UNIVERSITY OF EDINBURGH ABSTRACT OF THESIS (Regulation 7.9)

Name of Candidate ... DUNCAN JAMES MACKAY

Address

Degree DOCTOR OF PHILOSOPHY Date OCTOBER 1985

Title of Thesis THE BEHAVIOUR OF RUTILE IN AQUEOUS AMINOALCOHOL SOLUTION

.....

No. of words in the main text of Thesis approx. 80,000

Both the ease of dispersion and wet milling of rutile pigment, in aqueous solution, are improved through the addition of relatively small quantities of aminoalcohols. However, little work has previously been carried out to investigate these effects. The present work was performed to increase the understanding of the mode of interaction between rutile and such low molecular weight organic solutes. The behaviour of rutile in the presence of one example of the latter, namely monoisopropanolamine, was studied by a variety of techniques.

The isoelectric point of rutile shifted to a higher pH value by ca.2 unit in the presence of a 4 X 10⁻³mol dm⁻³MIPA solution. The electrophoretic mobility showed a maximum at a pH of ca.10.6.

The stability of rutile particles dispersed in MIPA solution was slightly lower than for the equivalent high pH distilled water dispersion. The decrease in particle number with time indicated that a certain degree of reversible aggregation was taking place. This effect was more pronounced in the case of rutile dispersed in MIPA solution.

Rutile dispersed in aqueous MIPA solution was found to settle to give a compact sediment which was very easy to redisperse. The equivalent high pH distilled water sol settled to give a sediment which was difficult to redisperse. The dispersing ability of MIPA was inhibited by the presence of electrolyte-the concentration and valency of the cation being the important factors. The rate of production of primary particles was significantly faster in the presence of MIPA, an increase in the ionic strength inhibiting the process.

The centrifugal force necessary to prevent the redispersion of rutile was found to be significantly higher for sols containing MIPA concentration greater than approx.4 X 10⁻³mol dm⁻³. The presence of a similar ionic strength was found to be sufficient to significantly negate the effect of the aminoalcohol.

The study of the dynamic viscosity of aqueous MIPA solutions indicated that the amino group is the major contributor to the hydrogen-bonding properties of the organic molecule. The study also indicated that the MIPA-water interaction is affected by electrolyte-water interactions, and vice-versa.

The rheological behaviour of high solids content slurries showed that a 0.04%w/w MIPA content was sufficient to reduce the viscosity, at a given shear rate, by over an order of magnitude. The effect of relatively minute quantities of MIPA, less than 5µmol g⁻¹, on the flow properties was large.

Rutile was found to be able to photo-oxidise aqueous solutions of MIPA in the presence of diffuse daylight.

THE BEHAVIOUR OF RUTILE IN AQUEOUS AMINOALCOHOL SOLUTION

Duncan James Mackay

Part B

Submitted for the Degree of Doctor of Philosophy

of

The University of Edinburgh

Supervisor

Dr. W.D. Cooper

October 1985

APPENDIX A

POTENTIOMETRIC TITRATIONS OF MIPA SOLUTIONS

APPENDIX A. - Potentiometric Titration of MIPA Solutions

As mentioned in section 7.2.1.3 several variants of the titration of aqueous MIPA solutions were studied.

a) Titration against hydrochloric acid.

As a result of the relatively strong basicity of the amino group a direct titration agains hydrochloric acid gave a well-defined end point. The pH span at the equivalence point (about pH 5.5) was a function of MIPA content but for a sample containing greater than 30 micromoles of aminoalcohol was sufficiently large. Typically the span would be 4 units. For samples containing little aminoalcohol the quality of the end point was good if the concentration of the hydrochloric acid titrant was greater than 5 times that of the aminoalcohol. In this manner a 2 cm³ sample of a nominal 0.002 mol dm^{-3} MIPA solution could be accurately analysed. However, in cases where the pH of the MIPA solution had been altered either by the addition of acid (to completely or partially neutralise the amino groups) or alkali this direct titration against standard acid is obviously of no practical use - the method can only give the total titratable base content of a sample. Therefore a more general titration technique was required. Such a technique would of necessity involve adding excess alkali or acid and backtitrating with acid or alkali. Both possibilities were investigated at length.

b) Addition of excess alkali and backtitration against standard acid.

The addition of excess sodium hydroxide to a sample of MIPA and titrating against standard HCL produced a titration curve consisting of two equivalence points. The first point was rather ill-defined and occurred at a pH of about 10.5, but the second was very sharp at a pH of about 6.0. The former was assigned to the sodium hydroxide neutralisation and the latter to the MIPA. This assignment was based both on the fact that the stronger base would be titrated first and because the calculated values of alkali and MIPA concentrations agreed with those expected. The separation of the two points could be increased through the use of a more dilute titrant but the quality of the equivalence regions suffered. Acceptable titrations could be obtained

down to about 60 micromoles of MIPA giving an accuracy of better than 4%.

A comparison between the direct titration against acid and the addition of excess alkali prior to titration against acid for samples of MIPA solution, under equilibrium pH conditions, indicated that agreement was acceptable.

NOMINAL MIPA	TITRATION	VALUE
CONCENTRATION	Against HCL	Backtitration
$/mol dm^{-3}$	/mol dm ⁻³	/mol dm ⁻³
0.103	0.103-0.105	0.101-0.108
0.0207	0.0202-0.0208	0.0206
0.0103	0.0104	0.0108

e) Addition of excess acid and backtitration against standard alkali.

The addition of excess hydrochloric acid to a MIPA sample and titrating against standard sodium hydroxide also gave a curve consisting of two equivalence points. The first point was sharp whereas the second was less well defined. The first occurred at a pH of about 6.5 and was due to the neutralisation of the excess strong acid. The other at a pH of about 10.5 was due to neutralisation of the relatively weak conjugate acid of the amino group. The limitation of this method was, as with the previous one, the gradual erosion of the definition of the high pH end point with a reduction in the amount of MIPA present.

d) Performing titrations in electrolyte solution.

It was found that by carrying out the titrations in 0.1 mol dm⁻³ potassium chloride solution the range of titrant volume over which the equivalence zones extended was decreased. However, the increase in precision was not sufficient.

e) Performing titrations in the presence of formaldehyde.

Formaldehyde reacts with the amino group of organic compounds containing that functional group to give an adduct. In forming this complex the formaldehyde is able to displace, stoichiometrically, the hydrogen ion from a protonated amino group. The effect of the addition of small quantities of a 37% v/v formaldehyde solution on the acid base titration was studied.

The addition of $0.1-0.2 \text{ cm}^3$ formaldehyde solution to the mixture prior to titration was found to significantly improve the quality of the less clearly defined end-point in each of the titration methods b) and c). The quality of the well defined end-points tended to suffer slightly, however. The precision of the analysis was increased to about 1.5%.

It was discovered, in the titration against acid in the presence of excess alkali and formaldehyde, that consistently larger values for the MIPA concentration were determined that were measured by direct titration against acid (for MIPA solutions at equilibrium pH). The discrepancy was about 5% and was a systematic error. The range of formaldehyde volumes used was found to have no effect on the strong acid-strong alkali titration nor any measureable effect on the total volume of acid required to titrate the base content of a MIPA sample plus excess alkali. However, increasing the formaldehyde volume was found to produce a decrease in the total volume of acid required to achieve complete neutralisation - the addition of 2 cm³ formaldehyde solution lowered the volume of acid required by about 4%.

A further increase in the formaldehyde addition led to the disappearance of the end-point assigned to the neutralisation of MIPA. A similar quantity of formaldehyde also made the equivalence point in the direct titration of MIPA against acid significantly less well defined.

Similar volumes of the aldehyde were found to influence the result of the titration between hydrochloric acid and sodium hydroxide. Tests indicated that increasing the ratio of formaldehyde to acid, or alkali, decreased the apparent concentration of the alkali. It was concluded

that the formaldehyde solution contained a small amount of titratable acid. Based on the reported impurity content of the formaldehyde it was possible to calculate that the equivalent of about 0.033 mol dm⁻³ formate ions was present. Direct titration gave a value of 0.0063 ± 0.0004 mol dm⁻³ for the titratable acid content of the formaldehyde solution. The shape of the curve indicated that the formaldehyde was partially neutralised since no sign of the rather shallow plateau region associated with the titration of a weak organic acid was apparent.

The presence of both formic acid and formate in the aliquots of formaldehyde explains the discrepancies found in the titrations of MIPA When titrating MIPA in the presence of excess acid against samples. alkali the formate ion content of the added formaldehyde would be converted to the weak organic acid. Subsequent neutralisation by the alkali would involve titrating 3 acids: hydrochloric acid, formic acid, and the conjugate acid form of MIPA. Calculation of the MIPA concentration would consequently be affected by the volume of alkali required to neutralise the two weak organic acids and by the amount of strong acid required to protonate all the formate ions. When titrating MIPA in the presence of excess alkali against acid the formic acid plus formate content of the added formaldehyde affects the total quantity of After neutralisation of the strong base the sample titratable base. would contain a mixture of formate ions and neutral MIPA, the former of which hydrolyse to release hydroxide ions. The calculated MIPA concentration would be too high by the equivalent of the formate ion content. Allowance for the total formate content of the added aliquots of formaldehyde was found to bring the results of the titration into good agreement with the direct titration of MIPA against hydrochloric cid.

The hydrolysis of the formate ions explained the observation that, after neutralisation of the strong base, a gradual rise in pH was observed between subsequent additions of strong acid.

APPENDIX B

EXPERIMENTAL DATA

APPENDIX B - Experimental Data

The results of the relevant experiments are presented in the following tables. The symbols have the meaning:

Tables B.1

μ _{EP}	electrophoretic	mobility
μ _{FO}	electro-osmotic	mobility

Tables B.2

k	coagulation rate constant
No	initial number of primary particles
W	stability ratio

Tables B.3

[MIPA]	initial concentration of MIPA
[MIPA] _F	final concentration of MIPA
[MIPA ⁺]	initial concentration of the conjugate acid form of
	MIPA
[MIPA ⁺] _F	final concentration of the conjugate acid form of MIPA

Tables B.4

NUM	number of primary particles per gram rutile
R	ratio of number g MIPA to number g rutile
NI	number of inversions of the dispersion

Tables B.5

с	concentration in g per 100 cm ³
η _r	relative viscosity
η _{SP}	specific viscosity
η	viscosity

Tables B.6

τ	shear	stress
γ	shear	rate

Tables B.7

C _o	initial number of primary particles
c	final number of primary particles
F	= C/C _o
ω	centrifuge bowl rotational speed
tc	time of centrifugation

Adsorption isotherms

The decrease in the bulk solution MIPA concentration, as the result of adsorption at the rutile particle surface and subsequent oxidation, was studied in the presence of light.

The results for the adsorption isotherms carried out are given in tables B.3.1-B.3.34. Each table describes the conditions under which the isotherm was measured. The time factor refers to the period between initially dispersing the rutile in the MIPA solution and separating the solids from the solution by centrifugation. The agitation factor refers to the rotational speed of the end-over-end (EOE) apparatus. The pHo factor is the measured pH, at ambient temperature, of the MIPA before contact with the rutile. [MIPA] and [MIPA] refer to the solution MIPA concentrations before and after contact with the dispersed rutile, respectively. What would normally be termed "solute adsorbed" is in fact called "amino loss", since, as will become apparent later, not all the experimentally measured decrease in solution MIPA content can be ascribed to adsorption at the rutile-solution interface. For the purposes of the appropriate graphs the figures are identified by AI numbers which refer to the relevant adsorption isotherm.

The numerous isotherms studied can be classified into general types

i) constant [MIPA], variable pH

ii) constant [MIPA], variable ionic strength

iii) constant pH and IS, variable [MIPA]

iv) variable time of equilibration.

Constant MIPA Concentration-Variable pH

The results for AI 4 are given in table B.3.4 and plotted in figure B.3.1. For this particular isotherm the ionic strength was not held constant as the pH was varied - the ionic strength being due to the conjugate acid form of MIPA. The numbers by the points represent the appropriate ionic strength (in millimolar) of the solution. In spite of the increase in ionic strength as the pH decreases there is a maximum in the amount of amino loss in the region of pH 9.

Table B.3.9 and figure B.3.2 show the results for AI 9 for which the ionic strength was held constant at 0.1 mol dm^{-3} by using KNO_3 as the backing electrolyte. There appears to be no identifiable maximum for this isotherm, although it is clear that at low pH there is negligible loss of amino group. The time of equilibration for this isotherm was ca. twice as long as for the previous one but the amounts of amino loss are a factor of 2 lower. There is, therefore, an effect of ionic strength on the degree of amino loss. The values in table B.3.9 indicate that there is an increase in the [MIPA⁺] during the time of equilibration for all but the samples at pH 8.76 and 7.85 which give a decrease.

The results for AI 13 (table B.3.13 and figure B.3.3) are for a lower total ionic strength and a smaller range of pH. There is a maximum in the isotherm, pH 10.6-10.8, with a definite drop in amino loss at both lower and higher pH. The concentration of the conjugate acid form once again increases during the timescale of the isotherm. This effect could be due to one or more of the following reasons

- i) partial neutralisation by carbon dioxide;
- ii) partial neutralisation by hydrogen ions desorbing from the rutile surface;

FIGURE B.3.3 AI 13

- iii) adsorption of the charged MIPA molecules at the rutile surface with a resultant increase in the dissociation of the uncharged MIPA molecules to reattain equilibrium;
- iv) photocatalytic oxidation of MIPA to produce a species possessing an amino group with a higher basicity and hence increased conjugate acid content.

In fact iii) will show up as an increase in the value of the ratio [MIPA⁺]/[MIPA]. Both AI 9 and AI 13 give such an effect.

Partial neutralisation by CO_2 absorption during equilibration may not be a significant factor since the quantity of air enclosed with the dispersion in the test-tube was quite small, ca. 3 cm³.

AI 16 shows that little or no amino loss was detected for a 2 mM MIPA solution at a total ionic strength of 5-6 mM. However, it is very likely that the product of the oxidation of the MIPA molecules possesses an amino group which has a different (in fact higher) extinction coefficient for the product of the reaction with ninhydrin; so the analysis, which of necessity is calibrated for MIPA, will give rise to an apparently high final MIPA concentration. The rather high final MIPA concentrations support this view.

Constant Conjugate Acid Concentration

Table B.3.21 and figure B.3.4 show the results for AI 19 which investigated how the amino loss was affected by the variation in solution pH produced by a variation in MIPA concentration at a constant conjugate acid concentration. The ionic strength was approximately fixed over the pH range studied. The graph suggests that there is a maximum in the amino loss at a pH ~10.1 where the initial ratio of conjugate acid to total MIPA concentration was 0.28. The [MIPA⁺] was found to remain roughly constant over the period of the isotherm whereas, obviously, the total MIPA concentration decreased. Thus it would be expected that the pH of the dispersion medium decreased during the time of equilibration. (The sample at [MIPA]₀ = 0.1 M in fact had been adjusted to pH 10.22 with

B4

FIGURE B.3.4 AI 19

 $\rm HNO_3$ whereas all the other samples had the equivalent of 0.0193 mol dm⁻³ $\rm HNO_3$ added. The tabulated value for $\rm [MIPA^+]_0$ for this sample refers to the stock solution and not to the appropriate value for the isotherm aliquot. Calculation gives a value of 0.0252 mol dm⁻³ for [MIPA⁺]_0 for this sample.)

Variable MIPA Concentration-Constant pH

Table B.3.6 and figure B.3.5 give the results for AI 6 which was carried out at pH ~9.5 and ionic strength ~0.5 mol dm^{-3} . An increase in the MIPA concentration is associated with an increase in the amino loss. The ratio of conjugate acid to total MIPA concentration was found to increase after equilibration for all samples. Therefore the bulk solution pH decreased.

AI 10 (table B.3.10 and figure B.3.6) was carried out at a fixed pH of 11.3, the ionic strength being similarly fixed at $2x10^{-3}$ mol dm⁻³. The shape of the isotherm conforms more closely to the class L described by Giles et al. A plateau can be defined at an amino loss of ca. 310 μ mol g⁻¹ with indications of an increase in the amino loss at higher MIPA concentrations.

AI 14 (table B.3.14 and figure B.3.7) represents the equivalent isotherm but at an ionic strength of 0.1 mol dm^{-3} . The shape of the isotherm is completely different - there is an enhanced amino loss starting at ca. 0.060 mol dm^{-3} . Below this equilibrium MIPA concentration the appropriate amino loss is lower than for AI 10 but above this concentration the amino loss associated with the high ionic strength solutions approaches and exceeds that of the low ionic strength samples.

Table B.3.22 and figure B.3.8 show the results for AI 20 which was carried out under conditions of pH and ionic strength controlled by the dissociation of the MIPA. The isotherm possesses a similar shape to that of AI 10 with similar values of amino loss, although the curve has levelled off at the higher MIPA concentrations. Plotted on the same figure are the results for AI 21 (table B.3.23) which was performed at a constant pH of 11.0. The isotherm shows a plateau at an amino loss of

B5

FIGURE B.3.5 AI 6

FIGURE B.3.6 AI 10

FIGURE B.3.7 AI 14

ca. 180 μ mol g⁻¹, although the higher MIPA concentrations increase the amino loss.

AI 5 was carried out at an ionic strength of 0.1 mol dm⁻³, the pH being determined by the MIPA concentration (table B.3.5 and figure B.3.9). Equivalent equilibrium MIPA concentrations give similar amino losses to those for AI 20, although the period of equilibration for AI 5 was 25% longer for AI 5. The amino loss for the two highest MIPA concentrations indicates enhanced adsorption. Table B.3.7 contains the results of AI 7 which was the corresponding isotherm to AI 21 at high ionic strength. However, the period of equilibration was rather shorter (2.5 days). The results suggest that either little or no amino loss took place.

Variable Time of Equilibration

The effect of a variation in the period of contact between the rutile and MIPA solution was investigated for different MIPA solutions.

Tables B.3.8 and B.3.12 show the effect of a variation in the ionic strength (AI 8 and 12). The resulting curves, figure B.3.10, show no sign of reaching a limiting value for the amino loss. But it would appear that the higher ionic strength samples (filled circles) reach a more well defined asymptote within 800 hours. It should be noted that adsorption of even long chain molecules, such as polymers, does not take as long as this to reach an equilibrium value. So the decrease in MIPA concentration is not solely due to adsorption.

Figure B.3.11 shows the variable time study for $2x10^{-3}$ mol dm⁻³ MIPA (AI 15). For this case the curve does appear to reach a plateau (ca. 24 µmolg g⁻¹), however two points can be made which once again indicate that the amino loss cannot be taken as solely the result of adsorption. Firstly, the plateau appears after ca. 60 hours which is rather excessive for the adsorption of a low molecular weight species. Secondly, the isotherm exhibits a maximum with the measured amino loss decreasing at longer times which could be explained by the presence of a second species possessing an amino functional group whose adduct with ninhydrin has a

B6

FIGURE B.3.9 AI 5

FIGURE B.3.11 AI 15

higher extinction coefficient at the wavelength of light used for the analysis.

The results for AI 18 (table B.3.20) support this conclusion. In addition, it was observed that the quality of a given dispersion became poorer as the time of equilibration, in the presence of daylight, increased.

AI 23 was performed under conditions such that the dispersions were constantly illuminated by a standard 60 watt light bulb. The curve for the 0.1 mol dm^{-3} MIPA is similar to that found for AI 12 (figure B.3.12). The results for the 0.05 mol dm^{-3} MIPA samples fall below those for the higher concentration as would be expected.

Variable Ionic Strength-Constant [MIPA]

Isotherms AI 11, 17 and 24 were performed to assess the effect of the solution ionic strength on the amount of amino loss from a 0.1 mol dm^{-3} MIPA solution. Potassium nitrate was used as the backing electrolyte. The results are rather scattered, although for a given isotherm the highest ionic strengths give the lowest amino loss. The quality of the initial dispersion is obviously an important factor in determining the amino loss because the better the dispersion the greater the effective rutile surface area available for interaction with the solution. All six samples for AI 24 formed good dispersions as was indicated by the uniform, milky appearance. After the period of equilibration the highest ionic strength dispersion was found to have coarsened.

FIGURE B.3.12 AI 23

FIGURE B.3.13 AI 24(crosses), 11(circles), 17(dots)

Run	Solution	рН	Ionic Strength/ mol dm ⁻³	Kappa x10 ⁻⁸ / m ⁻¹	$\mu_{EP} \times 10^{8} / m^{2} V^{-1} s^{-1}$	μ _{E0} x10 ⁸ / m ² V ⁻¹ s ⁻¹
EP2	3.1mM HNO ₃	2.58	$3.1x10^{-3} \\ 1.2x10^{-3} \\ 1.1x10^{-3} \\ 1.0x10^{-3} \\ 1.0x10^{-3} \\ 0.8x10^{-3} $	1.83	1.920±0.345	3.575 ± 0.264
EP4	1mM KNO ₃	3.63		1.14	-0.397±0.113	4.583 ± 0.200
EP6	1mM KNO ₃	4.04		1.09	-0.377±0.239	4.349 ± 0.231
EP1	1mM KNO ₃	6.10		1.04	-3.677±0.197	8.294 ± 0.348
EP3	1mM KNO ₃	9.5		1.04	-3.748±0.323	9.533 ± 0.429
EP5	0.5mM KNO ₃	10.53		0.931	-3.529±0.185	7.185 ± 0.303

TABLE B.1.1. Electrophoresis data for the unwashed rutile pigment

TABLE B.1.2. Electrophoresis data for the Soxhlet washed rutile (low pH)

Run	Solution	рН	Ionic Strength/ mol dm ⁻³	Kappa 10 ⁻⁸ / m ⁻¹	$\frac{\mu_{\rm EP} \times 10^8}{m^2 \rm V^{-1} \rm s^{-1}}$	$\mu_{\rm EO}^{\rm x10^8/}_{\rm m^2 V^{-1} s^{-1}}$
EP16	0.1M KNO ₃	2.31	$0.105 \\ 3x10^{-3} \\ 1.7x10^{-3}$	10.7	1.047±0.096	0.590±0.061
EP9	3mM HNO ₃	2.98		1.80	1.265±0.195	4.528±0.218
EP24	1mM KNO ₃	3.14		1.36	1.799±0.423	3.710±0.300
EP29	1mM KNO ₃	4.05	1.1×10^{-3}	1.09	1.757±0.191	4.207±0.204
EP61	4mM KNO ₃	3.72	4.2×10^{-3}	2.13	1.424±0.402	4.543±0.294
EP11	1mM KNO ₃	4.2	1.1×10^{-3}	1.09	0.244±0.234	4.985±0.251
EP28	1mM KNO ₃	4.95	1×10^{-3}	1.04	1.222±0.238	4.996±0.248
EP14	0.1M KNO ₃	5.5	0.10	10.4	1.016±0.168	1.154±0.098
EP22	1mM KNO ₂	5.65	1×10^{-3}	1.04	0.179±0.215	6.286±0.288
EP7	1mM KNO ₃	5.73	1×10^{-3}	1.04	-1.248±0.260	6.747±0.320
EP12	1mM KNO ₃	6.46	1×10^{-3}	1.04	-2.505±0.155	8.545±0.356
EP57	4mM KNO ₂	6.78	4×10^{-3}	2.08	-1.676±0.216	6.869±0.285
EP27 EP13	1mM KNO ₃ 1mM KNO ₃	7.05	1×10^{-3} 1×10^{-3}	1.04	-1.611±0.357 -3.035±0.189	8.401±0.406 8.779±0.369

TABLE B.1.3.	Electrophoresis	data	for	the	Soxhlet	washed	rutile
	(high pH)						

Run	Solution	рН	Ionic Strength/ mol dm ⁻³	Kappa 10 ⁻⁸ / m ⁻¹	μ _{EP} x10 ⁸ / m ² V ⁻¹ s ⁻¹	μ _{EO} x10 ⁸ / m ² V ⁻¹ s ⁻¹
EP26 EP56 EP8 EP10 EP25 EP59 EP15 EP23 EP54 EP55 EP70 EP71 EP72 EP73	1mM KNO ₃ 2mM KNO ₃ 1mM KNO ₃ 1mM KNO ₃ 1mM KNO ₃ 1mM KNO ₃ 0.10M KNO ₃ 1mM KNO ₃ water water water 2mM KNO ₃ 3mM KNO ₃ 10mM KNO ₃	9.15 9.54 9.85 10.18 10.2 10.35 10.47 10.7 10.71 11.39 11.4 11.32 11.32 11.36 11.33	$1 \times 10^{-3} \\ 2 \times 10^{-3} \\ 1.07 \times 10^{-3} \\ 1.6 \times 10^{-3} \\ 1.2 \times 10^{-3} \\ 1.2 \times 10^{-3} \\ 1.2 \times 10^{-3} \\ 0.100 \\ 1.5 \times 10^{-3} \\ 0.5 \times 10^{-3} \\ 2.45 \times 10^{-3} \\ 2.51 \times 10^{-3} \\ 4.09 \times 10^{-3} \\ 5.09 \times 10^{-3} \\ 5.09 \times 10^{-3} \\ 6.29 \times 10^{-3} \\ 12.1 \times 10^{-3} \\ 12.1 \times 10^{-3} \\ 100 \\ 1.5 \times 10^{-3} \\ 100 \\ 100 \\ 1.5 \times 10^{-3} \\ 100 \\ 100 \\ 1.5 \times 10^{-3} \\ 100 \\ 1$	1.04 1.47 1.08 1.32 1.14 1.14 10.4 1.27 0.736 1.63 1.65 2.10 2.35 2.61 3.62	$\begin{array}{c} -3.758\pm 0.242\\ -3.616\pm 0.207\\ -3.913\pm 0.204\\ -3.763\pm 0.209\\ -3.705\pm 0.222\\ -4.482\pm 0.214\\ -2.169\pm 0.143\\ -3.911\pm 0.179\\ -4.145\pm 0.217\\ -3.377\pm 0.372\\ -3.829\pm 0.223\\ -3.314\pm 0.181\\ -3.295\pm 0.156\\ -3.505\pm 0.162\\ -2.604\pm 0.129\end{array}$	10.459 ± 0.443 8.632 ± 0.332 10.053 ± 0.418 9.737 ± 0.407 10.576 ± 0.443 10.269 ± 0.386 3.193 ± 0.151 9.967 ± 0.409 11.732 ± 0.441 10.063 ± 0.432 10.224 ± 0.391 9.026 ± 0.342 8.727 ± 0.326 8.437 ± 0.316 7.077 ± 0.265
EP79	3.9mM LiČl	11.29	5.87×10^{-3}	2.52	-3.329±0.215	8.576±0.335

TABLE B.1.4. Electrophoresis data for the washed rutile in aqueous MIPA solution

Run	Solution	рН	Ionic Strength/ mol dm ⁻³	Kappa 10 ⁻⁸ / m ⁻¹	$\mu_{EP} \times 10^{8} / m^{2} V^{-1} s^{-1}$	μ _{EO} x10 ⁸ / m ² V ⁻¹ s ⁻¹
EP18 EP17	0.16mM MIPA 4.4mM MIPA	10.2	0.16×10^{-3} 1×10^{-3}	0.416	-3.941±0.208 -4.756±0.341	11.590±0.480 10.826±0.476
EP33	0.01M MIPA	10.81	0.65×10^{-3}	0.839	-2.261±0.157	7.817±0.329
EP31	0.05M MIPA	11.12	1.3×10^{-3}	1.19	-3.834±0.345	8.619±0.403
EP34	0.06M MIPA	11.18	1.5×10^{-3}	1.27	-2.419±0.138	6.111±0.256
EP32	0.09M MIPA	11.21	1.6×10^{-3}	1.32	-5.072±0.424	8.607±0.427
EP46	0.5mM MIPA	11.30	2x10 ⁻³	.1.47	-3.059±0.263	10.432±0.412
EP40	0.99mM MIPA	11.33	2.1x10 ⁻³	1.51	-2.129±0.342	10.021±0.424
EP43	1.98mM MIPA	11.32	2.1x10 ⁻³	1.51	-2.890±0.229	10.432±0.403
EP44	3.96mM MIPA	11.31	2x10 ⁻³	1.47	-3.057±0.202	10.174±0.388
EP45	19.8mM MIPA	11.34	2.2×10^{-3}	1.54	-2.790±0.331	9.880±0.415
EP41	9.9mM MIPA	11.31	2x10 ⁻³	1.47	-2.804±0.124	9.917±0.366
EP42	0.099M MIPA	11.41	2.6x10-3	1.68	-3.816±0.269	9.731±0.385
EP58	4mM MIPA	11.37	2.3×10^{-3}	1.58	-4.754±0.222	10.217±0.384
EP66	4mM MIPA	11.33	3.1×10^{-3}	1.83	-3.942±0.225	9.448±0.364
EP67	4mM MIPA	11.32	4.1×10^{-3}	2.11	-3.580±0.200	9.176±0.350
EP68	4mM MIPA	11.32	5.1x10 ⁻³	2.35	-3.280±0.171	8.515±0.321
EP69	3mM KNO ₃ 4mM MIPA 4mM KNO ₃	11.33	6.1x10 ⁻³	2.57	-3.141±0.149	8.134±0.304

Run	Solution	рН	Ionic Strength/ mol dm ⁻³	Kappa 10 ⁻⁸ / m ⁻¹	μ _{EP} x10 ⁸ / m ² V ⁻¹ s ⁻¹	μ _{EO} x10 ⁸ / m ² v ⁻¹ s ⁻¹
EP60	4mM MIPA	3.62	4.2×10^{-3}	2.13	-1.708±0.188	4.097±0.193
EP77	4mM MIPA	3.70	4.2×10^{-3}	2.13	0.770±0.502	3.790±0.337
EP75	4mM MIPA	4.27	$4x10^{-3}$	2.08	0.915±0.180	4.530±0.200
EP76	4mM MIPA	5.47	4×10^{-3}	2.08	0.677±0.440	5.684±0.342
EP48	4mM MIPA	6.91	3.8×10^{-3}	2.03	0.307±0.424	7.005±0.368
EP74	4mM MIPA	7.74	3.9×10^{-3}	2.06	-1.943±0.155	7.544±0.289
EP65	4mM MIPA	7.78	3.9×10^{-3}	2.06	-2.060±0.237	7.311±0.305
EP50	4mM MIPA	9.20	2.6×10^{-3}	1.68	-3.308±0.181	8.537±0.324
EP47	4mM MIPA	9.7	1.4×10^{-3}	1.23	-3.842±0.204	9.251±0.352
EP80	4mM MIPA	9.94	0.98×10^{-3}	1.03	-3.872±0.204	9.900±0.381
EP49	4mM MIPA	10.10	0.73×10^{-3}	0.889	-4.240±0.239	10.493±0.401
EP51	4mM MIPA	10.30	0.50×10^{-3}	0.736	-4.348±0.188	10.376±0.385
EP52	4mM MIPA	10.50	0.33×10^{-3}	0.598	-4.802±0.265	11.603±0.443
EP53	4mM MIPA	10.55	0.35×10^{-3}	0.616	-4.996±0.331	11.905±0.470
EP62	4mM MIPA	10.62	0.42×10^{-3}	0.674	-5.473±0.349	11.583±0.461
EP63	4mM MIPA	11.02	1.05×10^{-3}	1.07	-5.048±0.365	10.869±0.445
EP64	4mM MIPA	11.22	1.67×10^{-3}	1.34	-4.550±0.318	10.456 ± 0.420

TABLE B.1.5. Electrophoresis data for the washed rutile in aqueous MIPA solution

Run	Solution	рН	Ionic Strength/ mol dm ⁻³	Kappa 10 ⁻⁸ / m ⁻¹	$\mu_{\rm EP} {\rm x}^{108} / {\rm m}^2 {\rm v}^{-1} {\rm s}^{-1}$	$\mu_{EO}^{x10^8/m^2 v^{-1} s^{-1}}$
EP82	0.5mM MIPA	10.62	0.42×10^{-3}	0.674	-4.110±0.178	11.942±0.443
EP84	1mM MIPA	10.55	0.35×10^{-3}	0.616	-4.686±0.235	12.063±0.459
EP81	10mM MIPA	10.52	0.85×10^{-3}	0.959	-4.509±0.272	10.164±0.407
EP83	0.1M MIPA	10.57	7.1×10^{-3}	2.76	-3.662±0.181	6.723±0.264
EP89	4mM MIPA	10.30	1.6x10 ⁻³	1.32	-4.677±0.293	10.185±0.402
EP50	4mM MIPA 4mM LiCL	10.48	4.4x10 ⁻³	2.18	-4.232±0.245	9.004±0.351
EP91	4mM MIPA	10.48	4.4×10^{-3}	2.18	-3.614±0.239	8.295±0.330
EP92	4mM MIPA	10.50	4.56x10 ⁻³	2.22	-3.929±0.228	8.390±0.327
EP93	4mM MIPA 4.4mM NaF	10.40	4.85x10 ⁻³	2.294	-4.348±0.245	8.459±0.333
EP94	1mM MIPA 4mM LiCL	11.10	5.26x10 ⁻³	1.17	-4.004±0.198	8.951±0.339
EP95	4mM MIPA 4mM LiCL	11.09	5.23x10 ⁻³	1.15	-3.796±0.215	8.649±0.333
EP78	4mM MIPA 3.92mM LiCL	11.31	5.96x10 ⁻³	2.54	-3.600±0.342	8.061±0.358
EP85	0.5mM MIPA 4mM KNO ₂	11.08	5.20x10 ⁻³	1.14	-3.601±0.210	8.615±0.332
EP86	2mM MIPA	11.10	5.26x10 ⁻³	1.17	-3.588±0.207	8.554±0.330
EP87	4mM MIPA	11.11	5.29x10-3	1.18	-3.578±0.197	8.463±0.324
EP88	8mM MIPA	11.05	5.12x10 ⁻³	1.10	-3.646±0.196	8.242±0.315
	4 mm KNO3					

TABLE B.1.6. Electrophoresis data for the washed rutile in aqueous MIPA solution

TABLE B.1.7. Electrophoretic mobilities of rutile particles subjected to a period of equilibration with MIPA solution

Run	Solution	pH	Ionic Strength/ mol dm ⁻³	Kappa 10 ⁻⁸ / m ⁻¹	μ _{EP} x10 ⁸ / m ² v ⁻¹ s ⁻¹	μ _{E0} x10 ⁸ / m ² v ⁻¹ s ⁻¹
EP35	15mM MIPA	11	$1.0x10^{-3} \\ 1.0x10^{-3} \\ 1.26x10^{-3} \\ 1.58x10^{-3}$	1.04	-5.331±0.447	10.934±0.477
EP38	25mM MIPA	11		1.04	-4.197±0.225	10.557±0.400
EP37	52mM MIPA	11.1		1.17	-3.660±0.229	9.355±0.363
EP36	0.091M MIPA	11.2		1.31	-3.950±0.243	8.385±0.332

Rutile particles equilibrated (20 days) in aqueous MIPA solution. Mobility measurement carried out in the appropriate equilibrium MIPA solution.

