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Abstract 

A range of palaeomagnetic and mineral magnetic techniques have been 

applied to UK continental shelf materials and to sediment cores from 

Spitsbergen. 

Palaeomagnetic analysis of British Geological Survey vibrocore and gravity 

core material was found to be technically possible. An easily measurable 

natural remanent magnetisation that was stable under alternating field 

demagnetisation was observed. However, the downcore natural remanent 

magnetisation records were found to be too short to contain a magnetic 

polarity change and lacked sufficient features for a successful match to secular 

variation master curves. Slightly shallow inclinations were observed in many of 

the UK continental shelf cores. The Spitsbergen sediment cores produced a 

confused palaeomagnetic record, containing pronounced shallow inclinations. 

These shallow inclinations are thought to reflect both geomagnetic and 

sedimentary causes. 

Mineral magnetic analysis showed varying grain sizes of magnetite as the 

principal magnetic remanence carrier in UK continental shelf core and grab 

samples. In addition, considerable amounts of high coercivity minerals, 

principally haematite were found in many areas. 

Whole core magnetic susceptibility was successfully used as a sediment 

core logging tool both onboard British Geological Survey sampling ships and in 

land based laboratories. Whole core susceptibility was found to reflect 

changes in core litholy and the presence of local features eg drop stones. 

Susceptibility in both stored cores and stored subsamples was observed to be 

stable over time. Mass specific susceptibility measurements on surface 

sediment samples was observed to be an effective means of mapping sediment 

distribution in the Firth of Clyde and the Moray Firth. Sediment particle size 

were observed to have a great influence on susceptibility, with peak 

susceptibilities seen in the mud fractions. Higher coercivity minerals were 

often observed in the sand fractions, whereas magnetite was found to 

dominate the magnetic mineral assemblage in the mud fraction. The variable 

coercivity found in sand samples was used as a sediment source indicator in 

the Moray Firth. Mineral magnetic studies on sediments from Spitsbergen 
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showed evidence of considerable variations in the sedimentary regime with 

pronounced contrasts in magnetite/haematite ratio. 

Chemical analysis of UK continental shelf cores showed a strong positive 

relationship between whole core susceptibility and iron content. Additional 

correlations were found between iron, susceptibility and other potentially 

valuable chemical constituents. 
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CHAPTER 1 
INTRODUCTION 

1.1 Preamble 

This thesis is largely concerned with assessing the potential for the 

practical application of palaeomagnetic and mineral magnetic techniques in the 

continental shelf environment. The practicality aspect refers both to the 

identification of appropriate magnetic instrumentation and to the likely 

limitations on interpretations of the magnetic results. 

1.2 UK Continental shelf survey 

The British Geological Survey (BGS), formerly known as The Institute of 

Geological Sciences (IGS) has been engaged in a survey of the UK continental 

shelf since 1967. Their work has been directed either towards specific small 

scale projects, for example surveys for offshore gravel resources (Deegan et al 

1973), or towards the wider objective of preparing geological maps of the 

whole UK continental shelf. The majority of their survey work was completed 

by 1989. 

As a result of over 20 years of survey activity, a large archive of geological 

and geophysical data has been gathered. For example there are over 200 000km 

of seismic lines, samples from 30 000 geological sampling stations and cores 

from over 500 boreholes. Much of this geological and geophysical material is in 

a raw form. It is currently being used in the preparation of new geological 

maps of the sea bed. The published material based on the continental shelf 

survey, is to be found in various formats. These are specific project reports 

(Deegan et aI 1973), internal reports (Long, (1979)), papers in journals (Stoker et 

al 1983) and various scale geological maps (eg Evans 1985). Access to much 

unpublished data and to partially complete interpretations was made possible 

by kind permission of the BGS. 

Much of the original sample material on which the BGS work had been 

based has been retained in storage. A strictly enforced archiving system has 



resulted in a near complete retention of material from all BGS sampling sites. 

The resulting sample stock consists of sea floor grab samples, vibrocores, 

gravity cores and borehole sections. The grab samples and vibro and gravity 

cores provided the basic raw material for this thesis. 

During 1985 and 1986 BGS were still operating sampling vessels and I 

participated in cruises onboard the vessel M.V. British Magnus, in November 

1985 and the vessel M.V. Kommander Subsea in October 1986. These two 

cruises gave opportunities to obtain fresh sample material and to employ 

magnetic susceptibility core logging techniques in a sea going laboratory. This 

maritime experience also proved invaluable in terms of assessing the effects of 

BGS handling techniques on core quality, with particular reference to its 

possible influence on magnetic properties. 

1.3 Geomagnetic Field 

The behaviour of the Earth's geomagnetic field has been the subject of 

detailed study and observation for several hundred years, with work dating 

back to the 15th century when William Gilberte (De Magneta 1600) noted the 

resemblance of the geomagnetic field to that of a uniformly magnetised sphere. 

Gauss (1839) first established the source of the magnetic field as being within 

the Earth by using spherical harmonic models. These models have been 

expanded to the present preferred representation of dipole and non-dipole 

parts adding to make the total geomagnetic field. The best fitting dipole for the 

present field is tilted at about 11.50  to the rotational axis. Non-dipole 

components consisting of a number of continental size foci of maxima and 

minima distributed over the globe represent the rest of the field. 

Historical records of magnetic directions date back to 1570 (Barraclough 

1982) with intensity data becoming available for many locations from 1850 

onwards (Tarling, 1983). Extensive cataloging of past records has been carried 

out by several workers, the most comprehensive catalogue being that of 

Veinberg and Shibaev (1969). Such data sets have been used in attempts to 

model the geomagnetic field and associated behaviour of the earth's core 

(Gubblns 1982). 

Cook (1973) summarises the behaviour of the geomagnetic field as seen in 

observatory records as follows:- 
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A growth of some non-dipole features and decline of others. 

An average westward drift of features of the non-dipole field by 02 0  per 

year. 

A westward rotation of the dipole by 0.05 0  longitude per year. 

A decrease in the main dipole moment of about 0.05% per year. 

A decrease in the angle of tilt of the geocentric dipole of about 0.02 0  

per year. 

1.4 Paiaeomagnetism 

The geomagnetic field is unique amongst geophysical processes in that we 

do not need to rely solely on contemporary observations of its behaviour. It 

leaves a detailed record of its activities behind, locked into for example, rocks, 

sediments, and pottery. The study of these records, termed palaeomagnetiSm 

is a well established subject very effectively reviewed in works such as Tarling 

(1983) and Collinson (1983). 

Palaeomagnetic studies have given an insight into the past behaviour of the 

geomagnetic field. Fig 1.1 from Barton, (1982) illustrates the major features and 

the associated evidence of geomagnetic variation. Time scales of geomagnetic 

activity range from high frequency (fraction of a second) pulses to long period 

(100 000 year) reversals. Variation occurs in both intensity, and direction of the 

field with frequent complete reversals being a dominant long term feature. 

In relation to sedimentary studies, the most significant features are (a) 

secular variation which occurs on a time scale from one year to thousands of 

years and involves small shifts (up to 30 ° ) in field direction; (b) polarity 

excursions, defined by Thompson (1977) as a sequence of virtual geomagnetic 

poles which extend beyond 45 degrees of latitude from the pole and return to 

the original latitude after a short period of time; (c). polarity reversals, complete 

180 degree shifts in direction on a time scale of iü - 10 6  years. 

Of most relevance to this thesis is the record of secular variation as found 

in high deposition rate (>1mm pa.) sediments (eg lakes, marine margins). The 

pioneering work of Mackereth (1971) demonstrated that lake sedimentary 
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sequences from Lake Windermere held a high quality record of secular 

variation. Following this original work on Lake Windermere, secular variation 

data has been obtained from Europe, Near East, New Zealand, Australia, Japan 

and the Americas (Creer 1985) eg Fig. 1.2. There is sufficient data in many 

areas to construct type or master-curves based on collated data from any one 

region. High resolution data is also available in high-deposition rate sediments 

(>1mm pa) from marine environments (eg Bishop 1975 Fig 1.3, Austin, 1987). 

PalaeomagnetiC techniques are applied as a standard tool on Deep Sea 

Drilling Project (DSDP) vessels. When used on deep ocean cores cores they 

provide a record of long term variations of the geomagnetic field, usually in the 

form of a polarity reversal record, eg Shackleton et al, (1984), fig 1.4. Due to 

lower sedimentation rates in deep sea environments than lakes, the temporal 

resolution of deep sea cores is usually too limited for secular variation studies. 

1.5 Mineral Magnetism 

As a consequence of palaeomagnetic investigations on lake sediments, a 

parallel line of research evolved to study the magnetic mineralogy of 

sediments. Early work by Thompson et al (1977) demonstrated the use of 

magnetic susceptibility (x) as a tool for correlation between lake sediment 

cores. The mineralogy based line of magnetic studies has expanded into the 

use of a large number of artificial remanence and magnetization derived 

parameters as reviewed by Thompson and Oldfield (1986) in their work 

'Environmental Magnetism'. 

The use of magnetic mineralogies has been extended away from lake 

sediments and been found to be effective in many other environments. It has 

been used for example, as a sediment tracer in fluvial situations (Walling et al 

1979); as an indicator of soil formation environments (Maher 1986); in the 

identification of atmospheric particles (Hunt 1986); as a correlation tool and 

environmentally sensitive indicator in peats (Richardson 1986, Williams 1988), as 

a recorder of change of environment of deposition in deep sea sediments 

(RobInson 1986 fig 1.5 , Bloemandal 1983); as a means of differentiating glacial 

diamicts (Walden et al 1987); and for understanding biological environments eg 

in the case of magnetotacticbacteria (Petersen et al 1986). 

In addition to its environmental modelling role, susceptibility has been 
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demonstrated as an effective heavy mineral exploration tool. Pzranen (1977), 

showed the use of susceptibility as a method for locating iron deposits in 

glacial tills. Currie and Bornhold (1983) used susceptibility as a heavy mineral 

reconnaisance technique on marine grab samples taken from the Canadian 

continental shelf. Fig 1.6 taken from their work emphasised the relationship 

between magnetite content and magnetic susceptibility . Susceptibility has also 

been successfully applied as a sedimentary mapping tool in ocean basins 

(Sachs and Ellwood 1988) Fig 1.7. 

Much current attention is being directed at investigating the effect of 

hydrocarbon seepage on mineral magnetic properties. In particular the effect of 

hydrçcarbons on authigenic magnetite formation in sea bed sediments (Elmore 

et al 1987, Barton 1988) is of commercial interest. 
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CHAPTER 2 
TECHNIQUES AND INSTRUMENTATION 

2.1 BGSIIGS Sampling Techniques 

The BGS employs a range of modern geophysical and geological equipment, 

much of it developed 'in-house'. Details of this equipment are contained in BGS 

information sheets enclosed in Appendix A. During the course of my work I 

had access to raw and interpreted data from BGS, gathered by a variety of 

tech'niques. The majority of my magnetic analyses were undertaken on 

vibrocores, gravity cores and shipex grab material. 'Pinger' geophysical data 

was widely used as appropriate background information. 

Both vibrocore and gravity cores were originally recovered in 6m long, 

10cm diameter plastic liners. The core and liner were extruded from the steel 

barrel by a combination of a hydraulic ram and manual labour. An orientation 

line was then marked along the length of the 6m liner before it was cut into 

im sections. These im sections were then longitudnaIly split into two equal 

D-shaped halves to enable thorough examination. Halved, the cores were 

preserved in flexible lay-flat polythene tubing which was heat sealed at each 

end to prevent moisture loss. 

2.2 Subsampling for magnetic analysis 

Subsampling of cores was undertaken as soon as possible after core 

recovery for fresh cores. The time interval between recovery and sampling 

varied from 5 minutes to 48 hours. In the case of stored material, care was 

taken during subsampling to ensure a minimal amount of drying out. 

To obtain a subsample, small plastic boxes (20x2Ox2Omm) were inserted 

Into the sediment. Each box had a small hole in its base to allow air to escape 

during the insertion process. All boxes were carefully aligned parallel with the 

core sides and adjacent to the previous sample in the sequence if a contiguous 

series of samples were being taken. Orientation relative to the core vertical 

was achieved by small arrows marked on the base of each box with 

appropriate sample numbering. Once removed, each subsample box was lidded, 

the air hole sealed with tape and stored in a refrigerator. The remainder of the 
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core was then resealed in 'lay-flat' tubing and returned to store. 

In the case of grab samples and some dried core material, plastic cylinders 

were used instead of cubes. Sediment was packed into the cylinder by means 

of a simple mechanical press and plastic foam used to fill any void in order to 

prevent subsequent movement of the sample within the container. 

2.3 Palaeomagnetic and Mineral magnetic techniques and 
terminology. 

The following list provides a brief summary of the terminology used in this 

study in relation to palaeomagnetism and mineral magnetism. It is largely 

based on information and definitions found in Thompson and Oldfield (1986) 

and Tarling (1983), both of which provide a comprehensive review of the 

available literature. 

'Magnetic Terms and Parameters' 

- Anhysteretic Remanent Magnetisation, 'ARM'..see Remanence. 

- Anisotropy of Susceptibility .... is the variation of magnetic susceptibility 
depending upon the direction of measurement. Dominated by the shape of 
ferrimagnetic grains, and often indicative of a sedimentlogical fabric. 

- Antiferromagnetism ... magnetic behaviour resulting from crystals having 
lattices in which adjacent atoms have antiparallel spins. Symptoms are a 
low susceptibility and zero remanence. 

- Canted antiferromagnetism ... similar to antiferromagnetism, but with 
adjacent atoms which have 'not quite' antiparallel spins, resulting in the 

ability to retain a weak remanence, eg haematite. 

- Chemical Remanent Magnetisation, 'CRM ..... see remanence section. 

- Coercivity or coercive force ... (B 0)c .... is the "reverse' field required to reduce 
the magnetisation to zero from saturation, which is assumed as the 
'forward' direction. Also known, as coercivity of remanence ... (B 0)CR ... where 
a remanent magnetisation is involved. 

- Demagnetisation.....as its name suggests, removing magnetisation from a 
specimen by means of an alternating field for recent sediments. 
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- Detrital Remanent Magnetisation ...... DRM'...see remanence section. 

- Diamagnetism .... 0CCurS due to a change in orbital motion of electrons 
about the nucleus, in an applied field. Symptoms are (an often masked) weak 
negative susceptibilty, as exhibited by water, quartz, calcite. 

- Ferrimagnetism .... a phenomenon of some crystalline substances and spinel 
structured minerals (eg magnetite, maghaemite) resulting from 'exchange 
interactions' (these forces are due to unbalanced electron spins combined 

with an ionic spacing 

- Ferromagnetism A phenomenon of some crystalline substances due to 
unbalanced electron spins combined with an ionic spacing such that very 

• large forces called exchange interactions, cause coupling and alignment of 
all the individual magnetic moments of millions of atoms to give highly 
magnetic domains. This results in large susceptibilities, remanence and 

hysteresis. eg  metallic iron. 

- HIRM, - High field Isothermal Remanent Magnetisation. This is the 
difference between isothermal remanence induced by fields of iT and 0.1T 
(ie, IRM1T - lAM0 iT).  In practice this gives the remanence due to imperfect 
antiferromagnets such as haematite and goethite, the ferrimagnets such as 
magnetite having effectively saturated by O.1T. 

- Isothermal Remanent Magnetisation ..... IRM .... see Remanence 

- Natural Remanent Magnetisation ..... NRM .... see Remanence 

- Paramagnetism.... a small (positive) susceptibility arising from the alignment 
of the magnetic moment of individual atoms of the substance in an applied 
field. Often seen in clays, pyroxenes, amphibotes and other substances with 
rare earth or transition series members. 

- Q ratio Ratio of NRM intensity to susceptibility. lnterprtted by some as an 
'indication of the strength of the geomagnetic field causing the NRM. 

- Remanence/remanent magnetisation .... The magnetisation remaining when 
external fields are removed. There are several types of remanence 
commonly referred to: 

Natural Remanent Magnetisation...'NRM'...summation of all components 
of remanence acquired by natural processes. 
Detrital Remanent Magnetisation...'DRM'...acquired by the physical 
rotation of magnetic particles during deposition as a sediment. 
Chemical Remanent Magnetisation...'CRM'...aCquired as a magnetic 
mineral nucleates and grows in a magnetic field. 

15 



Isothermal Remanent Magnetisation...'IRM'...grOWfl by the application 
and su: bsequent removal of magnetic field .... usually induced in 
laboratory conditions, but can occur naturally due to lightning strikes. 

Anhysteretic 	Remanent 	Magnetisatiofl...'ARM'...acquired 	when 	a 

ferromagnetic particle is subjected simultaneously to alternating and 
direct magnetic fields.....usually grown deliberately by smoothly 
reducing an AC field in the presence of a weak DC field, but they are 
often accidentally grown during demagnetisatiOn at high fields (poorer 
quality demagnetisers often suffer from a spurious DC component at 
higher fields ie 40+ mT). 
Viscous Remanent Magnetisation...'VRM'...PrOdUCed by a weak field 
applied over a long period of time. A VRM is often seen due to sample 
storage in non-zero field conditions, but the remanence is weak and is 
usually easily removed by 48 hours storage in zero field conditions for 
recent sediments although older material may require a 20 mT 
demagnetisation to clear this unwanted component. 

S ratio. The ratio of a 0.1T backfield IRM to a IT forward IRM. Originally 
defined by Thompson and Stober (1979) and used for samples with unusual 
haematite to magnetite ratios. It is based on the fact that, in practice, most 
ferrimagnets will saturate below 0.1T. Any difference in high field 
remanance will be due to the imperfect antiferromagnets such as haematite 
and goethite (Thompson and Oldfield 1986). 

- SIRM, Saturation Isothermal Remanent Magnetisation. In this study this is 
taken as the remanent magnetisation acquired after exposure of the sample 
to a IT field. In practice, this was the largest field continuously available. 
Other studies may utilise a saturating field from 0.8T to 5T, depending on 
equipment availability. 0.8T and lOT are the most commonly used fields. 

- SIRM/X ratio. The features and function of this ratio are best defined by 
reference to plots of SIRM to x such as figs 2.1 and 2.2 (from Thompson 
and Oldfield 1986). In natural samples (eg fig 2.1), there is a correlation 
coefficient between SIRM and x of 0.86 with an average SIRM/X ratio of 10 

kAm 1 . Samples with unusually high haematite to magnetite ratios plot to 
the right of the main grouping, giving SIRM/X values of approximately 
1000kAm-1. Low SIRM but moderate x samples plot to the left of the main 

group, the x value being influenced by paramagnetic contributions. Fig 2.2 
shows the use of SIRM/X to determine particle size in situations where 
magnetite effectively the sole contributor to the remanance. 

- Superparamagnetism ... The phenomenon of rapid decay of remanence in 
magnetic grains. For example very small grains (haematite < 0.03 pm 
diameter and magnetite < 0.05 Itm diameter) which show a strong 
susceptibility when placed in a magnetic field, but have this alignment 
destroyed by thermal vibrations upon removal of the field. 

- Susceptibility ... two distinct parameters are often quoted: 
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Susceptibilty...'K'...A measurement of the degree to which a substance 
can be magnetised.... K = M/H where M is the magnetisation and H is 

the intensity of the applied field. 
Specific Susceptibility...',...mainetic susceptibilty on a mass specific 
basis ..... ie expressed in m kg 

- Viscous Remanent Magnetisation...'VRM'...see 'remanence'. 

1 Magnetic Susceptibility Measurements 

The two instruments used for magnetic susceptibility measurement in this 

study were: 	 - 

Dig/co susceptibility equipment. The standard sensor head on this 

instrument was not large enough to accommodate sample cubes supplied by 

BGS, so a larger version was constructed by the author (fig 2.3). Calibration 

was by means of chemical salt standards, fig. 2.4. Noise levels for this 

instrument were found to be low, at less than 1 x 106  S.I. units. The operating 

principal of this type of AC susceptibility bridge is described in Molyneux and 

Thompson (1973). 

Bartington susceptibility equipment. This equipment differs from the AC 

type bridge in that it interprets frequency change in a tuned oscillator circuit in 

terms of susceptibility as described by Lancaster (1966). In this study, several 

variations ofBartington equipment were used. An MS2C meter (interfaced to a 

BBC microcomputer by the author) coupled to an MS113 25mm sensor head was 

employed for subsamples. An MS2C 125mm dual frequency loop sensor was 

used for whole core measurements. Noise levels were below 1 x 106  S.I. units. 

Calibration was by means of chemical salt standards (see fig 2.4). Separate 

standards were made for the different sensor heads and a cross-calibration 

between whole core and subsample measurements carried out (fig 2.5). 

However, as all core material obtained from BGS had the same diameter 

(100mm), an arbitarV volume susceptibility K scale consisting of readings taken 

directly from the Bartington equipment was adopted for whole core 

measurements. This arbitary K scale proved effective for comparison between 

cores. Mass specific susceptibility, x 	measurements were obtained for 

subsamples and are reported in units of 10 6 m 3 kg 1  or im 3 kg 1 . 
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The actual technique of susceptibility measurement for subsamples was 

very straightforward. Either the Bartington or Digico instruments would be 

calibrated and then the sample inserted for the measure cycle. If the sample 

was of known mass, a mass specific (x) susceptibility could be easily 

calculated. 

The wholecore susceptibility technique proved a rapid and effective way to 

investigate cores. Measurements were taken at 5cm intervals downcore with 

the instrument calibration being cheàked between each Im section of core. Fig 

2.6 shows how measurements based on lm core sections were built up into a 

whole core susceptibility profile for an entire Sm core. The transitions between 

im sections were always found to be smooth. These smooth transitions 

demonstrate the constant, drift-free calibration achieved with the Bartington 

equipment. An experienced operator could measure whole core susceptibilty on 

approximately im of core a minute. 

2 NRM measurement 

Two instruments were used for the measurement of NRM, a Mo/spin 

spinner magnetometer and a CCL Cryogenic magnetometer. 

The Molspin is a portable fluxgate magnetometer based on well proven 

designs (Thompson and Oldfield 1986). The instrument was interfaced to a BBC 

micro-computer enabling semi-automatic operation and data logging. 

Calibration was by means of a magnetic tape standard with known intensity 

and direction of magnetisation. Noise levels were found to be in the order of 1 

x 10 6  Am 2. Each measurement of NRM required 6 different spin sequences in 

three mutually perpendicular axes in both upright and inverted positions. This 

instrument provided the bulk of the directional data in this project. 

The cryogenic magnetometer is based on SQUID (super-conducting 

quantum interference device) technology. The basic principals are described by 

Goree and Fuller (1976), the main advantage over other magnetometers being 

speed and sensitivity ( in the order of 10
3 times more sensitive than the 

Molspin). Control and data acquisition was semi-automatic via a Sirius 

micro-computer. The principal disadvantages were reliability and availability 

due to the high cost of helium consumption. Calibration was again by means of 

magnetic tape standard of known intensity and orientation. 
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- Fig 2.3 Diagram showing principal coil design features and local tuning circuits for 
a 'Digico' susceptibility bridge. This unit was constructed to take samples up to 34 
mm diameter and accomodate standard BGS palaeomagnetic subsamples. 
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- FIg 2.4 Chemical calibration of Bartington susceptibility equipment against chemical 
standards. The expected susceptibilty was calculated from reference tables 
(Tennent 1971). Three materials were used to provide a comprehensive range of 

- susceptibility values. 
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- Fig 2.5 Cross-calibration of values obtained from Bartington susceptibility 
equipment. The loop sensor provided a dimensionless value, whereas 
mass-specific data could be obtained for subsamples. Core values were obtained 
using measurements from positions which exhibited little variation in K over 25 cm 
each side of the sensor. Subsamples were then taken from these areas and a 
mass-specific x value obtained. 
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- FIg 2.6 Data obtained using Bartington loop on core 56-10 35VE. The left hand 
profile shows the effect of the ends of im sections. The right hand profile shows 
end effects removed and data concatted. The simple technique of ignoring data 
obtained from within 5 cm of the section boundary and substituting the previous 
value was employed. 



It should be noted that declination data in this study is relative to the 

individual core in question, no absolute determination being available due to 

lack of orientation control during coring. 

3 Alternating Field Demagnetisation 

Two different instruments were used during this project. The majority of 

work was undertaken using a motorised variac type unit constructed by Dr 

L. Molyneux. This gave a peak field of 99.5 mT adjustable in a range 0.00 to 

99.5 mT using 0.5 mT steps. The second instrument was manufactured by 

Highmoor instruments and gave a peak field of 80 mT adjustable in steps of 0.1 

mT. The operating princip!e5 of AF demagnetisers are well covered by As 

(1967). 

Both instruments were used in the manner outlined by Snape (1971), which 

was designed to reduce the effect of spurious ARMs. However, in some 

circumstances, a spurious ARM was still generated with our equipment at peak 

alternating fields of over 40 mT. In practice however, the spurious ARM at high 

fields did not represent too significant a problem, as in the unconsolidated 

sediments being studied, any secondary remanence components were revealed 

by 40 mT. 

