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Abstract 

Two problems in phylogenetics are considered here: the detection of evidence of re-

combination in DNA sequence multiple alignments and the improved estimation of 

confidence intervals for genetic distance estimators. Recombination between distinct 

species can result in mosaic sequences which often invalidate a simple tree-like model 

for between-species relationships. A graphical method based on pairwise distances and 

least squares is proposed as an initial scan of data sets for evidence of recombination 

prior to a phylogenetic analysis. A Bayesian model of recombination for data sets with 

a small number of species is described, which allows Hidden Markov model theory to 

be used to carry out computations (e.g., the calculation of the maximum, a posteriori 

estimate). 

Accurate estimation of confidence intervals for genetic distance estimators is impor-

tant for comparing the relative rates of nucleotide substitution in different regions of 

DNA or for estimating the time since the most recent common ancestor. Two approx-

imations to the sampling distributions of distance estimators are proposed. The first 

is a transformation of a normal density and may be applied to one-parameter models 

of nucleotide substitution only; this yields very accurate approximations to confidence 

intervals for a large range of distances. The second is the saddlepoint approximation 

which has a wider range of applicability (applicable to some two and three parameter 

models) and also performs well for a range of distances. 



Table of Contents 

Chapter 1 Introduction 	 4 

	

1.1 	Phylogenetic analysis using DNA sequence data a brief introduction . 	4 

	

1.2 	Problems examined in this thesis ......................6 

	

1.3 	Plan of thesis .................................7 

Chapter 2 Statistical Analysis of DNA Sequences 	 9 

	

2.1 	Phylogenetic trees 	..............................9 

	

2.2 	DNA sequence data 	.............................11 

	

2.3 	Multiple alignments 	.............................14 

	

2.4 	Parsimony methods for constructing phylogenetic trees ..........16 

	

2.5 	Models of the nucleotide substitution process ...............17 

2.5.1 	Continuous-time, first-order Markov chains . . . . . . . . . . . . 	17 

2.5.2 Continuous-time Markov models for the nucleotide substitution 

process 	................................18 

2.6 Maximum likelihood methods for estimating phylogenetic trees .....22 

	

2.7 	Distance methods for phylogenetic tree estimation ............26 

2.7.1 Distance estimators based on models of nucleotide substitution . 26 

2.7.2 Estimates of the variance and confidence intervals for distance 

estimators ...............................31  

2.7.3 	Other distance estimators ......................33 

2.7.4 	Properties of pairwise distance estimates ..............36 

2.7.5 Algorithmic phylogenetic tree estimation techniques using pair- 

wise distance data 	..........................37 

2.7.6 Estimating phylogenetic trees using least squares .........38 

	

2.8 	Statistical tests ................................40 

Chapter 3 A Review of Tests for Recombination 	 44 

	

3.1 	Description of recombination ........................44 

	

3.2 	Using polymorphic sites to detect recombination .............45 

	

3.3 	Approaches using the non-parametric bootstrap ..............51 

	

3.4 	Likelihood-based procedures for detecting recombination .........53 

1 



2 

3.5 	Split decomposition 	 . 56 

Chapter 4 A Graphical Method for Detecting Recombination in Phylo- 

genetic Data Sets 58 

4.1 Motivation 	..................................58 

4.2 Definition of the Dss statistic 	........................59 

4.3 xpected behaviour of the Dss statist;ic 	..................60 

4.3.1 	Recombination 	............................60 

4.3.2 	The effect of tree length 	.......................62 

4.3.3 	Weighted v unweighted least squares 	................64 

4.3.4 	Window size and increment 	.....................66 

4.4 A simulation study to investigate the performance of Dss 	........ 67 

4.4.1 	Data simulation 	...........................67 

4.4.2 	An index to measure the difficulty of detecting a r,-combination 

event 	..................................69 

4.4.3 	Evaluating the results of the simulation study ...........70 

4.4.4 	Results of the simulation study 	...................71 

4.5 	Examples of Dss applied to some real data sets ..............73 

4.6 	Software to implement time Dss algorithm...................76 

4.7 	Possible extensions and future work 	....................78 

4.7.1 	Improving the Dss statistic 	.....................78 

4.7.2 	Statistical tests for significant Dss values 	.............79 

Chapter 5 	A Bayesian Approach to Modelling Recombination 82 

5.1 Motivation 	..................................82 

5.2 Theory of Hidden Markov models . 	. 	. 	. 	. 	. 	. 	. 	. 	. 	. 	. 	. 	. 	. 	. 	. 	. 	. 	. 	. 	. 86 

5.2.1 	The model 	..............................87 

5.2.2 	Properties of Hidden Markov models . 	. 	. 	. 	. 	. 	. 	. 	. 	. 	. 	. 	. 	. 	. 	. 88 

5.2.3 	Efficient calculations for Hidden Markov models 	.........93 

5.3 Modelling topology change due to recombination in a DNA alignment 96 

5.3.1 	Prior distribution for recombination events 	............96 

5.3.2 	Likelihood 	...............................97 

5.3.3 	Posterior distribution 	........................98 

5.4 Performance of this model 	..........................99 

5.4.1 	The effect of the sequence subset size on likelihood calculations 100 

5.4.2 	Sensitivity to the choice of a prior distribution 	..........102 

5.5 Example using a Neisseria data set 	.....................112 

5.6 Discussion and future work 	.........................114 



3 

Chapter 6 Improved Estimation of the Error Bounds for Genetic Dis- 

tances 118 

6.1 Models of Nucleotide Substitution 	.....................119 

6.2 Estimators of Genetic Distance 	.......................120 

6.3 Estimation of the variance using the delta method 	............121 

6.3.1 	Other approaches to the estimation of confidence intervals ....123 

6.4 A very accurate approximation to the true confidence intervals of the 

F81 and JC distance estimators 	.......................124 

6.5 Saddlepoint Theory ..............................125 

6.5.1 	Mean of n independent, identically distributed random variables 126 

6.5.2 	Saddlepoint approximations to general statistics 	.........128 

6.5.3 	Marginal Densities and Tail Area Probabilities 	..........130 

6.6 Application of the saddlepoint approximation to the tail probabilities of 

distance estimators 	..............................132 

6.6.1 	Saddlepoint approximations for the JC and F81 distance estimators132 

6.6.2 	Saddlepoint approximations to the tail probabilities of the K2P 

and F84 distance estimators ......................33 

6.7 Evaluation of Saddlepoint approximation 	.................135 

6.7.1 	Details and Results of the Simulation Study ............135 

6.7.2 	Details of the extended simulation study shown in the appendix 139 

6.8 Examples using real data sets 	........................140 

6.9 Discussion and future work 	.........................142 

Chapter 7 Conclusions 	 146 

7.1 	Summary of work ...............................146 

7.2 	Future work ..................................147 

Appendix A Confidence Intervals for Genetic Distance Estimators - 

Simulation Study Results 	 148 

Bibliography 	 157 



Chapter 1 

Introduction 

1.1 Phylogenetic analysis using DNA sequence data - a 
brief introduction 

Phylogenetics is concerned with finding relationships among species based on the degree 

of the similarity of their genetic information. It is a rapidly expanding field of research, 

since it is important in many biological applications to infer the relationships existing 

among species of plants and/or animals, or amneng strains of bacteria or viruses. 

Genetic information is contained within nucleic acid, usually DNA. This is a lin-

ear molecule, consisting of a sequence of units called nucleotides, of which there are 

four types (A, C, C and T). A typical example of a subsequence of DNA might be 

ACTTCAC... Thus, DNA may be viewed as carrying the (encoded) instructions 

for life, written in an alphabet of four letters. This genetic information is sometimes 

contained in a single large DNA molecule or chromosome (e.g., in bacteria) or may be 

spread over several chromosomes (e.g., in humans). Chromosomes are typically several 

million nucleotides long, although most statistical analyses of DNA sequences involve 

subsequences consisting of a few thousand nucleotides or less. 

Over time DNA sequences change through various types of mutations. These include 

the insertion or deletion of one or more nucleotides along a sequence or the substitution 

of one nucleotide for another. As an example of nucleotide substitution, suppose an 

original subsequence of DNA is AGTC. Following the substitution of a T for the C it 

becomes ATTC. Such events are examples of evolutionary change and may result in 

changes to the organism, be these detrimental or beneficial or neutral. 

All species which are present today have arisen through a long period of evolution. 

The emergence of a new species may be postulated as resulting from the splitting of one 

species into two subspecies, which then independently accumulate evolutionary change. 

At some point, they have accumulated sufficient differences that they may be consid-

ered two distinct species. Therefore, all organisms alive today share ancestors in the 

past, and the relationships among species which are present today may be graphically 
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Figure 1.1: Example of a phylogenetic tree for six species. 

described by a branching tree (the phylogeny). In principle, it should be possible to 

infer the phylogeny for a set of species from a comparison of their DNA sequences. 

Species with similar DNA sequences (e.g., as measured by the proportion of positions 

in the sequences with identical nucleotides) should be more closely related than species 

whose sequences differ by a greater degree. An example of a phylogenetic tree for six 

species, labelled A to F, is shown in Figure I.I. 

Clearly any methods for inferring a phylogeny (equivalently, the phylogenetic tree) 

should be statistical in nature since the evolutionary process is stochastic. The DNA 

sequences used in any analysis are subject to stochastic error, so that several trees, 

depicting different hierarchical relationships among the species, may be more or less 

equally good for a particular data set. This indicates that there is not enough informa-

tion within the data set to give a more precise estimate of the relationships, and this 

must be acknowledged. Nonetheless, there are some biologists who oppose vehemently 

the use of statistics within phylogenetics, claiming that there is one true tree, and that 

only algorithms yielding point estimates (usually parsimony-based algorithms) are valid 

and find this true tree. 

When inferring phylogenetic trees, only nucleotide substitution events are generally 

considered due to difficulties in modelling other evolutionary events. Three main classes 

of methods exist for inferring trees. The first, parsimony, considers the number of 

substitution events which must occur to result in a particular tree. The preferred 

tree is the one which requires the minimum number of changes. The second class of 

methods uses pairwise distances between the sequences rather than the raw sequence 

data. Therefore, the genetic distance between pairs of DNA sequences must first be 

estimated. This is based on the proportion of positions with different nucleotides in 

two DNA sequences. The formula for a genetic distance estimator may be derived from 

a model of the nucleotide substitution process. Once all the pairwise distances have 

been estimated, the phylogeny may then be inferred. Initially simple methods (e.g., 

cluster analysis) were used. However, with increasing computing power, more accurate, 

efficient and computationally more intensive methods were introduced. This, in turn, 
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Figure 1.2: a: a simple example of recombination in a DNA sequence. At some point 
in the past, the central region of sequence 1 replaced that of sequence 2, forming 
the mosaic sequence 3. The arrows mark the limits of the recombination event, the 

recombination breakpoints. b: the relationships for parts A and C of the sequences. C: 

the relationships for part B of the sequences. 

led to the practical application of the third class of procedures: maximum likelihood. 

This chooses the tree with the highest likelihood of producing the sequence data, given 

a particular model of nucleotide substitution. 

1.2 Problems examined in this thesis 

Two different problems are examined in this thesis. The first concerns the detection 

of evidence of recombination in DNA data sets. Recombination is the exchange of 

subsequences of DNA between different DNA sequences. To illustrate this, consider 

Figure 1.2. At some point in the past, the central subsequence of DNA in sequence 

1 replaced that in sequence 2, forming sequence 3 (Figure 1.2a). A phylogenetic tree 

estimated from the two outer regions of the sequences would place sequences 2 and 3 

together (Figure 1.2b), while a tree estimated using the central subsequence of DNA 

would have sequences 1 and 3 clustering together (Figure 1.2c). Using the entire se-

quence length to infer the tree would result in some sort of average between the two 

true relationships. 

A similar effect is observed in general. Following a recombination event, the rela-

tionships within a data set often cannot be adequately described by a tree-like diagram. 

Indeed, recombination will often cause tree-estimation methods to give misleading re-

sults. Thus, it is important to detect recombination prior to a phylogenetic analysis so 

It 



that the DNA sequences can be split up into non-recombinant subsets and each subset 

analysed separately, allowing the true relationships to be inferred. Recombination is 

common in many bacteria (e.g., Listeria) and viruses (e.g., HIV) and has many impor-

tant consequences. For example in AIDS research, it is important to know whether a 

strain of HIV is a distinct type, or a mosaic of two or more different types, as this has 

implications for vaccine design. 

The second problem concerns inferences using estirriators of genetic distance be-

tween pairs of DNA sequences. Genetic distance estimators are often derived from 

models for the nucleotide substitution process, such models usually being continuous-

time, first-order Markov models with a state space consisting of the four nucleotides. 

These distance estimators depend on the proportion of observed differences between 

a pair of sequences. The simplest estimators depend only on the proportion of po-

sitions with non-identical nucleotides in the two sequences, while more complicated 

ones depend on the proportion of particular pairs of nucleotides observed. The ob-

served numbers of different pairs of nucleotides in the sequences are observations from 

a multinomial distribution. To date, simple methods for estimating the variance of 

these estimators are used (e.g., the delta method is used to approximate the variance, 

based on the multinomial variance-covariance matrix) while normality is assumed to 

calculate confidence intervals. Improved methods for estimating the confidence inter-

vals and sampling distribution of some of these estimators are considered here. This 

is important for applications such as estimating the time since two species last shared 

a common ancestor. This can sometimes be estimated from the distance between two 

species (if the rate of substitution is known). The confidence intervals for the distance 

estimator may be used to place confidence intervals on the time since the common 

ancestor, so improved accuracy of distance confidence intervals is important. 

1.3 Plan of thesis 

An introduction to DNA sequence data and phylogenetic trees is given in Chapter 2. 

The three main classes of estimating phylogenetic trees (parsimony, distance and max-

imum likelihood) are briefly discussed. Models for the nucleotide substitution process 

and the resulting distance estimators are also described. Finally an overview of some 

statistical tests is given. 

Chapter 3 is also a review chapter, covering existing methods to detect evidence of 

recombination. The process of recombination is described and tests proposed in the 

literature are discussed. Their strengths and limitations are outlined. 

A graphical method to detect evidence of recombination is presented in Chapter 4. 

This is based on pairwise distances and the least squares method of phylogenetic tree 

estimation. It is a procedure which may be used to quickly scan a data set for possible 
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recombination events prior to a phylogenetic analysis. It returns putative recombination 

breakpoints which may be tested using some of the methods described in Chapter 3. 

A simulation study was carried out and the method was applied to some real data sets 

to investigate the performance of this algorithm. 

A more rigorous approach to the problem of detecting recombination is taken in 

Chapter 5. Here, Bayesian methodology and the theory of Hidden Markov models is 

used to find a mathematically tractable model of the location of recombination events 

within a DNA data set. For computational reasons, only data sets of four sequences are 

considered. A point estimate of the most probable phylogeny at each site is returned, 

thereby estimating both the location of recombination events and the effects on the 

branching pattern of the tree. The performance of this procedure was explored in a 

small simulation study. 

The second problem, the improved estimation of confidence intervals for genetic 

distance estimators, is discussed in Chapter 6. Two approximations are suggested: 

one involves transforming normal probability quantiles, while the second uses the sad 

dlepoinit approximation to estimate tail probabilities. These approximations, where 

applicable, yield quite accurate confidence intervals over a wide range of distances and 

sequence lengths. They may also be used to approximate the sampling distribution of 

genetic distance estimators. 

Suggestions for further work in these specific areas are given at the ends of Chap-

ters 4 to 6. It is hoped that some of these could overcome current limitations to the 

suggested methodology. 

Finally, Chapter 7 sumrnarises the new procedures described in the previous three 

chapters and broadly looks at the possible direction of further research. 

M. 



Chapter 2 

Statistical Analysis of DNA 
Sequences 

A brief overview of the statistical analysis of DNA sequence data is given in this chapter, 

concentrating on the inference of phylogenetic trees. This includes topics such as models 

of nucleotide substitution, estimation of genetic distance estimators and the three main 

classes of phylogenetic tree estimation: maximum parsimony, distance and maximum 

likelihood methods. For an excellent review of this area, Swofford et al. (1996) is 

recommended. 

There are many applications of statistics in the analysis of DNA sequences be-

yond those mentioned above. For example, Markov models are used to analyse single 

sequences of DNA to search for over- or under-representation of particular short subse-

quences of nucleotides (Schbath et al., 1995). Another application is the alignment of 

sequences. This is briefly described in 2.3 since multiple alignments of DNA sequences 

are a prerequisite to the phylogenetic methods described below. 

The chapter opens with a short description of phylogenetic trees and gives an idea 

of their biological uses. DNA sequence data is then discussed, this being the type of 

data for which the methodology described in this thesis is applicable. Algorithms and 

software to produce multiple alignments are briefly mentioned. Some of the procedures 

used to estimate trees are described. Particular emphasis is placed on models of nu-

cleotide substitution, distance and maximum likelihood methods of tree inference, since 

these methods will be used later. Finally, some statistical tests are briefly discussed. 

2.1 Phylogenetic trees 

Phylogenetic methods infer the hierarchical relationships existing among a set of species, 

or strains of bacteria or viruses. These relationships may be represented by a phyloge-

netic tree. 

Phylogenetic trees have a wide range of applications for biologists. For example, 

they may be used to estimate the ancestry of the human race (they can provide infor- 
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Figure 2.1: Some of the terms describing the components of a phylogenetic tree. 

rnation on the 'Out of Africa' hypothesis for instance) and of other species. Another 

use is in the tracing of the course of epidemics. For instance, a recent case in Florida 

involved a dentist who was HIV positive and was accused of passing on the virus to his 

patients. The evidence was assessed using phylogenetic trees (Hillis et al., 1996). 

Most phylogenetic methods result in the inference of an unrooted tree (a phylogeny 

in which the earliest point in time is not identified). The components of a tree are 

known by various names, including the mathematical terms from graph theory. For 

example, the contemporary taxa (the species or sequences in the data set) correspond 

to terminal or external nodes. These may also be referred to as leaves, tips or vertices. 

Branching points within a tree (representing ancestral sequences) are called internal 

nodes, and sometimes vertices. The edges of the graph (the lines connecting nodes in 

the tree) are often known as branches. A distinction is sometimes drawn between the 

branches incident to a terminal node, and those connecting internal nodes only. The 

latter are referred to as interior branches. A phylogenetic tree for four taxa (A, B, C, 

D) with labels for some of these components is shown in Figure 2.1. 

If only three branches are incident to an internal node, then this is said to be a 

bifurcation, or a dichotomy. If more than three branches are connected to a node, then 

this is a multifurcation (polytomy). A tree with bifurcations at all internal nodes may 

be called binary, fully resolved or strictly bifurcating. A special case of a multifurcating 

node is a star tree or phylogeny; this contains only one internal node, with branches 

radiating out from it to each of the tips. 

Sometimes, only the branching order in a tree is of interest. This is often referred 

to as the topology and excludes information on the branch lengths. When counting the 

number of possible trees for T taxa (tips), it is really the number of possible topologies 

(branching patterns) that is being counted. Most phylogenetic tree estimation methods 

infer unrooted binary trees; the problem of counting all such possible topologies was 

considered by Edwards and Cavalli-Sforza (1964) and Felsenstein (1978a). An unrooted 
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bifurcating tree with T terminal nodes has T - 2 internal nodes and 2T - 3 branches 

in total. Of these, T - 3 are interior. To count the number of possible trees, consider 

the following recursion. For two species, there is only one possible branch on which to 

add a new taxa (tip). Thus there is only one possible three-taxa tree. Consider now a 

tree containing k - 1 taxa. There are 2k - 5 branches to which the kth  species could be 

added (k - 1 branches leading to a tip and k - 4 interior branches). Hence, the total 

number of distinct strictly bifurcating trees for T taxa is given by 

N(T) = fl(2i - 5). 	 (2.1) 

This relationship may also be used to count the number of rooted trees. Placing a 

root on an unrooted tree adds one more internal node, and one more interior branch. 

Since the root may be placed along any of the 2T - 3 branches, the number of possible 

rooted trees is increased by a factor of 2T - 3. 

As indicated above, the vast majority of phylogerietic tree estimation methods yield 

unrooted trees. However, it is possible to root trees using a technique called outgro'ap 

rooting. This involves including one or more sequences in the analysis which are known 

to be an outgroup to the original data set (i.e., are relatively distantly related to the 

taxa in the data set). The location at which the outgroup joins the unrooted tree implies 

a root for the original data. It is important to note that by choosing the outgroup, the 

assumption is made that the remaining taxa are rnonophyletic (all descending from a 

common ancestor). If this is invalid, the tree will be incorrectly rooted. 

2.2 DNA sequence data 

Various types of molecular data may be used to infer phylogenetic trees. Possibilities 

include restriction endonuclease data and allozyme data; for more details, see Swofford 

et al. (1996) and references therein. Since the advent of polymerase chain reaction 

(PCR), the amount of available DNA sequence data has rapidly increased, and has 

become widely and freely available in databases such as GenBank and EMBL (these 

contain approximately 500,000 entries, each, on average, 1000 nucleotides long). The 

procedures in this thesis were developed with DNA sequence data in mind; thus a 

description of this data is required. 

Apart from RNA viruses, the hereditary information of all living organisms is carried 

by deoxyribonucleic acid (DNA) molecules. These usually consist of two complementary 

chains twisted around each other to form a right-handed helix. Each chain is a linear 

sequence consisting of four nucleotides or bases. These may be divided into two groups, 

based on their biochemical properties: 

the purines: adenine (A) and guanine (G) 

11 



Table 2.1: The universal genetic code 
codon amino codon amino codon amino codon amino 

acid acid acid acid 

TTT Phe (F)° TCT Ser (S) TAT Tyr (Y) TGT Cys (C) 

TTC Phe (F) TCC Ser (S) TAC Tyr (Y) TGC Cys (C) 

TTA Leu (L) TCA Ser (S) TAA Stopb  TGA Stop 

TTG Leu (L) UCG Ser (S) UAG Stop UGG Trp (W) 

CTT Leu (L) CCT Pro (P) CAT His (H) CGT Arg (R) 

CTC Leu (L) CCC Pro (P) CAC His (H) CGC Arg (R) 

CTA Leu (L) CCA Pro (P) CAA Gln (Q) CGA Arg (R) 

CTG Leu (L) CCG Pro (P) CAG Gin (Q) CGG Arg (R) 

ATT Tie (I) ACT Thr (T) AAT Asn (N) AGT Ser (S) 

ATC Tie (I) ACC Thr (T) AAC Asn (N) AGC Ser (5) 

ATA Tie (I) ACA Thr (T) AAA Lys (K) AGA Arg (R) 

ATG Met (M) ACG Thr (T) AAG Lys (K) AGG Arg (R) 

GTT Val (V) GCT Ala (A) GAT Asp (D) GGT Gly (G) 

GTC Val (V) GCC Ala (A) GAC Asp (D) GGC Gly (G) 
GTA Val (V) GCA Ala (A) GAA Glu (E) GGA Gly (G) 

GTG Val (V) GCG Ala (A) GAG Glu (E) GGG Gly (G) 

Amino acids are denoted by their standard three-letter and one letter abbreviations 
bStop  codons cause the transcription process from DNA sequences to amino acids to stop. 

Thus, they mark the end of a protein coding region 

the pyrimidines: cytosine (C) and thymine (T) 

DNA may be written as a linear string of these nucleotides, e.g., ACTTGA... Such 

sequences are often said to be x base pairs (bp for short) long, where x is the number 

of nucleotides in the sequence. 

RNA (ribonucleic acid) exists as both a double- and a single-stranded molecule. It 

is similar to DNA, but uses the nucleotide uracil (U) instead of thymine (T). There are 

several types of RNA molecule. One type (mRNA) is involved in protein production. 

Some subsequences of DNA correspond to genes or parts of genes which carry in-

structions for making proteins. In the protein-coding region, the DNA is arranged in 

triplets, called codons, with 43 = 64 possible arrangements. Each codon corresponds 

to a particular amino acid (the building blocks of proteins). In nearly all species, the 

correspondence follows a universal code (see Table 2.1). Note that this is a degenerate 

code: most of the 20 amino acids are encoded by more than one codon. 

Some genes are interrupted by non-coding regions of DNA, which are known as 

introns. See Figure 2.2 for a simple example of two genes containing introns, as well as 

a non-protein coding sequence of DNA separating the two genes (an intergenic region). 

Introns are ignored in the process of reading protein coding information from the DNA 
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Figure 2.2: schematic diagram of a DNA sequence. The boxes correspond to the 
protein-coding sequences of two genes. Within each gene are non-coding regions called 
introns, while the genes are separated by a non-coding sequence (an intergenic region). 

template and lack the triplet structure of the protein-coding genes, as do intergenic 

regions. More information on DNA and its structure may be found in Li and Graur 

(1991, Chapter 1). 

All organisms must copy their DNA in order to reproduce. The replication mech-

anism is generally accurate but occasionally, a mutation occurs. This could be due to 

the substitution of one nucleotide for another, or insertion or deletion events involving 

one or more nucleotides. Some of these changes will be deleterious, and the organism 

may fail to reproduce, with the result that the mutation is not passed onto the next 

generation (i.e., the mutation is removed by natural selection). On the other hand, 

some of these mutations may not affect the organism greatly, or may even be beneficial, 

and thus, the organism will pass on its genetic material (including the mutation) to the 

next generation. Mutations occurring in the DNA of a mating population will add to 

the variability of the population. If, however, the population splits into two distinct 

subpopulations, each group will accumulate mutations independently of each other. 

Eventually a sufficient amount of change may occur to make the two subpopulations so 

different from each other that they are unable to interbreed. At this point they have 

become two different species. If one individual is sampled from each species, modelling 

evolution as a series of bifurcation events is justified. 

In order to model evolution well, all possible mutation processes should be included 

in any model. Unfortunately, it is difficult to model all but the nucleotide substitution 

events. Consequently, the data used in phylogenetic analysis are generally those parts 

of a DNA sequence which are believed to have arisen by nucleotide substitution. Subse-

quences that appear to have been subject to other evolutionary processes are excluded. 

Thus, models of nucleotide substitution only are, in general, applied to the data. 

Referring back to the degeneracy of the codon-amino acid code in Table 2.1, it is 

seen that changes in time third position of the codon are not as likely to cause a change 

in the amino acid encoded (conversely a change in the second position almost always 

causes a change in the resulting amino acid). Hence, nucleotide substitution events in 
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raw sequences -> alignment 	(a) 

ATCGTCAG -> ATCG--TCAG 

11 	11 
AGCGTATCG -> AGCGTATC-G 

score = no. of matches - no. of gaps x gap presence penalty 

- no. of gap spaces x gap length penalty (b) 

score = 6 - 2(3) - 3(0.5) 	 (c) 

= —1.5 

Figure 2.3: example of a pairwise alignment problem employing user-provided gap 
presence and gap length penalties. 

the third codon position are less likely to be removed by natural selection. This means 

that a greater rate of substitution is generally observed in the third codon position. 

Higher rates of nucleotide substitution are generally observed in non-coding regions 

of DNA, either between genes (intergenic regions) or within genes (the introns). Since 

these regions do not carry instructions for protein products, changes within them are 

unlikely to be deleterious to the organism, and are often allowed to persist. It is 

important in a good phylogenetic analysis to take account of the organisation of the 

DNA being analysed, and allow for possible heterogeneous rates of substitution. 

As well as DNA sequences, protein sequences are often used in phylogenetic analysis. 

These may be written as a linear string of letters, these being the twenty letters corre-

sponding to the twenty amino acids. Statistical methods for DNA sequences have been 

applied to protein sequences, but there is a significant increase in the computational 

burden due to the increased number of characters. 

2.3 Multiple alignments 

Ideally, the alignment of DNA or amino acid sequences and the estimation of the hierar-

chical relationships existing between them should be carried out simultaneously, since 

the accurate estimation of among-species relationships is important to yield a good 

multiple alignment, while a sensible multiple alignment is required as input to a phy-

logenetic tree estimation method. Otherwise the old maxim: 'garbage in, garbage out' 

applies. Unfortunately, this would be a very difficult computational exercise. Therefore, 

the two steps are carried out separately. 

To illustrate an approach to the alignment problem, consider the two sequences 

shown in Figure 2.3a. The aim is to match the two sequences as closely as possible. 

In order to do this, it may be necessary to introduce gaps to allow for the insertion 
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and deletion of nucleotides. To prevent too many gaps being introduced, penalties for 

introducing a gap and also for the length of a gap are assigned. The aim then is to 

maximise a score function such as that in Figure 2.3b. Typically, each identical pair of 

nucleotides is assigned a score of one, while mismatched pairs score zero. Gap penalties 

might be three, with a penalty of 0.5 for each position or site in a sequence in a gap. 

Thus, in the alignment in Figure 2.3a, there are two gaps, each incurring a penalty of 

three, while three sites lie in gaps (penalty of 0.5). This leads to the score shown in 

Figure 2.3. 

It is straightforward to find the optimal alignment for a pair of sequences. A similar 

approach may be used to find the best alignment for three or more sequences but this 

problem is much harder. A number of computer programs exist which implement differ-

cut approaches to the problem of aligning a set of DNA or amino acid sequences. Given 

a set of protein coding DNA sequences, it is generally better to input the corresponding 

amino acid sequences into the multiple alignment program and align these. The result 

can easily be translated back to nucleotides. For non-protein coding sequences, this is 

not possible of course, so the DNA sequences must be aligned. For a review of some of 

these programs, see McClure et al. (1994). 

ClustalW (and its earlier versions), in particular, is widely used, and has been used 

later on in this thesis to align sets of DNA sequences. The algorithm used in this 

program has been described by Thompson et al. (1994), and consists of three main 

steps: 

All possible pairs of sequences are aligned separately and a measure of divergence 

for each pair is calculated, resulting in a pairwise distance matrix; 

A guide tree is calculated from this distance matrix using a clustering method 

(Neighbor Joining, see 2.7.5); 

The sequences are progressively aligned according to the guide tree, with the most 

closely related species being aligned first. 

Finding a good multiple alignment is very important but can be a time-consuming 

task. As a rule of thumb, in any good phylogenetic analysis an equal amount of time 

should be spent on the multiple alignment as on the phylogenetic tree. For the work 

described in this thesis, it is assumed that the multiple alignment is known beforehand. 

This is automatically true for the simulated data. This assumption should not be a 

problem for the real data sets used to illustrate points in the later chapters either, since 

these consist of closely-related sequences which were easily aligned. 

Methods for constructing phylogenetic trees are now considered. Three classes are 

discussed: maximum parsimony, maximum likelihood and distance methods. There are 
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a few procedures which fall outside of these classes, but these are not frequently used 

and will not be described here. 

2.4 Parsimony methods for constructing phylogenetic trees 

Phylogenetic tree reconstruction methods which employ the use of the principle of par-

simony have been the most widely used by biologists to date. A parsimony optirnality 

criterion is defined and the best trees are those which minimise this criterion, and are 

known as the most parsimonious trees. 

In line with most tree estimation procedures, the maximum parsimony method as-

surnes that each site (sequence position or column in the multiple alignment) evolves 

independently of the others. This allows the value of the parsimony optirnality Cri-

terion to be found at each position in the r.iiultiple alignment, and these values may 

be summed over the entire data set. In general, parsimony methods select those trees 

which minimise the total tree length (the number of substitutions required to explain 

a given set of data). In mathematical terms, the solution to the parsimony problem is 

the set of all trees T, such that the following is minimised: 

L(r) = 	duff (xj, Xk2 ) 	 (2.2) 
k=1 j=1 

where L(T) is the length of tree r; 

B is the number of branches; 

N is the total sequence length; 

Ic1, k2 are the two nodes incident to each branch Ic; 

Xkj, (i = 1, 2) represent either elements of the input data matrix or 

optimal character-state assignments made to internal nodes; 

diff(y, z) is a function specifying the cost of a transformation from 

state y to state z along any branch. 

(Swofford et al., 1996). 

There are many forms of the parsimony criterion in use. For details, see Swofford 

et al. (1996) and Felsenstein (1988) and references therein. Supporters of parsimony 

often claim that the use of this procedure requires no substantive assumptions about 

the evolutionary process, an assertion which is certainly questionable. While no explicit 

model of evolution is assumed, parsimony implicitly assumes that evolutionary change 

is very rare. Thus, multiple changes at a site, which would mislead the algorithm, are 

assumed to be very unlikely to occur. If the assumptions of parsimony are met, the 

method will perform well, and may be viewed as an approximation to the maximum 

likelihood method (Edwards, 1996). If the assumptions are not met, then parsimony 

will often be inconsistent (i.e., the estimate converges on an incorrect tree as more and 
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Figure 2.4: a: four species tree with two distinct branch lengths, (12  and d3 , as shown. 

b: the Felsenstein zone for d2  and d3  (where parsimony methods will consistently give 
the wrong answer for a tree such as that in (a). C: the incorrect tree estimated when 

the branch lengths lie in the Felsenstein zone. 

more data are used). This problem was highlighted by Felsenstein (1978b) for a four-

taxa tree lying in what has since been termed time Felsenstein zone. An example of this 

is shown in Figure 2.4. With increasing sequence length, parsimony will be more likely 

to estimate the incorrect tree shown in Figure 2.4c. 

2.5 	Models of the nucleotide substitution process 

The nucleotide substitution process is generally modelled by first-order, stationary, 

continuous-time Markov models. Below, a brief outline of continuous-time Markov 

models is presented, before the specific models used to depict the nucleotide substitution 

process are described. 

2.5.1 Continuous-time, first-order Markov chains 

An excellent introduction to continuous-time, first-order Markov chains is given in 

Grimmett and Stirzaker (1992, Chapter 6). Some of the basic theory is presented here; 

this is used later in the formulation of models for the nucleotide substitution process. 

Let X = IX (t) : t E [0, )} be a family of random variables which take values in 

some countable state space, S. Then X is a continuous-time, first-order Markov chain 
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if it satisfies 

Prob(X(tn) = AX(ti) = ii, .. , X(tn _ i ) = 

= Prob(X(t 1) = AX(t- 1 ) = 

for all j,ii,... ,i_ 1 	Sand any sequence t 1  < t2 < ... < tn of times. 