> Amino loss/ µmol g⁻¹ EP35 197 EP36 347 EP37 328 EP38 225

Run	Solution	рН	Ionic Strength/ mol dm ⁻³	kx10 ¹⁸ / m ³ s ⁻¹	N ₀ ×10 ⁻¹⁴ / m ⁻³
PC6	KNO ₂	5.80	0.100	4.80±0.93	1.84
PC22	KNO3	5.5	0.100	7.58±1.16	5.64
PC23	KNO ₂	5.5	0.100	5.18±1.02	4.70
PC24	KNO2	5.5	0.100	4.61±0.27	3.49
PC25	KNO3	5.5	0.100	5.55±0.34	4.31
PC27	KNO3	5.7	0.100	5.62±0.71	5.16
PC28	KNO3	5.7	0.100	6.27±0.32	6.38
PC32	KNO3	5.6	0.100	7.16±0.43	3.63
PC33	KNO3	5.6	0.100	7.02±0.43	3.07
PC17	KNO3	5.7	0.100	5.57±0.34	4.73
PC18	KNO3	5.7	0.100	5.57±0.45	7.36
PC19	KNO3	5.7	0.100	5.77±0.41	6.66
PC20	KNO3	5.7	0.100	6.59±0.48	8.27
PC21	KNO3	5.7	0.100	6.48±0.95	4.10
PC26	KNO3	5.7	0.100	6.21±0.68	6.49

TABLE B.2.1. Rapid coagulation rates for the washed rutile in aqueous solution (25°C)

TABLE B.2.2. Coagulation rate constants for the washed rutile in aqueous solution (25°C)

Run	Solution	рН	Ionic Strength/ mol dm ⁻³	kx10 ¹⁸ / m ³ s ⁻¹	N ₀ x10 ⁻¹⁴ / m ⁻³	W
PC34	10 ⁻⁵ M KNO ₃	6.0	1.1x10 ⁻⁵	0.589±0.041	3.33	10.3
PC37	10 ⁻⁵ M KNO3	6.04	1.1×10^{-5}	0.291±0.011	3.76	20.9
PC45	10 ⁻⁵ M KNO3	6.00	1.1×10^{-5}	0.730±0.086	3.22	8.33
PC48	10 ⁻⁵ M KNO ₃	6.16	1.1×10^{-5}	0.468±0.039	3.67	13.0
PC51	10 ⁻⁵ M KNO3	5.85	1.1×10^{-5}	0.348±0.039	3.86	17.5
PC40	5x10 ⁻⁵ M KNO ₃	5.90	5.1x10 ⁻⁵	0.571±0.016	3.47	10.6
PC43	5x10 ⁻⁵ M KNO ₃	6.05	5.1x10 ⁻⁵	0.584±0.100	4.44	10.4
PC35	10 ⁻⁴ M KNO3	5.96	1×10^{-4}	0.537±0.030	3.20	11.3
PC38	10 ⁻⁴ M KN03	6.03	1×10^{-4}	0.650±0.080	3.96	9.35
PC46	10 ⁻⁴ M KNO3	5.92	1×10^{-4}	0.766±0.145	2.75	7.94
PC49	10 ⁻⁴ M KNO ₃	5.97	1×10^{-4}	0.541±0.030	3.72	11.2
PC52	10 ⁻⁴ M KNO3	5.71	1×10^{-4}	0.348±0.018	3.05	15.8
PC53	10 ⁻⁴ M KNO3	5.72	1×10^{-4}	0.411±0.020	4.44	14.8
PC67	10 ⁻⁴ M KNO3	5.96	1×10^{-4}	0.379±0.029	4.79	16.0
PC41	5x10 ⁻⁴ M KNO ₃	5.85	5×10^{-4}	0.634±0.046	3.39	9.59
PC50	5x10 ⁻⁴ M KNO ₃	5.80	5×10^{-4}	0.677±0.086	3.29	8.98
PC75	5x10 ⁻⁴ M KNO ₃	5.8	5×10^{-4}	1.34±0.25	3.86	4.54
PC80	5x10 ⁻⁴ M KN0 ₃	5.8	5x10 ⁻⁴	1.12±0.07	3.32	5.43

.

Run	Solution	рН	Ionic Strength/ mol dm ⁻³	kx10 ¹⁸ / m ³ s ⁻¹	N ₀ ×10 ⁻¹⁴ / m ⁻³	W
PC81	5x10 ⁻⁴ M KN0 ₂	5.7	5x10 ⁻⁴	1.84±0.04	4.07	3.30
PC82	5x10 ⁻⁴ M KN0 ₂	5.7	5x10 ⁻⁴	1.60±0.13	4.10	3.80
PC71	5x10 ⁻⁴ M KN0 ³	5.7	5x10 ⁻⁴	2.14±0.13	3.30	2.84
PC72	5x10 ⁻⁴ M KNO ₃	5.7	5×10^{-4}	1.25±0.22	3.51	4.86
PC73	5x10 ⁻⁴ M KN0 ₃	5.7	5×10^{-4}	0.966±0.041	3.86	6.29
PC76	5x10 ⁻⁴ M KN0 ₃	5.7	5×10^{-4}	1.59±0.04	3.41	3.82
PC77	5x10 ⁻⁴ M KNO ₃	5.7	5×10^{-4}	1.88±0.20	4.26	3.23
PC78	5x10 ⁻⁴ M KNO ₃	5.7	5x10 ⁻⁴	1.67±0.03	4.21	3.64
PC79	5x10 ⁻⁴ M KN0 ₃	5.7	5×10^{-4}	1.25±0.08	4.42	4.86
PC9	5x10 ⁻³ M KNO ₃	5.65	5.1×10^{-3}	5.48±1.18	4.31	1.11
PC42	5x10 ⁻³ M KNO ₃	5.65	5×10^{-3}	6.41±0.09	3.17	0.95
PC5	1x10 ⁻² M KNO ₃	5.90	1×10^{-2}	3.50±0.39	2.96	1.74
PC7	1x10 ⁻² M KN0 ₃	5.70	1x10 ⁻²	7.96±0.23	4.47	0.76
PC3	water	2.60	2.5×10^{-3}	1.84±0.07	2.98	3.30
PC2	1x10 ⁻³ M KNO2	3.26	1.5×10^{-3}	2.68±0.14	4.90	2.27
PC12	1x10 ⁻² M KN0	9.69	1×10^{-2}	1.45±0.02	3.94	4.19
PC121	water	11.12	1.3×10^{-3}	1.29±0.24	3.30	4.71

TABLE B.2.3. Coagulation rate constants for the washed rutile in aqueous solution (25°C)

TABLE B.2.4. Coagulation rate constants as a function of ionic strength at high pH

Run	Solution	рН	Ionic Strength/ mol dm ⁻³	kx10 ¹⁸ / m ³ s ⁻¹	N ₀ x10 ⁻¹⁴ / m ⁻³	W
PC121	water	11.12	1.3×10^{-3}	1.29±0.24	3.30	4.71
PC122	5mM KNO2	11.14	-6.3×10^{-3}	1.40±0.11	3.41	4.34
PC123	10.3mM KNO	11.08	1.15×10^{-2}	1.40±0.10	3.47	4.34
PC126	11.5mM KNO2	11.16	1.29×10^{-2}	1.73±0.19	3.67	3.51
PC125	15mM KNO	11.10	1.63×10^{-2}	2.13±0.03	3.72	2.85
PC127	16.5mM KNO	11.22	1.82×10^{-2}	2.55±0.02	3.46	2.38
PC124	20.8mM KNO	11.18	2.23×10^{-2}	3.71±0.09	3.65	1.64
PC141	1.24mM Ba(NO ₃) ₂	11.29	5.67×10^{-3}	4.55±0.23	3.38	1.34

Run	[MIPA]/ mol dm ⁻³	рН	Ionic Strength/ mol dm ⁻³	kx10 ¹⁹ / m ³ s ⁻¹	N ₀ x10 ⁻¹⁴ / m ⁻³	W
PC60	0.018	10.81	0.75×10^{-3}	3.05±0.09	3.47	19.9
PC54	0.020	10.62	1.27×10^{-3}	8.09±0.61	4.89	7.52
PC61	0.036	10.95	1.10×10^{-3}	4.11±0.20	3.96	14.8
PC62	0.045	11.00	1.23×10^{-3}	5.64±0.43	3.94	10.8
PC55	0.050	11.00	1.37×10^{-3}	3.52±0.36	2.81	17.3
PC63	0.054	11.01	1.48×10^{-3}	2.82±0.25	-2.97	21.6
PC56	0.060	11.00	1.64×10^{-3}	1.58±0.06	3.44	38.5
PC64	0.072	11.10	1.58×10^{-3}	5.46±0.25	3.72	11.1
PC57	0.080	11.09	1.79×10^{-3}	3.32±0.20	2.75	18.3
PC65	0.090 -	11.13	1.84×10^{-3}	7.51±0.34	4.03	8.10
PC58	0.10	11.18	1.83×10^{-3}	3.02±0.14	3.43	20.1
PC59	0.20	11.30	2.79×10^{-3}	3.30±0.09	3.90	18.4
PC31	0.50	11.5	4.42×10^{-3}	4.09±0.02	5.82	14.9
PC66	0.09	11.39	2.45×10^{-3}	5.25±0.20	4.26	11.6

TABLE B.2.5. Coagulation rate constants in aqueous MIPA solution (25°C)
	The second s			and the second se		
Run	Solution	рН	Ionic Strength/ mol dm ⁻³	kx10 ¹⁸ / m ³ s ⁻¹	N ₀ ×10 ⁻¹⁴ / m ⁻³	W
PC112	0.1M MIPA	11.2	1.58×10^{-3}	1.28±0.07	3.70	4.75
PC113	0.1M MIPA	11.2	2.48×10^{-3}	1.58±0.07	4.31	3.85
PC117	0.1M MIPA	11.2	4.48×10^{-3}	1.46±0.06	4.05	4.16
PC114	0.1M MIPA	. 11.2	6.98×10^{-3}	1.80±0.14	3.51	3.38
PC115	0.1M MIPA 9.8mM KNO	11.2	1.14×10^{-2}	1.94±0.23	4.47	3.13
PC116	0.1M MIPA 13.2mM KNO2	11.2	1.48×10^{-2}	3.16±0.29	3.74	1.92
PC118	0.1M MIPA 16.5mM KNO	11.2	1.81×10^{-2}	6.23±0.20	3.29	0.98
PC119	0.1M MIPA 19.2mM KNO	11.2	2.08x10 ⁻²	3.68±0.20	5.02	1.65
PC135	0.1M MIPA	11.2	1.58×10^{-3}	2.19±0.29	3.36	2.78
PC140	0.1M MIPA 1.09mM Ba(NO	11.2 3) ₂	4.85x10 ⁻³	7.75±0.52	3.27	0.78
PC128	1mM MIPA	10.2	0.16×10^{-3}	1.65±0.15	3.58	3.68
PC133	1mM MIPA 2.3mM KNO ₂	10.2	2.46×10^{-3}	2.57±0.02	4.10	2.37
PC134	1mM MIPA 3.8mM KNO ₂	. 10.2	3.96×10^{-3}	2.16±0.20	3.94	2.81
PC132	1mM MIPA 5.9mM KNO ₃	10.2	6.06x10 ⁻³	2.48±0.14	3.63	2.45
PC129	1mM MIPA 9.2mM KNO ₂	10.2	9.36x10 ⁻³	2.34±0.09	3.90	2.60
PC131	1mM MIPA 11.6mM KNO	10.2	1.18x10 ⁻²	1.92±0.12	4.53	3.17
PC130	1mM MIPA 15.5mM KNO ₃	10.2	1.57x10 ⁻²	5.07±0.10	3.76	1.20

TABLE B.2.6. Coagulation rate constants for rutile dispersed in aqueous MIPA solution as a function of ionic strength

if the

Run	Solution	рН	Ionic Strength/ mol dm ⁻³	kx10 ¹⁸ / m ³ s ⁻¹	$N_0 \times \frac{10^{-14}}{m^{-3}}$	W
PC153	0.02M MIPA	11.29	1.95x10 ⁻³	0.748±0.164	3.59	8.13
PC154	4mM MIPA	11.28	1.95×10^{-3}	0.998±0.191	3.51	6.09
PC155	1mM MIPA	11.28	1.95×10^{-3}	0.850±0.098	3.70	7.15
PC156	0.4mM MIPA	11.28	1.95×10^{-3}	1.28±0.13	3.52	4.75
PC136	0.02M MIPA 0.96mM NH ₃ +	10.8	1.71x10 ⁻³	1.43±0.06	3.33	4.25
PC139	0.02M MIPA	10.6	1.9×10^{-3}	1.30±0.08	3.72	4.68
DC120	1.9mM NH3 ⁺	0.96	7 7+10-3	1 39+0 08	3 27	4 37
PG130	7.7mM NH +	9.00	/./X10	1.3920.00	5.21	4.57
PC137	0.02M MIPA	• 2.55	2.3x10 ⁻²	6.77±0.93	4.07	0.90
PC144	0.02M MIPA	10.96	0.91×10^{-3}	0.955±0.125	3.68	6.37
PC162	0.0102M MIPA	10.7	1x10 ⁻²	1.13±0.05	4.10 .	5.38
PC163	0.0102M MIPA 3.84mM NH ₃ ⁺	9.6	1x10 ⁻²	1.89±0.11	3.94	3.22
PC164	6.15mM KNO ₃ 0.0102M MIPA 5.76mM NH ₃ ⁺	9.3	1x10 ⁻²	0.988±0.025	3.68	6.15
PC165	4.23mM KNO ₃ 0.0102M MIPA 8.26mM NH ₃ ⁺	9.0	1x10 ⁻²	1.45±0.12	3.78	4.19
PC166	1.73mM KNO ₃ 0.0102M MIPA 0.010M NH ₃ ⁺	7.4	1x10 ⁻²	0.823±0.130	3.70	7.39

TABLE B.2.7. Coagulation rate constants for rutile dispersed in aqueous MIPA solution (25°C)

Run	Solution	pH	Ionic Strength/ mol dm ⁻³	kx10 ¹⁸ / m ³ s ⁻¹	N ₀ x10 ⁻¹⁴ / m ⁻³	W
PC144 PC146 PC145	0.02M MIPA water 0.02M MIPA 0.025M KN0 ₃	10.96 10.95 10.9	$0.91 \times 10^{-3} \\ 0.89 \times 10^{-3} \\ 2.60 \times 10^{-2}$	0.955±0.125 0.593±0.036 5.62±0.07	3.68 3.92 5.51	6.37 10.3 1.08
PC147	0.02M MIPA 3.8mM NH ₃ ⁺	10.28	4.55x10 ⁻³	1.42±0.17	3.59	4.28
PC148	3.68mM KNO3	10.29	3.68×10^{-3}	1.25±0.11	3.54	4.86
PC149	0.02M MIPA 9.46mM NHa ⁺	9.72	1.02x10 ⁻²	1.15±0.15	3.36	5.29
PC150	9.65mM KNO3	9.70	9.65×10^{-3}	1.30±0.12	3.92	4.68
PC151	0.02M MIPA	9.39	1.40×10^{-2}	0.891±0.125	3.41	6.82
PC152	13.4mM KNO3	9.38	1.34×10^{-2}	2.59±0.43	2.81	2.35

TABLE B.2.8. Coagulation rate constants for rutile in aqueous solution (25°C)

TABLE B.2.9. Coagulation rate constants for rutile in aqueous solution

Run	Solution	рН	Ionic Strength/ mol dm ⁻³	T/ °C	kx10 ¹⁹ / m ³ s ⁻¹	N ₀ ×10 ⁻¹⁴ / m ⁻³	W
PC157	10mM MTPA	10.9	0.79×10^{-3}	55.6	3.64+0.46	3.54	16.7
PC159	10mM MIPA	10.9	0.79×10^{-3}	55.6	2.68±0.36	2.76	22.7
PC158	water	11.0	1×10^{-3}	55.6	3.07±0.14	3.26	19.8
PC160	10mM MIPA	10.85	0.72×10^{-3}	37.4	9.51±1.98	3.43	6.39
PC161	water	10.86	0.72×10^{-3}	37.4	13.0±2.3	3.35	4.68

Run	Solution	pН	Amino Loss/ µmol g ⁻¹	Ionic Strength/ mol dm ⁻³	kx10 ¹⁸ / m ³ s ⁻¹	N ₀ ×10 ⁻¹⁴ / m ⁻³	W
PC68	2mM MIPA	10.4	8	0.24×10^{-3}	1.56±0.10	4.89	3.90
PC70	2mM MIPA	10.4	8	0.24×10^{-3}	1.17±0.08	3.41	5.20
PC69	2mM MIPA	10.4	24	0.24×10^{-3}	1.20±0.06	3.96	5.07
PC85	0.0439M	11.0	238	1.20×10^{-3}	0.471±0.057	3.51	12.9
	MIPA					1 10 10	
PC86	0.0439M	11.0	238	1.20×10^{-3}	0.687±0.030	2.71.	8.85
	MIPA						
PC87	0.0439M	11.0	238	1.20×10^{-3}	0.730±0.066	3.59	8.33
	MIPA						
PC88	0.0495M	11.07	12*	1.2×10^{-3}	1.34±0.02	3.23	4.54
	MIPA			-		and starting	111
PC83	0.090M	11.2	400	1.6×10^{-3}	0.0948±0.003	4 4.19	64.1
	MIPA			2			
PC84	0.0986M	11.22	40*	1.7×10^{-3}	0.105±0.005	3.13	57.9
	MIPA				Charles States and		
PC90	0.0986M	11.22	40*	1.7×10^{-3}	0.103±0.006	5.02	59.0
	MIPA			2			
PC89	0.10M	11.22	238	1.7×10^{-3}	1.14±0.14	3.36	5.33
	MIPA						
				1 7 10-3	1 2510 00	2 62	4 50
PC120	0.10M	11.22	36*	1./x10 5	1.35±0.06	3.03	4.30
	MIPA						

TABLE B.2.10. Coagulation rate constants for rutile particles redispersed in the equilibrium adsorption isotherm solution

* Rutile equilibrated with aqueous MIPA solution in the absence of light.

PC91 0.081M

PC92

PC93

MIPA

NH3+

MIPA

MIPA 0.019M NH₃+

0.019M

0.058M

0.019M NH₃+ 0.043M 10.2

10.0

9.9

380

490

285

 2.08×10^{-2} 4.50±0.14

 2.06×10^{-2} 4.25 ± 0.54

 2.04×10^{-2} 4.39 ± 0.23

1.35

1.43

1.38

4.26

3.43

5.06

TABLE B.2.11. Coagulation rate constants for rutile particles redispersed in the equilibrium adsorption solution (25°C)

Run	Solution	рН	Amino Loss/ µmol g ⁻¹	Ionic Strength/ mol dm ⁻³	kx10 ¹⁸ / m ³ s ⁻¹	N ₀ x10 ⁻¹⁴ / m ⁻³	W
PC95	0.015M MIPA	10.8	197	0.65×10^{-3}	0.739±0.052	3.68	8.23
PC96	0.025M MIPA	10.9	225	0.84×10^{-3}	0.950±0.098	3.86	6.40
PC97	0.033M - MIPA	11.0	290	0.96×10^{-3}	1.35±0.29	3.07	4.50
PC98	0.043M MIPA	11.1	280	1.1x10 ⁻³	0.928±0.105	3.23	6.55
PC99	0.052M MIPA	11.1	328	1.2×10^{-3}	2.21±0.29	3.54	2.75
PC100	0.052M MIPA	11.1	328	1.2×10^{-3}	2.24±0.51	3.23	2.71
PC101	0.061M MIPA	11.1	356	1.3x10 ⁻³	2.77±0.16	3.09	2.19
PC102	0.082M MIPA	11.2	330	1.5×10^{-3}	2.18±0.17	4.12	2.79
PC103	0.082M MIPA	11.2	330	1.5x10 ⁻³	2.66±0.30	4.24	2.29
PC104	0.091M MIPA	11.2	347	1.6x10 ⁻³	1.40±0.13	3.20	4.34
PC105	0.10M MIPA	11.22	330	1.6x10 ⁻³	2.13±0.25	3.16	2.85
PC106	0.10M MIPA	11.22	330	1.6x10 ⁻³	1.70±0.15	2.96	3.58
PC107	0.0164M MIPA	11.0	150	1.0x10 ⁻³	2.43±0.18	3.80	2.50
PC109	0.0524M MIPA	11.0	310	1.48x10 ⁻³	2.50±0.02	3.27	2.43
PC110	0.067M MIPA	10.9	133	2.38x10 ⁻³	2.93±0.02	3.46	2.08
PC108	0.093M MIPA	11.0	285	2.55x10 ⁻³	2.48±0.16	3.43	2.45
PC111	0.09M MIPA	11.2	365	1.59x10 ⁻³	0.539±0.032	3.51	11.3

TABLE	B.3.1.	Adsorption	isotherm	1	-	variable	MIPA	concentration,
and the second		equilibrium	n pH					

TIME	= 162 hrs	$T = 25^{\circ}C$	AGITATION	= 34 rpm
[MIPA] ₀ /	pH ₀	Ionic Strength/	[MIPA]/	Amino Loss/
mol dm ⁻³		mol dm ⁻³	mol dm ⁻³	µmol g ⁻¹
0.00517	10.44	$0.38 \times 10^{-3} \\ 0.54 \times 10^{-3} \\ 0.76 \times 10^{-3} \\ 1.70 \times 10^{-3}$	0.00264	202
0.0103	10.62		0.00568	441
0.0207	10.77		0.0162	466
0.103	11.17		0.0943	887

TABLE B.3.2. Adsorption isotherm 2 - time of adsorption variation

-- --

$T = 25^{\circ}C$ AGITATION = 1	.04	rpm
---------------------------------	-----	-----

[MIPA] ₀ /	pH ₀	Ionic Strength/	Time Eqm/	[MIPA]/	Amino Loss/
mol dm ⁻³		mol dm ⁻³	hour	mol dm ⁻³	µmol g ⁻¹
0.0507 0.0507 0.0507 0.0507	11.07 11.07 11.07 11.07 11.07	$1.20 \times 10^{-3} \\ 1.20 \times 10^{-3} \\ 1.20 \times 10^{-3} \\ 1.20 \times 10^{-3} \\ 1.20 \times 10^{-3}$	19 87 182 255	0.0455 0.0447 0.0435 0.0438	262 301 404 405

TABLE B.3.3. Adsorption isotherm 3 - variable MIPA concentration, equilibrium pH 2

т	TME	=	6	.5	d	a	79
т	TUT	_	0		u.	a	1 6

T = 25° C AGITATION = 110 rpm

14

[MIPA] ₀ / mol dm ⁻³		pH ₀	PH ₀ Ionic pH ₀ Strength/ mol dm ⁻³		A] _F / dm ⁻³	Amino Loss/ µmol g ⁻¹	
HCL	нсно		mor dm	HCL	нсно	HCL	• нсно
0.0297 0.0397 0.0501 0.0599 0.0700 0.0789 0.200	0.0302 0.0402 0.0498 0.0601 0.0702 0.0790 0.201	10.92 11.01 11.10 11.10 11.18 11.18 11.18 11.40	$0.92x10^{-3} \\ 1.06x10^{-3} \\ 1.19x10^{-3} \\ 1.30x10^{-3} \\ 1.40x10^{-3} \\ 1.49x10^{-3} \\ 2.37x10^{-3} $	0.0232 0.0323 0.0402 0.0530 0.0595 0.0692 0.188	0.0265 0.0359 0.0436 0.0557 0.0633 0.0737 0.192	319 399 499 358 506 461 581	181 232 313 228 333 252 436
0.503	0.505	11.61	3.77x10 ⁻³	0.478	0.500	1160	232

TABLE B.3.4. Adsorption isotherm 4 - constant MIPA concentration variable pH

Ionic Strength/ mol dm ⁻³	pH ₀	[MIPA] _F / mol dm ⁻³	Amino Loss/ µmol g ⁻¹
9.55x10 ⁻³	11.98	0.0497	15
2.95×10^{-3}	11.47	0.0467	173
1.51×10^{-3}	11.18	0.0457 -	214 .
1.19×10^{-3}	10.96	0.0451	245
3.82×10^{-2}	8.94	0.0392	557
4.94×10^{-2}	7.54	0.0451	- 229
5.6x10 ⁻²	2.22	0.0475	125

TIME = 5.5 days $T = 25^{\circ}C$ AGITATION = 110 rpm [MIPA]₀ = 0.0500 mol dm⁻³

TABLE B.3.5. Adsorption isotherm 5 - variable MIPA concentration, $0.1 \text{ mol } dm^{-3}$ electrolyte

 $[KNO_3] = 0.100 \text{ mol } dm^{-3} \qquad TIME = 24.5 \text{ days} \qquad T = 25^{\circ}C$ AGITATION = 110 rpm

[MIPA] ₀ / mol dm ⁻³	рН	[MIPA] _F / mol dm ⁻³	Amino Loss/ µmol g ⁻¹
0.0296 0.0407 0.0499 0.0606 0.0693 0.0812	10.91 10.99 11.02 11.09 11.11 11.14	0.0249 0.0351 0.0449 0.0537 0.0609 0.0764	242 281 263 324 412 245 625
0.498	11.55	0.478	994

a [MIPA] ₀ / mol dm ⁻³	b [MIPA ⁺] ₀ / mol dm ⁻³	рН ₀	Ratio b/a	c [MIPA] _F / mol dm ⁻³	d [MIPA ⁺] _F / mol dm ⁻³	Ratio d/c	Amino Loss/ µmol g ⁻¹
0.0105 0.0203 0.0302 0.0399 0.0496 0.0606 0.0899 0.101	0.0051 0.0094 0.0121 0.0166 0.0234 0.0257 0.0332 0.0317	9.48 9.52 9.50 9.49 9.47 9.49 9.51 9.50	0.49 0.46 0.40 0.42 0.47 0.42 0.47 0.42 0.37 0.31	0.00984 0.0197 0.0292 0.0392 0.0476 0.0587 0.0870 0.0980	0.00754 0.0134 0.0205 0.0270 0.0330 0.0393 0.0575 0.0631	0.77 0.68 0.70 0.69 0.69 0.67 0.66 0.64	33.8 30.7 50.5 35.1 99.4 95.1 147 152

 $[KNO_3] = 0.48 \text{ mol } dm^{-3} \qquad TIME = 4.5 \text{ days} \qquad T = 25^{\circ}C$ AGITATION = 34 rpm

TABLE B.3.7. Adsorption isotherm 7 - variable MIPA concentration, $0.1 \text{ mol } dm^{-3}$ electrolyte

$[KNO_3] = 0.10 \text{ mol } dm^{-3}$			TIME = 2	.5 days	$T = 25^{\circ}C$
[MIPA] ₀ / mol dm ⁻³	[MIPA ⁺] ₀ / mol dm ⁻³	pH ₀	[MIPA] _F / mol dm ⁻³	[MIPA ⁺] _F / mol dm ⁻³	Amino Loss/ µmol g ⁻¹
0.0103 0.0205 0.0309 0.0406 0.0504 0.0612 0.0890 0.101	- 0.0002 0.0010 0.0005 0.0018 0.0019 0.0026 0.0044	11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0	0.0105 0.0205 0.0309 0.0407 0.0496 0.0609 0.0893 0.101	- 0.0012 0.0019 0.0017 0.0019 0.0026 0.0036 0.0048	0 0 0 41 15 0 0

	T = 25	5°C A	GITATION	= 33 ¹ / ₃ rpm	n
[MIPA] ₀ / mol dm ⁻³	рН ₀	Ionic Strength/ mol dm ⁻³	Time/ hour	[MIPA] _F / mol dm ⁻³	Amino Loss/ µmol g ⁻¹
0.0991 0.0991 0.0991 0.0991 0.0991	11.23 11.23 11.23 11.23 11.23 11.30	$ \begin{array}{r} 1.7x10^{-3} \\ 1.7x10^{-3} \\ 1.7x10^{-3} \\ 1.7x10^{-3} \\ 0.10 \\ 0.10 \end{array} $	19.3 90.3 235 574 19.3 90.3	0.0980 0.0954 0.0930 0.0872 0.0984 0.0969	45.2 152 248 491 32.5 93.2
0.0992 0.0992	11.30 11.30	0.10 0.10	235 574	0.0937 0.0927	218 270

TABLE B.3.8. Adsorption isotherm 8 - time of adsorption

TIM	E = 12.8 day	rs T = 1	25°C /	AGITATION = 33	3 ¹ / ₃ rpm	$[MIPA]_0 = 0.$	100 mol dm	1-3
[KNO ₃]/	Ionic Strength/	[MIPA ⁺] ₀ /	MIPA ⁺] ₀ / [MIPA] _F / [MIPA ⁺] _F /		Amino Loss/	[MIPA ⁺]/	[MIPA]	
F0	mol dm ⁻³	mol dm ⁻³	mol dm ⁻	mol dm ⁻³	mol dm ⁻³	µmol g ⁻¹	Initial	Final
11.25	0.100	0.103	0.0033	0.0975	0.0036	140	0.033	0.037
10.72	0.0936	0.100	0.0065	0.0951	0.0088	238	0.065	0.093
10.07	0.0737	0.101	0.0268	0.0977	0.0279	91.6	0.27	0.29
9.51	0.0529	0.106	0.0532	0.0974	0.0576	104	0.53	0.59
9.27	0.0309	0.100	0.0693	0.0981	0.0732	77.6	0.69	0.75
8.76	0.0127	0.102	0.0888	0.0958	0.0881	208	0.89	0.92
7.85	0	0.100	0.100	0.0982	0.0982	112	1.0	1.0
3.87	0	0.100	0.100	0.101	0.100	0	1.0	0.99

TABLE B.3.9. Adsorption isotherm 9 - constant MIPA concentration, variable pH

.

.

1

TIME =	= 24.5 days	$T = 25^{\circ}C$	AGITATION	= 33 rpm
[MIPA] ₀ / mol dm ⁻³	pH ₀	Ionic Strength/ mol dm ⁻³	[MIPA] _F / mol dm ⁻³	Amino Loss/ µmol g ⁻¹
$\begin{array}{c} 0.0101 \\ 0.0202 \\ 0.0305 \\ 0.0505 \\ 0.0606 \\ 0.0808 \\ 0.0909 \\ 0.101 \\ \hline \\ 0.4x10^{-3} \\ 1.0x10^{-3} \\ 2.0x10^{-3} \\ 2.0x10^{-3} \\ \end{array}$	11.30 11.30 11.30 11.29 11.30 11.30 11.29 11.30 11.30 11.30 11.30 11.30	2×10^{-3} 2×10^{-3} 2×10^{-3} 1.95×10^{-3} 2×10^{-3} 1.95×10^{-3} 2×10^{-3} 2×10^{-3}	$\begin{array}{c} 0.00587\\ 0.0144\\ 0.0234\\ 0.0434\\ 0.0525\\ 0.0727\\ 0.0800\\ 0.0910\\ \end{array}$ $\begin{array}{c} 0.152 \times 10^{-3}\\ 0.472 \times 10^{-3}\\ 1.17 \times 10^{-3}\\ 2.62 \times 10^{-3}\\ \end{array}$	174 239 276 295 332 327 437 413 10.2 22.1 34.7
2.0×10^{-3}	11.30	$2x10^{-3}$	2.63×10^{-3}	56.2

TABLE B.3.10. Adsorption isotherm 10 - variable MIPA concentration, fixed pH

TABLE B.3.11. Adsorption isotherm 11 - constant MIPA concentration, variable ionic strength

TIME = 23.5	days $T = [MIPA]_0 = 0$	25°C AGIT 0.101 mol dm ⁻³	ATION = 33 rpm
[KNO ₃]/ mol dm ⁻³	Ionic Strength/ mol dm ⁻³	[MIPA] _F / mol dm ⁻³	Amino Loss/ µmol g ⁻¹
$-\frac{-3}{2.49 \times 10^{-3}}$ 4.99×10^{-3}	$1.69 \times 10^{-3} \\ 2.19 \times 10^{-3} \\ 4.18 \times 10^{-3} \\ 6.68 \times 10^{-3}$	0.0913 0.0877 0.0879 0.0913	397 461 442 327

TABLE B.3.12. Adsorption isotherm 12 - variable time of adsorption

$[MIPA]_0 = 0.100 \text{ mol } dm^{-1}$	T = 25 °C	AGITATION = 15 rpm
Time/ hours	[MIPA] _F / mol dm ⁻³	Amino Loss/ µmol g ^{-l}
0.5	0.100	0
2	0.0994	24.3
17	0.0989	46.7
- 91	0.0958	179
189	0.0934	276
382	0.0893	438
600	0.0927	297
858	0.0848	623

TABLE B.3.13.	Adsorption isotherm 13 - constant MI	PA
	concentration, variable pH	

					and the second sec	
pH ₀	[KNO ₃]/ mol dm ⁻³	[MIPA ⁺] ₀ / mol dm ⁻³	Ionic Strength/ mol dm ⁻³	[MIPA] _F / mol dm ⁻³	[MIPA ⁺] _F / mol dm ⁻³	Amino Loss/ µmol g ⁻¹
11.01 10.80 10.75 10.70 10.61 10.55 10.46 10.40	0.0050 0.0036 0.0033 0.0029 0.0023 0.0017 0.0019 0.0010	0.00119 0.00258 0.00289 0.00328 0.00388 0.00447 0.00527 0.00617	0.0062 0.0062 0.0062 0.0062 0.0062 0.0062 0.0072 0.0072	0.0452 0.0414 0.0424 0.0417 0.0424 0.0442 0.0442 0.0447 0.0439	0.00218 0.00455 0.00356 0.00582 0.00621 0.00714 0.00754 0.00843	210 371 315 350 323 247 237 268
						and and a selected

 $T = 25^{\circ}C$ AGITATION = $33^{1}/_{3}$ rpm [MIPA]₀ = 0.0504 mol dm⁻³ TIME = 21.8 days

TABLE B.3.14. Adsorption isotherm 14 - variable MIPA concentration, constant pH

11.30

11.30

11.37

0.0800

0.0892

0.0997

	TIME = 21 days	T = 25 °C AGITATION = 15 rpm [KNO ₃] = 0.100 mol dm ⁻³			
-	[MIPA] ₀ /	pHa	[MIPA] _F /	Amino Loss/	
	mol dm ⁻³	P0	mol dm^{-3}	µmol g ⁻¹	
1	0.0102	11.30	0.00859	66.4	
	0.0203	11.31	0.0177	106	
	0.0303	11.29	0.0279	98.8	
	0.0502	11.30	0.0470	129	
	0.0597	11.30	0.0558	155	
	0.0800	11.30	0.0711	349	

TABLE B.3.15. Adsorption isotherm 15 - variable time of adsorption

0.0711

0.0767

0.0866

496

530

$[MIPA]_0 = 2.00 \times 10^{-3} \text{ m}$	nol dm^{-3}	$T = 25^{\circ}C$	AGITATION =	331/	3 rpm
--	---------------	-------------------	-------------	------	-------

Time/	[MIPA] _F /	Amino Loss/
hour	mol dm ⁻³	µmol g ^{-l}
0.5 4.1 21.5 70.3 168 216 384 816	1.83×10^{-3} 1.68×10^{-3} 1.58×10^{-3} 1.35×10^{-3} 1.36×10^{-3} 1.51×10^{-3} 1.41×10^{-3} 1.52×10^{-3}	7.1 12.5 17.1 25.6 26.1 19.9 23.8 19.4

TABLE B.3.16. Adsorption isotherm 16 - constant MIPA concentration, variable pH

		and the second		
pH ₀	[KNO ₃]/ mol dm ⁻³	Ionic Strength/ [.] mol dm ⁻³	[MIPA] _F / mol dm ⁻³	Amino Loss/ µmol g ⁻¹
10.51 10.07 9.74 9.46 8.90 8.44 5.27 3.09	$\begin{array}{r} 4.6 \times 10^{-3} \\ 4.4 \times 10^{-3} \\ 4.5 \times 10^{-3} \\ 4.5 \times 10^{-3} \\ 4.5 \times 10^{-3} \\ 3.5 \times 10^{-3} \\ 3.5 \times 10^{-3} \\ 3.0 \times 10^{-3} \end{array}$	$4.8x10^{-3} 4.8x10^{-3} 5.2x10^{-3} 5.4x10^{-3} 6.1x10^{-3} 5.3x10^{-3} 5.5x10^{-3} 6.0x10^{-3} $	1.81×10^{-3} 1.86×10^{-3} 2.00×10^{-3} 2.00×10^{-3} 2.07×10^{-3} $> 2.3 \times 10^{-3}$ $> 2.3 \times 10^{-3}$ 2.18×10^{-3}	7.7 5.5 0 - - - -

TIME = 23.5 days $T = 25^{\circ}C$ AGITATION = $33^{1}/_{3}$ rpm [MIPA]₀ = 2.00x10⁻³ mol dm⁻³

TABLE B.3.17. Adsorption isotherm - miscellaneous

$T = 25^{\circ}C$		AGITATION = 1	5 rpm	TIME = $19^{1}/_{2}$ days		
[MIPA] ₀ / mol dm ⁻³	pH ₀	Ionic Strength/ mol dm ⁻³	[MIPA] _F / mol dm ⁻³	Amino Loss/ µmol g ⁻¹	Remarks	
0.0402	11.30	2x10 ⁻³	0.0327	305		
0.0400	11.29	0.102	0.0356	176		
0.0705	11.30	$2x10^{-3}$	0.0628	306		
0.0705	11.30	2×10^{-3}	0.0685	81	no light	
0.0700	11.30	0.102	0.0622	302		
0.0700	11.00	0.101	0.0673	110	TIME = $2^1/_2$	
and the second second					days	

TABLE B.3.18. Adsorption isotherm 17 - constant MIPA concentration, variable ionic strength

TIME = $19^{1}/_{2}$ days T = 25°C AGITATION = $33^{1}/_{3}$ rpm pH₀ = 11.37 [MIPA]₀ = 0.100 mol dm⁻³