In this study, AF demagnetisation was carried out on pilot samples from 

each core to assess the influence of secondary magnetisations. Typical 

increasing peak field steps were 5mT, lOmT, 20mT, 40mT, and 80mT. 

Before AF demagnetisation, samples were stored in a zero magnetic field 

environment for at least 48 hours, in order to eliminate any viscous 

components. 

4 IRM acquisition 

The external fields necessary for producing IRMs were generated either by 

high powered electromagnet or pulse-magnetiser. An electromagnet was used 

to provide magnetic fields up to iT. Higher fields were generated using a 

'Trilec' pulse magnetiser fitted with a 37mm diameter coil (sample aperture 

31mm diameter). The Trilec system gave fields in the range of 0.1T to 

4.7T. However, 2.5T was the maximum continuously repeatable field obtainable. 

A comparison of SIRM aquisition as produced by a pulse-magnetiser and an 
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electromagnet using identical subsamples is shown in fig 2.7. As can be seen 

from fig 2.7 the IRMs grown by the pulse magnetiser and the electromagnet 

were very similar. Consequently, it was possible to combine the results from 

the two instruments to build up an IRM acquisition curve from UT to 4T without 

reduction in the quality of data at the change-over field between instruments. 

In practice, a 11 field was found to saturate most of the material studied in this 

thesis with higher fields only being used when a large high-coercivity 

component of remanence was present. 

During the course of this study, the IRM acquisition technique was applied 

in three ways. For pilot studies, full forward IRM curves were grown using 

applied fields of 5, 10, 20, 40, 100, 200, 400, 800 and 1000mT. In contrast if a 

large number of samples had to be examined then only three fields of 100, 

1000, and -lOOmT were used in order to give enough information to derive S 

and HIRM parameters. Finally if it proved necessary to obtain further IRM data 

backfield IRMs were grown in the same field increments as for forward IRMs 

but with the incremental field applied in the opposite direction to the saturating 

field. 

5 IRM measurement 

lAM measurement was carried out using the Molspin fluxgate 

magnetometer. Following exposure to each field, samples were measured in 

one orientation in the Molspin. Data from the Molspin could then be used in 

several ways. For plotting lAM acquisition curves, all data was normalised with 

respect to the saturation value, generally taken as iT . When using the data 

from the Molspin to calculate SIAM or HIRM, the instrument reading (sample 

moment) was divided by the mass of the sample to give mass specific results 

reported in mAm 2 kg 1 
. 

6 IRM interpretation 

Several examples of IRM acquisition work are shown in figs 3.9 and 4.6. Fig 

2.8 taken from Tarling, (1983) shows the forward IRM acquisition curves for 

three different samples. Each sample differs in composition, sample (a) showing 

characteristic IRM growth for magnetite with saturation occuring well before 

100 mT; sample (b) showing the IRM curve for haematite with saturation not 

being reached even at 500 mT and sample (c) for a magnetite haematite 

mixture. The three examples from Tarling are for simple mineralogies. 
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- Fig 2.7 A cross-calibration performed between a Newport instruments 
electromagnet and a Trilec CDM 1600 pulse-magnetiser. Direct comparison was 
possible between 100 and 1000mT where the instrument ranges overlapped. To 
effect a comparison, a homogeneous sample of high coercivity was split intq two 
smaller samples. Both were then exposed to magnetic fields, one by the magnets, 
the other by the pulse-magnetiser. Intensity of IRM was then compared using a 
Molspin spinner magnetometer. 
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applied field. Taken from Tarling (1983). 



The magnetic properties of magnetite and haematite however also depend 

on grain size. Fig 2.9 shows the IRM acquisition curves based on empirically 

derived data for a range of magnetite and haematite grain sizes. Both 

haematite and magnetite display decreasing coercivity with increasing grain 

size. Better estimates of the concentration of magnetite and haematite in 

samples can therefore be made if the magnetic grain sizes can be established. 

When SIRM data is used in conjunction with X  the resulting SIRM/X ratio 

provides a means of numerically assessing the dominant mineralogy in any 

sample. Magnetite and haematite are easily distinguishable by SIRM/X ratios 

by virtue of their differing ferrimagnetic and antiferromagnetic properties. 

Typical values of SIRM/X for varying grain sizes of magnetite and haematite are 

given in fig 2.9. In the case of magnetite dominated mineralogies, SIRM/X can 

be used as a grain size discriminatr. Austin (1987) prefered to use the inverse 

ratio X/SIRM, named 'G' ratio for the same purpose. 

Magnetite and• haematite are the two most commonly encountered 

magnetic minerals. However, other less common minerals are sometimes 

found, usually contributing a minor, but nevertheless significant part of the 

magnetic properties. Table 2.1 lists some of the these additional magnetic 

minerals and their magnetic characteristics. 

By using several magnetic parameters in biplot form, grids representing 

expected magnetic minerlogies can be established. Fig. 2.10 shows such a grid 

constructed using coercivity and SIRM/x ratio data for samples. The choice of 

parameters depends on selecting data which will give the greatest 

differentiation between samples for a particular sample set. 

Fig 2.11 shows a hysteresis loop and illustrates the origin of some of the 

magnetic terminolagy used in this thesis. 

2.4 Magnetic Mineral Extraction Equipment 

In order to carry out XRD and Curie point analysis on samples, it was 

necessary to extract a sample of the magnetic minerals contained in the 

sediment. Various methods were attempted based on equipment (fig 2.12) 

described by Von Dobeneck! ( 1985; pers. comm.). The Von Dobeneck system 

consisted of a soft iron needle covered with a fine plastic sheath. This needle 

.1. based on previous work by Papamarinopoulos (1978). 

29 



Mineral Curie Saturation Susceptibility 
Temp. Magnetisation 

magnetite 585 93 5 x iü 
haematite 675 0.5 60 
ilmenite -218 200 
maghaemite 740 4 x iü 
pyrrhotite 300 20 5 x 10 
iron 780 200 2 x 
goethite 120 1 70 
lepidocrocite -196 70 

Table 2.1 - Magnetic properties of various remanence 
magnetic minerals. Units: Temperature ( ° C), 
Room temperature saturation maJnetisation (Am 2 kg 1 ), 
specific susceptibility (10 8 m 3kg ). 
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Grain 	size 	(lila) SIRM/X 
Magnetite Haematite 

0.0625 80 / 
0.250 55 492 

1.000 35 447 

4.000 18 405 

16.00 7.2 373 

64.00 3.33 360 

256.0 1.59 352 

1024. / 345 

- Fig 2.9 Empirically derived normalised IRM acquisition curves for (a) magnetite of 
grain diameters 0.0625, 0.25, 1, 4, 16, 64, and 256pm; and (b) haematite of grain 
diameters 0.25, 1, 4, 16, 64 and 1024 urn. The attached table shows the SlRM/ 
ratio for each grain size. (From Thompson 1986). 
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was magnetised by means of a strong ceramic magnet placed on its base 

thus creating a high magnetic gradient at the sharp tip. The needle was 

postioned in a glass vessel such that a sediment suspension could be pumped 

past it at various speeds. Magnetic material from the sediment accumulated at 

the tip of the needle. To recover the magnetic material, the needle was 

withdrawn from the glass vessel, demagnetised by simply removing the 

ceramic magnet and the extract washed off into a seporate container. The 

sediment slurry was contirously cycled past the needle until an adequate 

extract was obtained. The Von Dobeneck system was found to be too sensitive 

for use on continental shelf material, tending to clog rapidly as magnetic 

particles built up around the extraction needle. As a result it needed hourly 

attention and was not suitable for continuous running. A more effective method 

was found to be a strong bar magnet wrapped in a latex sheath, suspended in 

a stirred suspension of sediment in water. The magnetic fraction tended to 

stick to the sheath from which it could be collected once the magnet was 

withdrawn. Several sheaths were experimented with, the best was found to be 

'finger gloves' or individual fingers of surgical gloves. Yields of 80°Io of 

magnetic minerals were easily obtained after 24 hours of operation with 

minimum attention necessary. It was found that the more sensitive equipment 

designed by Von. Dobeneck could be used on the residual slurry to extract up 

to a further 5% of weakly magnetic material. The extract yield was calculated 

on mass specific susceptibility measurements before and after extraction. SIRM 

was also used to assess yield in circumstances where canted antiferromagnetS 

were expected to be present. 

2.5 Curie temperature analysis 

Curie temperature analysis was carried out on extracts using a horizontal 

Curie force balance constructed by Humphrey Instruments and N. Petersen. 

The balance was interfaced to a BBC microcomputer which served as a data 

logger by Heath (1988). An external DC field was supplied by an Oxford 

Instruments electromagnet. 

Discussion of the operating, details, and result interpretation from Curie 

balances are found in Tarling, (1983), Collinson, (1983), Thompson and Oldfield, 

(1986) and Housden et aI, (1988). The essential point for basic interpretation is 
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that magnetic minerals lose their magnetisation at individually characteristic 

temperatures, as seen in fig. 2.13. This figure shows the characteristic loss of 

magnetisation at approximately 580 ° C for magnetite standards provided by Dr 

B. Maher. Haematite would be expected to lose its magnetisation at 680 ° C. A 

summary of Curie temperatures for common magnetic minerals is shown in 

table 2.1. 

2.6 Geological Techniques 

Although the bulk of geological data concerning samples for this study had 

been gathered as part of BGS routine examinations, occasional further work 

was required, consisting of: 

1 Particle size work 

Initially, all samples were sieved through a 2mm mesh to remove drop-

stones. Once the latter had been removed, the <2mm sediment was split into 

sand and mud fractions using a 63jim mesh. The >63jim fraction could then 

be further subdivided by sieving through a range of meshes. The <6311m 

fraction could be split by controlled settling through a water column with timed 

removal at certain depths, the times being calculated by reference to Stokes' 

Law. IRM acquisition curves were then grown on the sieved fractions to identify 

the magnetic mineralogy associated with particular particle sizes, see for 

example figs. 2.14. and 2.15. 

2 Heavy Liquid Separation 

Heavy liquid separation techniques were employed on several samples in an 

attempt to remove the heavy mineral fraction. This extraction work was 

undertaken at the Applied Geology Department, University of Strathclyde under 

the guidance of Mr A. Beg. A synthetic heavy liquid, sodium po/ytungstate, 

3Na2WO4.9W03.H20 was used. This synthetic medium gave a density of 3.1 

gcm 3, comparable to ordinary organic heavy liquids, for example bromoform 

and having none of the problems associated with toxicity. A standard approach 

of filtration through sintered glass filters was employed to recover the heavy 

mineral fraction. 
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3 Shaking Table 

The shaking table is effectively an automated panning technique. It was 

useful for splitting up large quantities of sample into light and heavy fractions. 

The machine used in this project was a Moz/ey Laboratory Mineral Separator Mk 

A. The shaking table was operated under the supervision of Mr A. Beg at the 

Department of Applied Geology, University of Strathclyde. Due to the scale of 

the operation relatively large subsamples from cores were needed, with 500g' 

being a common sample size. Large amounts of various size fractions were 

obtained, facilitating later magnetic measurements on individual fractions. IRM 

acquisition and backfield curves were grown for each particle size fraction, see 

for example fig. 2.16. 

4 XRF 

XRF was carried out at Wolverhampton Polytechnic under the supervision of 

Mr Brian Bucknall and Dr J.P Smith. The equipment consisted of a Philips PW 

140 X-ray spectrometer with automatic scan control under a software package 

developed by Dr J.P. Smith. The automated scan gave both raw data and 

processed results in terms of 15 major elements and oxides. Sample 

preparation was as follows: 

Approximately 20 g of sample were heated overnight at 5500  to burn off any 

organic material. The samples were weighed before and after heating so that a 

loss on ignition and percentage organic content could be calculated . After 

heating, the material was ground to a fine powder using aTema mill. 8.500g of 

the ground sample powder was then mixed with 1.500g of Hoechst wax, to 

provide an inert matrix. Mixing was by means of plastic ball pestles in an 

automated shaker to ensure a homogeneous end product. The mixture was 

then compressed into a pellet using 17 tonne pressure from a hydraulic press. 

The sample was then ready for use. 

A carbonate bomb was used to determine a percentage carbonate figure for 

each sample. 

41 



CHAPTER 3 
PEACH AREA 

3.1 Background 

The Peach Area lies towards the western edge of the UK Continental Shelf 

(fig 3.1), approaching the limits of the continental slope. Water depth in the 

region of the the shelf covered by the Peach area can be up to 2000m and 

approaches the operating limits for BGS sample recovery equipment. The 

Pinger results shown in fig. 3.2 gives a good indication of the sea-bed 

conditions in The Peach area. The most prominent feature seen in fig 3.2 is 

the edge of the continental shelf and associated slumped sedimentary 

sequences. To the east of the shelf edge the sea-bed consists of large hollows 

with varying types of sediment infill punctuated by outcropping boulders. To 

the west of the shelf edge, the dominant features on the sea-bed are slumped 

sediments associated with the steep edge of the shelf. These slumped 

sediments are followed westwards by layered sediments which in turn give 

way to hummocky sediments. 

MV. British Magnus, under charter to BOS, was surveying the Peach area 

area during November 1985. This gave me an opportunity to undertake 

measurements and sampling in a shipboard environment. It also provided the 

opportunity to obtain samples for magnetic analysis from core material fresh 

from the sea bed. There was also ample opportunity to observe BGS deck 

crew practices whilst participating in the cruise  and assess the possibility of 

handling effects upon subsequent palaeomagnetic measurements. Sample 

station positions for the Peach area are shown in fig. 3.3. 

3.2 Ship board sampling and magnetic measurement 
procedures 	- 

Work undertaken at sea principally consisted of intensive subsampling of 

selected cores as they became available. Subsamples were obtained from 

vibrocores and gravity cores, the subsamples were placed in refrigerated 

storage until disembarkation. 

Bartington subsample susceptibility equipment was available for use on 
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board M.V. British Magnus. All subsamples taken were subjected to volume 

susceptibility measurement. Chemical salt standards were also measured to 

check for any discrepancy in instrument calibration due to the environment of 

the ships laboratory. 

3.3 Laboratory sampling and magnetic measurement 
procedures 

The subsamples taken on the ship were supplemented by additional 

subsamples taken on land. In many instances, these additional subsamples 

were taken from the same position downcore as at sea with a view for 

checking for consistency between ship and shore measurements. 

All subsamples were subjected to NRM measurement using the CCL 

cryogenic magnetometer. Using these NRM measurements it was then 

possible to select a range of representative pilot samples for 

A.F. demagnetisation studies. Mass-specific susceptibility measurements were 

also undertaken on subsamples at this stage. 

A whole core sensor for the Bartington susceptibility equipment became 

available early in 1986. This sensor was used to provide whole core 

susceptibility profiles for 70 vibrocores and gravity cores from the Peach area. 

IRM acquisition curves were grown for 60 pilot samples taken from a range 

of cores to give an indication of the magnetic remanence carriers. Further 

confirmation of NRM carrier was sought using Curie point analysis on magnetic 

extracts obtained using equipment designed by Von. Dobeneck (pers. comm. 

1985), and simple magnetic gradient methods described in chapter 2. 

3.4 Results 

1 Palaeomagnetic Results 

NRM results for contiguous subsamples from cores 56-10 32VE are shown 

in fig 3.4. All subsamples exhibited a normal polarity. Inclination data for core 

56-10 32VE varies between 45 °  and 70 0  with an average value of 

approximately 60 ° . Relative declination is seen to vary downcore by +1- 600. 

Intensity is seen to rise downcore from a minimum of 25 mAm 1  in the top 
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5cm to 400 mAm 1  by 100cm, before decreasing to 210 mAm 1  for the lower 

reaches of the core. 

Demagnetisation results for pilot samples taken from various depths down 

core 56-10 32VE are shown in fig 3.5. For each sample, an orthogonal 

projection, normalised intensity plot and stereographic projection of the 

palaeomagnetic data are shown. The scales on the orthogonal plots are 

normalised with respect to maximum intensity. On the orthogonal plot a single 

dominant component of NRM can be seen for all subsamples. There is 

evidence of a minor secondary component in subsamples 22 and 172. The 

slight secondary component shows up clearly on the stereographic projection, 

distracting from an otherwise tight data grouping. A median destructive field 

in the range 21-23 mT is seen for all subsamples. 

2 Mineral magnetic data 

Whole core susceptibility 

Whole core susceptibility profiles for all 66 cores from the Peach area are 

shown in figs 3.6a to 3.61. Three cores have been picked out as examples 

illustrate the range of data and are shown in fig 3.7. Whole core susceptibility 

values are seen to range from a low of 3 instrument units in core 56-09 168VE 

to over 2000 arbitrary units in core 56-09 159VE. Many cores exhibit 'spikes' in 

their susceptibility profiles. Within core variation in susceptibility patterns 

downcore differ widely between cores. Most cores, eg core 56-09 129VE 

exhibit little change in susceptibility downcore, but others exhibit considerable 

change, eg core 56-09 155VE. 

Mean values for whole core susceptibility are shown superimposed on a 

map of Pinger derived sedimentary data from part of the Peach area (fig 3.8). A 

wide range of mean whole core susceptibility values (from less than 10 

instrument units to over 200 instrument units) are observed. 

Subsample Susceptibility 

A comparison of ship and land based measurements of volume 

susceptibility is shown in table 3.1. 
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Table 3.1 Comparison of susceptibility values for 
ammonium ferrous sulphate standards between ship 
and shore based measurements. 

Standard 	'Shipboard' 	'Shore' 

2.2 cm cube 	2.31-2.43 	2.35-2.45 

10 cc cylinder 	5.6-5.9 	 5.6-5.8 



56-10 29VE 	 56-10 30CS 56-10 33VE 

•0 

0 

- Fig 3.6á-1 Whole core susceptibility profiles for cores from the Peach area. 
Susceptibility is in arbitáry units. 
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IRM acquistion data 

IRM acquisition curves were grown for approximately 60 subsamples from 

the Peach cores. Fig. 3.9 shows four examples taken from varying depths 

down core 56-10 32VE. Coercivity varies from 40 to 60 mT and increases with 

depth. SIRM/X ratios also increase with depth from 12.8 kAm 1  at 112cm to 

21.1 kAm 1  at 343cm. 

Curie Point Analysis 

Curie point analysis for a typical sample from the Peach area is shown in 

fig 3.10. The extract from core 56-10 28VE shows a loss of magnetisation at 

580 ° C, characteristic of magnetite. 

3 Geological core logs 

These logs were compiled from observations made by the duty geologists 

on board the sampling vessel that recovered the cores. Where appropriate, 

more detail has been added by the author based on laboratory observations. An 

example of a geological core log is shown in fig 3.11. 

3.5 Discussion 

1 Palaeomagnetic Parameters 

The palaeomagnetic data shown in fig 3.4 for core 56-10 32VE is typical for 

cores studied in the Peach area. There is a clearly measurable and consistent 

signal downcore. The record is too recent to record a change in magnetic 

polarity and lacks sufficient features for a satisfactory match to a secular 

variation master curve, for example that of Turner and Thompson (1981). 

Interpretation is further complicated by a slight alignment misrratch as seen in 

the declination data between core sections. Core 56-10 32VE suffered less from 

misalignment between lm sections than other cores studied. Alignment 

problems of this nature were found to be present to varying degrees in all BGS 

cores. 

The absolute value of the palaeomagnetic inclinations is low for the latitude 

of the sample sites. An inclination of 71 ° would be expected for a latitude of 

56 °  in the Peach area using a geocentric axial dipole field model. For such a 
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model the simple equation Tan I = 2 TanA where I is the inclination and A the 

latitude, provides the approximate inclination value. 

Demagnetisation data for pilot samples from core 56-10 32VE (fig 3.5) 

reveal an NRM dominated by one component. There are signs in some 

samples of a minor secondary component, suggesting some slight realignment 

of magnetic remanence carriers after their initial acquisition of a ORM. The 

presence of multiple components of magnetisation was considered very likely 

in samples from vibrocores as the vibration that provided the energy for core 

penetration into the sediment could also be expected to realign magnetic 

grains in the present magnetic field at the coring site. The fact that secondary 

components are only seen in some and not all subsamples suggests that 

realignment depends on varying downcore litholog. One possibility could be 

that the sedimentary horizons which provided the greatest resistance to 

penetration would be subjected to a vibration longer so resulting in a greater 

chance for grain realignment. In all cases where a secondary component was 

found, the primary component still contributed over 90% of the natural 

magnetic remanence. 

2 Mineral Magnetic Parameters 

IRM acquisition curves were grown on pilot samples in order to determine 

the magnetic mineralogy of the cores. Four examples are of IRM acquision 

curves are shown in fig 3.9. In the 60 subsamples examined, saturation was 

seen to occur in fields of approximately 100 to 120mT, with 90% of the 

saturation IRM occuring before 100 mT. Saturation at these fields indicates a 

magnetite dominated magnetic mineralogy. The remaining 10% of the 

saturation remanence can be accounted for by high coercivity minerals, for 

example haematite. Variation in the shape of IRM curve below lOOmT are 

associated with changes in magnetite grain sizes. The IRM curves for the four 

samples from core 56-10 28VE show a trend towards slightly increasing 

coercivity with core depth. 

Curie point analysis on extracts from the IRM subsamples (fig 3.10) shows a 

loss in magnetisation at approximately 580 ° C, as would be expected for 

magnetite. (table 2.2) The shape of the curve is that of pure magnetite (see fig 

2.13), with no evidence of an initial decay or regaining of magnetisation caused 

by the presence of titamagnetites. The minority high coercivity component 
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was not evident in the Curie balance results, either being masked by the 

dominant magnetite component or more likely being difficult to extract with the 

permanent magnet technique. 

Whole core susceptibility data provided information for all cores available 

from the Peach area. The examples shown in fig 3.7 illustrate some of the 

principal susceptibility patterns seen. Values of whole core susceptibility varied 

both within and between cores. The variation between cores was much 

greater than the variation downcore, and these between core differences could 

be used as a basis for identifying different surface sediment types, as shown in 

fig 3.8. By taking a median value for each core, it was possible to produce 

point data to compare with sedimentary types defined by other methods. This 

susceptibility mapping approach was found to be effective as long as downcore 

fluctuation in susceptibility was limited compared to the between cores 

siceptibility changes. Variation in susceptibility between cores was several 

orders of magnitude in the Peach area. For example, there is a marked 

contrast in susceptibility between cores 56-09 169VE (susceptibility 

approximately 6 instrument units), 56-10 24CS (susceptibility approximately 50 

to 60 instrument units) and 56-10 28VE (susceptibilities in the range 180 to 700 

instrument units). 

Superimposed upon the whole core susceptibility profiles of many cores 

were spikes associated with the presence of glacial dropstones. Such features 

are shown on the profile for core 56-10 28VE in fig 3.7. Dropstones were easy 

to detect, magnetically, visually and by X-Ray. The dropstone effects were 

manually removed when calculating median susceptibility values for the 

sediment. 

Mass specific susceptibility was found to be the same for subsamples from 

both ship and shore measurements. This consistency is shown by table 3.1 for 

two chemical standards, confirming the validity of comparing ship- based and 

land measurements. 

Conventional heavy mineral (heavy liquid, panning) separation techniques 

proved inadequate for use on the Peach area materials on account of to the 

particle size distribution . As the majority of the Peach sediment was less than 

63 pm in size, clogging occurred during filtration. Dispersal of these small 

particles also proved difficult and rendered the separation techniques 

65 



impractical. 

Susceptibility horizons coincided well with changes in lithology (as recorded 

by the ship4s duty geologist) once the effects of dropstones had been manually 

filtered out. On account of the limited down core variation in litholy in the 

Peach cores, the downcore changes in susceptibility are not as as immediately 

obvious as in for example cores taken in the Witch Ground Basin (see chapter 

5). Nevertheless, some general susceptibility trends with depth are still clearly 

visible. For instance, in core 56-10 32VE (fig 3.11) a change at approx 70cm 

from very soft, silty greyish brown mud to very soft, highly plastic dark- grey 

mud is reflected in both susceptibility (fig 3.6) and palaeomagnetic intensity (fig 

3.4). Both the latter sets of magnetic data show a graded change occurring 

over a zone from the top of the core to about 50cm down core. In many 

respects the magnetic results are superior to the geological observations as 

they can show a gradual but significant change without being restricted to an 

exact changeover horizon. 

IRM acquisition data for the two sediment types in core 56-10 32VE 

illustrated a similar magnetite dominated mineralogy to eachother but with 

different total concentrations of magnetic minerals, reflected in the differing 

mass specific susceptibilitV and SIRM data for each sediment type. 

