both by

rabbit reticulocyte lysates and by *micro-injected Xenopus oocytes (Nielsen and

Shapiro, 1986).

3.3.2.1 In vitro mRNA Synthesis and Translation

The mCAP mRNA capping kit (Stratagene) was used for in vitro RNA

synthesis. The kit contained a cap analogue, M7G(5')ppp(5')G, which was

incorporated at the 5' end of the RNA molecules. The reaction was set up as follows:

5 X transcription buffer 5 pi

linearised pBS-IP3 orpcDNA3-IP3 (1 pg/pl) 1 pi

rNTPs 2 pi

cap analogue 5 pi

0.75 M DTT 1 pi

T7 RNA polymerase (10 U/pl) 1 pi

RNasin (40 U/pl) 0.5 pi
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RNase-free H20 to a final volume of 25 pi

5 X transcription buffer contained 200 mM Tris-HCl, pH 7.5, 250 mM NaCl,

40 mM MgCl2, and 10 mM spermidine. rNTPs contained 10 mM rUTP, 10 mM

rCTP, 10 mM rATP, and 3 mM rGTP. The mixture was incubated at 37°C for 1 h.

The DNA template was removed by adding 10 U of RNase-free DNase I directly to

the reaction mixture after 1 h incubation and incubated at 37°C for 5 min. 100 pi of

RNase-free dH20 were added to the mixture followed by phenol/chloroform

extraction and ethanol precipitation. The RNA was resuspended in 25 pi of RNase-

free 10 mM Tris-HCl, pH 7.5 and 0.1 mM EDTA (TE) buffer. 10 pi of RNA were

loaded on a 1% (w/v) denaturing forinaldehyde-agarose gel (as shown in chapter 2)

and visualised by UV light (Figure 3-3). Both pBS-IP3 and pcDNA3-IP3 produced

full-length IP3RI RNAs (~9 kbp).

A Flexi rabbit reticulocyte lysate system (Promega) was used for the in vitro

translation of this RNA. The reaction was set up as follows:

Flexi rabbit reticulocyte lysate 16.5 pi

Amino acid mixture minus methionine (1 mM) 0.5 pi

35S-methionine (10 mCi/ml) 1 pi

MgOAc (25 mM) 0.5 pi

KC1 (2.5 M) 0.7 pi

DTT(lOOmM) 0.5 pi

RNasin (40 U/pl) 0.5 pi

RNA substrate 2 pi

RNase-free H20 to a final volume of 25 pi
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Figure 3-3. In vitro transcription of human IP3RI cDNA.

RNA was prepared from pBS-IP3 using the mCAP mRNA Capping Kit
(Stratagene) and resolved on a 1% (w/v) denaturing formaldehyde-agarose
gel at 5V/cm for 5 h. After eletrophoresis, the gel was stained with ethidium
bromide for 15 min. After staining, the gel was destained for 12 h in
DEPC-treated water and visualised using UV light. Size markers are also shown.
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The mixture was incubated at 30°C for 2 h. 5 pi of reaction mixture were

loaded onto a 5% (w/v) SDS-polyacrylamide gel, and after electrophoresis this was

dried and autoradiographed (Figure 3-4). Full-length IP3RI has an apparent molecular

weight of 260 kDa on gels. However, only partial-length products were obtained,

even in the presence of anti-proteases. Several measures were taken to optimise the

reaction, including varying MgOAc between 0, 1, and 2 pi, changing KC1 from 0.7 to

1 pi, and omitting adding DTT. The amount of product changed, but the overall

result was still the same. In order to investigate this further, a coupled

transcription/translation system was used.

3.3.3 Coupled Transcription/Translation Expression

pBS-IP3, pcDNA3-IP3, and pCI-IP3 were expressed in vitro using a TNT T7

coupled transcription/translation system (Promega), following the manufacturer's

manual. The following reagents were mixed in a 1.5 ml RNase-free microcentrifuge

tube in the order:

TNT rabbit reticulocyte lysate 12.5 pi

TNT reaction buffer 2 pi

TNT T7 RNA polymerase 0.5 pi

amino acid mixture minus methionine (1 mM) 0.5 pi

35S-methionine (10 mCi/ml) 2 pi

RNasin ribonuclease inhibitor (40 U/pl) 0.5 pi

DNA template (1 pg/pl) 0.5 pi

Nuclease-free H,0 to a final volume of 25 pi
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Figure 3-4. SDS-PAGE of [35S]methionine labeled proteins after two-step
transcription/translation of human IP3R1 cDNA.

Lane a: pBS-IP3, Lane b: pcDNA3-IP3.
RNA was produced by using the mCAP mRNA capping kit (Stratagene).
This was used to perform the Flexi rabbit reticulocyte lysate system (Promega).
After incubation at 30°C for 2 h, 5 pi of lysate was resolved on 5% (w/v)
SDS-PAGE followed by autoradiography. The position ofMW markers is shown.
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After incubation at 30°C for 60-120 min, 5 pi of the lysate was resolved using

5% (w/v) SDS-PAGE. Electrophoresis was continued until the bromophenol blue

marker dye ran off the bottom of the gel, and the gel was then dried and

autoradiographed. Typical results are shown in Figure 3-5. The calculated molecular

weight of full-length IP3RI is -310 kDa, but as mentioned previously the apparent

molecular weight from SDS-PAGE is normally -260 kDa. However, expression

from all these three vectors only produced -200 kDa products and some truncated

fragments. This was similar to the two-step procedure. The reaction was optimised

by increasing the incubation time to 180 min, adding up to 1 pi of the amino acid

mixture, and adding protease inhibitor (as discussed in the microsome preparation,

chapter 2), but the same results were obtained.

These findings could be consistent with the occurrence of transcription from

alternative start sites in the coding sequence. There are a total of 71 ATGs in the

coding sequence, and 9 of these contain a "good" Kozak consensus sequence

(position 439, 2467, 3802, 4705, 6928, 7135, 7189, 8020, and 8095), where

translation could start instead of at the first ATG. Because pCITE contains an

internal entry point for initiation of translation by eukaryotic ribosomes, this

construct should ensure that translation of the IP3RI started from the internal AUG

codon in the plasmid vector, instead of other AUGs in subsequent positions.

However, the results remained the same (Figure 3-5). Finally, because the 5'-

untranslated region (5'-UTR) of DNAs is important for RNA polymerase binding

and processing (Breathnach and Chambon, 1981; Bucher, 1990), pCI-IP3-UTR was

also constructed (as described earlier), and expressed in vitro. Again, full-length
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Figure 3-5. SDS-PAGE of [35S]methionine labeled proteins after coupled
transcription/translation of human IP3RI cDNA.

