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Abstract

Energy consumption has become a major research topic from both environmental and econom-
ical perspectives. The telecommunications industry is currently responsible for 0.7% of the
total global carbon emissions, a figure which is increasing at rapid rate. By 2020, it is desired
that CO2 emissions can be reduced by 50%. Thus, reducing the energy consumption in order
to lower carbon emissions and operational expenses has become a major design constraint for
future communication systems. Therefore, in this thesis energy efficient resource allocation
methods have been studied taking the Long Term Evolution (LTE) standard as an example.
Firstly, a theoretical analysis, that shows how improvements in energy efficiency can directly
be related with improvements in fairness, is provided using a Shannon theory analysis. The
traditional uplink power control challenge is re-evaluated and investigated from the view point
of interference mitigation rather than power minimization. Thus, a low complexity distributed
resource allocation scheme for reducing the uplink co-channel interference (CCI) is presented.
Improvements in energy efficiency are obtained by controlling the level of CCI affecting vul-
nerable mobile stations (MSs). This is done with a combined scheduler and a two layer power
allocation scheme, which is based on non-cooperative game theory. Simulation results show
that the proposed low complexity method provides similar performance in terms of fairness
and energy efficiency when compared to a centralized signal interference noise ratio balancing
scheme.
Apart from using interference management techniques, by using efficiently the spare resources
in the system such as bandwidth and available infrastructure, the energy expenditure in wireless
networks can also be reduced. For example, during low network load periods spare resource
blocks (RBs) can be allocated to mobile users for transmission in the uplink. Thereby, the user
rate demands are split among its allocated RBs in order to transmit in each of them by using
a simpler and more energy efficient modulation scheme. In addition, virtual Multiple-input
Multiple-output (MIMO) coalitions can be formed by allowing single antenna MSs and avail-
able relay stations to cooperate between each other to obtain power savings by implementing
the concepts of spatial multiplexing and spatial diversity. Resource block allocation and vir-
tual MIMO coalition formation are modeled by a game theoretic approach derived from two
different concepts of stable marriage with incomplete lists (SMI) and the college admission
framework (CAF) respectively. These distributed approaches focus on optimizing the overall
consumed power of the single antenna devices rather than on the transmitted power. Moreover,
it is shown that when overall power consumption is optimized the energy efficiency of the users
experiencing good propagation conditions in the uplink is not always improved by transmitting
in more than one RB or by forming a virtual MIMO link. Finally, it is shown that the proposed
distributed schemes achieve a similar performance in bits per Joule when compared to much
more complex centralized resource allocation methods.
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Chapter 1
Introduction

This thesis focuses on the energy efficient resource allocation design taking the Long Term

Evolution (LTE) standard as an example. It is mainly devoted to uplink transmission techniques

from mobile stations (MSs) to base stations (BS). The origin and motivation of this work is

provided in Section 1.1. The overview of the organization of the remaining chapters is presented

in Section 1.2. Finally, the main contributions of the thesis are summarized in Section 1.3.

1.1 Motivation

Energy consumption of wireless networks contributes significantly to global climate change

as mobile data traffic continues growing dramatically [6, 7]. The growing energy costs also

become a substantial operational expense for mobile operators [8]. Thus, reducing the energy

consumption in order to lower carbon emissions and operational expenses has become an im-

portant design constraint for future communication systems [9]. The concept of green radio

has arisen to reduce communication systems’ energy expenses by developing environmentally

friendly, energy efficient solutions. Hence, with the aim of reducing power expenditure a vari-

ety of techniques may be derived from the protocol stack viewpoint or the network architecture

perspective.

Techniques across the protocol stack refers to radio resource management methods such as

power and resource block (RB) allocation. Efficient power allocation is a main concern in

LTE networks, since the demand for higher data rates coupled with full frequency reuse results

in an interference limited-system, which is susceptible to co-channel interference (CCI). This

can be prejudicial to the signal to noise plus interference ratio (SINR) of users across the cell

but particularly for users close to the cell edge [10]. Therefore, the implementation of one

or more viable interference mitigation/cancellation/coordination technique is envisioned to im-

prove system’s performance, while sacrificing minimal system capacity [4].

Significant research has been performed for resource block allocation and power allocation

in orthogonal multiple access systems in order to achieve a fair distribution of the system re-

sources [4, 11–13] or an energy efficient operating point [4, 11, 13–19]. In [18], an energy
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efficient approach through BS coordination has been proposed for Orthogonal Frequency Di-

vision Multiple Access (OFDMA) networks. The proposed resource allocation maximizes the

energy efficiency while considering a minimum required data rate. An energy efficient RB al-

location scheme, which is coordinated at the base station (BS) side is proposed in [20]. The

authors show that by allocating extra RBs to the mobile users it is possible to reduce the trans-

mitted power expenditure in the downlink while maintaining a constant data rate. In addition,

they demonstrate that increasing the number of allocated RBs always provides an increase in

the energy efficiency metric for the system. In [4, 11], a co-channel interference coordination

(CCIC) technique is proposed, it is based on the premise that the cell-edge performance im-

provement is almost linear while the degradation of the cell center users is logarithmic. The

approaches in [4, 11] require a significant amount of intercell communication, in order to ex-

change the base-mobile and interference path gains for the optimization process, which leads

to a high implementation cost and complexity. Therefore, it is necessary to study the design of

distributed techniques, that can allow MSs to use the network resources efficiently, and also to

maintain a low network complexity.

The network architecture aspect involves changes to the current network structure with the aim

of reducing power expenditure. As an example in [21], the authors propose to modify the cell

radius with the aim of improving the energy efficiency in the network. They show that by re-

ducing the cell size, potential energy savings may be obtained. Nevertheless, when the cell

size is reduced an increase in network infrastructure is required to maintain a similar perfor-

mance in terms of network coverage, which increases mobile operators expenses. In [22] it is

shown how macrocells and femtocells can coexist in order to reduce the energy consumption

in the network. Femtocells are deployed to improve the coverage in the cell. However, since

macrocells and femtocells may need to share the same spectral resource mutual interference

problems arise. Thus, the authors present a game theory framework which aims to mitigate the

interference in the system. The paper shows that when interference is reduced potential gains

in energy efficiency can be obtained. The use of routing and multihop techniques may also be

used as an effective way to improve the performance of communications systems as is shown

in [23,24]. Particularly, the use of relays stations (RSs) for reducing energy consumption is in-

vestigated in [25]. An approach to optimize the power allocation between transmitter and relay

through the use of virtual antenna arrays by minimizing the overall consumed energy per bit in

the system is presented. It is shown that by using an optimal power allocation, the virtual multi-

ple input multiple output (MIMO) case achieves an energy efficiency performance close to the

ideal MIMO system. The authors in [26,27] illustrate the energy savings obtained when virtual
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antenna arrays are used in wireless sensor networks. They argue that at certain distance ranges

from the destination node the use of virtual MIMO results in a more energy efficient solution

compared with single antenna transmission when circuit power consumption is optimized. As

mentioned previously, most of the current research in energy efficient virtual MIMO [25–27]

tackles the problem of “why to cooperate”. Nevertheless, there are two questions that remain

unanswered “when to cooperate” and “with whom to cooperate”. Thereby, future research

should aim to answer both questions by providing a framework that allows wireless entities to

decide with whom to cooperate among their respective peers in order to obtain energy savings

for the system. Moreover, low complexity distributed algorithms that allows the single antenna

devices to autonomously decide when and with whom to cooperate are preferred over complex

centralized methods. Since, centralized techniques entails extra implementation costs and an

increase in system’s complexity [28, 29].

1.2 Thesis Structure

As discussed above, for the protocol stack aspect current communications systems require-

ments are the development of low complexity resource management techniques for power and

resource block allocation which allows the network to obtain power savings with a low imple-

mentation cost and complexity. In regard to the network architecture aspect, it is a matter of

vital importance the study of distributed solutions that allow the MSs in the network to select

the most suitable RSs to reduce the power consumption. In the case of the RS selection process

the optimization in the presented work is based on the circuit consumed power rather than in the

transmitted one, thus, the power consumption of radio frequency parts such as power amplifiers

and the base band processing module are taken into account. By taking this in consideration

the thesis structure is summarized as follows:

1.2.1 Background

This chapter provides a comprehensive basis for the research presented in following chapters.

First, a general overview of radio resource management in Long Term Evolution (LTE) net-

works is given. Thus, a few key concepts in the area of scheduling, power allocation and routing

and multihop are introduced. A study of the relevant solutions and the most common energy

efficiency metrics will be illustrated. Moreover, the multiple input multiple output (MIMO)
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system model will be described. A general overview of the benefits of MIMO when imple-

menting the concepts of spatial diversity and spatial multiplexing will be given. In addition,

an introduction to virtual MIMO is presented. Finally, the principles of non-cooperative and

cooperative game theory are described.

1.2.2 Uplink Interference Mitigation

This chapter illustrates the close relationship between fairness and energy efficiency at the

system level. The first contribution of this thesis is a mathematical derivation that shows how

improvements in energy efficiency can directly be related with improvements in fairness. More-

over, the traditional uplink power control challenge is reevaluated and investigated from the

view point of interference mitigation rather than power minimization. Thus, a low complexity

distributed resource allocation scheme for reducing the uplink co-channel interference (CCI)

is presented. Improvements in energy efficiency are obtained by controlling the level of CCI

affecting vulnerable mobile stations (MSs). The proposed approach forces users with good

propagation conditions to reduce transmission power, in order to protect users experiencing

high levels of interference. Thus, the MSs’ uplink throughputs are equalized under the max-

min fairness optimization criterion. This is done with a combined scheduler and a two layer

power allocation scheme, which is based on non-cooperative game theory. The scheme we pro-

pose works with minimum channel knowledge, since only base-mobile channel path gains are

required for the optimization process. In addition we present extensive system level simulations

that show that schemes that do not consider fairness as an optimization metric obtain a lower

performance in energy efficiency than those that do.

1.2.3 A Stable Marriage Framework for Distributed Resource Allocation

This chapter illustrates the use of a cooperative game theory framework called stable marriage

to allocate resources in the network in an energy efficient way, and is divided in two parts. In the

first part, the proposed framework is used to enhance the energy efficiency by forming virtual

MIMO coalitions between single antenna mobile and relay stations. The relay selection method

optimizes the circuit power consumption of the mobiles and relays rather than the transmitted

power by implementing spatial diversity in the uplink. Thus, the power consumption of the ra-

dio frequency (RF) parts such as the power amplifiers and the base band (BB) module is taken

into account. Furthermore, it is shown by simulation that under certain conditions cooperation

does not improve the energy efficiency metric of network users when circuit consumed power
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is considered, thus single antenna devices prefer to transmit independently in order to maintain

the users performance in the network.

In the second part, the aim is to reduce the power expenditure in the uplink during low network

load periods by allocating extra resource blocks (RBs) to the mobile users. Thereby, the users

rate demands are split among its allocated RBs in order to transmit in each of them by using a

more energy efficient modulation scheme. This bandwidth expansion (BE) process is derived

as well from the concept of stable marriage. Moreover, it is shown that when circuit power con-

sumption is optimized, transmitting in more than one RB may not become an energy efficient

solution for users experiencing favorable propagation conditions in the uplink.

1.2.4 A Distributed Virtual MIMO Coalition Formation Framework for Energy

Efficient Wireless Networks

The stable marriage framework imposes restrictions regarding the number of elements that

can participate in the coalitions, typically two entities. In this chapter, a more powerful tool

is introduced called the college admissions framework for virtual MIMO coalition formation.

This framework does not impose any restriction on the number of elements participating in the

coalitions. In this chapter, we again focus on coalitions of antennas which enhance single user

performance rather than multiuser performance by using a multiuser configuration. Moreover,

power savings are obtained through the use of multiantenna arrays by implementing the con-

cepts of spatial diversity and spatial multiplexing for uplink transmission. As in the previous

chapter the proposed approach focuses on optimizing the circuit consumed power rather than

just the transmitted power of the network devices. Furthermore, it is shown by system level

simulations and mathematical derivations that when circuit consumed power is optimized the

energy efficiency of the wireless entities is not always improved by forming a virtual MIMO ar-

ray. Hence, single antenna devices may prefer to transmit at their own when channel conditions

are favorable.

1.2.5 Conclusions

Finally, conclusions of the previous chapters and possible future work are presented.
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1.3 Contributions

The main contributions for this research in energy efficient radio resource management are

shown as follows:

• A low complexity game theory uplink cochannel interference (CCI) mitigation frame-

work is proposed [7]. Improvements in energy efficiency are obtained by controlling the

level of CCI affecting vulnerable mobile stations (MSs). Thus, the MSs uplink through-

puts are equalized under the maxmin fairness optimization criterion. Moreover, It is

shown that schemes that do not consider fairness in the optimization process obtain a

lower performance in terms of energy efficiency when compared to those that do.

• By mathematical derivations and performance simulations, it is shown that improvements

in energy efficiency are directly related with improvements in fairness at the system

level [7]. Thus, an increase in the fairness index produces an increase in the system

energy efficiency metric for the network.

• A low complexity resource allocation framework using game theory which reduces the

power expenditure during low network load periods is proposed. Extra resource blocks

(RBs) are allocated to the mobile users in the uplink. Thereby, the users rate demands are

split among its allocated RBs in order to transmit in each of them by using a low level

modulation scheme [30].

• The design of a relay selection distributed algorithm for energy efficient virtual Multiple-

input Multiple-output (MIMO) coalition formation is studied. Cooperation between sin-

gle antennas devices in modeled through the use of game theory Thus, single antenna

devices such as MSs and RSs interact in a distributed way to form virtual MIMO coali-

tions to implement spatial diversity or spatial multiplexing respectively with the aim of

reducing the power expenditure in the uplink. The proposed solution optimizes the circuit

consumed power rather than the transmitter power [31, 32].
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Chapter 2
Background

In this chapter, an essential basis for the understanding of the thesis is provided. First, a gen-

eral overview of radio resource management in Long Term Evolution (LTE) networks is given.

Thus, fundamental principles for scheduling, power control, interference coordination, routing

and multihop are described. A study of the relevant solutions and the most common energy

efficiency metrics will be illustrated. Moreover, the multiple input multiple output (MIMO)

system model will be described. A general overview of the benefits of MIMO when imple-

menting the concepts of spatial diversity and spatial multiplexing will be given. In addition,

an introduction to virtual MIMO is presented. Finally, the principles of non-cooperative and

cooperative game theory are described. The content of this chapter is divided in three main

parts which includes: Radio resource management for LTE, MIMO wireless systems and game

theory in wireless and communication networks. Thereby, this chapter provides the reader with

the essential knowledge of the state of the art which will be used in the remainder of the thesis.

2.1 Radio Resource Management in Long Term Evolution (LTE)

Networks

The Global System for Mobile communications (GSM) and its evolution is shown in Fig-

ure 2.1, through the General Packet Radio Service (GPRS), High Speed Circuit Switched

Data (HSCSD), Enhanced Data Rates for GSM evolution (EDGE), Wideband Code Division

Multiple Access (WCDMA) Frequency Division Duplexing (FDD), WCDMA Time Division

Duplexing (TDD), High Speed Uplink Packet Access (HSUPA), High Speed Packet Access

(HSPA) and Long Term Evolution (LTE) dominates 85% of the mobile phone global mar-

ket [33]. LTE has been accepted as the current standard in mobile communications and it will

be the basis on which future communication systems will be built. LTE aims to deliver high

data rates and low latencies that current and future mobile applications will demand [34]. It de-

livers peak rates of 300 Mbps in the downlink and 75 Mbps in the uplink [33]. A key advantage
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Figure 2.1: Evolution of wireless standards.

of LTE over previous standards such as WCDMA is that it supports spectral efficiencies three

to four times higher than that offered by the last release of WCDMA in the downlink and two to

three times higher in the uplink. It also supports scalable bandwidths of 1.25, 2.5, 5, 10, 15, and

20 MHz and implements both frequency division duplexing (FDD) and time division duplexing

(TDD) modes [6]. Above all this, it provides inter-working with existing third generation (3G)

systems and non third generation partnership project (3GPP) specified systems. To meet these

ambitious demands, LTE implements advanced physical layer techniques such as orthogonal

frequency division multiplexing (OFDM) in the downlink, MIMO, and radio resource manage-

ment (RRM) techniques such as interference coordination (IC) [6]. By using multiple antennas

at the transmitter and receiver side, schemes such as spatial diversity and spatial multiplexing

are employed in LTE networks to achieve the high transmission rate demands. In the spatial

multiplexing case, gains in the system’s performance are obtained by sending different data

streams over the same radio resource block and time slot. Interference coordination schemes

apply restrictions to the RRM to improve the link quality of users that are severely affected by
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high levels of interference to maintain an acceptable performance in terms of rate.

Radio resource management involves strategies and algorithms with the aim of utilizing the

limited radio spectrum resources and network infrastructure as efficiently as possible. It deals

with multi-user and multi-cell network capacity issues rather than just point to point communi-

cation links. Therefore, RRM is mostly used in systems that are limited by interference rather

than noise such as wireless communications networks. It allows the network to control pa-

rameters such as power, carrier allocation, modulation order, handover criteria and error coding

scheme to maximize the system’s spectral efficiency in bits/Hz or the system’s energy efficiency

in bits/J under different practical constraints [35].

2.1.1 Multiple access schemes, mobile propagation and scheduling
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Figure 2.2: Multiple access techniques.

Due to limitations on the availability of wireless resources, while increasing the number of

users it becomes necessary to share the physical communication medium within multiple users.

Multiple access is a general strategy to allocate limited resources such as time and bandwidth

to maintain the good performance of the network in terms of quality of service [36]. While

multiple access allows the system to allocate limited resources to the users, scheduling decides

when a specific user can have access to a certain spectrum.

Based on how to divide the available resources in the network the multiple access schemes

can be classified in: time division multiple access (TDMA), frequency division multiple access

(FDMA), code division multiple access (CDMA), and orthogonal division frequency multiple

access (OFDMA). OFDMA is a combination between TDMA and OFDMA which allows a

more efficient use of the available spectrum. Recently OFDMA has gained a significant interest
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for use in 4G systems such as LTE [34]. Thus, this is a key technology for the research in this

thesis.

1. TDMA As its name suggests, in TDMA the same frequency channel is used by dividing

the signal into different time slots, at each time slot a single user has access to the whole

available bandwidth of the system, as shown in Figure 2.2(a). TDMA requires a signifi-

cant overhead for synchronization and guard intervals to prevent intracell interference.

2. FDMA This multiple access scheme divides the available system bandwidth into multiple

non-overlapping narrowband channels, thus each user is assigned to a unique frequency

band as shown in Figure 2.2(b). FDMA uses significant less information for synchro-

nization when compared to TDMA, this due to the large symbol time of the narrowband

signals, which reduces the inter-symbol interference [35].

3. CDMA This scheme differs from the previous schemes, since different transmitters are

allowed to send information simultaneously over the total available bandwidth. In order

to do that CDMA assigns each user an orthogonal pseudo-noise spreading signal or code.

Since many users share the same spectrum resources, the utilization of the same resource

is seen as noise by the other users. Thus, as the number of users increases in the system

the noise floor of the system increases. Hence, CDMA is classified as an interference

limited system [37].

4. OFDMA In this technique the available spectrum is divided into multiple orthogonal

subcarriers [35]. Thus, a subset of subcarriers named resource block (RB), shown in

Figure 2.3, is assigned exclusively to one user for transmission at any time, this subset

cannot be reassigned to any other user in the same cell to avoid intra cell interference.

Hence, in order to improve the system’s performance different users transmit in different

frequency-time slots by exploiting the multiuser diversity, time diversity and frequency

diversity in the system, as shown in Figure 2.4.

2.1.1.1 Mobile propagation

Several difficulties may occur in mobile scenarios, which makes wireless channels extremely

unpredictable and hard to analyze. Figure 2.5 shows a number of adverse effects that wireless

devices should overcome to obtain a successful transmission and reception of data. These

effects include but are not limited to [36]:
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• Reflection is the phenomenon that occurs when electromagnetic waves are reflected by a

variety of surfaces such as buildings, terrain and vehicles. Thus, as result signals between

transmitter and receiver will travel in different paths, called multipath propagation [1].

• Diffraction occurs when the signal finds an obstacle and bends around it. Then, the

signal will be shaded by the obstacle. Diffraction tends to be more pronounced when the

obstacle becomes sharper [1].

• Delay: signals at the receiver side may arrive at different time instants which can cause

inter symbol interference. This is because, information from a previous transmission may

arrive at the receiver when it is expecting the next transmission to start which generates

interference.
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Figure 2.5: Mobile propoagation scenario.

Due to these difficulties, the design of wireless communication systems can become a quite

challenging task. Path loss, shadowing and multi-path are the main propagation effects that af-

fect the transmitted signal [7]. Path loss is defined as the attenuation that the signal experiences

as a function of the distance between transmitter and receiver. Shadowing can be understood

as the deviation of the attenuation from a fixed pathloss model and is mainly caused by large

structures in the propagation path, such as buildings and hills. Fast fading is generated by the

multiple propagation paths that the signal experiences due to phenomena such as diffraction

and reflection. The multiple received copies on the signal are added at the receiver side in a

destructive or constructive way which depends of their relative signal phases.

Generally, the channel path gain Gnmd between transmitter m and receiver d separated by a dis-

tance dm [m] is a direct function of path loss, log normal shadowing, and channel variations

caused by fading.
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2.1.1.2 Scheduling

Scheduling is a rule that specifies which user is allocated in a specific time, frequency, or

time-frequency slot for transmission [37]. Users are scheduled based on: transmission needs,

channel conditions, fairness, and other constraints, in order to maximize the performance of the

network in terms of capacity, energy efficiency, delay or fairness. Figure 2.4 shows how users

are allocated in time-frequency for an OFDMA system. Moreover, Figure 2.6 describes how

each RB is allocated to a specific user in a given time instant based on the channel conditions

between the users and the base station. Since, the channel in wireless communication systems

may quickly change the scheduling method should be fast enough to adapt itself and take ad-

vantage of the channel variations. Each user will receive the information regarding which RBs

will be allocated to him plus other transmission parameters such as modulation order and trans-

mission power. This will allow the system to maximize the use of the available spectrum while

maintaining a good quality of service for the users. In addition to the advantages of channel

diversity, there are other design constraints that schedulers may consider. For example, energy

consumption has become a major issue in wireless communications systems due to operational

expenses and cost. Hence, the design of schedulers must consider to reduce the total energy

expenditure in the network. Moreover, in a wireless network users pay the same price for get-

ting access to a specific service, therefore fairness between them should also be considered.

To define fairness we may utilize the concept of max-min fairness [7], proportional fairness or

long term fairness [35]. Delay can also become an important constraint for some applications

such as voice, which is an application that is not delay tolerant. Thus, the design of schedulers

that are able to take into consideration the QoS of the wide variety of network application is a

main issue for communication systems. Some examples of common scheduling approaches are

presented below.

1. Energy efficient scheduling The problem of reducing the energy consumption in a net-

work may be solved by: using a lower modulation order and increasing the duration of

the transmission, or by using a lower modulation order and increasing the transmission

bandwidth [38]. For the former case, the tradeoff between transmission time and trans-

mission energy is convex, thus to save energy a packet should be transmitted over a longer

period of time [39]. Therefore, a lower modulation order should be used while accom-

modating the delay constraint with the aim of minimizing the energy consumption. The

authors in [13] propose a fair and energy efficient scheduling framework: their approach

aims to reduce the users’ energy consumption in the downlink by allocating the users the
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spare RBs while maintaining a constant data rate. Thus, extra RBs are allocated to users

in order to transmit with a more energy efficient modulation scheme.

2. Joint scheduling and power control This scheduling method has attract the interest of

researchers as a suitable option to reduce interference in wireless networks. In [7], the

authors present an interference mitigation framework which combines power manage-

ment and resource block allocation. RBs are re-utilized in the network within users with

favorable and bad propagation conditions. The power allocation framework forces users

with good propagation conditions to reduce the transmission power in order to mitigate

the interference levels for users experiencing unfavorable propagation conditions. Power

control will be further discussed in Section 2.1.2. This proposed joint scheduling and

power control method has been shown to increase the fairness and energy efficiency in

the system.

3. Max-min fairness The rule in this method is to prioritize the users with the worst quality

of service (QoS). Thus, the system resources are allocated to the user with the worst QoS.

The advantage of this scheme is the extreme fairness in the resource distribution between

the users in the system [35]. Nevertheless, this scheme may not be the most suitable

option for a network that is only focused on maximizing the system’s capacity. Since,

this scheme achieves a trade-off between fairness and performance.

2.1.1.3 Resource block allocation

Resource block allocation allows wireless networks to assign single or multiple RBs to

users for transmission in the uplink/downlink with the purpose of maintaining a good

QoS in the network [35]. In LTE networks each user is able to adopt a different mod-

ulation and coding scheme (MCS) on the allocated RBs to achieve the network de-

mands [10]. As shown in Figure 2.6, the RBs are allocated to specific users based on

the channel conditions between the users and the BS. Multiple RBs can be allocated to a

specific user with the purpose of improving capacity, energy efficiency or fairness in the

network. In the energy efficiency case, authors in [30] propose a RB allocation method

which allow users to increase the number of used RBs for uplink transmission with the

aim of reducing the energy consumption. Thus, extra RBs are allocated to a specific

user when transmission conditions are favorable, in order to reduce power consumption.

