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Abstract. The CLaM proof planner has been interfaced to the HOL
interactive theorem prover to provide the power of proof planning to
people using HOL for formal verification, etc. The interface sends HOL
goals to CLaM for planning and translates plans back into HOL tac-
tics that solve the initial goals. The project homepage can be found at
http://www.cl.cam.ac.uk/Research/HVG/Clam.HOL/intro.html.

1 Introduction

CLaM [3] is a proof planning system for Oyster, a tactic-based implementation
of the constructive type theory of Martin-Löf. CLaM works by using formalized
pre- and post-conditions of Oyster tactics as the basis of plan search. These
specifications of tactics are called methods. The planning-level reasoning may
abstract the object-level reasoning, giving proof planning a heuristic element.
Soundness is nevertheless guaranteed since proofs are constructed solely by sound
tactics. Due to the heuristic aspect, the tactic application may be unsuccessful
but in practice this is very rare. Experience also shows that the search space
for plans is often tractable: CLaM has been able to automatically plan many
proofs. A particular emphasis of research has been inductive proofs.

HOL [5] is a general-purpose proof system for classical, higher-order predi-
cate calculus; it has been used to formalize many areas of interest to computer
scientists and mathematicians. The HOL system has been criticized on the ba-
sis that it does not provide a high level of proof automation. Such remarks are
often based on ignorance, since the HOL system now provides powerful sim-
plifiers, automatic first order provers (both tableaux and model elimination), a
semi-decision procedure for a useful fragment of arithmetic, and a co-operating
decision procedure mechanism [1]. However, HOL lacks automation for many im-
portant areas. A good case in point is induction. Induction is certainly a central
proof method, but in HOL, as in many other systems, the user must interactively
control the application of induction.
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These two systems have been linked to make the inductive proof methods
of CLaM available to users of HOL, and also to give CLaM users access to
the large libraries of tactics and theories available in HOL. CLaM is currently
implemented in Prolog and HOL in Standard ML.

2 The Interface

In the current design, the HOL process is in control, treating CLaM as an intel-
ligent remote tactic. The CLaM and HOL processes communicate over sockets.
The sequence of operations is illustrated in Figure 1.
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Fig. 1. System Structure

First, the HOL formula (goal) to be proved is translated into the syntax of
Oyster’s logic. This is then passed to CLaM, which searches for a proof. CLaM
returns either a proof plan or an indication of failure. Supporting definitions,
induction schemes, and lemmas are passed from HOL to CLaM in a similar way,
prior to any proof attempts. CLaM acknowledges them with a handshaking
message.

For successful proof attempts HOL receives a proof plan which it attempts to
translate into corresponding tactics. If this is successful — which it normally is —
the compound tactic is applied to the original HOL goal. Somewhat surprisingly,
the plans CLaM produces based on specifications of Oyster tactics also work
for a suite of purpose-written HOL tactics, despite the differences between the
Oyster and HOL logics. These differences (and the heuristic aspects of planning)
cannot lead to a non-theorem being ‘proved’ in HOL because HOL invokes its
own tactics in checking the proof. Simply accepting as a theorem any goal for
which CLaM finds a plan would be unsound.

3 Translation of the Object Language

In our work, CLaM has been modified to provide some independence from Oyster
and the built-in types and induction schemes of the CLaM library. The library
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mechanism and Oyster’s well-formedness checks have been bypassed. This allows
any HOL types and definitions to be used without having to make corresponding
definitions in Oyster. Modification of CLaM to suit the classical higher-order
logic used by the HOL system has largely been avoided by exploiting corre-
spondences between syntactic features of HOL’s logic and the constructive type
theory of Oyster/CLaM. The Oyster type theory has not been changed and no
new methods have been written, though one for classical propositional reasoning
might assist in some examples.