Lane a: pBS-IP3, Lane b: pcDNA3-IP3, Lane c: pCI-IP3,
Lane d: pCITE-IP3, Lane e: pCI-IP3-UTR.
In vitro transcription/translation was carried out using the TNT T7
Coupled system (Promega). After incubation at 30°C for 90 min, 5 pi of
lysate was resolved on 5% (w/v) SDS-PAGE. The gel was then dried
and exposed to X-ray film. The position ofMW markers is shown.
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IP3RI could still not be obtained (Figure 3-5).

As a result of these studies it was hypothesised that the production of the short,

truncated proteins might arise from: (1) the limitations of the in vitro

transcription/translation system for producing large products, (2) errors in the DNA

sequence leading to premature termination. Three constructs were made to test this

second idea in the coupled in vitro transcription/translation system. They were all in

pBlueScript, and included pIP3-l (position 1 to 2161, MW 82 kDa), pIP3-2 (position

1 to 2539, MW 96 kDa), and pIP3-3 (position 1 to 5430, MW 206 kDa). When these

constructs were expressed in vitro, full-length products were obtained from each

reaction although some additional" truncated proteins were found from pIP3-3

expression (Figure 3-6). From this result, it was clear that the system could transcribe

and translate IP3RI cDNAs up to 5430 bp long. Why did translation fail at some point

after position 5430? The simplest explanation was that the sequence following this

position contained an error, causing the production of stop or "nonsense" codons, so

that translation stopped before a full-length product was produced.

3.4 Automated Sequencing and Sequence Correction

In order to establish whether coding errors had occurred, IP3RJ cDNAs were

sent to Oswel (Southampton, UK) for single-stranded automated sequencing. Where

ambiguous sequences were found, a reverse primer was designed and that region was

re-sequenced in the opposite direction. After a total of 19 rounds of sequencing, 8

nucleotides were found to be different from the published sequence (G18T, T21C,

A79G, A679G, G682A, A721T, C1290T, and G7297T). This caused 5 amino acids
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Figure 3-6. In vitro expression of three different human IP3RI cDNA constructs.

Lane a: pIP3-l (nucleotides 1 to 2161)
Lane b: pIP3-2 (nucleotides 1 to 2539)
Lane c: pIP3-3 (nucleotides 1 to 5430)
The experiment was carried out as described for Figure 3-5.
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to be changed (I27V, S227G, D228N, R241W, and A2433S). In addition, a single

base deletion was found at position 6429 (AGGAA to AGAA), and this was

confirmed by manual sequencing (Figure 3-7). Because of this mutation the reading

frame was shifted and a stop codon was generated at position 6455. The original

plasmid HC-8 was checked by manual sequencing, but contained no mutation.

Therefore, the mutation occurred during the assembly of full-length IP3RI, although

this was carried out by subcloning (not PCR).

In order to correct this mutation, HC-8 was double-digested with EcoAlWl and

Xbal and the inserts were ligated to pcDNA3-IP3 double-digested with the same

enzymes. The sequences around the mutation site were confirmed to be correct by

manual sequencing. When using the in vitro coupled transcription/translation system

to express the correct version of IP3RI in pcDNA3, full-length products were

obtained although some truncated proteins remained (Figure 3-8).

3.5 Discussion

DNA replication in prokaryotic and eukaryotic organisms is a highly accurate

process, with only one error being committed per 109 to 1010 incorporated nucleotides

(Drake, 1991). This high fidelity of DNA replication is achieved by at least three

critical steps: (1) the insertion of the correct nucleotides by DNA polymerase; (2)

3'—»5' exonuclease activity of DNA polymerase, allowing proofreading of the

incorporated nucleotides; (3) postreplicative DNA mismatch repair (Echols et al.,

1983; Schaaper, 1993). Because DNA is a structurally dynamic molecule, it is able to

adopt a variety of conformations. This flexibility provides a significant opportunity
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Figure 3-7. Dideoxy sequencing shown the mutation of human IP3R1 cDNA.

N is the correct IP3RI cDNA. A single nucleotide deletion was found.
The arrow shows that the sequence was changed from AGGAA
to AGAA in the mutant.
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Figure 3-8. SDS-PAGE of [35S]methionine labelled proteins after coupled
transcription/translation of human "corrected" IP3RI cDNA.

Lane a: corrected IPSRI cDNA in pcDNA3
Lane b: mutant IP3RIcDNA in pcDNA3
The arrow shows full-length IP3RI (-260 kDa). The experiment was carried
out as described for Figure 3-5.
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for errors due to misalignment of strands. There are two major types of mutation,

base-substitutions and frame-shifts (Kunkel, 1990) (Figure 3-9). The assay was

performed by constructing a double-stranded DNA substrate with a 390-nucleotide

single-stranded gap from a circular bacteriophage M13mp2 DNA. The gap contains

the reporter gene for DNA synthesis errors, the wild-type lacZ gene sequence

encoding the N-terminal amino acids (a-peptide) of the enzyme p-galactosidase.

Correct polymerisation will fill the gap and produce functional gene. When this was

transformed into an appropriate E. coli. strain, dark blue plaques formed on plates

containing X-gal. The error DNAs formed lighter blue or colourless plaques. Since

this assay measured loss of a gene function that is not essential for phage production,

a wide variety of sequence mutations at many different sites could be analysed and

sequenced.

Several factors mediated the mutations, including the nature of the DNA

polymerase, the position and composition of DNA, and the processivity of the DNA

polymerase. These factors may work together in a complicated manner. In addition,

de Boer and Ripley (1988) found that the GC rich sequences adjacent to the 3'

direction of the mutation sites increased the mutation frequencies. GC rich sequences

are found in both 5' and 3' direction around the base deletion site of the IP3RI cDNA.

Therefore, this might be a factor in the occurrence ofmutant IP3RI. The IP3RI cDNA

is also very long (~9 kbp) compared to other known cDNAs, so this also increases

the possibility ofmisalignment ofDNA and mutation.

In vitro expression systems are a very useful and convenient tool to investigate

the function and properties of genes, but they are not as useful as either mammalian
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Figure 3-9. Pathways for single-base errors during DNA synthesis.