Extra RBs are allocated under the condition that by increasing the allocated bandwidth

transmission power is always reduced. When optimizing capacity, additional RBs may
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be allocated to users to transmit in each of them with a different MCS. Hence, more

aggressive target rates can be achieved.

2.1.2 Power allocation

Power is an essential resource in communication systems. Transmission power control

involves schemes and strategies to adapt the power of base stations (BSs) and mobile

stations (MSs) [40, 41] to increase the capacity of the system through interference man-

agement, managing the cell coverage or improving the MS’s battery life.

In wireless networks, bandwidth is considered a limited resource, thus channels are re-

used for different transmissions. Wireless systems such as LTE use a frequency reuse of

one, this implies that all the available resource blocks (RBs) in the system are reused in

each of the cells forming part of the network. An RB defines the basic time-frequency

unit in LTE as shown in Figure 2.3. Resource block reuse increases the capacity per area

but at the same time tends to generate co-channel interference. Due to co-channel inter-

ference, the signal to interference noise ratio (SINR) may fluctuate at the receiver side in

the range of 20-30 [dB]. This is prejudicial for all users across the cell but particularly for

users close to the cell border. Therefore, the implementation of viable interference miti-

gation/cancellation/coordination techniques is envisioned to improve the systems perfor-

mance. Power allocation is used as a suitable way to deal with these detrimental effects,

since transmitted power can be controlled in order to maintain a certain link quality and

minimize co-channel interference. Existing power control schemes can be classified as:

centralized or distributed, downlink or uplink, open or closed loop etc [35]. The design

of power control schemes is not a trivial task since there are many trade-offs and practical

constraints that should be considered:

• Increasing the transmission power increases the SINR at the receiver side. Never-

theless, it also increases the level of interference of co-channel mobile stations [42].

• For power allocation in the uplink distributed methods are preferred over centralized

ones. However, the converge time of the distributed schemes must be fast enough

to deal with the time varying nature of the channel.

• Distributed methods should be able to allocated the power with only local informa-

tion in order to reduce the communication overhead of the network.
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Figure 2.7: Interference limited system.

2.1.2.1 Power control basics

In the present section, the basic concepts to understand power control in wireless net-

works will be given.

(a) Interference and noise limited systems: On one hand, in Figure 2.7 the interference

scenario for the uplink is presented, it should be noticed that a similar represen-

tation can be used for the downlink case. There are three mobile stations (MSs)

transmitting at the uplink (UL) simultaneously in the same RB, which are served

by three different base stations (BSs). The “vulnerable” MSm is served by BSd and

the “interfering” set of users Inm transmitting at the n-th RB is served by the BSs

located in the neighboring cells, where n = {1, 2, . . . , N} is the available set of

RBs per cell. Vulnerable users represent users experiencing low SINR levels and

interfering users are cell center users experiencing high SINR levels. In Chapter 3,

we propose a joint scheduling and power allocation framework, which prioritizes

users experiencing low SINR levels to transmit in high power regime. Moreover

high SINR level users transmit with low power to reduce interference for vulnera-

ble (low SINR level) users.

The uplink interference Inm that is caused by the set of “interfering” users Inm to

the vulnerable MSm will decrease the received SINR of the MSm at its serving BS.
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The SINR of MSm at its serving base station BSd is defined by

γnm =
PnmG

n
md∑

j∈Inm
Pnj G

n
jd + η

=
PnmG

n
md

Inm + η
, (2.1)

where Gnmd denotes the channel path gain between the “vulnerable”, MSm and its

serving BSd observed in the n-th RB. The scalar Pnm denotes the transmit power

of MSm in the n-th RB, Inm is the received interference at BSd from the MSs in

neighboring cells transmitting in the n-th RB, and η is defined as the noise power.

The co-channel interference Inm is defined as

Inm =
∑
j∈Inm

Pnj G
n
jd, (2.2)

where Gnjd denotes the channel path gain of the interfering MSs, and Pnj their re-

spective transmission power. On the other hand, in Figure 2.8 a noise limited system

is presented where the MSm is served by BSd. There are no other MSs transmitting

in the same RB. Thus the signal at the receiver side is only affected by the noise

power of the system η. Therefore, the SNR in the n-th RB at the receiver side is

defined by:

γnm =
PnmG

n
md

η
, (2.3)

m

n
m m

n

d

dsignal
G

channel path gain
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Figure 2.8: Noise limited system.

(b) Power control in the downlink and uplink: On one hand, in the downlink the trans-

mitted power is mostly limited by the radio frequency parts at the BS side. More-

over, power control in the downlink is performed with the main purpose of interfer-

ence mitigation and coverage enhancement [43]. In addition, the major limitation

for the implementation of power control algorithms in the downlink is the com-
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munication overhead rather than the computational complexity, since the downlink

SINR measurements should be fed back from the user to the BS. On the other hand,

in the uplink the transmitted power is limited mainly by the battery resources of

the MSs [35]. Moreover, the computational complexity for the power allocation

schemes in the uplink is constrained by the limited processing capabilities of the

MSs. If no power allocation methods are applied, the effects of cochannel inter-

ference are typically more severe for users at the cell border than at the cell center,

this is due to the not favorable propagation conditions for cell edge users, which is

a direct consequence of pathloss [7].

(c) Centralized and distributed power control: Centralized power schemes are coordi-

nated at the BS due to its high processing capabilities [30]. Centralized methods

allocate all power levels in the network by gathering BS-mobile channel paths and

interference path gains. However, to obtain this information a significant amount of

communication overhead is required for the multicell scenario. Moreover, due to

their high computational complexity, centralized methods may not be implemented

in practice for multicell scenarios. They are useful however as performance upper

bounds for the study of distributed approaches [35]. Distributed approaches are

decentralized approaches that only required local information such as BS-mobile

channel path gains for the optimization process, this characteristic allows them to

be more scalable as the network grows [44]. Decentralized solutions are imple-

mentable in practice, nevertheless, the performance is limited by factors such as the

convergence time of the solution and by the limited information that is used for the

optimization process. In addition, distributed approaches always achieve a lower

performance than their centralized counter parts [7, 31, 45].

(d) Closed loop and open loop power control: The closed loop power control requires

constant feedback to adapt the transmitter power to the time-varying conditions

of the communications link [46]. In the open loop case, the transmitter uses an

estimate of the channel. For example, the MSs in the uplink estimate the channel

attenuation in the downlink, and they use this measurement as an estimation for

the channel in the uplink. This may be an accurate estimation for pathloss and

shadowing. However, it should be remembered that for the fast fading case the

downlink and uplink are not totally correlated in the case of FDD transmission.
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2.1.2.2 Power control in data networks

In data networks, the main goal is to reduce the transmission errors in each communi-

cation link [47]. Moreover, there is no a minimum performance level below which the

link is considered ineffective and above which improvement in performance is not re-

quired [48]. In practice, there is a tradeoff between the achieved SINR and the cost to

achieve it, which in a multicell system is directly translated into co-channel interference.

Thus, the network through power control decides the transmission levels in order to op-

timize the multiple metrics of the system. Therefore, each link adapts its transmission

power to optimize its performance or utility, by possibly taking into consideration the

consequences for other users.

Since, there are no specific SINR requirements in data links, a suitable approach from

the operators point of view may be to set the power of the users through the BS in a

way that maximizes the operator’s profit. Another solution is to allow the users to define

by themselves their own power strategies independently. Thus, a game theory treatment

seems more natural with various entities competing among themselves for the network

resources [48].

In [11], a SINR balancing method coordinated from the BS allocates similar transmission

rates to all the users in the network. An optimal power vector is obtained by collecting

the BS-mobile and interference path gains of all the users in the network. The proposed

method reduces interference for users close to the cell edge by forcing users at the cell

center to reduce their power transmission levels. In [7], an approach which allows each

user to define independently its power strategy by the use of non-cooperative game the-

ory is proposed. The proposed approach only requires local information (BS-mobile

channel path gains) in order to perform the power allocation. Both schemes through the

use of power control aim to reduce interference for users with not favorable propagation

conditions or low SINR levels.

2.1.2.3 Power control in LTE

The power control method that is envisioned for utilization in LTE systems is discussed in

this section. Hence, the power for a mobile station in the n-th RB is shown below [34,49].

Pnm = argmin{γndB + Inavg,dBm + υLndes,dB + (1− υ)Lnint,dB, P
n
max,dBm}, (2.4)

where
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• Pnm is the allocated power to the m-th user in the n-th RB.

• γndB is the nominal SNR user target, which mainly depends of the value of υ [49].

• υ allows the user to balance their transmission power which can vary from a selfish

behavior to a more cooperative power management by considering the CCI gener-

ated to co-channel MSs. Thus, by making υ = 0 a full power transmission mech-

anism is implemented and by making υ = 1, 2, a cooperative power management

scheme is used.

• Inavg,dBm is the time-average interference in the n-th RB, this parameter allows the

system to cope with co-channel interference from neighboring cells.

• Lndes,dB is the desired link pathloss.

• Lnint,dB is the interfering link pathloss.

• Pnmax,dBm is the maximum transmission power that can be allocated to the m-th

user in the n-th RB.

2.1.3 Routing and multihop

independet fading

      channels

source
relay

destination

(a) Downlink multihop

independet fading

      channels

source

relay destination

(b) Uplink multihop

Figure 2.9: Classic relay scheme for the downlink and uplink.

Previously, we have presented two resource allocation approaches that work at the protocol

stack level. In this section, we consider techniques derived from the network architecture per-

spective. Since, significant performance gains may be achieve by a smart allocation of in-

frastructure resources such as RSs for improving the transmission in uplink and downlink [32].

Thus, transmission distances can be reduced, therefore, an increase in data rates and a reduction

in power consumption are obtained. In addition, the use of RSs to implement spatial diversity

may be utilized to obtain significant performance gains with a limited use of infrastructure [31].
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This is because in networks such as Long Term Evolution (LTE), a base station (BS) may sup-

port multiple antennas. However, mobile stations (MSs) may not be equipped with more than

one single antenna due to physical constraints [25, 34]. Hence, implementing effective solu-

tions that allow MSs to benefit from the advantages of multi-antenna systems without the extra

burden of having multiple antennas physically present at the users’ side, has become a major

issue for current communication systems. For an explanation of basic ideas, we refer to the

model shown in Figure 2.9, which shows the basic configuration for the downlink and uplink.

Moreover, Figure 2.9(a) presents a BS which transmits information to a MS. The MS has a

single antenna, thus it cannot individually generate diversity. However, due to the broadcast

nature of the wireless communication channel, it might be possible for the RS to receive the

information intended for the MS and downlink this information to the BS in order to generate

diversity. Diversity is generated since the fading in the channels between the MS-BS and RS-

BS is statistical independent. The uplink case which is shown in Figure 2.9(b) is analogous to

the downlink.

source destination

relays

.....

(a) Parallel relay channel

source 1 source 2relay

(b) Two way relay channel

Figure 2.10: Other cooperative multihop schemes, after [1].

2.1.3.1 Configuration and operation types

As shown previously in Figure 2.9, the classic relay channel consists of three elements: a

source, a relay and a destination. Moreover, the classic relay concept can be extended to a more

challenging scenarios [1, 50]. In Figure 2.10, two different relay configurations are shown.

Figure 2.10(a) and Figure 2.10(b) show the one way relay and the two way relay configuration

respectively. The two way relay scenario is modeled as two sources that exchange information

with the help of a RS. In the one way relay configuration, the source only uses the relays to

transmits information to the destination. For the two way relay case source and destination use

the relays to transmit information mutually [1].
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The operation types for the one way relay configuration are show in Table 2.1. For type 1,

source transmits information to the RS and the destination in the first slot, in the second slot,

RS and source transmit the information to destination. For type 2, source transmits to the RS

in the first slot, in the second one, RS and source transmits to the destination.

Operation type Slot 1 Slot 2
Type 1 S → RS, S → D RS → D,S → D
Type 2 S → RS S → D,RS → D

Table 2.1: Operation types for one way relay schemes, where S and D stands for source and
destination respectively and A→ B means communication between A and B, after [1].

2.1.4 Energy Efficiency Metrics

In order to assess the performance of energy efficient solutions, it is important to identify suit-

able metrics to understand what gains are achieved [51, 52]. Since, the concept of energy

efficiency only becomes meaningful when is measured, energy efficient metrics should provide

quantified information to evaluate efficiency. Energy efficiency metrics are mainly used for

three proposes [51]: to compare the difference in power consumption between components and

systems of the same class; to set specific long term targets in research and development; to al-

low the optimization of current communication systems based on energy efficiency constrains.

Energy efficiency metrics have been widely discussed in literature [53], thus for this work there

are two particular important metrics that we will use. The first and absolute metric can be de-

fined as the power that is spent by a transmitter to achieve a particular transmission rate. Thus,

the energy consumption ratio (ECR) is defined as ECR = P/T [W/bps], where P represents

the transmitter power consumption in order to achieve a specific transmission rate T . Moreover,

one system becomes more energy efficient when compared to another when its ECR factor is

lower than the compared system, since it means that less energy is consumed to transport the

same amount of data. ECR is an useful metric to measure the energy efficiency performance of

telecommunications equipment as well as communication networks [36]. In addition, the ECR

can be further modified to consider the circuit consumed power of the radio devices rather that

only the transmitted power.

The second metric is a relative measurement rather that a quantitative one, this is utilized to

compare the performance of two different systems [53]. Thus, the energy consumption gain

(ECG) is defined as the ratio of the energy consumed by a baseline system over the energy of

the system under test, ECG = Et/Eb, where Et represents the energy spent by the test system
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and Eb represents the energy spent by the baseline scheme. The greater is the ratio of ECG, the

better is the performance of the system under test when compared to the baseline.

2.2 MIMO Wireless Systems

The main design goals behind the fourth generation (4G) of wireless systems are higher user bit

rates, lower delays and increased energy efficiency. These requirements call for new techniques

to enhance the communications systems performance. The use of multiple antennas at both the

transmitter and receiver side has result in a useful technique to improve the performance of

wireless systems in terms of capacity and reliability [2]. In this section the concept of Multiple-

input Multiple Output (MIMO) system will be introduced. Furthermore, we will study the

concepts of spatial multiplexing and spatial diversity in MIMO communication systems. To

conclude, an introduction to the concept of virtual MIMO will be given.

2.2.1 MIMO system model

We focus on the MIMO system presented in Figure 2.11 where them-th transmitter is equipped

with Mt transmit antennas and the receiver with Mr antennas. A Rayleigh fading channel is

considered, thus the fading coefficients for an Mt ×Mr MIMO channel in the n-th RB can be

represented by a matrix as:

Hn
m =


hn1,1 hn1,2 · · · hn1,Mt

hn2,1 hn2,2 · · · hn2,Mt

...
...

. . .
...

hnMr,1
hnMr,2

· · · hnMr,Mt

 , (2.5)

where each matrix element defines a Zero Mean Circular Symmetric Complex Gaussian (ZM-

CSCG) random variable with unit variance [2]. The input-output relation of the system shown

in Figure 2.11 is given by:

ynm = Hn
ms + n (2.6)

where s = [s1, s2, ..., sMt ]
T is the transmitted signal vector, ynm = [yn1 , y

n
2 , ..., y

n
Mr

]T represents

the signal at the receiver side, and n = [n1, n2, ..., nMt ] is theMt×1 noise vector. It is assumed

that the channel state information (CSI) is known at the receiver and the transmitter side. State

of the art wireless standards such as LTE may implement closed loop techniques to obtain
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Figure 2.11: MIMO communication model.

current channel state information [54]. If CSI is present at the transmitter side, optimal power

allocation methods such as the water-pouring scheme [2] may be utilized for allocating the

power of each transmit antenna. In the case than CSI is not available at the transmitter, the

most optimal solution is to assign equal power level to all the transmit antennas.

2.2.2 Spatial Diversity and Spatial Multiplexing

Compared to the traditional single input-single output (SISO) model, the MIMO systems of-

fer substantial increase in performance due to the implementation of concepts such as spatial

diversity and spatial multiplexing.

2.2.2.1 Spatial diversity

Wireless links suffer from random fluctuations in signal level known as fading. The implemen-

tation of spatial diversity techniques at the transmitter side provides the receiver with multiple

copies of the signal. Each copy of the signal constitutes a diversity branch. Thus, as the number

of branches grows the probability of all the branches being in fade decreases drastically. Hence,

it can be understood that the use of diversity leads to substantial improvements in link reliability

or error rate. The way in which diversity is implemented depends if channel state information

is available or not at the transmitter side.

1. Channel unknown to the transmitter When CSI is not available at the transmitter side

the best option to generate diversity is by the use of the Alamouti scheme. With the advent

of space-time coding schemes, such as the Alamouti scheme [55] shown in Figure 2.12,
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implementing transmit diversity without CSI information becomes possible. We assume

two transmit and receive antennas, thus two symbols s1 and s2 are transmitted simulta-

neously from antenna 1 and 2 respectively during the first symbol period. At the second

time slot, the symbols −s∗2 and s∗1 are transmitted from antenna 1 and 2 respectively. Let

the 2× 2 channel matrix of Figure 2.12 being represented by:

Hn
m =

 hn1,1 hn1,2

hn2,1 hn2,2

 , (2.7)

The signal at the receiver side over the first symbol period can be described by [2]

yn1 =

√
Prnm

2
Hn
m [s1 s2]T + [n1 n2]T , (2.8)

For the second time slot, the received signal is given by

yn2 =

√
Prnm

2
Hn
m [−s∗2 s∗1]T + [n3 n4]T , (2.9)

where s1, s2 are the transmitted signal symbols, n1, n2, n3, n4 are uncorrelated ZMC-

SCG noise samples, and Prnm is the received power of the m-th user in the n-th RB.

Moreover, the receiver forms a signal vector equal to

ynm =

√
Prnm

2


hn1,1 hn1,2

hn2,1 hn2,2

hn1,2
∗ −hn1,1∗

hn2,2
∗ −hn2,1∗

 [s1 s2]T + [n1 n2 n∗3 n∗4]T , (2.10)

ynm =

√
Prnm

2
Hn

procs + n. (2.11)

It is easy to see that Hn
proc is orthogonal to one channel realization, thus if we multiply

ynm by Hn
proc

H where AH represent the conjugate transpose of A. The obtained signal is

as follows [2].

ynm
∗ =

√
Prnm

2
‖Hn

m‖2F Is + n∗, (2.12)

where I represents the identity matrix, n∗ is the noise after processing, and ‖Hn
m‖2F

represents the squared Frobenious norm of Hn
m. Thus, from Eq. (2.12), it can be seen
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Figure 2.12: A schematic transmission of the Alamouti scheme for a 2× 2 system, after [2].

that the SNR of each symbol at the receiver side is given by

γnm mimo diversity alamouti =
Prnm
2η
‖Hn

m‖2F . (2.13)

where η is the noise power. Hence, it can be observed that the Alamouti scheme extracts

a diversity of order of ‖Hn
m‖2F = MtMr, for each transmitted symbol [2].

2. Channel known to the transmitter When CSI is available at the transmitter side spatial

diversity can be obtained by using the dominant eigenmode transmission. Thus, the

same signal is transmitted by all the transmit antennas and weighted by a vector. By

considering a system of Mt ×Mr antennas as proposed in Figure 2.11. The received

signal at the BS side is given by

yn
m =

√
Prnm
Mt

Hn
mws+ n, (2.14)

where s is the information symbol transmitted by each antenna, and w is the weight

vector. Moreover, the SNR is given by [2]

γnm mimo diversity =
σ2
maxPr

n
m

η
, (2.15)

σ2
max represents the maximum eigenvalue of Hn

m. Furthermore, ‖H
n
m‖2F
ω ≤ σ2

max ≤
‖Hn

m‖2F , where ω represents the rank of Hn
m [2]. Thus, by comparing Eq. (2.13) and

Eq. (2.15). It can be understood the the performance of spatial diversity when having

channel knowledge will outperform the Alamouti scheme due to the higher array gain.

The concept of spatial diversity when channel is known at the transmitter side will be

studied in Section 4.3. For now it is only important to understand that there is a difference

between the two presented schemes due to the array gain.
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Figure 2.13: A schematic transmission of the spatial multiplexing scheme for a Mt × Mr

system.

2.2.2.2 Spatial multiplexing

The main concept of spatial multiplexing is presented at Figure 2.13. The information stream

is demultiplexed into N parallel sub-streams which are modulated and transmitted simultane-

ously from the antennas. At the receiver side each antenna gets a superposition of the transmit-

ted signals sub-streams. The detector decodes the signals and combine them into the original

information stream.

All the transmitted sub-streams contain different data, hence the system has no transmit diver-

sity as in the spatial diversity case. The main advantage when using spatial multiplexing is that

the capacity of the systems becomes proportional to the number of transmit and receive anten-

nas. Thus, as lager is the number of transmit and receive antennas the greater is the capacity of

the system [2].

2.2.3 Virtual MIMO
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Figure 2.14: A Virtual Mt ×Mr MIMO link.

In networks such as Long Term Evolution (LTE), a base station (BS) may support multiple

antennas. However, mobile stations (MSs) may not be equipped with more than one single

antenna due to physical constraints [25, 34]. Hence, implementing effective solutions, that al-

low MSs to benefit from the advantages of multi-antenna systems without the extra burden of

having multiple antennas physically present at the users’ side, has become a major issue for

current communication systems. Cooperative communications have recently attracted signifi-
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cant attention as an effective way to improve the performance of wireless networks [29]. By

the use of cooperative techniques wireless devices are allowed to share and utilize the network

resources in a more efficient way [3, 6, 27, 29, 56–58]. An important application of cooper-

ative techniques is the formation of virtual multi-antenna arrays. In this context, a number

of single antenna devices may cooperate with each other by forming virtual Multiple-input

Multiple-output (MIMO) transmitters or receivers to reap some of the benefits of multi-antenna

systems [59].

2.2.3.1 Virtual MIMO Link

Figure 2.14(a) and Figure 2.14(b) show a virtual Mt × Mr MIMO link which implements

spatial diversity and spatial multiplexing in the uplink respectively [32]. At the first time slot,

the MS forwards the information symbol s or vector s to its peers by using the cooperative

link. In the following slot, the MS and RSs will transmit the information symbol s or vector

s at the uplink through the MIMO channel Hn
m. In addition, to avoid mutual interference the

uplink and the cooperative link should be designed orthogonal to each other. When spatial

multiplexing is implemented as shown in Figure 2.14(b), it is assumed that the cooperative

link is fast enough on information transmission, thus MSs can transmit their signal vector s

to the cooperating peers and they can demultiplex it into independent information streams for

simultaneous transmission. For the downlink case a similar analogy to the uplink case can be

done.

2.3 Game Theory for Communication Networks

The main design goals behind the fourth generation (4G) of wireless systems are higher user

bit rates, lower delays and increased energy efficiency. However, many technical challenges

should be addressed before this wireless vision becomes a reality. Hence, to support tomorrow’s

wireless systems demands, it is essential to develop solutions which are able to provide an

optimal cost-resource-performance tradeoff for the next generation of wireless systems [29].

Game theory has been used as a tool to explain complicated economic behavior for decades.

Moreover, it has been employed as a way to model a large variety of engineering problems such

as scheduling mechanisms for smart grid [60], distributed control in robotics and transportation

analysis [61]. Nowadays, it has become a powerful framework to model and analyze state

of the art communication systems. This is because, the use of internet as a global platform
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for communications has led to the development of large scale, distributed, and heterogeneous

communication systems.

The use of game theory as a framework for developing distributed and low cost efficient wireless

algorithms is highly desirable but challenging in practice. On one hand wireless users are

selfish by nature, since they aim to maximize their own performance in the system without

considering other users needs. On the other hand, in some scenarios cooperation between the

users is required rather than competition in order to improve the system’s performance [62–64].

Therefore, researches have adopted the use of non-cooperative and cooperative game theory

approaches to model and study competition and cooperation in communication systems.

2.3.1 Non-cooperative games

Non-cooperative game (NCG) theory is one of the main branches of game theory which stud-

ies competitive decision-making involving several players. It provides a natural framework to

characterize the players interactions in a wireless network, because each individual competes

with each other in an effort to achieve its own goals.

In communication systems, non-cooperative schemes may model the behavior and interaction

of selfish users in a wide range of scenarios such as: allocation of resources, allocation of fre-

quencies, transmit power, packet forwarding and interference management [29, 35]. It should

be pointed out that the term non-cooperative game does not mean that users do not cooperate,

cooperation is always possible through self enforcement, but it should be done without any co-

ordination or communication between the players.

Non-cooperative users maximize their own utility function, which represents directly the users

performance and controls the outcomes of the game [45]. A non-cooperative game is mainly

defined by three components G = [M, {P} , {U(·)}] where:

• G represents the NCG.

• M represents a finite set of players e.g., {1,2,....,M}.