[KNO ₃]/ mol dm ⁻³	Ionic Strength/ mol dm ⁻³	[MIPA] _F / mol dm ⁻³	Amino Loss/ µmol g ⁻¹
0.00603 0.00910 0.0993	$ \begin{array}{r} 1.7x10^{-3} \\ 7.7x10^{-3} \\ 0.0108 \\ 0.101 \end{array} $	0.0864 0.0923 0.0945 0.0935	542 314 215 257

TABLE B.3.19.	Amino group	loss as	a	function	of	the	presence	or
Street, Street, Market	exclusion of	light						

TIME	= 20 days	T = 25 °C	AGITA	$\Gamma ION = 33 \text{ rpm}$	
pH ₀	[MIPA] ₀ / mol dm ⁻³	Daylight	[MIPA] _F / mol dm ⁻³	Amino Loss/ µmol g ⁻¹	
11.1 11.1 11.2 11.2 11.3 11.3	0.0498 0.0498 0.0996 0.0996 0.0705 0.0705	Yes No Yes No Yes No	0.0439 0.0495 0.0900 0.0986 0.0628 0.0685	238 12.2 398 40.4 306 81	

<u>TABLE B.3.20</u>. Adsorption isotherm 18 - variable time of adsorption (25°C)

Solution	[MIPA] ₀ / mmol dm ⁻³	рН ₀	[KNO ₃]/ mM	Ionic Strength/ mM
A	2.11	10.44	5.14	5.42
В	2.07	9.55	5.17	6.45
С	1.99	4.60	3.68	5.99
D	1.93	11.25	and - Selfie	1.78

Time/ hour		[MIPA] _F /mM				Amino Loss/µmol g ⁻¹		
	A	В	С	D	A	В	С	D
0.67	2.05	2.07	2.10	1.93	2.4	0	-	0
4	1.91	1.92	2.08	1.73	8.1	6.0	-	8.4
21.5	1.77	1.80	2.07	1.79	13.8	11.0	-	5.6
43.5	1.54	1.83	2.00	1.48	23.3	9.8	-	17.8
77.5	1.63	2.00	2.00	0.846	19.9	2.8	-	42.9
236	1.94	2.13	2.31	1.30	7.0	-)	26.1

TABLE B.3.21.	Adsorption ison	therm 19 -	- variable	MIPA	
The state of the s	concentration,	constant	conjugate	acid	concentration

TIME =	18.7 day	rs T	= 25°C	AGITATION	= 33 rpm
[MIPA] ₀ / mol dm ⁻³	pH ₀	[MIPA ⁺] ₀ / mol dm ⁻³	[MIPA] _F / mol dm ⁻³	[MIPA ⁺] _F / mol dm ⁻³	Amino Loss/ µmol g ⁻¹
0.0200 0.0302 0.0401 0.0500 0.0600 0.0698 0.0900 0.100	8.09 9.45 9.74 9.90 10.00 10.10 10.25 10.22	0.0193 0.0193 0.0193 0.0193 0.0193 0.0193 0.0193 0.0193 0.0140	0.0194 0.0246 0.0319 0.0433 0.0517 0.0576 0.0807 0.0917	0.0194 0.0204 0.0198 0.0211 0.0210 0.0198 0.0212 0.0236	24.8 234 334 281 341 494 375 338

TABLE B.3.22. Adsorption isotherm 20 - variable MIPA concentration, equilibrium pH

TIME = 19.5 da	ys T	$r = 25^{\circ}C$ AG	ITATION = 15 rpm	
[MIPA] ₀ / mol dm ⁻³	рН	[MIPA] _F / mol dm ⁻³	Amino Loss/ µmol g ⁻¹	
0.0202 0.0303 0.0403 0.0501 0.0602 0.0702 0.0898 0.0998	11.01 11.11 11.15 11.21 11.25 11.30 11.35 11.37	0.0153 0.0248 0.0330 0.0432 0.0520 0.0615 0.0815 0.0911	193 . 221 293 281 324 352 337 343	

TABLE B.3.23. Adsorption isotherm 21 - variable MIPA concentration, pH 11.0

TIME = 19.5 days

 $T = 25^{\circ}C$

AGITATION = 33 rpm

[MIPA] ₀ / mol dm ⁻³	pH ₀	[MIPA] _F / mol dm ⁻³	[MIPA ⁺] _F / mol dm ⁻³	Amino Loss/ µmol g ⁻¹
0.0202	11.01	0.0164	0.00153	151
0.0303	11.01 .	0.0256	0.00217	188
0.0403	11.00	0.0362	0.00221	161
0.0501	11.01	0.0455	0.00239	186
0.0602	11.01	0.0523	0.00272	316
0.0702	11.00	0.0671	0.00309	125
0.0898	- 11.00	0.0827	0.00462	286
0.0998	11.01	0.0930	0.00444	285

TABLE B.3.24. Adsorption isotherm 22 - effect of light colour and intensity

Light [MIPA] F/ mol dm ⁻³ Amino Loss/ µmol g ⁻¹ Dark Red 0.0976 95.9 Dark Green 0.0985 61.9 Vellow 0.0989 44.8	0	and the second se
Dark Red 0.0976 95.9 Dark Green 0.0985 61.9 Vellow 0.0989 44.8	Light [MIPA] _F / mol dm ⁻³	Amino Loss/ µmol g ⁻¹
Dark Blue 0.0988 48.5 Light Blue 0.0933 264 Rose 0.0919 322 Normal 0.0916 342 Normal 0.0893 429 (Time = 18 days) 0.0911 357 Normal + Dark 0.0911 357	d 0.0976 een 0.0985 0.0989 ue 0.0988 lue 0.0933 0.0919 0.0916 0.0893 18 days) + Dark 0.0911 s 4.5 days)	95.9 61.9 44.8 48.5 264 322 342 429 357

 $T = 25 \degree C$ AGITATION = 33 rpm [MIPA]₀ = 0.100 mol dm⁻³ TIME = 22.5 days

TABLE B.3.25. Adsorption isotherm 23 - variable time of adsorption, continuous light

T = 25°C	AGITATIO	N = 15 rpm	LIGHT =	60 watt bulb
Time/	[MIPA] _F /	mol dm ⁻³	Amino Los	s/µmol g ⁻¹
hour	·A	В	A	В
0.75	0.0986	0.0499	15.7	3.9
1.5	0.0983	0.0497	24.7	12.0
3	0.0983	0.0498	24.1	8.0
6	0.0973	0.0501	62.8	
9.7	0.0976	0.0499	50.9	4.0
18	0.0974	0.0492	60.2	31.8
210	0.0915	0.0458	299	166
346	0.0900	0.0462	360	149

A - $[MIPA]_0 = 0.0989 \text{ mol } dm^{-3}$ B - $[MIPA]_0 = 0.0500 \text{ mol } dm^{-3}$

I	TIME = 20.5 days		T = 25	5°C	AGITATION = 33 rpm
[[MIPA] ₀ / nol dm ⁻³	pH ₀		[MIPA] _F / mol dm ⁻³	Amino Loss/ µmol g ⁻¹
9 1 2 9	9.93x10 ⁻⁴ 1.99x10 ⁻³ 4.97x10 ⁻³ 9.93x10 ⁻³	10.36 10.50 10.71 10.87		8.37x10 ⁻⁴ 1.42x10 ⁻³ 2.81x10 ⁻³ 5.87x10 ⁻³	6.3 22.3 88.6 164
9 - 1 - 4	9.93x10 ⁻⁴ 1.99x10 ⁻³ 4.97x10 ⁻³ 9.93x10 ⁻³	10.97 11.01 10.97 11.00		6.93x10 ⁻⁴ 1.40x10 ⁻³ 2.77x10 ⁻³ 5.36x10 ⁻³	12.2 23.8 86.6 184

TABLE B.3.26. Additional isotherm data for isotherms 20 and 21

TABLE B.3.27. Adsorption isotherm 24 - constant MIPA concentration, variable electrolyte concentration, continuous light

TIME = 21 days	$T = 25^{\circ}C$	AGITATION = 15 rpm
$[MIPA]_0 =$	$0.0984 \text{ mol } dm^{-3}$	$pH_0 = 11.37$

[KNO ₃]/ mol dm ⁻³	Ionic Strength/ mol dm ⁻³	[MIPA] _F / mol dm ⁻³	Amino Loss/ µmol g ⁻¹
3.96×10^{-4}	2.07×10^{-3} 3.15×10^{-3} 7.31×10^{-3} 1.07×10^{-2} 1.71×10^{-2} 4.89×10^{-2}	0.0912	284
1.48×10^{-3}		0.0913	290
5.64×10^{-3}		0.0821	636
9.00×10^{-3}		0.0848	541
1.54×10^{-2}		0.0899	337
4.72×10^{-2}		0.0925	235

TABLE B.3.28. Adsorption isotherm 25 - effect of fraction of total equilibration time in light

$TIME = 144 hours$ $[MIPA]_0 = 0.09$	T = 25 °C 993 mol dm ⁻³	AGITATION = 33 rpm pH ₀ = 11.37
Time (Light) Total Time	[MIPA] _F / mol dm ⁻³	Amino Loss/ µmol g ⁻¹
0.004	0.0987	24.0
0.016	0.0982	45.1
0.080	0.0977	66.4
0.25	0.0975	71.8
0.69	0.0950	170
1.00	0.0947	186

Time/	[MIPA] _F /	Amino Loss/
hour	mol dm ⁻³	µmol g ⁻¹
1.3	0.0998	32.1
2	0.100	8.1
4	0.0999	28.7
7.7	0.0997	34.6
12.5	0.0998	34.2
48.5	0.0995	43.8
95	0.0995	43.4

TABLE B.3.29. Adsorption isotherm 26 - variable time of adsorption in the absence of light (25°C)

TABLE B.3.30. Adsorption isotherm 27 - constant MIPA concentration, variable electrolyte concentration; dark

TIME = 70.5 hours T = 25 °C AGITATION = 33 rpm [MIPA]₀ = 0.1007 mol dm⁻³ [MIPA⁺]₀ = 1.86x10⁻³ mol dm⁻³

[LiCL]/ mol dm ⁻³	Ionic Strength/ mol dm ⁻³	[MIPA] _F / mol dm ⁻³	[MIPA ⁺] _F / mol dm ⁻³	Amino Loss/ µmol g ⁻¹
0.00142	0.00310	0.1006	0.00308	4.0
0.00212	0.00380	0.0999	0.00280	30.7
0.00425	0.00593	0.0994	0.00251	52.6
0.00991	0.0116	0.1003	0.00336	15.9
0.0153	0.0170	0.1003	0.00336	15.9
0.0210	0.0227	0.0996	0.00276	43.1
0.0800	0.0817	0.1000	0.00348	27.0
0.142	0.144	0.1006	0.00387	3.9

TABLE B.3.31. Adsorption isotherm 28 - variable MIPA concentration, fixed pH; dark

TIME = 4.3 days	Т	= 25°C AGITA	TION = 33 rpm
[MIPA] ₀ / mol dm ⁻³	рН ₀	[MIPA] _F / mol dm ⁻³	Amino Loss/ µmol g ⁻¹
$\begin{array}{c} 0.101 \times 10^{-3} \\ 0.402 \times 10^{-3} \\ 0.604 \times 10^{-3} \\ 1.01 \times 10^{-3} \\ 2.01 \times 10^{-3} \\ 3.02 \times 10^{-3} \\ 4.02 \times 10^{-3} \\ 5.03 \times 10^{-3} \end{array}$	11.00 11.01 11.00 11.00 11.01 11.01 10.99 10.99	$\begin{array}{c} 0.107 \times 10^{-3} \\ 0.388 \times 10^{-3} \\ 0.555 \times 10^{-3} \\ 0.876 \times 10^{-3} \\ 1.89 \times 10^{-3} \\ 2.82 \times 10^{-3} \\ 3.74 \times 10^{-3} \\ 4.69 \times 10^{-3} \end{array}$	- 0.6 2.0 5.1 4.8 7.8 11.4 13.6

TABLE B.3.32. Adsorption isotherm 29 - constant MIPA concentration, variable electrolyte concentration; dark

TIME = 4.3 day [MIPA] ₀ =	$x = 4.98 \times 10^{-3}$	= 25°C AG mol dm ⁻³	ITATION = 33 rpm pH ₀ = 10.95
[KNO ₃]/ mol dm ⁻³	Ionic Strength/ mol dm ⁻³	[MIPA] _F / mol dm ⁻³	Amino Loss/ µmol g ⁻¹
_	0.37×10^{-3}	4.63×10^{-3}	14

 4.83×10^{-3}

4.89x10⁻³

 4.87×10^{-3}

 4.94×10^{-3}

 4.92×10^{-3}

 4.89×10^{-3}

5.00x10⁻³

5.9

3.5

4.3

1.6

2.4

3.5

0

TABLE B.3.33.	Adsorption isotherm 30 - constant MIPA
	concentration, variable pH, constant ionic strength; dark

0.00264

0.00502

0.0167

0.0264

0.0455

0.0684

0.103

0.00227

0.00465

0.0163

0.0260

0.0451

0.0680

0.103

TIME = 2.75 days $T = 25^{\circ}C$ AGITATION = 33 rpm [MIPA]₀ = 8.05x10⁻³ mol dm⁻³

pH ₀	[KNO ₃]/ mol dm ⁻³	[MIPA ⁺] ₀ / mol dm ⁻³	Ionic Strength/ mol dm ⁻³	[MIPA] _F / mol dm ⁻³	Amino Loss/ µmol g ⁻¹
10.80	0.00800	- 6.7x10 ⁻⁴	0.00867	0.00793	4.8
10.10	0.00616	0.00192	0.00875	0.00793	4.8
9.86	0.00522	0.00289	0.00878	0.00771	13.8
9.62	0.00408	0.00404	0.00879	0.00784	8.2
9.45	0.00332	0.00482	0.00881	0.00768	14.6
9.20	0.00238	0.00578	0.00883	0.00763	16.9
8.16	0.00048	0.00771	0.00886	0.00769	14.4
3.80	-	0.00818	0.00885	0.00801	1.6

TABLE B.3.34. Adsorption isotherm 31 - constant MIPA concentration, variable electrolyte concentration; dark

= 2.6 days $T = 25^{\circ}C$ [MIPA]₀ = 5.03x10⁻³ mol dm⁻³ AGITATION = 33 rpm TIME = 2.6 days $pH_0 = 10.75$ [MIPA] F/ Ionic Amino Loss/ [LiCL]/ Strength/ μ mol g⁻¹ mol dm⁻³ mol dm^{-3} mol dm^{-3} 0.00401 0.00439 5.04×10^{-3} 0 0.00755 5.08×10^{-3} 0 0.00793 4.96×10^{-3} 0.0139 0.0143 2.9 5.02×10^{-3} 0.4 0.0276 0.0280

TABLE B.3.35. Adsorption isotherm 32 - variable SDS concentration, pH 3.4, low ionic strength (25°C)

TIME = 6.5 days AGITATION = 104 rpm (4 days) + 33 rpm $(2^{1}/_{2} \text{ days})$ [KNO₃] = 0.00103 mol dm⁻³

pH ₀	[SDS] ₀ /	[SDS] _F /	Amount Adsorbed/
	mol dm ⁻³	mol dm ⁻³	µmol g ⁻¹
3.38	5.98×10^{-3} 7.96×10^{-3} 9.94×10^{-3} 20.05×10^{-3} 39.06×10^{-3}	5.43x10 ⁻³	27.5
3.41		7.26x10 ⁻³	37.1
3.40		9.19x10 ⁻³	37.8
3.31		19.19x10 ⁻³	43.2
3.43		37.84x10 ⁻³	60.2

TABLE B.3.36. Adsorption isotherm 33 - variable SDS concentration, pH 3.4, high ionic strength (25°C)

TIME = 4 days	AGITATION = 33	rpm [Na	aNO_3] = 0.100 mol dm ⁻³ .
pH ₀ -	$[SDS]_0/$	$[SDS]_{F}/$	Amount Adsorbed/ µmol g ⁻¹
3.40	0.974×10^{-3}	0.821×10^{-3}	7.8
3.39	1.46×10^{-3}	1.11×10^{-3}	17.4
3.40	1.96×10^{-3}	1.39×10^{-3}	29.6
3.40	2.86×10^{-3}	2.29×10^{-3}	28.6
3.41	3.90×10^{-3}	3.27×10^{-3}	30.9
3.38	4.65×10^{-3}	3.89×10^{-3}	38.2
3.40	5.84x10 ⁻³	5.19x10 ⁻³	33.6
3.38	6.89x10 ⁻³	6.18x10 ⁻³	34.4
3.38	7.81x10 ⁻³	7.03×10^{-3}	38.9
3.38	9.24x10 ⁻³	8.46x10 ⁻³	39.9
3.41	9.66x10 ⁻³	8.82x10 ⁻³	41.8
3.40	11.50×10^{-3}	10.61×10^{-3}	43.4
3.39	19.43×10^{-3}	18.37×10^{-3}	52.2
3.40	23.15x10 ⁻³	22.07×10^{-3}	55.4
3.41	28.48×10^{-3}	27.28x10 ⁻³	59.0
3.32	38.04×10^{-3}	36.71×10^{-3}	67.8

TABLE B.4.2.	Dispersibility	of	rutile	as	a	function	of	MIPA
A STATE OF THE OWNER	concentration (18	°C)					

$ \begin{array}{c c} [MIPA]/ \\ mol \ dm^{-3} \end{array} pH \qquad \begin{array}{c c} Time & NUM & R \\ Standing/ \\ mins & x10^{-12} & g \ MIPA \ per \\ g \ TiO_2 \end{array} \\ \hline 0 \qquad 11.61 \qquad 17 \qquad 0.563 \qquad 0 \end{array} $					And the second	X
0 11.61 17 0.563 0	[MIPA]/ mol dm ⁻³	рН	Time Standing/ mins	NUM No. per g x10 ⁻¹²	R g MIPA per g TiO ₂	States -
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 0 0.036 0.045	11.61 2.70 11.00	17 35 3	0.563	0 0 8.72	
0.04511.0681.0610.00.07211.11122.1420.80.09011.20221.6524.10.1811.32271.7254.10.9011.72332.05150	0.043 0.072 0.090 0.18 0.90	11.06 11.11 11.20 11.32 11.72	12 22 27 33	2.14 1.65 1.72 2.05	20.8 24.1 54.1 150	

.

AGITATION = 15 rpm NO. INVERSIONS = 1650

TABLE B.4.3. NO. INVERSIONS = 4200

					-
5	[MIPA]/ mol dm ⁻³	рН	NUM x10 ⁻¹²	R	
	0	11.82	0.497	0	
	0	2.76	-	0	
	0.036	11.00	2.73	10.8	
	0.045	11.06	2.28	14.7	
	0.072	11.11	2.30	19.3	
	0.090	11.20	2.49	27.0	
	0.18	11.32	1.97	52.0	
	0.90	11.72	2.28	270	

TABLE B.4.4. Maximum dispersion of rutile by ultrasonics (17°C)

	[MIPA]/ mol dm ⁻³	рН	NUM x10 ⁻¹²	R
		11.55	5.04	0
+	1	11.55	3.30	0
-	0.90	11.7	5.98	845
	0.90	11.7	4.44	751

TABLE B.4.5. Effect of rutile mass used

[MIPA] =	0.1 mol dm^{-3}	NO. IN	VERSIONS = 1	800
Rutile mass/g	0.0004	0.0041	0.0103	0.0985
NUM x10 ⁻¹²	4.35	2.12	1.79	3.02
R	188	18.3	7.29	0.76

TABLE B.4.6. Dispersibility in distilled water as a function of pH

рН	NUM x10 ⁻¹¹
5.75	<0.07 (aggs)
6.85	(0.3 (aggs)
8.8	(U.3 (aggs)
9.44	<0.4 (aggs)
9.70	1.06 (aggs)
10.15	4.69
10.3	2.03
10.74	4.46
10.92	8.83
11.15	1.21 (aggs)
11.68	8.19
11.93	11.0
12.20	8.80
12.68	0.99

TABLE B.4.7. Effect of electrolyte concentration on the dispersibility of rutile in distilled water of various pH

pН	[KNO ₃]/ mol dm ⁻³	NUM x10 ⁻¹¹	рН	[KNO ₃]/ mol dm ⁻³	NUM x10 ⁻¹¹
11.41	0	13.0	10.96	0	17.8
	0.00297	9.97		0.00465	11.0
	0.00485	8.91		0.00880	7.94
	0.00870	7.48		0.0159	4.98
	0.0141	6.54			
	0.0170	4.03	10.64	0	11.2
	0.0216	2.03		0.00346	7.61
	0.0280	0.97		0.00940	4.97
				0.0167	2.20
11.39	0.0110	6.28			
	0.0141	4.79	10.20	0	2.01
	0.0185	3.43		0.00208	4.68
	0.0249	0.88		0.00504	4.83
				0.00851	2.73
9.63	0	0.162		0.0144	0.202
	0.00396	<0.1		0.0175	0.301
	0.00860	<<0.1		0.0236	0.184
	0.0164	<<0.1		0.0252	0.184
3.14	0	0.091			
	0.00445	<<0.01			
	0.00702	<<0.01			
	0.0177	<<0.01			

NO. INVERSIONS = 2700 T = $25^{\circ}C$

TABLE B.4.8. Effect of electrolyte concentration on the dispersibility of rutile in aqueous MIPA solutions of equilibrium pH (25°C)

[MIPA]/ mol dm ⁻³	[KNO ₃]/ mol dm ⁻³	NUM x10 ⁻¹¹	R	[MIPA]/ mol dm ⁻³	[KNO ₃]/ mol dm ⁻³	NUM x10 ⁻¹¹	R
0.001	0.00138 0.00257 0.00356 0.00722 0.0120 0.0156 0.0198 0.0247	9.45 6.15 4.30 3.60 1.82 1.18 0.687 0.636	0.072 0.078 0.076 0.072 0.072 0.074 0.076 0.072	0.005	0.00109 0.00178 0.00376 0.00851 0.0115 0.0153 0.0170 0.0233	16.5 16.6 13.3 10.1 7.00 4.40 1.96 1.53	0.34 0.38 0.35 0.36 0.32 0.36 0.38
0.010	0.00069 0.00247 0.00356 0.00841 0.0130 0.0148 0.0191 0.0238	21.3 17.4 17.3 12.9 8.70 7.97 3.16 2.10	0.77 0.75 0.79 0.78 0.78 0.71 0.75 0.77	0.010*	0 0.0049 0.0078 0.0099 0.0051 0.0087 0.0495 0.104	34.4 27.6 15.2 19.1 32.3 26.7 0.324 0.0537	0.099 0.101 0.090 0.082 1.08 0.99 0.76 1.00
0.0199	0.00109 0.00158 0.00336 0.00752 0.0118 0.0150 0.0194 0.0227	17.0 15.4 13.5 11.4 11.7 6.86 3.88 5.44	1.57 1.28 1.45 1.33 1.44 1.53 1.56 1.38				

NO. INVERSIONS = 2700

* Dispersions allowed to settle for 10 mins before particle count.

TABLE B.4.9. Effect of conjugate acid content on the dispersing power of MIPA solutions (25°C)

NO. INVERSIONS = 2520 10 min settling $[MIPA^+] = 0.019 \text{ mol } dm^{-3}$

[MIPA]/ mol dm ⁻³	рН	[MIPA ⁺] [MIPA]	NUM x10 ⁻¹¹ .	R
0.020 0.030 0.040 0.050	8.09 9.45 9.74 9.90	0.97 0.64 0.48 0.39 0.32	0.074 17.1 19.4 17.8	0.19 0.26 0.38 0.51 0.65
0.080 0.070 0.090	10.1 10.25	0.28 0.21	18.1 20.4	0.69

TABLE B.4.10. Effect of solution pH on the dispersing power of MIPA (25°C)

NO. INVERSI	10113 - 2700	[MIFA] = 0.0195	
рН	[MIPA ⁺]/ mol dm ⁻³	NUM ×10 ⁻¹¹	R .
10.77 10.59 10.25 9.86 9.56 9.15 8.20	0.00096 0.00193 0.00385 0.00770 0.0116 0.0154 0.0192	26.9 25.6 21.6 19.6 14.4 8.56 <0.4	1.45 1.53 1.42 1.66 1.56 1.51 1.53
2.55	0.0231	<0.1	1.44

TABLE B.4.11. Effect of solution pH on the dispersing power of MIPA at constant ionic strength (25°C)

	NO. IN	VERSIONS = 2700	[M]	[PA] = 0.010 mol	dm ⁻³	-
	[KNO ₃]/ mol dm ⁻³	[MIPA ⁺]/ mol dm ⁻³	рН	Ionic Strength/ mol dm ⁻³	NUM x10 ⁻¹¹	
	0.00962	0.00038	10.67	0.0100	16.9	1
1	0.00924	0.00076	10.51	0.0100	16.8	T.
	0.00849	0.00151	10.29	0.0100	15.8	
	0.00735	0.00265	10.01	0.0100	16.0	
	0.00622	0.00378	9.80	0.0100	14.7	
	0.00432	0.00568	9.50	0.0100	12.9	
	0.00243	0.00757	9.10	0.0100	10.8	
	0.00054	0.00946	8.10	0.0100	<0.01	

-

NO. INVERSIONS = 2700 [MIPA] = 0.0199 mol dm^{-3}

TABLE B.4.12.	Effect of	electrolyte type	on th	e dispersing	power
	of a MIPA	solution (25°C)			

NO. INVERSIONS = 2700

 $[MIPA] = 0.10 \text{ mol } dm^{-3}$

Electrolyte	[SALT]/ mol dm ⁻³	Ionic Strength/ mol dm ⁻³	NUM x10 ⁻¹¹
Barium Nitrate	0.00536 0.0156	0.0178 0.0485	-
Lithium Chloride	0.00519 0.0165	0.00687 0.0182	8.72 6.17
Potassium Sulphate	0.00528 0.0159	0.0175 0.0494	16.9 0.599
Potassium Nitrate	0.00495 0.0164	0.00663	14.2 8.73

TABLE B.4.13. Effect of $Ba(NO_3)_2$ concentration of the dispersing power of an aqueous MIPA solution (25°C)

NO. INVERSIONS = 2700

 $[MIPA] = 0.020 \text{ mol } dm^{-3}$

1	[SALT]/ mol dm ⁻³	NUM x10 ⁻¹¹	R
10.00	0.00011	<0.4	1.49
	0.00042	<0.3	1.55
	0.00115	<0.3	1.37
	0.00310	<0.3	1.21

TABLE B.4.14. Effect of LiCL concentration on the dispersing power of MIPA solutions (25°C)

		and the second sec	
[MIPA]/ mol dm ⁻³	[SALT]/ mol dm ⁻³	NUM ×10 ⁻¹¹	R
0.00499	0	29.3	0.37
pH = 10.78	0.00259	23.0	0.38
pir 10070	0.00425	25.8	0.40
	0.0123	16.1	0.36
	0.0158	17 0	0.35
	0.0138	0 12	0.34
	0.0189	8.12	0.34
	0.0245	0.924	0.3/
	0.0403	0.0711	0.30
0.020	0	47.8	1.34
pH = 11.12	0.00472	37.9	1.18
· · · ·	0.00778	28.6	1.34
	0.00920	24.4	1.34
	0.0160	16.5	1.38
	0.0184	9.06	1.38
	0.0202	1.11	1 10
	0.0302	1.11	1.10
	0.0502	<<0.1	1.42

TABLE B.4.15. Effect of pH and salt concentration on the dispersing power of MIPA solution (25°C)

NO. INVERSIONS = 2700 [MIPA] = 0.0202 mol dm⁻³

[MIPA ⁺]/	[KN03]/	NUM	R	[MIPA ⁺]/	[KN03]/	NUM	R
pH	mol dm^{-3}	x10 ⁻¹¹		pH	mol dm^{-3}	x10 ⁻¹¹	
~0	0	27.7	1.55	0.00075	0	30.2	1.50
11.28	0.00129	25.1	1.49	11.08	0.00267	21.5	1.42
	0.00366	19.4	1.37		0.00524	21.2	1.56
	0.00821	20.4	1.50		0.00959	21.9	1.15
	0.0127	16.7	1.55	0 0	0.0146	17.3	1.58
	0.0156	14.7	1.45		0.0188	13.7	1.47
	0.0218	10.7	1.43		0.0236	12.5	1.52
	0.0271	4.92	1.55		0.0274	8.82	1.17
	4				-	00 (
0.00075	0	31.2	1.46	0.00096	0	29.6	1.01
11.03	0.00287	25.4	1.26	10.79	0.00227	25.9	1.58
	0.00504	24.9	1.63		0.00534	21.0	1.52
	0.00890	19.8	1.32		0.00940	19.3	1.60
	0.0140	18.7	1.63		0.0130	17.0	1.53
	0.0181	14.5	1.46		0.018/	14.5	1.42
	0.0217	10.9	1.63		0.0224	11.3	1.53
	0.0263	8.02	1.53		0.0264	6.60	1.55
0.00193	0	31.1	1.53	0.00193	0	26.2	1.56
10.55	0.00188	23.3	1.55	10.53	0.00267	21.6	1.49
10.55	0.00603	21.0	1.56	10100	0.00316	22.2	1.53
	0.0104	23.1	1.39		0.00722	19.8	1.71
	0.0150	17.9	1.38		0.00880	18.5	1.60
	0.0190	15.4	1.47		0.0134	16.1	1.36
	0.0230	11.3	1.38		0.0194	14.9	1.56
	0.0273	6.07	1.50		0.0238	6.84	1.30

NO	. INVERSIO	NS = 2700	0	[MIPA] =	0.0202 mo	1 dm ⁻³	
[MIPA ⁺]/ pH	$[KNO_3]/$ mol dm ⁻³	NUM x10 ⁻¹¹	R	[MIPA ⁺]/ pH	[KNO ₃]/ mol dm ⁻³	NUM x10 ⁻¹¹	R
0.00385	0.00201 0.00402 0.00804 0.0111 0.0141 0.0181 0.0221 0.0261	24.2 23.0 19.9 19.4 14.7 9.14 5.90 0.840	1.39 1.45 1.37 1.60 1.42 1.43 1.34 1.61	0.00674 9.95	0 0.00277 0.00643 0.0105 0.0141 0.0191 0.0217 0.0281	26.4 21.3 18.7 18.1 14.0 11.3 8.03 1.71	1.60 1.55 1.33 1.61 1.52- 1.55 1.18 1.55
0.00963 9.74	0 0.00158 0.00336 0.00495 0.0105 0.0132 0.0212 0.0271	20.8 16.6 14.6 14.2 13.8 10.6 6.02 0.747	1.42 1.31 1.53 1.17 1.53 1.63 1.49 1.01	0.00963 9.71	0 0.00297 0.00504 0.00979 0.0137 0.0185 0.0230 0.0271	29.1 19.1 16.8 15.3 11.5 4.39 1.03 0.47	1.45 1.60 1.61 1.61 1.10 1.50 1.55 1.50
0.0106 9.65	0 0.00218 0.00425 0.00949 0.0152 0.0193 0.0237 0.0270	24.8 19.6 16.4 15.8 8.28 2.61 0.742 0.367	1.52 1.38 1.58 1.49 1.49 1.16 1.42 1.58	0.0192 8.24	0 0.00227 0.00445 0.00544	0.574 0.464 0.300 0.224	1.43 1.55 1.32 1.55

TABLE B.4.15. Effect of pH and salt concentration on the dispersing power of MIPA solution (25°C)

NO.	INVERSIONS	5 = 2700		[MIPA] =	5.04×10^{-3}	mol dm ⁻³	
[MIPA ⁺]/	[KN03]/	NUM	R	[MIPA ⁺]/	[KN03]/	NUM	R
рН	mol dm ⁻³	x10 ⁻¹¹	K	pH	mol dm ⁻³	x10 ⁻¹¹	
0.00038	0	30.3	0.38	0.00096	0	37.0	0.38
10.76	0.00227	21.7	0.35	10.25	0.00227	23.3	0.39
	0.00564	16.1	0.38		0.00524	19.7	0.38
	0.00940	12.7	0.38		0.00949	15.6	0.34
	0.0144	9.86	0.36		0.0151	11.9	0.38
	0.0186	5.90	0.29		0.0180	6.93	0.32
	0.0230	4.52	0.28		0.0249	2.22	0.37
	0.0274	1.56	0.37		0.0293	0.581	0.34
0.00193	0 -	25.1	0.36	0.00289	0	23.8	0.37
9.88	0.00227	23.2	0.26	9.51	0.00207	19.4	0.35
	0.00455	15.8	0.36		0.00445	16.7	0.35
	0.00989	11.6	0.36		0.00920	9.51	0.36
	0.0144	7.65	0.27		0.0156	6.21	0.40
	0.0186	5.02	0.35		0.0196	2.13	0.31
	0.0228	1.20	0.26		0.0239	0.622	0.36
	0.0284	0.447	0.36		0.0275	0.210	0.34
0.00385	0	22.6	0.37	0.00385	0	14.5	0.31
9.16	0.00247	15.8	0.38	9.15	0.00237	10.4	0.38
	0.00514	13.1	0.38		0.00326	10.6	0.29
	0.01038	5.93	0.39		0.00653	5.15	0.37
	0.0141	2.19	0.40		0.0107	3.36	0.37
	0.0193	0.833	0.30		0.0128	1.59	0.36
	0.0236	0.303	0.39		0.0171	0.479	0.27
	0.0281	0.107	0.37		0.0215	0.355	0.42

TABLE B.4.16. Effect of pH and salt concentration on the dispersing power of MIPA solution (25°C)

TABLE B.4.17. Effect of MIPA concentration at a fixed pH on the degree of dispersion of rutile (25°C)

[MIPA]/ mol dm ⁻³	рН	NUM x10 ⁻¹¹	R
2.0×10^{-5} 2.0×10^{-4} 8.0×10^{-4} 4.0×10^{-3} 0.010 0.020 0.050 0.100	11.40	12.8	0.0015
	11.39	14.1	0.014
	11.40	15.0	0.061
	11.40	16.8	0.30
	11.40	24.4	0.75
	11.40	27.9	1.58
	11.39	29.9	3.58
	11.38	30.4	7.44

NO. INVERSIONS = 2700 pH = 11.4

TABLE B.4.18. Effect of electrolyte concentration on the dispersing power of MIPA at high pH (25°C) .