Many features of a continuous-time Markov chain are quite similar to a discrete-time 

chain. For example, the transition probability, Pij 	t) is defined as 

Pij 	=Prob(X(t) =jIX(s) =i) 

for s < t. The chain is said to be homogeneous if P1 (s,t) = P 3 (O,t—s). for all i,j,s,t. 

In this case, Pij t) may be more conveniently written as Pij - s). 

To describe a homogeneous discrete-time Markov chain, it is necessary to specify the 

one-step transition probability matrix (i.e., that matrix containing the entries P(1) 

for all i, A. For a continuous-time Markov chain, there is no obvious unit of time, so 

instead a matrix, R, giving the instantaneous rates of change is used. For the Markov 

chains considered below, this rate matrix has the property that R17' = 0T where 1 and 

o are row vectors consisting of ones and zeros respectively. Alternatively, this condition 

may be written as Ej  rjj = 0, where 	are the entries of the matrix R. 

It can be shown, using the Kolmogorov forward equations, that P = PR (Pt  being 

the matrix with entries P(t) while P is the matrix dP/dt and has entries 

Similarly, the backward equations yield that P = RP t . Subject to the condition that 

Po  = I, these equations are solved by 

00 
tu 

P =>-,R 

where R°  = I. This is usually written as P t  = exp(Rt) and provides a easy way of 

obtaining the transition probabilities for any given time of length t. 

A vector 7r is a stationary distribution of a continuous-time Markov chain if 7rj  > 0, 

E j  7rJ = 1 and ir = 7rPt for all t> 0. This condition is satisfied if and only if irR = 0. 

The latter allows the simple calculation of the stationary distribution for a Markov 

chain. 

2.5.2 Continuous-time Markov models for the nucleotide substitution 
process 

As mentioned above, the nucleotide substitution process is often modelled by a first-

order, continuous-time Markov chain, where the chain takes values in the finite state 

space S = {A, C, C, T}. In addition to the basic properties, described above, of such 

chains, the following simplifying assumptions about the substitution process are usually 

made (Rodriguez et al., 1990; Kelly, 1994): 
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Sites in the sequence are identically distributed. Most models assume that the 

rates of nucleotide substitution at all sites are equal. Thus, the same rate matrix 

applies to all sites in the sequence; 

Sites evolve independently of each other; 

The nucleotide substitution process is reversible (i.e., 7rp(t) = 7rp(t) where 

7r, i = A, C, C, T is the stationary probability nucleotide i). This results in 

constraints on the form of the transition probability matrix, thereby reducing the 

number of parameters. It explains why likelihood and distance methods estimate 

unrooted trees, since reversible models do not specify the direction of time; 

The nucleotide substitution process is at equilibrium. This means that the frequen-

cies of the nucleotides in the sequence correspond to the stationary distribution 

of the nucleotides. 

Hence, the rate matrix for a general, time-reversible model of this type is given by 

A 	C C 	T 
A - 	a7c b7rG 	clrT 

R071  = C ar 	- dire 	e7rT 	 (2.3) 

C bnA 	thr - 	I 
T c7rfl 	e7rc fir(, 	- 

where the diagonal elements are given by 

= 	—r 	 (2.4) 

:j5k i 

since the rows of a rate matrix must sum to zero. -ir, i = A, C, C, T is the stationary 

nucleotide frequency of nucleotide i and a, b,... , f are the rate parameters, specifying 

the relative rates of change between two nucleotides. Note that this is a nine parameter 

model, the parameters being the six rate parameters and three nucleotide frequencies 

(the four nucleotide frequencies must sum to one; this constraint reduces the number of 

parameters by one). This model has been discussed by Lanave et al. (1984), Rodriguez 

et al. (1990) and Li and Gu (1996). 

Many simpler cases of this model exist and some of these are examined below, 

starting with the simplest versions and proceeding upwards towards this nine parameter 

model. In many cases, these steps represent the historical order in which the models 

were proposed. 

Jukes and Cantor (1969) were the first to suggest the Markov framework for mod-

elling sequence evolution. They proposed a very simple model, with the stationary 

nucleotide frequencies all being equal (7ri = 0.25, i = A,C,G,T). They also assumed 

that all changes were equally likely (a = b = ... = f). Thus, the instantaneous rate 
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matrix in (2.3) reduces to the simple form 

A C G T 
A - a a a 

	

Ric  Ca - a a 	 (2.5) 
C a a - a 
T a a a - 

where the diagonal elements are again calculated using (2.4). 

This model is, of course, an oversimplification, as it is well known that nucleotide 

substitutions generally do not all occur at the same rates. In particular, changes within 

either the purine or pyrimidine nucleotide classes (transitions) tend to occur more 

frequently than transversions (substitutions between classes). This was recognised by 

Kimura (1980) when he proposed his two-parameter model. Like the Jukes-Cantor 

model, he assumed that the equilibrium frequencies of the nucleotides were all equal, 

but he allowed transitions (A *-* G, C 	T) and transversions (A +-* C, A 	T, 

C -+ C, C -+ T) to occur at different rates. In (2.3) this is equivalent to setting b = e 

and a = c = d = f and yields a rate matrix of the following form: 

A C G T 
A—/3a(3 

	

RK2P = C 13 - 3 a 	 (2.6) 
Ca/3 — /3  
T 

In the literature, this is generally referred to as the Kimura two Parameter model. 

Meanwhile, Felsenstein (1981) extended the Jukes-Cantor model in another way. 

He supposed that all changes still occurred at the same rate, but allowed the nucleotide 

frequencies to be unequal. This model, known as the Felsenstein 81 model, has the 

following rate matrix 

A 
A - 

Rp81  = C yir 

C ')'7V4 

T 'yrA  

C C T 
y7 / 7 G T'T 
- 'Y7rG Y 7 T 

- 
771C r'c - 

(2.7) 

obtained from (2.3) by setting a = b = ... = f = 'y. 

The next logical step was to combine the extensions in both the Kimura two Pa-

rameter and the Felsenstein 81 models to produce a two parameter model with unequal 

nucleotide frequencies. This was done in two ways; Hasegawa et al. (1985) proposed a 

rate matrix of the form 

A C C T 
A — vmrc' S-nc V'Ir 

RHKY85 = C vr — V7Q 87y 	 (2.8) 
C 8I1A  V7rC - V7T 

T V7rA S7VC v7rG - 
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where s represents the rate of transitions and v the rate of transversions. This model 

is often referred to as the HKY85 model. 

This model is not very tractable mathematically; for example it is impossible to find 

a closed form solution for the genetic distance (see 2.7.1). Felsenstein suggested another 

form for use in his DNAML program from the PHYLIP package (Felsenstein, 1993). 

This model is known as the Felsenstein 84 model, and was described by Felsenstein and 

Churchill (1996). It is computationally much simpler than the HKY85 model. 

There are two types of nucleotide substitution event in the Felsenstein 84 model: 

Type I either no change, or a transition (essentially a nucleotide is drawn at random 

from within the purine [A, C] or the pyrimidine [C, T] class to replace the current 

nucleotide, the choice of class being that of the current nucleotide); 

Type II no change, a transition or a transversion (a nucleotide is drawn at random 

from the set of all nucleotides to replace the current one). 

If the type I event occurs at a rate p, while the type II event occurs at a rate y  then 

the instantaneous rate matrix may be written as: 

A C C T 
A - 77G 

IrA ±7rG 
+ 77 77T 

Rp84  = C - 77FG PIrT 	+ 77T(2.9) 
7TC+?rT 

C  PIA 
IrAG 

 + 77rA - -PTT 
T 77rA PC 	+ 77 

lrC+7rT 
- 

As before the diagonal elements of RF84, rj, are given by (2.4). 

The transit ion- transversion ratio is an important quantity in these two parameter 

models, and specifies the relative rates of transitions and transversions. For the Kimura 

two Parameter model, this ratio has a very simple form: 

ts/tv 
= 20 
	 (2.10) 

The expression is more complicated for the Felsenstein 84 model, as it depends on 

functions of the nucleotide frequencies: 

ts/tv 
= pA + 7B 	

(2.11) 
-yC 

where 

A 
= 7mA7mG 

+ 
7mC7mT 

7mA+7rG 7IC+7mT 

B = 7mA7mG+ 7mC7mT 

C = (7mA+7mG)(7mc+7mT). 	 (2.12) 

Note that if ts/tv = 0.5 for the Kimura two Parameter model, then the Jukes-Cantor 

model is obtained, while if ts/tv = B/C for the Felsenstein 84 model, this model 
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simplifies to the Felsenstein 81 case. The transit ion-transversion ratio for the HKY85 

model is given by sB/vC, with B and C being defined as in (2.12). 

Various other special cases of (2.3), the general time-reversible model, have been 

proposed. Kimura (1981) proposed a three parameter model. Again the nucleotide 

frequencies were equal, but there were three rate parameters: one rate for transitions 

and two rates for transversions. Tamura and Nei (1993) developed a different three 

parameter model; this had one parameter for transversions, but two rate parameters 

for transitions [equivalent to letting b = c = d = e in the rate matrix, RGTR, given 

in (2.3)]. The nucleotide frequencies were allowed to be unequal. Zharkikh (1994) 

described a model with six rate parameters, but with the equilibrium frequencies of the 

nucleotides all equal. 

Once the rate matrix for a particular model has been specified, the transition prob-

ability matrix, Pt, may easily be found using the relationship 

Pt = 	 (2.13) 

Thus expressions for the transition probabilities may be easily found by hand, or by 

using a symbolic algebra package such as MAPLE (MAPLE V release 4, Waterloo 

Maple Software, Waterloo). As an example of this, consider the transition probabilities 

for the Kimura two Parameter model. Recalling that P(t) is the probability that a 

particular site initially with nucleotide i has nucleotide j after a time t, then from (2.13) 

it emerges that 

	

{+ 

	e— 4,3t + 	 if i = 

	

P(t) = 1 + 	- 	 if i j, transition, 

	

1 - 	ie_ 413t 	 if i 	j, transversion. i. 	4 

2.6 Maximum likelihood methods for estimating phyloge-
netic trees 

Maximum likelihood was proposed for use in phylogenetic inference by Cavalli-Sforza 

and Edwards (1967) and was first used for nucleotide sequences by Felsenstein (1981). 

Initially, a major drawback to the method was the computational burden it imposed. 

While this is still a problem for larger data sets, with increasing computer power max-

imum likelihood is becoming more widespread in use. 

Maximum likelihood has some attractive properties. It is consistent, efficient and 

often robust to violation of assumptions. It also generates estimates with lower sam-

pling variances even with short sequences. Most models of nucleotide substitution make 

the assumption that the substitution processes at each site are the same; while this is 

unlikely to be exactly true, it is reasonable that the processes at each site will have 

much in common and thus the evolution of sequences can be described by just a few 
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parameters. Consequently, tree inference using maximum likelihood tends to outper-

form parsimony and distance methods (Kuhner and Felsenstein, 1994; Huelsenbeck, 

1995). Simulation studies have also found maximum likelihood to be quite robust. For 

example, Schöniger and von Haeseler (1995) found that violations of the assumption of 

independence between sites did not affect the performance of maximum likelihood to a 

great extent. 

To illustrate how to calculate the likelihood for a particular phylogenetic tree, con-

sider the four sequence alignment in Figure 2.5a and the tree shown in Figure 2.5b. 

The assumption that sites evolve independently of each other simplifies the calculation 

of the likelihood: the likelihoods at each site may be calculated and their product taken 

to find the overall likelihood (as in Figure 2.5e). 

The Markov models of nucleotide substitution used are tune-reversible. This means 

that the position of a root does not affect the likelihood (which is the reason why 

unrooted trees only are inferred). For computational purposes, it is convenient to root 

the tree at an arbitrary internal node (see Figure 2.5c). To find the likelihood, the 

probabilities of all the possible ways in which the nucleotides at the tips could have 

arisen are summed (i.e., the 16 possible combinations of the two ancestral nucleotides at 

the two internal nodes for the example shown). Finally the likelihood, or more usually 

the log likelihood are calculated as in Figure 2.5e and Figure 2.5f respectively. 

In practice, calculating the likelihood in this manner poses too great a computational 

burden. A reduction in the amount of computation required may be obtained by 

means of an algorithm termed pruning (Felsenstein, 1981), explained using the following 

example. Consider the tree in Figure 2.6, with branch lengths given by the vi and the 

bases at each node i specified by s. The stationary frequency of each nucleotide j is 

given by 7, while P(t) represents the transition probability that a site initially with 

nucleotide i has nucleotide j after a time t. As above, the likelihood of the tree is the 

sum of the probabilities of each way that the particular combination of bases at the 

external nodes could have arisen. This is given by 

	

L 
= 	 7,,, P,,,,(v6)P86 8 1  (vi)P562  (V2) P,.,8 (v8) 

S0 S6 S7 S8 	 (2.14) 

X P8883(v3)P887(v7)P784(v4)P9785(v5) 

This expression has 256 terms (in general, with n species there will be 22m2  terms), but 

by manipulating the expression slightly, it is possible to find a more efficient formulation. 

If the summation signs are moved to the right, then (2.14) becomes 

L = 	7r30  {Psos6(vG)[Ps6si(vl)] [P1 1312 (V2)]
so 	S6 	 } (2.15) 

	

x 
{

1:  P5088  (v8 ) [P5883  (v3 )] [E  p887  (v7 ) [P8784  (v4)] [P5785  (v5)]]

S8 	 87 }. 

23 



a) 

1 CGGACACGTTTA ... 	C 

2CAGA CAC CTCTA ... 	C 

3CGGATAAGTTAA ... 	C 

4CGGATAGCCTAG ... 	C 

b) 	 C) 
2 3 4 

N5 / 
C 

V 

 G 

\6 

'CC AG d) 	 C C A G 
+Piob ( 	\ / 

L = Prob ( A/ / ) 

	 \ / ) + 

C C A G 	 IC C A G 
+ Prob( \G 
	

) +.. . + 

Prob 	

T\ T/ ) 

	

LLlxL2x ... xLN=flL 	 (e) 

in L = lnL1  + in L2 +.. + 1nLN = ElnLj 	 (f) 

Figure 2.5: Likelihood calculation for a tree. a: a sequence alignment. b: an unrooted 
tree for the four sequences in (a). C: the tree rooted at an arbitrary internal node for 
the nucleotides at site 7. d: the likelihood at site 7 is the sum of the probabilities of 
every possible reconstruction of the ancestral states, given some model of evolution. e: 
calculation of the likelihood for the entire sequence. f: calculation of the log likelihood. 
Redrawn from Swofford et al. (1996). 
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V 
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5 

Figure 2.6: the tree used to illustrate the use of the pruning algorithm for efficient 
calculation of the likelihood. Redrawn from Felsenstein (1981). 

The important point about the form of (2.15) is that the pattern of parentheses bears 

an exact relationship to the topology of the tree. Therefore, the expression can be 

evaluated by working outwards from the innermost parentheses. In other words, coin-

putation starts at the tips of the tree and moves downwards. 

The problem may be restated in terms of conditional likelihoods. Let 	be the 

likelihood based on the data at and above node k on the tree, given that node k has 

nucleotide s. If k is an external node (i.e., a tip) then L (k)u = 1 for the nucleotide 

actually observed at k and zero for the other possible nucleotides. Also note that, for 

a node k with immediate descendants i and j, 

L(k) - [PS,,j (v)L)] [ 
	

(v)LSj 3) ]. 	 (2.16) - 

Si 	 Si 

Therefore, at each node k, it is straightforward to calculate Sk  for all four possible 

values of sk. This process is carried out until the base of the tree is reached and 40 )  
has been found for each of the four possible values of s0 . Then the overall likelihood is 

given by 

(2.17) 

Felsenstein (1981) termed this algorithm pruning, since each step results in the removal 

of two tips from the tree. It is an efficient way to calculate the likelihood of any 

particular tree. It does not, however, address the problem of finding the best solution. 

In principle, to find the maximum likelihood solution, the branch lengths leading 

to the highest likelihood for all possible (unrooted) topologies are found (originally a 

version of the EM algorithm was used [Felsenstein, 1981] but recently the Newton-

Raphson method has been used [Felsenstein and Churchill, 19961 as this significantly 

speeds up the computations). The tree with the highest likelihood is the required 
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solution. However, due to the rapid explosion in the number of possible topologies with 

increasing sequence number, an exhaustive search through all topologies is only possible 

for small data sets. Hence, it is necessary to use searching algorithms to explore the 

tree space for possible solutions. Heuristic methods and hill-climbing algorithms are 

commonly used (see Swofford et al., 1996 and references therein for more details). 

2.7 Distance methods for phylogenetic tree estimation 

The parsimony methods described above find solutions that minimise the amount of 

evolutionary change that is required to explain the data, whereas likelihood methods 

seek to estimate the actual amount of change that has occurred, according to a particu-

lar model of nucleotide substitution. If the rate of nucleotide substitution is high, there 

is an ever-increasing chance of multiple or super-imposed changes at a particular site. 

So, unless the actual rate of nucleotide substitution is very small, parsimony methods 

will underestimate the true amount of change. 

Distance methods are an alternative class of methods to maximum likelihood; these 

also have the advantage over parsimony of using adjusted distances which correct for 

unseen nucleotide substitution events according to a model of nucleotide substitution 

such as those described in 2.5.2. These methods are approximations to a full maximum 

likelihood approach since there is a loss of information by reducing two DNA sequences 

to a pairwise distance. Recent simulation studies have found that maximum likelihood 

outperforms distance methods in choosing the right tree (Kuhner and Felsenstein, 1994; 

Huelsenbeck, 1995). However, distance methods are considerably faster than maximum 

likelihood; thus they are particularly useful for large data sets. 

There are two main steps when constructing a tree using a distance method: firstly, 

an appropriate model for the nucleotide substitution process must be chosen, and the 

pairwise distances between all the possible pairs of sequences in time data set must be 

calculated; secondly, the resulting pairwise distance matrix is used as the input into 

a clustering algorithm or least squares method, and a tree is then estimated. In this 

section, the estimation of pairwise distances is first considered, followed by a brief 

description of some of the algorithms in use. 

2.7.1 Distance estimators based on models of nucleotide substitution 

Most of the algorithms which construct pliylogenetic trees from pairwise distances re-

quire additive distance measures (i.e., linear with time) for the method to work correctly. 

Thus, simply counting the number of distances observed between two sequences is an 

inappropriate measure, since distances obtained in this manner are not additive (due 

to unseen substitutions, the number of which increases as two sequences diverge). It 

must be remarked, however, that R.zhetsky and Sitnikova (1996) have discussed cases 
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Figure 27: Two sequences, A and B, have evolved from a common ancestor t time 
units ago. Thus, the amount of change separating them is the product of 2t and the 

overall rate of change. 

in which using this distance measure rather than an additive distance leads to better 

recovery of the tree topology (i.e., the branching pattern only). 

An obvious choice of a distance measure is the average amount of change PCI site in 

the sequence. This quantity may be found by taking the product of the overall rate of 

evolution and the time separating the two sequences. For certain models, this may be 

expressed as a simple analytical formula in terms of time transition probabilities, which 

in turn may be estimated from the sequence data. For a substitution model to yield 

a simple analytical formula for the distance, Yang (1994) detailed the following two 

mathematical requirements which must be satisfied: 

the eigenvectors of R, the rate matrix, must be functions of only the nucleotide 

frequency parameters and thus, be free from the rate parameters; 

the number of unknowns, not including the frequency parameters, must be the 

same as the number of non-zero distinct eigenvalues of R. 

Since the frequency parameters are estimated from the data, these two conditions mean 

that there will be as many simple equations as there are unknowns, and hence there 

will be a simple solution. Models which satisfy these conditions include the Jukes-

Cantor, the Kimura two Parameter and the Felsenstein 81 and 84 models. Tamura 

and Nei's (1993) model is the most complicated model for which a simple expression 

is available. These conditions explain why the Felsenstein 84 model is mathematically 

more tractable than the HKY85 model - the rate matrix, RHKY85,  for the latter model 

has three distinct non-zero eigenvalues, but there are only two unknowns (the transition 

and transversion rates). 

To illustrate the procedure of finding a distance estimate, the Jukes-Cantor model 

is considered. For other models, the computation is similar, although necessarily more 

complicated due to the increased complexity of the models. An outline of the derivation 

of the Felsenstein 84 genetic distance estimator is given later in 6.2. 
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Using (2.13), the transition probabilities for the Jukes-Cantor model are given by 

Ii + e-4 	if i = j, 	 (2.18) 
PiJ (t)= U_ e_ 4 t ifi$j. 

In the case of two sequences, both with nucleotide i initially, the probability that the first 

has nucleotide j and the second has nucleotide k after a time t is given by Pj(t)Pjk(t), 

assuming (as seems reasonable) that the two sequences evolve independently of each 

other. Consequently the probability that both sequences have nucleotide j after time t 

is P(t)2. 

The overall rate of change for the Jukes-Cantor model from (2.5) is 3a, since each 

of the three possible changes happens at a rate a. If two sequences diverged from 

a common ancestor t time units ago, as in Figure 2.7, then time time separating the 

two sequences is 2t. Hence, the distance, or the average number of nucleotide sub-

stitutions per position, is given by 2t x 3a. Since the transition probabilities may be 

estimated from the data, the problem becomes that of expressing 6at in terms of these 

probabilities. 

Since all changes are equally likely, the sixteen transition probabilities may be 

summed in two groups: those that mean a difference is observed and those that give 

the probability that the same nucleotide is present in both sequences. Suppose that a 

particular site in the ancestral sequence had the nucleotide type j. Then the probability 

that no change is observed between the sequences after time t, I say, is the sum of the 

probabilities that the nucleotide is initially j in both sequences, and after time t is k in 

both, for all possible values of k. Thus, I is given by 

I = PjA 	+ Pc(t)2  + PjG(t)2  + PT (t)2. 	 (2.19) 

Using (2.18), and noting that one of the quantities in the above sum will be the square 

of the probability that no change is observed, while the other three will be the square 

of the probabilities that the chain is in a different state after time t, I may also be 

expressed as 

+ 
	

(2.20) 

The probability, p say, that a difference is observed may be found in a similar manner, 

but is more easily found by noting that p + I = 1. Hence, 

8at 	 (2.21) 

Rearranging and taking logs of both sides yields 

8at = - in (i - 
	). 	

(2.22) 



Therefore, the distance, dj, which is equal to 6at, is also given by 

dj 	- in 1--P 	 (2.23) 
4 	3 ) - 

As p is the probability that a change is observed between two sequences, it may be 

estimated for real data by the proportion of change observed between the two sequences. 

This estimate is = k/n where k is the total number of changes observed and 71 is the 

total sequence length. 

The distance estimator for the Felsenstein 81 model is obtained in a similar manner, 

and is given by 

dF8I = — E In (i - 
	

(2.24) 

where E = 1 - 7r 2  - 7r 2 - 7r 2  - 4. Again is used in place of p to estimate. a pairwise 

distance. 

For the two parameter models, the transition probabilities must be summed in three 

groups: the probabilities of no change occurring; the probabilities of a particular tran-

sition occurring (sum given by P); the probabilities of a transversional event occurring 

(sum given by Q). For the Kimura two Parameter model the distance is given by 

(a + 2) x 2t; the expression is more complicated for the Felsenstein 84 model, since 

it will explicitly involve the nucleotide frequences. Following a similar procedure as 

above, the distance under the Kimura two Parameter model is found to be 

dK2p = - ln(1 - 2P -Q) - ln(1 - 2Q), 	 (2.25) 

while for the Felsenstein 84 model 

P 	 \ 
dFS4_—_2Aln 	

(A—B)Q 
(1__ 

2AC 
 )+2(A_B_C)ln(1_) 	(2.26) 

where A, B and C are as defined in (2.12). To estimate a distance from a data set, 

P and Q may be replaced by their sample estimates, P (the observed proportion of 

transitions) and Q (the observed proportion of transversions). 

Li and Gu (1996) discuss ways of estimating the distance using the general time 

reversible model specified in (2.3). They note that the difficulty in obtaining a simple 

analytical formula for the distance is that it depends on the eigenvalues of the rate ma-

trix; apart from the special cases mentioned above, the eigenvalues cannot be expressed 

in analytical forms and thus, neither can the distance. 

Let '\k,  k = 1,. .. , 4 be the ktl  eigenvalue of the rate matrix, R, one of which will 

be zero, say X4. Define the eigenmatrix U, with kth  column being the eigenvector corre-

sponding to the kth  eigenvalue, and let Uik  be the Z'k th  element of U. Correspondingly, 

let Vik be the Z'kth  element of V = U 1 . 
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The number of substitutions per site (rate x time) is given by 

dGTR = 2t En 
z=1 	j~4i 

= 	 (2.27) 

since 

= 

By spectral decomposition of the rate matrix, the diagonal elements, 'rij may he ex-

pressed as 

rii 

=

(2.28) 

It has been assumed that A4 = 0 and substituting (2.28) into (2.27), the distance may 

now be expressed as 

3 

dGTR = —2tbkAk 	 (2.29) 

k=1 

where 

= 	

iiLikVki . 	 (2.30) 

The distance is expressed in terms of the eigenvalues and eigenvectors of the rate 

matrix which cannot be estimated from the data. However, the transition probability 

matrix can, and since the two are related by P2t = e2Rt, it is known that firstly they 

have the same eigenmatrix, U, and secondly the eigenvalues, Zk, of P2t are related to 

those of R by Zk = exp{2tAk}. Because A4 = 0, z, j = 1. Expressing Ak in terms of Zk, 

the distance (2.29) may be rewritten as 

dGTR = — 	bk lnzk . 	 (2.31) 

To find a distance estimate for two species x and y, the transition probability matrix 

must be estimated. To do this, the 4 x 4 matrix 	is formed, with the jth diagonal 

entry given by N/N and the 	off-diagonal entry given by (N + N)/2N, where 

Nij is the number of sites having nucleotide i in species x, and nucleotide j in species 

y, and N is the total number of sites. This matrix is an estimate of the transition 

probabilities, and its eigenvalues and eigenvectors may be used in (2.31). 

Lanave et al. (1984) and Rodriguez et al. (1990) also consider ways of formulat-

ing a distance measure for the general time-reversible model. Their algorithms give 

essentially the same results. 
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2.7.2 Estimates of the variance and confidence intervals for distance 
estimators 

Sometimes an estimate of the error of these estimators is required. A popular and 

simple method to estimate the variance is the delta method. If rn(V) is a function of a 

statistic V, with known variance-covariance matrix E, then the variance of mn(V) may 

be approximated by 

Var['m(V)] 	avT7TT) > 	-rn(v) 	 (2.32)
Ov  

where j is the expectation vector of V. This was first introduced into the phylogenetic 

literature by Kimura and Ohta (1972); they use this method to find an approximation 

to the variance of the Jukes-Cantor distance estimator. They note that the distance 

estimator depends on p, the probability of observing a difference and this is estimated 

by the sample statistic j3 = k/n where k is the number of differences observed and 'n is 

the sequence length. Clearly k is an observation from a binomial distribution and thus, 

the variance of may be found. 

For more complicated models, the sample statistic is comprised of observations from 

a mrmltinomial distribution; the algebra is more tedious, but the procedure is essentially 

the same. This is discussed in some more detail in Chapter 6, where improvements in 

the calculation of confidence intervals are developed. 

If confidence intervals are required for the distance estimator, an assumption of 

normality may be made to allow the calculation of these intervals. Such an assumption 

is questionable, especially in the case of short sequences and/or large distances since 

it is well known that the sampling distribution of these distance estimators is biased 

and skewed to the right. Since the sample statistic is a sum of independent random 

variables (the observation at each site), by the Central Limit Theorem, the sampling 

distribution should approach normality as the sequence length increases. However, it 

is possible that this may not occur for many sequence lengths and distances used in 

practice. 

Other methods may be used to approximate the variance, for example non-parametric 

bootstrapping. This was introduced by Felsenstein (1985) as a means of testing the 

statistical significance of clusters in a phylogenetic tree, but it may also be used to 

approximate the variance of a pairwise distance measure. It involves generating many 

new samples of the same length as the original alignment by resampling the sites in the 

alignment with replacement. The variability in the resulting bootstrap samples should 

reflect the variance of the distance estimator. 

Another possibility is interval estimation, which was recently suggested by Andrieu 

et al. (1997). They use this procedure to find the exact confidence intervals for the 

Jukes-Cantor and Kimura two Parameter models. To illustrate this method, consider 
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the estimation of a confidence interval for a Jukes-Cantor distance, d. 

Suppose that k is an observation from a Binomial distribution with parameters n, 

the number of trials and p, the probability of success. Let d = f(p) be a function of p. 

Then p E [p,] is equivalent to d G [f (p), f()]. Therefore, the problem is to find the 

values of p, p to yield the desired confidence interval. 

In practice, the sampling distribution of j3 is usually well approximated by a normal 

distribution and hence, normal sampling theory is used to find confidence intervals. 

This is seen later in Chapter 6. However, when 'n or p are small the approximation 

may not be sufficiently accurate. Problems arise if the observed number of successes 

is zero; sampling theory is unhelpful as the variance is estimated as zero. In this case, 

the exact confidence interval for would be more useful. 

There are two steps in the calculation of exact intervals for the estimator of the 

probability from a binomial distribution. Firstly, let K be a binomial random variable 

with parameters ri and p. For any fixed value of p, the distribution of K is known, and 

the functions K = K(p, mm, a) and K = K(p, m, a) may be defined as the largest integer 

K and the smallest integer K such that 

Z 	11 

Prob(K > K) = :i: (')i - p) t > 1 - 

and 

i= K 

Prob(K <) 	
n

() pi(i  —p)> 1— . 	 (2.33) 

These functions define the smallest interval in which K lies with probability greater 

than or equal to 1 - a. 

For the second step, suppose now that k successes are observed. The aim is now 

to find the set of all possible values of p, , such that k will lie in the corresponding 

intervals [K(p, 'n, a), K(j3, 'n, a)]. Let p = p(k, rm, a) and i = (k, ri, a) be the lower and 

upper bounds respectively of this range of values. Then these bounds may be found by 

solving 

: 

(n) 
P  i(1 _p)l_  = 

and 

i—k 

: 

	. 	 (2.34) 

In the case of DNA sequences, n is the sequence length, p is the probability of 

observing a change of nucleotide at a particular site in the sequence and k is the 
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observed number of changes separating the two sequences. The above method may 

be used to find exact confidence intervals for 	the estimator of p. The Jukes-Cantor 

distance function, d = —3/41n(1 —4p/3), may then be used to transform the upper and 

lower bounds for to yield those for d. 

Similar steps may be implemented to find the exact confidence intervals for the 

Kimura two Parameter model. The computations are, of course, more complicated as 

the distance estimator is a function of obsLivations from a inultinonual distribution. 

There is also the added problem that it is necessary to assume that the exact value 

of the transit ion- transversion ratio is known; in practice this is very unlikely to ever 

be the case. Note that similar computations may be carried out for the one and two 

parameter models which allow for non-equal base composition (the Felsenstein 81 and 

84 models respectively). 

As mentioned above, this procedure is useful in the case of small amounts of change 

since methods based on sampling theory will not be very helpful. In general however, 

interval estimation is a tedious way of estimating confidence intervals. Equations (2.34) 

and the corresponding ones for the Kimura two Parameter model (see Andrieu et al., 

1997) cannot be solved analytically, involving instead a certain amount of iterating 

to find the solution. In addition, for the two parameter models, the value of the 

transit ion-transversion ratio must be assumed to be known. Therefore, there is still 

scope to improve inferences on genetic distances. 

2.7.3 Other distance estimators 

Many of the distance estimators above are biased, and sometimes cannot be applied to 

the data since they involve logs (when the argument of the log is negative, the formulae 

cannot be used). Tajima (1993) and Rzhetsky and Nei (1994) have looked at ways 

of dealing with these problems using Taylor series expansions of the log term. The 

resulting formulae may always be applied, and often give almost unbiased estimators. 

As an illustration, consider the formula for the distance estimator for the Jukes-

Cantor model, given in (2.23). Using a Taylor series expansion, (2.23) may also be 

expressed as 

djc = p + 2E 3E2 
 + 	+... 	

(2.35) '. 
P 

= iE 1  
i=1 

An unbiased estimator ofp is k()/ri(), i < k, where 
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[since k is a binomial random variable with parameters n (sequence length) and p 

(probability of observing a difference)]. Ignoring terms higher than the kth  order in 

(2.35) suggests the distance estimator 

k - 	k 
(2.36) 

with expectation 

k 

E(d)=V' ' 
iE 1  

Thus, (2.36) should give an almost unbiased estimate when p is not close to E. Con-

sequently, it will be useful for eliminating the bias for short distances, but will not be 

a good estimator when the evolutionary distances are large, even though it will always 

be possible to use (2.36) unlike (2.23). 

Goldstein and Pollock (1994) considered alternative ways of estimating a linear 

distance, making the same assumptions as the Kimura two Parameter model (equal base 

composition; different rates for transitions [a] and transversions [B]). They estimated 

the number of transitional (2at = S) and transversional (4t = V) changes from 

the data. Since Vt  = Vta/(2) is equal to 2at, this may also be used to estimate 

the amount of transitional change. The best evolutionary distance (linear expectation, 

minimal variance) based on these measures of transitional and transversional change 

may then be obtained using generalised least squares. This is the value of D which 

minimises 

- xi) (D - xi), 	 (2.37) 
i=1 j=1 

where xI = St  and x2  = V. The weights, wj, are the inverse of the variance-covariance 

matrix of the distance estimators. Goldstein and Pollock (1994) give expressions for the 

elements of this matrix, as well as the resulting distance estimator, which they term 

LSD. Note that LSD estimates 2at, the amount of transitional change. Simulations 

comparing LSD to the Kimura two Parameter and Jukes-Cantor distance estimators 

suggest that LSD is indeed an improved distance estimator. 