• P describes the set of available strategies for each player.

• U(·) is the utility function which represents the payoff of the user in the network.

Non-cooperative games are further divided into static and dynamic games [29]. This division is

made depending on weather each player has or does not have information of the other’s players

decisions.
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1. Static: In this case there is no sense of time since players only take actions once. Hence,

players never have an understanding of how the strategies of the other players affect their

own performance.

2. Dynamic: In this case the players have some knowledge of the strategies of the others and

can act more than once to adapt their strategies and react to the other player’s decisions.

Solving non-cooperative games is not easy in practice. The most widely accepted solution for

the majority of non-cooperative games is the one introduced by John Nash in his seminal work,

which is known as the Nash Equilibrium [65]. At equilibrium, all the users should be satisfied

with the utilities that they obtain from the NCG.

Definition 1: The solution p = (p1 . . . pM ) is a Nash equilibrium of the non-cooperative game,

G = [M, {P} , {U(·)}], if for every m ∈M , U(pm, p−m) ≥ U(p′m, p−m) for all pm ∈ P .

Where p′m ∈ P and pm 6= p′m. Thus, the Nash Equilibrium can be understood as a state

where no player can improve its payoff from the system without a change in the other players

strategies [45, 66, 67].

2.3.2 Cooperative games

On one hand, non-cooperative game theory studies the interaction and the resulting actions be-

tween competing players. One the other hand, cooperative game theory provides an analytical

framework to study the nature of players when they cooperate. This is because, with the aim of

increasing their utilities players are allowed to establish agreements between them. Cooperative

games are divided in two main branches:

• Bargaining games This branch of cooperative game theory focuses on players that have

to achieve an agreement over the share of a resource but face a conflict of interest in the

conditions and terms to reach this agreement [29]. All the players must mutually agree

how the resource will be distributed. Moreover, a decision cannot be made without the

consensus of any of the players. In communication networks the Nash bargain concept

can be used to model how to share a specific resource (e.g., spectrum, time, infrastructure)

between a set of users. In [68], the Nash bargain is used to model spectrum sharing in an

interference limited channel. When multiple antenna systems share the same spectrum

band, it is shown that when systems do not cooperate the corresponding performances

are always bounded regardless of how much power they spend. Moreover, when the
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agreement is achieved through Nash bargain, the outcome can be on average similar to

the max-sum-rate performance.
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(a) Canonical coalitional games
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(b) Coalition formation games

Figure 2.15: Classification of coalitional games, after [3].

• Coalitional games Describes the framework that allows users to form coalitions with

the aim of increasing their own profits in the game [29]. Hence, coalitional games have

become a powerful tool for modeling cooperation in wireless communication systems.

Coalitional games involves a set of M players which aim to cooperate with each other

by forming coalitions with the aim of strengthening their position in a given situation.

A coalition represents a subset of S ∈ M players which have decided to cooperate and

form a single entity. Coalitional games can be divided in two main branches:

a) Canonical coalitional games: In this kind of game the formation of a grand coalition

is seen as the optimal structure for the game, as shown in Figure 2.15(a). Thus, all the

users cooperate as a single entity to enhance their performance in the game. The main

question for this kind of game is under which circumstances the grand coalition can be

formed [3, 29].

b) Coalition formation games: The formation of different coalition groups, as shown in

Figure 2.15(b), is based on the performance gains and the cost of cooperation between

the players. The main issue in coalition formation games is to design the rules that

allow the players to maximize the benefit of coalition formation. In Chapter 4, we utilize

coalitional games for forming virtual MIMO links to reduce the power consumption in

the network. Moreover, we show that forming a virtual MIMO coalition when optimizing

overall power consumption only becomes a feasible option when mobiles experience not

favorable propagation conditions in the uplink.
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2.4 Summary

In this chapter some basic concepts for Radio resource management for LTE, MIMO wireless

systems and game theory for wireless networks have been introduced. In the first part radio re-

source management techniques such as scheduling, power control and routing and multihop are

presented. In the second part a general overview of MIMO is given followed by a description

of the concepts of spatial multiplexing and spatial diversity. Moreover, some general concepts

of virtual MIMO are studied. Finally, a brief review of game theory concepts and how they can

be utilized for the study of communication systems is presented. Thereby, this chapter provides

the reader with the essential knowledge of the state of the art and this information will be used

in the remainder of the thesis.
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Chapter 3
Uplink Interference Mitigation

3.1 Introduction

This chapter illustrates the close relationship between fairness and energy efficiency at the

system level. It shows a mathematical derivation that shows how improvements in energy effi-

ciency can directly be related with improvements in fairness. Moreover, the traditional uplink

power control challenge is reevaluated and investigated from the view point of interference mit-

igation rather than power minimization. Thus, a low complexity distributed resource allocation

scheme for reducing the uplink co-channel interference (CCI) is presented. Improvements in

energy efficiency are obtained by controlling the level of CCI affecting vulnerable mobile sta-

tions (MSs). The proposed approach forces users with good propagation conditions to reduce

transmission power, in order to protect users experiencing high levels of interference. Thus,

the MSs’ uplink throughputs are equalized under the max-min fairness optimization criterion.

This is done with a combined scheduler and a two layer power allocation scheme, which is

based on non-cooperative game theory. The scheme we propose works with minimum channel

knowledge, since only base-mobile channel path gains are required for the optimization pro-

cess. In addition, we present extensive system level simulations that show that schemes that do

not consider fairness as an optimization metric obtain a lower performance in energy efficiency

that the ones that do it.

The rest of the chapter is structured as follows: Section 3.2 presents a literature review, Sec-

tion 3.3 describes the interference scenario, performance metrics, and channel model. In Sec-

tion 3.4 the scheduling method is presented. Section 3.5 explains the two layer power allocation

framework. A two layer max-min approach, which achieves a more optimal solution in fair-

ness and energy efficiency is given in Section 3.6. A summary of the comparison schemes

and the simulation scenario are described in Section 3.7. Simulation results are presented in

Section 3.8. Finally, Section 3.9 offers concluding remarks.
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3.2 Literature Review

The main design goals behind the fourth generation (4G) of wireless systems are higher user

bit rates, lower delays, and increased energy efficiency [6]. How to accommodate all these

requirements simultaneously has become an important research issue in wireless networks. On

one hand, a fair distribution of the system resources is a major concern in communication

systems, since current research has been focused on maximizing the system’s data through-

put [69]. Thus, users close to the base station are prioritized over users close to the cell edge,

which makes the resource distribution unfair [29]. On the other hand, energy efficiency is an

important area of study to reduce network expenses, carbon emissions and to improve current

and future network sustainability [70]. The telecommunications industry is currently responsi-

ble for 0.7% of the total carbon emissions, a figure which is increasing at rapid rate [6, 71, 72].

The data volume of communication networks is expected to grow by a factor of ten every five

years, which brings a doubling of energy consumption over the same time period [4, 6, 73]. By

2020, is expected that the CO2 emissions can be reduced by 50% [74]. Thus, a clear demand

exists for energy efficient resource allocation techniques [53, 70].

Orthogonal Frequency Division Multiple Access (OFDMA) has been chosen as the main mul-

tiple access technique for 4G systems such as Long Term Evolution (LTE) [29]. LTE networks

must serve a large number of users efficiently while providing seamless connectivity and ac-

cess to a wide range of applications and services. In these networks, the demand for higher

data rates coupled with full frequency reuse results in an interference limited-system, which

is susceptible to co-channel interference (CCI). This can be prejudicial to the Signal to In-

terference plus Noise Ratio (SINR) of users across the cell but particularly for users close to

the cell edge [10]. Therefore, the implementation of one or more viable interference mitiga-

tion/cancellation/coordination techniques is envisioned to improve the system’s performance in

terms of energy efficiency and fairness while sacrificing minimal system capacity [4].

Significant research has been performed for resource and power allocation in orthogonal mul-

tiple access systems in order to achieve a fair distribution of the system resources [4, 11–13]

or to achieve an energy efficient operating point [4, 11, 13–19, 75]. In [18], an energy efficient

approach through base station (BS) coordination has been proposed for OFDMA networks,

the proposed resource allocation maximizes the energy efficiency while considering a mini-

mum required data rate. In [75], the authors propose an energy aware interference coordination

scheme through femtocell cooperation in the uplink. It is shown that the proposed method

reduces the interference levels and outage probability. The authors in [13] propose a fair and

energy efficient resource block (RB) allocation framework: their approach aims to reduce the
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users’ energy consumption by allocating them more RBs while maintaining a constant data

rate. In [4, 11], a co-channel interference coordination (CCIC) technique is proposed, which

is based on the premise that the cell-edge performance improvement is almost linear while the

degradation of the cell center users is logarithmic. The approaches in [4, 11] require a signifi-

cant amount of intercell communication, in order to exchange the base-mobile and interference

path gains for the optimization process, which leads to a high implementation cost and com-

plexity. Therefore, it is necessary to study the design of distributed techniques to allow MSs to

use the network resources efficiently, and also to reduce the network complexity [31]. These

constraints combined with the large scale nature of wireless systems is a motivation for the use

of game theoretic approaches.

Non-cooperative game (NCG) theory provides a natural framework to characterize the play-

ers interactions in a resource allocation problem, because each individual competes with each

other in an effort to achieve its own goals. [45, 76, 77]. In [66, 78, 79], a game-theoretic ap-

proach for distributed power allocation is presented. However, these papers only deal with a

single cell model. So, the effect of the interference affecting cochannel MSs is not considered.

In [45, 77, 80], the authors propose a game theory framework to address the problem of CCI

in a multi-cell scenario, nevertheless their approach is mainly focused on maximizing system

capacity rather than on energy efficiency. Game theory approaches, which improve the en-

ergy efficiency metric for MSs in the system, have already been investigated in [15, 78, 81, 82].

However, those papers do not take into consideration the tradeoff between energy efficiency

and fairness, because the authors work under the premise that energy efficiency increases with

the channel power gain, thus users close to the cell center are prioritized over users at the cell

boundary.

In non-cooperative game theory, the users try to maximize their own utility function, which

represents directly the users’ performance and controls the outcomes of the game [45]. In [45,

66,67], a utility function, which works at the user level, is defined for power and rate allocation,

however the use of a single utility function can result in achieving only a local optimum point

for the optimization process. It has been shown in [80, 83] that joint power control and rate

allocation can be formulated by two interconnected optimization layers, which act at the user

and system levels respectively.

In this chapter, a game theory approach is presented to optimize the energy efficiency and fair-

ness based on two interconnected optimization layers, which act at the user and system levels

respectively [80]. The user’s utility function is defined as the difference between its spectral

efficiency and a pricing function. Hence, a non-cooperative game is designed at the user level,
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where users try to maximize their own utility function until convergence is achieved. After

convergence, the system level modifies the utility function pricing to move the outcome of the

system to a fairer and more energy efficient operation point.

3.3 Interference Scenario, Performance Metrics and Channel Model
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Figure 3.1: Interference limited system.

The model adopted in this chapter for a multiple cell OFDMA system with a total of D base

stations is described. The system bandwidth B (Hz) is divided into N resource blocks (RBs).

An RB defines the basic time-frequency unit with bandwidth BRB = B/N (Hz). Full fre-

quency reuse is assumed, thus each cell uses the full set of N RBs. Moreover, the set of N RBs

is assigned by each BS to their associated MSs. In the proposed system, each RB is assigned

to a single MS per cell, hence each RB is used across the D cells. Furthermore, in this chapter

the system is assumed to be fully loaded, thus the system serves a total of N × D users. In

Figure 3.1 the interference scenario for the uplink is presented, it should be noticed that a sim-

ilar representation can be used for the downlink case. There are three mobile stations (MSs)

transmitting at the uplink (UL) simultaneously in the same RB, which are served by three dif-

ferent base stations (BSs). The “vulnerable” MSm is served by BSd and the “interfering” set

of users Inm transmitting at the n-th RB is served by the BSs located in the neighboring cells,

where n = {1, 2, . . . , N} is the available set of RBs per cell. The uplink interference Inm that
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is caused by the set of “interfering” users Inm to the vulnerable MSm will decrease the received

SINR of the MSm at its serving BS. The SINR of MSm at its serving base station BSd is defined

by

γnm =
PnmG

n
md∑

j∈Inm
Pnj G

n
jd + η

=
PnmG

n
md

Inm + η
, (3.1)

where Gnmd denotes the channel path gain between the “vulnerable” MSm and its serving BSd

observed in the n-th RB. The scalar Pnm denotes the transmit power of MSm in the n-th RB, Inm
is the received interference at BSd from the MSs in neighboring cells transmitting in the n-th

RB, and η is defined as the noise power. The co-channel interference Inm is defined as

Inm =
∑
j∈Inm

Pnj G
n
jd, (3.2)

where Gnjd denotes the channel path gain of the interfering MSs, and Pnj their respective trans-

mission power.

3.3.1 Performance Metrics

The achievable throughput on the link between MSm and BSd using adaptive modulation and

coding is calculated as follows [84]:

Tnm(γnm) = nRBm ksc%ε(γ
m
m)

[
bits

s

]
, (3.3)

where nRBm is the number of RBs assigned to MSm, ksc is the number of subcarriers per RB,

% is the symbol rate per subcarrier, and ε(γnm) is the spectral efficiency given in Table 3.1,

which is based on LTE [4, 84]. The user energy efficiency βnm measures the data rate per unit

of transmitted power of MSm, which is defined as follows:

βnm =
Tnm
Pnm

[
bits

J

]
. (3.4)

Furthermore, the system energy efficiency is defined as the ratio between the total user through-

put and the total power spent by all the users in the system:

βsys =

nsys∑
m=1

Tm

nsys∑
m=1

Pm

[bits/J] . (3.5)
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where Tm and Pm are the m-th user’s throughput and transmitted power respectively. More-

over, nsys indicates the number of MSs in the system. The Jain’s fairness index [85] is used to

CQI
index

min
SINR
[dB]

Modulation Code rate

Spectral
effi-
ciency ε
[bits/symbol]

0 - None - 0
1 -6 QPSK 0.076 0.1523
2 -5 QPSK 0.12 0.2344
3 -3 QPSK 0.19 0.3770
4 -1 QPSK 0.3 0.6016
5 1 QPSK 0.44 0.8770
6 3 QPSK 0.59 1.1758
7 5 16QAM 0.37 1.4766
8 8 16QAM 0.48 1.9141
9 9 16QAM 0.6 2.4063
10 11 64QAM 0.45 2.7305
11 12 64QAM 0.55 3.3223
12 14 64QAM 0.65 3.9023
13 16 64QAM 0.75 4.5234
14 18 64QAM 0.85 5.1152
15 20 64QAM 0.93 5.5547

Table 3.1: Adaptive Modulation and Coding Table, after [4].

calculate the throughput fairness of the system in each time slot and is given by:

Γ =

(
nsys∑
m=1

Tm)2

nsys
nsys∑
m=1

T 2
m

. (3.6)

3.3.2 Channel Model

Generally, the channel gain Gnmd between transmitter m and receiver d separated by a distance

dm [m] is determined by path loss, log normal shadowing, and channel variations caused by

slow fading. In this work, it is considered the channel model previously proposed in [4], which

is stated as follows:

Gnmd =| H̄n
md |2 10

−L(dm)+Xσ
10 , (3.7)

where H̄n
md describes the channel transfer function between an outdoor MSm and its serving

BSd in the n-th RB, Xσ is the log-normal shadowing value (dB) with standard deviation σ and
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L(dm) is the distance-dependent path loss (dB), which is calculated as [86]:

L(dm) = 15.3 + 37.6log10(dm). (3.8)

Additionally, in order to generate the channel transfer function Gnmd, a frequency selective

fading based on a clustered delay model scenario is incorporated as described in [87] for an

Urban Micro-cell model.

3.4 SINR Scheduling Based on a Three Level Priority Status Scheme

In this section, a scheduler which separates out vulnerable (low SINR) MSs from interfering

(high SINR) MSs is introduced. Thus, in order to protect interference-prone users, a three pri-

ority status scheme is exploited: high priority, mid priority, and low priority as proposed in [4].

Hence, high and mid priority users are the ones experiencing low and medium SINR levels, and

low priority users are the users experiencing high SINR levels. This priority status is allocated

in an orthogonal fashion, hence for a RB that has assigned a MS with high priority status in one

cell, the same RB is assigned to MSs with mid and low priority status in neighboring cells.

The users are scheduled based only on local BS information. Hence, each BS sorts its users

based on the average uplink throughput as follows:

κ∗id = {T̄(1)d, T̄(2)d, . . . , T̄(M)d}, (3.9)

s.t T̄(1)d ≤ T̄(2)d ≤ . . . ≤ T̄(M)d,

where κ∗id is the set of ordered throughput measurements in the d-th cell. The scalar T̄(i)d,

denotes the average throughput of the i-th mobile, where i = {1, 2, . . . ,M} is the set of MSs

transmitting in the coverage area of the same BS. High priority status is allocated to the
[
M
b

]
MSs with the lowest SINR. Low priority status is allocated to the

[
M
b

]
MSs with the highest

SINR. Finally, mid priority status is allocated to the remaining
[
M
b

]
mobiles, where b defines

the number of priority bands in the system.

After the users have been scheduled, each RB will contain a combination of MSs with high,

mid, and low priority status across all cells, as shown in Figure 3.2. Therefore, in order to

reduce CCI for vulnerable users, in Section 3.5 a power allocation framework, that forces users

with good propagation conditions (low and mid priority status) to reduce their transmission
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Figure 3.2: Orthogonal allocation for high, mid, and low priority users across the cells.
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Figure 3.3: Power allocation for each orthogonal segment in a multicell system using the three
priority classes.

power, is presented. In order to protect vulnerable users (high priority status) which are al-

lowed to transmit up to their maximum power level, in Figure 3.3 it can be observed how the

transmitted power should be allocated in each orthogonal segment in a multicell system to

provide protection to interference prone users. In this way, each cell may use the entire band-

width by reducing interference to its neighboring cells. This three priority class reuse scheme,

as mentioned in [10], is a suitable way to improve the SINR level of users with unfavorable

propagation conditions. Additionally, it can be noticed from Figure 3.3 that if the number of

priority bands is reduced in the system (e.g., b = 2), adjacent cell-edge regions will share fre-

quency segments, thereby resulting in higher levels of CCI for interference-prone users, which

consequently diminishes their performance in the network.

3.5 Two Layer Framework for Power Allocation

In the uplink of OFDMA, interference is generated by co-channel MSs, e.g., users transmitting

in the same RB. Furthermore, the power allocation in a wireless network can be modeled as

an non-cooperative game (NCG). However, the power allocation vector which results from a

NCG might not be an optimal solution from the system’s perspective [45]. The authors in [83]

present a joint optimization which considers users and network constraints. It has been shown
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in [80] that joint power control and rate allocation can be formulated by two interconnected

optimization layers, which act at the user and system levels respectively. Hence at the user level,

MSs try to maximize their own utility function until convergence is achieved. Furthermore, the

system level interacts with the user level in order to modify the price of the utility function so

that the outcome of the NCG can be moved to a more favorable operating point.

3.5.1 User Level Framework

The proposed model is for a multiple cell OFDMA system with up to D users transmitting in

the same resource block (RB). In this work, it is considered that each RB is allocated to a single

MS per cell. Therefore, let G = [D, {P} , {Unm(·)}] denote the non-cooperative game, where

m = {1, 2, . . . , D} is the set of mobiles transmitting in the n-th RB, P is a bounded convex set

of power values P ∈ {0, Pmax}, which is bounded by the maximum Pmax and zero transmitted

power, and Unm is the utility function of the MSm transmitting in the n-th RB. The outcome

of the game will be the vector pn = (Pn1 , . . . , P
n
D) ∈ P , which is a vector composed by the

selected power levels of the D users. Furthermore, the utility function of MSm is defined as

the difference between its spectral efficiency and its pricing function. Accordingly, the utility

function is defined as:

Unm(Pnm,p
n
−m, µ

n
m) = log2(1 + νγnm)− µnmPnm, (3.10)

where Pnm ≥ 0 and pn−m denotes the vector of power levels for all users except the m-th one,

and ν is a constant which depends of the bit error ratio (BER) of the system as follows [88]:

ν ≈ −1.5/ln(BER/0.2) (3.11)

In this work, ν is set to 0.5 to match the Shannon’s capacity with the spectral efficiency of the

LTE system presented in Table 3.1. In equation (3.10), the user spectral efficiency function is

a logarithmic function of the MS’s SINR, which is denoted by γnm. Furthermore, the pricing

function defines the “price” µnm that is paid by the MSm for using power Pnm to transmit in the

n-th RB. This means that the pricing term linearly reduces the utility by a factor of µnmP
n
m,

where µnm ≥ 0. The “price” µnm is used to penalize the users for the amount of interference that

is caused to the other users in the n-th RB. In [14, 66], a similar utility function considering

the cost of power expenditure has been used to perform the power allocation in multiple access

systems. Furthermore, in [14] it is shown that the utility function (3.10) may be a reasonable
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choice for power allocation in energy aware communications.

In this chapter, the power control scheme is conceived as a utility maximization problem, where

the users play an NCG in order to get the highest payoff from the network. This premise can be

formulated as:

maxUnm(Pnm,p
n
−m, µ

n
m) Pnm ∈ P. (3.12)

After the users are scheduled as shown in Section 3.4, a pricing method based on the uplink

throughput allocation is applied in order to control the transmit power of each MS. At this

stage, the throughput T̄nm of each MS must be exchanged between the adjacent BSs in order to

set the price for each user, which can be implemented with limited signaling. Hence, the users’

throughput in the n-th RB for the D cells is sorted as follows:

λ∗RBn = {T̄n(1), T̄
n
(2), . . . , T̄

n
(D)}, (3.13)

s.t T̄n(1) ≤ T̄n(2) ≤ . . . ≤ T̄n(D),

where λ∗RBn is the set of ordered throughput measurements in the n-th RB, T̄n(m) denotes the

average throughput of the MSm in the n-th RB, and D represents the number of available cells

in the system. Hence the price of the m-th user can be defined by:

µnm = y(λ∗RBn) =

{
T̄n(1)

cn
,
T̄n(2)

cn
, . . . ,

T̄n(D)

cn

}
, (3.14)

where cn = T̄n(1)× Pmax. This pricing factor will be higher for users which are less vulnerable

to interference, thus it will be more costly for them to transmit in a high power regime than

for interference prone users. Consequently, this pricing factor will reduce CCI for vulnerable

MSs. Once the price is set, the MSs will play an NCG until all the users are satisfied with the

utilities that they obtain from the NCG. This point of convergence, if it exists, is called the equi-

librium [45, 66]. Appendix A shows the conditions under which the equilibrium exists for the

user level framework in a multi-cell OFDMA scenario. In the proposed NCG, users optimize

their utility functions until convergence is achieved. The equilibrium exists for the proposed

game since the utility function 3.10 is continuous in P and quasi-concave. Moreover, P is a

nonempty, convex, and compact subset of some Euclidean space <n. Thus, both conditions are

enough to ensure that the NCG will converge to an equilibrium point.

42



Uplink Interference Mitigation

3.5.2 System Level Framework

In order to achieve the system goals, it is necessary to design rules that force the non-cooperative

users to enhance the global system performance. This is because the chosen power weighting

factor µnm might not be suited to fulfill the system’s optimization goals. Hence, the network

should be able to modify this parameter based on its own optimization criteria. Thus, the out-

come of the system will be shifted towards a better solution from the network’s perspective.

Adaptive modulation allows the system to match the spectral efficiency ε, to the interference or

channel conditions for specific users [80, 88]. In the proposed model, coded M̄ -ary quadrature

amplitude modulation (M̄ -QAM) is used, in which the number of bits transmitted per symbol

is a finite number as shown in Table 3.1. Therefore, the user spectral efficiency ε based on

M̄ -QAM may be approximated by:

ε(γnm) ≈ log2(1 + νγnm), (3.15)

Equation (3.15) is used to match the Shannon’s capacity with the spectral efficiency of the LTE

system presented in Table 3.1. Furthermore, as is shown in [88], equation (3.15) is a valid way

to approximate the capacity curve when an M̄ -QAM modulation is used. Thus, the required

k-th user’s SINR for a required ε may be expressed as:

γnm(ε) ≈ 2ε − 1

ν
, (3.16)

Therefore, by combining equations (3.1) and (3.16) an expression for the m-th user’s required

power for a certain choice of ε is obtained:

Pnm(ε) ≈ (Inm + η)(2ε − 1)

νGnmd
. (3.17)

Once the NCG converges, each BS can exchange the total interference metric that is received

by the MSm, which is defined as (Inm + η). This information may be obtained easily from

equation (3.1) based only on local BS information, if the channel path gain Gnmd, the m-th

user’s SINR γnm, and the users’ transmit power levels at the equilibrium Penm are known:

Inm + η =
PenmG

n
md

γnm
, (3.18)

Hence, once (Inm+η) is obtained, the system can adapt the MS’s transmitted power Pnm by using

equation (3.17) in order to fulfill the system optimization goals. It can be seen that each user
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in the n-th RB should select their transmit power according to the selected symbol efficiency ε,

previously shown in Table 3.1.