3 Deck Operations 

Actual observations of BGS sample ship deck operating procedures provided 

an insight into practices which could have an influence on the magnetic 

properties of the samples recovered. Alignment of lm sections of cores tended 

to be not as rigidly applied as would be the case in a study specifically 

designed for palaeomagnetism. The core cutting process provided the greatest 

hazard for core contamination, a rusty hack-saw being the standard cutting 

tool. To avoid any undue interference from this process, any magnetic 

measurements taken within 5cm of the and of a core section have been treated 

as unreliable. Another problematical aspect of core recovery is the tendency 

for core material to expand when recovered from deep water (over 1600m). 

This remains a somewhat unquantifiable aspect of continental shelf sampling 

operations. 



Greyish Brown Mud 12.5Y 5/21 
V. soft, silty. Coarse silt + v. fine 
sand dominantly composed of forams. 

- 
	

Dark Grey Mud ISV 4/11 
V. soft, highly pLastic. 
Scattered dark grey to black organic spots. 

2 -- - 

- Fig 3.11 Geological log of core 56-10 32VE based on observations on board MV 
British Magnus. 



3.6 Significant Points 

A measurable NRM can be obtained from a vibrocore. 

The Peach area palaeomagnetic records were of insufficient length to 

show a magnetic reversal stratigraphy. 

The recorded inclination is shallow for the latitude. 

The secular variation pattern is clear, but does not have sufficient 

features for a match to a master-curve. 

The magnetic mineral assemblage appears to be dominated by low 

coercivity magnetite, with some evidence of minor amounts of a high coercivity 

mineraL 

Due to the simple magnetic mineral assemblage in the Peach area, 

susceptibility measurements offer a means of mapping sediment type. 
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CHAPTER 4 
FLETT AREA 

4.1 Background 

• Core material from the Flett area (fig 4.1) was obtained using the survey 

ship M.V. Kommander Subsea during October 1988. The Kommander Subsea 

cruise was arranged by BGS to complete geological survey work previously 

undertaken in the Miller, Flett and Judd regions. The cruise gave the author an 

opportunity to test the newly acquired Bartington whole core susceptibility 

equipment whilst participating as a crew member on board the M.V. Kommander 

Subsea. 

A selection of fresh material from a range of locations was recovered. The 

majority of core sites fell within the Flett area, with occasional cores being 

taken in the Miller and Judd regions. Sampling station positions are shown in 

fig. 4.2. At several sample stations, duplicate cores were recovered and are 

marked in fig 4.3 by suffixes 'i' and 'ii'. Whole core susceptibility profiles were 

taken on all duplicates to compare the consistency of both the coring 

technique and whole core susceptibility measurements. 

Following retrieval from the sea bed, most cores were split on board the 

Kommander Subsea. Split cores could then be subsampled. The subsamples 

were retained for fuller magnetic analysis on shore. 

After the return of the M.V Kommander Subsea to port, cores were 

transferred to BGS core stores. From here, they were easily accessible to the 

author for the subsequent two years (1986-1988). Ready access to the core 

store gave an opportunity to carry out regular repeat whole core susceptibility 

measurements on several cores. The results from the repeat measurements 

gave an indication of any change in magnetic properties of the cores during 

storage. 
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4.2 Sampling and Measurement Procedures• 

1 Shipboard Procedures 

The sampling and measurement routine on M.V. Kommander Subsea 

consisted of two principal operations. 

The whole core susceptibility equipment was used to measure as many 

cores as possible whilst complying with BGS deck operations. 36 gravity cores 

were measured in total. 

Subsamples were taken from various sedimentary horizons within the 

cores. The subsample positions were selected on the basis of whole core 

susceptibility measurements and geological logs of the core material. 

Before using the whole core susceptibility equipment, it was necessary to 

establish an operating position with the minimum possible background 

electromagnetic interference. A straight-forward noise monitoring exercise was 

conducted in various locations physically suitable for operating the Bartington 

equipment. This exercise consisted of continuous free-air measurements with 

a note being made of the characteristics of any drift seen. It was found that 

there were two catagories of electromagnetic noise. 

(i) On a large scale, electro-mechanical plant operation associated with the 

ships diesel electric propulsion systems was found to cause occasional 

disruption in the Bartington equipment wherever it was sited on the ship. The 

occasional disturbance was usually associated with sudden changes in the 

power state of the ships thruster motors. Such changes occurred most 

frequently whilst the ship was maintaining position at a sample station. 

Consequently whole core susceptibility measurements were best taken while 

the ship was cruising steadily between sampling positions. 

Disruptions caused by the ships power units were short lived and were 

identified as sudden jumps in calibration value. The magnitude of disturbance 

was up to 20% of the value of the calibration standard, some 5 instrument 

units on the arbitrary susceptibility scale as defined in chapter 2. A 

disturbance of this magnitude was relatively insignificant in the case of Flett 

cores which generally had arbitary susceptibility values of 100 to 200. 
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However; such a disturbance would represent a considerable source of error in 

areas with low susceptibility sediments, for example parts of the Peach area 

(chapter 3) where whole core susceptibility values averaged less than 10 

instrument units. 

(ii) On a smaller scale, electromagnetic interference was found to come 

from local electrical appliances and fittings. The worst interference was found 

to be associated with operational VDUs which completely disabled the 

Bartington meter. Once the Bartington Bridge was positioned clear of local 

interference sources, an instrument drift level of less than 1 instrument unit per 

minute was maintained. Constant calibration checks against a chemical 

standard before and after measuring every metre core section were carried out. 

2 Shore based procedures and measurements 

The following sampling and measurement techniques were employed on 

shore. 

Whole core susceptibility measurements. 

As a follow up to the whole core susceptibility measurements undertaken 

on M.V. Kommander Subsea, two cores previously measured for whole core 

susceptibility at sea were selected for repeat whole core susceptibility 

measurement on shore. The repeat measurements were carried out at 6 

monthly intervals for the period 1986-1988 on cores 61-03 42CS and 61-03 

30CS. Both cores had been split onboard ship and then stored in protective 

lay-flat polythene tubing. 

Additional subsampling. 

Additional subsamples were taken from cores to supplement those taken at 

sea. During subsampling, a note was made of any samples came from 

sedimentary horizons that showed signs of disturbance. Core 61-03 42CS was 

subsampled contiguously. 

Palaeomagnetic analysis. 

Palaeomagnetic measurements for NRM were undertaken on all subsamples 

using either a Moispin fluxgate magnetometer or a cryogenic magnetometer. 

A.F. demagnetisation studies were undertaken for approximately 8 samples from 
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each core. 

Mineral magnetic measurements. 

Mineral magnetic analysis was carried out on subsamples from 9 cores. 

There were approximately 8 subsamples from each core except for 6 1-03 42CS 

where a contiguous set of subsamples were available. X and IRM acquisition 

measurements were taken for each subsample. 

Magnetic extraction. 

Magnetic extracts were obtained from samples which showed the highest 

SIRM. The extracts were then used for Curie point analysis. 

(g) Geological and Geotechnical work. 

Geological logs and geological data for Flett cores were obtained from Dr 

A. Stevenson of the BGS. These data sets were then compared to whole core 

susceptibility profiles and used in the interpretation of changes on magnetic 

properties of subsamples. 

4.3 Results 

1 Whole core susceptibility results 

Whole cOre susceptibility results for 34 cores are shown in figs 4.3a, 4.3b 

and 4.3c. These whole core susceptibility profiles are all based on 

measurements obtained whilst onboard M.V. Kommander Subsea. The length of 

core varied between 25cm (core 61-01 49CS) and 300cm (core 60-03 37CS). 

Whole core susceptibility values ranged from a low of 23 instrument units for 

61-01 49CS to a high of over 800 instrument units for 60-05 26CS. The 

majority of the cores from the Flett area showed considerable downcore 

variation in whole core susceptibility . The exceptions to this variation were 

61-01 49CS, 61-01 50CS and 61-01 51CS which were physically too short to 

record much variation. 

Of the duplicate cores (suffixes i and ii), nearly all have very similar patterns 

of downcore variation in susceptibility. The three triplicate cores for site 60-06 

17 show dissimilar susceptibility patterns due to different amounts of sediment 
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recovered. 

The downcore variation patterns are generally graded over several data 

points. However, some cores show abrupt changes in susceptibility warranting 

individual mention. Core 60-03 33CS has a rapid drop in susceptibility from 

200 to 50 instrument units at a depth of 125cm. A similar feature is seen in 

60-06 15CSii at 125cm. Cores 60-06 14CSii and 60-05 26CS exhibit sudden 

spikes in their susceptibility profiles. In the case of 60-03 26CS there is a 

sudden jump from 50 to over 800 instrument units in the top 25cm. 

2 Repeat whole core susceptibility results 

Figs 4.4a and 4.4b show the whole core susceptibility profiles for cores 

61-03 42CS and 61-03 30CS repeatedly measured between 1986 and 1988. In 

the case of 61-03 42CS, all the susceptibility profiles follow a near identical 

pattern, steadily fluctuating between 50 and 175 instrument units. The whole 

core susceptibility profiles for 61-03 30CS show a similar consistency but with 

a slight offset in the profiles at 100cm coincident with the ends of a core 

section.. 

3 Repeat subsample measurements. 

Data for repeated measurements of subsamples from core 61-03 42CSare 

shown in table 4.1. Volume susceptibility shows little evidence of a change 

between 1986 and 1988, the maximum change being approximately 9% in 

samples from the top 5cm of the core. The average change in susceptibility 

downcore is less than 3%. SIRM data in table 4.1 exhibits greater change than 

susceptibility, the minimum change being 4% with one sample showing a 16% 

increase. The average change in SIRM is approximately 10%. SIRM/X ratio 

data for the 1986-88 period shows the cumulative effects of changes in 

susceptibilty and SIAM. Samples from the top 10cm of core 61-03 42CS show 

changes in SIRM/X ratio of 17%. However, the average change in SIRM/X ratio 

is approximately 7%. 

4 Mineral Magnetic Data from subsamples 

Mineral magnetic data were available for 9 cores from the Flett area. The 

ranges in x and SIRM/X ratio values for each core subsampled are shown in 

table 4.2. Subsamples from core 61-03 42CS showed the greatest range of x 
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and SIRM/X ratio values and it was consequently selected for continuous 

subsampling 

Fig. 4.5 shows the mineral magnetic data for a contiguous set of 

subsamples from core 61-03 42CS. This data consists of whole core 

susceptibility, x SIRM, SIRM/X, S ratio and HIRM. The whole core susceptibility 

data shows a gentle but continuous fluctuation downcore between a maximum 

160 and minimum 60 instrument units. x data shows a higher frequency of 

variation than whole core susceptibility. x values peak at just over 3 11m 3 kg 1  

in the top 50cm, decreasing to an average of 1.25 Im 3kg 1  in the lower 

reaches of the core. SIRM data has a very similar pattern to x with peak values 

of 100 mAm 2 kg 1  in the top 25cm steadily decreasing to fluctuate between 20 

and 40 mAm2 kg 1  further downcore. In contrast to the whole core 

susceptibility, x and SIRM data, the SIRM/X ratio remains virtually constant 

downcore at approximately 20 k.4m 1 . The only deviation from this value are 

peaks to about 30 kAm 1  seen in the top 25cm and at a depth of 160cm. The 

S ratio varies inversely with the SIRM/x ratio and shows two dips in value, one 

in the top 25 cm and the other at 160 cm. HIRM data reflects the pattern seen 

in SIRM, but with less amplitude of variation. A peak value for HIRM of 35 

mAm 2kg' is seen in the top 25cm, reducing to an average value of 7 

mAm 2 kg 1  further downcore. Occasional peaks in HIRM are seen at 160cm (12 

mAm 2kg 1 ) and 240cm (10 mAm 2 kg 1 ), similar to the peaks seen in x and SIRM 

at these depths. 

5 IRM acquisition curves 

Two IRM curves representing the extreme range of data from 61-03 42CS 

are shown in fig 4.6. The curve drawn from a subsample taken from 4.5cm 

does not reach saturation until approximately 120mT whereas the sample from 

130cm has saturated by 100mT. 

6 Thermomagnetic Analysis 

Fig 4.7 shows the thermomagnetic analysis results from an extract taken 

from core 61-03 42CS. A loss of magnetisation is seen at approximately 

580 ° C. Both heating and cooling curves are very similar, the magnetisation 

following the same path during heating and cooling cycles. 
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Sample depth 

2.5 
4.5 

10.0 
22.5 
35.0 
43.5 
57.5 
66.5 
83.5 

104.5 
130.0 
170.0 
212.0 
232.0 

Vol. Susc. 
1986 1988 % change 

6.79 7.37 +9 
7.23 7.88 +9 
9.97 9.99 +3 
11.16 14.49 #2 
14.81 14.94 #1 

9.12 9.03 -1 
14.31 14.21 -1 
10.40 10.37 -1 
9.50 9.76 43 
12.02 12.33 43 
5.77 5.79 00 
8.07 8.19 #1 
7.53 7.75 #3 
9.50 9.91 +4 

SlPM/ kAm' 
1986 	1988 	% change 

36 30 -17 
36 31 -16 
30 35 #17 
24 22 -8 
23 20 -13 
23 21 -9 
22 21 -4 
21 20 -5 
24 21 -13 
23 21 -9 
21 20 -5 
23 21 -9 
21 19 -10 
22 19 -14 

SIRM mAm2kg 1 
 

1986 	1988 	% change 

244 221 -9 
260 244 -6 
299 350 +16 
339 319 -6 
340 299 -12 
210 190 -10 
315 298 -S 
218 207 -5 
228 205 -10 
276 259 -6 
121 116 -4 
186 172 -7 
158 147 -7 
209 188 -10 

Table 4.1 - Comparison of volume susceptibility and SIRM/X data for 
subeamplem from 61-03 42C8. 	The 1986 data set was obtained just after 
sample recovery. The 1988 data set shows measurements taken on the same 
samples as 1986, but after two years 	in storage. 

Core Number x SIRM SIRM/X 

60-05 22CS min 0.18 2.9 15.5 
max 0.19 	, 3.0 15.6 

60-05 24CS min 0.785 15.0 20.2 
max 2.713 62.0 23.1 

60-05 28CS min 0.318 5.0 5.5 
max 1.419 32.0 32.0 

60-05 29CS min 0.35 7.1 19.7 
max 1.17 27.7 23.9 

61-03 30CS min 0.29 5.3 17.5 
max 1.96 71.0 36.0 

61-03 3ICS min 0.45 9.0 20.2 
max 1.16 25.0 21.7 

61-03 32CS min 0.80 18.0 17.7 
max 1.67 46.0 27.5 

61-03 42CS min 0.80 17.0 21.2 
max 2.60 62.0 36.6 

Table 4.2 	The range of mineral magnetic data for 
subsamples from 9 Flett cores. Units: x (1m3kg1) 
SIRM (mAm2kg 1 )7 SIRM/X. (kAm1). 
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Firm clay, carboniferous material 

Soft clay .  

Basalt Crag, pebble 
Basalt+sandstone Crags. 
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- Fig 4.10a and b Geological logs of cores 61-03 41CS and 61-03 43CS prepared by 
A. Stevenson. 
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- Fig 4.11a Geotechnical data for core 61-03 41CS with K included for compartive 
purposes. Units: K- dimen:sionless, shear strength- kPa, density- mgm 3 . 

Geotechnical data provided by A. Stevenson. 

- Fig 4.11b Geotechnical data for core 61-03 43C5 with K included for compar6.tive 
purposes. Units: K- dimensionless, shear strength- kPa, density- mgm 3 . 

Geotechnical data provided by A. Stevenson. 



in bands ranging from 1cm to 10cm in thickness. Geotechnical data (fig 4.11) 

shows considerable fluctuation downcore with data in the ranges 2-16 kPa. 

Conversely, both wet and dry densities are relatively constant downcore. 

4.4 Discussion 

1 Whole core susceptibility 

The downcore variation in wholecore susceptibility In all Flett cores can 

largely be attributed to changes in lithology. Taking a comparison of the whole 

core susceptibility profile and geological log of core 61-03 41CS (fig 4.10) as 

an example, several trends can be picked out. The large clay bands provide a 

general background variation, over distances in the order ct tens or 

centimetres. Superimposed on this low frequency variation was high frequency 

change due to local features. A typical example of a local feature is the peak in 

susceptibility in the top 25cm of core 6 1-03 43C5 due to the presence of a tuft 

and volcanic glass. 

Features from whole core susceptibility profiles (fig 4.3) provide a useful 

insight into the quality of both whole core susceptibility measurement and the 

coring technique itself. Sudden changes in susceptibility, for example at 100cm 

in core 61-03 33CS are sometimes coincident with the division of the core into 

im sections. These coincidences suggested the possibility of recalibration 

problems with the Bartington Bridge in between lm sections. However, 

examination of sudden change features in duplicate cores relieves the 

recalibration doubt. For example, cores 60-06 15CSi and 60-06 15CSii both 

exhibit a sharp drop in susceptibility, occurring at 100 cm in 60-06 15CSii but 

spread over 100 to 125cm in 60-06 15CSi. If the core 60-06 CSii result had 

been examined in isolation, miscalibration would have been expected as the 

sudden change in susceptibility is coincident with a core section ending. 

Taking the core 60-06 CSi result into account where the same sudden change 

seen in core 60-06CSii is spread across some 25cm of core sUggests that 

there is a lithology controlled change in susceptibility that just happens to be 

coincident with a core end in core 60-06 CSii. 

Examination of the susceptibility profilesfrom all duplicate cores gives an 

indication of the quality of the coring technique. The profiles for sites 60-06 18 

and 60-06 19 show excellent correlation between duplicates. However, the 
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triplicate data for site 60-06 17 shows significant differences in the amount of 

core recovered, whilst the profiles for site 60-06 14 show quite different 

susceptibility patterns. The fact that in the case of some duplicates, for 

example 60-06 17CS cores, there are widely differing amounts of core recovery 

suggests that the gravity coring process is prone to inconsistent recovery. As 

well as achieving varying amounts of penetration, the gravity corer may also 

bounce on the sea bed, leading to a spurious core being collected. 

2 Repeat Measurements 

Repeat whole core susceptibility results for cores 61-03 42CS and 61-03 

30CS (fig. 4.4a and 4.4b)show excellent consistency with time. The lack of 

change is an excellent result especially considering that both cores had been 

split and subsampled with consequent risk of oxidation. 

The stability during storage is quite different to results obtained by other 

workers. For example Snowball and Thompson (1988) record large changes in 

susceptibility in Loch Lomond sediments due to the oxidation of the iron 

suiphide, greigite (Fe 3S 4 ). 

Repeat measurements on subsamples (table 4.1) from core 61-03 42CS 

revealed a greater change in storage than seen for the whole core 

susceptibility. Subsample susceptibility changes were acceptably low with less 

than 4% being the norm. However samples with high SIRM/X ratio values (36 

kAm 1 ) showed changes of nearly 10% in susceptibility and 17% in SIRM/X 

ratio after two years, compared to an average 8% for samples with SIRM/X 

ratio values initially in the order of 20 to 24 kAm 1 . All samples showed a drop 

in SIRM/X ratio value after two years. The greater percentage drop in SIRM/X 

values for material with initially high SIRM/X ratios than that in material with 

initially low SIRM/X ratios points to a possible suiphide oxidation (Ian Snowball, 

pers comm). It should also be noted that the higher SIRM/X ratios occurred 

near the top of the core. Here one would expect a more unstable chemical 

situation with the various constituents of the core yet to reach a chemical 

equilibrium. 
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3 Palaeomagnetic data 

The palaeomagnetic data obtained from Flett cores (fig 4.8) is of good 

quality in that the NRM direction and intensities and direction are stable under 

demagnetisation (fig 4.9). The small secondary component in the Zijderveld 

plots could be attributed to magnetisation picked up during coring or storage. 

It may also reflect the presence of a slight post-depositional CRM, and there 

was also the possibility of error from subsampling as described by Stumpd"( 

(1986). However, whatever its cause, the intensity of the secondary component 

is small compared to that of the principal component. 

Despite the quality of the NRM retained by individual subsamples, the 

downcore NRM data is of limited value. There are rapid fluctuations in 

direction between adjacent subsamples making overall features difficult to 

identify. The situation is further complicated by the mismatch in declination 

results at 100cm. This mismatch is due to poor orientation control during core 

cutting on ship. One overall feature of the downcore palaeomagnetic record 

that can be identified is the shallow average inclination. The inclination based 

on a geocentric axial dipole model (tan I = 2 tanX where I is the inclination and 

A the latitude) should be 74 0 . The data for core 61-03 42CS shows an average 

of 600.  Inclination errors are commonly found in continental shelf and 

estuarine situations (eg Bjorck and Sandgren, 1987). Defining the cause of 

inclination error has proved difficult. Several possible mechanisms are 

presented by King (1966) and Griffiths and King (1960). These explanations 

generally involve the physical realignment of sediment grains following 

deposition and depend very much on the characteristics of certain sediment 

types. A much more mundane explanation of the shallow inclinations could be 

the• persistent non-vertical entry of the gravity corer. As cores were being 

recovered from depths of several hundred metres, it is easy to visualise a 

situation where a slight movement of the ship or drag of the current on the 

corer cable could cause a few degrees of tilt. 

4 Mineral Magnetic Results 

Varying concentrations of magnetic minerals are reflected in x SIRM, and 

HIRM parameters for core 6 1-03 42CS (fig. 4.5). Despite the frequent 

fluctuations in concentration, the proportion of high to low coercivity 

components remains steady as reflected by near constant S ratio and SIRM/X 

ratio values. The only exceptions to the near constant downcore values are 
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found in the top 25cm and at a depth of 150cm. At these depths a slight 

increase in SIRM/X ratio from 20 to 32 kAm 1  and drop in S ratio value from 

0.9 to 0.6 reflects an increase in high coercivity components. IRM acquistion 

curves for subsamples (fig 4.6) from 25 and 150 cm emphasise the difference 

in coercivities. The relatively high coercivity sample from 4.5cm is only 80% 

saturated by lOOmT whilst a typical coercivity sample from 130cm is 95% 

saturated by lOOmT. The coercivity data suggests a magnetic mineral 

assemblage dominated by magnetites but with a minority high coercivity 

component, probably haematite present. Comparison of coercivity data from 

Flett to that obtained from the Peach area (fig 3.9) shows little difference 

between a normal coercivity Flett sample and a normal Peach sample. If the 

coercivity values for Flett material are used in conjunction with the SIRM/X 

ratio as in fig 2.10, it can be seen that the value for samples from the Flett 

area fall well within a magnetite classification. 

Thermomagnetic analysis of magnetic extracts (fig 4.7) gave a Curie 

temperatUre of 580 ° C, suggesting magnetite as the dominant magnetic mineral. 

There was no sign of any significant fluctuation in magnetisation before the 

Curie temperature either during heating or cooling cycles suggesting a 

relat!vely pure extract devoid of clay minerals that could increase the 

magnetisation during the measuremOnt run as iron bearing minerals oxidised to 

form magnetic oxides. 
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4.5 Significant Points 

The Bartington whole core susceptibility equipment can operate 

successfully onboard survey vessels. 

Whole core susceptibility profiles correlate with geological horizons in 

cores from the Flett area. 

No variation in magnetic susceptibility was found during core storage for 

a period of up to two years. 

Mineral magnetic composition showed little variation downcore and was 

dominated by magnetite. 

A strong stable palaeomagnetic signal of normal polarity was seen. The 

average inclination values were shallower than would be expected from a 

dipole field model. The secular variation pattern lacked sufficient features to 

be matched to a palaeomagnetic master curve. 



CHAPTER 5 
CENTRAL NORTH SEA 

5.1 Introduction 

The Central North Sea was subjected to extensive geophysical survey and 

geological sampling during the 1970s by BGS. In addition to routine BGS 

reports and analysis considerable further work was carried out by Bent (1987). 

He provided a Qua ternary stratigraphic framework for the sea bed in grid 

squares 58N 00W, 58N 01W and 58N 02W (see fig 5.1). Detailed geological 

descriptions of several suites of cores are included in his thesis against which 

magnetic data obtained during my study could be compared. Positions of the 

cores used in the latter are shown in fig. 5.1b. Palaeomagnetic work on 

borehole material from the Central North Sea had been successfully undertaken 

by Stoker et al (1983). Some of their results are shown in figs 5.2 and 5.3. 

Unfortunately, material from the BGS boreholes used by Stoker et al was no 

longer available for further analysis. However, virtually all the core material 

examined by Bent (1987) were still available for use from BGS stores. 

5.2 Core Selection and Magnetic Measurement Procedures 

Cores were selected for whole core susceptibility measurement on the 

basis of their varied lithology. The whole core susceptibility profile for each 

core was used in conjunction with the geological log and state of preservation 

of each core to decide on a programme of further magnetic, piticle size and 

heavy mineral analysis. 