In 2.2, the existence of rate variation in the nucleotide substitution process was 

discussed. It is very important to take this into account, particularly in protein-coding 

DNA sequences where the third codon position may be evolving at a considerably faster 

rate than the first two positions. One way of doing this is to use gamma mixing, and 

was first used in the phylogenetic literature by Jin and Nei (1990) for the Kimura two 

Parameter model. They assume that the transition-transversion ratio (T) is fixed, and 

that the overall rate of nucleotide substitution (A = a + 20 from equation 2.6) varies 
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according to a gamma distribution with shape a where a = 2 /Var(A). Using the 

	

well-known result that if Y 	F(,,ri), then cY 	F(m,n/c), it can be shown that 

17 (a, d) where d = cb, c a constant (c = 2T + 2) and a + 	F(a, f) where again 

f = kb (k = 2T + 1). 

Since the rates of substitution vary from site to site the proportion of changes per 

site, averaging over the rates, must be found. Without rate variation, the number of 

transversions is given by Q = 1/2 - 1/2e 8+. Averaging over rate yields 

	

= 	
Qf()d 

00 

= - -I 
2 	2 Jo 	F(a) 

11 d a 

d+8t 

Multiplying above and below by a/d and noting that /3 = a/d, 

	

= 	- I [ 	a - 	 (2.38) 
2 2 a+8/3t 

P may be calculated in a similar fashion: 

P = I _ I [ - 	a 	
] + 
al 	a 	

(2.39) 
4 2 a+4(+/3)1 	4 a+8/3t 

Using (2.38) and (2.39) it can be shown that 

213t= [(1_2)_1/a ] 

and 

2(+i3)t= 

Therefore, the distance is given by 

d=2t+4/3t 

_2Qyh/0 - ]. 
	

(2.40) 
= 	[(I — 2P 	 I (I 

To estimate this distance from a data set, the quantities P and Q are replaced by 

their estimates, P and Q (the observed proportion of transitions and transversions) 

respectively. 

Other possible distance measures are the LogDet (Steel, 1994; Lockart et al., 1994) 

or the paralinear distances (Lake, 1994). This is a transformation yielding additive 

distances (see 2.7.4) under a wider set of models; any Markov model of nucleotide 

substitution is feasible, as long as the sites evolve independently and identically, and 

the rates of substitution are equal across sites. To find the LogDet distance estimate 



for a pair of sequences, the matrix F,,y  is found. The ijth  entry of this matrix is given 

by N/N (Nij is the number of sites where the first sequence has nucleotide i and the 

second has nucleotide j while N is the total number of sites). The distance is then 

estimated as 

- in [det F 0]. 	 (2.41) 

The distance estimates described previously depend on commutative multiplication 

of matrices which greatly restricts the type of model winch may be used. However, 

since (2.41) uses determinants, multiplication of these is always commutative, so more 

general models are allowed. The only conditions are that the determinant of F,y  is 

not 0, 1 or —1. (2.41) can accommodate changing base composition when finding the 

pairwise distances between a set of species; this is something winch can seriously mislead 

phylogenetic tree estimation methods when standard distance estimates are used. 

Cne drawback to the LogDet distance is that it does riot estimate the number 

of substitutions which have occurred. It is possible to modify the distance estimate 

for some special cases to yield an estimate of the number of substitutions which have 

occurred. Essentially, these special cases comprise of the types of models described in 

2.5.2. Indeed, the procedure described by Li and Gu (1996) may be restated in matrix 

terms and depends on the trace of the log of 	which is equivalent to finding the log 

of the determinant of 

2.7.4 Properties of pairwise distance estimates 

Before a review of some pimylogenetic tree estimation methods is given, some properties 

of distance measures are defined. Most methods require the distances to be additive, 

i.e., the sum of the branch lengths joining any two taxa is equal to the distance between 

them. Such distances must satisfy the four-point metric condition (Buneman, 1971): 

for any four taxa A, B, C and D, 

dAB + dcD < max{dAc + dBD, dAD + dBc}. 	 (2.42) 

This has a simple meaning: of the three sums of distances, dij + dkl, where i, j, k and 1 

are all distinct, one of these must be as small, or smaller than the other two, and these 

other two must be equal. For real data, the pairwise distances are very unlikely to be 

additive, even if the model of nucleotide substitution was exact (which would only be 

the case for simulated data). This is due to the fact that there is only a finite amount 

of data, so stochastic errors will cause the distances to deviate from additivity. 

An even more restrictive property of distances is the ultrametric property. This 

requires the three point condition to be met: for any three taxa A, B and C, 

dAC <max{dAB,dBc}. 	 (2.43) 
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This is equivalent to saying that two of the pairwise distances between two taxa are 

equal, and at least as large as the third. Ultrametric distances will fit an additive 

phylogenetic tree, with the additional feature that it can be rooted so that all of the 

taxa are equidistant from the root (i.e., the tips of the tree all finish at the same vertical 

line in a dendrogram). This is equivalent to saying that a molecular clock must exist 

(the sequences in the data set all evolve at the same rate). Due to stochastic error, it is 

very unlikely that estimated distances will he ultrametric, even if the molecular clock 

hypothesis is true for a particular data set. 

Some of the available distance methods are discussed now. These may be split into 

two groups: the algorithmic type which produce one answer only; and those with an 

optimality criterion, which means that a search of tree space must be carried out to 

find possible solutions. 

2.7.5 Algorithmic phylogenetic tree estimation techniques using pair-
wise distance data 

UPGMA 

UPGMA, or Unweighted Pair Group Method with Arithmetic Averages was one of the 

first distance methods to be suggested (Sneath and Sokal, 1973), and for a time was 

widely used. This is essentially average linkage cluster analysis arid requires ultrametric 

distances. Distances which do riot satisfy this criterion will generally lead to incorrect 

estimates of a phylogenetic tree using UPGMA. Simulation studies have suggested 

that UPGMA is inefficient and confirmed that it is extremely sensitive to departures 

from ultrametric distances (Huelsenbeck, 1995), often leading to very wrong estimates 

of the underlying phylogenetic tree. This has been partly responsible for the early 

unpopularity of distance methods. 

Neighbor Joining 

The Neighbor Joining method (Saitou and Nei, 1987) could be described as a type 

of cluster analysis, which allows for unequal rates of evolution along the branches of 

the phylogenetic tree. It does this by constructing a transformed distance matrix at 

each step in the analysis; the transformation adjusts the distance between each pair of 

nodes on the basis of the mean divergence from all other nodes. For details, see Avise 

(1994). Once this matrix has been obtained, the two nodes separated by the smallest 

distance are joined. Simulation studies (Kuhner and Felsenstein, 1994) suggest that this 

method performs reasonably well in practice, although there is the problem, particularly 

for larger data sets, that once two nodes have been joined, they cannot be unjoined. 

Saitou and Nei (1987) have shown that the step which estimates the branch lengths 

between two neighbours is the unweighted least squares estimate (Cavalli-Sforza and 

Edwards, 1967, see below) for a tree with nodes i and j as neighbours and with all 
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Figure 2.8: The branch length estimation of the Neighbor-Joining algorithm between 
two neighbours is equivalent to the unweighted least squares estimation of the branch 
lengths leading to nodes i and j for this type of tree. 

other tips branching out from a multifurcating node (see Figure 2.8). Therefore, it may 

be viewed as an approximation to the least squares solution (Felsenstein, 1997). In the 

simulation study described by Kuhner and Felsenstein (1994), Neighbor-Joining was 

found to perform almost as well as least squares; its success suggests that the estimate 

of branch lengths between two neighbours is not highly sensitive to the resolution of 

the relationships between the taxa involved in the multifurcation. 

2.7.6 Estimating phylogenetic trees using least squares 

A class of estimation methods involves minimising the differences between the estimated 

tree distances and the observed distances from the pairwise distance matrix. This is 

done by minimising an objective function of the form 

(2.44) 

i=1 j=i+1 

where E is the error in fitting the distance estimates to the tree 

T is the number of species 

wij is the weight applied to the branch lengths between sequences z and j 

dij is the estimate of the pairwise distance between sequences i and j 

Pij is the predicted distance between sequences i and j, from the tree 

a is either 1 or 2. 

(Swofford et al., 1996). The value of a is often chosen to be 2, which places this method 

into the least squares group, the class of methods considered here. In addition, values 

for the {w 3 } must be chosen. These reflect the magnitude of error in the distance 

estimates. If it is believed that they are all subject to the same magnitude of error, 

then 'w jj = 1 is appropriate (Cavalli-Sforza and Edwards, 1967) while if the estimates 

are assumed to be uncertain by the same percentage, wj = 1/d is a reasonable choice 

(Fitch and Margoliash, 1967). 
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Figure 2.9: An example of a tree for three species, A, B and C, with branch lengths as 

shown. 

If the observed distances are additive for a particular topology then exact branch 

lengths may be fitted to the data. Otherwise (as is usually the case), the objective 

is to minimise E, the discrepancy between the observed and the estimated distances. 

A particular tree topology is chosen. The object now is to find the branch lengths. 

To illustrate how this may be carried out, consider the problem of finding the branch 

lengths of the simple tree in Figure 2.9, with observed pairwise distances of dAB, dAC 

and dBc. The branch lengths may be found by solving the system of equations: 

/1 1 o\ (VI) 	(PAB) 
(1 o ij y2 = PAC 

1 iJ v3 	\PBC 

Av = p 	 (2.45) 

where v is the matrix of branch lengths and p is the vector of predicted distances 

between the sequences. The matrix A specifies the linear combinations of v which 

yield each of the elements of p. 

In the case of additive distances, linear algebra may be used to obtain the solutions. 

The vector p is replaced by d, the vector of the observed pairwise distances. If wj 1 

then v = (ATA)_l(ATd), while if wij = dZJ  2  then v = (A TWA)  _I(ATWd), where 

W is a T(T - 1)/2 x T(T - 1)/2 matrix with diagonal elements equal to the weights 

associated with each pairwise distance, and all off-diagonal elements equal to zero. For 

non-additive distances, algorithms must be used to obtain the least squares estimates 

(Felsenstein, 1997). 

The best tree is the one which minimises E, so for non-additive distances, the idea 

is that the best set of branch lengths are found for each topology, and the overall best 

tree is the one which minimises E. For large data sets, it is impossible to find the best 

branch lengths for all topologies as the number of trees is too great. Hence, heuristic 

search algorithms must be employed to search the tree space for good solutions. More 

details may be obtained in Swofford et al. (1996) and references therein. 
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Least squares methods have been found to perform quite well in various simulation 

studies (Kuhner and Felsenstein, 1994). For four species trees, such as that in Figure 2.4, 

least squares estimates the correct tree over much of the parameter space, performing 

quite well for some trees with branch lengths in the Felsenstein zone (Huelsenbeck, 

1995). One drawback is that negative branch lengths may result from the minimisation 

of E in (2.44), but it is possible to include the constraint that branch lengths must be 

greater than or equal to zero. 

Phylogenetic trees are often used for subsequent analyses so other questions will need to 

be answered. These vary from model diagnostics (does the chosen model of evolution 

fit the data reasonably well) to the confidence in the tree (how significant are the 

branching patterns observed) to the comparison of one hypothesis to another (is tree 

A significantly different to tree B). Some tests which have been developed to address 

these questions are examined in the next section. 

2.8 Statistical tests 

As implied above, statistical tests in the area of phylogenetics may be, by and large, 

divided into three groups: those which test the fit of a model; those which assess the 

confidence in a particular tree; and those which directly compare two trees to each 

other. 

For distance and likelihood inference, it is important to select an adequate model 

of nucleotide substitution. Goldman (1993a) suggests using a likelihood ratio to test 

one model (model 0) with ni parameters against a more complex version (model 1) 

with m parameters where ri. < rn. The proposed test statistic is 6 = 2(lnLi - lnLo) 

where Li is the likelihood under model i. It might be expected that this statistic would 

have a x2  distribution with m - n degrees of freedom. However, Goldman (1993a) 

observes that this approximation sometimes does not hold for phylogenetic problems, 

so he suggests simulating a large number of data sets under the null hypothesis (model 

0) and finding the value of 6 for each simulation. This yields a distribution for 6 if 

the null hypothesis that model 0 provides an adequate description of the data is true. 

Hence, the significance of the observed value may be assessed. 

This principle of simulating data under a null hypothesis to assess the significance 

of a test statistic is generally referred to as parametric bootstrapping in the phylogenetic 

literature, a very useful technique in modern phylogenetic analysis (for example, see 

Huelsenbeck et al., 1996). Huelsenbeck and Bull (1996) use parametric bootstrapping 

in a test for heterogeneous regions in DNA sequences (e.g., regions with different phy-

logenies or regions evolving under different conditions). Standard models will provide 

a poor fit to such data sets. 



Goldman (1993b) also considers specific deviations from models of evolution. For 

example, studies have shown that, for some data, allowing for invariable sites (positions 

in an alignment which cannot change) makes a significant improvement in the fit of a 

model. He develops a test to see if the number of constant sites observed in a sequence 

is greater or less than expected, employing a normal approximation. Other properties 

examined include the number of different permutations of the four nucleotides observed 

at the positions in a multiple alignment. 

Rzhetsky and Nei (1995) have developed tests which examine the performance of 

nucleotide substitution models for a data set using properties of the model. For ex-

ample, to assess the suitability of the Jukes-Cantor model to a particular data set, the 

property of this model that the expected number of transversional differences between 

two sequences is twice that of the number of transversional differences is used to define 

a test statistic, with known variance. Significance of the observed value may be assessed 

using a normal distribution. 

Resampling methods have been used to assess the confidence in certain branching 

patterns in a tree, in particular, the non-parametric bootstrap (Felsenstein, 1985, 1988), 

so called to distinguish it from the model-based parametric bootstrap. Essentially this 

generates a large number of pseudo data sets by sampling the columns of the data 

set with replacement. Thus, sonic columns of the multiple alignment may be sampled 

several times, while others will not be present at all in the pseudo data set. Trees 

may therm be inferred from each of these data sets. If a particular group is present in 

a large number of these trees (e.g., around 95%) then the group may be said to be 

significantly supported. Bootstrapping may be used with any phylogenetic inference 

method, though for large data sets, its use with maximum likelihood will often be too 

slow to be of practical use. 

To avoid the problem of multiple tests, it is important to decide on a hypothesis 

before carrying out an analysis. For example, it might be of interest to see if a particular 

group of sequences is monophyletic (i.e., of common descent and thus separated from 

the rest of the sequences in a tree). A consensus tree is constructed from the trees 

estimated from each bootstrap replicate, and the bootstrap support for each branch is 

shown (i.e., the number of trees which have the two groups separated by that branch 

as two distinct groups). It is then simple to find the support for the particular group 

of interest. 

The bootstrap values are difficult to interpret: does 95% bootstrap support corre- 

spond to 95% confidence that a group is, indeed, monophyletic? There has been some 

work done on the properties of these bootstrap values. Many believe that when the 

phylogenetic tree inference method used is consistent, high bootstrap values tend to un-

derestimate the confidence in a particular cluster, whereas the opposite appears to be 
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true for low values - they overestimate the confidence. The extent of this bias seems to 

depend on factors such as the number of species in the tree, the length of the sequences, 

and the locations of the internal branch being assessed for significance (Swofford et al., 

1996, and references therein). However, Efron et al. (1996) recently suggested that this 

apparent bias was a result of the greater variance of the bootstrap estimates about the 

true tree, implying that there is 110 systematic bias in the estimates. 

One disadvantage of non-parametric bootstrapping is that it cannot detect an in-

correctly inferred tree topology. For example, an implausible method of tree inference 

might be to group sequences in alphabetical order of their names. All bootstrap repli-

cates would produce the same tree which is highly unlikely to be the correct tree. Thus, 

non-parametric bootstrapping can lure the user into a false sense of security. 

A researcher may have a particular hypothesis about the evolution of a data set, 

which translates into a certain branching pattern. However, when they estimate the 

best tree for the data set, they may find the branching pattern is different. But is it 

significantly different? Kishino and Hasegawa (1989) proposed a test which may be 

used in such a case, using likelihoods. They compare a particular topology (H1 ) to 

the estimated one (1-10 ) using the posterior probability of observing H1  if 110  is true, 

this probability depending on the difference in the log likelihoods. The variance of this 

difference may be estimated from the likelihoods at each site. Since the log likelihoods at 

each site are assumed to be independent, identically distributed random variables, the 

log likelihood for each model, and consequently the difference in log likelihoods should 

be approximately normal. Thus, a confidence interval for the posterior probability of 

H1  may be found and this may be used to assess if H1  is significantly worse than H0. 

Since this test does not use bootstrapping, it is quick to carry out. It does require the 

use of likelihoods, but for large data sets, trees may be estimated using other, faster 

methods and therm their site likelihoods may be evaluated. 

Parametric bootstrapping may he used to assess the evidence supporting a particular 

hypothesis about a tree topology. This is best illustrated by means of an example used 

by Hillis et al. (1996) for the same purposes. A dentist who was HIV positive was 

suspected of having infected some of his patients. Constructing phylogenetic trees 

based on HIV samples from the dentist, his patients and from other sources in the local 

area allowed the investigation of this charge. One interesting fact arose in the study: 

one patient had two strains of HIV which appeared to have separate origins in the 

estimated phylogenetic tree. Since this patient had multiple risk factors for liv, this 

suggests the possibility of multiple infection, which would be of considerable interest to 

epidemiologists. 

To assess the evidence for this hypothesis, the null hypothesis was chosen to be that 

the patient was not infected from multiple sources. Thus, the phylogenetic tree had 



all branches as before, except that the two HIV sequences from the patient clustered 

together. The best tree for this topology was found. Then 100 replicate data sets 

were simulated according to this tree and the model of evolution which had been used. 

The difference in the log likelihoods between the null hypothesis tree compared to the 

optimal tree (if different, the result of random errors) were recorded and used to form a 

distribution for this difference. The actual observed difference was far greater than any 

from this distribution, and thus it was conciLided that the patient was infected from 

multiple sources. 

One argument against the use of parametric bootstrapping in this manner is that 

the results might be sensitive to the choice of model of nucleotide substitution. How-

ever, the procedure may be repeated using different models of substitution to assess the 

sensitivity of the results (analogous to an investigation into the dependency of the re-

sults of a Bayesian analysis on the choice of prior). Hillis et al. (1996) state that limited 

studies have suggested that the test is robust to changes in the mi del of evolution. 
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Chapter 3 

A Review of Tests for 
Recombination 

A large part of the work in this thesis deals with detecting evidence of a phenomenon 

calle(1  recombination in DNA data sets. Hence, a review of existing methods for infer-

ring the presence of recombination is given here. The chapter opens by describing the 

recombination process and its biological importance before discussing tests for recom-

bination. 

3.1 Description of recombination 

Recombination is a genetic process that results in the exchange or transfer of DNA 

subsequences between two DNA sequences. In species with two pairs of chromosomes 

(e.g., humans), recombination events involve the exchange of DNA subsequences be-

tween chromosomes and produce an offspring whose DNA is a mosaic of the DNA from 

the parents. Recombination in bacteria involves the transfer of DNA subsequences from 

one organism to another. Bacteria have one large chromosome (the circular genome 

shown in Figure 3.1a). If a DNA subsequence from another bacterium is present in 

the environment of a bacterium, it can remove the corresponding piece of DNA from 

its genome and replace it with the foreign genetic material as shown in Figure 3.1b. 

Thus, within species, recombination is a process which mixes the genetic material and 

increases variation. 

Recombination can result in the horizontal transfer of DNA from one bacterial or 

viral species or strain to another (what constitutes a distinct species is often not clear 

cut with bacteria and viruses. Therefore, the term strain is often used; this can be 

thought of as the equivalent of species, but with less clear cut species boundaries). 

Recombination is an important source of variation in many bacteria and viruses. 

Robertson et al. (1995) note that recombination in strains of HIV-1 is relatively frequent 

and appears to be a significant source of new variation observed in HIV-1. Recombi-

nation may also be an important source of genetic variation in strains of the Hepatitis 
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Figure 3.1: an illustration of recombination in bacteria. The circle represents the 
genome of a bacterium, the solid arc depicts some genetic material in the environment. 
a: before the recombination event. A piece of foreign DNA is in time bacterium's 
environment. b: the bacterium has included the foreign DNA in place of its own in its 
genomne. 

B virus. Bollyky et al. (1996) examined 25 strains of the virus and found two recombi-

nant sequences (i.e., mosaic sequences, containing DNA from different sources), both of 

which came from a geographic region where multiple genotypes are known to coexist. A 

further example of recombination in bacteria is time argF gene of Neisseria Meninqitidis. 

Zhou and Spratt (1992) found two regions of high diversity in this gene, and identified 

one as a recombinant. 

The detection of recombination is very important for many applications. For exam-

ple, in AIDS research potential vaccines will often be developed for particular strains 

of the virus. If it is known that a particular strain is actually a mosaic of established 

types, then a potential vaccine could be tailored accordingly. Recombination is also the 

vehicle through which many disease-causing bacteria acquire resistance to antibiotics, 

so again it is important to be able to detect instances of its occurrence. 

3.2 Using polymorphic sites to detect recombination 

Various methods have been proposed which use polymorphic sites in a DNA sequence 

alignment to detect recombination. A site in an alignment is said to be polymorphic 

if there is more than one nucleotide type among the sequences at that position. Poly-

morphic sites include those sites classed as informative under the parsimony criterion. 

Informative sites provide support for particular branching patterns. For example, sup-

pose the nucleotides at a particular site in a four species data set were AGAG. Then 

this site is informative since it suggests that species 1 and 3 cluster together. A site with 

nucleotides AGGG is not informative, however, as this does not suggest any partitions 

of the data beyond the trivial one (species 1 v species 2, 3 and 4). 
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Stephens (1985) was one of the earliest developers of statistical techniques to de-

tect recombination. He takes an alignment of a small number of DNA sequences and 

considers those polymorphic sites which generate a split in the data set (i.e., there are 

exactly two nucleotide types at a site and the DNA sequences may be partitioned ac-

cording to which of them has the first nucleotide type and which has the second). For 

example, if site j in a five-sequence data set has nucleotides GAGAA, then the data 

set may be partitioned into sequences 1 and 3, with the other three forming the other 

set. Partitions into three or four sets are not considered as it is usually sufficient to 

consider two-set partitions only. 

For any particular split into two subsets, those polymorphic sites which support 

this split are considered. Stephens (1985) develops tests to see if s sites supporting 

the partition are significantly clustered. If this is the case, then it suggests that a 

recombination event has occurred. 

One problem with these tests is that it is difficult to apply them to larger data sets. 

Especially in the case of high levels of polymorphism, finding an informative split may 

be difficult. Multiple comparisons also causes problems for larger data sets. If a data set 

contains ri sequences, then there are 21 - 1 possible splits. For eight sequences, these 

leads to 127 possible partitions. Therefore, some splits are likely to have significant 

non-random clustering by chance. 

A further drawback is that, while the tests can detect recombination events, they 

do not find the location of the breakpoints. If the aim of an analysis is to infer the 

phylogenetic relationships within a set of species, then knowing the limits of recom-

bination events is very important. Sawyer (1989) noted that these tests had another 

shortfall: they only correct for regions with high rates or low rates of substitution along 

a sequence by deleting segments with no polymorphic sites. With moderate levels of 

polymorphism, it would be desirable to have a more sensitive way of allowing for vari-

able rates of nucleotide substitution. Therefore, he proposed a test based on fragments 

of DNA sequences, which does take account of variable mutation rates. 

Given a set of n aligned DNA sequences, a site is said to be both silent and poly-

morphic if the nucleotides at this site are not identical in all the sequences but the 

amino acids encoded by the site's codon in the sequences are identical. Suppose there 

are, in total, s silent polymorphic sites in the alignment. If two of the sequences are 

then compared, they will differ at d < s silent polymorphic sites. These sites partition 

the DNA sequences into d + 1 subsets, called fragments. A condensed fragment is the 

set of all the silent polymorphic sites in the fragment, its length, x, being the number 

of such sites. Clearly, the sum of the lengths of all the condensed fragments is given by 

E xi = s - d. The sum of the squares of the condensed fragment lengths, SSCF, is 

defined as the sum of x over all dk + 1 fragments over all ri(n - 1)/2 pairs of sequences, 
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where dk is the number of silent polymorphic sites at which the kth  pair of sequences 

differ. Similarly, MCF is the maximum of xi for all such fragments for all possible 

pairs of sequences. 

Significance is assessed by carrying out a permutation test on the orders of the 

s silent polymorphic sites. Sites are permuted on the basis of their degeneracy in 

the amino acid code. So a column of data whose codon is twofold degenerate (i.e., 

wo possible codons correspond to oie amino acid) may only be replaced by another 

column of data which is also two-fold degenerate. A large number of such data sets are 

generated and a distribution of SSCF or MCF under no recombination is found. This 

then allows the significance of the observed value to be assessed. 

The test may be justified as follows: if there has been no recombination event since 

the most recent common ancestor of the sequences, then the distribution of bases at 

silent polymorphic sites should be determined by neutral mutation. Once the degener-

acy of a site is determined, the distribution of bases should be independent of position. 

The permutation test preserves this dependency on the level of degeneracy at a po-

sition. Hence, differences in mutation rates should be separated from recombination 

events. 

If a recombination event has occurred, then it will often result in an unusually long 

fragment. By the standard result that, subject to the constraint 	= c, E x is 

minimised by placing equal values on the xs, a long fragment will tend to increase the 

value of SSCF. 

Sawyer (1989) applies this test (or slightly modified versions) to several data sets, 

and found its performance satisfactory. However, it still does not address the problem 

of identifying the limits of recombination events. At this stage, Maynard Smith (1992) 

proposed the maximum chi-square test, which does find recombination breakpoints. 

The maximum chi-square test can detect recombination and locate breakpoints 

in a segment of DNA provided the region is organised into two blocks, with one re-

combination breakpoint separating the two regions with different ancestral history. 

Maynard Smith (1992) considers two sequences, N base pairs long, which contain s 

polymorphic sites. An arbitrary cut is made after k sites, resulting in the sequences 

differing at r sites before the cut and s - r sites after the cut. Obviously the expected 

numbers of polymorphic sites before and after the cut, assuming a random distribu-

tion, are (k/N)s and [(N-k)/N]s. This allows the chi square statistic to be calculated. 

This process is repeated for all possible values of k until the cut which maximises the 

value of the chi-square statistic is found. This point is the location of the putative 

recombination event. 

To test if this does, indeed, mark the limit of a recombination event, a permutation 

test may be used. For each randomised data set generated, the value of the maximal 
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chi-square statistic is found, and is used to form the distribution of the statistic under 

the null hypothesis that no recombination has occurred. 

This test has been widely used in AIDS research (Robertson et al., 1995) and in 

other applications to detect recombination (e.g., finding recombination in strains of the 

Hepatitis B virus, Bollyky et al., 1996). 

The maximum chi-square test does have several limitations. Firstly, the region must 

be in the two block structure described abovc. If, for example, a recombination event 

occurs in the middle of the sequences, such that the subsequences on either end have 

the same history while the central region has different ancestral relationships, then the 

maximum chi-square test may fail to find the recombination event. It is possible to 

split the data set up into smaller subsets and analyse each region separately, but this 

is tedious, and requires some prior knowledge about the locations of possible recombi-

nation events. Secondly, the maximum cu-square test considers only the polymorphic 

sites, so is not making the most efficient use of the information within the sequences. 

A further consequence is that a recombination breakpoint can only be located within 

the set of nucleotides lying between two polymorphic sites. 

Maynard Smith (1992) describes an application to two sequences, Bollyky et al. 

(1996) describe an extension to 4 sequences. In practice data sets are considerably 

larger. It would be preferable to have a method which could be applied to larger 

numbers of sequences. This is not only beneficial from a practical viewpoint, but would 

also avoid the problems of multiple tests. If a larger data set has to be broken down into 

many subsets in order to look for recombination, it is quite likely that some of the results 

will be significant by chance alone. Multiple tests could be avoided if the researcher has 

some ideas, a priori, about possible recombinant strains and the corresponding parental 

lineages; this will also cut down on the amount of labour involved. Unfortunately, this 

will often not be the case. 

A recent addition to methods based on polymorphic sites, the homoplasy test, was 

proposed by Maynard Smith and Smith (1998). This test determines if there is a signifi-

cantly greater number of homoplasies in the most parsimonious tree estimated from the 

data set than would be expected under random substitution alone. The homoplasy test 

is suitable for sequences with low levels of divergence and Maynard Smith and Smith 

(1998) state that it should be considered as a complementary test to the maximum chi 

square test, which is suitable for sequences with greater levels of divergence. 

Before describing this method, a homoplasy must first be defined. A homoplasy 

occurs when the same site mutates independently on different branches of a phylogenetic 

tree. An example is shown in Figure 3.2. The nucleotides at the tips of this tree are 

GTTG; these arose by two T - C mutations on two different branches, as shown in 

the diagram. 
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Figure 3.2: An example of a homoplasy. 

To find the number of apparent hornoplasies in a data set, the number of polymor-

phic sites and the most parsimonious tree (hereafter referred to as the MPT) are used. 

Let v be the number of polymorphic sites in the data set and let t be the number of 

steps or mutational changes in the MPT. Then the number of apparent homoplasies in 

a data set is given by h = t - v. 

The expected number of homoplasies, h, depends on the number of sites, N, in 

the data set. The larger the value of N, the smaller It should be (since it is less 

likely that the same site will mutate on more than one branch). Unfortunately the 

relationship between Ii and N is not simple; not all sites at risk of mutating are equally 

likely to change. Therefore, h is estimated by considering the effective number of sites, 

NE < N. Given two identical genes affected by the same evolutionary forces, suppose 

that a random mutation occurs at one site in each of them. Let p be the probability 

that the same site changes in each of them. Then NE = l/p. Note that if there are N 

sites, all equally likely to change, the effective number of sites, NE,  will be the same as 

the actual number of sites, N, since p = 1/N. 

Maynard Smith and Smith (1998) describe a method for estimating NE using an 

outgroup to the set of sequences under analysis. They assume that the outgroup has 

been selected so that it satisfies the assumptions that it is subject to the same evolution-

ary forces as the data set, and that saturation in substitutions between the outgroup 

and the root of the data set (i.e., along the branch connecting the outgroup to the data 

set) has been achieved. If u is the number of changes along this branch, then NE = 2u. 

Once NE has been found, a sampling distribution for the expected number of ho-

moplasies may be found by simulation. Sites are selected, with replacement, from a set 

of NE sites until v different sites have been chosen. If w is the number of selections 

required to achieve this, then h = w - v is the number of double hits and forms part of 

the empirical distribution of It under the hypothesis of no recombination. If the proba-

bility of observing > h homoplasies is low, then the null hypothesis of no recombination 

may be rejected. 
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The homoplasy test has certain limitations. Firstly, since it considers only the 

polymorphic sites, it is losing a lot of the other information contained in the data set. 

In their examples using real data sets, Maynard Smith and Smith (1998) used only the 

synonymous changes as the third position, eliminating all others. Again information 

is being lost. In addition they assume that each site exists in only two states. Since 

the test has been developed for sequences with small amounts of change (1%-5%), this 

should not be a severe problem as transversional changes will be unlikely. 

The homoplasy test does not estimate the locations of possible recombination events; 

it merely finds evidence for the presence of recombination in the data set as a whole. 

A simulation study conducted by Maynard Smith and Smith (1998) suggests that it 

requires a relatively large number of recornbination events to have occurred before the 

test will have reasonable power. The simulation study was based on data sets of 16 

species, with NE = 200, which seems a reasonable value for data sets of closely related 

taxa. This is a potential problem, but requires further investigation. 

The first three methods above consider the pattern of polymorphic sites within pos-

sible recombinant sequences, while the last examines the number of homnoplasies within 

a data set. A different approach is described by Hem (1993). He detects recombination 

by considering changes in the most parsimonious topology along an alignment (thus, 

he is only using the informative sites within a multiple alignment). He starts by con-

sidering the possible new topologies that can arise from existing ones following one or 

more recombination events. This defines the set of topologies that must be considered 

given a particular starting topology. 

The problem is then considered in terms of a graph. Each node (i, T) consists of the 

data at the ith  column of the alignment and a given topology, T. The node is assigned 

a weight, w(i,T), the weight of position i given topology T. An edge connects two 

neighbouring nodes, i and i - 1, and is assigned a weight d(T,T'), the reconnbinational 

distance between T (the topology at position i) and T' (the topology at position i -  1). 

W(i, T) is the weight of the most parsimonious history of the first i positions, given 

that the topology at position i is T. 

The most parsimonious history of the sequences will be the path of lowest weight 

from node 1 to node N, where N is the sequence length, the weight being found by 

summing the weights of the nodes and the edges. This is given by W(N,T), found by 

the following recursion: 

W(1,T) = w(1,T) 
	

(i=1) 

W(i, T) = mm {W(i - 1,T') + d(T, T') + w(i, T)} 	(i> 1) 	(3.1) 

Thus, the sequence will start in a particular topology and will only change topologies 

when it becomes worthwhile to do so [sufficiently low values of w(i, T)]. A sensible 
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choice of values of d(T, T') will prevent too frequent changes in topology (e.g., after a 

couple of nucleotides). 

The dynamic programming algorithm described by Hem (1993) does yield exact 

results, and is relatively fast for small data sets. However, it is impractical for more 

than five or six sequences. Since it is useful to have a method which may be applied 

to larger data sets, Hem (1993) describes a heuristic version of this algorithm. While 

applicable to most practical problems, it no longer guarantees that it will find the 

cheapest path from node 1 to node N. 

The heuristic algorithm makes some basic assumptions. Firstly, it is assumed that 

only one recombination event happens between each node (nucleotide). Therefore, all 

topologies which are separated by two or more recombination events from topology T 

may be discarded when W(i, T) is being calculated. It is also assumed that the correct 

topology is known at some point in the sequence (e.g., at the first nucleotide). The 

algorithm then starts with this topology and scans topologies whHh are one recomnbi-

national step away. This continues until a new topology is selected; the algorithm then 

starts to scan trees in the neighbourhood of this topology. Of course, in practice, the 

correct tree will not be known for any node. The topology based on the entire sequence 

may be used as an approximation (this is more likely to be correct than a random tree, 

particularly if recombination is a rare event). As a check of this starting topology, the 

algorithm may be run in reverse, starting at node N, and the results may be compared. 