3.6 Optimization for max-min fairness

The system may have multiple possible operating points, the choice of which depends directly

on its optimization criteria. Thus, the system goals may vary from maximizing the total trans-

mission rate without considering fairness to minimizing the total transmitted power under some

constraints. However, in this chapter the system goal is to equalize the uplink user throughput

for users transmitting in the same RB. Hence, the max-min fairness optimization criteria is ap-

plied. So, the worst-case user’s throughput is optimized in order to improve fairness as follows.

max min Tnm s.t Pnm ∈ P. (3.19)

This means that users with good SINR levels or high spectral efficiency (HSE) reduce their

transmitted power, in order to reduce CCI to vulnerable users.

Theorem 1: Based on the users’ ordered rates in equation (3.13), improvements in total system

fairness and energy efficiency can be achieved if users with good SINR levels or high spectral

efficiency (HSE) change their power strategy Pnm to Pnm−∆Pnm, where Pnm−∆Pnm ≤ Pnm and

Pnm −∆Pnm ∈ P , which is proved in Appendix B.

3.6.1 Two layer algorithm for max-min fairness

At the beginning of the algorithm, the MSs in the system should start transmitting at maxi-

mum power. This means that users close to the cell center will achieve higher rates than users

at the cell edge. Furthermore, the MSs are initially scheduled as described in Section 3.4.

The power allocation technique at the user level, previously shown in Section 3.5.1 is ap-

plied, thus the power weighting factor µnm is set for each user in the n-th RB. This choice

of µnm ensures that users more vulnerable to interference transmit at higher power levels when

compared to less vulnerable users. The MSs will update their powers at time instants given

by t = {t1, t2, . . .}. Set s = 1, for all s such that ts ∈ t and for all terminals compute

Pnm(ts) = maxUnm(Pnm,,pn−m, µnm). The NCG should then converge to the equilibrium. Once

the equilibrium is reached, each BS can compute (Inm + η) for each MSm in the n-th RB with

equation (3.18). The system matches the MSm’s power at the equilibrium Penm with the clos-

44



Uplink Interference Mitigation

est Pnm(ε), which is obtained using equation (3.17), based on the different bits/symbol options

presented in Table 3.1.

ζ(ε∗) = min|Penm − Pnm(ε)|. (3.20)

From Theorem 1 and Definition 3 (see Appendix B), users with the highest symbol efficiency

(HSE) reduce their transmission power. Hence, their new power values P ∗HSE are computed

based on equation (3.17), where ε∗ is replaced by ε∗−∆ε∗, where ε∗−∆ε∗ ≤ ε∗. By Definition

4 (see Appendix B), and since the MS utility maximization starting point is the power weighting

factor µnm, this will allow us to change the parameter µnm for HSE users in the following way.

µnHSE =
1

Pnm(ε∗ −∆ε∗)
. (3.21)

Furthermore, due to the convergence to the equilibrium for the user layer framework, if the

power weighting factor µnm is changed according to Theorem 1 and Definition 4 (see Appendix

B), the users should achieve a fairer distribution of the user’s throughput after each iteration

of the system level layer, hence iteratively the two layer algorithm for max-min fairness will

satisfy the optimization metric presented in equation (3.19). The two layer algorithm for max-

min fairness is shown in Table 3.2.

3.7 Comparison Schemes and Simulation Scenario

To compare the performance of the proposed algorithm, five power allocation schemes are dis-

cussed in this section. On one hand, three schemes, which try to achieve a fair allocation of

the limited system resources, are presented in Section 3.7.1. On the other hand, two base-

line schemes, which prioritize users with good channel conditions over users close to the cell

boundary, are proposed in Section 3.7.2. These comparisons are helpful, in order to understand

if prioritizing users with good channel conditions will bring improvements in energy efficiency

at the expense of lower system fairness. The scheduling for all these schemes is performed as

described in Section 3.4.

3.7.1 Schemes considering a fair distribution of the system resources

These schemes provide an equal distribution of the resources for all the users in the network.

Their aim is to maintain a good quality of service (QoS) for users in both cell center and cell

edge.
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1. User Level Framework (Initialization)
Mobiles transmit at Pmax.
The users are scheduled as defined in Section 3.4.
Set the user’s price µnm in the n-th RB as defined in
Section 3.5.1.
2. User Level Framework (Optimization)
The users play an NCG until the equilibrium is
achieved.
3. System Framework (Initialization)
After convergence, the system can collect the inter-
ference metric (Inm + η).
The system matches the power at the equilibrium
Penm with the different entries from Table 3.1 as fol-
lows: ζ(ε∗) = min|Penm − Pnm(ε)|.
4. System Framework (Optimization)
Users with the highest spectral efficiency reduce
their transmission rate.
Their new power values are computed based on
equation (3.17), where ε∗ is replaced by ε∗ −∆ε∗.
The new µnm is computed as: 1

Pnm(ε∗−∆ε∗) .
The users play an NCG until the equilibrium is
achieved.
5. Iterations for the System Framework
Repeat steps 3 and 4 until the optimization metric
shown in equation (3.19), is satisfied.

Table 3.2: Power Allocation Algorithm.

a) Centralized SINR balancing Scheme

The authors in [11] introduce the concept of SINR balancing, which equalizes the SINR

levels across the users transmitting in the same RB, allowing a fair distribution of the

system’s resources. However, this scheme requires full knowledge of base-mobile and

interference path gains. Hence, interference path gains should be obtained and commu-

nicated to the adjacent BSs, which implies a significant amount of information exchange

and an increase in complexity. Additionally, the authors in [89] show that if a distributed

version of the SINR balancing scheme is implemented, it converges in approximately

51 iterations (time slots), which is a large number of iterations, specially for practical

applications where the channel varies in time.

b) One Layer Framework

To understand the performance differences, the proposed method is compared with the

user level framework, which works without the system optimization layer. Hence, the
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performance of this framework is decided by the users selfish interest, without consider-

ing the network optimization goals.

c) Two layer framework for max-min fairness

The two layer optimization algorithm presented in Section 3.6, which optimizes the sys-

tem fairness under the max-min optimization criteria, is constructed. Hence, the outcome

of the NCG is modified in order to achieve a fair distribution of the system resources.

3.7.2 Schemes prioritizing users with good channel conditions

These schemes prioritize users close to the BS rather than users at the cell edge, due to the good

propagation conditions for users at the cell center. Moreover, these schemes aim to achieve a

high transmission rate rather than a tradeoff between capacity-energy efficiency and fairness.

d) Two layer framework for rate maximization without considering fairness

Another option for the system optimization criteria is to maximize the throughput sum in

each RB as: max
∑D

m=1 T
n
m s.t Pnm ∈ P. Furthermore, the price µnm is calculated in

a way to allow users less vulnerable to interference or with good SINR levels to transmit

at higher power levels, in order to improve system capacity at the expense of generating

higher CCI levels for vulnerable users.

e) Benchmark case

Additionally, a maximum power transmission scheme is implemented as a benchmark,

in which all the mobiles transmit at maximum power in each RB.

3.7.3 Simulation Scenario

To compare the performance of the schemes presented above, Monte Carlo simulations con-

sidering the simulation parameters in Table 3.3 are performed. The simulation is comprised

of a single-tier, tessellated hexagonal cell layout of seven cells. However, statistics are only

taken from the center cell. Each cell is served by a single omnidirectional BS with the MSs

uniformly distributed in the cell. Additionally, all MSs in the network are required to transmit

continuously. Finally, 10000 simulations are run over 20 time slots.

For comparison, the required channel path gains for the optimization process are shown in Ta-

ble 3.4, for each of the schemes presented above, where M is the number of available MSs per

cell, and D is the number of mobiles sharing the same RB in different cells.
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Parameter Value
MSs per macro-cell, M 6
Intersite-site distance 200 m

Number of available RBs, N 6
Number of cells, D 7

RB bandwidth, BRB 180 kHz
Subcarriers per RB, ksc 12

Symbol rate per subcarrier, %s 15 ksps
Subframe duration 1ms
Thermal noise, η -174 dBm/Hz

Total MS transmit power 23 dBm
Shadowing, Std. Dev., σ 4 dB
BER (for computing ν) 10−2

Fading frequency selective fading
∆ε∗ ≈ 1 bit/symbol

Table 3.3: Simulation parameters.

Method Propagation paths
Centralized SINR Balancing M ×D2

Benchmark M ×D
One and Two Layer Framework M ×D

Table 3.4: Required number of channel path gains for performing power allocation.

3.8 Results

From the simulations, the cumulative distribution functions (CDFs) and the graphs which show

the distribution of the system resources at different distances from the BS, are generated for

the algorithms presented in the last section. In Figure 3.4, the overall user throughput, given

by equation (3.3), is displayed. It can be observed at 65th percentile and at 70th percentile

that the CDF of the two layer (max-min fairness) scheme has an intersection point with the

two layer (rate maximization) and the benchmark scheme respectively. This means that the

max-min framework allows higher throughputs for 65% and 70% of the users in the network,

when compared with these two baseline schemes. Additionally, important throughput improve-

ments of 152%, 68%, 7% and 5% are obtained at the 10th percentile, when the two layer

approach (max-min fairness) is compared with the other four approaches respectively: the two

layer (rate maximization), the benchmark, the one layer framework, and the SINR balancing

scheme. Thus, the proposed scheme allows vulnerable MSs to achieve more favorable trans-

mission conditions than the other approaches. Furthermore, in Figure 3.5 it is shown that the

two layer (max-min fairness) scheme allows a fairer distribution of the uplink user throughput,
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Figure 3.4: User average CDF throughput.
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Figure 3.5: User throughput vs distance from the BS.

equation (3.3), at different distances from the BS, which goes from 450 kbps at the proximity

of the BS to 350 kbps at the cell edge, which contrasts with the distribution of the two layer

(rate maximization) scheme which goes from 1 Mbps at the cell center to 150 kbps at the cell

border. This fair resource distribution for the two layer (max-min fairness) scheme is related

to the power reductions applied to cell center MSs, which consequently reduce CCI signifi-

cantly for vulnerable users. Thus, users close to the cell border achieve a more favorable uplink

throughput in the system.

In Table 3.5, the fairness index, equation (3.6), of the two layer (max-min fairness) scheme is

compared with the SINR balancing, the one layer framework, the benchmark and, the two layer

(rate maximization) respectively. Thus important improvements in system fairness of 2%, 9%,

27%, and 36% can be achieved.

In Figure 3.6, it can be seen that the two layer (max-min fairness) scheme sacrifices the trans-

mitted power expenditure for users close to the center, which transmit in a low power regime

(e.g., 0.01 W at 33 m from the cell center), in order to allow users with less favorable propaga-
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Scheme Jain’s index
Centralized SINR Balancing 0.96
One Layer Framework 0.88
Two Layer Framework (max-min fair-
ness)

0.97

Two Layer Framework (rate maximiza-
tion)

0.71

Benchmark 0.76

Table 3.5: Jain’s fairness index.
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Figure 3.6: User power vs distance from the BS.

tion conditions to transmit in a high power regime (e.g., 0.12 W at 93 m from the cell center).

By contrast, it is also shown in Figure 3.6 that the two layer (rate maximization) framework

allows cell center users to work in a high power regime (e.g., 0.12 W at 33 m from the cell cen-

ter) at the expense of increasing CCI for users close to the cell edge (which transmit at 0.07 W

at 93 m from the cell center).

For the system energy efficiency, equation (3.5), in Figure 3.7 at the 50th percentile, it can be

noticed that the two layer (max-min fairness) scheme is more energy efficient compared to the

benchmark, the one layer, and the two layer (rate maximization) framework with improvements

of 116%, 16% and 7% respectively. Nevertheless, the two layer scheme (max-min fairness) has

losses of 19% compared to the SINR balancing scheme. These losses are tolerable in practice

due to the significant reductions in communications overhead shown in Table 3.4.

Furthermore, Figure 3.8 shows that the user energy efficiency, equation (3.4), for all the MSs in

the network is higher for the SINR balancing and the two layer (max-min fairness) framework

than for the other three approaches. Additionally, from the simulations it can be confirmed that

after power reductions are applied to HSE users, the system has representative improvements in

energy efficiency and fairness, as shown in Figure 3.7 and Table 3.5. Thus, the results presented
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Figure 3.7: System CDF energy efficiency performance.
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Figure 3.8: User CDF energy efficiency performance.

in Theorem 1 are confirmed. Furthermore, it can be understood that by using the system level

layer which optimizes max-min fairness, the outcome of the user level framework (one layer

framework) is changed to a more energy efficient and fair operating point.

One important result that can be seen from the simulations is that, while the two layer (rate

maximization) algorithm is the one that allows higher transmission rates, the loss in fairness

cannot be justified. This is because this algorithm also achieves a lower performance in energy

efficiency than the two layer (max-min fairness) framework and the SINR balancing scheme.

In Table 3.4, it is presented the required channel knowledge to perform the power allocation

for the schemes presented above, thus the number of channel path gains that have to be esti-

mated are: 42 for the proposed scheme and 294 for the centralized SINR balancing approach.

Therefore, the two layer (max-min fairness) scheme only uses 14% of the channel path gains

that the centralized scheme requires for its optimization process. It is found that the two layer

optimization framework converges on average after four iterations, which are measured in time

slots, for the system level and four for the user level. Hence, the total number of iterations for
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the two layer framework is 4 × 4 = 16, which are significantly lower than the 51 iterations

needed for the distributed version of the SINR balancing scheme.

3.8.1 Computational Complexity

To conclude the comparison, the complexity of the centralized SINR scheme compared to the

two layer (max-min fairness) method and the one layer framework is discussed. BigO notation

is used to describe the growth rate for the two schemes. The complexity analysis focuses on the

power allocation framework, since the scheduling is performed using the same procedure for

both schemes. The centralized SINR method requires a matrix inversion operation to compute

the power allocation vector for the D MSs allocated in each RB inducing a complexity pro-

portional to O(D3). For the two layer (max-min fairness) case, each user maximizes its utility

function, equation (3.10), which computes the best response of each user to other users strate-

gies, equation (A.3), which requires arithmetic operations with a complexity of order O(D2).

After reaching the equilibrium, the system level interacts in order to change the outcome of

the game to a better operational point, equations (3.20) and (3.21), thus an arithmetic operation

and a binary search are needed, which requires a complexity of order O(D2) and O(log(D))

respectively. Furthermore, as O(D) increases the dominant factor will be the term with the

largest exponent, thus the complexity of the two layer (max min fairness) is upper bounded by

O(D2). For the one layer framework case, its complexity is only bounded by the complexity

of the user level framework since the system level layer does not change the outcome of the

NCG. Hence its complexity is given by O(D2). Additionally, the complexity of these methods

increases linearly with the number of MSs per cell, M . Hence, the centralized SINR scheme

has a complexityO(M ×D3), which is a higher order complexity compared with a complexity

O(M × D2) for the two layer (max-min fairness) scheme and a complexity of O(M × D2)

for the one layer framework. As stated before, the complexity for the one layer framework

and the two layers scheme remains the same, nevertheless it should be remembered that the

convergence time for the two layer framework is four times the one required for the one layer

case.
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3.9 Summary

In this chapter, we present a resource allocation scheme based on a SINR scheduler and a two

layer power allocation technique for the uplink. The proposed scheme forces interfering users

to reduce their transmission power, in order to reduce CCI for vulnerable users. Thus, inter-

fered users achieve higher transmission rates, when compared to other approaches previously

proposed. Aside from the fact that the proposed algorithm is easy to implement (only mobile-

base path gains are required for its optimization process), a further benefit of the framework

is an increase in energy efficiency for all MSs in the system. Furthermore, it has been shown

analytically and by extensive simulations that improvements in system fairness are related with

gains in energy efficiency, which is a direct result of the throughput displacement from the cell

center to the cell edge. Additionally, it has been shown that the proposed power allocation

framework combined with the SINR scheduler achieves improvements of 116% and 27% in

system energy efficiency and fairness respectively, when compared with the benchmark. There

is also a substantial increase in user throughput of 68% for interference prone users. Finally,

it can be understood that the proposed framework achieves a fair tradeoff between complexity,

capacity, energy efficiency, and fairness. Hence, it may be used as suitable way to obtain energy

savings at the protocol stack level. In the following chapters different techniques which may de-

liver similar performance gains at the protocol stack level will be studied. In addition, schemes

that take advantage of the changes in the network infrastructure to obtain power savings will be

considered.
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Chapter 4
A Stable Marriage Framework for

Distributed Resource Allocation

4.1 Introduction

This chapter illustrates the use of a cooperative game theory framework called stable marriage

to allocate resources in the network in an energy efficient way. The chapter is divided in two

parts. In the first part, the proposed framework is used to enhance the energy efficiency by

forming virtual MIMO coalitions between single antenna mobile and relay stations. The re-

lay selection method optimizes the circuit power consumption of the mobiles and relays rather

than the transmitted power by implementing spatial diversity in the uplink. Thus, the power

consumption of the radio frequency (RF) parts such as the power amplifiers and the base band

(BB) module is taken into account. Furthermore, it is shown by simulation that under certain

conditions cooperation does not improve the energy efficiency metric of network users when

circuit consumed power is considered, thus single antenna devices prefer to transmit indepen-

dently in order to maintain the users performance in the network.

In the second part, the aim is to reduce the power expenditure in the uplink during low net-

work load periods by allocating extra resource blocks (RBs) to the mobile users. Thereby, the

users rate demands are split among its allocated RBs in order to transmit in each of them by

using a more energy efficient modulation scheme. This bandwidth expansion (BE) process is

derived from the concept of stable marriage. Moreover, it is shown that when circuit power

consumption is optimized, transmitting in more than one RB may not become an energy effi-

cient solution for users experiencing favorable propagation conditions.

The rest of the chapter is structured as follows: Section 4.2 presents the literature review. Sec-

tion 4.3 describes the problem scenario and performance metrics. An analysis of the conse-

quences that arise when overall power consumption is optimized rather than transmitted power

is shown in Section 4.4. In Section 4.5, a cooperative framework is described. The summary of
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the comparison schemes and the simulation scenario are described in Section 4.6. Results are

presented in Section 4.7. Finally, Section 4.8 offers concluding remarks.

4.2 Literature Review

Significant research has been performed in the context of green radio [7, 30, 31, 45]. As an

example in [53], the authors describe the most promising research directions to improve energy

efficiency in wireless networks. Radio resource management techniques such as: interference

mitigation, resource block (RB) allocation and the use of multiple antennas as a way to enhance

the diversity in the uplink are proposed as an efficient way to reduce power consumption in the

network. In the previous chapter, a scheme for intercell interference reduction which trades ca-

pacity for energy efficiency is proposed. Capacity is reduced for users at the cell center which

consequently reduces interference for users close to the cell edge. Thus, significant gains in

energy efficiency can be obtained with a minimal reduction in the system’s throughput. The au-

thors in [90] study the fundamental tradeoffs between deployment efficiency-energy efficiency

and bandwidth efficiency-energy efficiency. They suggest that the bandwidth and the network

infrastructure can be traded to obtain potential energy savings at the system level. In [91],

the authors further study the concept of trading bandwidth for high energy efficiency. They

conclude that bandwidth expansion can be used as an energy efficient alternative when low to

moderate traffic low loads are present in the network. A framework for an energy efficient re-

source block allocation scheme, which is coordinated at the base station (BS) side, is presented

in [20]. The authors show that by allocating extra RBs to the mobile users it is possible to re-

duce the transmitted power expenditure in the downlink while maintaining a constant data rate.

In addition, they demonstrate that increasing the number of allocated RBs always provides an

increase in the energy efficiency metric for the system.

In [2], the use of spatial diversity and spatial multiplexing through the use of multiple antennas

is illustrated as an useful technique to reduce the power expenditure in wireless networks. In

fourth generation (4G) networks such as Long Term Evolution (LTE), a base station (BS) may

be equipped with multiple antennas. Nevertheless, mobile stations (MSs) may not support more

than one single antenna due to physical constraints [25, 34]. Hence, cooperation between the

network devices in information transmission may be used to obtain important gains in spectral

and energy efficiency [31]. In [92], the authors propose a cooperation scheme between source

and relay stations by the use of the amplify-and-forward (ANF) technique. Thus, potential

energy savings are obtained due to the increase of diversity generated by multiple sources of
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signal reception. Cooperative techniques such as virtual MIMO may also be used to reduce de-

lay and power consumption in the network as presented in [25, 93]. In [93], the authors justify

the increase in communication overhead and complexity for the system due to the substantial

reductions in delay and power expenditure of using virtual MIMO in wireless sensor networks.

In [25], an approach to optimize the power allocation between transmitter and relay is pre-

sented in order to minimize the overall energy per bit consumption in the system. Moreover, it

is shown that by using an optimal power allocation, the virtual MIMO case achieves an energy

efficiency performance close to the ideal MIMO system.

An important consideration in the design of resource allocation techniques such as the ones pro-

posed previously in [20, 93] is the complexity and communication overhead that is required to

implement these solutions due to the large scale nature of wireless systems [35]. This is because

the complexity and implementation cost of centralized schemes such as that described in [20]

tend to be a limiting factor in the network performance [7]. Thus, the design of distributed

algorithms that allows the network to autonomously allocate its bandwidth and infrastructure

resources is highly challenging but desirable in practice [28].

Game theory has been successfully used as a powerful tool for the design of low complexity re-

source allocation techniques [94]. Non-cooperative game theory tends to focus on the multiuser

competitive nature of the problem and on the users interaction as previously seen in Chapter 3.

Cooperative game theory provides a framework to study the behavior of players when they

cooperate. In this context players are allowed to form agreements among themselves. Further-

more, these agreements may impact the strategies and the payoff that the players obtain from

the network. In [3, 29], an overview of cooperative game theory approaches for resource allo-

cation in communication systems is presented. In [28], the use of cooperative game theory for

virtual MIMO coalition formation is described. The aim of the work is to maximize the users

data rate while accounting for the cost of cooperation in terms of the overall power consump-

tion.

The main contribution in this chapter is to model the virtual MIMO coalition formation process

and the RB allocation process by using a low complexity cooperative game theory framework

derived from the concept of stable marriage with incomplete lists (SMI) [95]. We focus on the

optimization of the overall consumed power among devices rather than the transmitted power.

In addition, it is shown that under certain conditions allocating extra resources such as RBs

or RSs to a mobile station for information transmission does not provide an energy efficient

solution, when the overall power consumption is considered.
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Figure 4.1: Virtual MIMO coalition and bandwidth expansion scenarios

4.3 System Scenario and Performance Metrics

For the virtual MIMO coalition case, we consider M single antenna mobile stations (MSs)

sending data on the uplink to a multiple antenna base station (BS). The system bandwidth B

(Hz) is divided into N resource blocks (RBs) as shown in Figure 4.1(a). Hence, an orthogonal

frequency division multiple access (OFDMA) system is constructed. Moreover, we consider

R single antenna relay stations (RSs) uniformly distributed through the cell, assuming R �
M . Thus, virtual MIMO coalitions are formed between MSs and RSS to increase the energy

efficiency metric for the uplink transmission. In the bandwidth expansion case, MSs transmit

in the uplink to a multiple antenna BS. It is assumed that the network experiences low load

N � M , thus spare RBs can be allocated to the users with the aim of reducing the power

consumption. In Figure 4.1(b), an illustration of the system scenario is presented.

4.3.1 System Model

In Figure 4.2(a) a virtual 2×Mr MIMO link is shown. At the first time slot, the MS forwards

the information symbol s to the RS using the cooperative (short range) link. In the following

slot, the MS and RS transmit the symbol s in the uplink through the MIMO channel Hn
m. The

uplink and cooperative link are designed orthogonal to each other, in order to prevent mutual

interference. Thus, when transmitting in the cooperative link the MS uses a different frequency

set that when transmitting in the reverse link. Hence, additional bandwidth is required when

implementing the cooperative link.

For the bandwidth expansion process case, cooperation between mobile devices is not required.

Thus, MSs only transmit in the uplink, as presented in Figure 4.2(b), in one or multiple RBs.