Of the 22 cores originally used for whole core susceptibility measurements 

in the Central North Sea area, two were found to be of particular interest for 

further study: cores 58-02 231VE and 58-02 122VE. Visual examination of the 

original 22 cores revealed that only one core, 58-02 122VE was in a good 

enough state of preservation to warrant subsampling for palaeomagnetic 

purposes. Other cores had dried out to such an extent that their sedimentary 

fabric had visually altered with widespread cracking apparent. Palaeomagnetic 

work on core 58-02 122VE was undertaken by W. Suttie as an undergraduate 

project under the supervision of the author. Contiguous subsamples were taken 

from core 58-02 122VE and measured for NRM in the cryogenic magnetometer. 
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- Fig 5.2 Location map showing sites of previous palaeomagnetic work in the North 
Sea (from Stoker at al 1983). Position codings refer to BGS borehole numbers. 
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24 of the subsamples were used in pilot AF demagnetisation studies. 

Core 58-02 231VE was too dried out to be considered for palaeomagnetic 

analysis. 	However, it possessed a 	varied lithology 	and produced the most 

varied whole core susceptibility profile 	of the original 22 cores examined. 	It 

was 	consequently an 	ideal 	candidate for 	additional mineral 	magnetic 

investigation. Subsamples were taken at 5cm intervals. These subsamples 

were then used for a standard set of mineral magnetic measurements with X' 

SIRM, SIRM/X, S and HIRM being derived for all subsamples. Backfield IRM 

curves were also obtained for pilot samples. 

The patterns seen in the mineral magnetic data for core 58-02 231VE were 

then used to decide where to take further large samples for heavy mineral 

work. The large samples (500 g) were necessary for use in the shaking table 

heavy mineral extraction technique. Additional small samples (20 g each) were 

taken at the same horizons as the large samples for use in magnetic extraction 

studies. 

Due to the large quantities of sample used by the shaking table, the splits 

obtained from it were of sufficient size to to be used for backfield IRM analysis. 

The much smaller but more concentrated extracts obtained by magnetic 

techniques were used for thermomagnetic analysis. 

Approximately 50g of each large subsample was retained for particle size 

analysis. This analysis was carried out using a 63i1m mesh sieve to give sand 

(>63pm) and mud/silt (<63jim) fractions. 

5.3 Results 

1 Whole Core Susceptibility 

Fig 5.4a, 5.4b and 5.4c show the whole core susceptibility profiles for the 22 

cores selected from the central North Sea. The length of core varied between 

a minimum of 180cm in the case of core 58+00 195VE to a maximum of 570cm 

in the case of core 58-01 207VE. Whole core susceptibility values ranged from 

a low of 2 instrument units at the top of core 58-02 121VE to a high of over 

70 instrument units at the top of core 58+01 61VE. The pattern of downcore 

variation in whole core susceptibilty differed between cores, but the majority 
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Fig 5.4 Whole core susceptibility profiles for 22 cores from the Central North Sea. 
Susceptibility is in arbitary units. 
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had a near constant susceptibility downcore. The most obvious exception to 

this was core 58-02 231VE which exhibited quite marked changes in 

susceptibility downcore apparently due to its varied lithology (fig 5.5). These 

downcore changes are explained in conjunction with other mineral magnetic 

data for core 58-02 231VE in the next section. A frequently occurring feature 

in many cores was an occasional dip in the susceptibility log, for example at 

200cm in core 58-02 164VE and at 200cm in core 58+0 1 80VE. These 

susceptibility dips are attributable to gaps in the core caused by either cracking 

or previous subsampling. 

2 Mineral Magnetic Data - Core 58-02 231VE 

Downcore mineral magnetic data for core 58-02 231VE is shown in fig 5.6. 

Whole core susceptibility, x. SIRM, SIRM/X ratio, HIRM and S ratio all show 

considerable variation downcore. 

The whole core susceptibility starts from an initial value of 5 instrument 

units at 5cm, then gradually increases with depth until reaching a broad peak 

of 40 instrument units at 175cm, before dropping back to about 5 instrument 

units by 300cm. 

X shows a similar pattern to whole core susceptibility, starting low at 0.05 

mAm 2 kg 1  in the top few cm and steadily to a broad peak of 0.35 mAm 2 kg 1  by 

180cm. This peak value is then followed by a decline to approximately 0.02 

mAm2kg 1  by 270cm. 

The SIRM pattern is similar to that seen in x starting low at 0.5 m 

Am2kg+(-1) in the top few cm of core, gradually increasing to 5 mAm 2  kg 1  at 

200cm before decreasing to approximately 1 mAm 2 kg 1  by 270cm. 

The SIRM/X ratio, unlike whole core susceptibility, x and SIAM does not 

show a continuous variation downcore. Instead, SIRM/X ratio values fluctuate 

slightly between 10 and 14 kAm 1  for the top 230cm of core. From 230cm to 

280 cm there is a rapid increase from 14 kAm 1  to 30-35 kAm 1  followed by a 

gentle increase to nearly 40 kAm 1  by the bottom of the core. 

HIRM data shows a similar pattern to K, x and SIRM, but with a plateau 

value of 1.2 mAm 2 kg 1  between 180 cm and 240 cm instead of a clearly 

defined peak. Values either side of the plateau are in the range 0.2 to 0.3 
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mAm 2kg 1 . 

The S ratio shows a similar pattern to SIRM/X, steady in the top 225cm of 

core with a value of about -0.2, then a rapid increase to +0.8 by 270cm 

retaining the latter value until the base of the core. 

Backfield IRM curves for 3 pilot samples taken from three different 

sedimentary horizons down core 58-02 231VE are shown in fig 5.7. These 

horizons corresponded to depths of 100 cm, 220 cm and 400 cm. The lAM 

curves for samples from 100 cm and 220 cm are very similar in both pattern 

and magnitude of coercivity whereas the IRM curve for the sample from 400 

cm differs both in pattern and magnitude of coercivity. The curves for samples 

from 100 cm and 220 cm consist of two sections. In the first section, up to an 

applied field of 100mT, the IRM data curves smoothly. However, from 100 mT 

onwards, the curve becomes almost linear. Both the samples from 100cm and 

220 cm give a coercivity of approximately 45 to 60 mT. The IRM curve for the 

sample from 400 cm consists of one smooth convex curve with a coercivity in 

the order of 290 mT. There is no sign of the secondary linear feature seen in 

samples from 100cm and 220 cm. 

3 Shaking Table and Particle Size Results 

The results of shaking table separation on a subsample from a depth of 

400cm are shown in fig 5.8. IRM curves for the bulk sample and heavy and 

light fractions are shown. The bulk sample has a coercivity of over 300mT, the 

heavy fraction a coercivity of 200mT and the light fraction a coercivity of 

100-120 mT. The curves for bulk sample and heavy fraction appear to be 

smooth, unlike the curve for the light fraction which appears to consist of two 

parts. 

The results for particle size work are shown in fig 5.9. IRM curves have 

been done for the original samples and for both the >631im and <63i1m splits. 

The bulk sample has a coercivity of about 200mT, the <63m split a coercivity 

of lOOmT, and the >63 1Am split a coercivity of 160 mT. 
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4 Thermomagnetic Results 

The Curie balance analysis data for two magnetic extracts from core 58-02 

231VE are shown in fig 5.10. The B extract came from 110 cm downcore and 

exhibited a curie temperature of about 580 ° C. The E extract came from 400cm 

downcore and exhibited a Curie temperature of 680 ° C. The 110 extract gave a 

smooth curve with magnetisation reaching 20% of its room temperature value 

at 600 ° C. The 400 extract gave a rougher curve, with approximately 40% of its 

room temperature magnetisation remaining at 700 ° C. 

5 Palaeomagnetic Results 

Downcore NRM results for a contiguous set of subsamples from core 58-02 

122VE are shown in fig 5.11. The inclination, declination and intensity data all 

show differing characteristics. The inclination has a low value of 40 0  in the 

top 5cm of core, rising to a steady 80 °  in the band 50-150cm. From 175cm 

downwards inclination values drop to a steady 55 0 . The inclination pattern is 

very erratic in the top 50cm with 20 0  jumps between adjacent data points, but 

becomes much more stable further downcore. The declination data for core 

58-02 122VE is very erratic in the top 100cm, but stabilises to a value of 

approximately 220 0  by 110cm. Intensity data shows a near constant value of 

0.01 .iAm 2 kg 1  in the top 225cm. Between 225cm and 240cm intensity rises to 

0.2MAm 2  kg 1  where it remains for the rest of the core. 

Demagnetisation results for three typical pilot samples for core 58-02 

122VE are shown in fig 5.12. The pilot samples taken from 37cm, 204.5cm and 

552cm represent the main demagnetisation characteristics seen in all pilot 

samples from core 58-02 122VE. The sample from 37cm shows erratic 

directional behaviour under demagnetisation. The Zijderveld plot shows at least 

three components present with no overall dominant component visible. The 

erratic directional data results in scattered data on the stereographic projection. 

The sample from 204.5cm shows more stable directional behaviour under.  

demagnetisation. The Zijderveld plot shows the presence of several 

components but an overall direction is clearly visible and the data grouping on 

the stereographic projection much tighter than for the 37cm sample. The 

sample from 552cm has a single clear directional component visible in the 

Zeigerfeld plots and a consequently tight grouping of points on the 

stereographic projection. 
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5.4. Discussion 

1 Whole Core Susceptibility 

Whole core susceptibility profiles for cores from the Central North Sea 

reflects the variations in lithology seen in the cores. Core 58-02 231VE shows 

the most distinct susceptibility changes with lithology as shown by comparing 

the original geological log drawn by Bent (1987) and the whole core 

susceptibility profile in fig 5.5. The downcore lithologyof core 58-02 231VE 

consists of a gradual change from sands, to muds, and then a rapid change to 

diarnict material. The various lithological changes are easily seen in the 

susceptibility profile, with values peaking in the fine mud section. The gradual 

increase in whole core susceptibility with increasing proportion of mud seen in 

the top 175cm of the core suggest that particle size has a strong influence on 

susceptibility. 

2 Mineral magnetic Data 

The mineral magnetic data if. fig 5.6 for core 58-02 231VE shows two 

distinct trends. Concentration dependent parameters, K, x SIRM and HIRM all 

reflect the same trend of a peak at about 175-200cm, reflecting a change in 

dominant particle size from sand to mud. However, SIRM/X ratio and S ratio 

reflect the rapid change to diamict material at 270cm by a rapid swing in their 

values. Reference to the IRM curves further underlines the distinct difference 

in magnetic mineral assemblages between the upper and lower core sections, 

with a much greater proportion of high coercivity material in the lower 

sections. 

3 Extraction 

Attempts at extracting minerals by shaking table and magnetic methods 

provided quite differing results. If the results for the shaking table (fig 5.8) had 

been examined in isolation, it would have appeared that the shaking table had 

successfully split high coercivity and low coercivity mineralogies. However, a 

quick comparison with the particle size results in fig 5.9 suggests that the 

shaking table has merely split the original sample on a particle size basis rather 

than specific gravity. Higher coercivity material appears to be dominant in the 

>63pm fraction and low coercivity in the <6311m fraction. 
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• Magnetic extraction procedures produced much smaller but purer extracts. 

Thermomagnetic analysis (fig 5.10) showed a Curie temperature of 580 ° C, 

suggesting a magnetite dominant in the upper part of core 58-02 231VE. A 

Curie point of 680 ° C was seen for an extract from the lower diamict section of 

the core (extract E) suggesting haematite dominant in the diamict section. If 

HIRM data is examined, it can be seem that there is a similar concentration of 

haematite in the upper (HIRM = 0.35 mAm 2kg 1 ) and lower (HIRM = 0.4 

mAm 2kg 1 ) parts of core 58-02 231VE. However, there was no evidence of 

haematite in the thermomagnetic analysis of the upper extract. It would appear 

that the magnetite has dominated the haematite in the Curie analysis of the 

upper extract. However, in extract E from the lower sections of the core, the 

proportion of magnetite to haematite as shown by an S ratio of 0.8 is much 

lower than in the top section of core. Hence, despite the similar 

concentrations of haematite in the lower and upper parts of the core, it can 

only be seen in extracts from the lower half due to the near complete absence 

of magnetically dominant magnetite. 

The intensity of magnetisation seen for the E extract in thermomagnetic 

analysis is in the same order of magnitude as the magnetisation of the sample 

holder. Consequently the magnetisation seen for the E extract in fig 5.10 does 

not reach zero, the glass sample holder contributing some 40% of the total 

signal strength. If magnetite had been present in the E extract, even in minor 

amounts , the weak haematite signal would have been easily swamped. 

4 Palaeomagnetic Results 

The palaeomagnetic results for 58-02 122VE (fig 5.1 1, 512) were 

disappointing. The wildly fluctuating declination and inclination records for the 

upper part of the core suggest considerable disturbance in this area. Beyond 

the disturbed top meter, there are no significant features in declination and 

inclination suitable for a match to other secular variation data. The cores are 

also too short to record any reversal that could be matched to Stokers work. 

The demagnetisation data for pilot samples from core 58-02 122VE show 

the changing quality of the palaeomagnetic data with increasing depth. The 

sample from 37cm showed the disturbed and confused NRM 	in the upper 

regions of the core with multiple components seen in the Zijderveld plot. The 

NRM 	quality improves by 	204 cm 	becoming 	good 	by 	552 	cm. This 
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improvement in quality downcore supports the idea of excessive disturbance in 

the top meter of sediment. 

5.5 Significant Points 

1) There is a good relationship between whole core susceptibility and the 

lithology of the sediment. 

) There are a wide range of magnetic minerals present in Central North 

Sea sediments with coercivities varying between 20 and 300 mT. 

Both the concentration of magnetic minerals and magnetic stability varies 

with the sediment particle size. High coercivity minerals tend to be associated 

with the sands and low coercivity minerals with the <63.im fractions. 

Both haematite and magnetite can be removed by magnetic extraction 

techniques. 

Palaeomagnetic data from cores that have been stored for several years 

in non-refrigerated conditions are not reliable. 
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• CHAPTER 6 
FIRTH OF CLYDE 

6.1 Background 

The Clyde Estuary and waters adjacent to the Isle of Arran were extensively 

surveyed by The Institute of Geological Sciences (IGS) in five phases between 

1969 and 1971 A large volume of geophysical and geological data was 

gathered and interpreted in an IGS report published in 1973 (Deegan, 1973). 

Thd information contained in the latter is summarized in Fig 6.1 (sample 

distribution), Fig. 6.2 (onshore geology), Fig. 6.3 (surface sediment classification 

by particle size) and Fig. 6.4 (manganese distribution). 

Magnetic analysis in the Clyde area marked a move away from the exclusive 

use of core material in this thesis. Work was instead centred around the 

mineral magnetic analysis of superficial surface sediments that had been 

recovered using a Shipex Grab sampler. It was hoped to apply the technique of 

mapping sediment types through susceptibility properties developed in the 

Peach area to samples from the Clyde. However, in the case of the grab 

samples from the Clyde, mass specific susceptibility, (x) was used instead of 

whole core susceptibility. Palaeomagnetic techniques were not relevant in the 

study of surface sediments. Emphasis was placed on using x and other mineral 

magnetic parameters as rapid sediment mapping tools. 

In addition to having a large sample set readily available, the Firth of Clyde had 

other attractions as a study area. There are a large number of possible 

sediment source areas, ranging from local reworked beaches to catchments 

feeding the connecting sea-lochs (Deegan, 1973). Recent anthropogenic inputs, 

associated with approximately 300 years of heavy industrial activity centred 

around the Clyde and Ayrshire coasts are superimposed upon the 

sedimentation pattern created by the natural environment. Another factor taken 

into account in the choice of survey sites was the documented evidence of 

diagenesis within recent sediments and the associated formatkrn of manganese 

concentrations, recorded as far back as 1878 (Buchanan, 1891). It was hoped 

that some grab samples might show signs of manganese concentrations in 

their magnetic properties. 
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(Deegan 1973). 

Ll 



•:J 
fr4INERALISED $#ELL$ APC (NCRUSTAflQlS 

LITHE FRAdMEMTS 

- M4NGAkESE NODULIS 	

J 

-2 

V 
/ 

I 	N 

± 
J _ 	

AiROSAN 

Ic- ~B_RIODICK  0 

ri 

rn 

2! 
) 

CAMPBELTOW 

KR OKETRES  

9 	9 10 	Ip 	ap 	p 

ç4"30 Craig 

- Fig 6.4 Areas of manganese mineralisation in Firth of C'yde (Deegan 
1983). 



1 Sample Distribution 

Fig. 6.1 shows all the BGS sample stations in the Clyde area. The intensity 

of sampling is consideble, extending from the upper reaches of the associated 

Lochs to beyond Ailsa Craig. Sampling was carried out to within close 

proximity of the shore lines. The resulting sample set is one of the most 

comprehensive available for a UK continental shelf location. As the majority of 

work previously undertaken by BGS on samples from the Clyde region was 

non-destructive, grab samples from virtually all the sampling stations in fig 6.1 

were available from BGS stores for magnetic analysis. 

2 Onshore Geology 

The solid geology of the coastal areas adjoining the Firth of Clyde is very 

varied. As can be seen in fig 6.2, the coastlines of Kintyre, Cowal and Bute 

consist of Dalradian material. The southern tip of Kintyre features local bodies 

of Upper Palaeozoic lavas and Lower Old Red Sandstones. The coastlines of 

the Irvine and Ayr Bays consist principally of Carboniferous material with 

Palaeozoic lavas set some distance inshore. South of Ayr Bay, the coast 

around Cuizean Bay is dominated by Lower Old Red Sandstones. Situated 

slightly off the mainland, the Isle of Arran has its own peculiar geology. 

Dominating the north of the Island is a large body of Tertiary Granite, set 

within a thin belt of Dairadian material. The southern half of the island 

consists of a large mass of New Red Sandstone. 

3 Surface Deposits 

Fig. 6.3 illustrates the surface sediment distribution for the Clyde area. It is 

based on 124 complete particle size analyses combined with rapid microscopic 

examination of all other samples as they were recovered. (Deegan, 1983). 

Deegan identified three principa.( fades on the basis of particle size and 

mineralogy. 

Course Littoral Facies - Defined by 80% of the sample being greater than 

62.51im. These course facies can contain 'manganese nodules' eg in the lower 

Loch Fyne area. Magnetite is recorded as a common accessory mineral. 

Transitional Facies - the mS and SM divisions of fig 3. This facies often 

shows evidence of pea-sized manganese nodules and mineralised shell debris. 

Deep silty-clay Facies - Cohesive silty clays, not more than 1% bigger than 
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6251m. Where sand is present, magnetite is found as an accessory mineral. 

4 Manganese Distribution 

Fig 6.4 shows the areas of manganese distribution in the Firth of Clyde. The 

main manganese concentrations are of limited extent. Areas of mineralised 

shells and encrusted lithogenic fragments are seen close to the coasts of 

Arran, Kintyre and Bute. Much smaller zones of manganese nodules are found 

in Loch Fyne and the upper reaches of the river Clyde. The zones of 

manganese mineralisation located by Buchanan (1891) proved difficult to 

relocate in the 1970s surveys, suggesting that manganese mineralisation may 

be a transient feature in particular areas (Deegan, 1983). 

6.2 Measurements 

Magnetic measurements on the Clyde grab samples were carried out in 

three stages. Each stage consisted of an individual undergraduate project with 

the author providing overall supervision. Initial work was undertaken by 

Matthews (1986) working on a geographically representative set of 158 grab 

samples covering the upper Firth of Clyde region. Measurements consisted of 

x and SIRM on all 158 samples, plus the growth of IRM acquisition curves (up 

to an applied field of iT) for selected pilot samples. Matthews (1986) worked 

on the mud fraction, <63pm, from each grab sample. 

Using Matthews (1986) work as a guide, Sommerville (1987) performed 

similar work on the sand fraction of the same set of grab samples. 

Investigation of the relationship between particle size and x was also 

undertaken by Sommerville. 

The final phase of work was carried out by Anderson (1988) who took 150 

additional grab samples for x and SIRM analysis, and made 25 further backfield 

IRM analyses to complete the coverage of the southern Clyde past the tip of 

Kintyre and Ailsa Craig. Dr R. Thompson also provided some unpublished data 

on particle size and x measurements obtained for cores taken from the Clyde 

(Turner, 1978). 
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6.3 Results' 

1 Susceptibility Results 

Fig. 6.5 shows x distribution in the mud fraction as originally contoured by 

Matthews (1986). The mud x data contoured easily revealing a number of 

features in the distribution of x across the Firth of Clyde. The dominant 

feature of this distribution is the increase in x with proximity to the Ayrshire 

coast. x values of >1.2 im 3 kg 1  were common in the Ayrshire Bay. Similar 

high values were found in the vicinity of Bute, whilst lesser values (0.8 .im 3 kg' 1  

were found in pockets around the Isle of Arran). x lows were found in the 

vicinity of the eastern coast of Kintyre, x grading from 0.8 pm 3 kg 1  off the 

West of Arran to as low as 0.4 jim 3kg 1  off the east of Kintyre. x was also 

seen to generally decrease in a southerly direction down the Firth of Clyde, 

dropping to 0.4 jim 3 kg 1  in the southern reaches of the study area. One 

notable exception to the trend of' southerly decreasing x was an isolated high 

of 0.7 .im 3kg 1  in the vicinity of the south east tip of Kintyre. 

Fig. 6.6 incorporates the two data sets from Sommerville (1987) and 

Anderson (1988) for the sand fraction. In the case of the sand x values, the 

data has been displayed in terms of zones of varying susceptibility by the 

author as the nature of the data distribution did not suit contouring. The use of 

computer based contouring packages proved impractical due to the large areas 

of coastline 'and islands giving rise to numerous edge effects. These edge 

effects would require manual interpretation, defeating the nature of using an 

automated contouring package. The sporadic distribution of the sand fraction 

data also meant that the use of a computerised plotting package was 

inappropriate. The dominant feature of the x distribution in the sands is the 

generally low x value in the range 0.00 to 0.25 jim 3 kg 1  found for the majority 

of samples. Superimposed on this low background are small pockets of higher 

X. The highest values of x are in the range 0.76 to 1.00 im 3kg 1  found in the 

Ayrshire bay. Other lesser highs are found in pockets around the coast of 

Arran, the east coast of Kintyre, off Bute and in a band stretching from the 

southern tip of Arran to Culzean Bay. 
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2 SIRIVI/X Results 

The relationship between SIRM and x for the mud fraction of grab samples 

is shown in fig 6.7 (Matthews 1986). The SIRM/X ratios for the muds varied 

between 12 and 19 kAm 1  , but the majority were tightly grouped around an 

average of 16.5 kAm 1 . SIRM/X ratios for the sand fractions varied in the range 

14 to 24 kAm 1  

3 IRM Results 

Forward IRM data derived by Matthews (1986) for the mud fraction of grab 

samples is shown in Fig. 6.8. The IRM data has been replotted on a logarithmic 

scale . All the IRM curves are tightly grouped, with coercivity of approximately 

40 to 50mT, all samples reaching 90% of saturation by lOOmT. Backfield IRM 

data for the sand fraction of selected samples derived by Anderson (1988) is 

shown in fig 6.9. The IRM curves are spread over a wide range with coercivities 

falling within a broad range of 25 to 90 mT. Both Figs 6.8 and 6.9 have been 

chosen to show a representative range of the total data set. 

4 Particle Size Results 

Figure 6.10 shows the distribution of x with particle size for two examples 

taken from Sommerville (1987). Sommervilles work is supplemented by data 

provided by Dr. R.Thompson for the finer fractions. When these two data sets 

are taken together, a double peaked relationship of x to particle size in seen. 

x peak values of 1 and 1.2 jim 3 kg 1  are seen in the 0.063 to 0.032mm and >0.5 

mm fractions. 

6.4 Discussion 

The susceptibility data for for the Clyde is summarized in the maps of x 
distribution for muds, fig. 6.6, and for sands, fig 6.7. These figures show several 

common features, for example high values of X  off the Ayrshire coast, but 

differ considerably in the spread of data. Fig. 6.6 showing data from the mud 

fraction has smoothly grading data which contours readily, whereas fig. 6.7, 

with data from the sands has abrupt changes around pockets of extreme high 

and low susceptibilities. Consequently the sand x data does not contour 

easily. Instead, it was found that defining zones of certain x ranges worked 
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acceptably well for the sands. 

The difference in nature of the mud and sand data sets can largely be 

explained by  reference to Stoke's Law. The lighter mud fraction would remain in 

suspension longer, being transported further than the sand fraction originating 

from the same source. The differential in ease of transport between sand and 

mud wOuld result in a more homogenous distribution for the muds. Conversely, 

the sands can be expected to remain nearer to source, leading to localized 

highs and lows. 

If Stokes Law is taken as the dominant control on sediment distribution, it 

would be expected that the magnetic properties of the sand fraction would 

reflect local geology to a greater extent than than the muds. However, other 

factors have to be considered. Superimposed on the Stokes Law effect are 

possible diagenetic effects, as supported by the manganese concentrations (fig 

6.4, Deegan 1973). Reference also has to be made to the variation of magnetic 

mineral concentration with particle size. For example, one would expect high 

coercivitv components to be more closely associated with sands where 

haematite is likely to be cemented to the quartz grains. As a result of such 

competing factors, some magnetic chateristics of a sediment source may be 

found in one particle size fraction only. 