[MIPA]/ mol dm ⁻³	рН	[KNO ₃]/ mol dm ⁻³	NUM x10 ⁻¹¹	R
2x10 ⁻⁵	11.26	0 0.00475 0.00969 0.0158	15.8 11.5 5.90 3.38	0.0013 0.0016 0.0014 0.0013
9.98x10 ⁻⁵	11.20	0 0.00386 0.0102 0.0172	15.4 12.3 5.77 3.39	0.0067 0.0075 0.0062 0.0074

TABLE B.4.19. Effect of electrolyte concentration on the dispersing power of low MIPA concentration solutions at equilibrium pH (25°C)

[MIPA]/ pH	[KNO ₃]/ mol dm ⁻³	NUM x10 ⁻¹¹	R	[MIPA]/ pH	[KNO ₃]/ mol dm ⁻³	NUM x10 ⁻¹¹	R
9.98x10 ⁻⁴ 10.36	0 0.00425 0.00870 0.0152	26.0 12.5 6.06 3.05	0.071 0.073 0.073 0.070	5.99x10 ⁻⁴ 10.24	0 0.00405 0.00969 0.0161	27.3 8.27 3.92 2.22	0.048 0.040 0.042 0.038
3.99x10 ⁻⁴ 10.10	0 0.00465 0.0102 0.0170	22.4 5.93 2.78 1.15	0.030 0.028 0.028 0.031	2.00x10 ⁻⁴ 9.86	0 0.00405 0.01038 0.0159	17.4 4.57 1.42 1.08	0.015 0.014 0.014 0.013
9.98x10 ⁻⁵ 9.73	0 0.00435 0.00890 0.0150	11.1 2.93 0.843 0.367	0.0073 0.0064 0.0078 0.0053	2.00x10 ⁻⁵ 8.4	0 0.00415 0.00969 0.0137	0.0143 <0.1 <0.1 <0.1	0.0014 0.0014 0.0015 0.0013

NO. INVERSIONS = 2700

TABLE B.4.20. Effect of a constant conjugate acid to MIPA concentration ratio on the dispersing power (25°C)

[MIPA]/	[MIPA ⁺]/	pН	[MIPA ⁺]	NUM	[KN03]/	NUM
mol dm ⁻³	mol dm ⁻³		[HITA]	x10 ⁻¹¹	mol dm ⁻³	x10 ⁻¹¹
9.98x10 ⁻⁵	1.93x10 ⁻⁵	9.39	0.193	6.35	0.0105	0.49
9.98x10 ⁻⁴	1.93×10^{-4}	10.01	0.193	30.7	0.0103	5.28
9.98x10 ⁻³	1.93×10^{-3}	10.21	0.193	37.7	0.00969	18.1
0.0499	9.63×10^{-3}	10.28	0.193	48.4	0.0107	24.6
9.98×10 ⁻⁵	3.85×10 ⁻⁵	9.05	0.386	1.46	0.0101	<<0.1
9.98×10^{-4}	3.85×10^{-4}	9.70	0.386	24.8	0.00930	3.98
9.98×10^{-3}	3.85×10^{-3}	9.84	0.386	29.5	0.00969	18.1
0.0499	0.0193	9.86	0.386	33.3	0.0104	8.46
9 98×10 ⁻⁵	5 78×10 ⁻⁵	8.6	0.578	0.466	0.0141	<0.1
9.98×10 ⁻⁴	5.78×10-4	9:32	0.578	23.5	0.0142	2.33
9.98×10 ⁻³	5.78×10-3	9.43	0.578	33.1	0.0148	9.15
0.0499	0.0289	9.46	0.578	20.3	0.0140	2.76
9.98x10 ⁻⁵	0	11.29	0	14.2	0.0148	4.99
9.98x10 ⁻⁴	0	11.29	0	33.3	0.0142	8.15
9.98×10^{-3}	0	11.28	0	43.5	0.0149	13.6
0.0499	0	11.36	0	60.1	0.0140	38.2

TABLE B.4.21. Effect of the % water content of the MIPA solution on the dispersing power (25°C)

% water (v/v) water mole fraction	0	30 0.64	50 0.80	80 0.94	
NUM x10 ⁻¹¹	<0.3	<0.5	5.29	18.4	

 $[MIPA] = 0.0190 \text{ mol } dm^{-3}$

TABLE B.4.22. The dispersibility of rutile in aqueous mixtures of aminopropane and isopropanol (25°C)

[Amine]/ mol dm ⁻³	[Alcohol]/ mol dm ⁻³	Mole Fraction of Amine	NUM x10 ⁻¹¹	
0	0.262	0		
0.0242	0.236	0.093	19.2	
0.0484	0.210	0.187	16.7	
0.0726	0.183	0.284	16.7	
0.0968	0.157	0.381	14.3	
0.121	0.131	0.480	14.7	
0.145	0.105	0.580	14.0	
0.169	0.0786	0.683	15.8	
0.242	0	1	19.0	
	NO. INVER	SIONS = 2700		
0	0.262	0	- Schart	
0.0242	0.236	0.093	39.3	
0.0484	0.210	0.187	29.4	
0.0726	0.183	0.284	30.0	
0.145	0.105	0.580	29.8	
0.194	0.0524	0.787	33.0	
0.218	0.0262	0.893	38.4	
0.242	0	1	37.0	

TABLE B.4.23. The effect of aqueous AMP on the dispersion of rutile (25°C)

[AMP]/ mol dm ⁻³	рН	[KNO ₃]/ mol dm ⁻³	NUM x10 ⁻¹¹	R
0.020	11.03	0.00099 0.00188 0.00425 0.00742 0.0122 0.0152 0.0189 0.0228	17.4 14.5 12.9 13.0 11.4 11.2 6.19 7.29	1.78 1.68 1.63 1.76 1.65 1.47 1.60 1.50
0.0259	11.20	0 0.00564 0.00732 0.0101 0.0137 0.0171 0.0204 0	53.3 32.8 29.0 27.6 23.5 32.7 14.5 36.4	2.18 1.97 2.35 1.88 2.28 2.43 2.22 2.14
4.9×10^{-5} 9.79 \times 10^{-4} 3.92 \times 10^{-3} 0.0196	11.40 11.40 11.39 11.40	0 0 0 0	12.1 15.1 22.5 26.8	0.0045 0.089 0.35 1.84

TABLE B.4.24. The effect of aqueous TEA on the dispersion of rutile (25°C)

[TEA]/	рН	[KNO ₃]/	NUM
mol dm ⁻³		mol dm ⁻³	x10 ⁻¹¹
0.0204	10.42	0 0.00574 0.00880 0.0109 0.0134 0.0178 0.0206 0	35.4 23.7 18.9 21.7 13.6 9.71 5.86 29.2
5.26×10^{-5}	11.41	0	10.7
1.05 \times 10^{-3}	11.41	0	14.7
2.10 \times 10^{-3}	11.40	0	16.9
0.0210	11.41	0	22.1

TIME OF DISPERSION STUDIES

TABLE B.4.25. Effect of the number of sample inversions on the number of rutile primary particles dispersed as a function of electrolyte (25°C)

Solution	Number Inversions	Log ₁₀ NI	NUM x10 ⁻¹¹	Solution	Number Inversions	Log ₁₀ NI	NUM x10 ⁻¹¹
water pH 11.10	10 210 480 660 900 2850	1.00 2.32 2.68 2.82 2.95 3.45	0.434 1.80 4.67 3.94 6.78 9.43	10 mM KNO ₃ pH 10.93	390 750 1200 2100 2700 3600	2.59 2.88 3.08 3.32 3.43 3.56	0.779 1.23 1.48 1.82 4.05 4.28
10 mM LiCL pH 10.99	450 900 1350 1800 4500 7500	2.65 2.95 3.13 3.26 3.65 3.88	1.59 1.37 1.53 1.88 9.08 12.3	10.2 mM NaF pH 10.83	420 1110 1800 2640 3900 6180	2.62 3.05 3.26 3.42 3.59 3.79	1.06 1.38 2.10 4.07 6.90 7.65

TABLE B.4.26. Effect of number of inversions on the dispersion of rutile in aqueous MIPA solution

[MIPA]/ mol dm ⁻³	рН	Number Inversions	Log ₁₀ NI	NUM x10 ⁻¹¹			
0.0100	10.81	3.5 6 7.5 10 20 600 1200 2400	0.54 0.78 0.88 1.00 1.30 2.78 3.08 3.38	10.8 12.3 14.2 17.6 17.4 21.7 21.0 22.5			
[MIPA] [KNO ₃]/ mol dm ⁻³	NI	Log ₁₀ NI	NUM x10 ⁻¹¹	[MIPA] [KNO ₃]/ mol dm ⁻³	NI	Log ₁₀ NI	NUM x10 ⁻¹¹
--	---	--	--	--	--	--	---
0.0091 0.0092 pH 10.7	150 300 600 1350 2100	2.18 2.48 2.78 3.13 3.32	5.30 11.2 7.67 11.0 16.4	0.010 0.00992 pH 10.90	3 90 270 450 750 2250	0.48 1.95 2.43 2.65 2.88 3.35	1.96 2.76 4.91 7.05 11.1 16.0 -
0.010 0.0152 pH 10.89	450 900 1500 2880 4110 5490	2.65 2.95 3.18 3.46 3.61 3.74	1.25 1.50 1.38 6.78 8.02 10.9	0.020 0.0100 pH 11.11	5 15 60 450 900	0.70 1.18 1.78. 2.65 2.95	2.63 4.55 5.66 9.75 16.3
0.050 0.0253 pH 11.30	7.5 30 150 690 1350 2340 3000 3900	0.88 1.48 2.18 2.84 3.13 3.37 3.48 3.59	2.37 5.10 9.20 9.61 13.2 13.9 17.7 17.2	0.050 0.0251 pH 11.3	1800 2700 3600 60 150 510 1470	3.26 3.43 3.56 1.78 2.18 2.71 3.17	10.9 18.2 21.2 1.07 0.709 0.951 0.795
0.050 0.0251 pH 11.32	15 60 300 1200 1500 2220	1.18 1.78 2.48 3.08 3.18 3.35	5.24 9.28 11.2 16.6 0.772* 17.2				

TABLE B.4.27. Effect of number of inversions on the dispersion of rutile in aqueous MIPA-KNO₃ solution (25°C)

* Rutile powder moistened with distilled water prior to addition of dispersing solution.

[MIPA] [LiCL]/ mol dm ⁻³	NI	Log ₁₀ NI	NUM ×10 ⁻¹¹	[MIPA] [LiCL]/ mol dm ⁻³	NI	Log ₁₀ NI	NUM x10 ⁻¹¹
0.010 0.0101 pH 10.9	3 90 240 360 755 2250	0.48 1.95 2.38 2.56 2.88 3.35	2.41 5.92 8.97 10.6 13.0 19.5	0.010 0.0157 pH 10.89	10 90 240 600 1530 2820	1.00 1.95 2.38 2.78 3.18 3.45	1.85 3.28 1.35 3.47 7.67 10_1
0.010 0.0148 pH 10.85	30 150 480 960 1500 2100 3300 5400	1,48 2.18 2.68 2.98 3.18 3.32 3.52 3.73	1.45 1.55 1.50 2.26 7.55 8.15 10.1 14.1	0.010 0.0100 pH 10.85	5 60 450 810 1530 3180	0.70 1.78 2.65 2.91 3.18 3.50	2.00 4.21 7.04 8.39 8.40 14.1
0.020 0.0100 pH 11.10	5 30 240 630 1200 2250 2760 3600	0.70 1.48 2.38 2.80 3.08 3.35 3.44 3.56	5.35 11.4 14.0 16.7 20.8 17.1 20.6 20.9	0.050 0.0251 pH 11.30	15 30 135 450 1050 1800 2400 3780	1.18 1.48 2.13 2.65 3.02 3.26 3.38 3.58	2.50 4.12 1.26 0.805 0.818 0.727 0.757 0.656
0.050 0.0253 рН 11.30	19 60 270 660	1.28 1.78 2.43 2.82	2.50 1.61 0.721 0.674	0.050 0.0249 pH 11.30	14 30 90 270 900 1800	1.15 1.48 1.95 2.43 2.95 3.26	4.24 3.70 1.04 0.649 0.656 0.754

TABLE B.4.28. Effect of number of inversions on the dispersion of rutile in aqueous MIPA-LiCL solution (25°C)

[MIPA] [NaF]/ mol dm ⁻³	NI I	Log ₁₀ NI	NUM x10 ⁻¹¹	[MIPA] [NaF]/ mol dm ⁻³	NI	Log ₁₀ NI	NUM x10 ⁻¹¹
0.010 0.00974 pH 10.85	3.5 15 30 90 210 450	0.54 1.18 1.48 1.95 2.32 2.65 2.12	3.12 6.79 12.6 9.48 11.9 12.7	0.010 0.0150 pH 10.85	60 180 570 1020 1350 2370	1.78 2.26 2.76 3.01 3.13 3.37	1.51 7.23 7.50 8.51 11.4 10.4
0.050 0.0254 pH 11.30	2700 9 - 16 45	3.43 0.95 1.20 1.65	24.6 7.98 8.75 11.8	0.050 0.0250 pH 11.28	30 150 420	1.48 2.18 2.62	7.90 8.50 8.28
	150 600 1260 2160 3480	2.18 2.78 3.10 3.33 3.54	13.8 19.5 14.6 20.1 23.1		1950 2700	3.29 3.43	15.8 18.4

TABLE B.4.29. Effect of number of inversions on the dispersion of rutile in aqueous MIPA-NaF solution (25°C)

TABLE B.4.30. Effect of number of inversions on the dispersion of rutile in aqueous MIPA-KCL solution (25°C)

[MIPA] [KCL]/ mol dm ⁻³	NI	Log ₁₀ NI	NUM x10 ⁻¹¹	[MIPA] [KCL]/ mol dm ⁻³	NI	Log ₁₀ NI	NUM x10 ⁻¹¹
0.010	7.5	0.88	1.29	0.010	90	1.95	1.10
0.0149	90	1.95	2.16	0.0100	600	2.78	2.07
pH 10.85	360	2.56	5.59	pH 10.85	1290	3.11	3.89
1	600	2.78	6.95		2100	3.32	6.29
	840	2.92	9.37		3000	3.48	7.42
	2310	3.36	14.4		3600	3.56	8.13

TABLE B.4.31. Effect of number of inversions on the dispersion of rutile in aqueous MIPA-NaNO₃ solution (25°C)

	NUM x10 ⁻¹¹	Log ₁₀ NI	NI
A. S. S. S.	1.75	1.18	15
	6.23	1.95	90
	9.22	2.48	300
	10.1	2.80	630
	12.4	3.02	1050
	11.7	3.19	1560
	17.1	3.56	3600

 $[MIPA] = 0.010 \text{ mol } dm^{-3} \qquad [NaNO_3] = 0.0100 \text{ mol } dm^{-3} \\ pH = 10.84$

TABLE B.4.32. Effect of number of inversions on the dispersion of rutile in aqueous MIPA-KNO₃-NaF solution (25°C)

$[KNO_3] = 0.00501 \text{ mol}$	dm ⁻³ [$[NaF] = 0.00522 \text{ mol } dm^{-3}$	
NI	Log ₁₀ NI	NUM x10 ⁻¹¹	
180	2.26	1.34	
450	2.65	4.80	
900	2.95	6.16	
1440	3.16	6.57	
2280	3.36	8.00	
4620	3.66	12.5	

 $[MIPA] = 0.010 \text{ mol } dm^{-3} \qquad pH = 10.85$ $[KNO_3] = 0.00501 \text{ mol } dm^{-3} \qquad [NaF] = 0.00522 \text{ mol } dm^{-3}$

TABLE B.5.1.

Dynamic viscosity of aqueous MIPA solution as a function of concentration (25°C)

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2
0.126 0.947 1.033 0.033 0.9198 0.0348 0.173 1.302 1.046 0.046 0.9314 0.0353	5 5 5 2 6
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	333333333333333333333333333333333333333
0.990 7.438 1.314 0.314 1.170 0.0422	2

 $t(H_20) = 681.15 s$

TABLE B.5.2. Dynamic viscosity of aqueous MIPA solution as a function of pH (25°C)

			and the second se	where the second s	
[MIPA]/ mol dm ⁻³	рН	η _r	η/ centipoise	[MIPA ⁺]/ mol dm ⁻³	· · · · · ·
1.44	11.95	1.503	1.338	0.009	
1.40	10.12	1.416	1.261	0.430	
1.36	9.40	1.332	1.186	0.995	
1.32	7.06	1.237	1.101	1.44	
1.44	0.91	1.253	1.116	1.44	
water	11.90	1.002	0.8922	-	
water	1.00	1.000	0.8904	-	1

t((H	20))	=	68	31	• 1	5	S

TABLE B.5.3. Dependence of reduced viscosity on the selected value for the flow time of distilled water (25°C)

$$t_1 = 681.15 s$$

$$t_2 = 683.3 s$$

[MIPA]/	$A]/c/am^{-3}$ g per 100 ml		η _r		η/centipoise		n _{SP} /c	
mor du	g per	100 ш1	tl	t ₂	t ₁	t ₂	t ₁	t ₂
0.018	0.1	352	1.0095	1.0063	0.8989	0.8960	0.0703	0.0466
0.020	0.1	1503	1.0087	1.0056	0.8981	0.8954	0.0579	0.0373
0.036	0.2	2705	1.0128	1.0097	0.9018	0.8990	0.0473	0.0359
0.040	0.3	3005	1.0151	1.0119	0.9038	0.9010	0.0502	0.0396
0.045	0.3	3381 .	1.0154	1.0122	0.9041	0.9013	0.0455	0.0361
0.050	. 0.3	3757	1.0184	1.0151	0.9068	0.9038	0.0490	0.0402
0.054	0.4	4057	1.0175	1.0143	0.9060	0.9031	0.0431	0.0352
0.060	0.4	4508	1.0203	1.0170	0.9085	0.9055	0.0450	0.0377
0.072	0.5	5409	1.0237	1.0205	0.9115	0.9087	0.0438	0.0379
0.080	0.6	5010	1.0260	1.0228	0.9136	0.9107	0.0433	0.0379
0.090	0.6	5762	1.0279	1.0247	0.9152	0.9124	0.0413	0.0365
0.100	0.7	7513	1.0308	1.0275	0.9178	0.9149	0.0410	0.0366
0.200	1.5	5026	1.0582	1.0549	0.9422	0.9393	0.0387	0.0365

TABLE B.5.4. Dynamic viscosity of a MIPA solution as a function of pH at a constant ionic strength (25°C)

[MIPA] = 0.500 mol dm⁻³ IS ~ 1.5 mol dm⁻³ t(H₂0) = 681.15 s

pН	[MIPA ⁺]/ mol dm ⁻³	[KNO ₃]/ mol dm ⁻³	Ionic Strength/ mol dm ⁻³	η _r	η/ centipoise
11.80	0.00375	1.500	1.504	1.0363	0.9227
10.35	0.127	1.372	1.499	1.0305	0.9176
9.90	0.248	1.250	1.498	1.0242	0.9119
8.34	0.477	1.000	1.477	1.0156	0.9043
4.00	0.500	0.861	1.497	1.0117	0.9009
0.34	0.500	0.221	1.493	1.0537	0.9382

a) [MIPA] = 0	$0.500 \text{ mol } dm^{-3}$	pH =	equilibrium
[KNO ₃]/ mol dm ⁻³	Ionic Strength/ mol dm ⁻³	η _r	η/ centipoise
0 0.04973 0.1001 0.5006 1.000 1.500 2.000	0.0038 0.0535 0.1039 0.5044 1.0038 1.5038 2.0038	1.1489 1.1443 1.1386 1.0960 1.0595 1.0363 1.0248	1.0230 1.0189 1.0138 0.9759 0.9434 0.9227 0.9125
b) [MIPA]	= 0.500 mol d [MIPA ⁺] = 0.2	m ⁻³ pH 55 mol dm ⁻³	H = 9.60
- [KNO ₃]/ mol dm ⁻³	Ionic . Strength/ mol dm ⁻³	η _r	η/ centipoise
0 0.0502 0.0999 0.4995 0.9998 2.000	0.2552 0.3054 0.3551 0.7547 1.255 2.256	1.1097 1.1045 1.0986 1.0601 1.0313 1.001	0.9880 0.9834 0.9782 0.9439 0.9183 0.8912
c) [MIPA]	= 0.500 mol d	m ⁻³ pł	H = 1.60
[KNO ₃]/ mol dm ⁻³	Ionic Strength/ mol dm ⁻³	η _r	η/ centipoise
0 0.0995 0.2499 0.6008 1.201 2.000	0.5251 0.6246 0.7750 1.126 1.726 2.525	1.0792 1.0706 1.0573 1.0346 1.0072 0.9943	0.9609 0.9533 0.9414 0.9212 0.8968 0.8853

TABLE B.5.5.	Dynamic	vis	cosity	of	an	aque	eous	MIPA	solution	as	а
	function	of 1	ionic	sti	eng	gth (25°0	C)			

TABLE B.5.6.	Dynamic	vise	cosity	of a	n aque	ous	MIPA	soluti	on	as	а
	function	of	lithiu	m ch	loride	COI	ncenti	cation	(25	°C)	1

[LiCL]/ mol dm ⁻³	η _r	η/ centipoise
0.0135	1.1521	1.0258
0.0501	1.1527	1.0264 -
0.1028	1.1654	1.0376 -
0.4993	1.2212	1.0874
0.9953	1.2965	1.1544
2.000	1.4679	1.3070

[MIPA] = 0.500 mol dm⁻³ pH = equilibrium t(H₂0) = 683.05 s

TABLE B.5.7. Dynamic viscosity of an aqueous MIPA solution as a function of ammonium sulphate concentration (25°C)

[(NH ₄) ₂ SO ₄]/ mol dm ⁻³	η _r	η/ centipoise
0.0102	1.1479	1.0221
0.0498	1.1544	1.0279
0.0998	1.1611	1.0338
0.5030	1.2242	1.0900
1.000	1.3157	1.1715
2.000	1.5864	1.4125

[MIPA] = 0.500 mol dm⁻³ pH = equilibrium $t(H_2 0) = 683.15$ s

TABLE B.5.8. Dynamic viscosity of aqueous solutions of propylamine as a function of concentration (25°C)

t(H.	,0)	=	682	.45	S
------	-----	---	-----	-----	---

[Amine]/ mol dm ⁻³	c/ g per 100 ml	η _r	η/ centipoise	η _{SP} /c
0.0185	0.1092	1.0083	0.8978	0.0760
0.0361	0.2131	1.0122	0.9013	0.0573
0.0725	0.4280	1.0221	0.9100	0.0516
0.0911	0.5379	1.0254	0.9130	0.0472
0.224	1.322	1.0628	0.9463	0.0475
0.370	2.184	1.1077	0.9863	0.0493
0.459	. 2.710	1.1336	1.0094	0.0493
0.689	4.068	1.2186	1.0851	0.0537
0.896	5.290	1.3012	1.1586	0.0569

TABLE B.5.9. Dynamic viscosity of an aqueous propylamine solution as a function of ionic strength

[Amine	$m = 0.591 \text{ mol } dm^{-3}$	pH = equilibrium		
[KNO3]/ mol dm-3	Ionic Strength/ mol dm ⁻³	η _r	η/ centipoise	
0	0.0146	1.1860	1.0560	
0.0400	0.0546	1.1838	1.0541	
0.1200	0.1346	1.1736	1.0450	
0.5203	0.5349	1.1285	1.0048	
1.001	1.016	1.0902	0.9707	
1.998	2.013	1.0544	0.9389	

TABLE B.5.10. Dynamic viscosity of an aqueous propylamine solution at pH 2.5 as a function of ionic strength

- pH	[KNO ₃]/ mol dm ⁻³	Ionic Strength/ mol dm ⁻³	η _r	η/ centipoise	
2.59	0	0.600	1.0986	0.9782	
2.79	0.0400	0.640	1.0945	0.9745	
2.56	0.1201	0.720	1.0861	0.9671	
2.53	0.5203	1.120	1.0540	0.9385	
2.43	0.9993	1.599	1.0291	0.9163	
2.42	1.998	2.598	1.0091	0.8985	

 $[Amine] = 0.597 \text{ mol } dm^{-3} t(H_20) = 682.9 \text{ s}$

Bob & Cup Oil Viscosity/ B K A	4
MV I 10.26 1142 0.2897±0.0007 3.3	308
41.33 0.2876±0.0008 3.2	284
MV II 10.26 441 0.8899±0.0039 3.9	24
41.33 0.8435±0.0021 3.7	20
MV III 10.26 216 2.476±0.011 5.3	348
41.33 2.487±0.009 5.3	372
SV I 10.26 441 2.735±0.019 12.0)6
41.33 2.660±0.029 11.7	13
SV II 10.26 441 8.091±0.019 35.6	58
41.33 7.795±0.028 34.3	38

TABLE B.6.1. Calibration values for the Haake bobs and cups (25°C)

TABLE B.6.2. Rutile slurries studied (25°	C)
---	---	---

Slurry	Solids Content % w/w	Initial Milling Time/ min	Initial MIPA Content g per g TiO ₂	Additional Additive Content
A	46.5	15	0	MIPA
В	44.0	20	0	MIPA
С	46.0	45	0	MIPA
D	38.6	40	0	MIPA
Е	57.6	47	2.66×10^{-4}	MIPA
F	51.0	70	1.70×10^{-4}	MIPA
G	51.5	85	1.60×10^{-4}	MIPA
H	40.3	70	2.50×10^{-4}	$1/_{2}$ neutral MIPA
I	43.7	70	2.33×10^{-4}	$KN\bar{O}_3/MIPA = 1.0$
J	48.7	72	1.70×10^{-4}	$KNO_3/MIPA = 1.0$
K	46.0	65	1.36×10^{-4}	$KNO_3/MIPA = 1.0$
L	50.1	70	1.92×10^{-4}	$KNO_3/MIPA = 0.040$
М	48.8	70	1.78×10^{-4}	$KNO_3/MIPA = 0.080$
N	50.7	70	1.86x10 ⁻⁴	$KNO_3/MIPA = 0.162$
0	47.9	95	1.79x10 ⁻⁴	$KNO_3/MIPA = 0.400$
P	51.3	70	1.81x10 ⁻⁴	$KNO_3/MIPA = 3.20$
Q	50.2	75	1.56×10^{-4}	$Ba(NO_3)_2/MIPA = 0.022$
R	44.7	75	0(pH 11.6)	MIPA then KNO3
S	45.9	60	0(pH 10.7)	MIPA then KNO3
Т	44.5	61	O(pH 11.6)	MIPA then KNO3
U	44.5	60	0(pH 9.4)	MIPA then KNO3
V	36.7	60	0(pH 2.5)	MIPA then KNO3
W	44.1	60	0(pH 4.1)	MIPA then KNO3
X	Variable	60	0	dist. water pH 11.3
Y .	Variable	60	0	dist. water pH 11.3
Z	Variable	60	1.91×10^{-4}	dist. water pH 11.3
AA	Variable	60	1.98×10^{-4}	dist. water pH 11.3
BB	Variable	62	2.32x10 ⁻⁴	dist. water pH 11.3
CC	50.4	63	1.98×10^{-4}	KNO3
DD	51.0	60	1.69×10^{-4}	MIPĂ
EE	50.9	65	1.77×10^{-4}	$KNO_3/MIPA = 0.080$
FF	50.9	61	1.84×10^{-4}	$KNO_3/MIPA = 1.0$
GG	51.0	63	1.83×10^{-4}	LICL/MIPA = 1.0

N. S. S. S. S. S.		here the stand			
	(1)			(2)	
Y/.	τ/	η/	Y/.	τ/	η/
s ⁻¹	dyne cm ⁻²	poise	s ⁻¹	dyne cm ⁻²	poise
2.722	223.4	82.1	2.722	554.9	204
5.444	312.8	57.5	5.444	659.3	121
8.167	443.5	54.3	8.167	752.0	92.1
16.33	1066	65.2	16.33	969	59.3
24.50	1437	58.7	24.50	1173	47.9
49.0	1650	33.7	49.0	1408	28.7
73.5	1812	24.7	73.5	1525	20.7
147.0	2224	15.1	147.0	1795	12.2
220.5	2482	11.3	220.5	2029	9.2
441	2819	6.4			
	(3)				
γ/	τ/	η/	Y/.	τ/	n/
s ⁻¹	dyne cm^{-2}	poise	s ⁻¹	dyne cm ⁻²	poise
7.05	180.6	25.6	1. 1. 1. 1.		wine day
14.10	267.9	19.0			
21.15	320.5	15.2			
42.30	430.0	10.2			
63.44	499.5	7.9			
126.9	641.8	5.1			
190.3	734.4	3.9			
380.7	889.9	2.3			
571.0	992.4	1.7			
			2		
	Jurry	Roh	Cup	% MIPA	
3	luiry	DOD	oup.	w/w	
	1	SV	II		
	2	SV	I	0.0116	
	3	MV	I	0.0292	
					and a selfere

SLURRY: A $\% w/w TiO_2 = 46.5$

			and the state of the		A TRACT REPORT
	(1)	A Star Alt	Real and	(2)	Sec. Mar 10
$\frac{\gamma}{s^{-1}}$	$\tau/dyne cm^{-2}$	η/ poise	γ/ s ⁻¹	$\tau/dyne cm^{-2}$	η/ poise
2.722 5.444 8.167 16.33 24.5 49.0 73.5 147.0 220.5	309.4 464.1 581.0 893.8 962.5 1110 1275 1547 1739	113.7 85.2 71.1 54.7 39.3 22.7 17.3 10.5 7.9	1.33 2.67 4.0 8.0 12.0 24.0 36.0 72.0 108.0	349.2 478.6 547.9 628.5 703.7 891.8 1010 1182 1273	262.6 179.3 137.0 78.6 58.6 37.2 28.1 16.4 11.8
γ/ s ⁻¹	(3) $\tau/$ dyne cm ⁻²	η/ poise	γ/ s ⁻¹	(4) $\tau/$ dyne cm ⁻²	η/ poise

SLURRY: B $\% \text{ w/w TiO}_2 = 44.0$

η < 2 poise drying effect

Slurry	Bob/Cup	% MIPA w/w
1	SV II	0
2	MV III	0.0109
. 3	NV	0.0279

SLURRY:	С	%	w/w	TiO2	=	46.0	12
---------	---	---	-----	------	---	------	----

	(1)		A Report	(2)	Star Star
γ/ s ⁻¹	$\tau/dyne cm^{-2}$	η/ poise	γ/ s ⁻¹	τ/ dyne cm ⁻²	η/ poise
2.722	343.8	126.3	2.722	579.5	213
5.444	446.9	82.1	5.444	656.9	121
8.167	622.2	76.2	8.16/	121.3	89.1
16.33	928.2	50.8	10.33	090.2	45 0
24.5	1109	4/./	49.0	1425	29.1
49.0	1688	23.0	73.5	1566	21.3
147 0	2038	13.9	147.0	1877	12.8
220.5	2200	10.0	220.5	2076	9.4
	(3)			(4)	
Y/	τ/	n/	Y/	τ/	η/
s ⁻¹	dyne cm^{-2}	poise	s ⁻¹	dyne cm^{-2}	poise
2.7222	391.8	144	1.33	236.4	178
5.444	438.7	80.6	2.67	349.2	131
8.167	525.5	64.3	4.0	429.8	107
16.33	709.7	43.5	8.0	580.2	72.5
24.5	805.9	32.9	12.0	639.3	53.3
49.0	1009	20.6	24.0	703.7	29.3
73.5	1173	16.0	36.0	752.1	20.9
147	1414	9.6	72.0	854.1	11.9
220.5	1525	6.9	108	902.5	8.4
G	lurry	Bob	/Cup	% MIPA	
5	Turry	505	, oup	w/w	
	1	SV	II	0	
	2	SV	I	0.0046	1
	3	SVI		0.0121	
	4	MV	111	0.0175	
	5	MV	11	0.0207	
	6	MV	1	0.0251	

	and the same			S. S. Sandara and	
1919 J	(5)			(6)	
γ/ s ⁻¹	$\tau/dyne cm^{-2}$	η/ poise	γ/ s ⁻¹	$\tau/dyne cm^{-2}$	η/ poise
2.722	184.1	67.6	7.05	148.2	21.0
5.444	311.7	57.3	14.1	203.8	14.5
8.167	363.4	44.5	21.15	257.4	12.2
16.33	450.1	27.6	42.30	352.0	8.3
24.5	517.1	21.1	63.44	425.1	6.7
49.0	625.0	- 12.8	126.9	565.7	4.5
73.5	677.0	9.2	190.3	661.6	3.5
147	803.5	5.5	380.7	845.2	2.2
220.5	855.6	3.9	571.0	982.5	1.7

SLURRY: C $\% \text{ w/w TiO}_2 = 46.0$

SLURRY: D % w/w $TiO_2 = 38.6$

	(1)		3. C. S. S. S.	(2)	
γ/ s ⁻¹	$\tau/dyne cm^{-2}$	η/ poise	$\frac{\gamma}{s^{-1}}$	$\tau/dyne cm^{-2}$	η/ poise
1.33 2.67 4.0 8.0 12.0 24.0 36.0 72.0 108	121.9 168.1 184.8 207.9 221.3 251.4 266.5 306.2 322.3	91.7 63.0 46.2 26.0 18.4 10.5 7.4 4.3 3.0	2.722 5.444 8.167 16.33 24.5 49.0 73.5 147 220.5	151.0 183.0 205.3 241.4 261.9 305.0 333.3 398 409	55.5 33.6 25.1 14.8 10.7 6.2 4.5 2.7 1.9
γ/ s ⁻¹	(3) τ/ dyne cm ⁻²	ŋ/ poise	γ/ s ⁻¹	(4) $\tau/$ dyne cm ⁻²	η/ poise
7.05 14.10 21.15 42.30 63.44 126.9 190.3 380.7 571.0	109.2 151.5 179.0 224.3 251.7 307.0 363.9 397.0 446.6	15.5 10.7 8.5 5.3 4.0 2.4 1.9 1.0 0.78	7.05 14.10 21.15 42.30 63.44 126.9 190.3 380.7 571.0	106.2 141.3 163.1 200.1 222.3 267.9 294.7 350.6 370.5	15.1 10.0 7.7 4.7 3.5 2.1 1.5 0.92 0.65
	Slurry	Bol	o/Cup	% MIPA w/w	
	1 2 3 4	MV MV MV MV	III II I I	0 0.0034 0.0081 0.0115	7

SLURRY: E % w/w $TiO_2 = 57.6$

1.5	(1)			(2)	
$\frac{\gamma}{s^{-1}}$	$\tau/dyne cm^{-2}$	η/ poise	γ/ s ⁻¹	τ/ dyne cm ⁻²	η/ poise
2.722 5.444 8.167 16.33 24.5 49.0 73.5 147 220.5	230.3 412.5 670.3 1014 1238 1640 1925 2444 2760	84.6 75.8 82.1 62.1 • 50.5 33.5 26.2 16.6 12.5	2.722 5.444 8.167 16.33 24.5 49.0 73.5 147 220.5	706.2 764.9 856.4 1208 1431 1748 2018 2628 3027	259 140.5 104.9 74.0 58.4 35.7 27.5 17.9 13.7
γ/ s ⁻¹	(3) $\tau/$ dyne cm ⁻²	ŋ/ poise	γ/ s ⁻¹	(4) $\tau/$ dyne cm ⁻²	η/ poise
2.722 5.444 8.167 16.33 24.5 49.0 73.5 147 220.5	538.5 685.1 871.6 1150 1255 .1642 1889 2452 2815	197.8 125.8 106.7 70.4 51.2 33.5 25.7 16.7 12.8	7.05 14.10 21.15 42.30 63.44 126.9 190.3 380.7 571.0	354.0 463.1 578.9 866.7 1121 1535 1823 2408 2722	50.2 32.8 27.4 20.5 17.7 12.1 9.6 6.3 4.8
5	Slurry	Bob/	Cup	% MIPA w/w	
	1 2 3 4 5 6	SV I SV I SV I MV I MV I MV I	I	0.0266 0.0285 0.0306 0.0351 0.0357 0.0377	

	(5)			(6)	
γ/ s ⁻¹	τ/ dyne cm ⁻²	η/ poise	$\frac{\gamma}{s^{-1}}$	$\tau/dyne cm^{-2}$	η/ poise
2.722 5.444 8.167 16.33 24.5 49.0 73.5 147 220.5	343.4 476.2 550.6 706.8 829.6 1094 1265 1603 1841	126.2 87.5 67.4 43.3 33.9 22.3 17.2 10.9 8.4	2.722 5.444 8.167 16.33 24.5 49.0 73.5 147 220.5	279 409.2 465 629 744 - 975 1146 1499 1748	102.5 75.2 56.9 38.5 30.4 19.9 15.6 10.2 7.9

SLURRY: E $\% \text{ w/w TiO}_2 = 57.6$

SLURRY: $F \% w/w TiO_2 = 51.0$

	(1)		Sector 1	(2)	10.64
$\frac{\gamma}{s^{-1}}$	$\tau/dyne cm^{-2}$	η/ poise	γ/ s ⁻¹	$\tau/dyne cm^{-2}$	η/ poise
2.722 5.444 8.167 16.33 24.5 49.0 73.5 147 220.5	189.1 343.8 491.6 656.6 790.6 1038 1196 1475 1667	69.5 63.2 60.2 40.2 32.3 21.2 16.3 10.0 7.6	2.722 5.444 8.167 16.33 24.5 49.0 73.5 147 220.5	375.4 462.2 606.5 778.9 874.0 1113 1243 1525 1672	137.9 84.9 74.3 47.7 35.7 22.7 16.9 10.4 7.6
γ/ s ⁻¹	(3) $\tau/$ dyne cm ⁻²	η/ poise	γ/ s ⁻¹	(4) $\tau/dyne cm^{-2}$.	η/ poise
2.722 5.444 8.167 16.33 24.5 49.0 73.5 147 220.5	256.9 364.8 438.7 554.9 644.0 864.6 997.1 1255 1384	94.4 67.0 53.7 34.0 26.3 17.6 13.6 8.5 6.3	1.33 2.67 4.0 8.0 12.0 24.0 36.0 72.0 108	281 397.5 463.1 558.7 596.3 741.3 816.5 967.0 1085	211.3 148.9 115.8 69.8 49.7 30.9 22.7 13.4 10.0
S	lurry	Bob	/Cup	% MIPA w/w	
	1 2 3 4 5 6 7	SV SV SV MV MV MV MV	II I I III I I I I	0.0170 0.0192 0.0215 0.0240 0.0270 0.0287 0.0319	