The channel model for the cooperative link and the uplink is explained below.
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Figure 4.2: Transmission scenario

4.3.2 Channel Model

4.3.2.1 Cooperative Link

If RSs and MSs cooperate between each other by forming multi-antenna arrays, the cooperative

link between the MSm and the r-th relay station is modeled as following κth-power path loss

(loss ≈ 1
dκmr

) with Additive White Gaussian Noise (AWGN). Hence, the received power Pmr

from the signal transmitted from the MSm to the r-th RS is expressed by:

Pmr =
Ptcop

dκmr
(4.1)

where Ptcop is the transmitted power for cooperation and dmr is the distance between the MSm

and the r-th RS. Hence, the signal-noise ratio (SNR) at the RS side is given by

γmr =
Pmr
η

(4.2)

4.3.2.2 Uplink

The uplink received signal at the base station (BS) separated by a distance dm from the MSm

is determined by path loss, log-normal shadowing, and channel variations caused by frequency

selective fading. The channel exhibits Rayleigh fading, whose power delay profile has been

taken from [96]. Path loss and shadowing are modeled as a power fall off that subsequently

attenuates the power of the transmitted signal. Thus, the average power of the received signal

on the n-th RB can be expressed by [7]:

Prnm = Pnm 10
−L(dm)+Xσ

10 , (4.3)
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where Pnm denotes the signal transmitted power for them-th user in the n-th RB,Xσ is them-th

user log-normal shadowing value (dB) with standard deviation σ, and L(dm) is the distance-

dependent path loss (dB), which is calculated as follows:

L(dm) = 15.3 + 37.6 log10(dm). (4.4)

We assume the channel is known at the transmitter and receiver. Therefore, the received signal

at the BS side on the n-th RB for the m-th Single-input Multiple-output (SIMO) user is given

by:

ynm =
√
Prnmh

n
ms+ n, (4.5)

where hnm is the 1×Mr channel matrix on the n-th RB, s is the information scalar symbol with

unit energy, and n is the Mr × 1 noise factor. Hence, the received signal to noise ratio (SNR)

at the BS side in the n-th RB may be expressed by [2]:

γnm simo =
‖hnm‖2FPrnm

η
, (4.6)

where η is the noise power. In addition, by combining Eqs. (4.3), and (4.6) and by defining

Gnm = ‖hnm‖2F 10
−L(dm)+Xσ

10 , Eq. (4.6) may be written as follows:

γnm simo =
PrnmG

n
m

η
, (4.7)

where Gnm represents the channel path-gain between the BS and the MSm in the n-th RB. If

single antenna RSs and MSs cooperate to form multi-antenna coalitions for information trans-

mission in the uplink, Eq. (4.5) may be re-written by

ynm =

√
Prnm
Mt

Hn
mws+ n, (4.8)

where ynm is the received signal at the BS from the m-th MIMO coalition, Hn
m is the Mt ×Mr

channel matrix on the n-th RB, Mt is the number of transmitting antennas per coalition, s is

the information symbol with unit energy, n is the noise, and w is a complex weight vector, that

must satisfy ‖w‖2F = Mt to constrain the total average transmitted power, where ‖ · ‖2F is the

Frobenius norm. Furthermore, the signal-to-noise ratio (SNR) for a MIMO coalition is given

by [2]:

γnm mimo diversity =
‖gHHn

mw‖2FPrnm
Mt‖g‖2F η

, (4.9)
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Figure 4.3: Block diagram of the power consumption model.

where g is an Mr × 1 vector of complex weights which multiplies ynm at the BS side and η

is the noise power. Hence, maximizing the SNR at the receiver is equivalent to maximizing

‖gHHn
mw‖2F /‖g‖2F . By using the singular value decomposition (SVD) the channel matrix

can be represented as Hn
m = Un

mΣVn
m
H , where the columns of Vn

m and Un
m are known as

the input and output singular value vectors respectively, and Σ = diag{σ1, σ2, ..., σω} with

σi ≥ 0, where σi is the i-th singular value of the channel, and ω is the rank of Hn
m. Thus,

the right choice of w/
√
Mt and g that maximizes the SNR are the corresponding input and

output singular value vectors corresponding to the maximum singular value σmax of Hn
m [2].

Therefore, the received SNR at the BS side from the m-th MIMO coalition may be expressed

as follows:

γnm mimo diversity =
σ2
maxPr

n
m

η
, (4.10)

4.3.3 Power Consumption Model

In this work, we take into account the overall power expenditure caused by information trans-

mission in the uplink. The uplink power expenditure mainly depends on components such as

the baseband (BB) module and the radio frequency (RF) module as shown in Figure 4.3. The

former encloses the power expenditure due to the baseband signal processing (e.g., channel

coding and decoding), and the latter includes the power consumption of the radio frequency

parts (e.g., the power amplifier). Therefore, to model the power consumption for both mod-

ules, we use the model proposed in [97], where an analysis of the power consumption for these

modules in a Long Term Evolution (LTE) mobile station is presented. Thus, the overall con-

sumed power for a SIMO user Pnm simo only depends on the transmitted power in the uplink

Pnm. Hence, it is modeled as follows:

Pnm simo(Pnm) = Pncirc(P
n
m) (4.11)
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Additionally, the uplink consumed power to form a virtual MIMO link which implements spa-

tial diversity becomes a function of the total transmitted power in the uplink Pnm, and how this

is distributed between the MS and the RSs, which is due to the weight vector w. Thus, the total

consumed power for a virtual m-th MIMO user in the uplink is given by:

Pnm mimo diversity(Pnm) =

Mt∑
i=1

Pncirc

(
Pnm‖wi‖2
Mt

)
(4.12)

where Pncirc defines the circuit power in the uplink spent by each of single antenna device such

as MSs or RSs forming the virtual MIMO link. In addition, the circuit power expenditure due to

the cooperative link, Pcircop, which is a direct function of the transmitted power for cooperation,

Ptcop, should be added to Eq.(4.12). Thereby, the total power expenditure to form the virtual

MIMO link when implementing spatial diversity is given by:

Pnm mimo diversity total(P
n
m, Ptcop) = Pcircop(Ptcop) +

Mt∑
i=1

Pncirc

(
Pnm‖wi‖2
Mt

)
(4.13)

To model the circuit consumed power of the RF module, a power amplifier array [97,98] which

is based on four power amplifiers is considered: a low power amplifier (LPA) and three high

power amplifiers HPA 1, HPA 2 and HPA 3 as presented in Fig 4.4. The power amplifier

efficiency is assumed equal for both high power amplifiers; however HPA 1 and 2 are designed

to transmit up to one fourth and to one half of the maximum transmitted power of HPA 3

respectively. Thus, the circuit power expenditure at the uplink Pncirc [W] is given by:

Pncirc(P
n
m
∗) =



2 + 0.005(Pnm
∗)−A 14 ≥ Pnm∗

1.2+0.12(Pnm
∗)−(A− 3

4
PBB)

4 17 ≥ Pnm∗ > 14

1.2+0.12(Pnm
∗)−(A−PBB)
2 20 ≥ Pnm∗ > 17

1.2 + 0.12(Pnm
∗)−A 24 ≥ Pnm∗ > 20

(4.14)

where the Pnm
∗ [dBm] is the input value of Pncirc in Equations (4.11), (4.12), (4.13) and A

comprises a set of constant values defined by [97]:

A = PTx + Pcon − PBB [W ], (4.15)
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Figure 4.4: Internal model of the power amplifier for the RF module.

The value PTx is minimum power that the RF chain consumes in transmission mode, Pcon is

the MS’s power consumption when connected to the BS, and PBB is the power consumed by

the BB module [97]. As we have stated, the cooperative link is a short range communications

link, thus in order to model its circuit power consumption Pcircop, we use the LPA model:

Pcircop(Ptcop) = 2 + 0.005(Ptcop)−A [W ] 14 ≥ Ptcop(dBm) (4.16)

4.3.4 Performance Metrics

The throughput between the MSm and the BS in the n-th RB using adaptive modulation and

coding is computed by [7]:

Tnm(γnm) = ksc%sε(γ
n
m) [bits/s] , (4.17)

where ksc is the number of subcarriers per resource block, %s is the symbol rate per subcarrier,

and ε(γnm) is the spectral efficiency for a Long Term Evolution (LTE) system [7]. Moreover,

γnm in (4.17) must be replaced by (4.10) when the user transmits in MIMO or by (4.7) when the

user transmits in SIMO mode.
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Moreover, the total user throughput for the m-th user can be obtained by:

Tm =
∑
n ∈ Z

Tnm [bits/s] , (4.18)

where Z ∈ N represents the subset of RBs allocated to the MSm, whose cardinality defines the

bandwidth expansion factor denoted as |Z|. Additionally, the total user consumed power for

the MSm is represented by:

Pm total =
∑
n ∈ Z

Pnm trans(P
n
m) [W ]. (4.19)

wherePnm trans(P
n
m) in Eq. (4.19) should be replaced byPnm mimo diversity total(P

n
m, Ptcop) (4.13)

if the user forms a virtual MIMO link or by Pnm simo(Pnm) (4.11) if the user transmit at its own.

The user energy efficiency βm measures the user throughput per unit of consumed power:

βm = Tm/Pm total [bits/J] . (4.20)

Furthermore, the system energy efficiency βsys describes the correspondence between the total

user throughput and the total power spent by all the users in the system.

βsys =

M∑
m=1

Tm/

M∑
m=1

Pm total [bits/J] , (4.21)

where M is the number of total users in the system.

4.4 Theoretical Analysis

In the present section, we show the consequences in terms of power consumption that arise

when transmitting with multiple antennas or transmitting in more than one RB.

4.4.1 Virtual MIMO Coalition Formation

A complete analysis that studies the consequences in transmitted and overall power consump-

tion when increasing the number of transmit antennas in the uplink is presented in Section 5.6.1.
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4.4.2 Bandwidth Expansion Process

In order to show the gains in energy efficiency when adding extra RBs to the MSm for trans-

mission in the uplink, Shannon’s capacity formula will be used. Thereby, the capacity for the

n-th RB may be written as follows:

Cnm = BRBlog2(1 + γnm simo), (4.22)

where BRB represents the n-th’s RB bandwidth. Moreover, assume that for the bandwidth

expansion (BE) scheme, we aim to have the same overall transmission rate after more RBs are

allocated to the m-th user. This requirement may be represented by:

|Z|(BRBlog2(1 + γnm BE)) = BRBlog2(1 + γnm simo), (4.23)

where γnm BE is the SNR of the MSm in the n-th RB when the bandwidth expansion scheme

is used. Recall that in an OFDMA system all the operations are always performed on an RB

basis. Hence, by algebraic manipulations (4.23) becomes:

(1 + γnm BE)|Z| = 1 + γnm simo, (4.24)

By combining Eqs. (4.7) and (4.24), we may obtain the transmit power expenditure due to the

BE scheme [20].

Pnm BE =
η

Gnm BE

(
(1 + γnm simo)1/|Z| − 1

)
, (4.25)

The required transmitted power due to different values of |Z| is plotted in Figure 4.5. The ratio
η

Gnm BE
is taken as constant value, under the assumption that the noise level present in each RB

is not directly affected by allocating extra RBs, since all operations are performed on a per RB

basis. Moreover, to improve system performance, the propagation conditions (e.g., frequency

selective fading) of the new allocated RBs should be similar or better than the current allocated

RB as we will show later in the chapter.

In Figure 4.5, we can see that increasing the number of RBs always provides transmission power

savings at different SNR values, since a significant decrease in transmission power is observed

as the value of |Z| increases. Nevertheless, in Figure 4.6 it can be seen that this behavior does

not remain the same when overall power consumption is considered by including the model

in (4.14). Adding extra resource blocks is not an energy efficient solution at low SNR levels

(e.g., SNR ≤ 6 [dB]). Therefore, transmitting with only one RB is the most energy efficient
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solution in this regime. This is because in a low SNR regime a low required transmitted power

is also required. Thus, using the BB and the RF modules to transmit in more than one RB is

not an energy efficient solution. Moreover, we can see that |Z| = 2 tends to be the most energy

efficient solution from 6 to 15 [dB]. Finally, using more than two RBs provides the most power

savings for high SNR levels (e.g., SNR ≥ 15 [dB]). This is because, under the assumption that
η

Gnm BE
is taken as constant value in (4.25), in a high SNR regime a high transmitted power is

also required. Hence, the circuit power consumption for using the RF and the BB to transmit

in multiple RBs is justified in this case.

Moreover, when channel effects are considered, it should be understood when it is worthwhile

to add extra RBs to a specific user, since channel propagation conditions such as frequency

selective fading may not remain the same within different RBs. Hence, in terms of transmitted

power this requirement can be represented by [20]:

Pnm ≥
∑
n∈Z

Pnm BE. (4.26)

In terms of circuit consumed power(4.14), Eq. (4.26) becomes:

Pnm circ(P
n
m
∗) ≥

∑
n∈Z

Pnm circ BE(Pnm BE
∗). (4.27)

where Pnm BE
∗ and Pnm

∗ represent the value of Pnm BE and Pnm converted to [dBm].
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Figure 4.5: Transmitted power plotted for different bandwidth expansion factors |Z|.
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Figure 4.6: Overall power consumption for different bandwidth expansion factors |Z|.

4.5 Distributed Resource Allocation Framework

In order to obtain energy savings, we model the virtual MIMO coalition formation and the

bandwidth expansion process by a game theoretic approach derived from the concept of stable

marriage with incomplete lists (SMI) [95]. The SMI framework is used to find a stable match

between two sets (MSs and RSs) or (MSs and RBs) respectively. A match is said to be stable

when no better alternative pairing exists in the other set compared with the currently matched

elements. Thereby, the SMI reaches a stable solution for each process [95].

4.5.1 Virtual MIMO Coalition Formation

In our approach, one set contains M mobiles and the other one contains R relay stations.

Furthermore, each single device’s list consists of a subset of the members of the opposite set

ordered by preference. A matching Ē is a tuple (MS, RS) such that each single antenna device

belongs to exactly one tuple. If (m, r) ∈ Ē, we say that the r-th RS is the m-th MS partner in

Ē and vice versa. The distributed RS selection procedure is as follows:

1) First, each MS in the system sends a broadcast message on the short range (cooperative)

link, in order to find the subset of RSs close enough to cooperate with it, which is denoted as

Sm ∈ R.

2) After the broadcast message, the RSs willing to form a MIMO link share their channel
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statistics for their uplink (path loss, shadowing, and channel fading coefficient) and their chan-

nel statistics in the cooperative link (path loss) with the subset of mobile stations willing to

cooperate with them, which for the r-th RS is denoted by Sr ∈ M . Mobiles only exchange

with the RSs their channel statistics in the uplink. Hence, each MSs is able to rank its preferred

subset of RSs, Sm, by using the following utility function:

Umr diversity(γtarget) = Pnm simo(γtarget)− Pnm mimo diversity total(γtarget), (4.28)

where Umr is computed as the difference between the power spent by them-th MS acting on its

own or making a coalition with the r-th RS, and γtarget represents a target SNR that both SIMO

and MIMO users aim to achieve. Hence the higher the utility value, the more the m-th MS

will be willing to cooperate with the r-th RS. Additionally, if the utility becomes negative the

MS will ignore the RS for coalition formation, since forming a virtual MIMO link will degrade

the user’s performance. Furthermore, the MS preference list Lm is formed by evaluating each

element of the subset Sm by Eq. (4.28). MSs that do not obtain any benefit from cooperating

with any of the relays in their preferred subset, Sm, are allowed to act in SIMO mode. The RSs

need to compute how important or necessary is their cooperation with the MSs to form a virtual

MIMO link. Thus, RSs rank their suitable candidates as follows:

Urm(γtarget) = Pnm circ

(
Pnm(γtarget)‖wrs‖2

Mt

)
− Pnm circ

(
Pnm(γtarget)‖wms‖2

Mt

)
, (4.29)

where Urm is computed as the difference between the power spent by the RS and the MS when

forming a virtual MIMO link. Thus, a high value in the utility means that the RS carries most

of the power expenditure for the virtual link, since its channel to the BS experiences better

instantaneous conditions than the MS channel. Moreover, the RS’ preference list, Lr, is formed

by evaluating each element of Sr by Equation (4.29).

3) After the ranking is done, the SMI procedure given in Algorithm 1 [95], can be applied.

4.5.2 Bandwidth Expansion Process

In our proposed framework, the set of spare RBs in the system consists of F RBs, thus F ∈ N
and the other set represents the M mobile stations. Moreover, in order to perform the band-

width expansion process every element in each set should build a list which consists of the

members of the opposite set ordered by preference. A matching pair E is a tuple (MS, RB)
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Algorithm 1: Stable Marriage with incomplete lists (SMI).

Initialization: All MSs transmit in only one RB and with only one antenna;
In the following algorithm the term resource may refer to an RB or RS;
while There is a spare resource willing to be allocated to the m-th MS;
do

MSh is the highest ranked MS in the i-th spare resource preference list, Lf or Lr
respectively, to whom it has not yet proposed;
if MSh is free then

the spare i-th resource and the MSh become engaged;
else

MSh is already engaged with a j-th spare resource (where i 6= j) ;
if MSh prefers the i-th spare resource to the one that it is currently engaged in its
preference list, Lm; then

the i-th spare resource becomes engaged, and the j-th spare resource becomes
free;

else
MSh remains engaged to the j-th spare resource;
MSh is deleted from the list of the i-th spare resource, Lf or Lr respectively;

end
end

end

such that each MS and f -th spare RB belong exactly to one tuple. If (m, f) ∈ E, we say that

the f -th spare RB is the m-th MS’s partner in E and vice versa. The distributed BE procedure

is modeled as follows:

1) First, the channel quality information is obtained at the BS side by Sounding Reference Sig-

nals (SRS) transmitted by the MS [34].

2) Further, this information may be forwarded to the MSs through the feedback channel.

Thereby, MSs are able to compute the benefit of using the BE method with each of the spare

RBs in the F subset by Eq. (4.27).

Umf (γtarget) = Pnm circ(P
n
m
∗(γtarget))−

∑
j∈Z

P jm circ BE(P jm BE
∗(γtarget)), (4.30)

where Z represents the subset of allocated RBs to the m-th MS, and γtarget is the target SNR

that all the users independent of transmitting in one or multiple RBs aim to achieve. Thus,

Eq. (4.30) represents the difference in power expenditure when using the currently allocated n-

th RB compared with the BE method. Hence, the higher the utility value, the more willing is the

m-th MS to use more than one RB for transmission. Moreover, if the utility becomes negative

the MS will avoid using the spare RB contained in the Z subset, since the power consumption

in the uplink increases when the BE is used. Furthermore, the MS preference list Lm is formed
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by evaluating the elements of the subset F with Eq. (4.30). MSs not obtaining any benefit from

using the BE method with any of the spare RBs in the subset, F , should transmit in a single

RB.

3) In addition, the RBs in the F subset need to compute the suitability for the BE process with

a specific MS. Thus, each RB ranks the available MSs in the network as follows:

Ufm(γtarget) =

M∑
j=1,j 6=m

1P fm circ(P
f
m
∗(γtarget)) ≤ P fj circ(P

f
j
∗(γtarget)), (4.31)

where Ufm is an utility function which consists of the pairwise comparisons of the f -th RB

when allocated to the m-th MS against any other j-th MS in the network, where j ∈ M . The

operator 1(A ≤ B) provides an output of 1 when the proposed condition holds, and 0 in any

other case. Thus, a high utility value means that allocating the f -th RB to the m-th MS will

contribute to higher energy savings in the system. Moreover, the RB’s preference list, Lf , is

formed by evaluating each m-th MS with Equation (4.31).

4) After the ranking is done, the SMI procedure given in Algorithm (1) [95], can be applied.

4.6 Comparison Schemes and Simulation Scenario

In this section, we describe the comparison schemes that were utilized in the simulations. The

first part presents the comparison methods employed for virtual MIMO coalition formation.

In the latter, the comparison schemes when expanding the bandwidth of the m-th user for

transmission in the uplink are described.

4.6.1 Virtual MIMO coalition formation

In order to evaluate the proposed method, this section describes two distributed coalition forma-

tion schemes, which allow the mobiles and relays to cooperate in order to form a virtual MIMO

link. Additionally, we present a baseline scheme where all the MSs transmit in SIMO mode.

Finally, a centralized global optimum scheme, which is coordinated from the BS, is computed

based on an exhaustive search approach.
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4.6.1.1 Minimum Relaying Hop (MRH) Path Loss Selection

In [99], the authors propose an RS selection method as a function of path loss. Thus, the best

RS to form a coalition is the one with the least path loss to the m-th MS, which is the relay that

has the most energy efficient cooperative link:

RSc = argmin (dκmr) , (4.32)

4.6.1.2 Best Worst (BW) Channel Selection

In order to form a virtual MIMO link, each MS should take into consideration the quality of the

cooperative link, and the RS channel statistics on the uplink. This is because both have a direct

influence on the total energy expenditure to form the virtual MIMO link. In [99], the best worst

channel is used in which the relay whose worse channel is the best is selected:

argmin

(
‖hr,

1

dκmr
‖
)
, (4.33)

where hr is the fading coefficient between the r-th RS and the BS, path loss and shadowing are

not considered for the decision making process, since we assume that the other RS candidates

are close enough to the MS to experience the same shadowing and path loss.

4.6.1.3 Stable marriage

By using the method described in Algorithm (1), the virtual MIMO coalition formation through

stable marriage can be applied to increase the energy efficiency in the network.

4.6.2 Simulation scenario

Monte Carlo simulations are performed using the parameters listed in Table 4.1. This is done

in order to compare the performance of our method with the schemes presented above. The

simulation is comprised of a single cell with the mobile stations and relays distributed uniformly

over the cell. The cell is served by a multi-antenna BS. Furthermore, the system is only noise

limited, thus each coalition transmits in an independent RB. In our simulation, we assume that

all the coalitions (SIMO or MIMO) try to achieve the same target SNR.
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Parameter Value
MSs per macro-cell, M 20
RSs per macro-cell, R 120

Number of antennas at the receiver, Mr 5
Cell radius 350m

Number of available RBs, N 20
Number of cells, D 1

Subcarriers per RB, ksc 12
Symbol rate per subcarrier, %s 15ksps

PTx 31.8dBm
Pcon 23.8dBm

PBB for ε = 3.90 bits
symbol 11.7dBm

Maximum user transmit power 23dBm
Shadowing, Std. Dev., σ 3dB

γtarget, 14dB
ε for 14dB SNR 3.90 bits

symbol

κ 3.5

Table 4.1: Virtual MIMO simulation parameters.

4.6.3 Bandwidth Expansion Process

To evaluate the performance of the SMI algorithm. In this section, three BE schemes which can

allocate spare RBs to reduce the power expenditure in the uplink are described. In addition, a

baseline scheme where all the MSs transmit in a single RB is considered.

4.6.3.1 Arbitrary RB allocation (ARBA)

In this scheme, the extra RBs used by the m-th MS for transmission in the uplink are chosen

on a random basis.

4.6.3.2 Stable marriage

By using Algorithm (1), the BE expansion process through stable marriage can be applied to

increase the energy efficiency in the network.

4.6.3.3 Centralized global optimum

A centralized global optimum approach, which is based on an exhaustive search coordinated

from the BS side, is implemented in order to find the price of anarchy for the distributed BE
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Parameter Value
MSs per macro-cell, M 20

Number of antennas at the receiver, Mr 5
Cell radius 150m

Number of available RBs, N 45
Number of cells, D 1

Subcarriers per RB, ksc 12
Symbol rate per subcarrier, %s 15ksps

PTx 31.8dBm
Pcon 23.8dBm

PBB for ε = 3.90 bits
symbol 11.9dBm

Maximum user transmit power 23dBm
Shadowing, Std. Dev., σ 3dB

γtarget, 14dB
ε for 14dB SNR 3.90 bits

symbol

BE factor, |Z| 2

Table 4.2: Bandwidth expansion simulation parameters.

method. The price of anarchy is computed as the difference in performance when comparing a

distributed with a centralized method [100].

4.6.3.4 Simulation scenario

Monte Carlo simulations are performed using the parameters listed in Table 4.2. This al-

lows comparison of the performance of the proposed method with the other schemes presented

above. The simulation is comprised of a single cell with the MSs uniformly distributed over

the cell. The cell is served by a multi-antenna BS. Furthermore, the system is thermal noise

limited. We assume low network load conditions (e.g., 40% to 60% of the maximum capacity)

thus spare RBs are available in the network. In our simulation, we assume that all the users in

the network should achieve the same target SNR.

4.7 Results

In this section, simulations results are presented to show the advantages in performance of the

stable marriage framework when compared to the other proposed methods. In the first part

the SMI is used as a coalition formation framework for an energy efficient virtual MIMO link.

The latter show the results in system performance when the SMI framework is employed in an

energy efficient BE process.
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Figure 4.7: User overall consumed power vs distance from the BS.

4.7.1 Virtual MIMO Coalition Formation

The cumulative distribution function (CDF), and the graphs that show the distribution of the

user overall consumed power at different distances from the BS for the schemes described in

Section 4.6.1 have been generated. In Figure 4.7, we plot the user overall consumed power. We

observe, that when the MSs are close to the BS (up to 160 m), the overall power consumption of

the SIMO scheme matches the SMI and the global optimum curve. This is because the MSs are

able to experience better transmission conditions when they are close to the BS. Thus, turning

on the RF transmitter of the relay stations is less power efficient than transmitting with only

one antenna. Furthermore, due to the design of the MS’s utility function (4.28) for the SMI

case, MSs are able to switch to SIMO mode when it provides power savings. In the case of

the other two distributed approaches (MRH path loss selection and the BW channel selection),

both schemes always try to form a virtual MIMO link even if the MSs experience favorable

transmission conditions to the BS. Hence, they consume more power for small distances to the

BS than for the other three approaches.

Additionally, the system energy efficiency in Figure 4.8 is shown. At the 50th percentile, the

SMI scheme shows improvements of 37%, 42%, and 44% compared to the SIMO transmission,

the MRH path loss and the BW channel respectively. Hence, the proposed SMI approach is
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Figure 4.8: System CDF energy efficiency.

more energy efficient than the other two distributed approaches and the baseline case. Further-

more, the price or anarchy for the SMI is only 2%, this can be seen as the loss in performance,

when the SMI algorithm is compared with the global optimum. Thus, the performance of our

distributed approach is similar when compared to a centralized scheme.