The relationship of x to particle size is shown in fig 6.10 (Sommerville 1987 

and Thompson, unpublished data). The double peak distribution featuring x 
highs in the 0.5mm+ and 0.063-0.032mm fractions can be explained in terms of 

the general distribution expected for clastic material in the grain size spectrum 

of as sediments outlined by Strakhov (1969), fig 6.11. High x in the 0.5mm+ 

fraction is likely to be due to the presence of locally derived highly magnetc 

rock fragments while the magnetic minerals derived from the breakdown of 

rock fragments would tend to concentrate in the 0.063 to 0.032 mm heavy 

mineral particle size range,leading to a second x high. 

Examining the x distribution in greater detail shows that there are several 

zones that warrant individual comment. The Ayrshire Bay area is characterized 

by increasing x towards the coast. The x increase is common to both the mud 

and 'sand fractions, and can be attributed to the local Carboniferous0shore 

geology combined with the possible effects of heavy industry along the 

Ayrshire coast. The gravel composition data (fig 6.14) shows material with a 
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significant basic component which is reflected in a x high. According to 

Deegan (1973), Ayrshire Bay is also an active sedimentary environment leading 

to the selective sorting of material culminating in a higher proportion of heavy 

components. Deegan (1973) also proposed a closed environment of 

sedimentation, with little external input. Consequently reworking of old beaches 

along the Ayrshire coast provides a large proportion of the sedimentary 

material within the Ayrshire Bay. 

To the east of the Isle of Bute, high manganese concentrations are found in 

the same area as a x high. A similar situation is also seen off the southern tip 

of Arran. The close relationship between iron, x and manganese is shown in 

chapter 9. 

There is little evidence of high coercivity components in grab samples from 

the the Clyde region. The presence of large bodies of sandstones on Arran, 

Kintyre, and Cuizan Bay (fig 6.2) would suggest a source rich in haematite for 

the sediments adjacent to these bodies. However the IRM data for mud 

fractions (fig 6.8), indicates that magnetite is the dominant magnetic mineral, 

most samples saturating well before lOOmT and with SIRM/X ratios in the 

range 12-19 kAm. The range of SIRM/X ratios in the sands is much more 

varied than in the mud fraction. There is some evidence of high coercivity 

material in the sands off the southern tip of Kintyre. Samples from the latter 

position gave an SIRM/X ratio of 24 kAm 1 , the highest of any in the Clyde 

area. However, the x value for these samples was low (0.08 jim 3 kg 1 ), 

suggesting that the high coercivity component is more visible in these sample 

due to a relative magnetite deficiency . Off the south coast of Arran, SIRM/X 

values of 14 kAm 1  were typical, suggesting a mineralogy totally dominated by 

magnetites. The absence of a haematite component is surprising, considering 

that sandstones constitute half the land mass of Arran. It would appear that 

haematite is not transported to depos ttion sites local to the souces. 

The influence of basic components within the course sands and gravels on 

x can be seen off the Eastern Kintyre coast. Here, basic material is mostly 

absent leading to a low (relative to Arran and Ayrshire coasts) x despite 

increasing particle size. 

Earlier work by Turner (1979) on cores from the Clyde area (fig 6.12) gives 

an indication of the effects of diagenetic change. Most of the cores in Turners 
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study showed whole core susceptibility patterns similar to that of core 

JM6.12 and 6.13A (fig 6.13). In these cases there is little variation through time 

suggesting a stable depositional and chemical environment. An exception to 

this stability is core JM1B which shows considerable fluctuation. This 

fluctuation reflects the likely reworking of old beach material in the Ayrshire 

Bay area (Deegan 1973) and the possible varying influx of material from the 

Ayrshire coast. Another interesting feature of cores hA and lB is a ratio of 

mean susceptibilities between the cores, of approximately 4:1 which is very 

similar to that obtained from surface x data (3.5:1) from compardble positions. 

Such comparisons suggest a continuity in depositional conditions through time. 

An additional unknown in the Clyde study is the condition of the samples 

compared to their in situ state. 15 years of storage in a dry state may have led 

to chemical change. However work on Flett material (chapter 4) comparing 

fresh and post-storage cores suggests little change occurs on wet stored 

material. 

6.5 Significant Points 

Susceptibiñy data can be successfully contoured within the Firth of Clyde 

area. 

Magnetite is the dominant magnetic mineral in all samples studied. 

masking the presence of small quantities of haematite. 

Susceptibility distribution is controlled by a combination of particle size, 

diagenetic change associated with manganese concentrations and basic 

igneous components. 

Core susceptibility data indicates stable deposition in respect of 

susceptibility and particle size through time, except in areas of beach 

reworking. 
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CHAPTER 7 
THE MORAY FIRTH 

7.1 Introduction 

Following the study of magnetic properties of surface sediments of The 

Firth of Clyde (chapter 6), The Moray Firth was selected as another site for 

Investigation based on surface grab samples. It was hoped to apply the sea 

bed susceptibility mapping developed in the Clyde study to this second area. 

Given the varied geology of the coastlines of the Moray Firth it was also hoped 

to use mineral magnetic parameters to provide sediment source linkages. The 

situation in The Firth of Clyde had been complicated by possible industrial 

pollutants and manganese concentrations. The Moray Firth is in contrast 

relatively free of such influences. 

The Moray 	Firth 	area 	was 	extensively 	surveyed by 	The 	Institute 	of 

Geological Sciences/British Geological Survey during the period 1966 to 1974. 

A 	large amount 	of 	geophysical 	data 	and 	geological sample material 	was 

gathered and has been well summarized by Chesher (1983). Fig. 7.1 shows the 

intensity of the sampling program undertaken by BGS. Shipex grab samples 

were available to the author for virtually all the sample stations shown in fig. 

7.1. 

In addition to the IGS/BGS sample sets, Reid and McManus (1987) collected 

information on current and suspended sediment distribution for the Moray Firth 

from a variety of sources. Their work provided an integrated picture of 

sediment sources, transport paths and sinks. Extensive particle size analysis 

was also carried out by Reid and McManus (1987). Particle size splits from 

their work were still available for use in this study. 

Due to the size of the area and the volume of material available, a pilot 

study area was selected (see fig 7.1). Initial magnetic analysis was carried Out 

by Howe (1988) as an undergraduate project; He further divided the pilot study 

area into a northern zone (58 20N to 58 OON) and a southern zone (57 40N to 

58 OON). 
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7.2 Geological Background 

The local onshore/offshore geology is described in detail by Chesher and 

Lawson (1983). The coastlines of the area vary in geological nature (fig 7.2), 

particularly in terms of physical stability. Probert and Mitchell (1980) 

categorized the coastline into two types; outer 'hard' coastlines and inner 'soft' 

coastline coincident with the division of the offshore zone into the Inner Moray 

Firth and Outer Moray Firth. 

The 'hard' outer coastlines are generally cliff-girt and rocky with Old Red 

Sandstones dominating the Caithness coasts. The Banftshire coast, another 

'hard' coastline consists principally of Dalradian metamorphic rocks. 

In contrast the inner 'soft' coastlines are characterized by large post-glacial 

accumulations of sediment with a wide particle size range but principally 

consisting of sand and mud. The sands tend to occur in large wind blown 

deposits whilst the muds commonly accumulate in the middle and upper 

reaches of the inner Firth. The post-glacial deposits may exceed 80m in 

thickness (Chesher and Lawson 1983). 

The distribution of surface sediments within the Moray Firth is shown in fig. 

7.3. This figure shows the dominance of sand size sediment over the northern 

central part of the Moray Firth. However, the southern coast shows a much 

more complex assemblage of grain sizes. 

7.3 Sample Selection and Measurement Procedures 

73 Shipex Grab samples were taken from the study area (fig 7.1). Two or 

three subsamples were, selected at random from each 10 minute by 10 minute 

grid square within the study area. The sand fraction from each was selected 

for use on the basis that sand samples for the Firth of Clyde had shown 

greatest variation in mineral magnetic assemblages. It was hoped that such 

variation could be exploited in a sediment-source linkage model. All 73 samples 

were initially used for x measurement. From these 73 samples, twelve samples 

were selected for IRM analysis. In each case IRMs were grown in pre-selected 

steps from 5mT.to  iT applied field: Particle size splits remaining from Reids 

(1988) work were also subjected to x measurement to assess the distribution 

of.X with particle size. 
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- Fig 7.3 - Particle size distribution of surface sediments in The Moray Firth based 
on Folk (1968) clssificatjons (Chesher and Lawson 1983). Note the study area 
outline (Howe 1988). 
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7.4 Results 

1 Susceptibility Data 

x measurements were obtained for 73 samples from the Moray Flrth. A 

wide range of x values were found, the lowest being 0.011 im 3kg 1 , the 

hIghest 0.104 tm 3kg 1 . The average x value for the 73 samples was 0.048 

1rn 3kg' The average x value for the northern area was 0.037 im 3kg 1 , and for 

the southern area 0.055 pm 3kg 1 . Typical x measurements for particular 

sediment classifications are shown in tab 7.1 

Folk classification 	Typical sample 	X 	SIRM/X 	HIRM 

Sandy gravel 	 MF447 	 0.051 	10.4 	0.176 
Sand 	 MF429 	 0.011 	18.5 	0.0508 
Muddy sand 	 MF177 	 0.100 	8.0 	0.179 

Table 7.1: 
Table of X (Im3 kg 1 ), SIRM/X  ratio (kAm 1 ) and HIRM (mAm 2 kg 1 ) 
for samples representing the principal particle size 
groupings in the Moray Firth. 

The relationship between particle size analysis and x in two typical samples, 

MF637 and MF352 Is shown In fig 7.5. x is seen to peak towards the finer 

..fractions (0.063 to 0.075mm split). 

2 IRM analysis 

Example IRM acquisition curves for three samples representing the range of 

data seen in the pilot samples are shown In fig 7.6. Coercivity varies between 

40 and 90 ml. All three samples exhibit a dual component IRM curve consisting 

of an Initial curve from 0 to lOOmT followed by a linear component from 100 to 

1000 ml. In the case of sample MF683, there Is arguably a third component 

between 100 and 200 mT. 

3 SIRM/X and coercivity results 

Fig. 7.7 shows the SIRM/X and coercivlty values for 14 pilot samples from 

the Moray Firth. SIRM/X varies from 0.7 to 26.4 kAm 1 , whilst coerclvlty varies 

from 52 to 101rnT. With convex hull analysis applied, two slightly overlapping 

groups representing the northern and southern zones of the pilot study area 
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are seen. Coercivity for both sample groups falls within a similar range, 40 to 

105 mT, but SIRM/X ratio distinguishes between them, typically 1 to 11 kAm 1  

for the southern zone and 9 to 20 kAm 1  for the northern zone. 

7.5 Discussion 

From fig 7.5, it can be seen that x is strongly related to particle size, but 

lacks the double peak seen in the Clyde (fig 6.10). Instead there is a single x 
peak and as in the case of the Clyde, x peaks at the sand/silt boundary. This 

peak of x in <63jim particle sizes is reflected in 'typical values' of X  for the 

varying grain size fractions across the Moray Firth seen in table 7.1, with muds 

having higher x values than sands or gravelly sands. The x values for differing 

particle size sediment assemblages can be substituted on the particle size 

distribution key to provide a zoning of X. Interpretation of x distribution 

becomes problematical in close proximity to the southern shore of the Moray 

Firth as gravel fractions are encountered in sporadic concentrations. 

The SIRM/X data shown in table 7.1 does not show as clear cut a peak as 

x but instead reveals high ratios in the sand fraction. This high ratio could be 

a reflection of the sediment input from Old Red Sandstone areas (Caithness) 

with haematite bound to the quartz/sand grains. However, when taking into 

account the relatively low HIRM in the sands compared to the muds, it would 

seem that the high SIRM/X ratio in the sands reflects an increased proportion 

of high coercivity components due to a decrease in the contribution of 

magnetite dominated coastal sediments to the overall sedimentary composition. 

A similar situation was seen in the Clyde grab samples, with magnetically 

stronger magnetite masking any haematite contributions. 

Using a biplot of SIRM/X ratio against coercivity for the pilot samples (fig 

7.7) it can be seen using simple convex hull analysis (R. Thompson pers comm) 

that there are two overlapping groupings of data. Samples from the north of 

the study area have a higher proportion of high coercivity and high SIRM/X 

components relative to the overall values of the entire study area. The overlap 

of the southern and northern areas supports the idea of reworked coastal 

material dominating the southern area but having less influence in the north of 

the study area. Attempts at magnetically extracting the haematite using the 

techniques outlined in chapter 2 were unsuccessful with only the magnetite 
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fraction being readily removed from the sediment. The selective removal of 

magnetite suggests that the haematite is either relatively inaccessible to 

extraction, existing within or cemented to the quartz sand grains, or magnetite 

is masking the haematite. 

IRM acquisition data for pilot samples (fig 7.6) showed a varied magnetic 

mineralogy. As in the case of the Clyde, magnetite is the dominant magnetic 

mineral, but in the case of The Moray Firth there is a much harder and 

significant haematite component superimposed. The resulting mixed magnetic 

mineral assemblage is the product of high coercivity components derived from 

the Caithness sandstones being transported into the Moray Firth where they 

become trapped. Using evidence obtained from surface and suspended 

sediment analysis, plus current data, Reid and McManus (1987) suggested a 

sediment transport pattern (fig 7.8) that is in agreement with the latter 

hypothesis, of Caithness sandstones entering the Moray Firth. Reworked glacial 

deposits and fluvial inputs however consitute 70% of the sediment trapped in 

the Moray Firth (Reid and McManus 1987). 

7.6 Significant Points 

Susceptibility is strongly influenced by particle size in the Moray Firth 

surface sediments. 

Although magnetite is the dominant magnetic mineral, but there are 

significant harder stability magnetic components present throughout the Moray 

Firth area. 

The sediment source linkage of Caithness sandstone entering The Moray 

Firth proposed on the basis of high coercivity components fits with the 

sedimentary regimes proposed by McManus and Reid (1987). 
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CHAPTER 8• 

SPITSBERGEN 

8.1 Background 

During 1987, sediment cores collected from the Spitsbergen area were 

made available for palaeomagnetic analysis by Prof G. Boulton. The core site 

positions are shown in fig. 8.1. The cores were recovered using a large section 

(28cm by 28cm) box corer. This provided a large yield of high quality sediment 

as telatively small amounts of disturbance were produced by the coring action 

on account of the low ratio of cutting edge to overall cross section of the 

corer. The sample sites were in a geomagnetically interesting area. In paçicular 

previous palaeomagnetic work on cores from the Spitsbergen area (fig 8.2) had 

produced evidence of unusually shallow inclinations. From a mineral magnetic 

viewpoint, there was also the potential for identifying the magnetic mineral 

characteristics of a wide variety of sediment types and comparing these to the 

magnetic mineral assemblages found in UK continental shelf sediments. 

1 The Geology of Spitsbergen 

The geology of Spitsbergen is complicated. Fig 8.3 taken from Alder (1980) 

shows the main geological features, while more detailed descriptions can be 

found in Harland (1961). The most extensive group of rocks found on 

Spitsbergen are the Hecla Hoek Group. Rocks of this group range in age from 

Precambrian to Ordov'cian and outcrop over a large area in Nordaustlandet, in 

the north and west of the main island of Vestspitsbergen and on Prince Charles 

Foreland In the West (Ager 1980). The Hecla Hoek group is essentially a large 

sedimentary pile. It commences with a succession of dominantly argillaceous 

sediments but with some volcanic material. This is followed by a series of 

dominantly quartzitic sediments with basic volcanics and with evidence of 

glacial horizons. The clastic sedimentation is replaced by limestones, including 

oolites and dolomites. Moving away from the Hecla Hoek series, other features 

of the geology of Spitsbergeri worth individual mention are:- (i) a thick body of 

Old Red Sandstone found in north and central Spitsbergen. (ii) the Triassic 

deposits of east Spitsbergen, which consist mainly of sandstones and marine 

beds passing through to continental deposits with coal seams. (iii) 

Carboniferous and Permian rocks which consist of a basal sandstone followed 
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by a mainly marine succession which transgresses upwards to gypsiferous 

deposits and limestones. The Carboniferous and Permian rocks are widespread 

in central and north east Vestspitsbergen and in the southern part of 

Nordaustlandet. 

2 Previous palaeomagnetic work in the Spitsbergen area 

Previous palaeomagnetic data for the Spitsbergen shelf area was collated 

by Austin (1987). This work largely consisted of establishing secular variation 

records for suites of cores from the Barents Shelf (figs 8.4), Kara Sea (figs 8.5) 

and the Norwegian Sea (figs 8.6). Austin's work was not limited to 

palaeomagnetic directional data, he also placed considerable emphasis on the 

mineral carrier of the remanence. For example fig 8.7. taken from Austin (1987) 

shows how his 0-ratio can be used to illustrate varying magnetite 

mineralogies. 

8.2 Sampling 

Palaeomagnetic subsampling was undertaken on board the survey vessel as 

soon as possible after core recovery by Dr. L. Jobson. The subsampling interval 

employed was approximately 10cm. Upon disembarkation, the cores were 

moved to cold store at The British Geological Survey, Edinburgh. Further 

contiguous subsampling was undertaken by Dr B. Maher and the author on four 

cores for sites 3,4,5, and 8 (see fig. 8.1). 

8.3 Measurement 

• Both the ship-board and shore-laboratory sample sets were subjected to 

basic palaeomagnetic directional measurement using a Cryogenic 

Magnetometer. Once NRM measurement was complete, mineral magnetic 

measurements were carried out on all subsamples. These mineral magnetic 

studies consisted of susceptibility measurement, followed by the measurement 

of remanence after each subsample had been exposed to D.C. fields of 0.1T, 

1.01 and -0.11. Using these four measurements in conjunction with sample 

mass, it was possible to derive HIRM, S ratio, SIRM/X ratio and x as defined in 

chapter 2. 
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8.4 Results 

pa-" 
Downcore palaeomagnetic data for the sites is shown in figs 8.8-8.11. Data 

for the mineral magnetic parameters is shown in figs 8.12-8.15. These diagrams 

incorporate results for sample sets from both ship board work and laboratory 

subsampling. - 

1 Palaeomagnetic Results 

Site 3 Fig 8.8. 

The inclination data for site 3 starts at a low value of approximately 15 °  at 

the top of the core but rises rapidly to 800  at 50cm before decreasing to an 

average value of 40 0  in the remainder of the core. 

Declination data for site 3 exhibits little variation downcore, except for a 

zone from 20cm to 60 cm where it swings quite rapidly from 1000  to 150 ° . 

Intensity data for site 3 has two distinct zones. Intensity values remain 

steady at 100 mAm 1  for the top 60cm where it jumps to 150 mAm 1  , a value 

which it retains in the remainder of the core. 

Site 4 Fig. 8.9 

The inclination data for site 4 starts with very low values for the top 70cm 

of core, varying between _100  and +25 0 , before rising at 70cm to a steady 30 0  

to 40 0  for the remainder of the core. 

• The declination record for site 4 is dominated bya large jump of 100 0  at 

70 cm. The intensity record for site 4 also features a change at 70 cm with a 

rise from an average 50 to 80 mAm 1  at 70 cm. 

Site 5 Fig. 8.10 

Inclination starts low at 00,  rising to 50 0  by 15cm, dipping back to 00  at 

20cm before rising to a high of 550 
 at 30cm. This high is followed by a gradual 

decline to 0 0  by the base of the core (80cm). 

Declination remains very steady downcore, slowly fluctuating between by 

+50 0  and -50 0 . 
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• 	Intensity is also steady for the majority of the core, with the exception of a 

sudden jump from 2 mAm 1  in the top 10cm before decreasing to a steady 25 

mAm 1  for the remainder of the core. 

Site 8 Fig 8.11 

Inclination data for site 8 starts low at 001  rising to 55 0  by 10 cm, followed 

by a steady decline to 25 0  by 40cm, where it remains steady for the rest of 

the core.. 

Declination data for site 8 is very constant downcore except for a 25 0  

swing in the top 20cm. 

• 	Intensity data for site 8 exhibits a high of 200 mAm 1  in the top 50cm 

before decreasing to a value of 50 mAm 1  between 50cm and 60cm. 

2 Mineral Magnetic Results 

Site 3 Fig. 8.12 

The mineral magnetic parameters for site 3 show only minor variations 

downcore. 

x is steady at approximately 0.125 pm 3 kg 1  

SIRM is steady at approximately 2.0 mAm 2 kg 1  downcore. 

SIRM/X is steady at 18kAm 1  downcore. 

S ratio is steady at 0.2 downcore. 

HIRM is steady at 0.8 mAm 2 kg 1  downcore. 

Site 4 Fig. 8.13 

The mineral magnetic parameters for site 4 show contrasting stability 

characteristics downcore, with HIRM fluctuating whilst x SIRM, SIRM/X and S 

ratios remain steady. 

x is steady downcore at approximately 0.15 1m 3kg 1  

SIRM is steady downcore at approximately 2.5 mAm 2kg 1  

( 
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SIRM/X ratio is steady at approximately 18 k.Am 1  downcore. 

S ratio shows slight fluctuations between -0.2 and 0 downcore. 

HIRM• fluctuates considerably within the range 1.4 to 1.0 mAm 2 kg 1  

downcore. 

Site 5 Fig. 8.14 

All mineral magnetic parameters for site 5 show considerable change 

downcore. 

x gradually increase from 1.0 lim 3 kg 1  to 2.3 jim 3 kg 1  from the top of the 

core to 75cm, followed by a rapid climb to. 3.5 im 3 kg 1  from 75cm to 80cm. 

SIRM starts at 3.5mAm 2kg, dips to 3.0 mAm 2 kg 1  by 20cm where it 

remains steady until a sharp peak to 5.5 mAm 2 kg 1  at the base of the core. 

SIRM/X shows a gradual downcore change from 32 kAm 1  at the top of the 

core to 12 kAm 1  at the bottom. 

S ratio exhibits a gradual change downcore, from -0.6 at the top to +0.7 at 

the bottom. 

HIRM shows a mirror image of S, starting at 2.5 mAm 2kg' at the top and 

gradually decreasing to 7 mAm 2 kg 1  by the bottom of the core. 

Site 8 Fig. 8.15 

The mineral magnetic data for site 8 is characterized by a rapid change 

between 45cm and 60cm. 

x averages 3 tm 3kg 1  for the top 50cm, but then dips rapidly to 1.5 

im3kg 1  by 60cm, a value that it retains for the remainder of the core. 

SIRM averages 5 mAm 2kg' for the top 45 cm, then drops rapidly over 

50cm to 60cm to an average value of 1.1 mAm 2kg 1  for the remainder of the 

core. 

SIRM/X ratio decreases slightly from 18 kAm 1  to 12 kAm 1  over the top 

50cm and then suddenly drops to 0.7 kAm 1  for the remainder of the core. 
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S ratio remains constant downcore at 0.69. 

• HIRM has an average value of 0.7mAm 2kg 1  in the top 50 cm and then 

drops rapidly at 55 cm to a value of 0.2 mAm 2 kg 1  for the remainder of the 

core. 

After examination of the mineral magnetic data for. sites 3 to 8, it was 

decided that the most distinguishing parameters both within and between 

cores were x and HIRM. A biplot of these two parameters incorporating data 

from each core is shown in fig 8.16. In this figure, the data from sites 3 shows 

a very tight grouping of values, with x ranging from 0.075 to 0.185 Im 3kg 1  

and HIRM ranging from 0.5 to1.1 ,rAm 2 kg 1 . Data from core 4 shows a limited 

spread of x within the range 0.12 to 0.21 .tm 3 kg 1  but a greater variation in 

HIRM, values falling within the range 0.8 to 1.8 iAm 2 kg 1 . The wide spread of 

data in cores 5 and 8 contrasts with the tightly grouped data from cores 3 and 

4. In the case of site 5, x values lie within the range 0.10 to 0.38 j1m 3kg 1  with 

similarly widespread HIRM values (0.6 to 2.8 Am 2 kg 1 ). The data from core 5 

can be subdivided into two groups, one group having a narrow band of x (0.8 

to 1.5 pm 3kg 1 ) and a wide range of HIRM (0.9 to 2.8 m,Am 2 kg 1 ), the other 

group having a wide band of x (1.25 to 3.75 im 3kg 1 ) and a narrow band of 

HIRM values ( 0.5 to 0.9 mAm 2 kg 1 ). Data from core 8 shows a linear spread 

with x ranging from 0.15 to 0.36 im 3 kg 1 ) and HIRM ranging from 0.1 to 1.1 

oAm 2kg 1 ). 