γ/ s ⁻¹	(5) τ/ dyne cm ⁻²	η/ poise	γ/ s ⁻¹	(6) $\tau/$ dyne cm ⁻²	η/ poise
7.05 14.10 21.15 42.3 63.4 126.9 190.3 380.7 571.0	224.3 340.7 403.6 565.7 655.0 856.8 999.0 1264 1456	31.8 24.2 19.1 13.4 10.3 6.8 5.2 3.3 2.5	7.05 14.10 21.15 42.3 63.4 126.9 190.3 380.7 571.0	192.2 284.2 337.4 459.8 535.8 711.2 836.9 1-118 1307	27.3 20.2 16.0 10.9 8.4 5.6 4.4 2.9 2.3
γ/ s ⁻¹	(7) $\tau/$ dyne cm ⁻²	η/ poise	γ/ s ⁻¹	$\tau/dyne cm^{-2}$	η/ poise
7.05 14.10 21.15 42.3 63.4 126.9 190.3 380.7 571.0	154.2 226.3 270.9 370.5 403.6 542.4 645.1 899.8 1092	21.9 16.0 12.8 8.8 6.4 4.3 3.4 2.4 1.9			

SLURRY: F $\% \text{ w/w TiO}_2 = 51.0$

SLURRY: G % w/w $TiO_2 = 51.5$

	and the second		and the second		a state of the
	(1)			(2)	
γ/	τ/ _2	n/	γ/_1	τ/ -2	n/
S *	dyne cm 2	poise	S -	dyne cm -	poise
2.722	387.1	142.2	2.722	337.9	124.1
5.444	468.1	86.0	5.444	430.5	79.1
8.167	607.7	74.4	8.167	545.5	66.8
16.33	787.2	. 48.2	16.33	705.0	43.2
24.5	895.1	36.5	24.5	804.7	32.8
49.0	1129	23.0	49.0	1065	21.7
73.5	1279	17.4	73.5	1208	16.4
147	1595	10.9	147	1525	10.4
220.5	1771	8.0	220.5	1701	7.7
	(3)			(4)	
×1	τ/	n/	Y/	τ/	n/
s ⁻¹	dvne cm^{-2}	poise	s ⁻¹	dyne cm^{-2}	poise
2.722	256.9	. 94.4	2.722	230.6	84.7
5.444	397.7	73.1	5.444	316.2	58.1
8.167	483.3	59.2	8.167	375.7	46.0
16.33	605.3	37.1	16.33	479.9	29.4
24.5	700.3	28.6	24.5	554.3	22.6
49.0	929.1	19.0	49.0	703.1	14.3
73.5	1079	14.7	73.5	811.0	11.0
147	1314	8.9	147	1004	6.8
220.5	1490	6.8	220.5	1146	5.2
				9 MTDA	
S	lurry	Bob	/Cup	w/w	
	1	CU	T 1	0.0160	
	2	SV	T	0.0181	
	2	SV	T	0.0203	
	5	SV	TT	0.0203	
	4	MV		0.0220	
	5	MV	T	0.0252	
	0	MV	T	0.0285	
	/	MV	1	0.0420	

SLURRY: G % w/w $TiO_2 = 51.5$

	(5)			(6)	
v/	τ/	n/	v/	τ/	n/
r-1	dyne cm ⁻²	poise	s-1	dyne cm ⁻²	poise
5	dyne cm	poise	3		poroc
2.722	194.9	71.6	7.05	156.8	22.2
5.444	279.0	51.2	14.10	241.5	17.1
8.167	327.4	40.1	21.15	301.7	14.3
16.33	427.8	26.2	42.3	420.1	9.93
24.5	513.4	21.0	63.4	519.4	8.19
49.0	658.4	13.4	126.9	684.8	5.40
73.5	751.4	10.2	190.3	810.5	4.26
147	941.2	6.4	380.7	1088	2.86
220.5	1053	4.8	571.0	1290	2.26
220.5	1055	4.0	57110		
	. (7)				
	·(7)	-		-1	71
۲ <u>/</u> 1	(7) $\tau/$	ŋ/	γ/ 1	$\tau/$	n/
γ/ s ⁻¹	(7) τ/ dyne cm ⁻²	η/ poise	γ/ s ⁻¹	τ/ dyne cm ⁻²	η/ poise
γ/ s ⁻¹ 7.05	(7)	n/ poise 1.46	γ/ s ⁻¹	τ/ dyne cm ⁻²	ŋ/ poise
$\frac{\gamma/}{s^{-1}}$ 7.05 14.10	(7)	η/ poise 1.46 0.79	γ/ s ⁻¹	τ/ dyne cm ⁻²	ŋ/ poise
$\frac{\gamma/}{s^{-1}}$ 7.05 14.10 21.15	(7) $\tau/dyne cm^{-2}$ 10.3 11.2 13.2	η/ poise 1.46 0.79 0.62	γ/ s ⁻¹	τ/ dyne cm ⁻²	η/ poise
$\frac{\gamma/}{s^{-1}}$ 7.05 14.10 21.15 42.3	(7) $\tau/$ dyne cm ⁻² 10.3 11.2 13.2 19.2	η/ poise 1.46 0.79 0.62 0.45	γ/ s ⁻¹	τ/ dyne cm ⁻²	η/ poise
γ/s^{-1} 7.05 14.10 21.15 42.3 63.4	(7) $\tau/$ dyne cm ⁻² 10.3 11.2 13.2 19.2 20.8	η/ poise 1.46 0.79 0.62 0.45 0.33	γ/ s ⁻¹	τ/ dyne cm ⁻²	ŋ/ poise
γ/ s ⁻¹ 7.05 14.10 21.15 42.3 63.4 126.9	(7) $\tau/$ dyne cm ⁻² 10.3 11.2 13.2 19.2 20.8 31.4	η/ poise 1.46 0.79 0.62 0.45 0.33 0.25	γ/ s ⁻¹	τ/ dyne cm ⁻²	ŋ/ poise
γ/ s ⁻¹ 7.05 14.10 21.15 42.3 63.4 126.9 190.3	(7) $\tau/$ dyne cm ⁻² 10.3 11.2 13.2 19.2 20.8 31.4 40.0	η/ poise 1.46 0.79 0.62 0.45 0.33 0.25 0.21	γ/ s ⁻¹	τ/ dyne cm ⁻²	ŋ/ poise
γ/ s ⁻¹ 7.05 14.10 21.15 42.3 63.4 126.9 190.3 380.7	(7) $\tau/$ dyne cm ⁻² 10.3 11.2 13.2 19.2 20.8 31.4 40.0 66.5	η/ poise 1.46 0.79 0.62 0.45 0.33 0.25 0.21 0.17	γ/ s ⁻¹	τ/ dyne cm ⁻²	η/ poise
γ/ s ⁻¹ 7.05 14.10 21.15 42.3 63.4 126.9 190.3 380.7 571	(7) $\tau/$ dyne cm ⁻² 10.3 11.2 13.2 19.2 20.8 31.4 40.0 66.5 90.0	η/ poise 1.46 0.79 0.62 0.45 0.33 0.25 0.21 0.17 0.16	γ/ s ⁻¹	τ/ dyne cm ⁻²	η/ poise

SLURRY: H $\% \text{ w/w TiO}_2 = 40.3$

	(1)			(2)	
Y/	τ/	n/	Y/	τ/	η/
s ⁻¹	dyne cm^{-2}	poise	s ⁻¹	dyne cm^{-2}	poise
2 722	432.0	159 0	2,722	439.9	161.6
5 444	461.0	84.7	5.444	475.1	87.3
8.167	512.6	62.8	8.167	527.9	64.6
16.33	669.8	41.0	16.33	699.2	42.8
24.5	775.4	31.6	24.5	800.1	32.7
49.0	906.8	18.5	49.0	935.0	19.1
73.5	984.2	13.4	73.5	1009	13.7
147	1090	7.4	147	1127	7.7
220.5	1154	5.2	220.5	1232	5.6
	(3)			(4)	1
				-1	- 1
Y/_1	τ/ -2	n/	Y/ -1	t/	η/
s -	dyne cm -	poise	5 -	dyne cm -	poise
2.722	410.6	150.8	2.722	359.0	131.9
5.444	443.4	81.4	5.444	410.6	75.4
8.167	490.4	60.0	8.167	461.0	56.4
16.33	620.6	38.0	16.33	598.3	36.6
24.5	744.9	30.4	24.5	668.7	27.3
49.0	879.8	18.0	49.0	778.9	15.9
73.5	953.7	13.0	/3.5	843.5	11.5
14/	1070	/.3	14/	940.8	0.4
220.5	1138	5.2	220.5	330.5	4.5
-	(5)	a lease of			
¥/	τ/	- n/	Y/	τ/	η/
s ⁻¹	dyne cm^{-2}	poise	s ⁻¹	dyne cm^{-2}	poise
- 700	225 2	0.0.7			191111
2.122	223.2	51 1			
8 167	335.5	41.1			
16.33	411.8	25.2			
24.5	448.1	18.3			
49.0	509.1	10.4			
73.5	550.2	7.5			
147	626.4	4.3			1.1.1
220.5	669.8	3.0			
				% MTPA	
5	Slurry	Bob	/Cup	w/w	
	1	SV	I ·	0.0250	
	2	SV	I	0.0278	
	3	SV	I	0.0339	
	4	SV	I	0.0420	
	5	SV	I	0.0594	

SLURRY: I % w/w $TiO_2 = 43.7$

	(1)			(2)	
~/	τ/	n/	v/	τ/	n/
s ⁻¹	dyne cm ⁻²	poise	s ⁻¹	dyne cm^{-2}	poise
	u)				
2.722	178.8	65.7	2.722	518.5	190.5
5.444	278.4	51.1	5.444	592.4	108.8
8.167	433.1	53.0	8.167	622.9	76.3
16.33	642.8	39.4	16.33	798.9	48.9
24.5	759.7	31.0	24.5	946.7	38.6
49.0	931.6	19.0	49.0	1092	22.3
73.5	1042	14.2	73.5	1185	16.1
147	1220	8.3	147	1396	9.5
220.5	1289	5.8	220.5	1502	6.8
	and the sead	The start			
1 P (8)	(3)			(4)	
~1	71	n/	~/	τ/	n/
Y/ 2-1	$d_{\rm max} = 2$	poise	s-1	dyne cm^{-2}	poise
5	dyne cm	porse		u)	P
2.722	485.7	178.4	2.722	410.6	150.8
5.444	543.1	99.8	5.444	463.4	85.1
8.167	611.2	74.8	8.167	518.5	63.5
16.33	752.0	46.1	16.33	655.8	40.2
24.5	854.0	34.9	24.5	712.1	29.1
49.0	977.2	19.9	49.0	807.1	16.5
73.5	1069	14.5	73.5	882.2	12.0
147	1255	8.5	147	1021	6.9
220.5	1337	6.1	220.5	1111	5.0
				9 MTDA	
5	Slurry	Bob	/Cup	w/w	in this
	1	SV	TT	0.0233	
	2	SV	T	0.0275	
	3	SV	T	0.0349	12
	4	SV	T	0.0429	
	5	SV	T	0.0516	
	6	MV	TT	0.0703	
	7	MV	T	0.0819	
		LIA	State of the state	0.0017	

and the state of the

		(5)		1 1 1 h	(6)	
	γ/	τ/	ŋ/	Y/	τ/	n/
	s ⁻¹	dyne cm^{-2}	poise	s ⁻¹	dyne cm ⁻²	poise
	2.722	207.6	72.3	2.722	152.5	56.0
	5.444	298.0	54.7	5.444	186.0	34.2
	8.167	350.8	43.0	8.167	200.5	24.6
	16.33	475.1	29.1	16.33	225.8	13.8
	24.5	513.8	21.0	24.5	241.8	9.87
	49.0	598.3	12.2	49.0	274.5	5.60
	73.5	649.9	8.8	73.5	294.6	4.01
	147	750.8	5.1	147	337.0	2.29
	220.5	808.3	3.7	220.5	359.7	1.63
_						
		(7)				
	Y/	τ/	n/	Y/	τ/	n/
	s ⁻¹	dyne cm^{-2}	poise	s ⁻¹	dyne cm ⁻²	poise
-	7.05	122.4	17.4			S. C. A.
	14.10	151.2	10.7			
	21.15	165.7	7.83			
	42.30	188.6	4.46			
	63.44	198.5	3.13			
	126.9	228.6	1.80			
	190.3	249.1	1.31			
	380.7	304.7	0.80			
	571.0	357.3	0.63			

SLURRY: I % w/w $TiO_2 = 43.7$

n/ poise 117.2 82.8 62.9 45.9 34.8 20.8 15.8
n ⁻² n/ poise 117.2 82.8 62.9 45.9 34.8 20.8 15.8
117.2 82.8 62.9 45.9 34.8 20.8 15.8
9.73 7.07
η/ ₁−2 poise
103.4 89.6 64.9 46.0 36.4 21.8 16.6 10.2 7.40
MIPA 7/w
0170 0191 0225 0286 0352 .0451 .0603
m 50287

SLURRY: J $\% \text{ w/w TiO}_2 = 48.7$

SLURRY: J % w/w $TiO_2 = 48.7$

if.

	(5)			(6)	
~/	τ/	n/	v/	τ/	n/
-1	dvine cm ⁻²	poise	s ⁻¹	$dvne cm^{-2}$	poise
3	dyne cm	poine			
2.722	317.9	116.8	2.722	281.5	103.4
5.444	498.6	91.6	5.444	363.7	66.8
8.167	552.5	67.7	8.167	401.2	49.1
16.33	735.5	45.0	16.33	552.5	33.8
24.5	821.2	33.5	24.5	615.9	25.1
49.0	961.9	19.6	49.0	719.1	14.7
73.5	1071	14.6	73.5	805.9	11.0
147 -	1302	8.86	147	974.8	6.63
220.5	1408	6.39	220.5	1082	4.91
22005	1100				
					and the second se
	(7)			(8)	
	(7)		~/	(8)	7/
γ/ ₋₁	(7) τ/	ŋ/	۲/ 2-1	(8) $\tau/$	n/ poise
γ/ s ⁻¹	(7) $\tau/$ dyne cm ⁻²	η/ poise	γ/ s ⁻¹	(8) $\tau/$ dyne cm ⁻²	η/ poise
$\frac{\frac{\gamma}{s^{-1}}}{7.05}$	(7) τ/ dyne cm ⁻² 211.7	n/ poise 30.0	γ/ s ⁻¹ 7.05	(8)	n/ poise 29.6
$\frac{\gamma/}{s^{-1}}$ 7.05	(7)	η/ poise 30.0 21.2	γ/ s ⁻¹ 7.05 14.10	(8) $\tau/$ dyne cm ⁻² 208.4 278.2	η/ poise 29.6 19.7
γ/ s ⁻¹ 7.05 14.10 21.15	(7) $\tau/$ dyne cm ⁻² 211.7 299.4 344.0	η/ poise 30.0 21.2 16.3	$\frac{\gamma/}{s^{-1}}$ 7.05 14.10 21.15	(8)	η/ poise 29.6 19.7 14.9
$\frac{\gamma/}{s^{-1}}$ 7.05 14.10 21.15 42.3	(7) $\tau/dyne cm^{-2}$ 211.7 299.4 344.0 423.4	η/ poise 30.0 21.2 16.3 10.0	γ/ s ⁻¹ 7.05 14.10 21.15 42.3	(8) $\tau/dyne cm^{-2}$ 208.4 278.2 314.9 363.9	η/ poise 29.6 19.7 14.9 8.60
$\frac{\frac{\gamma}{s^{-1}}}{7.05}$ 14.10 21.15 42.3 63.4	(7) $\tau/dyne cm^{-2}$ 211.7 299.4 344.0 423.4 473.0	n/ poise 30.0 21.2 16.3 10.0 7.46	$\frac{\gamma}{s^{-1}}$ 7.05 14.10 21.15 42.3 63.4	(8) $\tau/$ dyne cm ⁻² 208.4 278.2 314.9 363.9 400.3	n/ poise 29.6 19.7 14.9 8.60 6.31
γ/ s ⁻¹ 7.05 14.10 21.15 42.3 63.4 126.9	(7) $\tau/$ dyne cm ⁻² 211.7 299.4 344.0 423.4 473.0 562.4	n/ poise 30.0 21.2 16.3 10.0 7.46 4.43	γ/ s ⁻¹ 7.05 14.10 21.15 42.3 63.4 126.9	(8) $\tau/$ dyne cm ⁻² 208.4 278.2 314.9 363.9 400.3 496.2	n/ poise 29.6 19.7 14.9 8.60 6.31 3.91
$\frac{\frac{\gamma}{s^{-1}}}{7.05}$ 14.10 21.15 42.3 63.4 126.9 190.3	(7) $\tau/$ dyne cm ⁻² 211.7 299.4 344.0 423.4 473.0 562.4 625.2	η/ poise 30.0 21.2 16.3 10.0 7.46 4.43 3.29	$\frac{\gamma}{s^{-1}}$ 7.05 14.10 21.15 42.3 63.4 126.9 190.3	(8) $\tau/$ dyne cm ⁻² 208.4 278.2 314.9 363.9 400.3 496.2 549.1	n/ poise 29.6 19.7 14.9 8.60 6.31 3.91 2.89
$\frac{\gamma/}{s^{-1}}$ 7.05 14.10 21.15 42.3 63.4 126.9 190.3 380.7	(7) $\tau/dyne cm^{-2}$ 211.7 299.4 344.0 423.4 473.0 562.4 625.2 754.2	η/ poise 30.0 21.2 16.3 10.0 7.46 4.43 3.29 1.98	$\frac{\gamma/}{s^{-1}}$ 7.05 14.10 21.15 42.3 63.4 126.9 190.3 380.7	(8) $\tau/$ dyne cm ⁻² 208.4 278.2 314.9 363.9 400.3 496.2 549.1 674.8	η/ poise 29.6 19.7 14.9 8.60 6.31 3.91 2.89 1.77
Y/ s ⁻¹ 7.05 14.10 21.15 42.3 63.4 126.9 190.3 380.7 571.0	(7) $\tau/$ dyne cm ⁻² 211.7 299.4 344.0 423.4 473.0 562.4 625.2 754.2 846.8	<pre>n/ poise 30.0 21.2 16.3 10.0 7.46 4.43 3.29 1.98 1.48</pre>	γ/ s ⁻¹ 7.05 14.10 21.15 42.3 63.4 126.9 190.3 380.7 571.0	(8) $\tau/$ dyne cm ⁻² 208.4 278.2 314.9 363.9 400.3 496.2 549.1 674.8 774.1	<pre>n/ poise 29.6 19.7 14.9 8.60 6.31 3.91 2.89 1.77 1.36</pre>

SLURRY: K % w/w $\text{TiO}_2 = 46.0$

	(1)			(2)	
~1	τ/	n/	v/	τ/	n/
r/ r-1	dune cm ⁻²	poise	s-1	dyne cm ⁻²	poise
5	dyne cm	poise	0	u) ne em	poroc
2 7 2 2	108 3	72 9	2,722	217.0	79.7
5 1.1.1.	25/ 6	16.8	5 444	267.5	49.1
5.444	212 0	40.0	9 167	320 3	39.2
0.10/	512.0	27 2	16 22 .	475 1	20 1
10.33	444.0	20.9	24.5	570 1	23 3
24.5	510.5	20.0	24.5	702 7	1/ 3
49.0	031.1	12.9	49.0	702.7	10.0
/3.5	128.5	9.91	13.5	070 5	6 66
14/	869.3	5.91	147	979.5	6.00
220.5	956.1	4.34	220.5	1089	4.94
	(3)	A State		(4)	
Y1 .	τ/	n/	Y/.	τ/	n/
s ⁻¹	dyne cm^{-2}	poise	s ⁻¹	dyne cm ⁻²	poise
2 722	297 /	105 6	2 711	253 /	92 1
2.122	207.4	50.0	5 444	309 7	56 9
5.444	320.1	17.0	9 167	360 1	44 1
8.10/	383.0	47.0	16 22	472 9	29 0
16.33	525.5	32.2	10.33	4/2.0	29.0
24.5	588.9	24.0	24.5	524.4	12 7
49.0	705.0	14.4	49.0	020.0	12.7
73.5	/84.8	10.7	/3.5	700.3	9.53
147	937.3	6.38	14/	836.4	5.69
220.5	1031	4.68	220.5	917.4	4.10
	(5)				
	(5)		A Contractor		War in the second
Y/,	τ/	n/	γ/,	τ/2	n/
s ⁻¹	dyne cm ⁻²	poise	s ⁻¹	dyne cm ⁻²	poise
2 7 7 2 2	134.3	49.3			
5 444	234.7	43.1			
8 167	279 7	34.2			
16 33	353.0	21.6			
24 5	379.4	15.5			
49.0	435.2	8.88			
73 5	468 7	6.38			
147	535 7	3.64			
220 5	602 7	2.73			
220.5	002.7	2.15			
			1-	% MIPA	14
S	lurry	Bob	o/Cup	w/w	1.1.1.1
	1	CII	т	0.0136	
	2	SV	T	0.0173	
	2	SV	T	0.0251	
	5	SV	T	. 0. 0320	
	5	SV MTZ	TT	0.0/32	
	5	PIV	11	0.0430	

SLURRY: L % w/w $TiO_2 = 50.1$

	(1)			(2)	
×/	τ/	n/	Y/	τ/	n/
s-1	dyne cm^{-2}	poise	s ⁻¹	dyne cm^{-2}	poise
2.722	469.2	172.4	2.722	330.8	121.5
5.444	532.6	97.8	5.444	405.9	74.6
8.167	626.4	76.7	8.167	517.3	63.3
16.33	832.9	51.0	16.33	726.1	44.5
24.5	937.3	38.3	24.5	824-7	33.7
49.0	1112	22.7	49.0	1010	20.6
73.5	1243	16.9	73.5	1161	15.8
147	1455	9.90	147	1384	9.41
220.5	1631	7.40	220.5	1537	6.97
	(2)			(4)	
	(3)		,	(4)	,
Υ/	τ/ _2	n/	Y/	τ/	n/
s ⁻¹	dyne cm -	poise	s -	ayne cm -	poise
2.722	288.6	106.0	2.722	215.9	79.3
5.444	382.4	70.2	5.444	340.2	62.5
8.167	481.0	58.9	8.167	400.0	49.0
16.33	632.3	38.7	16.33	482.1	29.5
24.5	713.2	29.1	34.5	545.5	22.3
49.0	864.6	17.6	.49.0	685.1	14.0
73.5	996.0	13.6	73.5	783.6	10.7
147	1255	8.54	147	981.9	6.68
220.5	1373	6.23	220.5	1105	. 5.01
	(5)			(6)	
	(3)			(0)	
γ/,	τ/	η/	Y/,	τ/ _2	n/
s ⁻¹	dyne cm ⁻²	poise	s ⁻¹	dyne cm ²	poise
7.05	172.7	24.5	7.05	125.7	17.8
14.10	263.10	18.7	14.10	175.0	12.4
21.15	324.2	15.3	21.15	205.8	9.73
42.3	443.3	10.5	42.3	271.6	6.42
63.4	529.3	8.34	63.4	308.0	4.85
126.9	694.7	5.47	126.9	380.4	3.00
190.3	803.8	4.22	190.3	449.9	2.36
380.7	1009	2.65	380.7	595.4	1.56
571.0	1174	2.06	571.0	737.7	1.29
				Ø 1/171	
5	Slurry	Bob	/Cup	% MIPA w/w	
	1	SV	I	0.0192	
	2	SV 1		0.0215	
	3	SV	L	0.0240	
	4	SV 1	L	0.0280	
	5	MV	L	0.0338	
	6	MV .	L	0.0379	

SLURRY: M % w/w $TiO_2 = 48.8$

	(1)			(2)	
¥/	τ/	n/	Y/.	τ/	n/
s ⁻¹	dyne cm^{-2}	poise	s ⁻¹	dyne cm^{-2}	poise
2 722	340 6	128 /	2.722	335.5	123.3
2.122	408.2	75.0	5.444	398.9	73.3
8 167	522.0	63.9	8.167	519.7	63.6
16 33	692.1	42.4	16.33	681.6	41.7
24.5	774.2	31.6	24.5	761.3	31.1
49.0	945.5	19.3	49.0	915.0	18.7
73.5	1075	14.6	73.5	1043	14.2
147	1279	8.70	147	1267	. 8.62
220.5	1408	6.38	220.5	1408	6.38
220.5	1400				
	(3)			(4)	
	-1	-1	~1	7/	n/
Y/ 2-1	duna am-2	nico	r/ -1	dyne cm ⁻²	poise
5	dyne cm	poise			porbe
2.722	282.7	103.9	2.722	214.7	78.9
5.444	320.3	58.8	5.444	337.9	62.1
8.167	403.5	49.4	8.167	412.9	50.6
16.33	552.5	33.8	16.33	510.3	31.2
24.5	638.2	26.0	24.5	571.3	23.3
49.0	788.3	16.1	49.0	710.9	14.5
73.5	. 912.7	12.4	73.5	808.3	11.0
147	1124	7.65	147	997.1	6.78
220.5	1279	5.80	220.5	1116	5.06
				W 11771	
S	lurry	Bob/	Cup	% MIPA	
and the second		S. S. S.			all and all
	1	SV 1		0.0178	
	2	SV I		0.0199	
	3	SV 1	L	0.0222	
	4	. SV 1		0.0246	
	5	SV 1		0.0272	
	6	MV 1	I	0.0307	
	7	MV	II	0.0344	
	8	MV 1		0.0404	
				a state of the second se	

SLURRY: M % w/w $TiO_2 = 48.8$

	(5)	the starts		(6)	
$\frac{\gamma}{s^{-1}}$	$\tau/dyne cm^{-2}$	η/ poise	γ/ s ⁻¹	$\tau/dyne cm^{-2}$	η/ poise
2.722 5.444 8.167 16.33 24.5 49.0 73.5 147 220.5	188.9 308.5 364.8 443.4 492.7 618.2 707.4 879.8 988.9	69.4 56.7 44.7 27.2 20.1 12.6 9.62 5.99 4.48	2.722 5.444 8.167 16.33 24.5 49.0 73.5 147 220.5	171.9 231.0 280.9 346.3 394.3 450.1 513.4 606.4 673.3	63.2 42.4 34.4 21.2 16.1 9.19 6.99 4.13 3.05
	(7)			(8)	
γ/ s ⁻¹	(7) $\tau/dyne cm^{-2}$	η/ poise	γ/ s ⁻¹	(8)	ŋ/ poise
γ/ s ⁻¹ 2.722 5.444 8.167 16.33 24.5 49.0 73.5 147 220.5	(7) $\tau/dyne cm^{-2}$ 151.8 187.9 213.5 266.0 298.0 363.4 394.3 483.6 554.3	η/ poise 55.8 34.5 26.1 16.3 12.2 7.42 5.36 3.29 2.51	γ/ s ⁻¹ 7.05 14.10 21.15 42.3 63.4 126.9 190.3 380.7 571	(8) $\tau/dyne^{-cm^{-2}}$ 100.9 139.9 165.1 215.4 255.0 324.8 370.5 492.9 598.7	<pre>n/ poise 14.3 9.92 7.81 5.09 4.02 2.56 1.95 1.29 1.05</pre>

	SLURRY:	N	%	w/w	TiO2	=	50	
--	---------	---	---	-----	------	---	----	--

	(1)			(2)	
Y/,	τ/	n/	Y/,	τ/2	ŋ/
s ⁻¹	dyne cm ⁻²	poise	s ⁻¹	dyne cm ⁻²	poise
2.722	465.7	171.1	2.722	455.2	167.2
5.444	532.6	97.8	5.444	524.4	96.3
8.167	668.7	81.9	8.167	647.6	79.3
16.33	890.4	54.5	16.33	861.1	52.7
24.5	987.8	40.3	24.5	971.3	39.6
49.0	1152	23.5	49.0	1140	23.3
73.5	1279	17.4	73.5.	-1279	17.4
147	1537	10.5	147	1525	10.4
220.5	1666	7.56	220.5	1724	7.82
	(0)			(1)	
	(3)			(4)	
Y/	τ/	n/	Y/.	τ/	n/
s ⁻¹	dyne cm ⁻²	poise	s ⁻¹	dyne cm ⁻²	poise
2.722	398.9	146.5	2.722	275.7	101.3
5.444	466.9	85.8	5.444	384.8	70.7
8.167	601.8	73.7	8.167	483.3	59.2
16.33	786.0	48.1	16.33	608.8	37.3
24.5	876.3	35.8	24.5	672.2	27.4
49.0	1046	21.3	49.0	821.2	16.8
73.5	1220	16.6	73.5	942.0	12.8
147	1478	10.1	147	1185	8.06
220.5	1631	7.40	220.5	1326	6.01
				9 MTPA	*
S	lurry	Bob	/Cup	w/w	
1. M	1	SV :	I	0.0186	
	2	SV 1	L	0.0208	
	3	SV :	I	0.0232	
	4	SV I	I	0.0264	
	5	SV :	I	0.0312	
	6	MV 1	II	0.0357	
	7	MV	I	0.0415	

-

SLURRY: N	%	W/W	Ti02	=	50.7
-----------	---	-----	------	---	------

the second s	the second particular and the second particular particular second				
	(5)			(6)	
×1	τ/	n/	v/	τ/	n/
s-1	dyne cm ⁻²	poise	s ⁻¹	dyne cm^{-2}	poise
	uyne em	porte			
2.722	193.6	71.1	2.722	194.9	71.6
5.444	316.7	58.2	5.444	234.0	43.0
8.167	363.7	44.5	8.167	260.4 -	31.9
16.33	436.4	26.7	16.33	326.6	20.0
24.5	482.1	19.7	24.5	365.3	14.9
49.0	611.2	12.5	49.0	435.2	8.88
73.5	701.5	9.54	73.5	491.0	6.68
147	870.4	5.92	147	595.2	4.05
220.5	985.4	4.47	220.5	684.5	3.10
220.5	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			Sec. Sec.	
	(7)			and the second	
~/	71	m/	×1	τ/	n/
-1	6/	11/			
-	duna am ⁻²	noise	g-1	dyne cm ⁻²	noise
3	dyne cm ⁻²	poise	s ⁻¹	dyne cm ⁻²	poise
7.05	dyne cm ⁻² 114.1	poise 16.2	s ⁻¹	dyne cm ⁻²	poise
7.05	dyne cm ⁻² 114.1 155.5	poise 16.2 11.0	s ⁻¹	dyne cm ⁻²	poise
7.05 14.10 21.15	dyne cm ⁻² 114.1 155.5 180.3	poise 16.2 11.0 8.52	s ⁻¹	dyne cm ⁻²	poise
7.05 14.10 21.15 42.3	dyne cm ⁻² 114.1 155.5 180.3 231.6	poise 16.2 11.0 8.52 5.48	s ⁻¹	dyne cm ⁻²	poise
7.05 14.10 21.15 42.3 63.4	dyne cm ⁻² 114.1 155.5 180.3 231.6 270.3	poise 16.2 11.0 8.52 5.48 4.26	s ⁻¹	dyne cm ⁻²	poise
7.05 14.10 21.15 42.3 63.4 126.9	dyne cm ⁻² 114.1 155.5 180.3 231.6 270.3 347.3	poise 16.2 11.0 8.52 5.48 4.26 2.74	s ⁻¹	dyne cm ⁻²	poise
7.05 14.10 21.15 42.3 63.4 126.9 190.3	dyne cm ⁻² 114.1 155.5 180.3 231.6 270.3 347.3 403.6	poise 16.2 11.0 8.52 5.48 4.26 2.74 2.12	s ⁻¹	dyne cm ⁻²	poise
7.05 14.10 21.15 42.3 63.4 126.9 190.3 380.7	dyne cm ⁻² 114.1 155.5 180.3 231.6 270.3 347.3 403.6 532.6	poise 16.2 11.0 8.52 5.48 4.26 2.74 2.12 1.40	s ⁻¹	dyne cm ⁻²	poise
7.05 14.10 21.15 42.3 63.4 126.9 190.3 380.7 571	dyne cm ⁻² 114.1 155.5 180.3 231.6 270.3 347.3 403.6 532.6 635.1	poise 16.2 11.0 8.52 5.48 4.26 2.74 2.12 1.40 1.11	s ⁻¹	dyne cm ⁻²	poise

	.9	47	=	TiO2	w/w	%	0	LURRY:
--	----	----	---	------	-----	---	---	--------

1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	(1)			(2)	
Y/,	τ/ _2	n/	Y/_1	τ/ -2	n/
s	dyne cm ⁻²	poise	S 1	dyne cm 2	poise
2.722	451.6	165.9	2.722	462.2	169.8
5.444	519.7	95.5	5.444	524.4	96.3
8.167	611.2	74.8	8.167	610.0	74.7
16.33	809.4	49.6	16.33	829.4	50.8
24.5	905.5	37.0	24.5	916.2	37.4
49.0	1068	21.8	49.0	1071	21.9
73.5	1197	16.3	73.5	1197	16.3
147	1419	9.65	147	1419	9.65
220.5	1560	7.07	220.5	1560	7.07
	(3)			(4)	
~1	7/	7/	×1	τ/	n/
s ⁷ 1	dyne cm ⁻²	poise	s ⁻¹	dyne cm ⁻²	poise
2 722	414 1	150 1 0 700		310.9	114 2
2.122	414.1	96 /	5 444	375 /	69 0
9 167	4/0.4	80.4 J.444		469 2	57 5
16 33	730 1	69.5 8.10/		595.9	36.5
24 5	820 0	33.5	45.3 10.33		27.2
49 0	969.0	19.8	33.5 24.5		16.3
73.5	1092	14.9	14 9 73.5		12.4
147	1314	8.94	8 9/ 1/7		7.50
220.5	1431	6.49	220.5	1232	5.59
				% MTPA	The second
Slurry		Bob/Cup		w/w	
1		SV I		0.0179	
2		SV I		0.0201	
3		SV I		0.0230	
4		SV I		0.0273	
5		SV	I	0.0318	
6		SV 1		0.0360	
7		MV	II	0.0405	
	8	MV		0.0488	

SLURRY: 0	%	w/w	TiO2	= 47.9
-----------	---	-----	------	--------

	(5)			(6)	100
$\frac{\gamma}{s^{-1}}$	$\tau/dyne cm^{-2}$	η/ poise	γ/ s ⁻¹	$\tau/dyne cm^{-2}$	η/ poise
2.722 5.444 8.167 16.33 24.5 49.0 73.5 147 220.5	214.7 310.9 371.9 448.1 502.1 619.4 703.9 861.1 960.8	78.9 57.1 45.5 27.4 20.5 12.6 9.58 5.86 4.36	2.722 5.444 8.167 16.33 24.5 49.0 73.5 147 220.5	186.5 275.7 316.7 376.6 418.8 515.0 584.2 725.0 807.1	68.5 50.6 38.8 23.1 17.1 10.5 7.95 4.93 3.66
	(7)	Statistical Statistical	ta a series	(8)	
γ/ s ⁻¹	$\tau/dyne cm^{-2}$	η/ poise	γ/ s ⁻¹	$\tau/dyne cm^{-2}$	η/ poise
2.722 5.444 8.167 16.33 24.5 49.0 73.5 147 220.5	206.8 267.5 301.7 364.9 405.5 450.1 502.2 598.9 673.3	76.0 49.1 36.9 22.3 16.6 9.19 6.83 4.07 3.05	7.05 14.10 21.15 42.3 63.4 126.9 190.3 380.7 571	112.5 151.2 173.7 219.0 248.8 317.6 360.6 463.1 552.4	16.0 10.7 8.21 5.18 3.92 2.50 1.89 1.22 0.97

SLURRY: P $\% w/w TiO_2 = 51.3$

C. WEEK	(1)		1	(2)	
γ/ s ⁻¹	$\tau/dyne cm^{-2}$	η/ poise	γ/ s ⁻¹	$\tau/dyne cm^{-2}$	η/ poise
2.722 5.444 8.167 16.33 24.5 49.0 73.5 147 220.5	512.6 578.3 695.6 974.8 1092 1267 1384 1631 1771	188.3 106.2 85.2 59.7 44.6 25.9 18.8 11.1 8.03	2.722 5.444 8.167 16.33 24.5 49.0 73.5 147 220.5	281.9 433.1 615.3 1103 1378 1763 1990 2379 2589	103.6 79.6 75.3 67.5 56.2 36.0 27.1 16.2 11.7
γ/ s ⁻¹	(3)	η/ poise	γ/ s ⁻¹	(4) $\tau/$ dyne cm ⁻²	η/ poise
2.722 5.444 8.167 16.33 24.5 49.0 73.5 147 220.5	371.3 471.0 618.8 1100 1609 2028 2310 2781 3080	136.4 86.5 75.8 67.4 65.7 41.4 31.4 18.9 14.0	2.722 5.444 8.167 16.33 24.5 49.0 73.5 147 220.5	804.7 888.0 961.9 1279 1419 1631 1748 2006 2205	295.6 163.1 117.8 78.3 57.9 33.3 23.8 13.6 10.0
Slurry	7	Bob/Cup	% MIPA w/w	% 14	KNO ₃ /w
1 2 3 4		SV I SV II SV II SV I	0.0181 0.0214 0.0249 0.0348	0. 0. 0.	_ 0144 0296 0296
SLURRY: Q % w/w $TiO_2 = 50.2$