Hem (1993) notes that the parsimony algorithm has been criticised (see 2.4). Since 

his proposed algorithm for detecting recombination is based on the parsimony principle, 

it is likely that it will also suffer from these same problems. However, as a first approach 

to tackling the difficult problem of detecting recombination, it can be justified. Time 

advantage of the parsimony criterion is that it leads to a well-defined mninimisation 

problem which can be solved as outlined above. 

It may be reasonable to extend the idea behind this algorithm to the more statis-

tically sound distance and likelihood methods and use these as a basis for detecting 

recombination. Indeed a similar concept is used in Chapter 5, where the theory of 

Hidden Markov models is used to develop a Bayesian approach to the detection of 

recombination. 

3.3 Approaches using the non-parametric bootstrap 

Other authors considered the use of alternative tools for detecting recombination. For 

example, Salminen et al. (1995) developed a procedure which they term bootscarnnirng 

for detecting recombination in strains of HIV-1. The essentials of their method are 

as follows. A database is maintained of representative nonrecombinant sequences of 

established genotypes of HIV-1. To test 	 for recombination, a data set is 



built up consisting of that sequence, and strains of the established genotypes from the 

database. A moving window (length 200-500 bp) slides along the alignment, creating 

overlapping segments, on each of which a phylogenetic bootstrap analysis is carried 

out. If a DNA sequence has been subject to recombination events in the past, then 

different segments of this sequence will cluster with different genotypes. Once possible 

recombination events have been detected in a sequence, that sequence and the parental 

strains (and an outgroup) may be reanalysed, and the location of the recombination 

breakpoints pinpointed more accurately. This is done by noting where high bootstrap 

support for clustering with one of the parental genotypes suddenly changes to high 

bootstrap support for clustering with another. 

This method is based on a good premise, and since detecting recombination is of 

vital importance in AIDS research, it could play an useful role. However, it is limited 

by the fact that it requires a database of established genotypes of the organism in 

question. Thus, a researcher must assemble such a database, if one does not already 

exist, which is time consuming. Another drawback is the computational burden involved 

in implementing large numbers of bootstrap analyses. 

A different approach using the bootstrap was suggested by Lawrence and Hartl 

(1992). They consider two data sets of N sequences: a reference data set and a test 

data set. In the absence of recombination the two data sets should have the same 

phylogenetic history. 

In order to compare the two data sets, Lawrence and Hartl (1992) firstly compute the 

pairwise percentage similarity (number of identical sites / total number of sites x 100) 

for all pairs in each of the data sets. Two matrices are formed which contain the 

similarity measures. In order to make the two matrices commensurate, the magnitude 

of the relationships in each row of the matrices are ranked (i.e., the first row contains 

the percentage similarities between the first sequence and all others; it is these that are 

ranked). The Spearman rank correlation statistic is then calculated for each row in the 

two matrices as follows: if pli and P2i  are the jth  entries in a particular row in the first 

and second rank matrices respectively, then the Spearman rank correlation statistic is 

given by 

8=1— 
61(p 	p2i)2 

N3 —N 
(3.2) 

Note that S = 1 indicates perfect positive correlation, while S = —1 indicates perfect 

negative correlation. 

Once the Spearman rank correlation statistic has been obtained for each row, an 

overall similarity coefficient may be found by averaging the row statistics. Coefficients 

less that 1 suggest that there is some discrepancy between the test and reference data 

sets. 
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A bootstrap analysis is used to assess the significance of this similarity coefficient. 

As in the standard applications of bootstrapping in phylogeny, the columns of the 

reference data set are sampled with replacement to form k new data sets. Each of these 

is compared to the reference data set in the manner described above, and a similarity 

coefficient is obtained for each. The distribution of these coefficients which results from 

this procedure shows the variation expected due to random stochastic error, and may 

be used to assess if the observed value of the similarity coefficient is significantly smaller 

than expected if no recombination has occurred. 

Lawrence and Harti (1992) point out that if there is only one recombinant sequence 

in a data set, the removal of this sequence would mean that the reference and the test 

data sets no longer differ significantly. Therefore, the analysis could be repeated with 

one sequence omitted each time in an attempt to identify the recombinant. It must be 

noted, however, that significance levels must be altered to avoid spurious results due 

to the problems of multiple comparisons. 

This method does not identify recombination breakpoints in a sequence, which is a 

limitation. As it uses the entire sequence length, it may lack the power to find short 

recombination events relative to the entire sequence length. It is also possible that for 

large data sets (i.e., large numbers of sequences) with only one recombination event, 

the information on the discrepancy may be swamped by the good matching of the other 

sequences. A way around this would be to use subsets of the larger data set, but again 

this requires that the researcher has some prior knowledge about possible recombinant 

sequences and their parental strains. 

3.4 Likelihood-based procedures for detecting recombina-
tion 

Likelihood methods generally make very efficient use of the information contained in a 

data set; therefore it seems obvious to tackle the problem of detecting recombination 

using likelihood in some guise. 

Huelsenbeck and Bull (1996) considered the simpler problem of detecting conflicting 

phylogenetic signal from data sets containing different parts of the genome. They 

developed a method which can detect sources of heterogeneity, in general, between 

data sets, although their specific application looks at changes in the branching pattern, 

and thus should detect recombination. 

Their procedure uses a likelihood ratio test to evaluate the null hypothesis that 

differences in phylogenetic estimates are a result of random stochastic error, rather 

than heterogeneities in the data sets. The alternative hypothesis allows the different 

data sets to have different phylogenies. 

Suppose the model parameters of the jth  data set are the ordered pair Oi = (Ti, cb) 
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where T represents the topology and Oi  denotes the other phylogenetic parameters 

(e.g., branch lengths, transit ion- transversion ratio etc). These quantities are estimated 

from each of the data sets, yielding the set of estimates w = {0,... , ON  c Q for all 

N data sets. To specifically test for changes in the branching pattern, calculate the 

likelihood, L0 , under the null hypothesis: 

L0 = rnax{L(w)} E TTT. 

Note that, while the topologies are constrained to be equal, the other phylogenetic 

parameters may vary from one data set to the next. 

This is compared to the likelihood, L1, under the alternative hypothesis which allows 

the topology as well as the other parameters to vary across the data sets: 

L1 = max {L(w)}. 

Then the likelihood ratio statistic is given by 

6 = 2[lnLi - In Lo]. 	 (3.3) 

As mentioned in 2.8, phylogenetic likelihood ratios often do not have asymptotic x2  
distributions. Therefore, it is necessary to find the null distribution of 6 using Monte 

Carlo simulation or parametric bootstrapping. Since the true values are unknown, the 

one underlying topology and other parameter values must be estimated from the data. 

A large number of data sets may then be simulated and the distribution of 6 under the 

hypothesis of no heterogeneity in branching pattern from one data set to another may 

be found. 

Clearly this test would be useful if potential recombination breakpoints are known. 

Since it is based on likelihoods, it makes efficient use of the data in the various data sets. 

Therefore, it should have greater power than tests based merely on the polymorphic or 

informative sites. If some initial scanning method is used to detect possible recombi-

nation breakpoints, however (such as the algorithm using the Dss statistic described 

in Chapter 4), the different subsets will be selected on the basis of maximal difference, 

so a bias will be introduced into the likelihood ratio test. Hence, it will be necessary 

to increase the significance level; a sufficiently stringent level should offset this bias. 

A different approach using likelihoods was proposed by Grassly and Holmes (1997). 

They consider the fundamental problem of detecting recombination in a data set where 

there is no prior knowledge about whether recombination has even occurred, or the 

sequences involved in the event. Intuitively their idea is quite simple: consider the 

maximum likelihood phylogeny for the entire data set, and look at the values of the 

likelihood at each site. If a recombination event has occurred, then this phylogeny will 

be a poor fit to the data in that region, and should be reflected by lower site likelihood 

values. 
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In more detail, their approach proceeds as follows: once the site likelihoods, accord-

ing to the maximum likelihood phylogeny for the entire data set have been found, a 

sliding window of varying length (from 5 base pairs to half the sequence length) moves 

along the sequence. In each window of length s, from sp to sp + s - 1, the following 

quantity is calculated: 

'lnL /
SP-1 lnLi + 	

(3.4) 
s 	/ 	 N —s 

where Li is the likelihood at each site and N is the total sequence length. Essentially, Q 
is finding the ratio of the average log likelihood in a region compared to that in the rest 

of the sequence. High values of Q correspond to regions of low likelihood and suggest 

heterogeneity in the data. 

It is necessary to assess the significance of the values of Q before any conclusions 

may be drawn about the data set. Thus, a distribution of the maximal Q values under 

the null hypothesis of no recombination, or other heterogeneities in the data must be 

found. This was initially done using parametric bootstrapping, the largest value of Q 
for each window size from each simulated data set being recorded. However, Grassly 

and Holmes (1997) noted that this distribution appeared to be normal (confirmed by 

a Kolmnogorov-Srnirrioff test), so they conclude that normal distribution theory may be 

used to assess the significance of Q. 
Simulation results and examples using real data suggest that this method performs 

well. Nonetheless, it is not without its problems. Firstly, it may not be able to dis-

tinguish between recombination events and rate variation. Since the likelihood values 

at each site are calculated according to a single maximum likelihood phylogeny with 

fixed branch lengths, regions of the alignment with different branch lengths due to rate 

variation may have lower likelihood values which could be significant. One way of deal-

ing with this problem would be to incorporate rate variation into the model used to 

find the maximum likelihood tree; for sequences with unknown regions of variation in 

mutation rates, the Hidden Markov model approach for rate variation, as described by 

Felsenstein and Churchill (1996), could be used. 

Another problem stems from the fact that one tree is used to calculate the site 

likelihoods. If the recombinant regions are quite large relative to the entire data set, 

then the maximum likelihood phylogeny will be some type of average of the different 

trees along the sequence. Therefore, the site likelihood values will not be differentiated 

by as much as if the maximum likelihood tree was exactly correct for parts of the 

sequence and not for others. This may cause the test to lose power. An approach 

considering local trees (i.e., trees estimated on subsets of the entire alignment) may 

be more powerful; this is taken into consideration in both of the methods described in 

Chapters 4 and 5. 
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3.5 Split decomposition 

Split decomposition, developed in the phylogeny context by Bandelt and Dress (1992), 

is a non-approximate method which allows for conflicting groupings of sequences. It 

will find possible phylogenetic relationships even if, for other phylogenetic methods, the 

signal is overridden by other possible groupings. Therefore, it should be able to detect 

(and display) the conflicting information that usually arises when a recombination event 

has occurred. 

Bandelt and Dress (1992) suggest using split decomposition with distance matrices. 

Recall from 2.7 that phylogenetic tree estimation methods which use distances usually 

require that the distances are additive (i.e., they satisfy the four point condition: if 

taxa 1 and 2 are separated by an edge from taxa 3 and 4 then d1 2 + d34 is smaller 

than d13  + d24  = d 14  + d23 ). In practice, distance estimates are rarely additive; a more 

relaxed approach would have d12  + d34  < max {di3  + d24 , d14  + d23 }. This suggests a 

criterion for finding splits in a data set. 

A data set may be partitioned into two sets A and B (called a split) if, for any 

i,j E A and k,i e B 

dij  + dki <max{d k  + d 1 , d 1  + dJk}. 

Bandelt and Dress (1992) refer to this as a d-split. Every d-split carries a weight called 

the isolation index, which is given by 

Min [max{d + dkl, d 1  + dk, dk + di} -dij  - dkl] 
k,i E 

From this definition it is seen that all partitions which are not d-splits have an isolation 

index of zero. Also, for a tree with additive data, the isolation index of A, B is the 

length of the edge whose removal results in the two components A and B. 

Every d-split, A, B, yields a split metric, 6A,8,  which assigns a distance of one to 

taxa i,j if i E A and j E 13 or vice versa and zero otherwise. The sum, d m , of all split 

metrics, weighted by their isolation indices, approximates the total distance d from 

below by 

d = d°  + 	aA,z36 4,r3 

splits A,13 

where the last term is, obviously, d'. The residue, d°, does not contain any further splits 

with a positive isolation index. For real data, d°  is usually non-zero, so to measure the 

efficiency of the split decomposition in describing the relationships within the data, the 

matrices d and d m  are compared, yielding 

p 
:=(taxa 

 d/ 	x 100%, 
i,j 	taxa ij 	/ 
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A C 

I,J 

Figure 3.3: an example of a network. There is support for both of the clusters AB and 

AC. 

the splittable percentage. Clearly, the higher the value of p, the better the data are 

explained by the d-splits. 

Since split decomposition allows for conflicting relationships, the results are dis-

played as a network, an example of this for four taxa is shown in Figure 3.3. Here the 

splits AB/CD and AC/BD are both valid for the data (e.g., because of a recombination 

event). Note that it is possible to estimate trees from a split decomposition: an optimal 

set (under some criterion) of splits which are pairwise compatible are chosen (two splits 

A, 8 and C, V are pairwise compatible if there exists J E {A, 81 and )C E {C, 'D} such 

that J fl K = 0). It is possible, however, that some furcations may be left unresolved. 

While split decomposition does provide a way of finding and displaying conflicting 

relationships within data, it is not the most powerful tool for detecting recombination. 

Bandelt and Dress (1992) observe that it is not obvious how to discriminate between 

random or systematic error in the data set, and convergent evolution or recombination 

events. This is due to the fact that their method uses distances rather than character 

state data. Therefore, if it is important to find a recombination event, another method 

may be more appropriate. 
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Chapter 4 

A Graphical Method for 
Detecting Recombination in 

Phylogenetic Data Sets 

A graphical method, using a statistic termed Dss, for initially scanning DNA data sets 

for evidence of recombination is described in this chapter. It is applicable to large data 

sets and does riot require a large amount of computational time. Therefore, it should 

compliment the available tests for recombination described in Chapter 3, many of which 

are only applicable to small data sets or carry a large computational load. 

This chapter opens by describing some of the aims and the motivation winch led 

to the development of the Dss statistic. The Dss statistic is defined and its expected 

behaviour discussed. The method is then evaluated by simulation, and by application to 

some real data sets. Finally, possible improvements of this method are discussed. Note 

that much of the work in this chapter has been previously reported in McGuire et al. 

(1997), while the computer package written to implement the necessary calculations is 

described in McGuire and Wright (1998). 

4.1 Motivation 

When planning this work, there were several objectives which were thought to be im-

portant. Firstly, since most data sets are large, the method should be applicable to 

more than a handful of sequences. At the time of planning, the maximum chi-square 

test (Maynard Smith, 1992) was the most frequently used test for recombination; this 

may be only applied to four sequences at most (see 3.2). 

Suppose the branching patterns of trees estimated from subsets of the alignment 

are considered. Changes in the topologies of these 'local' trees along the alignments 

suggest that recombination may have occurred in the past, and tests using local trees 

should be more powerful than those based on one global tree estimated from the entire 

alignment (see the discussion on PLATO in 3.4, Grassly and Holmes, 1997). 
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Many methods for detecting recombination make use only of the polymorphic or 

informative sites (see 3.2). Distance and likelihood methods for phylogenetic inference 

make more efficient use of the data. For reasons of computational speed, it was decided 

to use some of the distance methods rather than likelihood methods. 

Finally, a relatively quick method for scanning a DNA alignment for recombination 

prior to a full phylogenetic analysis would be of use to a biologist. Thus, emphasis 

was placed on speed, rather than developing a comprehensive method for statistically 

testing for the presence of recombination. While it is possible to do some approximate 

statistical tests (discussed at the end of this chapter), further analysis using some of 

the methods discussed in Chapter 3 is recommended. 

4.2 Definition of the Dss statistic 

Consider a data set of ri aligned DNA sequences, each of length N, and a window of 

length 21 base pairs which moves along the sequence from beginning to end in increments 

of rn base pairs, rn << 21. The number of overlapping windows that results is then 

rn 
	 (4.1) 

where 

fN 	
ifrnisa factor ofN, 

1 mnax{k;mk,k E N,k <N} otherwise. 

Each window is split into two equal parts, each of length 1. On the first half of the 

window, a distance matrix is calculated according to some Markov model of nucleotide 

substitution (see 2.7.1). A phylogenetic tree is estimated on the first half of this 

window using the least squares method (Cavalli-Sforza and Edwards, 1967; Fitch and 

Margoliash, 1967, see 2.7.5). This optimal tree has a sum of squares value associated 

with it; this is recorded as SSaF.  Note that this value should be quite low since the 

selected tree is optimal according to the least squares criterion. 

A distance matrix is then calculated for the second half of the window using the 

same model of substitution as before. The topology estimated from the first half of 

this window is fitted to this second distance matrix, again using least squares. Its 

associated sum of squares value is also recorded as SS6F.  Then the Difference in the 

Sum of Squares statistic, going Forward, is defined as 

Dss1 = SSbF - SSaF. 	 (4.2) 

This statistic is calculated for all possible windows, with index i (i = 1,. . . , W), along 

the sequence, yielding a set of values, {Dssfl. 
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The process is then repeated in the backward direction (i.e., the first window is at 

the end of the sequence, and the windows slide backwards, moving in steps of m base 

pairs each time). Again least squares is used to estimate a tree from the first half of 

the window, yielding SSaB. This topology is then fitted to the distance matrix from 

the second half of the window, producing SSbB.  DSS? is calculated as SSbB - SSa B 

for each window i, i = W, W - 1, . . . , 1. Finally the overall Dss statistic is defined as 

Dssi - max {Dss,Dss}, 	 (4.3) 

yielding the set of values {Dss}. These may be plotted against the centre of each 

corresponding window, and the resulting graph used to scan for recombination. The 

reason for this particular definition of Dss is explained below. 

4.3 	Expected behaviour of the Dss statistic 

Various factors influence the behaviour of the Dss statistic, and its constituent parts, 

the {Dssfl and {Dss}. Firstly, the effect of recombination on Dss is examined so 

that it is possible to recognise putative recombination breakpoints. Dss is affected by 

other things such as tree length, rate variation, branch length and window size. These 

are also detailed below. 

4.3.1 Recombination 

Consider the value of the Dss statistic within a particular window. Suppose, firstly, 

that no recombination has occurred within this window. Then all sites will have the 

same underlying topology. In particular, the branching pattern on the first half of the 

window is expected to be the same as that on the second half (any differences should 

be small, and be the result of stochastic error). This has the consequence that the 

optimal topology for the first half of the window should be very close to, if not the 

optimal branching pattern for the second half. Thus, SSbF  or SSbB  will be of small 

magnitude, and hence Dss will be close to zero. Therefore, regions in an alignment 

containing no recombinant sequences should correspond to low values of Dss. 

Suppose now that a recombination event, which changes the branching order, has 

occurred within the window, with the breakpoint at the centre of the window. Then 

the topology on the first half will be different to that for the second half of the window. 

Hence, the optimal topology for the first half of the window will be a poor fit to the 

distance matrix from the second half of the data, and this will be reflected in a high 

value of SSbF  or SSbB,  which in turn leads to a high value of Dss. 

Most windows containing a recombination event will not have the breakpoint located 

at the centre of the window. Suppose that the first half of the window is all topology 

1 say, while the second half of the window has a breakpoint located within it; initially 
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Figure 4.1: An example of the graphical output for a 10 sequence simulated data set, 
with an easily-detectable recombination event with breakpoints at 1000 and 1500 bp. 

the topology is that of the first half, but then it changes to topology 2. The optimal 

tree for the second half of the window will be some type of average between these two 

topologies (depending on the relative strengths of their signals), so will still be different 

to the topology on the first half, though not to the same extent as if the breakpoint was 

in the centre of the window. Thus, the Dss value should still be higher than if there 

had been no recombination, but not as high as the Dss value when the recombination 

breakpoint is in the centre of the window. Pooling all this information, it is concluded 

that a recombination breakpoint in an alignment should be marked by a peak in the 

Dss values, with the highest value being the estimate of the location of the breakpoint. 

An example of the output from this algorithm is shown in Figure 4.1. The data set 

is simulated along the phylogeny shown in Figure 4.4, using the Jukes-Cantor model 

of nucleotide substitution. A recombination event with two breakpoints at 1000 and 

1500 bp is simulated, and is an ET event at the first depth (see 4.4.1 for full details; 

essentially this is a recombination event which should be easily detected). The Dss 

values were calculated using a window of 500 bp which is moved along in increments of 

10 bp. The distances were calculated using the Jukes-Cantor model; unweighted least 

squares was used to find the sums of squares in each window. 

The output is easy to interpret. There are two relatively large peaks, centred around 

1000 and 1500 bp, suggesting that limits of a recombination event occur in these regions. 

Elsewhere, the values tend to be low; fluctuations are due to random noise. Note that 

because the Dss values are positively correlated, a pattern of peaks and troughs will be 

observed in the non-recombinant regions. However, peaks due to recombination tend 

to be larger, both in height and sometimes in width, as may be seen from Figure 4.1. 
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4.3.2 The effect of tree length 

It was noted above that the definition of the Dss statistic appears to be somewhat 

convoluted. The question must be asked as to whether or not the {Dssr}  or the 

{ Dssfl, on their own, contain the information needed. In general the answer is no. 

Initial work on the properties of the Dss statistic with data sets containing two 

recombination breakpoints found that the reduction in size, or even the complete ab-

sence of one of the peaks corresponding to a breakpoint appeared to be a problem for 

the {Dss'} and the {Dssf 3 }. This was even the case for data sets with very recent 

recombination events between two distantly related taxa, an event which should be 

straightforward to detect. To illustrate this, a data set was simulated according to the 

tree shown in Figure 4.4, with an easily detectable recombination event (the ET type 

at the first depth; see Figure 4.4 for details). The recombinant region has breakpoints 

located at 1000 and 1500 bp. Figure 4.2 shows the plots of the resulting {Dssfl and 

{ Dssf} values against the corresponding windows. 

Both peaks are present in the graph of the {Dssr}  although the second peak is 

somewhat larger. The problem is clearly illustrated in the middle graph which contains 

the {Dss}. In this graph the second peak completely disappears. Defining Dss as 

the maximum of the forward and backward values in each window appears reasonable; 

in the bottom graph showing the Dss values plotted, both peaks corresponding to the 

limits of the recombination event are present. The question still remains, however, as 

to what artifact in the data is causing this suppression of peaks in the forward and 

backward values. 

Upon further investigation, it appeared that changes in the tree length were at the 

root of this problem. A recombination event will often change the total length of a tree 

(sum of all the branch lengths). As a result, a recombination breakpoint may mark a 

transition from a longer tree to a shorter one and vice versa. Dss is dependent on the 

length of the tree (see equation 4.4 below); longer trees tend to have higher values of 

the sum of squares. If there is a recombination event in a window, such that the first 

half has one tree, while the second half has a different topology which is also a longer 

tree, then the value of SSb will be considerably larger than SSa, not only due to the 

discrepancy between topologies, but also because of the greater tree length. On the 

other hand, if the tree in the second half of the window is shorter, then the increased 

value of SSb due to the recombination event is offset, to some extent, by the reduction 

in the sum of squares due to the shorter tree. This will lower a peak in the Dss values 

due to recombination, and in some cases may even cause it to disappear. By finding the 

Dss values going both forwards and backwards along the sequence, and then taking the 

largest one, only those values which are inflated by transitions to longer trees should 

be selected. Therefore, all peaks due to recombination should be found. 
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Figure 4.2: The {Dssr}  (top graph) and the {Dss} (middle graph) plotted against 

each window centre. The bottom graph shows the corresponding Dss values for each 

window. Note the different scales between the first, and the second and third graphs. 
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4.3.3 Weighted v unweighted least squares 

In the definition of the Dss statistic above, it was not indicated whether unweighted 

(Cavalli-Sforza and Edwards, 1967) or weighted (Fitch and Margoliash, 1967) least 

squares should be used. The sum of squares criterion (also see equation 2.44) is 

ss= 	 (4.4) 

where SS is the sum of squares [the error in fitting the distance estimates to 

the tree, E in (2.44)]; 

T is the number of species; 

dij is the estimate of the pairwise distance between sequences i and j; 

Pij is the predicted distance between sequences i and j, from the tree; 

d' is the weight applied to the branch lengths between sequences i and 

where P E T, P > 0. P is often referred to as the power. 

Weighted least squares (i.e., an appropriate value of P > 0) should standardise the 

sum of squares, and therefore Dss for varying branch lengths along the alignment. An 

example of where this might come in useful is if there is a region within a set of DNA 

sequences with higher nucleotide substitution rates, resulting in longer branch lengths 

in that part of the sequences. Even if no recombination has occurred in the sequences, 

peaks in the {Dss}, found using unweighted least squares, are quite likely to occur, 

marking the boundary of this region of increased variation. This is caused by the effect 

of the longer tree length on Dss, as explained above. Since the aim of this work is to 

detect recombination, allowing for rate variation by using weighted least squares sounds 

reasonable to reduce confounding between rate variation and recombination. 

The two graphs on the left-hand side of Figure 4.3 show a case where using weighted 

least squares to allow for rate variation proves beneficial. The data used are simulated 

according to the topology in Figure 4.4 with the branch lengths in the same proportions, 

though a different basic length is used, the basic branch length in Figure 4.4 being 0.1. 

No recombination event occurs, but the subsequence from 1000 bp to 1500 bp evolves 

three times faster than the rest of the sequence. In the slower-evolving parts of the 

alignment (1-1000 bp and 1501-2500 bp), the basic branch length is 0.04, while in 

the more diverged region, the basic branch length is 0.12. The Dss values calculated 

using unweighted least squares have peaks around 1000 bp and 1500 bp, marking the 

limits of the faster evolving region. To try and standardise for varying branch lengths 

along the alignment, weighted least squares was then used to calculate the values in 

the lower left-hand graph in Figure 4.3. A sensible choice for P in (4.4) is 2 (Fitch and 

Margoliash, 1967). Weighted least squares does appear to reduce the effect of the rate 

variation - the first peak disappears and the second one is no longer as pronounced. 
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Figure 4.3: Dss calculated for a data set containing no recombination events, but with 
substitution rate variation. Unweighted (top graphs) and weighted (bottom graphs, 
power=2) least squares are used. The left graphs show an example where weighted 
least squares may be used; the right graphs show an example where it should not be 
used, due to the short branches problem. 
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Unfortunately, using weighted least squares does not always lead to sensible results 

from this algorithm. Suppose that some of the pairwise distances between the taxa 

in the data set are small (i.e., close to zero). Using a power of two means that the 

denominators of these terms in the sum of squares will be very small (the result of 

squaring a number less than one). Small differences (due to sampling error) in the 

estimation of short branch lengths in adjacent regions could result in a relatively large 

effect on the Dss statistic. This is the effect zcen in the right-hand graphs in Figure 4.3. 

The same topology is used as before but this time the basic branch length in the slow 

region is 0.005 and in the fast region is 0.015. The graph of the Dss values calculated 

using weighted least squares contains a certain number of sudden, large fluctuations in 

the values of Dss, and thus is difficult to interpret. For this particular data set, the 

presence of rate variation does not lead to clear peaks in the plot of the Dss values 

using unweighted least squares (while there is a high peak before 1000 bp, it is not 

particularly wide) so it is not really necessary to use weighted least squares to take 

account of rate variation. For real data sets, the presence of rate variation may be 

suspected, but the short branches problem may mean that unweighted least squares 

must be used to calculate Dss. Thus, any peak must be checked using other tests to 

see if it is, in fact a recombination breakpoint, rather than the limit of a more diverged 

region. 

One further comment is that the power may take oil any positive real value. Hence, 

it could be varied continuously between zero and two, say, thus allowing perhaps a 

trade-off between accounting for rate variation (should improve with power) and the 

short branches effect (worsens with increasing power). It might be possible to fine-tune 

the choice of power for a particular data set to yield a Dss statistic which accounts, to 

the best of its ability, for rate variation, while avoiding the short branches affect. This 

is a point which requires further investigation. 

4.3.4 Window size and increment 

The Dss values are also affected by the choice of window size. Since a distance matrix 

and a phylogenetic tree are estimated from each half of the window, it is important 

that the window is long enough to contain enough information for this purpose. If the 

window is too short, then the pairwise distance estimates and thus the values of the Dss 

statistic will be very noisy and this will often override any signal from a recombination 

event in the data. Initial work suggested that windows of 200bp were too short, but 

sizes of 400 or 500 bp or greater were more useful. Another important point is that 

the more complicated the model of substitution used, the longer the window should be 

since the greater number of parameters introduces a higher level of variability into the 

distance estimates. 
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However, it is not necessarily the case that the bigger the window size the better. If 

a very short recombination event has occurred, then it might be difficult for Dss based 

on a large window size to detect this event, whereas the statistic calculated using a 

smaller window might find it. In addition, it is important to have enough windows to 

be able to examine the behaviour along the alignment. Hence, the choice of increment 

is important since that also plays a part in determining the number of windows. 

Some of the properties of the Dss statistic have been detailed above. Its expected 

behaviour in the presence of recombination has been discussed. However, it is still nec-

essary to validate that it does, indeed, successfully locate recombination breakpoints. 

Below, details of a simulation study which was carried out to investigate the perfor-

mance of Dss are given. 

4.4 A simulation study to investigate the performance of 
Dss 

The details and results of a simulation study carried out to assess the performance of 

Dss are given below. Firstly, the method used to generate the data and simulate re-

combination events is discussed. A heuristic way of measuring the difficulty of detecting 

a recombination event is given, followed by the results of the simulation study. 

4.4.1 Data simulation 

Data sets were simulated under a variety of conditions, in order to evaluate the effec-

tiveness of the Dss statistic. The nonrecombinant phylogeriy used is that shown in 

Figure 4.4. Each data set was simulated using the Jukes-Cantor model of nucleotide 

substitution (Jukes and Cantor, 1969, see 2.5). The sequence length was 2500 bp. Each 

recombination event involved the nucleotides between positions 1000 and 1500 bp in 

the alignment, and involved the substitution of that region of DNA in one sequence for 

the corresponding region in another. 

Several types of recombination event were simulated. These events can be broken 

down into two main subgroups: a half-tree (HT) event and an entire-tree (ET) event. 

HT recombination events involve sequences in the top half of the tree (those along 

the short dashed line in Figure 4.4). HT recombination events occur at three different 

depths in the tree as marked in the diagram; these depths are half-way along the 

branch in question. When a recombination event occurs at depth i, say, the sequences 

are simulated along the phylogeny in Figure 4.4 as far as that particular depth. At 

this point the 1000-1500 bp region from the lower positioned sequence in the diagram 

replaces the corresponding region in the higher sequence (this means that these two 

sequences [and any descendants, if applicable] will cluster together). The sequences are 
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Figure 4.4: The tree used to simulate the data sets and the branch scale. - - -. HT 
recombination event; - -, ET recombination event. Recombination occurs between 
the branches marked by the short/long dashed lines at the three/four different depths 
in the tree, as shown. The event happens halfway along the two branches in question: 
for example, the ET recombination event at the fourth depth occurs when the two 
sequences involved have diverged by 0.05 substitutions per position. 



then evolved along the remaining part of the phylogeny. An ET recombination event 

is simulated in a similar manner to a HT event, the only difference being that an ET 

event involves sequences across the entire tree (see the long dashed line in Figure 4.4). 

In total, there are seven different types of recombination event; for each event 

one hundred data sets were simulated. In order to evaluate the Dss statistic, it was 

necessary to have a measure of its values in the absence of recombination. Therefore, 

two hundred data sets were generated according to the phylogeny shown in Figure 4.4. 

The Jukes-Cantor model for nucleotide substitutions was used, as before. 

To calculate the Dss values, a window of 500 bp, moving in increments of 10 bp 

was used. This yielded 201 Dss values, a reasonable number of values with the com-

putational time being kept at a sensible level (each run required less than 10 minutes 

CPU time on the MRC HGMP Research Centre computing facilities, a Sun Ultra En-

terprise, 20 x 167 MHz processors and 1 Gbyte of memory; Rysavy et al., 1992). Since 

no ra:e variation was present in the data sets, unweighted least squares was used in the 

calculation of Dss. 

4.4.2 An index to measure the difficulty of detecting a recombination 
event 

As mentioned above, there are seven different recombination events in the simulation 

study. In order to evaluate the performance of the Dss statistic, it would be useful 

to be able to, in some sense, rank these events according to the relative difficulty of 

detecting them. A very simple index for this purpose is proposed here. 

The index suggested is known as the DDR index (Difficulty of Detecting Recombi-

nation) and depends on the length of the branches connecting the sequences involved in 

the recombination event and the lengths of the branches from the recombination event 

to the tips of the tree. It is defined as 

DDR = lengths of all descendent branches affected ± lengths of all 

branches linking the sequences involved in the recombination event, 

with values lying in the range (0,1). Low values of DDR correspond to a recombination 

event close to the tips of the tree, which should be relatively easy to detect. Events 

deep in the tree have high values; it will be quite difficult for any method to find ancient 

recombination events due to subsequent mutations obscuring the signal. 

For the ET recombination event at the first depth, there are two descendent branches, 

each of length 0.05 (the exterior branches leading to sequences 1 and 8). Thus, the nu-

merator of DDR is 0.1. The denominator is the suin of the lengths of all branches 

linking sequences 1 and 8; this is 0.8 leading to a DDR value of 0.125. The most 

ancient ET recombination event (that which occurs at the fourth depth) affects all 



the sequences in the data set. Therefore, the denominator of DDR is the sum of all 

the branch lengths (2.2). The numerator, being the amount of nucleotide substitution 

along all affected branch lengths, is 2.1, leading to a very high DDR value (0.955). Val-

ues of DDR for the HT recombination events range from 0.1/0.6 = 0.167 (first depth 

recombination event) to 0.9/1 = 0.9 (third depth recombination event). 

The DDR index omits many factors which, more than likely, affect the ease at which 

any method can detect recombination. For example it would be more difficult to detect 

recombination in a data set with the same non-recombinant topology as Figure 4.4, but 

with considerably longer branch lengths. Variable branch lengths within a tree may 

also contribute to making the problem more difficult. Nevertheless, the simple DDR 

index is useful in that it does allow some quantification of the problems posed by the 

data sets in this simulation study 

4.4.3 Evaluating the results of the simulation study 

The algorithm described in this chapter for detecting recombination is a graphical 

method so, in practice, a plot of the Dss values for a given data set will be examined 

for large peaks which suggest potential recombination breakpoints. A further possible 

step is to consider the first differences (see 4.7.2). However, a more automatic approach 

to the analysis would be preferred for the simulation study; this is both for reasons of 

time management and also to avoid the problem of subjectivity in the analysis. The 

technique used in the simulation study is described below; there may, of course, be 

many other possibilities. 