8.5 Discussion 

1 Palaeomagnetic Results 

Examination of the palaeomagnetic data obtained in my study (figs 8.8-8.11) 

and by Austin (1987) (figs 8.4-8.6) show a range of variation in data patterns. In 

Austin's work, several palaeomagnetic features were identified as of 

geomagnetic origin and used as a basis for core correlation. Unfortunately, the 

cores provided by Prof. Boulton were too short to yield such a series of 

features. However, clearly identifiable in both data sets are inclinations 

shallower than would be expected from a geocentric axial dipole field model 

(tan I = 2 tanA). At the latitude of Spitsbergen a palaeomagnetic inclination of 

approximately 80 0  is to be expected. The palaeomagnetic inclination data 

shown in figs 8.8-8.11 deviates greatly from the expected 80 ° . Such shallow 
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inclinations although of a less extreme nature were also observed in cores 

taken from the UK shelf (chapter 3-4). In the case of the UK sediments 

'inclination errors' of the types described by Griffiths and King (1955) were 

offered as a possible explanation. 

The low palaeomagnetic inclination data from the Spitsbergen sediments of 

Austin (1987) and this study could be explained either in terms of sedimentary 

'inclination error' effects or in terms of prolonged low inclination excursions of 

the geomagnetic field. In any attempt to assess the separate effects of 

sedimentary derived inclination error and variations resulting from periods of 

low geomagnetic field inclination, additional independent information on the 

behaviour of the geomagnetic field at high latitudes is required. 

Palaeomagnetic data from Icelandic and Aleutian Island lava flows (Watkins et 

al, 1977 and McDougall et al, 1976) were analysed to see if they could yield 

additional information. They were examined for any consistent variation away 

from the expected dipole field inclination of 77 0  at Iceland and the Aleutians. 

The results shown in histogram form in figs. 8.17 and 8.18 are obviously free 

from any sedimentary derived inclination error, but nevertheless indicate a bias 

towards shallow values. Over 25% of the data lies 20 0  or more shallower than 

the dipole direction. When a direct comparison is made between typical data 

from the Spitsbergen sediments (drawn in histogram form in fig. 8.19) and the 

lava flow data it is apparent that there is a much greater deviation in 

palaeomagnetic inclinations in the sedimentary record than in the lavas. These 

greater deviations appear to support the concept of at least two sources of 

inclination error, one geomagnetic, the other sedimentary. 

A fuher reduàtión in inclination could be attributed - to the effi of an 

offset dipole field model (Wilson .1971). However, at the ratively high 

latitudes of Spitsbergen, Wilsoñs model could not be expected to contribute 

more than 5 degrees of shallowing. The shallow inclinations seen in cores 

described in this chapter far exceed the shallowing expected from both 

sedimentary inclination error and offset dipole effects, suggesting another as 

yet undetermined contributory factor to inclination error at hign latitudes. 
2 Mineral Magnetic Results 

In the mineral magnetic data from the four Spitsbergen sites (figs 

8.12-8.15), it is immediately apparent that there is considerable variation both 

between cores and within individual cores. Taking the sites individually, the 

following observations can be made 
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At site 3 (fig 8.12) there is a constant magnetic mineralogy both in terms of 

total concentration and the proportion of magnetite to haematite. An S ratio of 

+0.2 suggests a significant amount of haematite is present. By comparing the 

value of HIRM (0.8 mAm 2kg 1 ) and SIRM (2.0 mAm 2kg 1 ) it can be seen that 

haematite accounts for some 40% of the saturation remanence. Because the 

IRM of magnetite is some twenty times stronger than haematite, these samples 

must have haematite to magnetite ratios of approximately 13:1. 

At site 4 (fig 8.13) there is a slightly more complex mineralogical situation 

thaq at site 3. x SIRM and SIRM/X ratio at site 4 are nearly constant 

downcore pointing to little change in mineral concentration and composition. 

However, S and HIRM do vary downcore pointing to changing amounts of high 

coercivity haematite. A generally negative S value points to a considerable 

haematite presence. HIRM values approaching 50% of SIRM underline the 

importance of haematite in this core, with haematite/magnetite ratios of 

approximately 20:1. 

At site 5 (fig. 8.14) considerable variations are seen in total magnetic 

mineral content and the relative proportions of high and low coercivity 

minerals. A trend of increasing concentration of magnetite downcore can be 

seen from the gradually increasing x and SIRM values. As concentration 

increases, there is also a distinct shift between haematite and magnetite , seen 

in an S ratio changing from negative to positive and an increasing SIRM/X ratio 

with increasing depth. The increase in x downcore may well be the result of 

haematite gradually being replaced by magnetite as the dominant magnetic 

mineral in newly arrived sediments. The gradual change in mineralogy 

downcore could be assigned to several causes. It may reflect a gradual shift in 

sediment source, a change in the redox conditions of deposition, or a 

post-depositional chemical change within the sediment body. Given the varied 

geology of Spitsbergen, and the proximity of site 5 to the shore, a change in 

sediment source Is the most likely explanation. The proximity of a range of 

sandstone and igneous rock bodies to site 5 (see fig 8.3) which could provide a 

range of magnetic minerals from a relatively confined geographical area points 

to a shift in sedi iment source being very possible. The gradual nature of the 

magnetic mineral assemblage in core 5 suggests a long term and slow shift in 

sedimentation pattern. The gradual nature of the change points to a long term 

shift in sedimentation pattern. 
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At site 8 (fig 8.15), a more dramatic change in magnetic properties than at 

site 5 is seen. The dramatic drop in concentration dependent parameters (x. 
SIRM and HIRM) at 60 cm is not echoed in S and is only just perceivable in 

SIRM/X ratio. The constant value of S suggests little change in the proportion 

of high and tow coercivity magnetic minerals downcore. This in turn points to 

a constant sediment source, the change in overall concentration of magnetic 

minerals being attributable to depositional change. This depositional change 

could be a sudden change in sedimentation rate leading to varying degrees of 

dilution of magnetic minerals present. For example changes in x downcore 

have been shown to inversely correlate with the amount of carbonate present 

(Robinson, 1986). The weakly magnetic carbonate effectively dilutes whatever 

magnetic minerals are present from other sources. 

Comparison between sites can be best summarized by reference to a biplot 

of HIRM and x (fig 8.16). Data patterns in this figure emphasize the varying 

mineralogical trends seen in core 3 to 8. The data from cores 3 and 4 is 

relatively tightly grouped reflecting a near constant magnetic mineralogy 

downcore whereas the spread of data from core 5 and 8 points to considerable 

changes , both in terms of concentration and coercivity, of magnetic minerals 

within core. The presence of haematite in the cores points to sandstone 

bodies being one of the principal sediment sources. 

Comparisons are possible between Austins G ratio (fig 8.7) and SIRM/X ratio 

used in this study ( G ratio = X/SIRM ). Values for SIRM/X ratio have been 

superimposed on fig 8.7 which shows G ratio for Austin's cores. In this figure it 

is possible to see that both the SIRM/X ratio and the G ratio data groups fall 

within a similar range, but that Austin's data yield values slightly smaller (in 

SIRM/X ratio terms) than in this study. Austin uses the G ratio as an indicator 

of magnetite grain size. This approach is eminently satisfactory as long as 

magnetite is the dominant magnetic mineral. However, data from my study 

points to the existence of at least two principal magnetic mineralogies in the 

Spitsbergen area. The high HIRM values in cores from sites 5 and 8 point to 

the presence of haematite dominated magnetic mineralogies. Site 5 lies close 

to shore and its magnetic properties may reflect extremely local coastal 

sediments. However, site 8 lies a several kilometres offshore pointing to the 

presence of high coercivity magnetic minerals well out onto the Barents shelf. 

The presence of high coercivity mineralogies in the Barents sea casts some 

doubt on Austirs use of C ratio as a grain size indicator in these particular 
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sediments. 

8.6 Significant Points 

Palaeomagnetic data from sediment cores in my study differ from those 

expected for a dipole field model due to a combination of sedimentary derived 

inclination error (Griffiths and King 1955), and local effects in the prevailing 

geomagnetic field. Of these two error sources, sedimentary sources have a 

much greater significance. 

Mineral magnetic data clearly shows the presence of significant amounts 

of magnetite and haematite. 

Changes in the mineral magnetic properties of cores 5 and 8 point to 

significant changes in sediment sources and depositional conditions in the 

Spitsbergen area. 
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CHAPTER 9 
CHEMICAL ANALYSIS 

9.1 Introduction 

Geochemical studies of sediments are widespread in the scientific literature. 

Many different analytical and interpretational approaches are employed. These 

approaches range from simple studies on the concentration of various 

elements In the environment and their relationship to specific problems, for - 

example pollution studies or mineral exploration, to more complex assessments 

of chemical fluxes, environmental indicators and chemical budgets. The latter 

vary from ionic scale interactions to whole global chemical turnovers, for 

example in assessment of atmospheric levels of carbon dioxide. 

In this study, attention was focused on the relationship of various elemental 

and oxide concentrations (see table 9.1) to the bulk magnetic susceptibility 

properties of sediments. This approach was similar to that employed by Currie 

and Bornhold, (1982); Puranen (1977) who studied the relationship of 

susceptibility and magnetite content in continental shelf sediments and glacial 

tills. Working on grab samples of surface sediments from the Canadian 

continental shelf, Currie and Bornhold (1982) demonstrated a strong positive 

relationship between iron content and magnetite content (see fig 1.6). Puranen 

(1977) had earlier demonstrated such a relationship in Finnish glacial tills. 

The work of Currie and Bornhold, (1982) and Puranen (1977) was restricted 

to discrete sediment samples. Mineral magnetic work on marine sediment 

cores has tended to be centred on the examination 'of the clemical changes 

affecting the mineral carrier of the natural magnetic remanence. A range of 

chemical environments, have been observed. Karlin and Levi (1985) 

demonstrated evidence of dissolution of fine grained magnetites in marine 

sediment cores whilst Henshaw and Merrill (1980) have found signs of 

diagenetic change downcore, including oxidation of NRM carrying 

titomagnetites and the authigenic formation of some magnetic ferromanganese 

minerals leading to a strong CRM. 

The main objective of this chemical study was to follow the line of 

investigation of Currie and Bornhold, (1982), and examine the relationship of 
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magnetite and susceptibility in marine sediments. However, instead of discrete 

surface sediment grab samples, samples from various depths in a range of UK 

continental shelf cores were used. Whole core susceptibility measurements 

were used as the principal magnetic parameter instead of mass specific 

susceptibility. This was primarily to test the effectiveness of whole core 

susceptibility as a mineral reconnaissance tool, without having to resort to time 

consuming subsampling. 

9.2 Subsampling and Measurement Techniques 

1 Sample selection 

Sample positions were selected from whole core susceptibility profiles of 

Central North Sea and Flett area cores to give a representative range of 

susceptibility values. Care was taken to ensure that the samples were derived 

from an area in the core section where there was a constant value of 

susceptibility for at least 10cm on each side of the sampling point. 50 to lOOg 

of material was used in order to provide adequate amounts for both XRF 

chemical analysis and carbonate content analysis. 

Approximately 20g of sample was prepared for XRF analysis using the 

procedure outlined in chapter 2. 

2 XRF measurement 

X-Ray Fluorescence analysis was undertaken at Wolverhampton Polytechnic 

using a Philips PW140 X-Ray Spectrometer . Data interpretation was performed 

immediately using a software package written by Dr J.P. Smith which gave 

output in terms of 15 environmentally significant major and minor elements 

and oxides (table 9.1). This information was useful for comparing not only the 

relationship of iron to susceptibility, but for relating iron concentration to more 

economically important heavy minerals. 

3 Carbonate Content Measurement 

A carbonate bomb was used on part of each subsample to give a figure for 

percentage carbonate composition. 
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9.3 Results-: 

Table 9.1 shows the percentage chemical composition of the 17 samples as 

produced directly from the J.P. Smith software package. In addition, the 

percentage of carbonate for each sample obtained from the carbonate bomb is 

also listed. Where SIRM/X data was available from previous work in chapters 4 

and 5 for a particular sample position, it is listed as well. 

A graph of percentage carbonate against volume susceptibility is shown in 

fig. 9.1a. This graph shows a tight band of data for 15 of the 17 samples, but 

with two samples showing relatively high carbonate concentrations. 

Correlation coefficients between the various chemical constituents and 

volume susceptibility are shown in table 9.2. Correlation was between data not 

corrected for carbonate content as it was assumed that the dilution effect of 

the carbonate on the sediment would have an equal effect for all chemical 

constituents. 

Graphs of significant relationships (ie those with a correlation coefficient of 

+1- 0.5 or greater) and fitted regression equations of susceptibility against 

chemical concentration are shown for Iron oxide (fig 9.1), manganese oxide (fig 

9.2), aluminium oxide (fig 9.3), magnesium oxide (fig 9.4), zinc (fig 9.5), nickel 

(fig 9.6), phosphate (fig 9.7) and copper (fig 9.8). In all these cases, the 

correlations of chemical concentration to susceptibility are positive. Fig 9.9 

shows the relationship of sulphate content and . susceptibility, which are 

negatively correlated. Correlation coefficients (r) are shown on each graph. 

The correlation between volume susceptibility and elemental. oxide shows a 

high of 0.82 for manganese. Much higher correlation coefficients, averaging 0.9 

are seen for the relationship between iron and elemental oxides. 

Iron/manganese ratios for various samples are shown in table 9.1. The 

majority of Fe/Mn ratios fall in the 60 to 80 range, but several samples from 

core 58-02 231VE have ratios in the 10 to 40 range. 

183 



Core no. Depth in core Si02 Fe203 K20 P205 Sr Pb Cu MgO A1203 CaO S03 Zr 14n02 Zn Ni 

61-03 42CS 40-44 29.58181 4.92133 2.27646 0.05611 0.02351 0.00201 0.00568 2.28286 7.76061 7.51554 0.07416 0.01446 0.05807 0.01035 0.00608 60-05 28Cs 36-40 27.47015 4.09641 1.80071 0.05157 0.03101 0.00205 0.00486 1.77522 6.04238 10.27080 0.09018 0.01392 0.06091 0.00855 0.00593 60-06 20CSi 80-84 29.75262 2.50344 2.00095 0.05148 0.03669 0.00193 0.00387 1.50213 5.48834 8.87311 0.13461-  0.01538 0.04572 0.00107 0.00331 58-02 231VE 390-394 33.26689 0.35644 2.40715 0.04700 0.01137 0.00215 0.00284 1.14458 3.30924 2.43107 0.05450 0.02433 0.03034 0.00000 0.00055 58-02 231VE 26-30 20.26125 0.35493 1.03881 0.04966 0.12161 0.00210 0.00305 1.02063 0.00000 28.34794 0.22444 0.01998 0.02402 0.00000 0.00010 61-03 42CS 161-165 29.57593 4.97197 2.25729 0.05533 0.02317 0.00183 0.00638 2.15939 7.28985 7.69525 0.07963 0.01535 0.06367 0.00937 0.00513 61-03 42CS 186-190 28.92190 5.45964 2.81610 0.05451 0.02010 0.00171 0.00566 2.13553 8.31551 6.25429 0.08139 0.01286 0.06458 0.01178 0.00653 61-03 28CS 120-124 27.99994 3.15114 1.93347 0.05035 0.03882 0.00175 0.00453 1.81479 6.10096 10.07869 0.11168 0.01471 0.05576 0.00355 0.00419 61-03 42CS 25-29 30.94735 5.43285 1.66133 0.05545 0.01986 0.00219 0.00624 2.08201 7.19430 4.69868 0.07638 0.01685 0.07246 0.01010 0.00454 61-03 42CS 140-144 29.35265 4.77099 2.66125 0.05366 0.01926 0.00189 0.00541 2.11061 7.94009 7.11172 0.08356 0.01454 0.05866 0.00979 0.00505 58-02 231vE 222-226 29.61047 2.11959 2.13135 0.05597 0.02397 0.00188 0.00352 1.44622 5.23569 7.05542 0.15120 0.02836 0.04526 0.00100 0.00289 60-05 24CS 148-152 30.25503 3.89795 2.05156 0.05034 0.02525 0.00195 0.00483 1.76642 7.09334 7.87576 0.11037 0.01646 0.05038 0.00641 0.00419 60-05 24CS 40-44 28.02871 5.26518 2;33626 0.05500 0.02513 0.00175 0.00638 2.20219 8.01266 9.95892 0.09190 0.01423 0.06555 0.01084 0.00628 61-03 42CS 228-232 29.74175 5.28677 2.35371 0.05502 0.02169 0.00166 0.00608 2.06497 8.32912 5.72542 0.11232 0.01412 0.06444 0.00996 0.00620 61-03 42CS 58-62 27.96193 6.18443 2.13168 0.06165 0.02183 0.00184 0.00673 2.04654 7.54862 7.60490 0.06589 0.01315 0.06373 0.01222 0.00575 61-03 42Cs 75-79 27.33729 4.98675 2.29850 0.05749 0.02218 0.00188 0.00614 1.99706 7.89277 8.36561 0.07940 0.01485 0.06094 0.01004 0.00608 58-02 231VE 154-158 21.98952 0.48309 1.10911 0.04825 0.14248 0.00214 0.00395 0.71463 0.07975 26.04295 0.19882 0.02707 0.02861 0.00000 0.00063 

Core no. Depth in core Whole core SIRM/X Fe/Mn ratio 
(cm) susc. kAm 

61-03 42CS 40-44 108 23 84.7 
60-05 28CS 36-40 150 22 67.3 
60-06 ZOCSi 80-84 70 18 54.8 
58-02 231VE 390-394 3 37 11.7 
58-02 231VE 26-30 5 13 14.8 
61-03 42CS 161-165 113 24 78.1 
61-03 42CS 186-190 75 24 84.5 
61-03 28CS 120-124 - 	 45 16 56.5 
61-03 42CS 25-29 165 24 75.0 
61-03 42CS 140-144 70 24 81.3 
58-02 231VE 222-226 40 18 46.8 
60-05 24CS 148-152 110 77.3 
60-05 24CS 40-44 135 21 80.3 
61-03 42CS 228-232 118 20 82.0 
61-03 42CS 58-62 155 22 97.0 
61-03 42CS 75-79 165 20 81.8 
58-02 231VE 154-158 11 77 16.9 

- Tab 9.1a Chemical constituents (%) of some UK Continental Shelf core samples. 
Data deflved by XRF analysis, with compositions calculated using software 
developed by Dr J.P. Smith. 

- Tab 9.1b Chemical ratio (derived from data in tab 9ia) and mineral magnetic data 



Susc. MgO A1203 CaO 303 Zr 14n02 Zn Ni SiO2 Fe203 g20 P205 	Sr 	Pb 
MgO 0.761 
A1203 0.747 0.951 
CaO -0.458 -0.654 -0.791 
303 -0.589 -0.729 -0.775 0.869 
Zr -0.672 -0.801 -0.730 0.353 0.532 
Mn02 0.851 0.934 0.916 -0.535 -0.694 -0.741 
Zn 0.830 0.911 0.848 -0.486 0.681 -0.778 0.902 - 

Ni 0.816 0.931 0.929 -0.572 -0.655 -0.803 0.931 0.917 
Si02 0.294 0.495 0.642 -0.960 -0.789 -0.197 0.462 0.295 0.375 

e203 0.862 0.948 0.919 -0.570 -0.675 -0.793 0.961 0.967 0.948 0.383 
K20 0.279 0.678 0.786 -0.812 -0.757 -0.434 0.549 0.558 0.635 0.723 0.574 

0.708 0.709 0.576 -0.399 -0.440 -0.446 0.713 0.740 0.707 0.192 0.793 0.403 
Sr -0.539 -0.746 -0.852 0.971 0.873 0.471 -0.693 -0.570 -0.662 -0.896 -0.647 -0.833 -0.479 
Pb -0.239 -0.569 -0.628 0.336 0.230 0.505 -0.519 -0.460 -0.634 -0.180 -0.547 -0.614 -0.452 	0.410 
Cu 0.851 0.862 0.796 -0.406 -0.591 -0.715 0.897 0.942 0.862 0.228 0.948 0.428 0.777 	-0.468 	-0.479 

- Tab 9.2 Correlation coefficients between chemical constituents and volume 
susceptibilltV for some UK Continental Shelf sediments. 
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9.4 Discussion 

• Fig. 9.1g. shows the strong correlation ( r = 06,) between iron concentration 

and bulk susceptibility in continental shelf cores. This strong correlation echoes 

the results of Currie and Bornhold (1982) on grab sample from the Canadian 

contlnental shelf and the work of Puranen (1977) on Swedish glacial till 

deposits. It is interesting to note that the samples with the lowest 

susceptibility (from core 58-02 231VE) have abnormally high carbonate content 

for the data set, suggesting a possible dilution effect. 

Besides demonstrating that susceptibility is an indicator of iron oxide 

concentration, chemical data provided by the XRF analysis show several other 

interesting relationships. The relationship between iron and other heavy 

minerals comes out strongly in several instances. It is known that iron 

concentrations tend to be associated with other heavy minerals (Basham, pers. 

comm 1987). The strong positive correlations between iron and nickel (r = 

0.94), phosphate (r = 0.79), zinc (r = 0.96), magnesium (r = 0.95), aluminium (r = 

0.91), manganese (r = 0.96) and copper (r = 0.95), (figs 9.2 to 9.8 respectively) 

are evidence of the close relationship between iron concentration and other 

elemental concentrations. In the case of zinc and nickel, there is still a strong 

positve relationship with iron concentration even when their concentrations are 

as low as 100 ppm. The close relationship between iron concentration and the 

presence of other elements as shown by the correlation coeftiecients listed 

above demonstrates the effectiveness of susceptibility as a prospecting tool in 

the regime of fine grained (< 63iim) sediments normallV considered unsuitable 

for conventional (heavy liquid) mineral extraction 

In view of the recent work by Snowball and Thompson (1988) regarding the 

effect of Iron sulphides on the magnetic properties of sediments in Loch 

Lomond, and .the presence of pyrite and metastable monosulphides in marine 

sediments effected ty dissolution (Karlin and Levi, 1983), it is significant to 

note that there is apparently no strong correlation (r = -0.59) between sulphate 

content,' and susceptibility (fig 9.9). This lack of correlation suggests a stable 

chemical situation in respect of magnetic iron sulphides in the UK shelf cores. 

In addition to the absolute concentrations of various chemical constituents, 

information can be derived from the ratios of chemicals found within individual 

samples. One of the most widely used chemical ratios is the iron/manganese 
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ratio which gives a good indication of the redox conditions during and after 

deposition of the sediment. Under oxidising conditions both elements exhibit 

• 'low solubility, but in a reducing environment they become mobile, manganese 

more readily than iron due to its greater relative solubility (Engstrom and 

Wright 1984). Mackereth (1966) demonstrated how such a differential mobility 

could be utilised to assess depositional/sediment source environment in the 

form of the iron/manganese ratio. A low ratio represents a reduction stage 

during the depositional cycle with a higher ratio being representative of 

oxidising conditions. Typical iron/manganese ratios range from 10 to 190, the 

majority falling within the 30 to 100 range (Hirons 1986). 

Data from this study (table 9.1) shows typical Fe/Mn ratios of 60-80, but 

with several extreme ratios in the region of 10 to 40. The samples with 

extreme Fe/Mn ratios were all taken from core 58-02 231VE originating in The 

Central North Sea. The Fe/Mn ratio data in table 9.1 suggests that core 58-02 

231VE has been subjected to more severe reducing conditions during 

deposition than the other cores studied. 

When SIRM/X ratios (where available) are plotted against Fe/Mn ratios for 

the cores, a distinct linear trend can be seen. This trend suggests that SIRM/X 

has some potential as an environmental indicator. 

9.5 Significant Points 

Iron content and susceptibility are positively related in UK continental 

shelf cores. 

Iron deposits are associated with other metallic mineral concentrations. 

It follows from (a) and (b) that susceptibility can be used as a 

reconnaissance tool for a range of metallic minerals. 
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CHAPTER 10 
FINAL DISCUSSION 

This thesis has explored various aspects of the application of 

palaeomagnetic and mineral magnetic techniques to continental shelf 

sediments . The results have given an insight into the limitations and strengths 

of such studies. 

The sample material used was, in the case of BGS vibrocore, gravity core 

and shipex grab-samples, not originally intended for palaeomagnetic purposes. 

The emphasis in designing the BGS sampling systems had been to recover 

relatively large quantities of sediment for a variety of uses. The retention of a 

high quality sedimentary fabric was, of necessity, placed second to having 

systems robust enough to operate reliably in continental shelf conditions. The 

only core material examined in my study that was taken with a view employing 

detailed palaeomagnetic techniques was that from the Spitsbergen box cores. 