F = frame shift, B = base substitution. The underlined base is
position 102, where position 1 is the first transcribed base of the lacZ
gene. Adapted from Kunkel (1990).
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realignment
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or insect cell expression systems for expressing high molecular weight proteins like

the IP3R (Mignery et al., 1990; Yoneshima et al., 1997). Canine pancreatic

microsomal membranes can be added into the in vitro expression system for studying

the post-translational processing of expressed proteins (Walter et al., 1984), although

the patterns of the modification might be different from the original cells. In order to

match cellular expression conditions as close as possible, in vivo expression systems

were used as discussed in the following chapter.
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Chapter 4

In vivo Expression of Human IP3RI and FKBP12
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4.1 Expression of Human IP3RI in Mammalian HEK293 Cells

Mammalian cells have been used in the production of recombinant proteins,

antibodies, and viruses (Walker, 1998). In addition to being used for commercial

purpose, mammalian cell expression systems has served as a means for studying

many important cellular processes, including gene replication, transcription,

translation, and post-translational processing of proteins. Important features of

mammalian cells include their ability to perform post-translational modifications, and

to secret glycoproteins in correctly folded forms. In contrast, E. coli does not possess

any glycosylation machinery, and yeast tends to produce hypermannose-type

glycosylation, which is different from sialyl glycoforms produced by mammalian

cells. Moreover, the production of intracellular proteins like IP3R in E. coli leads to

accumulation of the protein in insoluble retractile bodies, requiring subsequent

denaturation and refolding.

Partial-length human IP3R1 cDNA (the truncated pcDNA-IP3 construct) was

transiently expressed in HEK293 cells. 48 h after transfection using either Tfx-20

(DNA/Tfx-20 ratio of 15 pg/45 pi per 100 mm culture dish) or Lipofectin

(DNA/Lipofectin ratio of 4 pg/40 pi per 100 mm culture dish), both cytosolic and

membrane fractions were purified and resolved using 5% (w/v) SDS-PAGE. A

typical Western blot result is shown in Figure 4-1. Although the truncated IP3RI does

not have the C-terminus containing all transmembrane regions, it was found in

membrane fractions. The cytosolic fraction of transfected cells showed no detectable

signal from Western blot. pCI-IP3 and pCI-IP3-UTR were also transfected into

HEK293 cells. As described in section 3.2.1, pCI-IP3 contains the same CMV
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Figure 4-1. Western blot of human IP3RI expressed in HEK293 cells

Lane A: membrane fractions of rabbit brain (positive control)
Lane B: membrane fractions ofHEK293 cells (negative control)
Lane C: membrane fractions ofHEK293 cells transfected with full-length

pcDNA-IP3
Lane D: cytosolic fractions ofHEK293 cells transfected with truncated

pcDNA-IP3
Lane E: membrane fractions ofHEK293 cells transfected with truncated

pcDNA-IP3
The arrow shows full-length IP3RI (-260 kDa). The arrow head shows truncated
IP3RI (-200 kDa). Anti-IP3R N-terminal Ab was used and followed by the
standard protocol described in section 2.5.3.
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promoter as pcDNA-IP3, and a heteromeric intron for high-level expression. pCI-

IP3-UTR is the same as pCI-IP3, except that mouse 5'-UTR was inserted before the

first start codon of IP3RI. The expression of these two constructs gave similar results

to pcDNA-IP3 (data not shown).

pcDNA-IP3 (full-length) was also transfected into HEK293 cells using

Lipofectamine. A DNA/Lipofectamine ratio of 7 p.g/35 p.1 per 100 mm culture dish

was used for transfection, followed by standard membrane purification and Western

blotting. The result is shown in Figure 4-1. The full-length IP3RI was identified, with

some proteolytic products.

4.2 Indirect Immunofluorescence of Human IP,RI in HEK293 Cells

Indirect immunofluorescence is a very useful technique to localise expressed

proteins to specific compartments of cells. Because the primary antibody of the target

protein is not conjugated to a fluorochrome, a fluorochrome-labelled (e.g.

fluorescein, rhodamine or R-phycoerythrin) secondary antibody is required to bind

the primary antibody, and thus enable the expressed proteins to be detected using a

fluorescence microscope.

In this study, HEK293 cells were transfected with pcDNA3-IP3 (full-length).

After 48 h of transfection, rabbit anti-IP3RI polyclonal antibodies and rhodamine-

conjugated goat anti-rabbit IgG secondary antibodies were added, followed the

procedure described in section 2.6.10. The result is shown in Figure 4-2A. The

localisation of IP3RI (red) around the nucleus and spreading in a "reticular" fashion

into the cytoplasm suggests it is in the ER. To confirm the ER localisation, Di-O-
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Figure 4-2. Indirect immunofluorescence of human IP3RI expressed in HEK293

A. The ER membrane ofHEK293 cells were labelled by Di-0-C5(3). (green)
B. IP3RI was localised by TRITC-conjugated secondary antibodies, (red)
C. Super-imposition ofA and B using Paint Shop Pro (Jasc Software), (yellow)
The experiment was carried out as described in section 2.6.10.
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C5(3) (Molecular Probe), which binds to the ER, was also used to identify the ER

membrane (Figure 4-2B). After superimposing these two figures by Paint Shop Pro

(Jasc Software), a clear match (yellow) can be observed (Figure 4-2C). Thus,

recombinant IP3RI was confirmed to reside in the ER membrane.

4.3 IP3 Binding and Planar Lipid Bilaver Reconstitution of IP3RI Expressed in

HEK293 Cells

An IP3 binding assay was used to measure the binding ability of expressed

IP3RI in HEK293 cells (see section 2.7.1 for detailed procedures). Both truncated and

full-length IP3RI were used to detect IP3 binding activity. However, very low IP3

binding activity (~0.1 pmol/mg of proteins) could be detected (Figure 4-3).

Furthermore, full-length IP3RI was also failed to form specific EP3RI channels when

reconstituted in planar lipid bilayer (see section 2.7.2 for bilayer reconstitution

procedures). The reason may be due to low level of IP3RI expressed in HEK293 cells

following transient expression.

4.4 Production of HEK293 Cells Stablv Transfected with IP7RI

In order to get high level expression of IP3RI in HEK293 cells, a stably

transfected cell line was tried to establish. As mentioned earlier, 48 h after

transfection of pcDNA-IP3 using Lipofectamine in a 100 mm culture dish, cells were

split into 3 x 100 mm culture dish containing 1.2 mg/ml of G418 in DMEM medium.