The HOL logic is translated to the syntax used by CLaM as follows. F (false-
hood) is translated to the empty type and T (truth) to the type used to represent
truth in CLaM. Conjunction translates to a product type, disjunction to a dis-
joint union type, implication to a function type, and negation to a function type
between the argument of the negation and the empty type. Quantifications be-
come dependent types. Equality between booleans is translated to if-and-only-if
and other HOL equalities become equalities in CLaM. Other HOL terms are
translated almost directly into the corresponding type-theoretic constructs.

Types in HOL are distinct from formulas/terms and so are translated sep-
arately. This is largely straightforward, although type variables required some
thought. In HOL, type variables are implicitly universally quantified, but in
CLaM they have to be bound. Thus, at the top level, the variables introduced
for HOL type variables are quantified by placing them in the first type universe,
u(1). As Felty and Howe [4] point out, the domain should really be restricted
to the inhabited types of u(1) since HOL types have to be non-empty. However,
for the kinds of proof under consideration this will be of no consequence and as
pointed out earlier can not lead to inconsistency in HOL.

Differences in the lexical conventions of the HOL logic and those of CLaM
(which are essentially those of Prolog) require some translation of constant and
variable names. The translation table is retained for use in translating the proof
plan to a HOL tactic.

4 Tactic Generation

A proof plan is translated into a composition of ‘atomic’ tactics in HOL, each
of which corresponds to a method of CLaM. Currently, there are about twelve
atomic tactics that form the basis of the translation.

Tactic generation takes place in two stages, as can be seen in Figure 1. First,
an abstract syntax representation (tacticAST) of the tactic is derived from the
plan. The abstract syntax is then used to generate either a tactic (an ML func-
tion) for direct application to the goal or a textual representation (ML concrete
syntax) of the tactic for inclusion in a file. Direct translation into a tactic allows
the plan to be applied to the goal without parsing and evaluating ML code. On
the other hand, the generation of concrete syntax (by pp) allows the tactic to
be inserted in ML tactic scripts and used in HOL sessions where CLaM may not
be present, i.e., it provides persistence.



System Description: An Interface Between CLaM and HOL 137

One of the challenges in translating plans to tactics is tracking (in HOL) the
variables introduced into the proof by CLaM. For example, consider an induc-
tion step in a plan: the step cases (and sometimes the base cases) introduce new
bound variables. Later in the plan, these variables may become free as a result of
specialization. Still later, a term with such free variables may be generalized. For
HOL to make the same generalization step, the HOL goal must have correspond-
ing occurrences of the same term (and hence corresponding occurrences of the
same free variables). Therefore the proof plan must provide sufficient information
for the names of bound variables in induction schemes to be ascertained.

5 Examples Performed

Examples that have been planned by CLaM and proved in HOL using the inter-
face include commutativity of multiplication (over the naturals) and a number
of theorems about lists including some known to be difficult to automate. The
interest in many of these examples is not primarily the theorem, which is usually
fairly simple, but rather in how CLaM found the proof, by making multiple and
nested inductions and generalizations. Here are a few concrete examples:

∀x y. REVERSE (APPEND x y) = APPEND (REVERSE y) (REVERSE x)
∀x m n. APPEND (REPLICATE x m) (REPLICATE x n) = REPLICATE x (m + n)
∀x m n. FLAT (REPLICATE (REPLICATE x n) m) = REPLICATE x (m ∗ n)

The functions here are curried. APPEND concatenates two lists, REVERSE reverses
a list, FLAT flattens a list of lists into one list (by iterated concatenation), and
REPLICATE x n generates a list of n copies of x.

6 Conclusions

Two mechanized reasoning systems, one interactive with a large library of the-
ories and many significant examples (HOL), and the other a largely automatic
prover (CLaM), have been connected to provide a potentially useful tool for
formal verification. The inductive methods of CLaM complement existing proof
tools in HOL. Although the system is still very much a prototype, early results
are promising. A more detailed, though less up-to-date, description of the system
is available as a technical report [2]. Future goals include extending the range
of formulas handled, more extended interaction between the two systems (e.g.,
recursive dialogues), and testing on medium to large examples.
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