4.7.2 Bandwidth Expansion Process

In this section, we compare the performance in terms of energy efficiency and overall power

expenditure for the schemes presented in Section 4.6.3. Figure 4.9 plots the overall power ex-

penditure against different distances from the BS. It can be observed that when MSs are close

to the cell center, the users’ power consumption of the centralized global optimum and SMI

schemes overlap with the baseline method. This is because mobile users are able to experi-

ence more favorable propagation conditions when they are close to the cell center. Thus, as

shown in Section 4.4 the generated power cost due to the BB and RF modules when transmit-

ting with more than one RB does not become an optimal solution in a low power transmission

regime. Moreover, since the SMI scheme performance is based on optimizing the utility func-

tion, Eq. (4.30), it allows the proposed algorithm to use more than one RB only when it gener-
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Figure 4.9: User overall consumed power vs distance from the BS.

ates significant power savings. In the case of the arbitrary RB allocation (ARBA) scheme, it can

be seen how at close distances from the BS, this method consumes more power to achieve the

same rate constraints than other approaches. This difference in performance is because ARBA

allocates more than one RB when transmitting at close distances from the BS. Furthermore, for

users close to the cell edge (e.g., 140 m), we can observe that less power is required when more

than one RB are allocated to them. This is clear, since the other presented methods require less

overall consumed power than the baseline. Thus, it can be understood that in order to reduce

energy consumption in the system, the extra RBs should be allocated mostly for users close to

the edge rather than for cell center users.

Additionally, Figure 4.10 shows the system energy efficiency. At the 50th percentile, the SMI

and the centralized method show performance improvements of 115% and 72% when com-

pared to the baseline and ARBA, respectively. Hence, the proposed SMI approach is more

energy efficient than the other two approaches. Such gains in energy efficiency for the SMI and

the centralized method compared to the other approaches are because both schemes allocate

efficiently most of the RBs at the cell edge rather than at the cell center. Furthermore, notice

that the performance of the centralized optimum method is the same as for the SMI scheme.

Thus, for this case the price of anarchy of the proposed approach is zero.
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4.7.3 Computational Complexity

To conclude the comparison, a discussion of the computational complexity of the SMI and

the centralized approach is presented. Big O notation is used to describe the growth rate of

both schemes. Thus, it can be seen that the SMI method bases its optimization on Eqs (4.30)

and (4.31), which induces a complexity of O(|F |) and O(M) respectively, where |.| defines

the cardinality of the subset. Furthermore, the bandwidth expansion scheme is based on the as-

sumption of having more RBs available than MSs present in the system, thus the complexity of

the algorithm is bounded by the number of RBs rather than by the number of MSs. So, the com-

plexity induced by the computation of the utility functions is O(|F |). Moreover, forming the

preference lists Lm and Lf and performing Algorithm (1) requires a sorting and a binary search

operation respectively, thus a complexity of O|(F |log(|F |)) and a complexity of O(log(|F |))
is induced for each calculation. The dominant factor will be the one with the largest expo-

nent, therefore the complexity of SMI is upper bounded by O(|F |log(|F |)). The complexity

increases linearly with the number of MSs, M , in the system. Hence, the complexity of the

SMI is denoted by O(M × |F |log(|F |)). In the case of the centralized method, an exhaustive
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search approach, where the number of elements is discrete, is considered NP-complete [35].

The optimal solution between the spare set of RBs, F , and the M MSs is computed through

permutations between both sets in order to find the match which provides the optimal energy

efficient solution for the system. After all the permutations are done, the system chooses the

most optimal solution. The total number of permutations is upper bounded by the number of

spare RBs, F . Thus, the number of required permutations in the system is |F |!. The circuit

power that is consumed when using the BE is obtained considering the right-hand side of Eq

(4.27). Thus, an arithmetic operation is required which induces a complexity ofO(|F |!) for the

method. Thereby, the final complexity for the centralized scheme is O(|F |!), which is a much

higher order complexity that the one required by the SMI method.

4.8 Summary

A low complexity distributed framework for resource allocation derived from the SMI concept

is proposed in this chapter. The SMI method has been employed for virtual MIMO coalition

formation and as an energy efficient bandwidth expansion tool. When the SMI is employed as

a virtual MIMO coalition formation framework, it allows each MS and RS to independently

pick up the best partner to reduce the power consumption in the uplink without the involve-

ment of a central authority. Thus, based on the presented results, the proposed approach is a

more energy efficient solution with improvements of 42%, 44%, and 37% when compared to

the MRH path loss, the BW channel, and the SIMO mode scheme respectively. The price of

anarchy of our proposed method is only of 2%. Furthermore, it is shown that when the overall

consumed power is considered for the optimization process and under a given set of conditions,

transmitting in SIMO mode is more energy efficient than forming a virtual MIMO link. In its

counterpart, utilizing the SMI in the BE process allows each RB and mobile user in the system

to be considered as an independent entity which takes an active role in the decision making

process. From the results obtained, it is shown that the SMI method is a more energy efficient

solution with improvements of 115% and 72% when compared to the baseline and the ARBA

scheme respectively. The performance of the method is the same in bits per Joule as the cen-

tralized global optimum, thus the price of anarchy in this case is zero. Furthermore, it is shown

analytically and by simulation that when the mobile user experience favorable propagation con-

ditions in the uplink, the overall consumed power is reduced by transmitting in one RB rather

than using an RB expansion technique. Finally, in this chapter it is shown how through the SMI

framework the network infrastructure can be utilized in an efficient way to implement spatial
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diversity through relays with the aim of increasing the energy efficiency metric in the network.

Moreover, it has been discussed how the stable marriage framework can be used as a useful

optimization tool at the protocol stack level by allocating extra RBs to the mobile users in the

uplink to reduce the power expenditure.
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Chapter 5
A Distributed Virtual MIMO Coalition

Formation Framework for Energy
Efficient Wireless Networks

5.1 Introduction

The stable marriage framework imposes restrictions regarding the number of elements that

can participate in the coalitions, typically two entities. In this chapter, a more powerful tool

is introduced called the college admissions framework for virtual MIMO coalition formation.

This framework does not impose any restriction on the number of elements participating in the

coalitions. In this chapter, we again focus on coalitions of antennas which enhance single user

performance rather than multiuser performance by using a multiuser configuration. Moreover,

power savings are obtained through the use of multiantenna arrays by implementing the con-

cepts of spatial diversity and spatial multiplexing for uplink transmission. As in the previous

chapter the proposed approach focuses on optimizing the circuit consumed power rather than

just the transmitted power of the network devices. Furthermore, it is shown by system level

simulations and mathematical derivations that when circuit consumed power is optimized the

energy efficiency of the wireless entities is not always improved by forming a virtual MIMO

array. Hence, single antenna devices may prefer to transmit at their own when channel condi-

tions are favorable.

The rest of the chapter is structured as follows: Section 5.2 provides an extensive literature re-

view, Section 5.3 describes the problem scenario, Section 5.4 presents the power consumption

model and performance metrics. In Section 5.5, the cooperative framework is shown. More-

over, in Section 5.6 a theoretical analysis of the consequences arising when optimizing overall

consumed power rather that transmitted power when implementing spatial diversity and spatial

multiplexing in multi-antenna systems is presented. A summary of the comparison schemes
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and the simulation scenario is described in Section 5.7. Simulation results are presented in

Section 5.8. Finally, Section 5.9 offers concluding remarks.

5.2 Literature Review

The use of multiple antennas in wireless links has emerged as an effective way to enhance the

energy efficiency. It has been shown in [2] that multi-antenna systems require less transmitted

power to achieve the same capacity requirements than single antenna devices. In networks such

as Long Term Evolution (LTE), a base station (BS) may support multiple antennas. However,

mobile stations (MSs) may not be equipped with more than one single antenna due to physical

constraints [25, 34]. Hence, implementing effective solutions that allow MSs to benefit from

the advantages of multi-antenna systems without the extra burden of having multiple antennas

physically present at the users’ side, has become a major issue for current communication sys-

tems.

Cooperative communications have recently attracted significant attention as an effective way

to improve the performance of wireless networks [29]. By the use of cooperative techniques

wireless devices are allowed to share and utilize the network resources in a more efficient

way [3, 6, 27, 29, 56–58]. As an example, the authors in [56] present a cooperative method to

share the network resources and manage interference among femtocells in a distributed manner.

Hence, femtocells form coalitions to improve their performance by sharing spectral resources

and maximizing the spatial reuse. In [58], the authors consider the consequences that arise

when two multi-antenna systems share the same spectrum band. They demonstrate that if co-

operation between the two systems is possible, they may achieve a performance close to the

maximum sum-rate.

An important application of cooperative techniques is the formation of virtual multi-antenna

arrays. In this context, a number of single antenna devices may cooperate with each other by

forming virtual multiple-input multiple-output (MIMO) transmitters or receivers to reap some

of the benefits of multi-antenna systems [59]. The theoretical aspects of virtual MIMO have

previously been covered in [59,101]. Papers on virtual MIMO which consider energy efficiency

as an optimization constraint can be found in [25–27]. The authors in [26, 27] illustrate the en-

ergy savings obtained when virtual MIMO techniques are used compared with non-cooperative

approaches in wireless sensor networks. They argue that at certain ranges from the destination

node, cooperative MIMO results in a more energy efficient solution that also reduces the total

delay compared with the non-cooperative case. In [25], an approach to optimize the power
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allocation between transmitter and relay in order to minimize the overall energy per bit con-

sumption in the system is presented. Moreover, it is shown that by using an optimal power

allocation, the virtual MIMO case achieves an energy efficiency performance close to the ideal

MIMO system.

As mentioned previously, most of the current research in energy efficient virtual MIMO tackles

the problem of “why to cooperate”. Nevertheless, there are two questions that remain unan-

swered namely “when to cooperate” and “with whom to cooperate”. Thereby, the aim of this

work is to provide an answer for both questions by providing a coalition formation framework

that allows single antenna devices to decide with whom to cooperate in order to obtain energy

savings in the uplink transmission.

In addition, the implementation of cooperative solutions may face many challenges due to the

large scale nature of wireless systems. Cooperation comes along with costs such as power ex-

penditure that may limit or reduce the system’s performance. Moreover, if cooperation between

the users is regulated by a centralized entity, a significant amount of wireless signaling overhead

is required between the users and the network. Furthermore, it is well known that the use of

centralized techniques entails extra implementation costs and an increase in system’s complex-

ity [7, 102, 103]. Thus, the design of effective techniques that allow the single antenna devices

to autonomously decide when and with whom to cooperate is a matter of vital importance for

current networks [28]. In this regard, game theory provides a powerful mathematical tool for

the design of distributed solutions in cooperative communications [3, 28, 29, 31]. Through the

use of coalitional game theory, the authors in [28] propose a merge and split distributed algo-

rithm to form multi-antenna coalitions among single antenna devices. The aim of their work

is to maximize the users’ rate while accounting for the cost of cooperation in terms of power.

In Chapter 4, an energy efficient solution for virtual MIMO coalition formation is proposed,

where cooperation is modeled as a game theoretical approach derived for the concept of sta-

ble marriage with incomplete lists. An optimal relay is selected to minimize the MS’s power

expenditure. A major drawback of the proposed framework in Chapter 4 is that the number of

elements that can join the coalition is constrained to a limited number, typically two.

The main contributions of this chapter are: (1) to provide a distributed low complexity virtual

MIMO coalition formation algorithm for energy efficient networks; (2) the proposed solution

can support any number of transmitters participating in the coalitions; (3) we focus on en-

hancing the mobile station (MS) performance by forming virtual coalitions with the RSs; (4)

the proposal is analyzed from both diversity and capacity perspectives; (5) the proposed solu-

tion focuses on reducing the overall device consumed power rather than the transmitter radio
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Figure 5.1: User cooperation example coalitions considering an OFDMA transmission model.

frequency (RF) power, thus the power consumption of the RF components such as the power

amplifiers and the base band (BB) module is taken into account.

5.3 System Scenario

In this section, the scenario adopted in this chapter is described. We consider a system with

M single antenna mobile stations (MSs) that transmit data to a multi-antenna base station.

In addition, R single antenna relay stations (RSs) are uniformly distributed through the cell,

assuming R � M . In order to improve the user’s performance, single antenna devices (MSs

and RS) are allowed to cooperate by forming virtual Mt ×Mr MIMO coalitions, where Mr is

the number of antennas at the base station (BS), andMt is the number of single antenna devices

forming a virtual MIMO link. If cooperation is not feasible, MSs will prefer to transmit to their

own to the BS in single-input multiple-output (SIMO) mode.

An orthogonal frequency division multiple access (OFDMA) system is constructed, where the

system bandwidth B (Hz) is divided into N resource blocks (RBs). Each RB is assigned to

each user independently to avoid mutual interference. An RB defines the basic time-frequency

unit with bandwidth BRB = B/N (Hz). In Figure 5.1, an illustration of the OFDMA system

scenario is shown.

5.3.1 Virtual MIMO Link

Figure 5.2(a) and Figure 5.2(b) show a virtual Mt ×Mr MIMO link which implements spatial

diversity and spatial multiplexing respectively. At the first time slot, the MS forwards the
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Figure 5.2: A Virtual Mt ×Mr MIMO link.

information symbol s or vector s to its peers by using the cooperative link. In the following

slot, the MS and RSs will transmit the information symbol s or vector s on the uplink through

the MIMO channel. In addition, to avoid mutual interference the uplink and the cooperative link

should be designed to be orthogonal to each other. When spatial multiplexing is implemented

as shown in Figure 5.2(b), it is assumed that the cooperative link has sufficient bandwidth for

information transmission, thus MSs can transmit their signal vector s to the cooperating peers

and they can demultiplex it into independent information streams for simultaneous transmission

in the next time slot.

5.3.2 Cooperative Link

For the single antenna devices (MSs and RSs) to cooperate among each other, the set up and

maintenance of a cooperative link is required. The cooperative link is based on a short range

transmission, which is primarily used for information exchange between the transmitting peers.

Thus, the channel between the m-th MS and the r-th RS can be modeled as a κth-power path

loss (loss ≈ 1
dκmr

) with additive white Gaussian noise (AWGN). Accordingly, the received

power Prmr at the r-th RS, transmitted from the m-th MS is given by:

Prmr = Pmrd
−κ
mr (5.1)

where dmr is the distance between the r-th RS and the m-th MS, and Pmr is the transmitted

power for cooperation. Hence, the signal-noise ratio (SNR) at the RS side is represented by

γmr =
Prmr
η

. (5.2)

83



A Distributed Virtual MIMO Coalition Formation Framework for Energy Efficient Wireless
Networks

where η is the noise power. Moreover, due to the broadcast nature of the wireless channel,

when the MS broadcasts its information to the farthest RS in the coalition, all other RSs can

also receive and decode this information simultaneously. Thus, define S′m ∈ R as the subset of

RSs which have formed a coalition with the m-th MS. The cost of cooperation can be defined

as the MS’s maximum transmitted power to reach the farthest RS in the coalition. Thereby,

define the set of distances between the m-th MS and its S′m subset of RSs as

D∗mr = {dm(1), dm(2), . . . , dm(J)}, (5.3)

s.t dm(1) ≤ dm(2) ≤ . . . ≤ dm(J),

where J = |S′m|, and |.| defines the cardinality of the sub-set. Thus, by using Equations (5.1)

and (5.2) the power spent for cooperation may be represented by

Ptcop = γm(J)d
κ
m(J)η. (5.4)

5.3.3 Uplink channel model

The channel coefficient between a multi-antenna BS separated by a distance dm from the m-

th MIMO coalition is determined by path loss, log-normal shadowing, and channel variations

caused by frequency selective fading. In this work, a fading Rayleigh channel is considered,

thus the fading coefficients for an Mt ×Mr MIMO channel can be represented by a matrix.

Hn
m =


hn1,1 hn1,2 · · · hn1,Mt

hn2,1 hn2,2 · · · hn2,Mt

...
...

. . .
...

hnMr,1
hnMr,2

· · · hnMr,Mt

 , (5.5)

where each matrix element defines a zero mean circular symmetric complex Gaussian (ZMC-

SCG) random variable with unit variance [2]. If the MS prefers to transmit in SIMO mode the

channel can be defined by the following vector:

hnm = [hn1 , h
n
2 , . . . , h

n
Mr

]T . (5.6)
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Furthermore, path loss and shadowing are considered to attenuate the transmitted signal, thus,

the received power Pr at the BS side is given by [4]

Prnm = Pnm10
−L(dm)+Xσ

10 , (5.7)

where Pnm represents the transmitted power, Xσ is the log-normal shadowing value (dB) with

standard deviation σ, and L(dm) is the distance dependent path loss (dB) which is calculated

as follows:

L(dm) = a+ b log10(dm) [dB]. (5.8)

where a = 15.3 and b = 37.6 are pathloss constants for a micro urban cell scenario. More-

over, since single antenna devices utilize a short range transmitter for information exchange, a

valid assumption is to consider that the elements involved in a MIMO coalition are sufficiently

closely spaced to experience the same channel statistics. Thereby, shadowing and path loss

remain the same for all devices forming a virtual link. In addition, the receiver and transmit-

ter are assumed to know the channel coefficients between them. The state-of-the-art wireless

solutions such as LTE may implement closed loop techniques to obtain current channel state

information [54]. In this work, coalitions are formed to reduce the uplink power consumption

in the network by using the concepts of spatial diversity and spatial multiplexing. In the case

of spatial diversity, the required equations to compute the SNR for a SIMO (4.6), and a MIMO

user (4.10), are previously given in Section 4.3. For the spatial multiplexing, these are shown

below.
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(a) Linear processing of the transmitted signal
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ñ2
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Figure 5.3: Linear processing of the transmitted signal by using modal decomposition of the
channel, when channel knowledge is assumed at transmitter and receiver side.
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5.3.3.1 Spatial Multiplexing

When channel knowledge is assumed, the individual spatial channel modes may be accessed

through linear processing at the transmitter and receiver side [2]. Therefore, a signal vector

s of dimension ω × 1 which is transmitted from the m-th MIMO coalition through a rank

ω MIMO channel, Hn
m, is processed as shown in Figure 5.3(a). By using the singular value

decomposition (SVD) the channel matrix can be represented as Hn
m = Un

mΣVn
m
H , where the

columns of Vn
m and Un

m are known as the input and output singular value vectors respectively.

Thus, the signal vector s is multiplied by the matrix Vn
m of dimensionsMt×ω at the transmitter

side. Moreover, at the receiver side, the signal is multiplied by the matrix Un
m
H of dimensions

Mr × ω. Thus, the signal after linear processing is given by

ỹnm =

√
Prnm
Mt

Un
m
HHn

mV
n
ms + Un

m
Hn,

=

√
Prnm
Mt

Σs + ñ (5.9)

where ỹnm and ñ are the received signal and the ZMCSCG noise vector after processing respec-

tively, with dimensions ω × 1, and Σ = diag{σ1, σ2, ..., σω} with σi ≥ 0, where σi is the i-th

singular value of the channel. The transmitted signal vector s must satisfy: E{ssH} = Mt,

to constrain the total transmitted power. Furthermore, Figure 5.3(b) shows how Hn
m is de-

composed into ω parallel SISO channels under the assumption of channel knowledge at the

transmitter side, where each parallel sub-channel satisfies

yni =

√
Prnm
Mt

√
σisi + ñi, i = 1, 2, ..., ω. (5.10)

Hence, the total uplink user throughput will become the sum of the individual parallel SISO

channel capacities, where the SNR of the i-th spatial channel (SC) is given by

γni SC =
Prnmζiσi
Mtη

, (5.11)

where ζi = E{‖si‖2} i = 1, 2, ..., ω, represents the transmitted power in the i-th SISO parallel

sub-channel and must satisfy
∑ω

i=1 ζi = Mt.

Furthermore, since the transmitter may access multiple parallel SISO channels, the problem

becomes how to allocate the power in a way that maximizes the mutual information. The

optimal value of ζi is found iteratively through the use of the waterpouring method, which is

explained in detail in Table 5.1. When cooperation is not suitable, the MSs will transmit in
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1. Obtain the value of the constant τ
Set the iteration count f to one, in order to obtain
the value of τ as follows:
τ = Mt

ω−f+1 [1 + η
Prnm

∑ω−f+1
i=1

1
σi

]

2. Allocate power to the i-th subchannel
By using the value of τ , the power allocation for the
i-th subchannel is obtained as:
ζi = (τ − Mtη

Prnmσi
), i = 1, 2, ..., ω − f + 1

3. Check for a negative value in the power alloca-
tion of the subchannel with the lowest gain
If the power allocation of the subchannel with the
lowest gain is negative, ζ(ω−f+1) < 0. The channel
is eliminated from consideration by setting:
ζ(ω−f+1) = 0.
4. The counter f increments by one
Repeat steps 1 to 3 until the power allocated to each
subchannel is non-negative.

Table 5.1: Waterpouring method, after [5].

SIMO mode, where the achievable SNR is defined by Eq. (4.6).

5.4 Power Consumption Model and Performance Metrics for Op-

timizing Overall Consumed Power

In this chapter, the aim is to optimize the overall power consumption of the MS’s components

rather than only the transmitted power. For the MIMO user case, it considers the power ex-

penditure in both the uplink and the cooperative link. For the cooperative link case, we only

consider the power that is spent for coding the transmitted signal, since the decoding power

spent due to the BB system module at the RS side is significantly small, thus it can be neglected

from the calculations [97]. When cooperation is not feasible, MSs would prefer to transmit in

SIMO mode, hence only the uplink power expenditure is taken into account. The uplink and

cooperative link power consumption mainly depend on components such as the radio frequency

(RF) parts and the base-band (BB) signal processing module [97]. The RF module incorporates

the power expenditure of power amplifiers, and the BB module comprises the power consump-

tion for channel coding/decoding and modulation/demodulation. For modeling the RF and BB

module, the model previously presented in Section 4.3.3 is considered. Therefore, the overall

consumed power in SIMO mode, Pm simo, depends primarily of the transmitted power in the
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uplink Pnm.

Pnm simo(Pnm) = Pncirc(P
n
m) (5.12)

Furthermore, the total consumed power to form a virtual MIMO link becomes a function of the

transmitted power in the uplink Pnm, and how is distributed between the mobile and the relay

stations, which is defined by the water filling coefficients ζi , i = 1, 2, ..., ω, for the spatial

multiplexing case. Thus, the total consumed power in the uplink is obtained as follows:

Pnm mimo capacity(Pnm) =

Mt∑
i=1

Pncirc

(
Pnmζi
Mt

)
(5.13)

where Pncirc, Eq. (4.14), defines the circuit power in the uplink spent by each single antenna

device such as MSs or RSs forming the virtual MIMO link. In addition, the power expen-

diture due to the cooperative link, Pcircop, given in Eq. (4.16) should be added to Eq. (5.13).

Thereby, the total power expenditure to form the virtual MIMO link when implementing spatial

multiplexing is given by:

Pnm mimo capacity total(P
n
m, Ptcop) = Pncircop(Ptcop) +

Mt∑
i=1

Pncirc

(
Pnmζi
Mt

)
(5.14)

where Ptcop is computed using Eq. (5.4).

5.4.1 Performance Metrics to Optimize Overall Consumed Power

The achievable throughput on the link between the m-th coalition and the BS when spatial

multiplexing is implemented is calculated as [4]:

Tnm capacity(γni pipe) = nRBm ksc%s

ω∑
i=1

ε(γni SC) [bits/s] , (5.15)

where γni SC is the SNR in the i-th individual parallel SISO channel previously given in (5.11)

and ω is defined as the rank of the channel. Notice that in any case, if the MS prefers to transmit

in SIMO mode, the capacity is computed by using (4.17), where γnm is substituted by (4.7).

The user energy efficiency βnm capacity measures the user throughput per unit of consumed en-

ergy.