The medium was changed every 5 days with that containing the same concentration

of G418. After 4 weeks, several positive clones were found and collected for further
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Figure 4-3. [3H]IP3 binding activity of IP3RI expressed in HEK293 and Sf21 cells

A. Western blot of expressed IP3RI in HEK293 or Sf21 cells. 25 pg samples in groups 1 to 5
and 6 to 8 were loaded on the same gels, respectively. Anti-IP3R N-terminal Ab was used as
described previously followed by ECL. Each number under the blot shows relative intensity
of each band (analysed by phosphorimager).
B. Corresponding [3H]IP3 binding activity of IP3RI.
M/full-length IP3RI : membrane fractions of full-length IP3RI
M/truncated IP3RI : membrane fractions of truncated IP3RI
C/truncated IP3RI : cytosolic fractions of truncated IP3RI
Each column represents an independent binding assay.
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identification of IP3RI expression. However, the expression level of IP3RI was

similar to untransfeeted HEK293 cells (data not shown). Thus, a baculovirus

expression vector system was used for high-level expression of IP3RI.

4,5 Expression ofHuman IP3RI in Insect Celts

4.5.1 Introduction

The Baculovirus Expression Vector System (BEVS) is one of the most

powerful eukaryotic expression systems available (O'Reilly et al., 1992). It has been

used to express heterologous genes in insect cells from many different sources,

including viruses, mammals, fungi, plants and bacteria. The baculovirus belongs to a

family of double-stranded DNA virus called the Baculovirinae, which infects many

different species of insects. They are highly specific and are not known to infect any

non-arthropod hosts. This family can be divided into two subfamilies, occluded

baculoviruses (Eubaculovirinae) and non-occluded baculoviruses

(Nudibaculovirinae). The two Eubaculovirinae most commonly used in expressions

are Autographa californica nuclear polyhedrosis virus (AcNPV) and Bombyx mori

nuclear polyhedrosis virus (BmNPV). They have a large circular genome of -130

kbp. AcNPV is the most commonly used for heterologous expression in insect cells,

and its entire genome has been sequenced (Ayres et al., 1994). Several AcNPV

genes, which are nonessential in the tissue culture life cycle (e.g. polyhedrin and

plO), can be replaced by heterologous genes. Since the entire genome of AcNPV is

too large to directly insert foreign genes by cloning, the gene of interest is cloned into

a transfer vector. Co-transfection of the transfer vector containing foreign genes with
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linearised AcNPV DNA into Sf9 insect cells makes use of homologous

recombination in the nucleus, which transfers the heterologous gene from the transfer

vector to the AcNPV DNA. Recombinant proteins can be produced by the polyhedrin

promoter at levels ranging between 30% and 50% of the total insect protein. The

system was used in an attempt to obtain high-level expression of recombinant human

IP3RI.

The life cycle of the baculovirus is shown in Figure 4-4. The name baculovirus

refers to the rod shaped capsid of viral particles. Because the capsid is flexible, it can

accommodate large genomes generated by the insertion of a foreign gene. During

viral infection, two forms of viral progeny are produced, budded virus particles and

occluded virus particles. Budded virus particles contain a loose membrane capsid and

are processed by migrating through the plasma membrane during 10-12 h of

postinfection. Occluded virus particles are embedded in viral inclusions called

polyhedrin produced after 18-24 h of postinfection, and are processed by acquiring a

membrane from the nuclear membrane. This creates a stable membrane capsid that

protects viruses from desiccation in the environment. Both occluded and budded

viruses are found in wild-type AcNPV infected cells. However, recombinant AcNPV

viruses which lack the polyhedrin gene do not display polyhedrin occlusion bodies.

Budded viruses are the only types of virus found in recombinant AcNPV infected

cells.
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Figure 4-4. The life cycle of the baculovirus

See previous page for description. Adapted from Summers and Smith (1985).
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4.5.2 plO Locus-Based Expression of Truncated Human IP3RI

The transfer vector pAcUW43 (Pharmingen) was chosen for the expression of

human IP3RI. pAcUW43 is a plO locus-based vector which contains the polyhedrin

gene promoter inserted downstream of and in tandem with the pi 0 gene promoter. A

copy of the SV40 transcription termination sequences between the two promoters has

been inserted to prevent "read through" into the polyhedrin gene promoter.

Therefore, two different genes can be expressed at the same time in insect cells.

pcDNA-IP3 was double digested with Kpnl and Notl and the insert was

subcloned into pAcUW43 double digested with the same restriction enzymes. This

ligated product was called pAcUW43-IP3. The linearised AcUWl.lacZ DNA

(Pharmingen) is a modified AcNPV DNA in which the lacZ gene replaces the plO

gene and is driven by the plO promoter. This was used for cotransfection with

pAcUW43-IP3. Homologous recombination disabled the lacZ gene, so that

recombinant AcUWl.lacZ DNA could be colour selected by plaque assay on X-gal

plates. Non-recombinant viruses expressing the lacZ gene gave blue plaques,

whereas recombinant viruses did not express the lacZ gene and produced colourless

plaques. Since the polyhedrin gene was still retained in the AcUWl.lacZ DNA, both

non-recombinant and recombinant viruses were occlusion body positive. The

cotransfection reaction was set up in a 1.5 ml microcentrifuge tube as follows:

Linearised AcUWl.lacZ 5 pi

pAcUW43-IP3 (0.1 pg/pl) 5 pi

ds H20 40 pi

Lipofectin (0.1 pg/pl) 50 pi
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The mixture was mixed thoroughly and incubated at room temperature for 15

min. During the incubation, a 60 mm tissue culture dish with 50% confluent Sf9

insect cells was washed with 2 ml of serum-free Grace's medium, and then 1.5 ml of

serum-free medium were added. The DNA-Lipofectin mixture were added dropwise

to the culture dish and incubated at 28°C for 4 h. 1.5 ml of 10% (v/v) FBS in Grace's

medium were added to the culture dish which was incubated at 28°C for a further 4 to

5 days until occlusion bodies were identified under the microscope. The medium was

then collected and a plaque assay was performed to isolate pure recombinant virus

from non-recombinant virus (as described in Chapter 2).

As described earlier, the recombinant viruses formed colourless plaques on X-

gal plates. The identification of colourless plaques was found to be difficult, and an

"end point dilution assay" (EPDA) was also used to identify recombinant virus. Four

serial ten-fold dilutions from 102-fold to 105-fold containing a final concentration of

150 |ag/ml X-gal were prepared, and each dilution was used to infect 24 wells in a 96

well plate. This initial screen produced at least one dilution where the infection rate

was lower than one virus per well. Wells that were infected at this limiting dilution

were generally the result of a single "plaque forming unit" (pfu). Because of the X-

gal added to the serial dilutions, the colourless wells which contained recombinant

viruses could be distinguished from the blue coloured wells. Nine colourless wells

from 103-fold dilutions were chosen and the cells were collected for identification by

further Western blot analysis. Unfortunately, there were no positive results from

Western blotting (data not shown). The reason may have been a low population of

recombinant virus (-30%), and difficulty in isolating recombinant viruses from non-
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recombinant viruses. In order to increase the homologous recombination frequency,

the MaxBac 2.0 system (Invitrogen) was used. This is described in the following

section.