Nevertheless, the BGS core material proved technically suitable for 

palaeomagnetic studies as there was a clearly measurable NRM seen in cores 

from all UK areas studied. The only exceptions occurred when drying out 

through age or improper storage had taken place. For example, extensive 

damage through drying occurred in the case of cores from the Central North 

Sea area, (chapter 5). Originally, a reasonably clear NRM had been expected for 

the gravity cores but it was uncertain what quality of data would be obtained 

from vibrocores (see appendix A) In particular, it was not known if the 

vibration generated during the coring process would realign the magnetic 

grains within the sediment. However, as can be seen from, for example, the 

palaeomagnetic data for the Peach area, (chapter 3, figs 3.4, 3.5), vibrocores can 

carry a measurable NRM. The remanence has not been realigned to the earths 

present field direction as would have been expected if the vibration during 

penetration was causing a realignment of magnetic grains. Indeed, there is very 

little sign of any secondary directional component under demagnetisation (fig 

35). Gravity cores examined for the Flett area, (chapter 4, figs 4.5, 4.6), showed 

similar demagnetisation behaviour, suggesting, as expected for the gravity 

cores, negligible realignment of magnetic grains during coring. 

One aspect of BGS core collection techniques which was found to hinder 

palaeomagnetic analysis 	was 	the 	lack of alignment between core sections 
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following division into one metre sections on deck as shown in fig 3.4. The 

accuracy of alignment between core sections varied greatly with individual 

operators and is consequently difficult to quantify. Set against this alignment 

problem was the apparent lack of twisting of the core barrel whilst penetrating 

the sediment. Unlike the Mackereth coring technique commonly employed in 

lake sediments, the BOS coring equipment being of more sturdy design and 

steel construction (see appendix A), remained rigid throughout coring 

operations. There was also negligible flexing of the corer barrel during core 

recovery, a common and unquantifiable effect with Mackereth coring. 

A problematical aspect of continental shelf coring was the depth of water 

Depths of up to 1600 metres presented technical difficulties from a sampling 

equipment point of view and also had a knock-on effect in terms of sediment 

quality. The Peach area was the most extreme example, where cores were 

being recovered from below 1600 metres of water. Here the head of water 

produced considerable pressure on the unconsolidated sediments being 

sampled. As a result of the pressure release pressure upon recovery to the 

surface, it was common to see cores expand out of their liners once the 

restraining gates on the barrel were removed. The effect of such expansion 

upon the sedimentary and magnetic fabrics of the core are difficult to quantify, 

but must be bornin mind when looking at cores from deep water. 

Moving on from the problems derived from the various coring techniques, 

the palaeornagnetic data itself was promising in that in most cases there was 

an NRM that proved stable under demagnetisation. Unfortunately, when the 

data downcore is viewed, the record of changes in NRM direction lack sufficient 

features for reliable comparison with secular variation master curves (eg Turner 

and Thompson, 1981) and were of insufficient length to record a reversal 

stratigraphy. During the course of my study, all cores examined 

palaeomagnetically had a strong, normal magnetic polarity. The only exceptions 

to normal polarity being a small number of samples at the base of cores from 

the Flett area that exhibited a negative polarity and proved unstable under 

demagnetisation (figs 4.5,4.6). 

What could be seen in all core records, from the Peach area, northwards to 

Spitsbergen was an inclination shallower than would be expected at that 

latitude from a geomagnetic dipole field model. The common occurrence of 

shallow inclinations is discussed in chapter 8 in relation to Spitsbergen cores 
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which exhibited the greatest error. The shallow inclination problem was 

• common to all types of core studied, that is vibrocore, gravity core and 

box-cores. The sediment type also varied between areas, as did the magnetic 

minerals that carried the remanence. These variations tend to reinforce the 

point made in chapter 8, that inclination error cannot be attributed solely to 

one particular piece of coring equipment, sediment type or magnetic 

remanence carrier. There is clearly some variation in geomagnetic field 

behaviour due to non-dipole elements of the earth's magnetic field at these 

latitudes. 

The mineral magnetic data obtained in my study has a greater potential for 

constructive use than the palaeomagnetic approach. The technique of whole 

• 	core susceptibility scanning has been established as viable in both laboratory 

• 	and shipboard conditions (chapter 4). It fitted in well with routine deck 

• • procedures on the sampling vessel. Once interfaced to a computer, the 

Bartington whole core susceptibility equipment provided large quantities of 

easilV interpretable data. This data could be used for several functions, from 

the detection of drop stones (chapter 3) to picking up changes in lithology 

changes downcore (chapters 4 and 5, fig 5.5). The chemical relationship 

between susceptibility and heavy minerals established in chapter 9 supports 

the possibility of using whole core susceptibility as a rapid mineral 

reconnaissance tool. 

Other mineral magnetic parameters, x SIRM/X, HIRM and S. were shown to 

be useful in identifying lithologies (eg fig 5.6). The range of magnetic 

mineralogies was seen to • vary greatly between cores and sometimes 

downcore. The variation in mineralogies ranged from the simple situation seen 

in Peach (chapter 3) with relatively constant concentration and coercivity 

downcore but varying concentrations between cores from adjacent areas to the 

complex situation found in the Central North Sea area (chapter 5). In the case 

of the Central North Sea , concentration and coercivity were seen to vary 

greatly both between cores and downcore, so reflecting the more complex and 

varied lithology of the area. 

By using the biplot of SIRM/X and coercivity (fig 10.1) from Thompson and 

Oldfield (1986) and adding data from the various UK continental shelf sediments 

studied in this thesis, a distinct trend towards low coercivity magnetic minerals 

can be seen. The majority of UK continental shelf samples fall within the the 

200 



I I I 	I 	II 

S)PM 

I 

ISIPM 

21 	 I lilt I 

ii 

-I- 

02 L 

I. 	I 
I. u i;•;. K 	I K . W. 

' [Ld 
•j. 'up-  . 

E 
4 

S 

E 
4 

S 
U, 

HK(kA m' s ) 

'DO 
ml, 	

ia 	m1 

Peach 	 KK.0 Clyde (mud) 

Flett 	 —Y-- Clyde (sand( 

Forties 	 M.'ray Firth 	'zandl 

- Fig 10.1 Plot of SIRM/X vs coercivity from Thompson and Oldfield (1986) with data 
for typical samples from the Peach, Flett, Forties sea areas included on identical 
axes. The grid on the Thompson and Oldfield (1986) figure is schematically divided 
into magnetic mtnerlilogtes and magnetisation states. Multidomain (MD), 
pseudo—single domain (PSD) and elongated single domain (ESD) magnetites fall in 
the upper left to centre of the diagram. Haematite (H) lies in the upper right 
corner, mixtures containing (super) pararnagnetic grains lie further towards the 
lower right. 

bw 



magnetite classification with varying magnetic grain sizes seen. Only a few 

samples from the Central North Sea fall within an exclusively haematite 

classification. The spread of data is least in the mud fraction of the Clyde grab 

Sample sediments, and greatest in the North Sea cores. Haematite 

concentration is seen to increase with coarser grain sizes. 

Within the Peach area, the variation in magnetite concentrations between 

cores was used as the basis for mapping sediment types as defined by whole 

core susceptibility and keyed to other geological data (fig 3.8). This mapping 

approach exploited the generally homogeneous lithology seen downcore in 

Peach, and is consequently not applicable to areas that show major lithological 

changes downcore. 

In the case of varied coercivity and concentration of magnetic minerals, 

there is the potential for providing the basis for a system of sediment source 

identification. The most promising data for this sediment-source linkage 

program is from the Spitsbrgen area as shown in biplot form in fig 8.16. The 

characteristics of sediments seen in fig 8.16 should be sufficient to allocate 

appropriate sources when compared to samples from potential sources. 

Whole core susceptibility measurements were found to remain constant 

through time, as shown in chapter 4, fig 4.4a and 4.4b. This consistency 

through time supports the use of stored material in palaeomagnetic and 

mineral magnetic studies. Any change in susceptibility would have suggested 

a chemical change in magnetic mineralogy. Such a change may lead to the 

growth of CRMs which may alter the magnetic signature of the sediment. 

The examination of grab samples provides a different approach to the 

magnetic studies of continental shelf sediments. The studies of the Clyde 

(chapter 6) and the Moray Firth (chapter 7) have shown the effectiveness of 

mass-specific susceptibility as a mapping tool (fig 6.5) and its potential for use 

as a sediment source identification tool through the use of a a range of 

mineral magnetic parameters (fig 7.7). If the conclusions from chapter 9, that 

susceptibility is strongly related to heavy mineral concentration (figs 9.2-9.8), is 

added to the above result, it follows that susceptibility studies on grab samples 

provide the basis for a rapid mineral reconnaissance technique. Many 

thousands of grab samples from the UK continental shelf lie in store awaiting 

chemical analysis. Lusceptibility would provide a rapid method of detecting 
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• samples suitable for further investigation. The use of susceptibility as a 

reconnasance tool has been successfully employed in heavy mineral studies 

currently being undertaken at the Applied Geology Dept., University of 

Strathclyde - - - 

The results of this thesis provide a basis for a considerable amount of 

future work, particularly if the palaeomagnetic data is reinforced in several 

respects. A clearly measurable remanence Is seen in most cores, but the lack 

of suitable dating control severely limits interpretation. At the time of writing 

(1989) carbon 14 accelerator dating is just becoming available and should be 

suitable for use on the very small amounts of organic carbon found in 

continental shelf cores. Thermoluminescence techniques are being developed 

for sediments, (Singhis and Mejdahl 1985) as well as more detailed tephra 

chronologies (Dugmore 1988, pers comm), both providing other means of 

gaining vital age ontrol. 

Longer cores are now also becoming available after a lull In BGS sampling 

activity during recent years. Recent (1989) BGS boreholes in the North Sea 

have recovered 270m of sediment with initial pataeomagnetic analysis showing 

a clear reversal stratigraphy. 

One aspect of coring activity that still needs to be explored is the taking of 

duplicate vibrocores for palaeomagnetic analysis. The remanence records from 

sets of such cores could be stacked to provide a more reliable record of NRM 

variation in any one area. 

Stacking techniques could also be applied to whole core susceptibility data 

from duplicate cores to give a clearer indication of any relationship to lithology 

and help elimate variation attributable to localised Impurities. Use of simple 

filtering techniques could help smooth out spikes in susceptibIlity due to drop 

stones or impurities from the time of recovery. 

Simple actions, such as the use of non-magnetic cutting tools, the checking 

of magnetic field strngths within core barrels and rejecting or demagnetising 

highly magnetised barrels could lead to better quality palaeomagnetic data. 

Specific suggestions for both mineral magnetic and palaeomagnetic work 

on BUS core material are summarised in 'A Guide to the Application of 

Palaeomagnetic and Mineral Magnetic Techniques in BGS sample material' 

(Watson 1990, in prep). 
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7 Palaeomagnetic results 

All the subsamples recovered from Flett cores showed a strong normal 

magnetic polarity. As a continuous set of subsamples were available for core 

61-03 42CS, it was decided to carry out more detailed palaeomagnetic analysis 

on the samples. Data for a contiguous set of subsamples from the core is 

shown in fig 4.8. In fig 4.8, data obtained for subsamples that came from 

disturbed horizons has been plotted in the figure as individual points. The 

inclination data for core 61-03 42CS varies between 100  and 80 0 . Variation 

between adjacent samples can be as much as 20 ° . The average inclination for 

the 'core is approximately 58 ° . A dotted line has been included on the figure 

to mark the inclination expected from an axial dipole field model. Relative 

declination data for core 61-03 42CS varies between -120 and +140 ° . A 

particularly large swing is seen at 100cm, coincident with the division of the 

core into im sections. Intensity, unlike declination and inclination shows a 

distinct downcore trend, decreasing downcore from a peak value of 1.8 mAm 1  

in the upper 25cm to a low of 0.1 mAm 1  by 150cm. 

Demagnetisation data for 3 subsamples taken from core 61-03 42CS is 

shown in fig 4.9. The Zijderveld plots show a strong principal component of 

magnetisation for each sample. However, a smaller secondary component, 

removed by a lOrnT demagnetisation is seen in each sample. The plots of 

intensity of remanence against demagnetising field show a steady decrease in 

intensity with increasing demagnetisation field. All samples had a median 

destructive field in the range 21-22mT. The stereographic projections for each 

sample show a tight grouping with any slight deviation attributable to the 

secondary component seen in the Zijderveld plots. The behaviour under 

demagnetisation of the three pilot samples in fig 4.9 typifies that of all 

subsamples from the Flett area. 

8 Geological Data 

The geological logs and geotechnical results shown in figs 4.10 and 4.11 

are composed from data supplied by Dr A. Stevenson. The geological logs of 

cores 61-03 41CS and 61-03 43CS which typify the lithologies found in Flett 

cores are shown in fig 4.10a and 4.10b. Each core consists of varying bands of 

clay downcore, ranging in thickness between 2 and 100 cm. Superimposed on 

this clay background are small features, for example basalt fragments, dolerite 

pebbles, carbonaceous material and tuff layers. These small features are found 

W. 
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- Fig 4.8 Downcore palaeomagnetic data for core 61-03 42CS based on subsample 
results. Relative declination is shown. Position of core section boundaries are 
shown bV. horizontal dashed lines. The data points not joined to the main line are 
those identified as having come from disturbed horizons. The vertical dotted line 
shows the geocentric axial dipole field inclination at the coring site. 
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Appendix B - BGS sample naming conventions 
' I 

All BGS sample stations are assigned a standard coding to enable rapid 

identification of both origin of sample and the original method of recovery. The 

coding takes the form of 

XX YY zzz mm 
XX = latitude of grid square 
YY = longitude of grid square (+ = East, - = West) 
zzz = sequential number of sample station in grid square 
mm = method of sample recovery, 

VE = vibrocorer 
Cs = gravity corer 
GS = shipex grab sample. 

For example, sample 56-10 28VE is a vibrocore (yE), is positioned in grid 

square 56 North (56) 10 West (-10) and is the 28th samplIng location in that 

square (28). The BGS labelling system is designed for UK waters, hence 

latitude is assumed to be North 

Vibrocores are generally up to 6m in length, with approximately 5 m of 

material being the norm. Gravity cores are usually up to 3 m in length. Some 

gravity cores have been taken using a 6 m barrel, but none are examined in 

this thesis. Both vibrocores and gravity cores are approximately 100 mm in 

diameter. 

Shipex grab samples vary in quantity from a few grams to several hundred 

grams. 

Samples from vibrocore, gravity core and Shipex grab may exist for any one 

sample station. The following pages contain a list a sample locations for 

samples in the Peach, Miller, Flett, Judd and North Sea areas used In this study. 



Peach Area 

No. La. rong. 

21 56.98617 -9.10917 
22 56.98850 -9.14833 
23 56.94867 -9.13467 
24 56.90883 -9.12717 
26 56.77183 -9.13183 
28 56.50667 -9.04663 
29 56.51450 -9.13750 
30 56.59200 -9.13583 
33 56.51983 - 9.52967 
35 56.77917 -9.22150 
36 56.70950 -9.32750 
37 56.78767 -9.37333 
38 56.91433 -9.33783 
39 56.91583 -9.21167 
40 56.99017 -9.54433 
41 56.91000 -9.51833 
42 56.80067 -9.50283 
43 56.70467 -9.53417 
44 56.58667 -9.75900 
45 56.39017 -9.53900 
46 56.41900 -9.75467 
47 56.38700 -9.96633 
48 56.45083 -9.96650 
49 56.49933 -9.96483 
50 56.58217 -9.87733 
51 56.70183 -9.67417 
52 56.80083 -9.75433 

124 56.85667 -8.58250 
125 56.99100 -8.51733 
126 56.98283 -8.40483 
127 56.98483 -8.21283 
128 5691033 -8.21267 
129 56.90150 -8.03200 
132 56.58383 -8.28933 
133 56.62383 -8.40133 
140 56.58783 -8.58367 
141 56.58083 -8.44200 
142 56.58683 -8.40700 
143 56.62400 -8.20867 
144 56.58167 -8.20750 
145 56.56067 -8.21433 
146 56.47783 -8.22400 
147 56.50083 -8.03433 
148 56.72117 -8.03400 
149 56.38733 -8.15150 
150 56.38633 -8.21533 
152 56.28500 -8.59083 
153 56.28500 -8.59083 
154 56.33467 -8.39933 
155 56.22517 -8:39833 
156 56.18683 -8.40083 

No. Lat. Long. 

157 56.18600 -8.57833 
159 56.18333 -8.91683 
164 56.50817 -8.40217 
165 56.88183 -3.04450 
166 56.87433 -8.03300 
167 56.75083 -8.03250 
168 56.44000 -8.03200 
169 56.42433 -8.03283 
171 56.22767 -8.15233 
172 56.18817 -8.02667 
173 56.28367 -8.39883 
174 56.47583 -8.40517 
175 56.50517 -8.57950 
177 56.50150 -8.82950 
178 56.58983 -8.74800 



Central North Sea 

Num. 	Lat. 	Long. 

121 58.93796 -1.98136 
122 58.94000 -1.75000 
164 58.76334 -1--45837 
231 58.67765 -1.74582 
207 58.66891 -0.44955 
208 58.86401 -0.46595 
222 58.60792 -0.54950 
224 58.56836 -0.83327 

95 58.85898 0.16874 
96 58.75914 0.40037 

106 58.75681 0.60981 
107 58.75818 0.83485 
109 58.57591 0.83163 
165 58.63089 0.40420 
195 58.86412 0.87626 
227 58.99440 0.01389 

61 58.66770 1.46659 
80 58.57880 1.16585 

112 58.03571 1.62664 
113 58.15085 1.60221 
136 58.96718 I.. 47415 

Miller. Flett and Judd 

No. [at . Lonq. 

30 61.18250 -2.13267 
31 61.18117 -2.33150 
32 61.16600 -2.50150 
34 61.22967 -2.67617 
37 61.99617 -2.21367 
38 61.99317 -2.52617 
39 61.99367 -2.78233 
40 61.93633 -2.98233 
41 61.89067 -2.88167 
42 61.91433 -2.62400 
43 61.83333 -2.67150 
14 60.06883 -5.06017 
15 60.08267 -5.08967 
16 60.10783 -5.13417 
17 60.14133 -5.21050 
18 60.18250 -5.29467 
19 60.22383 -5.36950 
24 60.78900 -4.14867 
26 60.58467 -4.31350 
27 60.50433 -4.39667 
28 60.39150 -4.47567 
29 60.30867 -4.57067 
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Appendix A - Brief descriptions and photographs of British Geological Survey marine 
exploration equipment currently in use. Equipment of this kind was used to provide 
much of the background geological and geophysical data for the UK Continental Shelf 
sediments investigated in this thesis. (This material provided by the British Geological 
Survey marine exploration units). 
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The Marine Earth Sciences Directorate carries 
out geophysical and geological mapping of the 
UK Continental Shelf and Slope. The Marine 
Geophysics and Offshore Services Research Pro-
gramme (MGOSRP) is responsible for the ac-
quisition of geological and geophysical data, 
maintenance of the data base, interpretation and 
production of geophysical maps. The Marine 
Geology Research Programme (MGRP) is principally involvedin  
the interpretation and production of geological maps and reports 
groups also carry out geological and geophysical surveys for industry and other 
groups world-wide, and provide a comprehensive consultancy and interpretation ser- 
vice, with further support available from a wide range of specialists within BGS. 

Field operations 

BGS use a variety of vessels under charter ranging from small inshore launches to large dynamically positioned 
vessels capable of working in over 2000 rn water depth. The geological and geophysical surveys are undertaken 
from specially modified vessels and many of the BGS systems have been containerised or modularised to simplify 
mobilisation and demobiisation of equipment. Since 1966 over 200 000 km of geophysical traverse have been run, 
samples and cores collected from over 30000 stations, and more than 500 shallow boreholes drilled. 

- 

Figure 1 Towing configuration showing 
the deployment of the simultaneously 
operated geophysical equipment used in 
the BGS mapping programme. 
I Satellite navigator; 2 Doppler sonar; 
3 Pin ger; 4 Gravitymeter; 
5 Echo sounder; 6 Sparker; 
7 Airgun: 8 Sparker hydrophone; 
9 Sidescan sonar; JO Deep tow boomer; 
11 Airgun hydrophone; 
12 Magnetometer 

In geophysical surveys the operation of the equipment has been integrated through the use of a special seismic 
control system developed by BGS to allow the operation of a variety of seismic sources (Figure 1). This enables 
the simultaneous collection along a single traverse of high quality records which provide high resolution informa-
tion on the near surface sediments (pinger and deep tow boonier/sparker) or information from greater sub-
seabed depth using sparker and small air/water guns. Additionally the ship will operate an echosounder, 
sidescan sonar, gravitymeter and towed magnetometer. 

For geological surveys the seabed is sampled using 
a variety of seabed grabs or dredges, and cores are 
collected using gravity corers designed to sample 
either hard rock or soft sediment. Stiff sediments and 
sands are sampled using a vibrocorer (Figure 2) and 
bedrock can be recovered using the BGS rockdrill. 
The latter is integrated with the 6-metre vibrocorer to 
provide a method of either 'jetting' or vibrating 
through sediment cover to core solid rock beneath. 
In shallow water, BGS geologist divers can also col-
lect samples and make direct observations or 
measurements. 

'3 
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Figure 2 Deployment of the BGS 6 meter vibrocorer over the sterp 	 I 	' 
of the sampling vessel. The equipment weighs approximately four  
tons and can be operated in water depths down to 2000 m 	 ' 



Figure 3 Portion of a 1:250 000 Solid Geology Map (Portland Sheet) 

Deeper penetration of the sea-bed is achieved using drilling ships designed for site investigation. BGS has deved 
its own suite of drilling equipment with bits especially designed to penetrate and core a vanety of sediment and rock 
types. Over 500 boreholes have been drilled on the UK Shelf, in water depths of over 550 in and with a maximum 
penetration of 236 in below sea-bed. BGS has a special expertise in this type of drilling and has operated drilling 
vessels in many parts of the world. 

Data archives 
An aspect of the surveys carried out during the BGS offshore 
mapping programme is the accumulation of an extensive data 
set. Data collected by BGS are supplemented by information 
from a variety of commercial, academic and other sources 
and form an important national archive. Most of the data are 
publicly available, including the results of laboratory analysis 
and interpretation. 

Gravity, magnetic, echosounding and navigational data are 
recorded at sea on digital tape and computer processed 
ashore to produce the ship's track charts and geophysical 
maps. Seismic records are collected in analogue form at sea, 
microfilmed ashore and paper copies made on a continuous 
copier. Digital seismic acquisition is being introduced. Dur-
ing seabed sampling and coring surveys, positional informa-
tion and the results of onboard measurements and descrip-
tions are fed into a computer and the results of further 
laboratory analyses are added. 

These results, the seismic records, the preserved samples. 
cores and material from other sources all form part of the off-
shore archive. This resource, with the working map collec-
tion and the expertise of the BGS staff, are available for con-
sultation to provide a comprehensive offshore service. 

Deep crustal data acquired by the British Institutions' Reflec-
tion Profiling Syndicate (BIRPS) are also available for distribu-
tion, and small seismic processing studies can be carried out 
using the full-scale SKS processing package available on the 
BGS Vax computer. 

Maps and report production 
Solid Geology, Quaternary Geology, Sea Bed Sediment, Gravity Anomaly and Aeromagnetic Anomaly maps are 
published at 1:250 000 scale (Figure 3) as well as other maps at smaller scales. Computer techniques have been in-
troduced into the map making, and it is now possible to select relevant field data from a digital data bank for presenta-
tion in graphical form using proprietary contouring and surface-trend analysis programs. 

The Directorate has also embarked on the production of a series of Offshore Regional Reports which describe the 
geology around the UK in a form similar to the popular British Regional Guides onshore. 

Special projects 
Staff are involved in a wide variety of special investigation and research projects, often in collaboration with industrial 
or academic partners. These include a major appraisal of offshore sand and gravel resources, investigation of cable 
and pipeline routes, tunnel and barrage schemes, reclamation and major harbour developments and exploration for 
placer minerals. Studies of marine slope stability and problems associated with shallow gas or hazardous waste 
disposal have also been carried out. Academic studies have included the modelling of glacio-marine depositional en-
vironments, the development of new seismic processing techniques and the investigation of deep crustal structures 
around the UK. Consultancy services have been provided to overseas and national surveys and other government 
departments on the planning, management and interpretation of offshore surveys. 

Further information should be obtained from: 

Mr J H Hull (Assistant Director, Hydrocarbons and 
Marine Earth Sciences Directorate) 

Mr D A Ardus (Manager, Marine Geology Research 
Programme) 

Dr A Dobinson (Manager, Marine Geophysics and 
Offshore Services Research Programme) 

British Geological Survey 
Murchison House 
West Mains Road 
Edinburgh 
Tel: 	031-667 1000 
Telex: 727343 SEISED G 
Fax: 031 6682683 

Mr D A C Mills 
Marine Geology Research Programme 
British Geological Survey 
Keyworth 
Nottingham NG12 5GG 

Tel: 	060776111 
Telex: 378173 BGSKEY G 
Fax: 06077 6602 



--s 	BRITISH GEOLOGICAL SURVEY 

MARINE EARTH SCIENCES DIRECTORATE 

Offshore studies by BGS began in 1967 with 
extensive field programmes designed to regionally 
map the UK Designated Area. In the main chartered 
vessels were used and they were equipped, 
mobilised and operationally manned by BGS. To 
date, in excess of 200,000 km of seismic track have 
been run, and samples and cores collected from 
over 30,000 stations and over 500 boreholes to a 
maximum depth of 235m below seabed. In addition 
a large archive of data and core samples from 
commercial sources is held confidentially. Data 
from the mapping programmes are publically 
available and are presented in published maps, 
BGS publications, Scientific Journals and as part of 
the BGS Advisory and Enquiry Service. 