βnm capacity = Tnm capacity/P̄
n
m total [bits/J] . (5.16)
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This is based on the total consumed power P̄nm total, where P̄nm total is replaced by Pm simo in

(5.12) when the coalition acts in SIMO mode, and to Pnm mimo capacity in (5.14), when a virtual

MIMO link is constructed to implement spatial multiplexing. Additionally, the system energy

efficiency βsys is defined as the ratio between the total user throughput and the total power

spent by all the users in the system:

βsys =

M∑
m=1

Tnm capacity

M∑
m=1

P̄nm total

[bits/J] . (5.17)

5.5 College admission framework for distributed virtual MIMO

coalition formation

In this chapter, cooperation is modeled using a game theory approach derived from the college

admissions problem [104]. The college admission framework (CAF) is used to find a stable

match between two sets of elements (MSs and RSs). The CAF is a generalization of the stable

marriage (SM) problem [95]. However, coalitions are not limited only to two participants as in

the SM case [31]. As described in [104], the CAF involves a set of colleges and a set of ap-

plicants. Each applicant lists in order of preference those institutions she/he aims to attend and

each institution lists in order of preference those applicants it is willing to admit. Additionally,

each institution has a limit in the number of applicants that is able to admit. Thus, the problem

becomes to assign applicants to institutions in a way that takes into account both preferences

and constraints. For this case, the M MSs take the role of colleges and the R RSs become

the applicants. Hence, RSs are assigned to MSs to form virtual MIMO coalitions with the aim

of reducing the total energy consumption of the MSs. This case is studied in order to reduce

the power consumption by allowing coalitions to implement spatial diversity or spatial multi-

plexing respectively. An important property of the CAF is that it leads the system to a stable

solution as described in [105]. Stability means that there are no RSs or MSs in the system such

that both of the following assumptions are true:

• The RS is not included into any coalition or would prefer to form a virtual MIMO link

with a different MS to the one that it is currently matched with;

• The MS is able to include another RS into its MIMO coalition or would prefer to coop-

erate with a different RS to one of its current partner RSs.
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A mapping E′ is a tuple of one MS with a subset of one or more RSs, such that each single

antenna device (MS or RS) belongs exactly to one tuple. Hence, if (m,S′m) ∈ E′, the S′m
subset of RSs is the cooperative partner set of the m-th MS in E′ and vice versa, where S′m ∈
R. The distributed coalition formation algorithm is described as follows:

1. At the beginning of the algorithm, each MS in the system sends a broadcast message

through the cooperative link to find the subset of RSs willing to cooperate and form a

virtual MIMO link, which for the m-th MS is denoted by Sm ∈ R.

2. Moreover, the RSs in the system exchange their channel statistics in the uplink (fading

coefficient, path-loss and shadowing) and the channel statistics in the cooperative link

(path loss) with the subset of MSs willing to cooperate with them, which for the r-th RS

is denoted by Sr ∈ M. Thereafter, each mobile station has the means to rank its subset

of suitable RSs, Sm, by using the utility function defined in Eq. (4.28) when diversity

is enhanced. In the case when implementing spatial multiplexing, each m-th MS ranks

each r-th RS from its Sm subset by:

Umr capacity(Ttarget) = Pnm simo(Ttarget)− Pnm mimo capacity total(Ttarget), (5.18)

where Umr capacity represents the difference in energy efficiency performance when the

m-th MS transmits on its own or forms a coalition with the r-th RS, and Ttarget repre-

sents the target transmission rate for SIMO and MIMO users. Thus, as in the case when

diversity is enhanced, Eq. (4.28), the higher the value of the utility the more them-th MS

will be willing to form a virtual MIMO link with the r-th RS. The m-th MS’s preference

list Lm is formed by evaluating the utility for each of the RS in Sm by using Eqs. (4.28)

or (5.18) for the diversity or the capacity case respectively. Moreover, the RSs of the

m-th MS’s preference list, Lm, must be sorted in descending order as follows:

Lm = {RSm(h),RSm(2), . . . ,RSm(1)}, (5.19)

s.t Um(1) ≤ Um(2) ≤ . . . ≤ Um(h),

where Um(r) represents the pairwise comparisons between the m-th MS and the r-th RS.

These are the values obtained from Eqs. (4.28) or (5.18) when the preference list is built

to implement spatial diversity or spatial multiplexing respectively. Notice that when the

value of Um(r) becomes negative, them-th MS will not consider the r-th RS for coalition

formation, thus the r-th RS will not be contained in the m-th MS ranking list, Lm.
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3. Mobiles are only required to exchange their channel statistics in the uplink with the RSs

willing to cooperate with them. Based on this information, RSs are able to rank their

subset of MSs, Sr, by using the following utility function when spatial multiplexing is

implemented.

Urm capacity = Pncirc

(
Pnmζrs

Mt

)
− Pncirc

(
Pnmζms

Mt

)
, (5.20)

Equation (5.20) represents the difference in power expenditure between the r-th RS and

Algorithm 2: College admission framework (CAF), after [105].

Initialization: All MSs must be operating in SIMO mode;
while There is an MS-n wanting to form a MIMO link;
do

MSr(h) is the highest ranked MS in the RS-r preference list, Lr, to whom the RS-r has
not proposed yet;
if RS-r is contained in the MSr(h)’s preference list; then

if MSr(h) is free; then
the MSr(h) and the RS-r become engaged;

else
MSr(h) is already engaged with a subset of RSs, S̄n ∈ R;
if If adding the RS-r to the MSr(h) current subset of RSs, S̄n, provides energy
savings; then

RS-r becomes engaged;
end
if If adding the RS-r to the MSr(h) current subset of RSs, S̄n, does not provides
extra energy savings. Nevertheless, MSr(h) prefers RS-r to the RS-t in its
preference list, Lr(h), where RS-t ∈ S̄n; then

RS-r becomes engaged;
RS-t becomes free;

else
MSr(h) is deleted from the list of the RS-r, Lr;

end
end

end
end

the m-th MS when forming a virtual MIMO link. Thus, the larger the value of the utility

the larger the power expenditure of the RS due to its better channel conditions in the

uplink when compared to the MS. Furthermore, the RS’s preference list, Lr, is obtained

by evaluating each of the elements in the Sr subset by Equations (4.29) or (5.20) when

implementing spatial diversity or spatial multiplexing respectively. The elements of Lr

are also sorted in descending order as the Lm case described previously in (5.19).
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4. After the preference lists for MSs and RSs are obtained, Algorithm (2) from [105] can be

performed.

5.6 Analysis of the consequences in performance of MIMO systems

when optimizing overall consumed power

In this section, a theoretical analysis is provided of the consequences that arise in terms of en-

ergy efficiency when overall power consumption is considered as an optimization metric rather

than transmitted power. Hence, to show the effects on user performance, we analytically derive

the statistics of the transmitted and overall consumed power when implementing spatial diver-

sity or spatial multiplexing respectively. While these statistics can be obtained experimentally,

we derive them in closed form.

5.6.1 Spatial Diversity Approach

From Eq. (5.7) it can be seen that the transmitted power of any signal, Pnm, can be obtained by

Pnm =
Prnm

10
−L(dm)+Xσ

10

, (5.21)

Moreover, if Eq. (4.10) is combined with Eq. (5.21), we obtain the transmitted power for a

MIMO user.

Pnm mimo =
γnm mimo diversityη

σ2
max10

−L(dm)+Xσ
10

. (5.22)

Given that, on average, E{σ2
max} ≤ Mt × Mr, and Xσ = 0 [2], this allows us to re-write

Eq. (5.22) as follows:

Pnm mimo =
γnm mimo diversityη

Mt ×Mr10
−L(dm)

10

. (5.23)

To obtain the statistics for the transmitted power of a MIMO user Pnm mimo, it is assumed that

the MSs are uniformly distributed in the cell. Therefore, for a circular cell of radius R it is

known that the probability distribution function (PDF) of the distance of any point from the

center is [27]:

fdm(dm) =
2dm
R2

dm ∈ [0, R] (5.24)

In addition, from Eq. (5.8) it is observed that pathloss is an element which is a function of

distance, thus to derive its PDF the transformation of random variables is used. Thereby, the
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inverse relationship of the distance as a function of pathloss is obtained as follows:

dm(L) = 10(L−a
b ), (5.25)

Hence, the pathloss PDF fL(L) may be derived by

fL(L) =

∣∣∣∣ddmdL
∣∣∣∣ fdm(dm(L)) L ∈ [−∞, a+ blog10(R)][dB], (5.26)

fL(L) =
2log(10)

bR2
10

2(L−a)
b . (5.27)

After the statistics for the pathloss are obtained, the PDF of the transmitted power is derived.

From Eq. (5.23), it is obtained the inverse relationship of the pathloss as a function of the

transmitted power for a MIMO user, Pnm mimo.

L(Pnm mimo) = −10log10

(
γnm mimo diversityη

MtMrPnm mimo

)
, (5.28)

Thus, the PDF of the transmitted power for a MIMO user can be obtained as follows:

fPnm mimo
(Pnm mimo) =

∣∣∣ dL
dPnm mimo

∣∣∣ fL(L(Pnm mimo)) Pnm mimo ∈
[
0,

γnm mimo diversityη

MtMr10−(
a+blog10(R)

10 )

]
, (5.29)

fPnm mimo
(Pnm mimo) =

20

bR2Pnm mimo

10
−2
b

(
10log10

(
γnm mimo diversityη

MtMrP
n
m mimo

)
+a

)
. (5.30)

From Eq. (4.14), it can be seen that the circuit consumed power, Pncirc, depends of the transmit-

ted power when converted to [dBm]. Thus, the inverse relationship of the transmitted power,

Pnm mimo, in function of the transmitted power in [dBm], Pnm mimo dBm, for a MIMO user case

is given by:

Pnm mimo(Pnm mimo dBm) = 1e−3 × 10
Pnm mimo dBm

10 , (5.31)

Thereby, the PDF of the transmitted power in [dBm], Pnm mimo dBm is:

fPnm mimo dBm
=

∣∣∣∣ dPnm mimo

dPnm mimo dBm

∣∣∣∣ fPnm mimo
(Pnm mimo(Pnm mimo dBm))

Pnm mimo dBm ∈ [−∞, 10log10

(
1e3 × γnm mimo diversityη

MtMr10−(a+blog10(R))

)
],

(5.32)

fPnm mimo dBm
=

2log(10)

bR2
10

−2
b

10log10

 1e3×γnm mimo diversityη

MtMr10

Pn
m mimo dBm

10

+a


(5.33)
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Moreover, It can be observed that the input of Pcirc in Eq. (4.12) is the transmitted power for

each antenna in [dBm]. Thereby, by using the assumption that the total transmitted power

for a MIMO user, Pnm mimo, is divided evenly between each antenna as was proposed for this

derivation. The PDF of the transmitted power per antenna in [dBm], Pnm
∗, is given by:

Pnm
∗ =

2log(10)

bR2
10

−2
b

10log10

 1e3×γnm mimo diversityη

M2
t Mr10

Pnm
∗

10

+a



Pnm
∗ ∈

[
−∞, 10log10

(
1e3 × γnm mimo diversityη

M2
tMr10−(a+blog10(R))

)]
,

(5.34)

Finally, the inverse relationship of the transmitted power per antenna in [dBm] is derived as a

function of the circuit consumed power in the uplink by combining Eqs. (4.12) and (4.14) as

follows:

Pnm
∗(Pm mimo diversity) =



$+A−2
0.005 14 ≥ Pnm∗,

4$+(A− 3PBB
4

)−1.2

0.117 17 ≥ Pnm∗ > 14,

2$+(A−PBB)−1.2
0.117 , 20 ≥ Pnm∗ > 17,

$+A−1.2
0.117 24 ≥ Pnm∗ > 20.

(5.35)

where $ =
Pnm mimo diversity

Mt
. Hence, by using the transformation of random variables, the PDF

of the circuit consumed power in the uplink for a MIMO user is shown below:

fPnm mimo diversity
=



363log(10)
bR2Mt

10

−2
b

10log10

 1e3×γnm mimo diversityη

M2
t Mr10

$+A−2
0.05

+a



Pnm mimo diversity ∈ [0,Mt(2 + 0.005Z1−A)],

68log(10)
bR2Mt

10

−2
b

10log10

 1e3×γnm mimo diversityη

M2
t Mr10

4$+A−0.75PBB−1.2
1.17

+a



Pnm mimo diversity ∈ [Mt(2 + 0.005Z1−A),Mt(
1.2+0.117Z1−Z2

4 )],

(5.36)
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fPnm mimo diversity
=



34log(10)
bR2Mt

10

−2
b

10log10

 1e3×γnm mimo diversityη

M2
t Mr10

2$+A−PBB−1.2
1.17

+a



Pnm mimo diversity ∈ [Mt(
1.2+0.117Z1−Z2

4 ),Mt(
1.2+0.117Z1−Z3

2 )],

17log(10)
bR2Mt

10

−2
b

10log10

 1e3×γnm mimo diversityη

M2
t Mr10

$+A−1.2
1.17

+a



Pnm mimo diversity ∈ [Mt(
1.2+0.117Z1−Z3

2 ),Mt(1.2 + 0.117Z1−A)].

where Z1 = 10log10

(
1e3×γnm mimo diversityη

M2
tMr10−(a+blog10(R))

)
, Z2 = A− (0.75× PBB) and Z3 = A− PBB .

Finally, by integrating the PDFs of the transmitted and circuit consumed power over its respec-

tive ranges, the cumulative distribution functions (CDFs) for transmitted and overall consumed

power are obtained, which are shown in Figure 5.4(a) and 5.4(b) respectively. In addition, the

empirical CDFs are also obtained to compare them with the theoretical derivations. Moreover,

as an example, we consider SIMO and MIMO users with three and six antennas. Furthermore,

the users are required to achieve the same target SNR γtarget = 17 dB, whether SIMO or

MIMO mode is used, in order to make fair comparisons in terms of power expenditure. It

should be noticed that for obtaining the statistics of the overall consumed power for the SIMO

case, a similar procedure is followed as the one shown for the MIMO user. For the required

values to evaluate the statistics and perform the simulations, the values shown in Table 5.2 are

considered. These results are discussed further in Subsection 5.6.3 below.

5.6.2 Spatial Multiplexing Approach

For the following derivations, Shannon’s capacity formula is used. Thus, Eq. (5.15) can be

re-written as follows:

Tnm capacity =
ω∑
i=1

log2(1 + γni SC) =
ω∑
i=1

log2(1 +
Prnmζiσi
Mtη

), (5.37)

Moreover, if equal gain conditions between the multiple parallel SISO channels are assumed:

ζi = 1, E{‖H‖2F } = MrMt = ωσi [2], Equation (5.37) may be re-written in the following
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Figure 5.4: User performance differences, when enhancing diversity and optimizing transmit-
ted 5.4(a) and overall consumed power 5.4(b) respectively

way:

Tnm capacity =
ω∑
i=1

log2(1 + γni pipe) = ωlog2(1 +
PrnmMr

ωη
), (5.38)

Thus, by combining Eq. (5.21) and Eq. (5.38), the required transmitted power is obtained as:

Pnm =
β

Mr10
−L(dm)

10

, (5.39)

where β =

(
2
Tnm capacity

ω − 1

)
ωη. To obtain the statistics of the transmitted power Pnm, it is

assumed that the MSs are uniformly distributed over the cell. Moreover, from Eq. (5.39) the

inverse relationship of the pathloss in function of the transmitted power is obtained.

L(Pnm) = −10log10

(
β

MrPnm

)
, (5.40)

Thus, by using a similar approach as the one used in Eq. (5.29), the PDF of the transmitted

power may be obtained.

fPnm =
20

R2bPnm
10

−2
b

(
a+10log10

(
β

MrP
n
m

))
Pnm ∈

[
0,

β

Mr10−(
a+blog10(R)

10
)

]
, (5.41)

Furthermore, the transmitted power in [dBm] is required. Thus, the inverse relationship of the

transmitted power, Pnm, in function of the transmitted power in [dBm], Pnm dBm, is given by:

Pnm(Pnm dBm) = 1e−310
Pnm dBm

10 , (5.42)
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Thereby, by using a similar approach as the used in Eq. (5.32), the PDF of the transmitted

power in [dBm] is derived as follows.

fPnm dBm
= 20log(10)1−3

R2b
10

−2
b

a+10log10

 β

1e−3Mr10

Pn
m dBm

10


Pnm dBm ∈

[
−∞, 10log10

(
1e3×β

Mr10−(
a+blog10(R)

10 )

)]
,

(5.43)

As in the diversity case, it should be observed that in order to compute the circuit consumed

power Pncirc, Eq(4.14). The transmitted power per each antenna is required. Thus, by using the

assumption that the transmitted power is divided evenly over all the antennas. The PDF of the

transmitted power per antenna in [dBm] is:

fPnm∗ = 20log(10)
R2b

10

−2
b

a+10log10

 β

MrMt1e
−310

Pnm
∗

10


Pnm
∗ ∈

[
−∞, 10log10

(
1e3×β

MtMr10−(
a+blog10(R)

10 )

)]
, (5.44)

Finally, the inverse relationship of the transmitted power per antenna in [dBm] is derived as a

function of the circuit consumed power in the uplink by combining Eqs. (5.13) and (4.14) as

shown:

Pnm
∗(Pnm mimo capacity) =



ψ+A−2
0.005 14 ≥ Pnm∗,

4ψ+(A− 3PBB
4

)−1.2

0.117 17 ≥ Pnm∗ > 14,

2ψ+(A−PBB)−1.2
0.117 , 20 ≥ Pnm∗ > 17,

ψ+A−1.2
0.117 24 ≥ Pnm∗ > 20.

(5.45)

where ψ =
Pnm mimo capacity

Mt
. Hence, by using the transformation of random variables, the PDF

of the circuit consumed power is shown below:

fPnm mimo capacity
=



363log(10)
bR2Mt

10

−2
b

(
10log10

(
13β

MtMr10
ψ+A−2

0.05

)
+a

)

Pnm mimo capacity ∈ [0,Mt(2 + 0.005Z1−A)],

68log(10)
bR2Mt

10

−2
b

10log10

 13β

MtMr10
4ψ+A−0.75PBB−1.2

1.17

+a



Pnm mimo capacity ∈ [Mt(2 + 0.005Z1−A),Mt(
1.2−0.117Z1−Z2

4 )],

(5.46)
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Figure 5.5: User performance differences, when implementing spatial multiplexing and opti-
mizing transmitted power 5.5(a) and overall consumed power 5.5(b) respectively

fPnm mimo capacity
=



34log(10)
bR2Mt

10

−2
b

10log10

 13β

MtMr10
2ψ+A−PBB−1.2

1.17

+a



Pnm mimo capacity ∈ [Mt(
1.2−0.117Z1−Z2

4 ),Mt(
1.2+0.117Z1−Z3

2 )],

17log(10)
bR2Mt

10

−2
b

(
10log10

(
13β

MtMr10
ψ+A−1.2

1.17

)
+a

)

Pnm mimo capacity ∈ (Mt(
1.2+0.117Z1−Z3

2 ),Mt(1.2 + 0.117Z1−A)].

where Z1 = 10log10

(
13β

MrMt10−(
a+blog10(R)

10 )

)
, Z2 = A− (0.75× PBB) and Z3 = A− PBB .

Finally as in the diversity case, by integrating the PDFs of the transmitted and circuit consumed

power over its respective ranges, the cumulative distribution functions (CDFs) for transmitted

and circuit consumed power are obtained, which are shown in Figure 5.5(a) and 5.5(b) respec-

tively. In addition, the empirical CFDs are also found to compare them with the theoretical

derivations. As an example, SIMO and MIMO users carrying three and six antennas are con-

sidered. Furthermore, the users independently of SIMO or MIMO try to achieve the same

transmission rate Ttarget = 910 kbps, in order to make fair comparisons in terms of power ex-

penditure. To evaluate the statistics and perform the simulations, the values shown in Table 5.2
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are considered.

5.6.3 Analysis

From Figures. 5.4(a) and 5.5(a), it is easy to see that increasing the number of antennas pro-

vides power savings at all percentiles of the CDF when only transmitted power is optimized.

However, this trend does not remain the same when optimizing overall power consumption. In

Figure 5.4(b) in the case of diversity, it can be seen that the SIMO curve intersects the MIMO

curves when transmitting with three and six antennas at the 30th and 45th percentile respec-

tively. Moreover, for the capacity case in Figure 5.5(b), it can be observed that the SIMO curve

intersects the MIMO curves when transmitting with three and six antennas at the 20th and 28th

percentile respectively. This intersection point represents than in the diversity case SIMO is

more power efficient for 30% and 45% of the users in the cell when compared to MIMO when

transmitting with three and six antennas respectively. The same relation holds for the spatial

multiplexing case. This is because the MSs are able to experience better transmission condi-

tions, when they are close to the BS. Thus, turning on the RF transmitter and the BB module of

the relay stations is less power efficient than transmitting with only one antenna. Nevertheless,

as the users get close to the cell edge increasing the number of transmit antennas tends to be

an energy efficient solution when overall power consumption is optimized. This fact can be

seen from Figures. 5.4(b) and 5.5(b), since as the number of antennas increases, it allows the

three and six antennas curves to converge faster to the tail of the distribution. The presented

analysis in this section will be useful to understand the performance of the proposed framework

in Section 5.8.

5.7 Comparison Schemes and Simulation Scenario

To evaluate the performance of the proposed method four distributed relay selection algorithms,

which allow MSs and RSs to cooperate to form MIMO coalitions with the purpose of reducing

the energy consumption in the uplink, are described. In addition, a baseline scheme is presented

where all MSs transmit on their own in SIMO mode. Finally, a centralized global optimum

approach which is coordinated from the BS and based on an exhaustive search is presented.

For all the described methods, the communication between the MSs and RSs is made through

the cooperative link. Thus, the subset of RSs willing to cooperate with the m-th MS is limited
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by the range of the cooperative link, which naturally limits the complexity of the relay selection.

5.7.1 Minimum Relaying Hop (MRH) Path Loss Selection scheme

In [99], the authors propose a relay selection method as a function of path loss. Hence, the best

RS for coalition formation is the one with the least path loss to the MS, this method always

chooses the RS with the most energy efficient cooperative link.

RSc = argmin{dκmr} (5.47)

From (5.47), it should be noticed that for performing the RS selection it is just required to know

the channel statistics of the cooperative link.

5.7.2 Best Worst (BW) Channel Selection scheme

The BW method considers the quality of the cooperative link and the uplink of each RS. This is

because both links have a direct influence on the total consumed energy for forming the virtual

MIMO link. In [99], the best worst channel is used in which the relay whose worse channel is

the best is selected:

argmin{‖Gr,
1

dκmr
‖}, (5.48)

where Gr = ‖hnr ‖2F 10
−L(dr)+Xσ

10 represents the channel path gain between the r-th RS and the

BS, and dr defines the distance between the r-th Rs and the BS.

5.7.3 Stable Marriage (SMI) scheme

In Chapter 4, a distributed RS selection algorithm is presented which is based on the stable

marriage process. This method, as in the BW channel selection scheme, requires the channel

statistics from the RSs for both the uplink and cooperative link plus the channel statistics of

the MSs in the uplink. Thereby, each MS and RS is able to rank its respective candidates for

coalition formation. It should be noticed that the SMI method has the same limitation as MRH

and BW methods in that each MS is only able to select one RS.

5.7.4 SIMO transmission

A baseline scheme is presented, where all the MSs in the network transmit in SIMO mode.
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5.7.5 College Admissions Framework (CAF) scheme

This method implements, the RS selection method described previously in Section 5.5.

5.7.6 Centralized optimum scheme

A centralized global optimum scheme, based on an exhaustive search approach, is presented.

Thus, the BS collects the required channel statistics from RSs and MSs in order to form op-

timal coalitions. This centralized approach is implemented with the aim of finding the price

of anarchy for the proposed scheme. The price of anarchy is computed as the difference in

performance between a centralized and a distributed approach [100].

5.7.7 Simulation scenario

Monte Carlo simulations are performed using the parameters presented in Table 5.2. This is

done to compare the performance of the proposed method with the schemes presented above.

The simulation is comprised of a single cell with the MSs and RSs distributed uniformly over

the cell area. The cell is served by a multi-antenna BS. Moreover, the system is noise limited,

hence each coalition transmits in an independent RB to avoid co-channel interference. For the

case when diversity is enhanced, it is assumed that all the users (SIMO or MIMO), independent

of their distance to the BS try to achieve the same target SNR. In the case when spatial multi-

plexing is used, it is assumed that all the users in the network aim to achieve the same data rate.

5.8 Results

From the simulations the cumulative distribution functions (CDFs) and the graphs, that illus-

trate the performance in terms of overall power expenditure for the schemes presented in Sec-

tion 5.7, are generated.

When diversity is enhanced in Figure 5.6, it is shown the overall consumed power at different

distances from the BS, where all the users in the cell aim to achieve the same target SNR. It

can be observed that the distributed and centralized approaches exhibit a similar performance

when compared to the baseline method at close distances from the BS (up to 75 m). This is

because as mentioned in the analysis presented in Section 5.6.1, MSs experience good trans-

mission conditions close to the cell center. Thus, turning on the BB and RF module of the RSs
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Parameter Value
MSs per macro-cell, M 20
RSs per macro-cell, R 95

Number of antennas at the receiver, Mr 6
Cell radius 150m

Number of available RBs, N 20
Number of cells, D 1

Subcarriers per RB, ksc 12
Symbol rate per subcarrier, %s 15ksps

PTx 31.8dBm
Pcon 23.8dBm
PBB 11.7dBm

Maximum user transmit power 24dBm
Shadowing, Std. Dev., σ 3dB

γtarget, 17dB
Ttarget 910 kbps

ε for 17dB SNR 4.5 bits
symbol

κ 3.5
Pathloss constant, a 15.3
Pathloss constant, b 37.6

Table 5.2: Simulation parameters.

becomes less power efficient than transmitting with only one antenna. Conversely, when chan-

nel conditions are no longer so beneficial (e.g., after 75 m), it can be seen that as the MSs move

away from the BS, the increase from one to a higher number of transmit antennas allows the

MS to obtain potential energy savings. Furthermore, from the analysis shown in Section 5.6.1

and the results presented Figure 5.6, it can confirmed that, when overall power consumption is

optimized and spatial diversity is enhanced, by increasing the number of antennas the obtained

power savings are more visible at the cell edge than at the cell center. In Figure 5.7, the system

energy efficiency, given by Equation (5.17), is evaluated. Notice that at the 50th percentile the

CAF scheme is more energy efficient compared to the benchmark, the MRH pathloss, the BW

channel, and the SMI framework with improvements of 58%, 15%, 10% and 5% respectively.