4.5.3 Polvhedrin Locus-Based Expression of Truncated Human 1P3R1

The MaxBac 2.0 system (Invitrogen) was used for the expression of human

IP3RI. The truncated pcDNA-IP3 construct was doubled digested with Kpnl and

Xbal, and the insert was subcloned into the transfer vector pBlueBac4.5 (Invitrogen)

double digested with the same restriction enzymes. The ligation product was called

pBac-IP3 (truncated). pBlueBac4.5 contains the polyhedrin promoter for the

expression of the foreign gene, and the 5' end sequences of the lacZ gene driven by

the early-to-late promoter for the synthesis of (3-galactosidase as a reporter gene

(Crawford and Miller, 1988). The linearised Bac-N-Blue DNA is a modified AcNPV

DNA, which contains only the 5' end sequences of ORF1629 and the 3' end

sequences of the lacZ gene. When pBac-IP3 is cotransfected with Bac-N-Blue DNA,

homologous recombination occurs at ORF1629 and the lacZ gene, which enables the

production of viable viruses. Non-recombinant viruses are not viable, because the 3'

end sequences of the ORF1629, which has been shown to be essential for viral

propagation, are deleted in Bac-N-Blue DNA (Kitts and Possee, 1993). Thus, the

population of recombinant virus is over 90%. The recombination events between

Bac-N-Blue DNA and pBlueBac4.5 transfer vector are shown in Figure 4-5.

pBac-IP3 was cotransfected with Bac-N-Blue DNA into Sf9 insect cells

following the standard procedure (section 2.6.4). 6 days after transfection, -90% of
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Figure 4-5. Flomologous recombination ofmodified baculovirus DNA and the
transfer vector.

See previous page for description. Adapted from the manual ofMaxBac 2.0 baculovirus
transfer vectors (Invitrogen).
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cells were lysed and the medium was collected. Some cells contained occlusion

bodies. This may have been due to the small amount of uncut circular viral DNA in

Bac-N-Blue DNA. Although the amount of uncut viral DNA is very low, it transfects

~10,000-fold better than linearised Bac-N-Blue DNA. It was very important to

separate the recombinant viruses from any wild-type viruses, since the wild-type

viruses infect and replicate more efficiently than recombinant viruses, causing the

dilution of recombinant viruses over time. Therefore, a plaque assay was performed

to purify the recombinant virus (section 2.6.5). Ten blue plaques were picked up,

followed by the preparation of primary vims stock (section 2.6.6). The DNA was

extracted from 100 pi of each primary vims stock, and analysed by PCR to mle out

"false positive" plaques that contained the mixture of recombinant and non-

recombinant vimses. One set of primers (Bac-For: 5'-TTTACTGTTTTC

GTAACAGTTTTG-3', Bac-Rev: 5'-CAACAACGCACAGAATCTAGC-3') was

designed to flank the polyhedrin region (839 bp), and another set of primers (T5583:

5'-AGGCGCTCAGGCAAGTTC-3', T2631: 5'-GGCATTGTTCTTCAGTTCTAA-

3') was designed to produce a 1,076 bp fragment corresponding to positions 5180 to

6255 of IP3RI cDNA. Thus, the pure recombinant vimses should produce only the

1,076 bp band, while the virus stock containing both wild-type and recombinant

vimses should produce 1,076 bp and 839 bp bands. The PCR reaction was set up as

follows:

1OX reaction buffer 5 pi

MgCl2 (25 mM) 5 pi

dNTP (10 mM) 1 pi
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Bac-For or T5583 (20 jaM) 1 pi

Bac-Rev or T2631 (20 pM) 1 pi

ds H20 31.5 pi

DNA 5 (0.1

Taq polymerase 0.5 (ol

The PCR cycle was set as follows:

94°C, 2 min 1 cycle

94°C, 30 sec; 55°C, 1 min; 72°C, 2 min 28 cycles

A typical PCR result is shown in Figure 4-6. No. 8 virus stock was selected and

amplified to produce high titre virus stock for protein expression (section 2.6.8).

High titre virus stock was obtained by several rounds of infection with low

multiplicity of infection (MOI), normally below 1. MOI (virions/cell) = titre of vims

(virions/ml) x ml of inoculum / number of cells. At a low MOI, cells cannot be

infected simultaneously, which allows an exponential increase in the vims titre. A

high MOI (from 5 to 10) is usually used for protein expression, because when all

cells are synchronously infected, the maximal amount of recombinant protein can be

harvested at a given time point. Although the titre of vims is very important for

protein expression, it has been found that the exact titre of vims is difficult to obtain

by plaque assay, meaning that the exact MOI cannot be predicted. Instead of

measuring the titre of vims stock, different amount of high titre virus measured by

end-point dilution assay (EPDA) were added to Sf9 insect cells, and maximal protein

expression was determined by Western blotting. Sf9 cells were collected after 48 h of

infection, and the membrane fraction was purified and resolved on 5% (w/v) SDS-
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Figure 4-6. PCR analysis of recombinant ip3r1 viral clones

PCR analysis of clone A and clone B is shown. Lane 1 and 3 use the primer pair
Bac-For and Bac-Rev for detecting wild-type virus DNA (839 bp). Lane 2 and 4
use the primer pair T5583 and T2631 for detecting ip3ri. Clone A is a mixture of
recombinant and wild-type virus, and clone B is a pure recombinant virus containing
ip3ri.
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PAGE. A typical Western blot result was shown in Figure 4-7. The addition ofNo. 8,

passage 4 virus stock from 0.75 ml to 1.5 ml shows almost the same strong signals.

Infection time of 24 h and 48 h shows similar results, but after 72 h of infection

shows weaker signals (result not shown). This may have been due to the degradation

of IP3RI, because most cells were lysed and released proteases from intracellular

compartments at this time point. As expected, the size of the expressed protein is

only -200 kDa.