Consider the large peaks in Dss values which are indicative of a recombination 

breakpoint. The points in these peaks are both large, and are surrounded by large 

values. Therefore, if it is possible to develop a test which finds all such points, then it 

should automatically find large peaks. 

Firstly, a definition is needed of a large Dss value. This may be found using the 

two hundred data sets containing no recombination event. For each data set, the set of 

201 Dss values were found. These were used to generate an empirical distribution for 

large Dss values. Since there can be sudden jumps in the Dss values due to random 

noise, a simple smoothing algorithm is applied and the largest smoothed Dss value 

from each data set forms part of the empirical distribution. The smoothing itself is 

extremely simple - each smoothed Dss value is the average of a window of 20 raw Dss 

values ('-.40% of the total number of Dss values). This yields two hundred smoothed 

Dss values, which may be ordered to give the empirical density function for large Dss 

values for this particular data set, under the hypothesis of no recombination. If an 

observed smoothed Dss value is greater than T points of this empirical distribution, 

then its p-value is (200 - T)/200. 
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To find the large points in a set of {Dss}, the raw values are initially smoothed as 

above. The p-value of each smoothed point is found using the empirical distribution. 

Smoothed Dss values with a p-value less than or equal to 0.01 are considered to be 

significantly large. 

The next problem is to find the beginning and end of any peaks observed in the 

data, since the number of peaks carries information on the number of recombination 

breakpoints. The locations of the large {Ds.s} were recorded in ascending order and the 

beginning and end of unbroken sequential observations rioted. This gives the location 

of any peaks, although it is likely to be conservative, since non-significant Dss values 

may form the lower parts of the peaks. The location of the highest (smoothed) Dss 

value in each peak was also noted, since this is a possible estimate of the location of a 

recombination breakpoint. 

The data were analysed using functions programmed in S-Plus. The output con-

sisted of the beginning and end of each significant peak found, as well as the highest 

point within the peak. At that point the output was analysed manually. The presence 

of peaks in the correct places was noted, as was the existence of peaks in nonrecorn-

binant regions (recorded as a false peak). Sonie peaks had significantly high smoothed 

Dss values entirely on one side of a peak; it was decided arbitrarily to count such peaks 

as being in the correct place if the nearest endpoint to the limit of the recombination 

event was within 50 base pairs. 

4.4.4 Results of the simulation study 

Tables 4.1 and 4.2 below give the results of the simulation study. The tables give 

the percentages of cases in which one or two peaks were found, and also display the 

number of data sets containing false peaks. The value of DDR is also given for each 

recombination event; this gives an indication of prior beliefs about the ease of detecting 

the various events. 

From Tables 4.1 and 4.2, it appears that the Dss statistic does perform well at 

detecting recombination, and, as an aside, that DDR is a reasonable measure of the 

difficulty of detecting different recombination events, at least for this simulation study. 

For the first two depths of the ET recombination event (DDR values of 0.125 and 

0.375), there are two peaks in the correct places. There is a low percentage of data sets 

with significant peaks at the wrong locations (only 4%). The Dss method also performs 

quite well at the third depth (DDR = 0.625). While this recombination event occurs 

quite deep in the tree, the sequences involved are relatively diverged from each other. 

There is very little significant at the fourth depth, but it would be very surprising if 

there were, as the amount of divergence in the taxa before the recombination event 

occurred is very small. 
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Table 4.1: Results for the ET type of recombination event 
1St depth 204  depth Yd,  depth 4th depth 

DDR 0.125 0.375 0.625 0.875 
2 peaks 100% 100% 65% 0% 
1st peak only - - 17% 2% 
2 nd  peak only - - 12% 3% 
false peak 2% 2% 6% - 

ave highest smoothed 999 1008 1034 955 
point in 1 	peak (945,1055)° (935,1085) (835,1105) (915,995) 

ave highest smoothed 1506 1492 1470 1485 
point in 2nd  peak (1445,1575) (1415,1605) (1365,1575) (1475,1565) 

ave smoothed width 354 309 210 145 
of is,  peak (260,610) (120,410) (40,480) (140,150) 

ave smoothed width 347 304 226 143 
of 204  peak (280,450) (50,400) (50,370) (140,150) 

Figures in brackets give the range of values observed in the simulation study of the quantity 
above 

Table 4.2: Results for the HT type of recombination event 
1 	depth 2" depth 3rd depth 

DDR 0.167 0.500 0.833 
2 peaks 100% 62% 0% 
1st peak only - 19% 4% 
2fh1 peak only - 12% 0% 
false peak 4% 1% 2% 

ave highest smoothed 989 993 1067 
point in Pt  peak (905,1045)° (865,1085) (1035,1115) 

ave highest smoothed 1511 1508 
point in 2nd  peak (1465,1575) (1375,1595) - 

ave smoothed width 284 170 157 
of 1st  peak (160,390) (10,300) (80,260) 

ave smoothed width 283 175 - 
of 2nd  peak (160,380) (20,340) - 

Figures in brackets give the range of values observed in the simulation study of the quantity 
above 
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The results for the HT recombination events in Table 4.2 are similar to those for 

the ET events, with a HT event at the first depth corresponding to an ET event at 

the second depth, in terms of the amount of divergence that has occurred between 

the sequences before the recombination event. The Dss algorithm successfully detects 

the breakpoints in a large number of data sets at the first (100%) and second (two 

breakpoints are found in 62 data sets, one breakpoint is found in 31 data sets) depths. 

The sequences involved in the recombination event at the third depth had not diverged 

to a great extent prior to the recombination event, so the poor performance of Dss 

here is again not surprising. 

As noted above, the values of the DDR index are in approximate agreement with 

the simulation results - the lower the value of DDR, the easier it is, in general, to find 

the recombination event. 

For both types of recombination event, the average width of the peaks decreases 

as the event moves deeper into the tree. This is unsurprising, as an event dcci)  in the 

tree has had more time to accumulate mutations which obscure the signal from the 

recombination event. 

Therefore, the conclusion from this simulation study is that the Dss statistic appears 

to have the potential to be a useful tool for biologists analysing a data set which they 

suspect may contain recombination. To further test this notion, the Dss algorithm is 

applied to a couple of real data sets, with known recombination events. 

4.5 Examples of Dss applied to some real data sets 

A DNA data set consisting of the argF gene for eight different Neisseria strains is now 

analysed using the Dss statistic. The strains and their accession numbers are: N. 

gonorrhoeae, X64860; N. menirigitidis, X64861 and X64866; N. cinerea, X64869; N. 

polysaccharea, X64870; N. lactarnica, X64871; N. flavescens, X64872 and N. rnucosa, 

X64873. This data set was used by Zhou and Spratt (1992) to detect recombination in 

N. meningitidis. The data were extracted from the EMBL/GenBank/DDBJ database 

using their accession numbers to identify the particular sequences and aligned using the 

Clustal W automatic multiple alignment program (version 1.6, Thompson et al., 1994), 

taking the default options. The numbering scheme for the bases is that used by Zhou 

and Spratt (1992). Therefore, the 787 bp alignment starts at 296 bp and ends at 1083 

bp. 

A window of 400 bp was used to calculate the {Dss}, moving in increments of 2 

bp each time. Following Zhou and Spratt (1992), the Jukes-Cantor model of nucleotide 

substitution was used. Some of the pairwise distances are small (< 0.1) so unweighted 

least squares is used to calculate the Dss statistic. The set of values calculated using 

weighted least squares (power=2) is also shown to further illustrate the effect of such 
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Figure 4.5: Analysis of the Neisseria data. Top: D.ss values calculated using unweighted 
least squares, a window of 400 bp and an increment of 2 bp. Bottom: Dss values 
calculated using weighted least squares, with the same window and increment as above. 
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Dss values for the Hepatitis B data set 
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Figure 4.6: The Dss values for the Hepatitis B data set. The window size is 500 bp, 
with an increment of 10 bp. 

short distances on Dss. The resulting plots of the Dss values are shown in Figure 4.5. 

From the top graph of Figure 4.5, it appears that there are three distinct peaks, 

with central points located approximately at 535 bp, 787 bp and 830 bp. This suggests 

that the data should be split into four subsets: beginning (296 bp) to 535 bp; 536 bp 

to 785 bp; 786 bp to 830 bp and 831 bp to end (1083 bp). This subdivision is in good 

agreement with the findings of Zhou and Spratt (1992), who report anomalous regions 

between 296 and 497 bp, and between 803 and 833 bp. The former was found to be a 

recombination event; it was not known whether the latter was a recombination event, 

or another type of anomalous region. 

The short branches effect on weighted least squares is clearly illustrated in the lower 

graph of Figure 4.5. A peak is present at position 625-670 bp (a region with no known 

recombination event), and in other places the {Dss} fluctuate wildly (700-730 bp and 

835-850 bp). In these regions of the data set, some of the pairwise distances are very 

small; indeed for some windows there is no change at all between some of the sequences. 

These small distances lead to the inflated values of Dss observed. 

A second example consists of ten strains of the Hepatitis B virus, a subset of the 

data set used by Bollyky et al. (1996). The sequences used here include two recom-

binant strains (accession numbers D00329 and X68292), and eight nonrecombinant 

strains (V00866, M57663, D00330, M54923, X01587, D00630, M32138 and L27106). 

The Dss values were calculated using a window of 500 bp, which slides along in steps 

of 10 bp. Distances were again calculated using the Jukes-Cantor model of nucleotide 

substitution, and since the strains are quite closely related, unweighted least squares 

was used. 

75 



Options for Dss Method 	 value 
---------------------- 

* in tree*.phy file which contains the data 1 	N 
no of base pairs in each sequence 0 	L 
the length of the window to be used 500 	W 
the size of the increment between windows 10 	I 
the method to be used (nj or is) is 	M 
the power to be used for Least squares 0.00 	p 
the type of data: dna or prot dna 	D 
the model of evolution (jc, k2p, ml or jn) jc 	E 

Enter in a letter to choose an option to change 
or enter Y if you're happy with the current options: 

Figure 4.7: The initial text menu for the TOPAL package. 

The results are shown in Figure 4.6. Four peaks are observed in the Dss values, 

occurring approximately at 730 bp, 1970 bp, 2250 bp and 2480 bp. Elsewhere the Dss 

values are small, suggesting no further recombination events. These results mirror those 

of Bollyky et al. (1996) who report two recombination events, one spanning positions 

735 to 2370 and the other 2014 to 2203. 

4.6 Software to implement the Dss algorithm 

While the Dss statistic has been defined and extensively used above, the computer 

programs used to calculate it have not yet been described. From the definition of the 

statistic, it is clear that there is considerable computational work involved in obtaining 

a value of Dss. Therefore, creating a computer program to calculate Dss was a non-

trivial exercise. 

In order to facilitate these computations, the package TOPAL has been written and 

was used to carry out all the calculations in this chapter. This is a collection of unix 

Bourne shell scripts, C source code and the programs DNADIST, NEIGHBOR and 

FITCH from the PHYLIP package (the programs are included by the permission of J. 

Felsenstein). The package is available at http://www.bioss.sari.ac.uk/—fraiik/Genetics 

on the WWW and by anonymous ftp in the directory pub/phylogeny/topal from 

ftp://ftp.bioss.sari.ac.uk/.  

The TOPAL package allows the application of the Dss algorithm not only to DNA 

data sets, but also to protein data sets, although computational time may be consid-

erably greater. For example, for an amino acid data set containing 10 sequences, 2500 

amino acids long, with a window size of 500 and an increment of 10 (201 windows in to- 
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Options for Dss Method 
---------------------- 

* in tree*.phy file which contains the data 
no of base pairs in each sequence 
the length of the window to be used 
the size of the increment between windows 
the method to be used (nj or is) 
the power to be used for Least squares 
the type of data: dna or Prot 
the model of protein evolution (pam or kimura) 

value 

1 	N 
2500 	L 
500 	W 
10 	I 
is 	M 
0.00 	P 
Prot D 
pam 	E 

Enter in a letter to choose an option to change 
or enter Y if you're happy with the current options: 

Figure 4.8: The TOPAL menu after protein data has been selected. 

tal), it took 1 hour using PAM distances and 18 minutes using Kimura distances (both 

computations were carried out on the UK HGMP-MRC computing facilities; Rysavy 

et al., 1992). TOPAL permits the Neighbor Joining method (see 2.7.5) to be used, if 

desired, to estimate the topology in the first half of each window although the branch 

lengths are found using least squares. The trees are still evaluated using the surn of 

squares criterion. This Neighbor Joining approximation speeds up the computations 

considerably and makes it possible to calculate the Dss statistic for large data sets, 

without incurring an enormous computational burden. 

TOPAL has a simple text menu interface. The initial menu is shown in Figure 4.7. 

To change an option, the letter on the far right must be typed. TOPAL requires an 

input file called tree*.phy  where * is some number (e.g., treel.phy, tree39.phy etc.). To 

select an appropriate value, type "N"; the prograrn then prompts for a choice. The 

sequence length, window, increment and power may all be selected in the same way. 

Other options toggle between choices. M selects whether the Neighbor-Joining 

approximation should be used to estimate the topology in the first half of the window, 

D toggles between protein and DNA data while E selects the model to be used for 

calculating the distances. Figure 4.8 shows the menu when protein data is selected. 

Note that different models of evolution are now available. 

For DNA data, more options may be available depending on the model of evolution 

in use. For example, if the Kimura two Parameter (k2p) or maximum likelihood (ml - 

essentially the same as the Felsenstein 84 distance) distances are chosen, the transition-

transversion ratio must also be specified. If the Jin-Nei (in, see 2.7.3) model is used, 

as in Figure 4.9, then the coefficient of variation must also be given (the coefficient of 

variation, CV, is used to estimate the shape parameter of the gamma distribution, a, 

77 



Options for Dss Method 
---------------------- 

* in tree*.phy file which contains the data 
no of base pairs in each sequence 
the length of the window to be used 
the size of the increment between windows 
the method to be used (nj or is) 
the power to be used for Least squares 
the type of data: dna or prot 
the model of evolution (jc, k2p, ml or jn) 
the transition-transversion ratio 
the coefficient of variation 

value 

1 	N 
2500 	L 
500 	W 
10 	I 
ls 	M 
0.00 	p 
dna 	D 
jn 	E 
2.00 	T 
1.50 	C 

Enter in a letter to choose an option to change 
or enter Y if you're happy with the current options: 

Figure 4.9: The TOPAL menu with the Jin-Nei model of nucleotide substitution. 

since CV = 1//. 

A full manual is included with the package and is also available on the WWW. This 

contains detailed instructions on how to run TOPAL. There is also further documen-

tation and examples on the WWW at http://www.bioss.sari.ac.uk/frank/Genetics.  

4.7 Possible extensions and future work 

While the Dss statistic, in its current form, has been found to perform quite well, there 

is, of course, room for development and improvement. Possible refinements to the Dss 

statistic are discussed below, and suggestions for carrying out statistical tests on the 

Dss values are also given. 

4.7.1 Improving the Dss statistic 

The Dss statistic is a useful way to quickly scan multiple sequence alignments for pos-

sible recombination events. The simulation study above (4.4), and the examples using 

real data sets (4.5) confirm this. Nevertheless, in the discussion of the properties of Dss 

(4.3), it was observed that Dss is sensitive to other factors as well as recombination. 

Thus, there is scope to refine Dss to take account of other heterogeneities in a data set 

so that these will not be confounded with recombination. 

The Dss statistic is currently a simple function of the four sums of squares values 

obtained from the moving windows going forwards and backwards. As it stands, the 

magnitude of Dss depends on the tree length and thus, changes in the lengths of the 

tree along an alignment (even if no change in the branching order occurs) can have an 

78 



effect on Dss (see 4.3.2). It is possible that an alternative, improved weighting of these 

four sums of squares values could be found. There may also be a way of standardising 

the values of Dss for tree length, other than using weighted least squares which has the 

problem of disproportionate effects of variation in short branch lengths. Suggestions 

include dividing by the total tree length, or by the sum of the entries in the distance 

matrix (although early investigations suggested the latter approach was not particularly 

dSeful). 

Another possibility might be to modify the distance matrix in some way to lessen 

the effect of small distances on weighted least squares. Multiplication of distances by 

a constant greater than one would still preserve their relative orderings, but might 

eliminate the effect of short branches. A suitable approach for pairwise distances of 

zero would have to be found. A simple linear transformation, involving both a location 

and a scale change, might be sufficient. This point and those mentioned above require 

further study. 

4.7.2 Statistical tests for significant Dss values 

This method is essentially being proposed as a graphical method to detect recombina-

tion; it does not claim to give any definitive answers about the presence of recombination 

in a data set. Nevertheless, it would he useful to have an approximate statistical test 

which could, to some extent, measure the degree of confidence in the results. Two pos-

sibilities are considered below: a simple test based on first differences (using elementary 

time series principles); the second possibility is parametric bootstrapping. 

Since the Dss values are obtained from windows which overlap, they are highly 

positively correlated. If the increment size is small relative to time window size then 

Dssi will be approximately independent of Dss- 2  given Dss- 1. This suggests that 

the first differences of the {Dss} may be used to test the significance of high Dss 

values. 

In the absence of recombination, the first differences, 

Dss 1  - Dss 

should be approximately independent. Making the further assumption that the {} 

are approximately normally distributed, confidence intervals (e.g., 95% and 99%) for 

the {} may be constructed. If the first differences show a greater spread in a region, 

and there are some significantly large points, then this suggests that the corresponding 

peak does mark a recombination breakpoint in the data. 

The Dss values from the simulated data set used in Figure 4.1 are shown again in 

Figure 4.10, together with the first differences. A greater spread in the first differences 

is noted in the areas of the alignment where the the recombination breakpoints occur; 
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Figure 4.10: The Dss values from the simulated data set in Figure 4.1 are shown again, 
along with the corresponding first difference (bottom graph). The horizontal lines in 
the bottom graph mark the approximate 99% confidence interval. 



some of these first differences are significant at the 99% level. There are also some large 

first differences caused by random noise in the data set, rather than a recombination 

event; these do not appear to be significant. 

This test does seem to perform quite well. While peaks and troughs are observed 

in Dss values from data sets with no recombination, the increase or decrease from one 

Dss value to the next tends to be quite small, so the first differences are generally of 

low magnitude. However, in a data set with recombination, large jumps in the Dss 

values are often observed, leading to large first differences which are picked up by this 

test. 

A more rigorous test would be to apply some form of parametric bootstrapping to 

the data set similar to that used to evaluate the results of the simulation study in 4.4. 

This would involve simulating many data sets under the hypothesis of no recombination 

and finding a distribution for large Dss values. The problem with this approach is the 

choice of tree to be used to generate the data sets. The tree estimated on the observed 

data set, if it contains a recombination event, will be an average of the different local 

trees. Therefore, the simulation will not be carried out under the true null hypothesis. 

It has also been noted above that many factors (tree length, branch lengths etc.) affect 

the Dss statistic, so simulating from a slightly incorrect tree is likely to produce values 

of Dss on an incorrect scale, resulting in too conservative or too liberal a test. However, 

if it were possible to standardise Dss over different tree shapes and lengths as discussed 

above, such an approach could be both feasible and useful. 

The Dss statistic and the accompanying computer package, TOPAL, have the po-

tential to become useful tools for biologists. It is hoped that future work will yield 

improvements, which should increase their usefulness. 



Chapter 5 

A Bayesian Approach to 
Modelling Recombination 

In the previous chapter, a graphical approach was developed for detecting recombination 

in DNA alignments. This method, using the Dss statistic, is useful as an initial tool in 

a statistical analysis of a DNA data set as it can quickly scan an alignment for evidence 

of recombination. However, this algorithm merely detects the possible presence of a 

recombination event; it makes no attempt to model it. 

A Bayesian analysis of topology change due to recombination along a DNA se-

quence alignment is presented in this chapter. For computational reasons, data sets are 

restricted to four sequences. The chapter opens by examining the motivation behind 

this work: the likelihoods for each possible topology at each site. The theory of Hidden 

Markov models is described since this plays a vital role in the methodology. A Bayesian 

analysis of recombination is then presented. The performance of this method and the 

sensitivity of the results to the choice of prior is assessed for simulated data sets. An 

example using some of the Neisseria sequences described in 4.5 is given. Finally, some 

possible extensions are discussed. The relationship between this Bayesian approach and 

the parsimony-based method described by Hem (1993, see 3.2) is also discussed since 

this suggests a direction for future work. 

5.1 Motivation 

Consider a set of four DNA sequences, one of which has incorporated genetic material 

from another at some point in the past. Thus, this recombination event will result 

in a change of topology in the affected region. For a set of four sequences, there are 

only three possible unrooted topologies; therefore it seems reasonable to calculate the 

likelihood at each site for each possible topology and compare these. Labelling the 

three possible topologies as 12 (i.e., sequences 1 and 2 cluster together), 13 (sequences 

1 and 3 together) and 14 (sequences 1 and 4 together), then there should be regions in 

which one topology corresponds to the highest likelihood at each site. If one topology is 
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Figure 5.1: Tree used for simulating the data. 
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Figure 5.2: Smoothed log likelihoods for each of the three possible topologies for the 
simulated data set, described in the text. Toplj represents the topology with sequence 
1 clustering with sequence j, j = 2, 3, 4, the other two sequences forming another group. 

dominant for a reasonably long stretch of sites followed by another one being dominant 

in an adjacent region, this would suggest that a recombination event has occurred, 

resulting in a change of topology. 

To test this idea, a data set of four sequences, 1000 nucleotides long, was simulated 

according to the tree in Figure 5.1. The Kimura two Parameter model of evolution was 

used, with a transit ion- transversion ratio of 2 (see 2.5). The data were simulated along 

the interior branch, and then along the four outer branches until 90% of the nucleotide 

substitutions had occurred. At that point, a central subsequence (301-700 nucleotides) 

of sequence 3 replaced the corresponding subsequence in sequence 1. The nucleotide 

substitution process then resumed for the remaining 10% of the branch length. 

Once the data set was obtained, the likelihoods at each site for each topology were 

calculated. Due to the possible problems of conflicting information on branch lengths 

when using the entire data set (see 5.3.2 for more details), the data set was broken down 

into subalignments of twenty sites, and the best tree for each topology, and thus, the 
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Table 5.1: The frequencies of the largest likelihood corresponding to topologies 2, 3 and 
4 in each of the three regions of the simulated data set 

1-300 301-700 701-1000 
top. 2 209 84 204 
top. 3 30 254 24 
top. 4 - 	61 62 72 

log likelihoods for each site of the subsequence were found using the PHYLIP program, 

DNAML (modified to output the log likelihoods at each site). These were then plotted 

against the corresponding sites in Figure 5.2. For ease of interpretation, a smoothing 

algorithm (the supsrnu algorithm in S-plus) was used to smooth the data. 

Due to the recombination event in the simulated data set, it would be expected that 

the topology placing sequences 1 and 2 together should have the highest site likelihoods 

for sites 1-300 and 701-1000. In between (301-700 bp), the topology with sequences 

1 and 3 clustering together should have the highest likelihoods, or equivalently log 

likelihoods. This is, indeed, the case from Figure 5.2. The cross-over points are not 

located exactly at 301 and 700 nucleotides; this may be due to statistical noise, or the 

smoothing algorithm or a combination of both. 

Another way to examine this data is to look at the topology corresponding to the 

largest likelihood at each site. This may be easily found using the S-plus statistical 

package. The topology with sequences 1 and 2 together is represented by 2; that 

with sequences 1 and 3 together is depicted by 3 while 4 stands for the topology with 

sequences 1 and 4 as neighbours. The output in Figure 5.3 is then obtained. 

The data set has been split into three regions, corresponding to the exact recom-

bination breakpoints. By simply looking at each part of the data set, it is seen, as 

expected, that topology 2 occurs most frequently in the first and last regions, while 

topology 3 is the most common in the second region. Table 5.1 gives the frequencies of 

each of the three topologies in each of these regions of the sequence. From the simula- 

tion design, it is known that the first 300 sites all have the same topology (top. 2) so 

other topologies in this region corresponding the largest likelihood are simply the result 

of statistical noise. These topologies tend to occur in short runs. Since it is known that 

these are not due to recombination, they give an idea of the level of noise which may 

be present in data sets. Similar conclusions may be drawn for the other two subsets of 

the data (301-700 nucleotides and 701-1000 nucleotides). 

The statements above are based on two components. Firstly, the likelihoods give 

information on the most likely topology at each site. Secondly, existing knowledge 

about recombination events is used to decide when a true change in topology is most 

likely to have occurred as opposed to noise. This is, in essence, a Bayesian approach, 
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Sites 1-300 

[1] 232222222222222322222222222244 

[31] 242222224222223222222232322223 

[61] 224224322222222222244224222222 

[91] 322222224323242242222224422222 

[1211 2 4 4 2 2 4 4 4 4 2 4 4 2 4 4 4 4 2 4 4 2 2 3 2 2 2 2 2 3 2 

[151] 242223242244444442444443444244 

[1811 3 2 2 2 2 2 2 2 3 2 2 2 2 2 2 3 3 2 2 2 3 2 2 2 2 2 4 2 2 2 

[211] 242422224222423422222422323222 

[2411 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 2 3 2 2 2 2 3 2 2 2 3 2 2 3 2 

[271] 243234222224222422222242432224 

Sites 301-700 

[3011333234333334333333243333 443333  

[3311 333323334423333333333323323333 

[3611 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 2 3 2 3 3 3 3 
[391] 333343343323333323333333233323 

[421] 332322333343333233333433333333 
[451] 432233323434423333344344343243 

[4811 3 3 3 3 3 3 3 4 4 3 4 3 3 3 4 3 4 3 3 3 2 2 2 3 2 2 3 3 3 3 

[5111233333333333232322332332332 2 3 3  

[541] 223242223332222233324344443423 

[5711 3 4 4 4 4 4 4 4 2 4 3 3 3 3 3 3 2 3 3 3 2 3 3 3 2 3 4 4 4 3 

[6011 3 3 3 3 2 3 3 3 3 3 4 4 3 3 3 3 3 3 3 3 2 3 2 2 3 2 3 3 2 3 

[63113333232333433333333333343323 33  

[661] 243333434444233434334344433333 

[691] 3 4 3 2 3 4 3 3 3 3 

Sites 701-1000 

[7011 2 2 2 2 4 2 2 2 2 2 4 2 2 4 2 2 4 2 3 2 2 2 2 4 2 2 2 2 4 2 

[7311422222222243222422224344322222 
[7611 2 2 4 2 2 2 2 2 2 2 2 2 2 3 4 4 2 2 4 2 2 4 4 3 4 4 4 4 2 4 

[79114444423 24422223242234422222222  
[8211 4 2 2 2 2 2 2 3 2 2 2 2 2 2 2 2 2 2 2 4 2 2 2 4 2 2 4 4 2 2 

[8511 2 4 2 2 2 2 2 2 4 2 3 2 4 2 2 2 2 2 2 2 4 2 2 2 4 4 2 2 2 2 

[8811322224322222232222222322222223 

[9111222222322244344444423444434 443  

[9411 4 2 2 3 2 2 2 2 4 2 2 2 2 2 2 3 4 2 4 2 2 4 2 2 2 2 2 4 2 2 

[9711222222222442222222324224242422 

Figure 5.3: Topologies corresponding to the largest likelihood at each site. The numbers 

in square brackets denote the position in the alignment. Each position has an associated 

integer value (2, 3 or 4) corresponding to the topology with the highest likelihood at 

that site. 
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combining likelihood and prior information, and suggests how a Bayesian approach to 

modelling topology changes due to recombination may be developed; this is described 

later in 5.3. The computations that must be carried out rely on the theory of Hidden 

Markov models. Hence, a brief overview of this subject area is given in the next section. 

5.2 Theory of Hidden Markov models 

Hidden Markov models are found in a number of fields of science. For example, the 

problem of signal processing may be formulated as follows: 

Yi = xi + Ei 
	 (5.1) 

where Y is the observed signal; 

Xis the actual signal broadcast, assumed to be a Markov process; 

j is a noise process. 

Here the {X} constitute a Hidden Markov model since they cannot be observed directly, 

but can only be inferred from the observed signal, the {1'}. 

Another example of a Hidden Markov model in the time series field has been de-

scribed by MacDonald and Zucchini (1997, p.  55). Suppose the number of occurrences 

of a particular event in a fixed period of time is being counted. This is often modelled 

as a Poisson process with mean A and variance A. However, such count data is often 

over-dispersed (the variance exceeds the mean). There may also be serial dependence 

(for example, the number of epileptic seizures in one patient on successive days). An 

alternative approach to a Poisson process is to suppose that each observation is gen-

erated by one of two Poisson distributions with means A1  and A2  respectively where 

the choice of distribution (i.e., the value of the mean) is made by another random 

mechanism - the parameter process. Letting P(A) represent the Poisson process with 

parameter A, then the parameter process selects P(A 1 ) with probability 61 and P(A2) 

with probability 62  = 1 - . This model demands that the variance exceeds the mean 

since the variance is given by 61 A1  + 62 A2  + (A1  + A2) 281 82. 

This model consists of two layers - the outcome (i.e., the counts observed) and the 

parameter process which cannot be observed, merely inferred from the outcome. If 

the parameter process is assumed to be a Markov chain, then the resulting process of 

counts allows for serial dependence and is an example of a Hidden Markov model. 

A substantial amount of study has been devoted to Hidden Markov Models. Below 

the theory behind these models is described. Details on how to carry out certain 

computations efficiently are also given; in particular the Viterbi algorithm is described. 

This is a dynamic programming method which finds the most likely sequence of states 

in the Hidden Markov model. 
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Figure 5.4: Conditional independence graph of a Hidden Markov model. 

5.2.1 The model 

Hidden Markov models have been frequently used and described in the speech pro-

cessing literature (for example, see Juang and Rabiner, 1991). They have also been 

described by MacDonald and Zucchini (1997). Following the latter reference on p. 66, 

let {C : t E N} be an irreducible, homogeneous discrete-time stationary first-order 

Markov chain on the state space 11,2,... , rn} with transition probability matrix P, 

containing elements Pij where 

	

Pij = Prob (Ct  = jCL1  = i). 	 (5.2) 

Since {C} is stationary and irreducible, there exists a unique, strictly positive station-

ary distribution denoted by f = ( f 1 ,f2, - .. , fT). 

Now consider another random process {S : t E N}. Conditional on C(N) 

{ Ct  t = 1,2,... , N}, N being the total number of observations, the random variables 

{St ISt  t = 1, 2,... , N} are mutually independent. Also suppose that 

	

Prob(St  = sCt  = i) := t7,i 	 (5.3) 

are the state-dependent probabilities. If these do not depend on the time t, then the 

subscript t may be omitted. Since this will be the case for the application described in 

this chapter, the subscript t in (5.3) will be left out from now on. 

This model may be represented by a conditional independence graph, like that 

shown in Figure 5.4. From it, the independence of the {S} given the {C1 } may be 

easily seen. The graph also shows the conditional independence of Ct+i and C_1 given 

Ct, which is, of course, the Markov property. 

Given a Hidden Markov model as described above, calculating the likelihood (pro-

portional to the sum of the probabilities of all possible configurations of the state 

process, {C}), seems an intractable calculation, as does finding the configuration of 

states {C1 , . . . , CN} which contributes the most to the likelihood. Fortunately, this is 

not the case. Various algorithms exist which allow these calculations to be carried out 

efficiently. For example, the forward and backward probabilities may be used to find 
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the likelihood, while the maximum likelihood estimate can be found using the Viterbi 

algorithm. 

To develop these algorithms, some properties of Hidden Markov models are required. 

These are stated in MacDonald and Zucchini (1997, p.  59) and proved in their Appendix 

A (pp.  203-206). These properties, together with their proofs, are given below. 

5.2.2 Properties of Hidden Markov models 

The following four properties are used to facilitate computations for Hidden Markov 

models. Note that, for ease of notation, the event St  = s1  is denoted by S. 

Property 1 For t = 1, 2,... , N 

Prob(Si ,S2,... ,SNJCt)=Prob(Sl,... ,St IC1)Prob(Si+i,... ,SNCI ). 

If t = N, then the convention that 

Prob(St+i,... ,SNCt ) = 1 

is used. 

Property 2 For t = 1, 2,... , N - 1 

Prob(Si ..... SNICt , C+1) = Prob(Si,... , StICt)Prob(St+i,... ) Sj,rIC+i). 

Property 3 For 1 <t < 1 <N 

Prob(Sj,... ,SNCt ,... ,C1 ) = Prob(S1 ,... ,SNC1). 

Property 4 For t = 1, 2,... , N 

Prob(St.....SC1 ) = Prob(St Ct )Prob(St+i,... , SprC,). 

In general, the steps used to prove these properties are: 

express the probability of interest in terms of probabilities conditional on C 	= 

(C1,... , Cp4, i.e., conditional on all of C1,... , CN; 

use the fact that, conditional on C(N),  the random variables S1,... ,SN  are in-

dependent, with the distribution of each St  depending only on the corresponding 

Ct ; 

use the Markov property of {C} if necessary. 



To establish these relationships, Property 1 is firstly proved using the three propositions 

below. Then the fourth property is derived from it. The second and third properties 

follow on from this. 

Proposition 1: For all integers t and I such that 1 < t < I < N, 

Prob(S1,Si,... 	 ,CN)=Prob(Sl,... ,SNCI,... ,CN) i  

Proof 

The left-hand side of the above may be written as 

Prob(Ct, 

1 
... ,CN) Prob(Si,... ,SN,Ct ,... ,CN) 

which is equivalent to 

1 

Prob(Ct ,... , CN) 	
i: Prob(Si,... ,SN C)Prob(C) 

C1'- 'Ct-I 

where C(N) = Cl'... , CN, with no summation if t = 1. Using (b) it is seen that 

Prob(S1 ,... ,SpvC) =Prob(SI JCI ) ... Prob(S N ICN ) 

which can be taken outside the summation. Since the sum reduces to Prob(Ct,. . . , CN), 

the left-hand side is simply 

Prob(S,Ci ) . . . Prob(SNICN) 

which is independent of t. The right-hand side, representing the case t = I of the 

left-hand side equals the same expression. 