	(1)			(2)	
~1	T /	n/	v/	τ/	n/
g-1	dyne cm ⁻²	poise	s ⁻¹	dvne cm^{-2}	poise
		point			
2.722	621.7	228.4	2.722	619.4	227.6
5.444	719.1	132.1	5.444	702.7	129.1
8,167	795.4	97.4	8.167	780.1	95.5
16.33	1077	66.0	16.33	1089	66.7
24.5	1255	51.2	24.5	1208	49.3
49.0	1443	29.4	49.0	1431	29.2
73 5	1631	22.2	73.5	1619	22.0
147	1947	13.2	147	1959	13.3
220 5	2123	9.63	220.5	2159	9.79
220.5	2125	5.05	22005	2137	
	(3)			(4)	
v/	τ/	n/	×/	τ/	n/
s-1	dyne cm ⁻²	noise	s-1	dyne cm^{-2}	poise
		point			
2.722	451.6	165.9	2.722	310.9	114.2
5.444	523.2	96.1	5.444	405.9	74.6
8.167	641.7	78.6	8.167	522.0	63.9
16.33	866.9	53.1	16.33	667.5	40.9
24.5	973.7	39.7	24.5	741.4	30.3
49.0	1172	23.9	49.0	912.7	18.6
73.5	1337	18.2	73.5	1051	14.3
147	1642	11.2	147	1314	8.94
220.5	220.5 1818		220.5	1466	6.65
	(5)			(6)	
Y/	τ/	n/	Y/.	τ/	η/
s ⁻¹	dyne cm^{-2}	poise	s ⁻¹	dyne cm^{-2}	poise
7.05	246-4	35.0	7.05	149.2	21.2
14.10	340.7	24.2	14.10	225.9	16.0
21.15	403.6	19.1	21.15	282.2	13.3
42.3	565.7	13.4	42.3	380.4	8.99
63.4	661.6	10.4	63.4	463.1	7.30
126.9	870.0	6.86	126.9	631.8	4.98
190.3	995.7	5.23	190.3	727.8	3.82
380.7	1244	3.27	380.7	959.3	2.52
571.0	1396	2.44	571	1135	1.99
5/1.0	1370		511		
		D - 1	10	% MIPA	
5	Slurry	Bo b/	Cup	w/w	
	1	SV 1	[0.0156	
	2	SV 1	1	0.0181	
	3	SV I	Ľ	0.0215	
	4	SV I		0.0251	
	5	. MV I	C .	0.0306	
	6	MV I		0.0350	
	and the second se				

SLURRY: R	% w/w TiO ₂	= 44.7	
	(1)		

	(1)			(2)	
$\frac{\gamma}{s^{-1}}$	$\tau/dyne cm^{-2}$	η/ poise	$\frac{\gamma}{s^{-1}}$	$\tau/dyne cm^{-2}$	η/ poise
2.722 5.444 8.167 16.33 24.5 49.0 73.5 147 220.5	330.8 388.3 458.7 607.7 739.1 925.6 1046 1255 1384	121.5 71.3 56.2 37.2 30.2 18.9 14.2 8.54 6.28	7.05 14.10 21.15 42.3 63.4 126.9 190.3 380.7 571	132.3 216.0 257.0 327.2 360.6 456.5 516.0 635.1 721.1	18.8 15.3 12.2 7.74 5.68 3.60 2.71 1.67 1.26
γ/ s ⁻¹	(3) $\tau/$ dyne cm ⁻²	η/ poise	γ/ s ⁻¹	τ/ dyne cm ⁻²	η/ poise
2.722 5.444 8.167 16.33 24.5 49.0 73.5 147 220.5	502.1 572.5 635.8 796.5 890.4 1036 1153 1314 1431	184.5 105.2 77.8 48.8 36.3 21.1 15.7 8.94 6.49			
Sluri	cy	Bob/Cup	% MIF w/w	PA %	KNO3 w/w
1 2 3		SV I MV I SV I	0 0.014 0.014	0 44 0 44 0	.0201

			200		
	(1)			(2)	
Y/	τ/	η/	Y/.	τ/	ŋ/
s ⁻¹	dyne cm^{-2}	poise	s ⁻¹	dyne cm^{-2}	poise
				221.2	7/ 1
2.722	493.9	181.4	2.722	201.8	/4.1
5.444	591.2	108.6	5.44	281.5	51.7
8.167	695.6	85.2	8.167	341.4	41.8
16.33	904.5	55.4	16.33	435.2	26.7
24.5	1041	42.5	24.5	508.0	20.7
49.0	1267 .	25.9	49.0	658.1	13.4
73.5	1408	19.2	73.5	749.6	10.2
147	1666	11.3	147	903.3	6.14
220.5	1865	8.46	220.5	998.3	4.53
	(3)			St. instruction	
×/	τ/	n/	Y/	τ/	n/
s ⁻¹	dvne cm^{-2}	poise	s-1	dyne cm^{-2}	poise
2.722	462.2	169.8			
5.444	545.5	100.2			
8.167	630.0	77.1			
16.33	808.3	49.5			
24.5	904.5	36.9			
49.0	1083	22.1			
73.5	1197	16.3			
147	1431	9.73			
220.5	1595	7.23			
			% MIPA	. %	KNO ₂
Slurr	у	Bob/Cup	w/w		w/w
	de la segura de la seconda de				
1		SV I	0	0	
2		SV I	0.0146	0	
3		SV I	0.0146	0	.0171

SLURRY: S % w/w $TiO_2 = 45.9$

SLURRY	:	Т	%	w/w	TiO2	=	44.5

-	(1)			(2)	-
γ/ s ⁻¹	$\tau/ \eta/dyne cm^{-2} poise$		$\frac{\gamma}{s-1}$	$\tau/dyne cm^{-2}$	η/ poise
2.722 5.444 8.167 16.33 24.5 49.0 73.5 147 220.5	187.7 260.4 316.7 434.0 505.6 -653.4 741.4 885.7 976.0	69.0 47.8 38.8 26.6 20.6 13.3 10.1 6.03 4.43	7.05 14.10 21.15 42.3 63.4 126.9 190.3 380.7 571	82.7 123.1 154.5 209.4 251.4 324.2 367.2 483.0 565.7	11.7 8.73 7.30 4.95 3.96 2.55 1.93 1.27 0.99
γ/ s ⁻¹	(3) τ/ dyne cm ⁻²	η/ poise	γ/ s ⁻¹	τ/ dyne cm ⁻²	ŋ/ poise
2.722 5.444 8.167 16.33 24.5 49.0 73.5 147 220.5	125.5 185.3 224.1 301.5 355.4 468.1 527.9 647.6 717.9	46.1 34.0 27.4 18.5 14.5 9.55 7.18 4.41 3.26			
Slurr	у	Bob/Cup	% MIPA w/w	. % F	KNO3 v/w
1 2 3		SV I MV I SV I	0 0.0132 0.0132	0 0	0208

				1	
	(1)	Section 2	Pan dia si di	(2)	
vl	τ/	n/	v/	τ/	n/
s ⁻¹	dvne cm^{-2}	poise	s-1	dyne cm^{-2}	poise
2.722	423.5	155.6	2.722	144.3	53.0
5.444	497.4	91.4	5.444	217.0	39.9
8.167	574.8	70.4	8.167	258.1	31.6
16.33	752.0	46.1	16.33	340.2	20.8
24.5	857.5	35.0	24.5	397.7	16.2
49.0	1055	21.5	49.0	503.3	10.3
73.5	1165	15.9	73.5	561.9	7.64
147	1326	9.02	147	672.2	4.57
220.5	1478	6.70	220.5	736.7	3.34
	214-216-51				
	(3)				
×/	τ/	n/	Y/	τ/	n/
s ⁻¹	dyne cm^{-2}	poise	s ⁻¹	dyne cm^{-2}	poise
2.722	339.0	124.5			
5.444	414.1	76.1	· · · · · · · · · · · · · · · · · · ·		
8.167	482.1	59.0			
16.33	632.3	38.7			
24.5	701.5	28.6			
49.0	855.2	17.5			1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
73.5	952.6	13.0			the second second
147	1140	7.76			
220.5	1279	5.80			
		P-1/0	% MIPA	%	KNO3
Sturry		bob/cup	w/w		w/w
1		SV I	0	0	
2		SV I	0.0142	0	0170
3		SV I	0.0142	0	.01/3

SLURRY: U % w/w $TiO_2 = 44.5$

			and the second second	and the second second	
	(1)			(2)	N. Const
×/	τ/ °	n/	×/	τ/	n/
s-1	dyne cm^{-2}	poise	s ⁻¹	dyne cm^{-2}	poise
2.722	230.3	84.6	2.722	301.5	110.8
5.444	240.6	44.2	5.444	334.3	61.4
8.167	275.0	33.7	8.167	368.4	45.1
16.33	388.4	23.8	16.33	448.1	27.4
24.5	649.7	26.5	24.5	538.5	22.0
49.0	993.5	20.3	49.0	747.3	15.3
73.5	1097	14.9	73.5	817.7	11.1
147	1265	8.61	147	926.7	6.30
220.5	1299	5.89	220.5	985.4	4.47
	(3)				- Kalar
×1	τ/	n/	v/	τ/	n/
s-1	dyne cm ⁻²	poise	s ⁻¹	dvne cm^{-2}	poise
2.722	328.5	120.7			
5.444	351.9	64.6			
8.167	383.6	47.0			
16.33	470.4	28.8			
24.5	577.2	23.6			
49.0	821.2	16.8			
73.5	915.0	12.4			
147	1043	7.10			
220.5	1093	4.96			
State - State			At an and a second second		
		- 1/2	% MIPA	%	KNO ₂
Slurr	у	BOD/Cup	w/w		w/w
1		SV II	0	0	
2		SV I	0.0171	0	
3		SV I	0.0171	0	.0199

SLURRY: V % w/w $TiO_2 = 36.7$

SLURRY: W % w/w $TiO_2 = 44.1$

				the second s		
-		(1)			(2)	
	v/	τ/	n/	v/	τ/	n/
	s-1	dvne cm^{-2}	poise	s ⁻¹	dyne cm^{-2}	poise
-						
	2.722	409.4	150.4	2.722	140.8	51.7
	5.444	- 477.5	87.7	5.444	208.8	38.4
	8.167	547.8	67.1	8.167	244.0	29.9
	16.33	733.2	44.9	16.33	317.9	19.5
	24.5	839.9	34.3	24.5 -	373.0	15.2
	49.0	1011 .	20.6	. 49.0	468.1	9.55
	73.5	1114	15.2	73.5	527.9	7.18
	147	1279	. 8.70	147	632.3	4.30
	220.5	1396	6.33	220.5	689.8	3.13
-		(3)	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1			
			- 1		-1	- 1
	Υ/	t/	η/	$\frac{\gamma}{2}$	dumo am-2	noi so
	s -	ayne cm -	poise	8 -	dyne cm	poise
	2.722	336.7	123.7			
	5.444	411.8	75.6			
	8.167	471.6	57.7			
	16.33	610.0	37.4			
	24.5	679.2	27.7			
	49.0	821.2	16.8			
	73.5	915.0	12.4			
	147	1093	7.44			
	220.5	1208	5.48			
		12 1 - 14 - 14	Rah / Com	% MIPA	%	KN03
	Slurry		BOD/Cup	w/w		w/w
-	1		SV I	0	C	
	2		SV I	0.0140	0	
	3		SV I	0.0140	C	.0160

				and the second	
	(1)			.(2)	
γ/ s ⁻¹	$\tau/dyne cm^{-2}$	η/ poise	γ/ s ⁻¹	$\tau/dyne cm^{-2}$	η/ poise
2.722 658.1 2		241.8	2.722	217.0	79.7
5.444	766.1	140.7	5.444	286.2	52.6
8.167	858.7	105.1	8.167	344.9	42.2
16.33	1102	67.5	16.33	456.3	27.9
24.5	1314	53.6	24.5	519.7	21.2
49.0	1654	33.8	49.0	644.0	13.1
73.5	1865	25.4	73.5	716.8	9.75
147	2194	14.9	147	843.5	5.74
220.5	2440	11.1	220.5	925.6	4.20
	(3)			(4)	1
×1	τ/	n/	×/	τ/	n/
s ⁻¹	s^{-1} dyne cm ⁻²		s ⁻¹	dyne cm ⁻²	poise
2.722	100.1	36.8	7.05	42.3	6.00
5.444	130.6	24.0	14.10	51.6	3.66
8.167	151.8	18.6	21.15	58.9	2.78
16.33	189.7	11.6	42.3	72.1	1.70
24.5	208.3	8.50	63.4	79.4	1.25
49.0	245.5	5.01	126.9	96.3	0.76
73.5	264.1	3.59	190.3	105.9	0.56
147	308.8	2.10	380.7	136.3	0.36
220.5	341.5	1.55	571	155.5	0.27
	Slurry	Bob	/Cup	% TiO ₂ w/w	
	1 .	SV	T	48.9	
	2	SV	C	42.7	
	3	MV	TT	37.6	
	4	MV	C	31.8	
NO DESCRIPTION 4 CONTRACTOR				51.0	

SLURRY: X % w/w TiO₂ = variable

SLURKI. I $\%$ w/w 1102 - valiable	SLURRY:	Y	%	w/w	TiO2	=	variable
------------------------------------	---------	---	---	-----	------	---	----------

100	(1)			(2)	
Y/	τ/	η/	Y/.	τ/	ŋ/
s ⁻¹	dyne cm ⁻²	poise	s ⁻¹	dyne cm ⁻²	poise
2.722	384.8	141.4	2.722	212.3	78.0
5.444	475.1	87.3	5.444	282.7	51.9
8.167	554.9	67.9	8.167	346.1	42.4
16.33	739.1	45.3	16.33	452.8	27.7
24.5	836.4	34.1	24.5	523.2	21.4
49.0	1034	21.1	49.0	656.9	13.4
73.5	1157	15.7	73.5	734.4	9.99
147	1373	9.34	147	858.7	5.84
220.5	1502	6.81	220.5	926.7	4.20
	(3)			(4)	in the second
~1	7/	n/	×/	τ/	n/
s ⁷⁷ 1	dyne cm ⁻²	poise	s ⁻¹	dyne cm ⁻²	poise
2.722	184.2	67.7	2.722	127.9	47.0
5.444	240.5	44.2	5.444	183.0	33.6
8.167	295.6	36.2	8.167	224.1	27.4
16.33	397.7	24.4	16.33	302.7	18.5
24.5	459.9	18.8	24.5	348.4	14.2
49.0	576.0	11.8	49.0	432.9	8.83
73.5	645.2	8.78	73.5	482.1	6.56
147	754.3	5.13	147	570.1	3.88
220.5	820.0	3.72	220.5	619.4	2.81
	(5)	a de la		(6)	
~1	71	71	v/	7/	n/
s ⁻¹	dyne cm ⁻²	poise	s ⁷ -1	dyne cm ⁻²	poise
2.722	138.0	50.7	7.05	73.1	10.4
5.444	186.4	342	14.10	100.2	7.11
8.167	218.0	26.7	21.15	117.1	5.54
16.33	271.6	16.6	42.30	147.5	3.49
24.5	305.0	12.4	63.4	166.4	2.62
49.0	364.6	7.44	126.9	201.5	1.59
73.5	390.6	5.31	190.3	225.3	1.18
147	446.4	3.04	380.7	283.5	0.74
220.5	491.0	2.23	571	321.2	0.56
	a 1		10	% TiO ₂	S. March
	Slurry	BOD	Cup	w/w ²	
	1	SV	I	46.7	
	2	SV 1		43.4	
	3	SV	L	42.3	
	4	SV 1	L	40.6	
	5	MV	11	39.1	
	6	MV		35.3	

		and the second		la se a se	and the second second
	(1)			(2)	
~1	-1	~1	~1	T /	n/
۲ <i>/</i>	dumo am-2	noi co	1/-1	dumo am ⁻²	paisa
5 -	dyne cm	poise	5	dyne cm	poise
2.722	432.9	159.0	2.722	153.7	56.5
5.444	532.6	97.8	5.444	231.1	42.5
8.167	654.5	80.2	8.167	263.9	32.3
16.33	859.9	52.7	16.33	366.0	22.4
24 5	950.2	38.8	24.5	443.4	18.1
49.0	1107	24 4	49.0	580.7	11.9
72 5	138/	18 8	73 5	660.5	8.99
1/.7	1504	11.2	147	810 6	5 51
147	1042	9 20	220 5	801 6	4 04
220.5	1807	0.20	220.5	091.0	4.04
	(3)			(4)	
×1	τ/	n/	×/	τ/	n/
s ⁻¹	dyne cm ⁻²	poise	s ⁻¹	dvne cm ⁻²	poise
	u)				
2.722	- 130.9	48.1	2.722	85.9	31.6
5.444	185.3	34.0	5.444	119.8	22.0
8.167	220.2	27.0	8.167	145.1	17.8
16.33	290.5	17.8	16.33	197.5	12.1
24.5	336.3	13.7	24.5	223.6	9.13
49.0	405.5	8.28	49.0	276.0	5.63
73.5	446.4	6.07	73.5	311.0	4.23
147	550.6	3.75	147	379.4	2.58
220.5	610.1	2.77	220.5	420.4	1.91
				46	
	(5)				
Y/	τ/	n/	Y/	τ/	n/
s ⁻¹	dyne cm^{-2}	poise	s ⁻¹	dyne cm^{-2}	poise
7.05	75.8	10.8			
14.10	111.5	7.91			
21.15	131.7	6.23			
42.3	191.9	4.54			
63.4	233.9	3.69			
126.9	301.7	2.38			
190.3	340.7	1.79			
380.7	423.4	1.11			
571	469.7	0.82			
Slurr	y Bo	b/Cup	% TiO ₂	% MI	PA
			w/w	w/w	
1	SV	/ I	53.7	0.01	91
2	SV	I	49.8	0.01	91
3	M	/ II	48.5	0.01	91
4	MV	/ II	47.3	0.01	91
5	M	Т	44.3	0.01	91

SLURRY: Z % w/w TiO₂ = variable

SLURRY:	AA	% w/	w TiO2	=	variabl	e

	(1)		1	(2)	
Y/,	τ/	η/	Y/,	τ/	n/
s ⁻¹	dyne cm ⁻²	poise	s ⁻¹	dyne cm ⁻²	poise
2.722	168.1	61.8	2.722	142.5	52.4
5.444	237.3	43.6	5.444	201.6	37.0
8.167	282.0	34.5	8.167	240.3	29.4
16.33	368.3	22.6	16.33	324.4	19.9
24.5	405.5	16.6	24.5	375.7	15.3
49.0	487.3	9.94	49.0	450.1	9.19
73.5	550.6	7.49	73.5	491.0	6.68
147	647.3	4.40	147	591.5	4.02
220.5	736.6	3.34	220.5	665.9	3.02
	(3)	19 4 A 24	A. State parts	(4)	14. 25
×1	τ/	n/	×/	τ/	n/
s ⁻¹	dyne cm^{-2}	poise	s ⁻¹	dyne cm^{-2}	poise
2.722	149.2	54.8	2.722	75.1	27.6
5.444	212.0	38.9	5.444	110.1	20.2
8.167	250.7	30.7	8.167	130.6	16.0
16.33	333.7	20.4	16.33	176.0	10.8
24.5	375.7	15.3	24.5	203.9	8.32
49.0	457.6	9.34	49.0	251.5	5.13
73.5	517.1	7.04	73.5	280.5	3.82
147	617.5	4.20	147	356.4	2.42
220.5	684.5	3.10	220.5	390.6	1.77
Slurr	,	Bob/Cup	% TiO ₂	%.	MIPA
			w/w	W	/w
1	I	MV II	50.6	0.	0198
2	1	NV II	49.8	0.	0198
3	1	MV II	49.1	0.	0198
4	1	NV II	46.9	0.	0198
5	I	MV I	45.2	0.	0198
6	1	NV I	44.4	0.	0198
/	12 S. 1 M. 1 M. 1	MV I	41.6	0.	0198

		ETAIWE 4			
No. of Street	(5)			(6)	
γ/ s ⁻¹	$\tau/dyne cm^{-2}$	η/ poise	γ/ s ⁻¹	$\tau/dyne cm^{-2}$	η/ poise
7.05 14.10 21.15 42.3 63.4 126.9 190.3 380.7 571	79.1 115.8 145.9 204.1 241.8 310.6 340.7 456.5 552.4	11.2 8.21 6.90 4.83 3.81 2.45 1.79 1.20 0.97	7.05 14.10 21.15 42.3 63.4 126.9 190.3 380.7 571	77.7 117.1 142.9 190.5 222.0 275.9 317.6 400.3 459.8	11.0 8.30 6.76 4.50 3.50 2.17 1.67 1.05 0.81
	(7)	The second			
γ/ s ⁻¹	$\tau/dyne cm^{-2}$	η/ poise	γ/ s ⁻¹	$\tau/dyne cm^{-2}$	η/ poise
7.05 14.10 21.15 42.3 63.4 126.9 190.3 380.7 571	2.32 3.31 4.63 8.93 10.25 19.5 25.1 58.9	0.33 0.23 0.22 0.21 0.16 0.15 0.13 0.15			

SLURRY: AA % w/w TiO_2 = variable

			101 - 83 P.M.	C	a land a bar
	(1)			(2)	
γ/ s ⁻¹	$\tau/dyne cm^{-2}$	η/ poise	$\frac{\gamma}{s^{-1}}$	$\tau/dyne cm^{-2}$	η/ poise
2.722 5.444 8.167 16.33 24.5 49.0 73.5 147 220.5	225.2 369.5 442.3 559.6 656.9 857.5 984.2 1208 1314	82.7 67.9 54.2 34.3 26.8 17.5 13.4 8.22 5.96	2.722 5.444 8.167 16.33 24.5 49.0 73.5 147 220.5	191.2 303.8 353.1 455.2 549.0 716.8 822.3 1019 1117	70.2 55.8 43.2 27.9 22.4 14.6 11.2 6.93 5.07
γ/ s ⁻¹	(3) $\tau/$ dyne cm ⁻²	ŋ/ poise	γ/ s ⁻¹	(4) $\tau/$ dyne cm ⁻²	η/ poise
2.722 5.444 8.167 16.33 24.5 49.0 73.5 147 220.5	152.5 215.9 261.6 375.4 457.5 597.1 680.4 832.9 938.5	56.0 39.7 32.0 23.0 18.7 12.2 9.26 5.67 4.26	2.722 5.444 8.167 16.33 24.5 49.0 73.5 147 220.5	117.2 169.6 205.3 282.0 324.8 405.5 457.6 569.2 654.7	43.1 31.2 25.1 17.3 13.3 8.28 6.23 3.87 2.97
Slurr	у	Bob/Cup	% TiO w/w	2 %	MIPA w/w
1 2 3 4 5 6 7		SV I SV I SV I MV II MV II MV I MV I	54.0 52.7 51.8 49.8 48.6 47.6 45.9	0 0 0 0 0 0 0	.0232 .0232 .0232 .0232 .0232 .0232 .0232 .0232

SLURRY: BB % w/w TiO₂ = variable

		A CONTRACTOR			
	(5)			(6)	
$\frac{\gamma}{s^{-1}}$	$\tau/dyne cm^{-2}$	η/ poise	γ/ s ⁻¹	$\tau/dyne cm^{-2}$	η/ poise
2.722 5.444 8.167 16.33 24.5 49.0 73.5 147 220.5	74.8 111.6 133.9 180.0 218.4 274.9 306.5 401.8 472.4	27.5 20.5 16.4 11.0 8.91 5.61 4.17 2.73 2.14	7.05 14.10 21.15 42.3 63.4 126.9 190.3 380.7 571	95.6 142.9 179.3 245.8 285.1 357.3 416.8 529.3 628.5	13.6 10.1 8.48 5.81 4.49 2.82 2.19 1.39 1.10
γ/ s ⁻¹	(7) τ/ dyne cm ⁻²	η/ poise	γ/ s ⁻¹	τ/ dyne cm ⁻²	η/ poise
7.05 14.10 21.15 42.3 63.4 126.9 190.3 380.7 571	79.7 119.1 142.2 195.2 234.9 299.0 337.4 433.3 519.4	11.3 8.45 6.72 4.61 3.70 2.36 1.77 1.14 0.91			

SLURRY: BB % w/w TiO₂ = variable

SLURRY: CC % w/w TiO₂ = 50.4

	(1)			(2)	
	(1)			(2)	~1
γ/ s ⁻¹	$dvne cm^{-2}$	η/ poise	s ⁻¹	dyne cm ⁻²	poise
		Poloc			
2.722	144.3	53.0	2.722	181.8	66.8
5.444	210.0	38.6	5.444	292.1	53.7
8.167	244.0	29.9	8.167	350.8	43.0
16.33	341.4	20.9	16.33	444.6	27.2
24.5	410.6	16.8	24.5	529.1	21.6
49.0	526.7	10.7	49.0	702.7	14.3
73.5	598.3	8.14	73.5	801.2	10.9
147	726.1	4.94	147	974.8	6.63
220.5	811.8	3.68	220.5	1068	4.84
	(3)		Conference of the	(4)	
Seal and the seal	(5)			,	,
γ/	τ/ _2	η/	Υ <u>/</u> 1	τ/ -2	n/
s ⁻¹	dyne cm ⁻²	poise	S	dyne cm 2	poise
2.722	259.3	95.3	2.722	366.0	134.5
5.444	356.6	65.5	5.444	449.3	82.5
8.167	445.8	54.6	8.167	558.4	68.4
16.33	560.7	34.3	16.33	706.2	43.2
24.5	644.0	26.3	24.5	786.0	32.1
49.0	855.2	17.5	49.0	1011	20.6
73.5	985.4	13.4	73.5	1171	15.9
147	1197	8.14	147	1419	9.65
220.5	1314	5.96	220.5	1548	7.02
			% MTPA	%	KNO
Slurry	'	Bob/Cup	w/w		w/w
1		SV I	0.0198	0	
2		SV I	0.0198	0	.00170
3		SV I	0.0198	0	.00354
4		SV I	0.0198	0	.00553
5		SV I	0.0230	0	.00553
6		SV I	0.0230	0	.00791
7		SV I	0.0230	0	.0107

SLURRI: CC / W/W IIO 50	SLURRY:	= 50.4
-------------------------	---------	--------

	(5)			(6)	
$\frac{\gamma}{s^{-1}}$	τ/ dyne cm ⁻²	η/ poise	γ/ s ⁻¹	$\tau/dyne cm^{-2}$	η/ poise
2.722 5.444 8.167 16.33 24.5 49.0 73.5 147 220.5	259.3 371.9 452.8 571.3 645.2 847.0 976.0 1197 1314	95.3 68.3 55.4 35.0 26.3 17.3 13.3 8.14 5.96	2.722 5.444 8.167 16.33 24.5 49.0 73.5 147 220.5	362.5 449.3 543.1 705.0 782.5 999.5 1152 1408 1560	133.2 82.5 66.5 43.2 31.9 20.4 15.7 9.58 7.07
γ/ s ⁻¹	(7) $\tau/$ dyne cm ⁻²	ŋ/ poise	γ/ s ⁻¹	τ/ dyne cm ⁻²	η/ poise
2.722 5.444 8.167 16.33 24.5 49.0 73.5 147 220.5	422.3 511.5 604.1 793.0 877.5 1093 1279 1548 1736	155.1 94.0 74.0 48.6 35.8 22.3 17.4 10.5 7.87			

SLURRY: DD % w/w $TiO_2 = 51.0$

	(1)			(2)	
Y/_1	τ/ _2	n/	γ/ 2-1	$\tau/dump dm^{-2}$	n/ poise
s -	ayne cm -	poise	5	dyne cm	poise
2.722	354.3	130.2	2.722	385.9	141.8
5.444	449.3	82.5	5.444	475.1	87.3
8.167	556.0	68.1	8.167	576.0	70.5
16.33	714.4	43.7	16.33	754.3	46.2
24.5	801.2	32.7	24.5	836.4	34.1
49.0	1032	21.1	49.0	1077	22.0
73.5	1185	16.1	73.5	1197	16.3
147	1361	9.26	147	. 1443	9.82
220.5	1513	6.86	220.5	1631	7.40
	(3)			(4)	Sec. 1
		,	,	_/	. 1
Y/	τ/ _2	η/	Y/_1	τ/ -2	η/
s ⁻¹	dyne cm 2	poise	s *	dyne cm -	poise
2.722	289.8	106.5	2.722	194.9	71.6
5.444	383.6	70.5	5.444	258.2	47.4
8.167	472.8	57.9	8.167	309.5	37.9
16.33	605.3	37.1	16.33	409.2	25.1
24.5	688.6	28.1	24.5	468.7	19.1
49.0	916.2	18.7	49.0	598.9	12.2
73.5	1058	14.4	73.5	669.6	9.11
147	1232	8.38	147	814.7	5.54
220.5	1408	6.39	220.5	922.7	4.18
				% MIPA	
S	Slurry	Bob	/Cup	w/w	
	1	SV	I	0.0169	
	2	SV	I	0.0180	
	3	SV	I	0.0212	
	4	MV	II	0.0266	
	5	MV	II	0.0311	
	6	MV	I	0.0343	
	7	MV	I	0.0389	

SLURRY: DD % w/w $TiO_2 = 51.0$

	and the second sec				
	(5)			(6)	
γ/.	τ/	n/	Y/,	τ/	n/
s ⁻¹	dyne cm ⁻²	poise	s ⁻¹	dyne cm ⁻²	poise
2.722	70.3	25.8	7.05	110.8	15.7
5.444	99.0	18.2	14.10	153.8	10.9
8.167	119.0	14.6	21.15	191.9	9.07
16.33	158.5	9.71	42.3	258.4	6.11
24.5	180.8	7.38	63.4	299.7	4.72
49.0	228.0	4.65	126.9	370.5	2.92
73.5	267.1	3.63	190.3	453.2	2.38
147	372.0	2.53	380.7	602.1	1.58
220.5	439.0	1.99	571	737.7	1.29
			and the second		- and the second second
	(7)				
×/	(7) T/	n/	×/	τ/	n/
γ/ s ⁻¹	(7) $\tau/$ dyne cm ⁻²	η/ poise	$\frac{\gamma}{s^{-1}}$	$\tau/dyne cm^{-2}$	η/ poise
γ/ s ⁻¹	(7) τ/ dyne cm ⁻²	η/ poise	γ/ s ⁻¹	$\tau/dyne cm^{-2}$	η/ poise
$\frac{\frac{\gamma}{s^{-1}}}{7.05}$	(7) τ/ dyne cm ⁻² 6.29	n/ poise 0.89	γ/ s ⁻¹	τ/ dyne cm ⁻²	η/ poise
$\frac{\frac{\gamma}{s^{-1}}}{7.05}$	(7)	n/ poise 0.89 0.59	γ/ s ⁻¹	τ/ dyne cm ⁻²	ŋ/ poise
$\frac{\gamma/}{s^{-1}}$ 7.05 14.10 21.15	(7)	n/ poise 0.89 0.59 0.49	γ/ s ⁻¹	τ/ dyne cm ⁻²	ŋ/ poise
$\frac{\gamma/}{s^{-1}}$ 7.05 14.10 21.15 42.3	(7)	n/ poise 0.89 0.59 0.49 0.44	γ/ s ⁻¹	τ/ dyne cm ⁻²	η/ poise
$\frac{\frac{\gamma}{s^{-1}}}{7.05}$ 14.10 21.15 42.3 63.4	(7) $\tau/dyne cm^{-2}$ 6.29 8.27 10.3 18.5 27.1	n/ poise 0.89 0.59 0.49 0.44 0.43	γ/ s ⁻¹	τ/ dyne cm ⁻²	ŋ/ poise
$\frac{\frac{\gamma}{s^{-1}}}{7.05}$ 14.10 21.15 42.3 63.4 126.9	(7) $\tau/dyne cm^{-2}$ 6.29 8.27 10.3 18.5 27.1 43.7	n/ poise 0.89 0.59 0.49 0.44 0.43 0.34	γ/ s ⁻¹	τ/ dyne cm ⁻²	ŋ/ poise
$\frac{\frac{\gamma}{s^{-1}}}{7.05}$ 14.10 21.15 42.3 63.4 126.9 190.3	(7) $\tau/dyne cm^{-2}$ 6.29 8.27 10.3 18.5 27.1 43.7 57.2	n/ poise 0.89 0.59 0.49 0.44 0.43 0.34 0.30	γ/ s ⁻¹	τ/ dyne cm ⁻²	η/ poise
$\frac{\gamma/}{s^{-1}}$ 7.05 14.10 21.15 42.3 63.4 126.9 190.3 380.7	(7) $\tau/$ dyne cm ⁻² 6.29 8.27 10.3 18.5 27.1 43.7 57.2 105.9	η/ poise 0.89 0.59 0.49 0.44 0.43 0.34 0.30 0.28	γ/ s ⁻¹	τ/ dyne cm ⁻²	η/ poise
γ/ s ⁻¹ 7.05 14.10 21.15 42.3 63.4 126.9 190.3 380.7 571	(7) $\tau/dyne cm^{-2}$ 6.29 8.27 10.3 18.5 27.1 43.7 57.2 105.9 165.4	n/ poise 0.89 0.59 0.49 0.44 0.43 0.34 0.30 0.28 0.29	γ/ s ⁻¹	τ/ dyne cm ⁻²	η/ poise

SLURRY: EE % w/w TiO₂ = 50.9

Service 1	(1)			(2)	
γ/ s ⁻¹	$\tau/dyne cm^{-2}$	η/ poise	γ/ s ⁻¹	$\tau/dyne cm^{-2}$	η/ poise
2.722	315.6	115.9	2.722	271.0	99.6
5.444	416.5	76.5	5.444	364.8	67.0
8.167	511.5	62.6	8.167	450.5	55.2
16.33	669.8	41.0	16.33	579.5	35.5
24.5	752.0	30.7	24.5	669.8	27.3
49.0	985.4	20.1	49.0	893.9	18.2
73.5	1136	15.5	73.5	1041	14.2
147	1314	8.94	147	1267	8.62
220.5	1490	6.76	220.5	1408	6.39
	(3)			(4)	
v/	τ/	n/	v/	τ/	n/
s ⁻¹	dyne cm^{-2}	poise	s ⁻¹	dyne cm^{-2}	poise
2.722	201.8	74.1	2.722	153.7	56.5
5.444	287.4	52.8	5.444	234.6	43.1
8.167	357.8	43.8	8.167	282.7	34.6
16.33	459.9	28.2	16.33	370.7	22.7
24.5	544.3	22.2	24.5	450.5	18.4
49.0	749.6	15.3	49.0	610.0	12.4
73.5	871.6	11.9	73.5	701.5	9.54
147	1087	7.39	147	877.5	5.97
220.5	1197	5.43	220.5	988.9	4.48
Slurr	у	Bob/Cup	% MIPA w/w	. % W	KNO ₃ //w
1		SV I	0.0177	0	200 A.
2		SV I	0.0201	2.56	x10 ⁻⁴
3		SV I	0.0227	5.32	x10-4
4		SV I	0.0261	9.01	x10-4
5		MV II	0.0298	1.30	x10 ⁻³
6		MV II	0.0330	1.63	x10-3
7		MV I	0.0363	1.99	x10 ⁻³

SLURRY: EE $\% \text{ w/w TiO}_2 = 50.9$

15 HE 13	(5)			(6)	S. Mar
γ/ s ⁻¹	$\tau/dyne cm^{-2}$	η/ poise	γ/ s ⁻¹	$\tau/dyne cm^{-2}$	η/ poise
2.722 5.444 8.167 16.33 24.5 49.0 73.5 147 220.5	97.8 138.4 165.5 229.5 267.8 343.0 405.5 505.9 591.5	35.9 25.4 20.3 14.1 10.9 7.0 5.52 3.44 2.68	2.722 5.444 8.167 16.33 24.5 49.0 73.5 147 220.5	81.5 113.5 136.2 183.0 222.5 278.3 326.2 405.5 479.9	29.9 20.8 16.7 11.2 9.08 5.68 4.44 2.76 2.18
γ/ s ⁻¹	(7) $\tau/$ dyne cm ⁻²	η/ poise	γ/ s ⁻¹	$\tau/dyne cm^{-2}$	η/ poise
7.05 14.10 21.15 42.3 63.4 126.9 190.3 380.7 571	6.95 9.26 10.6 17.2 245.1 . 330.8 426.7 569.0 694.7	0.99 0.66 0.50 0.41 3.86 2.61 2.24 1.49 1.22			

SLURRY: FF $\% \text{ w/w TiO}_2 = 50.9$

.