4.5.4 Polvhedrin Locus-Based Expression of Full-Length Human IP3RI

The full-length pcDNA-IP3 construct was double digested with Kpnl and Xbal,

and the insert was subcloned into the transfer vector pBlueBac4.5 (Invitrogen)

double digested with the same restriction enzymes. The ligation product was called

pBac-IP3 (full-length). Followed the same procedures described in 4.3.3, two high

titre virus stock 1-2 P4 and 1-6 P4 were used for the production of recombinant

human IP3RI in Sf9 or Sf21 cells. The addition of different amount of 1-2 P4 or 1-6

P4 virus stock to Sf21 cells showed a similar IP3RI expression level 48 h after

infection (Figure 4-8). The expression level of IP3RI in Sf21 was higher than in Sf9

(Figure 4-9). 48 h of infection produced more recombinant proteins than 72 h (Figure

4-10). In addition, membrane samples mixed with SDS-PAGE loading buffer without

boiling at 100°C for 5 min displayed a -260 kDa band on Western blotting, whereas

boiled samples showed an intense band on the top of separating gels. This suggests

that boiling caused recombinant IP3RI to aggregate. In contrast, truncated IP3RI

represented the same mobility independent of the boiling procedure (Figure 4-11).
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Figure 4-7. Western blot of human IP3RI expressed in Sf9 cells

Lane 1: rabbit brain membrane fractions (positive control)
Lane 2: Sf9 membrane fractions (negative control)
Lane 3-8: 0.75, 0.9, 1.05, 1.2, 1.35, and 1.5 ml ofNo. 8, P4 virus stock were
added, respectively.
48 h after infection, membrane fractions were purified using the standard
method and resolved using 5% (w/v) SDS-PAGE followed by Western blotting
using anti-IP3R N-terminal Ab. The arrow shows truncated IP3RIs (-200 kDa).
The arrow head shows full-length IP3RIs (-260 kDa).

4-19



MW 1 2 3 4 5 6 7 8
markers (kDa)

Figure 4-8. Western blot of the full-length IP3RI expressed in Sf21

Lane 1: truncated IP3RI expressed in Sf21
Lane 2-5: 1, 2, 3 and 4 ml of 1-2 P4 virus stock were added to Sf21 cells,
respectively, and membrane fractions were purified after 48 h of infection.
Lane 6-9: 1, 2, 3 and 4 ml of 1-6 P4 virus stock were added to Sf21 cells,
respectively, and following the same procedure as described above. 5 pi (~25 pg)
of proteins were mixed with 5 pi of 2 X SDS-PAGE sample-loading buffer and loaded
on 5% (w/v) SDS-PAGE without boiling followed by Western blotting. The full-length
IP3RI was identified in lane 2-9 (arrow head), and shown a similar expression level.
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Figure 4-9. The expression level of full-length IP3RI in insect cells

Lane 1: 1 ml of 1-2 P4 virus stock was added to Sf9 cells
Lane 2: 1 ml of 1-2 P4 virus stock was added to Sf21 cells
48 h of infection, membrane fractions were purified and resolved
using 5% (w/v) SDS-PAGE (without boiling samples) followed by
Western blotting. The arrow head shows full-length IP3RI (-260 kDa).
The expression level of IP3RI in Sf21 was higher than that in Sf9,
although the expression level of some lower MW proteins (possibly
proteolytic fragments) was also increased in Sf21.
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Figure 4-10. The expression level of full-length IP3RI in Sf21 cells

1 ml of 1-2 P4 and 1-6 P4 was added to S£21 cells, respectively. After 48 h
(lane 1 and 3) or 72 h (lane 2 and 4) of infection, membrane fractions were
purified and resolved using 5% (w/v) SDS-PAGE (without boiling samples)
followed by Western blotting as described previously. The arrow head shows
full-length IPjRI (-260 kDa). 48 h of infection shows higher expression level
than 72 h in both virus stock.
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Figure 4-11. Western blot of full-length IP3RI expressed in Sf21 cells

Lane 1: truncated IP3RI expressed in S£21
Lane 2-5: 1, 2, 3 and 4 ml of 1-6 P4 were added in Sf21, respectively, and the
membrane fractions were purified after 48 h of infection. 5 pi (~25 pg) ofmembranes
were mixed with 5 pi of loading buffer and then loaded on 5% (w/v) SDS-PAGE after
boiling at 100°C for 5 min followed by Western blotting. The expressed full-length
IP3RI aggregated on the top of the gel, whereas the truncated IP3RI was at correct
position.
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4.6 Expression of Human FKBP12 in HEK293 Cells

FKBP12 is a soluble cytosolic protein with a molecular weight of 12 kDa (see

section 1.5). It binds IP3Rs and RyRs and regulates their activities (Marks, 1996).

The full-length human FKBP12 cDNA (obtained as a gift from Prof. M. D.

Walkinshaw, Genbank accession number M92422) was used as template, and a set of

primers (forward primer: 5'-CGGGGTACCATGGGAGTGCAGGTGGAAACCA

TC-3', reverse primer: 5'-CCGGAATTCTCATTCCAGTTTTAGAAGCTCCAC-3')

was designed for a PCR reaction, set up as follows:

10 X reaction buffer 5 pi*

dNTPs (10 mM) 1 pi

forward primer (10 pM) 1 pi

reverse primer (10 pM) 1 pi

dsH20 36 pi

template (1 ng/pl) 5 pi

Pfu (2.5 U/pl) 1 pi

All the reagents were well mixed and the thermocycler was set as follows:

94°C, 2 min 1 cycle

94°C, 30 sec; 45°C, 30 sec; 72°C, 1 min 30 sec 2 cycles

94°C, 30 sec; 50°C, 30 sec; 72°C, 1 min 28 cycles

A -350 bp fragment was obtained and double digested with Kpnl and EcoRl.

After purified from a 1% (w/v) agarose gel, it was ligated to pcDNA3 double

digested with Kpnl and EcoRl. The ligation product was called pcDNA-FKBP.
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pcDNA-FKBP was then transfected into HEK293 cells using Lipofectamine. A

DNA/Lipofectamine ratio of 7 pg/35 pi per 100 mm culture dish was used for

transfection. 48 h after transfection, 3 x 100 mm of cells were homogenised in 3 ml

of homogenisation buffer (see 2.5.5). After 20 strokes using a tight-fitting glass-

Teflon homogeniser, the homogenates were centrifuged at 1,000 x g for 10 min at

4°C. The supernatant was then concentrated using Centricon-10 (Amicon) to a

concentration of ~5 mg/ml of proteins containing expressed FKBP12. The Western

blot result is shown in Figure 4-12.