Proposition 2: For t 	1,2,... , N - 1 

Prob(St+i,... ,SNIC) = Prob(Si+i,... ,SNCt ) 

Proof 

The left-hand side may be written as 

1 
Prob(St+i ,... ,SN,Cl .,... ,C) Prob(C(t)) 

1 

= Prob(C(t)) 	
Prob(C)Prob(St+i,... ,SNIC) 

Ct+l,... ,CN 

Now 

Prob(Ci ,... ,CN) 
=Prob(Ct+i,... ,CNCI ,... ,C) 

Prob(Ci,... ,C) 

= Prob(Ct+i .... .CNICt) 



by the Markov property of the {C}. Also 

Prob(St+i,... ,SNIC1,... , CN) = Prob(St+l,... ,SNCl,Ct+1,... ,CN) 

by Proposition 1. The left-hand side now becomes 

Prob(Ct+i,... ,CNICt )Prob(St+l,... ,SNCI ,... ,CN) 
Ct+i ,...,CN 

= 	Prob(St+i,... ,SNJCt,... ,C2V)Piob( t,Cl+I,... ,C)) 

Ct+i,... ,CN 	
Prob(Ct) 

The surnmand may be expressed as Prob(St+i,... ,SN, Ce,... , CN)/Prob(Ct) and the 

sum is thus equal to Prob(Si+i,... ,SN , Ct)/Prob(Ct) as required. 

Proposition 3: For t = 1,... N 

Prob(Si,... 	= Prob(Si,... ,S I IC(t H 
Proof 

Apply (b) in respect of the conditioning on C(N)  to see that the left-hand side equals 

Prob(S1IC1) . . . Prob(SC). Then apply (b) in respect of the conditioning on C( O to 

see that the right-hand side equals the same expression. E 

It is now possible to prove Property 1, that 

Prob(Si,S2,... ,SN IC)=Prob(Si ,... ,St Ct)Prob(St+i,... ,SNCl ) 

for t=1,... ,N. 

Proof 

Making use of the mutual independence of S1,... , SN given C(N),  write the left-hand 

side as 

Prob(Ct) 
Cj .....Ct_i Ct+i ,...,CN 

Prob(C)Prob(Si,... I 
StC(N)) 

x Prob(St+i,... ,SNC) 

Using Proposition 3 this becomes 

1 

	

Prob(Ct) 	
Prob(C)Prob(Si.... ,SJC(t)) 

C1, 	Ct-1 Ct+i .....Cp 

Prob(St+i ... ,SNC). 

Summing over Ct+1,... , CN and using Proposition 2 yields 

1 Prob(C(t))Prob(SiStC(t))Prob(St+.... , 
Prob(Ct) 

_1 	[ 	 1 

	

- Prob(Gt) I 	Prob(Si,... ,S1,C1,... ,Ct)I Prob(St+i,... 

LCi.....Ct_i 	 J 
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This is equal to 

1 
Proh(Si,... , S, Ct )Prob(St+i,... , SrC) 

Prob(Ct) 

i.e., the right-hand side. 

Property 4 states that, for t = 1,2, . .. , N, 

Prob(St,... , SC) = Prob(SdCt )Prob(Sj+i,... , SC) 

Proof 

Simply sum the result of Property 1 with respect to s1 ,. . . ) s1_ 1  . 

Recall that Property 2 states that 

Prob(Si,... ,SNtC,Ct+1) = Prob(S1 ,... ,St ICt)Prob(S +i,... ,SN Ct+1 ) 

fort= 1,... ,N-1. 

Proof 

Following previous proofs, write the left-hand side as 

1 

Prob(Ct,Ct+i) 	
Prob(C)Prob(Si,... 

Cl ...,Ct_ I C1.f2  .....CN 

x Prob(St i,... ,S N IC). 

By Propositions 3 and 1, the last two factors reduce to Prob(Si , . . . , SC()) and 

Prob(St+i,... ,SNICt+1,... ,CN) respectively, yielding 

1 

Prob(Ct,Ct+i) 	
Prob(C)Prob(Si,... ,SIC) 

C1 ,...,C_i Ct+2 .....CN 

xProb(St+ i,... ,SN ICt1,... ,CN). 

The Markov property of Ct is then used, and followed by some routine manipulations 

of conditional probabilities, it emerges that the left-hand side is equal to 

Prob(Si,... ,stIC( t ) ) 
C1 .....Ct_i CI+2 .....CN 

x Prob(Ci ,... ,C_ 1 ,Ct+2,... ,CN Ct,Ct+1 ) 

xProb(St+i .... . SNCt+l,... ) CN) 

= 	Prob(Si .... . S1ICt)Prob(Ct+2 ,.CNCt,Ct+1) 
Ct+2 .....CN 

xProb(S +i,... ,SNICt+1,... ,CN) 

1 
=Prob(Si ,... ,SIC) EProb(Ct+I)P0bt+1 	,CN) 

Ct+2 .....CV 

xProb(St+i,... ,SN ICt+1,... ,CN ) 

Prob(Si,... StICt)p 
b(C)CN 	

,S N ,Ct+1,... ,CN). 
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Upon summation this expression becomes 

Prob(Si,... ,St ICt)Prob(St+i,... ,SN, C + j)/Prob(Ct+i) 

which is equivalent to the right-hand side. E 

Finally, Property 3 states that for all t, I E N such that 1 < t < 1 < N, 

b(S11 ... ,SNCt,... ,C1 )=Prob(S1,... ,SNC 

Proof 

The left-hand side may be written as 

1 

Prob(Ct .. ,C1) 	i: 	i 	Prob(Si,... ,SN IC)PFOb(C) 
Cj 	,CN Cl ,...,Ct  1 

By Proposition 1, 

Prob(S1,... ,SNC)=Prob(Sl,... ,SN CI,  ... ,CN) 

and the above expression for the left-hand side becomes 

1 

Prob(Ct,... ,C1) 	
Prob(Sz,... ,SNCI,... ,CN)Prob(C) 

Cl+i ,... ,CN  

= 	Prob(Sj,... ,S N I Cl,  ... ,CN ) 

C1+I .....CN 

x [ 	Prob(Ci ,... ,C_ 1,C1+1,... ,CN ICt ,... I CO 
[Ci .....Ct_I 	 j 

= 	Prob(S1 ,... ,SNC1,... ,CN)Prob(Cj+l,... ,CN ICt ,... ,C1 ) 
C1 .....CN 

= 	Prob(S1,... ,SNC1,... ,CN )Prob(Cj+l,... ,CNC1) 
C1 	.....CN 

by the Markov property of the {C}. Upon further manipulation of conditional prop-

erties, the left-hand side becomes 

Prob(Sj,... , SNCI.... . CAT)P rob (Cl,... , C)/P rob (C1 ) 

Cj+l .....CV 

1 

	

- Prob(Ci) 	
Prob(S1 ,... 	 ,CN) 

Cl+l .....CV 

= Prob(S1,... ,SN,Cl )/Prob(Cl ) 

which is equivalent to the right-hand side. E 
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5.2.3 Efficient calculations for Hidden Markov models 

Two algorithms are now described, which make certain computations with Hidden 

Markov models quick and efficient. The first is the forward-backward algorithm and 

may be used to calculate the likelihood for a given model (sums the probabilities of 

observing the {S1} given all the possible configurations of the process jCt }; MacDonald 

and Zucchini, 1997, p. 59). 

Essentially the forward-backward algorithm requires the computation of the forward 

probabilities, at, (i), and the backward probabilities, 131, (i), so called because they require 

a forward and a backward pass through the data respectively. They are defined as 

c 1 (i) = Prob(Si  = s1 ,.. ,S1, = s1, C1  = i) 	 (5.4) 

and 

131(i) = Prob(St 	= St±I,... ,SN  = SNC1 = i). 	 (5.5) 

Note that the convention that Prob(S1+i, . . . , SCI ) = 1 when t = N HflJ)lieS that 

13N W = 1 for all i. 

From (5.4), (5.5) and Property 1, it is seen that, for t = 1,2,... , N, 

= 	Prob(C1  = i)Prob(Si ,... , SC1  = i)Prob(S1+i,... , SNCI = i) 

= Prob(Cj =i)Prob(Si,... ,S jv C1 =i) 

= Prob(Si ,... ,SN ,Ct =i) 

and so 

771 

= Prob(Si,... ,SN) 

=LN 
	

(5.6) 

where LN = Prob(Si  = s1,.. ,SN  = SN), which is, of course, the likelihood. 

It is observed from (5.6) that, if it is possible to evaluate the forward and backward 

probabilities for all t, then there are N different ways of calculating the likelihood. For 

example, setting t = N yields the formula 

LN = 

which is the formula usually quoted in the speech processing literature (see Juang and 

Rabiner, 1991). 

In order to find all the forward and backward probabilities it is firstly noted that 

13N (0 = 1 
	

(5.7) 
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and 

1 (i) = Prob(Ci 	i)Prob(Si = s1 C1  = i) 

J.is1i. 

These values are used in the recursions developed below. 

Using Property 2 

at (j) =Prob(Si ,... ,St+i,Ci =i) 
in 

=Prob(Si ,...,S1i ,Ct =i,Ct+ij) 

rn 
=Prob(Ci =i,Ct+i =j)Prob(Si ,... ,S 1 Ct i,Cj1 	i) 

711 

= 	Prob(C1+1  jICt = i)Prob(Ct  = i) 

x Prob(Si , .. , SCt  = i)Prob(St+i  C 1  = i) 
rrt 

= 	Prob(S1,... , S, C1  = i)pjjirst+j j 

= (tiPiJ) s1+1j, 	 (59) 

this recursion being valid for 1 < t < N - I. 

To set up a recursion for the backward probabilities, use Property 3 with I = t + 1 

and Property 4: 

= Prob(St+i ,... , SNICt = i) 

= Prob(St+i,... ,SN , C1  = i)/Prob(C1  = i) 

=Prob(S1+i ,... ,SN ,Ct  =i,C11  =j)/Prob(Ct  =i) 

=Prob(St+i,... ,SN(C1 =i,Ct+i =i) 

x Prob(C1  = i, C 1  = j)/Prob(Ct  i) 

=Prob(S11,... ,SC11  = j)Pij 

=Prob(S1+iCt+i =j)Prob(St+2,... ,SN(Ct+1 =)Thj 

s11jt+i(j)Pij 	 (5.10) 

As well as calculating the likelihood, it is often of interest to determine the states of 

the Markov model, {C1 }, which are most likely to have generated the observed sequence. 

There are two possible ways of considering this: 
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the local problem find the local most likely state, t: 

ct  = arg max Prob(Ct = ctlSi = s1,.. ,SN = SN); 
1<Ct<fl 

the global problem finding the series of states âi, . . , âv which maximises the 

conditional probability 

Prob(C1  = ci, C2 = C2,... , CN = CNS1 = Si, .. , S N  = SN) . 	(5.11) 

In the speech processing literature these two problems have been termed local decoding 

and global decoding respectively. 

For the application considered later in this chapter, global decoding is appropriate, 

and is thus described here. It is possible to efficiently find the states 	. . . , CJ\r using 

a dynamic programming method known as the Viterbi algorithm (MacDonald and 

Zucchini, 1997, p.  65). 

This algorithm is developed by first noting that finding the states â,. . . , CN which 

maximise (5.11) is equivalent to maximising the joint probability 

Prob(Ci =ci ,... ,CN=CN,S1=S1,... ,SN=SN) 

= Prob(Ci  = ci,... ,CN  = CN) 	
(5.12) 

xProb(Si =si,... ,SN =sN Cicl,... ,CNCN) 

= 	 . . .pCN 1CN)(S111 . . 	SNiN) .  

Define the quantities 

= Prob(SN  = SNCN = CN) 	 (5.13) 
CN 

and 

= 	max Prob(S =St,... ,SN  =sN,Ct+i =ci+1,... ,CN =cNCt) 
Ct 

= 	max Prob(ct+i,. . . cN c)Prob(St  = St,... ,SN  = sNct,. . . CN) 	(5.14) 
Ct+1 .....CN 

where, for ease of notation, the event that Ct  = c1 may also be represented simply as 

Ct. Note that 	gives the partial rnaxiinisation of the probability from position t for 

all possible values of Ct. 

The computation of (5.12) may be simplified by noting that the following recursion 

exists betweenand Rj: 

R(t) - Prob(St  = sdct = Ct) max 
I 	

R(t+1)] 	 (5.15) pc 	Ct+1 j Ct - 0+1 

with starting point Rfl. By applying the algorithm repeatedly from t = N - 1, N - 

2,... , 2, 1, the quantity 	is obtained for all possible values of c1 . Selecting the 
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largest of the quantities f1 	gives the relative size of the maximum probability 

specified in (5.12). 

To carry out the global decoding step, note that, from (515), for each state Ct, the 

state ê '  at the next position which maximises the contribution to the likelihood is 

known. Once the state at the first position, a1 , which maximises the contribution to 

the likelihood is known, (5.15) gives a2 , and then 63  and so on. Thus, the algorithm 

requires another pass through the data, this time from positions 1 to N. 

Note that it is possible to carry out the algorithm in the other direction, starting the 

recursion at position 1 and moving forward when calculating the size of the maximal 

probability; details are in MacDonald and Zucchini (1997, p. 65). 

The theory described above is now used in the development of a Bayesian approach 

to modelling recombination in phylogenctic data sets. 

5.3 Modelling topology change due to recombination in a 
DNA alignment 

Consider an alignment of T DNA sequences, each N nucleotides long. The data set 

may he considered as a T x N matrix, S, with each column of the matrix, S, repre-

senting the nucleotides in each sequence at a particular site. In the possible presence of 

recombination, the problem of estimating the phylogenetic relationships between these 

sequences may be viewed as that of allocating a particular topology to each position 

in the alignment, i.e., to each S. Representing this problem in terms of the condi-

tional independence graph in Figure 5.4, the {C} correspond to the (unobservable) 

true topology at each site. The number of possible trees for T sequences is given by 

HT 
3 (2i - 5), which rapidly increases. Thus, in the development of this theory, only 

data sets of four sequences are considered. In this case there are three possible i.mnrooted 

trees so C, t = 1, . . . , N may take the values 1, 2 or 3. 

As discussed previously in 5.1, a Bayesian approach is reasonable, since the site 

likelihoods are readily available and it is sensible to use prior knowledge about recom- 

bination, i.e., incorporate the {C1 } into the model. For the model to become a Hidden 

Markov model, the prior distribution for the {C} must be the probabilities of a dis-

crete, first-order Markov chain. Fortunately, this is a sensible choice as a first step in 

incorporating prior information. 

5.3.1 Prior distribution for recombination events 

The prior distribution for the sequence of topologies for a data set, N bp long, would 

specify a probability for every possible sequence of N numbers, the number at each posi-

tion taking a value in {1, 2, . . . , m}, where mu is the total number of possible topologies. 

One way of incorporating limited dependence between the terms of this sequence is to 
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use a discrete-time, first-order Markov model. This is a model having the property that 

Prob [N(t + l) N(t), N(t - 1),. ..] = Prob [N(t + 1)IN(t)], 

i.e., the state of the process at time t + 1, N(t + 1), depends only on the current state 

of the process. 

To define a Markov chain for the sequence of topologies, C, 1 < t < N, the 

transition probabilities, pj,  may be specified. This has been done as follows: 

Pij = A6 + (1 - A)fj 	 (5.16) 

where fj is the stationary frequency of topology j, j = 1, 2,... , in; 

5jj is the Kronecker delta function (1 if i = j; 0 otherwise). 

A is a value between 0 and 1 representing the difficulty of changing state (topology), 

with a value of 0 representing an easy change of state, while a value of 1 makes it 

impossible to switch between states. So if {Ct } is a Markov process, defined as above, 

specifying the sequence of topologies, C, then the prior probability of a particular 

sequence Cl,... , CN 15 

Prob(Ci = c1 ,.. , CN = cN) = fCIPCIC2PC2C3 . . . PCN_IC.N 

Choosing a prior is quite subjective as it is difficult to select a vague prior. The prior 

may be uninformative in that the stationary frequencies of all the possible topologies 

can be assumed to be all equal. However, the value of A must also be specified and this 

may introduce a degree of subjectivity. Therefore, an investigation of the sensitivity of 

the results to the choice of prior will be carried out later (see 5.4). 

5.3.2 Likelihood 

Superficially, the problem of calculating the likelihood seems straightforward: for each 

possible topology, calculate the likelihoods for each S (i.e., each column of the align-

ment). Then, for a particular sequence of site topologies for Si  . . . SN, the corresponding 

likelihoods may be multiplied together to yield the overall likelihood. However, upon 

closer consideration, a possible problein arises - the branch lengths. 

The branch lengths can have a considerable effect on the probability of observing 

a particular pattern of nucleotides at a site for a given topology. Therefore, choosing 

reasonable values is important. An obvious way to estimate the branch lengths might 

be to simply maximise the likelihood over the branch lengths for each of the possible 

topologies for a given data set. Unfortunately this approach is potentially flawed: if 

one or more recombination events have occurred, then the estimation of the branch 

lengths will be inaccurate. 
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To explain this, suppose that, in a DNA data set, one recombination event has 

occurred, with the affected subset of the DNA sequence being considerably shorter 

than the entire sequence length. There are two topologies valid for this data set: topo, 

the topology in the nonrecombinant regions and topi in the recombinant area. Since 

the recombinant region is small, estimation of the branch lengths for top0  based on the 

entire sequence will not be too adversely affected by the conflicting signal corning from 

the recombinant zone. However, when estimating the branch lengths for topi, the valid 

signal from the recombinant part of the sequence will be sometimes swamped by the 

misleading information coming from the rest of the sequence where topi is incorrect. If 

the branch length values for top1  are wrong, then the method may lose power. Thus, 

some form of localised calculation of the likelihoods may be a solution. 

To calculate likelihoods locally, the sequence may be split into subsets and like-

lihoods calculated on each. The issue is what size of subsets to use. There are two 

extremes: subsets large enough to run into the problem described above; and subsets 

of one column of the alignment. This latter approach will not have problems of con-

flicting phylogenetic signal, but it will throw away a lot of the information on branch 

lengths contained in neighbouring sites. This increases the variance of the branch length 

estimates and again, any method using these likelihoods will lose power. 

So there are two opposing effects: the conflicting phylogenetic signal coming from 

large subsets containing two or more different topologies (and other heterogeneities 

such as substitution rate variation for many real data sets) and the increased variance 

of the branch length estimates when small, homogeneous subsets of the data are used. 

It is possible that one effect may dominate the other, leading to large or small subsets 

being used, or a trade-off between the two may be necessary. This point is considered 

in 5.4.1 and in 5.5. 

Once the decision on the size of the subset has been made, the likelihood values 

Prob(S3  = s3IC3 = c3 ) 

should be calculated for all S3 , j = 1,... , N and for all n-n topologies. 

5.3.3 Posterior distribution 

Now that the prior distribution and the likelihood have been specified, the relationship 

posterior 	prior x likelihood 



may be used to find the posterior distribution. Substituting in the prior and the likeli-

hood, the posterior is given by 

Prob(ci,c2 , . 	,CN S) 	Prob(ci ,... ,cN)Prob(Scl,... ,CN) 

= 	. . .PCN_lCNflProb(Sj = s j G = c) (5.17) 

where S(N) = (S1 , . . . , SN ). Clearly, this posterior distribution is formulated as a 

Hidden Markov model, as described in 5.2.1. The calculations described in 5.2.3 may 

be carried out for this model. In particular, the sum of all the terms (the renormnalisation 

constant) may be calculated using the forward and backward probabilities, while the 

most probable combination of topologies may be found using the Viterbi algorithm. 

To calculate the renormalisation constant, (5.6) may be used. In the C programs 

written to carry out these calculations, t in this equation has been set to one. Hence, 

the forward probabilities a1  (j) and the backward probabilities 01  (j) must be calculated 

for j = 1,.. . , rn. The former are simple to find; (5.8) gives the formula for calculating 

these forward probabilities. To compute the backward probabilities, the recursion given 

in (5.10) must be used. The recursion may be started by noting thatON-1(j) = 

Prob(SN  = SNCN_1 = j) since N(j) = 1 for all possible values of J. 

Since this approach is Bayesian, the intuitive estimate of recombination events is the 

maximum a posteriori (MAP) estimate. This is simply the sequence of topologies which 

maximises the probability in (5.17), i.e., the solution to the global decoding problem 

discussed in 5.2.3 and is found using the Viterbi algorithm. 

5.4 	Performance of this model 

It is not enough to describe a model for topology change along an alignment; the model 

must be tested to see if it can yield useful inferences about the presence of recombination 

in a phylogenetic data set. Therefore, a small simulation study has been carried out to 

investigate the performance of this model. Since this is a Bayesian approach, it is also 

important to carry out an investigation into the sensitivity of the results to the choice 

of prior distribution. So, for a variety of recombination events, the prior is varied and 

the results are compared. This achieves the dual purpose of evaluating the method and 

testing the importance of the choice of prior. 

Before this investigation may be carried out, however, the subset size for calculating 

the likelihoods at each column must be chosen. The dependence of the results of the 

subset size was explored for a number of data sets and prior distributions. 
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Figure 5.5: The tree used to simulate recombinant data sets. The length of each of the 
exterior branches is x while the length of the interior branch is 2x. 

5.4.1 The effect of the sequence subset size on likelihood calculations 

It is possible that the size of the subset used to estimate the branch lengths in the 

site likelihood calculations plays an important role in the performance of the method. 

Accurate branch lengths will generally yield better likelihood values for the true tree 

in a particular region, and lower values for the incorrect topologies, thus playing a part 

in determining the power of this procedure. To improve the estimation of the branch 

lengths, the amount of data involved in the estimation should be as large as possible, 

for example, the entire data set. However, if a recombination event is short relative to 

the entire sequence length, then the amount of correct signal for the branch lengths of 

the topology resulting frorn the recombination will be small relative to the incorrect 

information from the rest of the sequence. This suggests using smaller subset sizes to 

calculate the branch lengths, although this will lead to increased variances of the branch 

length estimation. The question is whether a trade-off between these two phenomena 

is required, or whether one of these effects dominates the other. 

To investigate this, various data sets were examined. Two are reported here. The 

data sets were simulated using the tree in Figure 5.5. The data sets consisted of four 

sequences, each containing 1000 nucleotides, related in the non-recombinant region by 

the tree shown in Figure 5.5. The value of x was chosen to be 0.2 substitutions per posi-

tion (a typical branch length). To generate the recomnbination event, the four sequences 

were evolved along the interior and then the exterior branches using the Kimura two 

Parameter model of nucleotide substitution with a transit ion- transversion ratio of 2 (see 

2.5.2), until their length was 0.25x or 0.75x. At this point the subsequence from 351 

to 450 nucleotides in sequence 3 replaced the corresponding subsequence in sequence 

1. The sequences then continued to evolve along the exterior branchs for the remain-

ing length. Thus, two data sets with short recombination events have been generated, 

with one happening more distantly in time than the other. These recombination events 

should be relatively difficult to detect. 

For each of the data sets, eight different subset sizes, ranging from 1 to 1000 were 

used to calculate the likelihoods. Six different prior distributions were used, corre-

sponding to A from (5.16) taking the values 0.5, 0.6, 0.75, 0.8, 0.9 and 0.999. The three 
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lambda=0.5 

lambda=0.6666 

lambda=0.75 

lambda=0.8 

lambda=0.9 

lambda=0.999 

1 	 250 	 500 750 	 1000 

topology 2 	 topology 3 	 topology 4 

Figure 5.6: Key to the graphs in this section. The graph shows the horizontal axis, 
depicting location along the 1000 bp sequence, while the vertical bars correspond to 
particular values of A. Below the different shadings, corresponding to each of the three 
topologies are shown. 

stationary frequencies were all equal (f i  = 1/3, i = 1,2,3). The results are shown in 

Figures 5.7 and 5.8. A key to the graphs is given in Figure 5.6. 

In each of the graphs shown in Figures 5.7 and 5.8, the horizontal axis represents 

the sequence of nucleotides from 1 to 1000 bp. The different shadings (none, hatched or 

solid) correspond to the three topologies (labelled topologies 2, 3 and 4 to represent that 

sequence 1 clusters with sequence 2, 3 or 4 respectively), as shown in Figure 5.6. The 

results from the six priors, corresponding to the six different values of A are presented 

in sequential order, with the uppermost line being the prior with A taking the value 

0.5 and the lowest line corresponds to the prior with A = 0.999. The dotted lines in 

Figures 5.7 and 5.8 represent where the recombinant region lies in each data set; the 
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absence of these lines (due to a change in topologies) means that the detected start or 

end of the recombinant region coincides with the actual location. In the recombinant 

region, the true topology is 3 (represented by hatching). Elsewhere, topology 2 applies 

(no shading). Topology 4 (solid filling) should not be observed. 

For the data set with the relatively recent recombination event (the event occurs 

three quarters of the way along the exterior branches), the choice of subset size does 

not appear to greatly affect the MAP estimate. The recombination event is found for 

any subset size and for most of the prior distributions. For this data set, the MAP 

estimates using a subset size of 1 or 1000 seem to be the best. 

The subset size does affect the results from the data set containing the more distant 

recombination event. For small subset sizes (1-50 bp), this recombination event is not 

detected at all. For the larger subset sizes, the event is found. This suggests that the 

reduced variance of the branch length estimates which results from using more data 

outweighs the conflicting phylogenetic signal in this data set. 

Note that while the location of the recombination event is reasonably estimated 

when the subset size is 200 nucleotides, the resulting topology estimated is incorrect. 

This is not the case for other subset sizes where the MAP estimate finds the recoIn-

binatjon event. This illustrates a further effect that the choice of subset size could 

have. 

One final point to note is that the data sets examined here are homogeneous apart 

from the recombination event. In each data set, the branch lengths have similar lengths, 

the same model of nucleotide substitution is valid throughout and there is no substitu-

tion rate variation along the sequence. Real data sets are likely to be quite heteroge-

neous so it is possible that the conflicting phylogenetic signal could have a larger effect 

in practice. This point is returned to in 5.5. 

The speed of the computer program written to implement these calculations appears 

to depend on the subset size for calculating the likelihoods only as the time to find the 

MAP estimate seems negligible. For the data sets used above, the larger subset sizes 

gave good results. Since the data sets used in the simulation study below are simulated 

in a similar manner, it seems reasonable to use the largest possible subset size (the 

entire sequence length, 1000 bp in this example) to calculate the site likelihoods. 

5.4.2 Sensitivity to the choice of a prior distribution 

To test the sensitivity of the results to the choice of the prior distribution, various 

recombination events in data sets were simulated. The tree used to simulate the data 

is that shown in Figure 5.5. The outer branch lengths are x while the interior branch 

length is 2x. For the simulation study here, x takes on two values: 0.05 and 0.2 

substitutions per position. The data were simulated along the interior branch and 
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Figure 5.7: The effect of different branch lengths for a tree with a recombination event 
between 351 and 450 bp. x = 0.2 and recombination occurs when the exterior branches 
have attained 3/4 of their length. The subset sizes used to calculate the likelihood are 
shown on the left of the graphs. 
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Figure 5.8: The effect of different branch lengths for a tree with a recombination event 
between 351 and 450 bp. x = 0.2 and recombination occurs when the exterior branches 
have attained 1/4 of their length. The subset sizes used to calculate the likelihood are 
shown on the left of the graphs. 
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along the four outer branches until their lengths were a fraction, b, of the total branch 

length. Then a recombination event was generated, with a region of sequence 3 replacing 

the same region in sequence 1. Following that, the sequences were evolved along the 

remainder of the length of the branches ([1 - b]x substitutions per position). Values of 

b were 0.25 and 0.75. 

The data were simulated using a Kimura two Parameter model (the transition-

transversion ratio was chosen to be 2). The sequences were 1000 bp long, with three 

lengths of recombination event: 400 (positions 301-700); 200 (positions 301-500) and 

100 (positions 351-450). The subset length for calculating the likelihoods was 1000. 

The prior distributions used were all similar in that the stationary frequencies of each 

of the three topologies were all equal (to 1/3). On the other hand, the value of A, from 

(5.16), was varied, taking on six possible values: A = 0.5, oO, 0.75, 0.8, 0.9, 0.999. For 

each set of conditions, five data sets were simulated. This should represent, to some 

extent, the possible range of results. The data were then analysed using the Bayesian 

model described above. Recombination events were inferred using the MAP estimate. 

The results are shown in graph form in Figures 5.9 to 5.14. The information represented 

in the graphs has been explained above, and in Figure 5.6. 

Various conclusions may be drawn from the results of this simulation study. Firstly, 

the degree of 'patchiness' (the presence of short switches in topology) of the results 

decreases as the value of A increases. This is not surprising since A reflects the difficulty 

in changing topology; the higher the value, the less worthwhile it is for the topology to 

switch, despite the presence of higher likelihood values. As A gets very large (> 0.9), 

the MAP estimate for some of these data sets suggests that no recombination event has 

occurred. Again this makes sense: high values of A require a lot of support for a change 

of topology from the site likelihood values before a recombination event is inferred. The 

site likelihoods for old, short recombination events may not be high enough to cause a 

change in topology when A is high. 

The most difficult event to detect is the short recombination (100 bp long) in the 

short tree (x = 0.05) which occurs early in the evolution of the data set (b = 0.25). 

This is not surprising since this is a distant recombination event which occurs between 

relatively closely related sequences. The fact that a recombination event is sometimes 

estimated is promising. 

The depth in the tree at which a recombination event occurs is an important factor in 

determining the difficulty of the estimation problem. This is obvious: if a recombination 

event occurs far back in time then more of the signal from the event will be overwritten 

by nucleotide substitutions occurring afterwards than for a more recent event. When 

b = 0.75 (a recent event), the results from both trees and for all lengths of event are 

generally good - for most values of A the recombination event is detected to a reasonable 
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Figure 5.9: A recent recombination event (b = 0.75), 400 bp long, occurring between 
the dotted lines (301-700 bp). x (from Figure 5.5) is 0.05 for the left-hand graphs and 
x = 0.2 for the right-hand graphs. Five data sets were simulated for each value of x. 
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Figure 5.10: A recent recombination event (b = 0.75), 200 bp long, occurring between 
the dotted lines (301-500 bp). x = 0.05 for the left-hand graphs and x = 0.2 for the 
right-hand graphs. Five data sets were simulated for each value of x. 
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Figure 5.11: A recent recombination event (b = 0.75), 100 bp long, occurring between 
the dotted lines (351-450 bp). x = 0.05 for the left-hand graphs and c = 0.2 for the 
right-hand graphs. Five data sets were simulated for each value of x. 
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Figure 5.12: A distant recombination event (b = 0.25), 400 bp long, occurring between 
the dotted lines (301-700 bp). r = 0.05 for the left-hand graphs and x = 0.2 for the 
right-hand graphs. Five data sets were simulated for each value of r. 



Figure 5.13: A distant recornbination event (b = 0.25), 200 bp long, occurring between 
the dotted lines (301-500 bp). x = 0.05 for the left-hand graphs and x = 0.2 for the 
right-hand graphs. Five data sets were simulated for each value of x. 
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Figure 5.14: A distant recombination event (b = 0.25), 100 bp long, occurring between 
the dotted lines (351-450 bp). x = 0.05 for the left-hand graphs and x = 0.2 for the 
right-hand graphs. Five data sets were simulated for each value of x. 
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degree of accuracy. However, looking at events further back in time (b = 0.25), the 

performance of the method diminishes. This is not so noticeable for long recombinant 

regions but is very apparent for the shortest recombination event simulated (lOOhp); 

the MAP estimate for some of these data sets does not infer a recombination event. 

Another observation which stems from the above is that the success at detecting 

recombination depends on the length of the region. Obviously a larger recombinant 

legion is easier to detect since a larger set of site likelihood values in the sequence 

support the topology resulting from the recombination event. For example, in the ideal 

scenario the site likelihoods for data sets with the shortest recombination region (100 

bp) should be higher for the recombinant topology at those sites in the 10% of the 

sequence where the recombination has occurred. This is a relatively small proportion 

of the sequence affected by the recombination event (in comparison with 40%). In 

addition, random mutations will obscure some of the signal, which may mean that other 

topologies are favoured at some of the sites. This leads to a reduction in information, 

and therefore, it becomes harder for the model to detect recombination. 

In some data sets, the location of the recombinant region is correctly inferred, but 

the topology is not. Examples of this are the fourth data sets for the two sets of 

conditions for the distant recombination event of length 100 bp (see Figure 5.14). As 

mentioned in 5.4.1, a different choice of subset size for the likelihood calculations might 

change matters. The site likelihoods were calculated using subset sizes of 500 bp and 

200 bp and for both of them, a subset size of 200 bp led to not only the correct location 

being inferred but also to the correct topology (results not shown). The fact that 

this problem has occurred in this small simulation study suggests that a more detailed 

investigation of the dependence of the results on the subset size must be carried out. 

Overall, from this simulation study, it does appear that the model of recombination 

proposed above works quite well. Depending on prior beliefs about the recombination 

event, an appropriate value of A can be selected (if it is believed that a putative re-

combination event is short or occurred quite far back in the tree, a lower value of A 

should be selected). From the simulation study, the results appeared quite stable over 

a wide range of values of A, apart from the patchy effect. This suggests that, in any 

analysis, a range of values of A should be used. Putative recombination events which 

persist across these values are more likely to represent an actual recombination event 

rather than being an artifact of the data. 