	(1)			(2)	
v1	τ/	. n/	v/	τ/	n/
s-1	dyne cm ⁻²	noise	s ⁻¹	dyne cm ⁻²	poise
3	uyne cm	poise		djile em	porbe
2.722	187.7	69.0	2.722	235.8	86.6
5.444	305.0	56.0	5.444	344.9	63.4
8.167	367.2	45.0	8.167	423.5	51.9
16.33	469.2	28.7	16.33	534.9	32.8
24.5	560.7	22.9	24.5	612.4	25.0
49.0	730.8	14.9	49.0	816.5	16.7
73.5	831.7	11.3	73.5	929.1	12.6
147	1004	6.83	147	1127	7.67
220.5	1114	5.05	220.5	1232	5.59
22013					
1.5.1	(3)		Sec. Sec.	(4)	
×1	τ/	n/	×/	τ/	n/
s-1	dyne cm ⁻²	noise	s ⁻¹	dyne cm ⁻²	poise
3	uyne cm	poise	5	dyne em	porte
2.722	258.1	94.8	2.722	241.7	88.8
5.444	353.1	64.9	5.444	349.6	64.2
8.167	443.4	54.3	8.167	417.6	51.1
16.33	560.0	34.3	16.33	518.5	31.8
24.5	633.5	25.9	24.5	588.9	24.0
49.0	832.9	17.0	49.0	774.2	15.8
73.5	950.2	12.9	73.5	882.2	12.0
147	1147	7.80	147	1071	7.29
220.5	1279	5.80	220.5	1197	5.43
			% MIPA	%	KNO2
Sluri	ry	Bob/Cup	w/w		w/w
1		SV I	0.0184	0	
2		SV I	0.0209	0	.00335
3		SV I	0.0242	. 0	.00777
- 4		SV I	0.0284	0	.0134
5		SV I	0.0322	. 0	.0185
6		SV I	0.0404	. 0	.0295
7		MV II	0.0493	0	.0415
8	Participation of the	MV II	0.0603	0	.0563

SLURRY: FF % w/w TiO₂ = 50.9

and the second se					
	(5)			(6)	
~1	τ/	n/	v/	τ/	n/
1/-1	dune cm ⁻²	poise	s-1	dyne cm^{-2}	poise
5	dyne cm	poise		u)	1
2.722	235.8	86.6	2.722	208.8	76.7
5.444	335.5	61.6	5.444	298.0	54.7
8.167	398.9	48.8	8.167	348.4	42.7
16.33	490.4	30.0	16.33	422.3	25.9
24.5	560.7	22.9	24.5	479.8	19.6
49.0	735.5	15.0	49.0	620.6	12.7
73.5	834-1	11.3	73.5	699.2	9.51
147	1014	6.90	147	856.4	5.83
220 5	1126	5.11	220.5	954.9	4.33
220.5	1120	5.11	220.5		
					the second se
	(7)	2		(8)	
	(7)		~/	(8) T/	n/
γ/ 1	(7) $\tau/$	n/	γ/ 2 ⁻¹	(8) $\tau/$ $d_{\rm me} \ {\rm cm}^{-2}$	η/ poise
γ/ s ⁻¹	(7) $\tau/$ dyne cm ⁻²	ŋ/ poise	γ/ s ⁻¹	(8) τ/ dyne cm ⁻²	η/ .poise
γ/ s ⁻¹	(7) $\tau/dyne cm^{-2}$ 241.8	n/ poise 88.8	γ/ s ⁻¹ 2.722	(8)	η/ .poise 48.0
γ/ s ⁻¹ 2.722 5.444	(7) $\tau/dyne cm^{-2}$ 241.8 294.6	η/ poise 88.8 54.1	γ/ s ⁻¹ 2.722 5.444	(8)	η/ .poise 48.0 29.2
γ/ s ⁻¹ 2.722 5.444 8.167	(7) $\tau/dyne cm^{-2}$ 241.8 294.6 327.4	n/ poise 88.8 54.1 40.1	γ/ s ⁻¹ 2.722 5.444 8.167	(8) $\tau/$ dyne cm ⁻² 130.6 158.8 177.4	η/ .poise 48.0 29.2 21.7
γ/ s ⁻¹ 2.722 5.444 8.167 16.33	(7) $\tau/$ dyne cm ⁻² 241.8 294.6 327.4 409.2	n/ poise 88.8 54.1 40.1 25.1	$\frac{\gamma/}{s^{-1}}$ 2.722 5.444 8.167 16.33	(8) $\tau/$ dyne cm ⁻² 130.6 158.8 177.4 222.8	η/ .poise 48.0 29.2 21.7 13.6
γ/ s ⁻¹ 2.722 5.444 8.167 16.33 24.5	(7) $\tau/dyne cm^{-2}$ 241.8 294.6 327.4 409.2 461.3	n/ poise 88.8 54.1 40.1 25.1 18.8	γ/ s ⁻¹ 2.722 5.444 8.167 16.33 24.5	(8) $\tau/$ dyne cm ⁻² 130.6 158.8 177.4 222.8 249.6	η/ .poise 48.0 29.2 21.7 13.6 10.2
γ/ s ⁻¹ 2.722 5.444 8.167 16.33 24.5 49.0	(7) $\tau/dyne cm^{-2}$ 241.8 294.6 327.4 409.2 461.3 569.2	n/ poise 88.8 54.1 40.1 25.1 18.8 11.6	γ/ s ⁻¹ 2.722 5.444 8.167 16.33 24.5 49.0	(8) $\tau/$ dyne cm ⁻² 130.6 158.8 177.4 222.8 249.6 298.7	η/ .poise 48.0 29.2 21.7 13.6 10.2 6.10
γ/ s ⁻¹ 2.722 5.444 8.167 16.33 24.5 49.0 73.5	(7) $\tau/$ dyne cm ⁻² 241.8 294.6 327.4 409.2 461.3 569.2 636.1	η/ poise 88.8 54.1 40.1 25.1 18.8 11.6 8.65	γ/ s ⁻¹ 2.722 5.444 8.167 16.33 24.5 49.0 73.5	(8) $\tau/$ dyne cm ⁻² 130.6 158.8 177.4 222.8 249.6 298.7 337.8	η/ .poise 48.0 29.2 21.7 13.6 10.2 6.10 4.60
γ/ s ⁻¹ 2.722 5.444 8.167 16.33 24.5 49.0 73.5 147	(7) $\tau/$ dyne cm ⁻² 241.8 294.6 327.4 409.2 461.3 569.2 636.1 747.7	<pre>n/ poise 88.8 54.1 40.1 25.1 18.8 11.6 8.65 5.09</pre>	γ/ s ⁻¹ 2.722 5.444 8.167 16.33 24.5 49.0 73.5 147	(8) $\tau/$ dyne cm ⁻² 130.6 158.8 177.4 222.8 249.6 298.7 337.8 409.2	η/ .poise 48.0 29.2 21.7 13.6 10.2 6.10 4.60 2.78
γ/ s ⁻¹ 2.722 5.444 8.167 16.33 24.5 49.0 73.5 147 220.5	(7) $\tau/$ dyne cm ⁻² 241.8 294.6 327.4 409.2 461.3 569.2 636.1 747.7 833.3	n/ poise 88.8 54.1 40.1 25.1 18.8 11.6 8.65 5.09 3.78	γ/ s ⁻¹ 2.722 5.444 8.167 16.33 24.5 49.0 73.5 147 220.5	(8) $\tau/dyne cm^{-2}$ 130.6 158.8 177.4 222.8 249.6 298.7 337.8 409.2 465.0	η/ .poise 48.0 29.2 21.7 13.6 10.2 6.10 4.60 2.78 2.11

SLURRY: GG % w/w TiO₂ = 51.0

	(1)	in the		(2)	
γ/ s ⁻¹	$\tau/dyne cm^{-2}$	η/ poise	γ/ s ⁻¹	$\tau/dyne cm^{-2}$	η/ poise
2.722 5.444	210.0 315.6	77.1 58.0	2.722 5.444	251.0 353.1	92.2 64.9
16.33 24.5	493.9 577.2	30.2 23.6	16.33 24.5	550.2 633.5	33.7 25.9
49.0 73.5 147 220.5	856:4 1031	- 11.7 7.01 5.22	73.5 147 220.5	959.6 1148 1267	17.1 13.1 7.81 5.75
	(3)			(4)	
γ/ s ⁻¹	$\tau/dyne cm^{-2}$	η/ poise	Υ/ s ⁻¹	$\tau/dyne cm^{-2}$	η/ poise
2.722 5.444	224.1 322.6 391.8	82.3 59.3 48.0	2.722 5.444 8.167	202.9 301.5 368.4	74.5 55.4 45.1
16.33 24.5	493.9 571.3	30.2- 23.3.	16.33 24.5	450.5	27.6 21.7
49.0 73.5 147.	869.3 1068	13.5	73.5 147	796.5	10.8
220.5	1232	5.59	220.5	1082	4.91
Slurry		Bob/Cup	% MIPA w/w		w/w
1 2		SV I SV I	0.0183 0.0208	()).00140
3 4 5		SV I SV I SV I	0.0241 -0.0269 0.0315	()	0.00327 0.00487 0.00745
6 7 8		MV II MV II MV I	0.0355 0.0399 0.0454		0.00973 0.0122 0.0153

SLURRY: GG % w/w TiO₂ = 51.0

	have a second	and a strange of the			the second se
	(5)			(6)	
~1	T /	n/	v/	τ/	n/
r/ -1	dumo am-2	poico	-1	dyme cm ⁻²	poise
s -	dyne cm -	poise	3	dyne cm	poise
2.722	165.4	60.8	2.722	149.2	54.8
5.444	252.2	46.3	5.444	192.0	35.3
8,167	288.6	35.3 -	8.167	227.7	27.9
16.33	368.4	22.6	16.33	299.1	18.3
24 5	435.2	17.8	24.5	340.0	13.9
49 0	572.5	11.7	49.0	416.6	8.50
73 5	648 7	8.83	73.5	472.4	6.43
147	791 8	5.39	147	561.7	3.82
147	901 6	4.04	220 5	6/3.6	2.92
220.5	891.0	4.04	220.5	045.0	2.72
	(7)			(8)	
	(7)			(8)	
γ/,	(7) τ/	η/	۲/,	(8) τ/ 2	n/
γ/ s ⁻¹	(7) τ/ dyne cm ⁻²	η/ poise	γ/ s ⁻¹	(8) $\tau/dyne cm^{-2}$	η/ poise
$\frac{\frac{\gamma}{s^{-1}}}{2.722}$	(7) $\tau/dyne cm^{-2}$ 81.5	η/ poise 29.9	γ/ s ⁻¹ 7.05	(8) $\tau/dyne cm^{-2}$ 95.9	n/ poise 13.6
$\frac{\gamma/s^{-1}}{2.722}$	(7) $\tau/dyne \ cm^{-2}$ 81.5 109.0	η/ poise 29.9 20.0	γ/ s ⁻¹ 7.05 14.10	(8)	η/ poise 13.6 9.11
$\frac{\gamma/s^{-1}}{2.722}$ 5.444 8.167	(7)	n/ poise 29.9 20.0 15.4	γ/ s ⁻¹ 7.05 14.10 21.15	(8) $\tau/dyne cm^{-2}$ 95.9 128.4 152.8	η/ poise 13.6 9.11 7.22
$\frac{\frac{\gamma}{s^{-1}}}{2.722}$ 5.444 8.167 16.33	(7) τ/ dyne cm ⁻² 81.5 109.0 126.1 161.1	η/ poise 29.9 20.0 15.4 9.87	$\frac{\gamma}{s^{-1}}$ 7.05 14.10 21.15 42.3	(8) $\tau/dyne cm^{-2}$ 95.9 128.4 152.8 195.5	n/ poise 13.6 9.11 7.22 4.62
γ/ s ⁻¹ 2.722 5.444 8.167 16.33 24.5	(7) τ/ dyne cm ⁻² 81.5 109.0 126.1 161.1 183.4	η/ poise 29.9 20.0 15.4 9.87 7.49	γ/ s ⁻¹ 7.05 14.10 21.15 42.3 63.4	(8) $\tau/dyne \ cm^{-2}$ 95.9 128.4 152.8 195.5 224.9	n/ poise 13.6 9.11 7.22 4.62 3.55
$\frac{\gamma/s^{-1}}{2.722}$ 5.444 8.167 16.33 24.5 (9.0)	(7) τ/ dyne cm ⁻² 81.5 109.0 126.1 161.1 183.4 234.7	η/ poise 29.9 20.0 15.4 9.87 7.49 4.79	γ/ s ⁻¹ 7.05 14.10 21.15 42.3 63.4 126.9	(8) $\tau/dyne \ cm^{-2}$ 95.9 128.4 152.8 195.5 224.9 294.4	n/ poise 13.6 9.11 7.22 4.62 3.55 2.32
$\frac{\gamma/}{s^{-1}}$ 2.722 5.444 8.167 16.33 24.5 49.0 73.5	(7) $\tau/$ dyne cm ⁻² 81.5 109.0 126.1 161.1 183.4 234.7 267.8	η/ poise 29.9 20.0 15.4 9.87 7.49 4.79 3.64	γ/ s ⁻¹ 7.05 14.10 21.15 42.3 63.4 126.9 190.3	(8) $\tau/dyne \ cm^{-2}$ 95.9 128.4 152.8 195.5 224.9 294.4 344.0	n/ poise 13.6 9.11 7.22 4.62 3.55 2.32 1.81
$\frac{\gamma/}{s^{-1}}$ 2.722 5.444 8.167 16.33 24.5 49.0 73.5 147	(7) $\tau/$ dyne cm ⁻² 81.5 109.0 126.1 161.1 183.4 234.7 267.8 340.8	η/ poise 29.9 20.0 15.4 9.87 7.49 4.79 3.64 2.32	γ/ s ⁻¹ 7.05 14.10 21.15 42.3 63.4 126.9 190.3 380.7	(8) $\tau/$ dyne cm ⁻² 95.9 128.4 152.8 195.5 224.9 294.4 344.0 459.8	n/ poise 13.6 9.11 7.22 4.62 3.55 2.32 1.81 1.21
$\frac{\gamma/}{s^{-1}}$ 2.722 5.444 8.167 16.33 24.5 49.0 73.5 147 220.5	(7) $\tau/$ dyne cm ⁻² 81.5 109.0 126.1 161.1 183.4 234.7 267.8 340.8 405 5	n/ poise 29.9 20.0 15.4 9.87 7.49 4.79 3.64 2.32	γ/ s ⁻¹ 7.05 14.10 21.15 42.3 63.4 126.9 190.3 380.7	(8) $\tau/$ dyne cm ⁻² 95.9 128.4 152.8 195.5 224.9 294.4 344.0 459.8 552.4	n/ poise 13.6 9.11 7.22 4.62 3.55 2.32 1.81 1.21 0.97
$\frac{\frac{\gamma}{s^{-1}}}{2.722}$ 5.444 8.167 16.33 24.5 49.0 73.5 147 220.5	(7) $\tau/$ dyne cm ⁻² 81.5 109.0 126.1 161.1 183.4 234.7 267.8 340.8 405.5	η/ poise 29.9 20.0 15.4 9.87 7.49 4.79 3.64 2.32 1.84	γ/ s ⁻¹ 7.05 14.10 21.15 42.3 63.4 126.9 190.3 380.7 571	(8) $\tau/dyne cm^{-2}$ 95.9 128.4 152.8 195.5 224.9 294.4 344.0 459.8 552.4	n/ poise 13.6 9.11 7.22 4.62 3.55 2.32 1.81 1.21 0.97

TABLE B.7.1. Fraction redispersion for rutile in aqueous MIPA

	Rotor = angle	t _c =	= 30 mins	
[MIPA]/ mol dm ⁻³	ω/ rad s ⁻¹	C ₀ x10 ⁻¹⁴	C x10 ⁻¹⁴	F
2.0x10 ⁻⁴	524 3142	12.6	10.7 3.10	0.849 0.246
0.010	524 3142	3.86	3.55	0.920 0.518
0.030	524 3142	3.93	3.60	0.916 0.379
0.100	524 3142	5.79	5.26 1.52	0.908 0.263

solution as a function of centrifuge speed

TABLE B.7.2. Fraction redispersion as a function of ionic strength for 0.1 M MIPA

	Rotor = angle	t _c =	= 30 mins		
[KNO ₃]/ mol dm ⁻³	ω/ rad s ⁻¹	C ₀ x10 ⁻¹⁴	C x10 ⁻¹⁴	F	
8.0x10 ⁻⁴	115 262 367	5.47	1.93 2.22 1.45	0.353 0.406 0.265	
1.0×10^{-3}	524 1571	9.68	1.52 0.882	0.157 0.091	
1.9×10^{-3}	115 262 367	4.67	0.790 0.779 0.551	0.169 0.167 0.118	
4.1x10 ⁻³	115 262 367	4.38	0.632 <0.29 <0.26	0.144 <0.066 <0.059	
7.0×10^{-3}	524 1571	19.2	1.45 0.294	0.076 0.015	
0.0109	115 262 367	5.76	0.544 <0.22 <0.14	0.094 <0.038 <0.024	

	$\omega = 262 \text{ rad}$	l s ⁻¹	Rotor = angle	
[KNO ₃]/ mol dm ⁻³	t _c / min	C ₀ x10 ⁻¹⁴	C x10 ⁻¹⁴	F
0.8x10 ⁻³	10 30	5.47	3.47	0.634 0.406
1.9×10^{-3}	10 30	4.67	1.48 0.779	0.317 0.167
4.1×10^{-3}	10 30	4.38	0.514 <0.29	0.117 <0.066
0.0109	10 30	5.76	0.239 <0.22	0.041 <0.038

TABLE B.7.3. Fraction redispersed as a function of t_c for 0.1 M MIPA

TABLE B.7.4. Fraction redispersed as a function of pH for 0.1 M MIPA

	Rotor =	angle	$t_c = 30 \text{ mi}$	ns	
[MIPA ⁺]/ mol dm ⁻³	[MIPA ⁺] [MIPA]	$m/rad s^{-1}$	C ₀ x10 ⁻¹⁴	C x10 ⁻¹⁴	F
0.00193	0.0193	157 314	10.9	4.85	0.445 0.236
0.00385	0.0385	157 314	12.0	11.2 5.58	0.933 0.465
0.00963	0.0963	157 314	4.52	0.735 0.162	0.163 0.036
0.0193	0.193	157 314	3.36	-	Ξ

Rotor = angle	$t_c = 30 \text{ min}$	s [MIPA]	$= 0.1 \text{ mol } dm^{-3}$
ω/ rad s ⁻¹	C ₀ x10 ⁻¹⁴	С x10 ⁻¹⁴	F
440	2.48	0.882	0.356 (0.524)
440	9.28	3.53	0.380 0.213
440 1047	14.5	7.49 4.20	0.517 0.290
440 1047	26.5	17.9 6.83	0.675 0.258
Rotor = swing-out	$t_c = 35 \text{ mi}$ $\omega = 1246$	ns [MIPA] rad s ⁻¹	$] = 0.010 \text{ mol } dm^{-3}$
C ₀ x10 ⁻¹⁴	с x10 ⁻¹	4	F
2.48 7.85	1.45 2.20		0.585 0.280
24.9 30.5 39.2	7.83 7.41 10.2		0.243 0.260
73.8	58.7		0.795

TABLE B.7.5. Effect of initial particle number on the fraction redispersed

TABLE B.7.6. Effect of ω and ionic strength on fraction redispersed (25°C)

[KNO ₃]/ mol dm ⁻³	$m/rad s^{-1}$	t _c / min	C ₀ x10 ⁻¹⁴	C x10 ⁻¹⁴	F
0	524	36	3.71	3.67	0.989
	1058	36	3.71	3.56	0.960
	1319	37	4.19	2.27	0.542
	1571	35	5.14	3.81	(0.741)
	1812	41	4.04	1.92	0.475
	2105	39	5.14	2.07	0.403
0.001	524	36	4.00	3.64	0.910
	1058	36	4.00	2.23	0.558
	1319	37	4.40	1.63	0.370
	1571	35	4.50	1.40	0.311
	1812	41	4.05	1.33	0.328
	2105	39	4.50	1.04	0.231
0.002	524	36	3.78	2.94	0.778
	1058	36	3.78	1.59	0.421
	1319	37	4.31	1.51	0.350
	1571	35	4.79	1.04	0.217
	1812	41	4.05	1.09	0.269
	2105	39	3.79	0.997	0.208
0.004	115	36	4.25	3.75	0.882
	209	35	5.75	4.08	0.710
	325	35	4.60	2.07	0.450
	429	35	5.78	2.87	0.497
	534	36	4.35	1.67	0.384
	628	36	4.46	1.62	0.363
0.006	115	36	4.31	1.41	0.327
	209	35	4.25	2.61	0.614
	325	35	4.55	0.794	0.175
	429	35	4.34	1.42	0.327
	534	36	4.37	1.20	0.275
	628	36	4.40	0.566	0.129
0.0100	115	36	4.25	0.836	0.197
	209	35	4.43	0.718	0.162
	325	35	4.19	0.338	0.081
	429	35	4.60	0.528	0.115
	534	36	4.44	0.499	0.112
	628	36	4.31	0.514	0.119

 $[MIPA] = 5 \times 10^{-3} \text{ mol } dm^{-3}$

I	oolypropylene centrifu	ge tube	A starting of the starting of
[MIPA] =	$\omega = 419 \text{ rad s}^{-3}$	$\begin{bmatrix} \text{KNO}_3 \end{bmatrix} = 0 \\ \text{t}_c = 30 \text{ m}$.005 mol dm ⁻³ ins
Tube	1	2	3
C x10 ⁻¹	4 4.16	4.21	4.18

TABLE B.7.7. Check for reproducibility with respect to choice of polypropylene centrifuge tube

red [MIPA] = 0.020 mol	dm ⁻³	t _c = 35 min	s	
[KN03]/	$\omega/$	C ₀	С	F	
mol dm °	rad s -	x10 ⁻¹⁴	x10 ⁻¹⁴		
0 .	230	8.87	8.14	0.918	
	335	9.46	7.92	0.837	
	1501	9.97	9.60	0.963	
	(534	8.98	5./8)	0 920	
	345	9.82	8.94	0.851	
	800	7.99	7.77	0.972	
	1058	8.21	7.48 -	0.911	
	(1079	9.53	5.59)		
	1309	8.58	7.70	0.897	
	1330	9.90	8.28	0.836	
	1581	10.7	7.99	0.747	-
	1602	7.99	7.70	0.964	•
	1843	9.16	7.11	0.776	
	1916	9.68	7.92	0.818	
	2094	0.00	0.22	0.707	
0.00372	335	10.0	7.77	0.777	
0.000.1	534	9.82	5.01	0.510	
	545	9.90	1.63	.0.165	
	806	8.43	3.14	0.372	
	1330	9.97	0.982	0.098	
	1581	10.2	1.50	0.147	
	1916	9.75	1.48	0.152	
0.00520	220	9 / 3	7 44	0 993	
0.00520	335	8.36	6.74	0.806	
	534	7.92	5.83	0.736	
	806	10.85	6.89	0.635	
	1058	7.92	3.62	0.457	
	1309	10.63	6.96	0.655	
	1602	8.50	1.81	0.213	
	1843	8.58	1.55	0.181	
	2094	10.48	1.//	0.169	
0.00743	230	7.70	1.59	0.206	
0.007.13	335	8.28	1.20	0.145	
	534	9.24	3.12	0.338	
	806	9.24	1.86	0.201	
	1058	8.94	2.26	0.253	
	1309	9.68	0.938	0.097	
	1602	8.36	1.20	0.144	
	1843	8.14	1.26	0.155	
	2094	9.00	0.909	0.095	
0.0149	335	9.09	1.10	0.121	
	534	9.60	0.880	0.092	
	545	8.36	0.997	0.119	
	806	8.72	0.953	0.109	
	1079	8.87	0.513	0.058	
	1330	8.28	0.557	0.067	
	1581	9.09	0.279	0.031	
	1916	1.33	0.455	0.002	

TABLE B.7.8. Effect of ω and ionic strength on the fraction redispersed (25°C)

it

	$t_c = 35 \text{ mins}$	dist	illed water		
рН	ω/ rad s ⁻¹	C ₀ x10 ⁻¹⁴	C x10 ⁻¹⁴	F	
10.56	524	9.38	8.87	0.946	
	1068	9.68	6.22	0.643	
	1351	9.75	3.61	0.370	
	1592	9.38	3.39	0.361	
	1801	10.26	3.55	0.346	
	2105	10.41	3.23	0.310	
11.01	524	9.75	8.28	0.849	
	1068	9.60	7.55	0.786	
	1351	10.19	6.62	0.650	
	1592	9.53	5.85	0.614	
	1801	11.22	5.66	0.504	
	2105	10.63	2.80	0.263	
11.50	524	9.24	8.72	0.944	
	1068	9.68	4.89	0.505	
	1351	9.42	4.14	0.439	
	1592	9.82	3.98	0.405	
	1801	10.19	3.23	0.317	
	2105	10.12	1.96	0.194	

TABLE B.7.9. Effect of ω on the fraction redispersed in high pH water

	t _c = 35 mins	рН	= 10.95	
[MIPA]/ mol dm ⁻³	$m^{\omega/}$ rad s ⁻¹	C ₀ x10 ⁻¹⁴	C x10 ⁻¹⁴	F
1.01x10 ⁻⁴	534	10.41	6.38	0.613
	942	10.04	2.78	0.277
	1340	9.92	1.70	0.171
	1592	8.67	2.79	0.322
	1854	8.89	2.19	• 0.246
	2094	9.11	2.04	0.224
5.04x10 ⁻⁴	534	9.77	8.21	0.840
	942	10.12	6.58	0.650
	1340	9.63	4.40	0.457
	1592	10.41	5.29	0.508
	1854	9.92	3.64	0.367
	2094	9.99	4.63	0.463
2.02x10 ⁻³	534	9.92	9.85	0.993
	942	10.56	7.97	0.755
	1340	10.56	8.43	0.798
	1592	9.18	5.03	0.548
	1854	8.89	3.95	0.444
	2094	9.11	5.14	0.564

TABLE B.7.10. Fraction redispersed as a function of MIPA concentration at a fixed pH (25°C)

TABLE B.7.11. Fraction redispersed as a function of MIPA concentration at a fixed pH (25°C)

-

0

				and the second	and the second
[MIPA]/ mol dm ⁻³	pH	$\omega/$ rad s ⁻¹	C ₀ x10 ⁻¹⁴	C x10 ⁻¹⁴	F
2.02x10 ⁻⁵	10.95	440 754 1131 1299 1581 2094	10.41 10.48 9.97 10.48 10.52 10.85	8.51 9.02 7.05 6.96 6.84 4.62	0.817 0.861 0.707 0.664 0.650 0.426
3.02x10 ⁻⁴	10.97	440 754 1131 1299 1581 2094	10.26 9.97 10.63 10.04 11.29 10.34	5.37 5.41 4.86 2.90 3.61 2.26	0.523 . 0.543 0.457 0.289 0.320 0.219
0.0101	11.12	440 754 1131 1299 1581 2094	10.45 9.90 10.34 10.19 10.78 10.78	9.75 9.24 9.09 8.28 8.94 8.50	0.933 0.933 0.879 0.813 0.829 0.788

 $t_c = 35 \text{ mins}$

TABLE B.7.12. Fraction redispersed as a function of MIPA concentration at pH 11 (25°C)

a set of the					and the logar	
[MIPA]/ mol dm ⁻³	pН	$m/rad s^{-1}$	C ₀ x10 ⁻¹⁴	C x10 ⁻¹⁴	F	
5.03x10 ⁻⁵	11.07	230 325 806 1288 1613 2094	9.97 9.31 9.16 9.09 10.70 10.41	10.19 8.80 6.71 5.78 7.69 4.79	1.02 0.945 0.733 0.636 0.719 0.460	
2.01x10 ⁻⁴	10.93	230 325 806 1288 1613 2094	10.19 8.94 8.06 8.36 10.78 10.26	10.04 7.27 6.16 4.93 5.21 2.96	0.985 0.813 0.764 0.590 0.483 0.288	
1.01x10 ⁻³	10.95	230 325 806 1288 1613 2094	11.95 9.53 8.87 8.87 10.19 9.97	11.51 8.87 7.48 6.42 8.13 4.99	0.963 0.931 0.843 0.724 0.798 0.501	
3.02x10 ⁻⁵	10.95	555 2094	10.12 9.97	8.87 3.54	0.876 0.355	
9.03x10 ⁻⁵	10.92	555 2094	8.28 8.65	8.14 3.70	0.983 0.428	
4.02×10^{-3}	10.94	555 2094	10.04 10.04	9.16 7.18	0.912 0.715	

 $t_c = 35$ mins

	Trada and the second				
[MIPA]/ mol dm ⁻³	pH	$\omega/$ rad s ⁻¹	$C_0 \times 10^{-14}$	C x10 ⁻¹⁴	F
2.00x10 ⁻⁵	10.95	440 1068 1916	8.36 8.50 8.58	1.74 1.60 1.03	0.208 0.188 0.120
1.00x10 ⁻⁴	10.97	450 1068 1927	9.02 9.75 9.82	4.82 1.19 1.45	0.534 0.122 0.148
5.00x10 ⁻⁴	10.93	440 1068 1916	10.34 10.48 10.41	6.79 3.80 0.821	0.657 0.363 0.079
8.00x10 ⁻⁴	10.95	450 1068 1927	8.65 8.94 9.09	5.81 2.04 1.52	0.672 0.228 0.167
2.00×10^{-3}	10.95	440 1068 1916	8.65 8.72 8.87	5.01 3.58 1.96	0.579 0.411 0.221
5.00x10 ⁻³	10.92	450 1068 1927	8.72 8.94 9.09	5.48 3.34 2.28	0.628 0.374 0.251

TABLE B.7.13.	Fraction redisper	sed as a function of MIPA	
	concentration in	the presence of electrolyte (25	°C)
t	= 35 mins	$[KNO_3] = 0.005 \text{ mol } dm^{-3}$	

TABLE B.7.14. Fraction redispersed as a function of MIPA concentration and ionic strength (25°C)

[MIPA]/ mol dm ⁻³	[KNO ₃]/ mol dm ⁻³	рН	$m^{\omega/}$ rad s ⁻¹	C ₀ x10 ⁻¹⁴	C x10 ⁻¹⁴	F
2.0x10 ⁻⁵	2.0x10 ⁻⁴	10.95	450 1079 1906	8.80 8.58 8.58	8.50 6.93 4.38 -	0.966 0.808 0.510
2.0x10 ⁻⁵	2.0x10 ⁻³	10.96	450 1089 1906	10.12 10.34 9.82	8.28 4.47 4.94	0.818 0.432 0.503
6.0x10 ⁻⁴	2.0x10 ⁻⁴	10.95	450 1079 1906	9.16 8.98 9.24	8.69 7.92 4.70	0.949 0.882 0.509
6.0x10 ⁻⁴	2.0×10^{-3}	10.95	450 1089 1906	10.19 10.19 9.60	8.06 5.62 4.06	0.791 0.552 0.423
0.020	2.0x10 ⁻⁴	11.02	450 1079 1906	8.72 8.80 9.60	8.83 8.65 7.70	1.01 0.983 0.802
0.020	2.0x10 ⁻³	11.03	450 1089 1906	11.44 10.26 10.12	10.34 8.28 3.70	0.904 0.807 0.366
0.0499	5.0x10 ⁻³	11.58	450 1068 1916	9.79 9.53 9.24	6.74 6.38 1.58	0.688 0.669 0.171
0.150	5.0x10 ⁻³	11.58	450 1068 1916	9.38 9.75 9.82	6.52 7.40 8.06	0.695 0.759 0.821
0.250	5.0x10 ⁻³	11.59	450 1068 1916	8.80 9.38 9.75	7.33 6.45 5.72	0.833 0.688 0.587

 $t_c = 35$ mins
	t _c = 3	35 mins	[MIPA]	= 0.020	mol dm ⁻	3	
рН	[MIPA ⁺]/ mol dm ⁻³	[KNO ₃]/ mol dm ⁻³	Ionic Strength/ mol dm ⁻³	ω/ rad s ⁻¹	C ₀ x10 ⁻¹⁴	C x10 ⁻¹⁴	F
10.72	0.95x10 ⁻³	9.05x10 ⁻³	0.0100	199 639 1319	9.38 9.24 8.58	1.67 0.990 1.36	0.178 0.107 0.159
10.50	1.89x10 ⁻³	8.11x10 ⁻³	0.0100	199 639 1319	10.26 10.63 10.56	4.18 3.74 1.54	0.407 0.352 0.146
10.20	3.78x10 ⁻³	6.22x10 ⁻³	0.0100	199 639 1319	11.95 10.04 9.90	1.39 2.75 1.23	0.116 0.274 0.124
9.95	5.68x10 ⁻³	4.32x10 ⁻³	0.0100	94 199 440	9.38 10.19 10.78	4.49 3.34 2.95	0.479 0.328 0.274
9.74	7.57x10 ⁻³	2.43x10 ⁻³	0.0100	94 199 440	9.82 9.82 9.82	5.21 4.06 3.02	0.531 0.413 0.308
9.55	9.46x10 ⁻³	0.54x10 ⁻³	0.0100	94 199 440	8.72 8.94 8.65	5.81 5.02 4.18	0.666 0.562 0.483

TABLE B.7.15. Fraction redispersed as a function of pH at constant ionic strength (25°C)

TABLE B.7.16. Fraction dispersed as a function of pH at constant ionic strength (25°C)

	t _c =	35 mins	[MIPA]				
рН	[MIPA ⁺]/ mol dm ⁻³	[KNO ₃]/ mol dm ⁻³	Ionic Strength/ mol dm ⁻³	ω/ rad s ⁻¹	C ₀ x10 ⁻¹⁴	C x10 ⁻¹⁴	F
10.60	4.73x10 ⁻⁴	4.53x10 ⁻³	0.005	209 429 607	10.41 10.04 10.26	7.26 6.05 4.02	0.697 0.603 0.392
10.20	1.89x10 ⁻³	3.11x10 ⁻³	0.005	209 429 607	9.90 9.68 10.04	6.86 5.66 3.74	0.693 0.585 0.373
9.60	4.73x10 ⁻³	2.70x10 ⁻³	0.005	209 429 607	9.68 9.90 10.34	8.54 6.85 5.13	0.882 0.692 0.496

	t _c = 35 mins	pH	= 10.95		
[MIPA]/ mol dm ⁻³	$rad s^{-1}$	C ₀ x10 ⁻¹⁴	C x10 ⁻¹⁴	F	
2.0x10 ⁻⁴	963 1990	10.41 10.70	6.62 4.65	0.636 0.435	
8.0x10 ⁻⁵	963 1990	10.70 11.80	9.16 4.88	0.856 0.414	
2.0x10 ⁻⁴	963 1990	10.12 10.26	7.99 3.90	0.790 0.380	
6.0×10^{-4}	1990	10.04	1.98	0.197	
1.0×10^{-3}	1990	9.24	3.78	0.409	
4.0×10^{-3}	1990	8.80	3.48	0.395	

TABLE B.7.17. Fraction dispersed as a function of MIPA concentration at constant pH (25°C)

TABLE B.7.18. Fraction redispersed as a function of distilled water pH

	t _c = 35 mins	$\omega = 2$	2030 rad s ⁻¹		
pН	Ionic Strength/ mol dm ⁻³	C ₀ x10 ⁻¹⁴	с x10 ⁻¹⁴	F	
10.90 9.45 3.51	$0.8 \times 10^{-3} \\ 0.3 \times 10^{-4} \\ 0.3 \times 10^{-3}$	8.94 8.80 7.92	2.97 1.01 <0.07	0.332 0.115 <0.01	

TABLE B.7.19	. I	he	effect	of	aqueo	ous	soluti	ons	of	AMP,	TEA	and
	P	prop	oylamine	on	the	fra	action	redi	spe	ersed	(25°	°C)

Solution	рН	$\frac{\omega}{rad s^{-1}}$	C ₀ x10 ⁻¹⁴	C x10 ⁻¹⁴	F
0.0108 M AMP	10.92	1487 2094 2587	10.26 10.26 10.12	9.53 11.00 9.09	0.929 1.07 0.898
0.0105 M TEA	10.98	1487 2094 2587	12.39 13.01 12.24	7.70 8.14 1.48	0.621 0.626 0.121
0.0104 M PROPYLAMINE	11.39	1487 2094 2587	10.34 10.78 10.41	9.13 8.94 8.76	0.883 0.829 0.841

 $t_c = 35$ mins

TABLE B.7.20. Effect of MIPA concentration on the fraction redispersed at high pH (25°C)

	t _c = 35 mins	ω =	1257 rad s ⁻¹		
[MIPA]/ mol dm ⁻³	рН	C ₀ x10 ⁻¹⁴	C x10 ⁻¹⁴	F	
$4.0x10^{-5} 1.0x10^{-4} 2.0x10^{-4} 6.0x10^{-4} 2.0x10^{-3} 3.0x10^{-3} 4.0x10^{-3} 0.010 0.499$	11.42 11.35 11.40 11.37 11.39 11.40 11.34 11.31 11.77	11.44 10.56 11.36 11.36 10.48 10.63 11.00 11.07 10.92	6.41 5.58 5.27 5.99 4.82 6.73 5.67 6.67 10.15	0.560 0.528 0.464 0.527 0.460 0.633 0.515 0.603 0.929	

				and the second se	and the second se	
[MIPA]/ mol dm ⁻³	рН	Electrolyte	$m/rad s^{-1}$	C ₀ x10 ⁻¹⁴	C x10 ⁻¹⁴	F
0.0100	10.7	- 5.26 mM KNO ₃ 5.57 mM LiCL	555 555 555	11.07 13.56 11.58	10.04 6.31 7.64	0.907 0.465 0.660
0.0200	11.29	- 4.02 mM KNO ₃ 4.03 mM LiCL	545 545 545	13.34 12.83 12.02	10.85 8.31 7.13	0.813 0.648 0.593
0.0200	9.79	9.6 mM MIPA ⁺ 4.02 mM KNO ₃ 4.03 mM LiCL	545 545 545	12.68 10.63 11.88	5.83 1.51 1.23	0.460 0.142 0.104

TABLE B.7.21. Fraction redispersed as a function of pH and electrolyte

APPENDIX C

THE METAL OXIDE-SOLUTION INTERFACE

APPENDIX C. - The Metal Oxide-Solution Interface

Direct measurement of the surface potential of oxides, such as rutile, silica, and alumina, is not possible and so electrokinetic studies complemented by material balance measurements are used to investigate the electrical double layer structure of the oxide-solution interface. Early electrokinetic and potentiometric studies confirmed the importance of hydrogen ions in establishing the double layer at the oxide-aqueous solution interface^{C2,C3}. Davis et al^{C1} have reviewed the studies of oxides up to 1977. The establishment of the surface charge is generally taken to occur through either of two distinct but basically similar mechanisms:

a) the adsorption or desorption of hydrogen ions at an amphoteric surface site

$$MOH + H^{+} = MOH^{+}_{2}$$
(A)

$$MOH = MO^- + H^+$$
(B)

(the latter could also be written as the reaction of an hydroxyl anion with the surface site to give the negative site plus water);

b) the formation of hydroxylated metal complexes in solution which readsorb onto the particle surface

$$M^{y+} + x OH^{-} \rightarrow M(OH)_{x}^{(y-x)+}$$

The metal complexes on the surface can then interact with both hydrogen and hydroxyl ions to give changes in σ_0 :

$$M(OH)_{x}^{(y-x)+} + OH^{-} \rightarrow M(OH)_{x+1}^{(y-x-1)+}$$

and

$$M(OH)_{x}^{(y-x)+} + H^{+} \rightarrow M(OH)_{x-1}^{(y-x+1)+} + H_{2}O$$

Alternatively the metal hydroxyl species can be considered to be directly created on the particle surface ^{C3,C4}.