4.7 Expression of Human FKBP12 in Sf9 Cells

The same PCR product described in previous section was used for assembling

human FKBP12 cDNAs in Baculovirus expression vector pBlueBac4.5. The

fragment was double digested with Kpnl and EcoYU, and it was then subcloned into

pBlueBac4.5 double digested with the same enzymes. The ligation product was

called pBac-FKBP. Following the standard procedures described in Chapter 2, a

recombinant virus was obtained by plaque assay. The primer set (Bac-For and Bac-

Rev) was used by PCR for identifying pure FKBP12 virus stock. As shown in Figure

4-13, pure recombinant virus stock contains only one fragment (-760 bp), while

recombinant virus with wild-type virus stock produces two bands (-760 and -840

bp). Two high titre virus stocks No. 6 P4 and No. 8 P4 were obtained after 3 rounds

of infection of Sf9 cells. 48 h of infection with 1.5 ml of No. 6 P4 high titre virus,

cells were treated as the same procedure described in previous section. The Western

blot result is shown in Figure 4-14.
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Figure 4-12. Western blot of FKBP12 expressed in HEK293 cells

Lane 1: human FKBP12 (positive control)
Lane 2: recombinant FKBP12 expressed in HEK293
Lane 3: HEK293 alone

10 pg of human FKBP12, 25 pg of recombinant FKBP12 and 25 pg
of cytosolic fractions ofHEK293 cells were loaded on 15% (w/v)
SDS-PAGE followed by Western blotting using anti-FKBP12 C-terminal Ab.
The arrow head shows FKBP12 (12 kDa). Some intrinsic FKBP12 was
found in HEK293 cells.
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Figure 4-13. PCR analysis of recombinant FKBP12 viral clones

A typical PCR result is shown. Clone 1 and 2 contained only a 760 bp
fragment, which meant that they were pure FKBP12 viral clones. Clone 3
contained both 840 bp and 760 bp fragments, which meant that it contained
wild-type virus.
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Figure 4-14. Western blot of FKBP12 expressed in Sf21

Lane 1: human FKBP12 (positive control)
Lane 2: recombinant FKBP12 expressed in Sf21
Lane 3: Sf21 alone (negative control)
1.5 ml ofNo. 6 P4 virus stock were added to Sf21. After 48 h of infection,
cytosolic fractions of Sf21 cells were purified and resolved using 15% (w/v)
SDS-PAGE followed by Western blotting as described previously. The arrow
head shows FKBP12 (12 kDa).
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4.8 IP, Binding and Planar Lipid Bilaver Reconstitution of IP,RI Expressed in

Insect Cells

An IP3 binding assay was used to measure the binding ability of expressed

human IP3RI. Although optimised conditions were used for the expression of full-

length IP3RI in Sf9 or Sf21 cells, IP3 binding activity was still variable from each

membrane preparation, with a maximum value of about 0.6 pmol/mg of microsomes,

which is much lower than that previously reported (Cardy et al., 1997; Yoneshima et

al., 1997). The result is summarised in Figure 4-3. The membrane fraction of Sf9 or

Sf21 infected with virus containing truncated IP3RI construct had a normal IP,

binding activity of about 3 pmol/mg of microsomes, whereas the cytosolic fraction

displayed a low IP3 binding activity (Figure 4-3). -25 units of intensity per IP,

binding activity were found in membrane fraction of Sf21 (full-length or truncated

IP3RI). However, only -13 units of intensity per IP, binding activity were found in

cytosolic fraction (truncated IP3RI). Attempts were also made to reconstitute the full-

length IP3RI in planar lipid bilayer, but no specific IP3RI channels were found.

4.9 Topology of Truncated IP,RI Expressed in Sf21 Cells

It has been shown that the IP3RI without the C-terminus was mostly found as

soluble cytosolic proteins when expressed in COS1 cells (Galvan et al., 1999).

Although the truncated IP,RI did not have the C-terminus previously though to

contain all the transmembrane regions, the membrane fraction of infected Sf21 cells

showed similar IP, binding activity as full-length IP,RI previously reported. This
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suggested that truncated IP3RI may contain other transmembrane regions before the

C-terminus, or associate with other membrane-bound proteins as an extrinsic protein

when expressed in Sf21 cells. To test the second possibility, the membrane fraction

of Sf21 cells infected with recombinant virus containing truncated IP3RI was

dissolved in 100 mM NajCOj, pH 11.4 to a protein concentration of 1.5 mg/ml at 4°C

for 30 min, and the mixture was then centrifuged at 100,000 x g for 30 min. Both

precipitate and supernatant fractions were collected and resolved on 5% (w/v) SDS-

PAGE followed by Western blotting. The result is shown in Figure 4-15. Most of

truncated IP3RI still remained in the membrane fraction.

4.10 Discussion

Although the human IP3RI (truncated or full-length) could be overexpressed in

HEK293 cells, it did not show measurable IP3 binding activity. Full-length IP3RI

expressed in HEK293 cells also did not have channel activity when reconstituted in

planar lipid bilayer. The reason might be the low expression level of IP3RI in

HEK293 following transient expression. Therefore, attempts were made to establish

a stable cell line expressing full-length IP3RI. However, this attempt was not

successful. Only a stable cell line that was resistant to antibiotic G418 was obtained,

but it did not express IP3RI. A baculovirus expression vector system was therefore

used to obtain high level expression. It has been shown that IP3RI could be

overexpressed in Sf9 cells using baculovirus expression vector system (Cardy et al.,

1997; Yoneshima et al., 1997). However, the expressed full-length IP3RI could only

be detected from Western blot without boiling in SDS sample loading buffer, which
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Figure 4-15. Localisation of truncated IP3RI expressed in Sf21 cells.

Membrane fractions of Sf21 cells infected with 1 ml, No. 8 P4 virus stock
containing truncated IP3RI were dissolved in 100 mM Na2C03, pH 11.4
to a protein concentration of 1.5 mg/ml, and incubated at 4°C for 30 min.
The mixture was then centrifuged at 100,000 x g for 30 min. Both precipitate
and supernatant were collected and resolved on 5% (w/v) SDS-PAGE followed
by Western blotting as described. The results showed that most of the truncated
IP3RI still remained in the membrane.
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is different from published results. The expression of full-length IP3RI in HEK293

cells did not show this property. The expressed full-length human IP3RI optimised in

Sf9 or Sf21 cells displayed an IP3 binding activity of up to ~0.6 pmol/mg of

microsomes, which is much lower than that previously reported (Cardy et al., 1997;

Yoneshima et al., 1997), and it also did not have measurable channel activity. This

suggests that further optimisation of the expression of full-length IP3RI is required.