5.5 Example using a Neisseria data set 

The model described above is now applied to a real data set, with a known recom-

bination event. The data set used is a subset of the Neisseria sequence data for the 

argF gene used in Chapter 4. The complete data set had eight strains of Neisseria; the 
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Table 5.2: MAP estimates of recombination events for the Neisserio data set 
A 	0.5 	0.6 	0.75 	0.8 	0.9 	0.999 

296-342(3) a 

357-498(3) 296-498(3) 296-498(3) 296-498(3) 296-498(3) 296-498(3) 
827-864 (2) 

.unspecified sites have topology 1 

data set used here consists of four of these strains: N. gonorrhoeue (accession number 

X64860); N. meningitidis (X64866); N. cinerea (X64869) and N. mucosa (X64873). Fur-

ther details on these sequences are available in Zhou and Spratt (1992). The alignment 

of these sequences was carried out using CLUSTAL W (Thompson et al., 1994), taking 

the default settings. The alignment is 787 bp long. Following the number scheme of 

Zhou and Spratt (1992), the first nucleotide is labelled as 296 bp with the last one at 

1082 bp. 

According to Zhou and Spratt (1992), there are two anomalous, or more diverged 

regions in the DNA alignment. These occur at positions 296-497 bp and 802-833 bp. 

In the rest of the sequence, N. meningitidis clusters with N. gonorrhoeae (later referred 

to as topology 1) while between 296 bp and 497 bp they found that it is grouped with 

N. cinerea (topology 3). Zhou and Spratt (1992) were not able to determine the cause 

of the other diverged region (802-833 bp). 

Before applying the model various parameters must be estimated. From the data, 

the equilibrium frequencies, 7t, i = A, C, C, T of the four nucleotides were estimated 

as 7rA = 0.26, 7rc = 0.28, 7rc = 0.28 and 7T  = 0.18. Using the PUZZLE program 

(Strimmer and von Haeseler, 1996), the transition-transversion ratio was estimated as 

2.3. In keeping with earlier remarks about trying different values of A, six different 

values were used (A = 0.5, 0.6, 0.75, 0.8, 0.9 and 0.999 - those values which were used 

in the simulation study). 

The final question concerns the subset size to use to calculate the likelihoods. Var- 

ious subset sizes were used and it was found that, for this data set, the problems of 

conflicting phylogenetic signal outweighed the effects of increased variance in the branch 

length estimates. Using the entire sequence to find the branch lengths resulted in the 

incorrect identification of a recombination event whereas the recombination event was 

correctly located and identified using a very small subset size (5 nucleotides). The 

results, using this subset size, for the six different prior distributions are shown in 

Table 5.2. 

Apart from the patchiness in the results when A = 0.5, the method finds the larger 

recombination region successfully over a wide range of values of A. It also correctly 

identifies the change in topology, with the sequence of topologies at each site starting 

with topology 3, then changing to topology 1. The method is not successful at identify- 
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ing the shorter diverged region. This is not surprising as Zhou and Spratt (1992) were 

unable to determine the cause of this diverged region; if it is a recombination event, the 

recombinant DNA does not appear to originate from any of the strains in their data set. 

There is a change in topology towards the end of this diverged region when A = 0.5. 

This may be picking up genuine information in the data, or it may be an artifact due 

to the low value of A. Since it does not persist for some of the higher values of A, the 

reasonable conclusion would be to ignore it. 

If the entire sequence length is used to find the site likelihoods, a recombination 

event is estimated between 296 and 829 bp for high values of A. This incorrect estimate 

probably results from the heterogeneities in the data. In the simulation study described 

in 5.4.2, small subset sizes (10 bp) performed almost as well as using the entire data 

set. Since real data sets are often heterogeneous, unlike those in the simulation, it is 

possible that small subset sizes are optimal in practice. This point requires further 

investigation. 

5.6 Discussion and future work 

The Bayesian approach to detecting recombination described in this chapter follows 

naturally from considering the problem in the framework of a Hidden Markov model. 

However, the structure of this approach is also very similar to the parsimony-based 

method suggested by Hem (1993). This procedure for detecting recombination has 

previously been described in Chapter 3 (see 3.2). Hein also considers the problem in 

terms of a graph, containing N nodes, each linked to the one directly preceding it. Each 

node t is assigned a weight, w(t, ct), the weight of position t given it has topology cm. 

In the Bayesian approach described here, this corresponds Prob(St  = stiCt = ct), the 

site likelihood, given topology ct. The edge connecting nodes t and t - 1 is assigned a 

weight, d(ct,ct_i),  the recomnbinational distance between topologies c1, and ct — 1 . This is 

equivalent to the transition probabilities given in (5.16). The estimate of the location 

(and consequences) of the recombination events in the data set is the most parsimonious 

path through this graph while for the Bayesian approach, it is the path of highest 

probability. 

Due to this correspondence, it should be possible to incorporate some of this method-

ology to extend the application of this work. For small data sets (< 6 sequences), he 

considers the possible topologies that could arise from the current topology through 

one or more recombination events. This restricts the number of possible topologies 

that need to be considered at each node. The same rules could be used in the Bayesian 

approach to extend the method to data sets of 5 or 6 sequences. 

For larger data sets, he describes a heuristic method which overcomes the high com-

putational burden of employing the exact approach for large data sets. Essentially, this 
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assumes that firstly, the topology at one point in the sequence is known and secondly, 

that only one recombination event may occur between each node (nucleotide). This 

reduces the number of topologies that need to be considered. Again, these ideas could 

be used in the Bayesian approach. 

Extending the Bayesian approach in this way could prove computationally tedious, 

since at each node, the site likelihoods for the permissible topologies would need to 

be calculated. A quicker approximate approach might be to use the idea of quartets; 

this was suggested by Strimmer and von Haeseler (1996) to approximate a maximum 

likelihood tree. A large data set could be split into quartets of four sequences (not all 

quartets would need to be examined) and each quartet could be analysed as described 

above. Many of these would contain no recombination event and thus could be ignored. 

Others might find evidence of a recombination event. The results from such quartets 

could he combined at the end and an overall estimate of recombination could be ob-

tained for the entire data set. This procedure would not be trivial to implement and 

would require further attention to assess its validity. 

One obvious point which should also be addressed is the selection of the value A. 

From a practical viewpoint, it might be known from other studies that certain parts 

of particular sequences have low levels of recombination whereas other regions may be 

more likely to contain recombinant regions. Appropriate values of A could be defined 

in these regions (e.g., A = 1 if recombination is impossible). This could be easily 

implemented. 

It could be argued that the best way to incorporate changing values of A and/or 

remove the subjectivity in the choice of prior is to place a hyper-prior on A. Thus, as 

well as the topology categories, a value for A would have to be estimated. Ignoring the 

computational difficulties for the present (a hyper-prior on A might cause the Hidden 

Markov model structure to fail), it is unclear whether such an approach is valid. 

To explain this, consider the maximisation of the posterior probability (5.17) over 

A (this is equivalent to putting a uniform hyper-prior on A). So the object is to find the 

combination of topologies and the value of A which maximises the posterior probability. 

To investigate the consequences of this approach, three data sets, with different recom-

bination events, were generated as described in 5.4.2. The value of x in Figure 5.5 was 

taken to be 0.05. The Kimura two Parameter model of evolution was again used, with 

a transit ion- transversion ratio of 2. The recombination events occurred three quarters 

of the way along the exterior branches involved and were of lengths 400 bp, 200 bp and 

100 bp. The subset size for the site likelihood calculation was 50 bp. 

For each of the three data sets, the posterior probability was found for values of A 

ranging between 0 and 1, and for the corresponding MAP estimates of the topology 

categories. The results are shown in Figure 5.15. In all cases, the posterior probability 
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Figure 5.15: The values of the log posterior probability for different values of A. The 
triangles mean that the MAP estimate does not find any recombination events. 
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is highest when A = 1. For the highest values of A, no recombination event is found for 

any of the data sets, although A gets very close to one before this happens for the data 

set containing the 400 bp long recombination event. This arises because the increase 

in site likelihoods caused by allowing for the recombination event does not offset the 

very small transition probabilities of change when A takes on values close to 1. A 

sufficiently high value of A will mean that the recombination event is not found by the 

MAP estimate. Hence, many choices of hyper-prior for A are likely to lead to a value 

of A 1 being estimated and correspondingly no recombination event would be found. 

It might be possible to obtain sensible results by using a hyper-prior which places very 

small probability on A being high, particularly for data sets with long recombination 

events, but it is questionable whether this is worth the effort giving the ease of finding 

the MAP estimate over a range of values of A, and the insensitivity of the results over 

a sensible range of A (i.e., those values which lead to the recombination event being 

detected). In addition, choosing such a hyper-prior is subjective so that problem is 

not eliminated. 

Finally, a drawback with this procedure is that it only returns a point estimate 

of a recombination event. Given that it is a Bayesian approach, it would be useful 

if estimates of credible sets could be found. Monte Carlo Markov Chains appear to 

be the obvious methodology to use; the problem is coming up with an appropriate 

procedure. Two approaches, at least, are possible. The first imagines the sequence of 

topologies as one parameter; a sequence of suitable length is generated from a proposal 

distribution (e.g., a first-order Markov chain) and is accepted or rejected according to 

the Metropolis-Hastings algorithm. Initial investigations suggested that this was not 

a suitable approach, since the chain mixed far too slowly. The other possibility is to 

consider the topology at each site as a separate parameter and update these in some 

sequential fashion. This should certainly he investigated. 
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Chapter 6 

Improved Estimation of the Error 
Bounds for Genetic Distances 

In Chapter 2, the modelling of the nucleotide substitution process in DNA sequences 

using continuous time Markov models was discussed. The derivation of the genetic 

distance separating two sequences (the average number of changes per position in the 

sequences) from these Markov models was also described, with the formulae for some of 

these distance measures given. While many applications merely require a point estimate 

of the distance [e.g., distance matrix tree reconstruction methods such as Neighbor 

Joining (Saitou and Nei, 1987) and Least Squares (Cavalli-Sforza and Edwards, 1967; 

Fitch and Margoliash, 1967; Felsenstein, 1997)], some analyses require an estimate of 

the variance and/or confidence intervals. 

This variance is frequently approximated using the delta method (statistical dif-

ferentials). If an estimate of a confidence interval is also required, then the distance 

estimator may be assumed to be normally distributed with a mean equal to the point 

estimate of the distance and the variance is that yielded by the delta method. However, 

if the distance estimates are biased and/or skew, then this approximation will not lead 

to very accurate estimates of the confidence intervals. 

This chapter discusses approaches to calculating more accurate approximations to 

confidence intervals for genetic distances, and finding (continuous) approximations to 

the sampling distributions. It begins by briefly reviewing the models of nucleotide 

substitution and the resulting distance estimators which will be used here, and details 

how the delta method is used to approximate the variance for the distance estimators 

derived from these models. The two procedures used to approximate the confidence 

intervals are then discussed: a transformation of normal confidence intervals and the 

saddlepoint approximation. In the next section, the accuracy of these approximations 

is examined in a small simulation study. Finally, the methods are applied to some real 

data sets which have previously been analysed in time literature. Much of the work in 

this chapter has been previously described in McGuire et al. (1998). 
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6.1 Models of Nucleotide Substitution 

The saddlepoint and transformed normal approximations are illustrated for four differ-

ent models in this chapter. These models have previously been discussed in 2.5 and 

include the Felsenstein 84 model (equation 2.9) and its special cases, the Kimura two 

Parameter model (2.6), the Felsenstein 81 model (2.7) and the Jukes-Cantor model 

(2.5). Recall that the rate matrix for the Felsenstein 84 (F84) model is given by 

A 

	

A 	- 

	

RF84 = C 	WrA 

ir+lrg + 
T 

C 
77rc 

77rc 

lrC±7rT + 

T 

WrT 

7rC+7rT 
+ 77rT 

y7rT 

(6.1) 

T1G 

 

The Kimura two Parameter (K2P) model is obtained by setting 7ri = 1/4, i = A, C, C, T. 

If p = 0, then the rate matrix reduces to that for the Felsenstein 81 (F81) model, while 

if, in addition, the stationary frequencies are all equal, the rate matrix further reduces 

to that for the Jukes-Cantor (JC) model. 

Note that time other version of a two parameter model, the HKY85 model (equa-

tion 2.8) is not suitable for the application of the saddlepoint approximation since a 

closed form does not exist for the resulting distance estimator (Yang, 1994, see 2.7.1). 

Recall from 2.5, that the transit ion- tranisversion ratio (the sum of all time transition 

(A f—+ C, C 	T) rates divided by the sum of all the transversion (A (—) C, 

A 	T, C f—+ C, C —+ T) rates) is an important quantity in two parameter 

models. For the F84 model, this ratio is given by 

ts/tv 
= pA + B 	

(6.2) 
yC 

where 

A 
= 7A7c + 7rC7rT 

lrA+7rG 7rc+7T 

B = 7A7G+ 7C7rT 

C 	= 	( A + 7G) (7C + T). 	 (6.3) 

Since the values of A, B and C are known for the K2P model, its transit ion- t ransversion 

ratio has the simpler form 

ts/tv = cm. 	 (6.4) 
2/3 

The above conditions under which the F84 or K2P rate matrix simplifies to a special 

case may be expressed in terms of the transition- transversion ratio. If ts/tv = 0.5 for 

the K2P model, then the JC model is obtained, while if ts/tv = B/C for the F84 model, 

then this model simplifies to the F81 case. 
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The next section briefly reviews the estimates of genetic distance which may be derived 

from these models, with an outline of how the F84 distance estimator is obtained. 

Further details may be found in 2.7.1. 

6.2 Estimators of Genetic Distance 

A, discussion of genetic distance estimators has previously been given in 2.7.1. Recall 

that the additive distance measure most commonly used is the average number of 

changes that have occurred per site since two sequences diverged. This is equivalent to 

the product of the overall rate of change (ii) and the time since divergence (2t). For 

the F84 model, the overall rate of change is given by 

= 	A 	+ G + 
PG 

 + 7T] + 	+ 	+ 	+ PT ] 

_______ 
+G7A+ 	+C+T +T 	

P7TC 
TA+C+ 	+G 

I 	7rA+7rG 	 I 	I 	 7rC+7T 

Following some algebraic manipulation, this becomes 

2Ap+y(1— 72 —7—i7r), 	 (6.5) 

A being defined in (6.3). 

In order to find a formula for the F84 distance, the Transition probability (note the 

use of the capital T' to help distinguish between Transition probabilities from a Markov 

chain and a transition, the biological event) matrix, P21, of the continuous time Markov 

chain must first be found. Following the theory presented in 2.5.1, P2t = exp(2Rt), 

which leads to the following entries in the Transition probability matrix: 

I 	
) 	

+ (1 - e27t) n 	(6.6) Pij 	 + e_2t (1 - e2) 
 Ek 7rkCjk zJ 

where 

ifi=j 

" 1ü  otherwise, 

and 

Ii 	if j and k are either both purines or both pyrimidines 
Eq = 

0 otherwise. 

The expression for the Transition probabilities may be used to find the overall 

Transition probability that a transition [P(2t)] or a transversion [Q(2t)] occurs in a 

time interval 2t. These are specified by 

P(2t) = 2 [B + (A - B)e2t - Ae_ 2 +t], 	 (6.7) 

Q(2t) = 2C [1 - e_ 2 t]. 	 (6.8) 
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where A, B and C have been previously defined in (6.3). 

The F84 distance is given by 2[2Ap + 7(1 - 72  - 
72 

-
72  - 4)]t. Following some 

manipulations of equations (6.7) and (6.8), the distance may be expressed as 

/ 
dF84 - 2Am (1 

- 2A 

P(2t) 
- 2AC 

A—B 
Q(2t) 

(6.9) 

+2(A_B_C)ln(1_  

To find the distance between two DNA sequences using the F84 model, the Transition 

probabilities, P(2t) and Q(2t), may be replaced by their estimates, P and Q, from the 

data set. P and Q represent, respectively, the observed proportion of transitions and 

transversions between the two sequences. This yields the distance estimate, 

dF84 = —2A In ( - 	
- 

~ —AC 
)  

+ 2(A - B - C)In (i 
- ). 	

(6.10) 

The distance estimator for the K21? model of nucleotide substitution may be derived 

in a similar manlier or may be obtained by substituting the appropriate values of A, B 

and C, yielding 

d = - Iii(1 - 2P -Q) - lri(1 - 2Q).  

For the Jukes-Cantor (JC) and Felsenstein 81 (F81) models, the distance depends 

on the observed proportion of change, , only since these models have just one rate of 

change parameter. Thus, the distance estimator has a simpler form given by 

d= —Eln(1 
- ) 	 (6.12) 

where E = 1 -7r 2 -4 - 4 - 4 (Tajima and Nei, 1982). Note that E is 3/4 for the 

JC model. A derivation of the distance estimator for the JC model is shown in 2.7.1. 

So far, only point estimates of genetic distances have been given. Some inferences 

also require an estimate of the error of the estimate. Below a widely-used procedure 

for estimating the variance of distance estimators is described. 

6.3 	Estimation of the variance using the delta method 

The delta method is a commonly used procedure for estimating variances and was first 

introduced into the phylogenetic literature by Kimura and Ohta (1972) where they used 

this method to find an approximation for the variance of the distance estimator from 

the Jukes-Cantor model. This idea has already been briefly discussed in 2.7.2, where 

equation (2.32) gives the general form of a variance estimated using the delta method. 

As a reminder of this, suppose V is a statistic with variance-covariance matrix E , and 

let rn(V) be a function of V. Then the variance of m(V) may be estimated by 

Var[m(V)] 	?n (v) E 	m(v) V= 	 (6.13) 
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where IA is the expectation vector of V. For scalar quantities, the variance of m(V) 

may be simply written as 

Var[m(V)] a2[rri'(v) 2 
V=/i] (6.14) 

where p = E(V) and a2  = Var(V) and m'ev)  denotes the first derivative of 7n(v) with 

respect to v. 

To find the delta method approximation to the variance for the F81 and JC models, 

the variance, a2, ofinust first he found. Now is an estimator of p, the probability of 

observing a difference in the nucleotides at a particular site in a two-sequence alignment. 

If the sequences are ri nucleotides long, then the number of differences observed, k, is 

an observation from a Binomial distribution with parameters ri. and p. Thus 	k/ri 

and Var() = p(l - p)/rn which may be estimated, if necessary, by substituting for p. 

The remaining component to he found in (6.14) is rn'(v). Using (6.12) which gives 

IT as a function of , f(), the first derivative with respect to p may be found: 

(i - 
	

(6.15) 

Substituting the value of the variance of arid the above into (6.14) yields the expres-

sion: 

Var(d) 	
77(1 —p/E) 2 
	 (6.16) 

where may be substituted for p if p is unknown (generally the case in practice). 

For the F84 and K2P models the observed (bivariate) statistic is V = (P, Q)T.  riP 

and riQ are observations from a nnultinomnial distribution with parameters ri, P and 

Q, where P and Q are the probabilities of observing a transition and a transversion 

respectively. Equations (6.10) or (6.11) [the former for the F84 model, the latter for 

the K21? model] express d as a function of V, f(V), so the vector of the first partial 

derivatives (with respect to P and Q) may be easily found. For the F84 model 

df(V) - ( r1  - p - (A_B)Q1' A-B r1 - p - ( A—B)Q] 

dV - 	2A 	2AC j 	C [ 	2A 	2AC 

A—B—C [I_)T 	 (6.17) 
C 	2C 

while for the K2P model, 

df(V) 
- ([1 - 2P - Q]', [(1 - 2P - Q) — '+ (1— 2Q) h]). 	(6.18) 

dV 

The variance-covariance matrix of V is simple to find since V is a statistic from a 

multinomial distribution. It is simply 

/ P(1-P) 	:±2 '\ 
EV Ti 	 Ti 	I 

—' ±q Q(1-Q) j 
Ti 	 ii 	/ 
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Substituting these into (6.13) yields 

Var(d) 	{a2P + b2  - (aP + bQ)21 	 (6.19) 
Ti 

where 

a = AC/[AC - CP/2 - (A - B)Q/2] 

b = A(A - B)/[AC CP/2 - (A - )Q/2] - (A - B - C)/(C - Q/2). 

If P and Q are unknown, then their estimated values, P and Q may be substituted into 

(6.19). For the K2P model the variance is approximated by 

Var(d) 	[c  2P + g2Q - (cP + gQ)2 ] 	 (6.20) 
Tb 

where c and g, for ease of notation, correspond to the first and second entires respec-

tively in the vector given in (6.18). 

Once the variance has been calculated using the delta method, the sampling dis-

tribution and confidence intervals may be found by assuming that the genetic distance 

estimator, d, is normally distributed with mean d and variance equal to that found from 

the delta method. Since the distance is a function of a sum of independent variables 

(e.g., whether a difference is observed at a particular position or riot for an F81 dis-

tance), the sampling distribution of the distance estimator should approach a normal 

distribution as the sequence length increases by the Central Limit theorem. For shorter 

sequence lengths, however, the assumption of normality may be questionable. This 

approximation is later referred to as the normal- delta approximation. 

6.3.1 Other approaches to the estimation of confidence intervals 

Other more complicated (either computationally or mathematically) approaches may be 

used to calculate confidence intervals for genetic distances (see 2.7.2). These include 

using the bootstrap to yield an approximation to the sampling distribution of the 

distance estimator which has the disadvantage of a high computational burden. 

Andrieu et al. (1997) suggested using interval estimation to calculate the exact 

confidence intervals for the JC and K2P models; this may also be used for the F84 

and F81 models. Details of the procedure have been given in 2.7.2. This method is 

particularly useful where no change, or very little has occurred as sampling theory is 

unhelpful in this case. However, it is a somewhat computationally tedious approach; for 

reasonable amounts of change it may be possible to find approximations which perform 

well, and yet are easier to calculate. In addition, for two parameter models, it requires 

that the transition-transversioni ratio be assumed to be known, something which is very 

unlikely to be the case. Furthermore, for computational reasons it is difficult to extend 

it to three parameter models; this would also require restrictive assumptions about 
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the parameters, similar to the assumption of the transition-transversion ratio for a two 

parameter model. 

The following parts of this chapter propose two approximations. The first may be used 

only in a few limited cases, while the second has a wider range of applicability. 

6.4 A very accurate approximation to the true confidence 
intervals of the F81 and JC distance estimators 

The distance estimator, d, for the F81 and JC models (equation 6.12) is a simple 

function of g = k/n, where k is the number of differences observed between the two 

nucleotide sequences, and ri is the sequence length. Clearly, k is an observation from a 

binomial distribution, B (ii, p), where p is the true probability of observing a difference. 

Hence, the sampling distribution of is well approximated by a normal distribution 

with mean p and variance p(l —p)/n, provided rnin{rip, n(1 - p) } is not small (typically 

the smaller of the two should be greater than 5; Clarke and Cooke, 1992, p.  237). 

Therefore, finding confidence intervals for j3is a straightforward task. 

Since d is a monotone function of ji (equation 6.12), it is possible to transform 

confidence intervals for 	to obtain the corresponding intervals for d. If the lower 

bound of the 100(1 - a)% confidence interval for is lb"/2, and the upper bound is 

ub 12  then the corresponding lower (lb /2) and upper (ub 12 ) bounds of the 100(1 - 

confidence interval for dare given by 

lb"/2 	—Elri(1 - lb /2/E) 

and 

ub 12  = —Eln(1 - uU' 72 /E). 	 (6.21) 

This approximation is later referred to as the transformed normal approximation. 

It is also possible to use this method to approximate the sampling distribution of 

dFsl. Strictly speaking, this will not be correct since dF81, for a given data set, has a 

discrete distribution, while transforming a normal distribution will lead to a continuous 

sampling distribution. Nevertheless, such an approximation is useful to examine the 

shape of the sampling distribution (i.e., its bias, skewness etc.). 

As mentioned above, in most cases the sampling distribution of is well approxi-

mated by a normal distribution, having the form 

1 
f() = (2a 	 ( 2)_1/2exp { 	—p)2 	 (6.22) 

2a2  
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where a2 = p(l —p)/'n. To find the sampling distribution of d, the sampling distribution 

ofmay be transformed as follows: 

= f[h'(}. 	 (6.23) 
dd 

From (6.12), 

)3= h'(d) 

= E(1 - e_E) 	 (6.24) 

and therefore 

cid e
1 
	

(6.25) 

Substituting (6.24) and (6.25) into (6.23) yields the following approximation to the 

sampling density of dF8l,  g(d): 

= (2na/ exp {_[E(1 eE) - p]2/2a2 
} 	

(6.26) 

This approximation (the transformed normal approximation) to the sampling distri-

bution may be easily plotted using packages such as S-plus (version 3.4, StatSci Inc., 

Seattle, Washington) or MAPLE (MAPLE V release 4, Waterloo Maple Software, Wa-

terloo). 

As the JC model is simply a special case of the F81 model (with E taking the value 

3/4 in equation 6.12), this also provides an almost exact approximation to the sampling 

distribution of the distance estimator for the JC model. The sampling distribution is 

given by (6.26) and the confidence interval bounds may be found as described above. 

This procedure of transforming one distribution to obtain the distribution of another 

cannot be applied to the other models discussed (K2P and F84), since these consider 

transitional and transversional changes separately. Thus the underlying distribution of 

observed changes is multivariate (multinomial) and cannot be transformed to give the 

sampling distribution of the scalar quantity, d. Consequently, confidence intervals for 

these models cannot be found using this method either. In this case the saddlepoint 

approximation is the suggested method. Below, some of the historical development and 

theory behind this approximation are outlined, followed by details of its application to 

genetic distance estimators. 

6.5 Saddlepoint Theory 

Some of the background theory of the saddlepoint approximation is described here, 

beginning with Daniels' (1954) work on an approximation to the mean of n independent, 

identically distributed random variables followed by generalisations of this technique 

introduced by Easton and Ronchetti (1986) and Gatto and Ronchetti (1996). 
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6.5.1 Mean of n independent, identically distributed random variables 

Daniels (1954) introduced the saddlepoint technique into the statistics literature by 

deriving a very accurate approximation to the mean of n independent, identically dis-

tributed (i.i.d.) random variables. An outline of his derivation is as follows. Let 

X1, X2,... , X be continuous i.i.d. random variables, with cumulative distribution 

function F(x) and density f(x). Then the moment generating function (mgf) is defined 

as 

	

Mx(0) = eK(0) = 
	

eXf(x) dx 

and suppose the mgf converges for real 9 in some non-vanishing interval containing the 

origin. Let —c1  < 0 < c2 be the largest such interval (0 < ci 	cc, 0 < C2 	Do, 

Cl + C2 > 0). 

Consider the mgf of X at iO or alternatively, the characteristic function (cf) at 0. 

The cf is given by 

	

E[elO X/ii] 

= 	
E[e/] 

= E[e/I n,  

Mj(i0/n)' 

by the i.i.d. properties. This may be rewritten as Mx(it). Hence, the sampling 

distribution of X, f,() may be found from the inverse Fourier transform 

I MTh(it)e tx dt 

=n 	n[K(it).-it] cit. 
2ir - 

Equivalently, through a change in variable (T = it, dT = i dt) 

I,iOO 

= --- I 	 dT. 
2711 

This integral is the same as 

rT+ 
en(TT] dT 	 (6.27) 

2irz 

where r is some real number within the strip of convergence of M(T). 

When n is large, f() may be approximated by choosing the path of integration 

to pass through a saddlepoint of the integrand in such a way that the integrand is 

negligible outside the immediate neighbourhood. The saddlepoints are situated where 

the exponent has zero derivative, i.e., where 

K'(T) = 
	

(6.28) 
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K'(T) being the first derivative of K(T) with respect to T. Under general conditions, 

(6.28) has a single real root, To, within the strip of convergence of Mx(t), (-Cl, C2) for 

every value of such that U < F,() < 1, where F() is the cumulative distribution 

function of X. 

Since To is a minimum of K(T) - Tx for real T, the modulus of the integrand 

must have a maximum at To on the chosen path of integration. It can be shown 

(Daniels, 1954) that on any admissible straight line parallel to the imaginary axis, 

the integrand attains its maximum modulus only where the line crosses the real axis 

(essentially, it is shown that for the line T = +11'y (v real), M(T)e_T < I M(r)e_T I). 

By the Riemann-Lebesgue Lemma, M(r + iy) = 0(y), so the integrand cannot 

approach arbitrarily near its maximum as jyj becomes large. So for the particular path 

of integration chosen, only the neighbourhood of To need he considered. 

On the contour near To, the Taylor expansion of K(T) Tx at To is 

K(T) — T = K(T0)—To+(T— To) (K'(To) —)+ (T_T0)2K11(T0) 

	

+ 	(T—T0)K(T0) +... 	(6.29) 

Since T = To + iy, T - To  = iy, (6.29) becomes 

K(T) - T 	K(T0 ) — T0  — y2 K" (T0 ) - 

1 	
2 	

1
(6.30) 

iy3 K'"(To) + y4KiV(T0)  + 
6 	 24 

Making a change of variable (y = v/['nK" (To)]"2  so dy = [rmK"(To)]'/2dv) in (6.30) 

and putting this into (6.27) yields 

1 	 1 	 2 
[K (To)—T0 — 

—K'"(T0) [nK"(To)]3/2 + 
	Kiv(To) n2K"(To)2 + . ..] } d?). 

Letting A(T) = K (3) (T)/[K"(T)]3 /2 , the exponent becomes 

exp{n[K(To) —To±]} exp { v2  — 	3A0) + 	
+ ... }.24 	n 

(6.31) 

The second exponential term in this expression has the form e 6  where a = —v2/2  and 

S consists of the remaining terms which are small. Hence, the Taylor series expansion 

ea 

	

	= a + Sea  + 62 a +... 

ea(1+S++...) 

may be applied to the second exponential in (6.31), yielding 

_u2/2 (i - iv3A3(T0) + 	44(0) +_IoA3(T0) + 
. 6 	 24 	n 	2" 36 	n. 

v3 	iii 	 1 
_v2/2 (i - A3 (TO) 	+ — [A4(To)v4  - 	A(To)v°  + 
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Therefore, 

	

ir 	1/2 

I 	

m[K(To)_To] 
27r [K"(To) 

	

X 
 /

00 

	
I 
[ 

A4(To)v4 - 	A(To )v6 ]) dv. (6.32) e_02/2 

(1 	

1 ;3 A3 (To ) 	1 	i 

'n 24 	 72 

The odd powers of v in (6.32) are oscillating (odd) complex functions, so their integrals 

are zero. The even functions may he integrated by parts: 

fCO'OG 
e— 

V2/2  dv = 

and 

00 

FOO 

	

dv = [e  )/2v] 	
-

e_02/2(_v)v dv 
. -00 

= /
v2e 02 /2  dv. 

-

00 

IMI 

v2e_v2/2 d) = 'r 
and in a similar manner 

00 
v4e_02/2 dv = 3 

-00 

/
00 v6e02/2 dv = 15. 

-00 

Therefore, upon integration, (6.32) becomes 

1 [ 	il/2 

	

- 	I 	eTt[K(70)T0 ] 
27 K"(T0 )] 

	

[ 	
+(x4 (TO )3 	- A(To)15) 

+n 24 	 72 3 
...] 

1 
1/2 

em (TO)—TO1  {i + X(To) [ 4 (T0) - 	 ] + 
... - [2K"TO)j n [8 	24 

Thus 

1 1/2 

g71 (i) = 	
TI 	

em(T_T0 	 (6.33) 
127rK"(To)j 

is the saddlepoint approximation to f0(), with error of order n. 

6.5.2 Saddlepoint approximations to general statistics 

Easton and Ronchetti (1986) generalised this procedure to deal with general statis-

tics. As above, let X1,X2 ,... ,X, be i.i.d. random variables with density f(x), and 
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let V(Xi, X2, . . , X 1 ) be a real-valued statistic with density, f,, (x). Let M, (t) = 

f e xf(x) dx be the moment generating function of f(x), and K,,, (t)= log Mr,(t) be 

the curnulant generating function. Then f(x) can he expressed in terms of the Fourier 

inversion formula: 

	

f 7 (x) = 	M71() 	dt 
27 CO 

	

- 	M(nT)e _nTxdT 
271-i 

	

= 	Ti 

JT- 	

eTi[ .(T)_Tx] dT 	 (6.34) 
2iri 	iOO 

where r is any real number in the interval of convergence of the moment generating 

function, and 

R7 (T) = K(,T)/. 	 (6.35) 

Note that if VTL is the arithmetic mean, then RTL (T) = K(T), the cumulant generating 

function of j(x), and thus (6.34) is the same as (6.27). In the general case, Rr (T) 

must be approximated, and their the saddlepoint method of asymptotic analysis may 

be applied to (6.34), following similar steps to those described above and detailed in 

Daniels (1954). 

If an Edgeworth expansion, f71(x), for f(x) up to, and including the term of order 

71 1  is available, then it is possible to obtain an approximation, R(T), for R(T) in 

terms of the first four cumnulants: 

R,(T) = iT + 
LaTLT  + 'n2  3T3 + rm3n2cxT4 	

(6.36)
24 

where p, is the mean, a i71  s the variance, and r13n  and '71  are the third and fourth 

order standardised cumulants respectively of V. Applying the saddlepoint technique, 

as described above, yields the saddlepoint approximation to the density at a value x: 

[ 
fn (X) 	I 	

ri. 	1
1/2 

I 	n[ñ(To)_Tox] 	 (6.37) 
[2R"(T0 )] 

which has uniform error of order n. As before, To  is the saddlepoint, found by solving 

the equation: 

R 1(To)=x. 	 (6.38) 

Since RJT) is a third-degree polynomial, the existence of a unique saddlepoint, To , 

may easily be shown. 
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6.5.3 Marginal Densities and Tail Area Probabilities 

Gatto and Ronchetti (1996) derived the saddlepoint approximations of marginal densi-

ties and tail area probabilities of general non-linear statistics, based on the expansion 

of the statistic up to the second order. It is this technique which may be applied to the 

problem of inference for the genetic distances considered in this chapter. 

Once again, consider ib i.i.d. random variables, X 1 , X2 ,. . . , X, possibly multi-

variate, with cumulative distribution function (cdf), F, and a (possibly multivariate) 

statistic T7(X1, X2 , . . . , X1 ). Let v0  = V(F) be the statistical functional defined by 

V = V(F(nt)), where F) is the empirical cdf. Suppose it is of interest to make infer-

ences about a real-valued function, m(V), with continuous and nonzero gradient at 

v0 , and continuous second derivative at v0 . 