Nevertheless, the CAF scheme has losses of 10% compared to the centralized global optimum

scheme. These losses are tolerable in practice due to the significant reductions in complexity

for the CAF method compared to the centralized optimum scheme: this is discussed further

at the end of this section. Moreover, the better performance in energy efficiency terms for the

CAF and centralized optimum method when compared to the other distributed approaches can

be easily understood as a direct consequence of the bigger number of antenna elements than

can be involved in the coalition.
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Figure 5.6: User overall consumed power against distance from the BS for a SNR=17 dB

When spatial multiplexing is used, the aim is to obtain gains in energy efficiency by dividing

2 4 6 8 10 12 14

x 10
5

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Energy Efficiency [kbits/J]

C
D

F

 

 

MRH path loss
BW channel
SMI
SIMO mode
CAF
Exhaustive search

Figure 5.7: System CDF energy efficiency.

the total data rate requirements between the elements forming the virtual MIMO link. Thereby,

as in the diversity case it can be observed from Figure 5.8 that the most of the power savings due

to coalition formation are observed at the cell border. This is because, it is more power efficient

to deliver high transmission rates for SIMO users when close to the BS than when close to the

cell edge due to the improved propagation conditions. Thus, using a lower modulation order

for transmitting from each antenna in a coalition when close to the cell edge becomes more

power efficient that using a single transmitter. Hence, from the results shown in Section 5.6.2

and Figure 5.8, it can be understood than increasing the number of transmit antennas to split the

total rate requirement among the transmitters to implement spatial multiplexing is more power
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efficient in terms of overall power consumption at the cell border than at the cell center.

Finally, in Figure 5.9 it is shown the performance in terms of energy efficiency for the ap-
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Figure 5.8: User overall consumed power against distance from the BS for a bit rate of 910
kbps.

proaches presented in Section 5.7 when spatial multiplexing is implemented. It is observed that

the centralized global optimum is 2% more energy efficient when contrasted to the CAF. More-

over, when comparing the CAF with the other distributed approaches it can be seen that the

CAF method has improvements of 14%, 9%, 5%, and 91% over MRH pathloss, BW channel,

SMI and the baseline SIMO mode respectively. Thereby, it can be confirmed that increasing

the number of antennas in order to use a lower modulation order results in an energy efficient

solution for the network.

To conclude the comparison, the complexity of the centralized global optimum approach is

compared with the proposed CAF method. On one hand, for the CAF method each MS in the

system has to evaluate each RS in its preferred subset of suitable candidates, Sm, by using Eqs.

(4.28) or (5.18) depending on whether diversity or capacity are enhanced. Furthermore, each

RS evaluates its preferred subset Sr of RSs by using Eqs. (4.29) or (5.20). Big O notation

is used to describe the growth rate of both schemes. Thus, arithmetic operations with a com-

plexity of O(|Sm|2) and O(|Sr|2) are performed by the system when candidate MSs or RS are

ranked respectively, where |.| defines the cardinality of the subset. If we assume that R � M ,

the complexity of the candidate ranking process is bounded by the number of RSs in the system

rather than by the number of MSs. Thereby, this will allow us to upper bound the complexity

of the candidate ranking by O(|Sm|2) operations. Moreover, forming the MS’s preference list,

Lm, (5.19) requires a sorting operation which induces a complexity ofO(|Sm|log(|Sm|)) oper-
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Figure 5.9: System energy efficiency when enhancing capacity.

ations. Finally, the complexity of the decision making Algorithm (2) can be upper bounded by

a binary search operation which requires a complexity of O(log(|Sm|)) operations. Therefore,

the dominant factor which determines the CAF scheme complexity will be the one with the

largest exponent, thus the complexity of the method will be upper bounded by order O(|Sm|2)

operations.

On the other hand, the centralized global optimum scheme is based on enumerating all possi-

ble alternatives for virtual MIMO coalition formation between the m-th MS and its preferred

subset of candidate RSs, Sm. This is done with the purpose of finding the optimal number of

transmit antennas that would minimize the overall power consumption in the uplink. Therefore,

to guarantee that a given feasible solution is optimal, the solution should be compared with any

other feasible solutions. In general, an exhaustive search approach, when the number of ele-

ments is discrete, is considered NP-complete [35]. A notable characteristic of NP-complete

problems is that the required time to solve the problem increases very quickly as the size of

the problem grows [35]. To implement the exhaustive search scheme, each MS in the system

will evaluate the total number of possible combinations in its preferred subset of candidate

RSs, Sn. Hence, the total number of possible combinations is computed by
|Sm|∑
k=1

(|Sm|
k

)
, where(|Sm|

k

)
= |Sm|!

k!(|Sm|−k)! . Moreover, each combination is evaluated by Eqs. (4.13) or (5.14) de-

pending if diversity or capacity are enhanced respectively. Thus, it induces a complexity of

O
(

(
|Sm|∑
k=1

(|Sm|
k

)
)2

)
for the system. In addition the complexity of both presented methods (ex-

haustive search and CAF) increases linearly with the number of MSs in the system, M . Hence,

the exhaustive search method has a complexity of O
(
M × (

|Sm|∑
k=1

(|Sm|
k

)
)2

)
which is a higher
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order complexity when compared to the complexity of O(M × |Sm|2) for the CAF scheme.

Furthermore, Figure 5.10 shows how the complexity of the system changes for both methods

as the number of RSs increases in the system. It can be easily seen that as the number of

RSs increases, the computational complexity of the exhaustive search increases exponentially,

therefore it may not be a suitable solution for being implemented in real time systems.
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Figure 5.10: Complexity of the centralized optimum approach compared to the CAF method.

5.9 Summary

In this chapter, a low complexity virtual MIMO coalition formation algorithm is considered,

which is based on game theory. The proposed framework allows MSs to select the most suitable

RSs which provides the most power savings in the network. Thereby, energy efficient coalition

formation is studied by using the concepts of diversity and spatial multiplexing respectively. It

is shown analytically and by simulation that increasing the number of transmit antennas is a

more energy efficient solution for users close to the cell edge rather than for cell center users,

when overall terminal power consumption is optimized. Furthermore, by performance compar-

isons we have proven than the proposed coalition formation algorithm is more energy efficient

compared to the benchmark, the MRH pathloss, the BW channel, and the SMI framework with

improvements of 58%, 15%, 10% and 5% for the spatial diversity case. When implementing

spatial multiplexing the CAF method has improvements of 14%, 9%, 5%, and 91% over MRH,

BW, SMI, and the baseline SIMO mode. It experiences only small performance losses of 10%

and 2% when compared to an exhaustive search approach when implementing diversity or spa-

tial multiplexing respectively. In addition, a complexity analysis is presented, which shows that
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the complexity of the proposed method increases linearly as the number of RSs grows in the

network. This is a much lower order complexity when compared to the exponential growth of

the exhaustive search scheme. Thus, the proposed game theory framework achieves a similar

performance compared to a centralized scheme with a much lower order of complexity. Hence,

it may be a suitable energy efficient solution for practical applications.
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Chapter 6
Conclusions and Future work

This thesis has contributed to the design of low complexity resource allocation methods with

emphasis on energy efficiency. In this chapter, Section 6.1 will emphasize the key contributions

of the thesis. Moreover, in Section 6.2 some limitations of the work and suggestions for future

work will be given.

6.1 Conclusions

This thesis models the radio resource allocation in wireless networks through the use of game

theory. Radio resource management techniques such as: interference mitigation, resource block

allocation and virtual MIMO coalition formation are studied with the aim of reducing the power

consumption in the uplink. The key contributions of this work are summarized as follows.

6.1.1 Interference protection

The traditional uplink power control challenge is reevaluated and investigated from the view

point of interference mitigation rather than power minimization. A low complexity distributed

resource allocation scheme for reducing the uplink co-channel interference (CCI) is proposed.

The presented approach forces users with good propagation conditions to reduce transmission

power, in order to protect users experiencing high levels of interference. Thus, the MSs’ uplink

throughputs are equalized under the max-min fairness optimization criterion. This distributed

scheme obtains a similar performance in terms of fairness and energy efficiency when com-

pared to a centralized signal interference noise ratio balancing scheme. In addition, system

level simulations suggests that schemes that consider a fair distribution of the system resources

achieve a higher performance in terms of energy efficiency that those that aim to maximize the

system’s capacity. Finally, it is shown by a mathematical analysis and performance simulations

that improvements in energy efficiency are directly related with improvements in fairness at the

system level. Thus, an increase in the fairness index produces an increase in the system energy

efficiency metric for the network.
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6.1.2 Resource block allocation

A distributed resource allocation framework which reduces the power expenditure during low

network load periods is proposed. Extra resource blocks (RBs) are allocated to mobile users in

the reverse link. Thereby, the users rate demands are split among its allocated RBs in order to

transmit in each of them by using a simpler modulation scheme. The resource block allocation

is modeled by a game theory framework derived from the concept of stable marriage with

incomplete lists (SMI). Hence, each RB and mobile user in the system are considered as an

independent entity which takes an active role in the decision making process. The proposed

solution optimizes the circuit consumed power rather than the transmitter power. Moreover,

it is shown that the distributed approach achieves a similar performance in terms of bits per

Joule when compared to a centralized method which is coordinated at the base station side. In

addition, mathematical analysis and system level simulations suggest that when circuit power

consumption is optimized and mobile users experiences favorable transmission conditions in

the reverse link, the energy efficiency is optimized by transmitting in one RB rather than in

multiple RBs.

6.1.3 Virtual MIMO coalition formation

A coalition formation framework for distributed virtual Multiple-input Multiple-output (MIMO)

is proposed. Cooperation between single antennas devices such as mobile and relays stations is

modeled by a game theoretic approach derived from the concept of the college and admissions

framework. Thus, single antenna devices interact in a distributed way to form virtual MIMO

coalitions to implement spatial diversity or spatial multiplexing respectively with the aim of

reducing the power expenditure in the reverse link. The presented solution optimizes the circuit

consumed power rather than the transmitter power. The low complexity solution achieves a sim-

ilar performance in bits per Joule when compared to an exhaustive search scheme. Moreover,

the proposed scheme presents a linear growth in complexity as the number of single antenna

devices increases which is much less than the exponential growth of the exhaustive search ap-

proach. Additionally, mathematical analysis and system performance simulations suggest that

forming a virtual MIMO link to implement spatial diversity or spatial multiplexing in the re-

verse link is only beneficial at the cell border in terms of energy efficiency. Thus, relay stations

should be deployed mostly at the cell edge rather than at the cell center to obtain energy savings.
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6.2 Future work

This thesis has identified promising schemes for radio resource allocation in green wireless

networks. However, the proposed schemes have some limitations due to the initial modeling

assumptions. Thus, there are several research directions that can be extended. Some sugges-

tions are listed below:

• In Chapter 3, an interference mitigation framework is proposed which obtains energy

savings by equalizing the uplink user throughputs under the max-min fairness optimiza-

tion criterion. However, the system is assumed to be Single-input Single-output (SISO)

system rather than a multi-antenna one. Thus, to model the multi-antenna case the non-

cooperative game at the user level might be modified to consider the interference gener-

ated by the mutiple antenna case. Moreover, an analysis of the convergence and unique-

ness of the Nash equilibrium should be provided for this scenario. The theoretical anal-

ysis at the system level which proves that improvements in energy efficiency are directly

related with improvements in fairness may lead to a similar insight for the multi-antenna

case. Since, the assumption of reducing the transmitted power for users at the cell cen-

ter to reduce interference for users at the cell border will also hold in the multi-antenna

scenario.

• The system model considered in Chapter 5 is a noise limited system. Thus, future re-

search may tackle the problem of virtual MIMO formation in an interference limited

scenario. Moreover, the college admission framework imposes certain restrictions in the

coalition formation process, for example a relay station (RS) cannot form a coalition with

more than one mobile in the system. This is an important issue since in some practical

scenarios RSs may be able to serve many MSs in order to use more efficiently the cur-

rent network infrastructure. Moreover, it is assumed that the RSs that cooperate with

the mobiles are close enough to experience the same channel statistics such as pathloss

and shadowing. A more realistic scenario may assume that shadowing is not correlated

between the single antenna devices. Thereby, an uncorrelated shadowing scenario may

have a significant impact in the design of the coalition formation framework.

• In Chapters 4 and 5, the resource allocation process is modeled trough the use of game

theory frameworks such as the stable marriage with incomplete lists and the college and

admission framework. Both schemes may be a suitable solution to model scenarios be-

yond the scope of resource allocation. For example, they may be used to model coalition
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formation in smart grids. Thus, the use of both frameworks beyond the resource alloca-

tion domain is an open field in research that should be studied deeply.
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Appendix A
Existence and uniqueness of the

equilibrium for the user level
framework

At the equilibrium, all the users should be satisfied with the utilities that they obtain from the

NCG, if so the equilibrium point is called Nash Equilibrium [45, 66, 67].

Definition 1: A power vector pn = (Pn1 . . . P
n
D) is a Nash equilibrium of the NCG, G =

[D, {P} , {Unm(·)}] if, for every m ∈ D, Unm(Pnm,pn−m, µnm) ≥ Unm(P ′nm ,pn−m, µnm) for all

Pnm ∈ P .

Theorem 1: A Nash equilibrium exists in the game G = [D, {P} , {Unm(·)}] if, for all m =

1, . . . , D :

1) P is a nonempty, convex, and compact subset of some Euclidean space <n

2) Unm(Pnm,pn−m, µnm) is continuous in P and quasi-concave [106], in Pnm.

For the first part of Theorem 1, we have already stated in Section 3.5, that P is a compact convex

set. For the second part using (3.1) and (3.10), it is easy to show that Unm is twice differentiable

over Pnm and the second derivative is always negative for any value of Pnm. Therefore, the

second order conditions for concavity are fulfilled [106]. Hence, the inner solution if it exists,

is the unique point maximizing the cost function and it is defined by (A.1). The boundary

solution Pnm = 0, is the other possible maximization point for the optimization problem. If the

user utility function Unm(Pnm,pn−m, µnm) reaches a value less than zero, the optimal solution will

be the boundary point.

Pnm
· =

1

µnmlog(2)
− Inm + η

νGnmd
. (A.1)

Theorem 2: The NCG has a unique equilibrium.

This proof follows a similar procedure as the one proposed previosuly in [66, 107].

For notational convenience, let us denote a user specific parameter αnm, which is defined as

follows:

αnm =
Gnmdν

µnmlog(2)
− η. (A.2)
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Hence, the optimal response Bn
m(pn−m) of the m-th user in the n-th RB is defined as:

Bn
m(pn−m) =


1

νGnmd
[αnm − Inm] , αnm ≥ Inm

0, otherwise.
(A.3)

The solution for the maximization problem will be the best response of the m-th user to the

other users strategies, which are denoted by pn−m.

Definition 2: The best response Bn
m(pn−m) of the m-th player to the profile strategies pn−m is

the strategy Pnm such that

Bn
m(pn−m) =

{
Pnm ∈ P : argmax Unm(Pnm,p

n
−m, µ

n
m)
}
. (A.4)

A Nash equilibrium for the NCG can be stated as the power vector pn which fulfills: Pnm ∈
Bn
m(pn−m). When conditions of Theorem 1 are satisfied, the correspondenceBn

m(·) is nonempty,

convex-valued, and upper semi-continuous for all m. Thus, there exists a vector pn such that

Pnm ∈ Bn
m(pn−m) for all m ∈ D [67]. This vector is by definition the Nash equilibrium. From

(A.3), the set of linear fixed point equations which converges to the equilibrium solution, if it

exists, can be written in matrix form as:
1

Gn21
νGn11

Gn31
νGn11

. . .
GnD1
νGn11

Gn12
νGn22

1
Gn32
νGn22

. . .
GnD2
νGn22

...
...

...
. . .

...
Gn1D
νGnDD

Gn2D
νGnDD

Gn3D
νGnDD

. . . 1




Pn1

Pn2
...

PnD

 =



αn1
νGn11
αn2
νGn22

...
αnD

νGnDD

 ,
Anpn = wn. (A.5)

For Theorem 2, we need to show that the D × D matrix An is non-singular. This means that

the system has a unique solution given by pn = (An)−1wn. Therefore if (An)−1 exists, it is

equivalent to prove that Anx = 0 → x = 0. Hence, there should not exist a non zero vector

x= (x1, x2, . . . , xD)T 6= 0, x ∈ P such that Anx = 0. This condition can be written as follows:

Gnddxd(ν − 1) +

D∑
j=1

Hn
jdxj = 0, d ∈ D, (A.6)

Summing up this set of equations for the D users in the n-th RB, we have:

(ν − 1)
D∑
d=1

Hn
ddxd +

D∑
d=1

D∑
j=1

Hn
jdxj = 0. (A.7)

113



Existence and uniqueness of the equilibrium for the user level framework

In Equation (A.7), the channels path gains (3.7) and ν as we have stated before are greater than

0. Thus, the only value that can fulfill the conditions for the equality in (A.7) is the vector x.

If x = 0, we are at the boundary solution of our problem, which means that no mobile will

be active. For any other case A−1 exists, provided that the rows of A are linearly independent.

Hence, the matrix A is non-singular and the system has a unique solution given by p.
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Appendix B
Increase in energy efficiency and

fairness in the system based on power
reductions applied to users with good

propagation condition

To show the improvements in energy efficiency, Shannon’s capacity formula will be used for

ease of analysis and without loss of generality. In the following demonstration, it is considered

that all the mobiles transmit in the n-th RB, hence the index n will be removed from the fol-

lowing derivations. Thus, the energy efficiency metric, equation (3.4), can be re-written in the

following way:

βm =
log2(1 + νγm)

Pm

[
bits

J

]
. (B.1)

It will be shown that the user energy efficiency metric βPHSE for users with high spectral

efficiency (HSE), transmitting at power PHSE , can be improved if the transmission strategy

is changed to PHSE − ∆PHSE , which we have defined as P ∗HSE in our derivations, where

PHSE − ∆PHSE ≤ PHSE . Since, a substantial reduction in transmitted power ∆PHSE for

HSE users will bring as consequence a slightly reduction in HSE users’ capacity, due to the fact

that the degradation of cell center users’ capacity is logarithmic. Hence, the condition presented

in equation (B.2) should be met.

βP ∗
HSE
≥ βPHSE or

βP ∗
HSE

βPHSE
≥ 1. (B.2)

where βP ∗
HSE

is the user energy efficiency metric after the change of power strategy for HSE

users from PHSE to P ∗HSE . Thus, by substituting equation (B.1) in (B.2), the following expres-

sion is obtained:
PHSE log2(1 +

νP ∗
HSEGmd
Im+η )

P ∗HSE log2(1 + νPHSEGmd
Im+η )

≥ 1. (B.3)
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Define the variables K = νPHSEGmd
Im+η and R =

P ∗
HSE
PHSE

. After introducing the new variables, the

above equation may be re-written in the following way:

log2(1 +KR)

R log2(1 +K)
≥ 1, (B.4)

log2 (1 +KR) ≥ R log2 (1 +K) , (B.5)

By using logarithm identities the equation above is written as follows:

log2 (1 +KR) ≥ log2 (1 +K)R. (B.6)

By removing the logarithm, the following expression is obtained:

(1 +KR) ≥ (1 +K)R, 0 < R ≤ 1, K ≥ 0. (B.7)

The Bernoulli inequality can be used to prove the inequality above, which states

(1 + xα) ≥ (1 + x)α, 0 < α ≤ 1, x ≥ −1. (B.8)

Furthermore, if we replace: K by x and R by α in (B.8), the Bernoulli inequality (B.8) is

exactly (B.7). Thus, by proving (B.7), it has been shown that (B.2) is indeed true. Moreover,

we have shown that due to the logarithmic degradation of the high spectral efficiency (HSE)

users’ capacity, a reduction in transmission power leads to an increase in energy efficiency for

these users. Additionally, after the power for HSE users is reduced, this will reduce the CCI

for users with low spectral efficiency (LSE), so their energy efficiency metric βPLSE will be

increased without changing their power strategies PLSE . Therefore, the total system energy

efficiency is improved after the change in power strategies for HSE users:

βsystemP ∗
HSE

≥ βsystemPHSE
, (B.9)

where βsystemP ∗
HSE

denotes the system energy efficiency after the HSE users change their power

level from PHSE to P ∗HSE and βsystemPHSE
is the system energy efficiency before the change in

power level.

Additionally, in order to show the improvements in system fairness, we use the Jain’s fairness

index, equation (3.6), and the uplink throughput, equation (3.3). Thus, if the HSE users power

strategy PHSE is changed to P ∗HSE , the system fairness should be increased. For simplicity,

we will consider a two user case. Furthermore, if the total system fairness is improved, the
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following condition must hold:

Γ(TP ∗
HSE

, TP ∗
LSE

)− Γ(TPHSE , TPLSE ) ≥ 0, (B.10)

where TP ∗
HSE

, TP ∗
LSE

stands for the MS’s throughput for HSE and LSE users respectively after

the change of the power strategy from PHSE to P ∗HSE , and TPHSE , TPLSE stands for the user’s

throughput before the change of power strategy. Thus after combining (3.6) and (B.10) the

following equation is obtained:

(TP ∗
HSE

+ TP ∗
LSE

)2

TP ∗
HSE

2 + TP ∗
LSE

2 −
(TPHSE + TPLSE )2

TPHSE
2 + TPLSE

2 ≥ 0. (B.11)

After some algebraic manipulations, equation (B.11) can be re-written as follows:

(TPHSE
2 + TPLSE

2)× (TP ∗
HSE
× TP ∗

LSE
) ≥

(TP ∗
HSE

2 + TP ∗
LSE

2)× (TPHSE × TPLSE )
(B.12)

Definition 3: The function Tm(γm) is monotonically increasing and strictly concave in γm,

and γm is a function of the transmitted power of the m-th user. A change in the power trans-

mission strategy for HSE users from PHSE to P ∗HSE will produce a reduction in throughput

∆TPHSE , if the power strategies of the remaining users are unchanged. Furthermore, this re-

duction on power will indirectly reduce the interference levels for the remaining LSE users, so

their throughput measurements will be increased by ∆TPLSE . Hence, equation (B.12) can be

re-written in the following way:

(TPHSE
2 + TPLSE

2)× ((TPHSE −∆TPHSE )× (TPLSE

+∆TPLSE )) ≥ ((TPHSE −∆TPHSE )2

+(TPLSE + ∆TPLSE )2)× (TPHSE × TPLSE )

(B.13)

After some algebraic manipulations, we obtain the following expression.

(TPHSE ×∆TPLSE + TPLSE ×∆TPHSE )× (TPHSE
2

−TPLSE 2) ≥ 0
(B.14)

As we can observe from the left hand side of equation (B.14), the first part of the term will be

always positive, the second part is only negative if TPHSE ≤ TPLSE , which is not practically

possible. Thus equation (B.10) is indeed true, so we conclude the proof of Theorem 1.
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Definition 4: If the power weighting factor µnm for HSE users is increased, this will conse-

quently increase their cost for transmitting at high power, thus their transmission power will

be reduced. Therefore, improvements in energy efficiency and fairness in the system will be

obtained, if the power levels of the remaining users are unchanged.

Therefore, if we change the pricing factor µnm according to Theorem 1 and Definition 4, the

users’ uplink throughput will be distributed in a fairer way in the n-th RB. Moreover, the Jain’s

fairness index (3.6) measures the equality of throughput allocation for each user. Thus, as the

equality increases, fairness increases as well [85]. This suggests that a similar way to use (B.10)

for a case where more than two users are considered in the n-th RB will lead the proof to a sim-

ilar insight.
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1. Rodrigo Vaca, John Thompson, Eitan Altman, and Vı́ctor Ramos; ”A Distributed Virtual

MIMO Coalition Formation Framework for Energy Efficient Wireless Network;”Submitted

to IEEE Transactions on Communications.

2. Rodrigo Vaca, John Thompson, and Vı́ctor Ramos; ” Non-cooperative Uplink Interfer-

ence Protection Framework for Fair and Energy Efficient Orthogonal Frequency Division

Multiple Access Networks;” IET Communications Journal , vol.7, no.18, pp.2015-2025,

December 2013.

Conference

1. Rodrigo Vaca, John Thompson, Eitan Altman, and Vı́ctor Ramos;” A Game Theory

Framework for a Distributed and Energy Efficient Bandwidth Expansion Process;” To

appear in the Proceedings of the 2014 IEEE INFOCOM Workshop on Green Cognitive

Communications and Computing Networks, May, 2014.
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Framework for Distributed Virtual MIMO Coalition Formation;” Proceedings of the 24th
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