However, the equilibrium $\sigma_0^-\psi_0$ relationships do not depend upon the precise charge acquisition mechanism. The site dissociation models generally assume the first mechanism.

The inorganic oxides often exhibit a slow approach to equilibrium with an aqueous electrolyte solution. This is to be anticipated since the process involves the wetting of a partially or completely dehydrated, or dehydroxylated dry solid by an electrolyte solution. In some instances the process may involve the penetration of water and ions into the surface structure e.g. as in the slow rehydration of the titanium dioxide surface after calcining. A general view is that the oxide dissolves until the composition of the solution corresponds to the appropriate solubility condition. However, leached rutile dissolves so slowly that for most purposes it can be regarded as insoluble. It should be noted that silicas, including Pyrex, exhibit appreciable solubility and ageing effects^{C5}. But a standard method of pretreating a silica surface has been suggested which enables reproducible electrokinetic data to be obtained^{C6}. Figure C1 shows the zeta potential variation with both pH and indifferent electrolyte concentration for silica dispersions.

A typical set of electrokinetic data for an oxide-aqueous solution system exhibit a symmetric shape in the regions above and below the isoelectric point. This is a characteristic of these dispersions and reflects the importance of the hydrogen and hydroxyl ions in determining the surface charge. One of the most significant general features of the oxide systems is that compared to the mercury or silver iodide-solution interfaces the values of σ_0 are larger at comparable values of ψ_0 i.e. the electrical double layer capacitance values are higher. Other features include the observation that σ_0 -pH curves are convex to the pH axis and that large σ_0 values are associated with relatively small values of the zeta potential. The initial detailed evidence for the unusual behaviour of the oxide-solution interface was summarised by Hunter and Wright^{C19}, and by Lyklema^{C7}. Prior to this time it was thought that the GCSG model of the double layer was flexible enough to

FIGURE C.1 The variation of the zeta potential of silica as a function of the pH in aqueous solutions of KNO3

describe the $\sigma_0 - \psi_0$ relationship for any interface. In fact it was often found that even if zeta potential values could be predicted the predicted surface charge densities were underestimated^{C8}. The extremely high values of surface charge (obtained from titration data) for oxides were taken as evidence of a porous layer, at least for some oxides^{C7}. These σ_0 values often come close to or may even exceed the accepted maximum surface site density for hydroxyl groups on the oxide surface, 0.2 nm² per site corresponding to ~80 μ C cm⁻². Both the porous interface and site dissociation models were instigated in order to understand these features.

C.1 The Porous Gel Model

The model was originally suggested by Lyklema^{C9} as a possible explanation for the large double layer capacitance of some oxide The oxide surface was assumed to be porous and thereby interfaces. capable of absorbing indifferent and potential determining electrolyte ions. The gel layer consisted of hydrolysed metal oxide due to the interaction of hydrogen and hydroxyl ions with the surface layers of the oxide. In this fashion large values of surface charge could exist whilst maintaining a reasonable distance between the charged groups. In addition since the counterions could also penetrate the layer the net electrical potential at the outer edge of the porous layer would be considerably reduced in value. In this way the high titratable surface charges could be reconciled with the modest electrokinetic potential values and the modest stability, with respect to coagulation, of such systems.

Various workers have attempted to quantify the treatment, but the most complete analysis has been given by Perram et al^{C10}, who give the model for the most general case (unsymmetric electrolyte).

The concentrations of all ions within the gel were taken to be related to the bulk concentrations by expressions of the type

$$c_{i} = c_{i}^{0} \exp\left(-\frac{ze \phi + \mu_{i}}{kT}\right)$$
(C1)

in which ψ is the local potential within the gel relative to the value in the bulk solution, and μ_{1} represents the specific adsorption potential of the ith ion species.

Poisson's equation was used to give a unique solution given the appropriate boundary conditions for both the bulk solution and the solid surface-gel layer junction. The solution even for the relatively simple case of a 1:1 electrolyte cannot be written explicitly but requires the solving of two simultaneous transcendental equations in order to obtain the appropriate values of titratable charge and zeta potential. The former was taken to be equal to the sum of the diffuse layer charge and the gel layer charge due to the presence of indifferent ions. The latter was identified as the potential at the gel-electrolyte solution boundary. Although no Stern layer per se was postulated the gel layer could be taken as a limiting case where the solid surface is significantly disordered. The model contains several adjustable parameters -

- i) the thickness of the gel layer;
- ii) the adsorption potentials of the indifferent electrolyte ions;
- iii) the dielectric permittivity of the gel layer;
- iv) the dissociation constants of the surface groups.

Perram et al calculated values of σ_0 and zeta potential for various oxides, including titanium dioxide, using tabulated values of the dissociation constants and adsorption potentials. However, the authors state that the model can only be applied to those systems for which high titratable surface charges have been measured.

The values of the adsorption potential were assumed to be equal in line with the observation that the properties of the oxides are reasonably symmetric about the i.e.p. The dielectric constant of the gel layer was taken to be 40, although the predictions of the model are fairly insensitive to its value for values >20. The value of the gel layer thickness is the most crucial parameter and values between 1 and 30 nm have been suggested. For titanium dioxide a value of -kT for the

adsorption potentials and of 4 nm for the gel layer thickness gave good agreement with experiment. The total gel layer charge for a 1:1 electrolyte was given by -

$$\Sigma = -L \left(\frac{S_0}{K h}\right)^{0.5} (c^0)^{0.5} \exp\left(-\frac{\mu}{2kT}\right)$$
(C2)

where L is the gel layer thickness, S_0 is the total concentration of ionisable groups within the gel layer, K is the dissociation constant for the acidic dissociation of one of the groups, h is the bulk concentration of hydrogen ions, and c^0 is the bulk indifferent electrolyte concentration.

The predicted values for various combinations of μ and L are shown in figure C2 (data for titanium dioxide in aqueous sodium chloride is included for comparison).

Perram et al^{C10} found that the model could account for the experimental data on various oxides if values of L between 2 and 4 nm and values of μ between -2kT and 0 were used to characterise the gel layer. The authors concluded that the agreement between theory and experiment supported the view that a thin surface layer, made gel-like by the penetration of electrolyte solution, was a general feature of the oxidesolution interface.

However, the experimental zeta potential data is somewhat limited (when used as a function of indifferent electrolyte concentration) which limits the truly critical assessment of the model predictions. In fact, although the model predicts the correct order of magnitude for the zeta potentials, the experimental data do not exhibit the strong dependence on electrolyte concentration as predicted.

It should be noted that there is no experimental evidence of a porous layer on the titanium dioxide surface, in fact certain studies indicate the contrary. Titania is probably not typical of oxides in that it possesses semiconductor properties and may have multivalent metal cation surface sites in addition to the hydroxyls. However, some silica systems^{Cl1} may be best analysed by the porous gel model.

FIGURE C.2

The variation of the titratable surface charge as a function of the indifferent electrolyte concentration for TiO₂ at pH8 according to the porous gel model.The experimental data of Wright for rutile in NaCl, at pH8.8, are included for comparison.

C.2 Electrical Double Layer Models

As previously stated the various models predicting the $\sigma_0^-\psi_0^$ behaviour of the interface utilise a picture of the double layer. The simple site dissociation models assume a classical Gouy-Chapman diffuse layer model. However, various workers have included a detailed description of the inner, compact region of the double layer. Depending on the sophistication of the model describing σ_0^- in terms of the ionisation and complexation constants various levels of double layer pictures are used:

i) the zeroth Order Stern model in which an inner region of thickness, β , is devoid of ions and represents the distance of closest approach to the plane of surface charge. The thickness is taken to be the distance of closest approach of the counterions. The β plane is taken to represent the start of the diffuse layer i.e. $\psi_{\beta} = \psi_{d}$, and since no layer of adsorbed ions is postulated then $\sigma_{\beta} = 0$ and $\sigma_{o} = -\sigma_{d}$. The zeroth Order model takes account of the finite size of ions, but by making $\sigma_{\beta} = 0$ the restriction that the lateral size of the counterions places on the occupation of the β plane is ignored. Within this plane the potential-distance profile is linear

$$\psi(\mathbf{x}) = \psi_{0} - \frac{\mathbf{x}}{\beta} \left(\psi_{0} - \psi_{d} \right)$$
(C3)
$$0 \le \mathbf{x} \le \beta$$

for

and

$$\sigma_{o} = K_{I} \left(\phi_{o} - \phi_{d} \right)$$
(C4)

with

$$K_{I} = \varepsilon_{I} \varepsilon_{O} / \beta$$
 (C5)

The inner layer capacitance, K_{I} , is treated as an adjustable parameter.

ii) the Stern model which expands on the zeroth Order model and makes allowance for a Langmuir type adsorption of counterions.

iii) the Site Binding Stern model in which the lateral occupancy of the β plane is governed by the requirement that the counterions must be coupled to specific surface sites.

The Zeroth Order Stern model has been used instead of the classical Gouy-Chapman picture in the simple site dissociation models C12. The values of KT which must be chosen to make the predictions fit experimental data are very large, typically 200 μ F cm⁻². Such high values can be interpreted as implying a large value of ε_T or a small value of β . The oft quoted figures of ~30 μ F cm⁻² for K_T refer to the mercury-water interface which bears an interfacial water structure vastly different to that for the oxide-solution system. In addition the nature of the surface of oxides makes the interpretation of the distance of closest approach more ambiguous than for the mercury surface and so it is not difficult to understand the vast difference in the KI values. Some workers interpret the need to introduce a high value for this parameter in order to correctly predict the σ_0 -pH relation for surfaces possessing ionisable groups as evidence for a porous gel surface region, while others assume a value of 80 and 0.3 nm for the inner region dielectric constant and thickness, respectively C20.

Westall and Hohl^{C13} have looked at five electrostatic models of the oxide-solution interface and classify each depending on the double layer picture used. They considered two general pictures of the double layer the Basic Stern model and the Extended Stern model. The former assumes that the capacitance between the IHP and OHP could be neglected so that $\psi_I = \psi_d$ (this is akin to the Zeroth Order Stern model). The latter allows for the existence of the two Helmholtz planes. The Basic Stern model can be further split into two limiting cases. At low ionic strengths and relatively low potentials the diffuse layer capacitance dominates the total double layer capacitance, whereas at high ionic strengths the compact layer dominates the total capacitance. With regard to the assignment of the ions to planes of mean electrical potential within the interface the authors compared the oxide interface with the two limiting cases; the mercury-solution and silver iodide-solution interfaces. Stern derived his model with the mercury electrode in mind and hence σ_0 refers to the electronic charge on the mercury surface, σ_T refers to the charge associated with the electrostatically and/or

chemically bound ions at the IHP, and σ_d refers to the diffuse layer charge. For the silver iodide interface σ_0 refers to the adsorbed potential determining ions while σ_I and σ_d are as defined for the mercury system. The norm has been to regard the oxide surfaces as being similar to the silver halide surface with the adsorbed potential determining ions, hydrogen and hydroxyl, forming the surface charge. However, since the p.d.i. for oxides do not form part of the solid lattice and are not therefore adsorbed in the same manner as the silver and halide ions, the oxide surface can be treated as being similar to mercury, with $\sigma_0 = 0$ since the oxide itself has zero charge. The IHP would contain both the chemically adsorbed potential-determining ions and the electrostatically bound counterions. This "mercury" model for the oxide-solution interface is thus a strict interpretation of Stern's model.

The "silver halide" and "mercury" models for the location of ions at the oxide-solution interface represent the extremes between which the true situation exists.

It is the choice of description of the electrical double layer both in terms of the assignment of the ions to mean planes of adsorption and the equations used to relate ψ_0 to σ_0 which distinguish many of the site dissociation or complexation models of the oxide-solution interface.

C.3 Simple Site Dissociation Model

The most appropriate form of site dissociation model for the oxides considers the surface to be composed of amphoteric sites which can be negatively or positively charged, depending on the pH^{C21} . The method involves analysing the manner in which the chemical ionisation behaviour affects the surface charging process and hence the resulting surface potential as a function of pH. Both Levine and Smith^{C21}, and Healy and White^{C20} have devised similar versions of the model. The parameter ΔpK is probably the single most important factor since it determines the extent to which the system departs from Nernst type behaviour. Its value expresses the relative strengths of the two surface acidic groups i.e. MOH⁺₂ and MOH. Figure C3 shows the effect of ΔpK . For oxides its value normally lies in the range +3 to +6 (the former value being typical for

FIGURE C.3

The variation of the surface potential as a function of the indifferent electrolyte concentration for an ionisable surface at a pH 3 units away from the i.e.p. rutile). The larger the ApK the greater the deviation from Nernstian behaviour and the greater the ionic strength the more pronounced the deviation. A more extensive discussion of the effect of ApK can be found in the original papers. Comparison of the predicted σ_0 -pH and zeta potential-pH relationships with experiment has been carried out C20. The plane of shear was assumed to be located at 2 nm from the surface. The model is able to reproduce the broad features of the charge-pH data, see figure C4. The theoretical curves assume a value of 5 x 10^{14} sites per cm² and an indifferent electrolyte concentration of 0.1 mol dm⁻³. The figure shows that silica exhibits anomalous behaviour compared to the other oxides at least with respect to the surface charge data. In contrast, the zeta potential-pH behaviour of all the oxides is similar^{C14}. Although a $\Delta p K$ value of 10 gives a reasonable theoretical fit to the surface charge data, a simultaneous fit with the electrokinetic data is not obtained. The electrokinetic data can be predicted if a value $\Delta pK = 6$ is used but a poor fit to the surface charge data results. Simple shifts in ApK alone do not produce agreement between theory and experiment. The discrepancy could be partially removed by using a Stern layer model but the addition of such a compact region causes an increase in the magnitude of σ_0 and a decrease in the magnitude of the potential^{C14}, the opposite to what is required. Alternatively, fixing the ApK value to fit the electrokinetic data and reducing the assumed number density of surface groups has the effect of giving reasonable simultaneous fit to both charge and potential data C20.

A better agreement is found for titanium dioxide using the simple Gouy-Chapman site dissociation model. Figure C5 illustrates the extent of agreement between theory and experiment. Using a ΔpK value in the range 3-4 and a site density of 5 x 10^{14} cm⁻² gives good agreement over the range 0-4 ΔpH units. However, theory overestimates the double layer potential especially at low ionic strengths. The fit of the predicted surface charge could be improved by assuming a lower value of the site density. It is a general feature of the Gouy-Chapman based models that the predicted variation of zeta potential with the electrolyte concentration is overestimated especially at pH values distant from the isoelectric point. At the same time, such models successfully predict the surface charge at all ionic strengths and the zeta potential for ionic strengths in the 0.01-0.1 mol dm⁻³ range. A notable observation is

FIGURE C.4

Comparison of experimental data for three oxides with the predictions of a simple site dissociation model.(The numbers refer to the assumed pK value) a

• 10^{-1} mol dm⁻³ • 10^{-2} mol dm⁻³ = 10^{-3} mol dm⁻³ • 10^{-4} mol dm⁻³

FULL LINES ApK 3 BROKEN LINES ApK 4

FIGURE C.5

Comparison of experimental data^{2.115,2.155} for TiO₂ with theoretical predictions using a site dissociation model that the values of the adjustable parameters of the model needed to give reasonable agreement with experiment do not agree with independent analysis e.g. the measured surface group density is greater than the value required by the model^{C16}. This shortcoming is due to the neglect of electrolyte binding to the surface groups.

C.4 Electrolyte Binding-Dissociation Models

An alternative method of explaining the high surface charge densities and low zeta potentials of oxides involves the postulation of direct binding of the counterions to the surface charge sites. Such a procedure clouds the distinction between indifferent ions and specifically adsorbed ions, but the adoption of such a postulate reaps good rewards. Yates et al^{C23} introduced the first site binding-site dissociation model which was a natural extension of the studies due to Stumm and co-workers^{C16}, and Posner and Quirk^{C17} on chemical dissociation processes in solution. The basic idea is that the negative and positive sites formed by the surface ionisation reactions can, in effect, be neutralised by cations and anions from the bulk solution binding to the particular surface site. The protons involved in these equilibrium reactions are normally assumed to lie in the surface plane and the electrolyte ions are assumed to lie in the compact layer at a distance β from the surface, i.e. at the IHP. The thermodynamic activity of an ion is modified by the electrical work required to bring it from bulk solution to the plane of adsorption and is given by an equation similar to that for the hydrogen ion. Thus for an ion at the IHP the activity is given by

$$[i_{s}] = [i] \exp\left(\frac{-ze \ \phi_{I}}{kT}\right)$$
(C6)

The total surface charge density for an oxide, MOH, in the presence of a simple electrolyte, AX, can be given as

$$\sigma_{o} = e N_{A} \left(\Gamma_{MOH_{2}} + \Gamma_{MOH_{2}X} - \Gamma_{MO} - \Gamma_{MOA} \right)$$
(C7)

whereas the compact layer charge is given by

$$\sigma_{I} = e N_{A} \left(\Gamma_{MOA} - \Gamma_{MOH_{2}X} \right)$$
(C8)

Using the various stoichiometric, thermodynamic, and electroneutrality constraints the set of governing equations can be solved for unique values of the solution pH and electrolyte concentration, given values for the equilibrium constants of the various ionic reactions at the surface, the surface site density, and the integral capacities of the compact layer. The determination of the intrinsic ionisation and complexation constants is carried out by the adoption of reasonable approximations and graphical extrapolations. Davis et al^{C1} were able to solve the set of equations using generalised chemical equilibrium computer programs.

The original treatment of Yates et al^{C23} considered the bound conterion and surface group to be a small dipole but in order to obtain a usable final expression were forced to assume that the total electrostatic energy of the dipole was -e $(\phi_0 - \phi_I)$ which corresponds to a classical Stern description. The analysis also assumes, in addition to the normal practice of neglecting the discreteness of charge effect, that both electrolyte ions have the same approach distance to the surface when undergoing association and that the number of sites in the IHP equals the net number of charged surface sites. The equation relating the surface potential to the bulk solution can be written as

$$\phi_{o} = \frac{2 \cdot 303 \text{ kT}}{\text{e}} \left(pH_{p \cdot z \cdot c} - pH \right) - \frac{\text{kT}}{2\text{e}} \ln \left(\frac{[\text{MOH}_2]}{[\text{MO}]} \right)$$
(C9)

so that ϕ_0 depends upon the electrolyte concentration at constant pH; the last term being dependent upon the ionic strength.

For a simple Gouy-Chapman double layer the diffuse layer charge is given by

$$\sigma_{\rm d} = \frac{-e N_{\rm s}}{B} \sinh \left(z e \psi_{\rm d}/2kT\right)$$
(C10)

where $B(=N_s \kappa/4N_A n_{\infty})$ is a dimensionless factor combining site density and electrolyte concentration effects. N_s includes all the charged, neutral, and ion-paired surface groups.

Both the inner and outer layer capacitances are introduced to define the potential drops within the compact layer and are given by equations (3.32) and (3.33). The model therefore requires for its solution estimates of N_s, K_I, K_o, and the four ionisation- complexation equilibrium constants. The model was found to give reasonable agreement with the experimental surface charge and potential data of oxides but suffers from similar shortcomings as the simpler site dissociation models. To achieve the fit values for N_s of 5 x 10^{14} cm⁻² and for Δ pK of 3 or 6 were used. The adsorption potentials for the ions within the Stern layer were several kT larger than for the analogous adsorption at either the mercury or silver iodide-solution interfaces. The inner and outer Helmholtz plane capacitances were taken to be 140 µF cm⁻² and 20 µF cm⁻², respectively. Yates et al^{C23} consider several possible explanations for the high K_I and low K_o values. To explain the former the following were suggested -

- i) the potential-determining and counterions are located in almost the same plane; so that the distance β in equation (3.32) becomes small; and
- ii) the existence of partial charge transfer within the bound ionsurface group unit as the result of proton resonance between the surface group and the water molecule separating the adsorbed ion from the surface. Such charge transfer effectively raising the potential at the adsorption plane thereby raising the capacitance.

The first suggestion would require the dipole moments of the ion pairs to lie parallel to the surface. The second suggestion requires that the ion adsorption occurs at the OHP instead of the IHP.

To explain the low value of the outer plane capacitance Yates et al proposed another couple of explanations -

 the dielectric constant of the outer layer could be low, e.g. between 6 and 15, and/or two or more layers of water molecules separate the OHP from the IHP; and ii) the electrokinetic shear plane is located further out from the oxide surface than the OHP; so that the OHP potential, ψ_d , exceeds the zeta potential and hence K_o is larger than calculated assuming the identity of ψ_d and ζ .

The former suggestion implies that the water between the two Helmholtz planes is significantly oriented by the oxide surface resulting in a structured solvent layer between the diffuse layer ions and the IHP. The authors also put forward the additional view that the high inner and low outer capacitances could be due to the presence of a porous hydrated oxide surface region, although their calculations were unable to support or dismiss the idea.

The approach of Yates et al has been criticised by Davis et al^{C1}, particularly the method used to evaluate the ionisation and complexation constants. They proposed a modified approach which gives these constants a non-dependence upon the electrolyte concentration. The model assumes a value of 20 μ F cm⁻² for K_o, as before, but treats the inner layer capacitance as an adjustable parameter. All the other unknowns can be determined from experimental data using the extrapolation procedures of James et al^{C18}. An important new concept in this model is the introduction of the single ionisation-complexation reaction such as

$$MOH + A^+ = MO^- A^+ + H^+$$

whose equilibrium constant can be quoted as the product of the ionisation equilibrium constant and complexation equilibrium constant. A schematic of the compact layer believed to exist is given in figure C6. The chemisorbed water layer can adsorb or release hydrogen ions to form the charged surface sites. The centres of these molecules represent the σ_0 plane, while the IHP represents the distance of closest approach of the complexing ions. As the result of the chemisorbed water layer an adsorbed ion may possess one of these water molecules as part of its solvation sheath. This picture allows a close approach of the electrolyte ions to the surface charge plane, to within 0.1 nm, that is consistent with the experimental observations of large inner layer capacitance.

FIGURE C.6

Schematic view of the oxide-solution interface showing the locations of the ionic species and the planes of charge^{2.141} Before assessing the validity of these models, with particular regard to titanium dioxide, there are a few more site dissociation-site binding models worthy of comment. Westall and Hohl have reviewed and compared these models^{C13}, which differ in the choice of the double layer structure.

The constant capacitance model of Stumm et al^{C24} can be regarded as the high ionic strength limiting case of the basic Stern model. The model can be formulated using either i) a linear relationship between the surface charge and potential, and incorporating the latter into the dissociation equilibrium constants; or ii) an empirical correction term to the intrinsic surface ionisation constants such that the pK value becomes a function of the surface charge and hence surface potential. According to the model all specifically adsorbed ions contribute to σ_0 and experience the potential ψ_0 . However, the capacitance values are only valid for a given cation and anion, and for a particular ionic strength.

The diffuse layer model of Stumm, Huang, and Jenkins^{C16} can be regarded as the low ionic strength, low potential limiting case of the basic Stern model. The double layer charge-potential equation takes the same form as the simple Gouy-Chapman expression but the fixed number of surface sites implicit in the dissociation-complexation model is not a part of the classical theory. The capacitance of the double layer is fixed by theory and hence cannot be used as an adjustable parameter, unlike the previous model. As in the latter all specifically adsorbed ions are assumed to contribute to σ_0 .

The picture of the double layer used by Bowden et al^{C25} is a version of the basic Stern model (i.e. IHP and OHP taken to be coincident) applicable at all ionic strengths. The assignment of ions to the various planes of constant charge follows that for the silver halide-solution interface. The potential-determining ions are assigned to the oxide surface and the other specifically adsorbed ions are assigned to the IHP. All non-adsorbing ions are excluded from the Stern layer and reside exclusively in the diffuse layer. Between the surface and the IHP there is a region of capacitance $K_{\rm I} = K_{\rm S}$ since the potential at the OHP is assumed to be equal to that at the IHP. The method given by the authors

for solving the equations is non-iterative whereas an iterative technique is in fact required in order to achieve reasonable agreement with experimental data.

The so-called triple layer model^{C1,C26} is a version of the complete Stern model applicable at all ionic strengths. The term "triple layer" is used to emphasize the fact that the surface plane, IHP, and OHP are assumed to exist. This is in fact the picture used by Yates et al^{C23} for their original complexation model. The potential- determining ions are assigned to the oxide surface, the site binding electrolyte ions are assigned to the IHP, and the other ions are assigned to the OHP and diffuse layer. This model has several advantages over the simpler models including the ability to give an estimate of the zeta potential.

An adaptation of the original Stern model can be used in which the assignment of ions follows that at the mercury-solution interface. The potential-determining and the adsorbing ions are both assigned to the IHP so that the actual oxide surface has zero charge. The surface charge is therefore considered to reside at the IHP. The diffuse layer can be taken to be separated from the IHP by a Helmholtz capacitance corresponding to an OHP. The charge and potential values given by this model are lower than predicted by the other models because the specifically adsorbed and potential-determining ions are taken to be located in the same plane.

All the models suffer from the same difficulty of finding unique and acceptable values for the adjustable parameters. In fact it is found that a wide range of these parameter values can yield the optimum fit of a model to experimental data. It is clearly difficult to unambiguously divide the adsorption energies into the electrical and chemical components. The models can represent the data adequately using physically acceptable values of the adjustable parameters but the values of analogous parameters have different values in different models. Thus each model is of the correct mathematical form but does not necessarily give the correct physical picture of the interface.

The application of the Davis et al^{C1} model to experimental data for titanium dioxide in potassium nitrate solution has been carried out by

James and Parks^{C30}. They used revised values of the reaction constants calculated from a double extrapolation method. The inner layer capacitance was taken to be an adjustable parameter and used as such in order to optimise the fit to experimental data over the widest possible ionic strength and pH range. Figure C7 shows the model description and the experimental data of Yates^{C27} (surface charge densities) and Wiese^{C28} (zeta potentials). The theoretical curves were calculated assuming the following values for the model parameters - $K_{\rm I} = 110 \ \mu {\rm F cm}^{-2}$, ${\rm pK}_{\rm a}$ for the acidic dissociation of the MOH⁺₂ surface group = 2.7, ${\rm pK}_{\rm a}$ for the acidic dissociation of the MOH group = 9.1, ${\rm pK}$ value for the nitrate ion complexation = 4.2, and ${\rm pK}$ value for the potassium ion complexation = 7.2. The agreement both with σ_0 and zeta potential is good and is an improvement on the predictions of the simple site dissociation model. The points of interest include

- a) the use of a larger ΔpK_a value for describing the relative acidities of the surface groups; and
- b) the large value assigned to the intrinsic dissociation constants of the bound electrolyte ions, approx. -8kT.

The latter leads to the conclusion that these simple inorganic ions are strongly adsorbed in equal amounts under all conditions. Although this proposition is suspect the model has the advantage of being able to distinguish between possible competing modes of adsorption for multivalent ions^{C1}.

Similar agreement between experiment and this electrolyte complexation triple layer model has been obtained with the rutile data of Bérubé and de Bruyn^{C12}. Once again the double extrapolation method was used to obtain values for the ionisation and complexation constants^{C30}. However, a larger value for the inner capacitance was necessary, namely $K_{\rm I} = 250 \ \mu {\rm F} \ {\rm cm}^{-2}$, which leads to a separation of 0.05 nm between the planes of surface charge and bound electrolyte ions. This high capacitance value may indicate that there was some penetration of counterions into the surface.

Westall and Hohl^{C13} found that both the constant capacitance model and the triple layer model were able to give excellent fit to the

FIGURE C.7

The surface charge density and zeta potential for TiO₂ in aqueous dispersion as a function of pH and KNO_3 concentration (25°C)

experimental surface titration data of Yates^{C27} on dispersions of rutile in potassium nitrate solutions.

However, for many models several combinations of values for the adjustable parameters can be used to represent the experimental data so that there is no unique description of the chemical and electrostatic contributions to the oxide-solution interface. In addition, the models can be made to give reasonable agreement with experimental data although with widely differing values of equivalent parameters. As Westall and Hohl have stated, until a universally agreed model for the surfacesolution interface at a given oxide exists it is necessary to report the chemical reaction constants along with the complete description of the model. The evaluation of the various model parameters could be carried out more realistically if methods which are not dependent upon the explicit and implicit assumptions of a particular model were available.

C.5. Summary

By integrating the various theories for the electrical double layer with the mechanism of specific chemical interaction between solutes and the oxide surface it is possible to develop a model accounting for the surface charge density-surface potential relationship of oxides in the presence of electrolyte solutions. The polymer lattices appear to be the ideal examples of the surface ionisation and complexation double layer models. On the other hand solids, such as silver halides, involved in the formation of electrochemically reversible electrodes are examples of colloidal systems in which ψ_0 is determined by the relative activities of the ionic components in both the solid and aqueous phases. As a rule the behaviour of colloidal dispersions of oxides falls somewhere between these two extremes. Presumably the reversible oxide electrodes, e.g. silver/silver oxide, are best described by the latter model, whereas the insoluble insulating oxides such as alumina and silica would behave more akin to the ideally ionisable colloids. Titanium dioxide being a semiconductor is probably intermediate in its behaviour. This property of being a semiconductor may also give rise to perturbation of the electrical double layer as the result of the formation of space charge layers within the oxide C29.

- Cl Davis, J.A., James, R.O. and Leckie, J.O. J. Colloid Interface Sci., (1978), <u>63</u>, 480.
- C2 Bolt, G.H. J. Phys. Chem., (1957), 61, 1166.
- C3 Parks, G.A. and de Bruyn, P.L. J. Phys. Chem., (1962), 66, 967.
- C4 Boehm, H.P. Disc. Farad. Soc., (1971), 52, 264.
- C5 van Lier, J.A., de Bruyn, P.L. and Overbeek, J.Th.G. J. Phys. Chem., (1960), <u>64</u>, 1675.
- C6 Wiese, G.R., James, R.O. and Healy, T.W. Disc. Farad. Soc., (1971), <u>52</u>, 302.
- C7 Lyklema, J. Croatica Chem. Acta., (1971), 43, 249.
- C8 Wright, J.J.L. and Hunter, R.J. Aust. J. Chem., (1973), <u>26</u>, 1191.
- C9 Lyklema, J. J. Electroanal. Chem., (1968), 18, 341.
- C10 Perram, J.W., Hunter, R.J. and Wright, H.J.L. Aust. J. Chem., (1974), <u>27</u>, 461.
- Cll Smit, W., Holten, C.L.M., Stein, H.N., de Goeij, J.J.M. and Theelen, H.M.J. J. Coll. Int. Sci., (1978), 67, 397.
- Cl2 Bérubé, Y.G. and de Bruyn, P.L. J. Coll. Int. Sci., (1968), <u>28</u>, 92.
- C13 Westall, J. and Hohl, H. Adv. Coll. Int. Sci., (1980), 12, 265.
- Cl4 Yates, D.E. and Healy, T.W. J. Coll. Int. Sci., (1976), 55, 9.
- C15 Yates, D.E. and Healy, T.W. J. Chem. Soc. Farad. I, (1980), <u>76</u>, 9.

- Cl6 Huang, C.P. and Stumm, W. J. Colloid Interface Sci., (1973), <u>43</u>, 409.
- C17 Bar-Yosef, B., Posner, A.M. and Quirk, J.P. J. Soil. Sci., (1975), <u>26</u>, 1.
- C18 James, R.O., Davis, J.A. and Leckie, J.O. J. Colloid Interface Sci., (1978), 65, 331.
- C19 Hunter, R.J. and Wright, H.J.L. J. Colloid Interface Sci., (1971), <u>37</u>, 564.
- C20 Healy, T.W. and White, L.R. Adv. Colloid Interface Sci., (1978), 9, 303.
- C21 Levine, S. and Smith, A.L. Disc. Faraday Soc., (1971), 52, 290.
- C22 Wiese, G.R. and Healy, T.W. J. Colloid Interface Sci., (1975), 51, 427.
- C23 Yates, D.E., Levine, S. and Healy, T.W. J. Chem. Soc. Faraday Trans. I, (1974), 70, 1807.
- C24 Hohl, H. and Stumm, W. J. Colloid Interface Sci., (1976), <u>55</u>, 281.
- C25 Bowden, J.W., Posner, J.P. and Quirk, J.P. Aust. J. Soil Res., (1977), 15, 121.
- C26 Davis, J.A. and Leckie, J.O. J. Colloid Interface Sci., (1978), 67, 90.
- C27 Yates, D.E. Ph.D. Thesis, University of Melbourne, (1975).
- C28 Wiese, G.R. Ph.D. Thesis, University of Melbourne, (1973).
- C29 Bérubé, Y.G., Onoda, G.Y. and de Bruyn, P.L. Surf. Sci., (1967), <u>8</u>, 448.

C30 James, R.O. and Parks, G.A. "Surface and Colloid Science", vol. 12, ed. E. Matijevic, Plenum Press (1982).