A Taylor series expansion is used to approximate 7n(V) - rn(vo): 

	

rn(V71) - m(vo) = (V 	T 
- v0 ) — rn(v) 

Ov VV() 

	

1 	 a2  
+(V 	- VD) Tii(v)(V - v0 ) 

3V3VT 

+O(n 32). 	 (6.39) 

The Von Mises expansion of the statistic, V, up to the second-order term is found: 

V7 —v0  = 	ki (X;F) 

	

+ 2 
	

E E k2  (Xi,  X; F) + O(n 32). 	(6.40) 
i=1 j=1 

This may be substituted into (6.39), leading to the following quadratic approximation, 

U, to rn(V) - rn(vo ): 

2 
h(X,X3 ) 

i=1 j=i+1 

where 

Dm(v) 
h(x,x) = {[kf(xi;F)+kT(xi;F)+k(xixi;F)] Dy 

LVO  

32m(v) 
+kf(xj;F) 

DVDVT 	
kf(xi;F)}/2 

V 

and U is a U statistic of degree 2. This statistic may be expanded by means of an 

Edgeworth expansion, and thus estimates of the cumulants may be obtained. This 

leads to an estimate of R(T) so that (6.37) may be used to calculate the saddlepoint 

approximation. 

There are two steps in the procedure to estimate the cumulants used to calculate 
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Step 1 The quantities g(X), 'y(Xi,X2) and a2 are calculated from the first and 

second order kernels, k1  and k2  respectively, of the Von Mises expansion of V7  

(see equation 6.40): 

gX = k(x;F)--m(v) 	 (6.41) 
V=V() 

(xi , x2) = 	 + 

kf (xi; F) aVDVT 
 rn(v) V=VQ  k (x2; F)] 	(6.42) 

cr = E[g2 (X)]. 	 (6.43) 

Step 2 Using the quantities above in equations (6.41) to (6.43), approximations to the 

mean, p,, (this will often be zero), variance, a, and the standardised cuniularits, 

ic 7  and ic 1, of rn(V) may then be computed using 

An = E[7(X1,X2 )] 
71 

=4a/n + 2E[72 (Xi,X2)]/[n(n 1)] 

K3n = n 2cç3{E{g3(Xi)] + 3E[g(Xi )g(X2 )y(Xi,X2)11 

K4n = n'a4{E[g4(Xi)] - 30- + 12E[g2 (X1 )9(X2 )y(Xi,X2)] 

	

+ 12E[g(Xi )g(X2 )'y(Xi, X3)y(X2 , X3)11 	 (6.44) 

where all the expectations are taken with respect to F. 

These approximations may be used to find R(T) in (6.36), and consequently the 

saddlepoint approximation to the density, (6.37) may be calculated. 

Gatto and Ronchetti (1996) also give expressions for the tail area probability: 

1 - G7 (x) = P(rn(V) - in(v0 ) > x) 

+ (r) 
- 	

(6.45) 

where 

= To [nR (T0 )]"2 	 (6.46) 

r = sgn(T0 ){2ri [To x - R(T0 )]}"2, 	 (6.47) 

(.) and  () are the density and distribution functions of the standard normal respec-

tively, and To is the saddlepoint given by the solution of (6.38). 

The approximation to the tail area probability (6.45) is for continuous variables. 

Daniels (1987) considers the problem for lattice variables and notes that the form of 

the tail area probability is the same as that for continuous variables. The difference is 

in the definition of s. For lattice variables, this has the form 

= (1— 8 C-TO) 
[nkll 

(To)] 
1/2 

. 	 (6.48) 
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Note that r remains as defined in (647). The saddlepoint is still given by the solution 

of (6.38). 

It is also possible to incorporate a continuity correction into the formula for the tail 

probability of a lattice variable. Again, only the definition of s changes, becoming 

[rrR 
( To) 	 1/2 

s 2sinh -- 	 (To)] . 	 (6.49) 

The definitions of s for a lattice variable (6.48) and for a lattice variable incor-

porating a continuity correction (6.49) will need to be considered when deriving the 

saddlepoint approximation for the F81 distance estimator. While incorporating the 

continuity correction may appear to be the sensible choice, Daniels (1987) notes that 

the uncorrected form performed better for the Poisson distribution. 

6.6 Application of the saddlepoint approximation to the 
tail probabilities of distance estimators 

As has been indicated above, the technique for marginal densities for general non-linear 

statistics developed by Gatto and Ronchetti (1996) is used here to more accurately 

estimate the tail probabilities and the sampling distribution of a distance estimator. 

Since the four models may be put into two classes: the one parameter models (F81 and 

JC) and the two parameter ones (F84 and K2P), two sets of computations must be 

done. The simpler task of finding the saddlepoint approximation for the F81 and JC 

models is shown first, followed by the computations necessary to find the approximation 

for the two parameter models. 

6.6.1 Saddlepoint approximations for the JC and F81 distance esti-
mators 

Recall from (6.12) in 6.2 that the estimator of genetic distance for the JC and F81 

models is 

dz —E In (i 
- 

j~ ) 

where 

E=1—-7r—ir-4. 

For the JC model E takes the value 0.75. Putting this in the framework of the sad-

dlepoint approximation, the (scalar) random variables, X, correspond to observations 

from a Bernoulli distribution with parameter p, where p is the probability that a nu-

cleotide substitution is observed, while the statistic V becomes the proportion of ob-

served changes () between the two sequences. Hence, v0 = p. In addition, m(V) is 
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the function d = f(). Now the steps outlined above may be used to calculate the 

saddlepoint approximation with the kernels k1  and k2  being specified by 

k1  (x; F) 5 1 - p change observed (prob = p) 
—p 	no change 	(prob = 1 - p) 

while k2 (Xi,  x; F) is zero. 

The derivatives in (6.41) and (6.42) are quite simple, being 

d( 
—J(p)= 1--) dp 	 E 

and 

J,  (P) = ( 
	

2 

These may be substituted into (6.41) and (6.42). Once these expressions have been 

found, the rest of the calculations used to estimate R71 (T) may be carried out in a 

straightforward manner. 

An approximation to the sampling distribution may be found using (6.37). However, 

as noted in 6.4, this is not strictly correct since the true sampling distribution is discrete. 

The approximation to the tail area probabilities is found using (6.45). Since is a lattice 

variable, the tail probability for lattice variables must be used in either the uncorrected 

(6.48) or continuity corrected forms (6.49). Initial investigations suggested that the 

uncorrected form gave more accurate estimates for shorter sequence lengths (for longer 

sequences, both forms converge to each other). Thus, the uncorrected form has been 

used here. 

6.6.2 Saddlepoint approximations to the tail probabilities of the K2P 
and F84 distance estimators 

Recall that the expression for the genetic distance estimator for the F84 model is given 

by 

2Aln(1 

	(A—B)Q\ 

- 	
2A 2AC )+2(A_B_C)1n(1_) 

where 

A 
= 7r47rG + 7rC7t-T 

7A+7rG 7rC+7IT 

B = 7r47rc+7rC7T 

C = (.4+c)(c+T) 

(see 6.1). For the K2P model, A and C are 0.25 while B is 0.125. 

For the F84 and K2P models, the random variables, X1, are bivariate, taking on 

three possible values: (0 , O)T if no change has occurred; (1 , O)T if a transitional change 
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has occurred; (0 , i)T if a transversional change has occurred. Thus the underlying 

distribution, F, is multinomial, M(1, P, Q), where P is the probability of observing a 

transition, and Q is the probability of observing a transversion. V(F(n1))  corresponds 

to the bivariate statistic (P , Q)T, where P and Q represent the observed proportion 

of transitions and trarisversions respectively. Consequently, v0  = (P , Q)T. The 

saddlepoint approximation may be calculated as described above, and as before, k2 () 

is zero while 

	

( (1—P, -Q)T 
 

transition 	(prob = P) 
k1(x;F) = 	(—P, 1 Q)T transversiori (prob = Q) 

(—P , _Q)T 	no change 	(prob = 1 - P - Q) 

For these models, the partial derivatives in (6.41) and (6.42) are more complicated. 

For the F84 model 

a I 	P (A — B)Q - 
—m(v) = 1 

-OV 	2A - 2AC 

A—B [1_  P (AB)Q] 1 ABC 

C 	2A 	2AC 	 C 	2C 

This simplifies to 

a 	/ 
in(v) = ([1— 2P -Q]', 	[(i - 2P - Q)-'+ (1— 2Q)h]

C9V
) 

for the K2P model. The matrix of second order derivatives for both models has the 

following form: 

where 

/a b 
3V3VTmM = b c) (6.50) 

1 	P 	(A — B)Q -2 

a=2A 1 2A 	2AC 

_A—B 	P (A — B)Q —2 

b— 2AC 1 2A 	2AC 

- (A—B)2 
1 
 P (A — B)Q —2 

2AC2  2A 2AC 

for the F84 model, and 

a = 2(1 - 2P - Q) 2  

b = (1 - 2P - Q) 2  

c= (1_2P_Q)-2 +(1_2Q)-2  

A—B—C [,_ 	—2 

2C2 	2C 

for the K2P model. Once these derivatives have been found, the saddlepoint calculations 

are again straightforward, although more complicated than those for the one parameter 

models. 
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Programs to carry out these computations have been written in C. Currently these 

programs run interactively, requiring the user to specify the range of values of the 

saddlepoint, To and the number of points within this range over which to evaluate the 

tail probabilities. The program outputs the location corresponding to each To  (x in 

equation 6.38) and the tail probability at that point (using equation 6.45). The lattice 

version is used for the F81 and JC models, while the continuous version of (6.45) is 

appropriate for the F84 and K2P rnodcls. Since the calculations appear to require 

negligible computer time, confidence intervals may be found quickly by sensible choices 

of the range and number of points over which to evaluate the tail probability. 

6.7 Evaluation of Saddlepoint approximation 

Two approximations to the tail probabilities of some genetic distance estimators have 

been developed above. The first, based on transforming the normal approximation 

to the binomial, should be very accurate in most practical applications as the normal 

approximation to the binomial can be good even when min{'rmp, TI, (1 —p)} is as small as 

5. The lengths of DNA sequences used in practice are such that this condition is usually 

satisfied easily. Therefore, it is expected that any investigation into its performance 

should return positive results. 

It is difficult to make a similar claim about the saddlepoint approximation. While 

this is, in general, a very accurate approximation, it cannot be guaranteed that it will 

perform well in every situation. Therefore, it is necessary to study the performance of 

this approximation under a variety of conditions to see if it is a significant improvement 

on the existing normal-delta approximation (see 6.3). Thus, a small simulation study 

was carried out, the intervals from the saddlepoint and normal-delta approximations 

being compared to the exact answers. The details of this simulation study are given 

below. 

6.7.1 Details and Results of the Simulation Study 

The simulation study may be broken down into two sections. For the purposes of this 

chapter, the 95%  confidence intervals are calculated for two sets of conditions, and are 

discussed in some detail here. A much wider investigation was carried out into the per-

formance of the two proposed methods, and the results are available in Appendix A. 

Since these mirror the results shown here in this chapter, it is not necessary to dis-

cuss them in detail. Below the simulation study reported in this chapter is described, 

followed by details of the simulation study shown in the appendix. 

Two different models were used to compare the approximations proposed in this 

chapter: the F81 and F84 model. In both cases, the stationary frequencies of the 

nucleotides were 7A = 0. 1, 7 = 0.3, i = C, C, T, while the transit ion-transversion ratio 
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for the F84 model was 2. Four different distances were used: 0.05, 0.4, 1.0 and 1.5. 

Four different sequence lengths were used: 50 bp, 150 bp, 500 bp and 1000 bp although 

only the results from three sequence lengths are reported. This is either because the 

performance of the methods for sequences of length 1000 bp is clear from the 500 

bp sequences (all the approximations to confidence intervals improve with increasing 

sequence length), or because 50 bp is too short a sequence length for some of the 

conditions considered (large distances, high transition-transversionl ratio). 

For each set of conditions, the true confidence intervals had firstly to be evaluated. 

Since the distance estimator from the F81 model is a transformation of a binomial 

random variable, finding the true confidence intervals was straightforward. 10000 inde-

pendent randorri variables from the appropriate binomial distribution were simulated 

using S-plus, and these were transformed to yield the sampling distribution of dF8I, and 

the 95% confidence intervals. To find the intervals for the F84 models, Seq-Gen (Ram-

baut and Crassly, 1997) was used. This is a program written to simulate a given number 

of data sets, consisting of sequences of a certain length according to a given phylogeny. 

Various models, including the F84 model, may be used for the nucleotide substitution 

process. 10000 data sets of two sequences for each given transit ion- trarisversion ratio, 

distance and sequence length were simulated. The resulting distance estimates were 

used to find the true confidence intervals. In most cases, equi-tailed intervals were cho-

sen. However, where the true distribution went to infinity in the right-hand tail, the 

lower bound was the 5% point, while the upper bound was infinity. 

For each of the models, the normal-delta and saddlepoinit confidence intervals were 

found. Details of these calculations have been given earlier in this chapter. If the equi-

tailed interval was used for the real distribution, then the intervals from the various 

approximations were also the equi-tailed intervals. Otherwise, the one-tailed intervals 

were calculated. For the F81 model, the transformed normal approximation was also 

calculated. Since the true values of the parameters (p or P and Q, 7ri , i = A, C, C, T) are 

known, the expected intervals for each approximation may be calculated, and compared 

to the corresponding exact intervals. From this, conclusions about the performances of 

the transformed normal and saddlepoint approximations may be drawn. The resulting 

confidence intervals are displayed on graphs in Figures 6.1 and 6.2. 

In Figure 6.1, it is seen that the transformed normal approximation is both very 

accurate and a considerable improvement over the normal-delta approximation for the 

F81 model under a wide range of conditions, including extreme cases such as large 

distances and short sequence lengths. For small distances (e.g., 0.05) and short sequence 

lengths however, its performance is comparable to the normal-delta approximation, 

since in these conditions, the normal approximation to the sampling distribution of a 

binomial probability estimator is not good (min{np,n(1 - p)} is small). On the other 
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Figure 6.1: 95% confidence intervals for the F81 model for different distances and 

sequence lengths. ND (labelled o): the normal-delta approximation; EX (A): exact 

confidence intervals; TN (+): the transformed normal approximation; SP (x): the 

saddlepoint approximation. Note that lines without points at the upper end (the exact 
and transformed normal intervals for a distance of 1.5 and a sequence length of 50 bp) 
mean that the upper bound of the confidence interval is infinity. 
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Figure 6.2: 95% confidence intervals for the F84 model, transit ion- traflSVerSiOn ratio 
of 2, for different distances and sequence lengths. Note that results are shown for 
sequences of length 150, 500 and 1000 bp when the distance is 1.5 

138 



hand, the saddlepoint approximation gives quite accurate results in this region, and is 

preferable to the normal-delta approximation. Overall, the saddlepoint technique gives 

good approximations to the true intervals, except in the extreme case of a large distance 

(e.g., 1.5) and a short sequence length (e.g., 50 bp). This is unsurprising as the true 

distribution is not very well behaved for large distances and short sequence lengths; 

numerical simulation of the sampling distribution of dF81 often returns infinite values 

for the distance, caused by getting close to, or exceeding the value of E in (6.12). 

In Figures 6.2, the saddlepoint approximation is also observed to perform better 

than the normal-delta approximation over a wide range of cases, especially for short 

sequences. Once again, the saddlepoint approximation has problems in extreme cases 

(a distance of 1 with a sequence length of 50; a distance of 1.5 with a sequence length of 

150) resulting from the behaviour of the true distribution. In these cases its performance 

is comparable to, or even worse than the normal-delta approximation. The problem 

is more acute than for the F81 model, clue to the extra parameter in the F84 model. 

Once the sequence length increases, however, the saddlepoint approximation quickly 

improves. Note that the results for 50 bp when the distance is 1.5 are omitted, since 

both approximations perform badly at this point due to the behaviour of the exact 

sampling distribution - the distance is far too large for such a short sequence. In 

practice, inferences will most likely be drawn froni sequences separated by moderate 

distances; in these regions the saddlepoint approximation performs well, and should be 

a useful tool. 

It is observed in Figures 6.1 and 6.2 that the magnitude of the difference between 

the normal-delta intervals and the saddlepoint or transformed normal intervals is often 

not very large, particularly for longer sequences. It might be thought that inferences 

using intervals from the two more accurate methods will not be very different from those 

using the normal-delta intervals. This might well be the case in some inferences, but in 

many cases, the accuracy of an interval is very important. Therefore, any improvement 

is desirable. This point will be returned to towards the end of this chapter. One 

further point to note is that the saddlepoint and transformed normal intervals reflect 

the asymmetry in the true equi-tailed confidence intervals whereas the normal-delta 

approximation produces symmetrical intervals. 

6.7.2 Details of the extended simulation study shown in the appendix 

In the initial evaluation of these approximations, a wider range of models and other 

conditions were examined. The results, shown again as graphs, are given in Appendix A. 

Both 95% and 99% intervals were calculated. Six different distances, (0.05, 0.1, 0.2, 0.4, 

0.7 and 1 substitution per position) were examined. Three different sequence lengths 

(150, 500 and 1000 nucleotides) were used. 
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A range of different conditions of the F84 model were explored (six in total). Firstly, 

the nucleotide frequencies were varied. There were two possible sets of values: 

S 7r4 = rIG 7 G = 	= 0.25 

0  7A = 0.4, irc = 7G = 	= 0.2 

Secondly, the transition-transversiori ratio was allowed to take two values: 

. 0.5 

2 (considered to be a typical value of the ratio) 

Note that certain combinations of the transition-transversion ratio, and the stationary 

frequencies lead to simplifications of the F84 model. If the ratio is 0.5, then the F84 

model reduces to the F81 model, since for the sets of nucleotide frequencies considered, 

B/C = 0.5 (B, C are calculated using equation 6.3), this being the condition for 

the F84 model to simplify. Furthermore, if the stationary frequencies are also equal, 

then the model reduces further to the JC model. Equal nucleotide frequencies with 

a transition-tranisversion ratio not equal to 0.5 will lead to the K2P model. For each 

set of conditions, the true confidence intervals were found as above (10000 binomial 

random variables or data sets were used to numerically find the sampling (listribution). 

Also shown Appendix A are the 99% confidence intervals for the F81 and F84 models 

used in this chapter to illustrate the performances of these methods. Results are shown 

for the 6 distances mentioned above in Figures A.1 to A.8. 

As indicated above, the results are similar to those in Figures 6.1 and 6.2. The sad-

diepoint and transformed normal approximations appear to be a considerable improve-

ment over the normal-delta approximation for a wide range of distances and sequence 

lengths. Where the transformed-normal approximation can be found (one parameter 

models) it is generally slightly better than the saddlepoint approximation, except for 

short distances. Extreme cases where the true distribution is not well-behaved continue 

to be a problem but that is not unexpected. 

6.8 Examples using real data sets 

The two approximations discussed above are now used to draw inferences from two 

real data sets. Firstly, the prepeptide and C-peptide encoding parts of the nucleotide 

sequences of human preproinsulin mRNA and rat preproinsulin-I mRNA are compared 

(Sures et al., 1980; Tajimna and Nei, 1984). In this data set, the relative rates of change 

at different codon positions is of interest. A change in the first two positions of a 

codon often results in the amino acid encoded being changed, whereas many types of 

substitution at the third position leave the amino acid unaltered. Since changes in 

140 



Table 6.1: Comparisons between Rabbit and Mouse -g1obin sequences using the K21? 

model of nucleotide substitution 

pos. 1 pos. 2 pos. 3 small large 

0.157 0.133 0.419 0.603 0.907 

ND 	0.088,0.227 0.070,0.196 0.277,0.561 0374,0.831 0.765,1.048 

SP 	0.094,0.232 0.075,0.201 0.292,0.576 0.408,0.868 0.776,1.059 

the amino acid encoded are often detrimental, the amount of observed change in the 

first two codon positions should be relatively lower than that in the third position (as 

sequences carrying detrimental changes tend to be removed by natural selection). 

To look at the relative rates for the prepeptide and C peptide sequences, these 

sequences are split into the first and second codon positions (108 nucleotides) and the 

third position (54 nucleotides). The F81 model of nucleotide substitution is assumed. 

The distances are 0.190 for the first and second positions, and 0.723 for the third 

position, which indeed appear quite different. The 95% confidence intervals calculated 

using the normal-delta method are (0.098, 0.281) and (0.297, 1.149), also indicating a 

difference. The transformed density intervals are (0.104, 0.287) and (0.399, 1.421) for 

the first and second codon positions, and the third codon position respectively, which 

give even clearer evidence of this difference in rates. 

The saddlepoint approximation may be used to give more accurate error bounds for 

distances when a more elaborate model of nucleotide substitution is assumed. Kimura 

(1980) calculated the distance and standard deviation (using the delta method) for 

the three codon positions using the K2P model between various mammal -globin se-

quences, which may be used to establish the relative rates of nucleotide substitution 

between the three codon positions. Among others, he compared the rabbit and mouse 

sequences, and also compared the rate of evolution at the third codon position with two 

non-coding regions (the small introns and the large introns). Table 6.1 gives the esti-

mated distances (d), the normal-delta (ND) and the saddlepoint (SP) 95% confidence 

intervals for this data. 

The coding region of these -globin sequences is 444 nucleotides long, so there are 

148 nucleotides in each coding position. The small introns contain 113 nucleotides, while 

the large introns lead to sequences which are 557 nucleotides long (gaps in the alignment 

are excluded in both cases). The saddlepoint confidence intervals are somewhat different 

from the normal-delta confidence intervals, being asymmetrical, although in length they 

are equivalent to the normal-delta intervals. While the saddlepoint intervals do not alter 

the inferences drawn from the data (the third codon position evolves at a faster rate than 

the other two positions, the large introns evolve faster than the third codon position; 

see Kimura, 1980), they are worthwhile in that they give a more precise description of 
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the data. In addition, if this data were used to estimate the time since the most recent 

common ancestor, the saddlepoint intervals would lead to more accurate error bounds 

for this divergence time. 

6.9 Discussion and future work 

The equi-tailed confidence intervals for the models examined in this chapter tend to 

be asymmetrical, especially for shorter sequence lengths. The two approximations 

proposed here (transformed normal and saddlepoint) both exhibit that feature, whereas 

the commonly used normal-delta intervals do not. These approximations yield more 

accurate estimates of time location of the endpoints of the intervals. Hence, they are a 

significant improvement on the current method of confidence interval estimation. 

The transformed normal approximation has limited applicability - a distance esti-

mnator must depend only on a binomial quantity, so it will be mainly restricted to the 

F81 and JC models. For sequences which are sufficiently diverged such that the number 

of transitions is near to, or has reached saturation point, it might be better to use a 

distance which depends on the number of transversions only. Since the sample statistic 

in this case (the number of transversions) is also a binomial probability estimator, the 

transformed normal approximation may be used. On the other hand the saddlepoint 

approximation has a wider range of applicability: if a distance estimator can be ex-

pressed as a simple analytical function of a sample statistic, this approximation may 

be used. It is, therefore, applicable to some two and three parameter models. 

The accurate estimation of confidence intervals for genetic distances is very im-

portant in some applications. For example, the time since two species last shared a 

common ancestor is often obtained from the estimate of the number of substitutions 

per position separating the two species by assuming that the substitution rate per year 

is known. In this case, an accurate confidence interval for the distance is important to 

put correct error bounds on the number of years since the most recent common ances- 

tor. Where applicable, this divergence time may also be estimated from the number of 

changes at the third position in a codon which do not cause the resulting amino acid 

to change (synonymous changes). If an estimator of the number of such changes may 

be expressed as a simple analytical function of the observed sample statistic (see, for 

example, Kimura, 1980), then it should be possible to derive a saddlepoint approxima- 

tion to the sampling distribution of this estimator and use this to put more accurate 

error bounds on the time since divergence. Since rates of substitution are often very 

low, small changes in the confidence intervals for the distances (such as those caused 

by using the more accurate saddlepoint or transformed normal approximations) can 

have quite a large effect on the confidence interval for the time since the most recent 

common ancestor. The poor performance of the saddlepoint approximation for large 
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distances should not be a problem in such an application; large distances often mean 

that sequences have reached a saturation point in substitution and thus are not suitable 

for inferring times since divergence. Therefore, more closely related sequences should 

be chosen as part of the experimental design. 

Andrieu et al. (1997) use interval estimation to find the exact intervals for one and 

two parameter models. This is quite a tedious process and, in practice, the transformed 

normal approximation should give comparable results over a wide range of conditions 

for the F81 model. The saddlepoint approximation performs well in many cases of the 

F84 model and provides an alternative to interval estimation. For the K2P (and F84) 

model, Andrieu et al. (1997) have to assume that the transit ion- transversion ratio is 

known although this will not he the case in practice. The saddlepoint approximation 

does not require such an assumption. In addition, the saddlepoint approximation may 

be more easily extended to more complicated models of nucleotide substitution. 

It is well known that the models considered here lead to biased estimates in the 

case of short sequences and/or a high degree of divergence between the two sequences 

(Tajima, 1993; Rzhetsky and Nei, 1994). These authors have developed unbiased es-

timators for the distance between two sequences, and have estimated the sampling 

variance of these estimators using the delta method. However the sampling distri-

butions of these estimators are likely to have a similar shape to that of their biased 

counterparts. Hence, it would be worthwhile to investigate whether the saddlepoint 

approximation could be applied to give better estimates of the confidence intervals for 

these estimators. 

The models considered here are all subsets of the three parameter model proposed by 

Tamura and Nei (1993, see 2.5.2), the most complicated model for which a closed form 

exists for the distance estimator (Yang, 1994, see 2.7.1). Therefore, the saddlepoint 

approximation may also be used for this model. This approximation may also be useful 

for variants on the form of the distance estimator from two-parameter models. Goldstein 

and Pollock (1994, see 2.7.3) derived a (closed form) additive distance estimator, LSD, 

which has minimal variance using generalised least squares, and found its performance 

to be considerably better than the K2P distance estimator. The estimator may be 

written as follows 

LSD = 	
2 	

(6.51) 
OF 	

2  

where 

S = 	ln[1 - 2P -Q] + ln[1 - 2Q] 

V = —ln[1 —2Q] 

143 



4P - 4P2  - 16PQ + 12P2Q + 16PQ2  - 4P2Q2  + Q3 - 4PQ - Q4  
4n(1 - 2P - Q)2(1 - 2Q)2  

2 	 Q2  ____________________ 
USV = 

- 2/3  2'n(l - 2Q)2  
/\2 

Q(Q) 
a?, 

= 	) ni - 2Q)2  

Note that a/20 is the transition-transversion ratio which is assumed known (this, of 

course, is a drawback but Goldstein and Pollock (1994) note that LSD is relatively 

robust regarding the value of the ratio used). In practice, the sample values, P and Q 

are substituted for the population values, P and Q. 

While (6.51) is complicated, it still depends only on the bivariate sample statistic, 

(P , Q). Therefore, the only differences computationally between the calculations for 

the K2P distance estimator and for LSD are the partial derivatives in equations (6.41) 

and (6.42). These may be found by hand or more easily using a computer algebra 

package such as MAPLE. It will then be straightforward to apply the saddlepoirit 

approximation to LSD. 

A possible extension to the F84 model and its special cases covers site-to-site rate 

variation. To deal with rate variation, it is assumed that the rate of evolution for some 

sites is faster than for others. This can be modelled using gamma mixing (Jin and Nei, 

1990, see 2.7.3). For the K2P model, they show that 

dK2P = [(1 - 2P - 	+ (1 - 2Qy/ - 
	

(6.52) 
11 

where a is the square of the inverse of the coefficient of variation of the rates within 

the sequences. Note that they assume that the value of a is known. Gamma mixing 

can also be applied to the F81 and F84 models yielding 

—ii 
[ 	

p\_-[/a 
= 	

1 
d,31  Ea (i 

- E) 	] 

for the F81 model, and 

(6.53) 

[7 	

) 	

1 
d 84  = 2Aa [1 - 

p 

(A_B)Q 	/ 
 

- 2AC 	
- 1] 

—1/a 	1 
- 2(A - B - C)a [(i_ 	 (6.54) 

for the F84 model. Since these are all closed forin formulae, the approximations pro-

posed in this chapter may be used. 

Currently, the variance of these estimators is found using the delta method (see 6.3), 

assuming the value of a is known. Thus, this estimate of the variance (which may not 

and 

Us  = 
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be very good in the first place) only places a lower bound on the true variance, since the 

value of a is not known. Therefore, approximations such as the transformed normal, if 

applicable, and the saddlepoint can only improve inferences on the distance estimators 

in equations (6.52) to (6.54) above. 

Improved inferences are also required for more general models (i.e., more param-

eters) of nucleotide substitution. Such models should reflect the true process of nu-

cleotide substitution more closely. Since it is not possible, in general, to obtain the 

distance estimate as a simple function of a sample statistic, it is difficult to apply a 

saddlepoint approximation. The statistical properties of distance estimators from such 

models is another issue which requires attention. 
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Chapter 7 

Conclusions 

7.1 	Summary of work 

This thesis considers two problems in phylogenetics: detecting recombination in mul-

tiple sequence alignments and improving inferences from distance estimators. Several 

approaches have been suggested to tackle these problems. 

The methodology proposed to detect recombination falls into two categories: a 

mainly graphical method and a statistical procedure. The graphical approach uses 

the Dss statistic to scan alignments for recombination events prior to a phylogenetic 

analysis. The algorithm consists of moving a window along a sequence, and calculating 

the Dss statistic for each window; changes in the topology within the window should 

be reflected in the value of Dss. Concurrent large Dss values suggest the presence of 

a recombination event. To confirm if a recombination event has occurred, the user is 

directed to some of the tests described in Chapter 3, although some suggestions for 

statistical tests based on the Dss statistic are given in 4.7. An attractive feature of 

this method is that it can be applied to large data sets, and runs relatively quickly. 

The second approach to the problem of detecting recombination considers a Bayesian 

model for the underlying topology at each site in a DNA alignment. If a discrete-time, 

first-order Markov chain is used as the prior for the topology at each site, together 

with the site likelihoods, the model will be structured as a Hidden Markov model. This 

means that certain computations (e.g., finding the maximum a posteriori [MAP] esti-

mate or the renormalisation constant) are feasible. The MAP estimate consists of the 

sequence of topologies at each site which maximises the posterior probability; therefore 

it is a possible estimate of the location of recombination events. For computational 

reasons, only data sets of four sequences are considered here. Results from simulated 

and real data sets suggest this approach has potential. 

To improve the estimation of error bounds for genetic distance estimators two meth-

ods were suggested. The first applies to one-parameter models of nucleotide substitution 

only and involves transforming normal confidence intervals to yield an almost exact re- 
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suit over a wide range of sequence lengths and distances. The second proposal is the 

saddlepoint approximation which may be applied whenever the distance estimator may 

be expressed in term of sums of the Transition probabilities of the Markov model of 

nucleotide substitution. In a simulation study, both approximations performed well in 

a wide range of cases. 

7.2 Future work 

Suggestions for future work in each of these three areas have already been given in 

Chapters 4, 5 and 6. A broad view of the direction which this might take is given here. 

It might be possible to refine the Dss statistic so that it takes account of factors 

such as substitution rate variation and other heterogeneities in the model of nucleotide 

substitution along the DNA multiple sequence alignment. Consequently, any signifi-

cantly high values of Dss would then correspond only to recombination events. If it 

were possible, furthermore, to find the distribution of Dss under the hypothesis of no 

recombination, then a statistical test for recombination could be implemented with-

out having to resort to other tests for recombination. However, this is likely to be a 

non-trivial exercise. 

There is much scope for extending and improving the Bayesian approach for detect-

ing recombination described in Chapter 5. As indicated in 5.6, its two main drawbacks 

at present are that it, firstly, only returns a point estimate of the location of a recom-

bination event and secondly, that it is only applicable to four sequences. To deal with 

the former problem, Markov Chain Monte Carlo methods are proposed but require 

investigation. For the latter limitation, an approach using quartets, or making use of 

the ideas suggested by Hem (1993) are suggested. Further details are given in 5.6. 

Finding and applying the saddlepoint approximation to all possible cases is one line 

of investigation following on from the work described in Chapter 6. Examples of such 

cases are given in 6.9. These include more complicated models of nucleotide substitu-

tion, estimators incorporating rate variation, and almost unbiased distance estimators. 

Improved inferences for more complicated substitution models, which do not have a 

closed-form for the distance estimator is another non-trivial issue. 

One question which was not addressed in Chapter 6 concerns the best confidence 

interval to use. Should the equi-tailed interval be used, or is the equivalent highest 

density interval more useful (and possibly shorter), justifying the increased compu- 

tational burden to find this interval? Since the saddlepoint approximation and the 

transformed normal approximations yield good approximations to the sampling dis- 

tributions of distance estimators (albeit a continuous approximation to the discrete 

distribution of distance estimators from one-parameter models), these points could be 

investigated using these approximations. 
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Appendix A 

Confidence Intervals for Genetic 
Distance Estimators - Simulation 

Study Results 

The results for the extended simulation study mentioned in 6.7 are shown here. The ex-

act confidence intervals for each of the six distances (0.05, 0.1, 0.2, 0.4, 0.7, 1) are plotted 

along with those obtained by the approximate methods (the normal-delta, the saddle-

point, and where applicable, the transformed-normal approximations) for sequences of 

length 150, 500 and 1000 nucleotides. There are eight different figures shown: 

The F81 model (7rA = 0.1, irc = rc = 7rT = 0.3), 99% confidence intervals; 

The JC model, 95% and 99% confidence intervals; 

The F84 model (rA = 0.1, 'ire = TG = 7rT = 0.3, trans ition-transversion ratio of 

2), 99% confidence intervals; 

The F84 model (7m1i. = 0.4, 7rC = 7mG = 7rT = 0.2, transit ion- t ransversion ratio of 

2), 95% and 99% confidence intervals; 

The K2P model (transition-transversion ratio of 2), 95% and 99% confidence 

intervals. 
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