However, the truncated IP3RI expressed in Sf9 or Sf21 cells showed IP3 binding

activity of about 3 pmol/mg of microsomes, which is similar to published results

(Cardy et al., 1997; Yoneshima et al., 1997). The unit of intensity (from

phosphorimager) per IP3 binding activity was similar (-25 unit/binding activity). The

truncated IP3RI does not have the C-terminus containing all the putative membrane-

spanning domains, but most of them still remain in the membrane fraction and have

similar IP3 binding activity as full-length receptors. This suggests that there may be

other membrane-spanning domains before C-terminal part of human IP3RI not

previously described in other IP3Rs. However, it has been shown that truncated IP3RI

without the C-terminus expressed in COS1 cells was mostly found in cytoplasmic

instead of membrane fraction (Galvan et al., 1999). Another possibility is that the

truncated IP3RI is an extrinsic protein, which associates with intracellular membrane

by way of other membrane bound proteins. It has been found that after adding 100

mM NajCO^ pH 11.4 to a protein concentration of 1.5 mg/ml, most of the truncated

IP3RI still remained in the membrane. However, because of no proper positive

control including in the experiment, the real location of truncated IP3RI is uncertain.
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FKBP12 is a relatively small (12 kDa) and soluble cytosolic protein. In this

study, FKBP12 could be successfully expressed in HEK293 or Sf9/Sf21 cells. It has

been identified that FKBP12 binds a leucine-proline dipeptide located at the N-

terminus of IP3R1 (Cameron et al., 1997). Moreover, it also binds ryanodine receptors

and regulates their channel function (Brillantes et al., 1994). In future studies,

coexpression of FKBP12 and IP3RI will be useful to study how FKBP12 modifies

the function of recombinant human IP3RI.
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Chapter 5

Conclusions and Future Studies
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In this work, the full-length human IP3RI containing SII and novel SIII

alternative splicing sites (Nucifora et al., 1995) was assembled from three

overlapping cDNAs cloned from a human brain cDNA library. The SII splice site is

located between two PKA phosphorylation sites, and is the most divergent region

between rodent and human species. There are seven amino acids differences in a total

of only twenty-four amino acids. It has been shown that SII splice site alters the

phosphorylation of the two consensus PKA phosphorylation sites (Danoff et al.,

1991). The novel SIII splice site, which contains nine amino acids, located near the

IP3 binding core may not directly effect IP3 binding, but could modulate IP3 binding

through a charge to charge interaction (Mourey et al., 1993).

The rabbit reticulocyte in vitro translation system is a very convenient and

useful expression system for the study of protein functions. From the initial study of

in vitro expression of assembled IP3RJ, a -200 kDa truncated protein, together with

some smaller proteins, was identified. It suggested that there might be a mutation

causing premature termination. However, three constructs containing different

regions of the IP3RI (position 1 to 2161, 1 to 2539 and 1 to 5430) could be expressed

in vitro, all with full-length products. Therefore, the mutation was located after

position 5430. After automated sequencing of the assembled IP3R1 cDNA, a

nucleotide deletion was identified at position 6429. In addition, eight nucleotides

were found to be different from the published sequence. This caused five amino acids

to be changed (section 3.4). After the mutation was corrected by subcloning, a full-

length human IP3RI could be obtained from in vitro expression, although some
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truncated proteins still remained. Following this, a mammalian cell expression

system was chosen for the functional expression of IP3RI.

Mammalian cell expression systems have become the most popular method for

the study of heterologously expressed proteins. The truncated and full-length human

IP3RI could be transiently overexpressed in HEK293 cells. However, their

membranes did not have measurable IP3 binding activity. The reason might be the

low expression level following transient expression. Attempts were made to establish

a stable cell line expressing IP3RI, but these were not successful. The baculovirus

expression vector system was then used for high-level expression of human IP3RI.

The baculovirus expression Vector system is one of the most powerful

eukaryotic expression systems currently available (O'Reilly et al., 1992). Using this,

both truncated and full-length IP3RI were successfully overexpressed in insect

Sf9/Sf21 cells. From IP3 binding assays, full-length IP3RI had a low IP3 binding

activity of up to ~0.6 pmol/mg of microsomes, compared to published results (Cardy

et al., 1997; Yoneshima et al., 1997). It suggests that a further optimisation is

required. However, the membrane fraction of insect cells infected with virus

containing truncated IP3RI showed a IP3 binding activity of -3 pmol/mg of

microsomes, which is similar to that previously reported, whereas the cytosolic

fraction of infected cells showed an IP3 binding activity of only -0.3 pmol/mg of

cytoplasmic protein. The unit of intensity per binding activity was similar (-25

unit/binding activity) in membrane fraction (full-length or truncated IP3RI), but it

was only half (-13 unit/binding activity) in cytosolic fraction (truncated IP3RI). It has

been found that IP3Rs without their C-terminus (containing six transmembrane
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segments, like the truncated IP3RI), remain as a soluble monomer, and have the same

IP3 binding activity as full-length IP3Rs (Mignery and Sudhof, 1990). In this study,

most of the truncated IP3RI still remained in microsomes, and showed similar IP3

binding activity to full-length IP3Rs. This suggests that the truncated IP3RI may

contain some extra transmembrane regions before the C-terminus, or associate with

other membrane-bound proteins. A preliminary experiment showed that the truncated

IP3R1 was not an extrinsic protein. However, further studies are required to firmly

identify this novel transmembrane region.

FKBP12 is a ubiquitous soluble protein found in almost every kind of cell. It

has a molecular weight of 12 kDa, and is the target protein of immunosuppressant

drug FK506 and rapamycin (Marks, 1996). It has been shown that IP3Rs, FKBP12

and calcineurin form a ternary complex (Cameron et al., 1997). In addition, the

interaction between FKBP12 and RyRl can be disrupted by FK506 or rapamycin,

and RyRl then displays unstable subconductance states (Brillantes et al., 1994). In

this study, human FKBP12 was successfully expressed in HEK293 and Sf9 cells. In

future work, coexpression of FKBP12 and IP3RI will be useful to investigate how

FKBP12 interacts with IP3RI and modifies its channel functions.

As mentioned earlier, Ca2+ is a signal for life and also a signal for death

(Berridge et al., 1998). Cells must tightly control [Ca2 ] in response to a variety of

stimuli from the environment. If cells cannot maintain their [Ca2+] homeostasis, they

will die either from necrosis or apoptosis (Kroemer et al., 1998). Apoptosis

(programmed cell death) is regulated by a series of cellular events involving the

activation of caspases, which in turn cleave specific intracellular proteins resulting in

5- 4



cell death. It has been shown that IP3Rs played an important role in apoptosis

(Jayaraman and Marks, 1997; Sugawara et al., 1997). Recently, Hirota et al. (1999)

reported that IP3RI was a caspase-3 substrate, and caspase-3 cleaved IP3RI at a

consensus DEVD motif during apoptosis. Future studies of how the IP3R channel is

regulated during apoptosis may lead to important new insights into cell function.
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