The work has now extended to the provision of 
integrated geological and geophysical surveys to 
various Government departments, Public Bodies 
and Oil Companies, the provision of Offshore 
Consultancy for drilling programmes, geophysical 
and geological quality control, desk studies and 
Project Management and to utilising the equipment 
and personnel in sub-contract arrangements with 
the Offshore Industry. 

Staff specialise in Geophysics, Geology and 
Hydrocarbon studies and further support is 
provided by Geochemists, Palaeontologists, 
Petrologists, Seismologists and Engineering 
geologists. Data from the Hydrocarbon assessment 
studies is confidential to the UK Department of 
Energy. 

Geophysical studies include the use of shallow 
and deep tow Side Scan Sonars, Echo Sounders, 
Pingers, shallow and deep tow Boomers, Sparkers, 
small Air Guns and Gravity and Magnetic 
measurements. These instruments are normally 
operated simultaneously using a purpose built 
firing control system. A variety of positioning 
systems can be operated depending on individual 
survey requirements. 

Geological studies utilise seabed Grabs and 
Dredges, sediment and rock Gravity Corers, 
Vibrocorers, seabed Rock Drills, Rotary Wireline 
rock and sediment coring from drilling vessels and 
Scuba Diving. 

Core recovered is subjected to lithological, 
geotechnical, palaeontological, X-ray, 
palaeomagnetic, acoustic and various age dating 
studies. In addition studies of natural and induced 
radiation (down hole and underway on the seabed), 
seabed acoustic and resistivity properties and long 
term in-situ seismic observations have been made. 

Special projects are also undertaken including 
studies of pockmarks, subglacial channelling, low 
angle slope stability, carbonate sediments, 
sediment fabric studies, sediment chemistry, 
(including large scale baseline programmes for 
mineral distribution and pollution studies) absolute 
dating techniques and seabed seismic monitoring. 

Significant developments have been made in 
seismic control equipment, seabed sampling 
techniques, shallow soils drilling and geological 
coring in difficult offshore environments. These 
developments continue at present. 

Staff have worked on projects in various parts of 
the world both on continental shelves and in deep 
water as well as in polar regions and have 
considerable experience in ship selection, 
contracting and mobilisation. Technical, operational 
and scientific consultancy is available and staff 
have experience of power cable and pipeline 
routing, tunnel and barrage schemes, geotechnical 
site investigation, mineral exploration and inshore 
surveys including aggregate investigation, 
dredging projects, beach reclamation and sewer 
outfall work. 

Further in formation on the work, the expertise 
and the facilities available may be obtained from 
the Enquiries Officer, at the address below. 

British Geological Survey 
Marine Earth Sciences Directorate 
Murchison House 
West Mains Road 
Edinburgh EH9 31A 

Tel: 031 -667 1000 
Telex: 727343 SEISED G 
Fax: 031-668 2683 



BRITISH GEOLOGICAL SURVEY 
SAMPLING AND CORING OPERATIONS 

GRAVITY CORER 
Use: To core unconsolidated sediments up to 6 metres below sea bed and rock 

at outcrop. 
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Description: The gravity corer consists of a 500 kg 
lead weighted chassis with an attached sediment or 
rock core barrel that is lowered to approximately 20 
metres above the sea bed before being allowed to 
free-fall. The sediment barrels are 70 mm or 102 mm 
outside diameter, up to 6 metres in length and have an 
inner plastic liner to retain the sample. A stainless 
steel core catcher in the cutting head and a butterfly 
valve in the corer chassis ensure maximum core 
retention. 

An electro hydraulicwinch, completewith metering 
system, enables the gravity corer to be lowered at an 
approximate speed of 150 metres per minute. 

A buoyant braidline rope or a steel wire can be used 
with the gravity corer. 

A special recovery chute enables the gravity coring 
operation to be carried Out in safety in adverse 
weather conditions. 

Sample: The sediment samples are retained in a 
plastic liner tube of 57 mm and 83 mm internal 
diameter. 

Operational depth: The present winch system limits 
operations to 3,000 metres. 

Enquiries to:- 

British Geological Survey 
Marine Geology Research Programme 
Murchison House 
West Mains Road 
Edinburgh EH9 3LA 

Telephone: 031-667 1000 
Telex: 727343 SEISED G. 
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------ BRITISH GEOLOGICAL SURVEY 
SAMPLING AND CORING OPERATIONS 

VIBROCORER 
Use.' Sampling sediments, including stiff and stoney clays, and soft rock to a 

penetration depth of 6 metres. 

0'. 	 Aly 

Description: The vibrocorer consists of a twin vibrator 
motor housed in a pressure vessel driving a core 
barrel of 102 mm outside diameter with a vibration 
force of 6 ton nes at 50 Hz. The standard system 
weighing in the order of 3V2 tonnes. uses a 6 m 
barrel but smaller units with correspondingly 
lighter frames are available. A base mounted winch 
on the vibrocorer providing up to 12 tonnes 
withdrawal force enables full barrel retraction prior 
to recovery on the main lift wire. A penetro meter 

with a chart recorder and analog display gives a 
precise measure of penetration rate and depth. The 
power requirements is 30 kva 415 v 3 ph 50 Hz. 

Sample: The samples are retrieved in a clear plastic 
liner tube of 83 mm internal diameter. 

Operational depth: The system has been tested to 
depths in excess of 1,800 metres and is designed 
for use to 2,000 metres. 

Enquiries to:- 

British Geological Survey 
Marine Geophysics and Offshore Services 
Murchison House 
West Mains Road 
Edinburgh EH9 31A 

Telephone: 031-667 1000 
Telex: 727343 SEISED G 
Fax: 031-668 2683 





------- BRITISH GEOLOGICAL SURVEY 
SAMPLING AND CORING OPERATIONS 

ROCKDRILL 
Use: Coring in rock up to 5 metres below sea bed. Simply by fitting an alternative 

6 m barrel assembly vibrocores may be taken in sediments or soft rocks. 

Description: The rock drill is built within a modular 
steel structure identical to that of the vibrocorer. 
The sea bed system is electro hydraulic and fully 
self contained. The power swivel is base mounted 
and drives the hexagonal outer barrel at variable 
drilling speeds up to 600 rpm controlled water 
flushing is run while drilling. lnsitu retraction is 
achieved by a base mounted hydraulic winch 
achieving a possible 12 tonnes withdrawal force. 
The drill uses microprocessor control. Penetration, 

retraction and the status of all drilling functions are 
monitored and displayed. 

Sample: The rock core (T.B.W. 44 mm diameter) is 
recovered in the steel inner barrel of the twinwall 
barrel system and archived in 1 metre long 
sections. 

Operational Depth: The system is designed for use 
to 2000 metres water depth. 

Enquiries to:- 

British Geological Survey 
Marine Geophysics and Offshore Services 
Murchison House 
West Mains Road 
Edinburgh EH9 3LA 

Telephone: 031-667 1000 
Telex: 727343 SEISED G 
Fax: 031-668 2683 
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-s 	BRITISH GEOLOGICAL SURVEY 
SAMPLING AND CORING OPERATIONS 

VIBROCORER - ROCKDRILL 

This seabed coring tool designed for use to 2000 
metres water depth is a self-contained electro-
hydraulic unit capable of coring in sedimentary and 
hard crystalline rock at or near seabed using diamond 
rotary coring and is also capable of coring seabed 
sediments using linear vibration forces. The systems 
are contained in an open geometry steel structure and 
require only a steel hoist cable and a simple electrical 
umbilical link to the surface vessel, alternatively a 
combined power hoist umbilical may be employed. 

Rock Core - 44mm diameter (TBW) 
and up to 5 metres long is 
recovered in the steel non-rotating 
inner barrel of a twinwall barrel 
system and is typically archived in 
1 metre long sections. 

Sediment Core - 83mm diameter 
and up to 6 metres long is 
recovered in a clear butyrate or 
polycarbonate liner tube and is 
typically archived in 1 metre long 
sect o ns. 

Enquiries to:- 
British Geological Survey 
Marine Geophysics and Offshore Services 
Murchison House 
West Mains Road 
Edinburgh EH9 3LA 

Telephone: 031-667 1000 
Telex: 727343 SEISD G 
Fax: 031-668 2683 
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BRITISH GEOLOGICAL SURVEY 
SAMPLING AND CORING OPERATIONS 

WIRELINE DRILLING 
Use: Drilling and continuous coring of sediments and rock formations. 

44 
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Description: The equipment comprises a wireline 
	

A Mount Sopris model 2500 wireline logging 
core barrel with a selection of tungsten carbide, 	 equipment with combination stratigraphic probe is 
diamond and rock roller bits developed for BGS and 

	
used to obtain gamma logs of boreholes. Neutron or 

able to core both unconsolidated sediments and rock 
	

gamma-gamma can be run with alternative probes. 
formations. Various types of inner barrel assemblies 
can be interchanged during drilling; the non-rotating 

	
With the exception of outer drill barrels all 

inner barrel is the most commonly used, but an 
	 equipment is self-contained in a 20' x 8' x 8' container 

extended coring assembly and push sampling 
	 which is also fitted out for equipment assembly and 

assemblies are also available for soft and 
	

logging. 
unconsolidated formations. 115 mm I.E. box thread 
on the core barrel head. 102mm I.D. drill collars and 

	
Sample: 77mm diameter core with non-rotating inner 

drill pipe are required. 	 barrel, 64 mm core with extended coring system and 
64 mm or 51 mm core with push sampling assembly. 

Handling equipment for running and preparing the 
core barrels, overshots, tools for make up and 

	
Operational depth: The equipment is used to depths 

maintenance and spares are available. 	 up to 300 metres below sea bed. 

Enquiries to. 

British Geological Survey 
Marine Geology Research Programme 
Murchison House 
West Mains Road 
Edinburgh EH9 3LA 

Telephone: 031-667 1000 
Telex: 727343 SEISED G. 
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DEPARTMENT OF ENERGY 
PETROLEUM ENGINEERING DIVISION 

CORE, STORE 
For Hydrocarbons Commercial Well Samples 

Storage space for 100,000 sample boxes. 
Examination rooms and facilities available by 
appointment. 

Managed by the BRITISH GEOLOGICAL SURVEY 
376 Gi]rnerton Road Edinburgh EH17 7Q5 
Telephone 031-664 7330 
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CORE STORE 
17J 

The store is visited regularly by oil company and 
academic geologists wishing to examine and sub-
sample core and cuttings. The regulations 
governing the use of the store have been sent to 
all operating companies in the UK and to geology 
departments of British Universities. 

The building also houses a large PRIME computer 
installation which carries the geological and 
geophysical databases for the Department of 
Energy funded BGS Hydrocarbons Research 
Programme. 

Further information may be obtained from: 
The Curator 
DEn Core Store 
376 Gilmerton Road 
EDINBURGH EH17 7QS 
Telephone 031-664 7330 

A s part of the obligations of a licence to drill 
for hydrocarbons on the UKCS and onshore the 
licensee is required to supply the Department of 
Energy with a portion of all core and cuttings 
samples taken. These are received, curated and 
administered on behalf of DEn by the BGS. 

For many years these samples were stored at 
Kippax near Leeds and at several locations in and 
near Edinburgh. In 1982 the Department of Energy 
purchased the present site at 376 Gilmerton Road 
The existing building, formerly used as a garage, 
was modified and equipped for storage and 
examination of samples. In the spring of 1984 all 
offshore commercial samples from the various 
stores were installed at Gilmerton Road. It was 
apparent that the existing building would require 
extension in order to allow for the continuing 
acquisition of cores and cuttings. By mid-summer 
1984 the building was considerably extended and 
fitted out with racking. 

Thus, currently the store houses approximately 
50,000 trays and boxes of cuttings and cores with 
space to house a further 40,400 such boxes. 
Examination rooms equipped with running water, 
simple laboratory equipment, microscopes and 
photographic equipment are available for use by 
visiting geologists. A microfiche viewer is available 
for examination of released well data. 
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—•---- BRITISH GEOLOGICAL SURVEY 

OFFSHORE DATABASE 

Perspective View - Northwest Scotland Continental Shelf 

Since 1968, the Marine Directorate of the British 
Geological Survey has been responsible for 
surveying and mapping the greater part of the UK 
Continental Shelf. In that time, they have covered 
some 200,000 km of geophysical track and taken 
over 30,000 surface and core samples. 

The geophysical data include gravity, magnetic 
and bathymetric measurements, which are held in 
digital form, as well as shallow analogue seismic 
records including airgun, sparker, boomer and 
sidescan. 

The sample data include surface and core 
samples (of up to 6m penetration) and 500 
boreholes to around 200m TD. Most of the surface 
samples have been subsequently analysed and 
data are available on particle size and carbonate 
content. Shipboard geotechnical strength 
measurements are available on a large number of 
core samples. 

Data are held on a computer data base which can 
be accessed by BGS staff. Data can be presented in 
the form of listings and maps or extracted in digital 
form to tape or floppy disc. Seismic records can be 
copied as paper or microfilm or may be inspected 
at the Survey's Offices in Edinburgh. 

The British Geological Survey is also able to offer 
software developed for our own use but which may 
be of benefit to clients who buy our data. These 
include plotting and geophysical modelling 
programs, which may also be used by visitors to 
the Survey. 

Enquiries to: 

British Geological Survey 
Marine Geophysics and Offshore Services 
Murchison House 
West Mains Road 
Edinburgh EH9 3LA 

Tel: 031-667 1000 
Telex: 727343 SEISED G 
Fax: 031-668 2683 
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---- BRITISH GEOLOGICAL SURVEY 

MARINE OPERATIONS 

Through its extensive offshore survey programme over the past 20 years, the 
BGS has built up considerable experience in a very wide range of offshore 
geophysical and geological operations. 

The following systems are operated: 

GEOPHYSICAL 

Gravity 
Mag netics 
Bath y met ry 
Positioning 
Data logging 
Shallow seismic profiling: 

Deep tow boomer/sparker 
Surface tow boomer 
Pinger 
Sparker 
Airguns 

Side scan sonar 

GEOLOGICAL 

Sampling and coring: 
Grabs 
Gravity corers 
Piston corers 
Vibrocorers 
Rockdrills 
Diving (Scuba) 
Photography and TV 

Drilling: 
Rotary wireline drilling 
Electrical logging 

Additional facilities include workshops and laboratories both shipboard and land 
based. 

Individual information sheets are available for many of the above systems. 

Enquiries to: 

British Geological Survey 
Marine Geophysics and Offshore Services 
Murchison House 
West Mains Road 
Edinburgh EH9 31-A 

Tel: 031-667 1000 
Telex: 727343 SEISED G 
Fax: 031-668 2683 



primary logging device, also recording depth, 
magnetics and navigation parameters. Depth 
information is provided by an Atlas Deso 20 echo 
sounder and a variety of positioning systems can 
be operated depending on survey location. 

All processing of gravity data is done in-house, 
including Eotvos, latitude and water depth 
corrections, smoothing and network analysis. All 
processed gravity data are incorporated in our 
Offshore Database and may be retrieved in a 
variety of graphical outputs or in digital form. 

-s---- BRITISH GEOLOGICAL SURVEY 
MARINE GEOPHYSICAL OPERATIONS 

GRAVITY 
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Since 1968 the Survey has built up a level of 
experience in marine gravity surveying that is 
unique in the United Kingdom. In our regional 
survey programme typically 15,000km of gravity 
data have been collected annually for input to our 
1:250,000 map series covering the whole of the UK 
Continental Shelf. 

The system currently employed is a La Coste and 
Romberg air-sea gravity meter with a Worden land 
meter providing harbour base ties. Digital data are 
logged on an integral Monitor Labs 9400 logger and 
on a Qubit TRAC IV logging system. The latter is the 

Enquiries to:- 

British Geological Survey 
Marine Geophysics and Offshore Services 
Murchison House 
West Mains Road 
Edinburgh EH9 3LA 

Telephone: 031-667 1000 
Telex: 727343 SEISED G 
Fax: 031-668 2683 



BRITISH GEOLOGICAL SURVEY 
MARINE GEOPHYSICAL OPERATIONS 

SEISMIC CONTROL 
SYSTEM 

Interference free multi-system seismic/sonar data acquisition. 
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The control system was designed and built in house 
and comprises a master unit and sub-units, one for 
each seismic/sonar system in operation. 

Sub-units provide:- 

Independent time control of firing and recording 
sequences, to lOmsec, for each system within an 
overall timing cycle generated by the master unit. 
The latter time cycle is determined by the slowest 
rate of firing in operation. 

Memories which permit reversible sweep display 
resulting in normalisation of seismic records. 

-rint delay—removal of water column. 

Multiple print facility—stretches the horizontal 
scale reducing vertical distortion 

The system has been in routine use over the last three 
years during which over 30,000km of multiple system 
data have been acquired in the BGS regional mapping 
programme. Typically, airgun, sparker, pinger and/or 
deep tow boomer, and sidescan sonar are operated 
simultaneously. An additional unit is used to control 
the magnetometer cycle to prevent sparker 
interference. 

Enquiries to: 

British Geological Survey 
Marine Geophysics Research Programme 
Murchison House 
West Mains Road 
Edinburgh EH9 31A 

Telephone: 031-667 1000 
Telex: 727343 SEISED G. 



----- BRITISH GEOLOGICAL SURVEY 
MARINE GEOPHYSICAL OPERATIONS 

DEEP TOW 
BOOMER/SPARKER 
High resolution sub-bottom profiling in water depths 100-2000m. 
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Developed by BGS from the Huritec deep tow 
boomer, the depth of operation of the tow fish has 
been extended to 1000m. 

Boomer operation is successful throughout the full 
tow depth range and a penetration of 150msec has 
been achieved with a resolution of better than im. 
The alternative sparker source may be selected and 
produces a very comparable record but with depth of 
operation limited to approximately 300m. 

The system comprises tow fish (weight 800kg) with a 

short trailing hydrophone array, A-frame with fish 
catcher assembly (weight 4.5 tons), remotely 
controlled electro-hydraulic winch with 2.5km tow 
cable and power pack (total weight 8 tons), HV power 
supply unit and a laboratory electronics package 
which includes depth compensation. Further signal 
processing is provided by a band pass filter, TSS 307 
TVG amplifier, TSS 302 swell filter and display on an 
EPC 3200 graphic recorder. Firing control and 
additional features, such as print delay, are provided 
by the BGS Seismic Control System. 

Enquiries to:- 

British Geological Survey 
Marine Operations Research Programme 
Murchison House 
West Mains Road 
Edinburgh EH9 3LA 

Telephone: 031-667 1000 
Telex: 727343 SEISED G. 
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BRITISH GEOLOGICAL SURVEY 
MARINE GEOPHYSICAL OPERATIONS 

SURFACE 
TOW BOOMER 

High resolution sub-bottom profiling for shallow water/inshore surveys. 

Source: EG & G Model 230 boomer plate, catamaran 
mounted, 300J power capability. Typical penetration 
to lOOm, resolution to 0.5m. 

Hydrophone: Teledyne, lOm active section with 7 
channels each of 4 elements. Number of channels 
selected dependent on resolution/penetration 
requirements. 

Processing and Display: Seven channel in-house 
design seismic amplifiers and summing unit, Kemo or 
Kronhite bandpass filter, TSS Model 307 seabed 
tracking TVG amplifier, TSS Model 302 swell filter and 
display on an EPC 4600 or EPC 3200 graphic recorder. 
Reversible sweep, water column removal and 
multiple print facility provided by the Seismic Control 
System. 

Enquiries to:- 

British Geological Survey 
Marine Geophysics Research Programme 
Murchison House 
West Mains Road 
Edinburgh EH9 3LA 

Telephone: 031-667 1000 
Telex: 727343 SEISED G. 
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BRITISH GEOLOGICAL SURVEY 
MARINE GEOPHYSICAL OPERATIONS 

SPARKER 
Medium resolution shallow seismic profiling over the Continental Shelf. 

Source: EG & G System with up to 2kJ power 
capability. Nine candle array with multitip candles 
selectable from shipboard end in banks of three. 
Normally used at 500J per bank of three candles 
giving a discharge rate of 1 1J per tip. This discharge 
rate is maintained for powers of 1000 and 1500J 
permitting flexibility in power output whilst 
minimising changes in pulse characteristic. Pulse 
length is typically 5msec with penetration to 500m. 

Hydrophone: Teledyne, lOm active section with 7 
channels each of 4 elements. 

Processing and Display: Seven channel in -house 
design seismic amplifiers and summing unit, Kemo or 
Kronhite bandpass filter, TSS Model 307 seabed 
tracking TVG amplifier, TSS Model 302 Swell Filter 
and display on an EPC 4600 or EPC 3200 graphic 
recorder. Reversible sweep, water column removal 
and multiple print facility provided by the Seismic 
Control System. 

Enquiries to:- 

British Geological Survey 
Marine Geophysics Research Programme 
Murchison House 
West Mains Road 
Edinburgh EH9 3LA 

Telephone: 031-667 1000 
Telex: 727343 SEISED G. 



—s----- BRITISH GEOLOGICAL SURVEY 
MARINE GEOPHYSICAL OPERATIONS 

AIRGUN 
Regional seismic profiling over the Continental Shelf and Slope. 
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Source: Combination of Bolt 6008 airguns with a 
range of chamber sizes from ito 40 cu.in . Wave shape 
kits are used with the 40 cu.in  chambers to eliminate 
the bubble pulse. Normally two guns are towed on the 
same frame and these can be used singly or in 
combination giving typical penetration to 1km. A 
tuned array of up to five guns is under development. 
A containerised Compair Reavell VHP 36 compressqr 
system provides capability of firing 80 cu.in  at an 8sec 
rate. 

Hydrophone: 

(a) 2 Channel, 30m, Geomecanique. 
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(b) In-house specification 80m hydrophone with two 
active 25m sections, isolating head and tail sections, 
depth sensor and depth controllers. 

Processing and Display: 

In-house design seismic amplifiers, Kemo or Kronhite 
bandpass filter, TSS Model 307 seabed tracking TVG 
amplifier and display on an EPC 4600 or EPC 3200 
graphic recorder. Reversible sweep, water column 
removal and multiple print facility provided by 
Seismic Control System. 

Enquiries to:- 

British Geological Survey 
Marine Geophysics Research Programme 
Murchison House 
West Mains Road 
Edinburgh EH9 3LA 

Telephone: 031-667 1000 
Telex: 727343 SEISED G. 



-•----- BRITISH GEOLOGICAL SURVEY 
MARINE GEOPHYSICAL OPERATIONS 

SIDE-SCAN 
SONAR 

1%kb,6k_ / 

The Surveys primary sidescan sonar system is 
currently the Waverley Sonar 3000. This is a dual 
channel 100KHz system incorporating a signal 
processing unit with automatic adaptive gain 
control, a range expansion facility and display on a 
high definition thermal printer. The processing unit 
has been especially modified to permit a degree of 
external control which eliminates disruptive 
interface from other seismic sources without 

significantly effecting sonar data quality. Other 
facilities include along course ship speed 
adjustment and a tape recording facility. 

The system is available with either a 150m tow 
cable on a handwinch for shallow water operations 
or with a 600m tow cable on a powered winch 
giving full Continental Shelf capability. 

Enquiries to:- 

British Geological Survey 
Marine Geophysics and Offshore Services 
Murchison House 
West Mains Road 
Edinburgh EH9 3LA 

Tel: 031-667 1000 
Telex 727343 SEISED G 
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BRITISH GEOLOGICAL SURVEY 
SAMPLING AND CORING OPERATIONS 

SHIPEK GRAB 
Use: Sampling sea bed surface sediments. 
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Description: The grab is spring loaded and cocked by 
a lever before being lowered to the sea bed. On 
contact with the seabed a trigger weight on the grab 
strikes a release lever and the bucket snaps shut to 
take a sample of the sea bed sediment. 

An electro-hydraulic winch, complete with 
metering system, is used to lower the grab to the sea 
bed on a 6mm wire ata speed of 60-70 metres/minute. 

Sample: Up to 2kg. 

Operational depth: The present winch system limits 
operations to 3,000 metres. 

p 

Enquiries to:- 

British Geological Survey 
Marine Geology Research Programme 
Murchison House 
West Mains Road 
Edinburgh EH9 31A 

Telephone: 031-667 1000 
Telex: 727343 SEISED G. 


